PCT
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification ${ }^{7}$:
 A61K 31/00 | A2 | (11) International Publication Number:
 (43) International Publication Date: WO 00/66099 |
| :--- | :--- | :--- | :--- | :--- |

(21) International Application Number:
(22) International Filing Date: $\quad 26$ April 2000 (26.04.00)
(30) Priority Data:

60/132,036 30 April 1999 (30.04.99)
US
(71) Applicant (for all designated States except US): LILLY ICOS LLC [US/US]; 1209 Orange Street, Wilmington, DE 19801 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): PULLMAN, William, Emest [US/US]; 3004 Towne Drive, Carmel, IN 46032 (US). WHITAKER, John, Steven [US/US]; 19340 162nd Avenue, Woodinville, WA 98072 (US).
(74) Agent: NAPOLI, James, J.; Marshall, O'Toole, Gerstein, Murray \& Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).
(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished upon receipt of that report.
(54) Title: UNIT DOSAGE FORM
(57) Abstract

E
The present invention relates to highly selective phosphodiesterase (PDE) enzyme inhibitors and to their use in pharmaceutical articles of manufacture. In particular, the present invention relates to potent inhibitors of cyclic guanosine $3^{\prime}, 5^{\prime}-$ monophosphate specific phosphodiesterase type 5 (PDE5) that when incorporated into a pharmaceutical product at about 1 to about 20 mg unit dosage are useful for the treatment of sexual dysfunction.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner of Patents
Washington, D.C. 20231
Sir:

Please amend the above-identified application
as follows:

IN THE SPECIFICATION:

Page 1, after the title, please delete the CROSS-REFERENCE TO RELATED APPLICATION in its entirety and insert therefor:

10,035556
 531 Rectur 19 OCT 2001

--CROSS-REFERENCE TO RELATED APPLICATIONS

This is the U.S. national phase application of International Application No. PCT/USOO/11129, filed on April 26, 2000, which claims the benefit of provisional patent application Serial No. 60/132,036, filed April 30, 1999.--

IN THE CLAIMS:

Cancel claims 18 and 19 without prejudice.
Amend claims 7-9 as follows:
7. (Amended) The dosage form of claim 1, 2, 3, 4, 5, or 6 wherein the unit dose is in a form selected from the group consisting of a liquid, a tablet, a capsule, and a gelcap.
8. (Amended) The dosage form of claim 1, 2, $3,4,5$, or 6 wherein the unit dose is in the form of a tablet.
9. (Amended) (Amended) The dosage form of claim 1, 2, 3, 4, 5, or 6 for use in treating a condition wherein inhibition of PDE5 is desirable.

20.02556
 531 Recidplir $190 C T 2001$

REMARKS

Claims 1-19 are pending in the application. Claims 18 and 19 have been cancelled. Therefore, claims 1-17 are at issue in this application.

The amendments are described in more detail below. Pursuant to 37 C.F.R. §1.121, a marked-up version of the changes made to the claims by the present amendment is attached hereto following the signature page of this amendment. The first page of the marked-up version of the changes is captioned "Version With Markings to Show Changes Made."

This preliminary amendment adds no new matter. The specification has been amended to insert a crossreference to a related application. Claims 7-9 have been amended to improve the form of the claims.

It is submitted that the amendment should be entered, and that the claims are of a proper form and scope for allowance. An early and favorable action on the merits is respectfully requested.

Should the examiner wish to discuss the foregoing, or any matter of form in an effort to advance this application toward allowance, the examiner is urged to telephone the undersigned at the indicated number.

Chicago, Illinois October 19, 2001

$10 / 031056$

Version With Markings to Show Changes Made
(U.S. National Stage of PCT/USO0/11129 filed October 19, 2001)

IN THE SPECIFICATION:

The following cross-reference to related application has been inserted into the specification: CROSS-REFERENCE TO RELATED APPLICATIONS

This is the U.S. national phase application of International Application No. PCT/USOO/11129, filed on April 26, 2000, which claims the benefit of provisional patent application Serial No. 60/132,036, filed April 30, 1999.

IN THE CLAIMS:

Claims 18 and 19 have been cancelled without prejudice.

Claims 7-9 have been amended as follows:
7. (Amended) The dosage form of [claims 1 through 6] claim 1, $2,3,4,5$, or 6 wherein the unit dose is in a form selected from the group consisting of a liquid, a tablet, a capsule, and a gelcap.
8. (Amended) The dosage form of [claims 1 through 6] claim 1, $2,3,4,5$, or 6 wherein the unit dose is in the form of a tablet.

Abstract

9. (Amended) The dosage form of [claims 1 through 6] claim $1,2,3,4,5$, or 6 for use in treating a condition wherein inhibition of PDE5 is desirable.

UNIT DOSAGE FORM

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of provisional patent application Serial No. 60/132,036, filed April 30, 1999.

FIELD OF THE INVENTION

The present invention relates to a highly selective phosphodiesterase (PDE) enzyme inhibitor and to its use in a pharmaceutical unit dosage form. In particular, the present invention relates to a potent inhibitor of cyclic guanosine $3^{\prime}, 5^{\prime}$-monophosphate specific phosphodiesterase type 5 (PDE5) that when incorporated into a pharmaceutical product is useful for the treatment of sexual dysfunction. The unit dosage form described herein is characterized by selective PDE5 inhibition, and accordingly, provides a benefit in therapeutic areas where inhibition of PDE5 is desired, with minimization or elimination of adverse side effects resulting from inhibition of other phosphodiesterase enzymes.

BACKGROUND OF THE INVENTION

The biochemical, physiological, and clinical effects of cyclic guanosine $3^{\prime \prime}$ '5'-mono- $^{\prime}$ phosphate specific phosphodiesterase (cGMP-specific PDE) inhibitors suggest their utility in a variety of disease states in which modulation of smooth muscle, renal, hemostatic, inflammatory, and/or
endocrine function is desired. Type 5 cGMP-specific phosphodiesterase (PDE5) is the major cGMP hydrolyzing enzyme in vascular smooth muscle, and its expression in penile corpus cavernosum has been reported (Taher et al., J. Urol., 149, p. 285A (1993)). Thus, PDE5 is an attractive target in the treatment of sexual dysfunction (Murray, $D N \& P$ 6(3), pp. 150-56 (1993)).

A pharmaceutical product, which provides a PDE5 inhibitor, is currently available and marketed under the trademark VIAGRA ${ }^{\circledR}$. The active ingredient in VIAGRA ${ }^{\circledR}$ is sildenafil. The product is sold as an article of manufacture including 25,50 , and 100 mg tablets of sildenafil and a package insert. The package insert provides that sildenafil is a more potent inhibitor of PDE5 than other known phosphodiesterases (greater than 80 fold for PDEl inhibition, greater than 1,000 fold for PDE2, PDE3, and PDE4 inhibition). The IC_{50} for sildenafil against PDE5 has been reported as 3 nM (Drugs of the Future, 22(2), pp. 138-143 (I997)) and as 3.9 nM (Boolel et al., Int. J. of Impotence, 8, pp. 47-52 (1996)). Sildenafil is described as having a 4,000-fold selectivity for PDE5 versus PDE3, and only a 10-fold selectivity for PDE5 versus PDE6. Its relative lack of selectivity for PDE6 is theorized to be the basis for abnormalities related to color vision.

While sildenafil has obtained significant commercial success, it has fallen short due to its significant adverse side effects, including facial flushing (10% incidence rate). Adverse side effects limit the use of sildenafil in patients suffering from vison abnormalities, hypertension, and, most
significantly, by individuals who use organic nitrates (Welds et al., Amer. J. of Cardiology, 83(5A), pp. 21 (C)-28(C) (1999)).

The use of sildenafil in patients taking organic nitrates causes a clinically significant drop in blood pressure which could place the patient in danger. Accordingly, the package label for sildenafil provides strict contraindications against its use in combination with organic nitrates (e.g., nitroglycerin, isosorbide mononitrate, isosorbide nitrate, erythrityl tetranitrate) and other nitric oxide donors in any form, either regularly or intermittently, because sildenafil potentiates the hypotensive effects of nitrates. See C.R. Conti et al., Amer. J. of Cardiology, 83(5A), pp. 29C-34C (1999). Thus, even with the availability of sildenafil, there remains a need to identify improved pharmaceutical products that are useful in treating sexual dysfunction.

Daugan U.S. Patent 5,859,006 discloses certain tetracyclic derivatives that are potent inhibitors of cGMP-specific PDE, or PDE5. The $I C_{50}$ of the compounds disclosed in U.S. Patent No. 5,859,006 is reported in the range of 1 nM to $10 \mu \mathrm{M}$. The oral dosage for such compounds is 0.58 mg daily for an average adult patient (70 kg) . Thus, unit dosage forms (tablets or capsules) are reported as 0.2 to 400 mg of active compound. Significant adverse side effects attributed to compounds disclosed in U.S. Patent No. 5,859,006 are not disclosed.

Applicants have discovered that one such tetracyclic derivative, ($6 \mathrm{R}, 12 \mathrm{aR}$) $-2,3,6,7,12,12 \mathrm{a}-$

- 4 -

hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1': 6, 1] pyrido[3,4-b] indole-1,4-dione, alternatively named (6R-trans)-6-(1,3-benzodioxol-5-yl)-2, 3, 6, 7, 12, 12a-hexahydro-2-methylpyrazino[1', 2':1,6] pyrido[3,4-b] indole-1,4-dione, and referred to herein as Compound (I), can be administered in a unit dose that provides an effective treatment without the side effects associated with the presently marketed PDE5 inhibitor, sildenafil. Prior to the present invention such side effects were considered inherent to the inhibition of PDE5. Significantly, applicants' clinical studies also reveal that an effective product having a reduced tendency to cause flushing in susceptible individuals can be provided. Most unexpectedly, the product also can be administered with clinically insignificant side effects associated with the combined effects of a PDE5 inhibitor and an organic nitrate. Thus, the contraindication once believed necessary for a product containing a PDE5 inhibitor is unnecessary when Compound (I) is administered as a unit dose of about 1 to about 20 mg , as disclosed herein. Thus, the present invention provides an effective therapy for sexual dysfunction in individuals who previously were untreatable or suffered from unacceptable side effects, including individuals having cardiovascular disease, such as in individuals requiring nitrate therapy, having suffered a myocardial infarction more than three months before the onset of sexual dysfunction therapy, and suffering from class 1 congestive heart failure, or individuals suffering from vision abnormalities.

The present invention provides Compound (I) in a unit dosage form. That is, the present invention provides a pharmaceutical unit dosage form suitable for oral administration comprising about 1 to about 20 mg Compound (I).

SUMMARY OF THE INVENTION

The present invention provides a pharmaceutical dosage form for human pharmaceutical use, comprising about 1 to about 20 mg of ($6 \mathrm{R}, 12 \mathrm{aR}$)$2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-6-(3,4-m e t h y l e n e-$ dioxyphenyl) pyrazino[2', 1':6,1]pyrido[3,4-b] indole-1,4-dione in a unit dosage form suitable for oral administration.

The present invention further provides a method of treating conditions where inhibition of PDE5 is desired, which comprises administering to a patient in need thereof an oral dosage form containing about 1 to about 20 mg of a selective PDE5 inhibitor, as needed, up to a total dose of 20 mg per day. The invention further provides the use of an oral dosage form comprising a selective PDE5 inhibitor at a dosage of about 1 to about 20 mg for the treatment of sexual dysfunction.

Specific conditions that can be treated by the present invention, include, but are not limited to, male erectile dysfunction and female sexual dysfunction, particularly female arousal disorder, also known as female sexual arousal disorder.

In particular, the present invention is directed to a pharmaceutical unit dosage composition
comprising about 1 to about 20 mg of a compound having the structural formula:

said unit dosage form suitable for oral administration, and method of treating sexual dysfunction using the pharmaceutical unit dose composition.

DETAILED DESCRIPTION

For purposes of the present invention as disclosed and described herein, the following terms and abbreviations are defined as follows.

The term "container" means any receptacle and closure therefor suitable for storing, shipping, dispensing, and/or handling a pharmaceutical product.

The term "IC C_{50} " is the measure of potency of a compound to inhibit a particular PDE enzyme (e.g., PDE1c, PDE5, or PDE6). The IC_{50} is the concentration of a compound that results in 50% enzyme inhibition in a single dose-response experiment. Determining the $I C_{50}$ value for a compound is readily
carried out by a known in vitro methodology generally described in Y. Cheng et al., Biochem. Pharmacol., 22, pp. 3099-3108 (1973).

The term "package insert" means informa- tion accompanying the product that provides a description of how to administer the product, along with the safety and efficacy data required to allow the physician, pharmacist, and patient to make an informed decision regarding use of the product. The package insert generally is regarded as the "label" for a pharmaceutical product.

The term "oral dosage form" is used in a general sense to reference pharmaceutical products administered orally. Oral dosage forms are recognized by those skilled in the art to include such forms as liquid formulations, tablets, capsules, and gelcaps.

The term "vision abnormalities" means abnormal vision characterized by blue-green vision believed to be caused by PDE6 inhibition.

The term "flushing" means an episodic redness of the face and neck attributed to vasodilation caused by ingestion of a drug, usually accompanied by a feeling of warmth over the face and neck and sometimes accompanied by perspiration.

The term "free drug" means solid particles of drug not intimately embedded in a polymeric coprecipitate.

The presently claimed dosage form preferably is packaged as an article of manufacture for human pharmaceutical use, comprising a package insert, a container, and a dosage form comprising about 1 to about 20 mg of Compound (I)

The package insert provides a description of how to administer a pharmaceutical product, along with the safety and efficacy data required to allow the physician, pharmacist, and patient to make an informed decision regarding the use of the product. The package insert generally is regarded as the label of the pharmaceutical product. The package insert incorporated into the article of manufacture indicates that Compound (I) is useful in the treatment of conditions wherein inhibition of PDE5 is desired. The package insert also provides instructions to administer one or more about 1 to about 20 mg unit dosage forms as needed, up to a maximum total dose of 20 mg per day. Preferably, the dose administered is about 5 to about $20 \mathrm{mg} /$ day, more preferably about 5 to about $15 \mathrm{mg} / \mathrm{day}$. Most preferably, a 10 mg dosage form is administered once per day.

Preferred conditions to be treated include sexual dysfunction (including male erectile dysfunction; and female sexual dysfunction, and more preferably female arousal disorder (FAD)). The preferred condition to be treated is male erectile dysfunction.

Significantly, the package insert supports the use of the product to treat sexual dysfunction in patients suffering from a retinal disease, for example, diabetic retinopathy or retinitis pigmentosa, or in patients who are using organic nitrates. Thus, the package insert preferably is free of contraindications associated with these conditions, and particularly the administration of the dosage form with an organic nitrate. More

- 9 -
preferably, the package insert also is free of any cautions or warnings both associated with retinal diseases, particularly retinitis pigmentosa, and associated with individuals prone to vision abnormalities. Preferably, the package insert also reports incidences of flushing below 2%, preferably below 1\%, and most preferably below 0.5%, of the patients administered the dosage form. The incidence rate of flushing demonstrates marked improvement over prior pharmaceutical products containing a PDE5 inhibitor.

The container used in the article of manufacture is conventional in the pharmaceutical arts. Generally, the container is a blister pack, foil packet, glass or plastic bottle and accompanying cap or closure, or other such article suitable for use by the patient or pharmacist. Preferably, the container is sized to accommodate $1-1000$ solid dosage forms, preferably 1 to 500 solid dosage forms, and most preferably, 5 to 30 solid dosage forms.

Oral dosage forms are recognized by those skilled in the art to include, for example, such forms as liquid formulations, tablets, capsules, and gelcaps. Preferably the dosage forms are solid dosage forms, particularly, tablets comprising about 1 to about 20 mg of Compound (I). Any pharmaceutically acceptable excipients for oral use are suitable for preparation of such dosage forms. Suitable pharmaceutical dosage forms include coprecipitate forms described, for example, in Butler U.S. Patent No. 5,985,326, incorporated herein by reference. In preferred embodiments, the unit dosage form of the

- 10 -
present invention is a solid free of a coprecipitate form of Compound (I), but rather contains solid Compound (I) as a free drug.

Preferably, the tablets comprise pharma- such as lactose, microcrystalline cellulose, starch, calcium carbonate, magnesium stearate, stearic acid, talc, and colloidal silicon dioxide, and are prepared by standard pharmaceutical manufacturing techniques as described in Remington's Pharmaceutical Sciences, l8th Ed., Mack Publishing Co., Easton, PA (1990). Such techniques include, for example, wet granulation followed by drying, milling, and compression into tablets with or without film coating; dry granulation followed by milling, compression into tablets with or without film coating; dry blending followed by compression into tablets, with or without film coating; molded tablets; wet granulation, dried and filled into gelatin capsules; dry blend filled into gelatin capsules; or suspension and solution filled into gelatin capsules. Generally, the solid dosage forms have identifying marks which are debossed or imprinted on the surface.

The present invention is based on detailed experiments and clinical trials, and the unexpected observations that side effects previously believed to be indicative of PDE5 inhibition can be reduced to clinically insignificant levels by the selection of a compound and unit dose. This unexpected observation enabled the development of a unit dosage form that incorporates Compound (I) in about 1 to about 20 mg per unit dosage forms that, when orally administered, minimizes undesirable side effects previ-
ously believed unavoidable. These side effects include facial flushing, vision abnormalities, and a significant decrease in blood pressure, when Compound (I) is administered alone or in combination with an organic nitrate. The minimal effect of Compound (I), administered in about I to about 20 mg unit dosage forms, on PDE6 also allows the administration of a selective PDE5 inhibitor to patients suffering from a retinal disease, like diabetic retinopathy or retinitis pigmentosa.

Compound (I) has the following structural formula:

(I)

The compound of structural formula (I) was demonstrated in human clinical studies to exert a minimal impact on systolic blood pressure when administered in conjunction with organic nitrates. By contrast, sildenafil demonstrates a four-fold greater decrease in systolic blood pressure over a placebo, which leads to the contraindications in the VIAGRA ${ }^{(3}$ insert, and in warnings to certain patients.

The following illustrates the PDE5 and PDE6 IC $_{50}$ values for the compound of structural
formula (I) determined by the procedures described herein.

Compound	PDE5 $_{\text {IC }}^{50}$ (nM)	PDE6 IC $_{50}$ (nM)	PDE6/PDE5
I	2.5	3400	1360

The compound of structural formula (I) additionally demonstrates an $I C_{50}$ against PDEIc of 10,000 , and a ratio of PDE1c/PDE5 of 4,000.

PREPARATIONS

Human PDE5 Preparation

Recombinant production of human PDE5 was carried out essentially as described in'Example 7 of U.S. Patent No. 5,702,936, incorporated herein by reference, except that the yeast transformation vector employed, which is derived from the basic ADH2 plasmid described in V. Price et al., Methods in Enzymology, 1985, pages 308-318 (1990), incorporated yeast ADH2 promoter and terminator sequences rather than $A D H 1$ promoter and terminator sequences and the Saccharomyces cerevisiase host was the protease-deficient strain BJ2-54 deposited on August 31, 1998 with the American Type Culture Collection, Manassas, Virginia, under accession number ATCC 74465. Transformed host cells were grown in 2 X sCleu medium, pH 6.2, with trace metals, and vitamins. After 24 hours, YEP medium containing glycerol was added to a final concentration of 2 X YEP/3\% glycerol. Approximately 24 hours later, cells were harvested, washed, and stored at $-70^{\circ} \mathrm{C}$.

Cell pellets (29 g) were thawed on ice with an equal volume of lysis buffer (25 mM Tris-Cl, $\mathrm{pH} 8,5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.25 \mathrm{mM}$ dithiothreitol, I mM benzamidine, and $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}$). Cells were lysed in a microfluidizer with N_{2} at 20,000 psi. The Iysate was centrifuged and filtered through $0.45 \mu \mathrm{~m}$ disposable filters. The filtrate was applied to a 150 mL column of Q Sepharose Fast Flow (Pharmacia). The column was washed with 1.5 volumes of Buffer A (20 mM Bis-Tris Propane, $\mathrm{pH} 6.8,1 \mathrm{mM} \mathrm{MgCl} \mathrm{M}_{2}, 0.25 \mathrm{mM}$ dithiothreitol, $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}$) and eluted with a step gradient of 125 mM NaCl in Buffer A followed by a linear gradient of $125-1000 \mathrm{mM} \mathrm{NaCl}$ in Buffer A.

Active fractions from the linear gradient were applied to a 180 mL ceramic hydroxyapatite column in Buffer B (20 mM Bis-Tris Propane (pH 6.8), $1 \mathrm{mM} \mathrm{MgCl} 2,0.25 \mathrm{mM}$ dithiothreitol, $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}$, and $250 \mathrm{mM} \mathrm{KCl})$. After loading, the column was washed with 2 volumes of Buffer B and eluted with a linear gradient of $0-125 \mathrm{mM}$ potassium phosphate in Buffer B. Active fractions were pooled, precipitated with 60\% ammonium sulfate, and resuspended in Buffer C (20 mM Bis-Tris Propane, $\mathrm{pH} 6.8,125 \mathrm{mM} \mathrm{NaCl}, 0.5 \mathrm{mM}$ dithiothreitol, and $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}$). The pool was applied to a 140 mL column of sephacryl $\mathrm{s}-300 \mathrm{HR}$ and eluted with Buffer C. Active fractions were diluted to 50% glycerol and stored at $-20^{\circ} \mathrm{C}$. The resultant preparations were about 85% pure by SDS-PAGE.

Assay for PDE Activity

Activity of PDE5 can be measured by standard assays in the art. For example, specific
activity of any PDE can be determined as follows. PDE assays utilizing a charcoal separation technique were performed essentially as described in Loughney et al., (1996), The Journal of Biological Chemistry, 271:796-806. In this assay, PDE5 activity converts [$\left.{ }^{32} \mathrm{P}\right]$ CGMP to $\left[{ }^{32} \mathrm{P}\right] 5^{\prime} \mathrm{GMP}$ in proportion to the amount of PDE5 activity present. The [$\left.{ }^{32} \mathrm{P}\right] 5^{\prime} \mathrm{GMP}$ then is quantitatively converted to free [${ }^{32} \mathrm{P}$] phosphate and unlabeled adenosine by the action of snake venom 5'nucleotidase. Hence, the amount of $\left[{ }^{32} \mathrm{P}\right]$ phosphate liberated is proportional to enzyme activity. The assay is performed at 30 C in a $100 \mu \mathrm{~L}$ reaction mixture containing (final concentrations) 40 mM Tris-Cl (pH 8.0), $1 \mu \mathrm{MnSO}_{4}, 5 \mathrm{mM} \mathrm{MgCl} \mathrm{Zn}_{2}$, and 0.1 $\mathrm{mg} / \mathrm{mL}$ bovine serium albumin. PDE5 is present in quantities that yield $<30 \%$ total hydrolysis of substrate (linear assay conditions). The assay is initiated by addition of substrate (1 mM [$\left.{ }^{32} \mathrm{P}\right]$ CGMP), and the mixture is incubated for 12 minutes. Seventy-five (75) $\mu \mathrm{g}$ of Crotalus atrox venom then is added, and the incubation is continued for 3 more minutes (15 minutes total). The reaction is stopped by addition of 200 mL of activated charcoal $(25 \mathrm{mg} /-$ mL suspension in $0.1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{pH} 4$). After centrifugation (750 x g for 3 minutes) to sediment the charcoal, a sample of the supernatant is taken for radioactivity determination in a scintillation counter and the PDE5 activity is calculated. The preparations had specific activities of about 3 jmoles cGMP hydrolyzed per minute per milligram protein.

Bovine PDE6 Preparation

Abstract

Bovine PDE6 was supplied by Dr. N. Virmaux, INSERM U338, Strasbourg. Bovine retinas

 were prepared as described by Virmaux et al., FEBS Letters, 12 (6), pp. 325-328 (1971) and see also, A. Sitaramayya et al., Exp. Eye Res., 25, pp. 163-169 (1977) . Briefly, unless stated otherwise, all operations were done in the cold and in dim red light. Eyes were kept in the cold and in the dark for up to four hours after slaughtering.Preparation of bovine retinal outer segment (ROS) basically followed procedures described by Schichi et al., J. Biol. Chem., 224:529 (1969). In a typical experiment, 35 bovine retinas were ground in a mortar with 35 mL 0.066 M phosphate buffer, pH 7.0, made up to 40% with sucrose, followed by homogenization in a Potter homogenizer (20 up and down strokes). The suspension was centrifuged at $25,000 \mathrm{x} g$ for 20 minutes. The pellet was homogenized in 7.5 mL 0.006 M phosphate buffer (40% in sucrose), and carefully layered under 7.5 mL of phosphate buffer (containing no sucrose). Centrifugation was conducted in a swing-out rotor at $45,000 \mathrm{x} 9$ for 20 minutes , and produced a pellet which is black at the bottom, and also a red band at the interface 0.066 M . phosphate- -40% sucrose/0.066 M phosphate (crude ROS). The red material at the interface was removed, diluted with phosphate buffer, spun down to a pellet, and redistributed in buffered 40% sucrose as described above. This procedure was repeated 2 or 3 times until no pellet was formed. The purified ROS was washed in phosphate

- 16 -
buffer and finally spun down to a pellet at 25,000 x g for 20 minutes. All materials were then kept frozen until used.

Hypotonic extracts were prepared by sus- pending isolated ROS in 10 mM Tris-Cl pH 7.5 , 1 mM EDTA, and 1 mM dithioerythritol, followed by centrifugation at $100,000 \mathrm{x} g$ for 30 minutes.

The preparation was reported to have a specific activity of about 35 nmoles cGMP hydrolyzed per minute per milligram protein.

PDElc Preparation from Spodoptera fugiperda Cells (Sf9)

Cell pellets (5g) were thawed on ice with 20 ml of Lysis Buffer (50 mM MOPS pH 7.4 , $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}$, $0.1 \mathrm{mM} \mathrm{CaCl}_{2}, 1 \mathrm{mM} \mathrm{DTT}, 2 \mathrm{mM}$ benzamidine $\mathrm{HCl}, 5 \mu \mathrm{~g} / \mathrm{ml}$ each of pepstatin, leupeptin, and aprotenin). Cells were lysed by passage through a French pressure cell (SLM-Aminco) while temperatures were maintained below $10^{\circ} \mathrm{C}$. The resultant cell homogenate was centrifuged at $36,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 45 minutes in a Beckman ultracentrifuge using a Type TI45 rotor. The supernatant was discarded and the resultant pellet was resuspended with 40 ml of Solubilization Buffer (Lysis Buffer containing $1 \mathrm{M} \mathrm{NaCl}, 0.1 \mathrm{M} \mathrm{MgCl}_{2}$, $1 \mathrm{mM} \mathrm{CaCl}{ }_{2}, 20 \mu \mathrm{~g} / \mathrm{ml}$ calmodulin, and 1% Sulfobetaine SB12 (Z3-12) by sonicating using a Vibracell tuner with a microtip for 3×30 seconds. This was performed in a crushed ice/salt mix for cooling. Following sonication, the mixture was slowly mixed for 30 minutes at $4^{\circ} \mathrm{C}$ to finish solubilizing membrane bound proteins. This mixture was centrifuged
in a Beckman ultracentrifuge using a type TI45 rotor at $36,000 \mathrm{rpm}$ for 45 minutes. The supernatant was diluted with Lysis Buffer containing $10 \mu \mathrm{~g} / \mathrm{ml}$ calpain inhibitor I and II. The precipitated protein was centrifuged for 20 minutes at 9,000 rpm in a Beckman JA-10 rotor. The recovered supernatant then was subjected to Mimetic Blue AP Agarose Chromatography.

In order to run the Mimetic Blue AP Agarose Column, the resin initially was shielded by the application of 10 bed volumes of 1% polyvinylpyrrolidine (i.e., MW of 40,000) to block nonspecific binding sites. The loosely bound PVP-40 was removed by washing with 10 bed volumes of 2 M NaCl , and 10 mM sodium citrate pH 3.4 . Just prior to addition of the solubilized PDE1c3 sample, the column was equilibrated with 5 bed volumes of Column Buffer A (50 mM MOPS pH 7.4 , $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}, 5 \mathrm{mM} \mathrm{MgCl}_{2}$, $0.1 \mathrm{mM} \mathrm{CaCl} 2_{2}, 1 \mathrm{mM}$ DTT, 2 mM benzamidine HCl$)$.

The solubilized sample was applied to the column at a flow rate of $2 \mathrm{ml} / \mathrm{min}$ with recycling such that the total sample was applied 4 to 5 times in 12 hours. After loading was completed, the column was washed with 10 column volumes of Column Buffer A, followed by 5 column volumes of Column Buffer B (Column Buffer A containing $20 \mathrm{mM} 5^{\prime}-\mathrm{AMP}$), and followed by 5 column volumes of Column Buffer C (50 mM MOPS $\mathrm{pH} 7.4,10 \mu \mathrm{M} \mathrm{ZnSO}_{4}, 0.1 \mathrm{mM} \mathrm{CaCl}_{2}, 1 \mathrm{mM}$ dithiothreitol, and 2 mM benzamidine HCl). The enzyme was eluted into three successive pools. The first pool consisted of enzyme from a 5 bed volume wash with Column Buffer C containing 1 mM CAMP. The second pool consisted of enzyme from a 10 bed volume wash with Column Buffer C containing 1 m NaCl . The
final pool of enzyme consisted of a 5 bed volume wash with Column Buffer C containing 1 M NaCl and 20 mM CAMP.

The active pools of enzyme were collected and the cyclic nucleotide removed via conventional gel filtration chromatography or chromatography on hydroxy-apatite resins. Following removal of cyclic nucleotides, the enzyme pools were dialyzed against Dialysis Buffer containing 25 mM MOPS $\mathrm{pH} 7.4,10 \mu \mathrm{M}$ $\mathrm{ZnSO}_{4}, 500 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{CaCl} \mathbf{C l}_{2} 1 \mathrm{mM}$ dithiothreitol, 1 mM benzamidine HCl , followed by dialysis against Dialysis buffer containing 50\% glycerol. The enzyme was quick frozen with the aid of dry ice and stored at $-70^{\circ} \mathrm{C}$.

The resultant preparations were about $>90 \%$ pure by SDS-PAGE. These preparations had specific activities of about 0.1 to $1.0 \mu \mathrm{~mol}$ cAMP hydrolyzed per minute per milligram protein.

IC $C_{50 \text { _ Determinations }}$

The parameter of interest in evaluating the potency of a competitive enzyme inhibitor of PDE5 and/or PDElc and PDE6 is the inhibition constant, i.e., K_{1}. This parameter can be approximated by determining the IC_{50}, which is the inhibitor concentration that results in 50% enzyme inhibition, in a single dose-response experiment under the following conditions.

The concentration of inhibitor is always much greater than the concentration of enzyme, so that free inhibitor concentration (which is unknown)
is approximated by total inhibitor concentration (which is known).

A suitable range of inhibitor concentrations is chosen (i.e., inhibitor concentrations at least several fold greater and several fold less than the K_{i} are present in the experiment). Typically, inhibitor concentrations ranged from 10 nM to $10 \mu \mathrm{M}$.

The concentrations of enzyme and substrate are chosen such that less than 20% of the substrate is consumed in the absence of inhibitor (providing, e.g., maximum substrate hydrolysis of from 10 to 15\%), so that enzyme activity is approximately constant throughout the assay.

The concentration of substrate is less than one-tenth the Michaelis constant (K_{m}). Under these conditions, the I_{50} will closely approximate the K_{i}. This is because of the Cheng-Prusoff equa-
 with $\left(1+S / K_{m}\right)$ approximately 1 at low values of S / K_{m}.

The $I C_{50}$ value is estimated from the data points by fitting the data to a suitable model of the enzyme inhibitor interaction. When this interaction is known to involve simple competition of the inhibitor with the substrate, a two-parameter model can be used:

$$
Y=A /(1+x / B)
$$

where the Y is the enzyme activity measured at an inhibitor concentration of x, A is the activity in the absence of inhibitor and B is the $I C_{50}$. See Y.

Cheng et al., Biochem. Pharmacol., 22:3099-3108 (1973).

Effects of inhibitors of the present invention on enzymatic activity of PDE5 and PDE6 preparations as described above were assessed in either of two assays which differed from each other principally on the basis of scale and provided essentially the same results in terms of IC_{50} values. Both assays involved modification of the procedure of Wells et al., Biochim. Biophys. Acta, 384:430 (1975). The first of the assays was performed in a total volume of $200 \mu \mathrm{l}$ containing 50 mM Tris pH 7.5, 3 mM Mg acetate, 1 mM EDTA, $50 \mu \mathrm{~g} / \mathrm{mL}$ snake venom nucleotidase and 50 nM [$\left.{ }^{3} \mathrm{H}\right]$-cGMP (Amersham). Compounds of the invention were dissolved in DMSO finally present at 2% in the assay. The assays were incubated for 30 minutes at $30^{\circ} \mathrm{C}$ and stopped by addition of $800 \mu \mathrm{LI}$ of 10 mM Tris pH 7.5 , 10 mM EDTA, 10 mM theophylline, 0.1 mM adenosine, and 0.1 mM guanosine. The mixtures were loaded on to 0.5 mL QAE Sephadex columns, and eluted with 2 mL of 0.1 M formate (pH 7.4). The eluted radioactivity was measured by scintillation counting in Optiphase Hisafe 3.

A second, microplate, PDE assay was developed using Multiscreen plates and a vacuum manifold. The assay (100 $\mu \mathrm{l}$) contained 50 mM Tris pH 7.5, 5 mM Mg acetate, 1 mM EDTA and $250 \mathrm{\mu g} / \mathrm{mL}$ snake venom nucleotidase. The other components of the reaction mixture were as described above. At the end of the incubation, the total volume of the assays were loaded on a QAE Sephadex microcolumn plate by filtration. Free radioactivity was eluted
with $200 \mu l$ of water from which $50 \mu l$ aliquots were analyzed by scintillation counting as described above.

The following examples are presented to further illustrate the preparation of the claimed invention. The scope of the present invention is not to be construed as merely consisting of the following examples.

Example 1

Compound (I) was prepared as described in U.S. patent 5,859,006 and formulated in tablets using wet granulation. Povidone was dissolved in water to make a 10% solution. The active compound, microcrystalline cellulose, croscarmellose sodium, and sodium lauryl sulfate were added to a high shear mixer and mixed for 2 minutes. The powders were wet granulated with the povidone solution and extra water as required to complete the granulation. The resultant mixture was dried in a fluid bed drier with inlet air at $70^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ until the loss on drying was below 2.5\%. The granules were passed through a Comil with a suitable screen (or a sieve) and added to a suitable mixer. The extragranular croscarmellose sodium and sodium lauryl sulfate, and the colloidal anhydrous silica were passed through a suitable sieve (e.g., 500 micron) and added to the mixer and blended 5 minutes. Magnesium stearate was added and blended for 2 minutes. The blend was compressed to a target compression/weight of 250 mg using 9 mm round normal concave tooling.

The core tablets were coated with an aqueous suspension of Opadry OY-S-7322 using an Accelacota (or similar coating pan) using inlet air at $50^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ until the tablet weight was in- creased by approximately 8 mg . Opadry OY-S-7322 contains methylhydroxypropylcellulose Ph.Eur., titanium dioxide Ph. Eur., Triacetin USP. Opadry increases the weight of each tablet to about 258 mg . The amount of film coat applied per tablet may be less than that stated depending on the process efficiency.

The tablets are filled into blister packs and accompanied by package insert describing the safety and efficacy of the compound.

Component	Formulations (mg per tablet)	
Selective PDE5 Inhibitor ${ }^{1 /}$	1	5
Hydroxypropyl Methylcellulose Phthalate	1	5
Microcrystalline Cellulose	221.87	213.87
Croscarmellose Sodium	5.00	5.00
Sodium Lauryl Sulfate	2.50	2.50
Povidone K30	9.38	9.38
Purified Water, USP (water for irrigation)	q.s.	q.s.
Croscarmellose Sodium	5.00	5.00
Sodium Lauryl Sulfate	2.50	2.50
Colloidal Anhydrous Silica	0.50	0.50
Magnesium stearate	1.25	1.25
Total core subtotal	250.00	250.00
(Film coat Opadxy OY-S-7322)	about 8 mg	about 8 mg

1) Compound (I).

Example 2

The following formula is used in preparing the finished dosage form containing 10 mg of Compound (I).

Ingredient	Quantity (mg)
Granulation	
Selective pDE5 Inhibitor	
Lactose Monohydrate	10.00
Lactose Monohydrate (spray dried)	153.80
Hydroxypropylcellulose	25.00
Croscarmellose Sodium	4.00
Hydroxypropylcellulose (EF)	9.00
Sodium Lauryl Sulfate	1.75
	0.70
Outside powders	35.00
Microcrystalline Cellulose (granular-102)	
Croscarmellose Sodium	37.50
Magnesium Stearate (vegetable)	7.00
	1.25

Purified Water, USP is used in the manufacture of the tablets. The water is removed during processing and minimal levels remain in the finished product.

Tablets are manufactured using a wet granulation process. A step-by-step description of the process is as follows. The drug and excipients to be granulated are security sieved. The selective

PDE5 inhibitor is dry blended with lactose monohydrate (spray dried), hydroxypropylcellulose, croscarmellulose sodium, and lactose monohydrate. The resulting powder blend is granulated with an aqueous solution of hydroxypropylcellulose and sodium lauryl sulfate using a Powrex or other suitable high shear granulator. Additional water can be added to reach the desired endpoint. A mill can be used to delump the wet granulation and facilitate drying. The wet granulation is dried using either a fluid bed dryer or a drying oven. Once the material is dried, it can be sized to eliminate any large agglomerates. Microcrystalline cellulose, croscarmellose sodium, and magnesium stearate are security sieved and added to the dry sized granules. These excipients and the dry granulation are mixed until uniform using a tumble bin, ribbon mixer, or other suitable mixing equipment. The mixing process can be separated into two phases. The microcrystalline cellulose, croscarmellose sodium, and the dried granulation are added to the mixer and blended during the first phase, followed by the addition of the magnesium stearate to this granulation and a second mixing phase.

The mixed granulation then is compressed into tablets using a rotary compression machine. The core tablets are film coated with an aqueous suspension of the appropriate color mixture in a coating pan (e.g., Accela Cota). The coated tablets can be lightly dusted with talc to improve tablet handling characteristics.

The tablets are filled into plastic containers (30 tablets/container) and accompanied by
package insert describing the safety and efficacy of the compound.

Example 3

5

The following formula is used in preparing a finished dosage form containing 5 mg of Compound (I).

Ingredient	Quantity (mg)
Granulation	
Selective PDE5 Inhibitor ${ }^{1)}$	2.50
Lactose Monohydrate	79.395
Lactose Monohydrate (spray dried)	12.50
Hydroxypropylcellulose	2.00
Croscarmellose Sodium	4.50
Hydroxypropylcellulose (EF)	0.875
Sodium Lauryl Sulfate	0.35
Outside Powders	18.75
Microcrystalline Cellulose (granular-102)	3.50
Croscarmellose Sodium	0.63
Magnesium Stearate (vegetable)	125 mg
	Total
	Film coat (approximately)

The dosage form of Example 3 was prepared in an identical manner to the dosage form of Example 2.

Example 4

Solution Capsule		
Ingredient	mg/capsule	Percent (\%)
Selective PDE5 Inhibitor ${ }^{17}$	10	2
PEG400 NF	490	98
Fill Weight	500	100

The gelatin capsules are precisely filled by pumping an accurate fill volume of pre-dissolved drug formulation into the partially sealed cavity of a capsule. Immediately following injection fill of the drug solution formulation, the capsule is completely heat sealed.

The capsules are filled into plastic containers and accompanied by a package insert.

Example 5

This study was a randomized, double-blind, placebo-controlled, two-way crossover design clinical pharmacology drug interaction study that evaluated the hemodynamic effects of concomitant administration of a selective PDE5 inhibitor (i.e., Compound (I)) and short-acting nitrates on healthy male volunteers. In this study, the subjects received either Compound (I) at a dose of 10 mg or a placebo, daily for seven days. On the sixth or seventh day, the subjects received sublingual nitroglycerin (0.4 mg) while supine on a tilt table. The nitroglycerin was administered 3 hours after Compound (I) dosing, and all subjects kept the nitroglycerine tablet

- 27 -
under their tongue until it completely dissolved. The subjects were tilted to 70° head-up every 5 minutes for a total of 30 minutes with measurement of blood pressure and heart rate. There were no discontinuations among the twenty-two healthy male subjects (ages 19 to 60 years old) that entered this study.

In a preliminary analysis of this study, Compound (I) was well tolerated and there were no serious adverse events. There were no Compound (I) changes in laboratory safety assessments or 12-lead ECGs. The most common adverse events were headache, dyspepsia, and back pain. Compound (I) demonstrated minimal, if any, effect on mean systolic blood pressure, and mean maximal nitroglycerin-induced decrease in systolic biood pressure.

Example 6

In two randomized, double-blinded placebo controlled studies, Compound (I) was administered to patients in need thereof at a range of doses, in both daily dosing and for on demand therapy, for sexual encounters and intercourse in the home setting. Doses from 5 to 20 mg of Compound (I) were efficacious and demonstrated less than 1\% flushing and no reports of vision abnormalities. It was found that a 10 mg dose of Compound (I) was fully efficacious and demonstrated minimal side effects. Enhanced erectile function was determined by the International Index of Erectile Function (IIEF) (Rosen et al., Urology, 49, pp. 822-830
(1997)), diaries of sexual attempts, and a global satisfaction question. Compound (I) significantly improved the percentage of successful intercourse attempts including the ability to attain and maintain an erection in both "on demand" and daily dosing regimens.

Example 7

A third clinical study was a randomized, double-blind, placebo-controlled study of Compound (I) administered "on demand" to patients with male erectile dysfunction. Compound (I) was administered over a period of eight weeks in the treatment of male erectile dysfunction (ED). Erectile dysfunction (ED) is defined as the persistent inability to attain and/or maintain an erection adequate to permit satisfactory sexual performance. "On demand" dosing is defined as intermittent administration of Compound (I) prior to expected sexual activity.

The study population consisted of 212 men, at least 18 years of age, with mild to severe erectile dysfunction. Compound (I) was orally administered as tablets of coprecipitate made in accordance with Butler U.S. Patent No. 5,985,326. Compound (I) was administered in $2 \mathrm{mg}, 5 \mathrm{mg}, 10 \mathrm{mg}$, and 25 mg doses, "on demand" and not more than once every 24 hours. Treatment with all nitrates, azole antifungals (e.g., ketoconazole or itraconazole), warfarin, erythromycin, or antiandrogens was not allowed at any time during the study. No other approved or experimental medications, treatments, or
devices used to treat ED were allowed. Forty-one subjects were administered a placebo.

The two primary efficacy variables were the ability of a subject to penetrate his partner and his ability to maintain an erection during intercourse, as measured by the International Index of Erectile Function (IIEF). The IIEF Questionnaire contains fifteen questions, and is a brief, reliable measure of erectile function. See R.C. Rosen et al., Urology, 49, pp. 822-830 (1997).

Secondary efficacy variables were IIEF domain scores for erectile function, orgasmic function, sexual desire, intercourse satisfaction, and overall satisfaction; the patient's ability to achieve an erection, ability to insert his penis into his partner's vagina, completion of intercourse with ejaculation, satisfaction with the hardness of his erection, and overall satisfaction, all as measured by the Sexual Encounter Profile (SEP) diary; and a global assessment question asked at the end of the treatment period. The SEP is a patient diary instrument documenting each sexual encounter during the course of the study.

The safety aspect of the study included all enrolled subjects, and was assessed by evaluating all reported adverse events, and changes in clinical laboratory values, vital signs, physical examination results, and electrocardiogram results.

At endpoint, patients who rated their penetration ability (IIEF Question 3) as "almost always or always" were as follows: 17.5% in the placebo group, 38.1% in the 2 mg group, 48.8% in the 5 mg group, 51.2% in the 10 mg group, and 83.7% in
the 25 mg group. Comparisons revealed statistically significant differences in change in penetration ability between placebo and all dose levels of Compound (I).

At endpoint, patients who rated their ability to maintain an erection (IIEF Question 4) during intercourse as "almost always or always" are as follows: 10.0% in the placebo group, 19.5% in the 2 mg group, 32.6% in the 5 mg group, 39.0% in the 10 mg group, and 69.0% in the 25 mg group. Comparison revealed statistically significant differences in change in penetration ability between placebo and the three higher dose levels of Compound (I).

This study also included a safety evaluation. A treatment-emergent adverse event is defined as a condition not present at baseline that appeared postbaseline, or a condition present at baseline that increased in severity postbaseline. The most commonly reported treatment-emergent adverse events were headache, dyspepsia, and back pain. The incidence of treatment-emergent adverse events appeared related to dose.

Overall, this study demonstrated that all four doses of Compound (I), namely $2 \mathrm{mg}, 5 \mathrm{mg}, 10$ mg , and 25 mg , taken "on demand" produced significant improvement, relative to placebo, in the sexual performance of men with erectile dysfunction as assessed by the IIEF, by patient diaries assessing frequency of successful intercourse and intercourse satisfaction, and by a global assessment.

The combined results from clinical studies showed that administration of Compound (I) effectively treats male erectile dysfunction, as illustrated in the following table.

5

10

IIEF ERECTILE FUNCTION DOMAIN (Change from Baseline)			
Unit Dose of Compound (I)	\boldsymbol{n}	Mean \pm sD	\mathbf{p}
placebo	131	0.8 ± 5.3	
2 mg	75	3.9 ± 6.1	$<.001$
5 mg	79	6.6 ± 7.1	$<.001$
10 mg	135	7.9 ± 6.7	$<.001$
25 mg	132	9.4 ± 7.0	$<.001$
50 mg	52	9.8 ± 5.5	$<.001$
100 mg	49	8.4 ± 6.1	$<.001$

n is number of subjects, $S D$ is standard deviation.

However, it also was observed from the combined clinical studies that the percent of treatment-emergent adverse events increased with an increasing unit dose of Compound (I), as illustrated in the following table:

Treatment-Emergent Adverse Events (\%)							
	Unit Dose of Compound (I) (mg)						
Event	Placebo	2	5	10	25	50	100
Headache	10	12	10	23	29	34	46
Dyspepsia	6	3	14	13	19	20	25
Back Pain	5	3	3	15	18	24	22
Myalgia	3	0	3	9	16	20	29
Rhinitis	3	7	3	4	4	0	2
Conjunctivitis	1	0	1	1	0	2	5
Eyelid Edema	0	0	0	1	1	2	3
Flushing	0	0	0	<1	0	3	7
Vision Abnormalities	0	0	0	0	0	0	0

The above table shows an increase in adverse events at 25 mg through 100 mg unit doses. Accordingly, even though efficacy in the treatment of ED was observed at 25 mg to 100 mg doses, the adverse events observed from 25 mg to 100 mg doses must be considered.

In accordance with the present invention, a unit dose of about I to about 20 mg , preferably about 2 to about 20 mg , more preferably about 5 to about 20 mg , and most preferably about 5 to about 15 mg , of Compound (I), administered up to a maximum of 20 mg per 24 -hour period, both effectively treats ED and minimizes or eliminates the occurrence of adverse side effects. Importantly, no vision abnormalities were reported and flushing was essentially eliminated. Surprisingly, in addition to treating ED, with at about I to about 20 mg unit dose Compound (I), with a minimum of adverse side effects, individuals undergoing nitrate therapy also can be

- 33 -
treated for ED by the method and composition of the present invention.

The principles, preferred embodiments, and modes of operation of the present invention have been described in the foregoing specification. The invention intended to be protected herein, however, is not construed to be limited to the particular forms disclosed, because they are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

WHAT IS CLAIMED IS:

1. A pharmaceutical unit dosage composition comprising about 1 to about 20 mg of a compound having the structural formula:

said unit dosage form suitable for oral administration.
2. The dosage form of claim 1 comprising about 2 to about 20 mg of the compound in unit dosage form.
3. The dosage form of claim 1 comprising about 5 to about 20 mg of the compound in unit dosage form.
4. The dosage form of claim 2 comprising about 2.5 mg of the compound in unit dosage form.
5. The dosage form of claim 3 comprising about 5 mg of the compound in unit dosage form.
6. The dosage form of claim 3 comprising. about 10 mg of the compound in unit dosage form.
7. The dosage form of claims 1 through 6 wherein the unit dose is in a form selected from the group consisting of a liquid, a tablet, a capsule, and a gelcap.
8. The dosage form of claims 1 through 6 wherein the unit dose is in the form of a tablet.
9. The dosage form of claims 1 through 6 for use in treating a condition where inhibition of PDE5 is desirable.
10. The dosage form of claim 9 wherein the condition is a sexual dysfunction.
11. The dosage form of claim 10 wherein the sexual dysfunction is male erectile dysfunction.
12. The dosage form of claim 10 wherein the sexual dysfunction is female arousal disorder.
13. A method of treating sexual dysfunction in a patient in need thereof comprising administering one or more unit dose containing about 1 to about 20 mg , up to a maximum total dose of 20 mg per day, of a compound having the structure

14. The method of claim 13 wherein the unit dose contains about 2 to about 20 mg of the compound.
15. The method of claim 13 wherein the unit dose contains about 5 mg of the compound.
16. The method of claim 13 wherein the unit dose contains about 10 mg of the compound and is administered once per day.
17. The method of claim 13 wherein the unit dose is in a form selected from the group consisting of a liquid, a tablet, a capsule, and a gelcap.
18. The invention as hereinbefore described.
19. Use of a unit dose containing about I to about 20 mg of a compound having the structure

for the manufacture of a medicament for the treatment of sexual dysfunction in a patient in need thereof.

DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name; I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled "UNIT DOSAGE FORM," the specification of which (check one): \square is attached hereto; \square was filed on \qquad
\qquad as Application Serial No. \qquad and was amended on \qquad (if applicable); \boxtimes was filed as PCT International Application No. PCT/US00/11129 on April 26, 2000, and was amended under Article 19 on \qquad (if applicable). I hereby state that I have reviewed and understand the contents of the aboveidentified specification, including the claims, as amended by any amendment(s) referred to above. I acknowledge the duty to disclose to the Patent and Trademark Office all information known to me to be material to patentability as defined in 37 C.F.R. $\S 1.56$.

I hereby claim foreign priority benefits under 35 U.S.C. $\$ 119$ of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having

动		Priority Claimed						
PG/USO0/11129	PCT							
(Application Serial Number)	(Country)	(Day/Month/Year Filed)	-	No				
ETY			Yes					
実								
E			\square	\square				
(Application Serial Number)	(Country)	(Day/Month/Year Filed)	Yes	No				
\square								
(I hereby claim the benefit under 35 U.S.C. $\$ 119(\mathrm{e})$ of any United States provisional application(s) listed below:								
$60 \rightarrow 132,036$								
(Application Serial Number)		(Day/Month/Year Filed)						
\square								
\pm								
(Application Serial Number)		(Day/Month/Year Filed)						

I hereby claim the benefit under 35 U.S.C. $\$ 120$ of any United States application(s) or PCT international application(s) designating the United States of America listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior application(s) in the manner provided by the first paragraph of 35 U.S.C. §112, I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in 37 C.F.R. $\$ 1.56$ which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application:
(Status-Patented, Pending or Abandoned)
I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. $\S 1001$ and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.
，PQWER OF ATTORNEY：I hereby appoint as my attorneys，with full powers of substitution and revocation，to prosecute this application and transact all business in the Patent and Trademark Office connected therewith：

John B．Lungmus $(18,566)$
Allen H．Gerstein $(22,218)$
Nate F．Scarpelli $(22,320)$
24 Michael F．Borun（25．447）
Trevor B．Joike $(25,542)$
Carl E．Moore，Jr．$(26,487)$

Ruchard H．Anderson（26，526）
Patrick D．Ertel（26．877）
Richard B．Hoffman（26．910）
James P．Zeller（28．491）
Kevin D．Hogg（31．839）
Jeffrey S．Sharp（31．879）

Martin J．Hirsch $(32,237)$
James J．Napoli $(32,361)$
Richard M．La Barge $(32,254)$
Douglass C．Hochstetler（33，710）
Robert M．Gerstein（34，824）
Anthony G．Sitko $(36,278)$

James A．Flight（37，622）
Roger A．Heppermann（ 37,641 ）
David A．Gass $(38,153)$
Gregory C．Mayer $(38,238)$
Michael R．Weiner $(38,359)$
William K．Merkel（40，725）

Send correspondence to：James J．Napoli

Sëcond Joint Inventor，if any John Steven Whitaker	Citizenship United States of America
Residence Address－Street 19340 162nd Avenue	Post Office Address－Street 19342 162nd Avenue
City（Zip） Woodinville（98072）	City（Zip） Woodinville（98072）
State or Country Washington	State or Country Washington
Eate	Signature ®
二	
Third Joint Inventor，if any	Citizenship
Residence Address－Street	Post Office Address－Street
City（Zip）	City（Zip）
State or Country	State or Country
Date ®	Signature区

Fourth Joint Inventor，if any	Citizenship
Residence Address－Street	Post Office Address－Street
City（Zip）	City（Zip）
State or Country	State or Country
Date区	Signature区

APPLICABLE RULES AND STATUTES

37 CFR 1.56. DUTY OF DISCLOSURE - INFORMATION MATERIAL TO PATENTABILITY (Applicable Portion)

(a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most effective patent examination occurs when, at the time an application is being examined, the Office is aware of and evaluates the teachings of all information material to patentability. Each individual associated with the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the Office, which includes a duty to disclose to the Office all information known to that individual to be material to patentability as defined in this section. The duty to disclose information exists with respect to each pending claim until the claim is canceled or withdrawn from consideration, or the application becomes abandoned. Information material to the patentability of a claim that is canceled or withdrawn from consideration need not be submitted if the information is not material to the patentability of any claim remaining under consideration in the application. There is no duty to submit information which is not material to the patentability of any existing claim. The duty to disclose all information known to be material to patentability is deemed to be satisfied if all information known to be material to patentability of any claim issued in a patent was cited by the Office or submitted to the Office in the manner prescribed by $\S \S 1.97$ (b)-(d) and 1.98 . However, no patent will be granted on an application in connection with which fraud on the Office was practiced or attempted or the duty of disclosure was violated through bad faith or intentional misconduct. The Office encourages applicants to carefully examine:
(1) prior art cited in search reports of a foreign patent office in a counterpart application, and
(2) the closest information over which individuals associated with the filing or prosecution of a patent application believe any pending claim patentability defines, to make sure that any material information contained therein is disclosed to the Office.

Information relating to the following factual situations enumerated in 35 USC 102 and 103 may be considered material under 37 CFR $1.56(\mathrm{a})$.

35. U.S.C. 102. CONDITIONS FOR PATENTABILITY: NOVELTY AND LOSS OF RIGHT TO PATENT

A person shall be entitled to a patent unless --
(a) the invention was known or used by others in this country, or patented or described in a printed publication in
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use
or on sale in this country, more than one year prior to the date of the application for patent in the United States, or
(c) he has abandoned the invention, or
(d) the invention was first patented or caused to be patented, or was the subject of an inventor's certificate, by theapplicant or his legal representatives or assigns in a foreign country prior to the date of the application for patent in this country onean application for patent or inventor's certificate filed more than twelve months before the filing of the application in the United States, or
(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraph (1), (2), and (4) of section 371 (c) of this title before the invention thereof by the applicant for patent, or
(f) he did not himself invent the subject matter sought to be patented, or
(g) before the applicant's invention thereof the invention was made in this country by another who had not abandoned, suppressed, or concealed it. In determining priority of invention there shall be considered not only the respective dates of conception and reduction to practice of the invention, but also the reasonable diligence of one whe was first to conceive and last to reduce to practice, from a time prior to conception by the other.

35 U.S.C. 103. CONDITIONS FOR PATENTABILITY; NON-OBVIOUS SUBJECT MATTER (Applicable Portion)

A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Subject matter developed by another person, which qualifies as prior art only under subsection (f) or (g) of section 102 of this title, shall not preclude patentability under this section where the subject matter and the claimed invention were, at the time the invention was made, owned by the same person or subject to an obligation of assignment to the same person.

35 U.S.C. 112. SPECIFICATION (Applicable Portion)

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention.

DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name; I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled "UNIT DOSAGE FORM," the specification of which (check one): \square is attached hereto; \square was filed on \qquad
\qquad as Application Serial No. \qquad and was amended on \qquad (if applicable); $\boxtimes_{\text {was filed as PCT International Application No. PCT/US00/11129 on April 26, 2000, and was amended under Article }}$ 19 on \qquad (if applicable). I hereby state that I have reviewed and understand the contents of the aboveidentified specification, including the claims, as amended by any amendment(s) referred to above. I acknowledge the duty to disclose to the Patent and Trademark Office all information known to me to be material to patentability as defined in 37 C.F.R. §1.56.

I hereby claim foreign priority benefits under 35 U.S.C. $\$ 119$ of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and bave also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:

5			Priority Claimed	
PCI/USO0/11129	PCT	26/04/00	区	\square
(Application Serial Number)	(Country)	(Day/Month/Year Filed)	Yes	No
\%				
諸			\square	\square
(Application Serial Number)	(Country)	(Day/Montb/Year Filed)	Yes	No

$\stackrel{ }{=}$ I hereby claim the benefit under 35 U.S.C. $\S 119$ (e) of any United States provisional application(s) listed below:

$60 / 32,036$	(Day/Month/Year Filed)
(Agplication Serial Number)	
(Application Serial Number)	(Day/Month/Year Filed)

I hereby claim the benefit under 35 U.S.C. $\S 120$ of any United States application(s) or PCT international application(s) designating the United States of America listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior application(s) in the manner provided by the first paragraph of 35 U.S.C. §112, I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in 37 C.F.R. $\S 1.56$ which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application:
$\overline{\text { (Application Serial Number) }}$ (Day/Month/Year Filed) \quad (Status-Patented, Pending or Abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. $\S 1001$ and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.
$\therefore \quad$ P POWER OF ATTORNEY: I hereby appoint as my attorneys, with full powers of substitution and revocation, to prosecute \cdot this application and transact all business in the Patent and Trademark Office connected therewith:

John B. Lungmus $(18,566)$ Allen H. Gerstein $(22,218)$ Nate F. Scarpelli $(22,320)$ Michael F. Borun $(25,447)$ Trevor B. Joike $(25,542)$
Carl E. Moore, Jr. $(26,487)$

Rıchard H. Anderson $(26,526)$
Patrıck D. Ertel $(26,877)$
Richard B. Hoffman $(26,910)$
James P. Zeller $(28,491)$
Kevin D. Hogg $(31,839)$
Jeffrey S. Sharp $(31,879)$

Martin J. Hirsch $(32,237)$
James J. Napoli $(32,361)$
Richard M. La Barge $(32,254)$
Douglass C. Hochstetler (33.710)
Robert M. Gerstein $(34,824)$
Anthony G. Sitko $(36,278)$

James A. Flight $(37,622)$
Roger A. Heppermann (37,641)
David A. Gass $(38,153)$
Gregory C. Mayer $(38,238)$
Michael R. Weiner $(38,359)$
William K. Merkel $(40,725)$

Send correspondence to: James J. Napoli

APPLICABLE RULES AND STATUTES

37 CFR I.56. DUTY OF DISCLOSURE - INFORMATION MATERIAL TO PATENTABILITY (Applicable Portion)

(a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most effective patent examination occurs when, at the time an application is being examined, the Office is aware of and evaluates the teachings of all information material to patentability. Each individual associated with the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the Office, which includes a duty to disclose to the Office all information known to that individual to be material to patentability as defined in this section. The duty to disclose information exists with respect to each pending claim until the claim is canceled or withdrawn from consideration, or the application becomes abandoned. Information material to the patentability of a claim that is canceled or withdrawn from consideration need not be submitted if the information is not material to the patentability of any claim remaining under consideration in the application. There is no duty to submit information which is not material to the patentability of any existing claim. The duty to disclose all information known to be material to patentability is deemed to be satisfied if all information known to be material to patentability of any claim issued in a patent was cited by the Office or submitted to the Office in the manner prescribed by $\S \S 1.97$ (b)-(d) and 1.98 . However, no patent will be granted on an application in connection with which fraud on the Office was practiced or attempted or the duty of disclosure was violated through bad faith or intentional misconduct. The Office encourages applicants to carefully examine:
(1) prior art cited in search reports of a foreign patent office in a counterpart application, and
(2) the closest information over which individuals associated with the filing or prosecution of a patent application believe any pending claim patentability defines, to make sure that any material information contained thereir is disclosed to the Office.

Information relating to the following factual situations enumerated in 35 USC 102 and 103 may be considered material under 37 CFR 1.56(a).

35U.S.C. 102. CONDITIONS FOR PATENTABILITY: NOVELTY AND LOSS OF RIGHT TO PATENT
A person shall be entitled to a patent unless --
(a) the invention was known or used by others in this country, or patented or described in a printed publication
in
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use orbin sale in this country, more than one year prior to the date of the application for patent in the United States, or
$=\quad$ (c) he has abandoned the invention, or
(d) the invention was first patented or caused to be patented, or was the subject of an inventor's certificate, by the applicant or his legal representatives or assigns in a foreign country prior to the date of the application for patent in this country on an application for patent or inventor's certificate filed more than twelve months before the filing of the application in the United States, or
(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraph (1), (2), and (4) of section 371 (c) of this title before the invention thereof by the applicant for patent, or
(f) he did not himself invent the subject matter sought to be patented, or
(g) before the applicant's invention thereof the invention was made in this country by another who had not abandoned, suppressed, or concealed it. In determining priority of invention there shall be considered not only the respective dates of conception and reduction to practice of the invention, but also the reasonable diligence of one who was first to conceive and last to reduce to practice, from a time prior to conception by the other.

35 U.S.C. 103. CONDITIONS FOR PATENTABILITY; NON-OBVIOUS SUBJECT MATTER (Applicable Portion)

A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Subject matter developed by another person, which qualifies as prior art only under subsection (f) or (g) of section 102 of this title, shall not preclude patentability under this section where the subject matter and the claimed invention were, at the time the invention was made, owned by the same person or subject to an obligation of assignment to the same person.

35 U.S.C. 112. SPECIFICATION (Applicable Portion)

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention.

ISSUE SLIP STAPLE AREA (for additional cross-references)

If more than 150 claims or 9 actions staple additional sheet here

Page 2 of 2

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATION UNDER 37 CFR 1.10

Box PCT
Commissioner for Patents
Washington, D.C. 20231

I hereby certify the attached items are being deposited with the United States Postal Service on October 19, 2001 in an envelope addressed to Box PCT, Commissioner for Patents, Washington, D.C. 20231 utilizing the "Express Mail Post Office to Addressee" service of the United States Postal Service under Mailing No. EK 657817671US:
a. Transmittal letter to the United States Designated/Elected Office (DO/EO/US) concerning a filing under 35 U.S.C. 371;
b. Copies of Form PCT/ISA/210 and Form PCT/IPEA/409;
c. Preliminary Amendment dated 19 October 2001;
d. Declaration and Power of Attorney for William Ernest PULLMAN;
e. Declaration and Power of Attorney for John Steven WHITAKER;
f. A check in the amount of $\$ 890.00$.

Date: October 19, 2001

UNIT DOSAGE FORM

CROSS REFERENCE TO RELATED APPLICATIONS

-

This applisation claims the benefit of provisional patent application Serial No. 60/132,036, filed April 30, 1999

FIELD OF THE INVENTION

The present invention relates to a highly selective phosphodiesterase (PDE) enzyme inhibitor and to its use in a pharmaceutical unit dosage form. In particular, the present invention relates to a potent inhibitor of cyclic guanosine 3', 5'-monophosphate specific phosphodiesterase type 5 (PDE5) that when incorporated into a pharmaceutical product is useful for the treatment of sexual dysfunction. The unit dosage form described herein is characterized by selective PDE5 inhibition, and accordingly, provides a benefit in therapeutic areas where inhibition of PDE5 is desired, with minimization or elimination of adverse side effects resulting from inhibition of other phosphodiesterase enzymes.

BACRGROUND OF THE INVENTION

The biochemical, physiological, and clinical effects of cyclic guanosine $\mathbf{~ ' ~}^{\prime}, 5^{\prime}$-monophosphate specific phosphodiesterase (cGMP-specific PDE) inhibitors suggest their utility in a variety of disease states in which modulation of smooth muscle, renal, hemostatic, inflammatory, and/or

$$
-2-
$$

endocrine function is desired. Type 5 cGMP-specific phosphodiesterase (PDE5) is the major cGMP hydrolyzing enzyme in vascular smooth muscle, and its expression in penile corpus cavernosum has been reported (Taher et al., J. Urol., 149, p. 285A (1993)). Thus, PDE5 is an attractive target in the treatment of sexual dysfunction (Murray, $D N \& P$ 6(3), pp. 150-56 (1993)).

A pharmaceutical product, which provides a PDE5 inhibitor, is currently available and marketed under the trademark VIAGRA ${ }^{\text {® }}$. The active ingredient in VIAGRA ${ }^{\text {® }}$ is sildenafil. The product is sold as an article of manufacture including 25,50 , and 100 mg tablets of sildenafil and a package insert. The package insert provides that sildenafil is a more potent inhibitor of PDE5 than other known phosphodiesterases (greater than 80 fold for PDEl inhibition, greater than 1,000 fold for PDE2, PDE3, and PDE4 inhibition). The $I C_{50}$ for sildenafil against PDE5 has been reported as 3 nM (Drugs of the Future, 22(2). pp. 138-143 (1997)) and as 3.9nM (Boolel et al., Int. J. of Impotence, 8, pp. 47-52 (1996)). Sildenafil is described as having a 4,000-fold selectivity for PDE5 versus PDE3, and only a 10-fold selectivity for PDE5 versus PDE6. Its relative lack of selectivity for PDE6 is theorized to be the basis for abnormalities related to color vision.

While sildenafil has obtained significant commercial success, it has fallen short due to its significant adverse side effects, including facial flushing (10\% incidence rate). Adverse side effects limit the use of sildenafil in patients suffering from vison abnormalities, hypertension, and, most
significantly, by individuals who use organic nitrates (Welds et al., Amer. J. of Cardiology, 83(5A), pp. 21(C)-28(C) (1999)).

The use of sildenafil in patients taking organic nitrates causes a clinically significant drop in blood pressure which could place the patient in danger. Accordingly, the package label for sildenafil provides strict contraindications against its use in combination with organic nitrates (e.g., nitroglycerin, isosorbide mononitrate, isosorbide nitrate, erythrityl tetranitrate) and other nitric oxide donors in any form, either regularly or intermittently, because sildenafil potentiates the hypotensive effects of nitrates. See C.R. Conti et al., Amer. J. of Cardiology, 83(5A), pp. 29C-34C (1999). Thus, even with the availability of sildenafil, there remains a need to identify improved pharmaceutical products that are useful in treating sexual dysfunction.

Daugan U.S. Patent 5,859,006 discloses certain tetracyclic derivatives that are potent inhibitors of cGMP-specific PDE, or PDE5. The IC_{50} of the compounds disclosed in U.S. Patent No. $5,859,006$ is reported in the range of 1 nM to $10 \mu \mathrm{M}$. The oral dosage for such compounds is 0.58 mg daily for an average adult patient (70 kg). Thus, unit dosage forms (tablets or capsules) are reported as 0.2 to 400 mg of active compound. Significant adverse side effects attributed to compounds disclosed in U.S. Patent No. 5,859,006 are not disclosed.

Applicants have discovered that one such tetracyclic derivative, (6R,12aR)-2,3,6,7,12,12a-
hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino[2', $\left.1^{\prime}: 6,1\right]$ pyrido[3,4-b]indole-1,4-dione, alternatively named (6R-trans)-6-(1,3-benzodioxol-5yl) - $2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l p y r a z i n o-$
[1', 2':1, 6] pyrido [3,4-b] indole-1,4-dione, and referred to herein as Compound (I), can be administered in a unit dose that provides an effective treatment without the side effects associated with the presently marketed PDE5 inhibitor, sildenafil. Prior to the present invention such side effects were considered inherent to the inhibition of PDE5. Significantly, applicants' clinical studies also reveal that an effective product having a reduced tendency to cause flushing in susceptible individuals can be provided. Most unexpectedly, the product also can be administered with clinically insignificant side effects associated with the combined effects of a PDE5 inhibitor and an organic nitrate. Thus, the contraindication once believed necessary for a product containing a PDE5 inhibitor is unnecessary when Compound (I) is administered as a unit dose of about 1 to about 20 mg , as disclosed herein. Thus, the present invention provides an effective therapy for sexual dysfunction in individuals who previously were untreatable or suffered from unacceptable side effects, including individuals having cardiovascular disease, such as in individuals requiring nitrate therapy, having suffered a myocardial infarction more than three months before the onset of sexual dysfunction therapy, and suffering from class 1 congestive heart failure, or individuals suffering from vision abnormalities.

The present invention provides Compound (I) in a unit dosage form. That is, the present invention provides a pharmaceutical unit dosage form suitable for oral administration comprising about 1 to about 20 mg Compound (I).

SUMMARY OF THE INVENTION

The present invention provides a pharmaceutical dosage form for human pharmaceutical use, comprising about 1 to about 20 mg of ($6 \mathrm{R}, 12 \mathrm{aR}$) $2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-6-(3,4-m e t h y l e n e-~$ dioxyphenyl) pyrazino [2', 1': 6, 1] pyrido [3, 4-b] indole-1,4-dione in a unit dosage form suitable for oral administration.

The present invention further provides a method of treating conditions where inhibition of PDE5 is desired, which comprises administering to a patient in need thereof an oral dosage form containing about 1 to about 20 mg of a selective PDE5 inhibitor, as needed, up to a total dose of 20 mg per day. The invention further provides the use of an oral dosage form comprising a selective PDE5 inhibitor at a dosage of about 1 to about 20 mg for the treatment of sexual dysfunction.

Specific conditions that can be treated by the present invention, include, but are not limited to, male erectile dysfunction and female sexual dysfunction, particularly female arousal disorder, also known as female sexual arousal disorder.

In particular, the present invention is directed to a pharmaceutical unit dosage composition
comprising about 1 to about 20 mg of a compound having the structural formula:

said unit dosage form suitable for oral administration, and method of treating sexual dysfunction using the pharmaceutical unit dose composition.

DETAILED DESCRIPTION

For purposes of the present invention as disclosed and described herein, the following terms and abbreviations are defined as follows.

The term "container" means any receptacle and closure therefor suitable for storing, shipping, dispensing, and/or handling a pharmaceutical product.

The term "IC50" is the measure of potency of a compound to inhibit a particular PDE enzyme (e.g., PDEIC, PDE5, or PDE6). The I_{50} is the concentration of a compound that results in 50% enzyme inhibition in a single dose-response experiment. Determining the I_{50} value for a compound is readily
carried out by a known in vitro methodology generally described in Y. Cheng et al., Biochem. Pharmacol., 22, pp. 3099-3108 (1973).

The term "package insert" means informa- tion accompanying the product that provides a description of how to administer the product, along with the safety and efficacy data required to allow the physician, pharmacist, and patient to make an informed decision regarding use of the product. The package insert generally is regarded as the "label" for a pharmaceutical product.

The term "oral dosage form" is used in a general sense to reference pharmaceutical products administered orally. Oral dosage forms are recognized by those skilled in the art to include such forms as liquid formulations, tablets, capsules, and gelcaps.

The term "vision abnormalities" means abnormal vision characterized by blue-green vision believed to be caused by PDE6 inhibition.

The term "flushing" means an episodic redness of the face and neck attributed to vasodilation caused by ingestion of a drug, usually accompanied by a feeling of warmth over the face and neck and sometimes accompanied by perspiration.

The term "free drug" means solid particles of drug not intimately embedded in a polymeric coprecipitate.

The presently claimed dosage form preferably is packaged as an article of manufacture for human pharmaceutical use, comprising a package insert, a container, and a dosage form comprising about 1 to about 20 mg of Compound (I)

The package insert provides a description of how to administer a pharmaceutical product, along with the safety and efficacy data required to allow the physician, pharmacist, and patient to make an informed decision regarding the use of the product. The package insert generally is regarded as the label of the pharmaceutical product. The package insert incorporated into the article of manufacture indicates that Compound (I) is useful in the treatment of conditions wherein inhibition of PDE5 is desired. The package insert also provides instructions to administer one or more about 1 to about 20 mg unit dosage forms as needed, up to a maximum total dose of 20 mg per day. Preferably, the dose administered is about 5 to about $20 \mathrm{mg} / \mathrm{day}$, more preferably about 5 to about $15 \mathrm{mg} /$ day. Most preferably, a 10 mg dosage form is administered once per day.

Preferred conditions to be treated include sexual dysfunction (including male erectile dysfunction; and female sexual dysfunction, and more preferably female arousal disorder (FAD)). The preferred condition to be treated is male erectile dysfunction.

Significantly, the package insert supports the use of the product to treat sexual dysfunction in patients suffering from a retinal disease, for example, diabetic retinopathy or retinitis pigmentosa, or in patients who are using organic nitrates. Thus, the package insert preferably is free of contraindications associated with these conditions, and particularly the administration of the dosage form with an organic nitrate. More
preferably, the package insert also is free of any cautions or warnings both associated with retinal diseases, particularly retinitis pigmentosa, and associated with individuals prone to vision abnormalities. Preferably, the package insert also reports incidences of flushing below 2\%, preferably below 1%, and most preferably below 0.5%, of the patients administered the dosage form. The incidence rate of flushing demonstrates marked improvement over prior pharmaceutical products containing a PDE5 inhibitor.

The container used in the article of manufacture is conventional in the pharmaceutical arts. Generally, the container is a blister pack, foil packet, glass or plastic bottle and accompanying cap or closure, or other such article suitable for use by the patient or pharmacist. Preferably, the container is sized to accommodate $1-1000$ solid dosage forms, preferably 1 to 500 solid dosage forms, and most preferably, 5 to 30 solid dosage forms.

Oral dosage forms are recognized by those skilled in the art to include, for example, such forms as liquid formulations, tablets, capsules, and gelcaps. Preferably the dosage forms are solid dosage forms, particularly, tablets comprising about 1 to about 20 mg of Compound (I). Any pharmaceutically acceptable excipients for oral use are suitable for preparation of such dosage forms. Suitable pharmaceutical dosage forms include coprecipitate forms described, for example, in Butler U.S. Patent No. 5,985,326, incorporated herein by reference. In preferred embodiments, the unit dosage form of the

- 10 -
present invention is a solid free of a coprecipitate form of Compound (I), but rather contains solid Compound (I) as a free drug.

Preferably, the tablets comprise pharma-
ceutical excipients generally recognized as safe such as lactose, microcrystalline cellulose, starch, calcium carbonate, magnesium stearate, stearic acid, talc, and colloidal silicon dioxide, and are prepared by standard pharmaceutical manufacturing techniques as described in Remington's Pharmaceutical Sciences, l8th Ed., Mack Publishing Co., Easton, PA (1990). Such techniques include, for example, wet granulation followed by drying, milling, and compression into tablets with or without film coating; dry granulation followed by milling, compression into tablets with or without film coating; dry blending followed by compression into tablets, with or without film coating; molded tablets; wet granulation, dried and filled into gelatin capsules; dry blend filled into gelatin capsules; or suspension and solution filled into gelatin capsules. Generally, the solid dosage forms have identifying marks which are debossed or imprinted on the surface.

The present invention is based on detailed experiments and clinical trials, and the unexpected observations that side effects previously believed to be indicative of PDE5 inhibition can be reduced to clinically insignificant levels by the selection of a compound and unit dose. This unexpected observation enabled the development of a unit dosage form that incorporates Compound (I) in about 1 to about 20 mg per unit dosage forms that, when orally administered, minimizes undesirable side effects previ-
ously believed unavoidable. These side effects include facial flushing, vision abnormalities, and a significant decrease in blood pressure, when Compound (I) is administered alone or in combination with an organic nitrate. The minimal effect of Compound (I), administered in about 1 to about 20 mg unit dosage forms, on PDE6 also allows the administration of a selective PDE5 inhibitor to patients suffering from a retinal disease, like diabetic retinopathy or retinitis pigmentosa.

Compound (I) has the following structural
Eormula:

(I)

The compound of structural formula (I) was demonstrated in human clinical studies to exert a minimal impact on systolic blood pressure when administered in conjunction with organic nitrates. By contrast, sildenafil demonstrates a four-fold greater decrease in systolic blood pressure over a placebo, which leads to the contraindications in the VIAGRA ${ }^{(1)}$ insert, and in warnings to certain patients.

The following illustrates the PDE5 and
PDE6 I_{50} values for the compound of structural
formula (I) determined by the procedures described herein.

Compound	PDE5 IC $_{50}$ (nM)	PDE6 IC	
50 (nM)	PDE6/PDE5		
I	2.5	3400	1360

The compound of structural formula (I) additionally demonstrates an ${I C_{50}}^{0}$ against PDE1c of 10,000 , and a ratio of PDEIc/PDE5 of 4,000.

PREPARATIONS

Human PDE5 Preparation

Recombinant production of human PDE5 was carried out essentially as described in Example 7 of U.S. Patent No. 5,702,936, incorporated herein by reference, except that the yeast transformation vector employed, which is derived from the basic ADH2 plasmid described in V. Price et al., Methods in Enzymology, 1985, pages 308-318 (1990), incorporated yeast $A D H 2$ promoter and terminator sequences rather than $A D H 1$ promoter and terminator sequences and the Saccharomyces cerevisiase host was the protease-deficient strain BJ2-54 deposited on August 31, 1998 with the American Type Culture Collection, Manassas, Virginia, under accession number ATCC 74465. Transformed host cells were grown in 2 X SCleu medium, pH 6.2, with trace metals, and vitamins. After 24 hours, YEP medium containing glycerol was added to a final concentration of 2 X YEP/3\% glycerol. Approximately 24 hours later, cells were harvested, washed, and stored at $-70^{\circ} \mathrm{C}$.

Cell pellets (29 g) were thawed on ice with an equal volume of lysis buffer (25 mM Tris-Cl, $\mathrm{pH} 8,5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.25 \mathrm{mM}$ dithiothreitol, 1 mM benzamidine, and $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}$). Cells were lysed in a microfluidizer with N_{2} at 20,000 psi. The lysate was centrifuged and filtered through $0.45 \mu \mathrm{~m}$ disposable filters. The filtrate was applied to a 150 mL column of Q Sepharose Fast Flow (Pharmacia). The column was washed with 1.5 volumes of Buffer A (20 mM Bis-Tris Propane, $\mathrm{pH} 6.8,1 \mathrm{mM} \mathrm{MgCl} \mathbf{2 H}_{2}, 0.25 \mathrm{mM}$ dithiothreitol, $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}$) and eluted with a step gradient of 125 mM NaCl in Buffer A followed by a linear gradient of 125-1000 mM NaCl in Buffer A.

Active fractions from the linear gradient were applied to a 180 mL ceramic hydroxyapatite column in Buffer B (20 mM Bis-Tris Propane (pH 6.8), $1 \mathrm{mM} \mathrm{MgCl} 2_{2}, 0.25 \mathrm{mM}$ dithiothreitol, $10 \mu \mathrm{M} \mathrm{ZnSO}$, and $250 \mathrm{mM} \mathrm{KCl})$. After loading, the column was washed with 2 volumes of Buffer B and eluted with a linear gradient of 0-125 mM potassium phosphate in Buffer B. Active fractions were pooled, precipitated with 60\% ammonium sulfate, and resuspended in Buffer C (20 mM Bis-Tris Propane, $\mathrm{pH} 6.8,125 \mathrm{mM} \mathrm{NaCl}, 0.5 \mathrm{mM}$ dithiothreitol, and $10 \mu \mathrm{M}_{\mathrm{ZnSO}}^{4}$). The pool was applied to a 140 mL column of sephacryl s-300 HR and eluted with Buffer C. Active fractions were diluted to 50% glycerol and stored at $-20^{\circ} \mathrm{C}$. The resultant preparations were about 85% pure by SDS-PAGE.

Assay for PDE Activity

Activity of PDE5 can be measured by standard assays in the art. For example, specific
activity of any PDE can be determined as follows. PDE assays utilizing a charcoal separation technique were performed essentially as described in Loughney et al., (1996), The Journal of Biological Chemistry, 271:796-806. In this assay, PDE5 activity converts [$\left.{ }^{32} \mathrm{P}\right]$ CGMP to $\left[{ }^{32} \mathrm{P}\right] 5^{\prime} \mathrm{GMP}$ in proportion to the amount of PDE5 activity present. The [$\left.{ }^{32} \mathrm{P}\right] 5^{\prime} \mathrm{GMP}$ then is quantitatively converted to free [$\left.{ }^{32} \mathrm{P}\right]$ phosphate and unlabeled adenosine by the action of snake venom 5'nucleotidase. Hence, the amount of [${ }^{32} \mathrm{P}$] phosphate liberated is proportional to enzyme activity. The assay is performed at 30 C in a $100 \mu \mathrm{~L}$ reaction mixture containing (final concentrations) 40 mM Tris-Cl (pH 8.0) , $1 \mu \mathrm{M} \mathrm{ZnSO}_{4}, 5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, and 0.1 $\mathrm{mg} / \mathrm{mL}$ bovine serium albumin. PDE5 is present in quantities that yield $<30 \%$ total hydrolysis of substrate (linear assay conditions). The assay is initiated by addition of substrate (1 mM [$\left.{ }^{32} \mathrm{P}\right] \mathrm{CGMP}$), and the mixture is incubated for 12 minutes. Seventy-five (75) $\mu \mathrm{g}$ of Crotalus atrox venom then is added, and the incubation is continued for 3 more minutes (15 minutes total). The reaction is stopped by addition of 200 mL of activated charcoal $(25 \mathrm{mg} /-$ $m \mathrm{~mL}$ suspension in $\left.0.1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{pH} 4\right)$. After centrifugation ($750 \times \mathrm{x}$ for 3 minutes) to sediment the charcoal, a sample of the supernatant is taken for radioactivity determination in a scintillation counter and the PDE5 activity is calculated. The preparations had specific activities of about 3 umoles cGMP hydrolyzed per minute per milligram protein.

Bovine PDE6 Preparation

Bovine PDE6 was supplied by Dr. N. Virmaux, INSERM U338, Strasbourg. Bovine retinas were prepared as described by Virmaux et al., FEBS Letters, $12(6)$, pp. 325-328 (1971) and see also, A. Sitaramayya et al., Exp. Eye Res., 25, pp. 163-169 (1977). Briefly, unless stated otherwise, all operations were done in the cold and in dim red light. Eyes were kept in the cold and in the dark for up to four hours after slaughtering.

Preparation of bovine retinal outer segment (ROS) basically followed procedures described by Schichi et al., J. Biol. Chem., 224:529 (1969). In a typical experiment, 35 bovine retinas were ground in a mortar with 35 mL 0.066 M phosphate buffer, pH 7.0 , made up to 40% with sucrose, followed by homogenization in a Potter homogenizer (20 up and down strokes). The suspension was centrifuged at $25,000 \times \mathrm{g}$ for 20 minutes. The pellet was homogenized in 7.5 mL 0.006 M phosphate buffer (40% in sucrose), and carefully layered under 7.5 mL of phosphate buffer (containing no sucrose). Centrifugation was conducted in a swing-out rotor at $45,000 \times \mathrm{x}$ for 20 minutes , and produced a pellet which is black at the bottom, and also a red band at the interface 0.066 M . phosphate- 40% sucrose/0.066 M phosphate (crude ROS). The red material at the interface was removed, diluted with phosphate buffer, spun down to a pellet, and redistributed in buffered 40% sucrose as described above. This procedure was repeated 2 or 3 times until no pellet was formed. The purified ROS was washed in phosphate
buffer and finally spun down to a pellet at $25,000 \mathrm{x}$ g for 20 minutes. All materials were then kept frozen intil used.

Hypotonic extracts were prepared by suspending isolated ROS in 10 mM Tris-Cl $\mathrm{pH} 7.5,1 \mathrm{mM}$ EDTA, and 1 mM dithioerythritol, followed by centrifugation at $100,000 \mathrm{x} g$ for 30 minutes.

The preparation was reported to have a specific activity of about 35 nmoles cGMP hydrolyzed per minute per milligram protein.

PDE1c Preparation from Spodoptera

 fugiperda Cells (Sf9)Cell pellets (5g) were thawed on ice with 20 ml of Lysis Buffer (50 mM MOPS pH 7.4, $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}$, $0.1 \mathrm{mM} \mathrm{CaCl}_{2}, 1 \mathrm{mM} \mathrm{DTT}, 2 \mathrm{mM}$ benzamidine $\mathrm{HCl}, 5 \mu \mathrm{~g} / \mathrm{ml}$ each of pepstatin, leupeptin, and aprotenin). Cells were lysed by passage through a French pressure cell (SLM-Aminco) while temperatures were maintained below $10^{\circ} \mathrm{C}$. The resultant cell homogenate was centrifuged at $36,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 45 minutes in a Beckman ultracentrifuge using a Type TI45 rotor. The supernatant was discarded and the resultant pellet was resuspended with 40 ml of Solubilization Buffer (Lysis Buffer containing $1 \mathrm{M} \mathrm{NaCl}, 0.1 \mathrm{M} \mathrm{MgCl}_{2}$, $1 \mathrm{mM} \mathrm{CaCl}{ }_{2}, 20 \mu \mathrm{~g} / \mathrm{ml}$ calmodulin, and 1% Sulfobetaine SB12 (Z3-12) by sonicating using a Vibracell tuner with a microtip for 3×30 seconds. This was performed in a crushed ice/salt mix for cooling. Following sonication, the mixture was slowly mixed for 30 minutes at $4^{\circ} \mathrm{C}$ to finish solubilizing membrane bound proteins. This mixture was centrifuged
in a Beckman ultracentrifuge using a type TI45 rotor at $36,000 \mathrm{rpm}$ for 45 minutes . The supernatant was diluted with Lysis Buffer containing $10 \mu \mathrm{~g} / \mathrm{ml}$ calpain inhibitor I and II. The precipitated protein was centrifuged for 20 minutes at $9,000 \mathrm{rpm}$ in a Beckman JA-10 rotor. The recovered supernatant then was subjected to Mimetic Blue AP Agarose Chromatography. In order to run the Mimetic Blue AP
Agarose Column, the resin initially was shielded by the application of 10 bed volumes of 1% polyvinylpyrrolidine (i.e., MW of 40,000) to block nonspecific binding sites. The loosely bound PVP-40 was removed by washing with 10 bed volumes of 2 M NaCl , and 10 mM sodium citrate pH 3.4 . Just prior to addition of the solubilized PDElc3 sample, the column was equilibrated with 5 bed volumes of Column Buffer A (50 mM MOPS pH 7.4 , $10 \mu \mathrm{M} \mathrm{ZnSO}_{4}, 5 \mathrm{mM} \mathrm{MgCl} \mathbf{2}_{2}$, $0.1 \mathrm{mM} \mathrm{CaCl}{ }_{2}, 1 \mathrm{mM}$ DTT, 2 mM benzamidine HCl).

The solubilized sample was applied to the column at a flow rate of $2 \mathrm{ml} / \mathrm{min}$ with recycling such that the total sample was applied 4 to 5 times in 12 hours. After loading was completed, the column was washed with 10 column volumes of Column Buffer A, followed by 5 column volumes of Column Buffer B (Column Buffer A containing $20 \mathrm{mM} 5^{\prime-}$-AMP), and followed by 5 column volumes of Column Buffer C (50 mM MOPS $\mathrm{pH} 7.4,10 \mu \mathrm{M} \mathrm{ZnSO}_{4}, 0.1 \mathrm{mM} \mathrm{CaCl}_{2}, 1 \mathrm{mM}$ dithiothreitol, and 2 mM benzamidine HCl). The enzyme was eluted into three successive pools. The first pool consisted of enzyme from a 5 bed volume wash with Column Buffer C containing 1 mM cAMP. The second pool consisted of enzyme from a 10 bed volume wash with Column Buffer C containing 1 M NaCl . The
final pool of enzyme consisted of a 5 bed volume wash with Column Buffer C containing 1 M NaCl and 20 mM CAMP.

The active pools of enzyme were collected and the cyclic nucleotide removed via conventional gel filtration chromatography or chromatography on hydroxy-apatite resins. Following removal of cyclic nucleotides, the enzyme pools were dialyzed against Dialysis Buffer containing 25 mM MOPS pH 7.4 , $10 \mu \mathrm{M}$ $\mathrm{ZnSO}_{4}, 500 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{CaCl} \mathbf{C l}_{2}, 1 \mathrm{mM}$ dithiothreitol, 1 mM benzamidine HCl , followed by dialysis against Dialysis buffer containing 50\% glycerol. The enzyme was quick frozen with the aid of dry ice and stored at $-70^{\circ} \mathrm{C}$.

The resultant preparations were about $>90 \%$ pure by SDS-PAGE. These preparations had specific activities of about 0.1 to $1.0 \mu \mathrm{~mol}$ CAMP hydrolyzed per minute per milligram protein.

ICso Determinations

The parameter of interest in evaluating the potency of a competitive enzyme inhibitor of PDE5 and/or PDElc and PDE6 is the inhibition constant, i.e., K_{i}. This parameter can be approximated by determining the $I C_{50}$, which is the inhibitor concentration that results in 50\% enzyme inhibition, in a single dose-response experiment under the following conditions.

The concentration of inhibitor is always much greater than the concentration of enzyme, so that free inhibitor concentration (which is unknown)

- 19 -
is approximated by total inhibitor concentration (which is known).

A suitable range of inhibitor concentrations is chosen (i.e., inhibitor concentrations at least several fold greater and several fold less than the K_{i} are present in the experiment). Typically, inhibitor concentrations ranged from 10 nM to $10 \mu \mathrm{M}$.

The concentrations of enzyme and substrate are chosen such that less than 20% of the substrate is consumed in the absence of inhibitor (providing, e.g., maximum substrate hydrolysis of from 10 to 15%), so that enzyme activity is approximately constant throughout the assay.

The concentration of substrate is less than one-tenth the Michaelis constant (K_{m}). Under these conditions, the I_{50} will closely approximate the K_{i}. This is because of the Cheng-Prusoff equation relating these two parameters: $\mathrm{IC}_{50}=\mathrm{K}_{\mathrm{i}}\left(1+S / K_{m}\right)$, with $\left(1+S / K_{m}\right)$ approximately 1 at low values of S / K_{m}.

The I_{50} value is estimated from the data points by fitting the data to a suitable model of the enzyme inhibitor interaction. When this interaction is known to involve simple competition of the inhibitor with the substrate, a two-parameter model can be used:

$$
Y=A /(1+X / B)
$$

where the y is the enzyme activity measured at an inhibitor concentration of x, A is the activity in the absence of inhibitor and B is the $I C_{50}$. See Y.

Cheng et al., Biochem. Pharmacol., 22:3099-3108 (1973).

Effects of inhibitors of the present invention on enzymatic activity of PDE5 and PDE6 preparations as described above were assessed in either of two assays which differed from each other principally on the basis of scale and provided essentially the same results in terms of I_{50} values. Both assays involved modification of the procedure of Wells et al., Biochim. Biophys. Acta, 384:430 (1975). The first of the assays was performed in a total volume of $200 \mu \mathrm{l}$ containing 50 mM Tris pH 7.5 , 3 mM Mg acetate, 1 mM EDTA, $50 \mu \mathrm{~g} / \mathrm{mL}$ snake venom nucleotidase and $50 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]-\mathrm{CGMP}$ (Amersham). Compounds of the invention were dissolved in DMSO finally present at 2% in the assay. The assays were incubated for 30 minutes at $30^{\circ} \mathrm{C}$ and stopped by addition of $800 \mu \mathrm{l}$ of 10 mM Tris $\mathrm{pH} 7.5,10 \mathrm{mM}$ EDTA, 10 mM theophylline, 0.1 mM adenosine, and 0.1 mM guanosine. The mixtures were loaded on to 0.5 mL QAE Sephadex columns, and eluted with 2 mL of 0.1 M formate (pH 7.4). The eluted radioactivity was measured by scintillation counting in Optiphase Hisafe 3.

A second, microplate, PDE assay was developed using Multiscreen plates and a vacuum manifold. The assay (100 $\mu \mathrm{l}$) contained 50 mM Tris $\mathrm{pH} 7.5,5 \mathrm{mM} \mathrm{Mg}$ acetate, 1 mM EDTA and $250 \mu \mathrm{~g} / \mathrm{mL}$ snake venom nucleotidase. The other components of the reaction mixture were as described above. At the end of the incubation, the total volume of the assays were loaded on a QAE Sephadex microcolumn plate by filtration. Free radioactivity was eluted
with $200 \mu l$ of water from which $50 \mu l$ aliquots were analyzed by scintillation counting as described above.

The following examples are presented to

Example 1

Compound (I) was prepared as described in U.S. patent $5,859,006$ and formulated in tablets using wet granulation. Povidone was dissolved in water to make a 10% solution. The active compound, microcrystalline cellulose, croscarmellose sodium, and sodium lauryl sulfate were added to a high shear mixer and mixed for 2 minutes. The powders were wet granulated with the povidone solution and extra water as required to complete the granulation. The resultant mixture was dried in a fluid bed drier with inlet air at $70^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ until the loss on drying was below 2.5\%. The granules were passed through a Comil with a suitable screen (or a sieve) and added to a suitable mixer. The extragranular croscarmellose sodium and sodium lauryl sulfate, and the colloidal anhydrous silica were passed through a suitable sieve (e.g., 500 micron) and added to the mixer and blended 5 minutes. Magnesium stearate was added and blended for 2 minutes. The blend was compressed to a target compression/weight of 250 mg using 9 mm round normal concave tooling.

The core tablets were coated with an aqueous suspension of Opadry OY-S-7322 using an Accelacota (or similar coating pan) using inlet air at $50^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ until the tablet weight was in- creased by approximately 8 mg . Opadry OY-S-7322 contains methylhydroxypropylcellulose Ph.Eur., titanium dioxide Ph. Eur., Triacetin USP. Opadry increases the weight of each tablet to about 258 mg . The amount of film coat applied per tablet may be less than that stated depending on the process efficiency.

The tablets are filled into blister packs and accompanied by package insert describing the safety and efficacy of the compound.

Component	Formulations (mg per tablet)	
Selective PDE5 Inhibitor ${ }^{1}$	1	5
Hydroxypropyl Methylcellulose Phthalate	1	5
Microcrystalline Cellulose	221.87	213.87
Croscarmellose Sodium	5.00	5.00
Sodium Lauryl Sulfate	2.50	2.50
Povidone K30	9.38	9.38
Purified Water, USP (water for irrigation)	q-s.	q. 5.
Croscarmellose Sodium	5.00	5.00
Sodium Lauryl sulfate	2.50	2.50
Colloidal Anhydrous Silica	0.50	0.50
Magnesium Stearate	1.25	1.25
Total core subtotal	250.00	250.00
(Film coat Opadry OY-S-7322)	about 8 mg	about 8 mg

1) Compound (I).

Example 2

The following formula is used in preparing the finished dosage form containing 10 mg of Com- pound (I).

Ingredient	Quantity (mg)
Granulation	
Selective PDE5 Inhibitor)	10.00
Lactose Monohydrate	153.80
Lactose Monohydrate (spray dried)	25.00
Hydroxypropylcellulose	4.00
Croscarmellose Sodium	9.00
Hydroxypropylcellulose (EF)	1.75
Sodium Lauryl Sulfate	0.70
	35.00
Outside Powders	37.50
Microcrystalline Cellulose (granular-102)	7.00
Croscarmellose Sodium	1.25
Magnesium Stearate (vegetable)	250 mg
	Total
	11.25

Purified Water, USP is used in the manufacture of the tablets. The water is removed during processing and minimal levels remain in the finished product.

Tablets are manufactured using a wet granulation process. A step-by-step description of the process is as follows. The drug and excipients to be granulated are security sieved. The selective

PDE5 inhibitor is dry blended with lactose monohydrate (spray dried), hydroxypropylcellulose, croscarmellulose sodium, and lactose monohydrate. The resulting powder blend is granulated with an aqueous solution of hydroxypropylcellulose and sodium lauryl sulfate using a Powrex or other suitable high shear granulator. Additional water can be added to reach the desired endpoint. A mill can be used to delump the wet granulation and facilitate drying. The wet granulation is dried using either a fluid bed dryer or a drying oven. Once the material is dried, it can be sized to eliminate any large agglomerates. Microcrystalline cellulose, croscarmellose sodium, and magnesium stearate are security sieved and added to the dry sized granules. These excipients and the dry granulation are mixed until uniform using a tumble bin, ribbon mixer, or other suitable mixing equipment. The mixing process can be separated into two phases. The microcrystalline cellulose, croscarmellose sodium, and the dried granulation are added to the mixer and blended during the first phase, followed by the addition of the magnesium stearate to this granulation and a second mixing phase.

The mixed granulation then is compressed into tablets using a rotary compression machine. The core tablets are film coated with an aqueous suspension of the appropriate color mixture in a coating pan (e.g., Accela Cota). The coated tablets can be lightly dusted with talc to improve tablet handling characteristics.

The tablets are filled into plastic con-
tainers (30 tablets/container) and accompanied by

- 25 -
package insert describing the safety and efficacy of the compound.

Example 3

5
The following formula is used in preparing a finished dosage form containing 5 mg of Compound (I).

Ingredient	Quantity (mg)
Granulation	
Selective PDE5 Inhibitor	
Lactose Monohydrate	2.50
Lactose Monohydrate (spray dried)	79.395
Hydroxypropylcellulose	12.50
Croscarmellose Sodium	2.00
Hydroxypropylcellulose (EF)	4.50
Sodium Lauryl Sulfate	0.875
	0.35
Outside powders	
Microcrystalline Cellulose (granular-102)	18.75
Croscarmellose Sodium	3.50
Magnesium Stearate (vegetable)	0.63
	125 mg
	Total

The dosage form of Example 3 was prepared in an identical manner to the dosage form of Example 2.

Example 4

Solution Capsule		
Ingredient	mg/capsule	Percent (\%)
Selective PDE5 Inhibitor ${ }^{1 \prime}$	10	2
PEG400 NF	490	98
Fill Weight	500	100

The gelatin capsules are precisely filled by pumping an accurate fill volume of pre-dissolved drug formulation into the partially sealed cavity of a capsule. Immediately following injection fill of the drug solution formulation, the capsule is completely heat sealed.

The capsules are filled into plastic containers and accompanied by a package insert.

Example 5

This study was a randomized, double-blind, placebo-controlled, two-way crossover design clinical pharmacology drug interaction study that evaluated the hemodynamic effects of concomitant administration of a selective PDE5 inhibitor (i.e., Compound (I)) and short-acting nitrates on healthy male volunteers. In this study, the subjects received either Compound (I) at a dose of 10 mg or a placebo, daily for seven days. On the sixth or seventh day, the subjects received sublingual nitroglycerin (0.4 mg) while supine on a tilt table. The nitroglycerin was administered 3 hours after Compound (I) dosing, and all subjects kept the nitroglycerine tablet
under their tongue until it completely dissolved. The subjects were tilted to 70° head-up every 5 minutes for a total of 30 minutes with measurement of blood pressure and heart rate. There were no discontinuations among the twenty-two healthy male subjects (ages 19 to 60 years old) that entered this study.

In a preliminary analysis of this study, Compound (I) was well tolerated and there were no serious adverse events. There were no Compound (I) changes in laboratory safety assessments or 12-lead ECGs. The most common adverse events were headache, dyspepsia, and back pain. Compound (I) demonstrated minimal, if any, effect on mean systolic blood pressure, and mean maximal nitroglycerin-induced decrease in systolic blood pressure.

Example 6

In two randomized, double-blinded placebo controlled studies, Compound (I) was administered to patients in need thereof at a range of doses, in both daily dosing and for on demand therapy, for sexual encounters and intercourse in the home setting. Doses from 5 to 20 mg of Compound (I) were efficacious and demonstrated less than 1\% flushing and no reports of vision abnormalities. It was found that a 10 mg dose of Compound (I) was fully efficacious and demonstrated minimal side effects. Enhanced erectile function was determined by the International Index of Erectile Function (IIEF) (Rosen et al., Urology, 49, pp. 822-830
(1997)), diaries of sexual attempts, and a global satisfaction question. Compound (I) significantly improved the percentage of successful intercourse attempts including the ability to attain and maintain an erection in both "on demand" and daily dosing regimens.

Example 7

29 -
devices used to treat ED were allowed. Forty-one subjects were administered a placebo.

The two primary efficacy variables were the ability of a subject to penetrate his partner and his ability to maintain an erection during intercourse, as measured by the International Index of Erectile Function (IIEF). The IIEF Questionnaire contains fifteen questions, and is a brief, reliable measure of erectile function. See R.C. Rosen et al., Urology, 49, pp. 822-830 (1997).

Secondary efficacy variables were IIEF domain scores for erectile function, orgasmic function, sexual desire, intercourse satisfaction, and overall satisfaction; the patient's ability to achieve an erection, ability to insert his penis into his partner's vagina, completion of intercourse with ejaculation, satisfaction with the hardness of his erection, and overall satisfaction, all as measured by the Sexual Encounter Profile (SEP) diary; and a global assessment question asked at the end of the treatment period. The SEP is a patient diary instrument documenting each sexual encounter during the course of the study.

The safety aspect of the study included all enrolled subjects, and was assessed by evaluating all reported adverse events, and changes in clinical laboratory values, vital signs, physical examination results, and electrocardiogram results.

At endpoint, patients who rated their penetration ability (IIEF Question 3) as "almost always or always" were as follows: 17.5\% in the placebo group, 38.1% in the 2 mg group, 48.8% in the 5 mg group, 51.2% in the 10 mg group, and 83.7% in
the 25 mg group. Comparisons revealed statistically significant differences in change in penetration ability between placebo and all dose levels of Compound (I).

At endpoint, patients who rated their ability to maintain an erection (IIEF Question 4) during intercourse as "almost always or always" are as follows: 10.0% in the placebo group, 19.5% in the 2 mg group, 32.6% in the 5 mg group, 39.0% in the 10 mg group, and 69.0% in the 25 mg group. Comparison revealed statistically significant differences in change in penetration ability between placebo and the three higher dose levels of Compound (I).

This study also included a safety evaluation. A treatment-emergent adverse event is defined as a condition not present at baseline that appeared postbaseline, or a condition present at baseline that increased in severity postbaseline. The most commonly reported treatment-emergent adverse events were headache, dyspepsia, and back pain. The incidence of treatment-emergent adverse events appeared related to dose.

Overall, this study demonstrated that all four doses of Compound (I), namely $2 \mathrm{mg}, 5 \mathrm{mg}, 10$ mg , and 25 mg , taken "on demand" produced significant improvement, relative to placebo, in the sexual performance of men with erectile dysfunction as assessed by the IIEF, by patient diaries assessing frequency of successful intercourse and intercourse satisfaction, and by a global assessment.

The combined results from clinical studies showed that administration of Compound (I) effectively treats male erectile dysfunction, as illustrated in the following table.

25

IIEF ERECTILE FUNCTION DOMAIN (Change from Baselime)			
Unit Dose of Compound (I)	n	Mean $\pm \mathrm{SD}$	p
placebo	131	0.8 ± 5.3	
2 mg	75	3.9 ± 6.1	$<.001$
5 mg	79	6.6 ± 7.1	$<.001$
10 mg	135	7.9 ± 6.7	$<.001$
25 mg	132	9.4 ± 7.0	$<.001$
50 mg	52	9.8 ± 5.5	$<.001$
100 mg	49	8.4 ± 6.1	$<.001$

n is number of subjects, SD is standard deviation.

However, it also was observed from the combined clinical studies that the percent of treatment-emergent adverse events increased with an increasing unit dose of Compound (I), as illustrated in the following table:

Treatment-Emergent Adverse Events (\%)							
Unit Dose of Compound (I) (mg)							
Event	Placebo	2	5	10	25	50	100
Headache	10	12	10	23	29	34	46
Dyspepsia	6	3	14	13	19	20	25
Back Pain	5	3	3	15	18	24	22
Myalgia	3	0	3	9	16	20	29
Rhinitis	3	7	3	4	4	0	2
Conjunctivitis	1	0	1	1	0	2	5
Eyelid Edema	0	0	0	1	1	2	3
Flushing	0	0	0	<1	0	3	7
Vision Abnormalities	0	0	0	0	0	0	0

The above table shows an increase in adverse events at 25 mg through 100 mg unit doses. Accordingly, even though efficacy in the treatment of $E D$ was observed at 25 mg to 100 mg doses, the adverse events observed from 25 mg to 100 mg doses must be considered.

In accordance with the present invention, a unit dose of about 1 to about 20 mg , preferably about 2 to about 20 mg , more preferably about 5 to about 20 mg , and most preferably about 5 to about 15 mg , of Compound. (I), administered up to a maximum of 20 mg per 24 -hour period, both effectively treats ED and minimizes or eliminates the occurrence of adverse side effects. Importantly, no vision abnormalities were reported and flushing was essentially eliminated. Surprisingly, in addition to treating ED, with at about 1 to about 20 mg unit dose Compound (I), with a minimum of adverse side effects, individuals undergoing nitrate therapy also can be
treated for ED by the method and composition of the present invention.

The principles, preferred embodiments, and modes of operation of the present invention have been described in the foregoing specification. The invention intended to be protected herein, however, is not construed to be limited to the particular forms disclosed, because they are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

WHAT IS CLAIMED IS:

1. A pharmaceutical unit dosage composition comprising about 1 to about 20 mg of a compound having the structural formula:
said unit dosage form/suitably/ for oral administration.
2.

The dosage form of claim 1 comprising about 5 to about 20 mg of the compound in unit dosage form.
about $2.5 / \mathrm{mg}$ of the compound in unit dosage form.
about $\$ \mathrm{mg}$ of the compound in unit dosage form.
6. The dosage form of glaim 3 comprising. about 10 mg of the compound in mit dosage form.
7. The dosage form of claims 1 through 6 wherein the unit dose is in a form selected from the group consisting of a liquid, a tablet, a capsule,
 and a gelcap.
8. The dQsage form of claims 1 through 6 wherein the unit dose is in the form of a tablet.
9. The dosage form of claims 1 through 6 for use in treating a condition where inhibition of PDE5 is desirable.
10. The dosadeffrm of claine 9 wherein
ion is a sexypt dysfunction. the condition is a sexyed dysfunction.
11. The dosage form of claim 10 wherein the sexual dysfunction is male erectile dysfunction.
12. The dosage form of claim 10 wherein the sexual

la. A method of treating sexual dysfunc-

- 37 -

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : A61K 31/00 A2	(11) International Publication Number: WO 00/66099 (43) International Publication Date: 9 November 2000 (09.11.00)
(21) International Application Number: (22) International Filing Date: (30) Priority Data: 60/132,036 30 April 1999 (30.04.99) US (71) Applicant (for all designated States except US): LILLY ICOS LLC [US/US]; 1209 Orange Street, Wilmington, DE 19801 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): PULLMAN, William, Emest [US/US]; 3004 Towne Drive, Carmel, IN 46032 (US). WHITAKER, John, Steven [US/US]; 19340 162nd Avenue, Woodinville, WA 98072 (US). (74) Agent: NAPOLI, James, J.; Marshall, O'Toole, Gerstein, Murray \& Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).	(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.
(54) Title: UNIT DOSAGE FORM (57) Abstract 正 The present invention relates to highly selective phosphodie aricles of manufacture. In particular, the present invention relates phosphodiesterase type 5 (PDE5) that when incorporated into a pha for the treatment of sexual dysfunction.	iesterase (PDE) enzyme inhibitors and to their use in pharmaceutical s to potent inhibitors of cyclic guanosine $3^{\prime}, 5{ }^{\prime}$-monophosphate specific pharmaceutical product at about 1 to about 20 mg unit dosage are useful

As a below named inventor, 1 hereby declare that my residence, post office address and citizenship are as stated below next to my name; l believe that l am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled "UNIT DOSAGE FORM," the specification of which (check one): \square is attached hereto; \square was filed on \qquad

\qquad as Application Serial No. \qquad and was amended on \qquad (if applicable); | was filed as PCT International Application No. PCT/US00/11129 on April 26, 2000, and was amended under Article |
| :---: | 19 on \qquad (if applicable). I hereby state that I have reviewed and understand the contents of the aboveidentified specification, including the claims, as amended by any amendment(s) referred to above. I acknowledge the duty to disclose to the Patent and Trademark Office all information known to me to be material to patentability as defined in 37 C.F.R. §1.56.

I hereby claim foreign priority benefits under 35 U.S.C. §119 of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a fing date before that of the application(s) of which priority is claimed:

I hereby claim the benefit under 35 U.S.C. $\S 120$ of any United States application(s) or PCT international application(s) designating the United States of America listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior application(s) in the manner provided by the first paragraph of 35 U.S.C. §112, I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in 37 C.F.R. $\S 1.56$ which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application:

(Application Serial Number)	(Day/Month/Year Filed)	(Status-Patented, Pending or Abandoned)
(Application Serial Number)	(Day/Month/Year Filed)	(Status-Patented, Pending or Abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. § 1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.
$\therefore \quad$ PQWER OF ATTORNEY：I hereby appoint as my attorneys，with full powers of substitution and revocation，to prosecute this application and transaci ail büsin̄ the Patent and Trademark Office connected t ith：

John B．Lungmus（ 18.566 Richard H．Anderson（26．526）
Allen H．Gerstein $(22,218)$
Nate F．Scarpelli（ 22,320 ）
24
Michael F．Borun（25．447）
Trevor B．Joike $(25,542)$
Carl E．Moore，Jr．$(26,487)$

Patrick D．Ertel（26，877）
Richard B．Hoffman（26，910）
James P．Zeller $(28,491)$
Kevin D．Hogg（31．839）
Jeffrey S．Sharp（31．879）

Martin J．Hirsch $(32,237)$
James J．Napoli（32，361）
Richard M．La Barge $(32,254)$
Douglass C．Hochstetler（ 33,710 ）
Robert M．Gerstein（34，824）
Anthony G．Sitko $(\mathbf{3 6}, 278)$

James A．Flight（37，622）
Roger A．Heppermann（37，641）
David A．Gass $(38,153)$
Gregory C．Mayer $(38,238)$
Michael R．Weiner（ 38,359 ）
William K．Merkel（40，725）

Send correspondence to：James J．Napoli

FIRM NAME	PHONE NO．	STREET	CITY \＆STATE	ZIP CODE
Marshall，Gerstein \＆Borun	$312-474-6300$	233 South Wacker Drive	Chicago，Illinois	$\underline{60606-6402 .}$

Fuli Name of First or Sole Inventor William Ernest Pullman	Citizenship Hfited States of America	AVSTRALA
Residence Address－Street 42 Annin Road	Post Office Address－Street 42 Annin Road	
$\begin{aligned} & \text { City (Zip) } \\ & \text { Far_Hills (07931) N I } \end{aligned}$	$\begin{aligned} & \text { City (Zip) } \\ & \text { Far Hills (07931) } \\ & \hline \end{aligned}$	
State or Country New Jersey	State or Country New Jersey	
\cdots		
高epicond Joint Inventor，if any John Steven Whitaker	Citizenship United States of America	
Residence Address－Street Eí9340 162nd A venue	Post Office Address－Street 19342 162nd Avenue	
City（Zip） Woodinville（98072）	City（Zip） Woodinville（98072）	
State or Country Washington	State or Country Washington	
Eate	Signature凶	

皆

Third Joint Inventor，if any	Citizenship
Residence Address－Street City（Zip）	Post Office Address－Street
State or Country	City（Zip）
Date	State or Country
\mathbf{Q}	Signature \mathbf{Q}

Fourth Joint Inventor，if any	Citizenship
Residence Address－Street	Post Office Address－Street
City（Zip）	City（Zip）
State or Country	State or Country
Date	Signature
\mathbf{Q}	\mathbb{Q}

(a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most effective patent examination occurs when, at the time an application is being examined, the Office is aware of and evaluates the teachings of all information material to patentability. Each individual associated with the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the Office, which includes a duty to disclose to the Office all information known to that individual to be material to patentability as defined in this section. The duty to disclose information exists with respect to each pending claim until the claim is canceled or withdrawn from consideration, or the application becomes abandoned. Information material to the patentability of a claim that is canceled or withdrawn from consideration need not be submitted if the information is not material to the patentability of any claim remaining under consideration in the application. There is no duty to submit information which is not material to the patentability of any existing claim. The duty to disclose all information known to be material to patentability is deemed to be satisfied if all information known to be material to patentability of any claim issued in a patent was cited by the Office or submitted to the Office in the manner prescribed by $\S \S 1.97(\mathrm{~b})$-(d) and 1.98 . However, no patent will be granted on an application in connection with which fraud on the Office was practiced or attempted or the duty of disclosure was violated through bad faith or intentional misconduct. The Office encourages applicants to carefully examine:
(1) prior art cited in search reports of a foreign patent office in a counterpart application, and
(2) the closest information over which individuals associated with the filing or prosecution of a patent application believe any pending claim patentability defines, to make sure that any material information contained therein is disclosed to the Office.

Information relating to the following factual situations enumerated in 35 USC 102 and 103 may be considered material under 37 CFR 1.56(a).

是
35: E. S. C. 102. CONDITIONS FOR PATENTABILITY: NOVELTY AND LOSS OF RIGHT TO PATENT
A person shall be entitled to a patent unless --
(a) the invention was known or used by others in this country, or patented or described in a printed publication in Einis or a foreign country, before the invention thereof by the applicant for patent, or
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use orion sale in this country, more than one year prior to the date of the application for patent in the United States, or
3 (c) he has abandoned the invention, or
(d) the invention was first patented or caused to be patented, or was the subject of an inventor's certificate, by theapplicant or his legal representatives or assigns in a foreign country prior to the date of the application for patent in this country orean application for patent or inventor's certificate filed more than twelve months before the filing of the application in the United States, or
(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraph (1), (2), and (4) of section 371 (c) of this title before the invention thereof by the applicant for patent, or
(f) he did not himself invent the subject matter sought to be patented, or
(g) before the applicant's invention thereof the invention was made in this country by another who had not abandoned, suppressed, or concealed it. In determining priority of invention there shall be considered not only the respective dates of conception and reduction to practice of the invention, but also the reasonable diligence of one who was first to conceive and last to reduce to practice, from a time prior to conception by the other.

35 U.S.C. 103. CONDITIONS FOR PATENTABILITY; NON-OBVIOUS SUBJECT MATTER (Applicable Portion)

A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Subject matter developed by another person, which qualifies as prior art only under subsection (f) or (g) of section 102 of this title, shall not preclude patentability under this section where the subject matter and the claimed invention were, at the time the invention was made, owned by the same person or subject to an obligation of assignment to the same person.

35 U.S.C. 112. SPECIFICATION (Applicable Portion)

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention.

As a below named inventor，I hereby declare that my residence，post office address and citizenship are as stated below next to my name；l believe that lam the original，first and sole inventor（if only one name is listed below）or an original，first and joint inventor（if plural names are listed below）of the subject matter which is claimed and for which a patent is sought on the invention entitled＂UNIT DOSAGE FORM，＂the specification of which（check one）：\square is attached hereto；\square was filed on \qquad
\qquad as Application Serial No． \qquad and was amended on \qquad （if applicable）；\boxtimes was filed as PCT International Application No．PCT／US00／11129 on April 26，2000，and was amended under Article 19 on \qquad （if applicable）．I hereby state that I have reviewed and understand the contents of the above－ identified specification，including the claims，as amended by any amendment（s）referred to above．I acknowledge the duty to disclose to the Patent and Trademark Office all information known to me to be material to patentability as defined in 37 C．F．R．$\S 1.56$ ．

I hereby claim foreign priority benefits under 35 U．S．C．$\$ 119$ of any foreign application（s）for patent or inventor＇s certificate or of any PCT international application（s）designating at least one country other than the United States of America listed below and have also identified below any foreign application（s）for patent or inventor＇s certificate or any PCT international application（s）designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application（s）of which priority is claimed：

产			Priority Claimed			
PGT／USOO／11129	PCT	26／04／00	Yes	\square		
（A足plication Serial Number）是	（Country）	（Day／Month／Year Filed）		No		
足						
兩			\square	\square		
（Application Serial Number） F	（Country）	（Day／Month／Year Filed）	Yes	No		
\＃						
（1）hereby claim the benefit under 35 U．S．C．§119（e）of any United States provisional application（s）listed below：						
$60 \angle 132,036$		30／04／99				
（Application Serial Number）		（Day／Month／Year Filed）				
（Application Serial Number）		（Day／Month／Year Filed）				

I hereby claim the benefit under 35 U．S．C．§ 120 of any United States application（s）or PCT international application（s） designating the United States of America listed below and，insofar as the subject matter of each of the claims of this application is not disclosed in the prior application（s）in the manner provided by the first paragraph of $35 \mathrm{U} . \mathrm{S} . \mathrm{C}$ ．$\S 112$ ，I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in 37 C．F．R．§1．56 which occurred between the filing date of the prior application（s）and the national or PCT international filing date of this application：

（Application Serial Number）	（Day／Month／Year Filed）	（Status－Patented，Pending or Abandoned）

（Application Serial Number）
（Day／Month／Year Filed）
（Stans－Patented，Pending or Abandoned）

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true；and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment，or both，under 18 U．S．C．$\S 1001$ and that such willful false statements may jeopardize the validity of the application or any patent issued thereon．
..- . POWER OF ATTORNEY: I hereby appoint as my attorneys, with full powers of substitution and revocation, to prosecute - this application and transact all busin the Patent and Trademark Office connected

John B. Lungmus(18.566)
Allen H. Gerstein $(22,2$ t 8)
Nate F. Scarpelli $(22,320)$
Michael F. Borun $(25,447)$
Trevor B. Joike $(25,542)$
Carl E. Moore, Jr. $(26,487)$

Richard H. Anderson (26.526)
Patrick D. Ertel $(26,877)$
Richard B. Hoffman $(26,910)$
James P. Zeller $(28,491)$
Kevin D. Hogg $(31,839)$
Jeffrey S. Sharp $(31,879)$

Martin J. Hirsch $(32,237)$
James J. Napoli (32.361)
Richard M. La Barge (32.254)
Douglass C. Hochstetler (33,710)
Robert M. Gerstein $(34,824)$
Anthony G. Sitko $(36,278)$

James A. Flight (37.622)
Roger A. Heppermann (37.641)
David A. Gass $(38,153)$
Gregory C. Mayer (38.238)
Michael R. Weiner $(38,359)$
William K. Merkel $(40,725)$

Send correspondence to: James J. Napoli

FIRM NAME
Marshall, Gerstein \& Borun

PHONE NO.

312-474-6300

Full Name of First or Sole Inventor William Ernest Pullman	Citizenship United States of America
Residence Adidress - Street 3004 Towne Drive	F'cst Sfice Adress-Stect 3004 Towne Drive
$\begin{aligned} & \hline \text { City (Zip) } \\ & \text { Carmel }(46032) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { City (Zip) } \\ & \text { Carmel (46032) } \end{aligned}$
Shte or Country Indiana	State or Country Indiana
Bate	Signature 区

Third Joint Inventor, if any	Citizenship
Residence Address - Street	Post Office Address - Street
City (Zip)	City (Zip)
State or Country	State or Country
Date $\boldsymbol{\Delta}$	Signature $\boldsymbol{\Sigma}$

Fourth Joint Inventor, if any	Citizenship
Residence Address - Street	Post Office Address - Street
City (Zip)	City (Zip)
State or Country	State or Country
Date	Signature
\boxtimes	区

37 CFR 1.56. DUTY OF DISCLOSURE.INFORMATION MATERIAL TO PATENTABILITY (Applicable Portion)
(a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most effective patent examination occurs when, at the time an application is being examined, the Office is aware of and evaluates the teachings of all information material to patentability. Each individual associated with the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the Office, which includes a duty to disclose to the Office all information known to that individual to be material to patentability as defined in this section. The duty to disclose information exists with respect to each pending claim until the claim is canceled or withdrawn from consideration, or the application becomes abandoned. Information material to the patentability of a claim that is canceled or withdrawn from consideration need not be submitted if the information is not material to the patentability of any claim remaining under consideration in the application. There is no duty to submit information which is not material to the patentability of any existing claim. The duty to disclose all information known to be material to patentability is deemed to be satisfied if all information known to be material to patentability of any claim issued in a patent was cited by the Office or submitted to the Office in the manner prescribed by $\$ \S 1.97$ (b)-(d) and 1.98 . However, no patent will be granted on an application in connection with which fraud on the Office was practiced or attempted or the duty of disclosure was violated through bad faith or intentional misconduct. The Office encourages applicants to carefully examine:
(1) prior art cited in search reports of a foreign patent office in a counterpart application, and
(2) the closest information over which individuals associated with the filing or prosecution of a patent application believe any pending claim patentability defines, to make sure that any material information contained therein is disclosed to the Office.

Information relating to the following factual situations enumerated in 35 USC 102 and 103 may be considered material under 37 CFR $1.56(\mathrm{a})$.

35酎.S.C. 102. CONDITIONS FOR PATENTABILITY: NOVELTY AND LOSS OF RIGHT TO PATENT
A person shall be entitled to a patent unless --
(a) the invention was known or used by others in this country, or patented or described in a printed publication in 鳥is or a foreign country, before the invention thereof by the applicant for patent, or
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use oren sale in this country, more than one year prior to the date of the application for patent in the United States, or
$\# \quad$ (c) he has abandoned the invention, or
(d) the invention was first patented or caused to be patented, or was the subject of an inventor's certificate, by theapplicant or his legal representatives or assigns in a foreign country prior to the date of the application for patent in this country oran application for patent or inventor's certificate filed more than twelve months before the filing of the application in the United States, or
(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraph (1), (2), and (4) of section 371 (c) of this title before the invention thereof by the applicant for patent, or
(f) he did not himself invent the subject matter sought to be patented, or
(g) before the applicant's invention thereof the invention was made in this country by another who had not abandoned, suppressed, or concealed it. In determining priority of invention there shall be considered not only the respective dates of conception and reduction to practice of the invention, but also the reasonable diligence of one who was first to conceive and last to reduce to practice, from a time prior to conception by the other.

35 U.S.C. 103. CONDITIONS FOR PATENTABILITY; NON-OBVIOUS SUBJECT MATTER (Applicable Portion)

A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Subject matter developed by another person, which qualifies as prior art only under subsection (f) or (g) of section 102 of this title, shall not preclude patentability under this section where the subject matter and the claimed invention were, at the time the invention was made, owned by the same person or subject to an obligation of assignment to the same person.

35 U.S.C. 112. SPECIFICATION (Applicable Portion)

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same, and shall set forth the best mode contemplated by the inventor of carrying out his invention.

BEST AMAAIABLE COPY

PATENT APPLICATION SERIAL NO.
 $10 / 031556$

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

01/28/2002 SNAJARRO 0000010210031556
$01 \mathrm{FC}: 970$
890.00 OP

03/25/2002 IEVANS 00000001 13285510031556
$01 \mathrm{FC}: 968 \quad 280.00 \mathrm{CH}$
$02 \mathrm{FC}: 966$
468.00 CH

PTO-1556

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

```
Applicants:
WILIIAM E. POLLMAN ET AL.
U.S. National Phase of
PCT/USOO/11129 filed April 26,
2000
Filed: Herewith
FOI: UNIT DOSAGE FORM
Group Art Unit: Unassigned
Examiner: Unassigned
Attorney Docket No. 29342/36206A
```

```
"EXPRESS MAIL" mailing label
No. ER657817671OS
Date of Deposit:
October 19, 2001
I hereby certify that this
paper (or fee) is being
deposited with the United
States Postal Service "EXPRESS
MAIL POST OFFICE TO ADDRESSEE"
service under 37 CFR §l.10 on
the date indicated above and is
addressed to:
Assistant Commissioner for
Patents, Washington, D.C.
20231.
```


PRELIMINARY AMENDMENT
ACCOMPANYING APPLICATION TRANSMITTAL

Commissioner of Patents Washington, D.C. 20231

Sir:
Please amend the above-identified application as follows:

IN THE SPECIFICATION:

Page 1, after the title, please delete the CROSS-REFERENCE TO RELATED APPLICATION in its entirety and insert therefor:

--CROSS-REFERENCE TO RELATED APPLICATIONS

This is the U.S. national phase application of International Application No. PCT/USOO/11129, filed on April 26, 2000, which claims the benefit of provisional patent application Serial No. 60/132,036, filed April 30, 1999.--

IN THE CLAIMS:

Cancel claims 18 and 19 without prejudice.
Amend claims 7-9 as follows:

REMARKS

Claims 1-19 are pending in the application. Claims 18 and 19 have been cancelled. Therefore, claims 1-17 are at issue in this application.

The amendments are described in more detail below. Pursuant to 37 C.F.R. §1.121, a marked-up version of the changes made to the claims by the present amendment is attached hereto following the signature page of this amendment. The first page of the marked-up version of the changes is captioned "Version With Markings to Show Changes Made."

This preliminary amendment adds no new matter. The specification has been amended to insert a crossreference to a related application. Claims 7-9 have been amended to improve the form of the claims.

It is submitted that the amendment should be entered, and that the claims are of a proper form and scope for allowance. An early and favorable action on the merits is respectfully requested.

Should the examiner wish to discuss the foregoing, or any matter of form in an effort to advance this application toward allowance, the examiner is urged to telephone the undersigned at the indicated number.

Chicago, Illinois October 19, 2001

1031556
 531 Recedpent 19 OCT 2801

Version With Markings to Show Changes Made
(U.S. National Stage of PCT/US00/11129
filed October 19, 2001)

IN THE SPECIFICATION:

The following cross-reference to related application has been inserted into the specification:

CROSS-REFERENCE TO RELATED APPLICATIONS

This is the U.S. national phase application of International Application No. PCT/USO0/11129, filed on April 26, 2000, which claims the benefit of provisional patent application Serial No. 60/132,036, filed April 30, 1999.

IN THE CLAIMS:

Claims 18 and 19 have been cancelled without prejudice.

Claims 7-9 have been amended as follows:
7. (Amended) The dosage form of [claims 1 through 6] claim $1,2,3,4,5$, or 6 wherein the unit dose is in a form selected from the group consisting of a liquid, a tablet, a capsule, and a gelcap.
8. (Amended) The dosage form of [claims 1 through 6] claim $1,2,3,4,5$, or 6 wherein the unit dose is in the form of a tablet.
9. (Amended) The dosage form of [claims 1 through 6] claim $1,2,3,4,5$, or 6 for use in treating a condition wherein inhibition of PDE5 is desirable.

pATENT COOPERATION TRE^TY

PCT	From the INTERNATIONAL BUREAU
	To:
NOTIFICATION OF ELECTION (PCT Rule 61.2)	Commissioner US Department of Commerce United States Patent and Trademark Office, PCT 2011 South Clark Place Room CP2/5C24 Arlington, VA 22202
Date of mailing (day/month/year) 27 November 2000 (27.11.00)	etats-unis d'amerioue in its capacity as elected Office
International application No PCT/USO0/11129	Applicant's or agent's file reference $29342 / 36206$
International filing date (day/month/year)	Priority date (day/month/year)
26 April 2000 (26.04.00)	30 April 1999 (30.04.99)
Applicant	

1. The designated Office is hereby notified of its election made:
X in the demand filed with the International Preliminary Examining Authority on:
02 November 2000 (02.11 .00)

in a notice effecting later election filed with the International Bureau on:
2. The election was
\square was not
made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer
Facsimile No.: $(41-22) 740.14 .35$	

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

（PCT Article 36 and Rule 70）

Applicant＇s or agent＇s file reference $29342 / 36206$	FOR FURTHER ACTION See	tion of Transmittal of Intemational Examination Report（Form PCT／IPEA／416）
International application No． PCT／USOO／11129	International filing date（day／month／year） $26 / 04 / 2000$	Priority date（day／month／year） 30／04／1999
International Patent Classification（IPC）or national classification and IPC A61K31／00		
Applicant LILLY ICOS LLC et al．		

1．This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.

2．This REPORT consists of a total of 7 sheets，including this cover sheet．
\square This report is also accompanied by ANNEXES，i．e．sheets of the description，claims and／or drawings which have been amended and are the basis for this report and／or sheets containing rectifications made before this Authority （see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT）．

These annexes consist of a total of sheets．

3．This report contains indications relating to the following items：

1	区	Basis of the report
II	\square	Priority
III	囚	Non－establishment of opinion with regard to novelty，inventive step and industrial applicability
IV	\square	Lack of unity of invention
V	囚	Reasoned statement under Article 35（2）with regard to novelty，inventive step or industrial applicability； citations and explanations suporting such statement
VI	マ	Certain documents cited
VII	\square	Certain defects in the international application
VIII		Certain observations on the international application

Date of submission of the demand	Date of completion of this report
$02 / 11 / 2000$	25.09 .2001
Name and mailing address of the international preliminary exarnining authority： European Patent Office D－80298 Munich Tel．$+49892399-0$ Tx： 523656 epmu d Fax：$+49892399-4465$	Authorized officer
O）	Veronese， A

Form PCT／IPEA／409（cover sheet）（January 1994）

I. Basis of the report

1. With regard to the elements of the international application (Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to this report since they do not contain amendments (Rules 70.16 and 70.17)): Description, pages:

1-32 as originally filed

Claims, No.:
1-19 as originally filed
2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.

These elements were available or furnished to this Authority in the following language: , which is:
\square the language of a translation furnished for the purposes of the international search (under Rule 23.1 (b)).
\square the language of publication of the international application (under Rule 48.3(b)).
\square the language of a translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).
3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:
\square contained in the international application in written form.
\square filed together with the international application in computer readable form.
\square furnished subsequently to this Authority in written form.
\square furnished subsequently to this Authority in computer readable form.
\square The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.
\square The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.
4. The amendments have resulted in the cancellation of:the description,
pages:the claims,
Nos.:the drawings, sheets:
5.This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed (Rule 70.2(c)):
(Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.)
6. Additional observations, if necessary:
III. Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

1. The questions whether the claimed invention appears to be novel, to involve an inventive step (to be nonobvious), or to be industrially applicable have not been examined in respect of:the entire international application.
凹 claims Nos. 13-17 (IA).
because:
区 the said international application, or the said claims Nos. 13-17 relate to the following subject matter which does not require an international preliminary examination (specify): see separate sheet
\square the description, claims or drawings (indicate particular elements below) or said claims Nos. are so unclear that no meaningful opinion could be formed (specity):the claims, or said claims Nos. are so inadequately supported by the description that no meaningful opinion could be formed.no international search report has been established for the said claims Nos. .
2. A meaningful international preliminary examination cannot be carried out due to the failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative Instructions:the written form has not been furnished or does not comply with the standard.
\square the computer readable form has not been furnished or does not comply with the standard.
V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
3. Statement

Noveity (N)	Yes:	Claims	$1-19$
	No:	Claims	
	Yes:	Claims	
Inventive step (IS)	No:	Claims	$1-19$
Industrial applicability (IA)	Yes:	Claims	$1-12,18,19$

No: Claims

2. Citations and explanations
see separate sheet
VI. Certain documents cited
3. Certain published documents (Rule 70.10)
and / or
4. Non-written disclosures (Rule 70.9)
see separate sheet
VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:
see separate sheet

Re Item III

Non-establishment of opinion with regard to novelty, inventive step and industrial applicability.

Claims 13-17 relate to subject-matter considered by this Authority to be covered by the provisions of Rule 67.1 (iv) PCT. Consequently, no opinion will be formulated with respect to the industrial applicability of the subject-matter of these claims (Article 34(4)(a)(i) PCT). However, although not required under the provisions of the PCT, an opinion will be given with respect to novelty and inventive step.

Re Item V

Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

INVENTIVE STEP

Reference is made to the following documents:

D1: WO 9703675 A (GLAXO WELLCOME LAB SA ;DAUGAN ALAIN CLAUDE MARIE (FR)) 6 February 1997 (1997-02-06)

D2: ISRAEL M: 'VIAGRA: THE FIRST ORAL TREATMENT FOR IMPOTENCE' PHARMACEUTICAL JOURNAL,PHARMACEUTICAL SOCIETY, LONDON,GB, vol. 261, 1 August 1998 (1998-08-01), pages 164-165, XP000919343 ISSN: 0031-6873

D1, see page 5 lines 4-14, example 1 (compound A) at page 10 , the pharmaceutical formulations at pages 12-16 and claim 2 disclose the use of pharmaceutical unit dosages comprising the PDE5 inhibitor (6R,12aR)-2,3,6,7,12,12a- hexahydro-2-methyl-6- (3,4-methylenedioxyphenyl)-pyrazino [2', $1^{\prime}: 6,1$] pyrido [3,4-b] indole-1,4-dione (Compound I) for the treatment of erectile dysfunctions. Compositions comprising 50 mg of compound I are shown and concentration ranges from 0.2 to 400 mg are indicated as suitable for oral administration. Compositions in the claimed range of 1 to 20 mg are therefore also considered to be implicitly disclosed.

INTERNATIONAL PRELIMINARY
 International application No. PCT/USOO/11129 EXAMINATION REPORT - SEPARATE SHEET

If a novelty objection could be overcome, the selection of pharmaceutical unit dosages comprising 1 to 20 mg of Compound I as in the present invention can not however considered to involve an inventive step.
The routine experimentation to optimise the required amounts of ingredients of known compositions for a known use falls within the normal capacity of the average skilled person. Even if the claimed compositions provide some benefits when compared to the compositions of the prior art, the experimental data reported in the present application are not characterized by any new or surprising effect.
Furthermore, for the patient treatment it is not the "unit dose" which is important to provide a certain medical effect, but the dose which is practically administered. For example two tablets or half tablet could be administered to the patient to adjust the dosage and obtain a certain effect.
The IPEA is therefore of the opinion that the subject-matter underlying claims 1-11, 13-19 does not involve an inventive step in the sense of Art. 33(3) PCT.

Also claim 12, claiming the use of the PDE5 diesterase inhibitor I, for the treatment of sexual disfunctions in woman is not considered to involve an inventive step in view of document D2, which disclose the use of PDE5 inhibitor VIAGRA for the treatment of sexual disfunctions in females, see page 165 , column 2.

INDUSTRIAL APPLICATION

For the assessment of the present claims 13-17 on the question whether they are industrially applicable, no unified criteria exist in the PCT Contracting States. The patentability can also be dependent upon the formulation of the claims. The EPO, for example, does not recognize as industrially applicable the subject-matter of claims to the use of a compund in medical treatment, but may allow, however, claims to a known compound for first use in medical treatment and the use of such a compound for the manufacture of a medicament for a new medical treatment.

Re Item VI

Certain documents cited (Rule 70.10)
WO9959584, which has been disregarded in writing the present Report, could become relevant for the assessment of novelty under some patent law systems. Priorities have not been checked.

Application No Patent No

WO9959584

Publication date (day/month/year)

25 November 199917 May 1999

Priority date (valid claim) (day/month/year)

20 May 1998

Re Item VIII

Certain observations on the international application

Claim 9 defines the subject-matter to be protected by way of the biological mechanism underlying the action of the disclosed compounds. This expression does not specify specific diseases recognized in the art to which the invention pertains and is not considered to fulfill the requirements of Art 6 PCT. The claim has been therefore examined under the assumption that the conditions indicated in claims 10-12 are intended.

The relative term "about" used in claims 1-6, 13-19 is vague and unclear and leaves the reader in doubt as to the meaning of the technical features to which it refers, thereby rendering the definition of the subject-matter of said claims unclear (Article 6 PCT).

Claim 18 does not seem to define any additional subject matter and therefore does not comply with the requirements of conciseness of Art. 6 PCT.

PATENT COOPERATION TREATY PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

$\begin{aligned} & \text { Applicants or agents file reference } \\ & 29342 / 36206 \end{aligned}$	$\begin{array}{cl}\text { FOR FURTHER } \\ \text { ACTION } & \begin{array}{l}\text { see Notification of Transmittal of International Search Report } \\ \text { (Form PCT/ISA/220) as well as, where applicable, item } 5 \text { below. }\end{array}\end{array}$	
International application No.	International filing date (day/month/year)	(Eariest) Priority Date (day/month/year)
PCT/US 00/ 11129	26/04/2000	30/04/1999
Applicant		
LILLY ICOS LLC et al.		

This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This International Search Report consists of a total of \qquad sheets.
X It is also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report
a. With regard to the language, the international search was carried out on the basis of the international application in the language in which it was filed, unless otherwise indicated under this item.the international search was carried out on the basis of a translation of the international application furnished to this Authority (Rule 23.1(b)).
b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of the sequence listing:
\square contained in the international application in written form.
\square filed together with the international application in computer readable form.
furnished subsequently to this Authority in written form.
furnished subsequently to this Authority in computer readble form.
the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.
\square the statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished
2. \square Certain claims were found unsearchable (See Box I).
3. Unity of invention is lacking (see Box II).
4. With regard to the titie,
\square the text is approved as submitted by the applicant.
X the text has been established by this Authority to read as follows:
COMPOSITIONS COMPRISING PHOSPHODIESTERASE INHABITORS FOR THE TREATMENT OF SEXUAL DISFUNCTION
5. With regard to the abstract,
[X] the text is approved as submitted by the applicant.
the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box III. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.
6. The figure of the drawings to be published with the abstract is Figure No. '

as suggested by the applicant.
X None of the figures.
because the applicant failed to suggest a figure.
because this figure better characterizes the invention.

Form PCT/ISA/210 (first sheet) (July 1998)

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are inctuded in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where praclical, search terms used)
EPO-Internal
C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ${ }^{\circ}$	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
X	WO 9703675 A (GLAXO WELLCOME LAB SA ; DAUGAN ALAIN CLAUDE MARIE (FR)) 6 February 1997 (1997-02-06) page 3 , line 11,12 page 3 , line 24,25 page 5, line 4-11 claims; examples 1,3	1-19
P, X	WO 9959584 A (ESTOK THOMAS MARK ;SCHERING CORP (US)) 25 November 1999 (1999-11-25) page 4, last paragraph page 42, line 11,12 page 61, line 20,21 claim 20	1-19

X Further documents are listed in the continuation of box C .	X Patent family members are listed in annex.
${ }^{\circ}$ Special categories of cited documents : ' A ' document defining the general state of the art which is not considered to be of panicular relevance " E " eartier document but published on or atter the intemational filing date "L" document which may throw doubts on prionity claim(s) or which is ched to establish the publication date of another citation or other special reason (as specitied) ' O ' document referring to an oral disclosure, use, exhibition or other means " P " document published prior to the international filing date but tater than the priority date claimed	-T* tater document published atter the intemational filing date or priority date and not in conflict with the application but cited to understand the principle or theory undertying the invention ' X " document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken abone - Y ' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. " 8 " document member of the same patent family
Date of the actual completion of the international search 21 November 2000	Date of mailing of the intemational search report $28 / 11 / 2000$
Name and mailing address of the ISA European Palent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Riiswijk Tel. ($+31-70$) 340-2040, Tx. 31651 epo nl, Fax: (+31-70) 340-3016	Authorized ofticer Veronese, A

 INTERNA IAL SEARCH REPORT

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. X Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 13-18 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.Claims Nos.:
because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningtul International Search can be carried out, specifically:
3.Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
1.As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest \square The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

[^0]Form PCT/ASA/210 (patent family annex) (Juty 1992)
(19) World Intellectual Property Organization International Bureau
(43) International Publication Date 9 November 2000 (09.11 .2000)

PCT

(10) International Publication Number WO 00/66099 A3
(51) International Patent Classification': A61K 31/4985. A61P 15/10
(21) International Application Number: PCT/USO0/11129
(22) International Filing Date: 26 April 2000 (26.04.2000)
(25) Filing Language:

English
English
(30) Priority Data:

60/132,036 30 April 1999 (30.04.1999) US
(71) Applicant (for all designated States except US): LILLY ICOS LLC [US/US]; 1209 Orange Street. Wilmington, DE 19801 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): PULLMAN, William, Ernest [US/US]; 3004 Towne Drive. Carmel. IN 46032 (US). WHITAKER, John, Steven [US/US]; 19340 162nd Avenue, Woodinville, WA 98072 (US).
(74) Agent: NAPOLI, James, J.; Marshall, O'Toole, Gerstein, Murray \& Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU. $A Z . B A, B B . B G, B R, B Y, C A, C H, C N . C R, C U, C Z, D E$, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS. JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE. SN, TD. TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.
(88) Date of publication of the international search report: 18 January 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS COMPRISING PHOSPHODIESTERASE INHABITORS FOR THE TREATMENT OF SEXUAL

 DISFUNCTION(57) Abstract: The present invention relates to highly selective phosphodiesterase (PDE) enzyme inhibitors and to their use in pharmaceutical articles of manufacture. In particular, the present invention relates to potent inhibitors of cyclic guanosine $3^{\prime}, 5^{\prime}$ monophosphate specific phosphodiesterase type 5 (PDE5) that when incorporated into a pharmaceutical product at about I to about 20 mg unit dosage are useful for the treatment of sexual dysfunction.

Form PCT/ASA/210 (socand sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Category ${ }^{\circ}$	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	WO 9519978 A (GLAXO LAB SA ;DAUGAN ALAIN CLAUDE MARIE (FR)) 27 July 1995 (1995-07-27) cited in the application page 8, line 5-15; example 78 page 80 , line 21,22 page 80, last paragraph claims $10,12,14$	1-12
P, X	```DATABASE WPI Section Ch, Week 200029 Derwent Publications Ltd., London, GB; Class BO2, AN 2000-339026 XP002152606 & WO 00 20033 A (EISAI CO LTD), 13 April 2000 (2000-04-13) abstract```	1-12
A	ISRAEL M: "VIAGRA: THE FIRST ORAL TREATMENT FOR IMPOTENCE" PHARMACEUTICAL JOURNAL, PHARMACEUTICAL SOCIETY, LONDON,GB, vol. 261, 1 August 1998 (1998-08-01), pages 164-165, XP000919343 ISSN: 0031-6873 page 164, column 1-2	1-19
A	GOLDENBERG M M: "SAFETY AND EFFICACY OF SILDENAFIL CITRATE IN THE TREATMENT OF MALE ERECTILE DYSFUNCTION" CLINICAL THERAPEUTICS, US, EXCERPTA MEDICA, PRINCETON, NJ, vol. 20, no. 6, 1998, pages 1033-1048, XP000853855 ISSN: 0149-2918 page 1041, column 1 -page 1042, column 1	1-19

INTERNATIONAL SEARCH REPORT
fion on patent family members

INFORMATION DISCLOSURE STATEMENT

Commissioner of Patents Washington, D.C. 20231

Sir:
Pursuant to his duty of disclosure under 37 C.F.R. §l.56, applicants hereby bring to the examiner's attention patents and publications that may be material to the examination of the above-identified application. Therefore, in compliance with 37 C.F.R. §1.97 and §1.98, applicant has enclosed a completed Form PTO-1449 listing the possibly pertinent patents and publications, and a copy of each patent and publication.

Another application related to the aboveidentified application is:

```
Applicants: Jeffrey T. Emmick et al.
```

Serial No. 09/558,911
Filing Date: April 26, 2000
Title: Articles of Manufacture Status: Pending.

This Information Disclosure Statement is submitted more than three months after the filing date of the above-identified application, and.to applicants' knowledge, before the mailing date of a first Office Action on the merits. Therefore, under 37 C.F.R. $\$ 1.97(\mathrm{~b})$, this Information Disclosure státement shall be considered by the Patent Office.

The Commissioner, however, is hereby authorized to charge any fee which may be required during the pendency of this application under 37 C.F.R. 1.16 or 37 C.F.R. 1.17 to Deposit Account No. 13-2855: A duplicate copy of this Transmittal is enclosed herewith.

A copy of the International Search Report is enclosed for the convenience of the examiner.

Chicago, Illinois March 14, 2002

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :	A1	(11) International Publication Number:	WO 95/19978
C07D 471/14, A61K 31/395, C07D 471/04, 209/14 // (C07D 471/14, 241:00, 221:00, 209:00)		(43) International Publication Date:	27 July 1995 (27.07.95)

(21) International Application Number: PCT/EP95/00183
(22) International Filing Date: 19 January 1995 (19.01.95)
(30) Priority Data: 9401090.7

21 January 1994 (21.01.94)
GB
(71) Applicant (for all designated States except US): LABORATOIRES GLAXO S.A. [FR/FR]; 42, rue Vineuse, F-75016 Paris (FR).
(72) Inventor; and
(75) Inventor/Applicant (for US only): DAUGAN, Alain, ClaudeMarie [FR/FR]; Laboratoires Glaxo S.A., Centre de Recherches, Z.A. de Courtabcuf, 25, avenue de Québec, F-91940 Les Ulis (FR).
(74) Agents: GALLAFENT, Alison et al.; Glaxo plc, Glaxo House, Berkeley Avenue, Greenford, Middlesex UB6 ONN (GB).
(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,
CN, CZ, DE, DK, EE, ES, F, GB, GE, HU, JP, KE, KG,
KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW,
MX, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ,
TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE
DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF. CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published
With international search reporn.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
54) Title: TETRACYCLIC DERIVATIVES. PROCESS OF PREPARATION AND USE

(a)

(57) Abstract

A compound of formula (I) and salts and solvates thereof, in which: R^{0} represents hydrogen, halogen or C_{1-6} alkyl; R^{1} represents hydrogen, $C_{1-6 a l k y l} C_{2-6}$ alkenyl, C_{2-6} alkynyl, halo $C_{1-6 a l k y l,} C_{3-8}$ cycloalkyl, $C_{3-8 c y c l o a l k y l} C_{1-3 a l k y l}$, arylC ${ }_{1-3 a l k y l}$ or heteroarylC ${ }_{1-3}$ alkyl; \mathbf{R}^{2} represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic ring (a) attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring (A) is a 5- or 6-membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and \mathbf{R}^{3} represents hydrogen or $C_{1.3}$ alkyl, or \mathbf{R}^{1} and \mathbf{R}^{3} together represent a 3- or 4 -membered alkyl or alkenyl chain. A compound of formula (I) is a potent and selective inhibitor of cyclic guanosine $3^{\prime}, 5^{\prime}$ monophosphate specific phosphodiesterase (cGMP specific PDE) having a utility in a variety of therapeutic areas where such inhibition is beneficial, including the trearment of cardiovascular disorders.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritaria
AU	Ausuralia	GE	Georgia	MW	Malawi
BB	Bartados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burtina Faso	HU	Hungary	NO	Norway
BG	Butgaria	IE	Ireland	N2	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Bravil	JP	Japan	PT	Portugal
BY	Belatus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democraic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Swizerland	$\mathbf{K R}$	Republic of Korea	SI	Slovenia
Cl	Coce d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	L!	Litchtensteio	SN	Sencgal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Gemmany	MC	Monaco	TT	Trinidad and Tabago
ES	Denmark	MD	Republic of Moldova	UA	Ukraine
EI	Spain	MG	Madagascar	US	United States of America
FR	France	MN	Mali	UZ	Uzbekistan
GA	Grabon	N	Mongolia	VN	Viet Nam

TETRACYCLIC DERIVATIVES, PROCESS OF PREPARATION AND USE

This invention relates to a series of tetracyclic derivatives, to processes for their preparation, pharmaceutical compositions containing them, and their use as therapeutic agents. In particular, the invention relates to tetracycic derivatives which are potent and selective inhibitors of cyclic guanosine $3^{\prime}, 5^{\prime}$ monophosphate specific phosphodiesterase (cGMP specific PDE) having utility in a variety of therapeutic areas where such inhibition is thought to be beneficial, including the treatment of cardiovascular disorders.

Thus, according to a first aspect, the present invention provides compounds of formula (I)

and salts and solvates (e.g. hydrates) thereof, in which:
R^{0} represents hydrogen, halogen or C_{1-6} alkyl;
R^{1} represents hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-5} alkynyl, halo C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyIC C_{1-3} alkyl, aryIC i_{1-3} alkyl or heteroarylC C_{1-3} alkyl;
R^{2} represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic ring
 attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring A is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sutphur and nitrogen; and
R^{3} represents hydrogen or C_{1-3} alkyl, or R^{1} and R^{3} together represent a 3- or 4- membered alkyl or alkenyl chain.

There is further provided by the present invention a subgroup of compounds of formula (I), the subgroup comprising compounds of formula (la)

and salts and solvates (e.g. hydrates) thereof, in which:
R^{D} represents hydrogen, halogen or C_{1-6} alkyl;
R^{1} represents hydrogen, $C_{1-\text { galkyl, }}$ halo $C_{1-\text { - alkyl, }} C_{3-8 c y c l o a l k y l}$,

R^{2} represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic ring
 attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring A is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen.

Within R^{1} above, the term "aryl" as part of an aryIC 1-3 2 alkyl group means phenyl or phenyl substituted by one or more (e.g. 1,2 or 3) substituents selected from halogen, $\mathrm{C}_{1-\text { galkyl, }} \mathrm{C}_{1-\text { galkoxy }}$ and methylenedioxy. The term "heteroaryl" as part of a heteroarylC i_{1-3} alkyl group means thienyl, furyl or pyridyl each optionally substituted by one or more (e.g. 1, 2 or 3) substituents selected from halogen, C_{1-6} alkyl and $\mathrm{C}_{1-\text { - }}$ alkoxy. The term " C_{3-8} cycloalkyl" as a group or part of a C_{3-8} cycioalkylC C_{1-3} alkyl group means a monocyclic ring comprising three to eight carbon atoms. Examples of suitable cycloalkyl rings include the $\mathrm{C}_{3-6 \text { cycloalkyl rings cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. }}$

Within R^{2} above, optional benzene ring substituents are selected from one or more (e.g. 1, 2 or 3) atoms or groups comprising halogen, hydroxy, $\mathrm{C}_{1-\text { galkyl, }}$ C_{1-6} alkoxy, $-\mathrm{CO}_{2} \mathrm{R}^{\mathrm{b}}$, halo $\mathrm{C}_{1-\text { - alkyl, haloC }}^{1-\text { - alkoxy, cyano, nitro and }} \mathrm{NR}^{2} \mathrm{R}^{\mathrm{b}}$, where R^{a} and R^{b} are each hydrogen or $\mathrm{C}_{1-\text { galkyl, or }} \mathrm{R}^{\mathrm{a}}$ may also represent C_{2-7} alkanoyl or C_{1-6} alkylsulphonyl. Optional substituents for the remaining ring systems are selected from one or more (e.g. 1, 2 or 3) atoms or groups comprising halogen, $\mathrm{C}_{1-\text { galkyl, }} \mathrm{C}_{1-\text { - alkoxy }}$ and aryl C_{1-3} alkyl as defined above.

The bicyclic ring

may, for example, represent naphthalen, a heterocycle such as benzoxazole, benzothiazole, benzisoxazole, benzimidazole, quinoline, indole, benzothiophene or benzofuran or

(where n is an integer 1 or 2 and X and Y may each represent $\mathrm{CH}_{2}, \mathrm{O}, \mathrm{S}$ or NH).
in the above definitions, the term "alkyl" as a group or part of a group means a straight chain or, where available, a branched chain alkyl moiety. For example, it may represent a C_{1-4} alkyl function as represented by methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl and t-butyl. The term 'alkenyl' as used herein includes straight-chained and branched alkenyl groups, such as vinyl and allyl groups. The term 'alkynyl' as used herein includes straight-chained and branched alkynyl groups, suitably acetyiene. The term "halogen" herein means a fluorine, chlorine, bromine or iodine atom. The term "haloC 1_- $^{\text {galkyl" means an }}$ alkyl group as defined above comprising one to six carbon atoms substituted at one or more carbon atoms by one or more (e.g. 1, 2 or 3) halogen atoms.
 linked to the \mathbf{R}^{2} benzene ring via an oxygen atom. Examples of haloC $\mathrm{C}_{1-\mathrm{f}}$ alkyl groups include trifluoromethyl and 2,2,2-trifluoroethyl. An example of a
 $20 \quad C_{1-6}$ alkylcarbonyl group where the C_{1-6} alkyl portion is as defined above. An example of a suitable C_{2-7} alkanoyl group is the C_{2} alkanoyl group acetyl.

It will be appreciated that when R^{0} is a halogen atom or a $\mathrm{C}_{1-\text {-alkyl group }}$ this substituent may be sited at any available position on the phenyl portion of the tetracyclic ring. However, a particular site of attachment is the ring 10position.

The compounds of formula (I) may contain two or more asymmetric centres and thus can exist as enantiomers or diastereoisomers. In particular, in formula (I) above two ring chiral centres are denoted with asterisks. It is to be understood that the invention includes both mixtures and separate individual isomers of the compounds of formula (1).

The compounds of formula (1) may also exist in tautomeric forms and the invention includes both mixtures and separate individual tautomers thereof.

The pharmaceutically acceptable salts of the compounds of formula (1) which contain a basic centre are acid addition salts formed with pharmaceutically acceptable acids. Examples include the hydrochloride, hydrobromide, sulphate or bisulphate, phosphate or hydrogen phosphate, acetate, benzoate, succinate, fumarate, maleate, lactate, citrate, tartrate, gluconate, methanesulphonate, benzenesulphonate and p-toluenesulphonate salts. Compounds of the formula (I) can also provide pharmaceutically acceptable metal salts, in particular alkali metal salts, with bases. Examples include the sodium and potassium salts.

A particular group of compounds of the invention are those compounds of formula (I) in which R^{0} is hydrogen or halogen (e.g. fluorine), especially hydrogen.

Another particular group of compounds of the invention are those compounds of formula (1) in which R^{1} represents hydrogen, C_{1-4} alkyl, halo C_{1-4} alkyl,
 optionally substituted benzyl. Within this particular group of compounds, examples of C_{1-4} alkyl groups are methyl, ethyl, n-propyl, i-propyl and n-butyl. Examples of $C_{3-6 c y c l o a l k y l m e t h y l ~ g r o u p s ~ a r e ~ c y c l o p r o p y i m e t h y l ~ a n d ~}^{\text {a }}$ cyclohexyimethyl. Examples of optionally substituted, benzyl groups include benzyl and halobenzyl (e.g. fluorobenzyl).
A further particular group of compounds of the invention are thos compounds of formula (I) in which R^{2} represents an optionally substituted benzene, thiophene, furan, pyridine or naphthalene ring or an optionally substituted bicyclic ring
 each CH_{2} or O). Within this particular group of compounds, examples of substituted benzene groups are benzene substituted by one of halogen (e.g. chlorine), hydroxy, $\mathrm{C}_{1 \text {-3alkyl }}$ (e.g. methyl, ethyl or i-propyl), C_{1-3} alkoxy (e.g. methoxy or ethoxy), $-\mathrm{CO}_{2} \mathrm{R}^{\mathrm{b}}$, halomethyl (e.g. trifluoromethyl), halomethoxy (e.g. trifluoromethoxy), cyano, nitro or $N R^{a} R^{b}$ where R^{a} and R^{b} are each hydrogen or methyl or $\mathbf{R}^{\mathbf{a}}$ is acetyl; or benzene substituted by dihalo (e.g. dichloro) or by C_{1-3} alkoxy (e.g. methoxy) and one of halogen (e.g. chlorine) and hydroxy. An example of a substituted thiophene ring is a halo (e.g. bromo) substituent thiophene ring.

A still further particular group of compounds of formula l are those wherein R^{3} represents hydrogen or R^{1} and R^{3} together represent a 3-membered alkyl chain.

A preferred group of compounds of the invention are the cis isomers of formula (I) represented by formula (Ib)

and mixtures thereof with their cis optical enantiomers, including racemic mixtures, and salts and solvates (e.g. hydrates) of these compounds in which R^{0} is hydrogen or halogen (e.g. fluorine), especially hydrogen and R^{1}, R^{2} and R^{3} are as defined previously.

The single isomers represented by formula (b), i.e. the 6R, 12aR isomers, are particularly preferred.

Within the above definitions R^{1} may preferably represent C_{1-4} alkyl (e.g. methyl, ethyl, i-propyl and n-butyl), $C_{3-6 c y c l o a l k y l}$ (e.g. cyclopentyl) or $\mathrm{C}_{3-6 \text { cycioalkyimethyl (e.g. cyclopropylmethyl). }}$
R^{2} may preferably represent a substituted benzene ring such as benzene substituted by C_{1-3} alkoxy (e.g. methoxy) or by C_{1-3} alkoxy (e.g. methoxy) and halogen (e.g. chlorine), particularly 4-methoxyphenyl or 3-chloro-4methoxyphenyl, or R^{2} may preferably represent 3,4 -methylenedioxyphenyl.

It is to be understood that the present invention covers all appropriat combinations of particular and preferred groupings hereinabove.

Particular individual compounds of the invention include:
Cis-2,3,6,7,12,12a-hexahydro-2-(4-pyridyimethyl)-6-(3,4-methylenedioxyphenyl)-pyrazino[2', 1' : 6,1]pyrido[3,4-b]indole-1,4-dione; Cis-2,3,6,7,12,12a-hexahydro-6-(2,3-dihydrobenzo[b]furan-5-yl)-2-methylpyrazino[2 ', $1^{\prime}: 6,1$]pyrido[3,4-b]indole -1,4-dione;
Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-methylpyrazino[2', $1^{\prime}: 6,1$]pyrido[3,4-b]indole -1,4-dione;
Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-methylphenyl)pyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)-pyrazino[$2^{\prime}, 1^{\prime}: 6,1$]pyrido[3,4-b]indole -1,4-dione;
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-(3,4-methylenedioxyphenyl)-pyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyrido[3,4 -b]indole $-1,4$-dione; \qquad (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopropyimethyl-6-(4-methoxyphenyl)pyrazino[$2^{\prime}, 1^{\prime}: 6,1$]pyrido[3,4-b]indole -1,4-dione; (6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methylpyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methyienedioxyphenyl)pyrazino[2', $1^{\prime}: 6,1$]pyrido[3,4-b]indole-1,4-dione;
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)-
0 pyrazino[2', 1' : 6,1] pyrido [3,4-b] indole-1,4-dione;
(5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3,4-methylenedioxyphenyl)-pyrrolo[$\left.1^{\prime \prime}, 2^{\prime \prime}: 4^{\prime}, 5^{\prime}\right]$ pyrazino($2^{\prime}, 1^{\prime}:$ 6,1]pyrido[3,4-blindole-5-1,4-dione; and physiologically acceptable salts and solvates (e.g. hydrates) thereof.

A specific compound of the invention is:
(6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino[2', $1^{1}: 6,1$]pyrido[3,4-b]indole -1,4-dione; and physiologically acceptable salts and solvates (e.g. hydrates) thereof.

It has been shown that compounds of the present invention are potent and selective inhibitors of cGMP specific PDE. Thus, compounds of formula (I) are of interest for use in therapy, specifically for the treatment of a variety of conditions where inhibition of cGMP specific PDE is thought to be beneficial.

As a consequence of the selective PDE V inhibition exhibited by compounds of the present invention, CGMP levels are elevated, which in turn can give rise to beneficial anti-platelet, anti-neutrophil, anti-vasospastic, vasodilatory, natriuretic and diuretic activities as well as potentiation of the effects of endothelium-derived relaxing factor (EDRF), nitrovasodilators, atrial natriuretic factor (ANF), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP) and endothelium-dependent relaxing agents such as bradykinin, acetylcholine and $5-\mathrm{HT}_{1}$. The compounds of formula (1) therefore have utility in the treatment of a number of disorders, including stable, unstable and variant (Prinzmetal) angina, hypertension, puimonary hypertension, congestive heart failure, renal failure, atherosclerosis, conditions of reduced blood vessel patency (e.g. postpercutaneous transluminal coronary angioplasty), peripheral vascular diseas , vascular disorders such as Raynaud's disease, inflammatory diseases, stroke,
bronchitis, chronic asthma, allergic asthma, allergic minitis, glaucoma and diseases characterised by disorders of gut motility (e.g. . irritable bowel syndrome).

It will be appreciated that references herein to treatment extend to prophylaxis as well as treatment of established conditions.

It will also be appreciated that 'a compound of formula (I),' or a physiologically acceptable salt or solvate thereof can be administered as the raw compound, or as a pharmaceutical composition containing either entity.

There is thus provided as a further aspect of the invention a compound of formula (I) for use in the treatment of stable, unstable and variant (Prinzmetal) angina, hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, congestive heart failure, renal failure, atherosclerosis, conditions of reduced blood vessel patency, (e.g. post-PTCA), peripheral vascular disease, vascular disorders such as Raynaud's disease, inflammatory diseases, stroke. bronchitis, chronic asthma, allergic asthma, allergic rhinitis, glaucoma or diseases characterised by disorders of gut motility (e.g. IBS).

According to another aspect of the invention, there is provided the use of a compound of formula (1) for the manufacture of a medicament for the treatment 'of stable, unstable and variant (Prinzmetal) angina, hypertension, pulmonary hypertension, chronic obstructive puimonary disease, congestive heart failure, renal failure, atherosclerosis, conditions of reduced blood vessel patency, (e.g. post-PTCA), peripheral vascular disease, vascular disorders such as Raynaud's disease, inflammatory diseases, stroke, bronchitis, chronic asthma, allergic asthma, allergic rhinitis, glaucoma or diseases characterised by disorders of gut motility (e.g. IBS).

In a further aspect, the invention provides a method of treating stable, unstable and variant (Prinzmetal) angina, hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, congestive heart failure, renal failure, atherosclerosis, conditions of reduced blood vessel patency, (e.g. post-PTCA), peripheral vascular disease, vascular disorders such as Raynaud's disease, inflammatory diseases, stroke, bronchitis, chronic asthma, allergic asthma, allergic rhinitis, glaucoma or diseases characterised by disorders of gut motility (e.g. IBS) in a human or non-human animal body which comprises administering to said body a therapeutically effective amount of a compound with formula (1).

Compounds of the invention may be administered by any suitable route, for example by oral, buccal, sub-lingual, rectal, vaginal, nasal, topical or parenteral (including intravenous, intramuscular, subcutaneous and intracoronary) administration. Oral administration is generally preferred.

For administration to man in the curative or prophylactic treatment of the disorders identified above, oral dosages of a compound of formula (I) will generally be in the range of from $0.5-800 \mathrm{mg}$ daily for an average adult patient (70 kg). Thus for a typical adult patient, individual tablets or capsules contain from $0.2-400 \mathrm{mg}$ of active compound, in a suitable pharmaceutically acceptable vehicle or carrier, for administration in single or multiple doses, once or several times per day. Dosages for intravenous, buccal or sublingual administration will typically be within the range of from $0.1-400 \mathrm{mg}$ per single dose as required. In practice the physician will determine the actual dosing regimen which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case but there can be individual instances in which higher or lower dosage ranges may be merited, and such are within the scope of this invention.

For human use, a compound of the formula (I) can be administered alone, but will generally be administered in admixture with a pharmaceutical carri r selected with regard to the intended route of administration and standard pharmaceutical practice. For example, the compound may be administered orally, buccally or sublingually, in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs or suspensions containing flavouring or colouring agents. Such liquid preparations may be prepared with pharmaceutically acceptable additives such as suspending agents (e.g. methylcellulose, a semi-synthetic glyceride such as witepsol or mixtures of glycerides such as a mixture of apricot kernel oil and PEG-6 esters or mixtures of PEG-8 and caprylic/capric glycerides). A compound may also be injected parenterally, for example intravenously, intramuscularly, subcutaneously or intracoronarily. For parenteral administration, the compound is best used in the form of a sterile aqueous solution which may contain other substances, for example salts, or monosaccharides such as mannitol or glucose, to make the solution isotonic with blood.

Thus, the invention provides in a further aspect a pharmaceutical composition comprising a compound of the formula.(I) together with a pharmaceutically acceptable diluent or carrier therefor.

There is further provided by the present invention a process of preparing a pharmaceutical composition comprising a compound of formula (I), which process comprises mixing a compound of formula (I) together with a pharmaceutically acceptable diluent or carrier therefor.

A compound of formula (1) may also be used in combination with other therapeutic agents which may be useful in the treatment of the above-mentioned

(in which Alk represents $\mathrm{C}_{1 \text { - }}$ alkyl, e.g. methyl or ethyl and Hal is a halogen atom, e.g. chlorine) with a primary amine $\mathrm{R}^{1} \mathrm{NH}_{2}$ in a suitable solvent such as an alcohol (e.g. methanol or ethanol) or a mixture of solvents, conveniently at a temperature of from $20^{\circ} \mathrm{C}$ to reflux (e.g. at about $50^{\circ} \mathrm{C}$).

A compound of formula (II) may conveniently be prepared by treating a compound of iormula (III)

with a haloacetyl halide (e.g. chloroacetyl chloride) in a suitable solvent such as a halogenated hydrocarbon (e.g. trichloromethane or dichloromethane), or an ether (e.g. tetrahydrofuran), preferably in the presence of a base such as an organic amine (e.g. a trialkylamine such as triethylamine) or an alkali metal carbonate or bicarbonate (e.g. NaHCO_{3}). The reaction may conveniently be effected at a temperature of from $-20^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$ (e.g. at about $0^{\circ} \mathrm{C}$).

A compound of formula (I) may also be prepared from a compound of formula (III) in a two-step procedure via a compound of formula (II) isolated without purification.

Compounds of formula (1) may be prepared as individual enantiomers in two steps from the appropriate enantiomer of formula (III) or as mixtures (e.g. racemates) of either pairs of cis or trans isomers from the correspondong mixtures of either pairs of cis or trans isomers of formula (III).

Individual enantiomers of the compounds of the invention may be prepar d from racemates by resolution using methods known in the art for the separation of racemic mixtures into their constituent enantiomers, for example using HPLC (high performance liquid chromatography) on a chiral column such as Hypersil naphthylurea.

A compound of formula (III) may conveniently be prepared from a tryptophan alkyl ester of formula (IV)

(IV)
(where Alk is as previously defined) or a salt thereof (e.g. the hydrochloride salt) according to either of the following procedures (a) and (b). Procedure (b) is only suitable for preparing cis isomers of formula (III) and may be particularly suitable for preparing individual cis enantiomers of formula (III) from D- or Ltryptophan alkyl est rs as appropriate.

Procedure (a)

This comprises a Pictet-Spengler cyclisation between a compound of formula (IV) and an aldehyde $\mathrm{R}^{2} \mathrm{CHO}$. The reaction may conveniently be effected in a suitable solvent such as a halogenated hydrocarbon (e.g. dichloromethane) or an aromatic hydrocarbon (e.g. toluene) in the presence of an acid such as trifluoroacetic acid. The reaction may conveniently be carried out at a temperature of from $-20^{\circ} \mathrm{C}$ to reflux to provide a compound of formula (III) in one step. The reaction may also be carried out in a solvent such as an aromatic hydrocarbon (e.g. benzene or toluene) under reflux, optionally using a DeanStark apparatus to trap the water produced.

The reaction provides a mixture of cis and trans isomers which may be either individual enantiomers or racemates of pairs of cis or trans isomers depending upon whether racemic or enantiomerically pure tryptophan alkyl ester was used as the starting material. Individual cis or trans enantiomers may conveniently be separated from mixtures thereof by fractional crystallisation or by chromatography (e.g. flash column chromatography) using appropriate solvents and eluents. Similarly, pairs of cis and trans isomers may be separated by chromatography (e.g. flash column chromatography) using appropriate eluents. An optically pure trans isomer may also be converted to an optically pure cis isomer using suitable epimerisation procedures. One such procedure comprises treating the trans isomer or a mixture (e.g. $1: 1$ mixture) of cis and trans isomers with methanolic or aqueous hydrogen chloride at a temperature of from $0^{\circ} \mathrm{C}$ to the refluxing temperature of the solution. The mixture may then be subjected to chromatography (e.g. flash column chromatography) to separat the resulting diastereoisomers, or in the procedure utilising aqueous hydrogen chloride the desired cis isomer precipitates out as the hydrochloride salt which may then be isolated by filtration.

Procedure (b)

This comprises a four-step procedure from a compound of formula (IV) or a salt thereof (e.g. the hydrochioride salt). The procedure is particularly suitable for preparing a $1 R, 3 R$ isomer of formula (III) from a D-tryptophan alkyl ester of formula (IV) or a salt thereof (e.g. the hydrochloride salt). Thus, a first step (i) compris s treating a compound of formula (IV) with an acid halide $\mathrm{R}^{2} \mathrm{COHal}$ (where Hal is as previously defined) in the presence of a base, e.g. an organic
base such as a trialkylamine (for example triethylamine), to provide a compound of formula (V)

The reaction may be conveniently carried out in a suitable solvent such as a halogenated hydrocarbon (e.g. dichloromethane) or an ether (e.g. tetrahydrofuran) and at a temperature of from $-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.

Step (ii) comprises treating a compound of formula (V) with an agent to convert the amide group to a thioamide group. Suitable sulfurating agents are well-known in the art. Thus, for example, the reaction may conveniently be effected by treating (V) with Lawesson's reagent. This reaction may conveniently be carried out in a suitable solvent such as an ether (e.c. dimethoxyethane) or an aromatic hydrocarbon (e.g. toluene) at an elevated temperature such as from $40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ to provide a compound of formula (VI)

Step (iii) comprises treating a compound of formula (VI) with a suitable agent to provide a compound of formula (VII)

(VII)
(where Hal is a halogen atom, e.g. iodine). The reaction may conveniently be effected by treating (VI) with an alkylating agent such as a methyl halide (e.g. methyl iodide) or an acylating agent such as an acetyl halide (e.g. acetyl chloride) in a suitable solvent such as a halogenated hydrocarbon (e.g. dichloromethane) at an elevated temperature (e.g. under reflux).

In step (iv) the resulting iminium halide of formula (VII) may be treated with a reducing agent such as boron hydride, e.g. sodium borohydride, to provide the desired compound of formula (III). The reduction may conveniently b effected
at a low temperature, e.g. within the range of $-100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, in a suitable solvent such as an alcohol (e.g. methanol)

There is further provided by the present invention a process (B) for preparing a compound of formula (1), wherein R^{1} and R^{3} together represent a 3- or 4- membered alkyl or alkenyl chain, which process (B) comprises cyclisation of a compound of formula (VIII)

(viII)
wherein Alk represents C_{1-6} alkyl and R^{1} and R^{3} together represent a 3- or 4membered chain both as hereinbefore described. The cyclisation is suitably carried out in an organic solvent or solvents, such as an alcoholic solvent (e.g. methanol) and optionally an ether solvent such as tetrahydrofuran, and in the presence of a reducing agent, aptly a palladium catalyst, such as palladium on carbon.
Conveniently a compound of formula (VIII) is prepared by reaction of a compound of formula (III) as hereinbefore described with a compound of formula (IX)

(IX)
wherein Hal represents a halogen atom as hereinbefore described, R^{1} and R^{3} together represent a 3- or 4-membered chain as hereinbefore described and R^{4} represents a protecting group, suitably a benzyloxycarbonyl group or the like. Typically the reaction is carried out in a chlorinated organic solvent, such as dichloromethane, and a tertiary amine, such as triethylamine or the like.

According to a further aspect of the present invention, there is provided a process (C) for pr paring a compound of formula (I) wherein R^{3} represents C_{1}. salkyl, which process comprises cyclisation of a compound of formula (X)

wherein Alk represents $C_{1,6}$ alkyl as hereinbefore described and R^{5} represents $\mathrm{C}_{2 \text {-salkyl, substituted at }} \mathrm{C}_{1}$ by a halogen atom, the halogen atom being as hereinbefore described. Suitably the cyclisation is achieved by reflux for many hours, such as 22 to 26 hours, in the presence of an ether solvent, such as tetrahydrofuran, and a suitable amine as hereinafter described in th accompanying examples.

Aptly a compound of formula (X) can be prepared from a compound of formula (III) by suitable acylation techniques, such as reaction with. a $\mathrm{C}_{3-\mathrm{s} \text { carboxylic acid, }}$ substituted at C_{2} by a halogen atom in a halogenated organic solvent, such as dichloromethane.

Compounds of formula (1) may be converted to other compounds of formula (I). Thus, for example, when R^{2} is a substituted benzene ring it may be necessary or desirable to prepare the suitably substituted compound of formula (I) subsequent to process (A), (B) or (C) as above. Examples of appropriate interconversions include nitro to amino or aralkyloxy to hydroxy by suitable reducing means (e.g. using a reducing agent such as SnCl_{2} or a palladium catalyst, such as palladium-on-carbon), or amino to substituted amino such as acylamino or sulphonylamino using standard acylating or sulphonylating conditions. In the case where R^{2} represents a substituted bicyclic system, suitable interconversion can involve removal of a substituent, such as by treatment with a palladium catalyst (e.g. palladium-on-carbon) whereby, for example, a benzyl substituent may be removed from a suitable bicyclic system.

The pharmaceutically acceptable acid addition salts of the compounds of formula (I) which contain a basic centre may be prepared in a conventional manner. For example, a solution of the free base may be treated with a suitable acid, either neat or in a suitable solution, and the resulting salt isolated either by filtration or by evaporation under vacuum of the reaction solvent. Pharmaceutically acceptable base addition salts may be obtained in an
analogous manner by treating a solution of a compound of formula (I) with a suitable base. Both types of salt may be formed or interconverted using ionexchange resin techniques.

Compounds of the invention may be isolated in association with soiv nt molecules by crystallisation from or evaporation of an appropriate solvent:

Thus, according to a further aspect of the invention, we provide a process for preparing a compound of formula (I) or a salt or solvate (e.g. hydrate) thereof which comprises process (A), (B) or (C) as hereinbefore described followed by
i) an interconversion step; and/or either
ii) salt formation; or
iii) solvate (e.g. hydrate) formation.

There is further provided by the present invention compounds of formulae (II), (VIII), (X) and further compounds of formulae (III), (V), (VI) and (VII), with the exception for compounds (III), (V), (VI) and (VII) wherein R^{0} is hydrogen, R^{2} is phenyl and Alk is methyl.

The synthesis of the compounds of the invention and of the intermediates for use therein are illustrated by the following, non-limiting Examples. In the Examples section hereinafter the following abbreviations are used:

DMSO (dimethylsulphoxide), MeOH (methanol), EtOH (ethanol), DMF (dimethylformamide), EtOAc (ethyl acetate) and THF (tetrahydrofuran).

Intermediates 1 and 2

Methyl 1,2,3,4-tetrahydro-1-(3,4-methylenedioxyphenyl)-9H-pyrido[3,4-

blindole-3-carboxylate, cis and trans isomers
To a stirred solution of racemic tryptophan methyl ester (13 g) and piperonal (9.7 g) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$ was added dropwise trifluoroacetic acid (9 mL) and the solution was allowed to react at ambient temperature. After 4 days, the yellow solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL), washed with a saturated aqueous solution of NaHCO_{3}, then with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated to dryness under reduced pressure and the residue was purified by flash chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(99 / 1)$ to give first Intermediate 1, the cis isomer (6.5 g) m.p. : $90-93^{\circ} \mathrm{C}$ followed by Intermediate 2, the trans isomer $(6.4 \mathrm{~g}) \mathrm{m} . \mathrm{p} .: 170^{\circ} \mathrm{C}$.

The following compounds were obtained in a similar manner :
Intermediates 3 and 4Methyl 1,2,3.4-tetrahydro-1-(4-methoxyphenyl)-9H-pyridol3.4-blindole-3-

Intermediates 6 and 7

Methyl 1,2.3.4-tetrahydro-1-(4-ethoxyphenyl)-9H-pyridol3,4-blindole-3-
20 carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 4ethoxybenzaldehyde gave Intermediate 6, the cis isomer as white crystais m.p.: $180^{\circ} \mathrm{C}$ and Intermediate 7, the trans isomer as white crystals m.p. : $196-198^{\circ} \mathrm{C}$.

25 Intermediates 8 and 9
Methyl 1,2,3,4-tetrahydro-1-(2,3-dihydrobenzofb]furan-5-yl)-9H-pyridol3,4-
blindole-3-carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 2,3-dihydrobenzo[b]furan-5- carboxaldehyde gave Intermediate 8, the cis isomer as 30 white crystals m.p. : $106-109^{\circ} \mathrm{C}$ and Intermediate 9, the trans isomer as white crystals m.p. : $\mathbf{2 1 9 - 2 2 2 ^ { \circ }} \mathrm{C}$.

Intermediates 10 and 11
M thyl 1,2,3,4-tetrahydro-1-(3,4-ethylenedioxyphenyl)-9H-pyridol3,4-blindole-3-
carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 4methoxybenzaldehyde gave Intermediate 3, the cis isomer as white crystals m.p.: $142^{\circ} \mathrm{C}$ and Intermediate 4, the trans isomer as white crystals m.p.: 209$210^{\circ} \mathrm{C}$.

Intermediate 5
Methyl 1.2,3,4-tetrahydro-1-(3-methoxyphenyl)-9H-pyridof3,4-blindole-3carboxylate, cis isomer
The same method but starting from racemic tryptophan methyl ester and 3methoxybenzaldehyde gave the title compound as white crystals m.p. : $146^{\circ} \mathrm{C}$.
carboxylate, cis and trans isomers

The same method but starting from racemic tryptophan methyl ester and 1,4-benzodioxan-6-carboxaldehyde gave Intermediate 10, the cis isomer as white crystals m.p. : $104-106^{\circ} \mathrm{C}$ and Intermediate 11, the trans isomer as white crystals m.p. : 207-209 ${ }^{\circ} \mathrm{C}$.

Intermediate 12
Methyl 1,2,3,4-tetrahydro-1-(2-chlorophenyl)-9H-pyrido[3,4-blindole-3carboxylate. mixture of cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 2chlorobenzaldehyde gave the title compound as white crystals m.p. : $154^{\circ} \mathrm{C}$.

Intermediates 13 and 14
Methyl 1,2,3,4-tetrahydro-1-(4-chiorophenyl)-9H-pyrido[3,4-b]indole-3carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 4 chlorobenzaldehyde gave Intermediate 13, the cis isomer as white crystals m.p. : 208-209 ${ }^{\circ} \mathrm{C}$ and Intermediate 14, the trans isomer as white crystals m.p. : 108$109^{\circ} \mathrm{C}$.

0 Intermediates 15 and 16
Methyl 1,2,3,4-tetrahydro-1-(3,4-dichlorophenvl)-9H-pyridol3.4-b]indole-3carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 3,4dichlorobenzaldehyde gave Intermediate 15, the cis isomer as a white solid ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta(\mathrm{ppm}): 7.8-7(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}$ aromatic) ; 5.15 (brs, $1 \mathrm{H}, \mathrm{H}-1$) ; 3.9-3.8 (dd, 1H, H-3) 3.7 (s, 3H, $\mathrm{CO}_{2} \mathrm{CH}_{3}$) ; 3.2-3.1 (ddd, $\left.1 \mathrm{H}, \mathrm{H}-4\right) 2.9$ (m, 1H, H-4) ; 2.4 (brs, $1 \mathrm{H}, \mathrm{NH}$) and Intermediate 16 , the trans isomer as a white solid m.p. : $204^{\circ} \mathrm{C}$.

Intermediate 17
Methyl 1,2,3,4-tetrahydro-1-(1,2,3,4-tetrahydro-6-naphthyl)-9H-pyridof3,4-blindole-3-carboxylate, cis isomer
The same method but starting from racemic tryptophan methyl ester and 1,2,3,4-tetrahydronaphthyl-6- carboxaldehyde gave the title compound as a white solid ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.7-7(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}$ aromatic) ; $5.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1) ; 4.0$ (dd,
$1 \mathrm{H}, \mathrm{H}-3) ; 3.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; 3.2(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4) ; 3.0(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4) ; 2.7(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right) ; 1.7\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$.

Intermediates 18 and 19
5 Methyl 1,2,3,4-tetrahydro-1-(2-naphthyl)-9H-pyridol3,4-blindole-3-carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 2 naphthaldehyde gave Intermediate 18, the cis isomer as a white solid ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta(\mathrm{ppm}): 8-6.9(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}$ aromatic) ; $5.4(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1) ; 3.95$ (dd, $1 \mathrm{H}, \mathrm{H}-$ 3) ; 3.7 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$) 3.2 (ddd, $1 \mathrm{H}, \mathrm{H}-4$) ; 3 (m, $1 \mathrm{H}, \mathrm{H}-4$) ; 2.5 (brs, $1 \mathrm{H}, \mathrm{NH}$) and intermediate 19, the trans isomer as a white solid $(0.6 \mathrm{~g})$ m.p. : $119^{\circ} \mathrm{C}$.

Intermediates 20 and 21
Methyl 1,2,3,4-tetrahydro-1-(2-thienyl)-9H-pyrido[3,4-blindole-3-carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 2thiophenecarboxaldehyde gave Intermediate 20, the cis isomer as a pale yellow solid m.p. : $134-137^{\circ} \mathrm{C}$ and intermediate 21, the trans isomer as white crystals m.p. $169^{\circ} \mathrm{C}$.

Intermediates 22 and 23
Ethyl 1.2.3.4-tetrahydro-1-(3-thienyl)-9H-pyridol3.4-blindole-3-carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan ethyl ester and 3thiophenecarboxaidehyde gave Intermediate 22, the cis isomer as white crystals m.p. : $130^{\circ} \mathrm{C}$ and Intermediate 23, the trans isomer as white crystals m.p. :182$184^{\circ} \mathrm{C}$.

Intermediates 24 and 25
30 Methyl 1,2,3,4-tetrahydro-1-(5-bromo-2-thienyl)-9H-pyrido[3,4-b]indole-3carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 5-bromo-2-thiophenecarboxaldehyde gave Intermediate 24, the cis isomer as a cream solid m.p.: $130^{\circ} \mathrm{C}$ and Intermediate 25, the trans isomer as a cream solid m.p. : $205^{\circ} \mathrm{C}$.

Intermediates 26 and 27

Methyl 1,2,3,4-tetrahydro-1-(4-bromo-2-thienyl))-9H-pyrido[3,4-b]indole-3carboxylate, cis and trans isomers

Intermediates 31 and 32

Ethyl 1,2,3,4-tetrahydro-1-(4-methyiphenyl)-9H-pyridol3,4-b]indole-3carboxylate, cis and trans isomers
30 The same method but starting from racemic tryptophan ethyl ester and ptolualdehyde gave Intermediate 31, the cis isomer as white crystals m.p. : $148^{\circ} \mathrm{C}$ and Intermediate 32, the trans isomer as white crystals m.p. : $180^{\circ} \mathrm{C}$.

Intermediates 33 and 34

Methyl 1,2,3,4-tetrahydro-1-(3-methyiphenyl)-9H-pyridol3,4-blindole-3-

carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and mtolualdehyde gave Intermediate 33 , the cis isomer as white crystals ${ }^{1} \mathrm{H}$ NMR

10 Intermediates 35 and 36
Methyl 1,2,3,4-tetrahydro-1-(4-trifluoromethylphenyl)-9H-pyrido[3,4-b]indole-3carboxylate. cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 4trifluoromethylbenzaldehyde gave Intermediate 35, the cis isomer as pale yellow
crystals m.p. : $190^{\circ} \mathrm{C}$ and Intermediate 36, the trans isomer as pale yellow crystals m.p. : $203^{\circ} \mathrm{C}$.

Intermediates 37 and 38

Ethyl 1.2.3.4-tetrahydro-1-(4-cyanopheny!)-9H-pyridol3,4-blindole-3carboxylate. cis and trans isomers
The same method but starting from racemic tryptophan ethyl ester and 4cyanobenzaldehyde gave Intermediate 37, the cis isomer as white crystals m.p. : $200^{\circ} \mathrm{C}$ and Intermediate 38 , the trans isomer as white crystals m.p. : $156^{\circ} \mathrm{C}$.

Intermediate 39
Methyl 1,2,3,4-tetrahydro-1-(4-hydroxyphenyl)-9H-pyridol3,4-blindole-3carboxylate, cis isomer
The same method but starting from racemic tryptophan ethyl ester and 4hydroxybenzaldehyde gave the title compound as pale yellow crystals ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta(\mathrm{ppm}): 10.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$-indole) $9.4(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 7.8-7.5(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}$ aromatic) ; 5.1 (brs, $1 \mathrm{H}, \mathrm{H}-1$) ; $3.9(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) ; 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) 3.1(\mathrm{~m}$, 1H, H-4) ; 2.8 (m, $1 \mathrm{H}, \mathrm{H}-4$).

Intermediate 40

Methyl 1.2.3.4-tetrahydro-1-(3-hydroxy-4-methoxyphenyl)-9H-pyridol3.4-

blindole-3-carboxylate, cis isomer
The same method but starting from racemic tryptophan methyl ester and 3-hydroxy-4-methoxybenzaldehyde gave the title compound as a yellow solid m.p.

Intermediate 41

Methyl 1,2,3.4-tetrahydro-1-(4-hydroxy-3-methoxyphenyl)-9H-pyrido[3,4-
blindole-3-carboxylate, cis isomer
The same method but starting from racemic tryptophan methyl ester and 4-hydroxy-3-methoxybenzaldehyde gave the title compound as a cream solid m.p. : $195^{\circ} \mathrm{C}$.

Intermediate 42

Methyl 1,2,3.4-tetrahydro-1-(4-ethylphenyl)-9H-pyridol3.4-blindole-3carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan methyl ester and 4ethylbenzaldehyde gave the cis and trans isomer of the title compound.
Cis isomer : white solid ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta(\mathrm{ppm}): 7.65-7.1$ ($\mathrm{m}, 9 \mathrm{H}, \mathrm{H}$ aromatic);

Trans isomer : white solid m.p. : $187^{\circ} \mathrm{C}$.

Intermediates 43 and 44

25 Methyl 1.2,3,4-tetrahydro-1-(4-isopropylphenyl)-9H-pyrido[3,4-blindole-3carboxylate, cis and trans isomers
The same method but starting from racemic tryptophan ethyl ester and 4isopropylbenzaldehyde gave Intermediate 43 , the cis isomer as a white solid ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta(\mathrm{ppm}): 10.15$ (s, $1 \mathrm{H}, \mathrm{NH}$ indole) ; 7.3-6.7 (m, 8H, H aromatic) ; 5 $\left.\mathrm{CH}-(\mathrm{Me})_{2}\right) 2.4$ (brs, $1 \mathrm{H}, \mathrm{NH}$) ; $1\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$ and Intermediate 44, the trans isomer as a white solid m.p. : $189^{\circ} \mathrm{C}$.

Intermediates 45 and 46

Ethyl 1.2,3,4-tetrahydro-1-(4-nitropheny1)-9H-pyrido[3,4-blindole-3-carboxylate, cis and trans isomers
The same method but starting- from racemic- tryptophan ethyl ester and 4nitrobenzaldehyde gave Intermediate 45, the cis isomer as yellow crystals m.p. $: 168^{\circ} \mathrm{C}$ and Intermediate 46 , the trans isomer as yellow crystals m.p. : $195^{\circ} \mathrm{C}$.

Intermediate 47
Ethyl 1.2.3,4-tetrahydro-1-(4-dimethylaminophenyl)-9H-pyridol3.4-blindole-3caboxylate, mixture of cis and trans isomers

Intermediates 52 and 53
30 Methyl 1,2,3,4-tetrahydro-6-fluoro-1-(4-methoxyphenyl)-9H-pyridol3,4-blindole-3-carboxylate. cis and trans isomers
The same method but starting from racemic 5-fluoro-iryptophan methyl ester and 4-methoxybenzaldehyde gave Intermediate 52, the cis isomer as a solid 1 H NMR (CDCl_{3}) δ (ppm) : 7.4-6.8 (m, 8H, H aromatic) ; 5.15 (brs, $1 \mathrm{H}, \mathrm{H}-1$) ; 3.9
(dd, $1 \mathrm{H}, \mathrm{H}-3$) $3.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; 3.2-2.9(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4)$ and Intermediate 53 , the trans isomer as a solid m.p. : $197^{\circ} \mathrm{C}$.

Intermediates 54 and 55

(1R.3R)-Methyl 1.2,3,4-tetrahydro-1-(3,4-methylenedioxyphenyl)-9H-pyrido[3,4-blindole-3-carboxylate, cis isomer and
(1S,3R)-methyl 1,2,3,4-tetrahydro-1-(3,4-methylenedioxyphenyl)-9H-pyridol3,4-blindole-3-carboxylate trans isomer

To a stirred solution of D-tryptophan methyl ester (11 g) and piperonal (7.9 g) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(400 \mathrm{~mL}\right.$) cooled at $0^{\circ} \mathrm{C}$ was added dropwise trifluoroacetic acid (7.7 mL) and the solution was allowed to react at ambient temperature. After 4 days, the yellow solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and washed with a saturated aqueous solution of NaHCO_{3}, then with water ($3 \times 200 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under reduced pressure and the residue was purified by flash chromatography eluting with dichloromethane/ethyl acetate (97/3) to give first Intermediate 54, the cis isomer (6.5 g) m.p. : $154^{\circ} \mathrm{C}$ followed by Intermediate 55 , the trans isomer (8.4 g) m.p. : $188^{\circ} \mathrm{C}$.

The following com̌pounds were obtained in a similar manner :

Intermediate 56

(1S. 3S) Methyl-1,2.3.4-tetrahydro-1-(3,4-methylenedioxyphenyl)-9H-pyrido[3.4-blindole-3-carboxylate, cis isomer and
(1R, 3S) methyl-1, 2,3.4-tetrahydro-1-(3,4-methylenedioxyphenyl)-9H-pyridol3,4-blindole-3-carboxylate, trans isomer
The same method but starting from L-tryptophan methyl ester and piperonal gave the cis and trans isomers of the title compound.
Cis isomer : white crystals m.p. : $154^{\circ} \mathrm{C}$.
Trans isomer : white crystals m.p. : $187-189^{\circ} \mathrm{C}$.

Intermediates 57 and 58
(1R,3R)-Methyl 1.2.3,4-tetrahydro-1-(4-methoxyphenyl)-9H-pyridol3,4-b]indole-
3-carboxylate, cis isomer and
(1S.3R)-methyl 1.2.3.4-tetrahydro-1-(4-methoxyphenv1)-9H-pyridol3,4-blindole-3-carboxylate, trans isomer
The same method but starting from D-tryptophan methyl ester and 4methoxybenzaldehyde gave intermediate 57 , the cis isomer as white crystals m.p. : $124-125^{\circ} \mathrm{C}$ and intermediate 58, trans isomer as white crystals m.p. : 219$222^{\circ} \mathrm{C}$.

Intermediates 59 and 60

 (1R, 3R)-Methyl 1,2.3.4-tetrahydro-1-(3-chloro-4-methoxyphenyl)-9H-pyridol3.4-blindole-3-carboxvlate, cis isomer and(1S. 3R)-methyl 1.2,3.4-tetrahydro-1-(3-chloro-4-methoxyphenyl) 9H-pyrido(3,4-blindole-3-carboxylate, trans isomer
The same method, but starting from D-tryptophan methyl ester and 3-chloro-4methoxybenzaldehyde gave Intermediate 59, the cis isomer isolated as the

Intermediates 63 and 64
(1R,3R)-Methyl 1,2,3,4-tetrahydro-1-(5-indanyl)-9H-pyrido(3,4-blindole-3-
30 carboxylate cis isomer and
(1S,3R)-methyl 1,2.3,4-tetrahydro-1-(5-indanyl)-9H-pyridol3,4-b]indole-3carboxylate trans isomer
The same method but starting from D-tryptophan methyl ester and indan-5carboxaldehyde gave Intermediate 63, the cis isom r as white crystals m.p. : $130-131^{\circ} \mathrm{C}$ and intermediate 64 , the trans isomer as white crystals m.p. : $196^{\circ} \mathrm{C}$.

Intermediate 65

Ethyl 1.2.3.4-tetrahydro-1-(4-trifluoromethoxyphenyl)-9H-pyridol3,4-blindole-3carboxylate, cis and trans isomers

The same method but starting from racemic tryptophan ethyl ester and 4trifluoromethoxybenzaldehyde gave cis and trans isomers of the title compound. Cis isomer : white crystals m.p. : $88^{\circ} \mathrm{C}$.
Trans isomer : white crystals m.p. : $152^{\circ} \mathrm{C}$

Another fraction of the trans-isomer crystallised. The fractions of trans-isomer were combined to give the ($1 \mathrm{~S}, 3 \mathrm{R}$) isomer, Intermediate 67 , as white crystals (11.4 g).
$\mathrm{mp}: 188^{\circ} \mathrm{C}$
$[\alpha]_{D}^{20^{\circ}}=+32.4^{\circ}\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$.
The filtrate containing mainly the cis-isomer was reduced to 100 ml and isopropyl ether (200 ml) was added. Upon cooling, the (1R,3R) isomer, Intermediate 68 , crystallised as a white solid (17.4 g).
mp : $154-155^{\circ} \mathrm{C}$
$[\alpha]_{D}^{20^{\circ}}=+24.4^{\circ}\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$.

Intermediate 69
(1R.3R)-Methyl 1.2,3.4-tetrahydro-1-(3,4-methyienedioxyphenyl)-9H-pyrido[3,4 blindole-3-carboxylate

Method A

Intermediate 67 (5.0 g) was dissolved in methanol (150ml). Hydrogen chloride was bubbled into the solution for several minutes at $0^{\circ} \mathrm{C}$ and the resulting yellow
20 solution was refluxed for 24 hours. The solvent was removed under reduced pressure and the residue was basified with a saturated aqueous solution of NaHCO_{3} and extracted with dichloromethane. The organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by flash chromatography eluting with dichloromethane/methanol (99/1) to give the title compound (2.3 g) corresponding to an authentic sample of Intermediate 68.

Method B

Intermediate 67 (25 g) was heated in 1 N hydrochloric acid (78.5 ml) and water (400 ml) at $60^{\circ} \mathrm{C}$ for 36 hours. From the initial pale yellow solution, a white solid
30 precipitated. The mixture was then allowed to cool to $0^{\circ} \mathrm{C}$ and the solid filtered. The solid was then washed with diisopropyl ether ($3 \times 200 \mathrm{ml}$) and dried to give the hydrochloride salt of the title compound $(20 \mathrm{~g})$ as a white solid. mp (dec.) : $209-212^{\circ} \mathrm{C}$

Method C

A 1: 1 mixture of the cis and trans isomers of Intermediates 54 and $55(2 \mathrm{~g})$ was heated in 1 N hydrochloric acid ($6: 8 \mathrm{ml}$) and water (15 ml) at $50^{\circ} \mathrm{C}$ for 72 hours. A similar work-up as described in Method B above gave the hydrochloride salt of the title compound $(1.7 \mathrm{~g})$ as a white solid.

Intermediate 71

(R)-N ${ }^{\alpha}$-(3,4-Methylenedioxyphenylthiocarbonyl)-tryptophan methyl ester

A mixture of Intermediate 70 (14 g) and Lawesson's reagent (9.28 g) in dimethoxyethane (280 ml) was heated at $60^{\circ} \mathrm{C}$ under N_{2} for 16 hours with methanol to afford the title compound $(9.74 \mathrm{~g})$.
$\mathrm{mp}: 129-130^{\circ} \mathrm{C}$
$[\alpha]_{D}^{20^{\circ}}=-186.8^{\circ}\left(c=1.14, \mathrm{CHCl}_{3}\right)$.
35 Intermediate 72
(1R,3R)-Methyl 1,2,3.4-tetrahydro-1-(3,4-methylenedioxyphenyl)-9H-pyridol3,4-blindole-3-carboxylate
A solution of Intermediate $71(9 \mathrm{~g})$ and methyl iodide (10 ml) in anhydrous dichloromethane (200 ml) was heated at reflux under an argon atmosphere with

Method B

Chloroacetyl chloride (4ml) was added dropwide to a solution of Intermediate 72
 The solution was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (300 ml). The solution was washed with water (200 ml), a saturated aqueous solution of NaHCO_{3} (300ml) and brine (400ml). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation under reduced pressure, the resulting solid was washed with ether (300 ml) to give the title compound as a pale yellow solid $(18.3 \mathrm{~g}$).

Intermediate 74
Methyl 1.2.3.4-tetrahydro-6-methyl-1-(3.4-methylenedioxyphenyl)-9H-pyridol3,4-blindole-3-carboxylate. cis and trans isomers
The cis and trans isomers of the title compound were prepared using the method described in Intermediate 1 but starting from racemic 5-methyltryptophan methyl ester and piperonal.
Cis isomer : yellow solid m.p. : $85^{\circ} \mathrm{C}$.
Trans isomer : yellow solid m.p. : $185^{\circ} \mathrm{C}$

Intermediates 75 and 76

(1R. 3R)-Methyl 1.2,3.4-tetrahydro-1-(7-(4-methyl-3,4-dihydro-2H-
20 benzo[1,4]oxazirivi))-9H-pyrido[3.4-b]indole-3-carboxylate, cis isomer and (1S. 3R)-Methy! 1.2.3.4-tetrahydro-1-(7-(4-methyl-3.4-dihydro-2H-benzo[1,4]oxazinyl))-9H-pyrido[3.4-b]indole-3-carboxylate. trans isomer The same method, as described for intermediates 54 and 55, but starting from D-tryptophan methyl ester and 4-methyl-3,4-dihydro-2H-benzo[1,4]oxazine-7carboxaldehyde gave intermediate 75 the cis isomer as an oily compound ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta(\mathrm{ppm}): 7.6-7.1(\mathrm{~m}, 5 \mathrm{H}) ; 6.9-6.6(\mathrm{~m}, 3 \mathrm{H}) ; 5.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; 4.3(t$, $2 \mathrm{H}) ; 4(\mathrm{dd}, 1 \mathrm{H}) ; 3.8(\mathrm{~s}, 3 \mathrm{H}) ; 3.3(\mathrm{t}, 2 \mathrm{H}) ; 3.3-2.95(\mathrm{~m}, 2 \mathrm{H}) ; 2.9(\mathrm{~s}, 3 \mathrm{H}) ; 1.6(\mathrm{br} \mathrm{s})$ and intermediate 76 , the trans isomer as white crystals m.p. : $119-121^{\circ} \mathrm{C}$.

Intermediate 77
Methyl 1,2.3.4-tetrahydro-1-(5-(N-benzylindolinyl))-9H-pyrido[3,4-b]indole-3carboxylate, mixture of (1R, 3R) and (1S, 3R) isomers

The same method, as described for intermediates 54 and 55, but starting from D-tryptophan methyl ester and N-benzylindoline-5-carboxaldehyde gave intermediate 77 as an oily compound.

Intermediates 78 and 79
(1R, 3R)-Methyl 1,2.3.4-tetrahydro-1-(4-carbomethoxyphenyl)-9H-pyridol3,4-
blindole-3-carboxylate, cis isomer and (1S. 3R)-methyl 1,2,3,4-tetrahydro-1-(4-
carbomethoxyphenyl)-9H-pyridol3.4-blindole-3-carboxylate, trans isomer

The same method, as described for intermediates 54 and 55, but starting from D-tryptophan methyl ester and methyl 4-formylbenzoate gave Intermediate 78, the cis isomer as white crystals m.p. : $157-160^{\circ} \mathrm{C}$ and intermediate 79 , the trans isomer as pale yellow crystals m.p. : $124-126^{\circ} \mathrm{C}$.

Intermediate 80
(1R, 3R)-Methyl 1.2.3.4-tetrahydro-2-[2-(benzyloxycarbonyl)-R-prolyll-1-(3.4-methylenedioxyphenyl)-9H-Dyridol3,4-blindole-3-carboxylate
A solution of N -(benzyloxycarbonyl)-D-proline acid chloride ($0.64 \mathrm{~g}, 2.4 \mathrm{mmol}$) in anhydrous dichloromethane (10 mL) was added dropwise to a stirred solution of intermediate 54 ($0.7 \mathrm{~g}, 2 \mathrm{mmol}$) and triethylamine ($0.33 \mathrm{~mL}, 2.4 \mathrm{mmol}$) in dichloromethane (15 mL) at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at $-10^{\circ} \mathrm{C}$ after which it was diluted with dichloromethane (50 mL), washed with methylenedioxypheny1)-9H-pyrido[3,4-blindole-3-carboxylate
A solution of N -(benzyloxycarbonyl)-L-proline acid chloride ($0.86 \mathrm{~g}, 3.2 \mathrm{mmol}$) in anhydrous dichloromethane (10 mL) was added dropwise to a stirred solution of intermediate $54(0.91 \mathrm{~g}, 2.6 \mathrm{mmol})$ and triethylamine ($0.44 \mathrm{~mL}, 3.2 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 2 hours at $-10^{\circ} \mathrm{C}$ after which it was diluted with dichloromethane (60 mL), washed with hydrochloric acid (1 N), water, a saturated solution of NaHCO_{3}, a saturat d NaCl solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and
recrystallisation of the crude product from methanol/water gave the title compound as pale yellow crystals (0.8 g) m.p.: 115-120 ${ }^{\circ} \mathrm{C}$.

Intermediate 82
(1R, 3R)-Methyl 1,2,3,4-tetrahydro-2-(2-chloropropionyl)-1-(3,4-methylenedioxyphenyl)-9H-pyridol3,4-blindole-3-carboxylate

To a solution of (S)-(-)-2-chloropropionic acid ($87 \mu, 1 \mathrm{mmol}$) in anhydrous dichloromethane (15 mL), was added dicyclohexylcarbodiimide (0.23 g , $1.1 \mathrm{mmol})$. Intermediate $54(0,35 \mathrm{~g}, 1 \mathrm{mmol})$ was then added and the mixture was stirred at room temperature for 20 hours. The formed precipitate of dicyclohexylurea was removed by filtration, the filtrate was evaporated in vacuo and the crude product was purified by flash chromatography eluting with toluene/ethyl acetate : 95/5. The oily compound obtained was then crystallis d from ether/hexane to give the title compound as pale yellow crystals (0.31 g) m.p.: $125-127^{\circ} \mathrm{C}$.

Intermediate 83

(1R, 3R)-Methyl 1,2,3,4-tetrahydro-2-(2-chloropropionyl)-1-(3,4-methylenedioxyphenyl)-9H-pyridol3,4-blindole-3-carboxylate
To a solution of (R)-(+)-2-chloropropionic acid (191 $\mu \mathrm{l}, 2.2 \mathrm{mmol}$) in anhydrous dichloromethane (30 mL), was added dicyclohexylcarbodiimide (0.45 g . 2.2. mol). Intermediate 54 ($0,7 \mathrm{~g}, 2 \mathrm{mmol}$) was then added and the mixture was stirred at room temperature for 20 hours. The formed precipitate of dicyclohexylurea was removed by filtration, the filtrate was evaporated in vacuo and the crude product was purified by flash chromatography eluting with toluene/ethyl acetate : 95/5. The oily compound obtained was then crystallised from ether/hexane to give the title compound as pale yellow crystals (0.74 g) m.p. : $126-128^{\circ} \mathrm{C}$.

Intermediates 84 and 85

(1R, 3R)-Methyl 1,2,3,4-tetrahydro-1-(3,4-dibenzyloxyphenyl)-9H-pyridof3,4-bjindole-3-carboxylate cis isomer and (1S, 3R)-methyl 1,2,3,4-tetrahydro-1-(3,4-dibenzyloxyphenyl)-9H-pyrido [3,4-blindole-3-carboxylate trans isomer

The same method as described for intermediates 54 and 55 but starting from Dtryptophan methyl ester and 3,4-dibenzyloxybenzaldehyde gave intermediate 84, the cis isomer as an oily compound 1H NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.5-6.95(\mathrm{~m}$, $15 \mathrm{H}) ; 6.85(\mathrm{~s}, 1 \mathrm{H}) ; 6.75(\mathrm{~s}, 2 \mathrm{H}) ; 5.1(\mathrm{~s}, 2 \mathrm{H}) ; 5(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; 4.95(\mathrm{~d}, 2 \mathrm{H}) 3.85$

10 Intermediate 86
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-5-(3,4-dibenzyloxyphenyl)-2-methytpyrazino[2', 1': 6,1]pyrido[3,4-blindole-1,4-dione
The same two step procedure but starting from intermediate 84 and methylamine gave, after recrystallisation from dichloromethane/ether, the title compound as white crystals m.p. : $158-160^{\circ} \mathrm{C},\left[\alpha \mathrm{RO}_{\mathrm{D}}{ }^{\circ}=+11.7^{\circ}\right.$ (c = 1.23 ; CHCl_{3}).

Intermediate 87 (dd, 1H) ; $3.7(\mathrm{~s}, 3 \mathrm{H}) ; 3.2-2.8(\mathrm{~m}, 2 \mathrm{H}) ; 2.3(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$ and intermediate 85, the trans isomer as an oily compound ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm) 7.6-7 (m, 15H) ; 6.9$6.7(\mathrm{~m}, 3 \mathrm{H}) ; 5.2(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; 5.1(\mathrm{~s}, 2 \mathrm{H}) ; 5(\mathrm{~s}, 2 \mathrm{H}) ; 3.8(\mathrm{t}, 1 \mathrm{H}) ; 3.65(\mathrm{~s}, 3 \mathrm{H})$; 3.3-3 (m, 2H) ; 2.25 (br s, 1H).

Methyl 1,2,3.4-tetrahydro-1-(5-(2-methylisoindolinyl))-9H-pyridol3,4-blindole-3carboxylate, mixture of ($1 R, 3 R$) and ($15,3 R$) isomers
The same method, as described for intermediates 54 and 55, but starting from D-tryptophan methyl ester and N -methylisoindoline-5-carboxaldehyde gave intermediate 87 as an oily compound.

Example 1

Cis-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methyienedioxyphenyl)pyrazino[2^{\prime}, $1^{\prime}: 6,1$ 1pyrido 3,4 -blindole -1,4-dione

a) To a stirred solution of intermediate $1(2 \mathrm{~g})$ and $\mathrm{NaHCO}_{3}(0.6 \mathrm{~g})$ in anhydrous $\mathrm{CHCl}_{3}(40 \mathrm{~mL})$ was added dropwise chloroacetyl chioride (1.1 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 hour at the same temperature and diluted with CHCl_{3}. Water (20 mL) was then added dropwise with stirring to the mixture, followed by a saturated solution of NaHCO_{3}. The organic layer was washed with water until neutrality and dri d over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of th solvent under reduced pressur, cis-methyl 1,2,3,4-

tetrahydro-2-chloroacetyl-1-(3.4-methylenedioxyphenyl)-9H-pyrido[3.4-

blindole-3-carboxylate was obtained as an oil which was crystallised from ether ($2 \mathrm{~g}, \mathrm{~m} . \mathrm{p} .: 215-218^{\circ} \mathrm{C}$) and was used without further purification in the next step.
b) To a stirred suspension of the chloroacetyl intermediate (0.34 g) in MeOH $(20 \mathrm{~mL})$ was added at ambient temperature a solution of methylamine ($33 \% \mathrm{in}$ $\mathrm{EtOH})(0.37 \mathrm{~mL})$ and the resulting mixture was heated at $50^{\circ} \mathrm{C}$ under N_{2} for 14 hours. The solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$). After washing with water ($3 \times 30 \mathrm{~mL}$), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporating to dryness, the residue was purified by flash chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (99/1) and recrystallised from MeOH to give the title compound as white crystals $(0.19 \mathrm{~g})$ m.p. : $253-255^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\mathrm{C}, 67.86 ; \mathrm{H}, 4.92 ; \mathrm{N}, 10.79$;
Found:C,67.53;H,4.99;N,10.62\%.

The following compounds were obtained in a similar manner :

Example 2

Cis-2, 3, 6.7, 12, 12a-hexahydro-2-butyl-10-fluoro-6-(4-methoxyphenyi)pyrazino[2', 1': 6,1 pyrido [3,4-b]indole-1,4-dione
The same two step procedure but starting from butylamine and intermediate 52 gave, after recrystallisation from ethanol, the title compound as white crystals m.p. : $182^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}_{3}\left(0.1 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: C, 68.67 ; H, 6.04 ; N, 9.61;
Found : C, 68.38 ; H, 6.11 ; N, 9.53\%.

Examole 3

Trans-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino [2', 1':6, 1]pyrido [3,4-blindole -1,4-dione

The same two step procedure but starting from methylamine and intermediate 2 gave, after recrystallisation from toluene, the title compound as white crystals \qquad m.p.: 301-303 ${ }^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$:

Found : C, 64.66 ; H, 4.60 ; N, 10.21\%.

Example 7

(6R, 12aS)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-
${ }_{[\alpha]_{D}}=+297.9^{\circ}\left(\mathrm{C}=1.21 ; . \mathrm{CHCl}_{3}\right)$.

Example 9

Cis-2, 3, 6, 7, 12, 12a-hexahydro-2-[2-(2-pyridyl)-ethyll-6-(3,4-methylenedioxypheny1)-pyrazino[$\left.2^{\prime}, 1^{\prime}-6,1\right]$ pyrido $[3,4$-b]indole-1,4-dione
30 The same two step procedure but starting from 2-(2-pyridyl)ethylamine and intermediate 1 gave, after recrystallisation from 2-propanol, the title compound as white crystals m.p. : $\mathbf{2 1 8}-222^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$:
Caiculated: C, 69.99 ; H, 5.03 ; N, 11.66;
35
pyrazinol2', 1': 6.1]pyridol3,4-blindole-1,4-dione
The same two step procedure but starting from methylamine and the trans isomer of intermediate 56 gave, after recrystallisation from toluene, the title compound as white crystals m.p. :287-289 ${ }^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ (0.25 toluene):
$10 \quad$ Calculated: C, 69.16 ; H, 5.13 ; N, 10.19;
Found : C,69.09; H, 5.14 ; N, 10.19\%.
20°
$[\alpha]_{D}=-293.4^{\circ}\left(\mathrm{C}=1.28 ; \mathrm{CHCl}_{3}\right)$.

5 Example 8

(6S, 12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino [2', 1': 6.1]pyridol3,4-blindole-1,4-dione
The same two step procedure but starting from methylamine and intermediate 55 gave, after recrystallisation from toluene, the title compound as white crystals m.p. : $287^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ (0.3 toluene):
Calculated: C, 69.41 ; H, 5.17 ; N, 10.08;
Found : C, 69.56 ; H,5.24 ; N, 10.08\%.
20°

Found: C, 69.92 ; H, 5.16 ; N, 11.48\%.

Example 10

Cis-2,3,6,7,12,12a-hexahydro-2-(2-pyridyimethyl)-6-(3:4-

 methylenedioxyphenyl)-pyrazino[$2 '^{\prime}, 1$ ': 6, 1 lpyrido[3,4-b]indole-1,4-dione5 The same two step procedure but starting from 2-pyridylmethylamine and intermediate 1 gave, after recrystallisation from DMF/water, the title compound as cream crystals m.p : $\mathbf{2 8 5}-286^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}\left(0.4 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 68.46$; $\mathrm{H}, 4.85$; $\mathrm{N}, 11.83$;
Found: C, 68.58 ; H, 4.88 ; N, 11.90\%.

Example 11

Cis-2,3,6,7,12,12a-hexahydro-2-(3-pyridyimethyl)-6-(3,4-
methylenedioxyphenyl)-pyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyrido[3,4-blindole-1,4-dione
15 The same two step procedure but starting from 3-pyridylmethylamine and intermediate 1 gave, after recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$, the title compound as cream crystals m.p. : 292-293 ${ }^{\circ} \mathrm{C}$.
Analysis: $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$:
Calculated: C, 69.52 ; H, 4.75 ; N, 12.01;
20 Found : C, 69.27 ; H, 4.74 ; N, 11.37\%.

Example 12

Cis-2,3,6,7,12,12a-hexahydro-2-(4-pyridylmethyl)-6-(3,4-
methylenedioxyphenyl)-pyrazino[2', 1': 6,1]pyrido[3,4-blindole-1,4-dione
25 The same two step procedure but starting from 4-pyridyimethyiamine and intermediate 1 gave, after recrystallisation from MeOH , the title compound as pale yellow crystals m.p. : $273-274^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}\left(1.8 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: C, 65.00 ; H, 5.17 ; N, 11.23;
30 Found : C, 65.11 ; H, 4.85 ; N, 11.07\%.

Example 13
Cis-2,3,6,7,12,12a-hexahydro-2-ethyl-6-(3.4-methylenedioxyphenyl)pyrazino[2', 1:6,1]pyridol3,4-blindole -1,4-dione

The same two step procedure but starting from ethylamine and intermediate 1 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $272-274^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$:
5 Caiculated: $\mathrm{C}, 68.47 ; \mathrm{H}, 5.25 ; \mathrm{N}, 10.42$;
Found:C,68.52;H,5.35;N,10.53\%.

Example 14

Cis-2,3,6,7, 12, 12a-hexahydro-2-(2,2,2-trifluoroethyl)-6-(3,4-methylenedioxyphenyl)-pyrazino $\left[2^{\prime}, 1^{\prime}: 6,1\right.$]pyrido 3,4 -blindole $-1,4$-dione
The same two step procedure but starting from 2,2,2-trifluoroethylamine and intermediate 1 gave, after recrystallisation from EtOH, the title compound as white crystals m.p. : $303^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$:
15 Calculated: $\mathrm{C}, 60.40 ; \mathrm{H}, 3.97 ; \mathrm{N}, 9.19$;
Found:C,60.43;H,4.15;N,9.16\%.

Example 15

Cis-2,3,6,7,12,12a-hexahydro-6-(3.4-methylenedioxyphenyl)-2-propylpyrazino[$2^{\prime}, 1$ ': 6, 1]pyrido[3,4-b]indole -1,4-dione
The same two step procedure but starting from propylamine and intermediate 1 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $270-271^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$:
25 Calculated: C,69.05; H,5.55; N,10.07;
Found:C,69.22;H,5.50;N,9.80\%.

Example 16

Cis-2,3,6,7,12,12a-hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)-

Found:C,68.86;H,5.66;N,10.21\%.

Example 17

Cis-2,3,6,7,12,12a-hexahydro-2-cyclopropyl-6-(3,4-methylenedioxyphenyl)-
pyrazino[2'1':6,1]pyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from cyclopropylamine and intermediate 1 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $290-292^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$:
10 Calculated: $\mathrm{C}, 69.39 ; \mathrm{H}, 5.10 ; \mathrm{N}, 10.11$;
Found:C,69.11;H,5.20;N,9.94\%.

Example 18

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(3,4-methylenedioxyphenyl)-
pyrazino [$2^{\prime}, 1^{1}: 6,1$]pyrido [3,4-blindole -1,4-dione
The same two step procedure but starting from butylamine and intermediate 1 gave, after recrystallisation from methanol/water, the title compound as white crystals m.p. : 241-243 ${ }^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: C,69.59;H,5.84;N,9.74;
Found:C,69.77;H,5.82;N,9.81\%.

Example 19

Trans-2,3,6,7,12.12a-hexahydro-2-butyl-6-(3,4-methylenedioxyphenyl)-
pyrazino [$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyridol 3 , 4-b]indole - 1,4 -dione
The same two step procedure but starting from butylamine and intermediate 2 gave, after recrystallisation from toluene, the title compound as white crystals m.p. : $243^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$:
$30 \quad$ Calculated: $\mathrm{C}, 69.59 ; \mathrm{H}, 5.84 ; \mathrm{N}, 9.74$;
Found:C,69.80;H,5.78;N,9.52\%.

Example 20

Cis-2,3,6,7,12,12a-hexahydro-2-cyclopropylmethyl-6-(3,4-
methylenedioxyphenyl)-pyrazino[$2^{\prime}, 1^{\prime}: 6,1$]pyrido[3,4-b]indole $-1,4$-dione

The same two step procedure but starting from cyclopropylmethyiamine and intermediate 1 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $217-218^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$:
5 Calculated: $\mathrm{C}, 69.92 ; \mathrm{H}, 5.40 ; \mathrm{N}, 9.78$;
Found:C,70.02;H,5.47;N,9.84\%.

Example 21

Cis-2,3,6,7,12,12a-hexahydro-2-cyclopentyl-6-(3,4-methylenedioxyphenyl)-
10 pyrazino [2', 1':6.1]pyridol3,4-blindole -1,4-dione
The same two step procedure but starting from cyclopentylamine and intermediate 1 gave, after recrystallisation from acetone, the title compound as white crystals m.p. : $270^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$:
15 Calculated: C,70.41;H,5.68; $\mathrm{N}, 9.47$;
Found:C,70.58;H,5.63;N,9.38\%.

Example 22

Cis-2,3,6,7,12,12a-hexahydro-2-cyclohexyl-6-(3,4-methylenedioxyphenyl)-

The same two step procedure but starting from cyclohexylamine and intermediate 1 gave, after recrystallisation from methanol/water, the title compound as white crystals m.p. : $268-269^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$:
25 Calculated: $\mathrm{C}, 70.88 ; \mathrm{H}, 5.95 ; \mathrm{N}, 9.18$;
Found:C,70.82;H,5.89;N,9.21\%.

Example 23

Cis-2,3,6,7,12,12a-hexahydro-2-benzyl-6-(3,4-methylenedioxyphenyl)-

30 pyrazino[2', 1':6,11pyridol3,4-b]indole -1,4-dione
The same two step procedure but starting from benzylamine and intermediate 1 gave, after recrystallisation from dichloromethane/hexane, the title compound as white crystals m.p. : $\mathbf{2 8 5}-287^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}\left(1 \mathrm{H}_{2} \mathrm{O}\right)$:
35 Calculated: $\mathrm{C}, 69.55 ; \mathrm{H}, 5.21 ; \mathrm{N}, 8.69$;

Found:C,69.30;H,5.06;N,8.48\%.

Example 24

Cis-2,3,6,7,12,12a-hexahydro-2-(4-fluorobenzyl)-6-(3,4-methylenedioxyphenyl)-

10 Calculated: $\mathrm{C}, 69.56 ; \mathrm{H}, 4.59 ; \mathrm{F}, 3.93 ; \mathrm{N}, 8.69$;
Found:C69.54;H,4.58;F,3.82;N,8.63\%.

Example 25

Cis-2,3,6,7,12,12a-hexahydro-6-(4-methoxyphenyl)-2-methyl-

pyrazino [2' $\left.1^{\prime}: 6,1\right]$ pyridol 3 ,4-blindole $-1,4$-dione
The same two step procedure but starting from methylamine and intermediate 3 gave, after recrystallisation from 2-propanol, the title compound as white crystals m.p. : $257-263^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$:
Calculated: $\mathrm{C}, 70.38 ; \mathrm{H}, 5.64 ; \mathrm{N}, 11.19$;
Found:C,70.11;H,5.55;N,11.15\%.

Example 26

Trans-2,3,6,7,12,12a-hexahydro-6-(4-methoxyphenyl)-2-methyl-
25 pyrazino[2 ', 1':6,1]pyridol3,4-blindole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 4 gave, after recrystallisation from diisopropyl ether, the title compound as whit crystals m.p. : $225-228^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$:
30 Calculated: $\mathrm{C}, 70.38 ; \mathrm{H}, 5.64 ; \mathrm{N}, 11.19$;
Found:C,70.34;H,5.77;N,11.19\%.

Example 27

Cis-2,3,6,7, 12, 12a-hexahydro-2-ethyl-6-(4-methoxyphenyl)-
35 pyrazino[2', 1':6,1]pyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from 4-fluorobenzylamine and intermediate 1 gave, after recrystallisation from acetone, the title compound as white crystals m.p. : $281-283^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{4}$:
pyrazino [2', $\left.1^{\prime}: 6,1\right]$ pyridol 3,4 -blindole $-1,4$-dione

The same two step procedure but starting from ethylamine and intermediate 3 gave, after recrystalisation from methanol, the title compound as white crystals m.p. : 245- $255^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$:
5 Calculated: C,70.93; $\mathrm{H}, 5.95 ; \mathrm{N}, 10.79$;
Found:C,70.74;H,6.06;N,10.87\%

Example 28

Cis-2,3,6,7, 12, 12a-hexahydro-6-(4-methoxyphenyl)-2-(2,2,2-
trifluoroethyl)pyrazino[$2^{\prime}, 1^{\prime}: 6,1$ lpyrido [3,4-b]indole -1,4-dione
The same two step procedure but starting from 2,2,2-trifluoroethylamine and intermediate 3 gave, after recrystallisation from ethanol, the title compound as white crystals m.p. : $232^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$:
15 Calculated: $\mathrm{C}, 62.30 ; \mathrm{H}, 4.55 ; \mathrm{N}, 9.48$;
Found: $\mathrm{C}, 62.08 ; \mathrm{H}, 4.66 ; \mathrm{N}, 9.54 \%$.

Example 29

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-methoxyphenyl)pyrazino[2', 1':6,1]pyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from butylamine and intermediat 3 gave, after recrystallisation from methanol, the title compound as white crystals m.p.: $157^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$:
Caiculated: $\mathrm{C}, 70.40 ; \mathrm{H}, 6.62 ; \mathrm{N}, 9.85$;
Found:C,70.25;H,6.60;N,9.83\%.

Example 30

Trans-2,3,6,7,12.12a-hexahydro-2-butyl-6-(4-methoxyphenyl)pyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione
The same two step procedure but starting from butylamine and intermediate 4 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : 212-214 ${ }^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$:
Calculat d: $\mathrm{C}, 71.92 ; \mathrm{H}, 6.52 ; \mathrm{N}, 10.06$;

Found:C,71.81;H,6.55;N,10.03\%.

Example 31

Cis-2,3,6,7,12,12a-hexahydro-6-(4-methoxyphenyl)-2-cyclopropylmethyt-
pyrazino[2', 1: 6,1 1]pyridol3.4-blindole -1,4-dione
The same two step procedure but starting from cyclopropylmethylamine and intermediate 3 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $180-185^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$:
10 Calculated: $\mathrm{C}, 70.74 ; \mathrm{H}, 6.17 ; \mathrm{N}, 9.90$;
Found:C, 70.91 ; H, 6.16 ; N, 9.80\%.

Example 32

Cis-2,3,6,7,12.12a-hexahydro-2-benzyl-6-(4-methoxyphenyl)-
pyrazino[2', 1':6,1]pyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from benzylamine and intermediate 3 gave, after recrystallisation from acetone, the title compound as white crystals m.p. : 275-279 ${ }^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$:
Calculated: C,74.48;H,5.58; $\mathrm{N}, 9.31$;
Found:C,74.53;H,5.60; $\mathrm{N}, 9.20 \%$.

Example 33
Cis-2,3,6,7,12,12a-hexahydro-6-(3-methoxyphenyl)-2-methyl-
pyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 5 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $267-269^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$:
30 Calculated: $\mathrm{C}, 70.38 ; \mathrm{H}, 5.64 ; \mathrm{N}, 11.19$;
Found:C,70.32;H,5.59;N,11.25\%.

Example 34

Cis-2,3,6,7,12,12a-hexahydro-6-(4-ethoxyphenyl)-2-methyl-
pyrazino[2', 1::6, 1]pyrido[3.4-blindole -1,4-dione

The same two step procedure but starting from methylamine and intermediate 6 gave, after recrystallisation from methanol, the title compound as white crystais m.p. : $247-248^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$:
5 Calculated: C,70.93.H,5.95;N,10.79;
Found:C,71.23;H,5.95;N,10.63\%.

Example 35

Cis-2,3,6,7,12,12a-hexahydro-6-(4-ethoxyphenyl)-2-cyclopropylmethyl-
10 pyrazino[$2^{\prime}, 1^{\prime}: 6,1$ lpyridol3.4-blindole -1,4-dione
The same two step procedure but starting from cyclopropylmethylamine and intermediate 6 gave, after recrystallisation from 2-propanol, the title compound as white crystals m.p. : $160-162^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$:
15 Calculated: $\mathrm{C}, 72.71 ; \mathrm{H}, 6.34 ; \mathrm{N}, 9.78$;
Found:C,72.28;H,6.39;N,9.71\%.

Example 36

Cis-2,3,6,7,12,12a-hexahydro-6-(2,3-dihydrobenzo[blfuran-5-yl)-2-methyl-
pyrazino[$\left.2,11^{1}: 6,1\right]$ pyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 8 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : 292-294 ${ }^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$:
Calculated: C,71.30; $\mathrm{H}, 5.46 ; \mathrm{N}, 10.85$;
Found:C,71.15;H,5.56;N,10.84\%.

Example 37

Cis-2,3,6,7,12,12a-hexahydro-6-(2,3-dihydrobenzo[blfuran-5-yl)-2-
30 cyclopropyimethyl-pyrazino[2'1':6,1]pyrido[3,4-blindole-1,4-dione
The same two step procedure but starting from cyclopropylmethylamine and intermediate 8 gave, after recrystallisation from methanol, the title compound as white crystals m.p.: $165-166^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$:
35 Calculated: $\mathrm{C}, 73.05 ; \mathrm{H}, 5.89 ; \mathrm{N}, 9.83$;

Found:C,73.08;H,5.97;N,9.87\%.

Example 38

Cis-2,3,6,7,12,12a-hexahydro-6-(3,4-ethylenedioxyphenyl)-2-methyl-

10 Calculated: C,68.47;H,5.25;N,10.42;
Found:C,68.35;H,5.31;N,10.27\%.

Example 39

Cis-2,3,6,7,12,12a-hexahydro-6-(3.4-ethylenedioxyphenyl)-2-cyclopropylmethylpyrazino [2', 1':6,1]pyridol3,4-blindole -1,4-dione
The same two step procedure but starting from cyclopropylmethylamine and intermediate 10 gave, after recrystallisation from dichloromethane/ether, the title compound as white crystals m.p. : $288-290^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$:
20 Catculated: $\mathrm{C}, 70.41 ; \mathrm{H}, 5.68 ; \mathrm{N}, 9.47$;
Found:C,70.15;H,5.62;N,9.30\%.

Example 40

Cis-2,3,6.7,12,12a-hexahydro-2-butyl-6-(2-chlorophenyl)-
pyrazino[2',1':6,1]pyridol3,4-blindole -1,4-dione
The same two step procedure but starting from butylamine and intermediate 12 gave, after recrystallisation from methanol/water, the title compound as white crystals m.p. : $146^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{2}\left(0.75 \mathrm{H}_{2} \mathrm{O}\right)$:
30 Calculated: $\mathrm{C}, 66.20 ; \mathrm{H}, 5.90 ; \mathrm{N}, 9.65$;
Found:C,66.15;H,5.95;N,9.69\%.

Example 41

Cis-2,3,6,7,12,12a-hexahydro-6-(4-chlorophenyl)-2-methyl-
pyrazino[2', 1':6,1]pyrido[3,4-b]indole-1,4-dione

The same two step procedure but starting from methylamine and intermediate 13 gave, after recrystallisation from methanot, the title compound as white crystals m.p. $: 274^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{2}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
5 Calculated: C,65.63; $\mathrm{H}, 4.85 ; \mathrm{N}, 10.93$;
Found:C,65.39;H,4.84;N,10.85\%.

Example 42

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-chlorophenyl)-

pyrazino[2', 1':6,1]pyrido[3,4-blindole -1,4-dione

The same two step procedure but starting from butylamine and intermediate 13 gave, after recrystallisation from ethanol/water, the title compound as white crystals m.p. : $164-166^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{CIN}_{3} \mathrm{O}_{2}$:
15 Calculated: $\mathrm{C}, 68.32 ; \mathrm{H}, 5.73 ; \mathrm{Cl}, 8.40 ; \mathrm{N}, 9.96$;
Found:C,68.48; $\mathrm{H}, 5.64 ; \mathrm{Cl}, 8.37 ; \mathrm{N}, 9.99 \%$.

Example 43

Cis-2,3,6,7,12,12a-hexahydro-6-(3,4-dichlorophenyl)-2-methyl-
20 pyrazino[2', 1':6,1]pyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 15 gave, after recrystallisation from ethanol/DMF, the title compound as white crystals m.p. : $\mathbf{2 6 0}{ }^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$:
25 Calculated: C,59.39;H,4.29; $\mathrm{N}, 9.93$;
Found:C,59.32;H,4.16;N,9.99\%.

Example 44

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-phenyl-pyrazino[2', $1^{\prime}: 6,1$]pyrido 3,4 -

The same two step procedure but starting from butylamine and cis-methy! 1,2,3,4-tetrahydro-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate ${ }^{1}$ gave, after recrystallisation from methanol/water, the title compound as white crystals m.p. : $243-245^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$:

Calculated: $\mathrm{C}, 74.39 ; \mathrm{H}, 6.50 ; \mathrm{N}, 10.84$; Found:C,74.54;H,6.51; $\mathrm{N}, 10.86 \%$.

1. D. Soerens et al., J. Org. Chem. 44, 535-545 (1979).

Cis-2,3,6.7,12,12a-hexahydro-2-methyl-6-(1,2,3,4-tetrahydro-6-naphthyi)-

30 The same two step procedure but starting from methylamine and intermediate 17 gave, after recrystallisation from methanol, the title compound
Example 45
Cis-2,3.6.7.12.12a-hexahydro-2-benzyl-6-phenyl-pyrazino[2', 1':6.1]pyridol3.4-blindole-1,4-dione
The same two step procedure but starting from benzylamine and cis-methyl-1,2,3,4-tetrahydro-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate gave, after

- Example 47 pyrazino[$2^{\prime}, 1$ ':6,1]pyrido 3,4 -blindole -1,4-dione as white crystals m.p. : $\mathbf{> 2 6 0 ^ { \circ }} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$:
Calculated: $\mathrm{C}, 75.16 ; \mathrm{H}, 6.31 ; \mathrm{N}, 10.52$;
35
Found:C,74.93;H,6.43;N,10.63\%.

Example 48

Cis-2,3.6.7,12,12a-hexahydro-2-isopropyl-6-(1,2,3,4-tetrahydro-6-naphthyl)pyrazino $2^{\prime}, 1^{\prime}: 6$, 1]pyridol 3 ,4-blindole $-1,4$-dione
5 The same two step procedure but starting from isopropylamine and intermediate 17 gave, after recrystallisation from the title compound as off-white crystals m.p. : 244-246 ${ }^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 75.06 ; \mathrm{H}, 6.88$; $\mathrm{N}, 9.73$;
Found:C,75.00;H,6.83;N,9.69\%.

Example 49

Cis-2,3.6.7,12,12a-hexahydro-2-cyclopropylmethyl-6-(1,2,3,4-tetrahydro-6-

 naphthyl1)-pyrazino[$2^{\prime}, 1^{\prime}: 6,1$]pyrido(3,4-blindole -1,4-dione15 The same two step procedure but starting from cyclopropyimethylamine and intermediate 17 gave, after recrystallisation from ethanol/pentane, the title compound as white crystals m.p. : $125^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 75.73 ; \mathrm{H}, 6.70 ; \mathrm{N}, 9.46$;
Found:C,75.45;H,6.86;N,9.14\%.

Example 50

Cis-2,3.6,7, 12,12a-hexahydro-2-methyl-6-(2-naphthyl)-
pyrazino[2', 1':5,1]pyridol3.4-blindole -1,4-dione
25 The same two step procedure but starting from methylamine and intermediate 18 gave, after recrystallisation from dichloromethane/methanol, the title compound as white crystals m.p. : $>260^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: C,75.08;H,5.42;N,10.51;
Found:C,75.35;H,5.42;N,10.49\%.

Example 51

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(2-thienyl)-pyrazino[2', 1':6, 1]pyridal3,4-
blindole - 1,4 -dione

The same two step procedure but starting from butylamine and intermediate 20 gave, after recrystallisation from ethanol, the title compound as white crystals m.p. : $226^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$:

Calculated: $\mathrm{C}, 67.15 ; \mathrm{H}, 5.89 ; \mathrm{N}, 10.68$;
Found:C,67.39;H,5.8B;N,10.77\%.

Example 52

Cis-2,3.6.7,12,12a-hexahydro-6-(5-bromo-2-thienvl)-2-methylpyrazino [2', 1':6, 1]pyrido [3.4-blindole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 24 gave, after recrystallisation from ethanol, the title compound as a cream powder m.p. : $258^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$:
Calculated: $\mathrm{C}, 53.03 ; \mathrm{H}, 3.75 ; \mathrm{N}, 9.76$;
Found:C,53.01;H,3.78;N,9.69\%.

Example 53

Cis-2,3.6,7,12.12a-hexahydro-6-(4-bromo-2-thienyl)-2-methyl-
pyrazino [2' , 1':6, 1]pyridol3,4-blindole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 26 gave, after recrystallisation from ethanol, the title compound as white crystals mp. : $292^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: C,52.48; $\mathrm{H}, 3.82$; $\mathrm{N}, 9.66$;
Found:C,52.46;H,3.81;N,9.60\%.

Example 54

Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-cyclopropyimethyl-

pyrazino[2 ', $1: 6,1$ lpyridol 3,4 -blindole-1,4-dione
The same two step procedure but starting from cyclopropylmethylamine and intermediate 24 gave, after recrystallisation from ethanol, the title compound as white crystals m.p. : $190^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$:
Calcuiated: C,56.18; $\mathrm{H}, 4.29 ; \mathrm{N}, 8.93$;

Found:C,55.92;H,4.28;N,8.74\%.

Example 55

Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-cyclopentyl-

10 Calculated: $\mathrm{C}, 57.03 ; \mathrm{H}, 4.58 ; \mathrm{N}, 8.67$;
Found:C,56.87;H,4.66;N,8.68\%.

Example 56

Cis-2,3,6,7,12,12a-hexahydro-2-methyl-6-(5-methyl-2-thienyl)-
15 pyrazino[$2^{\prime}, 1^{\prime}: 6,1$ pyrido $[3,4$-blindole $-1,4$-dione
The same two step procedure but starting from methylamine and the cis isomer of intermediate 66 gave, after recrystallisation from ethanol, the title compound as white crystals m.p. : $282^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
20 Calculated: $\mathrm{C}, 64.93 ; \mathrm{H}, 5.31 ; \mathrm{N}, 11.36$;
Found:C,64.84;H,5.28;N,10.81\%.

Example 57

Cis-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3-thienyl)-
pyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyridol 3 ,4-b]indole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 22 gave, after recrystallisation from acetone, the title compound as white crystals m.p. : $290-295^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$:
30 Calculated: $\mathrm{C}, 64.94 ; \mathrm{H}, 4.88 ; \mathrm{N}, 11.96$;
Found: C, 64.81 ; H,4.95; N,11.68\%.
Exampl 58
Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(3-thienyl)-pyrazino[2', $1^{1}: 6,1$ lpyridol3,4-
pyrazino[$\left.2^{\prime}, 1^{1}: 6,1\right]$ pyridol 3 ,4-blindole -1,4-dione
The same two step procedure but statting from cyclopentylamine and intermediate 24 gave, after recrystallisation from ethanol, the title compound as white crystals m.p. : $252^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$:
blindole -1.4-dione

The same two step procedure but starting from butylamine and intermediate 22 gave, after recrystallisation from methanol,- the title compound as white crystals m.p. : $236-239^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$:
5 Calculated: C,67.15;H,5.89;N,10.68;S,8.15;
Found:C,67.42;H,5.76;N,10.57;S,8.01\%.

Example 59

Cis-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3-furyl)-pyrazino[2', $1^{\prime}: 6,1$]pyrido[3, 4-
blindole-1.4-dione
The same two step procedure but starting from methylamine and the cis isomer of intermediate 28 gave, after recrystallisation from ether, the title compound as a white solid m.p. : $250^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$:
15 Calculated: C,66.27;H,5.27;N,12.20;
Found:C,66.33;H,5.48;N,12.02\%.

Example 60

Cis-2,3,6.7.12,12a-hexahydro-2-methyl-6-(5-methyl-2-furyl)-
pyrazino[2', $1^{\prime}: 6,1$]pyridol3,4-blindole $-1,4$-dione
The same two step procedure but starting from methylamine and intemediate 29 gave, after recrystalisation from ethanol, the title compound as a cream powder m.p. : $303^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{20} \mathrm{H}_{1} 9 \mathrm{~N}_{3} \mathrm{O}_{3}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
25 Calculated: $\mathrm{C}, 67.88 ; \mathrm{H}, 5.55 ; \mathrm{N}, 11.87$;
Found:C,67.90;H,5.50;N,11.98\%.

Example 61

Cis-2,3,6,7.12,12a-hexahydro-2-methyl-6-(4-methylphenyl)-

Found:C,72.73;H,5.96;N,11.59\%.

Example 62

Cis-2,3,6,7,12,12a-hexahydro-2-isopropyl-6-(4-methylphenyl)-

Example 64
Cis-2,3,6:12,12a-hexahydro-2-cyclopropylmethyl-6-(4-methylphenyl)pyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from cyclopropylmethylamine and intermediate 31 gave, after recrystallisation from methanol/water, the title compound as white crystals m.p. : $194^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}\left(1.1 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 71.61 ; \mathrm{H}, 6.54 ; \mathrm{N}, 10.02$;
Found:C,71.42.H,6.07;N,9.95\%.

Example 65

Cis-2,3,6,7, 12, 12a-hexahydro-2-methyl-6-(3-methylphenyl)-

 pyrazino[2' 1 ':6,1]pyridol3,4-blindole-1,4-dioneThe same two step procedure but starting from methylamine and intermediate 33 gave, after recrystallisation from ethanol, the titie compound as white crystals m.p. : $>\mathbf{2 6 0}{ }^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$:
Calculated: C,73.52;H,5.89;N,11.69;
Found:C,73.60;H,5.97;N,11.66\%.

Example 66

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-trifluoromethylphenyl)pyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione
The same two step procedure but starting from butylamine and intermediate 35 gave, after recrystallisation from methanol/water, the title compound as white crystals m.p. : $155^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 64.65 ; \mathrm{H}, 5.43$; $\mathrm{N}, 9.05$;
Found:C,64.78;H,5.40;N,9.01\%.

Example 67

Cis-2,3,6,7,12,12a-hexahydro-2-methyl-6-(4-trifluoromethoxyphenv1)-
pyrazino [$2^{\prime}, 1^{\prime}: 6$.1]pyrido [3,4-blindole -1,4-dione
The same two step procedure but starting from methylamine and the cis isomer of intermediate 65 gave, after recrystallisation from methanol, the title compound 25 as white crystals m.p. : $174-180^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 60.27 ; \mathrm{H}, 4.37 ; \mathrm{N}, 9.58$;
Found:C,60.24;H,4.28;N,9.50\%.

Analysis for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}\left(1.25 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 65.70 ; \mathrm{H}, 5.64 ; \mathrm{N}, 10.94$;
Found:C,65.46;H,5.45;N,10.92\%.

Example 69
Cis-2,3,6,7,12,12a-hexahydro-6-(3-hydroxy-4-methoxyphenyl)-2-methylpyrazino[2 ', 1':6,1]pyrido[3,4-b]indole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 40 gave, after recrystallisation from ethanol, the title compound as $0 \quad$ white crystals m.p. $320^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 66.74 ; \mathrm{H}, 5.47 ; \mathrm{N}, 10.61$;
Found:C,66.72;H,5.46;N,10.53\%.

5 Example 70
Cis-2,3,6,7,12,12a-hexahydro-6-(4-hydroxy-3-methoxyphenyl)-2-methylpvrazino[$2^{\prime}, 1^{\prime}: 6,1$]pyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 41 gave, after recrystallisation from dichloromethane/ethanol, the title compound as yellow crystals m.p. :264-265 ${ }^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\mathrm{C}, 67.51 ; \mathrm{H}, 5.41 ; \mathrm{N}, 10.74$;
Found:C,67.05;H,5.41;N,10.62\%.

25 Example 71

Cis-2,3,6.7,12,12a-hexahydro-2-butyl-6-(4-cyanophenyl)pyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyridol 3,4 -b]indole -1,4-dione
The same two step procedure but starting from butylamine and intermediate 37 gave, after recrystallisation from methanol/water, the title compound as white crystals m.p. : $246^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}\left(1 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 69.75 ; \mathrm{H}, 6.09 ; \mathrm{N}, 13.01$;
Found:C,69.50;H,5.96;N,12.86\%.

Example 72

Cis-2,3,6.7,12,12a-hexahydro-6-(4-ethylphenyl)-2-isopropyt-

pyrazino [2', 1':6,1]pyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from isopropylamine and the cis isomer of intermediate 42 gave, after recrystallisation from n-pentane, the title compound as white crystals m.p. : $130^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 73.15 ; \mathrm{H}, 6.87 ; \mathrm{N}, 10.24$;
Found:C,73.39;H,7.08;N,9.81\%.

0 Example 73

Cis-2,3,6,7,12,12a-hexahydro-6-(4-ethylphenyl)-2-cyclopropylmethyl-
pyrazino [$2^{\prime}, 1^{\prime}: 6,1$ pyridol 3 ,4-blindole $-1,4$-dione
The same two step procedure but starting from cyclopropylmethylamine and the cis isomer of intermediate 42 gave, after recrystallisation from ethanol, the title 5 compound as white crystals m.p. : $160^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$:
Calculated: C,75.52;H,6.58;N,10.16;
Found:C,75.54;H,6.62;N,10.08\%.

20 Example 74
Cis-2,3,6,7,12,12a-hexahydro-6-(4-isopropylphenyl)-2-methyl-
pyrazino [2', 1':6,1]pyridol3,4-b]indole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 43 gave, after recrystallisation from ethanol, the title compound as white crystals m.p. : $244^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$:
Calculated: C,74.39;H,6.50;N,10.84;
Found:C,74.27;H,6.53;N,11.05\%.

30 Example 75
Cis-2,3,6,7,12.12a-hexahydro-2-butyl-6-(4-nitrophenyl)pyrazino [2', 1':6, 1]pyridol3,4-blindole -1,4-dione
The same two step procedure but starting from butylamine and intermediate 45 gave, aft r recrystallisation from methanol, the title compound as white crystals m.p. : $182^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 65.97$; $\mathrm{H}, 5.65 ; \mathrm{N}, 12.82$;
Found:C,65.92;H,5.62;N,12.96\%.

Example 76
Cis-2,3,6,7,12,12a-hexahydro-6-(4-dimethylaminophenyl)-2-methylpyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyridol 3.4 -b]indole $-1,4$-dione
The same two step procedure but starting from methylamine and the cis isomer of intermediate 47 gave after recrystallisation from methanol, the title compound as white crystais m.p. : $266^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$:
Calculated: C,71.11;H,6.23; $\mathrm{N}, 14.42$;
Found:C, 71.19 ; H, 6.24 ; N, 14.34\%.

Example 77

Cis-2,3,6,7, 12,12a-hexahydro-2-methyl-6-(3-pyridyl)-
pyrazino [2' $1^{\prime}: 6,1$ pyrido [3,4-blindole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 48 gave after recrystallisation from chloroform, the title compound as white crystals m.p.: $312^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$:
Calculated: $\mathrm{C}, 69.35 ; \mathrm{H}, 5.24 ; \mathrm{N}, 16.17$;
Found:C,69.08;H,5.20;N,16.19\%.

Example 78
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-
pyrazino[$\left.2^{\prime} 1^{\prime}: 6,1\right]$ pyrido [3,4 -b]indole $-1,4$-dione
a) To a stirred solution of intermediate 54 (0.5 g) and $\mathrm{NaHCO}_{3}(0.14 \mathrm{~g})$ in anhydrous $\mathrm{CHCl}_{3}(20 \mathrm{~mL}$) was added dropwise chloroacetyl chloride (0.27 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 hour at the same temperature and diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. Water (10 mL) was then added dropwise with stirring to the mixture, followed by a saturated solution of NaHCO_{3}. The organic layer was washed with water until neutrality and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent under reduced pressure, (6R,12aR)-methyl 1,2,3,4-tetrahydro-2-chloroacetyl-1-(3,4-
methylenedioxyphenyl)-9H-pyridol 3 ,4-blindole-3-carboxylate was obtained as an oil which was crystallised from ether to give a solid (0.38 g , m.p.: $233^{\circ} \mathrm{C}$) which was used without further purification in the next step.
b) To a stirred suspension of the chloroacetyl intermediate (0.37 g) in MeOH $(20 \mathrm{~mL})$ was added at room temperature a solution of methylamine (33% in $\mathrm{EtOH})(0.4 \mathrm{~mL})$ and the resulting mixture was heated at $50^{\circ} \mathrm{C}$ under N_{2} for 16 hours. The solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL). After washing with water ($3 \times 20 \mathrm{~mL}$), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporating to dryness, the residue was purified by flash chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (99/1) and recrystallised from 2propanol to give the title compound as white crystals (0.22 g) m.p. : 302$303^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\mathrm{C}, 67.86 ; \mathrm{H}, 4.92 ; \mathrm{N}, 10.79$;
Found:C,67.77;H,4.92;N,10.74\%. 20°
${ }^{[\alpha]_{D}}=+71.0^{\circ}\left(\mathrm{C}=1.00 ; \mathrm{CHCl}_{3}\right)$.

The following compounds were obtained in a similar manner:

Example 79

(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-5-(3,4-

Analysis for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$:
30 Calculated: $\mathrm{C}, 69.05 ; \mathrm{H}, 5.55 ; \mathrm{N}, 10.07$;
Found:C,69.06;H,5.49;N,10.12\%.
20°
${ }_{[\alpha]_{D}}=+52.6^{\circ}\left(\mathrm{C}=1.14 ; \mathrm{CHCl}_{3}\right)$.
35 Example 80
(6R,12aR)-2,3.6,7,12,12a-Hexahydro-2-butyl-6-(3,4-methylenedioxyphenyl)pyrazino[2 ', 1:6, 1 lpyridol 3,4 -blindole -1,4-dione
The same two step procedure but starting from butylamine and intermediate 54 gave, after recrystallisation from toluene/hexane, the title compound as white crystals m.p. : 209-210 ${ }^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: C,69.59;H,5.84;N,9.74;
Found:C,69.70;H,5.93;N,9.74\%.
20°
$[\alpha]_{D}=+50.2^{\circ}\left(\mathrm{C}=0.53 ; \mathrm{CHCl}_{3}\right)$.

Example 81

(6R.12aR)-2,3,6,7,12.12a-Hexahydro-2-isobutyl-6-(3,4-methylenedioxyphenyl)pyrazino[2', $1: 6,1$]pyrido[3,4-b]indole -1,4-dione
The same two step procedure but starting from isobutylamine and intermediate 54 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : 227-228ㅇ.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\mathrm{C}, 69.59 ; \mathrm{H}, 5.84 ; \mathrm{N}, 9.74$;
Found:C,69.52;H,5.87;N,9.74\%.
20°
$[\alpha]_{D}=+45^{\circ}\left(\mathrm{C}=1.04 ; \mathrm{CHCl}_{3}\right)$.

Example 82

(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2', $1^{\prime}: 6$, 1]pyrido 3 , 4-b]indole $-1,4$-dione
The same two step procedure but starting from cyclopentylamine and intermediate 54 gave, after recrystallisation from ether, the title compound as white crystals m.p. : $237-239^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\mathrm{C}, 70.41 ; \mathrm{H}, 5.68$; $\mathrm{N}, 9.47$;
Found:C,70.13.H,5.67.N,9.42\%.
20°
$[\alpha]_{D}=+36.6^{\circ}\left(\mathrm{C}=0.98 ; \mathrm{CHCl}_{3}\right)$.

Example 83

(6R.12aR)-2,3,6.7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)-2-cyciohexyimethyl-pyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyrido 3,4 -b]indole $-1,4$-dione
20°
$[\alpha]_{\mathrm{D}}=+45.4^{\circ}\left(\mathrm{C}=1.04 ; \mathrm{CHCl}_{3}\right)$.

Example 86

$10 \quad$ Analysis for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$:
Calculated: $\mathrm{C}, 72.71 ; \mathrm{H}, 6.34 ; \mathrm{N}, 9.78$;
Found:C,72.53;H,6.39; N,9.53\%.
20°
$[\alpha]_{D}=+29.8^{\circ}\left(\mathrm{C}=1.07, \mathrm{CHCl}_{3}\right)$.

Example 87

 as white crystals m.p. : $218-219^{\circ} \mathrm{C}$.Analysis for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{3}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\mathrm{C}, 66.08 ; \mathrm{H}, 5.43$: $\mathrm{N}, 9.25$; $\mathrm{Cl}, 7.80$;
Found: C, 66.11 ; H, 5.33 ; N, 9.03 ; CI, 7.74\%.
20°
$[\alpha]_{\mathrm{D}}=+49.4^{\circ}\left(\mathrm{C}=1.03 ; \mathrm{CHCl}_{3}\right)$.

Example 88

 as white crystals m.p. : $260-262^{\circ} \mathrm{C}$.Analysis for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{3}$:
Calculated: $\mathrm{C}, 67.31 ; \mathrm{H}, 5.65 ; \mathrm{Cl}, 7.64 ; \mathrm{N}, 9.06$;
(GR, 12aR)-2,3,6,7.12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-
cyclopropylmethyl-pyrazino[2', $1^{\prime}: 6$, 1]pyrido 3 ,4-blindole $-1,4$-dione
The same two step procedure but starting from cyclopropylmethylamine and intermediate 59 gave, after recrystallisation from methanol, the title compound
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-(3-chloro-4-
methoxyphenyl)-pyrazino[$2^{\prime}, 1^{\prime}: 6,1$ pyrido 3,4 -blindole $-1,4$-dione
The same two step procedure but starting from cyclopentylamine and intermediate 59 gave, after recrystallisation from methanol, the title compound

Found:C,66.98;H,5.67;Cl,8.06;N,9.04\%.
20°
$[\alpha]_{D}=+27.6^{\circ}\left(\mathrm{C}=1.05 ; \mathrm{CHCl}_{3}\right)$.

5

Example 89

(6R,12aR)-2,3,6.7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methylpyrazino $\left[2^{\prime}, 1^{\prime}: 6,1\right]$ pyrido[3,4 -blindole -1.4-dione
The same two step procedure but starting from methylamine and intermediate 59 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $283-284^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{CiN}_{3} \mathrm{O}_{3}$:
Calculated: $\mathrm{C}, 64.47 ; \mathrm{H}, 4.92 ; \mathrm{Cl}, 8.65 ; \mathrm{N}, 10.25$;
Found:C,64.49;H,4.92.Cl8.33.N,10.02\%.
20°
$[\alpha]_{D}=+61.3^{\circ}\left(\mathrm{C}=1.00 ; \mathrm{CHCl}_{3}\right)$.

Example 90

(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-6-(3-chloro-4-methoxyphenvl)-
pyrazinol $2^{\prime}, 1^{\prime}: 6,1$ lpyrido[3,4-blindole -1,4-dione
The same two step procedure but starting from isopropylamine and intermediate 59 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $302-304^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{3}$:
Calculated: C,65.83;H,5.52; $\mathrm{N}, 9.60$;
Found:C,65.83;H,5.57.N,9.73\%.
20°
${ }^{[\alpha]_{D}}=+39.8^{\circ}\left(\mathrm{C}=0.95 ; \mathrm{CHCl}_{3}\right)$.
30 Example 91
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(2,3-dihydrobenzo[blfuran-5-yl)-2-methyl-pyrazinol2', 1':6,1]pyridol3,4-blindole -1,4-dione
The same two step procedure but starting from methylamine and intermediate 61 gave, after recrystallisation from dichloromethane/methanol, the titl compound as white crystals m.p. : $\mathbf{2 8 8}-291^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$:
Calculated: $\mathrm{C}, 71.30 ; \mathrm{H}, 5.46 ; \mathrm{N}, 10.85$;
Found: C,71.27;H,5.49;N,10.96\%.

20 Example 93
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-indanyl)-2-methyl-

pyrazino[2', $\left.9^{\prime}: 6,1\right]$ pyrido[3,4-blindole-1,4-dione

The same two step procedure but starting from methylamine and intermediate 63 gave, after recrystallisation from methanol, the title compound
25 as white crystals m.p. : $262^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$:
Caiculated: C,74.78; H,6.01;N,10.90;
Found:C,74.65;H,5.90; N, 10.67\%.
20°
30
$[\alpha]_{D}=+68.6^{\circ}\left(\mathrm{C}=0.98 ; \mathrm{CHCl}_{3}\right)$.

Example 94

(6R,12aR)-2,3,6,7,12.12a-Hexahydro-6-(5-indanyl)-2-Cyclopropylmethylpyrazino[$2^{\prime}, 1^{\prime}: 6,1$ lpyrido $[3,4$-b]indole -1,4-dione

The same two step procedure but starting from cyclopropyimethylamine and intermediate 63 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $176^{\circ} \mathrm{C}$
Analysis for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}\left(0.25 \mathrm{H}_{2} \mathrm{O}\right)$:

Calculated: C. 75.41 ; H, 6.45 ; N. 9.77;
Found:C, 75.25 ; H, 6.51 ; N, 9.75%.
20°
$[\alpha]_{D}=+57.9^{\circ}\left(\mathrm{C}=1.00 ; \mathrm{CHCl}_{3}\right)$.

Example 95

(6R.12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3.4-methylenedioxyphenyl)pyrazinol $2^{\prime}, 1^{\prime}: 6,1$ pyridol 3,4 -blindole-1.4-dione
To a stirred suspension of Intermediate 73 (12.5g) in MeOH (400 ml) was add d at room temperature a solution of methylamine (33% in EtOH) (13.7 ml) and the resulting mixture was heated at $50^{\circ} \mathrm{C}$ under N_{2} for 14 hours. The soivent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (11). After washing with water ($3 \times 500 \mathrm{ml}$), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporating to dryness, the white solid obtained was recrystallised from 2-propanol to give the title compound as white needles (7.5 g).
mp : $298-300^{\circ} \mathrm{C}$.
20°
${ }^{[\alpha]_{D}}=+71.3^{\circ}\left(c=0.55, \mathrm{CHCl}_{3}\right)$.
Elemental analysis $\left(\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$ calculated: $\mathrm{C}, 67.86 ; \mathrm{H}, 4.92 ; \mathrm{N}, 10.79$;
found: C, 67.79; H, 4.95; N, 10.61\%.

Example 96

Cis-2,3,6,7,12,12a-hexahydro-2,10-dimethyl-6-(3,4-methylenedioxyphenyl)pyrazino[2',1': 6.1]pyridol3.4-blindole-1,4-dione

Example 97
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-(3,4-dimethoxybenzyl)-6-(3,4-
methyienedioxyphenyl)-pyrazino[2 ', 1 : : 6.1]pyridol3,4-blindole-1,4-dione

The same two step procedure as used to prepare Example 78, but starting from veratrylamine and intermediate 54 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : 224-226 ${ }^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}$:
Calculated: $\mathrm{C}, 68.56$; $\mathrm{H}, 5.18$; $\mathrm{N}, 8.00$;
Found: C,68.80; H,5.11 ; N,8.06\%.
20°
${ }_{[\alpha]_{D}}=+43.9^{\circ}\left(\mathrm{C}=1.02, \mathrm{CHCl}_{3}\right)^{.}$

Example 98

Cis-2,3,6,7,12,12a-hexahydro-6-(4-aminophenvi)-2-butylpyrazino[$2^{\prime}, 1^{\prime}: 6,1$ lpyrido [3,4-b]indole-1,4-dione
To a solution of Example 75 (1.5 g) in methanol (100 mL) was added $\mathrm{SnCl}_{2} . \mathrm{H}_{2} \mathrm{O}$ (3.06) and the resulting mixture was heated at reflux for 8 hours. The mixture was cooled to ambient temperature, poured into ice and was
$\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the resulting solid was recrystallised from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ to give the title compound as a cream powder (120 mg) m.p. : $246^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$:
$5 \quad$ Calculated: $\mathrm{C}, 70.25 ; \mathrm{H}, 6.35 ; \mathrm{N}, 12.60$;
Found : C,69.85; H, 6.38 ; N,12.56\%.

Example 100

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-methyisulfonamidophenyl)-
pyrazino[2', 1 ':6, 1]pyrido [3.4-blindole-1,4-dione
To a solution of Example $98(0.2 \mathrm{~g})$ in THF (5 mL) was added triethylamine (228 $\mu \mathrm{L}$) and methanesulfonyl chloride ($126 \mu \mathrm{~L}$) and the solution was heated at reflux for 6 hours. After evaporation of THF, the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the residue was purified by radial chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ ($95 / 5$) to give the title compound as a brown powder (30 mg) m.p. : $188^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\left(0.75 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated : C,60.77; H,6.02 ; N,11.34;
Found : C, 60.61 ; H, 6.02 ; N, 10.82\%.

Example 101

(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)-
pyrazino[2', 1': 6,1] pyrido [3,4-b] indole-1,4-dione
The same two step procedure but starting from ammonia and intermediate 54 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : 285-290 ${ }^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\quad \mathrm{C}, 67.19 ; \mathrm{H}, 4.56 ; \mathrm{N}, 11.19$;
Found: C, 67.30 ; H, 4.66 ; N, 11.11 \%.
$[\alpha]^{20^{\circ}}{ }_{D}=+88^{\circ}(c=0.48 ;$ pyridine $)$.

Example 102
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)-2-(2-
propynyl)-pyrazino [2', 1' : 6,1] pyrido [3,4-b] indole-1,4-dione

The same two step procedure but starting from propargylamine and intermediate 54 gave, after recrystaliisation from acetone, the title compound as white crystals m.p. : $271^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$:
5 Calculated: C, 69.72 ; H, 4.63 ; N, 10.16;
Found: C, 69.95 ; $\mathrm{H}, 4.66$; N, 10.06%.
$[\alpha]^{20^{\circ}}{ }_{D}=+51.7^{\circ}\left(\mathrm{c}=0.49 ; \mathrm{CHCl}_{3}\right)$.

Example 103

Analysis for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$:
Calculated: $\quad \mathrm{C}, 68.36 ; \mathrm{H}, 4.55$; N, 8.25 ;
Found: $\mathrm{C}, 68.25 ; \mathrm{H}, 4.49$; N, 8.41 .
$[\alpha]^{20^{\circ}}=+43^{\circ}\left(c=1.01 ; \mathrm{CHCl}_{3}\right)$.

Example 104

(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-(3,4-dimethoxyphenethyl)-6-(3,4-methylenedioxyphenyl)-pyrazino [2', 1': 6,1] pyrido [3,4-b] indole-1,4-dione The same two step procedure but starting from 3,4-dimethoxyphenethylamine and intermediate 54 gave, after recrystallisation from dichloromethane/ether, the

Analysis for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$:
Calculated: $\quad \mathrm{C}, 69.00 ; \mathrm{H}, 5,42$; N, 7.79 ;
Found: $\mathrm{C}, 68.68 ; \mathrm{H}, 5.35 ; \mathrm{N}, 7.78 \%$.
$[\alpha]^{200^{\circ}}=+38.3^{\circ}\left(c=1.12 ; \mathrm{CHCl}_{3}\right)$.

Example 105
(6R, 12aR)-2,3,6.7,12.12a-Hexahydro-2-furfuryl-6-(3.4-methylenedioxyphenyl)pyrazino [2', 1': 6,1] pyrido [3,4-b] indole-1, 4-dione

The same two step procedure but starting from furfurylamine and intermediate 54 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $\mathbf{2 1 9}{ }^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$:

20 Example 107
(6R. 12aR)-2,3,6.7,12,12a-Hexahydro-6-(4-methoxyphenyl)-2-methyl-pyrazino
[2'. $\left.1^{\prime}: 6,1\right]$ pyrido [3,4-b] indole-1,4-dione
The same two step procedure but starting from methylamine and intermediate 57 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $285-288^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$:
Calculated: $\quad \mathrm{C}, 70.38 ; \mathrm{H}, 5.64 ; \mathrm{N}, 11.19$;
Found: C, 70.31 ; H, 5.69 ; N, 11.29 \%.
$[\alpha]^{20^{\circ}}=+59^{\circ}\left(\mathrm{c}=1.19 ; \mathrm{CHCl}_{3}\right)$.
30
Example 108
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-ethyl-6-(4-methoxyphenyl)-pyrazino [2', 1': 6,1]pyrido [3,4-b] indole-1,4-dione

The same two step procedure but starting from ethylamine and intermediate 57 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $277^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$:

20 Example 110
(6R. 12aR)-2,3,6.7, 12,12a-Hexahydro-6-(5-(N-benzylindolinyl))-2-methylpyrazino[2', 1': 6,1]pyrido[3,4-b]indole-1,4-dione
The same two step procedure but stating from intermediate 77 and methylamine gave, after recrystallisation from dichloromethane/methanol, the
25 titie compound as white crystals m.p. : $223-225^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$:
Calculated: $\quad \mathrm{C}, 75.61$; H, 5.92 ; N, 11.76 ;
Found: C, 75.2 ; H, 5.78 ; N, 11.67%.
$[\alpha]^{20^{\circ}}{ }_{D}=+20.4^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

Example 111

(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-indolinyl)-2-methyl-pyrazino[2', $1^{\prime \prime}$:
6.1]purido[3,4-blindole-1 4-dione

A solution of Example 110 ($1.05 \mathrm{~g}, 2.2 \mathrm{mmol}$) in methanol (100 mL) was
35
Calculated: $\quad \mathrm{C}, 70.93 ; \mathrm{H}, 5.95 ; \mathrm{N}, 10.79$;
Found: C, $70.90 ; \mathrm{H}, 5.96$; N, 10.54%.
$[\alpha]^{200^{\circ}}=+52^{\circ}\left(c=1.28 ; \mathrm{CHCl}_{3}\right)$.

Example 109

0 (6 R, 12aR)-2,3,6,7,12,12a-hexahydro-6-(7-(4-methyl-3.4-dihydro-2Hbenzo (1,4]oxazinyl))-2-methyl-pyrazino [2', 1': 6, 1]pyrido [3,4-b] indole-1,4-dione The same two step procedure but starting from intermediate 75 and methylamine gave, after recrystallisation from ethanol, the titie compound as white crystals m.p. : $285-288^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\quad \mathrm{C}, 67.75 ; \mathrm{H}, 5.92 ; \mathrm{N}, 13.17$;
Found: $\mathrm{C}, 68.02 ; \mathrm{H}, 6.00 ; \mathrm{N}, 13.18 \%$.
$[\alpha]^{20^{\circ}}{ }_{D}=+71.7^{\circ}(c=1$, pyridine $)$.
. hydrogeriated in the presence of $10 \% \mathrm{Pd}-\mathrm{C}(100 \mathrm{mg})$ for 48 hours at room
temperature. After removal of the catalyst, the solvent was evaporated in vacuo to leave a residue which was purified by flash chromatography eluting with dichloromethane/methanol : 96/4. The solid obtained was recrystallised from dichloromethane/methanol to give the title compound (300 mg) as white crystals m.p. : $240^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\quad \mathrm{C}, 69.86$; $\mathrm{H}, 5.86$; N, 14.17 ;
Found: $\quad C, 70.13 ; H, 5.77 ; N, 14.06 \%$.
$[\alpha]^{20^{\circ}} \mathrm{D}=+55.9^{\circ}(\mathrm{c}=1.18$; pyridine $)$.

Example 112

Cis-2,3,6,7,12,12a-hexahydro-6-(4-ethylphenyl)-2-methyl-pyrazino[2', 1^{\prime}.

6,1]pyridol3.4-blindole-1,4-dione

The same two step procedure but starting from methylamine and the cis isomer of intermediate 42 gave, after recrystallisation from methanol, the title compound as white crystals m.p. : $254^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{O} .25 \mathrm{H}_{2} \mathrm{O}\right)$:
Calculated: $\quad \mathrm{C}, 73.09$; $\mathrm{H}, 6.27$; $\mathrm{N}, 11.12$;
Found: \quad C. $73.03 ; H, 6.18 ; N, 11.36 \%$.

Example 113

(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(4-carbomethoxyphenyl)-2-methylpyrazino $2^{\prime}, 1^{\prime}: 6,1$ lpyrido[3,4-b]indole-1,4-dione
The same two step procedure but starting from intermediate 78 (cis isomer) and methylamine gave, after recrystalisation from methanol, the title compound as white crystals m.p. : $308-312^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\quad \mathrm{C}, 68.47$; H, 5.25 ; N, 10.42 ;
Found: C, 68.76 ; H, 5.18 ; N, 10.35%.
$[\alpha]^{20^{\circ}}{ }_{D}=+97.7^{\circ}(c=1$, pyridine $)$.

Example 114

(5aR, 12R, 14aR)-1,2,3,5a,6,11,12,14a-Octahydro-12-(3,4-
methylenedioxyphenv1)-pyrrolo[1 ", 2" : 4', 5^{\prime} 'lpyrazino[$2^{\prime}, 1^{\prime}: 6,1$ lpyrido $3,4-$
blindole-5-1,4-dione

A solution of intermediate $80(0.7 \mathrm{~g}, 1.2 \mathrm{mmol})$ in a mixture of methanol/THF $(80 / 40 \mathrm{~mL})$ was hydrogenated in the presence of 10% Pd-C (75 mg) for 48 hours at $40^{\circ} \mathrm{C}$. After removal of the catalyst, the solvent was evaporated in vacuo to leave a residue, which was purified by flash chromatography eluting with dichloromethane/methanol : 98/2. The white solid obtained was recrystallised from methanol to give the title compound (180 mg) as white crystals m.p. : $\mathbf{2 8 4}-287^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$:
10 Calculated: C, 69.39; H. 5.10 ; N, 10.11;
Found: C, 69.47 ; H, 5.11 ; N, 9.97 \%.
$[\alpha]^{20^{\circ}}{ }_{D}=+21.7^{\circ}\left(\mathrm{c}=0.64, \mathrm{CHCl}_{3}\right)$.

Example 115

(5aR. 12R, 14aS)-1,2,3,5,6,11, 12, 14a-Octahydro-12-(3,4-methylenedioxyphenyl)-pyrrolo [1",2" : 4', 5'lpyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyrido[3,4-blindole-5-1.4-dione

A solution of intermediate 81 ($0.8 \mathrm{~g}, 1.37 \mathrm{mmol}$) in methanol (40 mL) was hydrogenated in the presence of 10% Pd-C (100 mg) for 5 h at $45^{\circ} \mathrm{C}$. After removol of the catalyst the solvent was evaporated in vacuo to leave a residue, which was purified by flash chromatography eluting with dichloromethane/methanol : 98/2. The solid obtained was recrystallised from methanol to give the title compound (300 mg) as white crystals m.p. : 302$304^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\quad \mathrm{C}, 69.39 ; \mathrm{H}, 5.10 ; \mathrm{N}, 10.11$;
Found: $\mathrm{C}, 69.35$; H, 5.11 ; N, 10.10%.
$[\alpha]^{20^{\circ}}{ }_{D}=+106.8^{\circ}\left(\mathrm{c}=1.08, \mathrm{CHCl}_{3}\right)$.
and the resulting solution was heated at reflux under N_{2} for 24 hours. The solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. After washing with water ($2 \times 20 \mathrm{~mL}$), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporating to dryness, the crude product was purified by flash chromatography eluting with dichloromethane/methanol : 99/1. The white solid obtained was recrystallised from methanol to give the title compound as white crystals (80 mg) m.p. : $219-220^{\circ} \mathrm{C}$

Analysis for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\quad \mathrm{C}, 68.47$; H, $5.25 ; \mathrm{N}, 10.42$;
Found: \quad C, 68.39; $H, 5.21 ; N, 10.42 \%$.
$[\alpha]^{20^{\circ}}{ }_{D}=+89.6^{\circ}\left(c=1 ; \mathrm{CHCl}_{3}\right)$.

Example 117

(3S, 6R, 12aR)-2,3,6,7,12,12a-hexahydro-2.3-dimethyl-6-(3,4-
methylenedioxyphenyl)-pyrazino[$2^{\prime}, 1^{\prime}: 6,1$ lpyrido[3,4-blindole-1,4-dione
To a stirred solution of intermediate $83(0.3 \mathrm{~g}, 0.68 \mathrm{mmol})$ in THF (30 mL) was added at room temperature a solution of methylamine (33% in EtOH) (0.68 mL) and the resulting solution was treated at reflux under N_{2} for 6 days. The solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$. After washing with water $(2,25 \mathrm{~mL})$, drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporating to dryness, the crude product was purified by flash chromatography eluting with dichloromethane/methanol : 99/1. The oily residue obtained was crystallised from methanol to give the title compound as white crystals (40 mg) m.p. : 307-309 ${ }^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\quad \mathrm{C}, 68.47$; H, 5.25 ; N, 10.42 ;
Found: $\mathrm{C}, 68.35 ; \mathrm{H}, 5.33 ; \mathrm{N}, 10.42 \%$.
$[\alpha]^{20^{\circ}}{ }_{D}=+65.2^{\circ}\left(c=1.15 ; \mathrm{CHCl}_{3}\right)$.
vacuo to leave a white solid which was recrystallisated from methanol to give the title compound $(0.35 \mathrm{~g})$ as white crystals m.p. : $224-226^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$:
Calculated: $\quad \mathrm{C}, 66.83 ; \mathrm{H}, 5.07$; N, 11.13 ;
$5 \quad$ Found: \quad C, $66.58 ; H, 5.01 ; N, 11.04 \%$.
$[\alpha]^{20^{\circ}}{ }_{D}=+58.4^{\circ}(c=1.04$; pyridine $)$.

Example 119

(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(5-(2-
10 methylisoindolinyl))pyrazino[2', 1': 6,1]pyrido[3,4-blindole-1,4-dione
The same two steps procedure but starting from intermediate 87 and methylamine gave a crude oil which was purified by flash chromatography eluting with dichioromethane/methanol/triethylamine : 92/8/0.1 \%. The solid obtained was recrystallized from isopropanol/propyl ether/water to give the title compound (20 mg) as off-white crystals m.p. : $236^{\circ} \mathrm{C}$.
Analysis for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}\left(2.68 \mathrm{H}_{2} \mathrm{O}\right)$
Calculated: $\quad \mathrm{C}, 64.23 ; \mathrm{H}, 6.59 ; \mathrm{N}, 12.48$;
Found: C, $64.21 ; \mathrm{H}, 6.43 ; \mathrm{N}, 12.02 \%$.
$[\alpha]^{20^{\circ}}{ }_{D}=+61.1^{\circ}\left(\mathrm{c}=0.5 ; \mathrm{CH}_{3} \mathrm{OH}\right)$.

Example 120

Compounds of formula (I) have been included in pharmacy formulations and details of such formulations are given below.

TABLETS FOR ORAL ADMINISTRATION
A. Direct Compression

1.	mg/tablet
Active ingredient	50.0
Crospovidone USNF	8.0
Magnesium Stearate Ph Eur	1.0
Anhydrous Lactose	141.0

The active ingredient was sieved and blended with the excipients. The resultant mix was compressed into tablets.

2.	mg/tablet
Active ingredient	50.0
Colloidal Silicon Dioxide	0.5
Crospovidone	8.0
Sodium Lauryl Sulphate	1.0
Magnesium Stearate Ph Eur	1.0
Microcrystalline Cellulose USNF	139.5

5

The active ingredient was sieved and blended with the excipients. The resultant mix was compressed into tablets.
B. WET GRANULATION

1.	mg/tablet
Active ingredient	50.0
Polyvinyl pyrollidone	150.0
Polyethylene glycol	50.0
Polysorbate 80	10.0
Magnesium Stearate Ph Eur	2.5
Croscarmellose Sodium	25.0
Colloidal Silicon Dioxide	2.5
Microcrystalline Cellulose USNF	210.0

The polyvinyl pyrollidone, polyethylene glycol and polysorbate 80 were dissolved in water. The resultant solution was used to granulate the active ingredient. After drying the granules were screened, then extruded at elevated temperatures and pressures. The extrudate was milled and/or screened then was blended with the microcrystalline cellulose, croscarmellose sodium, colloidal silicon dioxide and magnesium stearate. The resultant mix was compressed into tablets.

2.	mg/tablet
Active ingredient	50.0
Polysorbate 80	3.0
Lactose Ph Eur	178.0
Starch BP	45.0
Pregelatinised Maize Starch BP	22.5
Magnesium Stearate BP	1.5

The active ingredient was sieved and blended with the lactose, starch and pregelatinised maize starch. The polysorbate 80 was dissolved in purified water. Suitable volumes of the polysorbate 80 solution were
$20 \quad \dagger$ Opadry white is a proprietary material obtainable from Colorcon Limited, UK which contains hydroxypropyl methylcellulose, titanium dioxide and triacetin.

The tablets were film coated using the coating suspension in conventional film coating equipment. added and the powders were granulated. After drying, the granules were screened and blended with the magnesium stearate. The granules were then compressed into tablets.

Tablets of other strengths may be prepared by altering the ratio of active ingredient to the other excipients.

FILM COATED TABLETS

The aforementioned tablet formulations were film coated.

Coating Suspension	$\%$ w/w
Opadry whitet	13.2
Purified water Ph Eur	to 100.0^{*}

- The water did not appear in the final product. The maximum theoretical weight of solids applied during coating was $20 \mathrm{mg} /$ tablet.

CAPSULES

1.	mg/capsule
Active ingredient	50.0
Lactose	148.5
Polyvinyl pyrollidone	100.0
Magnesium Stearate	1.5

The active ingredient was sieved and blended with the excipients. The mix was

15 The active ingredient was sieved and blended with the Labrafil. The suspension was filled into soft gelatin capsules using appropriate equipment.

Example 121

Inhibitory effect on CGMP-PDE
20 cGMP-PDE activity of compounds of the present invention was measured using a one-step assay adapted from W lis at al. (Wells, J. N., Baird, C. E., Wu, Y. J.
and Hardman, J. G., Biochim. Biophys. Acta 384, 430 (1975)). The reaction medium contained 50 mM Tris-HCl,pH 7.5, 5 mM Mg-acetate, $250 \mu \mathrm{~g} / \mathrm{ml} 5^{\prime}$ Nucleotidase, 1 mM EGTA and $0.15 \mu \mathrm{M} 8-\left[\mathrm{H}^{3}\right]$-cGMP. The enzyme used was a human recombinant PDE V (ICOS, Seattle USA).

Compounds of the invention were dissolved in DMSO finally present at 2% in the assay. The incubation time was 30 minutes during which the total substrate conversion did not exceed 30%.

-cGMP level measurements

Rat aortic smooth muscle cells (RSMC) prepared according to Chamley et al. in Cell Tissue Res. 177, 503-522 (1977) were used between the 10th and 25th passage at confluence in 24 -well culture dishes. Culture media was aspirated
The IC_{50} values for the compounds examined were determined from concentration-response curves using typically concentrations ranging from $10 n \mathrm{M}$ to $10 \mu \mathrm{M}$. Tests against other PDE enzymes using standard methodology also showed that compounds of the invention are highly selective for the cGMP specific PDE enzyme. and replaced with PBS (0.5 ml) containing the compound tested at the appropriate concentration. After 30 minutes at $37^{\circ} \mathrm{C}$, particulates guanylate cyclase was stimulated by addition of ANF (100 nM) for 10 minutes. At the end of incubation, the medium was withdrawn and two extractions were performed by addition of 65% ethanol $(0.25 \mathrm{ml})$. The two ethanolic extracts were pool d and evaporated until dryness, using a Speed-vac system. c-GMP was measured after acetylation by scintillation proximity immunoassay (AMERSHAM).

The compounds according to the present invention were typically found to exhibit an IC_{50} value of less than 500 nM , and an EC_{50} value of less than 5 . In vitro test data for representative compounds of the invention is given in following Table 1:

Table 1

Example No.	$\mathbf{I C}_{50} \mathbf{n M}$	$\mathbf{E C}_{50} \mu \mathbf{M}$
12	10	0.15
36	<10	0.5
52	20	0.8
63	30	0.35
79	<10	0.15
82	20	0.5
84	10	0.4
89	10	<0.1
95	2	0.2
101	10	0.3
115	<10	0.4

Example 122
-Antihypertensive activity in rats
The hypotensive effects of compounds according to the invention as identified in table 2 were studied in conscious spontaneously hypertensive rats (SHR). The. compounds were administered orally at a dose of $5 \mathrm{mg} / \mathrm{kg}$ in a mixture of 5% DMF and 95% olive oil. Blood pressure was measured from a catheter inserted in the carotid artery and recorded for 5 hours after administration. The results are expressed as Area Under the Curve (AUC from 0 to 5 hours, mmHg .hour) of the fall in blood pressure over time.

In Vivo Results
15

Example No.	AUC PO (mmHg.h)
36	99
63	95
79	171
82	111
84	77
89	117

Example No.	AUC PO (mmHg.h)
95	135
101	136

CLAIMS

1. A compound of formula (1)

and salts and solvates thereof, in which:
R° represents hydrogen, halogen or C_{1-6} alkyl;
R^{1} represents hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, halo C_{1-} 6alkyl, $\mathrm{C}_{3-8 \text { cycloalkyl, }} \mathrm{C}_{3-8 \text { cycloalkyIC }}^{1-3} \mathrm{alkyl}, \quad$ arylC $\boldsymbol{1}_{1-3}$ alkyl or heteroarylC ${ }_{1-3}$ alkyl;
\mathbf{R}^{2} represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally
substituted bicyclic ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring A is a 5- or 6-membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
R^{3} represents hydrogen or C_{1-3} alkyl, or R^{1} and R^{3} together represent a 3or 4- membered alkyl or alkenyl chain.
2. A. compound of formula (la)

and salts and solvates thereof, in which:
R^{0} represents hydrogen, halogen or C_{1-6} alkyl;
R^{1} represents hydrogen, $\mathrm{C}_{1-\text { - }}$ alkyl, halo $\mathrm{C}_{1-\text { - alkyl, }} \mathrm{C}_{3 \text {-8cycloalkyl, }}$ C_{3-8} cycloalkylC 1-3 $^{\text {alkyl, }}$ arylC $\mathbf{1 - 3}^{\text {alkyl }}$ or heteroarylC $\boldsymbol{1}_{1-3}$ alkyl; and
R^{2} represents an optionally substituted monocyclic aromatic ring selected from benzene,- thiophene; furan and pyridine-or an optionally substituted bicyclic ring
 via one of the benzene ring carbon atoms and wherein the fused ring A is a 5 - or 6-membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen.
3. A compound according to Claim 1 or 2 , wherein \mathbf{R}° represents hydrogen.
4. A compound according to any of Claims 1 to 3 , wherein R^{1} represents hydrogen, $\quad \mathrm{C}_{1-4}$ alkyl, haloC C_{1-4} alkyl, C_{3-6} cycloalkyl.
 substituted benzyl.
5. A compound according to any of Claims 1 to 3 , wherein $\mathbf{R}^{\mathbf{1}}$ and $\mathbf{R}^{\mathbf{3}}$ together represent a 3-membered alkyl chain.
6. A compound according to any of Claims 1 to 4, wherein \mathbf{R}^{3} represents hydrogen.
7. A compound according to any of Claims 1 to 6 , wherein \mathbf{R}^{2} represents an optionally substituted benzene, thiophene, furan, pyridine or naphthalene ring or an optionally substituted bicyclic ring
 where n is 1 or 2 and X and Y are each CH_{2} or O .
8. A cis isomer of formula (I) represented by formula (lb)

and mixtures thereof with its cis optical enantiomer, including racemic mixtures, and salts and solvates of these compounds in which R^{0} is hydrogen or halogen and R^{1}, R^{2} and R^{3} are as defined in any preceding claim.
9. Cis-2,3,6,7,12,12a-hexahydro-2-(4-pyridylmethyl)-6-(3,4-methylenedioxyphenyl)-pyrazino[$2^{\prime}, 1$ ' : 6,1]pyrido[3,4-b]indole-1,4-dione; Cis-2,3,6,7,12, 12a-hexahydro-6-(2,3-dihydrobenzo[b]furan-5-yl)-2-methyl-pyrazino[2', $1^{\prime}: 6,1$]pyrido[3,4-b]indole -1,4-dione; Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-methylpyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione; Cis-2,3,6,7,12, 12a-hexahydro-2-butyl-6-(4-methylphenyl)pyrazino[$\left.2^{\prime}, 1^{\prime}: 6,1\right]$ pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione; ($6 R, 12 a R$)-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2', $1^{\prime}: 6,1$]pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopropyimethyl-6-(4-methoxyphenyl)-pyrazino[$2^{\prime}, 1^{\prime}: 6,1$]pyrido[3,4-b]indole $-1,4$-dione: (6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methyl-pyrazino[2 ', 1':6,1]pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[$2^{\prime}, 1^{\prime}: 6,1$]pyrido[3,4-b]indole-1,4-dione; (6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1': 6,1] pyrido [3,4-b] indole-1,4-dione; (5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3,4-methylenedioxyphenyl)-pyrrolo[1",2" : 4', 5']pyrazino[2', 1^{\prime} : 6,1]pyrido[3,4-b]indole-5-1,4-dione; and physiologically acceptable salts and solvates thereof.
10. (6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2', 1 ':6,1]pyrido[3,4-b]indole -1,4-dione; and physiologically acceptable salts and solvates thereof.
11. A compound according to any of Claims 1 to 10, for use in the treatment of stable, unstable and variant angina, "hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, congestive heart failure, renal failure, atherosclerosis, conditions of reduced blood vessel patency, peripheral vascular disease, vascular disorders inflammatory diseases, stroke, bronchitis, chronic asthma, allergic asthma, allergic minitis, glaucoma or diseases characterised by disorders of gut motility.
12. Use of a compound according to any of Claims 1 to 10 , for the manufacture of a medicament for the treatment of stable, unstable and variant angina, hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, congestive heart failure, renal failure, atherosclerosis, conditions of reduced blood vessel patency, peripheral vascular disease, vascular disorders, inflammatory diseases, stroke, bronchitis, chronic asthma, allergic asthma, allergic rhinitis, glaucoma or diseases characterised by disorders of gut motility.
13. A method of treating stable, unstable and variant angina, hypertension, pulmonary hypertension, chronic obstructive pulmonary disease, congestive heart failure, renal failure, atherosclerosis, conditions of. reduced blood vessel patency, peripheral vascular disease, vascular disorders, inflammatory diseases, stroke, bronchitis, chronic asthma, allergic asthma, allergic minitis, glaucoma or diseases characterised by disorders of gut motility, in a human or non-human animal body, which method comprises administering to said body a therapeutically effective amount of a compound according to any of Claims 1 to 10.
14. A pharmaceutical composition comprising a compound of the according to any of Claims 1 to 10, together with a pharmaceutically acceptable diluent or carrier therefor.
15. A process of preparing a pharmaceutical composition comprising a compound according to any of Claims 1 to 10, which process comprises mixing said compound together with a pharmaceutically acceptable diluent or carrier therefor.
16. A process of preparing a compound of formula (1), which process comprises:

5

10
a process (A) for preparing a compound of formula (I), wherein R^{3} represents hydrogen which process (A) comprises treating a compound of formula (II)

in which Alk represents $\mathrm{C}_{1-\mathrm{b}}$ alkyl and Hal is a halogen atom, with a primary amine $\mathrm{R}^{1} \mathrm{NH}_{2}$; or
a process (B) for preparing a compound of formula (I), wherein R^{1} and R^{3} together represent a 3- or 4-membered alkyl or alkenyl chain, which process (B) comprises cyclisation of a compound of formula (VIII)

wherein Alk represents C_{1-6} alkyl and R^{1} and R^{3} together represent a 3- or 4-membered chain both as defined above; or
a process (C) for preparing a compound of formula (I) wherein R^{3} represents C_{1-3} alkyl, which process (C) comprises cyclisation of a compound of formula (X)

wherein Alk represents $C_{1.6}$ alkyl and R^{5} represents $C_{2.5}$ alkyl, substituted at C_{1} by a halogen atom; or
process $(A),(B)$ or (C) as hereinbefore described followed by
i) an interconversion step; and/or either
ii) salt formation; or
iii) solvate formation.
17. Compounds of formulae (II), (III), (V), (VI), (VII), (VIII) and (X), with the exception for compounds (III), (V), (VI) and (VII) wherein R° is hydrogen, R^{2} is phenyl and Alk is methyl.
15

Form PCT/ISAIID (esoond athent) (July 1992)

BNSDCCID: <WO__9519978A1_1 >
ATI 1009-0219

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : A61K 31/495	(11) International Publication Number: WO 97/03675 (43) International Publication Date: 6 February 1997 (06.02.97)
(21) International Application Number: PCT/EP96/03024 (22) International Filing Date: 11 July 1996 (11.07.96) (30) Priority Data: 9514464.8 14 July 1995 (14.07.95) GB (71) Applieant (for all designated States except US): LABORA. TOIRE GLAXO WELLCOME S.A. [FR/FR]; 43, rue Vineuse, F-75116 Paris (FR). (72) Inventor; and (75) Inventor/Applicant (for US only): DAUGAN, Alain, ClaudeMarie [FR/FR]; Laborawire Glaxo Wellcome S.A., Centre de Recherches, Z.A. de Courtaboeuf, 25, avenue de Quebec, F-91940 Les Ulis (FR). (74) Agents: FiLLER, Wendy, Anne et al.; Glaxo Wellcome House, Berkeley Avenue, Greenford, Middlesex UB6 ONN (GB).	(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.

(54) Title: USE OF CGMP-PHOSPHODIESTERASE INHIBITORS TO TREAT IMPOTENCE

(57) Abstract

The use of compounds of formula (1) (6R, I2aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino ${ }^{2}, 1^{\prime}$ ': 6.1]pyrido[3,4-b]indole-1,4-dione, (3S. 6R, 12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl)-pyrazino ${ }^{2}$ ', 1 ': 6,1] pyrido [3,4-b]indole-1,4-dione, and physiologically acceptable salts and solvates thereof, in the treatment of impotence.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	Uaited Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guimea	NE	Niger
BB	Barbados	GR	Greece	NL	Nechertands
BE	Belginm	HU	Hungary	NO	Norway
BF	Burkiona Faso	IE	Ireland	NZ	New Zealapd
BG	Bulgaria	IT	taly	PL	Poland
BJ	Benin	JP	Jepan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgysian	RU	Russian Federation
CA	Canada	$\mathbf{K P}$	Democratic People's Republic	SD	Sudan
CF	Central Afriean Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazathetan	SI	Slovenia
CI	Cace d'Ivoire	LI	Liechuenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanks	SN	Senegal
CN	China	LR	LWeriz	SZ	Swaziland
CS	Czechoslovatia	LT	Lithumia	TD	Chad
C\%	Crech Republic	LU	Laxembourg	TG	Togo
DE	Germany	LV	Laivia	TJ	Tajkistan
DK	Demmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Repablic of Moldova	UA	Urraine
ES	Spain	$\mathbf{M G}$	Madagascar	UG	Usomda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	U2	Uabekistan
GA	Gabor	MR	Mauritania	VN	Viet Nem

USE OF CGMP-PHOSPHODIESTERASE INHIBITORS TO TREAT IMPOTENCE

This invention relates to the use of tetracyclic derivatives which are potent and selective inhibitors of cyclic guanosine 3 ',5'monophosphate specific phosphodiesterase (cGMP specific PDE) in the treatment of impotence.
impotence can be defined as a lack of power, in the male, to copulate and may involve an inability to achieve penile erection or ejaculation, or both. More specifically, erectile impotence or dysfunction may be defined as an inability to obtain or sustain an erection adequate for intercourse. Its prevalence is claimed to 50 years, and between 18 and 75% between 55 and 80 years of age.

Reports of well-controiled clinical trials in man are few and the efficacy of orally administered drugs is low. Although many different drugs have been shown to induce penile erection, they are only effective after direct injection into he penis, e.g. intraurethrally or intracavemosally (i.c.), and are not approved for erectile dysfunction. Current medical treatment is based on the i.c. injection of vasoactive substances and good results have been claimed with phenoxybenzamine, phentolamine, papaverine and prostaglandin E_{1}, either alone or in combination; however, pain, priapism and fibrosis of the penis are associated with the i.c. administration of some of these agents. Potassium channel openers (KCO) and vasoactive intestinal polypeptide (NIP) have also been shown to be active i.c., but cost and stability issues could limit development of the latter. An altemative to the i.c. route is the use of glyceryl trinitrate (GTN) patches applied to the penis, which has been shown to be

As a general alternative to pharmacological intervention, a variety of penile prostheses has been used to assist achievement of an erection. The short term success rate is good, but problems with infection and ischaemia, especially in diabetic men, make this type of treatment a final option rather than first-line therapy.
The compounds of the invention are potent inhibitors of cyclic guanosine $3^{\prime}, 5^{\prime}-$ monophosphate phosphodi sterases (CGMP PDEs). GB 9514464.8, which is the priority document for the present application describes the syntheses of the compounds of the invention and their utility in impotence. WO95/19978, which
was unpublished at the priority date of the present application, also describes the syntheses of the compounds of the invention and their utility in other diseases associated with inhibition of cGMP PDEs. The compounds may be represented by the following general formula (I):

25 Cis-2,3,6,7,12,12a-hexahydro-6-(2,3-dihydrobenzo[b]furan-5-yl)-2-methylpyrazino[$2^{\prime}, 1^{\prime}: 6,1$]pyrido[3,4-b]indole -1,4-dione;
Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-methylpyrazino[$2^{\prime}, 1^{1}: 6,1$]pyrido[3,4-b]indole -1,4-dione;

```
--- Cis-2,3,6,7,12,12a-hexahydro-2-butyi-6-(4-methytphenyl)=pyrazino[ \(2^{\prime}, 1: 6,1\) ]pynido[3,4-b]indole -1,4-dione;
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione;
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2',1':6,1]pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopropylmethyl-6-(4-methoxyphenyl)pyrazino[2', 1:6,1]pyrido[3,4-b]indole -1,4-dione;
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methylpyrazino[2', 1::6,1]pyrido[3,4-b]indole -1,4-dione;
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino[ \(2^{\prime}, 1\) ':6,1] pyrido[3,4-b]indole-1,4-dione:
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)pyrazino[2', \(\left.1^{\prime}: 6,1\right]\) pyrido [3,4-b] indole-1,4-dione;
(5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3,4-methylenedioxyphenyl)-pyrrolo[1",2" : 4',5']pyrazino[2',1' : 6,1]pyrido[3,4-b]indole-5-1,4-dione;
Cis-2,3,6,7,12,12a-hexahydro-2-cyclopropyl-6-(3,4-methylenedioxyphenyl)pyrazino[ 2 ', \(1^{\prime}: 6,1\) ]pyrido[3,4-b]indole -1,4-dione;
(3S, 6R,12aR)-2,3,6,7,12,12a-hexahydro-3-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[ \(2^{\prime}, 1^{\prime}: 6,1\) ]pyrido[3,4-b]indole -1,4-dione;
``` and physioiogically acceptable salts and solvates (e.g. hydrates) thereof.

The specific compounds of the invention are:
(6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino[\(2^{\prime}, 1^{\prime}: 6,1\)]pyrido[3,4-b]indole -1,4-dione (Compound A); and
(3S, 6R, 12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl)-pyrazino[\(\left.2^{\prime}, 1{ }^{\prime}: 6,1\right]\) pyrido[3,4-b]indole-1,4-dione (Compound B):
and physiologically acceptable salts and solvates (e.g. hydrates) thereof.
Unexpectedly, it has now been found that compounds of formula (I), and in particular compounds \(A\) and \(B\), are useful in the treatment of erectile dysfunction. Furthermore the compounds may be administered orally, thereby
obviating the disadvantages-associated-with -i.c--administration:- -- Thus the present invention concems the use of compounds of formula (I), and in particular compounds A and B, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition containing either entity, for the manufacture of a medicament for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man.

The pharmaceutically acceptable satts of the compounds of formula (1), and in particular compounds \(A\) and \(B\) which contain a basic centre are acid addition salts formed with pharmaceutically acceptable acids. Examples include the hydrochloride, hydrobromide, sulphate or bisulphate, phosphate or hydrogen phosphate, acetate, benzoate, succinate, fumarate, maleate, lactate, citrate, tartrate, gluconate, methanesulphonate, benzenesuiphonate and p-toluenesulphonate salts. Compounds of formula (I), and in particular compounds \(A\) and \(B\) can also provide pharmaceutically acceptable metal salts, in particular alkali metal salts, with bases. Examples inciude the sodium and potassium salts.

It has been shown that compounds of the present invention are potent and selective inhibitors of cGMP specific PDE. It has now been surprisingly found that human corpus cavemosum contains three distinct PDE enzymes. Th predominant PDE has further surprisingly been found to be cGMP PDE. As a consequence of the selective PDE \(V\) inhibition exhibited by compounds of the present invention, the subject compounds can elevate cGMP levels, which in turn can mediate relaxation of the corpus cavernosum tissue and consequent penile erection.

Although the compounds of the invention are envisaged primarily for the treatment of erectile dysfunction or male sexual dysfunction, they may also be useful for the treatment of female sexual dysfunction including orgasmic dysfunction related to clitoral disturbances.

Generally, in man, oral administration of the compounds of the invention is the preferred route, being the most convenient and avoiding the disadvantages associated with i.c. administration. In circumstances where the recipient suffers from a swallowing disorder or from impairment of drug absorption after oral administration, the drug may be administered parenterally, e.g. sublingually or buccally.
\(\qquad\) ---.-- For administration to man in the curative-or-prophylactic treatment of the disorders identified above, oral dosages of a compound of formula (I), and in particular compounds \(A\) and \(B\) will generally be in the range of from \(0.5-800 \mathrm{mg}\) daily for an average adult patient (70 kg). Thus for a typical adult patient, individual tablets or capsules contain from \(0.2-400 \mathrm{mg}\) of active compound, in a suitable pharmaceutically acceptable vehicle or carrier, for administration in single or multiple doses, once or several times per day. Dosages for buccal or sublingual administration will typically be within the range of from \(0.1-400 \mathrm{mg}\) per single dose as required. In practice the physician will determine the actual dosing regimen which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case but there can be individual instances in which higher or tower dosage ranges may be merited, and such are within the scope of this invention.

15 For human use, compounds of formula (l), and in particular cornpounds \(A\) and \(B\) can be administered alone, but will generally be administered in admixture with a pharmaceutical carrier selected with regard to the intended route of administration and standard pharmaceutical practice. For example, the compound may be administered orally, buccally or sublingually, in the form of
20 tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs or suspensions containing flavouring or colouring agents. Such liquid preparations may be prepared with pharmaceutically acceptable additives such as suspending agents (e.g. methylcellulose, a semi-synthetic glyceride such as witepsol or mixtures of glycerides such as a mixture of apricot kernel oil and PEG-6 esters or mixtures of PEG-8 and caprylic/capric glycerides).

For veterinary use, a compound of formula (I), and in particular compound \(A\) or B or a non-toxic salt thereof is administered as a suitably acceptable formulation in accordance with normal veterinary practice and the veterinary surgeon will determine the dosing regimen and route of administration which will be most appropriate for a particular male animal.

Thus the invention includes a pharmaceutical composition for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man, comprising a compound of formula (I), and in particular compound A or B, or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable diluent or carrier.

There is further provided a process-for the preparation of a pharmaceutical composition for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man, comprising formulating a compound of formula (I), and in particular compound \(A\) or \(B\), or a pharmaceutically acceptable salt thereof, with a pharmaceutically acceptable diluent or carrier.

The invention also provides a method of treating a male animal, including man, to cure or prevent erectile dysfunction which comprises treating said male animal with an effective amount of a compound of formula (I), and in particular compound A or B , or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition containing either entity.

Moreover, the invention includes the use of a compound of formula (I), and in particular compound A or B, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition containing either entity, for the manufacture of a medicament for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man.

A compound of formula (1), and in particular compound A or B, may also b used in combination with other therapeutic agents which may be useful in the treatment of erectile dysfunction substantially as hereinbefore described. The invention thus provides, in another aspect, a combination of a compound of formula (I), and in particular compound A or B together with another therapeutically active agent.

The combination referred to above may conveniently be presented for use in the form of a pharmaceutical formulation and thus pharmaceutical compositions comprising a combination as defined above together with a pharmaceuticaliy acceptable diluent or carrier comprise a further aspect of the invention.

The individual components of such a combination may also be administered either sequentially or simultaneously in separate pharmaceutical formulations.

Appropriate doses of known therapeutic agents for use in combination with a compound of the invention will be readily appreciated by those skilled in the art.

The compounds of the invention may be prepared by any suitable method known in the art or by the following process which forms part of the present invention. The process has been previously substantially described in the priority document of the present invention GB9514464.8, and in WO95/19978.

Thus, a process for preparing a compound of formula-(1)-comprises treating a compound of formula (II)

(II)
(in which Alk represents \(\mathrm{C}_{1-6 \mathrm{blkyl}}\) e.g. methyl or ethyl and Hal is a halogen atom, e.g. chlorine) with a primary amine \(\mathrm{R}^{1} \mathrm{NH}_{2}\) in a suitable solvent such as an alcohol (e.g. methanol or ethanol) or a mixture of solvents, conveniently at a temperature of from \(20^{\circ} \mathrm{C}\) to reflux (e.g. at about \(50^{\circ} \mathrm{C}\)).

A compound of formula (II) may conveniently be prepared by treating a compound of formula (III) with a compound of formula (IV)

in a suitable solvent such as a halogenated hydrocarbon (e.g. trichioromethane or dichloromethane), or an ether (e.g. tetrahydrofuran), preferably in the presence of a base such as an organic amine (e.g. a trialkylamine such as triethylamine) or an alkali metal carbonate or bicarbonate (e.g. \(\mathrm{NaHCO}_{3}\)). The reaction may conveniently be effected at a temperature of from \(-20^{\circ} \mathrm{C}\) to \(+20^{\circ} \mathrm{C}\) (e.g. at about \(\mathrm{O}^{\circ} \mathrm{C}\)).

A compound of formula (I) may also be prepared from a compound of formula (III) in a two-step procedure via a compound of formula (II) isolated without purification.

Compounds of formula (1) may be prepared as individual enantiomers in two steps from the appropriate enantiomer of formula (III) or as mixtures (e.g. racemates) of either pairs of cis or trans isom is from the correspondong mixtures of either pairs of cis or trans isomers of formula (III).

Individual enantiomers of the compounds of the invention may be prepared from racemates by resolution using methods known in the art for the separation of racemic mixtures into their constituent enantiomers, for example using HPLC (high performance liquid chromatography) on a chiral column such as Hypersil naphthylurea.

A compound of formula (III) may conveniently be prepared from a tryptophan alkyl ester of formula (\(V\))

(where Alk is as previously defined) or a salt thereof (e.g. the hydrochloride salt) with an aldehyde \(\mathrm{R}^{2} \mathrm{CHO}\). The reaction may conveniently be effected in a suitable solvent such as a halogenated hydrocarbon (e.g. dichloromethane) or an aromatic hydrocarbon (e.g. toluene) in the presence of an acid such as trifluoroacetic acid. The reaction may conveniently be carried out at a temperature of from \(-20^{\circ} \mathrm{C}\) to reflux to provide a compound of formula (III) in one step. The reaction may also be carried out in a solvent such as an aromatic hydrocarbon (e.g. benzene or toluene) under reflux, optionally using a DeanStark apparatus to trap the water produced.

The reaction provides a mixture of cis and trans isomers which may be either individual enantiomers or racemates of pairs of cis or trans isomers depending upon whether racemic or enantiomerically pure tryptophan alkyl ester was used as the starting material. Individual cis or trans enantiomers may conveniently be separated from mixtures thereof by fractional crystallisation or by chromatography (e.g. flash column chromatography) using appropriate solvents and eluents. Similarly, pairs of cis and trans isomers may be separated by chromatography (e.g. flash column chromatography) using appropriate eluents. An optically pure trans isomer may also be converted to an optically pure cis isomer using suitable epimerisation procedures. One such procedure comprises treating the trans isomer or a mixture (e.g. 1:1 mixture) of cis and trans isomers with methanolic or aqueous hydrogen chlorid at a temperature of from \(0^{\circ} \mathrm{C}\) to the refluxing temperature of the solution. The mixture may then be subjected to chromatography (e.g. flash column chromatography) to separate the resulting diastereoisomers, or in the procedure utilising aqueous hydrogen chloride the
desired cis isomer precipitates out as the hydrochloride salt which may then be isolated by filtration.

The pharmaceutically acceptable acid addition salts of a compound of formula (I), and in particular compound \(A\) or \(B\) which contain a basic centre may be prepared in a conventional manner. For example, a solution of the free base may be treated with a suitable acid, either neat or in a suitable solution, and the resulting salt isolated either by filtration or by evaporation under vacuum of the reaction solvent. Pharmaceutically acceptable base addition salts may be obtained in an analogous manner by treating a solution of compound A or B with a suitable base. Both types of salt may be formed or interconverted using ion-exchange resin techniques.

Compounds of the invention may be isolated in association with solvent molecules by crystallisation from or evaporation of an appropriate solvent.

The syntheses of compounds A and B and of the intermediates for use therein are illustrated by the following examples. The examples have been previously described in the priority document of the instant invention GB9514464.8, and the corresponding Intermediate or Example numbers therein are shown in parentheses next to the current Intermediate or Example number.

In the Examples section hereinafter the following abbreviations are used:
MeOH (methanol) and EtOH (ethanol),

\section*{Intermediate 1 (54)}
(1R.3R)-Methyl 1.2.3.4-tetrahydro-1-(3.4-methylenedioxyphenyl)-9H-pyrido[3.4-blindole-3-carboxylate, cis isomer

To a stirred solution of D-tryptophan methyl ester (11 g) and piperonal (7.9 g) in anhydrous \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})\) cooled at \(0^{\circ} \mathrm{C}\) was added dropwise trifluoroacetic acid (7.7 mL) and the solution was allowed to react at ambient temperature. After 4 days, the yellow solution was diluted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})\) and washed with a saturated aqueous solution of \(\mathrm{NaHCO}_{3}\), then with water (\(3 \times 200 \mathrm{~mL}\)) and dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\). The organic layer was evaporated under reduced pressure and the residue containing the two geometric isomers was purified by flash
chromatography eluting with dichloromethane/ethyl acetate (97/3) to give as the firsr eluting product the title compound (6.5 g)
m.p. : \(154^{\circ} \mathrm{C}\)

Intermediate \(2(83)\)
5 (1R. 3R)-Methyl 1,2,3,4-tetrahydro-2-(2-chloropropionyl)-1-(3.4-methylenedioxyphenyl)-9H-pyrido [3,4-b]indole-3-carboxylate

To a solution of (R)-(+)-2-chloropropionic acid (191 \(\mu \mathrm{l}, 2.2 \mathrm{mmol}\)) in anhydrous dichloromethane (30 mL), was added dicyclohexylcarbodiimide (0.45 g , 2.2 mol). Intermediate \(1(0,7 \mathrm{~g}, 2 \mathrm{mmol})\) was then added and the mixture was

10 stirred at room temperature for 20 hours. The formed precipitate of dicyclohexylurea was removed by filtration, the filtrate was evaporated in vacuo and the crude product was purified by flash chromatography eluting with toluenelethyl acetate: 95/5. The oily compound obtained was then crystallised from ether/hexane to give the title compound as pale yellow crystals (0.74 g)

15 m.p.: \(126-128^{\circ} \mathrm{C}\).

\section*{Example 1 (78) (Compound A)}
(6R.12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino[2'1: \(1^{\prime} 6.1\)]pyrido[3,4-b]indole \(-1,4\)-dione
a) To a stirred solution of intermediate \(1(0.5 \mathrm{~g})\) and \(\mathrm{NaHCO}_{3}(0.14 \mathrm{~g})\) in anhydrous \(\mathrm{CHCl}_{3}(20 \mathrm{~mL})\) was added dropwise chloroacetyl chloride (0.27 mL) at \(0^{\circ} \mathrm{C}\). The resulting mixture was stirred for 1 hour at the same temperature and diluted with \(\mathrm{CHCl}_{3}(20 \mathrm{~mL})\). Water (10 mL) was then added dropwise with stirring to the mixture, followed by a saturated solution of \(\mathrm{NaHCO}_{3}\). The organic layer was washed with water until neutrality and dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\). After evaporation of the solvent under reduced pressure, (6 R.12aR)-methyl 1.2.3.4-tetrahydro-2-chloroacetyl-1-(3.4-methylenedioxyphenyl)-9H-pyrido[3,4-blindole-3-carboxylate was obtained as an oil which was crystallised from ether to give a solid (\(0.38 \mathrm{~g}, \mathrm{~m} . \mathrm{p} .: 233^{\circ} \mathrm{C}\)) which was used without further purification in the next step.
b) To a stirred suspension of the chloroacetyl intermediate (0.37 g) in MeOH \((20 \mathrm{~mL})\) was added at room temperature a solution of methylamine (\(33 \%\) in
\(\mathrm{EtOH})(0.4 \mathrm{~mL})\) and the resulting mixture was heated at \(50^{\circ} \mathrm{C}\) under \(\mathrm{N}_{2}\) for 16 hours. The solvent was removed under reduced pressure and the residue was dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (50 mL). After washing with water (\(3 \times 20 \mathrm{~mL}\)), drying over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and evaporating to dryness, the residue was purified by flash

Found:C,67.77;H,4.92;N,10.74\%.
\([\alpha]^{20^{\circ}}{ }_{\mathrm{D}}=+71.0^{\circ}\left(\mathrm{C}=1.00 ; \mathrm{CHCl}_{3}\right)\).

\section*{Example 2(117) (Compound B)}
(3S. 6R. 12aR)-2,3.6.7.12.12a-hexahydro-2,3-dimethyl-6-(3.4-
methylenedioxyphenyl)-pyrazino[2", \(\left.1^{\prime}: 6.1\right]\) pyrido[3.4-b]indole-1.4-dione
To a stirred solution of intermediate \(2(0.3 \mathrm{~g}, 0.68 \mathrm{mmol})\) in THF (30 mL) was added at room temperature a solution of methylamine (\(33 \%\) in EtOH) (0.68 mL) and the resulting solution was treated at reflux under \(\mathrm{N}_{2}\) for 6 days. The solvent was removed under reduced pressure and the residue was dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) \(20(50 \mathrm{~mL})\). After washing with water (\(2,25 \mathrm{~mL}\)), drying over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and evaporating to dryness, the crude product was purified by flash chromatography eluting with dichioromethane/methanol : 99/1. The oily residue obtained was crystallised from methanol to give the title compound as white crystals (40 mg) m.p. : \(307-309^{\circ} \mathrm{C}\).

25 Analysis for \(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}\) :
Calculated: \(\quad\) C, \(68.47 ; H, 5.25 ; N, 10.42\);
Found: C, 68.35; H, 5.33; N, 10.42\%.
\([\alpha]^{20^{\circ}}{ }_{D}=+65.2^{\circ}\left(c=1.15 ; \mathrm{CHCl}_{3}\right)\).

The following compound was similarly prepared:
Example 3
(3S, 6R.12aR)-2.3.6.7.12.12a-Hexahydro-3-methyl-6-(3.4-
methylenedioxyphenyi)-pyrazino[2',1':6.1]pyridol(3.4-b]indole -1.4-dione as white crystals using ammonia as the base.
m.p. : \(319-321^{\circ} \mathrm{C}\).

Analysis for \(\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}\) :
Calculated: C, 67.86 ; H, 4.92 ; N, 10.79 ;
Found: C, 67.86; H, 5.17; N, 10.72\%.
\([\alpha]^{20{ }^{\circ}}{ }_{D}=+107^{\circ}(\mathrm{c}=1\); pyridine \()\).

Compounds \(A\) and \(B\) have been included in pharmacy formulations and details of such formulations are given below.

IABLETS FOR ORAL ADMINISTRATION
A. Direct Compression
\begin{tabular}{|l|c|}
\hline 1. & mg/tablet \\
\hline Active ingredient & 50.0 \\
Crospovidone USNF & 8.0 \\
Magnesium Stearate Ph Eur & 1.0 \\
Anhydrous Lactose & 141.0 \\
\hline
\end{tabular}

The active ingredient was sieved and blended with the excipients. The resultant mix was compressed into tablets.
\begin{tabular}{|l|c|}
\hline 2. & mg/tablet \\
\hline Active ingredient & 50.0 \\
Colloidal Silicon Dioxide & 0.5 \\
Crospovidone & 8.0 \\
Sodium Lauryl Sulphate & 1.0 \\
Magnesium Stearate Ph Eur & 1.0 \\
Microcrystalline Cellulose USNF & 139.5 \\
\hline
\end{tabular}

The active ingredient was sieved and blended with the excipients. The resultant mix was compressed into tablets.
B. WET GRANULATION

5
\begin{tabular}{|l|c|}
\hline 1. & mg/tablet \\
\hline Active ingredient & 50.0 \\
Polyvinyl pyrollidone & 150.0 \\
Polyethylene glycol & 50.0 \\
Polysorbate 80 & 10.0 \\
Magnesium Stearate Ph Eur & 2.5 \\
Croscarmeilose Sodium & 25.0 \\
Colloidal Silicon Dioxide & 2.5 \\
Microcrystalline Cellutose USNF & 210.0 \\
\hline
\end{tabular}

The polyvinyl pyrolidone, polyethylene glycol and polysorbate 80 were dissoived in water. The resultant solution was used to granulate the active ingredient. After drying the granules were screened, then extruded at elevated temperatures and pressures. The extrudate was milled and/or screened then was blended with the microcrystalline cellulose, croscarmellose sodium, colloidal silicon dioxide and magnesium stearate. The resultant mix was compressed into tablets.
\begin{tabular}{|l|r|}
\hline 2. & mg/tablet \\
\hline Active ingredient & 50.0 \\
Polysorbate 80 & 3.0 \\
Lactose Ph Eur & 178.0 \\
Starch BP & 45.0 \\
Pregelatinised Maize Starch BP & 22.5 \\
Magnesium Stearate BP & 1.5 \\
\hline
\end{tabular}

The active ingredient was sieved and blended with the lactose, starch and pregelatinised maize starch. The polysorbate 80 was dissolved in purified water. Suitable volumes of the polysorbate 80 solution were added and the powders were granulated. After drying, the granules were screened and blended with the magnesium stearate. The granules were then compressed into tablets.

Tablets of other strengths may be prepared by altering the ratio of active ingredient to the other excipients.

\section*{FILM COATED TABLETS}

The aforementioned tablet formulations were film coated.
\begin{tabular}{|l|l|}
\hline Coating Suspension & \(\% \mathrm{w} / \mathbf{w}\) \\
\hline
\end{tabular}
- \begin{tabular}{l}
Opadry white \\
Purified water Ph Eur
\end{tabular}\(\quad\)\begin{tabular}{c|c}
13.2 \\
to \(100.0^{*}\)
\end{tabular}
* The water did not appear in the final product. The maximum theoretical weight of solids applied during coating was \(20 \mathrm{mg} / \mathrm{tab}\) let.
\(\dagger\) Opadry white is a proprietary material obtainable from Colorcon Limited, UK which contains hydroxypropyl methylcellulose, titanium dioxide and triacetin.

The tablets were film coated using the coating suspension in conventional film coating equipment.

\section*{CAPSULES}
\begin{tabular}{|l|c|}
\hline 1. & mg/capsule \\
\hline Active ingredient & 50.0 \\
Lactose & 148.5 \\
Polyvinyl pyrollidone & 100.0 \\
Magnesium Stearate & 1.5 \\
\hline
\end{tabular}

The active ingredient was sieved and blended with the excipients. The mix was filled into size No. 1 hard gelatin capsules using suitable equipment.
\begin{tabular}{|l|c|}
\hline 2. & mg/capsule \\
\hline Active ingredient & 50.0 \\
Microcrystalline Cellulose & 233.5 \\
Sodium Lauryl Sulphate & 3.0 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|}
Crospovidone & 12.0 & \(\ldots\) \\
Magnesium Stearate & 1.0 \\
\hline
\end{tabular}

The active ingredient was sieved and blended with the excipients. The mix was filled into size No. 1 hard gelatin capsules using suitable equipment.

Other doses may be prepared by altering the ratio of active ingredient to excipient, the fill weight and if necessary changing the capsule size.
\begin{tabular}{|l|c|}
\hline 3. & mg/capsule \\
\hline Active ingredient & 50.0 \\
Labrafil M1944CS & to 1.0 ml \\
\hline
\end{tabular}

The active ingredient was sieved and blended with the Labrafil. The suspension was filled into soft gelatin capsules using appropriate equipment.

Compounds of the invention were dissolved in DMSO finally present at \(2 \%\) in the assay. The incubation time was 30 minutes during which the total substrate conversion did not exceed \(30 \%\).

The \(I C_{50}\) values for the compounds examined were determined from concentration-response curves using typically concentrations ranging from 10 nM to \(10 \mu \mathrm{M}\). Tests against other PDE enzymes using standard methodology also
showed that compounds of the invention are highly selective for the cGMPspecific PDE enzyme.

\section*{-cGMP level measurements}

5 Rat aortic smooth muscle cells (RSMC) prepared according to Chamley et al. in Cell Tissue Res. 177, 503-522 (1977) were used between the 10th and 25th passage at confluence in 24 -well culture dishes. Culture media was aspirated and replaced with PBS (0.5 ml) containing the compound tested at the appropriate concentration. After 30 minutes at \(37^{\circ} \mathrm{C}\), particulates guanylate cyclase was stimulated by addition of ANF (100 nM) for 10 minutes. At the end of incubation, the medium was withdrawn and two extractions were performed by addition of \(65 \%\) ethanol \((0.25 \mathrm{ml})\). The two ethanolic extracts were pooled and evaporated until dryness, using a Speed-vac system. c-GMP was measured after acetylation by scintillation proximity immunoassay (AMERSHAM).

The compounds according to the present invention were typically found to exhibit an \(\mathrm{IC}_{50}\) value of less than 500 nM , and an \(E C_{50}\) value of less than 5 . In vitro test data for representative compounds of the invention is given in following Table 1:

Table 1
\begin{tabular}{|c|c|c|}
\hline Example No. & \(\mathrm{IC}_{50} \mathrm{nM}\) & \(\mathrm{EC}_{50} \mu \mathrm{M}\) \\
\hline 1 & 2 & 0.2 \\
\hline 2 & 2 & 0.2 \\
\hline
\end{tabular}

25 The above data demonstrates the ability of the subject compounds of the invention to inhibit cGMP PDE, and hence their utility in the treatment of erectile dysfunction substantially as hereinbefore described.

\section*{CLAIMS}
1. Use of a compound of formula (I):

and salts and solvates (e.g. hydrates) thereof, in which:
\(\mathrm{R}^{0}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alkyl;
\(\mathrm{R}^{1}\) represents hydrogen, \(\mathrm{C}_{1-6}\) alkyl, \(\mathrm{C}_{2-6}\) alkenyl, \(\mathrm{C}_{2-6}\) alkynyl, halo \(\mathrm{C}_{1-6}\) alkyl, \(\mathrm{C}_{3-8}\) cycloalkyl, \(\mathrm{C}_{3-8}\) cycloalkylC \(\mathrm{C}_{1-3}\) alkyl, arylC \(\mathrm{C}_{1-3}\) alkyl or heteroaryl \(C_{1-3}\) alkyl;
\(\mathrm{R}^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic

\section*{ring}

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
\(R^{3}\) represents hydrogen or \(C_{1-3}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3- or 4- membered alkyl or aikenyl chain;
for the manufacture of a medicament for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man.
2. Use of a compound selected from
(6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino[2 ', 1 ':6, 1]pyrido[3,4-b]indole -1,4-dione; and
(3S, 6R, 12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4-
methylenedioxyphenyl)-pyrazino[\(2^{\prime}, 1\) ': 6,1]pyrido[3,4-b]indole-1,4-dione;
and physiologically acceptable salts and solvates thereof for the manufacture of a medicament for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man.
3. Method for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man, comprising administration of a compound of formula (I):

and salts and solvates (e.g. hydrates) thereof, in which:
\(\mathrm{R}^{0}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alkyl;
\(\mathrm{R}^{1}\) represents hydrogen, \(\mathrm{C}_{1-6}\) alkyl, \(\mathrm{C}_{2-6}\) alkenyl, \(\mathrm{C}_{2-6}\) alkynyl, halo \(\mathrm{C}_{1-6}\) alkyl, \(\mathrm{C}_{3-8}\) cycloalkyl, \(\mathrm{C}_{3-8}\) cycloalkylC \(\mathrm{C}_{1-3}\) alkyl, arylC \(\mathrm{C}_{1-3}\) alkyl or heteroaryl \(\mathrm{C}_{1-3}\) alkyl;
\(R^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic
ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
\(20 \quad R^{3}\) represents hydrogen or \(C_{1-3}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3- or 4- membered alkyl or alkenyl chain.
4. Method for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man, comprising administration of a compound selected from
(6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2',1':6,1]pyrido[3,4-b]indole -1,4-dion ; and
(3S, \(\qquad\) 12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl)-pyrazino[\(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole-1,4-dione and physiologically acceptable salts and solvates thereof.
5. A pharmaceutical composition for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man, comprising a compound of formula (1):

and salts and solvates (e.g. hydrates) thereof, in which:
\(\mathrm{R}^{0}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alkyi;
\(R^{1}\) represents hydrogen, \(C_{1-6}\) alkyl, \(C_{2-6}\) alkenyl, \(C_{2-6}\) alkynyl, halo \(C_{1-6}\) alkyl, \(\mathrm{C}_{3-8}\) cycloalkyl, \(\mathrm{C}_{3-8}\) cycloalkylC 1-3alkyl, arylC \(\mathrm{1}_{1-3}\) alkyl or heteroaryl \(\mathrm{C}_{1-3}\) alkyl;
\(\mathbf{R}^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic
ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring A is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
\(R^{3}\) represents hydrogen or \(C_{1-3}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3- or 4- membered alkyl or alkenyl chain;
together with a pharmaceutically acceptable diluent or carrier.
6. A pharmaceutical composition for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man, comprising a compound \(s\) lected from
(6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)- \(\qquad\) pyrazino[\(2^{\prime}, 1^{\circ}: 6,1\)]pyrido[3,4-b]indole -1,4-dione; and
(3S, 6R, 12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2',1': 6,1]pyrido[3,4-b]indole-1,4-dione
and physiologically acceptable salts and solvates thereof, together with a pharmaceutically acceptable diluent or carrier.
7. A process for the preparation of a pharmaceutical composition according to Claim 5 for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man, comprising formulating a compound of formula (l), and physiologically acceptable salts and solvates thereof, with a pharmaceutically acceptable diluent or carrier.
8. A process for the preparation of a pharmaceutical composition according to Claim 6 for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man, comprising formulating a compound selected from
(6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino[2 ', 1 ':6,1]pyrido[3,4-b]indole -1,4-dione; and
(3S, 6R, 12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2',1' : 6,1]pyrido[3,4-b]indole-1,4-diorie and physiologically acceptable salts and solvates thereof, with a pharmaceutically acceptable diluent or carrier.
9. A method of treating a male animal, including man, to cure or prevent erectile dysfunction which comprises treating said male animal with an effective amount of a pharmaceutical composition according to Claim 5 or 6.
10. Use of a pharmaceutical composition according to Claim 5 or 6 , for the manufacture of a medicament for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man.
11. A combination of a compound selected from
(6R, 12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino[\(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole -1,4-dione; and
(3S, 6R, 12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4 methylenedioxyphenyl)-pyrazino[\(2^{\prime}, 1\) ': 6,1]pyrido[3,4-b]indole-1,4-dione and physiologically acceptable salts and solvates thereof, together with another therapeutically active agent, for simultaneous, separate, or sequential use in the treatment of erectile dysfunction in a male animal, including man.
12. A pharmaceutical formulation comprising a combination according to Claim
11 together with a pharmaceutically acceptable diluent or carrier.

Form PCT/TSARID (second sheet) (huly 1992)

\section*{INTERNATIONAL SEARCH REPORT}

It acional application No.
PCT/EP 96/ 03024
Box 1 Observations where certin claims were found unsearchabie (Continuation of item 1 of first sheet)

This international search report has not been established in respeet of certain ciaims under Article 17(2)(a) for the following reasons.
\(1 .-X\)
Claims Nos::
because they relaie to subject matier not required to be searched by this Authority, namely:
Remark: Although claims \(3,4,9\), are directed to a method of treatment
of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. \(X\) Claims Nos.:

11
because they reizte to parts of the international applieation that do not comply with the prescribed requirements to such an extent that no meaningful international scarch can be carried out specifically:
The phrase "...another therapeutically active agent..." is insufficienty specific.
3.Claims Nos.:
because they are dependent ciaims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as foliows:
1. \(\square\) As all required additional search fees were umely paid by the applicant, uhis international search report covers all searchable ciaims.
2.As all searchable claims could be searches without effort jusifying an additional fee, this Authority did not invite payment of any additional fee.
3. \(\square\) As only some of the required additional scarch fees were umely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.No required additional search fees were timely paid by the applicant. Consequenty, this international search report is resuricted to the invention first mentioned in the claims; it is covered by ciaims Nos.:

Remiark on Protest
The additional search fees were accompanied by the applicant's protest
\(\square\) No protest accompanied the payment of additional search fees.

Form PCTiISA, 210 (continuation of first sheet (1)) (July 1992)
BNSDOCID: <WO__9703675A 1_1_>
;

This Page Is Inserted by IFW Operations and is not a part of the Official Record

\section*{BEST AVAILABLE IMAGES}

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):
- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

\section*{IMAGES ARE BEST AVAILABLE COPY.}

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

\section*{FOR THE PURPOSES OF INFORMATION ONLY}

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AL & Albania & ES & Spain & LS & Lesotho & SI & Slovenia \\
\hline AM & Armenia & FI & Finland & LT & Lithuania & SK & Slovakia \\
\hline AT & Austria & FR & France & LU & Luxembourg & SN & Senegal \\
\hline AU & Australia & GA & Gabon & LV & Larvia & SZ & Swaziland \\
\hline \(\mathrm{A}_{2}\) & Azerbaijan & GB & United Kingdom & MC & Monaco & TD & Chad \\
\hline BA & Bosnia and Herzegovina & GE & Georgia & MD & Republic of Moldova & TG & Togo \\
\hline BB & Barbados & GH & Ghana & MG & Madagascar & TJ & Tajikistan \\
\hline BE & Belgium & GN & Guinea & MK & The former Yugoslav & TM & Turkmenistan \\
\hline BF & Burtina Faso & GR & Greece & & Republic of Macedonia & TR & Turkey \\
\hline BG & Bulgaria & HU & Hungary & ML & Mali & TT & Trinidad and Tobago \\
\hline BJ & Benin & IE & Ireland & \(\mathbf{M N}\) & Mongolia & UA & Ukraine \\
\hline BR & Brazil & IL & - Israel & MR & Mauritania & UG & Uganda \\
\hline BY & Belarus & IS & Iceland & MW & Malawi & US & United States of America \\
\hline CA & Canada & IT & Italy & MX & Mexico & UZ & Uzbekistan \\
\hline CF & Central African Republic & JP & Japan & NE & Niger & VN & Viet Nam \\
\hline CG & Congo & KE & Kenya & NL & Netherlands & YU & Yugoslavia \\
\hline CH & Switzerland & KG & Kyrgyestan & NO & Norway & ZW & Zimbabwe \\
\hline CI & Cote d'Ivoire & KP & Democratic People's & NZ & New Zealand & & \\
\hline CM & Cameroon & & Republic of Korea & PL & Poland & & \\
\hline CN & China & KR & Republic of Korea & PT & Portugal & & \\
\hline CU & Cuba & KZ & Kazakstan & RO & Romania & & \\
\hline CZ & Czech Republic & LC & Saint Lucia & RU & Russian Federation & & \\
\hline DE & Germany & 4 & Licehtenstein & SD & Sudan & & \\
\hline DK & Denmark & LK & Sri Lanka & SE & Sweden & & \\
\hline EE & Estonia & LR & Liberia & SG & Singapore & & \\
\hline
\end{tabular}

\title{
COMBINATION OF PHENTOLAMINE AND CYCLIC GMP PHOSPHODIESTERASE INHIBITORS FOR THE TREATMENT OF SEXUAL DYSFUNCTION
}

\section*{BACKGROUND}

The present invention relates to pharmaceutical compositions comprising a combination of phentolamine and cyclic guanosine \(3^{\prime}, 5\)-monophosphate phosphodiesterase (cGMP PDE) inhibitors and to methods of treating sexual dysfunction, especially erectile dysfunction, comprising administering an effective amount of a combination of phentolamine and cGMP PDE inhibitors.

The use of the pharmaceutical compositions and methods of this invention results in an unexpected potentiation of human sexual response.

\section*{SUMMARY OF THE INVENTION}

The present invention is directed to the use of phentolamine in combination with cyclic guanosine \(3^{\prime}, 5^{\prime}\)-monophosphate phosphodiesterase (cGMP PDE) inhibitors for the treatment of humar sexual dysfunction. Preferably, the invention contemplates the use of Type V cGMP PDE inhibitor in combination with phentolamine with sildenafil being the preferred Type V cGMP PDE inhibitor.

More particularly, the present invention relates to a method of treating sexual dysfunction, especially erectile dysfunction, comprising administering to a human in need of such treatment an effective amount of a combination oi phentolamine, or a pharmaceutically acceptable salt, solvate or ester thereof, and a cGMP PDE inhibitor, or a pharmaceutically acceptable salt or solvate thereof. Preferably, the invention contemplates the use of Type V cGMP PDE inhibitor in combination with phentolamine, with sildenafil being the preferred Type V cGMP PDE inhibitor.
- 2 -

Phentolamine mesylate and sildenafil citrate are the most preferred active ingredients for use in the methods of this invention.

In a second aspect, the invention relates to a pharmaceutical composition comprising an effective amount of phentolamine, or a pharmaceutically acceptable salt, solvate or ester thereof; and a cGMP PDE inhibitor, or a pharmaceutically acceptable salt solvate thereof. Preferably, the pharmaceutical compositions envisioned by the present invention comprise phentolamine, or a pharmaceutically acceptable salt, solvate or ester thereof, and a Type V cGMP PDE inhibitor, or a pharmaceutically acceptable salt solvate thereof, with sildenafil being the preferred Type V cGMP PDE inhibitor. Phentolamine mesylate and sildenafil citrate are the most preferred active ingredients of the pharmaceutical compositions of this invention.

In a third aspect, the invention relates to a kit comprising in one container an effective amount of phentolamine, or a pharmaceutically acceptable salt, solvate or ester thereof in a pharmaceutically acceptable carrier, and in a separate container, an effective amount of a cGMP PDE inhibitor, or a pharmaceutically acceptable salt, solvate thereof in a pharmaceutically acceptable carrier, with sildenafil being the preferred Type V cGMP PDE inhibitor. Phentolamine mesylate and sildenafil citrate are the most preferred active ingredients for use in the kits of this invention.

In a fourth aspect, the invention relates to a pharmaceutical composition for the treatment of human sexual dysfunction comprising a therapeutically effective amount of a first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof, a therapeutically effective amount of a second vasodilating agent or a pharmaceutically acceptabie salt or solvate thereof, and a pharmaceutically acceptable carrier. Preferably, the first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is an adrenergic blocker. More preferably, the adrenergic blocker is an alpha-adrenergic blocker. Also preferred is that the alpha adrenergic blocker is selected from the group consisting of an alpha1-adrenergic blocker, an alpha2-adrenergic blocker or both an alpha1-adrenergic blocker and an alpha2-adrenergic blocker. Preferably, the second vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is a cGMP PDE inhibitor. Also preferrred is that the first vasodilating agent or a pharmaceutically acceptable salt or solvate or
ester thereof is an adrenergic blocker and the second vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is a cGMP PDE inhibitor. The adrenergic blocker can be selected from the group consisting of phentolamine, phentolamine mesylate, phentolamine hydrochloride, phenoxybenazmine, tolazoline, dibenamine, yohimbine, terazosin, doxazosin, prazosin and the like. The cGMP PDE inhibitor can a cGMP PDE V inhibitor. Preferably, the cGMP PDE V inhibitor is selected from the group consisting of:
sildenafil,
(6R, 12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-
methylenedioxyphenyl)-pyrizino[\(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole-1,4-dione (Compound A), and
(3S,6R,12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyi-6-(3,4-
methylenedioxyphenyl)-pyrazino[2', \(\left.1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole-1,4-dione (Compound B) or a pharmaceutically acceptable salt or solvate thereof.

In a fifth aspect, the invention relates to a method of treating human sexual dysfunction comprising the simultaneous or sequential administration of a therapeutically effective amount of a therapeutically effective amount of a first vasodilating agent or a pharmaceutically acceptable salt or soivate or ester thereof, a therapeutically effective amount of a second vasodilating agent or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier. The classes and types of compounds which can be used in the method: are described in the fourth aspect, above.

\section*{DETAILED DESCRIPTION}

Humans include, of course, males and females. Although the pharmaceutical compositions of the present invention are envisaged primarily for the treatment of erectile dysfunction or male sexual dysfunction, they may also be useful for the treatment of female sexual dysfunction. Such female sexual dysfunction may include orgasmic dysfunction due to clitoral irregularities or disturbances.

Phentolamine, 3-[l(4,5-dihydro-1H-imidazol-2-yl)methyl](4methyiphenyl)aminolphenol, and pharmaceutically acceptable salts, solvates, hydrates, crystalline polymorph forms and the free base thereof,
are useful in the treatment of sexual dysfunction. A rapidly disintegrating tablet and method of use to treat sexual dysfunction is disclosed in United States Patent No. 5,731,339, also incorporated herein by reference. Representative formulations comprising phentolamine are disclosed in U.S. 5,731,339._Phentolamine can exist in unsolvated as well as solvated forms, including hydrated forms, e.g. hemi-hydrate. In general, the solvated forms, with pharmaceutically acceptable solvents such as water. ethanol and the like are equivalent to the unsolvated forms for purposes of the invention. Phentolamine can form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for salt formation are hydrohalic acids such as hydrochloric and hydrobromic; as well as other acids such as sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic, toluenesulfonic and other mineral and carboxylic acids known to those skilled in the art. The salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous sodium hydroxide, potassium carbonate, ammonia and sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the salts are otherwise equivalent to their respective free base form for purposes of this invention. Phentolamine can also form crystalline polymorph forms or crystalline forms thereof using suitable or conventional crystallization procedures.

The present invention is directed to the use of cyclic guanosine \(3^{\prime}, 5^{\prime}\)-monophosphate phosphodiesterase (cGMP PDE) inhibitors in combination with the salts or esters of phentolamine, preferably, with phentolamine mesylate for the treatment of human sexual dysfunction, preferably erectial dysfunction Examples of cGMP PDE inhibitors contemplated in this invention are as follows and are described in the following documents, as indicated. The disclosure of each of the below-referred to document is incorporated herein by reference.

\section*{European published application number 0201188, which discloses compounds of the formula}

and the pharmaceutically acceptable salts thereof, in which
\(R_{1}\) is a lower alkyl of from one to six carbon atoms, a lower alkenyl of from one to six carbon atoms, a lower hydroxyalkyl of from one to six carbon atoms, a lower hydroxyalkenyl of from two to six
carton atoms, a tower aminoalkyl of from one to six carbon atoms, or a lower aminoalkenyl of from two to six carbon atoms:
\(n\) is 0 or an integer of from 1 to 4: and
Ar is a radical of the following general formula \(\left(R_{2}\right)\)
\(\left(R_{2}\right)\)

or 2. 3, or 4-pyridyl, in which \(X, Y\). and \(Z\) are. independently. (1) hydrogen; (2) lower alkyl of from one to six carbon atoms: (3) halogen, (4) hydroxyl: (5) Lower aikoxy of from one to six carbon atoms: (6) пito: (7) amino; (8) NR'R" winerein R' and Re are each, independenty, (a) hydrogen or (b) lower alkyl of from one to six carbon atoms optionally substituted by (i) amino. (ii) morpholino or (iii) cycloalkyl of from. five to seven carbon atoms; (9) sulfonyl; or
(10)-SOs \(N R^{\prime} R^{\prime \prime}\) wherein \(R^{\prime}\) and \(R^{\prime \prime}\) are as defined above;
with the proviso that not all of \(X, Y\), and \(Z\) can be aitro, amino. or NR'R" at once.

Preferred compounds include:
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
1-ethyl-3-methyl-5-phenylpyrazolo[4,3-d]-pyrimidine-7-one: \\
1.3-dimethyl-5-phenylpyrazolo[4,3-d]pyrimidine-7-
\end{tabular}} \\
\hline \\
\hline 1.3-dimethyl-5-(4-chiorophenyl)pyrazolo(4.3-d)-pyrimidine-7-one; \\
\hline 1,3-dimetinyi-5-(4-methylphenyl)pyrazolo[4,3-d] pyrimidine-7-one; \\
\hline 1.3-dimeinyl-5-(4-nitrophenyl)pyrazolo-[4.3-d pyrimidine-7-ane: \\
\hline 1,3-dimethyt-5-(4-trifluorornethylphenyl)pyrazolo [4.3-d]-pyrimidine; \\
\hline 1.3-dimathyl-5-(4-aminophenyl)pyrazolo \([4,3-\mathrm{d})\) pyrimidine-7-one; \\
\hline 1,3-dimethyl-5-(3-aminophenyt)pyrazolo[4,3-d] pyrimidine-7-one; \\
\hline 1.3-dimethyl-5-(3-nitrophenyl)pyrazolo[4.3-d pyrimidine-7-one; \\
\hline 1,3-dimethyi-5-(2-methoxyphenyl)pyrazolo \((4,3-\mathrm{d})\) pyrimidine-7-ane; \\
\hline 1.3-dimethyl-5-(3.4-dichlorophenyl)pyrazolo[4.3-d pyrimidine-7-one; \\
\hline \begin{tabular}{l}
1.3-dimethyi-5-3.4-dimethoxyphenyl)pyrazdo[4.3- \\
dfpyrimidine-7-ons;
\end{tabular} \\
\hline 1,3-dimethyl-5-र24-dimethoxyphenyl)pyrazalo[4.3-dl-pyrimidine-7-one: \\
\hline 1,3-dimethyl-5-(2-nitro-4-chlorophenyl)pyrazolo-[4.3-d]-pyrimidine-7-one: \\
\hline 1,3-dimethyl-5-(2-amino-4-ctiforophenyl)pyrazdo-[4,3-d]pyrimidino-7-ans: \\
\hline 1,3-dimethyt-5-(4-sulfonic acid pherryl)pyrazolo-
[4,3-d)-pyrimidine-7-ane; \\
\hline 1.3-dimethyF-5-[4-(N-2-(dimethylamino)ethyl)-benzenesulfonamide]pyrazolo[4,3-dlpyrimidine-7one: \\
\hline 1,3-dimethyl-5-(3.5-dimethoxyphenyi)pyrazoto[4,3-df-pyrimidine-7-one; or \\
\hline 1,3-dimathyl-5-(3-methoxyphenyI)pytazoto[4,3-6 pyrimidine-T-one. \\
\hline
\end{tabular}
-7-

European published application number 0214708, which discloses compounds of the formula

(II)
in which:
A represents a group of formula:
(a)

(c)

(b)

(d)

or (e)

\(R^{\prime}\) and \(R^{\prime}\) are the same or diflerent and each represents a hydrogen atom, a halogen atom or a group of tormula -OR';
\(R^{\prime}\) and \(R^{\prime}\) are the same or different and each represeras a carbamoyl group or a carboxy group:
\(R^{2}\) and \(R^{\mathbf{e}}\) both represent fydrogen atoms or together they represent an extra carbon-carbon bond between the carbon atoms to which thay are attached;

R' represents a hydrogen atom, a halogen atom or a group of tormula -OR', \(-N R^{*} R^{\prime \prime}\) or \(-S R^{\prime}\) :
\(\mathbf{R}^{\text {represents a halogen atom or a group of formula }}\) -OR', -NR'*R" or -SR':
\(R^{\prime}\) represents a hydrogen atom, a C.-Cs alkyl group. an alkylsuphonyl group. a hatoaikylsulphonyl group, an arylsulphonyl group or a hydroxyprotecting group;
\(R^{\prime \prime}\) and \(R^{\prime \prime}\) are the same or different and each
represents a hydrogen atom. a hydroxy group. a C.-C. alkyl group. a C.-C. hydroxyalkyt group. a C.C. aminoalkyl group. an aralkyl group, an aryl group. a C.C. alkoxy group, an aralkyloxy group. en amino group, a \(C_{1}-C_{\infty}\) aliphatic acyl group or an aromatic acyl group; or \(R^{\prime \prime}\) and R" together repre- \(^{\prime \prime}\) sent a substituted methytene group, or \(R^{*}\) and \(R^{\prime \prime}\). logether with the nitrogen atom to which they are attached, represent a hewerocyclic group having 5 or 6 ring atoms, of which, in addition to the nitrogen atom shown, 0 or 1 are additional oxygen. nitrogen or suphur hetero-atorns, said heterocyclic group being unsubstituted or having from 1 to 3 C.C. alkyl and/or C.-C. alkoxy substituents:
\(R^{12}\) represents a \(C_{1}-C_{4}\) alkyl group;
\(Z\) represents a hydrogen atom, a hydroxy group or a substiturted hydroxy group: and
W represents an alkoxy group or an aralkoxy
group:
provided that. when A represents said group of
formula (e). \(\mathbf{R}^{6}\) and \(\mathbf{R}^{\mathbf{c}}\) both represent hydrogen atoms:
and pharmaceutically acceptable salts and esters thereof.

Preferred compounds include:
2-Amino-6-desamino-6-hydroxygriseofic acid and pharmaceutically acceptable salts and esters thereof.

2-Amino-6-desamino-6-hydroxygriseofic acid 7 -amide and pharmaceutically. acceptable salts and esters thereot.
. 2-Arninagriseolic acid and pharmaceutically acceptable salts and esters thereof.

Bis(pivaloyloxymethyl) 2-zmino-6-desamino-6-hydroxygriseolate and pharmaceutically acceptable satts thereof.

2-Amino-N "-methoxygriseolic aeid and pharmaceutically acceptable salts and esters thereof.

2-Amino- \(\mathrm{N}^{-}\)-benzyloxygriseolic acid and pharmaceutically acceptable salts and esters thereof.

2-Fiuorogriseolic acid and pharmaceuticatiy acceptable salts and estors thereof.

2-Chlorogriseolic acid and pharmaceutically accoptable salts and esters thereof.
--. 2-Armino-6-desamino-6-hydroxy-7'-desoxygriseoric acid and pharmaceutically acceptable salts and esters thereof.

2-Amino-7-desoxygriseolic acid and pharmaceutically acceptable salts and esters thereal.

2-Chioro- 7 -desoxygriseolic acid and pharmaceutically acceptable satts and esters thereof.

2-Amino-8-desamino-6-hydroxy-2-chioro-2'-desoxygriseolic acid and pharmaceutically ac ceptable satts and esters thereof.
--. 2-Arnino-6-desamino-6-hydroxy-2'-desoxygriseolic acid and pharmaceutically acceptable salts and esters thereof.

2-Amino-2'chloro-2"-desoxygriseolic acid and phamaceutically acceptable satts and esters thereof.

2-Amino-2'-desoxygriseolic acid and pharmaceutically acceptable salts and esters thereof.

2-Chloro-2'-desoxygriseofic acid and pharmaceutically acceptable salts and esters thereof.

Griseofic acid \(\mathbf{N}\) '-oxide and pharmacoutically acceptable salts thereol.

2-Acetylamino-6-desamino-6-hydroxy-4'.5'dihydrogriseolic acid and phamaceutically accoptable salts and esters thereot.

2-Amino-6-desamino-6-hydraxy-4'.5'dinydrogriseolic acid and pharmaceutically acceptabte salts and esters thereof.

2-Acetylamino-6-desamino-6-hydroxy-4'.5'-dihydro-7-desoxygriseolic acid and pharmaceuticaily accoptable salts and esters thereof.

2-Amino-6-desamino-6-thydroxy-4'.5' dihydro-7'-desoxygriseollc actd and pharmaceutically soceptable salts and esters thereaf.

2,6-Dictioro-6-desamino-4'.5'-dihydrogrispolic acld and phamacoutically acceptable salts and esters thereof.

2-Chloro-4"5'dihydrogriseolic acid and pharmaceutically acceptable salts and esters thereof.
\[
-10-
\]

European published application number 0319050, which discloses compounds of the formula

(1)
in which:
A represents a group of formula:

\(R^{1}\) and \(R^{2}\) are the same or different and each represents a hydrogen atom, a halogen atom or a group of formule -OR \({ }^{\text {s }}\)
\(R^{3}\) and \(R^{6}\) are the same or difterent and eactr represents a carbamoyt-groupoir a carboxy group;
\(\mathbf{R}^{5}\) and \(\mathbf{R}^{6}\) both represent hydrogen atoms:
\(\boldsymbol{R}^{9}\) represents a hydrogen ation, a \(\mathrm{C}_{1}-\mathrm{C}_{6}\) alkyl group. an alkylsulphonyl group. a haloalkylsulphonyi group. an arylsulphonyl group or a hydroxy-protecting group: \(R^{12}\) represents a \(C_{1}-C_{6}\) alkyl group;
and pharmaceutically acceptable satts and esters thereot.

\section*{-11-}

\section*{European published application number 0293063, which discloses compounds of the formula}

(I)
or a pharmaceutically acceptable salt thereof, wherein
\(R^{1}\) is \(C_{1.6}\) alkyl.or \(C_{2 \text {-alkenyl, and }}\)
\(\mathrm{R}^{2}\) is hydrogen or hydroxy.

Preferred compounds include:
2-(2-propoxyphenyl)-6-purinone. 2-(2-ethoxyphenyl)-6-purinone. 2-(2-לutoxyphenyl)-6-purinone, 2-(2-isobuloxyphenyl)-6-purinone. 2-(2-propoxyphenyl)purine-6.8-dione 2 (2-methoxyphenyl)purine-6,8-dione. 2 -(2-othoxyphenyl)purine-6.e-dione, 2-(2-butoxypherryl) purine-6.8-dione, 2-(2-isobutoxypheny)purine-6.8-dione, or 2-(2-allyloxyphenyl)purine-6-8-dione or a phammaceutically acceptable salt thereof.

European published application number 0347027, which discloses compounds of the formula

or a pharmaceutically acceptable sall thereof, wherein
\(X \quad\) is \(O\) or \(S\) :
\(\begin{array}{ll}R^{2} & \text { is } C_{1}-c \text { alkyl, } C_{2} \text {-salkenyl. } C_{3}-s \text { cycioalkyl } C_{1} \text {-\&alkyl. or } C_{1} \text {-calkyl substiluted by } 1 \text { to } 8 \text { fluoro groups: }\end{array}\)
\(R^{8}\) are independently hydrogen or \(C,-\mathrm{CO}_{2} R^{\mathbf{7}}, 5\)-tetrazolyl, \(-\mathrm{NO}_{2},-\mathrm{NH}_{2}\) or \(-N H C O R^{8}\) wherein \(\mathrm{R}^{5}, \mathrm{R}^{5}, R^{7}\) and
\(R^{8}\) are independently hydrogen or \(\mathrm{C}_{1-4}\) alkyl;
\(\mathrm{R}^{3}\) is hydrogen or \(\mathrm{C}_{1}-4\) alkyl; and
\(R^{4}\) is hydrogen or C. -4 aliky:
whth the proviso that \(R^{\prime}\) is not methyl when \(R^{2}\) is \(-\mathrm{CO}_{2} \mathrm{H}_{1}-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) or \(-\mathrm{CN}, X\) is 0 . \(\mathrm{R}^{3}\) is hydrogen and
is methyl.

Preferred compounds include:
3-cyano-6-(2-propoxyphenyi)-2(1H)-pyridinone.
6-(2-propoxypnenyl)-1.2-dinydro-2-oxopyridine-3-carboxamide. 6-(2-propoxypnenyl)-1.2-dihydro-2-oxopyndine-3-carboxylic acid methyl 6-(2-propoxypheny 1)-1.2-dihydro-2-oxopynidine-3-carboxylate
6-(2-propoxyphenyil-3-(iH-tetrazol-5-y1)-2(1 1)-pyridinone.
6-(2-propoxyphenyl)-2(1H)-pyridinone.
3-nitro-6-(2-propoxyphenyl)-2(1H)-pyridinone.
3-cyano-6-\{2-ethoxyphenyl)-211H\}-pyridimane .
3-amino-6-(2-propoxyphenyl)-2(1 H)-pyridinone.
3-cyano-4-methyl-6-(2-propoxyphenyll)-2(1H)-pyridinone.
3-cyano-5-methyl-6-(2-propoxyphenyli-2(1H)-pyridinone.
3-cyano-6-\{2-(1,1.2.3.3.3-hexafluoropropoxy)phenyl-2(1H)-pyridinone.
j-cyano-6-\{2-propoxyphenyl)-2(1H)-pyridinethione.
1.2-dihydro-4-methyl-2-oxo-6-(2-propoxyphenyl)pyridine-3-carhoxylic acid.
methyl 1.2 -dihydro-4-methyl-2-oxo-6-(2-propoxyphenyl)-pyridine-3-carboxylate.
1.2-dinyare-4-methyl-2-oxo-6-(2-propoxyphenyl)pyridine-3-carboxamide

3-cyano-6-(2-cyclopropylmethoxyphenyl)-2(1H)-pyndinone.
6.(2-butoxyphenyl)-3-cyano-2(1 H)-pyridinone.

6-(2-allyloxyphenyl)-3-cyano-2(1H)-pyridinone.
3-cyano-6-[2-(2-methyipropoxy)pheriyl]-2(1H)-pyridinone.
6-(2-ethoxyphenyi)-1.2-dihydrn-2-oxopyridine-3-carboxamide
6-f2-cyclopropy/methoxyphenyt)-1.2-dihydro-2-oxopyridine-3-carboxarnide.
6-\{2-butoxyphenyl)-1,2-dihydro-2-oxopyridine-3-carboxamido.
6-2-allyioxyphenyl)-1.2-dihydro-2-0xopyridine-3-carboxamide, or
6\{2-(2-methytpropoxyphenyl)-1,2-dihydro-2-oxopyridine-3-carboxamide.
or a pharmaceutically acceptable salt thereof.

\section*{European published application number 0347146, which discloses compounds of the formula}

or a phamaceutically acceptable salt thereof. whereln

is a ring of sub-formula (a). (b). (c). (d), (e), (f) or (g):

(a)

(b)

(C)

(g),
\(R^{1}\) is \(C_{1-6}\) alkyl. \(C_{2-6}\) alkenyl. \(C_{3}-s\) cycloalkyIC \(C_{1}\) alkyl. or \(C_{1-s}\) alky! substituted by 1 to 6 fluoro groups; \(R^{2}\) is \(C_{1-s}\) alkylthio. \(C_{1}\)-satkylsulphonyl. \(C_{1-s a l k o x y, ~ h y d r o x y, ~ h y d r o g e n . ~ h y d r a z i n o . ~}^{C_{1}}\)-salkyl. phenyl, \(-N H C O R^{3}\) wherein \(\boldsymbol{F}^{3}\) is hydrogen or \(C_{1}-s a l k y l\) or \(-N R^{4} R^{5}\) wherein \(R^{\&}\) and \(R^{5}\) together with the nitrogen atom to which they are attached form a pytrolidino, piperidino, hexahydroazepino, morpholino or piperazino ring, or \(\mathrm{R}^{4}\) and \(\mathrm{R}^{5}\) are independently hydrogen, \(\mathrm{C}_{3}\) cycloaikyl or \(\mathrm{C}_{1-c}\) alkyl which is optionally substituted by \(-\mathrm{CF}_{3}\), phenyl, \(-\mathrm{S}(\mathrm{O})_{n} \mathrm{C}_{1}\) - alkyl wherein \(n\) is 0,1 or \(2,-0 R^{6},-\mathrm{CO}_{2} \mathrm{R}^{7}\) or \(-N R^{6} \mathrm{R}^{9}\) whereln \(\mathrm{R}^{6}\) to \(\mathrm{R}^{3}\) are independently hydrogen or \(\mathrm{C}_{1}\)-calkyl. provided that the carbon atom adjacent to the nitrogen atom is not substituted by sald \(-\mathrm{S}(\mathrm{O})_{e} \mathrm{C}\). - alkyl. -OR \({ }^{6}\) or \(-\mathrm{NR}^{8} \mathrm{R}^{9}\) groups; and \(R\) is hydrogen and can also be hydroxy when \(R^{2}\) is hydroxy.

Preferred compounds include:

2-(2-propoxyphenyl)pyrido[2.3-d]pyrimid-4(3H)-one.
2-(2-propoxyphenyl)pyrido[3.4-d]pyrimid-4(3H)-one. 2-(2-propoxyphenyi)pyrido[4,3-d]pyrimid-4(3H)-one. 2-(2-propoxyphenyl)pyndo (3.2-d]pyrimid-4(3H)-one, 2-(2-propoxyphenyl)pteridin-a/(3H)-one. 2-2-propoxyphenyl)pteridin-4,6(3H,5H)-dione, 2-(2-propoxyphanyl)pteridin-4.6.7(3H.5H.8H)-trione, 5.6-dihydro-3-methylthio-5-oxo-7-(2-propoxyphenyl)pyrimido[5.4-e] [1.2.4]triazine. 3-amino-5,8-dihydro-5-ox0-7-(2-propoxyphenyl)pyrimido\{5.4-eri.2.4]triazine. * 3-methylemino-5,6-dihydro-5-oxo-7-(2-propoxyphenyl)pyrimido[5.4-0 71. 2.4]triazine. 3-methoxy-5.6-dihydro-5-0x0-7-)2-propoxyphenyl)pyrimido[5,4-e][\(1,2,4\)]triazine. 3-methylthio-8-axo-6-(2-propoxyphemy)-7,8-dihydropyrimido[4.5-eIf1, 2.4]briazine. 3-amino-8-0x0-6-2-propoxyphenyl)-7,8-dihydropyrimido[4,5-e[1,24\}triazine. 3-methylamino-8-еxo-6-(2-propoxyphenyi)-7,8-dihydropyrimido[4,5-eII1,2,4]triazine, 3-rnethoxy-8-axo-8-(2-propoxyphenyl)-7,8-dihydropyrimido[4,5-eII1,2,4]triazine, 3.8-dioxo-8-(2-propoxyphenyl)-3.4.7.8-tetrahydropyrimido[4,5-eI \(1,2,4]\) triazine. 3-dimethylamino-8-oxo-0-(2-propoxyphenyl)-7.8-dihyoropyrimido[4,5-e][1,2,4]tiazine, 3-matinytthio-8-0xo-6-(2-allyloxyphenyi)-7,8-dihydropyrlmido[4.5-e|I \(1,2.4\) 1triarine, 3-methylthio-8-oxo-6-(2-isobutoxyphenyl)-7.8-dihydropyrimido[4,5-e][1,2,4]偪azine. 3-methylthfo-8-axo-6-(2-cyciopropyimethoxyphenyl)-7,8olhydropyrimido[4.5-e][1,2.4]triazine or 3-methytitho-8-ax0-6-(2-methoxyphenyl)-7.8-dithydropyrinido[4.5-e][1,2,4]triazine or a phamaceutically acceptable salt thereof.
-14-
European published application number 0349239, which discloses compounds of the formula

or a pharmaceutically acceptabie salt thereof, wherein

is a ring of sub-formula (a). (b) or (c):

(a)

(b)

(C),
\(X\) is oxygen or sulphur, and
\(R^{\prime}\) is \(C_{1-6}\) alkyl, \(C_{2-6}\) alkenyl. \(C_{3-5}\) cyclaalkyl \(C_{1-4}\) alkyl, or \(C_{1-c a l k y l}\) substituted by 1 to \(\theta\) fiuoro groups.

Preferred compounds include:

6-2-propoxyphenyl)pyrazolo(3,4-dipyrimidin-4(5H)-one. 2\{2-propoxyphery) thieno [2,3 -d]pyrimldin-4(3H)one.
2-2-propoxyphenyllt \(1,2.5\)]oxadiazolo(3,4 -d]pyrimidim-4(3H)-one, or 2-(2-propoxyphonyl) \(1,2,5\)]thiactiazolo(3,4-d]pyrimidin-4(3H)-one, or a pharmaceutically acceptable salt thereof.

European published application number 0351058, which discloses compounds of the formula

or a pharmacoutically acceptable salt thereof, wherein
\(R^{\prime}\) is \(C_{1}-\) salkyl, \(C_{2-s}\) aikenyl, \(C_{2}-s c y c l o a l k y I C_{1}-6\) alkyl, or \(C_{1-6}\) afryl substituted by 1 to 6 fluoro groups; \(R^{2}\) is \(C_{1-6}\) alkythio. \(C_{1-6}\) alkylsulphonyl. \(C_{s}-\) alkoxy, hydroxy, hydrogen, hydrazino, \(C_{1-f}\) alkyl, phenyl, - NHCOR \({ }^{3}\) wherein \(R^{3}\) is hydrogen or \(C_{1-s}\) alkyl, or \(-N^{4} \mathrm{R}^{5}\), mherein \(\mathrm{R}^{4}\) and \(\mathrm{A}^{5}\) together with the nitrogen atom to which they are attached form a pyrrolidino. piperidino, hexahydroazepino, morpholino or piperazino ring, or \(R^{4}\) and \(R^{5}\) are independently hydrogen, \(C_{s-s}\) cycloalkyl or \(C_{t-c}\) alky which is optionally substituted by \(-C F\), , phenyl, \(-S(O)_{n} C_{1-6}\) alkyl wherein \(n\) is 0,1 or \(2,-O R^{6},-\mathrm{CO}_{2} R^{7}\) or \(-N R^{8} R^{9}\) wherein \(R^{6}\) to \(R^{9}\) are independently hydrogen or \(C_{1}-s\) alkyl, provided that the carbion atom adjacent to the nitrogen atom is not substituted by sald \(-\mathrm{S}(\mathrm{O})_{n} \mathrm{C}_{1-c}\) alkyl, \(-\mathrm{OR}^{6}\) or \(-N R^{3} R^{3}\) groups; and
is a ring of sub-formula (a) or (b):

(a)

(b).

Preferred compounds include:

7-methythlo-4-axo-2-(2-propoxyphenyl)-3.4-dihydropyrimido[4.5-d]pyrimidine, 7-methythio-2-(2-ethoxyphenyl)-4-oxo-3.4-dihydropyrimido[4,5-d]pyrimidine, 7-mothylthio-2-\{2-methoxyphenyl-4-oxo-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-methythio-2-(2-isobutoxyphenyl)-4-axo-3.4-dihydropytinido(4.5-d)pyrimidine, 7-methylthio-2-\{2-cyclopropylmathoxyphenyl)-4-ox0-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-methylthio-2-(2-allyloxyphenyl)-4-oxo-3.4-dihydropyrimido[4,5-d]pyrimidine, 7-amino-4-0x0-2-(2-propoxyphenyi)-3.4-dihydropyrimido[4,5-d)pyrimidine. 7-methylamino-4-axo-2-2-proporyptenyl)-3.4-dihydropyrimido \(\{4.5-\alpha]\) pyrimidine, 7-dimethyiamino-4-axo-2-(2-propaxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-hydrazino-4-oxo-2-(2-propoxyphenyi)-3,4-dihydropyrimido(4,5-d)pyrimidine. 4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine.
7-ethylamino-4-ox0-2-2-propoxyptheryl)-3,4-dihydropyrimido[4,5-0]pyrimidine, 7-(2-hydroxyethytamino)-4-0xo-2-(2-propaxyphenyl)-3,4-dihydropyrimido[4.5-d]pyrimidine, 7-ethyi-4-ax0-2-(2-propoxyphenyl)-3.4-dihydropyrimido[4,5-d]pyrimidine. 7-methylarnino-2-(2-methoxyphenyl)-4-oxo-3,4-dihydropyrimido \(4,5-d] p y n i m i d i n e\), 7-phenyl-4-oco-2-(2-propoxyphenyl)-3,4-d/hydropyrimida[4.5-d]pyrimidine,

7-morpholino-4:oxo-2-(2-propoxyphenyl)-3.4-dihydropyrimido[4.5-d]pyrimidine,
7-cyclopropylarninว-4-рхо-2-(2-propoxyphenyt)-3.4-dihydropyrimido[4.5-d]pyrimidine,
7-acetamido-4oxo-2-(2-propoxyphenyi)-3,4-dihydropyrimido[4,5-d]pyrimidine,
7-propylamino-4-dxo-2-(2-propoxyphenyl)-3,4-dithydropyrimido[4,5-d]pyrimidine.
7-(3-hydroxypropylamino)-4-oxo-2-(2-propoxyptenyl)-3.4-dihydropyrimido\{4.5-d]pyrimidine.
7-(2-methoxyethylamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-dipyrimidine,
7-(2-dimethylaminoethylamino)-4-0xo-2-(2-propoxyphenyl)-3,4-dihydropytimido[4,5-d]pyrimidine.
7-(2-hydroxypropylamino)-4-oxo-2-(2-propoxyphenyl)-3.4-dihydropyrimido (4,5-d]pyrimidine.
7-(3-methylthiopropylamino)-4-0x0-2-(2-propoxypheny)-3,4-dihydropyrimido[4,5-d]pyrimidine.
7-(2-aminoethylamino)-4-0xo-2-(2-propoxypheny)-3.4-dihydropyrimido[4,5-d]pyrimidine hydrochloride.
7-(3-mettyisulphinyipropylamino)-4-ox0-2-(2-propoxyphenyl)-3.4-dihydropyrimido[4.5-d]pyrimidine.
7-(3-methylsulphonylpropylamino)-4-oxo-2-(2-propoxyphenyl)-3.4-dihydropyrimido(4,5-d)pyrimidine.
4,7-dioxo-2-(2-propoxyphenyl)-3.4.7.8-tetrahydropyrimido\{4.5-d]pytimidine.
7-methylsulphonyi-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine.
7-diethylamino-4-oxo-2-(2-propoxyphenyl)-3.4-dihydropyrimido(4.5-d)pyrimidine.
7-(2-ethoxycarbonyiethylamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d)pynimidine.
7-(ethoxycarbonyimethylamino)-4-oxo-2-(2-propoxypheny)-3.4-dihydropyrimido[4.5-d[pyrimidine.
7-(2-carboxyethylamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido \([4,5\)-d pyrimidine.
7-(carboxymethylamino)-4-oxo-2-(2-propoxypheny)-3,4-dihydropyrimido(4.5-d)pyrimidine.
7 -ethoxy-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido [4,5-d]pyrimidine,
7-methoxy-4-oxo-2.(2-propoxyphenyl)-3.4-dihydropyrimido[4,5-d]pyrimidine,
7-(2,2.2-tríluoroethylamino)-4-0xo-2-(2-propoxyphenyi)-3,4-dihydropyrimido 4,5 -d]pyrimidine,
7-propoxy-4-oxo-2-\{2-propoxypheny()-3.4-dihydropyrimido[4,5-d]pyrimidine.
7-(N-ethyl-N-hydroxyethyiamino)-4-oxo-2-\{2-propoxyphenyl)-3,4-ditydropyrimido 4,5 -d]pyrimidine.
7-dipropyiamino-4-0xo-2-(2-propaxyphenyl)-3,4-dihydropyrimldo[4,5-d]pyrimidine,
7-(2-phenethylamino)-4-oxo-2-2-propoxypheny)-3.4-dihydropyimido[4,5-d]pyrimidine, or
4-oxo-2-(2-propaxyphenyi)-3.4-dihydropyrimido\{5.4-d]pyrimidine,
or a pharmaceuticaly acceptabie salt thersof.

\section*{European published application number 0352960, which \\ discloses compounds of the formula}

or a phammaceuticaly acceptable salt thereol, wherein
 fluoro groups:
\(F^{F}\) is hydrogen, hydraxy, \(\mathrm{C}_{1}\)-talkyl, phenyl, mercspto, \(\mathrm{C}_{1}-4\) alkylthio, \(\mathrm{CF}_{2}\) or amino;
\(R^{3}\) is hydrogen, nitro, amino, \(C_{1}\) qalkanoylamino, \(C_{1-4}\) alkoxy, \(C_{1}-4\) alkyl, halo, \(S_{2} N R^{4} R^{5}\), CONR or \(C_{1} R^{5}\), cyano or \(\mathrm{C}_{1}-4\) alkyIS \((\mathrm{O}) \mathrm{n}\);
\(R^{4}\) and \(R^{5}\) are independently hydrogen or \(C_{1}=a\) afiyt; and
\(n\) is 0,1 or 2 ;
provided that \(F^{3}\) is not hydrogen when \(R^{1}\) is \(C_{1}-s\) alkyl or \(C_{2-5}\) aikenyl and \(F^{2}\) Is hydrogen or hydroxy.

Preferred compounds include:

> 2-(2-2.2.2-trificoroethaxylphenyl)purin-6-one. 2-(2-cyclopropylmethaxyphenyl)purin-6-ons, 2-(2-cyclopropyimethaxyphenyl)purin-8.8-dione. 2-(2-benzyloxyphenyl)purin-6,8-dione, 2-(2-propoxyphenyl)-8-trifluaromethylpurin-8-one, 2-(2-propoxyphenyl)-8-phenylpurin-6-one 2-(2-propoxyphenyl)-8-methylpurin-6-ane, 2-(2-propoxyphenyl)-8-mercaptopurin-6-one. 2-(2-propoxypheny)-8-methythiopurin-6-one. 2-(2-propaxyphenyl)-8-aminopurin-6-one, 2-(2-propoxy-5-nitrophenyl)purin-6-one,
> 2-(2-propoxy-5-aminophenyl)purin-6-one, 2-(2-propoxy-5-acetarridiopfenyl)purin-6-one,
> 2-(2-propoxy-4-methoxypheny)purin-6-one, 2-(2-propoxy-5-methoxyphenyl)purin-8-one,
> 2-(2-propoxy-5-chlorophenyl)purin-6-one,
> 2-(2-propaxy-4-methyiphenyl)purin-6-one,
> 2-(2-propaxy-5-fluorophenyl)purin-6-ane.
> 2-(2-propoxy-5-dimethylsulphamoylphenyl)purin-6-ane
> 2-(2-propoxy-5-methyisulphamoyiphenyl)purin-6-one,
> 2-(2-propoxy-5-suphamoylphenylpurin-8-one,
> 2-(2-propoxy-4-methylthiophenyl)purin-6-one,
> 2-2-propoxy-5-cyanophenyl)purin-6-ane, or
> 2-(2-propoxy-5-carbamoylphenyl)purin-6-one,
> or a pharmaceutically acceptable salt thereot.

European published application number 0371731, which discloses compounds of the formula

or a pharmaceuticalty ecceptable sait thereof, wherein
 fluoro groups;
\(A^{2}\) is trydrogen, \(G_{-s}\) alkyl. \(C_{1}\)-salkylthio, \(C_{1}-\) alkoxy, nitro or \(-N^{3} R^{3}\) : and \(\mathrm{R}^{3}\) and \(\mathrm{R}^{5}\) are independently hydrogen or \(\mathrm{C}_{1-4}\) elkyl optionally substituted by hydroxy provided that the carbon atom adjacent to the nitrogen atom is not aubstituted by hydroxy, with the proviso that \(R^{1}\) is not methyl or ethyl when \(R^{2}\) is hydrogen.

\section*{Preferred compounds include:}

2-(2-propoxyphenyl)quinazolin-4(3H)-one,
7-methythio-2-(2-propoxyphenyldquinazolin-4(3H)-one,
7-nitro-2-(2-propoxyphenyl)-4(3H)-quinazolinone,
7-amino-2-(2-propoxyphenyl)-4(3H)-quinazolinone, or 7-methylamino-2-(2-propoxyphenyl)-4(3H)-quinazolinone
or a pharmacautically acceptable saft thereot.

\section*{European published application number 0395328, which discloses compounds of the formula}

or a pharmaceutically acceptable salt thereof, wherein

\(R^{2}\) is \(C_{1-6}\) alkyl, phenyl. hydroxy, \(C_{1}\) - alkoxy, halo. -NHCOR \({ }^{3}\). NHCONHR \({ }^{4}\). 5-tetrazolyl, \(\mathrm{CO}_{2} \mathrm{R}^{5}\), cyano. CONR \({ }^{6} R^{7}\), or \(-N R^{9} R^{9}\) wherein \(R^{3}\) to \(R^{7}\) are independently hydrogen or \(C_{1}-\) alkyl and \(R^{a}\) and \(R^{3}\) are independernlly hydrogen or \(C_{1-6}\) alkyl optionally substituted by hydroxy provided that the carbon atom adjacent to the nitrogen atom is not substituted by hydroxy:

\section*{Preferred compounds include:}

6-amino-2-(2-propoxyphenyl)pyrimidin-4 3 H)-one.
6-acetamido-2-(2-propoxyphenyl)pyrimidin-4[3H\}-one,
6-propionamido-2-(2-propoxyphenyl)pyrimidin-4(3H)-one,
6-butyramido-2-(2-propoxyphenyl)pyrimidin-4 [3H]-one.
6-N 'methylureldo-2-(2-propoxyphenyl)pyrimidin-4[3H)-one.
4.6-dihydroxy-2-(2-propoxyphenyl)pyrimidine.

4-chloro-6-hydroxy-2-(2-propoxyphenyl)pyrimidine.
6-ethylamino-2-(2-propoxyphenyl)pyrimidin-4[3H]-one.
6-propylamino-2-(2-propoxyphenyl)pyrimidin-4[3H]-one.
6-(2-hydraxyethyiamino)-2-(2-propoxyphenyl)pyrimidin-4[3H]-ane,
6-(3-hydroxypropylamino)-2-(2-propoxyphenyl)pyrimidin-4\{3H\}-one.
4-hydroxy-6-methyl-2-(2-propoxyphenyl)pyrimidine.
6-hydroxy-2-(2-propoxyphenyl)pyrimidine-4-carboxylic acid.
ethyl 6-hydroxy-2-(2-propoxyphenyl)pyrimidine-4-carboxylate,
6-hydroxy-2-(2-propoxyphenyl)pyrimidine-4-carboxamide.
4-cyano-6-tydroxy-2-(2-propoxyphenylłpyrimldine.
2-(2-propoxyphenyl)-6-(1H-tetrazol-5-yl)pyrimidin-4(3H)-one.
4-ethyt-6-hydroxy-2-(2-propaxyphenyl)pyrimidine.
4-hydroxy-6-phenyl-2-(2-propoxyphenyl)pyrimidine.
N-mathyl 6-hydroxy-2-(2-propoxyphenyl)pyrimidine-4-carboxamide,
N-ethyl 6-trydroxy-2-(2-propoxyphenyl)pyrimidine-4-carbocamide.
N -propyl 6-hydraxy-2-(2-propoxypheryl)pyrimldine-4-carboxamide.
6-ethoxy-2-(2-propoxyphenyl)pyrimidir-4(3H)-one, or
G-N,N-bis-(2-hydroxyethyl)arnino-2-(2-propoxyphenyl)pyrimidim-4(34i)-one.
or a pharmaceutically acceptable salt thereof.

European published application number 0400583, which discloses compounds of the formula

wherein.
A is N or \(\mathrm{CH}_{\text {; }}\)
\(B\) is \(\mathrm{NCR}_{3}\);
D is N or \(\mathrm{CR}_{2}\);
R. \(R_{1}\), are the same or independently hydrogen, hydroxy, loweralkyl, lower alkoxy, phenyloxy, \(R_{6} S(O)_{n}-, W\).

ALK-Q.

\(R_{2}\) is hydrogen. lower alkyl, phenyl which may be substituted by up to three methoxy groups, lower alkyl substituted by phenyl which may be substituted by to to three methoxy groups, - lower alkyl \(-N\left(R_{s}\right)_{2}\).
- loweralkyl-N

pyridinyl or lower-alkyl pyridinyl;
\(\mathrm{R}_{3}\) is fydrogen, lower alkyl. phenyl. lower alkylphenyl, pyridinyl or loweralkyl pyridinyl;
\(R_{4}, R_{5}\) are the same or independently tydrogen or lower alkyt:
\(\mathrm{R}_{6}\) is lower alkyl, phenyl, lower alkylphenyl or pyridinyt;
Ry are the same or independently hydrogen, loweralkyl, phenyt, pyridinyt.

\(\mathrm{R}_{8}\) are the same or independently tower alky, phenyl or pyridinyl;

ALK is a \(C_{4}-C_{2}\) straight or branched thain alky;
\(\mathrm{R}_{\mathrm{g}}\) is hydrogen. lower alkyl or phenyl;
Fio \(_{10}\) are the same or indapendently hydrogen, loweralkyl or pheny:
\(R_{11}\) are the same or independently hydrogen or tower alkyl;
\(X\) is \(-\mathrm{CH}_{2}-,-\mathrm{O} . \mathrm{S}\left(\mathrm{O}_{\mathrm{ni}}-\mathrm{NR}_{10}\right.\) :
\(n\) is the integer 0.1 or 2 and
\(p\) is the integer 0 or 1 .
with the provisos that:
a) one and only one of B or D must be N ;
b) when \(A\) is \(C H\), when \(D\) is \(N\), when \(B\) is \(C R_{3}\) where \(R_{2}\) is \(H\). when \(R_{2}\) is hydrogen, lower alkyl or pheny then \(R\) and/or \(R_{1}\) must be

or W-ALK-Q:
and the pharmaceutically acceptable salts thereof.

\section*{Preferred compounds include:}

1-ethyl-8-(1 H -imidazol-1-yi)-3-methylimidazo \(1,5-a]\) quinacalin-4-(5H)one, 1 ethyl-8-(1H-imidazol-1-yl)imidazo[1.5-a]quinoxalin-4(5H)-one, 1 -ethyl-3-mathy-8-44-morpholino)-im-quinoxalin-4(5H)-one 1 -methyl-8-(2-methyl-8-(2-ethyl-4-methyl-1H-stmidezol-1-yi)3-methy-imidaza[1.5-a]-imidazol-1-yt)-1-methytimidazo[1.5-a] a]quinoxalin-4(5H)-one, \(1-\) ((mopholin-4-yl)methytim)-one, 1 -ethyl-3-methyl-8-(pyrrolidin-1-ylymidazo[1.5-(2-athy)-4-methyf1H-inidazof-1-yl)-3-methylimidayidazo [1,5-a)quinaxalin-4(5H)-one. or 6-ethoxy-1-ethyl-B-8-(1H-imidazo-1-yi) iminaxalin-4(5H)-one,
 ,2-a)quinoxalin-4(5H)-one,
methyt-1H-imidazol-1-yl) imidazo[1,5-alp 9-ethylimidazo[1,5-a] pyrido\{3.2e]pyrazin-6(5Hi-one. 日-methyl-2(2-
 imidazo[1,2-a]pyrido[3,2-el-abyrido[4,3-e]-pyrazaln-4-(5H)-one,
pyrido[2,3-e]pyrazin-4(5H)-one. of 2-(1H-imidazot1-yl)imidazo[1 2-alpyin-6(5H)-one, 2-phenylimidazo[1,2-a] pyido[2,3-alpyrazin-4(5H)-one. or 2-(1H-imidazot-1-yl)imidazo[1,2-alpyrido[3,2-e]pyrazin-6(5H)-ane.

\section*{European published application number 0400799, which} discloses compounds of the formula

or a pharmaceutically acceptable sath thereof, wherein
\(\mathrm{A}^{\prime}\) is \(\mathrm{C}_{1}\)-calkyl. \(\mathrm{C}_{2}\)-salkenyl, \(\mathrm{C}_{3}\)-scycloalkyiC \(\mathrm{C}_{1-5}\) alkyl
fluoro groups; and
\(R^{2}\) is hydrogen, am
hydrogen or \(\mathrm{Ci}_{9}-\mathrm{alky}\).

\section*{Preferred compounds include:}

\footnotetext{
1,6-dinydro-6-axo-2-(2-propaxyphenyl)pyrimidine-5-carboxamide.
N -mathyl 1,6-dihydio-6-ax0-2-(2-propoxyphenyl)pyrimidine-5-carboxamide.
N.N-dimethyt 1.6-dihydro-6-axo-2-(2-propoxyphenyl)pine--carboxamide.

5-arnino-2-(2-propoxyphenyl)pyrimiolin-4(3H)-one
5-acetarnido-2 (2-propoxyphenyl)
2-(2-propaxyphenyl)pyrimidin-4(3H)-one,
or a pharmaceutically acocopin- 43 H)-one,
or a pharmaceuticalty accoptable salt thereof.
}

\section*{European published application number 0428268, which discloses compounds of the formula}

or a pharmacoutically acosptable salt thereol, wherein
\(X\) is \(O\) or \(S\);
\(R^{1}\) is \(C_{1-6}\) alkyi, \(C_{2-6}\) akenyl. \(C_{3-5}\) cychatikyiC \(C_{1-4}\) alkyl, or \(C_{1-4}\) alkyl substtuted by 1 to 3 fluoro groups:
\(\mathrm{R}^{2}\) is hydrogen, \(-\mathrm{CN},-\mathrm{CONR}^{5} \mathrm{R}^{6}\), \(-\mathrm{CO}_{2} \mathrm{R}^{\boldsymbol{j}} .5\)-tetrazolyl. \(-\mathrm{NO}_{2},-\mathrm{NH}_{2}\) or \(-\mathrm{NHCOR}^{8}\) wherein \(\mathrm{R}^{5}\) to \(\mathrm{R}^{8}\) are解-4alky: \(F^{3}\) is hydrogen or \(C_{1-4}\) alkyl:
\(R^{+}\)is hydrogen or \(C_{1-4}\) alkyl:: and
\(R\) is hato, \(\mathrm{C}_{1}\)-a alkyl, \(\mathrm{C}_{1}\)-4alkoxy, cyano, \(-\mathrm{CONR}^{9} \mathrm{R}^{10},-\mathrm{CO}_{2} \mathrm{R}^{19},-\mathrm{S}(0)_{n} \mathrm{C}_{1}-4\) alkyl, \(-\mathrm{NO}_{2},-\mathrm{NH}_{2}\). - NHCOR \({ }^{12}\), or \(-\mathrm{SO}_{2} \mathrm{NR}^{13} \mathrm{R}^{14}\) whersin \(n\) is 0.1 or 2 and \(R^{9}\) to \(R^{14}\) are independendy hydrogen or \(\mathrm{C}_{1}-4\) alkyl; with the proviso that \(R^{1}\) is not methyl when \(R^{2}\) is \(-\mathrm{CO}_{2} \mathrm{H}_{1}-\mathrm{CO}_{2} \mathrm{CH}_{6} \mathrm{CH}_{3}\) or \(-\mathrm{CN}, \mathrm{X}\) is \(0, R^{3}\) is hydrogen, \(R^{4}\) is

\section*{Preferred compounds include:}

3-cyano-6-(2-methory-4-methylthiopheny)-2(1H)-pyridinane.
3-cyano-6-(4-methylthio-2-propoxyphonyi)-2(1H)-pyridinone,
1,2-dihydro-6-4-methylUrio-2-propoxyphenyl)-2-oxo-3-pynidine carbaxamide.
3-cyano--(2-metinoxy-4-methylsulphinylphenyl)-2(1H)-pyridinone.
3-cyano-6-14-methylsulphinyl-2-propoxyphenyl)-2(1H)-pyridinone,
3-cyano-6-(4-methylsulpionyl-2-propoxyphenyl)-2(1H)-pyridinone,
3-cyano-6-(2-methory-4-methylsuiphonyiphenyl)-2(1H)-pyridinone,
3-cyano-6-(5-fluoro-2-propoxyphenyl)-2(1 1)-pyridinone.
1.2-dihydro-6-(5-filoro-2-propoxyphenyl)-2-oxo-3-pyridine

3-cyano-6-(4-methoxy-2-propoxyphenyl)-2(1 1)-pyridinone.
1.2-dihydro-6-(4-methoxy-2-propoxyphenyli)-2-oxo-3-pyridine carboxamide.

3 -cyano-6-(5-methoxy-2-propoxyphenyl)-2(14)-pyridinone.
1,2-dihydro-6-(5-methoxy-2-propoxyphenyi)-2-oxo-3-pyridine carboxamide
3-cyano-e-(5-cyano-2-propoxyphonyl)-2(1H)-pyridinone,
3 -(3-carboxamido-1,2-dihydro-2-oxo-6-pyridiny)-4-propoxybenzamide, methyl 3-(3-cyano-1,2-dihydro-(2-oxo-6-pyridiny)-4-propoxybenzoato, 3-(3-cyano-1,2-dihydro-2-oxo-6-pyridiny 1 -4-propoxybenzamide,
N-methyl-3-(3-cyaro-1,2-dihydro-2-oxo-6-pyridinyl)-4-propoxyberzamide,
N -methyl 3 -\{3-carboxamido- 1,2 -dihydto-2-oxo-6-pyridinyl)-4-propoxybenzamide,
N,N-dimethy-3-(3-cyano-1,2-dihydro-2-oxo-6-pyridinyl)-4-propoxybenzamide.
N,N-dimethyl 3-(3-carboxamido-1,2-dihydro-2-oxo-6-pyridinyl)-4-propoxybenzamide,
4-(3-cyano-1,2-ditydro-2-oxo-6-pyridinyl)-3-propoxybervanitrile.
4-(3-carboxamido-1,2-dihydra-2-oxo-6-pyridinyl)-3-propoxyberizamide.

\section*{-23-}

3-cyano-6-(5-metnylthio-2-propoxyphenyl)-2(iH)pyridinone.
3-(3-cyano-1,2-dinydro-2-oxo-6-pyridınyl)-4-propoxy-N,N-dimethyfbenzenesulphonamide, 3-(3-carboxamido-1,2-dihydro-2-oxo-6-pyridinyl)-4-propoxy-N,N-dimethylbenzenesulphonamide. 6-(2-cyciopropylmethoxy-5-flourophenyl)-1.2-dihydro-2-oxopyridine-3-carboxamide 6-(5-fluoro-2-(2-methylpropoxy)phenyl)-1,2-dihydro-2-oxopyridine-3-carboxamide
3-суало-6-(5-nitro-2-propoxyphenyl)-2(1H)-pyridinone.
1,2-dihydro-6-(5-nitro-2-propoxyphenyl)-2-oxo-3-pyridinone carboxamide.
3-cyano-6-(5-amino-2-propoxyphenyl)-2(1 H)-pyridinone.
1.2-dihydro-6-(5-amino-2-propoxyphenyl)-2-oxo-3-pyridinone carboxamide.

3-cyano-6-(5-acetamido-2-propoxyphenyl)-2(1 H)-pyridinone or
1.2-dihydro-6-45-asetamido-2-propoxyphenyl)-2-axo-3-pyridine carboxamide. or a pharmaceutically acceptable salt thereof.

European published application number 0442204, which discloses compounds of the formula

or a pharmaceutically acceptable salt thereof, wherein
\(R^{1}\) is \(C_{1, s}\) alkyl. \(C_{2-\infty}\) alkenyl, \(C_{3}\) scydoalkyl \(C_{1-8}\) alkyl, or \(C_{1, ~}\) alkyl substituted by 1 to 6 fluoro groups :
 NHCOR \({ }^{3}\) wherain \(R^{3}\) is thydrogen or \(C_{1 \rightarrow 0}\) alkyl, or \(-N R^{4} R^{5}\), wherein \(R^{4}\) and \(R^{5}\) together with the nitrogen atom to which they are attached form a pyrrolidino, piperidino, hexahydroazepino, morpholino or piperazino ring, or \(R^{4}\) and \(R^{5}\) are independently hydrogen, \(C_{2}\) cycloaskyl or \(C_{4-8}\) alkyl which is optionally substituted by \(-\mathrm{CF}_{3}\), phenyt, \(-S\left(\mathrm{O}_{n} \mathrm{C}_{4-8}\right.\) alkyt wherein
\(n\) is 0,1 or \(2,-O R^{6},-\mathrm{CO}_{2} R^{7}\) or \(-N R^{8} R^{9}\) wherain \(R^{6}\) to \(R^{9}\) are independenty hydrogen or \(C_{1-s}\) alkyl, pro-
 or - \(N R^{8} R^{9}\) groups :
 or \(\mathrm{SO}_{2} \mathrm{NR}^{\text {t/ }} \mathrm{R}^{15}\) wherein \(n\) is 0,1 or 2 and \(R^{10}\) to \(\mathrm{R}^{15}\) are independently hydrogen or \(\mathrm{C}_{\text {ma }}\) alky : and

(a)

(b).

\section*{European published application number 0579496, which discloses compounds of the formula}

wherein = represents a single or double bond:
\(R^{1}\) is hydrogen or \(\mathrm{C}_{4}\) alky;
\(Y\) is a single bond or \(C_{1-\sigma}\) alkylene:
\(A\) is
(i) \(-\mathrm{CyA}-\left(\mathrm{R}^{2}\right)_{1}\),
(ii) \(-O-R^{0}\) or \(-S(O)_{P}-R^{0}\), or
(iii) \(-N R^{16} R^{17}\);
in which \(R^{\circ}\) is hydrogen. \(C_{1-\infty}\) atkyl, hydroxy- \(C_{1, \infty}\) alkyl or - CyA \(^{-}\left(R^{2}\right)_{1}\);
\(R^{16}\) and \(R^{17}\) independently are hydrogen or \(C_{1 \rightarrow t}\) alky!;
\(\rho\) is \(0-2\) :
CyA is
(1) a 3-7 membered, saturated or unsaturated carbocyde.
(2) a \(4-7\) membered, unsaturated or partialiy saturated heterocyde containing one nitrogen atom,
(3) a 47 membered, unsaturated or partially saturated heterocycle containing one nitrogen atom, and
one oxygen atom,
(4) a \(<7\) membered, unsaturated or partially saturated heterocyde containing one nitrogen atom and two oxygen atoms.
(5) a \(4-7\) membered, unsaturated or pertially saturated heterocycle containing two nitrogen atoms and one oxygen atom.
(6) a 47 membered, unseturated or pertially saturated heterocycie containing one or two sulfur atoms, (7) \& 4 membered, unseturated, partially saturated or fully sahrated heterocycle containing one or two oxygen aloms:
\(R^{2}\) is (1) hydrogen, (2) \(C_{1-4}\) alkyl. (3) \(C_{1-4}\) alkoxy, (4) -COOR \({ }^{6}\), in which \(R^{6}\) is hydrogen or \(C_{i-4}\) alkyl, (5) \(-N R^{6} R^{7}\), in which \(R^{6}\) and \(R^{7}\) independenty are hydrogen or \(\mathrm{C}_{\mathrm{i}-4}\) alkyl, (6) \(-\mathrm{SO}_{2} \mathrm{NR}^{8} \mathrm{R}^{7}\), in which \(\mathrm{R}^{6}\) and \(\mathrm{R}^{7}\) are as hereinbefore defined, (7) halogen, (8) trifluoromethyl, (9) nitro or (10) trifluoromethoxy, \(Z\) is a single bond, methylene. ethylene, vinylene or ethymylene: CyB is
(1) a \(4-7\) membered, unsalurated or partlally saturated heterocyde containing one ntrogen atom,
(2) a 4.7 membered, unsaturated or partially saturaled heterocyde contsining iwo nitrogen atoms,
(3) e \(4-7\) membered, unsalurated or partially saturated heterocyde containing three nitrogen atoms,
(4) a \(\subset 7\) membered, unsaturated or partially saturated heterocycle containing one or two oxygen atoms,
(5) a 4-7 membered, unsaturated or partielly saturated heterocycte containing one or two sulfur atoms. \(R^{3}\) is hydrogen, \(\mathrm{C}_{4}-\) alky, \(\mathrm{C}_{1+1}\) alkoxy, halogen or trifluoromethyl;
\(R^{4}\) is (1) hydrogen, (2) \(C_{1-4}\) alkyl, (3) \(C_{-1-1}\) alkoxy, (4)-COOR \({ }^{6}\), in which \(R^{8}\) is hydrogen or \(C_{1-\alpha}\) elkyl, (5) \(-N R^{9} R^{10}\), in which \(R^{0}\) is hydrogen, \(C_{1-4}\) alkyl or phenyl(\(C_{1-4}\) alkyl) and \(R^{10}\) is hydrogen or \(C_{1-4}\) alkyl, (6) \(-\mathrm{NHCOR}^{11}\). In which \(\mathrm{R}^{11}\) is \(\mathrm{C}_{\boldsymbol{H}}\) alkyl, (I) -NHSO2R \({ }^{11}\), in which \(\mathrm{R}^{11}\) is as hereinbefore defined, (8) \(S O_{2} N^{9} R^{10}\) in which \(R^{9}\) and \(R^{10}\) are as hereinbefore defined, (9)-OCOR \({ }^{11}\). in which \(R^{11}\) is as hereinbefore defined, (10) halogen, (11) trifluoromethyt, (12) tyydroxy, (13) nttro, (14) cyano, (15) - \(\mathrm{SO}_{2} \mathrm{~N}=\mathrm{CHNR}^{12} \mathrm{R}^{13}\) in which \(R^{12}\) is hydrogen or \(C_{1-4}\) alkyl and \(R^{12}\) is \(C_{4-1}\) allyy, (16) -CONR \({ }^{14} R^{16}\) in which \(R^{14}\) is hydrogen or
 \(\mathrm{C}_{1-4}\) alkytsulfonyl, (20) et hymyl, (21) hydroxymet hyl, (22) tri(\(\mathrm{C}_{1}\), alky1) silylethymil or (23) acetyt: and I. \(m\) and \(n\) Independenty are 1 or 2 ;

\section*{with the proviso that}
(1) CyA-(\(R^{T}\)), does not represent cyolopentyl or trifiuoromethylphenyl when \(Y\) is a single bond,
(2) CyB does not bond to \(Z\) through a nittogen atom when \(Z\) is vinylene or ethynylene,
(3) Cy8 is nox pynidine or thiophone when CyA is a 4-7 membered unsaturated, partially saturated or fully saturated heterocycte containing one or two oxygen atoms. and
(4) \(Y\) is not a singlo bond when \(A\) is (iI) \(-\mathrm{O}-\mathrm{R}^{0}\) or \(-\mathrm{S}(\mathrm{O})_{\sigma}-\mathrm{Ro}\) or (iii) - NR \(\mathrm{R}^{16} \mathrm{R}^{17}\) :
or a pharmaceutically acceptable salt thereof, or a tydrate thereof.

\section*{Preferred compounds include:}

4-phenylmet hylamino-2 -3 -pyridyl)quinazoline,
4-(3-methylphenylmethyl)amino-2-(3-pyridyl)quinazoline.
4-(3,4-dimethoxyphonylmethyl)amino-2-(3-pyridy)quinazoline,
4-(4-carboxyphenylmet hyl)amino-2-(3-pyridy)quinazoline.
4-(3-methoxycarbonytphenylmethyl)amino-2-(3-pyridyl)quinazoline,
4-(4-(N.N-dimethyiamino)phenyimethyi)amino-2-(3-pyridyt)quinazoline.
4-(4-sufiamoylphenylmethyl)amino-2-(3-pyridyl)quinazoline.
4-(3-chborophenyimethyl) a mino-2-(3-pyridy) quinazoline.
4-(3-trifluoromet hytphenylmet hyt)amino-2-(3-pyridyl)quinazoline.
4-(3-nitropherylmethy) amino-2-(3-pyridyl)quinazoline.
4-phenylmethylamino-2-(6-methyl-3-pyridyl)quinazoline,
4 -phenylmethylamino-2-(6-methoxy-3-pyridyl)quinazoline,
4-phenylmet hyla mino-2-(6-chloro-3-pyridyl)quinazoline.
4-phenylmethylamino-2-(6-6ffluoromethyl-3-pyridyl)quinazoline,
4-phenylmet hylamino-6-methyi-2-(3-pyridyl)quinazoline
4-phenylmet hylamino-6-methoxy-2-(3-pyridyl)quinazoline,
4-phenylmet hylamino-6,7-dimethoxy-2-(3-pyridy)quinazoline
4-phenylmet hylamino-6-carboxy-2-(3-pyridy)quinazoline,
4-phenyimet hytamino-6-methoxycarbonyl-2-(3-pyridy)quinazoline,
4-phenylmet hylamino-6-amino-2-(3-pyridyl)quinazoline.
4-phenylmethylamino-6-(N,N-di-methylamino)-2-(3-pyridyl)quinazoline,
4-phenylmet hylamino-6-acetylamino-2-(3-pyridy)quinazotine.
4-phenylmet hylamino-6-mét hanesulfonylamino-2-(3-pyridy)quinezoline,
4-phenylmethylamino-6-sulfamoyl-2-(3-pyridy) quinazoline,
4-phenylmethylamino-6-acetoxy-2-(3-pyridyl)quinazoline,
4-phenylmethylamino-6-ctioro-2-(3-pyridyl)quinazoline.
4-phenyimethylamino-6-bromo-2-(3-pyridy')quinazoline,
4-phenylmethylamino-7-(luoro-2-(3-pyridyl)quinazoline.
4-phenyimet hylamino-6-trifiuoromet hyl-2-(3-pyridyl)ouinazoline, 4-phenylmet hylamino-6-trifluoromet hoxy-2-(3-pyridylidquinazoline. 4-phenylmethylamino-6-hydroxy-2-(3-pyridyl)quinazoline, 4-phenylmethylamino-6-nitro-2-(3-pyridyidquinazoline, 4-phenylmet hylamino-6-cyano-2-(3-pyridy) quinazoline, 4-phenylmethylamino-6-methyl-2-(4-pyridyl)quinazdine, 4-phenylmet hylamino-6-met hoxy-2-(4-pyridy) quinazoline, 4-phenylmet hylamino-6.7-dinethoxy-2-(4-pyridyl)quinazoline, 4-phenylmet hylamino-6-carboxy-2-(4-pyridyl)quinazoline. 4-phenylmethylamino- 0 -methoxycarboryd-2-(4-pyridy)quinazoline, 4 -phenylmet hylamino-6-amino-2-(4-pyridyl)quinazoline. 4-phenytmathylamino-6-(N,N-dimet hylamino)-2-(4-pyridy)quinazoline,
4-phenylmethylamino-6-acetylamino-2-(4-pytidyt)quinazoline.
, 4-phenylmethylamino-6-methanesulfonylamino-2-(4-pyridy)quinazoline,
4-phenyimet hytamino-6-sulfamoy-2-(4-pytidyi)quinazoline.
4-phenylmethylamino-6-acetoxy-2-(4-pyridyt)quinazoline,
4-phenylmet hylamino-6-chloro-2-\{4-pyridylyquinazoline.
4-phenylmet hylamiso-6-bromo-2-(4-pyridy) quinazoline.
4-phenylmet hyiamino-7-flucro-2-(4-pyridy')quinazoline,
4-phenylmet hylamino-6-trifiuoromat hyl-2-(4-pyridyl)quinazoline,
4-phenylmethylarnino-6-trifluoromethoxy-2-(4-pyridyl)quinazoline,
4-phenylmethylamino-6-hydroxy-2-(4-pyridy)quinazoline,
4-phenylmet hylamino-6-nitro-2-(4-pyridyl)quinazoline.
4-phenylmet hytamino-6-cyano-2-(4-pytidy) quinazoline.
4-phenytamino-2-(3-pyridy)quinazoline,
4-(3-met hoxycarbonylphenyl) amino-2 -9 -pyrddyl)qulnazoline,
4-phenylathylamino-2-(3-pyridy) \({ }^{\text {a }}\) quinazoline:

4-phenylmet hylamino-2-(2-pyridyl)quinazoline,
4-phenylmet hylemino-2-(4-pyridyl)quinazoline, 4-phenylmet hylamino-2-(2-(3-pyridyl)ethyl)quinazoline.
4-phenylmet hylamino-2-(2-(3-pyridyl) vinyl)quinazoline. 6-iodo-4-phenylmethylamino-2-(3-pyridyl)quinazoline. 4-(3-carboxyphenyl)amino-2-(4-pyridyi)quinazoline. 6-fluoro-4-phenyimethylamino-2-(3-pyridyl)quinazoline 4-(cyclopropyimethyl)amino-2-(3-pyridy)quinazäine, 4-(cyciohexymethyl)amino-2-(3-pyridyl)quinazoline, 4-(2-azepinylmethyl)amino-2-(3-pyridyl)quinazoline, 4-(3-pyridylmethyl)amino-2-(3-pyridy)quinazoline, 4-((1-methyl-2-pyrroty) methyl)amino-2-(3-pyridyl)quinazoline, 4-(3-isoxazoly) amino-2-(3-pyridyl)quinazoline. 4-(3-tsoxazolyimethyl) amino-2-(3-pyridy)quinazoline. 4-(2-thienyimethyl)amino-2-(3-pyridyt)quinazoline. 4.(2-furytinethy)amino-2-(1 -tmidazoly) quinazoline, 4-(2-tetrahydrofuranylmethy)amino-2-(1 -imidazoly) quinazoline, 6-(4-tetrahdyropyranyfnethyl)amino-2-(1 -imidazotyl)quinazaline. 6-methoxy-4-(4-tetrahydropyranymethyl)amino-2-(1-imidazolyi)quinazoline, 6-chloro-4-(4-tetrahydropyranyimethyl)amino-2-(1-imidazoly) quinazoline, 4-(2-phenoxyet hyi)amino-2-(1-imidazolyl)quinazoline, 4-(2-thenymethyy)amino-2-(1-imidazolyl)quinazoline. 4-(1.1-dimethy-2-metho-2-(1-imidazolyl)quinazoline, 6-methoxy-4-(2-methoxyethy)amino-2-(1-imidazoy) \({ }^{2}\) quinazoline, 6-chloro-4-(2-methoryethyl)amino-2-(1-imidazo yl)quinazoline, 4-(3-ethoxypropyt)amino 6-nitro-4-(2-methoxyethyi) amino-2-(1-imidazozoline. 6-chloro-4-(2-ethoxyethy)amino-2-(1-imidazolyl)quinazoline, 6.7-dimethoxy-4-(2-mether 6-chloro-4-(2-(2-hydroxyethothyl)amino-2-(1-imidazolyi)quinazoline, 6-chloro-4-(2-dimethytaminoal)ethyl)amino-2-(1-imidazoly)quinazoline. 6-methoxy-4-(2-(2-hydroxyethox)amino-2-(1-anidazolyt)quinazoline, 4-(2-methaxyethyl)amino-6-iodo-2-(1-imino-2-(1-imidazolyd)quinazaline. 4-(2-methoxyet hyl)amino-6-methory-imidazolyt)quinazoline,
4-(2-hydroxyethyl) amino-6-methaxy-2-(2-methyl-1-imidazolyl) quinazoline, 4-(2-methaxyet hyl)amino-6,8-diiodo-2-(1-imidazolyi)quinazoline, 4-(2-(2-hydroxyethoxy) ethyl) amino-6-(1-inidazoly)quinazoline. 4-(2-methoxyet hyl)amino-6-methythiodo-2-(1-tmidazoly) quinazoline, 4-(2-methoxyet hyl)amino-6-methysulfinst-2-(1) 4-(2-methoxyethyl)amino-6-methyisurfonyt-2-(1-imidazotyl)quinazoline. 4-(2-(2-hydroxyethoxy)ethyi)amino-6-methy-(1-imidazoly)quinazoline, 2-(1-inldazoly)-4-(2-methoxyethyl)amina-6 6-acatyl-4-(2-methoxyethyl)amino-2-(3-pyrldyl)quinazoline nynyl)quinazoline, 6-ethymy-4-(2-methoxyathyl) amino-2-(3-pydiy)quinaine,
4-[2-(2-hydroxyethoxy)ethylamino-6-acety-2-(4-bmidazoline,
4-(2-methythicethy) amino-6-methory-2-(1-imidazolin)quinazoline.
4-(2-methyisulfinylethyl) amino-6-metho-2-(1-imidazotyl)quinazoline,
4-(2-methylsuffonylethyl)amino-6-methoxy-2-(1-imidazoty)quhazoline. 4-[2-(2-hydroxyethoxy)ethylamina-6 hoxy-2-(1 -imidazoly)quinazoline, 4-[2-(2-hydroxyethoxy)ethylamino-methaxycarbonyi-2-(-imidazolyl)-quinazoline. 4-(2-methoxyel hyl)amino-6-hydroxymethy-2 (1-2-(1-itnidazolyi)-quinazoline, 4-(2-methoxyethyi)amino-6-methoryethy-2-(1-imidazatyi)quinazoline. 4-(3-methaxypropy) amino-6-mathoy-2 4-(2-(2-hydroxyethoxy)ethy1) amino-6-2-(1-imidazoly) quinazoline.
2-(1-imidazoly) -4- 2 -(2-hydroxyethaxyethythio-2-(1-imidazoly)quinazoline,
2-(1 -Inidazoly) -4-[2-(2-hydroxyethoxy)ethylfarino-6-(2-triisopropyd-siylethymy)-quinazoline. 4-phenyimethydamino-6-methyl-2 (1)
4-phenyimethylamino-6-methony 2 -imidazoly 1 (quinazoline.
4-phenyimethyiamino-6-methaxy-2-(1-imidazoly)quinazoline,
4-phenytrnethylamino-6-carbexy-2-(1-imidazoid)alyi)quirzazoline,
4-phenylmethytamino-6-methoxycarbonyi-2-11-iminazoline,

4-phenylmet hylamino-6-amino-2-(1-imidazolyl)quinazoline.
4-phenylmathyiamino-6-(N.N-dimethylamino)-2-(1-imidazolyi)quinazoline.
4-phenylmethylamino-6-acetylamino-2-(1-imidazolyl)quinazoline.
4-phenyimet hylamino-6-met hanesulfonylamino-2-(1 -imidazolyl)quinazoline.
4-phenylmethylamino-6-sulfamoyl-2-(1-imidazolyl)quinazoline,
4-phenylmethylamino-6-acetoxy-2-(1-imidazolyl)quinazoline,
4-phenylmel hylamino-6-chloro-2-(1-imidazolyl)quinazoline,
4-phenylmet hytamino-6-bromo-2-(1-inidazolyl)quinazoline.
4-phenymet hytamino-7-fluoro-2-(1-imidazoly)quinazoline.
4-phenylmethyla mino-6-tritluoromethyl-2-(1-imidazoiyl)quinazoline,
4-phenylmethylamino-6-trifluoromet hoxy-2-(1-imidazolyi)quinezoline.
4.phenylmethytamino-6-hydroxy-2-(1-imidazolyl)quinazoline,

4-phenylmet hylamino-8-nitro-2-(1-imidazolyl)quinazoline,
4-phenylmet hylamino-6-cyano-2-(1-imidazolyi)quinazoline,
4-phenylmet hylamino-2-(1-imidazolyt)quinazoline,
4-phenylmet hylamino-2-((1-imidazolyl)rnet hyl)quinazoline.
4.-phenytmet hyiamino-2-(2-methyl-1 -imidazolyl)quinazotine,

6-bromo-4-phenylmethylamino-2-(1-imidazolyl)quinazoline.
7-chloro-4-phenylmet hytamino-2-(1-imidazolyl)quinazoline,
6-chloro-4-phenylamino-2-(1-imidazolylmethyl)quinazoline.
6-nitro-4-phenylmet hylamino-2-(1-imidazolyl)quinazoline,
6-methoxy-4-phenylmet hylamino-2-(1-imidazofyl)quinazoline.
6-chloro-4-phenytmet hylamino-2-(1-imidazolytmet hyl)quinazoline.
6-chloro-4-(3-carboxyphenyl)amino-2-(1 -imidazolylmet hyl)quinazoline.
6-dimet hylaminosufonyl-4-phenytmethylamino-2-(1-imidazolyl)quinazoline.
6,7-dimethoxy-4-phenylmet hylamino-2-(1-imidazoly)quinazoline,
4-(3,4-dimethoxyphenylmet hyl)amino-2-(1-imidazolyl)quinazoline.
6-dimet hylaminomet hylideneaminosulfony-4-phenylmethylamino-2-(4-imidazolyt)quinazoline,
6-(phenytmethylaminosulfonyl)-4-phenylmethylamino-2-(1-imidazolylaquinazoline,
4-(2-phenylethyl)amino-2-(1 -imidazolyl)quinazoline,
4-cyclohexylmethylamino-2-(1 -imidazolyl)quinazoline,
6-carbaxy-4-phenylmethylamino-2-(4-imidazoly)quinazoline,
6-phenyimet hylaminocarbanyt-4-phenylmethylamino-2-(1-imidazolyl)quinazoline,
6-iodo-4-phenylmethylamino-2-(1-imidazoly)quinazoline,
6-ethoxycarbonyi-4-phenytmethylamino-2-(1-imidazolyl)quinazoline,
6-hydroxy-4-phenylmetrylamino-2-(1-imidazoly)quinazoline,
4-(4-lrifulorornethoxyphenylmethyl)amino-2-(1-imidazolyl)quinazoline,
4-phenyimethylamino-2-(2-azepinyt)quinazoline.
4-phenytmet hylamino-2-(1,5-diazepin-2-yt)quinazoline,
4-phenytmethylamino-2-(2-pyrimidinyl)quinazoline,
4-phenytmef hylamino-2-(2-triazinyl)quinazoline,
4-phenytrnethytamino-2-(2-pyrrolyl)quinazoline.
4-phenyimethylamino-2-(1-triazolyl)quinazoline.
6-hydroxy-4-pherylmethylamino-2-(1-imidazolyi)quinazoline.
4-(3-trifluoromethoxypherrylmethyl)amino-2-(1-imidazolyf)quinazoline
4-phenyimelhytamino-6,8-diiodo-2-(1-imidazoly)quinazoline.
4-(2-phenoxyet hyl)amino-6-methoxy-2-(1-imidazolyi)quinazaline,
6-hydraxymethyl-4-phenyimet hylamino-2-(3-pyridyl)quinazoline
6-methytthio-4-phenylmethylamino-2-(3-pyridyi)qulnazoline,
6-methylsulfinyt-4-phenytmethylarrino-2-(3-pyridyl)quinazoline.
6-methylsudfinyt-4-pherytmethylamino-2-(3-pyridyl)quinazoline,
4-phenylmethydamiro-2-(2-thienyl)quinazoline.
4-phenylmathylamino-2-(2-furyi)quinazaline,
4-phenylmethylamino-2-(1-irridazolyi)-5,6,7.8-tetrahydroquinazoline,
6-carbaxy-4-phenylmethylamino-2-(9-imidazolyl)-5,6,7,8-tetrahydroquinazoline,
6-ethaxycarbanyt-4-phenyimethyiamino-2-(1-imidazolyl)-5,6,7,8-tetrahydroquinazoline,
6 -ethylaminocarbonyl-4-phenylmet hylamino-2-(1-imidazodyl)-5,6,7,6-tetrahydroquinazoiline.
4-(2-methaxyethyl)amino-2-(1-imidazoiyl)-5,6,7,8-tetrahydroquinazoline or
4-(2-(2-hydroxyethoxy)ethyi)amino-2-(1-imidazolyi)-5,6,7,8-tetrahydroquinazoline.

\section*{-28- \\ European published application number 0636626, which discloses compounds of the formula}

and salts and solvates (e.g. hydrates) thereof, in which:
\(R^{2}\) represents arytmethyl or \(C_{1}-\) alkyl optionally substituted by one or more fuorine atoms
\(R^{2}\) represents methyi
\(\mathrm{R}^{3}\) represents C,-4alkyl:

helerocyclic ring selected from thienyl, thiazolyl and 1,2,4-triazolyl each ring optionally substituted by a
\(C_{1-4}\) alkyl or aryl group; or when \(R^{\prime}\) is aryifnethyl or \(C_{i-6}\) alkyl substituted by one or more fluorine
atoms then \(R^{4}\) may also represent hydrogen:
\(R^{5}\) represents hydrogen or \(C_{1 \rightarrow \text { alkyt; }}\)
\(R^{5}\) represents hydrogen or \(C_{1}-r\) aikyl;
\(R^{7}\) represents hydrogen, amino, hydroxyl. \(C_{1-6}\) askyl, aryi or arylC \(C_{1}\) - 1 alkyl
\(\mathrm{R}^{8}\) represents hydrogen or \(\mathrm{C}_{1}\)-c aikyl:
\(R^{9}\) represents hydrogen, \(\mathrm{C}_{1-5}\) alkyi. \(\mathrm{SO}_{2} \mathrm{R}^{12} . \mathrm{CO}_{2} R^{12}, \mathrm{C}(=\mathrm{NCN}) \mathrm{SR}^{12}\) or \(\mathrm{C}(=\mathrm{NCN}) \mathrm{NR}^{13} \mathrm{R}^{14}\) :
\(R^{10}\) represents hydrogen or \(\mathrm{C}_{1-5}\) alkyl;
\(R^{\prime \prime}\) represents \(C_{t-6}\) alkyl optionally substituted by one or more halogen atoms, or \(R^{\prime \prime}\) represents aryl. arylC \(\mathrm{C}_{1-1}\) alkyl. thienyl. NR \({ }^{15} \mathrm{R}^{16}, \mathrm{CH}_{2} \mathrm{NR}^{17} \mathrm{R}^{18}\) or \(\mathrm{R}^{10}\) and \(\mathrm{R}^{\prime 1}\) together represent \(-\mathrm{A}\left(\mathrm{CH}_{2}\right)_{n}\)-: \(R^{12}\) represents \(C_{1}-6\) alkyl, aryl or aryiC \(C_{1}-4\) alkyl:
\(R^{13}\) represents hydrogen or \(\mathrm{C}_{1}\)-calkyl:
\(R^{14}\) represents hydrogen, \(C_{1-\varepsilon}\) alkyt, aryl, arylC \(C_{-4}\) akyl or \(R^{13}\) and \(R^{14}\) togother with the nitrogen atorn to which they are attached form a morpholine, piperazine or N-C1-s alkyipiperazine ring
\(R^{15}\) represents hydrogen or \(C_{1}-6\) alkyt or \(R^{10}\) and \(R^{15}\) together represent \(-A\left(\mathrm{CH}_{3}\right)_{n}\)-:
\(\mathrm{A}^{16}\) represents nydrogen. \(\mathrm{C}_{1-6}\) alkyl, aryl, arylC \(\mathrm{C}_{1-4}\) alkyl. \(\mathrm{CO}_{2} \mathrm{R}^{12}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{2 i}\) or \(\mathrm{R}^{13}\) and \(\mathrm{R}^{16}\) together with the nitrogen atom to which they aro attached form a morpholine, piperazine or \(\mathrm{N}-\mathrm{C}_{1}-\) talkytpiperazine ring:
\(\mathrm{R}^{47}\) represents hydrogen or \(\mathrm{C}_{1}-s\) alkyl:
R \(^{18}\) represents hydrogen, \(C_{1-5}\) alkyl, aryl, arylC \(C_{1}\) alkyt, COR \({ }^{12}\) or \(R^{17}\) and \(R^{18}\) together with the nitrogen atom to which they are attached form a morpholine, piperazine or \(\mathrm{N}-\mathrm{C}_{1}-4\) alkylpiperazine ring;
A represents \(\mathrm{CH}_{2}\) or \(\mathrm{C}=\mathrm{O}\);
\(m\) represents zero or 1 ;
\(n\) represents 1,2 or 3;
\(X\) represents \(S\) or \(N H\), or when \(R^{7}\) represents amino then \(X\) may also represent \(O\);
Y represents \(\mathbf{O}\) or S ; for use in therapy.

\section*{Preferred compounds include:}

1,3-Dimethyl-6-\{2-propoxy-5-acetamidopheny)-1,5-dihydropyrazolo[3,4-d]pyrimidir-4-one:
1-ethyi-3-methyl-6-[2-propoxy-5-(4-melhyl-2-thiazolyl)phenyll-15-d3,4-d]pyrimidir-4-one:
1-ettry-3-methyl-6-[2-propoxy-5-(2-methyl-4-thiazolyl)phenyl] 1,5 -dihydropyrazolo[3.4-d]pyrimidin-4-one:
 one:
1,3-dimethyl-6-[2-propaxy-5-2-methyl-4-thiazoly)phenylf-1,5-diliydropyrazolo[3.4-d]pyrimedin-4-one:
1,3-dimethyl-6-\{2-propoxy-5-(3-phenyl-1,2,4-riazol-5-ylyphenyl)-1,5-dihydropyrazodo[3,4-d]pynimidin-4one:
1.3-dimethyl-6-(2-propoxy-5-methanesutlonamidopheryi)-1.5-dihydro-pyramolo(3,4-d]pyrimidin-4-one;
and physlologically acceptable salts and solvates (e.g. hydrates) thereof.

European published application number 0640599, which discloses compounds of the formula

wherein A is a bond, C1-4 alkylene or C1-4 oxyalkylene:
Y is a bond, C1-4 alkylene, C1-4 alkyteneoxy, C1-4 alkoxyphenytene or phenyl(\(\mathrm{C} 1-4\))alkylene;
\(Z\) is a bond or vinylene:
R1 is 4-15 membered heterocyclic ring containing one or two nitrogen atoms optionally substituted by one or two groups chosen from C1-4 alkyl. C1-4 alkoxy, halogen, triflworomethyl and nitro:

R2 is (i) 4-15 membered heterocydic ring containing one or two hetero a toms chosen from nitrogen, oxygen, and sulphur, not more than one hetero atom being sulphur, optionally substituted by one or two groups chosen from C1-4 alkyl. C1-4 alkoxy, halogen, trifluoromethyl, nitro and groups of formula:
-COOR10
wherein R10 ts hydrogen or C1-4 adkn.
(ii) C4-15 carbocyctic ning,
(iii) C1-4 alkoxy.
(iv) hydroxy(C1-4 alkoxy) or
(v) hydroxy.

R3 is (i) 4-15 membered heberocydic ring containing one or two hetero atoms chosen from nitrogen, oxygen and sulphur, not more than one hetero atom being oxgen or sulphur, optionally substituted by one or two groups chosen from C1-4 alky, C1-4 alkoxy, halogen, trifluoromethyl. nitro. cyano, ethynyl and groups of formula:
-SONR7R8
wherein R7 and R8 are independently hydrogen or C1-4 alkyl.
(ii) C4-15 carbocydic ring.
(iii) a group of formula:
\(\mathrm{CH} 2=\mathrm{CH}(\mathrm{X})-\)
wherein \(X\) is halogen, or
(iv) hydrogen.
and \(I\) is 1 or 2 .
provided that: \(R 2\) is not hydroxy when \(Y\) is a bond; \(R 1\) is not bonded through its nitrogen atom. when \(Z\) is vinylene; and exduding compounds of the formula:

wherein RM is methyl or n-propyt:
\(R^{B B}\) is cyclopentyl, cyclohexyl, 2-hydroxyethyl, methoxyethyl, 2-(1-piperidinyl)ethyl, or phemyl or berizyl which may be substituted by 1 or 2 of methyl. methaxy, chloro, nit ro and trifluorometry; \(R^{c c}\) is hydrogen or methyl;
\(R^{00}\) is methyl or n-propyl, isopropyl or benzyl; and \(R^{E E}\) is mydrogen or methyt;
and the compound of formula:

and its phermaceutically acceptable ssits.

\section*{Preferred compounds include:}

2-(1-|midazoly)-4-[2-(2-hydroxyethoxy)ethyl]amino-5-(3-methoxyphenyl)-methylpyrimidine,
2-(1-Imidazalyl)-4-phenyimethylaminopyrimidine.
2-(1-Imidazoly)-4-(2-methoxyethyl)aminopyrimidine,
2-(1-Imidazolyl) 5-ethyl-4-phenyimethylaminopyrimidine.
2-(1-Imidazolyl)-5-phenylmethyl-4-phenylmethytaminopyrimidine
2-(1-imidazoly)-5-methyf-4-phenylmethylaminopyrimidine.
2-(1-Imidazoly)-5.6-dimethyt-4-phenytmethylaminopyrimidine

2-(1-imidazoty)-5-(3-methoxyphenyi)methyl-4-(2-methoxyethyl)amino-pyrimidine.
2-(1-imidazoly)-5-(4-methoxyphemy)methyl-4-[2-(2-hydroxyethoxy)ethyl)-arninopytimidine,
2-(1-Imidazoly) -5-(4-methoxyphenyl)methyi-4-(2-methoxyethyl)amino-pyrimidine.
2-(1-imidazaly)-5-(4-methoxyphenyl)methyl-4-phenymethylamino-pyrimidine.
2-(1-imidazolyt) 5-phenoxymethyl-4-phenylmethylaminopyrimidine.
2-(1-imidazolyl)-5-(1-imidazolyt)methyl-4-phenylmethytaminopyrimidine.
2-(1-imidazolyl)-5-(1-chlorovinyl)-4-phenylmethylaminopyrimidine,
2-(1-imidazalyl)-5-(2-thienyl)-4-phenylmethylamdnopyrimidine,
2-(1-|midazolyl)-5-(2-thiazolyl)-4-phenylmethylaminopyrimidine,
2-(1-|midazolyl)-5-(2-thienyl)-4-(1,3-dioxaindan-5-yi) methylaminopyrimidine,
2-(1-Imidazaly)-5-(2-thienyl)-4-\{2-(2-hydroxyethaxy)ethyl aminapyrimidine.
2-(1-Imidazoly)-5-(2-thienyl)-4-(1-naphthyl) methylaminopyrimidine,
2-(1-Imidazolyl)-5-(2-thienyl)-4-(4-methoxyphenyl) methylaminopyrimidine.
2-(1-Imidazo 1 y)-5-(2-thienyl)-4-(3-methoxypheny1) methylarninopyrimidine.
2-(1-|midazaly)-5-(2-thieny)-4-(2-furyl) methylaminopyrimidine,
2-(1-Imidazoly)-5-(2-thienyl)-4-(2-thienyl) methylaminopyrimidine.
2-(1-Imidazolyl)-5-(2-thienyl)-4-(3-pyridyi) methylaminopyrimidine.
2-(1-imidazoly)-5-(2-thienyl)-4-(2-metharyethyl) aminopyrimidine,
2-(4-Imidazoly)-5-(2-thienyi)-4-phenylmethaxyaminopyrimidine.
2-(1-Imidazaly)-5-(2-thienyl)-4-(4-chlorophemy) methylaminopyrimidine,
2-(1-imidazoly)-5-(2-thieny)-4-(3-chloropheny) methylaminopyrimidine,
2-(1-Imidazolyl)-5-(2-thieryl)-4-(1,3-dioxaindan-5-yl) methylaminopyrimidine.
2-(1-Imidazotyl)-5-(4-methylphenyi)-4-(1,3-dioxalndan-5-yi) methylamino-pyrimidine,
2-(1-Imidazaly)-5-(4-methoxyphenyl)-4-(1,3-dioxaindan-5-yl) methylamino-pyrimidine.
2-(1-imidazoly)-5-(5-methyi-2-thienyl)-4-(1,3-dioxaindar-5-yi)methyta mino-pyrimidine.
2-(1-imidazoly)-5-(2-thienyl)-4-44-(1-imidazdy)phenyl] methylamino-pyrimidine.
2-(1-imidazolyi)-5-(3-pyrldyl)-4-(1,3-dioxaindan-5-yl) methylaminopyrimidine.
2-(1-imidazolyl)-5-(3-furyi)-4-(1,3-diaxaindan-5-yl) methylaminopyrimidine.
2-(1-Imidazolyi)-5-(3-pyridyl)-4-phenylmethylaminopyrimidine,
2-(1-Imidazoiy)-5-(4-chlorophenyl)-4-(1,3-dioxaindan-5-yl) methylamino-pyrimidine,
2-(Benzimidazol-1-yi)-5-(2-thienyl)-4-(1,3-dioxalndan-5-yl) methylamino-pyrimidine,
2-(1-imidazolyl)-5-(2-thlenyl)-4-(4-ethoxycarbanylphenyl) methylarnino-pyrimidine,
2-(1-imidazolyi)-5-(2-naphihyl)-4-(1,3-dioxaindan-5-yi) methylamino-pyrimidine.
2-(3-Pyridyi)-5-(2-thienyi)-4-(1,3-dioxaindan-5-yl) methylaminopyrimidine,
2-[2-(3-Pyridy)vinyl]-5-(2-thieny)-4-(1,3-diaxaindan-5-yi) methylamino-pyrimidine,
2-(2-Methyl-1-tmidazolyi)-5-(2-thienyi)-4-(1,3-dioxaindar-5-yi)methyiamino-pyrimidine or
2-(1-Imidazoly \()^{\text {2 }}\)-5-(2-thienyl)-4-(benzimidazol-5-yi) methyleminopyrimidine

\title{
European published application number 0668280, which discloses compounds of the formula
}

wherein \(R^{1}\) and \(R^{2}\) are the same or different and represent hydrogen, lower alkyl (which is optionally substituted with one to three substituents which are the same or different and are cychoalkyl, hydroxy. lower alkoxy, carboxy. Jower alkoxycarbonyl, amino, monoalkyl-subsbituted amino, dialkyl-substituted amino, nitro, hatogen, alicyclic heterocycle group (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl, aralkyl. aryl optionally substituted with one to three substituents which are the same or different and are lower alkoxy. or aromatic heterocycle group)., cycloalisyl. bicycloalkyi. ber:zocycloalkyl (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl. hydroxy. lower alkoxy, carboxy, lower alkoxycarbonyi, amino, monoalkyl-substituted amino. dialkyl-substituted amino, nitro, suttonamide, hatogen, or trifuromethyl), bwer alkenyl, aryl (which is optionally substituted with one to threc substituonts which are the same or difterent and are lower alkyl, hydroxy. lower alkoxy. carboxy, lower alkoxycarbonyl, amino, monoalkyi-substituted amino. dialkyl-substituted amino. nitro, sulfonamide, halogen, or trifiuoromethyl), aromatic heterocycle group-substituted alkyl (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl, amino, monoalkyl-substituted amino, dialkyl-substituted amino, nitro, sulfonamide, halogen or trifluoromethyl and where said atkyl part is optionally substituted with aryl, aromatic heterocycle group (which is optionally substituted with one to three substituents which are the same or different and ane bower alkyl, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl, amino, monoalkylsubstituted amino, dialky-substituted amino, nitro, sulfonamide, halogen, or trifluoromethyl), or aralkyl (where the aryl part of said aralkyl is optionally substituled with one to three substituents whict are the same or different and are lower alkyl. lower alkoxy. dialkyl-substituled amino, halogen. or trifluoromethyl), or \(R^{\prime}\) and \(R^{2}\) are taken together to represent heterocycle group containing nitrogen atom (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl. aryl, or aralkyl), \(R^{3}\) represents hydrogen, fower alkyl (which is optionally substituted with one to three substiments which are the same or different and are cycloalkyl, hydroxy. lower alkoxy, carboxy, lower alkoxycarbonyl, amino, monoalkyl-substituted amino. dlalky-substitutad amino, nttro. halogen, or alicyclic heterocycle group (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl, aralkyl. aryl optionally substituted with one to three substituents which are the same or different and are lower alkoxy, or aromatic heterocycle group)). cycbalkyl, fower alkenyl, aryl (which is optionally substituted with one to threo substituents which are the same or different and are lower alkyl, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl. amino. monoalkyl-substituted amino, dialkyl-substituted amino, nitro, sulfonamide, halogen, or trifuoromethyl). aromatic heterocycle group-substituted alkyl (where said aromatic heterocycle group part is optionally substituted with one to three substituents which are the same or different and are fower alkyl, hydroxy. lower alkoxy, carbaxy, bower alkoxycarbonyl, amino. monoalkyl-substitited amino, dialkyl-substituted amino, nitro, sulfonamide, halogen or trifluoromethyl, and where the alkyl part is optionally substituted with any), aromatic heterocycle group (where sald aromatic heterocycle group ts optionally substituted
with one to three substituents which are the same or different and are lower alkyl, hydroxy. tower alkoxy, carboxy, lower alkoxycarbonyl, amino, monoalkyl-substituted amino. dialkyl-substituted amino. nitro, suftonamide, halogen, or trifivoromethyl), or aralkyl (wthere the aryi part of said aralleyi is optionally substituted with one to three substituents which are the same or different and are lower alkyl. bower alkoxy, dialky-substituted amino, halogen, or trilluoromethyl), and \(X\) represents oxygen atom or sulfur atorn, or pharmacologically acceptable salts thereof.

European published application number 0669324, which discloses compounds of the formula

(I)
(wherein \(R^{1}, R^{2}, R^{3}, R^{4}\) and \(R^{5}\) may be the same or different from each other and each represents a hydrogen atom, a halogen atom. a lower alkyi group or a lower alkoxy group; and
\(R^{5}\) and \(R^{7}\) may be the same or different from each other and each represents fower alkyl group, a hydroxyalkyl group a tower alkoryakis represents a hydrogen atom, a group, a cycloalkyl group, a eycloalkylalkyl group ar a cal group. a cyanoalkyl group, a heteroarylalkyl atternatively \(\mathrm{R}^{6}\) and \(\mathrm{R}^{7}\) may form a ring together with the nitry alkyl group which may be protected, or ring optionally havine a substituent).
or a pharmacologically acceptable salt thereof:

WO91/19717 discloses compounds of the formula

and

wherein
\(J\) is oxygen or sulfur,
\(\mathbf{R}^{1}\) is hydrogen, alkyl or alkyl substituted with aryi or hydroxy; \(\mathbf{R}^{2}\) is hydrogen, aryl, heteroaryl, cycloalkyl, alkyl or alkyl substituted with aryl, heteroaryl, hydroxy, alkoxy, amino, monoalkyl amino or cialkylamino, or \(-\left(\mathrm{CH}_{2}\right)_{m}\) TCOR20 wherein \(m\) is an integer from 1 to 6. T is oxygen or -NH - and \(\mathrm{R}^{20}\) is hydrogen, aryl, heteroanyt, alkyl or alkyl substituted with aryl or heteroaryl:
\(R^{3}\) is hydrogen, hato, trifluoromethyl, alkoxy, alkylthio, alkyl, cycloalkyl, aryl, aminosulfonyl, amino, monoalkylamino, dialkylamino, hydroxyalkylamino, aminoalkylamino, carboxy, alkoxycarbonyl or aminocarbonyl or alkyl substituted with aryl, hydroxy, alkoxy, amino, monoalkylamino or dialkylamino;
\(R^{a}, R^{b}, R^{c}\) and \(R^{d}\) independentiy represent hydrogen, alkyl, cycloalkyl or aryl; or (\(R^{a}\) and \(R^{b}\)) or (\(R^{c}\) and \(R^{d}\)) or (\(R^{b}\) and \(R^{c}\)) can complete a saturated ring of 5- to 7 -carbon atoms, or (\(R^{a}\) and \(R^{b}\)) taken together and (\(R^{b}\) and \(R^{c}\)) taken together, each complete a saturated ring of 5- to 7-carbon atoms, wherein each ring optionally can contain a sulfur or oxygen atom and whose carbon atoms may be optionally substituted with one or more or the following: alkenyl, alkynyl, hydroxy, carboxy, alkoxycarbonyl, alkyl or alkyl substituted with hydroxy, carboxy or alkoxycarbonyl; or such saturated ring can have two adjacent carbon atoms which are shared with an adjoining aryl ring; and n is zero or one.
```

Preferred compounds include:
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-3-(phenylmethyl)-
cyclopenta[4,5]imidazo[2,1-b]purin-4-one;
7.8-Dihydro-5-methyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-
one:
cis-6a,7,8,9,10,10a-Hexahydro-5-methyl-3-(phenylmethyl)-3H
benzimidazo[2,1-b] purin-4(5H)-one;
5,7,8,9-Tetrahydro-5-methyl-3-(phenyimethyl)pyrimido[2,1-b]purin-
4(3H)-one;
7,8-Dihydro-8-phenyl-5-methyl-3-(phenylmethyl)-3H-imidazo[2,1-
blpurin-4(5H)-one;
5',7'-Dihycro-5'-methyl-3'-(phenyimethyl)spiro[cyclohexane-1, $8^{\prime}$-( 8 H )-
imidazo[2,1-b]purin]-4'(3'H)-ane;
cis-5,6a,11,11a-Tetrahydro-5-methyt3-
(phenylmethyl)indeno[ $\left.4^{\circ}, 2^{\prime}: 4,5\right]$ imidazo[2,1-b]purin-4(3H)-one;
5,7'-Dihydro-2',5' dimethyl-3'-(phenylmethyl)spiro\{cyclohexane-
1.7(8'H)-imidazo[2,1-b]purin]-4 (3'H)-one;
7,8-Dihydra-2,5,7.7,8(R,S)-pentamethyl-3H-imidazo[2,1-b]purin-4(5H)-
one;
cis-5,6a,7,11b-Tetrahydro-5-methyl-3-

```
-34-
(phenylmethyl)indeno[\(2,1 \cdot,: 4,5]\) imidazo[2,1-b]purin-4(3H)-one; Cis-5,6a,7,8,9,9a-Hexahydro-2,5-dimethyi-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4-(3Ff)-one;
5'-Methyl-3'-(phenylmethyl)-spiro[cyclopentane-1, \(7^{\prime}\left(8^{\prime} H\right)-\left(3^{\prime} H\right)\) -imidazo[2,1-b]purin]-4'(5'H)-one;
7,8-Dihydro-2,5.7,7-tetramethyl-3-(phenylmethyl)-3H-imidazo[2,1-
b]purin-4(5'H)-one. b]purin-4(5'H)-one;
7,8-Dihydro-7(R)-phenyl-2,5-dimethyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-3,7(R)-bis(phenylmethyl)-3H-imidazo[2,1-
b]purin-4(5H)-one. b]purin-4(5H)-one:
(土)-7,8-Dihydro-2.5-dimethyl-7-ethyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
6a(S)-7,8,9,10,10a(R)-Hexhydro-2,5-dimethyl-3-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4(5H)-one;
6a(R)-7,8,9,10,10a(S)-hexahydro-2,5-dimethyl-3-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4(5H)-one;
7.8-Dihydro-2,5-dimethyl-7(R)-isopropyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5,7(R)-trimethyl-3-(phenyimethyl)-3H-imidazo[2,1-b]purin-
4(5H)-one;
cis-7,7a,8,9,10,10a-Hexahydro-2,5-dimethyl-3-(phenyimethyl)-3H-cyclopenta[5,6]pyrimido[2,1-b]purin-4(5H)-one;
7.8-Dihydro-2,5-dimethyl-7(S)-(1-methylpropyl)-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7.8-Dihydro-2,5-dimethyt-7(R)-(2-methylpropyl)-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7.8-Dihydro-2,5-dimethyl-7(R,S)-(methoxycarbonyl)-3-(phenyimethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7.8-Dihydro-2,5-dimethyl-7(R,S)-(1-propyl)-3-(phenyimethyl)-3H-imldazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-7(S)-(1-methylethyl)-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one:
7.8-Dihydro-2,5,7,7,8(R,S)-pentamethyl-3H-imidazo[2,1-b]purin-4(5H)-
one:

5,7,8,9-Tetrahydro-2,5,7,9(R,S)-pentamethyl-3-(phenyimethyl)-pyrimido[2,1-b]purin-4(3H)-one:
5,6a(F), 7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-
(phenylmethyl)cyclopent[4.5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(S),7,8,9,9a(R)-Hexahydro-2,5-dimethyl-3-
(phenyimethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;

BNSDOCID: <WO__9959584A:_!>

\section*{-35-}

Cis-6a,7,8,9,10,10a-Hexahydro-2,5-dimethyl-3-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4(5 H)-one;
5',7'-Dihydro-2',5'-dimethyl-3'-(phenyImethyl)spirolcyclohexane-1, \(8^{\prime}\) (\(8 H\) H)-imidazo[2,1-b]purin]-4'(\(3^{\prime}\) H)-ane;
cis-5,6a,7,8,9,9a-Hexahydro-2,5-dimethyl-3-(phenylmethyl)-cyclohept[6,7]imidazo[2,1-b]purin-4(3H)-one:
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-2-ethyl-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3ヶ)-one;
cis-6a,7,8,9,10,10a-Hexahydro-5-methyl-2-ethyl-3-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4-(5t)-one;
cis-5,6a, 7,8,9,9a-Hexahydro-5-methyl-2-ethyl-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-2-phenyl-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-6a,7,8,9,10.10a-Hexahydro-5-methyl-2-phenyl-3-(phenytmethyl)-3H-benzimidazo[2.1-b]purin-4(5H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methylcyclopenta[4,5]imidazo[2,1-blpurin-4(3H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-2,5-dimethylcyclopenta[4,5]imidazo[2,1-b]-purin-4(3H)-one;
cis-5,6a(R), 7,8,9,9a(S)-Hexahydro-2,5-di-methyt-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-ane;

2'-Methyl-3'-spiro\{cyclopentane-1, \(7^{\prime}\left(8^{\prime} H\right)\)-(3'H]-imidazo[2, 1-b]purin\}\(4^{\prime}\left(5^{\prime} \mathrm{H}\right)\)-one:
7,8-Dihydro-2,5-dimethyl-7(R)-(1-methylethyl)-3H-imidazo[2,1-b]purin-
4(5H)-one;
7,8-Dihydro-2,5,7,7-tetramethyl-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-7(S)-(1-methylethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
6a(R),7,8,9,10,10a(S)-Hexahydro-2,5-dimethyl-3H-benzimidazo[2,1-blpurin-4(5H)-one:
\(5^{\prime}, 7^{\prime}\)-Dihydro-2',5'-dimethylspiro\{cyclohexane-1, \(7^{\prime}\left(8^{\prime} \mathrm{H}\right)\)-imidazol2,1-b]purin\}-4'(3'H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-3-
(phenylmethyl)cyclopenta[4,5]imidazo[2,1-b]purin-4(3H)-thione;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-
(phenyimethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-thione;
cis-5,6a, 7.8,9,9a-Hexahydro-5-methyi-3-(4-chlorophenyimethyl)cyclopenta [4.5]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methyt3-(cyclohexyimethyl)-
cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6 \(=7,8,9,9 a-H e x a h y d r o-5-m e t h y t-3-(2-n a p h t h y l m e t h y l)-~\) cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
bromophenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(R)-7,8,9,9a(S)-Hexahydro-2,5-dimathyl-3-(4-methoxyphenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;
cis-5,6a,7,8,9,9a-Hexahydro-2,3,5-trimethylcyciopent[4,5]imidazo[2,1-b]purin-4(3H)-one:
cis-5,6a,7,8,9,9a-Hexahydro-2-(hydroxymethyl)-5-methyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;
cis-5,6a,7,8,9,9a-Hexahydro-2-methylthio-5-methyl-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-3,4,5,6a,7,8,9,9a-Octahydro-5-methyl-4-0x0-3-(phenyimethyl)-cyclopent[4,5]imidazo[2,1-b]purin-2-carboxylic acid;
cis-3,4,5,6a,7,8,9,9a-Octahydro-5-methyl-4-oxo-3-(phenylmethyl)cyciopent \([4,5]\) imidazo[2,1-b]purin-2-carboxylic acid, methyl ester;
cis-5,6a,7,8,9,9a-Hexahydro-2-bromo-5-methyl-3-(phenylmethyl)-cyclopent[4.5]imidazo[2,1-b]purin-4(3H)one;
cis-5,6a,7,8,9,9a-Hexahydro-2-(methylaminosulfonyl)-5-methyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purtn-4(3H)one;
cis-1-Cyclopentyl-5,6a,7,8,9,9a-hexahydro-5-methyl-cyclopent[4,5]imidazo[2,1-b]purin-4-(1 H)one;
cis-5,6a,7,8,9,9a-Hexahydro-3,5-bis-(phenylmethyl) cyclopent(4,5)imidazo(2,1-b)purin-4(3H)one;
cis-6a,7,8,9,10,10a-Hexahydro-3,5-bis-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4(5H)one;
cis-3-Cyciopentyl-5,6a,7,8,9,9a-hexahydro-5-methyl-cyclopent[4,5]imidazo(2,1-b)purin-4(3H)one;
\(5^{\prime}\)-Methyl-3'-(phenylmethyl)spiro[cyclopentane-1, \(7^{\prime}\left(8^{\prime} H\right)-\left(3^{\prime} H\right)-\) imidazo[2,1-b]purin]-4'(5'H)оле;
\(2^{\prime}, 5^{\prime}\)-Dimethyl-3'-(phenylmethyl)-spiro[cyclopentane-1, \(7^{\prime}\left(8^{\prime} H\right)-\left(3^{\prime} \mathrm{H}\right)-\) imidazo[2,1-b]purin]-4'(5'H)one;
cis-5,6a,(R)7,8,9,9a(S)-Hexahydro-5-methyl-3-(phemilmethyl)cyclopent[4,5]imidazo(2,1-b)purin-4(3H)one;
cis-3-CyclopentyI-5,6a,7,8,9,9a-Hexahydro-2,5-dimethylcyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;36
5'-Methyl-2'-trifluoromethyl-3'-(phenylmethyl)spiro\{cycia-pentane1.7(\(8^{\prime} H 2\)-(3'H2imidaza[2,1-b]purin\}-4'(5'H)-one;

7,8-Dihydro-5,7,7-trimethyl-2-trifluoromethyl-3-(phenyimethyl)-3it Imidazo[2.1-b]purin-4(5H]-öne;
(+/-)-cis-5,6a,7,8,9,9a-Hexahydro-5-m thyl-2-trifluoromethyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
(+/-)-6a, \(7,8,9,9 a, 10,11,11 a-O c t a h y d r o-2,5-d i m e t h y l-3-(\) phenylmethyl)-3H-pentaleno[\(6 a^{\prime}, 1^{1}: 4,5\)] imidazo[2,1-b] purin-4(5H)-one;
(+)-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3-phenylmethyl-3Hpentaleno[6a',1':4,5] imidazo[2,1-b] purin-4(5H)-one:
\((-)-6 a, 7,8,9,9 a, 10,11,11 a-O c t a h y d r o-2,5\)-dimethyl-3-phenylmethyl-3Hpentaleno[6a',1':4,5] Imidazo[2,1-b] purin-4(5H)-one;
(+/-) 6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethy-3H-pentaleno[6a',1':4,5] imidazo[2,1-b] purin-4(5H)-one;
(+)-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyF-3H-pentaleno[6a: \(1^{1: 4,5] ~ i m i d a z o[2,1-b] ~ p u r i n-4(5 H)-o n e ; ~}\)
(-)-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3Hpentaleno[6a', 1 ':4,5] imidazo[2,1-b] purin-4(5H)-one:
6a,7,8,9,10,10a,11,12,13,13a-Decahydro-2,5-dimethyl-(3-phenylmethyl)napth[1,8a-d]imidazo[2,1-b]purin-4 (5H)one;
7(R)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(3H)-one;
7(R)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3H-imidazo[2,1-b]purin-4(5H)one;
7(S)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3-(phenytmethyl)-3H-imidazo[2,1-b]purin-4(3H)-one;
7(S)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3H-imidazo[2,1-b]purin-4(5H)-one;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-[(trimethylacetoxy)methyl]-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;

5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(4-pyridylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-\{2-(1morpholinyl)ethy ijcyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-[acetoxymethy!]cyclopent[4.5]imidazo[2,1-b]purin-4(3H)-one;
5,6a,7,8,9,9a-Hexahydro-2,5,6a-trimethyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(R),7(S),8,9,9a-Hexahydro-2,5,6a-trimethyl-3-(phenylmethyl)cyciopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(S),7(R),8,9,9a-Hexahydro-2,5,6a-irmethyl-3-
(phenyimethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one];
cis-6a,7,8,9,10,10a-Hexahydro-2,5,7-trimethyt-3-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4(5H)-one];
```

cis-5,6a,7,8,9,9a-Hexahydro-2,5,6a-trimethylcyclopent[4.8]imidazo[2,1- b]purin-4(3H)-one); or
cis-6a,7,8,9,10,10a-Hexahydro-2,5,7-trimethyl-3H-benzimidazo[2,1-
b]purin-4(5H)-one].

```

WO 94/19351 discloses compounds of the formula

or a pharmaceutically acceptable salt thereof, wherein:
\(\mathrm{R}_{1}, \mathrm{R}_{2}\) and \(\mathrm{R}_{3}\) are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, halogeno, hydroxy, (dilower alkyl)amino, 4-morpholinyl, 1-pyrrolidinyl, 1-pyrrolyl, -CF3, -OCF phenyl and methoxyphenyl; or \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together are methylenedioxy; or \(R_{1}\) and \(R_{2}\) together with the carbon atoms to which they are attached form a benzene ring; and
\(R^{a}\) is hydrogen and \(R^{b}\) and \(R^{c}\). together with the carbon atoms to which they are attached. form a saturated ring of 5 carbons; or Ra is lower alkyl. \(\mathrm{R}^{\mathrm{b}}\) is hydrogen or lower alkyl, and \(\mathrm{R}^{\mathrm{c}}\) is hydrogen; or \(\mathrm{R}^{\mathrm{a}}, \mathrm{R}^{\mathrm{b}}\) and the carbon atom to which they are attached form a saturated ring of 57 carbons, and \(R^{c}\) is hydrogen; or \(R^{a}\) is hydrogen, and \(R^{b}, R^{c}\) and the carbon atoms to which they are attached form a tetrahydrofuran ring; or \(\mathrm{Ra}^{\mathrm{a}}\) and \(R^{\text {b }}\), together with the carbon atom to which they are attached, and \(R^{b}\) and \(R^{c}\), together with the carbon atoms to which they are attached, each form a saturated ring of 5-7 carbons.

Preferred compounds include:

2'-benzyl-spiro[cyclopentane-1'.7' (8'H)-[3'H]-imidazo[2,1-bjpurin-4'-(5'H)-one; -...................-2'-benzyi-5.7.7-trimethyl-3H-imidazo[2,1-b]purin-4-(5H)-oñe;
(+)-2-benzyl-7. 8-dihydro-5-methyl-7-(1-methylethyl)-1H-imidazo[2,1-b]-purin-4(5H)-one;
(t,-)-6a, 7, 8, 9, 9a, 10, 11, 11a-octahydro-5-methyl-2-(3,4-methylene-dioxyphenylmethyl)-3H-pentalen[6a, 1:4,5]imidazo[2, 1-b]purin-4(5H)-one; and
(+)-cis-6a, 7, 9, 9a-tetrahydro-5-methyl-2-\{4-(trifluoromethyl)-phenyimethyl]-3H-furo[3', 4':4,5]imidazo[2.1-b]purin-4(5H)-one.

WO 94/22855 discloses compounds of the formula
1. A nitrogen-containing fused-heterocyclic compound having the formula (I) or a pharmacologically acceptable salt thereof:

in which ring A represents a benzene, pyridine or cyclohexane ring and \(B\) represents a pyridine, imidazole or pyrimidine ring. with the proviso that rings \(A\) and \(B\) are bonded to each other with two atoms being shared by them, and the shared atoms may be any of carbon and nitrogen atoms:
\(R^{1}\) represents a group represented by the formula: - \(N R^{4} R^{5}\) (wherein \(R^{4}\) and \(R^{5}\) may be the same or different
from each other and each represent a hydrogen atom, a lower alkyl or acyl group or a carboxyd group which may be protected. or alternatively \(R^{4}\) and \(R^{5}\) may form a ring together with the nitrogen atom to which they are bonded, provided that the ring may be substituted), or a heteroaryl group which has one or two nitrogen atoms and may be substituted:
```

                                    R2}\mathrm{ represents a hydrogen atom. a group represented
    by the Formula:

```

(wherein \(R^{8}\) represents a carboxyl or tetrazolyl group which may be protectedj,
or a halogen atom;
and
\(R^{3}\) represents a hydrogen atom or a group represented by the formula:

(wherein \(R^{6}\) and \(R^{7}\) each represent a hydrogen or halogen atom or a lower alkoxy group, or alternatively \(R^{6}\) and \(R^{7}\) may together form a methylenedioxy or ethylenedioxy group).

WO 95/19978 discloses compounds of the formula

and salts and solvates thereof, in which: \(\mathrm{R}^{0}\) represents hydrogen, halogen or \(\mathrm{C}_{1-\frac{\delta}{6} \text { alkyl; }}\) \(\mathrm{R}^{1}\) represents hydrogen, \(\mathrm{C}_{1-6}\) alkyl, \(\mathrm{C}_{26}\) alkenyl, \(\mathrm{C}_{26}\) alkynyl, halo \(\mathrm{C}_{1}\) 6alkyl. \(C_{3-8 \text { cycloalkyl, }} C_{3-8 \text { cycloalkylC }}^{1-3} 12 l k y l, \quad\) arylC \(C_{1-3}\) alkyl or heteroarylC \({ }_{1-3}\) alkyl;
\(\mathbf{R}^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally
substituted bicyclic ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5- or 6-membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
\(R^{3}\) represents hydrogen or \(C_{1 v}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3or 4-membered alkyl or alkenyl chain.

Preferred compounds include:

Cis-2,3,6,7,12,12a-hexahydro-2-(4-pyridylmethyt)-6-\{3,4-methylenedioxyphenyl)-pyrazino \([2\) ', 1': 6,1]pyrido[3,4-b]indole-1.4-dione: Cis-2,3,6,7,12,12a-hexahydro-6-(2,3-dihydrobenzo[b]furan-5-yl)-2-methyt-pyrazino[2 ', \(1: 6,1\) 1pyrido[3,4-b]indale -1,4-dione; Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-methylpyrazino[\(2^{\prime}, 1\) ':6, 1 lpyrido[3,4-b]indole -1,4-dione;

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-methylphenyl)pyrazino[\(2^{\prime}, 1^{\prime}: 6,1\)]pyrido[3,4-b]indole -1,4-dione: (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)-pyrazino[\(2,1: 6,1]\) pyrido [3,4-b]indole \(-1,4\)-dione; (6R;12aR)-2,3,6,7,12;12a-Hexahydro-2-cyclopenty1-6-(3,4-methylenedioxyphenyl)-pyrazino[\(\left.2^{\prime}, 1^{1}: 6,1\right]\) pyrido[3,4-b]indoie -1,4-dione: (\(6 R, 12 a R\))-2,3,6,7.12,12a-Hexahydro-2-cyclopropylmethyl-6-(4-methoxyphenyl)-pyrazino[\(2^{\prime}, 1^{\prime}: 6,1\)]pyrido[3,4-b]indole -1,4-dione; (6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methyi-pyrazino[\(2^{\prime}, 1^{\prime}: 6,1\)]pyrido[3,4-b]indole -1,4-dione; (\(6 R, 12 a R\))-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[\(2^{\prime}, 1\) ':6,1]pyrido[3,4-b]indole-1,4-dione; (6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1': 6,1] pyrido [3,4-b] indole-1,4-dione; (5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3,4-methylenedioxyphenyl)-pyrrolo[\(\left.1^{\prime \prime}, 2^{\prime \prime}: 4^{\prime}, 5^{\prime}\right]\) pyrazino[\(2^{\prime}, 1^{\prime}:\) 6,1]pyrido[3,4-bjindole-5-1,4-dione;
and physiologically acceptable salts and solvates thereof.
U.S. Patent No. 5,294,612 discloses compounds of the formula

wherein:
\(R^{1}\) is hydrogen, aliyl, \(C_{4}\) to \(C_{7}\) cycloalkyl, \(C_{4}\) to \(C_{7}\) cycloalkyl substituted by \(C_{1}\) to \(C_{10}\) alkyl or hydroxyl 2-or 3-tetrahydrofuranyl. 3-tetrahydrochienyl 1,1 , dioxide, \(C_{4}\) to \(C_{7}\) cycloalkyl- \(C_{1}\) to \(C_{10}\) alkyl, carboxy- \(C_{1}\) to \(C_{10}\) alkyl, carbo- \(C_{1}\) to \(C_{4}\) low er-alkoxy- \(C_{7}\) to \(C_{10}\) alkyl dialkyiamino \(C_{1}\) to \(C_{10}\) alkyl, phenyt- \(C_{1}\) to \(C_{4}\) lower-allyyl, phenyl- \(C_{3}\) to \(C_{4}\) lower-alkyl in which the phenyl sing is sabstitured in the 2,3, or 4 position by one or two substituents, the sume or different, selected from the group consisting of amino, halogen, \(\mathrm{C}_{1}\) to \(\mathrm{C}_{10}\) alkyl, carboxyt, carbo-C \({ }_{1}\) to \(C_{4}\) lower-alkoxy, carbamnyl, \(\mathrm{NHSO}_{2}-\) (quinolinyl), nitro and cyano:
\(R^{3}\) is, \(C_{1}\) to \(C_{4}\) lower-alkyt, phenyl- \(C_{1}\) to \(C_{4}\) loweranky lower-alkoxyphenyl-Ci to \(C_{4}\) lower-alkyl, \(\mathrm{diC}_{1}\) to \(\mathrm{C}_{4}\) lower-2lkoxy-phenyl- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) loweralkyl, pyridyl- \(C_{i}\) to \(C_{4}\) lower-alkyl, \(C_{4}\) to \(C_{7}\) cy cloalkil- \(C_{1}\) to Cilower-alkyl, phenylamino, diC, to \(C_{10}\) alinyamina, helogen, trillaoromethyl, \(C_{1}\) to \(C\) bower-alkylthio, cymo or nitro, and
\(\mathbf{R}^{6}\) is a nine or cen membered bicyelic. ring having carbon and from one to two nitrogen atoms, and
the heterocycle is made up of fused 5 or 6 membered rings or such ring substitured at any available carbon alom by one or two substituents, the same or different, selected from the group consisting of \(C_{1}\) to \(C_{4}\) lower-alkyl, halogen, \(C_{1}\) so \(C_{4}\) loweralkoxy, \(C_{4}\) to \(C_{7}\) cycloalkyloxy, 4 morpholinyl, \(C_{1}\) to \(C_{1}\) lower-alkoxy. \(C_{1}\) to \(C_{4}\) lower-alkoxy. hy drozy. imidazolyl, oxo and 4 morpholinyl- \(C_{1}\) to \(C_{4}\) lower-alkoxy, or at any available nitrogen atom by \(C_{1}\) to \(\mathrm{C}_{4}\) kower-alkyl, \(\mathrm{C}_{2}\) to \(\mathrm{C}_{4}\) lower-alkanoyl, or trinuoroacetyl; or a pharmaceurieally ncceptable acid-addjtion salt thereof.
U.S. Patent No. \(5,405,847\) discloses compounds of the formula

where the benzo ring can also contain a nitrogen atom instead of a CH group cither in position 6, 7, 8 or 9 and the radicals \(R_{1}, R_{2}, R_{3}\) and \(R_{1}\) have the following mesnings:
\(R_{1}: C_{2}\)-C6alkenyl, \(C_{2}-C_{6}-a l l y n y l, ~ h y d r o x y, ~ C_{1}-C_{6}\) 1: \(\mathrm{C}_{2}-\mathrm{C}_{6}\)-aikenyl, \(\mathrm{C}_{3}-\mathrm{C}_{6}\)-alkynyl, hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{6}\) \(\mathrm{C}_{2}\)-Coalkanoyloxy, benzoyloxy, morpholinocarbonyloxy, \(C_{1}-C_{6}\) alkyloxycarbonylory, \(C_{1}-C_{6}-\) alkylaminocarbonyloxy, \(\quad C_{1}\)-C6-dialkylaminocarbonyloxy or the group
-Alk-A
where \(A_{1 k: ~ i s ~} C_{1}-C_{6}\)-alkyl, \(C_{2}-C_{6}\)-hydroxyalkyl or \(C_{3}-C_{6}\)-ycloallyl and the symbol A represents
1) Hydrogen, halogen, hydroxy, \(C_{1}\)-Cfalkoxy, \(\mathrm{C}_{2}-\mathrm{C}_{6 \text {-alleapoyloxy, pheny; }}\)
2) - \({ }^{(1)} R_{5}\) - \(\mathrm{NR}_{5} \mathrm{R}_{6} \mathrm{~N}_{1} \mathrm{NR}_{5} \mathrm{R}_{6} \mathrm{R}_{7}\), pyridylamina, imidazolyl pyrrolidinyl \(N\) - \(\mathrm{C}_{\mathbf{t}}\) - \(\mathrm{C}_{6}\)-alkyipyrrolidi-
nyl, piperidytamino, N-(phenyl-C1-Cr-alkyl) piperidylamino where \(R_{s}\) and \(R_{6}\) may be the same or different and represent hydrogen, \(\mathrm{C}_{1}\) - \(\mathrm{C}_{6}\)-alkyl, \(\mathrm{C}_{3}\)-C7-cycloaltyl, \(\mathrm{C}_{3}\)-C7-hydroxycycloalkyt. mor-pholino- \(\mathrm{C}_{1}-\mathrm{C}_{6} \cdot \mathrm{alky} \mathrm{C}_{1}\) pheryl phevyl- \(\mathrm{C}_{1}-\mathrm{C}_{6}-1 \mathrm{lky}\) or phenyi- \(\mathrm{C}_{2}-\mathrm{C}_{6}\)-oxyallyt, it also being possible for the phenyl radicals in \(R_{s}\) and \(R_{6}\) to be substituted by haloger and \(R_{7}\) is hydrogen or \(C_{4}-C_{6}\)-alkyl
3) The gromp:
- D
where \(D\) is phenyl, \(C_{1}\)-C \(C_{6}\) ancyl, \(C_{3}-C_{7}\)-cycloaltyl. hydraxy, \(C_{1}\) C \(C_{6}\)-alkoxy, \(C_{3}\)-C7-cycloalkylaxy, morpholino, pyrrolidino, piperidino, tomopiperidino, piperazino, -NHRs or -NRsR6 and Rs and R6 bave the meacings given hereinaboves
4) The group:

where a can be the integers \(1-3\) and \(E\) represents \(\mathrm{CH}_{2}\), oxygen, sulfur, \(\mathrm{NH}, \mathrm{CHOH}, \mathrm{CH}-\mathrm{C}_{1}-\mathrm{C}_{6-}\) alkyloxy, \(\mathrm{CH}_{2}-\mathrm{C}_{2}-\mathrm{C}_{6}\) alkanoyloxy. \(\mathrm{CHC}_{6} \mathrm{CH}_{5}\),
 \(\mathrm{N}-\mathrm{CH}_{2} \mathrm{C}_{6}\)-aydrozyalkyl, \(\mathrm{N}-\mathrm{C} \mathrm{CH}_{5}\) \(\mathrm{N}=\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{OH}\) or \(\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}, \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{OH}\) \(\mathrm{N}-\left(\mathrm{CH}_{2}\right) 3-\mathrm{OH}\) or NCOD and the phenyl radicals (\(\mathrm{C}_{6} \mathrm{H}_{5}\)) may also be substimled by hatogen, ylenedioxy or cyan and D has \(C_{1}-C_{6}\)-alkyl, methylenedioxy or cyan and \(D\) has the meanings given
hereinabove \(R_{2}\) and \(R_{3}\) whis
drogen, halogen, myy be the same or different: hymethyl, halogen, hydroxy, \(\mathrm{C}_{1}\)-C \(\mathrm{C}_{6}\) radkyl, trilluaromethyl, \(-\mathrm{CN}^{2}, \mathrm{C}_{1}\) - \(\mathrm{C}_{6}\)-alkory, \(\mathrm{C}_{5}\) - \(\mathrm{C}_{6}\)-alkenyloxy, (meanimgs \(\mathrm{Rs}_{5} \mathrm{R}_{6}, \mathrm{R}_{7}\) as given hereinabove) or \({ }_{6}\) group -G-Alk-A, where Alk and A have the or the group -G-A Jk -A, where Alk and A have the meanNH or \(N R_{5}\) and \(R_{2}\) can also be is oxygen salfur,

\(R_{1}\) hydrogen or halogen, where \(R_{1}\) can also be hy. drogen, when \(R_{2}\) is the group

and \(R_{S}\) represents phenyl \(C_{t}\)-C \(C_{4}\)-alkoxyphenyl or diphenylmethyl and \(R_{3}\) and \(R_{1}\) are hydrogen, and their physiologically acceptable acid addition salts and quatennary ammonium salts, with the exception of the compounds of Formula I whe exeepmethyl, dimethylamininopropyn dimethere \(\mathbf{R}_{1}\) is
ethyl, morphoting ethyl, morpholinoethyl or pyrrolidinoethyl, \(R_{2} R_{3}\) and \(R_{8}\) are hydrogen and the benzo ring does not contain a nitrogen atom instead of a CH group.
U.S. Patent No. 5,436,233 discloses compounds of the

(I)
wherein \(R^{1}\) is hydrogen or \(\mathrm{Cl}^{-4}\) alkyt;
\(Y\) is singie bond or C1-6 alkylene;
(i)
(i) \(-\mathrm{CyA}-\left(\mathrm{R}^{2}\right)_{\text {l }}\)
(ii) \(-\mathrm{O}-\mathrm{R}^{\mathrm{o}} \mathrm{or}-\mathrm{S}(\mathrm{O})_{\rho-\mathrm{R}}\).

\(\mathrm{ROS}_{\mathrm{OL}}\) is \(-\mathrm{CyA}-\left(\mathrm{R}^{2}\right)\);
\(\mathrm{K}^{08}\) is hydrogen or \(\mathrm{Cl}-4\) alkyl;
p is \(\mathrm{O}-2\).
\(p\) is \(0-2\)
CyA is
(1) 3-7 membered, saturatod or unsaturated, mono
cyclic carbocyclic ring.
(2) 7-membered, unsaturated or partially saturated. monocyclic hetero ring containing as hetero atoms, ore nitrogen atom, one nitrogen and one oxygen atoms, two nitrogen and ont oxygen atoms, or one nitrogen and two oxygen atoms,
(3) 6 -membered, unsaturated or parially siurated. monocyclic hetero ring oontaining as hetero atoms, one nitrogen and one oxygen aloms, two nitrogen and one oxygen atoms, or one nitrogen and two oxygen atoms.
(4) 6-merabered, unsaturated or partially saturated, monocyclic hetero ring containing as a hetero atom, one nitrogen atom,
(5) 4 or 5 -membered, unsaturated or partially saturated, monocyclic hetero ring containing as hetero atoms, one mitrogen atom, one aitrogen and one axygen atouss, two nitrogen and one nxygen atoms, or one nitrogen and two oxygen atoms,
(6) 4-7 membered, unsaurated or partially samrated, monocyclic hetero ring containing as hetero atoms, ane or two sulfur atoms or
(7) 4-7 membered, unsaturated or partialiy or fully saturated, monocyclic hetero ring containing as hetero atoms, one or two oryjen atom;
\(\mathrm{R}^{2}\) is \(\mathbf{R}^{24}\) or \(\mathbf{R}^{2} \mathrm{~B}\);
\(R^{2 A}\) is (1)-NR \({ }^{6} A R^{7 A}\), in which \(R^{64}\) and \(R^{7 A}\) independently are hydrogen or C1-4 aliyl (with ule proviso that \(R^{64}\) and \(R^{7 A}\) are not hydrogen at same time), (2) - \(\mathrm{SO}_{2} \mathrm{NR}^{6} \mathrm{R}^{7}\), in which \(\mathrm{R}^{6}\) and \(\mathrm{R}^{7}\) independently are hydrogen or C1-4 alkyl. (3) trifluoromethyl or (4) trilluoromethoxy;
\(\mathbf{R}^{28}\) is (1) hydrogen, (2) C1-4 alkyl, (3) \(\mathrm{Cl}-4\) alkoxy, (4) -COORs, in which \(R^{5}\) is hydrogen or Cli-4 alkyl, (5) halogen, (\((\)) nitro or (7) -NRGBR 7B, in which \(R^{6 B_{\text {and }}} R^{7 B}\) are hydrogen;
is \(Z^{A}\) or \(Z^{B}\);
\(Z\) is \(Z A\) or \(Z^{B}\);
\(Z^{\alpha}\) is methylene, ethyiene, vinylene or ethyaylenc.
\(Z^{H}\) is single bond;

\section*{CyB is}
(1) 7-membered, unsaturated or partially saturated, monacyclic betero ring containing as hetero atoms one, two or three nitrogen atoms,
(2) 6 -membered, unsaturated or partially saturared, monocychic bettro ring oontaining as hetero atoms, two or threc nitrogen atoms,
(3) 6-membered, unsaturated or partially saturated,
monocycic hetere ring monocyclic hetero ring containing as a hetero atom, one nitrogen atom,
(4) 4-or 5-membered. unsaturated or parially satorated, monocyclio hetero ring containing as hetero atoms, one, two or three nitrogen atoms, or (5) 4-7 membered, mosaturated or partially saturated, monocyclic hetero ring containing as hetcro atoris, one or two oxygen atoms, or one or two sulfur atoms;
\(\mathrm{R}^{3}\) is hydrogen, \(\mathrm{Cl}-4\) alkyi, \(\mathrm{Cl}-4\) alkoxy, balogen or trifuncomethyl;
\(R^{4}\) is \(R^{4}\) or \(R^{4}\).
\(\mathrm{R}^{41}\) is (1) \(-\mathrm{NHSO}_{2} \mathrm{R}^{11}\), in which \(\mathrm{R}^{11}\) is \(\mathrm{Cl}-4\) alkyl, (2) \(\mathrm{SO}_{2} \mathrm{NR}^{9 R}{ }^{10}\), in which
\(\mathrm{R}^{9}\) is hydrogen, \(\mathrm{Cl}-4\) alkyl or phenyl(\(\mathrm{Cl}-4\) alkyl) and \(\mathbf{R}^{10}\) is hydrogen or \(\mathrm{Cl}-4\) allyl, (3) -OCOR \({ }^{11}\), in which \(R^{11}\) is as hercinbefore defined, (4) hydroxy, (5) - \(\mathrm{SO}_{2} \mathrm{~N}^{\circ}=\mathrm{CHNR}^{12} \mathrm{R}^{13}\) in which \(\mathrm{R}^{12}\) is hydrogen or C1-4 alkyl. and \(\mathrm{R}^{13}\) is \(\mathrm{CI}_{\mathrm{C}}-4\) alkyl, (6 CONR \({ }^{14} R^{15}\) in which \(R^{14}\) is hydrogen and \(R^{15}\) is \(\mathrm{Cl}^{10} 4\) (7) ethynyl and \(\mathrm{R}^{15} \mathrm{Cl}-4\) alkyl or phenyl(C) -4 alkyl) (7) ethynyl, (8) tri(Cl-4 alkyl)silylethymyl or (9)
\(\mathrm{R}^{4 B}\) is (1) hydrogen (2) Ci-4 alkyl, (3) \(\mathrm{Cl}-4\) alkoxy, (4) -COOR \({ }^{8}\), in which \(\mathrm{R}^{\mathrm{B}}\) is hydrogen or C1-4 alkyl. (S) -NR \({ }^{9} \mathrm{R}^{10}\), in which \(\mathrm{R}^{9}\) and \(\mathrm{R}^{10}\) are as hureinbefore defined, (\()\)-NHCOR \({ }^{1!}\), in which R. \({ }^{11}\) is as hereinbefore defined, (7) halogen, (8) trifhoromethyl, (9) nitro, (10) cyano, (Li) Cl-4 alkylthio, (12) C1-4 alkyisulfinyl, (13) Cl-4 alkyisulfonyl, (14) hydmxymethy, and \(L m\) and \(n\) independently are 1 or 2 ; frith the proviso that
(1) the group of the formula: -CyA- \(\left(R^{2}\right) /\) does not represeat a cyciopentyl and trifluoromethylphenyl group when \(Y\) is a single bond, that
(2) a CyB ring does nat bond to \(Z\) through a nitrogen atom in the CyB ring when \(Z\) is vinylene or ethynylene, that
(3) a CyB ring is not pyridine or thiophene when CyA is a ring of CyA-(7) that
(4) \(Y\) is not a single bond, when \(A\) is (ii) \(-\mathrm{O}-\mathrm{R}^{0}\) or \(-S(O)_{F}-R^{0}\) and that
(5) \(A\) is not \(-C y A-\left(R^{2 B}\right)\) and \(-O R^{O B}\), when \(Z\) is \(Z^{B}\) and \(R^{4}\) is \(R^{4 B}\), or pharmaceutically acceptable acid addition salts thercof, pharmaceutically acceptaible salts thereof, or hydrates thereof.

\section*{Preferred compounds include:}

4-phenyimethylamino-2-((1-imidazolyl)methyl)quinazoline.
4-phenylmetihylamino-2-((1-imidazolyl)methyl)quinazoline,
6-chloro-4-phenylmethylamino-2-(1-imidazolylmethyDquinazoline,
6-chloro-4-phenylamino-2-(1-imidazolylmethylquinazoline,
6-chloro-4-(3-carboxypbenyi)amino-2-(1-imidazolylmethyl)quinazoline
or
4-phenylmetbylamino-2-(2-(3-pyridyl)vinyl)quinazo-
lines
and pharmaceutically acceptable acid addition salts thereof, pharmaceutically acceptable acid addition salts
hydrates thereof.

6-dimethylarnionsulfonyl-4-pbenylmethytamino-2-íl-
imidazolylquinazaline imidazolyl)quinazaline,
6-dimethylaminomethylidenemminosulforyl-4-
phenylmethylamino-2(1 -imidazolyl)quinazoline,
6-(phenyimethylaminosulfonyl)-4-phenylme-
thylamino-2-(1-imidazolyl)quinazoline,
6-phenylmethyliminocarbonyl-4-pheovime.
thylamino-2-(1-imidazolyl)quinazolinc.
6-ethylaminocarbonyl-4-phenylmethylamino-2-(1-
imidazolyl)-5,6,7,8-tetratrydroquinazoline,
6-hydraxy-4 phenyimethylamino-2-(1-imidazolyl)-
quinazoline quinazoline
6-(\(1-\mathrm{j}\) midazolyl)-4-(2-methoryethyl) amino-6-(2-triethylsilylethynylquinazoline,
6-thynyl-4-(2-methoxyethyl)amino-2-(1-imidazolyl)quimazoline,
6-(1-imidazoly)-4-phenylmethylamino-6-ethynytquinazoline or
6-acetyl-4-(2-methoryethyl)amino-2-(1-imiduzoly1)quinszotine,
and pharrancertically zoceptable acid addition salts thercof, phammecutically acceptable salts theccof. or tydrates thereof.

4-(2-methylthioethyl)amino-6-methoxy-2-(1insidazolyl)quinazoline,
4-(2-methylsulfinyledhyl)amino-6-methoxy-2-(1imidazolyl)quinnzoline,
4-(2-methylsulfonylethy) amino-6-methoxy-2-(1-
imidazolyl) \&uinazoline,
4-(3-trifuoromethylphenylmethyl)amino-2-(3pyridyl)quinazoline,
4-(4-(N,N-dimethylamino)phenylmethyl)amino-2-(3-
pyridyl)quinazoline,
4-(4suifamoylphenylnuethyl)anino-2-(3-pycidyl)quinazolime,
4-(4-trifuloromethoxyphenylmethyl)amino-2-(1imidarnlyDquinazoline,
4-(3-trifluoromethoxyphenylmethyl)amino-2-(1imidazolyl)quinazoline,
4-(2-phenoxyethyl)amino-6-methoxy-2-(1-
irridazolyl)quinazoline or
4-(2-phenoxycthyl)amino-2-(1-imidazolyI)quinazo-
line,
and pharmaceutically acceptable acid addition salts
U.S. Patent No. 5,576,322 discloses compounds of the

(1)
whercin R1, R3, and R4, each of which may be the same or different from each wher, may each represent a bydrogen atom, a halogen atom or a lower alkyl group or a lower alkoxy hydrogen atom, R 2 is a halogen or cyan group \(\mathrm{R} S\) is a group representod by the formula:

wherein \(u\) is 3 or 4 and R61 represents a carboxyl group which may be protected or a helernaryl group; or RS is a group represented by the fomma:

and R6 is a group represented by the formala

wherein \(X\) is hydrogen atom or a halogen atom or

Or die pharroacologically acocptable salt thercof

Preferred compounds include:

2-(4-carboxypiperidino)-4-(3,4-meihylene-dioxybenzyl) amino-6-chloroquinazoline- or a pharmaceutically acceptable sadt thercor.

Sodium 2-(4-carboxypiperidino)-4-(3,4-methylene-
dioxybcrayl) amino-6-chloroquinazoline.

WO 94/29277 discloses compounds of the formula

Formula (1)
or a pharmacentically acceptable salt thercof, wherein
Ar is an optionally substitutod aryl or heteroaryl ring selected from phenyl, naphthyl,
pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, imidazolyl, thienyl, oxazolyl,
benzimidazolyl, benzoxazolyl, indolyl or thianaphthenyl,
X is CH or N ;
\(R^{0}\) is \(N R^{1}{ }^{2}{ }^{2}\) or hydrogen; and
\(R^{1}\) and \(R^{\mathbf{2}}\) are independently bydrogen or \(\mathrm{C}_{1-6 \mathrm{klky}}\).

Preferred compounds include:
3-amino-4-[4-(3-pyridyi)]anilino-3-cyclobatene-1,2-dione,
3-amino-4-[3-(4-imidazolyl)anilino]-3-cyclobatene-1,2-dione,
3-methylamino-4-[3-(5-methyl-4-imidazolylanilino]-3-cyclobatene-1,2-dione,
3-dimethylamino-4-[3-(5-methyl-4-imidazolyl)anilino]-3-cyclobitene-1,2-dione.
3-amino-4-[3-(3-methyt-4-pyridyl)anilino]-3-cyclobutene-1,2-dione.
3-amino-4-[3-(2-oxazolyl)anitino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(4-pyridyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(3-pyridy])anilino]-3-cyclobatene-1,2-dione,
3-amino-4-[3-(2-pyridyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-thienyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(3-thienyl)anilin]-3-cyclobutene-1,2-dione,

3-amino-4-[3-(2-thianaphthenyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(5-pyrimidyl)anilino]-3-cyclobutene-1.2-dione,
3-amino-4-[3-(2-benzoxazoyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-benzimidazolyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-indolyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-(3-phenyl)anilino-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-hydroxyphenyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-methoxyphenyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(3-hydroxy-2-pyridyl)anilino]-3-cyclobutene-1.2-dione,
3-amino-4-[3-(2-imidazoly!)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[6-(4-pyridyl)-2-pyridylamino]-3-cyclobuteae-1,2-dione, or
3-[3-(4-pyridyl)anilino]-3-cyclobutene-1,2-dione,
or a pharmaceutically acceptable salt thereof.

WO 95/19978 discloses compounds of the formula

and salts and solvates thereof, in which:
\(R^{0}\) represents hydrogen, halogen or \(C_{1-6}\) alkyl;
\(R^{1}\) represents hydrogen, \(C_{1-6}\) alkyl, \(C_{26}\) aikenyt, \(C_{25}\) alkynyl, halo \(C_{1}\) -
 heteroarylC 1 -3alkyl;
\(R^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiaphene, furan and pyridine or an optionally
substituted bicyclic ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected fr \(m\) oxygen, sulphur and nitrog \(n\); and \(R^{3}\) represents hydrogen or \(C_{w}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3or 4 membered alkyl or alkenyl chain.

Preferred compounds include:
Cis-2,3,6,7,12,12a-hexahydro-2-(4-pyridyimethyl)-6-(3,4-methytenedioxyphenyl)-pyrazino[\(2^{\prime}, 1\) 1': 6,1]pyrido[3,4-b]indole-1,4-dione: Cis-2,3,6,7,12,12a-hexahydro-6-(2,3-dihydrobenzo[b]furan-5-y|)-2-methyl-pyrazino[2,1 1:6, 1]pyrido(3,4-b]indole -1,4-dione; Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-methylpyrazino[\(2^{\prime}, 1\) ': 6, 1]pyrido[3,4-b]indole -1,4-dione; Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-methyiphenyl)pyrazino[\(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole -1,4-dione:
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)-pyrazino[\(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido \([3,4\)-b]indole \(-1,4\)-dione; (6R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-(\(3,4-\) methyienedioxyphenyl)-pyrazino\{ \(\left.2^{\prime} 1^{\prime}: 6,1\right]\) pyrido \([3,4\)-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopropylmethyl-6-(4-methoxyphenyl)-pyrazino[\(2^{\prime}, 1^{\prime}: 6,1\)]pyrido[3,4-b]indole \(-1,4\)-dione; (6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methyl-pyrazino[2', 1:6, 1]pyrido[3,4-b]indole -1,4-dione: (\(6 R, 12 a R\))-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[\(2^{\prime}, 4: 6,1\)]pyrido[3,4-b]indole-1,4-dione; (\(6 R, 12 a R\))-2,3,6,7,12,12a-Hexahiydro-6-(3,4-methylenedioxyphenyl)pyrazino[2 ', 1 ': 6,1] pyrido [3,4-b] indole-1,4-dione;
(5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3,4-methylenedioxyphenyit)-pyrrolo[\(\left.1^{\prime \prime}, 2^{\prime \prime}: 4^{\prime}, 5^{\prime}\right]\) pyrazino[2',1' : 6,1]pyrido[3,4-b]indole-5-1,4-dione;
and physiologically acceptable salts and solvates thereof.

WO 96/28429 discloses compounds of the formula

wherein:
\(R^{1}\) is tert-butyl, or cyclopenty1;
\(R^{3}\) is methyl, ethyl, or pherıymethyl;
\(X\) is \(-\mathrm{CH}_{2}-\). -O - or \(-\mathrm{NH}-\); and
\(R^{6}\) is phenyl (or pheryl substituted by from one to three, the same or different, substituents selected from the group
consisting of lower-alkoxy. hydroxy, halogen, carboxylower-alkoxy. 4-morpholinyl-lower-alkoxy. 5-tetrazolyl-lower-alkoxy, diloweralkylamino, trifluoromethyl. nitro, amino. loweralkylsulfonylamino. dilower-alkylamino-lower-alkylpheryl carbonyloxy, and 1 -imidazolyl); or when \(X\) is \(-\mathrm{CH}_{2}-\mathrm{R}^{6}\) is additionally 2-. \(3-\). or 4-pyridinyl, 1 -pyrrolyl, 1 -benzimidazolyl. 1.2.3.4-tetrahydro-2-isoguinolinyl. i.2.3.4-tetrahydro-iguinolinyl. hydroxy, 1-imidazolyl, 1-lower-alkyl-2.3.4, or 5pyrrolyl, 1-pyrazolyl. 3-4-, or 5-isoxazolyl(or 3.4. or 5isoxazolyl substituted on any available carbon atom thereof by lower-alkyll, 2-thienyl. or 3-thienyl; or a pharmaceutically acceptable acid-addition salt and/or hydrate thereof.

\section*{Preferred compounds include:}

1-cyclopentyl-3-ethyl-6-(4-methoxyphenylmethyl)pyrazolo [3,4-d]pyrimindin-4-one,

1-cyclopentyl-3-ethyl-6-(4-hydroxyphenylmethy1)pyrazolo [3,4-d]pyrimindin-4-one.

1-cyclopentyl-3-ethyl-6-(phenylmethyl)pyrazolo(3.4-d)
pyrimindin-4-one, and
1-cyclopentyl-3-ethyl-6-(4-aminophenylmethyl) pyrazolo [3.4-d]pyrimindin-4-one.

WO 96/28448 discloses compounds of the formula

wherein:
\(\mathrm{R}^{1}\) is tert-butyl, or cyclopentyl:
\(R^{3}\) is lower-alkyl. or phenyl-lower-alkyl; and
\(R^{6}\) is phenyl. or phenyl substituted by from one to three. the same or different, substituents selected from the group consisting of lower-alkoxy, lower-alkyl, hydroxy, 1-imidazolyl,
lower-alkenyloxy, dilower-alkylamino-lower-alkoxy, 4-morpholinyl-lower-alkoxy, lower-alkoxycarbonyl-lower-alkoxy, carboxylower-alkoxy.---_fifluoromethyl. - - 1-piperidinyl-lower-alkoxy, 1-pyrrolidinyl-lower-alkoxy. nitro, halo, amino. - (\(\left.\mathrm{CH}_{2}\right)_{20}\)-. loweralkylsulfonylamino. lower-alkoxy-lower-alkoxy. jower-alkenyl. dilower-alkylamino. -OCH(CH3)CH2-. 4-morpholinyicarbonyl-loweralkoxy, 4-thiomorpholinyl-lower-alkoxy, pyridinyi-lower-alkoxy, 1-lower-alkyl-3-hexahydroazepinyloxy, and l-lower-alkyl-4piperidinyl oxy; or a pharmaceutically acceptable acid-addicion salt and/or hydrate chereof.

Preferred compounds include:

1- cyclopentyl-3-ethyl-6-(2-propoxypheny1)pyrazolo(3.4-d) pyrimindin-i-one.

1-cyclopentyl-3-ethyl-6-(4-(1-imidazolyl)phenyl)pyrazolo [3.4-d]pyriminain-4-one.

1-cyclopentyl-3-ethyl-6-(3-(2-(4-morpholinyl) ethoxy) phenyllpyrazolo(3.4-d)pyrimindin-4-one.

1-cy=lopencyl-3-echyl-6-(2-ethoxy-4-(1-imidazolvl) phenyl| pyrazolo[3.s-d]pyrimindin-4-one. and

1-cyclopentyl-3-ethy1-6-(2-(CH2=CHCH2O) pheny1]pyrazolo
[3.4-d] pyrimindin-4-one.

WO 96/32003 discloses compounds of the formula

and salts and sotvates thereaf, in which:
\(\mathrm{R}^{0}\) represents hydrogen, haiogen or \(\mathrm{C}_{1-6}\) alkyl;
\(R^{1}\) is selected from the group consisting of:
(a) hydragen;
(b) \(\mathrm{C}_{1}\) alkyl optionally substituted by one or more substituents selected from phenyl, halogen, \(-\mathrm{CO}_{2} \mathrm{R}^{a}\) and \(-N R^{a} \mathrm{R}^{\mathrm{d}}\);
(c) \(\mathrm{C}_{3}\) cyctoalky:
(d) phenyl; and
(e) a 5-or 6 -membered heterocyclic ring containing at least one heteroatom selected from oxygen, nitrogen and sulphur, and being optionally substituted by one or more \(\mathrm{C}_{16}\) alkyl. and optionally linked to the nitrogen atom to which \(R^{1}\) is attached via \(C_{1-\infty}\) alkyt;
\(R^{2}\) is selected from the group consisting of.
(f) \(\mathrm{C}_{3-8}\) cycloalkyl;
(g) phenyl optionally substituted by one or more substituents selected from \(-O R^{2},-N R^{2} R^{D}\), halogen, hydroxy, trifluoromethyl, cyano and nitro;
(h) a 5 - or 6 -membered heterocyclic ring containing at least one heteroatom selected from oxygen, nitrogen and sulphur; and
(1) a bicyclic ring
 attached to the rest of the molecule via one of the benzene ring carbon atoms and \(A\) is a 5 - or 6 -membered heterocydic ring as defined in point (h); and
\(R^{a}\) and \(R^{b}\) independently represent hydrogen or \(C_{1,6}\) alkyl.

Preferred compounds include:
Cis-2-benzyl-5-(3,4-methylenedioxyphenyl)-5.6.11,11a-tetrahydro-1H-imidazo [1',5':1,6]pyrido[3,4-b]indole-1.3(2H)-dione:
Trans-2-benzyl-5-(3,4-methytenedioxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1 '.5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione:
Cis-5-(4-methoxyphenyl)-2-methyl-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido[3,4-b]indole-1.3(2H)-dione;
Cis-2-ethyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5:1,6] pyrido[3.4-b]indole-1.3(2H)-dione;
Trans-2-ethyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-ethyi-5-(3,4-methylenedioxyphenyl)-5,6,11,1 1a-tetrahydro-1H-imidazo [1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-ethyl-5-(2-thienyi)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-5-(4-dimethylaminophenyl)-2-ethyl-5.6.11.11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-9-methyl-5-phenyl-5,6,11,11a-tetrahydro-1H-imidazo[\(\left.1^{\circ}, 5^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1.3(2H)-dione;
Trans-9-bromo-2-butyl-5-pheryl-5,6,11;11a-tetrahydro-1H-imidazo[1',5‘:1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-butyi-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1', \(\left.5^{\circ}: 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-butyl-8-fluoro-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-9-fluoro-5-(4-methoxyphenyl)-5,6,11.11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-5-(3,4-methylenedioxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-butyl-5-(3-chlorophenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido \{3,4-b]indote-1,3(2H)-dione;
Trans-2-butyl-5-(3-chlorophenyl)-5.6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido (3,4-b)indote-1,3(2H)-dione;

Cis-2-butyl-5-(4-chlorophenyl)-5,6,11,11a-tetrahydro-1H-irnidazo [1'5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-5-(4-chlorophenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione:
Trans-2-butyl-5-(4-fluorophenyl)-5,6,11,11a-tetrahydro-1H-imidazo[\(\left.1^{\prime}, 5^{\prime}: 1,6\right]\) pyrido [3,4-b]indole-1,3(2H)-dione;

\section*{-55-}

Trans-2-butyl-5-(4-hydroxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1'.5':1,6] pyrido [3.4-b]indole-1,3(2H)-dione;
Cis-2-butyl-5-(4-trifluoromethylphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1'.5':1,6lpyrido[3,4-b]indoie-1,3(2H)-dione;
Cis-2-butyl-5-(4-cyanophenyl)-5,6,11,11a-tetrahydro-1 H -imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;

Trans-2-butyl-5-(4-cyanophenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3.4-b]indole-1,3(2H)-dione;
Cis-2-butyl-5-(4-nitrophenyl)-5,6,11,112-tetrahydro-1H-imidazo[1',5':1,6]pyrido [3.4-b]indole-1.3(2H)-dione;
Trans-2-butyl-5-(4-nitrophenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dions;
Cis-2-butyl-5-(3-pyridyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5:1,6]pyrido [3,4-b] indole-1,3(2H)-dione;
Cis-2-butyl-5-(3-thienyl)-5,6,11.11a-tetrahydro-1H-imidazo[\(\left.1^{\prime}, 5{ }^{\prime}: 1,6\right]\) pyrido [3,4-blindale-1.3(2H)-dione;
Trans-2-butyl-5-(3-thienyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione:
Cis-2-butyl-5-(3-furyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido [3,4 bjindole-1.3(2H)-dione;
Trans-2-butyl-5-(3-furyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-cyclohexyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo
[1'.5':1,6] pyrido[3,4-b]indole-1.3(2H)-dione;
Trans-2-cyctohexyl-5-(4-methoxyphenyl)-5,6,11.11a-tetrahydro-1H-imidazo [1'.5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-cyclohexyl-9-fluoro-5-(4-methoxyphenyl)-5.6.11.11a-tetrahydro-1 H imidazo[1'.5:1,6] pyrido[3,4-b]indole-1,3(2H)-dione:
Trans-2-cyclohexyt-9-fiuoro-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1Himidazo[\(\left.1^{\circ}: 5^{\prime}: 1,6\right]\) pyrido[3,4-b]indose-1,3(2H)-dione;
Trans-2-benzyl-5-phenyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido [3,4-bjindole-1.3(2H)-dione;
Cis-2-benzyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1, B] pyrido [3,4-b]indote-1.3(2H)-dione:
Trans-2-benzyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[\(1^{\prime}, 5^{\prime}: 1,6\)] pyrido [3,4-b]indole-1,3(2H)-dione;
(5R,11aR)-2-benzyl-5-(3,4-methylenedioxyphenyl)-5,6,11.11a-tetrahydro-1Hirnidazo [1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-benzyl-5-(4-hydroxypheny)-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;

Trans-2-(2-chloroethyl)-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [\(\left.1^{\prime}, 5^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-benzyt-5-cyclohexyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]
pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-benzyl-5-cyclohexyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-5-pheny-5,6,11,11a-tetrahydro-1H-imidazo[1'.5':1,6]pyrido[3,4-bjindole-1,3(2H)-dione;
Trans-2-cyctohexyl-5-phenyl-5,6.11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Cis-2-cyclohexyf-5-phenyl-5,6,11.11a-tetrahydro-1H-imidazo[1'.5':1.6] pyrido [3.4-b]indole-1,3(2H)-dione;
Trans-2-ethoxycarbonyimethyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1Himidazo[1',5':1,6] pyrido [3.4-b]indole-1,3(2H)-dione:
Trans-5-(4-methoxyphenyl)-2-[2-(2-pyridyl) -ethyl]-5,6,11,11a-tetrahydro-1H-imidazo[1:.5:1.6]pyrido[3.4-b]indole-1,3(2H)-dione:
Trans-2-cyclopropyl-5-phenyl-5,6,11,11a-tetrahydro-1H-imidazo[\(\left.1^{\prime}, 5^{\prime}: 1,6\right]\) pyrido[3.4-b]indole-1,3(2H)-dione;
Trans -2-phenethyl-5-phenyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-5-phenyl-2-(2-pyridylmethyl)-5,6,11;11a-tetrahydro-1H-imidazo [1 ',5':1,6]pyrido\{3,4-b]indole-1,3(2H)-dione;
Trans-5-phenyl-2-(4-pyridyimethyl)-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-5-(4-methoxyphenyl)-2-(3-pyridylmethyl)-5.6.11,11a-tetrahydro-1Himidazo[\(\left.1^{\prime}, 5^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione:
Trans-2-(2-dimethylamino-ethyl)-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5:1,6]pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-2-(3-dimethylamino-propyl)-5-(4-methoxyphenyl)- 5,6,11.11a-tetrahydro 1 H-imidazo \(\left[1^{\prime}, 5^{\prime}: 1,6\right]\) pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-2-(2-morpholin-4-yl-ethyl)-5-phenyl-5,6,11,11a-tetrahydro-1Himidazo[\(\left.1^{\prime}, 5^{\text {' }}: 1,6\right]\) pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-5-(4-methoxyphenyl)-2-[3-(4-methyl-piperazin-1-yi)-propyl]-5,6.11,11a-tetrahydro-1H-imidazo[\(\left.1^{\prime}, 5{ }^{\prime}: 1,6\right]\) pyrido \([3,4\)-b]indole-1,3(2H)-dione;
Trans-5-(4-methoxypheny)-2-(2-pyrrolidin-1-ytethyl)-5,6,11,11a-tetrahydro-1Himidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dion;
Trans-5-(4-methoxyphenyl)-2-[2-(1-methyl-pyrroidin-2-yl)-ethyl]-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-fH-imidazo[\(\left.1^{\prime}, 5^{\prime}: 1,6\right]\) pyrido [3.4-b]indole-1.3 (2H)-dione:
Cis-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1'.5':1,6] pyrido [3.4-b]indole-1,3 (2H)-dione;
and pharmaceutically acceptable salts and solvates thereof.

WO 96/32379 discloses compounds of the formula

\[
\begin{aligned}
& \text { wherein } \\
& R^{1} \text { is hydrogen, halogen, nitro, carboxy, protected } \\
& \text { carboxy, acyl, cyano, hydroxyimino(lower)alkyl, } \\
& \text { lower alkenyl optionally substituted with oxo, or } \\
& \text { lower alkyl optionally substituted with protected } \\
& \text { carboxy, carboxy or hydroxy; } \\
& \mathrm{R}^{2} \text { is hydrogen, halogen, lower alkenyl, acyl, or lower } \\
& \text { alkyl optionally substituted with protected } \\
& \text { carboxy, carboxy, lower alkoxy or hydroxy; } \\
& R^{3} \text { is lower alkenyl or lower alkyl, both of which are } \\
& \text { optionally substituted with one or more } \\
& \text { substituent(s) selected from the group consisting } \\
& \text { of } \\
& \text { (1) oxo, } \\
& \text { (2) aryl optionally substituted with one or more } \\
& \text { substituent(s) selected from the group } \\
& \text { consisting of halogen, aryl, lower alkoxy, } \\
& \text { lower alkylenedioxy, cyano, nitro, carboxy, } \\
& \text { protected carboxy, acyl, anci amino optionally } \\
& \text { substituted with acyl or protected carboxy, } \\
& \text { and } \\
& \text { (3) a heterocyclic group optionally substituted } \\
& \text { with halogen; and } \\
& R^{4} \text { is carboxy, protected carboxy, acyl, cyano, halogen, } \\
& \text { a heterocyclic group, amino optionally substituted } \\
& \text { with acyl or protected carboxy, or lower alkyl }
\end{aligned}
\]
optionally substituted with protected carboxy, carboxy or acyl:
in addition to their significances above, \(R^{1}\) and \(R^{2}\).-together with the carbon atoms to which they are attached, represent a 4- to 7membered carbocyclic ring optionally substituted with oxo,
or its pharmaceutically acceptable salt.

WO 97/03070 discloses compounds of the formula

wherein \(R^{\prime}\) is a hydrogen atom or a halogen atom; \(R^{2}\) is a phenyl-lower alkyl group;
\(R^{3}\) is a heterocyciic group selected from the group consisting of an indolyl group, indolinyl group, 1H-indazolyl group, 2(1H)-quinolinonyl group, 3,4-dihydro-2(1H)-quinolinonyl group and 3,4-dihydro-1,4(2H)-benzoxazinyl group, said heterocyclic group may have 1 to 3 substituents selected from the group consisting of:
a group of the formula \(-B-R^{4}\). (\(B\) is a lower alkylene group; \(R^{6}\) is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halagen atom, a lower alkyl group, a lower alkoxy group and
oxo group) or a group of the formule \(-N R^{\prime} R^{6}\left(R^{s}\right.\) and \(R^{6}\) are each the same or different, and \(e\) hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridyicarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylearbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further \(R^{5}\) and \(R^{6}\) may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group;

> A is a lower alkylene group; and \(\underline{n}\) is 0 or 1 .

Preferred compounds include:
\[
\begin{aligned}
& \text { 1-Benzyl-6-chloro-2-\{1-[3-(imidazol-1- } \\
& \text { Yl)propyl]indol-5-ylaminocarbonyl\}benzimidazole. } \\
& \text { 1-Benzyl-6-chloro-2-\{1-[3-(N-cyclohexyl-N- } \\
& \text { methylamino)propyl]indol-5-ylaminocarbonyl\}- } \\
& \text { benzimidazole. }
\end{aligned}
\]
```

    1-Benzyl-6-chloro-2-{1-{3-(pyrazol-1-
    yl)propyl]incol-5-ylaminocarbonyl)benzimidazole.
1-Benzy1-6-chloro-2-{1-[3-(1,2,4-triazol-1-
yl)propyllindol-5-ylaminocarbonyl}benzimidazole.
I-Benzyl-6-chloro-2-{1-{3-{3,5-
dimethylisoxazol-4-ylcarbonylamino)propyl|indol-5-
ylaminocarbonyl}benzimidazole.
1-Benzyl-6-chloro-2-{1-[3-(4-phenyl-4-
hydroxypiperidin-1-yl)propyl}indol-5-ylaminocarbonyl}-
benzimidazole.
1-Benzyl-6-chloro-2-{4-[3-(pyridin-2-
ylcarbonylamino)propyl]-3,4-dihydro-1,4(2H)-benzoxazin-
7-ylaminocarbonyl}benzimidazole.

```

WO 97/03675 discloses compounds of the formula

and salts and solvates (e.g. hydrates) thereof, in which:
\(R^{\circ}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alky;;
 \(\mathrm{C}_{3 \text {-8cycloalkyl. } C_{3-8} \text { cycloalkyiC }}^{1-3 \text { alkyl, aryiC }} 1\)-3alkyl or heteroaryic \(\mathrm{C}_{1-3}\) alkyl; \(\mathrm{R}^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
\(R^{3}\) represents hydrogen or \(C_{1-3}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3- or 4- membered alkyl \(r\) alkenyl chain;
for the manufacture of a medicament for the curative or prophylactic treatment of erectile dysfunction in a male animal, including man.

Preferred compounds include:

Cis-2,3,6.7.12,12a-hexahyoro-2-(4-pyridylmethyl)-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1': 6,1]pyrido[3,4-b]indole-1,4-dione;
Cis-2,3,6,7,12,12a-hexahydro-6-(2,3-dihydrobenzo[b]furan-5-yl)-2-methylpyrazino[\(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole \(-1,4\)-dione;
Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-methytpyrazino[2', \(1^{\text {': 6, 1 }}\)]pyrido[3,4-b]indole -1.4-dione:

Cis-2,3,6,7,12,12a-hexahydra-2-butyl-6-(4-methyiphenyl)pyrazino[2', \(1: 6,1\)]pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12.12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)pyrazino[\(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-\{3,4-methylenedioxypheny[)-pyrazino[2 ', 1':6,1]pyrido[3,4-b]indole -1,4-dione;
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cycíopropymethyl-6-(4-methoxyphenyl)pyrazino[\(2^{\prime}, 1^{\prime}: 6,1\)]pyrido[3,4-b]indole -1,4-dione;
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methylpyrazino[2', 1 ':6,1] pyrido[3,4-b]indole -1,4-dione;
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)pyrazino\{ \(2^{\prime}, 1^{\prime}: 6,1\)]pyrido[3,4-b]indole-1,4-dione;
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-f3,4-methylenedioxyphenyl)pyrazino[2 ', 1 ': 6,1] pyrido [3,4-b] indole-1,4-dione;
(5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3,4
methyienedioxyphenyl)-pyrrolo[1",2": 4',5']pyrazino[2',1': 6,1]pyrido[3,4-bjindole-5-1,4-dione;
Cis-2,3,6,7,12,12a-hexahydro-2-cyciopropyt-6-(3,4-methylenedioxyphenyl)pyrazino[2', \(1^{\prime}: 6,1\)]pyrido[3,4-b]indole -1,4-dione; (3S, 6R,12aR)-2,3,6,7,12,12a-hexahydro-3-methyt-6-(3,4-methylenedioxypheny')-pyrazino\{ \(2^{\prime}, 1^{\prime}: 6,1\)]pyrido[3,4-b]indole -1,4-dione; and physiologically acceptable salts and solvates (e.g. hydrates) thereof.

WO 97/03985 discloses compounds of the formula

and solvates thereof, in which:
\(R^{\circ}\) represents hydrogen, halogen or \(C_{1-6}\) alkyl;
\(R^{1}\) represents hydrogen or \(\mathrm{C}_{1-6}\) alkyl:
\(R^{2}\) represents the bicyclic ring

which may be optionally substituted by one or more groups selected from halogen and \(\mathrm{C}_{1-3}\) alkyl;
and
\(R^{3}\) represents hydrogen or \(C_{1-3}\) alkyl.

Preferred compounds include:
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-benzofurany)-2-methyl-pyrazino [\(2^{\prime}, 1^{\prime}: 6,1\)]pyrido[3,4-b]indole-1;4-dione;
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-benzofuranyl)-pyrazino[2', 1 ':6,1] pyrido [3,4-b]indole-1,4-dione;
(3S, 6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-benzófuranyl)-3-methytpyrazino[\(2^{\prime}, 1\) ':6,1] pyrido [3,4-b]indole-1,4-dione;
(3S, 6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-benzofuranyl)-2,3-dimethylpyrazino[\(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido [3,4-b]indole-1,4-dione:
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-benzofuranyl)-2-isopropyl-pyrazino [\(\left.2^{\prime}, 1^{1}: 6,1\right]\) pyrido [3,4-b]indole-1,4-dione; and physiologically acceptable solvates thereof.

wherein
\(R^{0}\) represents -hydrogen or halogen;
\(R^{\prime}\) is selected from the group consisting of:
-hydrogen,
\(-\mathrm{NO}_{2}\)
-trifluoromethyl,
-trifluoramethoxy,
-halogen,
-cyano.
a 5- or 6-membered heterocyclic group containing at least one heteroatom selected from oxygen, nitrogen and sulphur (optionally
substituted by \(-C(=0) O R^{*}\) or \(C_{1, \text { alkyl) }}\).
-C.salkyl optionally substituted by -OR'.
-C.-3alkoxy.
\(-C(=0) R^{*}\),
-O-C(=0) \(R^{2}\),
\(-C(=0) O R^{*}\),
-Cisalkylene \(C(=0) O R^{2}\).
-O-Cinalkylene \(-C(=0) O R^{\prime}\),
- \(C_{i-1}\) alkylene - \(0-C_{1-a}\) alkylene- \(C(=0) O R^{\circ}\),
\(-C(=0) N R^{*} \mathrm{SO}_{2} \mathrm{R}^{2}\),
\(-C(=0) C_{1}\) alhylene Het, wherein Het represents 5 - or 6 -membered heterocyclic group as defined above.
\(-C_{1}\) alkylene \(N R^{2} R^{6}\),
\(-C_{2-s}\) alkenyieneNR \({ }^{\circ} R^{b}\).
\(-C(=0) N R^{a} R^{b}\),
\(-C(=0) N R^{2} R^{c}\),
-C(\(=0) N R^{\circ} C_{s, ~ a i k y t ~ n e ~ O R ~}{ }^{\text {b }}\)
\(-C(=0) N R^{2} C_{1-m a l k y l e n e ~}\) Het, wher in Het represents a 5 - or 6-membered
heterocyclic group as defined above. -OR'
-OC \({ }_{2-a l k y}\) alene \(N R^{\wedge}{ }^{\text {D }}\),
\(\left.-O C_{1, ~ a l k y l e n e-C H(O R}{ }^{2}\right) \mathrm{CH}_{2} \mathrm{NR}^{*} \mathrm{R}^{\mathrm{b}}\).
-O-C, alkyiene Het. wherein Het represents a 5-or-6-membered heterocyclic-....................... group as defined above,
-O-C2-alkylene-OR".
\(-\mathrm{O}-\mathrm{C}_{2-a}\) alkyiene- \(\mathrm{NR}^{\mathrm{a}}-\mathrm{C}(=0)-\mathrm{OR}^{\mathrm{b}}\), -NR \({ }^{\circ} \mathbf{R}^{\mathrm{D}}\),
\(-N R^{*} C_{1-a}\) alkyleneNR* \({ }^{\text {b }}\), \(-N R^{2} C(=0) R^{b}\).
-NR"C \((=0) N R^{*} R^{b}\).
\(-\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{C}_{1}\right.\) _alkyl) \({ }_{2}\).
\(-\mathrm{NR}^{2}\left(\mathrm{SO}_{2} \mathrm{C}_{1-4}\right.\) alkyl).
\(-\mathrm{SO}_{2} \mathrm{NR}^{2} \mathrm{R}^{\mathrm{b}}\), and
-OSO2trifluoromethyt:
\(R^{2}\) is selacted from the group consisting of:
-hydrogen.
halogen,
-OR".
- \(\mathrm{C}_{1-6}\) alkyl.
\(-\mathrm{NO}_{2}\), and
-NR'R \({ }^{\text {b }}\).
or \(R^{1}\) and \(R^{2}\), together form a 3-or 4-membered alkylene or alkenylene chain, optionally containing at least one heteratom ;
\(R^{3}\) is selected from the group consisting of:
-hydrogen,
halogen.
\(-\mathrm{NO}_{2}\).
-trifluoramethoxy,
-Ci_alkyt, and
\(-C(=0) O R^{*}\);
\(R^{4}\) is hydrogen.
or \(R^{3}\) and \(R^{4}\) together form a 3 - or 4 membered alkylene or alkenylene chain, optionally containing at least one heteratom; \(R^{\prime}\) and \(R^{b}\), which may be the same or different, are independently selected from hydrogen and \(C_{1}\) salkyl;
\(R^{c}\) repres nts phenyl or \(\mathrm{C}_{4-5}\) cycloalkyl, which pheny! or \(\mathrm{C}_{4-\infty}\) cyctoalkyl can be optionally substituted by one or more halogen atoms, one or more \(-C(=0) O R^{\bullet}\) or one or more -OR';
\(n\) is an integer selected from 1, 2 and 3;
\(m\) is an integer selected from 1 and 2;
and pharmaceutically acceptable salts and solvates thereof.
U.S. Patent No. 5,393,755 discloses compounds of the
formula

wherein
\(J\) is oxygen or sulfur,
\(\mathbf{R}^{1}\) is hydrogen, alkyl or alkyl substituted with aryl or hydraxy;
\(R^{2}\) is bydroger, aryl, heteroaryl, cycloalkyl, alkyi or alkyl substituted with aryi, heteroaryl hydrozy, alkoxy, amino, monoallyl amino or dialkylamino, or \(-\left(\mathrm{CH}_{2}\right)_{n-1} \mathrm{TCOR}^{20}\) whercin \(m\) is an integer from 1 to 6, T is oxygen ar - NH - and \(\mathrm{R}^{20}\) is hydrogen, aryl. heteroaryl, alkyl or alkyl substicuted with aryl or heteroaryl;
\(R^{3}\) is hydrogen, halo, trifluoromethyl, alkoxy. alkyl thio, alkyl, cycloalkyl, aryl, aminosalfonyl, amino, monoalkylamino, dialikylamino hydroxyalkylamino, aminoallylamino, carboxy, alkoxyoarbonyl or aminocarbonyl or alkyl sutstituted with aryl. hydroxy, alkoxy, amino, monoalkylamino or dialkyiamino;
\(\mathbf{R}^{4}, \mathbf{R}^{b}, \mathbf{R}^{c}\) and \(\mathbf{R}^{d}\) independently represent hydrogen, alkyl, cycloalkyl or aryl; or (\(R^{a}\) and \(R^{b}\)) or (\(R^{c}\) and \(\mathbf{R}^{d}\)) or (\(\mathbf{R}^{b}\) and \(\mathbf{R}^{9}\)) ean complete a saturated ring of 5- to 7-corron storos, or (\(R^{4}\) and \(R^{\text {y }}\)) taken together and (\(\mathbf{R}^{b}\) and \(R 9\) taken together, each complete a satorated ring of 5- 20 7-carbon atoms, whercin each ring optionally can contain a solfur or oxygen atom and whose carbon atoms may be optionally substituted witk one or more or the following: alkenyl, alkynyl, hydroxy, carboxy, alkoxycarbonyl. alkyl or allyl substiterted with hydroxy, carbozy or alkoxycarbonyl; or such eaturated ring can have two adjacent carbon atoms which are shared with an stjoining aryl ring: and
\(n\) is zero or one.
cis-5,6a, 7,8,9,9a-Hexahydro-5-methyl-3-(phenylme-thyl)cyclopenta[4,5]imidazo[2,1-blpurin-4one;
7,8-Dihydro-5-methyl-3-(phenylmethyl)-3Himidazo [2,1-b]purin-4(5 H)-one:
cis-6a, 7,8,9,10,10a-Hexshydro-5-methyl-3-(phenylme-thyl)-3H-benzimidazo[2,1-b]purin-4(SH)-one;
5,7,8,9-Tetrahydro-5-methyl-3-(phenylmethyl). pyrimido[2,1-b]purin-4(3F)-one;
7,8-Dihydro-8-phenyl-5-methyl-3-(phenylmethyl)-3H-imidazo[2l-b]purin-4(5H)-one,
5', \(\quad 7^{\prime}\)-Dihydro-5'-methyl-3'-(phenylmethyl)spiro[cy-clohexane-1.8-(8H)imidazo [2, 1-b]purin] \(4^{\prime}(3 \mathrm{H})\)-onc; cis-5,6a, 11,11a-Tetrahydro-5-methyl-3-(phenylmethyl)indeno[\(1^{\prime}, 2: 3,5\), 3 imidazo \(\left.2,1-b\right]\) purin \(4(3 \mathrm{H})\)-ane;
5',7'-Dihydro-2',5'dimetbyl-3'-(phenylmethyl)spiro (cy-ciohexane-1,7'(8'H)-imidazo[2,1-b]purin\}-4'-(3T)-one;
7,8-Dihydro-2,5,7,7,8(R,S)-pentamethyl-3Himidazo 2,1 -blpurin-4(5H)-one;
cis-5,6a, 7,11b-Tetrahydro-5-methyl-3-(phenylmethyl)indeno[\(\left.2^{\prime}, 1^{\prime}, 44,5\right]\) imidazo[2, 1-b]purin-4(3H)-one;
cis-5,68, 7,8,9,9a-Hexabydro-2,5-dimeth yl-3-(phenylmethyl)cyelopent [4,5]imidazo[2,1-blpurin-4-(3H)-one;
\(5^{\prime}\)-Methyl-3'-(phenylmethyl)-spiro[cyclopentane-1,7'(\(8^{\prime} \mathrm{H}\))-(3'H)imidazo[2, 1-b]puin]-4-(\(\mathbf{5}^{\prime} \mathrm{H}\))-one;
7,8-Dihydro-2,5,7,7-tetramethyl-3-(phenylmethyl)-3Himidazo 2,1 -b]purio-4 \(\left(5^{\prime} \mathrm{H}\right)\)-one;
7,8-Dibydro-7(R)-phenyl-2,5-dimethyl-3-(phenylme-thyl)-3H-imidazo \([2,1\)-b]purin-4(5H)-ode;
7,8-Dihydro-2,5-dimethyl-3,7(R)-bis(phenylmethyl)-3H-imidazo [2,1-b]purio-4(5H)-one;
(\(\pm\))-7,8-Dinydro-2,5-dimethyl-7-ethyl-3-(phenylme-thyl)-3H-imidazo \([2,1-b]\) purin- \(-(5 \mathrm{H})\)-one;
62(S)-7,8,9,10,10a(R)-Mexhydro-2,5-dimethyl-3-(phenybmethyl)-3H-beazimidazo\{2.1-b)purin-4(5H)-one;
6a(R)-7,8,9,10.10a(S)-hexahydro-2,5-dimethyl-3-(phenylmethyl)-3H-beazimidazo[2,1-b]purin-4(SH)-ones
7,8-Dihydro-2,5-dimethyl-7(R)-isopropyl-3-(phenylme-thyl)-3F-imidazo[2,1-b]purin-4(5H)-one,
7,8-Dihydro-2,5,7(R)-trimettryl-3-(phenylmethyl)-3Hinidazo \(2,1-b]\) purin- 4 (5 H)-one,
cis-7,7a,8,9,10,10a-Hexahydro-2,5-dimethyl-3-\{phenyl-methyl)-3H-cyclopeata[5,6]pyrimido[2,1-b]purin-4(5H)-one;
7,8-Dinydro-2,5-dimethyl-7(S)-(1-methylpropyl)-3. (phenylonethyl)-3H-imidazo \([2,1-\mathrm{b}]\) parin-4(5H)-ones
7.8-Dingdro-2,5-dimethyl-7(R)-(2-methylpropyl)-3-(phenslmethyl)-3H-imidazo[2, 1-b]purin-4(5 H)-ones;
7,8-Dihydro-2,5-dimethyl-7(R,S)-(methoxycarbonyl)-3-(pheayimethyl)-3H-imidazo \([2,1-b]\) purin-4 (SH)-ore-
7,8-Dihydro-2,5-dimethyi-7(R.S)-(1-propyl)-3-(phenyi-methyl)-3k-imidazo[2,1-b]purin-4(SH)-one;
7,8-Dihydro-2,5-dimethyl-7(S)-(1-methylethy 1)-3-(pheaylmethyl)-3H-imidazo \([2,1-b]\) purin-4(5F)-one;
7.8-Dilydro-2,5,7,7,8(R,S)-pentamethyl-3Himidazo \([2,1-b]\) purin-4(5H)-ane;
5,7,8,9-Tetrahydro-2,5,7,9(R,S)-pentamethyl-3-(phenyl-methyl)-pyrimido(2,1-blpurin-4(3F)-one;
5,6a(R) 7,8,9,9a(S)-Hexahydro-2,5-dimetinyl-3-(phenylmethyi)cyclopont [4,5]imidszo[2,1-6]purin-4(3E)-one;
5,6a(S),7,8,9,9a(R)-Hexahydro-2,5-dimethyi-3-(phenylrtethy) eyctopent[4,5]imildazo [2,1-b]purin-4(3F1-one;
cis-6a, 7,8,9, 10,10a-Hiexahydiro-2,5-dimethyl-3-(phenyl-zethy1)-3H -benzandero[2,1-blpurin-4(5E)-one.
\(5^{\prime}, 7^{7}\)-Dihydro- \(2^{\prime}, 5^{\prime}\)-dimethyl- \(3^{\prime}\) (phenylmethyl)spiro[cy clohexane-1,8-(8H)-imidazo[2,1-b]parin]-4(\(\left.3^{\circ} \mathrm{H}\right)\)-one; cis-5,6a, 7,8,9,9a-Hexahydro-2, 5-dimethyl-3-(phcnylmethyl)cyclohept[6, 7imidazo[2,1-b]purin-4 (3H)-one cis-5, 6 , \(7,8,9,9 \mathrm{a}\)-Hexahydro-5-methyl-2-ethyl-3(phenylmethyl)cyclopent[4,5]imidazo \([2,1-\mathrm{b}]\) purin 4(3H)-one;
cis- \(62,7,8,9,10,1 \mathrm{Ca}-\mathrm{Hex}\) hhydro-S-methyl-2-ethyl-3-(phenylmethyl)-3H-benzimidazo[2, i-b]purin-4 (5 H)-one,
cis-5,6a, 7,8,9,9a-Hexahydro-5-methyl-2-ethyl-3-(phenylmethyl)-yclopent [4.5]imidazo[2,1b]purin-4(3H)-one
cis-5,6a, 7,8,9,9a-Hexahydro-5-meth yl-2-phenyl-3 (phenylmethyl)eyclopent[4,5]imidazo [2,1-b]purin4 (3H)-one;
cis-62, 7.8,9.10, 10a.Hexahydro-5-methyl-2-phenyl.3 (phenyimethyl)-3H-benzimidaro[2,1-b]purin-4(5H)-one;
cis-5,6a,7,8.9,9a-Hexabydro-5-methyleyclopenta[4,-5]imidazo[2,1-6]purin-4(3H)-one;
cis-5,6a, 7,8,9,9a-Hexahydro-2,5-dimethylcyclopenta [4,5] imidaro \([2,1\) - \(]\) purim 4(3F)-one;
cis-5,6a(R), \(\quad 7,8,9,9 a(S)\)-Hexahydro-2,5-di-methylcyclopeat[4,5]imidazo[\(2,1-b]\) purin \(-4(3 \mathrm{H})\)-one
\(2^{\prime}, 5^{\prime}\)-dimethyl-spiro cy cyopentape- \(1,7^{\prime}-\left(8^{\prime} \mathrm{H}\right)\)-(3 TH) imidazo \([2,1-6]\) purin) \(\mathbf{4}^{\prime}\left(S^{\prime} \mathrm{H}\right)\)-one;
7,8-Dinydro-2,5-dimethyl-7(R)-(1-methylethyl)-3Himidaro [2, \(1-6]\) purin \(-4(5 H)\)-onc
7,8-Dinydro-2,5,7,7-tetramethyl-3H-imidazo[2,1-b]pu-rin-4(5H)-one.
7,8-Dihydro-2,5-di methyl-7(S)-(1-methylethyl)-3Hinidazo \((2,1-\) blourin- 4 (SH)-one,
\(6 a(R), 7,8.9,10,103(S)\)-Hexahydro- 2,5 -dimechyi-3H-be nzimidazo \([2,1-\) - \(]\) purin \(-4(5 H)\)-one
\(5^{\prime} .7^{\prime}\)-Dihydro- \(2^{\prime}, 5^{\prime}\)-dimethylspirrofcyclohexare- 1,7 . (\(\left.{ }^{\prime} \mathrm{H}\right)\)-imidazo \([2,1\) - \(]\) purin \(]-4^{\prime}\left(3^{\prime} \mathrm{H}\right)\)-ore;
cis-5,6a, 7,8.9,9a-Hifexahydro-5-methyl-3-phenylmethyl)cyclopenta[4,S]imidazo \(2,1-\mathrm{b}]\) purin-4(3H)thione;
5,6a(R), 7,8,9,9a(S)-Fexahydro-25-dimethyl-3-phenylmethy) cyclopent 44 ,5]imidazo \([2,1-6]\) purin-4(3H)thione;
cis-5,6a, 7,8,9,9a-Herahydro-5-methyl-3-(4-chloro-phenglouechyl)eyclopenta[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a, 7,8,9,9a-Hexahydro-5-methy-3-(cycloherylmethyi) cyciopent \([4,5]\) imidazo \([2,1\)-b]puria \(-4(3 \mathrm{H})\)-one; cis-5, 6a,7,8,9,9a-Hexabydro-5-methyl-3-2-naphtiryimethyl) cyclopent 4,5\(]\) juridazo \((2,1-\mathrm{b}\)]purin \(4(3 \mathrm{H})\)-one;
\(5,62(R), 7,8,9,9\) as(\((S)\)-Hexahydro- 2,5 -dimethyl-3-(4 bromophenylmethyl) cyclopent \([4,5\)]imidszo \([2,1-\) b]pu-rin- \(4(3 \mathrm{H})\)-ane
5,62(R)-7,8,9,9a(S)-Hexahydro-2,5-dionetiyl-3-(4 methoryphenylmethyl)-cyclopent 4,5 imidazo \([2,1\). b]purim-4(3H)-one;
cis-5,6a,7,8,9,9x-Hexahydro-2,3,5-trimerthyley-
clopent \([4\), S]midazo \([2,1-\mathrm{b}]\) purin-4 \((3 \mathrm{H})\)-one;
cis-5,6a,7,8,9,9a-Hexahydro-2-(hydroxymethyl)-5-methyl-3-(phenylmethyl) cyclopent[4,Stimidazo [2,1-blpurin-4 (3H)-опе,
cis-5,6a, 7,8,9,9a-Hexniyydro-2-methylthio-5-methyl-3-(Phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one,
cis-3,4,5,6a, 7,8,9,9a-Octahydro-5-methyl-4oxo-3(phenylmethylloy clopent[4,5]indidazo[2,1-b]pnrin-2carbaxylic acid;
cis-3,4,5,6e, 7,8,9,9a-Octahydra-5-methyi-4-aro-3-
(pheaylmethyl)cyclopeat[4,5]imidazo \(2,1-6]\) parin- 2 .

\section*{carboxylic aeid, methyl ester,}
cis-5,6a,7,8,9,9a-Hicxahydro-2-bromo-5-methyl-3-(phenylmethyl)cyclopent\{4,5]imidazo[2,1-b]purin4(3H)one;
cis-5,6a, 7,8,9,9a-Hexahydro-2-(methylaminosulfonyl)-5-methyl-3-(phen ylmethyl)eyclopent(4,5]imidazo [2,1-b]purin-4(3H)ane, cis-1.Cyclopentyl-5,6a, 7,8,9,92-bexabrydro-5-methylcy. clopent[4,S]imidazo[2, 1-b]purin-4-(IH)one:
cis-5,6a, 7,8,9,9a-Hexahydro-3,5-bis-(phenylmethyl)cy clopent(4,5)imidazo(2,1-b)purin-4(3H)one;
cis- \(6 e_{1} 7,8,9,10,10 a-\) Hexahydro-3,5-bis-(phenyimethyl) 3H-benximidazo[2, k-b]purin-4(5H)one-
cis-3-Cyclopentyl-5,6a, 7,8,9,9a-herahydro-5-methylcyclopent \([4,5]\) imidazo(2,1 -b)purin-4(3H)one;
5'-Methyl-3'-(phenylmethyl)spiro [cyclopentanc-1,7(\(8^{\prime} \mathrm{H}\))-(3'H)inidazo[2, 1-b]purin]-4-(5H)one:
2',5'-Dimethyl-3'-(phenylmethyl)-spiro[cyclopentane-1,7-(8H)-(3H)imidazo[2,1-b]purin]-4-(SH)one; cis-5,6a,(R)7,8,9,9a(S)-Hexahydro-5-methyl-3-(phonyl-methyl)cyclopent[4,5]imidazo(2,1-b)purin-4(3H)one; cis-3-Cyclopentyl-5,6a, 7,8,9,9a-Herabydro-2,5-dimethylcyclopent [4,5]imidazo[2,i-b]purin-4(3H)ooe;
\(5^{\prime}\)-Methyl-2'-trifluoromethyl-3'-(phenylmethyl)spiro\{ cyclo-pentsac- \(1,7^{\prime}\left(8^{\prime} \mathrm{H}\right)-\left(3^{\prime} \mathrm{H}\right)\) imidazo \([2,1, \mathrm{~b}]\) purin \(\}-4\) (ST)-ane;
7,8-Dihydro-5,7,7-trimethyl-2-rifluoromethyl-3-(phenylmethyl)-3H-imidazo[2,1-b]puriv-4(5H)-one;
(\(+/\))--cis-5,6a, 7,8,9,9a-Herahydro-5-methyl-2-tri-Thuoromethyl-3-(phenylmethyl)cyclopert[4,5]imidazo [2,1-blpurin-4(3H)-one:
\((+/-)-62,7,8,9,9 \mathrm{a}, 10,11,11\) a-Octohydro-2,5-dimethyl-3-(phenylmethyl)-3H-pentalero[6a', \(1^{\prime}: 4,-\) 5]imidazo [2,1 -b]puria-4(5H)-one;
(+)-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3-phenylmethy]-3Fi-pentaleno[\(\left.6 a^{\prime}, 1^{\prime}: 4,5\right]\) imidazo[\([1,1\) -b]parin-4(SH)-ane;
(-)-6a,7,8,9,9a, 10,11,11a-Octahydro-2,5-dimethyl-3-phenylmethyi-3H-pentaleao[6a', 1':4,5]Imidazo [2,1-b]purin-4(5H)-anc
\((+/-) 6 a, 7,8,9,9 a, 10,11,112\)-Oetahydro-2,5-dimethyl-3H-pentaleno \(\left[6 a^{\prime}, 1^{\prime}: 4,5\right.\) jmidazo \([2,1-b]\) purin-4(5H)-one:
\((+)-6 a, 7,8,9,9 a, 10,11,11 a-O\) Otahydro-2,5-dimethyl-3Epentaleno[6a', \(\left.1^{\prime}=4,5\right]\) inidazo \([2,1-b]\) purin-4(5H)-ace;
(-)-6a,7,8,9,9a, 10,11,11a-Octahydro-2,5-dimethyl-3H. pentalemo \(\left[6 a^{\prime}, 1^{\prime}: 4,5\right]\) imidazo \([2,1-b]\) pwin- \(4(5 \mathrm{H})\)-one-
Ga,7,8,9,10,100,11,12,13,13a-Decatrydro-2,5-dimethyl-(3-phenylmethyl)mapth[1,8a-d]imidazo[\(2,1-b]\) purin4(5H)ones
7(R)-Cycloheryl-7,8-dihydro-2,5-dimethyl-3-(phenyl-: methyl)-3H-imidaco \(2,1-b]\) purin-4(3E)-one,
7(R)-Cycioheryl-7,8-dihydro-2,5-dimethyl-3Eimidaco \([2,1-6]\) purin-4(SH)-one;
7(S)-Cyclohexyl-7,8-dinydro-2,5-dimethyl-3-(phenyl-methyl-3H-imidazo [2,1-b]purin-4(3H)-onc
7(S)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3Himidazo [2, 1-b]purin-4(5H)-one,
S,6a(R),7,8,9,9a(S)-Hemahydro-2,5-dimethyl-3-(trime-thylacetoxy)methyl]-cyclopent[4,5]imidazo[2,1-b]pu-rin-4(3H1-0ae;
5,6a(R) 7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(4pyridylmethyl) cyclopem\{4,5]imidaza[2,1-b]purin-4(3H)-one;

5,6a(R), 7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-[2-(1-morpholinyl)ethyI]cyclopent[4,5]imidazo[2,1-b]pu-rin-4 (3H)-one;
\(5,62(\mathrm{R}), 7,8,9,9 \mathrm{a}(\mathrm{S})\)-Hexati ydro-2,5-dimethyl-3-3acetox-ymethyl]cyclopen44,5]imidazo[2.1-b]purin-4(3H)-оле
5,6a,7,8,9,9a-Hexabydro-2,5,6a-trimethyl-3-(phenyime-thyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one; -
5,6a(R),7(S), 8,9,9a-Hexahydro-2,5,6a-trimethyl-3 (phenylmerhyl)eyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;

5,6a(S),7(R),8,9,9a-Ferahydro-2,5,6a-trimethyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]parin-4(3H)-one;
cis-6a,7,8,9, 10,10a-Hecahydra-2,5,7-trimethyl-3-(phenylmethyl)-3H-berwimidazo[2,1-b]purin-4(5H)-One:
cis-5,6a,7,8,9,9a-Hexahydro-2,5,62-trimethylcyclopent \([4,5]\) imldazo \([2,1\)-b]purim-4(3H); or
cis-6a, 7,8,9,10,10n-Hexahydro-2,5,7-trinethyl-3H-benzimidazo[2,1 -b]purin-4(5F)-one].
U.S. Patent No. 5,439,895 discloses compounds of the
formula

(I)
wherein \(\mathrm{R}^{1}\) is hydrogen or \(\mathrm{C} 1-4\) alkyl;
Y is \(\mathrm{Cl}-6\) alkylene:
\(A\) is \(-0-R^{0}\) or \(-S(O) p-R^{0}\),
in which \(\mathrm{R}^{0}\) is \(\mathrm{Cl}-4\) alkyl-hydroxy;
\(p\) is \(0-2\) :
\(Z\) is single bond, methylene, ethylene, vinyiene or ethynyleoc;
CyB is
(I) 7-membered, omsaturated or partially saturated, monocyclic hetero ring containing as hetero atoms, one, two or three nitrogen atoms,
(2) 6 -membered, onsatorated or partially saturated, monocyclic hetero ring containing as hetero atoms, two or three nitrogen atoms,
(3) 6 -membered, umsaturated or partially saturated, monocyclic hetero ring contioning as betero atom, ose nitrogen atom,
(4) 4 or 5 -membered, ansacurated or partially samrated, monocyclic hetero ring containing as hetero atoms, one, two or three nitrogen aroms, or
(5) 4-7 membered, unsaturated or partially saturated, monocyclic hetero ring containing as hetero atoms, one or two oxygen atoms, or one or two sulfur atoms;
\(\mathrm{R}^{3}\) is hydrogen, \(\mathrm{Cl}-4\) allyl, \(\mathrm{Cl}-4\) alkoxy, halogen or tinfuoromethy:;
\(\mathrm{R}^{4}\) is (1) hydrogen, (2) Cl-4 alkyl, (3) Cl-4 alkoxy, (4) COOR \({ }^{8}\) in which \(\mathrm{R}^{8}\) is hydrogen or \(\mathrm{Cl}-4\) alkyl, (5) -NR \({ }^{9} \mathbb{R}^{10}\), in which \(R^{9}\) is hydrogen, \(\mathrm{Cl}-4\) alkyl or phenyl(\(\mathrm{Cl}-4\) alkyl) and \(\mathrm{R}^{10}\) is hydrogen or C1-4 alkyl, (0 -NHCOR \({ }^{11}\), in which \(R^{11}\) is C1-4 alkyl, (7)-NHSO2R \({ }^{11}\), in which \(R^{11}\) is as hereinbefore defined, (8) \(\mathrm{SO}_{2} \mathrm{NR}^{9 R}{ }^{10}\), in which \(\mathrm{R}^{9}\) and \(R^{10}\) are as hereinbefore detined, (9)-OCOR \({ }^{11}\) in which \(R^{1 l}\) is as hereimbefore defined, (10) halogen, (1I) triflooromechyd, (12) bydrory, (13) mitro,
(14) cyano, (15) \(-\mathrm{SO}_{2} \mathrm{~N}=\mathrm{CHNR}^{12} \mathrm{R}^{13}\) in which \(R^{12}\) is hydrogen or \(C l^{-4}\) alkyl and \(R^{13}\) is \(C 1-4\) alkyl, (16 -CONR \({ }^{14} R^{15}\) in which \(R^{14}\) is itydrogen or \(\mathrm{Cl}-4\) alkyl and \(\mathrm{R}^{15}\) is \(\mathrm{Cl}-4\) alkyl or phenyl(Cl-4 alkyl), (17) Cl-4 alkylthio, (18) Cl-4 alkylsulinyl, (19) C1-4 alkylsulfonyl, (20) ethynyl, (21) hydroxymethyl, (22) tri(Cl-4 alkyl)silylethynyl or (23) aceryl; and \(m\) and \(n\) independently are 1 or 2 ; with the proviso that
(1) a CyB ring does not bond to \(Z\) through a nitrogen atom in the \(\mathbf{C y B}\) ring when Z is vinylene or ethynylene,
or pharmaccutically acceptable acid addition salts thereof, pharmsceutically acceptable salis thereof, or bydrates thereof.

Preferred compounds include:

4-\{2-(2-hydroxycthoxy)ethyi]amino-6-acetyl-2-(1imidazolyl)quinazoline.
2-(1-imidazoly])-4-[2-(2-hydraxyethaxy)ethy \(]\) lamino-6-cthynylquinazoline.
2-(1-imidazoly])-4-[2-(2-hydroxyethoxy)ethy] amino-6-(2-triisopropylsilylethynyl)quinazoline,
4-[2-(2-hydroxyethoxy)ethyl]amino-6-hydroxymeth-yi-2-(1-imidazolyl) quinazoline,
4-2-(2-hydroxyethoxy)ethyl)amino-6-metisylsulfinyl-2-(1-imidazolyl)quinazoline,
6-chloro-4-(2-(2-hydroxyethoxy)ethyl)amino-2-(1imidazohyl)quinazoline.
4-(2-(2-hydroxyethoxy)ethyllamino-6-metiro xycar. bonyl-2-(1 -imidazolyl)quinazoline.
4-(2-(2-hydroxyethoxy)ethyl)amino-6-methytchio-2-(1-imidazolyl)quinazoline,
4-(2-(2-hydroxyethoxy)ethyl)amino-6-iodo-2-1. inidazolyl)quinazoline.
4-(2-(2-hydroxyethoxy)ethyi)amino-2-(1-imidazolyl)-5,6,7,8-tetrahydroquinazoline or
6-melboxy-4-(2-(2-hydroxyethoxy)ethyl)amino-2-(1imidazolyl)quinazoline.
and phamaceutically acceptable acid addition salts thereof, pharmacentically acceptable salts thereof, or hydrates thereof.
\(R^{1}\) is lower-alkyl, phenyl-lower-alkyl, or cycloalkyl;
\(\mathrm{K}^{2}\) is bydrogen, or lower-alkyl;
\(\mathbf{K}^{3}\) is hydrogen, lower-alkyl, or hydroxylower-alkyl;
\(R^{4}\) is cycioalkyl or cylcoalkyl substituted by from one to two, the sarne ur tifterent, substiturnus selected from the group consisting of lower-alkoxycarbonyl, carboxy. lowcr-ajkylhio-kwer-alkoxycarboayl, bydroxyloweralkyl. bydroxy, oxo, lower-alkoxy, lower-alkyl, and halogen; and
\(R^{3}\) is from one to threc, the same or differem., substituents selecued from the group consisling of hydrogen, loweralkoxy, hydroxy, dijower-aikylamino-lower-alkoxy, carboxylower-alkoxy. lower-alkoxycarbonyl-loweralkoxy, nitro, polyhydroxylower-alkoxy, amino, epoxy-lower-alkory, carboxy, lower-alkanoylamino, loweralkoxycarbonyl, pyridiny!, 4 -morpholinyl-loweralkoxy, Iower-alkylsulfonyl, cyano, 1-imidazolyL halagen, dilower-alkylaminosolfonyl, axadiazoly! (or oradiazolyl substifuted on any available carbon atom thereof by (ower-alkyl), lower-alkylsulfinyl, 1-pyrazolyl (or 1-pyracolyl substituted on any available carbon atom thereof by lower-aikyl). trifuoramethylsulfonyl lower-a lienyl, lowar-alkyl, and lower-alkyayl; or a pharmaceutically acceprable acid-addition salt. and/or trydrate and/or solvate thereof, or, where applicablc, a sterenimmer ar a racenic mixure thereof.

\section*{Preferred compounds include}
```

1-ellyl-K-nitro-N[S(+)-1-(cyclobexyl) ethyl]-1H-pyra-
zolo \3,4-b)quizolig-4-aminc,
1-echyl -6-niuro-N-[cyclohexylmethyl]- 1H-pyrarolo
[3,4-h]quinnlin-4-wmine,
1-elhyl-6-cyamo-N-[S(+)-1-(cyclohexyl)cthyI]-1H-pyme-
zolo {3,4-b]quinolin-4-amine.
1-eubyl-6-bromo-N-[S(+)-]-(cyclohcxyl)ecty\]-1H-pyra-

    zolo [3,4-b]quinolin-4-amine, and
    l-e@hyl-6-(I-pyrazoly])-N-[S(+)-1-(cyclohexyl)ethyl]-
1H-pyrazolo [3.4-b)quinalin-4-amine.

```
U.S. Patent No. 5,525,064 discloses compounds of the
formula

whenin \(\Lambda\) is \(\mathfrak{a}\) bond, \(C_{1-1}\) alkylene or \(C_{1-1}\) oxyalkyienc: \(Y\) is a bencl, \(C_{1-4}\) alkyleno, \(C_{1-1}\) alkylencoxy. \(C_{i-1}\) alkoxyphenyicne or phenyl(\(\mathrm{C}_{\mathrm{t}, \text {. }}\))alkyicuc;
\(\%\) is a bond or vinylenc;
\(\mathbf{R}^{1}\) is a heterocyelic ring selected from the group conaisting of pyrrode, pyridine, aycpinc, jmidazole, pyrazolc. pyrimidine. pyrainc, pyridazinc, benrimidayole, quinoline, isoquinoline and partially or fully katurated ringe thercor;
\(R^{2}\) is
(i) a betcracyclic ring selected from the group consisting of pyrmole, pyridine, azepine, imidazolc, pyrazolc, pyrimidine. pyrazine, pyridazine, bcazimidazoie, quinoline, isoquinoline, furan, pyran, dioxole, dioxine. benzofiran, bencopytan, benzodioxole, benzodioxinc, thiophenne, thioine, benzothiophenc, bennothione and partially or fully saturated cinges
chereof,
(ii) \(\mathrm{C}_{\text {a. }}\) c carbocyclic ring,
(iii) \(C_{1,4}\) alkoxy,
(iv) bydroxy(\(C_{1-1}\) alknxy), ar
(v) hydroxy;
with the proviso that:
when \(R^{2}\) is pyridine or pyridine substiwued by one ar two of \(\mathrm{C}_{1}\), alkyl
\(C_{14}\) alkoxy, halogen, triflurrnmethyl or nitro then \(R^{2}\) is a member sciccied only from the group consisting of berzodioxole or benvodioxole substiarted by one or two or or \(\mathrm{C}_{1,4}\), allyyl. \(\mathrm{C}_{1-4}\) alkaxy, halogen, oifínoromethyl, nitro or a group of he
formuln:
\(-\mathrm{COOR}^{10}\)
wherein \(R^{10}\) is Lydrogen or \(C_{1-1}\) alkyl, and hydroxy (\(C_{1-1}\) alkoxy);
\(\mathrm{R}^{3}\) is
(i) a heterocyelic ring selected from the group consisting of pymole, pyridine, azcpine, imidazole, pyrazole. pyrimidine, pyrazinc, pyridazinc, bearimidazoie, quinoline. isoquinolive furan, pyran, bencoloran, benzopyran, thiopbenc, thioins, bearothiophenc, beazubione, Urizcole, isechiseove, Anarine, beacothiazole, benzoisothiazole, benzothiazine and partially of folly sanurated rings thereof,
(ii) \(\mathrm{C}_{4-1}\) carbocyclic ring,
(iii) a group of formuls:

\section*{\(\mathrm{CH}_{5}=\mathrm{CH}(X)-\)}
wherein \(X\) is halogen, or (iv) hydrogen,

1 is 1 or 2 .
with the proviso that:
the ring represented by \(R^{\prime}\) may be subsliwted by one or tevo of \(C_{1,-1}\) alkyl, \(C_{1-\infty}\) alkoxy, halogen, trifuoromp athyl or aiurn;
the ring represented by \(\mathrm{R}^{2}\) mayy be mabstionted by one or
 othyl. sutiro or a group of the formula:
wherein \(R^{10}\) is hydmgen or \(C_{1-4}\) alkyl, and the rin: represented by \(\mathrm{R}^{3}\) may be substituted by one or two of \(C_{1-4}\) alkyl. \(C_{1.4}\) ulloxy, balogea, Lilluomomethyl, nitro, cyano, athyny or a group of the formula: -SONR \({ }^{2} \mathbf{R}^{2}\)
wherein \(R^{7}\) and \(R^{x}\) are independently hydrogen or \(C_{i-1}\) alkyl. and with the proviso that
\(R^{2}\) is not hydroxy when \(Y\) is a bond; and
\(R^{2}\) is not bonded through its nitrogen atom when \(Z\) is vinyleme.
or phammaceutically acceplable acid addition sats thereof or phamaceutically scocplable salts thereot.

\section*{Preferred compounds include}

2-(1-Imidncolyl)-4-[2-(2-hydroxychoxy)cthylinmino-5-(3 -methoxyphcayl)methytpyrimidinc.
2-(1-Imidazolyl)-4-phenylnuabylamioopyrimidine,
2-(1-Imidaroly1)-4-(2-methoxycthyl)aminopyrinidinc,
2-(1-Imidazoly) -5-achyl-4-phenylnechylaninopyrimidine,
2-(1-Jinidurolyl)-5-plenylurchyl-4-piconylnucliylamituopyrimidina,
2-(1-Imidayolyl)-5-methyi-4-phenylmethylanioopyrimi dinc,
2-(1-imidarolyl)-5,6-dimahyl-4-phenylmethylaminupyrimidice.
2-(1-Imidarolyl)-5-(3-methoxyphenyl)methyl-4-(2-methoxycthyD)aminopyrimidinc,
2-(1-Imidayolyl)-5-(4-methoxyphenyi)nethyl-4-[2-(2-hydroxyefhoxy)erhyl]aminopyrimidinc,
2-(1-Imidavolyl)-5-(4-methoxyphenyl)nethy)-4-(2-methoxychal)arninopytimidine or
2-(1-Imidarolyl)-5-(4-methoxyphenyl)me(hyl-4-phenyimctylanuinopyrimidinc.
2-(1-|midarolyl)-S-phenoxymethyl-4-pheny/nncthylaminopyrimidine.
2-(1-Imidazolyl)-5-(1-Imidacolyi)methyl-4-phenylmethyleminopyrimidinc.
2-(1-1midayolyl)-5-(1-chlurovinyl)-4-phenylmuihylarainopynimidinc.
2-(-imddwolyl)-5-(2-thienyl)-4-phenylmethylaminopyrimidioc,
2.(1-Imidazolyl)-5-(2-thiazoly)-4-phenylmethylaminupyrimidine,
2-(1-Imidarolyl)-5-(2-thienyl)-4-(1,3-dioxaindan-5-yl)methylaminopyrimddine.
2-(1-Imidazolyl)-5-(2-thieayl)-4-[2-(2-hydroxyothoxykethyljaminopyrimidinc,
2-(1-Imidarolyl)-5-(2-hienyl)-4-(1-naphuhyl)methylaminopyrimidinc,
2-(1-lmidecolyl)-5-(2-thicayl)-4-(4-methoxyphenyl)methylamicopyrinudioc.

\footnotetext{
2-(1-imidsvolyl)-5-(2-thicnyl)-4-(3-methoxyphenyl)mathylaminnyrimidinc.
2-(1-1mida\%olyl)-5-(2-thienyl)-4-(2-furyl)nathylaminopyrimidinc,
2-(1-Imidazolyl)-5-(2-thienyl)-4-(2-thienyl)nathylaminopyrimidithe,
2-(1-Itnidazolyl)-5-(2-thicnyl)-4-(3-pyridyl)nethylumimopyrimidine,
2-(1-inidayolyi)-5-(2-ihicayl)-4-(2-tmethoxychhyl)aminupyrimidine.
2-(1-hmidayolyl)-5-(2-thicnyl)-4-phenylnnchorxyamimopyimidinc,
2-(1-linidazolyl)-5-(2-ithienyl)-4-(4-chioroutheryl) methylaminopyrimidinc,
2-(1-Imidazolyl)-5-(3-ifilenyl)-4-(3-chioraphenyl)mehhylaminopyrimidinc,
2-(1-lmidazolyl)-5-(2-thienyl)-4-(1,3-dioxaindath-5-yl)methylaminopyrimidinc,
2-(1-linidazolyl)-5-(4-methylpticayl)-4-(1.3-dioxaindan-5-y() methylaminopyrimidinc,
2-(1-linidazolyl)-S-(4-nucthoxypheoyl)-4-(1,3-dioxaindan-5-yl)nethylaminopyrimidine,
2-(1-faidayolyl)-5-(5-rimithyl-2-dienyl)-4-(1,3-dioxain-dan-5-y) mat hylaminopyrimldine,
2-(1-Iuidarolyl)-S-(2-thicnyl)-4-[4-(1 -imidarolyl)phenyl] mathylaminopyrinildinc.
2-(1-Inddacolyi)-5-(3-pyridyl)-4-(1,3-dioxaindan-5-yl)mchylaminopyrimidinc.
2-(1-Imidazolyl)-5-(3-furyl)-4-(1,3-dioxaindan-5-yl)methyluminupyrinidínc,
2-(1-Inidazalyl)-5-(3-pyridyl)-4-phenylnachylaminopyrimidinc.
2-(1-Huidnolyl)-5-(4-chlorophenyl)-4-(1,3-dioxaindan-5yl)ncthylansinopyrimidinc.
2-(Henrimidazol-1-yl)-5-(2-thienyl)-4-(1,3-dioxaindan-Syl)melhylaminopyrimidinc.
2-(1-hmidarnlyl) 5 -(2-hioryl)-4-(4-cihax ycartosnylphenyl)methylamioopyrimidinc,
2-(1-Imidarnlyl)-5-(2-naphibyl)-4-(1,3-diuxaindan-5-yl)mcthylaminopyrimidinc,
2-(3-Hyricyl)-5-(2-thicnyl)-4-(1,3-diuxaiman.5-yl)melhylaminopyrimidinc,
2-[2-(3-Pyridyl)vinyl]-5-(2-thicnyl)-4-(1,3-dioxaindan-5yl)methylaminopyrimidine,
2-(2-Mceliyl-I-Imidarolyl)-5-(2-thicnyl)-4-(1,3-dioxain-dan-5-yl)nethylamlnopyrimldtre or
2-(1-Imidazolyl)-5-(2-thicny)-4-(beraimidayol-5-yl)rachyylaminopyrimidiac.
}

European published paten \(t\) application No. 0728759
discloses compounds of the formula

(I)
wherein

is a heterocycte selected from

and

\(n\) is 0,1 or 2;
\(Y\) is single bond or C1-6 alkyiene:
\(Z\) is single bond. C1-2 alkylene or vinylene
\(E\) is
(i) 4-15 membered, unsaturated, partially saturated or fully saturated. mono or bicyclic hetera ring containing one or two hetero atoms, chosen from nitrogen, oxygen and sulfur, not more than one hetero atom being sultur. (ii) 4-15 membered, unsaturated or partially saturated, mono or blcyclic carbocyclic ring, or
(iii) -OA4; in which \(\mathrm{R}^{4}\) is hydrogen atom, \(\mathrm{Cl}-4\) aboy or \(\mathrm{Cl}-4\) alkyl substituted by a mydroxy group;

Cyc is 5-7 membered, unsaturated, partially saturated or fully saturated, monocyclic hetero ring containing one or wo nitrogen atoms or \(5-7\) membered, unsaturated or partialy saturated, monocydic carbocyedic ring:
\(\mathrm{R}^{2}\) is hyorogen atom or C1-4 alkyl:
\(R^{2}\) is tyodrogen atom. C1-4 alkyl, C1-4 alkoxy or halogen atom:
\(R^{3}\) is thydrogen atom. \(\mathrm{C}_{1}-4\) alkyl C1-4 atroxy or-COOR
with the proviso that which \(\mathrm{R}^{5}\) is mydrogen atom or C1-4 allht:
(1) a Cyc ring does not bond to \(Z\) through a nitrogen atom in the Cyc ring where \(Z\) is virylene and that
(2) \(Y\) is not a single bond, when \(E\) is (2) \(Y\) is not a single bond, when \(E\) is -OR'; or a pharmaceutically acceptable acid acdifion saht, pharmaceuti-
cally acceptabie salt of hycrate thereof.
U.S. Patent No. 5,541, 187 discloses compounds of the
formula

wherein:
\begin{tabular}{l}
1 \\
\(R_{1}\) \\
\hline
\end{tabular}
\(R^{\top}\) is hydrogen, alkyl. cycloalkyl, cycloalkyl substiruted by alkyl or hydroxyl, 2- or 3-tecrahydrofuranyl, 3-tet rahydrathiciry 1,1.-dioxide, cycloaikyl-alkyl, carboxyalkyl. carbo-lower-alkoxy-alkyl, dialkylaminoalkyl,

> phenyl-lowcr-alkyl, phenyl-lower-ancyl in which the phenyl ning is substituted in the 2 3. or 4 -position by onc or two substituents, the same or differcont, selceled from the group consisting of amino, halogen, alkyl carbaxyl. carbo-lower-alkoxy, carbamoyl. \(\mathrm{NHSO}_{2}\) (quinolinyl), nito and cyano:
\(R^{3}\) is hydragen, lower-alkyl, pheayl-lower-alkyl, bower-alkoxyphenyl-lower-alkyl, dilower-alkoxy-phenyl-lower-alkyl, pyridyl-lower-alkyl, cycloalkyl-loweralkyl, phenylarnino. dialkylamino, halogen, trifluoromethyl, lower-alkylthio, cyamo or nitro; and
\(\mathbf{R}^{0}\) is a five or six membered heterocyclic ring containing from one to two nitrogen atome, substituted-or unsub-stiuted-at any available carbon atom by one or two substivents, the sanve or different, selected from the group consisting of lower-alkyl, halogen, lower-alkoxy, cycloaikyloxy, 4-mompholinyl,. luwer-alkoxy-loweralkoxy, hydroxy, imidazolyl, oxo and 4-morpholinyr-lower-alkoxy; or at any avalable aitrogen atom by lowcr-alkyi, luwer-alkanoyl, or trifuoroacetyl; or a phamaceurically acceptable acid-addition salt thercof.

\section*{Preferred compounds include:}

J-Cycloprentyl-3-midhyl-6-(4-pyridyl)pyrazolo[3,4-d] pyrimidin-4-one,

1-Cyclopcalyl-3-cthyl-6-(3-cthoxy-4-pyridy!)pyra zolo \(3,4-\) d]pyrimidio-4-one,

1-Cyclopentyl-3-ethyl-6-(3-methoxy-4-pyridyl)pyra-zolo(3,4-d)pryimidin-4-ane,

1-Cyclopentyl-3-trifluoromethyl-6-(3-echoxy-4-py-ridyl)pyrazolo[3,4-d]pyrimidin-4-one.

1-Cyclopentyl-3-ethyl-6-(2-(1-imidazolyl)-4-py-
ridyl)pyrazolo[3,4-d]pyrimidin-4-one.

\section*{U.S. Patent No. 5,721,238 discloses compounds of the}
formula

in which
A represents oxiranyl, which is optionally substituted by straight-chain or tranched altyt having up to 8 carbor atorns, which in turn can be substituled by phenyl. or represents a radical of the furroula
whercin
\(\mathbf{R}^{1}\) denoter hydrogen or straight-chain or tranctied allyl having up to 6 carton atoms,
\(R^{2}\) denotes straight-chain or branched alkyl having up to 8 carbon atorns, which is optionally substingted by pheayl,
\(\mathbf{R}^{3}\) denotes atraighl-chain or branched allyl having up to
\(S\) carbon atoms ar a group of the formals -or \({ }^{6}\),
wherein
\(\mathrm{R}^{6}\) denotes hydrogen, a hydroxyl-protecting group or straight-chaio or tranchod allyl having up to 5 carbon atmas.
\(\mathrm{R}^{4}\) denotes straight-chain or branched alkyi bsviag 2 to 10 carbon atoms, which is optionally substituted by pheryl.
\(L\) denotes a radical of the formila \(-\mathrm{CO}-,-\mathrm{CH}(\mathrm{OH})\), Wher \(_{2}-\mathrm{CH}\left(\mathrm{N}_{2}\right)\) or \(-\mathrm{CH}\left(\mathrm{OSO}_{2} \mathrm{R}^{2}\right)\). wherein
\(R^{7}\) denoter straight-chain or brinchod alkyl having up to 4 carbon eroms or phenyl,
\(R^{3}\) denotes atraight-chain or tranched alkyl having 3 to 8 carbon atoms which is substituted by pheagh of denotes beazyl or 2-phenyterthys.
D represents trydrogon, or represents a group of the formina
\(-\mathrm{SO}_{1}-\mathrm{NR}^{6} \mathrm{R}^{\circ}\).
whercio
\(\mathbf{R}^{\mathbf{8}}\) and \(\mathbf{R}^{\boldsymbol{\rho}}\) are identical ar different and denote hydrogen, phenyl or straight-chain or bramened alkyl having up to 6 carbon atoms which is optionally enbestitutad by hydroxyl, or, together with the nitrogen atom, foom a 5 to 6 -membered satwated heterocyclic radical whies has up to 2 further hetero atoms from the series consisting of \(S\). \(N\) and/or \(O\) and is optionally substiorted including vis a frec \(N\) function, by straighor. chaia or branched allky having up to 6 carbos atoms. which in turn can be cubstinuted by hydroxyl, and E represents soright-chain or branchod allyl having up to 8 carbon atoms, and tautomers and ealts thereof.
\[
-78-
\]

Preferred compounds include:

U.S. Patent No. 5,294,612 discloses compounds of the
formula
wherein:
\(R^{1}\) is hydrogen, alkyl, \(C_{4}\) to \(C_{7}\) cyeloalkyl, \(C_{4}\) to \(C_{7}\) cyeloalkyl substituted by \(C_{1}\) to \(C_{10}\) alkyl or hydroxyl 2-or 3-tetrahydrofuranyl, 3-tetrahydrochieny! 1,1 , dioxide, \(C_{4}\) to \(C_{7}\) cyeloakyl-C 1 to \(C_{10}\) alkyl, carboxy \(\mathrm{C}_{1}\) to \(\mathrm{C}_{10}\) alkyl, carbo- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{1}\) low-er-alkoxy- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{10}\) alkyl, dialkyiamino \(\mathrm{C}_{1}\) to \(\mathrm{C}_{10}\) alkyl, phenyt- \(C_{1}\) wo C, lower-alkyl, phenyt- \(C_{1}\) to \(C_{4}\) Iower-alkyl in which the phenyl ring is substituted in the 2,3 , or 4 -position by one or two substituents, the ume or different, selected from the group consisting of amino, halogen, \(C_{1}\) to \(C_{10}\) alkyl, carboxyl. carbo-C1 to C lower-alkoxy, cartamoyl, \(\mathrm{NHSO}_{2}\) (quinalinyl), nitro and cyano:
\(R^{3}\) is, \(C_{1}\) to \(C_{4}\) lower-alkyl, phenyl- \(C_{1}\) to \(C_{4}\) loweralkyl. lower-alkoxyphenyl- \(C_{1}\) to \(C_{C}\) lower-alkyl, \(\mathrm{dic}_{1}\) to \(C_{4}\) lower-alkoxy-phenyl- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) loweralkyl, pyridyt- \(C_{1}\) to \(C_{4}\) lower-atkyl, \(C_{4}\) to \(C_{7} \mathrm{cy}\) -cioalkyl-C, to C lower-alkyl, phenylamino, diC, to \(\mathrm{C}_{10}\) alkylamino, halogen, trillooromethyl, \(\mathrm{C}_{1}\) to \(\mathrm{C}_{6}\) lower-alkylthio, cyano or nitro; and
\(R^{6}\) is a nime or ten membered bieyclic.ning having carbon and from one to two nitrogen atoms, and the heterocycle is made up of fused 5 or 6 membered rings or such ring substiruted at any available carbon atom by one or two substivents, the same or different, selected from the group consisling of \(C_{1}\) w \(C_{4}\) lower-alkyl, halogen, \(C_{1}\) to \(C_{4}\) loweralkoxy, \(C_{4}\) to \(C_{7}\) cycloalkyloxy, 4 morpholinyl, \(C_{1}\) \(20 C_{4}\) lower-alkoxy-C \({ }_{1}\) to \(C_{4}\) lower-alkoxy. hy. droxy. imidzzolyl, oxo and 4-morpholinyl-C \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) lower-alkoxy, or at noy aviilable nitrogen atom by \(C_{1}\) to \(C_{4}\) tower-alkyl, \(C_{2}\) to \(C_{4}\) lower-alkanoyl, or sifinorozcetyl; or a pharmaceutically soceplable acid-addition zalt thereof.

Preferred compounds include:

1-Cyciopentyl-3-metbyl-6-(4-quincliny)-pyrixolo[3,4d]pyrimidin-4-one

WO 93/12095 discloses compounds of the formula

or a pharmaceutically acceptable salt thereof, wherein \(R^{1}\) is \(H, C_{1}-C_{4}\) alkyl, \(C_{1}-C_{4}\) alkoxy or CONR \(R^{6}\);
\(\mathrm{R}^{2}\) is B or \(\mathrm{C}_{1}-\mathrm{C}_{4}\) alky2;
\(R^{3}\) is \(C_{2}-C_{4}\) alkyl;
\(R^{4}\) is \(H_{4}, C_{2}-C_{4}\) alkanoyl optionally substituted with \(\mathrm{NR}^{7} \mathrm{R}^{\mathbf{8}}\), (hydroxy) \(\mathrm{C}_{2}-\mathrm{C}_{4}\) alkyl optionally substituted with \(\mathrm{NR}^{3} \mathrm{R}^{\mathrm{b}}\), \(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{R}^{9}\), \(\mathrm{CH}=\mathrm{CHCONR}{ }^{7} \mathrm{R}^{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{9}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONR}^{7} \mathrm{R}^{6}, \mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8}\), \(\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{\mathrm{a}} \mathrm{NR}^{7} \mathrm{R}^{8}\) or imidazolyl;
\(R^{5}\) and \(R^{6}\) are each independentiy \(H\) or \(C_{1}-C_{4}\) alkyl;
\(R^{7}\) and \(R^{i}\) are each independentiy \(H\) or \(C_{1}-C_{4}\)
alkyl, or together with the nitrogen atom to which they are attached form a pyrrolidino, piperidino, morpholino or 4-(NR \({ }^{10}\))-1piperazinyl group wherein any of saia groups is optionally substituted with CoNR \(\mathrm{R}^{6}\);
\(R^{9}\) is \(H\) or \(C_{4}-C_{4}\) alkyl;
\(\mathrm{R}^{10}\) is \(H, C_{1}-C_{3}\) alkyl or (hydraxy) \(\mathrm{C}_{2}-C_{3}\) alkyl;
and \(n\) is 2,3 or 4;
with the proviso that \(R^{4}\) is not \(H\) when \(R^{i}\) is \(H, C_{1}-C_{4}\) alkyl or \(c_{1}-c_{4}\) alkoxy.

Preferred compounds include:
```

    2-{2-ethoxy-5-[4-(2-hydroxyethyl)-1-piperazinyl-
    sulphonyl]phenyl}-8-methylquinazolin-4-(3H)-one;
2-{5-[4-(2-hydroxyethyl)-1-piperazinylsulphonyl]-
2-n-propoxyphenyl}-8-methylquinazolin-4(3N)-one;
8-methyl-2-{5-[2-(4-methyl-1-piperazinylcarbonyl)-
ethenyl]-2-n-propoxyphenyl}quinazolin-4(3H)-one;
8-carbamoyl-2-{2-ethoxy-5-[4-(2-hycroxyethyI)-1-
piperazinylsulphonyl]phenyl}quinazolin-4 (3H) -one;
and 8-ethylcarbamoyl-2-(2-n-propoxyphenyl)quinazolin-
4(3H)-one;
and pharmaceutically acceptable salts thereof.

```

WO 93/07149 discloses compounds of the formula

```

or a pharmaceutically acceptable salt thereof,
wherein }\mp@subsup{R}{}{1}\mathrm{ is }\mp@subsup{C}{1}{}-\mp@subsup{C}{6}{\prime}\mathrm{ alkyl;
R2}\mathrm{ is H, methyl or ethyl;
R3}\mathrm{ is C C-C4 alkyl;
Rf is. C4-C4 alkyl optionally substituted
with NRSR', CN, CONRSR or }\mp@subsup{\textrm{CO}}{2}{}\mp@subsup{\textrm{R}}{}{7};\mp@subsup{C}{2}{}-\mp@subsup{C}{4}{\prime}\mathrm{ alkenyl
optionally substituted with CN, CONR'R'0
CO2R

```

```

    RS}\mathrm{ and }\mp@subsup{R}{}{6}\mathrm{ are each independently H or C1-C4
    alkyl, or together with the nitrogen atom to
    which they are attached form a pyrrolidino,
    piperidino, morpholino, 4-(NR')-l-piperazinyl
    or 1-imidazolyd group wherein said group is
    optionally substituted by one or two cc, cc
    alkyl groups;
    R7}\mathrm{ is H or C1-C4 alkyl;
    and \quad\mp@subsup{R}{}{8}\mathrm{ is H, Ci-Cj alkyl or hydroxy C_-Cj alkyl.}

```

Preferred compounds include:
```

    6-(5-bromo-2-n-propoxyphenyl)-3-methyl-1-n-propyl-
    1,5-dihydro-4H-pymazolo[3r4-d]pyrimidin-4-one;
3-methyl-6-(5-morpholinosulphonyl-2-n-
propoxyphenyl)-l-n-propyl-l,5-dihydro-4H-pyrazolo[3,4-
d]pyrimidin-4-one;
6-[5-(2-carboxyvinyl)-2-n-propoxyphenyl]-3-methyl-
1-n-propyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-
one;
6-[5-(2-t-butoxycarbonylvinyl)-2-n-propoxyphenyl]-
3-methyl-l-n-propyl-1,5-dinydro-4H-pyrazolo[3,4-
d)pyzimidin-4-one;
3-methyl-6-[5-(2-morpholinocarbonylvinyl)-2-n-
propoxyphenyl]-1-n-propyl-1,5-dihydro-4H-pyrazolo[3,4-
djpyrimidin-4-one;
and 3-methyl-6-[5-(2-morpholinocarbonylethyl)-2-n-
propoxyphenyl]-1-n-propyl-1,5-dihydro-4H-pyrazolo[3,4-
d]pyximidin-4-one;
and pharmaceutically acceptable salts. thereof.

```

European published patent application No. 0607439 discloses compounds of the formula

[in formula (1), ring A represents a benzene ring, a pyridine ring or a cyclohexane ring; ring \(B\) repressmts a pyridine ring. a pyrimidine ring, or an imidazole ring.

Provided that the ring \(\mathbf{A}\) and the ring \(\mathbf{B}\) are combined sharing two atoms and the atoms shared may be either a carbon atom or a nitrogen atorn.

In the case where the ring \(A\) is a pyridine ring and that except the case where the ring- \(B\) shares the nitrogen atom of this pyridine ring to combine therewith. the ring \(A\) is represented by

\(R^{1}, R^{2}, R^{3}\) and \(R^{4}\), eacth of which may be the same or different from one another, represent each a hydrogen atom, a halogen alom, a lower alkyl group which may be substituted with a halogen atom, a cycloalkyl group which may be substituted, a lower aikoxy group, a hydroxyalkyl group, a nitro group, a cyano group, an acylamino group, a carboxyl group which may be protected, a group represented by
\[
\begin{gathered}
(0)_{n} \\
-S-R^{7}
\end{gathered}
\]
(wherein \(R^{7}\) iepresents a bwer alkyl group, and \(n\) represents 0 or an integer of 1 to 2). or a group represented by the formula

(wherein \(R^{45}\) and \(R^{66}\). each of which may be the same or different from each other, represent each a hydrogen atom or a lower alkyl group; or \(\mathbb{R}^{45}\) and \(R^{66}\) can form a ring which may contain anolher nitrogen atom or oxygen atom together with the nitrogen atom to which they are bonded with the proviso that this ring may be substituted); or, iwo of \(R^{1}, R^{2}, R^{3}\) and \(R^{\mathbf{1}}\) may together form methylenedioxy, ethylenedioxy or a phenyl ring.
\(R^{S}\) represents a hydrogon atom. a halogen atom, a hydroxyl group, a hydrazino group, a tower alkyl group. a cycloalkyl group which may be substituted, a lower alkoxy group, a tower alkenyl group. a carboxyalkyl group which may be protected, a carboxyalkenyl group which may be protected. a hydroxyalkyl group, a carboxyl group which may be protected, a group represented by the formula
\[
\begin{gathered}
(0) \\
-S-R^{8}
\end{gathered}
\]
(wherein \(R^{B}\) represents a iower alkyi group, and \(m\) represents 0 or an integer of \(\dot{1}\) to 2), a group represented by the formuta - \(0-R^{9}\) (wherein \(R^{9}\) represents a hydroxyalkyl group which may be protected, a carboxyathyl group which may be protected or a benzyl group which may be substituted). a group represented by the formula

(whergin \(\mathrm{R}^{\text {th }}\) represents a hydroxyl group, a lower alkyl group, a lower alkoxy group, a hydroxyalkyl group or a hydroxyalkytoxy group), a heteroaryl group which may be substituted, a 1,3 -benzdioxolyt group which may be substituted, a 1.4-benzdioxyl group which may be substituted, a 1,3-benzdioxolylalkyl group which may be substituted, a 1,4 -benzdiaxylalkyl group which may be substituted, a group represented by the formula \(-C\left(R^{24}\right)=X\) [wherein \(X\) represents an oxygen atom, a sulfur atom or a group represemed by the formula \(=N-R^{\prime 0}\) (whereln \(R^{10}\) represents a hydroxyl group, a cyano group or a carboxyalkylowy group which may be prolected); and \(\mathbf{R}^{24}\) represents a hydrogen atom or a lower alkyi group), or a group represented by the formula -NR \({ }^{11} R^{\prime \prime}\) (wheratn \(R^{\prime \prime}\) and \(R^{13}\). each of which may
be the same or different from each other. represent each a hydrogen atom, a lower alkyl group. a hyoroxyalkyl group. an aminoalkyl group, a carboxyalkyl group which may be protected, an alkylcarbamoyl group. a carboxyalkylcarbamoyl group which may be protected, a hetercarylalkyl group which may be substituled. a 1,3 -benzoxolytakyl group or a 1,4 -benzdioxylalkyl group; or, Iurther. \(\mathrm{R}^{\prime \prime}\) and \(\mathrm{R}^{12}\) can form a ring whici may contain another nitrogen atom or oxygen atom together with a nitrogen atom to which they are bonced with the proviso that this ring may be substituted).
\(R^{6}\) represents a hydrogen atom, a halogen atom, a hydroxyl group. an amino group, a lower alkyl group. a lower atkoxy group. a lower alkenyl grouip, a 1,3-benzdioxolylalkyloxy group, a 1,4-benzdioxylalkyloxy group. a phenylalkyloxy group which may be substituted. a group represented by the formula

(wherein \(R^{13}\) and \(R^{\prime \prime}\), each of which may be the same or different from each other, represent each a hydrogen atom, a lower akkyl group or a lower alkoxy group; or, further. \(\mathrm{R}^{13}\) and \(\mathrm{R}^{\prime \prime}\) may together form methylenedioxy of ethylenedioxy). a group represented by the formuia

a group represented by the formula

a group represented by the formula

a group represented by the formula

(in these fomulas, \(R^{15}\) and \(R^{16}\). each of which may be the same or different from each other, represent each a hydrogen adom. a lower alky group or a lower alkoxy group; or, further, \(\mathrm{R}^{15}\) and \(\mathrm{R}^{16}\) may together form methylenedioxy or ethylenedioxy). a piperidne-4-spiro-2'-dioxan-1-yl group, a group represented by the formula

(wherein \(\mathrm{R}^{48}\) anc \(\mathrm{R}^{99}\), each of which may be the same or different from each other, represent each a hydrogen atom, a tower alkyl group or a lower alkoxy group; or, further. \(\mathbf{R}^{\mathbf{8}}\) and \(\mathrm{R}^{\mathbf{8}}\) may together form methylenedioxy or ethylenedioxy; and \(Z\) reprosents a sulfur atom or an oxygen atom), a group represented by the formula

(wherein \(\mathrm{R}^{50}\) rep:esents a hydroxyl group, a halogen atom, a sower alkyl group, a fower alkoxy group, a carboxyl group winish may be protected, a cyano group, a hydroxyalkyl group or a carboxyalkyl group). a group represented by the formula

[wherein \(\mathrm{R}^{17}\) represents a hydrogen atom, a tower alkyi group, an acyl group, a lower alkoxyalkyl group, a carboxyalkyl group which may be protceted or a hydroxyalkyl group; \(Y\) represents a group represented by the tormula - \(\left(\mathrm{CH}_{2}\right)_{\mathrm{q}}\) - (wherein q is 0 or an integer of 1 to 8), or a group represented by
the formula

further, in the group represented by the formula \(-\left(\mathrm{CH}_{2}\right)_{q^{\circ}}\), when q is an integer of 1 to B , each carbon atom may have 1 to 2 substituen(s): and \(R^{18}\) represents a hydrogen atom, a hydroxyl group, a carboxyl group whith may be protected, a cyano group, an acyl group, a heteroaryl group which may be substituted of a cycloalkyl group which may be substituted], or a group represented by the formula

(wherein \(\mathrm{R}^{19}\) represents a hydrogen atom, a bower alkyl group, a lower alkoxyalkyl group, an acyl group, a carboxyalkyl group which may be protected or a hydroxyalkyl group; \(R^{\infty}, R^{n}\) and \(R^{p}\), each of which may be the same or different from one another, represent each a hydrogen atom, a halogen atom, a hydroxyt group, an amino group, a nitro group, a lower alkyl group, a lower alkoxy group, a lower alkoxyaikyl group, a lower alkenyl group. an acyl group. an acylamino group, an alkytsut fonylamino group, a trydroxyiminoalkyl group, an alkyloxycarbonylamino group, an alleyloxycarbonyloxy group or a heteroaryl group which may be substituted; or, futher, two of \(R^{20}, R^{21}\) and \(R^{22}\) may together form a saturated or ursaturated ring which may contain a nitrogen atom, a suffur atom or an oxygen stom; and r represents 0 or an integer of 1 to 8)].
-86-
WO 93/06104 discloses compounds of the formula

```

or a pharmaceuticaliy acceptable salt thereof,
wherein $R^{\prime}$ is methyl or ethyi;
$\mathrm{R}^{2}$ is ethyl or n-propyl;
and $\quad R^{3}$ and $R^{4}$ are each indepdendently $H$, or $C_{1}-C_{6}$
alkyl optionally substituted with $\mathrm{C}_{5}-\mathrm{C}_{7}$
cycloalkyl or with morpholino.

```

Preferred compounds include:
```

    5-[2-ethoxy-5-(3-morpholinopropylsulphamoyl)-
    phenyl]-1,3-dimethyl-1,6-dihydro-7k-pyrazolo[4,3-d]-
pyrimidin-7-one;
2-ethyl-5-[5-(n-hexylsulphamoyl)-2-n-propoxy-
phenyl]-3-methy1-1,6%dihydro-7%-pyrazolo[4,3-
d]pyximidin-7-one;
1-athyl-5-(5-diethylsulphamoyl-2-n-propoxy-
phenyl)-3-methy1-1,6-dihydro-7H-pyrazolo[4,3-d]-
py工imidin-7-one;
and 5-[5-(N-cyclohexylmethyl-N-methylsulphamoyl)-2-n-
propoxyphenyl]-l-ethyl-3-methyl-1,6-dihydro-7E-
pyrazolo[4,3-d]pyrimidin-7-one;
and pharmaceutically acceptable satts thereof.

```
U.S. Patent No. 5,346,901 discloses compounds of the
formula

or a phamaceutically scceptable salt thereof, wherein
\(R^{1}\) ks \(C_{1-\infty}\) alkyl, \(C_{2-\infty}\) alkenyl. \(C_{2-5 c y c l o a l k y l} C_{1-\infty}\) alkyl, or \(C_{1-8}\) alkyl substituted by 1 to 6 fluoro groups;
 NHCOR \({ }^{3}\) wherain \(R^{3}\) is hydrogen or \(C_{1-\infty}\) alky, or \(-N R^{4} R^{5}\), wherein \(R^{4}\) and \(R^{s}\) together with the nitrogen atom to which they are attached form a pyrrolidino, piperidino, hexahydroazepino, morpholino or piperazino ring, or \(R^{4}\) and \(R^{5}\) are independently hydrogen, \(C_{2}\) cyclorfkyl or \(\mathrm{C}_{1-8}\) alkyl which is optionally substituted by -CF \({ }_{3}\), phenyl, \(-S(O)_{R} C_{R-1}\) alkyl wherein
\(n\) is 0,1 or 2 , \(-0 R^{6},-\mathrm{CO}_{2} R^{7}\) or \(-N R^{6} R^{9}\) whersin \(R^{6}\) to \(R^{9}\) are independenty hydrogen or \(C_{1}\)-aikyd, pro-

 or \(\mathrm{SO}_{2} \mathrm{NR}^{14} \mathrm{R}^{15}\) wherein \(n\) is \(\mathrm{D}, 1\) or 2 and \(\mathrm{R}^{10}\) to \(\mathrm{R}^{15}\) are independently hydrogen or \(\mathrm{C}_{\text {ma }}\) alkyt : and

Preferred compounds include:

2-(5-cyano-2-propoxyphanyl)-7-methythiopyrimido-(4,5-dllpyrimidin-4(3H)-ana,
2-(5-carboxamido-2-propoxyphenyl)-7-methythiopytimido[4,5-d]pyrimido-4(3H)-one, or 2-(5-carboxamido-2-propoxyphenyi)-7-cyciopropylamino[4,5-d]pyrimido-4(3H)-ane. or a pharmaceutically acceptable salt thereof.
U.S. Patent No. 5,010,086 discloses compounds of the
formula

wherein
\(R_{1}\) and \(R_{3}\) are hydrogen or lower-allyl;
\(R_{s}\) is tower-alkyl or Duorinated fower-alkyl; and the pyridine-Noxide is attached at the 4 or 3 -position; or a pharmaceutically accepiable acid-addition salt thereof.

Preferred compounds include:

1,3-Dhydra-6-(4-pyridiny)-5-trilluoromethyl-2H-
imidaro[4,5-b]pyridin-2-one \(\mathbf{N}\)-(py)-oxide
U.S. Patent No. 5,290,933 discloses compounds of the

\section*{formula}

(1)
cr a pharmaceutically aceeptable sall thercof, whercin
\(R^{1}\) is \(C_{1-\text { galkyl. }} C_{2 \text {-galkenyl. }} C_{3-s c y c l o a l k y l C_{1-6 a l k y l}}\)

fuoro groups: and
\(R^{2}\) is hydrogen, -NHCOR \({ }^{3}\), or -CONR \({ }^{4} R^{3}\), wherein \(R^{3}\) is \(C_{i-6 a l k y l} \mathbf{R}^{4}\) is
\(C_{i-6 a l k y l}\) and \(R^{s}\) is bydrogen or \(C_{1-6 a l k y l}\).
Preferred compounds include:
N-rethyl 1.6-dihydro-6-oxo-2-(2-propoxypnenyl).
pyrimidinc-5-carboxsmide,
N ,N-dimethyl 1,6-dihydro-6-oxo-2-(2-propoxyphenyl)-pyimidine-5-carboxamide,
5-acetamido-2-(2-propoxyphenyl)pyrimidin-4(3H)-one,
or
2-(2-propoxyphenyl)pyrimidin-4(3H)-one,
or a pharmaceutically acceptable alt thercof.
U.S. Patent No. 5,073,559 discloses compounds of the formula

(1)
or pharmaceutically acceptable sale thercof, wherein
\(R^{\prime}\) is \(C_{1-6 a l k y l} C_{2-6 a l k e n y l}, C_{3-s c y c i c a l k y i C}^{1-\& a l k y l}\), phenylC \(C_{1-a l k y l}\) or \(C_{1}\)-sikyl substituted by 1 to 6 Huoro groups;
\(\mathrm{R}^{2}\) is hydrogen. hydraxy. C \(\mathrm{C}_{1 \text { talky:, phenyl, mer- }}\) capto. C1-4alkylthio, \(\mathrm{CF}_{3}\) or amino
\(R^{3}\) is bydrogen nitro, amino. \(C_{1-4}\) elkanoylamino, \(\mathrm{C}_{1-1 \text {-alkoxy; }} \mathrm{C}_{1 \text {-alkyl, halo }} \quad \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{\mathrm{S}}\), \(\mathrm{CONR}^{4} \mathrm{R}^{5}\), cyano or \(\mathrm{C}_{\mathrm{j}}\),alkyIS \((\mathrm{O})_{\mathrm{ni}}\) i
\(R^{4}\) and \(R^{5}\) are independently hydrogen or \(C_{1-a l k y l}\); and
\(n\) is 0,1 or 2 ;
provided that \(R^{3}\) is not bydrogen when \(R^{1}\) is \(C_{1 . \text { salkyl }}\) or \(C_{2+2}\) kedyl and \(R^{2}\) is hydrogen or bydraxy.

Preferred compounds include:

> 2-(2 2-(2,2,2-rifunoroethoxyphenyl)pusin-6-one,
> 2-(2 2-cyelopropylmetharypinenyl)purin-6-one
> 2-(2 2-berzylaxyphenyl)purin-6.8-dionc.
> 2-(2 2-propozyphenyl)-8-tifluorometrytpuris-6-one.
> 2-(2 2-propoxyphenyl)-8-phenylpurin-6anc.
> 2-(2 2-propoxyphenyl)-8-methylpurin-6-one,
> 2-(2-propoxyphenyl)-8-mercaptoparin-6-onc,
> 2-(2 2-propoxyphenyl)-8-methyithiopurin-6-one,
> 2-(2 2-propoxyphenyl)-8-aminopurin-6-one.
> 2-(2 2-propoxy-5-nitrophenyl)puris-6-ape.
> 2-(2 2-propoxy-5-uminophenyl)purin-6-one,
> 2-(2-(2-propoxy-5-aceimidophenyl)purin-6-anc.
> 2-(2 2-propoxy-4-methoxyphenyl)porin-6-0ne.
> 2-(2 2-propoxy-5-methoxyphenyl)purin-6-one.
> 2(2 2-propoxy 4-methylphenyl)puzin-6-one,
> 2-(2 2-propoxy-5-nuorophenyl)purin-6-one.
> 2-(2 2-pıopoxy-5-dimethyisulphanoylphenyl)purin-
> 6-one
> 2-(2 2-propoxy-5-methyisulphamoytphenyl)purn.
> 6-ane,
> 2-(2 2-propoxy-5-sulphamoyiphenyl)purin-6-one,
> 2-(2 2-propary-4-methylihfophenyl)purin-6-one.
> 2-(2 2-propoxy-S-cyasophenyl)purin-6-one, and
> 2-(2-(2-propoxy-3-carbernoylphenyl)purio-6-0ne,
> or a pharmacedtically acceptable sait thercof.

International Patent Publication PCT/EP96/03024 (WO97/03675) discloses compounds of the formula:

and sats and solvates (e.g. hydrates) thereof, in which:
\(R^{0}\) represents hydrogen, halogen or \(C_{1-5}\) alky;
\(R^{1}\) represents hydrogen. \(C_{1-6 a l k y l,} C_{2-6}\) alkenyl. \(C_{26}\) alkynyl, haloC \(C_{1-6}\) alkyl.

\(\mathbf{R}^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic
ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
\(R^{3}\) represents hydrogen or \(C_{5,3}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3 or 4- membered alkyl or alkenyl chain.
-91-
Preferred compounds include:

Cis-2,3,6,7,12.12a-hexahydro-2-butyi-6-(4-methyiphenyl)pyrazino[\(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3.4-b]indole \(-1,4\)-dione:
(6R, 12aR)-2,3.6.7.12.12a-Hexahydro-2-isopropyl-6-(3.4-methylenedioxyphenyl)pyrazino[2', 1':6, 1]pyrido[3,4-b]indole -1,4-dione:
(6R, 12aR)-2,3.6.7.12.12a-Hexahydro-2-cyciopenty-6-(3,4-methylenedioxyphenyl)-pyrazino[2', 1':6,1]pyrido[3.4-b]indole -1,4-dione:
(6R,12aR)-2,3,6.7.12,12a-Hexahydro-2-ayclopropyimethyl-6-(4-methaxyphenyl)pyrazino[2', 1':6.1]pyrido[3,4-b]indole -1.4-dione:
(6R.12aR)-2,3,6,7,12.12a-Hexahydro-6-(3-chioro-4-methoxyphenyl)-2-methylpyrazino[2', \(1^{\prime}: 6,1\)]pyrido[3.4-b]indole -1,4-dione;
(6R.12aR)-2,3,6,7,12,12a-Hexahydro-2-methyt-6-(3.4-methyienedioxyphenyl)pyrazino[2', 1 ':6,1]pyrido[3.4-b]indole-1.4-dione;
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1': 6,1] pyrido [3.4-] indole-1,4-dione:
(5aR. 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3.4 methylenedioxyphenyl)-pyrrolo[1",2": 4',5]pyrazino[2', 1': 6.1]pyrido[3.4-b]indole-5-1.4-dione:
Cis-2,3.6.7,12,12a-hexahydro-2-cyclopropy-6-(3,4-methylenedioxyphenyl)pyrazino[2', \(1^{\prime}: 6,1\)]pyrido[3.4-b]indole -1,4-dione;
(3S. 6R, 12aR)-2,3,6,7,12,12a-hexahydro-3-methyl-6-(3.4-
methylenedioxyphenyl)-pyrazino[2', 1':6.1]pyrido[3,4-b]indole -1.4-dione:
and physiologically acceptable salts and solvates (e.g. hydrates) thereof.
The specific compounds of the invention are:
(6R.12aR)-2.3,6.7,12,12a-hexahydro-2-methyt-6-(3,4-methylenedioxyphenyl)pyrazino[2', \(\left.1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole -1.4-diane (Compound A): and
(3S, 6R. 12aR)-2,3,6.7.12,12a-hexahydro-2.3-dimethyt-6-(3.4-methylenedioxyphenyl)-pyrazino[\(\mathbf{2 '}^{\prime}, 1\) : \(: 6.1\)]pyrido[3.4-b]indole-1,4-dione (Compound B):
and physiologically acceptable salts and solvates (e.g. hydrates) thereof.

Examples of cGMP PDE inhibitors contemplated in this invention are also described in United States Patent No. 5,346,901 and published Intemational Patent Publication WO 94/28902, both of which documents are incorporated herein by reference.

Sildenafil, 1-[[3-(4,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxyphenyl]sulfonyl]-4-methylpiperazine, and salts thereof are disclosed in WO 94/28902.

Phentolamine, 3-[[(4,5-dihydro-1H-imidazol-2-yl)methyl](4methylphenyl)aminolphenol, and salts and esters thereof, and the use of phentolamine in the treatment of sexual dysfunction is disclosed in United States Patent No. 5,731,339, also incorporated herein by reference.

Sildenafil and phentolamine are each known to treat sexual dysfunction. The effectiveness of phentolamine for treatment of sexual dysfunction is demonstrated by test procedures described in U.S \(5,731,339\). Similar procedures can be used to determine the effectiveness of sildenafil and combinations of phentolamine and sildenafil.

Since the present invention relates to a method of treatment comprising the administration of a combination of two components, the components can be co-administered simultaneously or sequentially. Altematively, a single pharmaceutical composition comprising sildenafil, or a pharmaceutically acceptable salt thereof, and phentolamine, or a
pharmaceutically acceptable salt or ester thereof, in a pharmaceutically acceptable carrier can be administered. The components of the combination can be administered individually or together in any conventional oral dosage form such as a capsule, tablet, chewable tablets, powder, cachet, suspension or solution. The formulations can be prepared using conventional pharmaceutical excipients and additives using conventional techniques. Such pharmaceutically acceptable excipients and additives include non-toxic compatible fillers, binders, disintegrants, buffers, preservatives, anti-oxidants, lubricants, flavorings, thickeners, coloring agents, emulsifiers and the like.

Information on formulations comprising sildenafil are disclosed in WO 94/28902. Representative formulations comprising phentolamine are disclosed in U.S. \(5,731,339\). It is contemplated that where the two active ingredients are administered as a single composition, the dosage forms as disclosed in the aforementioned patent or application may readily be modified using the knowledge of one skilled in the art.

A typical formulation for sildenafil comprises 25,50 or 100 mg of active and as inactive ingredients, microcrystalline cellulose, anhydrous dibasic calcium phosphate, croscarmellose sodium, magnesium stearate, hydroxypropylmethylcellulose, titanium dioxide, lactose, triacetin, and FD\&C Blue \#2 aluminum lake.

A typical formulation for phentolamine is as follows:
\begin{tabular}{cc}
Component & \(\mathrm{mg} /\) Tablet \((\mathrm{w} / \mathrm{w} \%)\) \\
\hline phentolamine mesylate, USP & \(40 .(10)\) \\
Microcrystalline Cellulose, NF & \(341.6(85.4)\) \\
Croscarmellose Sodium, NF & \(16(4.0)\) \\
Colloidal Silicon Dioxide, NF & \(0.4(0.1)\) \\
Magnesium Stearate, NF & \(2(0.5)\) \\
Total & \(400(100)\)
\end{tabular}

The following are exemplary formulations for the phentolamine mesylate/sildenafil citrate combination:

> -94-

\section*{Direct Compression Formulation}
\begin{tabular}{cc}
Component & \(\mathrm{mg} /\) Tablet \\
\hline Phentolamine Mesylate & 80 \\
Sildenafil Citrate & 100 \\
Microcrystalline Cellulose & \(207.5-209.0\) \\
Croscarmellose Sodium & 10 \\
Silicon Dioxide & 0.5 \\
Magnesium Stearate & \(0.5-2\) \\
Total & 400
\end{tabular}

The direct -compression formulation is manufactured by blending the active ingredients and excipients and compressing the mixture into tablets.

\section*{Wet-Granulation Formulation}
\begin{tabular}{cc}
Component & \(\mathrm{mg} /\) Tablet \\
\hline Phentolamine Mesylate & 80 \\
Sildenafil Citrate & 100 \\
Microcrystalline Cellulose & 80 \\
Lactose & \(114-115.5\) \\
Sodium Starch Glycolate & 12 \\
Povidone & 12 \\
Water & (evaporates) \\
Magnesium Stearate & \(0.5-2\) \\
Total & 400
\end{tabular}

The wet-granulation formulation is manufactured using the following steps:
1. the active ingredients are combined with microcrystalline cellulose, lactose and sodium starch glycolate in a mixer/granulator;
2. povidone is added to water to form a solution;
3. the granulating solution (from step 2) is added to the powder blend (from step 1) with agitation to form a granulation, and the resulting granulation is dried;
4. the dry granulation is blended with magnesium
stearate; and
-95-
5. the mixture is compressed into tablets.

\section*{Fast-Dissolving Formulations}

A
\begin{tabular}{cc}
Component & mg/Tablet \\
\hline Phentolamine Mesylate & 40 \\
Sildenafil Citrate & 50 \\
Gelatin & 30 \\
Mannitol & 29 \\
Flavor & 1 \\
Water & (evaporates) \\
Total Dry Tablet Weight & 150
\end{tabular}

The above tablet form is manufactured by:
1. forming a uniform dispersion achieved by adding the active ingredients and excipients to water with agitation;
2. filling aliquots of the dispersion into molds; and
3. lyophilizing to form dry tablets.

B
\begin{tabular}{cc}
Component & \(\mathrm{mg} /\) Tablet \\
\hline Phentolamine Mesylate & 40 \\
Sildenafil Citrate & 50 \\
Microcrystalline Cellulose & 95 \\
Crospovidone & 10 \\
Sodium Bicarbonate & 2 \\
Citric Acid & 2 \\
Flavor & 1 \\
Total & 200
\end{tabular}

The tablets are made by blending the combination of the actives and excipients and compressing the mixture into tablets.

The compounds in the combination of this invention for tr ating sexual dysfunction are administered in accordance with the treatment regimens described in each of the above listed publications. For example, for a combination of a Type V cGMP PDE inhibitors such as

Sildenafil in combination with phentolamine, the typical dosage is 5 to 100 mg of Sildenafil and 5 to 75 mg of phentolamine per dose, usually administered approximately one hour prior to intercourse. It is expected that the dosage of the individual components in the combination will be less than the dosage required when the individual components are administered alone. The exact dose of either component of the combination to be administered and the timing thereof is determined by the attending clinician and is dependent on the potency of the compound administered, the age, weight, condition and response of the patient. Where the components of a combination are administered separately, the separate dosage forms need not be administered simultaneously.

Since the present invention relates to treatment with a combination of active ingredients wherein said active ingredients may be administered separately, the invention also relates to combining separate pharmaceutical compositions in kit form. That is, a kit is contemplated wherein two separate units are combined: for example, a sildenafil pharmaceutical composition and a phentolamine pharmaceutical composition. The kit will preferably include directions for the administration of the separate components. The kit form is particularly advantageous when the separate components must be administered in different dosage forms (e.g. tablet and capsule) or are administered at different dosage intervals.

\section*{What is claimed is:}
1. A pharmaceutical composition for the treatment of human sexual dysfunction comprising a therapeutically effective amount of phentolamine or a pharmaceutically acceptable salt or solvate or ester thereof, a therapeutically effective amount of a cGMP PDE V inhibitor or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
2. A composition of claim 1 wherein the cGMP PDE \(V\) inhibitor is sildenafil or a pharmaceutically acceptable salt or solvate thereof.
3. The composition of claim 1 wherein the phentolamine is phentolamine mesylate.
4. The composition of claim 1 wherein the sildenafil is sildenafil citrate.
5. The composition of claim 1 wherein the phentolamine is phentolamine mesylate and the cGMP PDE \(V\) inhibitor is sildenafil citrate.
6. A method of treating human sexual dysfunction comprising the simultaneous or sequential administration of a therapeutically effective amount of phentolamine or a pharmaceutically acceptable salt, solvate or ester thereof, and a therapeutically effective amount of a cGMP PDE V inhibitor or a pharmaceutically acceptable salt thereof.
7. The method of claim 6 wherein the cGMP PDE \(V\) inhibitor is sildenafil or a pharmaceutically acceptable salt or solvate thereof.
8. The method of claim 6 wherein the phentolamine is phentolamine mesylate.
9. The method of claim 6 wherein the cGMP PDE \(V\) inhibitor is sildenafil citrate.
10. The method of claim 6 wherein the phentolamine is phentolamine mesylate and the CGMP PDE inhibitor \(V\) is sildenafil citrate.
11. A kit comprising in separate containers in a single package, pharmaceutical compositions for use in combination to treat sexual dysfunction which comprises in one container a therapeutically effective amount phentolamine or a pharmaceutically acceptable salt, solvate or ester thereof in a pharmaceutically acceptable carrier and in a second container a therapeutically effective amount of a cGMP PDE \(V\) inhibitor or a pharmaceutically acceptable salt of solvate thereof in a pharmaceutically acceptable carrier.
12. A pharmaceutical composition for the treatment of human sexual dysfunction comprising a therapeutically effective amount of a first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof, a therapeutically effective amount of a second vasodilating agent or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
13. The pharmaceutical composition of claim 12 wherein said first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is an adrenergic blocker.
14. The pharmaceutical composition of claim 13 wherein said adrenergic blocker is an alpha-adrenergic blocker.
15. The pharmaceutical composition of claim 14 wherein alpha adrenergic blocker is selected from the group consisting of an alpha1adrenergic blocker, an alpha2-adrenergic blocker or both an alpha1adrenergic blocker and an alpha2-adrenergic blocker.
16. The pharmaceutical composition of claim 12 wherein said second vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is a cGMP PDE inhibitor.
17. The pharmaceutical composition of claim 12 wherein said first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is an adrenergic blocker and said second vasodilating agent
or a pharmaceutically acceptable salt or solvate or ester thereof is a cGMP PDE inhibitor.
18. The pharmaceutical composition of claim 17 wherein the adrenergic blocker is selected from the group consisting of phentolamine, phentolamine mesylate, phentolamine hydrochloride, phenoxybenazmine, tolazoline, dibenamine, yohimbine, terazosin, doxazosin and prazosin.
19. The pharmaceutical composition of claim 17 wherein the cGMP PDE inhibitor is a cGMP PDE \(V\) inhibitor.
20. The pharmaceutical composition of claim 17 wherein the cGMP PDE \(V\) inhibitor is selected from the group consisting of: sildenafil, (6R, 12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrizino[2',1':6,1]pyrido[3,4-b]indole-1,4-dione (Compound A), and
(3S,6R,12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2',1':6,1]pyrido[3,4-b]indole-1,4-dione (Compound B) or a pharmaceutically acceptable salt or solvate thereof.
21. A method of treating human sexual dysfunction comprising the simultaneous or sequential administration of a therapeutically effective amount of a therapeutically effective amount of a first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof, a therapeutically effective amount of a second vasodilating agent or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.

\section*{INTERNATIONAL SEARCH REPORT}

\section*{INTERNATIONAL SEARCH REPORT}

PCI/US 99/07046
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
\begin{tabular}{|c|c|c|}
\hline Category - & Citation of document. win indication,where appropnate, of the relevant passages & Relevam to clatm No. \\
\hline X & \begin{tabular}{l}
CHAO R ET AL: "Experience with \\
intracavernosal tri-mixture for the management of neurogenic erectile dysfunction." \\
ARCHIVES OF PHYSICAL MEDICINE AND \\
REHABILITATION, (1994 MAR) 75 (3) 276-8XP002115287 \\
abstract \\
page 277, left-hand column, paragraph 4 -right-hand column, paragraph 3
\end{tabular} & \(12-15,21\)

\(\ldots\) \\
\hline \(X\) & \begin{tabular}{l}
MIRONE V ET AL: "Ketanserin plus \\
prostaglandin E1 (PGE-1) as \\
intracavernosal therapy for patients with erectile dysfunction unresponsive to PGE-1 alone." \\
BRITISH JOURNAL OF UROLOGY, (1996 MAY) 77 \\
(5) 736-9. , XP002115288 \\
abstract \\
page 737, right-hand column, paragraph 4 \\
- page 738, left-hand column, paragraph 3 \\
page 736, left-hand column, line 1 - \\
right-hand column, paragraph 2
\end{tabular} & 12-15,21 \\
\hline \(X\) & ```
BENNETT A H ET AL: "An improved
vasoactive drug combination for a
pharmacological erection program."
JOURNAL OF UROLOGY, (1991 DEC) 146 (6)
1564-5. , XP002115289
 the whole document
``` & 12-15,21 \\
\hline \(X, Y\) & ```
US 5 731 339 A (ZONAGEN, INC.)
24 March 1998 (1998-03-24)
cited in the application
    column 3, line 45 - column 17, line 18
    claims 1-37
``` & 1-21 \\
\hline \(X, Y\) & WO 9428902 A (PFIZER, LTD.) 22 December 1994 (1994-12-22) cited in the application the whole document & 1-21 \\
\hline \(X, Y\) & ```
WO 97 03675 A (LABORATOIRE GLAXO WELLCOME
S.A.) 6 February 1997 (1997-02-06)
cited in the application
 the whole document
``` & 1-21 \\
\hline \(X\)
\(Y\) & \begin{tabular}{l}
EP 0611248 A (B.M.R.A. CO. B.V.) \\
17 August 1994 (1994-08-17) \\
the whole document
\end{tabular} & \[
\begin{aligned}
& 12-15,21 \\
& 16-20
\end{aligned}
\] \\
\hline
\end{tabular}


Form PCT/ISAV210 (patent farrily arnex) (fuly 1992)

BNSDOCID: <WO__9959584A 1_1_>
ATI 1009-0353

United States Patemt and Trademark Omyce
\begin{tabular}{|c|c|c|c|}
\hline U.S. APPLICATIONNUMBER NO. & FRST NAMED APPLICANT & & ATTY. DOCKET NO. \\
\hline \multirow[t]{3}{*}{10/031,556} & \multirow[t]{4}{*}{William Ernest Pullman} & & 29342/36206A \\
\hline & & INTERNATIONAL & Al Application No. \\
\hline & & PCT/US & JS00/11129 \\
\hline 04743 & & IA. FILING DATE & E 1 PRIORITY DATE \\
\hline \multicolumn{2}{|l|}{MARSHALL, GERSTEIN \& BORUN} & 04/26/2000 & 04/30/1999 \\
\hline \multicolumn{4}{|l|}{233 SOUTH WACKER} \\
\hline \multicolumn{2}{|l|}{CHICAGO, IL 60606-6357} & \multicolumn{2}{|r|}{CONFIRMATION NO. 6526} \\
\hline & & 371 ACCEPTANC & CE LETTER \\
\hline & &  &  \\
\hline
\end{tabular}

Date Mailed: 04/02/2002

\section*{NOTICE OF ACCEPTANCE OF APPLICATION UNDER 35 U.S.C 371 AND 37 CFR 1.494 OR 1.495}

The applicant is hereby advised that the United States Patent and Trademark Office in its capacity as an Elected Office (37 CFR 1.495), has determined that the above identified international application has met the requirements of 35 U.S.C. 371, and is ACCEPTED for national patentability examination in the United States Patent and Trademark Office.

The United States Application Number assigned to the application is shown above and the relevant dates are:

10/19/2001
DATE OF RECEIPT OF 35 U.S.C. 371 (c)(1), (c)(2) and (c)(4) REQUIREMENTS

10/19/2001
DATE OF RECEIPT OF ALL 35 U.S.C. REQUIREMENTS

A Filing Receipt (PTO-103X) will be issued for the present application in due course. THE DATE APPEARING ON THE FILING RECEIPT AS THE " FILING DATE" IS THE DATE ON WHICH THE LAST OF THE 35 U.S.C. 371 REQUIREMENTS HAS BEEN RECEIVED IN THE OFFICE. THIS DATE IS SHOWN ABOVE. The filing date of the above identified application is the intemational filing date of the intemational application (Article 11(3) and 35 U.S.C. 363). Once the Filing Receipt has been received, send all correspondence to the Group Art Unit designated thereon.

The following items have been received:
- U.S. Basic National Fee
- Copy of IPE Report
- Copy of references cited in ISR
- Copy of the International Application
- Copy of the International Search Report
- Oath or Declaration
- Preliminary Amendments

Applicant is reminded that any communications to the United States Patent and Trademark Office must be mailed to the address given in the heading and include the U.S. application no. shown above (37 CFR 1.5)

SHAKEEL AHMED
Telephone: (703) 305-3659

PART 3 - OFFICE COPY
\begin{tabular}{|c|c|}
\hline L1 & ANSWER 1 OF 1 REGISTRY COPYRIGHT 2003 ACS \\
\hline RN & 139755-83-2 REGISTRY \\
\hline CN & Piperazine, 1-[[3-(4,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3d] pyrimidin-5-yl)-4-ethoxyphenyl]sulfonyl]-4-methyl- (9CI) (CA INDEX NAME) \\
\hline \multicolumn{2}{|l|}{OTHER CA INDEX NAMES:} \\
\hline CN & 1H-Pyrazolo [4,3-d]pyrimidine, piperazine deriv. \\
\hline \multicolumn{2}{|l|}{OTHER NAMES:} \\
\hline CN & \begin{tabular}{l}
5-[2-Ethoxy-5-(4-methyl-1-piperazinylsulfonyl) phenyl]-1-methyl-3-n-propyl- \\
1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
\end{tabular} \\
\hline CN & Sildenafil V|AGRA \\
\hline FS & 3D CONCORD \\
\hline MF & C22 H30 N6 O4 S \\
\hline CI & COM \\
\hline SR & CA \\
\hline LC & \begin{tabular}{l}
STN Files: ADISINSIGHT, ADISNEWS, ANABSTR, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CANCERLIT, CAPLUS, CASREACT, CBNB, CEN, CHEMCATS, CIN, CSCHEM, DDFU, DIOGENES, DRUGNL, DRUGPAT, DRUGU, DRUGUPDATES, EMBASE, IPA, MEDLINE, MRCK*, PHAR, PROMT, SYNTHLINE, TOXCENTER, USAN, USPAT2, USPATFULL, VETU \\
(*File contains numerically searchable property data) Other Sources: wHO
\end{tabular} \\
\hline
\end{tabular}


\footnotetext{
**PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT**
389 REFERENCES IN FILE CA (1962 TO DATE)
6 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
393 REFERENCES IN FILE CAPLUS (1962 TO DATE)
}
```

=> file reg; d stat que ll0
FILE 'REGISTRY' ENTERED AT 14:29:26 ON 16 JUL 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 American Chemical Society (ACS)
STRUCTURE.FILE UPDATES: 15 JUL 2002 HIGHEST RN 438572-95-3
DICTIONARY FILE UPDATES: 15 JUL 2002 HIGHEST RN 438572-95-3

```

TSCA INFORMATION NOW CURRENT THROUGH January 7, 2002
```

Please note that search-term pricing does apply when

```
conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.
Calculated physical property data is now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS Registry File, for complete details:
http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf


NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED
GRAPH ATTRIBUTES:
RING (S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 28
STEREO ATTRIBUTES: NONE
L10 178 SEA FILE=REGISTRY SSS FUL L8
\(100.0 \%\) PROCESSED 189 ITERATIONS 178 ANSWERS
SEARCH TIME: 00.00.01
=> file caplus; d que nos l11; d que nos 112
FILE 'CAPLUS' ENTERED AT 14:30:16 ON 16 JUL 2002

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) }2002\mathrm{ AMERICAN CHEMICAL SOCIETY (ACS)

```
```

Copyright of the articles to which records in this database refer is
held by the publishers listed in the PUBLISHER (PB) field (available
for records published or updated in Chemical Abstracts after December
26, 1996), unless otherwise indicated in the original publications.
The CA Lexicon is the copyrighted intellectual property of the
American Chemical Society and is provided to assist you in searching
databases on STN. Any dissemination, distribution, copying, or storing
of this information, without the prior written consent of CAS, is
strictly prohibited.

```
FILE COVERS 1907 - 16 Jul 2002 VOL 137 ISS 3
FILE LAST UPDATED: 15 Jul 2002 (20020715/ED)
    This file contains CAS Registry Numbers for easy and accurate
    substance identification.
CAS roles have been modified effective December 16, 2001. Please
check your SDI profiles to see if they need to be revised. For
information on CAS roles, enter HELP ROLES at an arrow prompt or use
the CAS Roles thesaurus (/RL field) in this file.
\(\begin{array}{lrllll}\text { L8 } & & \text { STR } & & \\ \text { L10 } & 178 & \text { SEA } & \text { FILE=REGISTRY SSS FUL L8 } & \\ \text { L11 } & 38 & \text { SEA } & \text { FILE=CAPLUS ABB }=0 \mathrm{ON} & \text { PLU=ON } & \text { L10 }\end{array}\)
\(\begin{array}{lr}\text { L8 } & \text { STR } \\ \text { L10 } & 178 \text { SEA FILE=REGISTRY SSS FUL L8 }\end{array}\)
L11 38 SEA FILE=CAPLUS ABB=ON PLU=ON L10
L12 37 SEA FILE=CAPLUS ABB=ON PLU=ON L11 AND PHARMAC?/SC, SX
\(\Rightarrow d\) ibib abs hitstr 112 1-37
L12 ANSWER 1 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2002:427673 CAPLUS
DOCUMENT NUMBER: 137:3711
TITLE: Cells and animals homozygous or heterozygous for a
INVENTOR(S):
PATENT ASSIGNEE(S): Pfizer Limited, UK; Pfizer Inc
SOURCE:
DOCUMENT TYPE: Patent
    CODEN: EPXXDW
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

            Prepared by Toby Port, STIC, Biotech Library 308-3534
PRIORITY APPLN. INFO.: \(\quad\) GB 2000-26727 \(\quad\) A 20001101

AB Animal cells and animals carrying a knockout of the gene for the cyclic nucleotide phosphodiesterase PDE11 are described for use in anal. of the role of the enzyme, esp. in spermatogenesis and in the screening of drugs for regulation of spermatogenesis. Heterozygous knockout mice show lowered levels of spermatogenesis. The effect of the knockout on patterns of gene expression was analyzed by microarray hybridization. Known inhibitors of cyclic nucleotide phosphodiesterases were tested for their ability to inhibit PDE1l. The pattern of inhibition was similar to, but distinct from, that for PDE5. Array hybridization was used to analyze the effects of PDE11 knockout on gene expression in testis. Twenty-four genes (18 down-regulated and 6 up-regulated) were identified. These gene products may themselves be therapeutic targets for PDE11-related disease (no data).
IT 171596-29-5, IC-351
RL: PAC (Pharmacological activity); BIOL (Biological study) (as inhibitor of PDE11; cells and animals homozygous or-heterozygous for knockout of PDE11A gene and their uses)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-(9 C I)\) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


L12 ANSWER 2 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2002:391540 CAPLUS
DOCUMENT NUMBER: 136:380144
TITLE: Phosphodiesterase \(V\) inhibitors for the treatment of
INVENTOR (S): premature ejaculation

PATENT ASSIGNEE(S) Boolell, Mitradev

SOURCE:
Pfizer Limited, UK; Pfizer Inc.
PCT Int: Appl., 31 pp .
CODEN: PIXXD2
DOCUMENT TYPE:
Patent
LANGUAGE:
English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

```

 LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
 PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,
 UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH,
 CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR,
 BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
 US 2002091129 Al 20020711 US 2001-990955 20011116
 PRIORITY APPLN. INFO.: GB 2000-28245 A 20001120
US 2001-260564P P 20010109
AB The invention relates to the use of CGMP phosphodiesterase V inhibitors, including in particular the compd. sildenafil, for the treatment of premature ejaculation in patients with normal erectile function.
IT 171596-29-5, IC 351
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(phosphodiesterase V inhibitors for treatment of premature ejaculation)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)$2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-$ ($6 \mathrm{R}, 12 \mathrm{aR}$)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).


REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT.

L12 ANSWER 3 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2002:353456 CAPLUS
DOCUMENT NUMBER: 136:369739
TITLE: Preparation of pyrazino[1', \(\left.{ }^{\prime}: 1,6\right]\) pyrido[3,4-b]indole derivatives as phosphoesterase inhibitors for use as therapeutic agents
INVENTOR (S) : Orme, Mark W.; Sawyer, Jason Scott; Schultze, Lisa M.
PATENT ASSIGNEE(S): Lilly Icos L.L.C., USA
SOURCE: PCT Int. Appl., 66 pp . CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:


, \(\mathrm{NZ}, \mathrm{PL}\), PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, ER, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG PRIORITY APPLN. INEO.: US 2000-246257P P 20001106 OTHER SOURCE (S): MARPAT 136:369739 GI


AB \(2,3,6,7,12,12 A-h e x a h y d r o p y r a z i n o\left[1^{\prime}, 2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole derivs., such as \(I \quad[R=\) halo, alkyl; \(R 1=H, ~ a l k y l, ~ a l k e n y l, ~ a l k y n y l, ~ h a l o a l k y l, ~\) cycloalkyl, heteroarylalkyl, etc.; \(R 2=\) monocyclic arom, ring, such as benzene, thiophene, furan, pyridine, etc.; R3 = H, alkyl; R1,R3 = fused carbocyclic ring; \(X, Y=C O, S O, S O 2, C S, C(R a) 2 ; R a=H, ~ a l k y l\), benzyl; \(q\) \(=0-4]\), pharmaceutically acceptable salts and solvates thereof, were prepd. for pharmaceutical use as phosphodiesterase inhibitors for the treatment of conditions, such as erectile dysfunction, female arousal disorder, angina, hypertension, and vascular disease. Thus,
pyrazinopyridoindole deriv. II was prepd. by a multistep procedure
starting with D-Tryptophan Me ester, piperonal and chloroacetaldehyde. The prepd. heterocycles were tested for phosphodiesterase \(V\) (PDE5) inhibitory activity with II exhibiting an IC50 of 54 nM .
IT 171596-29-5P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(prepn. of pyrazino[1', 2':1,6]pyrido[3,4-b]indole derivs. as
phosphoesterase inhibitors for use as therapeutic agents)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-(9 C I)\) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


REFERENCE COUNT:
3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT


Prepared by Toby Port, STIC, Biotech Library 308-3534

Absolute stereochemistry. Rotation (+).


L12 ANSWER 5 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2002:142493 CAPLUS
DOCUMENT NUMBER: 136:194255
TITLE: Treatment of the insulin resistance syndrome
INVENTOR(S): Fryburg, David Albert; Gibbs, Earl Michael; Koppiker,
Nandan Parmanand
PATENT ASSIGNEE(S): Pfizer Limited, UK; Pfizer Inc.
SOURCE:
PCT Int. Appl., 61 pp .
CODEN: PIXXD2
DOCUMENT TYPE:
Patent
LANGUAGE:
English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:


Use of a selective cGMP PDE5 inhibitor or a pharmaceutical compn. thereof in the prepn. of a medicament for the curative, palliative or prophylactic treatment of the insulin resistance syndrome wherein the insulin resistance syndrome means the concomitant existence in a subject of two or more of: dyslipidemia; hypertension; type 2 diabetes mellitus, impaired glucose tolerance (IGT) or a family history of diabetes; hyperuricemia and/or gout; a pro-coagulant state; atherosclerosis; or truncal obesity wherein said use can occur alone or in combination with other agents to treat the insulin resistance syndrome or individual aspects of the insulin

Prepared by Toby Port, STIC, Biotech Library 308-3534
resistance syndrome.
IT 171596-29-5, IC-351
RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); PKT (Pharmacokinetics); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(treatment of the insulin resistance syndrome)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-(9 C I) \quad(C A ~ I N D E X ~ N A M E)\)

Absolute stereochemistry. Rotation (+).


L12 ANSWER 6 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2002:122770 CAPLUS
DOCUMENT NUMBER: 136:178015
TITLE: Drugs for incontinence - salified and nonsalified nitric oxide-donors and phosphodiesterase inhibitors
INVENTOR (S) :
PATENT ASSIGNEE (S) : Del Soldato, Piero; Benedini, Francesca

SOURCE: Nicox S.A., Fr.
PCT Int. Appl., 59 pp .
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:


OTHER SOURCE (S): MARPAT 136:178015
\(A B\) Use in the incontinence of one or more of the following classes of drugs selected from the following: (B) salified and nonsalified nitric
oxide-donor drugs, of formula: \(A-X 1-N(O) z\), ( \(B^{\prime}\) ) nitrate salts of drugs used for the incontinence, and which do not contain in the mol. a nitric oxide donor group; (C) org. or inorg. salts of compds. inhibiting

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

 phosphodiesterases.
 IT 171596-29-5
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
(salified and nonsalified nitric oxide-donors and phosphodiesterase
inhibitors for treatment of incontinence)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).


L12 ANSWER 7 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2002:107344 CAPLUS
DOCUMENT NUMBER: 136:151441
TITLE: Preparation of fused heterocyclic derivatives as phosphodiesterase inhibitors
INVENTOR (S):
Orme, Mark W.; Sawyer, Jason Scott; Schultze, Lisa M.
PATENT ASSIGNEE (S):
Lilly Icos L.L.C., USA
SOURCE:
PCT Int. Appl., 105 pp .
CODEN: PIXXD2
DOCUMENT TYPE:
Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
\begin{tabular}{|c|c|c|c|c|}
\hline PATENT NO. & KIND & DATE & APPLICATION NO. & DATE \\
\hline WO 2002010166 & A1 & 20020207 & WO 2001-US21678 & 20010709 \\
\hline
\end{tabular}
\(W: A E, A G, A L, A M, A T, A U, A Z, B A, B B, B G, B R, B Y, B Z, C A, C H, C N\),
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, \(U Z, V N, Y U, Z A, Z W, A M, A Z, B Y, K G, K Z, M D, R U, T J, T M\)
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, \(D E, D K, E S, F I, F R, G B, G R, I E, I T, L U, M C, N L, P T, S E, T R, B E\), \(B J, C F, C G, C I, C M, G A, G N, G W, M L, M R, N E, S N, T D, T G\)
PRIORITY APPLN. INFO.:
OTHER SOURCE(S):
US 2000-222451P P 20000802

GI

Prepared by Toby Port, STIC, Biotech Library 308-3534


I


II

AB Compds. \(I \quad[\mathrm{R}=\mathrm{halo}, \mathrm{alkyl} ; \mathrm{q}=0-4 ; \mathrm{R} 1=\mathrm{H}, \mathrm{alkyl}\), alkenyl, alkynyl, haloalkyl, cycloalkyl, cycloalkylalkyl, arylalkyl, heteroarylalkyl; R2 is an optionally substituted monocyclic arom. ring selected from benzene, thiophene, furan, and pyridine or an optionally substituted bicyclic ring; \(X=N H\) or substituted imino, \(O, S\), substituted methylene or ethylene; the substituents may form addnl. rings] and their salts and solvates were prepd. for use as phosphodiesterase (PDE) inhibitors. Thus, compd. II was prepd. by a multistep procedure starting with coupling of L-tryptophan Me ester with CbzNMeCMe2CO2H (Cbz = benzyloxycarbonyl) and showed IC50 = 161.0 nM for inhibition of cGMP-PDE.

IT 395665-39-1P 395665-40-4P
RL: PAC (Pharmacological activity); RCT (Reactant); SPN (Synthetic preparation) ; THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses) (prepn. of fused heterocyclic derivs. as phosphodiesterase inhibitors) RN 395665-39-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-3-propanoic acid, 6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, 1,1-dimethylethyl ester, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


Prepared by Toby Port, STIC, Biotech Library 308-3534

RN 395665-40-4 CAPLUS
CN Pyrazino[1',2':l, 6]pyrido[3,4-b]indole-3-propanoic acid,
6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemist.ry. Rotation (+).


IT \(395665-35-7 \mathrm{P} \quad 395665-36-8 \mathrm{P} \quad 395665-41-5 \mathrm{P}\)
395665-42-6P \(395665-43-7 \mathrm{P} \quad 395665-47-1 \mathrm{P}\)
395665-49-3P 395665-51-7P 395665-53-9P
395665-55-1P 395665-57-3P 395665-59-5P
395665-61-9P 395665-63-1P 395665-65-3P
395665-67-5P 395665-69-7P 395665-70-0P
395665-71-1P \(395665-72-2 \mathrm{P} \quad 395665-73-3 \mathrm{P}\)
395665-75-5P 395665-76-6P 395665-77-7P
395665-78-8P \(395665-79-9 \mathrm{P}\) 395665-80-2P
395665-81-3P 395665-91-5P 395665-95-9P
395665-96-0P 395665-98-2P
RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(prepn. of fused heterocyclic derivs. as phosphodiesterase inhibitors)
RN 395665-35-7 CAPLUS
CN Pyrazino[1', 2': 1, 6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2,3,3\)-trimethyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-36-8 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-3-propanamide, 6-(1,3-benzodioxol-5-yl)-1, \(2,3,4,6,7,12,12 a-o c t a h y d r o-1,4-d i o x o-\), ( \(3 \mathrm{~S}, 6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-41-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-3-propanoic acid,
6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, 1-methylethyl ester, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 395665-42-6 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-3-\) (hydroxymethyl)-, (3R,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 395665-43-7 CAPLUS
CN Spiro[cyclohexane-1, \(3^{\prime}\left(4^{\prime} H\right)\)-pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole]\(1^{\prime}, 4^{\prime}\left(2^{\prime} \mathrm{H}\right)\)-dione, \(6^{\prime}-(1,3\)-benzodioxol-5-yl)-6', 7', 12', 12'a-tetrahydro-2'-methyl-, ( \(\left.6^{\prime} R, 12^{\prime} a R\right)-(9 C I)\) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-47-1 CAPLUS
CN Pyrazino[1', \(\left.\mathbf{2}^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-3-[2-(1 H-t e t r a z o l-5-y l)\) ethyl]-, (3S,6R,12aR)-
(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN
395665-49-3 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-1,4-dione, 3-(4-aminobutyl)-6-(1,3-benzodioxol-5-y1)-2,3,6,7,12,12a-hexahydro-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-51-7 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-3-ethanesulfonamide, 6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-53-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-3-hexanoic acid,
6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-2-methyl-1,4-dioxo-, (3S,6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Absolute stereochemistry.


RN 395665-57-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-3-[(phenylmethoxy) methyl]-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN
395665-59-5 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Benzoic acid, \(4-[[(3 S, 6 R, 12 a R)-6-(1,3-b e n z o d i o x o l-5-y l)-1,2,3,4,6,7,12,12 a-\) octahydro-2-methyl-1,4-dioxopyrazino[1', 2':1,6]pyrido[3,4-b]indol-3-yl]methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-61-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-3-acetic acid, 6-(1, 3-benzodioxol-5Yl) \(-1,2,3,4,6,7,12,12\) a-octahydro-1,4-dioxo-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-63-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-3-acetic acid, 6-(1, 3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, (3R,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-65-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-3-(1 H-p y r a z o l-1-y l m e t h y l)-,(6 R, 12 a R)-\) (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-67-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 3-(2-aminoethyl)-6-(1,3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN
395665-69-7 CAPLUS

CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 3-(aminomethyl)-6-(1,3-benzodioxol-5-y1)-2,3,6,7,12,12a-hexahydro-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-70-0 CAPLUS
CN Pyrazino[1', 2': 1,6 ]pyrido[3,4-b]indole-1, 4-dione, 6-(1, 3-benzodioxol-5-yl)3 -(chloromethyl)-2,3,6,7,12,12a-hexahydro-, (3R,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-71-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-3-acetamide, 6-(1,3-benzodioxol-5-\(\mathrm{yl})-\mathrm{N}-[\) [4-(dimethylamino) phenyl]methyl]-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, ( \(3 \mathrm{~S}, 6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-72-2 CAPLUS
CN Piperazine, 1-[[(3S,6R,12aR)-6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxopyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indol-3-yl]acetyl]-4-methyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-73-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-3-acetamide, 6-(1, 3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-N-[2-(1-pyrrolidinyl)ethyl]-, (6R, 12aR) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-75-5 CAPLUS
CN Pyrazino [1', 2': 1, 6]pyrido [3,4-b]indole-3-acetic acid, 6-(1,3-benzodioxol-5yl) \(-1,2,3,4,6,7,12,12 a-o c t a h y d r o-1,4\)-dioxo-, heptyl ester, (3S,6R,12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-76-6 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-3-acetic acid, 6-(1,3-benzodioxol-5yl) \(-1,2,3,4,6,7,12,12 a-o c t a h y d r o-1,4\)-dioxo-, ethyl ester, (3S,6R,12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-77-7 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-3-acetic acid, 6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, 1-methylethyl ester, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-78-8 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-3-acetic acid, 6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, cyclopentyl ester, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-79-9 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-3-acetic acid, 6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, 2,2,2-trifluoroethyl ester, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-80-2 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-3-(3,3-dimethyl-2-oxobutyl)-2,3,6,7,12,12a-hexahydro-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-81-3 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido [3,4-b]indole-3-propanoic acid, 6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-1,4-dioxo-, ethyl ester, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-91-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-3-(1H-pyrazol-1-ylmethyl)-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-95-9 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-3-acetamide, 6-(1,3-benzodioxol-5-yl)-1, 2, 3, 4, 6, 7, 12, 12a-octahydro-1,4-dioxo-N-[2-(1-pyrrolidinyl)ethyl]-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-96-0 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-3-(3-p y r i d i n y l m e t h y l)-,(3 S, 6 R, 12 a R)-\) (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 395665-98-2 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2,3,3\)-trimethyl-, (12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534


Absolute stereochemistry. Rotation (+).

\begin{tabular}{|c|c|}
\hline L12 ANSWER 9 OF 37 CAP & COPYRIGHT 2002 ACS \\
\hline ACCESSION NUMBER: & 2002:10477 CAPLUS \\
\hline DOCUMENT NUMBER: & 136:85829 \\
\hline TITLE: & preparation of ring fused pyrazinopyridoindole derivatives as cyclic GMP-specific phosphodiesterase inhibitors \\
\hline INVENTOR(S) : & Orme, Mark W.: Sawyer, Jason Scott \\
\hline PATENT ASSIGNEE (S) : & Lilly Icos Llc, USA \\
\hline SOURCE: & PCT Int. Appl., 63 pp . CODEN: PIXXD2 \\
\hline DOCUMENT TYPE: & Patent \\
\hline LANGUAGE: & English \\
\hline FAMILY ACC. NUM. COUNT: & 1 \\
\hline
\end{tabular}




II

AB The title compds. \(I \quad(R=\) halo, \(C 1-6-a l k y l ; R 1=a \operatorname{nonocyc} 1 i c\) arom. ring selected from benzene, thiophene, furan, and pyridine, and an optionally substituted bicyclic ring wherein the fused ring is a 5- or 6-membered ring and optionally with one or two heteroatoms selected from 0 , \(S\), and \(N\); \(Y=a 3-4-\), or 5 -membered carbon chain of a 5-, 6-, or 7-membered heteroatom chain of a 5-, 6-, or 7 -membered unsubstituted or substituted ring wherein the heteroatom chain contains one or two heteroatoms selected from \(0, S, N ; R 2=\) nitro, halo, cyano, acyl, acyloxy, C1-4-alkyleneHet, etc.) and their pharmaceutically acceptable salts were prepd. as cyclic GMP-specific phosphodiesterase inhibitors. Thus, N,N'-bis-CBZ-2carboxypiperazine was treated with Me 1,2,3,4-tetrahydro-1-(3,4-methylenedioxyphenyl)-9H-pyrido [3,4-b]indole-3-carboxylate and the product cyclized by \(H 2\) in presence of \(P d-C\) to give the tetraazaindenoanthracenedione II. The IC50 of II as cyclic GMP-specific phosphodiesterase inhibitor was 1.7 nM .
IT 385765-02-6P 385765-03-7P
RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
(prepn. of ring fused pyrazinopyridoindole derivs. as cyclic
GMP-specific phosphodiesterase inhibitors)
RN 385765-02-6 CAPLUS
CN 6H-Pyrazino[1'', 2'':4', 5']pyrazino[1', 2':1,6]pyrido[3,4-b]indole-6,15 (2H)dione, 13-(1,3-benzodioxol-5-yl)-1,3,4,6a,7,12,13,15a-octahydro-, (6aR, 13R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385765-03-7 CAPLUS
CN 3H,5H,14H-Thiazolo[3'', 4'': 4', \(5^{\prime}\) ]pyrazino[1', 2':1,6]pyrido[3,4-b]indole-5,14-dione, 12-(1,3-benzodioxol-5-yl)-1,5a,6,11,12,14a-hexahydro-, (5aR, 12R) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.


IT 385765-04-8P 385765-05-9P 385765-06-0P
RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); SPN
(Synthetic preparation); THU (Therapeutic use); BIOL (Biological study);
PREP (Preparation); USES (Uses)
(prepn. of ring fused pyrazinopyridoindole derivs. as cyclic
GMP-specific phosphodiesterase inhibitors)
RN 385765-04-8 CAPLUS
CN 6H-Pyrazino[1'', 2'':4', 5']pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3, 4-b]indole-6, \(15(2 \mathrm{H})-\) dione, 13-(1,3-benzodioxol-5-yl)-2-[(3,4-dimethoxyphenyl)acetyl]\(1,3,4,6 a, 7,12,13,15 a-o c t a h y d r o-,(6 a R, 13 R)-\) (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385765-05-9 CAPLUS
CN 5H,14H-Pyrrolo[1'',2'':4', 5']pyrazino[1',2':1,6]pyrido[3,4-b]indole-5,14dione, 2-amino-12-(1,3-benzodioxol-5-yl)-1,2,3,5a, \(6,11,12,14\) a-octahydro-, (5aR, 12R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385765-06-0 CAPLUS
CN 5H-Pyrido[1'',2': 4', 5']pyrazino[1', 2':1, 6]pyrido[3, 4-b]indole-10-
carboxylic acid, 6-(1,3-benzodioxol-5-yl)-6,8,8a, 9, 10,11,12,14,14a,15-decahydro-8,14-dioxo-, (6R,14aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534

THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

    heteroaryl, amino, R4O, R4CO, R4SO, R4SO2, C1-4-alkylene-CO2R4,
    C1-4-alkylenehetreroaryl, sulfamoyl, cyano, NO2, CO-C1-4-
    alkyleneheteroaryl, C1-4-alkylene-OR4, etc.; R2 = monocyclic arom. ring
    consisting of benzene, thiophene, furan, and pyridine, and an optionally
    substituted bicyclic ring wherein the fused ring is a 5 - or 6 -membered
    ring comprised of C and optionally heteroatoms selected from \(0, \mathrm{~S}\), and N ;
    R3 \(=\mathrm{H}, \mathrm{C} 1-6\)-alkyl; \(\mathrm{R} 4=\mathrm{H}, ~ a l k y l\), aryl, heteroaryl, etc.) and their salts
    and solvates were prepd. as cyclic GMP phosphodiesterase inhibitors.
    Thus, D-tryptophan Me ester hydrochloride was treated with piperonal to
    give the carbolinecarboxylate II, which was treated with chloroacetyl
    chloride followed by cyclization with hydroxylamine-HCl to give the
    pyrazinopyridoindoledione III. The cyclic GMP phosphodiesterase inhibitor
    IC50 of III 0.0075 .mu.M.
IT 385769-78-8P 385769-80-2P 385769-82-4P
    385769-84-6P 385769-86-8P 385769-88-0P
    385769-90-4P 385769-94-8P 385769-98-2P
    385770-00-3P 385770-01-4P 385770-03-6P
    385770-04-7P 385770-06-9P 385770-07-0P
    385770-09-2P 385770-11-6P 385770-13-8P
```

385770-15-0P 385770-18-3P 385770-20-7P
385770-22-9P 385770-24-1P 385770-26-3P
385770-28-5P 385770-29-6P 385770-30-9P
385770-31-0P 385770-32-1P 385770-34-3P
385770-36-5P 385770-38-7P 385770-40-1P
385770-41-2P 385770-43-4P 385770-44-5P
385770-46-7P 385770-48-9P 385770-49-0P
385770-50-3P 385770-52-5P 385770-54-7P
385770-56-9P 385770-57-OP 385770-58-1P
385770-60-5P 385770-62-7P 385770-64-9P
385770-66-1P 385770-68-3P 385770-70-7P
385770-72-9P 385770-73-0P 385770-75-2P
385770-76-3P 385770-77-4P 385770-78-5P
385770-79-6P 385770-80-9P 385770-82-1P
385770-83-2P 385770-85-4P 385770-89-8P
385770-91-2P 385770-92-3P 385770-93-4P
385770-95-6P 385770-96-7P 385770-98-9P
385770-99-0P 385771-02-8P 385771-03-9P
385771-05-1P 385771-06-2P 385771-08-4P
385771-10-8P
RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); SPN
(Synthetic preparation); THU (Therapeutic use); BIOL (Biological study);
PREP (Preparation); USES (Uses)
(prepn. of pyrazinopyridoindolediones as cyclic GMP phosphodiesterase
inhibitors)
RN 385769-78-8 CAPLUS
CN Benzenesulfonamide, 4-[2-[(6R,12aR)-6-(1,3-benzodioxol-5-yl)-
3,4,6,7,12,12a-hexahydro-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indol-
2(1H)-yl]ethyl]- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry.

```

RN 385769-80-2 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-y1)-
2,3,6,7,12,12a-hexahydro-2-hydroxy-, (6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry.

Prepared by Toby Port, STIC, Biotech Library 308-3534


RN 385769-82-4 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h o x y-1(6 R, 12 a R)-\) ( 9 CI ) (CA INDEX NAME)

Absolute stereochemistry.


RN 385769-84-6 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 2-amino-6-(1, 3-
benzodioxol-5-yl)-2, \(3,6,7,12,12 a-h e x a h y d r o-\), ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385769-86-8 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
```

2,3,6,7,12,12a-hexahydro-2-(methylamino)-, (6R,12aR)- (9CI) (CA INDEX

``` NAME)

Absolute stereochemistry.


RN 385769-88-0 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido \([3,4-b]\) indole-1, 4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-phenyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385769-90-4 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-[2-(dimethylamino) ethyl]-2,3,6,7,12,12a-hexahydro-3-methyl-, (6R,12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385769-94-8 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
\(2,3,6,7,12,12 a-h e x a h y d r o-2-(2-h y d r o x y e t h y l)-,(6 R, 12 a R)-r e l-\) (9CI) (CA
INDEX NAME)
Relative stereochemistry.


RN 385769-98-2 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-[3-(4-m e t h y l-1-p i p e r a z i n y l) p r o p y l]-,(6 R, 12 a R)-\) (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN
385770-00-3 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-2-[2-(1-piperidinyl)ethyl]-, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 385770-01-4 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)-2-[2-(diethylamino) ethyl]-2,3,6,7,12,12a-hexahydro-, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 385770-03-6 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2-[2-(4-morpholinyl)ethyl]-, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RN & \multicolumn{13}{|l|}{385770-04-7 CAPLUS} \\
\hline CN & \multicolumn{13}{|l|}{Pyrazino[ \(\left.{ }^{\prime}, 2^{\prime}: 1,6\right]\) pyrido [3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-} \\
\hline & \multicolumn{13}{|l|}{\multirow[t]{2}{*}{\(2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-[2-(4-morpholinyl)ethyl]-, (6R, 12aR)- (9CI)}} \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Absolute stereochemistry.


RN 385770-06-9 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-[3-(4-m o r p h o l i n y l) p r o p y l]-,(6 R, 12 a R)-\) (9CI)
(CA INDEX NAME)

Absolute stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534
```

RN 385770-07-0 CAPLUS
CN · Pyrazino[1',2':1,6]pyrido[3,4-b]indole-2(1H)-acetic acid,
6-(1,3-benzodioxol-5-y1)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, methyl
ester, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

```
Relative stereochemistry.


RN 385770-09-2 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-2(1H)-acetamide, 6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1, 4-dioxo-, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 385770-11-6 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-1,4-dione, 2-(1-
azabicyclo[2.2.2]oct-3-yl)-6-(1,3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


Relative stereochemistry.


RN 385770-15-0 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-2(1H)-propanoic acid,
6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, ethyl ester, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534

RN 385770-18-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(3-m e t h o x y p r o p y l)-\), ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-20-7 CAPLUS
CN Acetamide, \(N-[2-[(6 R, 12 a R)-6-(1,3-b e n z o d i o x o l-5-y l)-3,4,6,7,12,12 a-\) hexahydro-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indol-2(1H)-yl]ethyl](9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-22-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-[3-(2-o x o-1-p y r r o l i d i n y l) p r o p y l]-,(6 R, 12 a R)-\) (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-24-1 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-2(1H)-acetamide,
6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-N-phenyl-, (6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-26-3 CAPLUS
CN Pyrazino[1',2':1, 6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(2-m e t h o x y e t h y l)-\), ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534

\section*{RN 385770-28-5 CAPLUS}

CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3,4-b]indole-2(1H)-acetamide,
6-(1, 3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-N-(phenylmethyl)-, (6R,12aR)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-29-6 CAPLUS
CN Piperidine, \(1-[[(6 R, 12 a R)-6-(1,3\)-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxopyrazino[1', 2':1,6]pyrido[3,4-b]indol-2(1H)-yl]acetyl](9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-30-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2-[3-(1H-imidazol-l-yl)propyl]-, (6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Absolute stereochemistry.


RN 385770-32-1 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-2(1H)-butanamide,
6-(1,3-benzodioxol-5-yl)-N-butyl-3,4,6,7,12,12a-hexahydro-N-methyl-1,4-dioxo-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.



RN 385770-34-3 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-2(1H)-butanamide,
6-(1,3-benzodioxol-5-yl)-N-cyclohexyl-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, (6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-36-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-2(1H)-propanoic acid,
6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, (6R,12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534

RN 385770-38-7 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)2, 3, 6; 7, 12, 12a-hexahydro-2-[(tetrahydro-2-furanyl)methyl]-, (6R,12aR)-rel(9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 385770-40-1 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido \([3,4-b]\) indole-2(1H)-acetamide, 6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-N-4-pyridinyl, ( \(6 \mathrm{R}, 12 \mathrm{a}\) ) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-41-2 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-(3-ethoxypropyl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-43-4 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-

(CA INDEX NAME)
Absolute stereochemistry.


RN 385770-44-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-[(2 R)-2\)-hydroxypropyl]-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN
385770-46-7 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Piperazine, \(1-[[(6 R, 12 a R)-6-(1,3-b e n z o d i o x o l-5-y l)-3,4,6,7,12,12 a-\) hexahydro-1,4-dioxopyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3,4-b]indol-2(1H)-yl]acetyl]-4-phenyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-48-9 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3, 4-b]indole-2(1H)-acetamide, 6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-N-methyl-1,4-dioxo-N-phenyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-49-0 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 2-[2-(3-
azabicyclo[3.2.2]non-3-yl)ethyl]-6-(1,3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


Absolute stereochemistry.


RN 385770-52-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)2, 3, 6, 7, 12, 12a-hexahydro-2-[2-(4-methyl-1-piperazinyl)ethyl]-, (6R, 12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-54-7 CAPLUS
CN Benzoic acid, \(4-[((6 R, 12 a R)-6-(1,3-b e n z o d i o x o l-5-y 1)-3,4,6,7,12,12 a-\)
hexahydro-1, 4-dioxopyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3,4-b]indol-2(1H)-yl]methyl] (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-56-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1;3-benzodioxol-5-yl)-2-[ [4-(dimethylamino) phenyl]methyl]-2,3,6,7,12,12a-hexahydro-, (6R,12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534
```

RN 385770-57-0 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2-[[4-(dimethylamino) phenyl]methyl]-2,3,6,7,12,12a-hexahydro-3-methyl-,
(6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry.


RN 385770-58-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-[2-[(2R, 6S)-2,6-dimethyl-4-morpholinyl] ethyl]-2,3,6,7,12,12a-hexahydro-, ( \(6 \mathrm{~S}, 12 \mathrm{aS}\) )-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 385770-60-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-[2-[(2R, 6S \()-2,6\)-dimethyl-4-morpholinyl]ethyl]-2, 3, 6, 7, 12, 12a-hexahydro-, ( \(6 \mathrm{~S}, 12 \mathrm{aR}\) )-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

RN 385770-62-7 CAPLUS
CN Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-[2-(1 H-i m i d a z o l-1-y l) e t h y l]-,(6 R, 12 a R)-r e l-\) (9CI) (CA INDEX NAME)
Relative stereochemistry.

RN 385770-64-9 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-[2-(5-m e t h y l-1 H-i m i d a z o l-1-y l) e t h y l]-\), ( \(6 \mathrm{R}, 12 \mathrm{aR}\) ) \(-(9 \mathrm{CI})\) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-66-1 CAPLUS
CN Pyrazino[1',2':1, 6]pyrido[3,4-b]indole-1,4-dione, 2-[(4-
aminophenyl) methyl]-6-(1, 3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-68-3 CAPLUS
CN Methanesulfonamide, \(\mathrm{N}-[4-[[(6 R, 12 a R)-6-(1,3\)-benzodioxol-5-yl)-
3, 4, 6, 7, 12, 12a-hexahydro-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indol-2(1H)-yl]methyl]phenyl]-1,1,1-trifluoro- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534
RN 385770-70-7 CAPLUS
CN Benzenesulfonamide, 4-[[(6R, 12aR)-6-(1,3-benzodioxol-5-yl)-3, 4, 6, 7, 12,12a-
    hexahydro-1,4-dioxopyrazino[1',2':1,6]pyrido [3,4-b]indol-2(1H)-yl]methyl]-
        (9CI) (CA INDEX NAME)
Absolute stereochemistry.

```

RN 385770-72-9 CAPLUS
CN Benzonitrile, 4-[[(6R,12aR)-6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-
hexahydro-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indol-2(1H)-yl]methyl]-
(9CI) (CA INDEX NAME)

```
Absolute stereochemistry.


RN 385770-73-0 CAPLUS
CN Pyrazino[1',2':1, 6]pyrido[3,4-b]indole-2(1H)-acetonitrile, 6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, (6R, 12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-75-2 CAPLUS
CN Benzoic acid, 4-[ [(6R,12aR)-6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-
hexahydro-1,4-dioxopyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indol-2(1H)-yl]methyl]-
, methy1 ester (9CI) (CA INDEX NAME)
Absolute stereochemistry.


RN \(385770-76-3\) CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-[2-(1-m e t h y l-2-p y r r o l i d i n y l) e t h y l]-\), ( \(6 \mathrm{R}, 12 \mathrm{a}\) )-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN

\footnotetext{
385770-77-4
CAPLUS
}

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-[2-(1 \mathrm{H}-i m i d a z o l-4-y l)\) ethyl]-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-78-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-\(2-[[4-[(\) dimethylamino) methyl] phenyl]methyl] \(-2,3,6,7,12,12 a-h e x a h y d r o-\), (6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-79-6 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 2-[2-(4aminophenyl) ethyl]-6-(1,3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-, ( \(6 \mathrm{R}, 12 \mathrm{aR}\) ) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-80-9 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido \(\left.3,4-\mathrm{b}\right]\) indole-2(1H)-acetic acid,
6-(1, 3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, phenylmethyl ester, ( \(6 \mathrm{R}, 12 \mathrm{aR})-(9 \mathrm{CI})\) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-82-1 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3,4-b]indole-2(1H)-acetic acid,
6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, (6R, 12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.

```

RN 385770-83-2 CAPLUS
CN Pyrazino[l',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2-[3-(3,5-dimethyl-1H-pyrazol-1-yl)propyl]-2,3,6,7,12,12a-hexahydro-,
(6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry.


RN 385770-85-4 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-2(1H)-propanoic acid, 6-(1, 3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, 1,1-dimethylethyl ester, (6R,12aR)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-89-8 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-[2-(1 H-p y r a z o l-1-y l)\) ethyl]-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-91-2 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
\(2,3,6,7,12,12 a-h e x a h y d r o-2-[(3-\) nitrophenyl) methyl]-, (6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-92-3 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 2-[(3-
aminophenyl) methyl]-6-(1,3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN
385770-93-4 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Methanesulfonamide, N -[3-[[(6R,12aR)-6-(1,3-benzodioxol-5-yl)-
3, 4, 6, 7, 12, 12a-hexahydro-1, 4-dioxopyrazino[1', 2':1, 6]pyrido[3,4-b]indol-2(1H)-yl]methyl]phenyl]-1,1,1-trifluoro- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


385770-95-6 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-2-[3-(1H-pyrazol-1-yl)propyl]-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-96-7 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2-[[4-(phenylmethoxy) phenyl]methyl]-, (6R,12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-98-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)-\(2-[\) [4-[2-(dimethylamino) ethoxy] phenyl]methyl]-2, 3, 6, 7, 12, 12a-hexahydro-, (6R, 12aR) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385770-99-0 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-[2-(1H-1,2,4-triazol-1-yl)ethyl]-, (6R, 12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN
385771-02-8 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-2-[[3-(methylamino)-5-nitrophenyl]methyl]-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385771-03-9 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-2(1H)-acetamide, 6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-N-(4-methyl-1-piperazinyl)-1,4-dioxo-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385771-05-1 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2-[(1-methyl-1H-benzimidazol-5-yl)methyl]-, (6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385771-06-2 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-2(1H)-acetic acid,
6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, 1,1-dimethylethyl ester, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN 385771-08-4 CAPLUS
CN Pyrazino[1', \(\left.{ }^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-2(1H)-acetic acid, 6-(1,3-benzodioxol-5-yl)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, methyl ester, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


RN
385771-10-8 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-2(1H)-acetic acid,
6-(1,3-benzodioxol-5-y1)-3,4,6,7,12,12a-hexahydro-1,4-dioxo-, octy1 ester, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

\begin{tabular}{|c|c|}
\hline L12 ANSWER 11 OF 37 & CAPLUS COPYRIGHT 2002 ACS \\
\hline ACCESSION NUMBER: & 2001:924320 CAPLUS \\
\hline DOCUMENT NUMBER: & 136:31728 \\
\hline TITLE: & Daily treatment for erectile dysfunction using a phosphodiesterase 5 (PDE5) inhibitor \\
\hline INVENTOR(S) : & Whitaker, John S.; Saenz de Tejada, Inigo; Eerguson, Kenneth M. \\
\hline PATENT ASSIGNEE(S): & USA \\
\hline SOURCE: & \begin{tabular}{l}
U.S. Pat. Appl. Publ., 12. pp., Cont.-in-part of U.S. Ser. No. 558,911. \\
CODEN: USXXCO
\end{tabular} \\
\hline DOCUMENT TYPE: & Patent \\
\hline LANGUAGE: & English \\
\hline EAMILY ACC. NUM. COUNT: & : 3 \\
\hline PATENT INFORMATION: & \\
\hline
\end{tabular}

PATENT INFORMATION:
\begin{tabular}{|c|c|c|c|c|}
\hline PATENT NO. & KIND & DATE & APPLICATION NO. & DATE \\
\hline US 2001053780 & A1 & 20011220 & US 2001-834442 & 20010413 \\
\hline EP 1173181 & A2 & 20020123 & EP 2000-926367 & 20000426 \\
\hline \(\mathrm{R}: ~ A T, ~ B E\), & H, DE & DK, ES, & , GR, IT, LI, L & NL, SE, \\
\hline
\end{tabular}

IE, SI, LT, LV, FI, RO
NO 2001005275 A 20011206 NO 2001-5275 20011029
PRIORITY APPLN. INFO.:
\begin{tabular}{llll} 
US & \(1999-132036 \mathrm{P}\) & P & 19990430 \\
US \(2000-558911\) & A2 & 20000426 \\
WO \(2000-\) US11129 & W & 20000426
\end{tabular}

AB The invention provides phosphodiesterase (PDE) enzyme inhibitors and to their use in pharmaceutical articles of manuf. In particular, the invention provides potent inhibitors of cyclic guanosine 3',5'-monophosphate specific phosphodiesterase type 5 (PDE5) that, when incorporated into a pharmaceutical product at about \(1-10 \mathrm{mg}\) unit dosage, are useful for the treatment of sexual dysfunction by daily administration of the PDE5 inhibitor. The articles of manuf. described are characterized by PDE5 inhibition, and accordingly, provide a benefit in therapeutic areas where inhibition of PDE5 is desired, esp. erectile dysfunction, with minimization or elimination of adverse side effects resulting from inhibition of other phosphodiesterase enzymes and with an improvement of vascular conditioning.
IT 171596-29-5 171596-40-0

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)
(phosphodiesterase 5 inhibitor for daily treatment for erectile dysfunction)
RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2\)-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-40-0 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2,3\)-dimethyl-, ( \(3 \mathrm{~S}, 6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


L12 ANSWER 12 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:916407 CAPLUS
DOCUMENT NUMBER: 136:53755
TITLE:
Synthesis of nitrosated and nitrosylated
(hetero) cyclic phosphodiesterase inhibitors used in
treatment of sexual dysfunction
INVENTOR (S) :
PATENT ASSIGNEE(S):
Richard A.; Khanapure, Subhash P.
SOURCE:
DOCUMENT TYPE:
U.S., 117 pp., Cont.-in-part of U.S. 5,958,926.

CODEN: USXXAM
Patent
LANGUAGE:
English

Prepared by Toby Port, STIC, Biotech Library 308-3534

FAMILY ACC. NUM. COUNT: 3
PATENT INFORMATION:

GI
* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB Compds. I-V, derivs. thereof, and certain substituted Ph and phthalzaine derivs. were claimed [D2 = H, alkyl, D; D = NO, NO2, alky1, acyl, phosphoryl, silyl, etc.; A1-3 comprise the other subunits of a 5- or 6 -membered monocyclic arom. ring; R8 \(=\mathrm{H}\), (halo)alkyl; \(\mathrm{p}=1-10\); R24 \(=\mathrm{H}\), cyclohexyl, piperidinyl, etc., with the proviso that at least one of A1-3, \(J\), or R24 contains \(T-Q\) or \(D\); \(T=\) bond, \(O, S(O)\), amino; \(Q=N O, N O 2 ; D 1=D\) or H ; R37 = (hetero) aryl; R38 = H, halo, alkyl; Gl = alkyl, alkenyl or is part of a ring fused to the piperidine moiety of III; G4 = O, S; R40 \(=\mathrm{H}\), alkyl, haloalkyl, halo, etc.; R41 = alkyl, hydroxyalkyl, alkylcarboxy, etc.; R42 = aryl, alkylaryl, alkyloxyaryl; \(T 1\) = alkyl, oxyalkyl, thioalkyl, aminoalkyl]. Two synthetic examples were provided. E.g., the S-nitroso deriv. of the 3-mercapto-3-methylbutyric acid ester of dipyridamole (VI) was prepd. in 4 steps from dipyridamole in \(3.5 \%\) overall yield. VI at doses of 10 and 30 .mu.M was more efficacious in relaxing phenylephrine-induced tissue contraction than was the known phosphodiesterase inhibitor, dipyridamole. The present invention describes novel (nitrosated/nitrosylated) phosphodiesterase inhibitors, and compns. contg, at least one (nitrosated/nitrosylated) phosphodiesterase inhibitor, and, optionally, one or more compds. that donate, transfer or release NO, elevate endogenous levels of endothelium-derived relaxing factor, stimulate endogenous synthesis of NO, or is a substrate for nitric oxide synthase and/or one or more vasoactive agents. The present invention also provides methods for treating or preventing sexual dysfunctions in males and females, for enhancing sexual responses in males and females, and for treating or preventing diseases induced by the increased metab. of cGMP, such as hypertension, pulmonary hypertension, etc.
IT 171596-29-5D, ICOS 351, nitroso derivs. RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(synthesis of nitrosated and nitrosylated (hetero)cyclic
phosphodiesterase inhibitors used in treatment of sexual dysfunction)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2-methyl-, ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation ( + ).

Prepared by Toby Port, STIC, Biotech Library 308-3534


REFERENCE COUNT: 86
THERE ARE 86 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
```

L12 ANSWER 13 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:904172 CAPLUS
DOCUMENT NUMBER: 136:20091
TITLE: Preparation of tetracyclic diketopiperazine compounds
INVENTOR(S):
PATENT ASSIGNEE(S):
SOURCE:
DOCUMENT TYPE:
LANGUAGE:
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

```

        \(W: A E, A G, A L, A M, A T, A U, A Z, B A, B B, B G, B R, B Y, B Z, C A, C H, C N\),
            CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
            GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
            LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,
            RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US,
            UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BE,
            BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
PRIORITY APPLN. INFO.:
                US 2000-210324P P 20000608
PRIORITY APPLN. INFO.: MARPAT 136:20091
GI


AB The title compds. I [R1 = C1-6 a1kyl; R2 \(=\mathrm{H}\), Me] were prepd. and use of the compds. as PDE5 inhibitors was described.. E.g., (6R, 12aR)-6-(3,4-dihydroxyphenyl)-2-methyl-2,3,6,7,12,12a-hexahydropyrazino[1',2':1,6]pyrid o[3,4-b]indole-1,4-dione was prepd. I may be used for male erectile dysfunction or female arousal disorder.
IT 378788-17-1P
RL: IMF (Industrial manufacture); PAC (Pharmacological activity); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)
(prepn. of tetracyclic diketopiperazine compds. as PDE5 inhibitor)
RN 378788-17-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-\) - (6R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.


REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
\begin{tabular}{|c|c|}
\hline L12 ANSWER 14 OF 37 & CAPLUS COPYRIGHT 2002 ACS \\
\hline ACCESSION NUMBER: & 2001:904168 CAPLUS \\
\hline DOCUMENT NUMBER: & 136:20090 \\
\hline TITLE: & Preparation of cyclic guanosine monophosphate specific phosphodiesterase inhibiting heterocyclylpyrazinopyridoindolediones for treatment of cardiovascular disorders and erectile disfunction \\
\hline INVENTOR(S): & Orme, Mark W.; Sawyer, Jason Scott; Daugan, Alain Claud-Marie \\
\hline PATENT ASSIGNEE(S): & Lilly Icos LLC, USA \\
\hline SOURCE: & PCT Int. Appl., 103 pp . \\
\hline
\end{tabular}

Prepared by Toby Port, STIC, Biotech Library 308-3534

CODEN: PIXXD2
```

DOCUMENT TYPE:
LANGUAGE:
Patent
English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

```
\begin{tabular}{lclll} 
PATENT NO. & KIND & DATE & APPLICATION NO. DATE \\
\hline WO 2001094345 & A2 & 20011213 & WO 2001-US15936 & 20010515
\end{tabular}
    \(W: A E, A G, A L, A M, A T, A U, A Z, B A, B B, B G, B R, B Y, B Z, C A, C H, C N\),
            \(C O, C R, C U, C Z, D E, D K, D M, D Z, E C, E E, E S, F I, G B, G D, G E, G H\),
            GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
            LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,
            RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US,
            UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
    RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            \(D E, D K, E S, F I, F R, G B, G R, I E, I T, L U, M C, N L, P T, S E, T R, B E\),
            BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
PRIORITY APPLN. INFO.: US 2000-210137P P 20000607
OTHER SOURCE (S): MARPAT 136:20090
GI
```

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OfFLINE fRINT *
AB The pyrazinopyridoindolediones I [R1 = H, alkyl, alkenyl, alkynyl,
haloalkyl, cycloalkyl, heterocycloalkyl, etc; R2 = (un)substituted Ph,
thienyl, furanyl, pyridyl, bicyclic ring optionally contg. O, S, N hetero
atoms, e.g. benzodioxolyl; R3 = H, alkyl; R4 = aryl, heteroaryl,
cycloalkyl, acyl, acyloxy, alkoxycarbonyl, aminoalkyl, carbamoyl, alkoxy,
amino, acylamino, nitro, cyano, alkylthio etc.; R5 = H, halo, alkyl; R4R5
= 5-, 6-, 7-membered ring optionally contg. O, S, N atoms; m = 1, 2, 3]
and their diastereoisomers and pharmaceutically acceptable salts were
prepd., possessed CGMP specific phosphodiesterase inhibiting activity, and
were useful in the treatment of various cardiovascular disorders, erectile
disfunction, and female sexual arousal disorder. Thus, the Me ester of
5-hydroxytryptophan condensed with piperonal in trifluoroacetic
acid/CH2Cl2 to give the [(methylenedioxy)phenyl]pyridoindole II which was
acylated by ClCH2COCl and then cyclized with MeNH2 to give the
[(methylenedioxy)phenyl]hexahydropyrazinopyridoindoledione III that
inhibited cGMP specific phosphodiesterase in vitro with an IC50 of 48.1
nM.
IT 379234-97-6P
RL: PAC (Pharmacological activity); RCT (Reactant); SPN (Synthetic
preparation); THU (Therapeutic use); BIOL.(Biological study); PREP
(Preparation); RACT (Reactant or reagent); USES (Uses)
(prepn. of (benzodioxolyl)pyrazinopyridoindolediones with cGMP-specific
phosphodiesterase inhibiting activity useful in treating.
cardiovascular, erectile, and female sexual arousal disorders)
RN 379234-97-6 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-9-carboxylic acid,
6-(1,3-benzodioxol-5-yl)-1,2,3,4,6,7,12,12a-octahydro-2-methyl-1,4-dioxo-,
methyl ester, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

```

Relative stereochemistry.


IT 379234-74-9P.379234-78-3P 379234-82-9P
379234-88-5P 379234-98-7P 379235-06-0P
379235-11-7P \(379235-12-8 \mathrm{P} \quad 379235-13-9 \mathrm{P}\)
379235-14-OP 379235-15-1P 379235-16-2P
379235-17-3P
RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(prepn. of (benzodioxolyl)pyrazinopyridoindolediones with cGMP-specific
phosphodiesterase inhibiting activity useful in treating
cardiovascular, erectile, and female sexual arousal disorders)
RN 379234-74-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-10\)-hydroxy-2-methyl-, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 379234-78-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-10-m e t h o x y-2-m e t h y l-,(6 R, 12 a R)-r e l-\) (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 379234-82-9 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-10\)-methoxy-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 379234-88-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-9-p h e n y l-,(6 R, 12 a R)-r e l-\) (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 379234-98-7 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-9-carboxylic acid, 6-(1,3-benzodioxol-5-yl)-1, 2, 3, 4, 6, 7, 12, 12a-octahydro-2-methyl-1,4-dioxo-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 379235-06-0 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido \(\left.3,4-b\right]\) indole-9-carbonitrile,
\(6-(1,3\)-benzodioxol-5-yl)-1, 2, 3, 4, 6, 7, 12, 12a-octahydro-2-methyl-l,4-dioxo-, (6R,12aR)-re1- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 379235-11-7 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y 1-8-(\) phenylmethoxy)-, (6R, 12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 379235-12-8 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3, 4-b]indole-1, 4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-9-h y d r o x y-2-m e t h y l-1\) ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 379235-13-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-methyl-9-(phenylmethoxy)-, (6R, 12aR)-rel- (9CI)
(CA INDEX NAME)

Relative stereochemistry.


RN 379235-14-0 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

CN Benzo[g]pyrazino[1',2':1,6]pyrido[3,4-b]indole-8,11-dione,
13-(1, 3-benzodioxol-5-yl)-7,7a,9,10,13,14-hexahydro-9-methyl-,
(7aR,13R)-rel- (9CI) (CA INDEX NAME)
Relative stereochemistry.

```


RN 379235-15-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 9-(aminomethyl)-6-(1, 3-benzodioxol-5-yl) \(-2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-methyl-, (6R, 12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 379235-16-2 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-10\)-phenyl-, (6R, 12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

RN 379235-17-3 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-8-h y d r o x y-2-m e t h y l-,(6 R, 12 a R)-r e l-\) (9CI) (CA INDEX NAME)
Relative stereochemistry.

IT 379234-87-4P
IT 379234-87-4P
    RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
    RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
    (Reactant or reagent)
    (Reactant or reagent)
            (prepn. of (benzodioxolyl)pyrazinopyridoindolediones with cGMP-specific
            (prepn. of (benzodioxolyl)pyrazinopyridoindolediones with cGMP-specific
            phosphodiesterase inhibiting activity useful in treating
            phosphodiesterase inhibiting activity useful in treating
            cardiovascular, erectile, and female sexual arousal disorders)
            cardiovascular, erectile, and female sexual arousal disorders)
RN 379234-87-4 CAPLUS
RN 379234-87-4 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
    9-bromo-2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)-rel- (9CI) (CA
    9-bromo-2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)-rel- (9CI) (CA
    INDEX NAME)
    INDEX NAME)
Relative stereochemistry.
Relative stereochemistry.


L12 ANSWER 15 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:798055 CAPLUS
DOCUMENT NUMBER: 135:339295
TITLE: Daily treatment for erectile dysfunction using a
INVENTOR (S) : phosphodiesterase 5 (PDE5) inhibitor Whitaker, John S.; Saenz de Tejada, Inigo; Ferguson, Kenneth M.
PATENT ASSIGNEE(S): Lilly Icos LLC, USA
SOURCE:
PCT Int. Appl., 48 pp .
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 3
PATENT INFORMATION:


Prepared by Toby Port, STIC, Biotech Library 308-3534
(Uses)
(phosphodiesterase 5 inhibitor for daily treatment for sexual
dysfunction)
RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-\) ( 9 CI ) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-40-0 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-\(2,3,6,7,12,12\)-hexahydro-2,3-dimethyl-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


L12 ANSWER 16 OE 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:713326 CAPLUS
DOCUMENT NUMBER: 135:272990
TITLE: Preparation of piperazinylcarbonylaminomethylcarbonylp iperidines as melanocortin-4 receptor agonists
INVENTOR \((S): \quad\) Palucki, Brenda L.; Barakat, Khaled J.; Guo, Liangqin; Lai, Yingjie; Nargund, Ravi P.; Park, Min K.; Pollard, Patrick G.; Sebhat, Iyassu K.; Ye, Zhixiong
PATENT ASSIGNEE (S) : Merck + Co., Inc., USA
SOURCE: PCT Int. Appl., 220 pp .
CODEN: PIXXD2
DOCUMENT TYPE:
Patent
English
LANGUAGE:
1

PATENT INEORMATION:


\(A B\) Title compds. [I; \(Q=\) (substituted) (fused) piperazinyl, morpholinyl, thiomorpholinyl; R1 \(=\mathrm{H}, \mathrm{alkyl}\), (substituted) cycloalkyl(alkyl), aryl (alkyl), heteroaryl(alkyl), etc.; \(X=\) (substituted) alkyl, cycloalkyl(alkyl), aryl(alkyl), heteroaryl(alkyl), heterocyclyl(alkyl), cyano(alkyl), aminosulfonyl(alkyl), etc.; \(Y=H, a l k y l, ~ c y c l o a l k y l(a l k y l), ~\) (substituted) aryl(alkyl), heterocyclyl (alkyl), heteroaryl(alkyl)], were prepd. as melanocortin-4 receptor (MC-4R) agonists. Thus, capsule formulations contg. title compd. (II) were prepd. Representative I activated \(M C-4 R\) with \(I C 50<1\). mu. M. I are claimed for the treatment of obesity, diabetes, and sexual dysfunction including erectile dysfunction and female sexual dysfunction.
IT 171596-29-5, IC-351
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(combination therapy; prepn. of piperazinylcarbonylaminomethylcarbonylp
iperidines as melanocortin-4 receptor agonists)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-(9 C I) \quad(C A ~ I N D E X ~ N A M E)\)

Absolute stereochemistry. Rotation (+).


REFERENCE COUNT:
1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
```

L12 ANSWER 17 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:559496 CAPLUS
DOCUMENT NUMBER: 135:117266
TITLE: Treatment of sexual function disorders with
phosphodiesterase 4 inhibitors as monotherapy or in
combination with other phosphodiesterase inhibitors or
adenylate cyclase activators
PATENT ASSIGNEE(S): Stief, Christian, Germany
SOURCE: Ger. Offen., 4 pp.
CODEN: GWXXBX
DOCUMENT TYPE: Patent
LANGUAGE:
German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 10004289	A1	20010802	DE 2000-10004289	20000201

AB The invention provides a medicament contg. a phosphodiesterase 4 inhibitor as monotherapy or in combination with other phosphodiesterase inhibitors or adenylate cyclase activators for the treatment of s sexual function disorders.
IT 171596-29-5, IC 351
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(phosphodiesterase 4 inhibitors as monotherapy or in combination with other phosphodiesterase inhibitors or adenylate cyclase activators for treatment of sexual function disorders)
RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)$2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-(9 C I)$ (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).

Prepared by Toby Port, STIC, Biotech Library 308-3534


REFERENCE COUNT:
11
THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
```

L12 ANSWER 18 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:541505 CAPLUS
DOCUMENT NUMBER: 135:132460
TITLE: Treatment of sexual function disorders with guanylate
cyclase activators, optionally in combination with
phosphodiesterase inhibitors
INVENTOR(S): Stief, Christian; Magerl, Hans-Jurgen; Kuthe, Andrea;
Uckert, Stefan; Becker, Armin; Farssmann, Wolf Georg;
Jones, Udo
PATENT ASSIGNEE(S): Germany
SOURCE: Ger. Offen., }6\mathrm{ pp.
CODEN: GWXXBX
DOCUMENT TYPE:
Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 10002200	A1	20010726	DE 2000-10002200	20000119

$A B$ Medicaments contg. activators of guanylate cyclase and their variants, individually or in combination with phosphodiesterase inhibitors, are provided for the treatment of sexual function disorders. e.g. erectile dysfunction.
IT 171596-29-5, IC 351
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(guanylate cyclase activators, optionally in combination with
phosphodiesterase inhibitors, for treatment of sexual function
disorders)
RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)$2,3,6,7,12,12 \mathrm{a}$-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).

Prepared by Toby Port, STIC, Biotech Library 308-3534



Absolute stereochemistry. Rotation (+).

Prepared by Toby Port, STIC, Biotech Library 308-3534


L12 ANSWER 20 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:258390 CAPLUS
DOCUMENT NUMBER: 135:189567
TITLE: IC-351: Treatment of erectile dysfunction treatment of
female sexual dysfunction phosphodiesterase 5
inhibitor
AUTHOR(S):
Sorbera, L. A.; Martin, L.; Leeson, P. A.; Castaner, J.

CORPORATE SOURCE: Prous Science, Barcelona, 08080, Spain
SOURCE:
Drugs of the Future (2001), 26(1), 15-19
CODEN: DRFUD4; ISSN: 0377-8282
PUBLISHER:
Prous Science
DOCUMENT TYPE: Journal; General Review
LANGUAGE: English
AB A review with 20 refs. Significantly more patients ( 86 \% ) given IC-351
reported enhanced erections as compared to placebo and a significant
change in the patient's median rating was obsd. with IC-351 treatment as compared to placebo. IC-351 (ClalisTM) continues to undergo phase III
trials as a treatment for male erectile dysfunction and phase II trials as
a treatment for female sexual dysfunction.
IT 171596-29-5, IC 351
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(IC-351 in treatment of erectile dysfunction and treatment of female
sexual dysfunction in humans)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-(9 C I)\) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

Prepared by Toby Port, STIC, Biotech Library 308-3534


REFERENCE COUNT: 20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 21 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:100983 CAPLUS
DOCUMENT NUMBER:
134:152655
TITLE: Pharmaceutical compositions containing
.beta.-carboline drugs
INVENTOR(S): Anderson, Neil R.; Hartauer, Kerry J.; Kral, Martha
A.; Stephenson, Gregory A.

PATENT ASSIGNEE(S): Lilly Icos Llc, USA
SOURCE: PCT Int. Appl., 42 pp .
DOCUMENT TYPE: . Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:


Prepared by Toby Port, STIC, Biotech Library 308-3534
```

 bioavailability of the drug was demonstrated in humans.
 IT
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(pharmaceutical compns. contg. .beta.-carboline drugs)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).


L12 ANSWER 22 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:100982 CAPLUS
DOCUMENT NUMBER: 134:152654
TITLE: .beta.-Carboline pharmaceutical compositions
INVENTOR(S): Anderson, Neil R.; Gullapalli, Rampurna P.
PATENT ASSIGNEE (S):
Lilly Icos Llc, USA
SOURCE:
PCT Int. Appl., 31 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 2
PATENT INFORMATION:
\begin{tabular}{|c|c|c|c|c|}
\hline PATENT NO. & KIND & DATE & APPLICATION NO. & DATE \\
\hline WO 2001008687 & A1 & 20010208 & WO 2000-US11136 & 20000426 \\
\hline
\end{tabular} \(W\) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, \(K G, K P, K R, ~ K Z, ~ L C, ~ L K, ~ L R, ~ L S, ~ L T, ~ L U, ~\) LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, \(D K, E S, F I, F R, G B, G R, I E, I T, L U, M C, N L, P T, S E, B F, B J, C E\), CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG EP 1200091 A1 20020502 EP 2000-926371 20000426

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL
PRIORITY APPLN. INFO.: US 1999-146924P P 19990803
WO 2000-US11136 W 20000426
AB .beta. Carboline soft capsules contains a soln. or suspension of a PDE5 inhibitor, and are useful for treating sexual dysfunction. Thus, a formulation contained a .beta, carboline 25.0, Capmul MCM 177.5, Gelucire \(44 / 14177.5\), and propylene glycol \(20.0 \mathrm{mg} / \mathrm{capsule}\). In the phys. study of the above capsule formulation, no sedimentation was obsd. after storage at

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

 4.degree. for 120 days.
 IT 171596-29-5
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(.beta.-carboline pharmaceutical compns.)
RN 171596-29-5 CAPLUS
CN Pyrazino[l',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)
Absolute stereochemistry. Rotation (+).

```


REFERENCE COUNT:
4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
```

L12 ANSWER 23 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:100981 CAPLUS
DOCUMENT NUMBER: 134:152653
TITLE: .beta.-Carboline pharmaceutical compositions
containing cellulose
INVENTOR(S):
PATENT ASSIGNEE(S):
SOURCE:
Oren, Peter L.; Anderson, Neil R.; Kral, Martha A.
Lilly Icos Llc, USA
PCT Int. Appl., 38 pp.
CODEN: PIXXD2
DOCUMENT TYPE:
Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 2
PATENT INFORMATION:

```


AB .beta. -Carboline formulations contain a c-GMP phosphodiesterase inhibitor, a water-sol. diluent, a lubricant, a hydrophilic binder, a disintegrant, and optional microcryst. cellulose and/or a wetting agent, are useful for treating sexual dysfunction. Thus, a tablet formulation contained a .beta.-carboline 5.00, lactose monohydrate 109.655, lactose monohydrate (spray dried) 17.50 , Hydroxypropyl cellulose 4.025 , croscarmellose sodium 6.30 , SLS 0.49 , microcryst. cellulose (granular-102) 26.25 , croscarmellose sodium 4.90 , and Mg stearate \(0.88 \mathrm{mg} /\) tablet.
IT 171596-29-5
RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(.beta.-carboline pharmaceutical compns. contg. cellulose)

RN 171596-29-5 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-\) ( \(6 \mathrm{R}, 12 \mathrm{aR}\) ) - (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


REFERENCE COUNT:

3
THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

Ll2 ANSWER 24 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2001:28490 CAPLUS
DOCUMENT NUMBER: 134:95523
TITLE:
INVENTOR(S): Stief, Christian G.; Ueckert, Stefan; Becker, Armin; Jonas, Udo; Forssmann, Wolf-Georg
PATENT ASSIGNEE (S): Germany
SOURCE:
DOCUMENT TYPE:
LANGUAGE:
EAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
\begin{tabular}{lcllll} 
PATENT NO. & KIND & DATE & APPLICATION NO. DATE \\
\hdashline\(D E 19931206\) & Al & 20010111 & & DE 1999-19931206 19990707
\end{tabular}
\(A B\) The invention concerns drugs for the increase of the cAMP levels and/or for the inhibition of the cAMP hydrolysis in smooth muscle tissues and their use for the treatment of diseases. Compds. such as sildenafil increased the cAMP levels in smooth muscle tissues.
IT 171596-29-5, IC 351
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(drugs for increase of cAMP levels)

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).


L12 ANSWER 25 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2000:790302 CAPLUS
DOCUMENT NUMBER: 133:329631
TITLE: Treatment of female arousal disorder with a type \(V\) cGMP phosphodiesterase inhibitor
INVENTOR(S): Allemeier, Lora L.; Brashear, Diane L.; Eerguson, Kenneth M.; Pullman, William E.
PATENT ASSIGNEE (S): Lilly Icos LLC, USA
SOURCE:
PCT Int. Appl., 25 pp. CODEN: PIXXD2
DOCUMENT TYPE:
Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
\begin{tabular}{|c|c|c|c|c|}
\hline PATENT NO. & KIND & DATE & APPLICATION NO. & DATE \\
\hline WO 2000066114 & A1 & 20001109 & WO 2000-US11128 & 20000426 \\
\hline
\end{tabular}
\(W: A E, A G, A L, A M, A T, A U, A Z, B A, B B, B G, B R, B Y, C A, C H, C N, C R\), \(C U, C Z, D E, D K, D M, D Z, E E, E S, F I, G B, G D, G E, G H, G M, H R, H U\), ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
EP 1173167 A1 20020123 EP 2000-928382 20000426 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,

IE, SI, LT, LV, FI, RO
PRIORITY APPLN. INFO.: US 1999-132129P P 19990430 WO 2000-US11128 W 20000426
AB A method of treating female arousal disorder in a female patient is
disclosed. The method includes orally administering an agent that
inhibits cyclic guanosine \(3^{\prime}, 5^{\prime}\)-monophosphate-specific phosphodiesterase type 5 to the female patient.
IT 171596-29-5 171596-40-0 304683-09-8
304683-11-2
RL: BAC (Biological activity or effector, except adverse); BSU (Biological

Prepared by Toby Port, STIC, Biotech Library 308-3534
study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(cGMP phosphodiesterase type \(V\) inhibitor for treatment of female arousal disorder)
RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-(9 C I)\) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-40-0 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2,3\)-dimethyl-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 304683-09-8 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2-methyl- (9CI) (CA INDEX NAME)

Prepared by Toby Port, STIC, Biotech Library 308-3534

```

RN 304683-11-2 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2,3-dimethyl- (9CI) (CA INDEX NAME)

```


REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 26 OF 37 CAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2000:785898 CAPLUS DOCUMENT NUMBER: 133:329627
TITLE: Tetracyclic cGMP-specific phosphodiesterase inhibitors and their use in disease treatment
INVENTOR(S): Daugan, Alain Claude Marie; Gellibert, Francoise
PATENT ASSIGNEE(S):
Icos Corp., USA
SOURCE: U.S., 30 pp., Cont.-in-part of PCT 9519978.
CODEN: USXXAM
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 4
PATENT INFORMATION:


RW: KE, MW, SD, SZ, AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BE, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG
WO 9703675 A1 19970206 WO 1996-EP3024 19960711
\(\mathrm{W}: ~ A L, ~ A M, ~ A T, ~ A U, ~ A Z, ~ B B, ~ B G, ~ B R, ~ B Y, ~ C A, ~ C H, ~ C N, ~ C Z, ~ D E, ~ D K, ~ E E, ~\) ES, EI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG
RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BE, BJ, CF, CG, CI, CM, GA
WO 9703985 A1 19970206 WO 1996-EP3025 19960711
\(W: A L, A M, A T, A U, A Z, B B, B G, B R, B Y, C A, C H, C N, C Z, D E, D K, E E\), ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG
RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA
US 6025494 A 20000215 US 1998-133078 19980812
EP 1113800 A1 20010711 EP 1999-945201 19990826
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO
US 6127542 A 20001003 US 1999-399667 19990921
PRIORITY APPLN. INFO.: GB 1994-1090 A 19940121
WO 1995-EP183 A2 19950119
GB 1995-14464 A 19950714

GB 1995-14465 A 19950714
WO 1996-EP3024 A2 19960711
WO 1996-EP3025 A2 19960711
US 1996-669389 A3 19960716
US 1998-133078 A1 19980812
US 1998-154051 A 19980916
WO 1999-US19466 W 19990826
OTHER SOURCE(S):
MARPAT 133:329627
GI


I

AB A compd. of formula \(\mathrm{I}(\mathrm{RO}=\mathrm{H}\), halogen, C1-6 alkyl; R1 \(=\mathrm{H}, \mathrm{C} 1-6\) alkyl, C2-6 alkeny1, C2-6 alkynyl, halo-C1-6 alky1, C3-8 cycloalky1, C3-8 cycloalkyl-C1-3 alkyl, aryl-C1-3 alkyl, heteroaryl-C1-3 alkyl; R2 = (substituted) monocyclic arom. ring selected from benzene, thiophene, furan, and pyridine, or (substituted) bicyclic ring (a) attached to the rest of the mol. via one of the benzene ring carbon atoms, and wherein the fused ring is a 5 - or 6 -membered ring which may be satd. or partially or fully unsatd., and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulfur, and nitrogen; R3 \(=\mathrm{H}, \mathrm{Cl}-3\) alkyl, or R1 and R3 together \(=3\) - or 4 -membered alkyl or alkenyl chain) and salts and solvates thereof is disclosed. Compd. I is a potent and selective inhibitor of cyclic guanosine \(3^{\prime}, 5^{\prime}\)-monophosphate-specific phosphodiesterase, having a utility in a variety of therapeutic areas where such inhibition is beneficial, including the treatment of

Prepared by Toby Port, STIC, Biotech Library 308-3534
cardiovascular disorders and erectile dysfunction. Thus, many I compds. were synthesized and tested in vitro as inhibitors of cGMP
phosphodiesterase. Cis-2,3,6,7,12,12a-hexahydro-2-(4-pyridylmethyl)-6-
(3,4-methylenedioxyphenyl) pyrazino[2', 1': 6, 1] pyrido [3,4-b]indole-1, 4-dione showed IC50 of 10 nM .
IT 171488-01-0P 171488-03-2P 171488-04-3P
171488-06-5P 171488-07-6P 171488-08-7P
171488-09-8P 171488-10-1P 171488-11-2P
171488-12-3P 171488-13-4P 171488-14-5P
171488-15-6P 171488-16-7P 171488-17-8P
171488-18-9P 171488-19-0P 171488-20-3P
171488-21-4P 171488-22-5P 171488-76-9P
171488-77-0P 171488-86-1P 171488-87-2P
171488-91-8P 171488-92-9P 171488-94-1P
171488-95-2P 171489-01-3P 171489-02-4P
171596-27-3P 171596-28-4P 171596-29-5P
171596-30-8P 171596-31-9P 171596-32-0P
171596-36-4P 171596-39-7P 171596-40-0P
187935-15-5P 303984-32-9P
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(tetracyclic cyclic GMP-specific phosphodiesterase inhibitors and their
use in disease treatment)
RN 171488-01-0 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-1(6 R, 12 a S)-r e l-(9 C I) \quad\) (CA INDEX NAME)

Relative stereochemistry.

\(\begin{array}{ll}\text { RN } & 171488-03-2 \text { CAPLUS } \\ \text { CN } & \left.\text { Pyrazino[1', } 2^{\prime}: 1,6\right] \text { pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)- } \\ & 2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-, ~(6 R, 12 a R)-r e l-~(9 C I) ~(C A ~ I N D E X ~ N A M E) ~\end{array}\)
Relative stereochemistry.


RN 171488-04-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-,(6 \mathrm{R}, 12 \mathrm{aS})-r e l-(9 \mathrm{CI})\) (CA INDEX NAME)

Relative stereochemistry.

\(\begin{array}{ll}\text { RN } & 171488-06-5 \text { CAPLUS } \\ \text { CN } & \left.\text { Pyrazino[1', } 2^{\prime}: 1,6\right] \text { pyrido[3,4-b]indole-1, 4-dione, } 6-(1,3-\text { benzodioxol-5-yl)- } \\ & \text { 10-fluoro-2, } 3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-, ~(6 R, 12 a S)-r e l-(9 C I) ~(C A ~\end{array}\)
Relative stereochemistry.


RN 171488-07-6 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)-
```

2,3,6,7,12,12a-hexahydro-2-[2-(2-pyridinyl)ethyl]-, (6R,12aS)-rel- (9CI)

``` (CA INDEX NAME)

Relative stereochemistry.

```

RN 171488-08-7 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)$2,3,6,7,12,12$ a-hexahydro-2-(2-pyridinylmethyl)-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)
Relative stereochemistry.

```


RN 171488-09-8 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-(3-pyridinylmethyl)-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

RN 171488-10-1 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(4-p y r i d i n y l m e t h y 1)-,(6 R, 12 a S)-r e l-\) (9CI) (CA INDEX NAME)
Relative stereochemistry.

\(\begin{array}{ll}\mathrm{RN} & 171488-11-2 \text { CAPLUS } \\ \mathrm{CN} & \left.\text { Pyrazino[1', } 2^{\prime}: 1,6\right] \text { pyrido[3,4-b]indole-1,4-dione, } 6-(1,3-\text { benzodioxol-5-yl)- } \\ & 2-\mathrm{ethyl}-2,3,6,7,12,12 \mathrm{a}-\mathrm{hexahydro-,}(6 \mathrm{R}, 12 \mathrm{aS})-\mathrm{rel}-(9 \mathrm{CI}) \\ & \text { (CA INDEX NAME) }\end{array}\)
Relative stereochemistry.


RN 171488-12-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-

Prepared by Toby Port, STIC, Biotech Library 308-3534

2,3,6,7,12,12a-hexahydro-2-(2,2,2-trifluoroethyl)-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

\(\begin{array}{ll}\text { RN } \quad 171488-13-4 \text { CAPLUS } \\ \text { CN } & \left.\text { Pyrazino[1', } 2^{\prime}: 1,6\right] \text { pyrido[3,4-b]indole-1,4-dione, } 6-(1,3 \text {-benzodioxol-5-yl)- } \\ & 2,3,6,7,12,12 a-h e x a h y d r o-2-p r o p y l-, ~(6 R, 12 a S)-r e l-(9 C I) ~(C A ~ I N D E X ~ N A M E) ~\end{array}\)
Relative stereochemistry.


RN 171488-14-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(1-m e t h y l e t h y l)-\), (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-15-6 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-cyclopropyl-2,3,6,7,12,12a-hexahydro-, (6R,12aS)-re1- (9CI) . (CA INDEX NAME)

Relative stereochemistry.


RN 171488-16-7 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-butyl-2,3,6,7,12,12a-hexahydro-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-17-8 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-

Prepared by Toby Port, STIC, Biotech Library 308-3534

2-butyl-2,3,6,7,12,12a-hexahydro-, (6R,12aR)-rel- (9CI) (CA INDEX NAME)
Relative stereochemistry.

```

RN 171488-18-9 CAPLUS
CN Pyrazino[1',2':l,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2-(cyclopropylmethyl)-2,3,6,7,12,12a-hexahydro-, (6R,12aS)-rel- (9CI) (CA
INDEX NAME)
Relative stereochemistry.

```


RN 171488-19-0 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)2 -cyclopentyl-2,3,6,7,12,12a-hexahydro-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-20-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-cyclohexyl-2,3,6,7,12,12a-hexahydro-, ( \(6 \mathrm{R}, 12 \mathrm{aS}\) )-re1- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-21-4 CAPLUS
CN Pyrazino[1', 2': 1, 6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(p h e n y l m e t h y l)-\) ( \(6 \mathrm{R}, 12 \mathrm{aS}\) )-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534
```

RN 171488-22-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2-[(4-fluorophenyl)methyl]-2,3,6,7,12,12a-hexahydro-, (6R,12aS)-rel- (9CI)
(CA INDEX NAME)

```

Relative stereochemistry.

 NAME)

Absolute stereochemistry. Rotation (+).


RN 171488-77-0 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-(cyclohexylmethyl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171488-86-1 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2,10-dimethyl-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-87-2 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3,4-b]indole-1, 4-dione, 6-(1,3-benzodioxol-5-yl)-2-[(3,4-dimethoxyphenyl)methyl]-2,3,6,7,12,12a-hexahydro-, (6R, 12aR)-
(9CI) (CA INDEX NAME)
Absolute stereochemistry. Rotation (+).


RN 171488-91-8 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2-(2-propynyl)-, (6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171488-92-9 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-(1,3-benzodioxol-5-ylmethyl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171488-94-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)2 -(2-furanylmethyl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171488-95-2 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-\) hexahydro-2-(2-thienylmethyl)-, (6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171489-01-3 CAPLUS
CN 5H,14H-Pyrrolo[1'', \(\left.2^{\prime \prime}: 4^{\prime}, 5^{\prime}\right]\) pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-5, 14dione, \(12-(1,3\)-benzodioxol-5-yl)-1, \(2,3,5 \mathrm{a}, 6,11,12,14 \mathrm{a}\)-octahydro-, (5aR, 12R, 14aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171489-02-4 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1', 2':1,6]pyrido [3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2,3\)-dimethyl-, (3R,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-27-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-y1)\(2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-methyl-, (6R,12aS)-(9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

\(\begin{array}{ll}\text { RN } & 171596-28-4 \quad \text { CAPLUS } \\ \text { CN } & \left.\text { Pyrazino[1', } 2^{\prime}: 1,6\right] \text { pyrido[3,4-b]indole-1, 4-dione, 6-(1, 3-benzodioxol-5-yl)- } \\ & 2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 S, 12 a R)-(9 C I) \quad \text { (CA INDEX NAME) }\end{array}\)
Absolute stereochemistry. Rotation (+).


RN 171596-29-5 CAPLUS
CN Pyrazino[1', \(\left.{ }^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-y1)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y 1-,(6 R, 12 a R)-\) (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-30-8 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-(1-methylethyl)-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-31-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-

2-butyl-2, 3, 6, 7, 12, 12a-hexahydro-, (6R, 12aR)- (9CI) (CA INDEX NAME)
Absolute stereochemistry. Rotation (+).

```

RN 171596-32-0 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2-cyclopentyl-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)
Absolute stereochemistry. Rotation (+).

```

\begin{tabular}{ll} 
RN & \(171596-36-4\) CAPLUS \\
CN & Pyrazino \(\left[1^{\prime}, 2^{\prime}: 1,6\right]\) pyrido \([3,4-b]\) indole-1, 4-dione, 6-(1, 3-benzodioxol-5-yl)- \\
& \(2,3,6,7,12,12 a^{-h e x a h y d r o-, ~}(6 R, 12 a R)-(9 \mathrm{CI})\) (CA INDEX NAME)
\end{tabular}

Absolute stereochemistry. Rotation (+).


Prepared by Toby Port, STIC, Biotech Library 308-3534

RN 171596-39-7 CAPLUS
CN 5H,14H-Pyrrolo[1'',2'':4',5']pyrazino[1',2':1,6]pyrido[3,4-b]indole-5,14dione, 12-(1,3-benzodioxol-5-yl)-1,2,3,5a,6,11,12,14a-octahydro-, (5aR, 12R, 14aS)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-40-0 CAPLUS \(\quad\) PN Pyazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-\) hexahydro-2,3-dimethyl-, (3S, 6R,12aR)-(9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 187935-15-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-3-m e t h y l-,(35,6 R, 12 a R)-(9 C I)\) (CA INDEX NAME)

Absolute stereochemistry.


RN 303984-32-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-[2-(1,3-benzodioxol-5-yl) ethyl]-2,3,6,7,12,12a-hexahydro-, (6R,12aR)(9CI) (CA INDEX NAME)

Absolute stereochemistry.


REFERENCE COUNT:
41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 27 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2000:686171 CAPLUS DOCUMENT NUMBER: 133:271672
TITLE: Phosphodiesterase inhibitor preparation for treatment
of sexual functional disorders
PATENT ASSIGNEE(S): Lilly Icos Llc, USA
SOURCE: Ger. Gebrauchsmusterschrift, 47 pp .
CODEN: GGXXFR
DOCUMENT TYPE:
Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 3
PATENT INFORMATION:
\begin{tabular}{|c|c|c|c|c|}
\hline PATENT NO. & KIND & dAte & APPLICATION NO. & DATE \\
\hline DE 20007861 & U1 & 20000928 & DE 2000-20007861 & 20000426 \\
\hline NO 2000002097 & A & 20011026 & NO 2000-2097 & 20000425 \\
\hline CA 2307101 & AA & 20001030 & CA 2000-2307101 & 20000426 \\
\hline FI 2000000976 & A & 20001030 & FI 2000-976 & 20000426 \\
\hline
\end{tabular}

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

NL 1015027	A1	20001031	NL 2000-1015027	20000426	
NL 1015027	C2	20010214			
SE 2000001518	A	20001031	SE 2000-1518	20000426	
ZA 2000002058	A	20001102	ZA 2000-2058	20000426	
WO 2000066099	A2	20001109	WO 2000-US11129	20000426	
WO 2000066099	A3	20010118			

 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR,
 CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
 ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
 LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,
 SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
 2W, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
 RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE,
 DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF,
 CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
 DE 10021266 A1 20001116 DE 2000-10021266 20000426
 JP 2000336043 A2 20001205 JP 2000-126472 20000426
 FR 2795646 A1 20010105 FR 2000-5296 20000426
 GB 2351663 A1 20010110 GB 2000-10199 20000426
 LT 4758 B B 20010226 LT 2000-35 % 20000426
 LV 12560 B LV 2000-56 20010420 20000426
 CN 1292264 A N 20010425 CN 2000-106987 20000426
 BE 1012957 A5 20010605 BE 2000-295 20000426
 EP 1173181 A2 20020123 EP 2000-926367 20000426
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO
 LU 90569 A2 20020227 LU 2000-90569 20000426
NO 2001005275 A 20011206 NO 2001-5275 20011029
PRIORITY APPLN. INFO.: US 1999-132036P P 19990430
WO 2000-US11129 W 20000426
AB A formulation for the treatment of sexual malfunctions (e.g., erectile
dysfunction in men and decreased libido in women) which contains a
phosphodiesterase 5 inhibitor with a IC50 of at least 100-fold lower than
that with phosphodiesterase 6 as active ingredient, and which inhibits
phosphodiesterase 5 with an IC50 of at least 1000-fold lower than for
phosphodiesterase 1c and a IC50 for PDE5 of below 10 nM.
IT 171596-29-5
RL: BAC (Biological activity or effector, except adverse); BSU (Biological
study, unclassified); PEP (Physical, engineering or chemical process); THU
(Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
(phosphodiesterase inhibitor prepn. for treatment of sexual functional
disorders)
RN 171596-29-5 CAPLUS
CN . Pyrazino[l',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)
Absolute stereochemistry. Rotation (+).

```

Prepared by Toby Port, STIC, Biotech Library 308-3534

```

L12 ANSWER 28 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2000:666601 CAPLUS
DOCUMENT NUMBER: 133:256811
TITLE:. Pharmaceutical compositions containing dopamine
agonists in combination with nitric oxide donors for
treating and/or preventing sexual dysfunctions
INVENTOR(S):
PATENT ASSIGNEE(S):
SOURCE:
DOCUMENT TYPE:
LANGUAGE:
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:

```

OTHER SOURCE (S): MARPAT 133:256811
\(A B\) The present invention is directed to novel compns. comprising at least one dopamine agonist in combination with at least one nitric oxide donor (i.e. compds. that donate, transfer or release nitric oxide, elevate endogenous levels of endothelium-derived relaxing factor, stimulate endogenous synthesis of nitric oxide or are substrates for nitric oxide synthase). The novel compns. may optionally comprise at least one therapeutic agent, such as, a vasoactive agent, an antiemetic agent, and mixts. thereof. The dopamine agonist is preferably apomorphine. The present invention is also directed to methods for treating and/or preventing sexual dysfunctions and/or enhancing sexual responses in patients. In other embodiments, the present invention is directed to methods treating or preventing neurodegenerative diseases, mitochondrial diseases, spinal cord injury, central or psychostimulant addiction, senile dementia, circulatory disorders, cardiovascular disorders, hyperprolactinemia or myopia. The compds. and/or compns. of the present invention can also be provided in
the form of a pharmaceutical kit (no data).
IT 171596-29-5, Ic 351
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(pharmaceutical compns. contg. dopamine agonists in combination with nitric oxide donors for treating and/or preventing sexual dysfunctions) 171596-29-5 CAPLUS
Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-\(2,3,6,7,12,12\)-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


REFERENCE COUNT:
THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 29 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2000:645819 CAPLUS
DOCUMENT NUMBER: 133:227820
TITLE:

INVENTOR(S):
PATENT ASSIGNEE(S):
SOURCE:
Pharmaceutical compositions for treating erectile dysfunction containing a melanocortin receptor agonist and a cyclic-GMP-specific phosphodiesterase inhibitor or an .alpha.-adrenergic receptor antagonist Stoner, Elizabeth Merck \& Co., Inc., USA; Waldstreicher, Joanne PCT Int. Appl., 25 pp . CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:


Prepared by Toby Port, STIC, Biotech Library 308-3534
```

 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO
 PRIORITY APPLN. INFO.: US 1999-123244P P 19990308
WO 2000-US5711 W 20000303
AB The present invention provides for a method for the treatment of erectile
dysfunction in a male or female human subject in need of such treatment
comprising administration of a therapeutically effective amt. of an
agonist of the melanocortin receptor in combination with a therapeutically
effective amt. of a cyclic-GMP-specific phosphodiesterase inhibitor or an
alpha-adrenergic receptor antagonist. Further, the present invention
provides for pharmaceutical compns. useful in the methods of the present
invention, as well as a method of manuf. of a medicament useful for
treating erectile dysfunction. Effect of the combination of 20 mg/kg of
the invention compds. was tested in rats. A hard gelatin capsule
contained a melanocortin receptor agonist 5, and a type V
phosphodiesterase inhibitor 10 mg.
IT 171596-29-5
RL: BAC (Biological activity or effector, except adverse); BSU (Biological
study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES
(Uses)
(pharmaceutical compns. for treating erectile dysfunction contg.
melanocortin receptor agonist and cyclic-GMP-specific phosphodiesterase
inhibitor or .alpha.-adrenergic receptor antagonist)
RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).


L12 ANSWER 30 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2000:475525 CAPLUS
DOCUMENT NUMBER 133:109946
TITLE: Methylaminodihydroimidazoquinolinones for treating sexual disturbances and inducing mating in animals
INVENTOR(S): Meglasson, Martin Durham; McCall, Robert B.
PATENT ASSIGNEE(S): Pharmacia \& Upjohn Company, USA
SOURCE:
PCT Int. Appl., 48 pp .
CODEN: PIXXD2
DOCUMENT TYPE:
Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
PATENT NO. KIND DATE APPLICATION NO. DATE
 GI

\(A B\) The present invention is a method of treating sexual disturbances in humans and inducing mating in non-human mammals using the compds. of formula (I: R1, R2,R3 = H, alkyl, alkenyl, cycloalkyl, etc.; X = H, alkyl, halogen, OH , etc.; \(\mathrm{A}, \mathrm{B}, \mathrm{D}=\mathrm{CH}, \mathrm{CH} 2, \mathrm{CO}, \mathrm{N}, \mathrm{etc}. ; \mathrm{n}=0\) or 1) in a dosage range where the sexually therapeutic amt. is from about 0.2 through 8 \(\mathrm{mg} /\) person/dose and where the sexually mating amt. is from about 0.003 through \(0.2 \mathrm{mg} / \mathrm{kg} / \mathrm{dose}\).
IT 171596-29-5, ICOS 351
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PEP (Physical, engineering or chemical process); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
(treating sexual disturbances and inducing mating in animals)
RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2\)-methyl-, ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

Prepared by Toby Port, STIC, Biotech Library 308-3534


L12 ANSWER 31 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 2000:392967 CAPLUS
DOCUMENT NUMBER: 133:22405
TITLE: Preventives containing 1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one derivatives and related compounds for nitric acid-induced tolerance
INVENTOR(S): Ellis, Peter
PATENT ASSIGNEE(S): Pfizer Inc., USA
SOURCE:
Jpn. Kokai Tokkyo Koho, 31 pp.
CODEN: JKXXAF
DOCUMENT TYPE:
Patent
LANGUAGE:
Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:


Prepared by Toby Port, STIC, Biotech Library 308-3534


AB The title compds. [I; R1 \(=\mathrm{H}, \mathrm{Cl}-3\) alkyl, C3-5 cycloalkyl, C1-3
perfluoroalkyl; R2 \(=\mathrm{H}, \mathrm{Cl}-3\) perfluoroalkyl, Cl-6 alkyl substituted by OH,
C1-3 alkoxy, or C3-6 cycloalkyl; \(\mathrm{R} 3=\mathrm{C} 1-6\) alkyl, C3-6 alkenyl, C3-6
alkynyl, C3-7 cycloalkyl, C1-6 perfluoroalkyl, C3-6 cycloalkyl-Cl-6 alkyl;
R4 together with the R4-bonded \(N\) completes \(4-N-R 6\)-piperazinyl; R5 \(=\mathrm{H}\), Cl-4 alkyl, Cl-3 alkoxy, NR7R8, CONR7R8; wherein R6 \(=\mathrm{H}, \mathrm{Cl}-6\) alkyl, hydroxy-C2-6 alkyl, R7R8N-C2-6 alkyl, R7R8NCO-C1-6 alkyl, CONR7R8, CSNR7R8, C (: NH)NR7R8; wherein R7, R8 \(=\mathrm{H}, \mathrm{Cl}-4\) alkyl, Cl-3 alkoxy-C2-4 alkyl, hydroxy-C2-4 alkyl], pharmacol. acceptable salts, prodrugs, polymorphs, hydrates, solvates, active metabolites, or stereoisomers thereof, which are cGMP phosphodiesterase inhibitors and useful for the prevention of nitrate tolerance (no data), are prepd. The title compds. also include pyrazolo[3,4-d]pyrimidin-4-one, quinazolin-4-one, purin-6-one, pyrido[3,2-d]pyrimidin-4-one, and
pyrazino[1', 2':1,6]pyrido[3,4-b]indole derivs.
IT 171488-10-1P 171488-15-6P 171596-29-5P
171596-30-8P 171596-32-0P 171596-36-4P
171596-40-0P 187935-15-5P 273207-76-4P
RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(preventives contg. 1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
derivs. and related compds. as cGMP phosphodiesterase inhibitors for
nitric acid-induced tolerance)
RN 171488-10-1 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(4-p y r i d i n y l m e t h y l)-\), (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534

RN 171488-15-6 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)-2-cyclopropyl-2,3,6,7,12,12a-hexahydro-, (6R, 12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171596-29-5 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-(9 C I)\) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-30-8 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido [3,4-b]-indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(1-m e t h y l e t h y l)-,(6 R, 12 a R)-\) (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-32-0 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-cyclopentyl-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-36-4 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
\(2,3,6,7,12,12 a-h e x a h y d r o-,(6 R, 12 a R)-(9 C I)\) (CA INDEX NAME)
Absolute stereochemistry. Rotation (+).


RN 171596-40-0 CAPLUS
CN Pyrazino[1', \(\left.{ }^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2,3-dimethyl-, (3S, 6R,12aR)- (9CI) (CA INDEX

NAME)
Absolute stereochemistry. Rotation (+).


RN 187935-15-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-y1)\(2,3,6,7,12,12 a-h e x a h y d r o-3-m e t h y l-,(3 S, 6 R, 12 a R)-\) ( 9 CI ) (CA INDEX NAME)

Absolute stereochemistry.



Absolute stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534


Absolute stereochemistry.


RN 263392-03-6 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2,3-dimethyl-, \((3 S, 6 S)-(9 \mathrm{CI})\) (CA INDEX NAME)

Absolute stereochemistry.


REFERENCE COUNT: 28
THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE EORMAT

L12 ANSWER 33 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1999:753072 CAPLUS
DOCUMENT NUMBER:
131:346565
TITLE: Combination of phentolamine and cyclic GMP phosphodiesterase inhibitors for the treatment of sexual dysfunction
INVENTOR(S):
PATENT ASSIGNEE(S):
Estok, Thomas Mark
Schering Corporation, USA
SOURCE: PCT Int. Appl., 104 pp .
CODEN: PIXXD2
DOCUMENT TYPE:
Patent
LANGUAGE:
English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

```

 RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU,
 ZA, AM, AZ, BY, KG, KZ, RU, TJ, TM
 RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
 ES, EI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BE, BJ, CF, CG,
 CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
 AU 9940685 Al 19991206 AU 1999-40685 19990517
 PRIORITY APPLN. INFO.:
AB A method of treating sexual dysfunction comprising administering a
therapeutically effective amt. of a combination of phentolamine and cGMP
PDE inhibitor (e.g. sildenafil), as well as pharmaceutical compns. and
kits useful in those methods, are disclosed.
IT 171596-29-5 171596-40-0
RL: BAC (Biological activity or effector, except adverse); BSU (Biological
study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES
(Uses)
(phentolamine and cyclic GMP phosphodiesterase inhibitors for the
treatment of sexual dysfunction)
RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)
Absolute stereochemistry. Rotation (+).

```

```

RN 171596-40-0 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)$2,3,6,7,12,12$ a-hexahydro-2,3-dimethyl-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).


REFERENCE COUNT: 9

\section*{THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT}


Prepared by Toby Port, STIC, Biotech Library 308-3534

Absolute stereochemistry. Rotation (+).


REFERENCE COUNT: 35
THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CItATIONS AVAILABLE IN THE RE FORMAT
```

L12 ANSWER 35 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1997:215760 CAPLUS
DOCUMENT NUMBER: 126:203727
TITLE:
Use of cGMP-phosphodiesterase inhibitors to treat
impotence
INVENTOR(S): Daugan, Alain Claude-Marie
PATENT ASSIGNEE(S): Laboratoire Glaxo Wellcome S.A., Fr.; Daugan, Alain
Claude-Marie
SOURCE: PCT Int. Appl., 27 pp.
CODEN: PIXXD2
DOCUMENT TYPE:
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 4

```
PATENT INEORMATION:
\begin{tabular}{|c|c|c|c|c|}
\hline PATENT NO. & KIND & DATE & APPLICATION NO. & DATE \\
\hline WO 9703675 & A1 & 19970206 & WO 1996-EP3024 & 1996071 \\
\hline
\end{tabular}
\(W\) : \(A L, A M, A T, A U, A Z, B B, B G, B R, B Y, C A, C H, C N, C Z, D E, D K, E E\), ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
            SE, SG
    RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR,
            IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA
\begin{tabular}{lcccccc} 
& IE, \(\mathrm{IT}, \mathrm{LU}, \mathrm{MC}, \mathrm{NL}, \mathrm{PT}, \mathrm{SE}, \mathrm{BF}, \mathrm{BJ}, \mathrm{CE}, \mathrm{CG}, \mathrm{CI}, \mathrm{CM}, \mathrm{GA}\) \\
CA & 2226784 & AA & 19970206 & CA \(1996-2226784\) & 19960711 \\
AU 9664191 & A1 & 19970218 & AU \(1996-64191\) & 19960711 \\
AU 704955 & B2 & 19990513 & & & \\
EP 839040 & Al & 19980506 & EP \(1996-923985\) & 19960711
\end{tabular}

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, SI, LT, LV, FI
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CN 1195290 & A & 19981007 & & CN 1996-1967 & & 19960711 \\
\hline BR 9609758 & A & 19990126 & & BR 1996-975 & & 19960711 \\
\hline JP 11509221 & T2 & 19990817 & & JP 1996-506 & & 19960711 \\
\hline CZ 289686 & B6 & 20020313 & & CZ 1998-33 & & 19960711 \\
\hline NO 9800153 & A & 19980310 & & NO 1998-153 & & 19980113 \\
\hline US 6140329 & A & 20001031 & & US 1998-981 & & 19980310 \\
\hline US 6143746 & A & 20001107 & & US 1998-15 & & 19980916 \\
\hline RITY APPLN. INFO.: & & & GB & 1995-14464 & A & 19950714 \\
\hline & & & GB & 1994-1090 & A & 19940121 \\
\hline & & & wo & 1995-EP183 & A & 19950119 \\
\hline & & & GB & 995-14465 & & 1995071 \\
\hline
\end{tabular}

Prepared by Toby Port, STIC, Biotech Library 308-3534
\begin{tabular}{lll} 
WO 1996-EP3024 & W 19960711 \\
WO 1996 -EP3025 & A2 19960711
\end{tabular}

OTHER SOURCE(S): MARPAT 12.6:203727
\(A B\) Compds. such as (6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3, 4methylenedioxyphenyl) pyrazino[2', 1':6,1]pyrido[3,4-b]indole-1,4-dione, (3S, 6R, 12aR)-2, 3, 6, 7, 12, 12a-hexahydro-2,3-dimethyl-6-(3, 4methylenedioxyphenyl) pyrazino[ \(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido [3,4-b]indole-1,4-dione, and physiol. acceptable salts and solvates thereof, can be used as cGMP-phosphodiesterase inhibitors in the treatment of impotence.
IT 171596-29-5P 171596-40-0P
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(cGMP-phosphodiesterase inhibitor formulations to treat impotence)
RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-\), ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-40-0 CAPLUS \(\quad\) PN Pyrazino[1', \(\left.{ }^{\prime}: 1,6\right]\) pyrido \(\left.3,4-\mathrm{b}\right]\) indole-1, 4-dione, 6-(1,3-benzodioxol-5-yl)-
\(2,3,6,7,12,12\) a-hexahydro-2,3-dimethyl-, (3S,6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


IT 187935-15-5P
RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(cGMP-phosphodiesterase inhibitor formulations to treat impotence)

Prepared by Toby Port, STIC, Biotech Library 308-3534

RN 187935-15-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-3-m e t h y l-,(3 S, 6 R, 12 a R)-\) ( 9 CI ) (CA INDEX NAME)

Absolute stereochemistry.


L12 ANSWER 36 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1997:101617 CAPLUS
DOCUMENT NUMBER: 126:108935
TITLE: Method of producing a solid dispersion of a poorly water-soluble drug
INVENTOR(S): Butler, James Matthew
PATENT ASSIGNEE(S): Glaxo Group Limited, UK; Butler, James Matthew
SOURCE: PCT Int. Appl., 27 pp. CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:


Prepared by Toby Port, STIC, Biotech Library 308-3534
and (+)-N-[l-(adamantanmethyl)-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-3-yl]-N'-phenylurea are described. I 1 g and hydroxypropyl Me cellulose phthalate 1 g were dissolved in a 9:1 mixt. of acetone/water ( 27 mL ) and 0.25 M HCl 83 mL was added to obtain a ppt. The ppt. was filtered, washed with water, dried, and milled. A tablet contg. 100 mg ppt. was formulated.
IT 171596-29-5P
RL: PRP (Properties); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(prepn. of pyrazinopyridoindole deriv. in manuf. of solid dispersion of poorly water-sol. drugs)
RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-,(6 R, 12 a R)-(9 C I)\) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


L12 ANSWER 37 OF 37 CAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1995:986316 CAPLUS
DOCUMENT NUMBER: 124:55977
TITLE: Preparation of pyrazinopyridoindolediones as
inhibitors of cyclic guanosine 3',5'-monophosphate
specific phosphodiesterase
INVENTOR(S):
Daugan, Alain Claude-Marie
PATENT ASSIGNEE(S): Laboratoires Glaxo S.A., Fr.
SOURCE:
PCT Int. Appl., 87 pp.
CODEN: PIXXD2
DOCUMENT TYPE:
Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 4
PATENT INFORMATION:


Prepared by Toby Port, STIC, Biotech Library 308-3534

Cook pet/us00/11129
AU 689205 B2 19980326
    \(\begin{array}{lll}\text { ZA } 9500424 & \text { A } & 19950927 \\ \text { EP } 740668 & \text { A1 } & 19961106 \\ \text { EP } 740668 & \text { Bl } & 19980729\end{array}\)
    \(\begin{array}{lll}\text { 2A } 9500424 & \text { A } & 19950927 \\ \text { EP } 740668 & \text { A1 } & 19961106 \\ \text { EP } 740668 & \text { B1 } & 19980729\end{array}\)
    \(\begin{array}{lll}\text { ZA } 9500424 & \text { A } & 19950927 \\ \text { EP } 740668 & \text { A1 } & 19961106 \\ \text { EP } 740668 & \text { Bl } & 19980729\end{array}\)
        R: AT, BE, C
        DE,
        CN 1143963 ,
    A 19970226
    CN 1045777 B 19991020
    \(\begin{array}{lll}\mathrm{HU} 74943 & \text { A2 } 19970328\end{array}\)
    \(\begin{array}{lll}\text { JP } 09508113 & \text { T2 } & 19970819 \\ \text { BR } 9506559 & \text { A } & 19971028\end{array}\)
    \(\begin{array}{lll}\text { BR } 9506559 & \text { A } & 19971028 \\ \text { AT } 169018 & \text { E } & 1998081\end{array}\)
    \(\begin{array}{lll}\text { AT } 169018 & \text { E } & 19980815 \\ \text { IL } & 112384 & \text { A1 } \\ \text { ES } 2122543 & \text { T3 } & 1998081616\end{array}\)
    ES 2122543 T3 19981216
    RU 2142463 Cl 19991210
    CZ 286566 B6 20000517
    SK 280879 B6 20000814
    PL 179744 B1 20001031
    LV 11690
    B 19970620
    US 5859006 A 19990112
    FI 9602927 A 19960719
    NO 9603015 A 19960909
    AU \(9873912 \quad\) A1 19980820
    AU 707055 B2 19990701
    US 6025494 A 20000215
    US 6143746 A 20001107
    CN 1224720 A 19990804
    CN 1070492 B 20010905
    US 6127542 A 20001003
        FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
            CH ,
        \(\begin{array}{ll}\text { 2A 1995-424 } & 19950119 \\ \text { EP 1995-907565 } & 19950119\end{array}\)EP 1995-907565 19950119
            CN 1995-192078 19950119
            HU 1996-1982 19950119
            JP 1995-519339 19950119
            BR 1995-6559 19950119
            AT 1995-907565 19950119
            IL 1995-112384 19950119
            ES 1995-907565 19950119
            RU 1996-117127 19950119
            CZ 1996-2116 19950119
            SK 1996-940 19950119
            PL 1995-315559 19950119
            LV 1996-228 19960710
            US 1996-669389 19960716
            FI 1996-2927 19960719
            NO 1996-3015 19960719
            AU 1998-73912 19980626
            \(\begin{array}{lll}\text { US } & 1998-133078 & 19980812 \\ \text { US } & 1998-154051 & 19980916\end{array}\)
            CN 1998-122779 19981201
                US 1999-399667 19990921
PRIORITY APPLN. INFO.:
\begin{tabular}{lll} 
GB \(1994-1090\) & A & 19940121 \\
WO \(1995-E P 183\) & W & 19950119 \\
GB & \(1995-14464\) & A \\
GB & 19950714 \\
WO \(1995-14465\) & A & 19950714 \\
WO \(1996-E P 3024\) & A2 & 19960711 \\
US & \(1996-683025\) & A2 \\
19960711 \\
US \(1998-133078\) & A3 & 19960716 \\
A1 & 19980812
\end{tabular}
OTHER SOURCE(S): MARPAT 124:55977
GI For diagram(s), see printed CA Issue.
AB The title compds. I [R represents hydrogen, halogen or C1-6 alkyl; R1 represents hydrogen, C1-6 alkyl, C2-6 alkenyl, C2-6 a1kynyl, haloC1-6alkyl, C3-8cycloalkyl, etc.; R2 represents an optionally substituted monocyclic arom. ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic ring Q1 attached to the rest of the mol. via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5 - or 6 -membered ring which may be satd. or partially or fully unsatd. and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulfur and nitrogen; and R3 represents hydrogen or Cl-3 alkyl, or R1 and R3 together represent a 3- or 4-membered alkyl or alkenyl chain] are prepd. In an in vitro test for inhibitory effect on CGMP-PDE, cis-2,3,6,7,12,12a-hexahydro-2-(4-pyridylmethyl)-6-(3,4-methylenedioxyphenyl) pyrazino[2', 1': 6, 1]pyrido [3,4-b] indole-1,4-dione (prepn. given) showed IC50 of 10 nM .
IT 171488-01-OP 171488-03-2P 171488-04-3P
171488-06-5P 171488-07-6P \(171488-08-7 \mathrm{P}\)
171488-09-8P 171488-10-1P 171488-11-2P
171488-12-3P 171488-13-4P 171488-14-5P
171488-15-6P 171488-16-7P 171488-17-8P
171488-18-9P 171488-19-0P 171488-20-3P
171488-21-4P 171488-22-5P 171488-76-9P
171488-77-OP 171488-86-1P 171488-87-2P
171488-91-8P 171488-92-9P 171488-93-0P

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

 171488-94-1P 171488-95-2P 171489-01-3P
 171489-02-4P 171596-27-3P 171596-28-4P
 171596-29-5P 171596-30-8P 171596-31-9P
 171596-32-OP 171596-36-4P 171596-39-7P
171596-40-0P
RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic
preparation); THU (Therapeutic use); BIOL (Biological study); PREP
(Preparation); USES (Uses)
(prepn. of pyrazinopyridoindolediones as inhibitors of cyclic guanosine
monophosphate specific phosphodiesterase)
RN 171488-01-0 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

```

Relative stereochemistry.


RN 171488-03-2 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12\) a-hexahydro-2-methyl-, (6R,12aR)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-04-3 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-\) ( \(6 \mathrm{R}, 12 \mathrm{aS}\) )-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-06-5 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido \([3,4-b]\) indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-10-fluoro-2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-07-6 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 \mathrm{a}-\mathrm{hexahydro-2-[2-(2-pyridinyl)ethyl]-}, \mathrm{(6R,12aS)-rel-(9CI)}\)
(CA INDEX NAME)
Relative stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534
```

RN 171488-08-7 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-(2-pyridinylmethyl)-, (6R,12aS)-rel- (9CI) (CA
INDEX NAME)
Relative stereochemistry.

```

 INDEX NAME)

Relative stereochemistry.


RN 171488-10-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(4-p y r i d i n y l m e t h y l)-\) ( \(6 \mathrm{R}, 12 \mathrm{aS}\) )-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

Prepared by Toby Port, STIC, Biotech Library 308-3534


RN 171488-11-2 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1, 4-dione, 6-(1, 3-benzodioxol-5-yl)-2-ethyl-2,3,6,7,12,12a-hexahydro-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-12-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
\(2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-(2,2,2-trifluoroethyl)-, (6R,12aS)-rel- (9CI)
(CA INDEX NAME)
Relative stereochemistry.


RN 171488-13-4 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

2,3,6,7,12,12a-hexahydro-2-propyl-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

```

Relative stereochemistry.

\begin{tabular}{|c|c|c|}
\hline RN & \multicolumn{2}{|l|}{171488-14-5 CAPLUS} \\
\hline CN & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Pyrazino \(2,3,6,12,12 \mathrm{a}\)-hexa}} \\
\hline & & \\
\hline & INDEX NAME) & \\
\hline
\end{tabular}

Relative stereochemistry.


RN \(171488-15-6\) CAPLUS
CN
Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1, 4-dione, 6-(1,3-benzodioxol-5-yl)-

2-cyclopropyl-2,3,6,7,12,12a-hexahydro-, (6R,12aS)-rel- (9CI) (CA INDEX
Relative stereochemistry.


RN 171488-16-7 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-butyl-2,3,6,7,12,12a-hexahydro-, (6R,12aS)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN 171488-17-8 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-y1)-2-butyl-2,3,6,7,12,12a-hexahydro-, ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.


RN
171488-18-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)2 -(cyclopropylmethyl)-2,3,6,7,12,12a-hexahydro-, (6R,12aS)-rel- (9CI) (CA

Prepared by Toby Port, STIC, Biotech Library 308-3534

INDEX NAME)
Relative stereochemistry.


Relative stereochemistry.

 NAME)

Relative stereochemistry.

Prepared by Toby Port, STIC, Biotech Library 308-3534

\begin{tabular}{ll} 
RN & \(171488-21-4\) CAPLUS \\
CN & Pyrazino[1', \(\left.2^{\prime}: l, 6\right]\) pyrido \(\left.3,4-b\right]\) indole-1, 4-dione, \(6-(1,3-\) benzodioxol-5-yl)- \\
& \(2,3,6,7,12,12 a-h e x a h y d r o-2-(p h e n y l m e t h y l)-,(6 R, 12 a S)-r e l-(9 C I)\) \\
& INDEX NAME)
\end{tabular}

Relative stereochemistry.

\(\begin{array}{ll}\text { RN } & 171488-22-5 \text { CAPLUS } \\ \text { CN } & \text { Pyrazino[1',2':1,6]pyrido[3,4-b] indole-1, 4-dione, 6-(1, 3-benzodioxol-5-yl)- } \\ & 2-[(4-f l u o r o p h e n y l) m e t h y l]-2,3,6,7,12,12 \text { a-hexahydro-, }(6 R, 12 a S)-r e l-(9 C I)\end{array}\) (CA INDEX NAME)

Relative stereochemistry.


Prepared by Toby Port, STIC, Biotech Library 308-3534

RN 171488-76-9 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(2-m e t h y l p r o p y 1)-,(6 R, 12 a R)-(9 C I) \quad\) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171488-77-0 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido \(\left.3,4-\mathrm{b}\right]\) indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)2 -(cyclohexylmethyl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171488-86-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2,10\)-dimethyl-, ( \(6 \mathrm{R}, 12 \mathrm{aS}\) )-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

```

RN 171488-87-2 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2-[(3,4-dimethoxyphenyl)methyl]-2,3,6,7,12,12a-hexahydro-, (6R,12aR)-
(9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).


RN 171488-91-8 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(2-p r o p y n y l)-\), ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (t).


RN 171488-92-9 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-(1,3-benzodioxol-5-ylmethyl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI)
(CA INDEX NAME)
Absolute stereochemistry. Rotation (+).


RN 171488-93-0 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)-\(2-[2-(3,4-d i m e t h o x y p h e n y l)\) ethyl]-2,3,6,7,12,12a-hexahydro-, (6R-trans)(9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation ( + ).


RN 171488-94-1 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-(2-furanylmethyl)-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation ( + ).


RN 171488-95-2 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(2-t h i e n y l m e t h y l)-\) ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171489-01-3 CAPLUS
CN 5H,14H-Pyrrolo[1'',2'':4',5']pyrazino[1',2':1,6]pyrido[3,4-b]indole-5,14dione, 12-(1,3-benzodioxo1-5-yl)-1,2,3,5a,6,11,12,14a-octahydro-, (5aR,12R,14aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171489-02-4 CAPLUS

Prepared by Toby Port, STIC, Biotech Library 308-3534

CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2,3\)-dimethyl-, ( \(3 \mathrm{R}, 6 \mathrm{R}, 12 \mathrm{aR}\) )-(9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-27-3 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-\), ( \(6 \mathrm{R}, 12 \mathrm{aS}\) )- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).


Absolute stereochemistry. Rotation (+).

```

RN 171596-29-5 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).


RN 171596-30-8 CAPLUS
CN Pyrazino[1', 2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)\(2,3,6,7,12,12 a-h e x a h y d r o-2-(1-m e t h y l e t h y l)-\), (6R, 12aR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).


RN 171596-31-9 CAPLUS
CN Pyrazino[1', \(\left.2^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,4-dione, 6-(1, 3-benzodioxol-5-yl)-

Prepared by Toby Port, STIC, Biotech Library 308-3534

2-buty1-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)
Absolute stereochemistry. Rotation (+).

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline Pyrazino[1', 2': 1, 6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)- & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-2-cyclopentyl-2, \(3,6,7,12,12 a-h e x a h y d r o-\), ( \(6 R, 12 a R\) )- ( 9 CI ) (CA INDEX NAME)}} \\
\hline 2 -cyclopentyl-2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME) & & & \\
\hline
\end{tabular}

Absolute stereochemistry. Rotation (+).

```

RN 171596-36-4 CAPLUS
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-, (6R,12aR)- (9CI) (CA INDEX NAME)

```

Absolute stereochemistry. Rotation (+).


Prepared by Toby Port, STIC, Biotech Library 308-3534

RN 171596-39-7 CAPLUS
CN 5H,14H-Pyrrolo[1'', 2'':4', 5']pyrazino[1', 2':1, 6]pyrido[3,4-b]indole-5,14dione, 12-(1,3-benzodioxol-5-y1)-1,2,3,5a,6,11,12,14a-octahydro-, (5aR, 12R, 14 aS ) - (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

\(\begin{array}{ll}\mathrm{RN} & 171596-40-0 \text { CAPLUS } \\ \mathrm{CN} & \text { Pyrazino[1, 2':1,6]pyrido[3,4-b]indole-1, 4-dione, 6-(1, 3-benzodioxol-5-yl)- } \\ & 2,3,6,7,12,12 \mathrm{a}-\mathrm{hexahydro-2,3-dimethyl-,}(3 \mathrm{~S}, 6 \mathrm{R}, 12 \mathrm{aR})-(9 \mathrm{CI}) \text { (CA INDEX }\end{array}\) NAME)

Absolute stereochemistry. Rotation (+).

\(\Rightarrow\) file caold; d que nos 116
FILE 'CAOLD' ENTERED AT 14:31:53 ON 16 JUL 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)
FILE COVERS 1907-1966
FILE LAST UPDATED: 01 May 1997 (19970501/UP)
This file contains CAS Registry Numbers for easy and accurate substance identification. Title keywords, authors, patent assignees, and patent information, e.g., patent numbers, are now searchable from 1907-1966. TIFF images of \(C A\) abstracts printed between 1907-1966 are available in the PAGE display formats.

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

This file supports REGlstRY for direct browsing and searching of
all substance data from the REGISTRY file. Enter HELP FIRST for
more information.

```
```

L8 STR
L10 178 SEA FILE=REGISTRY SSS FUL L8
L16 0 SEA FILE=CAOLD ABB=ON PLU=ON L10
=> file home
FILE 'HOME' ENTERED AT 14:31:56 ON 16 JUL 2002

```
Prepared by Toby Port, STIC, Biotech Library 308-3534
```

=> file reg
FILE 'REGISTRY' ENTERED AT 14:02:21 ON 16 JUL 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 American Chemical Society (ACS)
STRUCTURE FILE UPDATES: }15\mathrm{ JUL 2002 HIGHEST RN 438572-95-3
DICTIONARY FILE UPDATES: 15 JUL 2002 HIGHEST RN 438572-95-3
TSCA INFORMATION NOW CURRENT THROUGH January 7, 2002
Please note that search-term pricing does apply when
conducting SmartSELECT searches.
Crossover limits have been increased. See HELP CROSSOVER for details.
Calculated physical property data is now available. See HELP PROPERTIES
for more information. See STNote 27, Searching Properties in the CAS
Registry File, for complete details:
http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf
=> s e1
L3 1 171596-29-5/BI
(171596-29-5/RN)
=> d ide
L3 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2002 ACS
RN 171596-29-5 REGISTRY
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R,12aR)- (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl-, (6R-trans)-
OTHER NAMES:
CN Cialis
CN GE 196960
CN IC }35
CN ICOS 351
CN Tadalafil
FS STEREOSEARCH
DR 240822-07-5, 282541-36-0
MF C22 H19 N3 O4
SR CA
LC STN Files: ADISINSIGHT, BIOSIS, BIOTECHNO, CA, CAPLUS, CIN, DRUGNL,
DRUGPAT, DRUGUPDATES, EMBASE, IPA, PHAR, PROMT, SYNTHLINE, TOXCENTER,
USPAT2, USPATFULL
Absolute stereochemistry. Rotation (+).

```
Prepared by Toby Port, STIC, Biotech Library 308-3534

**PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT**
32 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
32 REFERENCES IN FILE CAPLUS (1967 TO DATE)
=> se2
L4 1 171596-40-0/BI
(171596-40-0/RN)
=> d ide


Absolute stereochemistry. Rotation (+).


Prepared by Toby Port, STIC, Biotech Library 308-3534
```

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT
8 REFERENCES IN FILE CA (1967 TO DATE)
8 REFERENCES IN FILE CAPLUS (1967 TO DATE)
=> s e3
L5 1 304683-09-8/BI
(304683-09-8/RN)
=> d ide
L5 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2002 ACS
RN 304683-09-8 REGISTRY
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)-
2,3,6,7,12,12a-hexahydro-2-methyl- (9CI) (CA INDEX NAME)
FS 3D CONCORD
MF C22 H19 N3 O4
SR CA
LC STN Files: CA, CAPLUS, DRUGPAT, DRUGUPDATES

```

```

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT
1 REFERENCES IN FILE CA (1967 TO DATE)
1 REFERENCES IN FILE CAPLUS (1967 TO DATE)
$\Rightarrow s$ e4
L6 1 304683-11-2/BI (304683-11-2/RN)
=> d ide
L6 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2002 ACS
RN 304683-11-2 REGISTRY
CN Pyrazino[1',2':1,6]pyrido[3,4-b]indole-1,4-dione, 6-(1,3-benzodioxol-5-yl)$2,3,6,7,12,12 a-h e x a h y d r o-2,3-d i m e t h y l-(9 C I)$ (CA INDEX NAME)
FS 3D CONCORD
MF C23 H21 N3 O4
SR CA
LC STN Files: CA, CAPLUS
Prepared by Toby Port, STIC, Biotech Library 308-3534

```

**PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT**
\(\begin{array}{ll}1 & \text { REFERENCES IN FILE CA (1967 TO DATE) } \\ 1 & \text { REFERENCES IN FILE CAPLUS (1967 TO DATE) }\end{array}\)
\(\Rightarrow s\) e5
L7 1 9068-52-4/BI (9068-52-4/RN)
\(\Rightarrow d\) ide
L7 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2002 ACS
RN 9068-52-4 REGISTRY
CN Phosphodiesterase, guanosine cyclic \(3^{\prime}, 5^{\prime}\)-phosphate (9CI) (CA INDEX NAME)
OTHER NAMES:
CN 3', 5'-cGMP phosphodiesterase
CN 3', 5'-Cyclic GMP phosphodiesterase
CN CGMP phosphodiesterase
CN CGMP-binding cGMP-specific phosphodiesterase
CN cGMP-dependent phosphodiesterase
CN CGMP-specific cyclic nucleotide phosphodiesterase
CN cGMP-specific phosphodiesterase
CN Cyclic \(3^{\prime}, 5^{\prime}\)-GMP phosphodiesterase
CN Cyclic GMP phosphodiesterase
CN Cyclic GMP-dependent phosphodiesterase
CN Cyclic guanosine \(3^{\prime}, 5^{\prime}\)-monophosphate phosphodiesterase
CN Cyclic guanosine \(3^{\prime}, 5^{\prime}\)-phosphate phosphodiesterase
CN E.C. 3.1.4.35
CN Guanosine cyclic \(3^{\prime}, 5^{\prime}\)-phosphate phosphodiesterase
CN Guanylate phosphodiesterase
CN Phosphodiesterase 6
CN Phosphodiesterase type 5
CN Phosphodiesterase V
CN Phosphodiesterase VI
CN Photoreceptor phosphodiesterase
CN Type \(V\) cGMP-specific phosphodiesterase
CN Type \(V\) phosphodiesterase
ME Unspecified
CI MAN
LC STN Files: ADISNEWS, AGRICOLA, ANABSTR, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CAPLUS, CASREACT, CEN, CIN, EMBASE, IFICDB, IFIPAT, IFIUDB, PROMT, TOXCENTER, USPAT2, USPATFULL

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
1856 REFERENCES IN FILE CA (1967 TO DATE)
7 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
1867 REFERENCES IN FILE CAPLUS (1967 TO DATE)
> file embase; d que ll8
FILE 'EMBASE' ENTERED AT 14:58:53 ON 16 JUL 2002
COPYRIGHT (C) 2002 Elsevier Science B.V. All rights reserved.
FILE COVERS 1974 TO 11 Jul 2002 (20020711/ED)
EMBASE has been reloaded. Enter HELP RLOAD for details.
This file contains CAS Registry Numbers for easy and accurate
substance identification.
L17 25 SEA EILE=EMBASE ABB=ON PLU=ON TARDANAFIL/CT
L18 9 SEA EILE=EMBASE ABB=ON PLU=ON L17/MAJ
=> file wpid; d que l19
FILE 'WPIDS' ENTERED'AT 14:59:16 ON 16 JUL 2002
COPYRIGHT (C) 2002 THOMSON DERWENT
FILE LAST UPDATED: 1l JUL 2002 <20020711/UP>
MOST RECENT DERWENT UPDATE 200244 <200244/DW>
DERWENT WORL̇D PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE
>>> The BATCH option for structure searches has been
enabled in WPINDEX/WPIDS and WPIX >>>
>>> PATENT IMAGES AVAILABLE FOR PRINT AND DISPLAY >>>
>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES,
SEE http://www.derwent.com/dwpi/updates/dwpicov/index.html <<<
>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,
PLEASE VISIT:
http://www.stn-international.de/training_center/patents/stn_guide.pdf <<<
>>> FOR INFORMATION ON ALL DERWENT WORLD PATENTS INDEX USER
GUIDES, PLEASE VISIT:
http://www.derwent.com/userguides/dwpi_guide.html <<<
L19 9 SEA FILE=WPIDS ABB=ON PLU=ON CIALIS OR TADALAFIL OR TARDANAFI
L OR IC351 OR (IC OR ICOS) (W) }35
=> file biosis; d que 121
FILE 'BIOSIS' ENTERED AT 15:02:48 ON 16 JUL 2002
COPYRIGHT (C) 2002 BIOLOGICAL ABSTRACTS INC.(R)
FILE COVERS 1969 TO DATE.
CAS REGISTRY NUMBERS AND CHEMICAL NAMES (CNS) PRESENT
FROM JANUARY 1969 TO DATE.
RECORDS LAST ADDED: 10 July 2002 (20020710/ED)
Prepared by Toby Port, STIC, Biotech Library 308-3534

```
```

L21
16 SEA FILE=BIOSIS ABB=ON PLU=ON CIALIS OR IC351 OR (IC OR
ICOS) (W) (351) OR TADALAFIL OR TARDANAFIL OR GF196960 OR GF
(W) (196960 OR 196 960)
=> file medline; d que l23
FILE 'MEDLINE' ENTERED AT 15:02:56 ON 16 JUL 2002
FILE LAST UPDATED: }13\mathrm{ JUL 2002 (20020713/UP). FILE COVERS 1958 TO DATE.
On June 9, 2002, MEDLINE was reloaded. See HELP RLOAD for details.
MEDLINE thesauri in the /CN, /CT, and /MN fields incorporate the
MeSH 2002 vocabulary. Enter HELP THESAURUS for details.
THIS FILE CONTAINS CAS REGISTRY NUMBERS FOR EASY AND ACCURATE
SUBSTANCE IDENTIFICATION.
L23
6 ~ S E A ~ F I L E = M E D L I N E ~ A B B = O N ~ P L U = O N ~ I C 3 5 1 '
=> dup rem l12 l23 l19 l21 l23
FILE 'CAPLUS' ENTERED AT 15:04:37 ON 16 JUL 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)
FILE 'MEDLINE' ENTERED AT 15:04:37 ON 16 JUL 2002
FILE 'WPIDS' ENTERED AT 15:04:37 ON 16 JUL 2002
COPYRIGHT (C) }2002\mathrm{ THOMSON DERWENT
FILE 'BIOSIS' ENTERED AT 15:04:37 ON 16 JUL 2002
COPYRIGHT (C) 2002 BIOLOGICAL ABSTRACTS INC.(R)
PROCESSING COMPLETED FOR L12
PROCESSING COMPLETED FOR L23
PROCESSING COMPLETED FOR L19
PROCESSING COMPLETED FOR L21
L25 58 DUP REM L12 L23 L19 L21 L23 (10 DUPLICATES REMOVED) iously displayed in
ANSWERS '1-37' FROM FILE CAPLUS - Alswers 1-37 previously
ANSWERS '38-43' FROM FILE MEDLINE ptructure seasch
ANSWER '44' FROM FILE WPIDS
ANSWERS '45-58' EROM FILE BIOSIS
=> d ibib ab l25 38-58
L25 ANSWER 38 OF 58 MEDLINE DUPLICATE 6
ACCESSION NUMBER: 2001335647 MEDLINE
DOCUMENT NUMBER: 21296319 PubMed ID: 11402584
TITLE: Oral drug therapy for erectile dysfunction.
AUTHOR: Padma-Nathan H; Giuliano F
CORPORATE SOURCE: Department of Urology, Keck School of Medicine, University
of Southern California Beverly Hills, California, USA.
SOURCE: UROLOGIC CLINICS OF NORTH AMERICA, (2001 May) 28 (2)
321-34. Ref: 39
Journal code: 0423221. ISSN: 0094-0143.
PUB. COUNTRY: United States
Journal; Article; (JOURNAL ARTICLE)
Prepared by Toby Port, STIC, Biotech Library 308-3534

```


synovial cells with caspase -3 activation by anti-Fas mAb was clearly increased by LLL-CHO. The expression of CIAP2 and XIAP in synovial cells may not directly influence the sensitivity of synovial cells to apoptosis induced by LLL-CHO. CONCLUSION: The results suggest that NF-kappaB inhibition may be a potentially important therapeutic approach for RA by correcting the imbalance between apoptosis and proliferation of synovial cells in RA synovial tissue.


Prepared by Toby Port, STIC, Biotech Library 308-3534
```

(REVIEW, TUTORIAL)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200204
ENTRY DATE: Entered STN: 20020121
Last Updated on STN: 20020501
Entered Medline: 20020430
AB The past few years have witnessed major developments in the management of
male sexual dysfunction. The introduction of the first efficacious and
safe oral medication (sildenafil) resulted in the expansion of the patient
base and, the change in health care delivery, with erectile dysfunction
(ED) entering the primary care physician's practice. New guidelines for
the diagnosis and treatment of ED have been developed, including the
Process of Care in the USA and the lst International Consultation on ED
sponsored by the World Health Organization. Well-defined algorithms for
diagnosis and treatment have been adopted. These recent developments have
brought up challenging issues, including the cardiovascular safety of
sexual activity, societal changes, internet prescriptions, definition of
the patient, expansion of clinical and laboratory research, rise of
interest in female sexual dysfunction, and a significant economic impact.
The recent developments in male sexual dysfunction continue with the study
of new oral medications. Some of these new medications, such as sublingual
apomorphine, have a central mode of action, whereas others, such as the
phosphodiesterase inhibitor IC351, have a selective peripheral
vasodilation-enhancing action.
L25 ANSWER 44 OF 58.WPIDS (C) 2002 THOMSON DERWENT
ACCESSION NUMBER: 2000-572170 [53] WPIDS
DOC. NO. CPI:
TITLE:
DERWENT CLASS:
INVENTOR(S):
C2000-170623
New nitrosated and nitrosylated prostaglandins, useful
for treating or preventing e.g. sexual dysfunction in
males and females, cerebrovascular disorders and
glaucoma.
B05
GARVEY, D S; GASTON, R D; LETTS, G L; SAENZ DE TEJADA, I;
TAM, S W; WORCEL, M
(NITR-N) NITROMED INC
PATENT ASSIGNEE(S):
COUNTRY COUNT:
90
PATENT INFORMATION:

```

```

APPLICATION DETAILS:

| PATENT NO KIND | APPLICATION | DATE |
| :--- | :--- | :--- | :--- |
| - WO 2000051978 A1 | WO $2000-0$ US5286 | 20000301 |
| AU 2000037136 A | AU $2000-37136$ | 20000301 |

FILING DETAILS:
PATENT NO
KIND
PATENT NO
Prepared by Toby Port, STIC, Biotech Library 308-3534

```
```

AU 2000037136 A Based on Wo 200051978
PRIORITY APPLN. INFO: US 1999-138502P 19990609; US 1999-122273P
19990301
AB WO 200051978 A UPAB: 20001023
NOVELTY - Nitrosated and nitrosylated prostaglandins (I) and compositions
comprising them are new, also compositions comprising a prostaglandin and
S-nitrosothiol compound.
DETAILED DESCRIPTION - Nitrosated and nitrosylated prostaglandins of
formula (I) are new:
bonds a', b', c', d' = single or double bonds;
R1 = -ODl or Cl;
R2, R8 = H; or
R1+R2 = = CH2 or =O;
R3, R4 = H, -OD1 or Me;
R5, R6 = H, -OD1, Me, OMe or - CH=CH2;
R7 = H or OD1;
R9 = H or absent when the C to which it is attached is the central
carbon of an allene; or
R8+R9+attached chain atoms = a substituted benzene ring provided that
R1 is O which is attached to the C at the position of the benzene ring
defined by B';
A = -CH=, -CH2-, -S- or -O-;
B' = -CH=, -CH2-, -S- or -C(O)-;
X = -CH2OR11, -C(O)OR11 or -C(O)N(D1)R12;
R11 = D1, 1-10C alkyl or a group of formula (i):
R12 = -S (O)2CH3 or -C(O)CH3;
Z' = ethyl, butyl, hexyl, benzyl, -CH2-O-CH2-CH3,
-CH(CH3)-(CH2)3-CH3 or a group of formula (ii) or (iii):
R13 = H or Cl;
D1 = H or D; provided that at least 1 D1 is D;
D = Q or K;
Q = -NO or NO2
K = -Wa-Eb-(C(Re)(Rf))p-Ec-(C(Re)(Rf))x-Wd -(C(Re)(Rf))y-Wi-Ej-Wg-
(C(Re)(Rf))z-T-Q;
a, b, c, d, g, i, j = 0-3;
p, x, y, z = 0-10;
E = -T-, alkyl, aryl, (C(Re)(Rf))h-,
W = -C(O)-, -C(S)- or as defined for E;
h = 1 10;
q = 1-5;
Re, Rf = H, alkyl, cycloalkoxy, halo, OH, hydroxyalkyl, alkoxyalkyl,
aryl-heterocyclic, alkylaryl, cycloalkylalkyl, heterocyclic-alkyl, alkoxy,
haloalkoxy, NH2, alkylamino, dialkylamino, arylamino, diarylamino,
alkylarylamino, alkoxyhaloalkyl, haloalkoxy, sulfonic acid, sulfonic
ester, alkylsulfonic acid, arylsulfonic acid, arylalkoxy, alkylthio,
arylthio, cycloalkylthio, cycloalkenyl, CN, aminoalkyl, aminoaryl, aryl,
arylalkyl, alkylaryl, carboxamido, alkylcarboxamido, arylcarboxamido,
amidyl, carboxyl, carbamoyl, alkylcarboxylic acid, arylcarboxylic acid,
alkylcarbonyl, arylcarbonyl, ester, carboxylic ester, alkylcarboxylic
ester, arylcarboxylic ester, haloalkoxy, sulfonamido, alkylsulfonamido,
arylsulfonamido, sulfonic ester, a urea, phosphoryl, nitro, -T-Q or
-(C(Re)(Rf))k-T-Q; or
Re+Rf+attached C atoms = carbonyl, methanthial, heterocyclic,
cycloalkyl or a bridged cycloalkyl;
k = 1-3;
T = a covalent bond, carbonyl, O, -S(O)O- or -N(Ra)Ri-;
O = 0-2;
Ra = a lone pair of electrons, H or alkyl;
Ri = H, alkyl, aryl, alkylcarboxylic acid, arylcarboxylic acid,

```
                    Prepared by Toby Port, STIC, Biotech Library 308-3534
alkylcarboxylic ester, arylcarboxylic ester, alkylcarboxamido, arylcarboxamido, alkylaryl, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, sulfonamido, carboxamido, carboxylic ester, amino alkyl, amino aryl, \(-\mathrm{CH} 2-\mathrm{C}(\mathrm{T}-\mathrm{Q})(\mathrm{Re})(\mathrm{Rf})\) or \(-(\mathrm{N} 2 \mathrm{O} 2)-\mathrm{M}+\);
\(\mathrm{M}+=\) an organic or inorganic cation;
provided that when Ri is \(-\mathrm{CH} 2-\mathrm{C}(\mathrm{T}-\mathrm{Q})(\mathrm{Re})(\mathrm{Rf})\) or \(-(\mathrm{N} 2 \mathrm{O} 2) \mathrm{M}\); or Re or Rf are \(T-Q\) or ( \(C(R e)(R f)) k-T-Q\), then \(T-Q\) can be \(H\), alkyl, alkoxy, alkoxyalkyl, aminoalkyl, \(O H\), heterocyclic or aryl; and provided that when \(X\) is -C(O)OD1 and Dl is \(K\), then \(K\) is not alkyl or cycloalkyl mononitrate; benzoic acid substituted benzyloxy mononitrate; ethylene glycol mononitrate; polyethylene glycol mononitrate; the regioisomeric esters of 'glycerol dinitrate and oligomers as disclosed in WO9858910.

INDEPENDENT CLAIMS are included for the following:
(a) compositions and kits comprising (I) and at least 1 compound that donates, transfers or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase, and/or at least 1 vasoactive agent; and
(b) compositions and kits comprising at least 1 prostaglandin and at least 1 S-nitrosothiol compound, useful for treating sexual dysfunction, a cerebrovascular disorder, cardiovascular disorder, benign prostatic hyperplasia, organ transplants, glaucoma or peptic ulcer, or for inducing an abortion.

ACTIVITY - Vasotropic; Cerebroprotective; Cardiant; Cytostatic; Ophthalmological; Antiulcer; Gynecological; Relaxant.

MECHANISM OF ACTION - Smooth muscle relaxant; Nitric oxide donor; Endothelium-derived relaxing factor agonist.

USE - For treating or preventing sexual dysfunction in males or females, treating a cerebrovascular disorder, cardiovascular disorder, benign prostatic hyperplasia, organ transplants, glaucoma or peptic ulcer, or for inducing an abortion (all claimed).

ADVANTAGE - The combination of a prostaglandin and a S-nitrosothiol gives synergistic results. Dwg. \(0 / 4\)

L25 ANSWER 45 OF 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 2002:355438 BIOSIS
DOCUMENT NUMBER: PREV200200355438
TITLE:
AUTHOR(S):
Efficacy and safety of tadalafil in men with
erectile dysfunction with and without hypertension.
Padma-Nathan, H. (1); Brock, G.; McMahon, C.; Chen, K. K.;
Anglin, G.; Costigan, T.; Shen, W.; Watkins, V.; Whitaker,
J. S.

CORPORATE SOURCE: (l) Keck School of Medicine, University of Southern
California, Beverly Hills, CA USA
American Journal of Hypertension, (April, 2002) Vol. 15,
No. 4 Part 2, pp. 143A-144A. http://www.ajh-us.org. print.
Meeting Info.: Seventeenth Annual Scientific Meeting of the
American Society of Hypertension New York, N.Y., USA May
14-18, 2002
ISSN: 0895-7061.
\(\begin{array}{ll}\text { DOCUMENT TYPE: } & \text { Conference } \\ \text { LANGUAGE: } & \text { English }\end{array}\)
\(\begin{array}{ll}\text { DOCUMENT TYPE: } & \text { Conferen } \\ \text { LANGUAGE: } & \text { English }\end{array}\)
L25 ANSWER 46 OF, 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 2002:355428 BIOSIS
DOCUMENT NUMBER: PREV200200355428
TITLE:
AUTHOR(S):
Blood pressure and cardiovascular effects of
tadalafil, a new PDE5 inhibitor.
Hutter, A. M. (1); Kloner, R. A.; Watkins, V.; Costigan,
T.; Bedding, A.; Mitchell, M.; Emmick, J.

Prepared by Toby Port, STIC, Biotech Library 308-3534
```

CORPORATE SOURCE: (1) Massachusetts General Hospital, Harvard Medical School,
Boston, MA USA
American Journal of Hypertension, (April, 2002) Vol. 15,
No. 4 Part 2, pp. 140A. http://www.ajh-us.org. print.
Meeting Info.: Seventeenth Annual Scientific Meeting of the
American Society of Hypertension New York, N.Y., USA May
14-18, 2002
ISSN: 0895-7061.
DOCUMENT TYPE: }\quad\mathrm{ Conference
DOCUMENT TYPE: }\quad\mathrm{ Conference
L25 ANSWER 47 OF 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 2001:449004 BIOSIS
DOCUMENT NUMBER: PREV200100449004
TITLE: CialisTM (IC351) as a treatment of erectile
dysfunction in diabetic men.
Saenz De Tejada, Inigo (1); Fredlund, Paul (1); Anglin,
Greg (1); Pullman, Bill (1); Emmick, Jeff (1)
(1) Madrid Spain
Diabetes, (June, 2001) Vol. 50, No. Supplement 2, pp. A425.
print.
Meeting Info.: 61st Scientific Sessions of the American
Diabetes Association Philadelphia, Pennsylvania, USA June
22-26, 2001
ISSN: 0012-1797.
Conference
LANGUAGE:
LANGUAGE:
L25 ANSWER 48 OF 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 2001:380171 BIOSIS
DOCUMENT NUMBER: PREV200100380171
TITLE: CialisTM (IC351) provides prompt response and
extended period of responsiveness for the treatment of men
with erectile dysfunction (ED.
AUTHOR(S): Padma-Nathan, Harin (1); Rosen, Raymond C.; Shabsigh,
Ridwan; Saikali, Khalil; Watkins, Vish S.; Pullman, Bill
CORPORATE SOURCE: (1) Los Angeles, CA USA
SOURCE: Journal of Urology, (May, 2001) Vol. 165, No. 5 Supplement,
pp. 224. print.
Meeting Info.: Annual Meeting of the American Urological
Association, Inc. Anaheim, California, USA June 02-07, 2001
ISSN: 0022-5347.
Conference
LANGUAGE: English
SUMMARY LANGUAGE: English
L25 ANSWER 49 OF 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 2001:381536 BIOSIS
DOCUMENT NUMBER: PREV200100381536
TITLE: Cellular localisation of phosphodiesterase type 11 (PDE11)
in human corpus cavernosum and the contribution of PDE11
inhibition on nerve-stimulated relaxation.
AUTHOR(S): Baxendale, Rhona W. (1); Wayman, Christopher P. (1);
Turner, Leigh (1); Phillips, Stephen C. (1)
CORPORATE SOURCE: (1) Sandwich UK
SOURCE:
Journal of Urology, (May, 2001) Vol. 165, No. 5 Supplement,
pp. 223-224. print.
Meeting Info.: Annual Meeting of the American Urological
Association, Inc. Anaheim, California, USA June 02-07, 2001
ISSN: 0022-5347.
Prepared by Toby Port, STIC, Biotech Library 308-3534

```
\begin{tabular}{|c|c|}
\hline DOCUMENT TYPE: & Conference \\
\hline LANGUAGE: & English \\
\hline SUMMARY LANGUAGE: & English \\
\hline \multicolumn{2}{|l|}{L25 ANSWER 50 OF 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.} \\
\hline ACCESSION NUMBER: & 2001:262700 BIOSIS \\
\hline \multicolumn{2}{|l|}{DOCUMENT NUMBER: PREV200100262700} \\
\hline TITLE: & CialisTM (IC351): Effective and well-tolerated treatment for ED. \\
\hline AUTHOR(S) : & Brock, G. (1); Iglesias, J.; Toulouse, K.; Ferguson, K.; Pullman, W.; Anglin, G. \\
\hline \multirow[t]{4}{*}{CORPORATE SOURCE: SOURCE:} & (1) Univ W Ontario, London, ON Canada \\
\hline & Journal of Andrology, (May June, 2001) No. Supplement, pp. 185. print. \\
\hline & Meeting Info.: VIIth International Congress of Andrology Montreal, Canada June 15-19, 2001 \\
\hline & ISSN: 0196-3635. \\
\hline DOCUMENT TYPE: & Conference \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
LANGUAGE: \\
SUMMARY LANGUAGE:
\end{tabular}} & English \\
\hline & English \\
\hline L25 ANSWER 51 OF 58 & 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. \\
\hline ACCESSION NUMBER: & 2001:389604 BIOSIS \\
\hline DOCUMENT NUMBER: & PREV200100389604 \\
\hline TITLE: & Efficacy and safety of IC351 treatment for ED. \\
\hline AUTHOR(S) : & Brock, G. (1); Iglesias, J.; Toulouse, K.; Ferguson, K.; Pullman, W.; Anglin, G. \\
\hline \multirow[t]{2}{*}{CORPORATE SOURCE: SOURCE:} & (1) Univ. of W. Ontario, London, ON Canada \\
\hline & European Urology, (March, 2001) Vol. 39, No. Suppl. 5, pp. 106. print. \\
\hline & Meeting Info.: XVIth Congress of the European Association of Urology Geneva, Switzerland April 07-10, 2001 ISSN: 0302-2838. \\
\hline DOCUMENT TYPE: & Conference \\
\hline LANGUAGE: & English \\
\hline SUMMARY LANGUAGE: & English \\
\hline L25 ANSWER 52 OF 58 & 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. \\
\hline ACCESSION NUMBER: & 2001:391998 BIOSIS \\
\hline DOCUMENT NUMBER: & PREV200100391998 \\
\hline TITLE: & IC351 enhances NO-mediated relaxation of human arterial and trabecular penile smooth muscle. \\
\hline \multirow[t]{3}{*}{AUTHOR(S) :} & Angulo, J. (1); Gadau, M.; Fernandez, A.; Gabancho, S.; \\
\hline & Cuevas, P.; Martins, T.; Florio, V.; Ferguson, K.; Saenz De \\
\hline & Tejada, I. \\
\hline \multirow[t]{4}{*}{CORPORATE SOURCE: SOURCE:} & (1) Hospital Ramon y Cajal, Madrid Spain \\
\hline & European Urology, (March, 2001) Vol. 39, No. Suppl. 5, pp. 106. print. \\
\hline & Meeting Info.: XVIth Congress of the European Association of Urology Geneva, Switzerland April 07-10, 2001 \\
\hline & ISSN: .0302-2838. \\
\hline DOCUMENT TYPE: & Conference \\
\hline LANGUAGE: & English \\
\hline SUMMARY LANGUAGE: & English \\
\hline
\end{tabular}
```

L25 ANSWER 53 OF 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 2001:375151 BIOSIS
DOCUMENT NUMBER: PREV200100375151
TITLE: The effect of on-demand IC351 treatment of
erectile dysfunction in men with diabetes.
Saenz De Tejada, Inigo (1); Emmick, J.; Anglin, G.;

```
    Prepared by Toby Port, STIC, Biotech Library 308-3534

```

L21
1 6 SEA FILE=BIOSIS ABB=ON PLU=ON CIALIS OR IC351 OR (IC OR
ICOS) (W) (351) OR TADALAFIL OR TARDANAFIL OR GF196960 OR GF
(W) (196960 OR 196 960)
=> file medline; d que 123
FILE 'MEDLINE' ENTERED AT 15:02:56 ON 16 JUL 2002
FILE LAST UPDATED: }13\mathrm{ JUL 2002 (20020713/UP). FILE COVERS 1958 TO DATE.
On June 9, 2002, MEDLINE was reloaded. See HELP RLOAD for details.
MEDLINE thesauri in the /CN, /CT, and /MN fields incorporate the
MeSH 2002 vocabulary. Enter HELP THESAURUS for details.
THIS FILE CONTAINS CAS REGISTRY NUMBERS FOR EASY AND ACCURATE
SUBSTANCE IDENTIFICATION.
L23 6 SEA FILE=MEDLINE ABB=ON PLU=ON IC351
=> dup rem l23 l19 l21 l23
FILE 'MEDLINE' ENTERED AT 15:03:25 ON 16 JUL 2002
FILE 'WPIDS' ENTERED AT 15:03:25 ON 16 JUL 2002
COPYRIGHT (C) 2002 THOMSON DERWENT
FILE 'BIOSIS' ENTERED AT 15:03:25 ON 16 JUL 2002
COPYRIGHT (C) 2002 BIOLOGICAL ABSTRACTS INC.(R)
PROCESSING COMPLETED FOR L23
PROCESSING COMPLETED FOR L19
PROCESSING COMPLETED FOR L21
L24 30 DUP REM L23 L19 L2l L23 (1 DUPLICATE REMOVED)
ANSWERS '1-6' FROM FILE MEDLINE
ANSWERS '7-15' FROM FILE WPIDS
ANSWERS '16-30' FROM FILE BIOSIS
=> dup rem l12 l23 l19 l21 l23
FILE 'CAPLUS' ENTERED AT 15:04:37 ON 16 JUL 2002
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)
FILE 'MEDLINE' ENTERED AT 15:04:37 ON 16 JUL 2002
FILE 'WPIDS' ENTERED AT 15:04:37 ON 16 JUL 2002
COPYRIGHT (C) 2002 THOMSON DERWENT
FILE 'BIOSIS' ENTERED AT 15:04:37 ON 16 JUL 2002
COPYRIGHT (C) 2002 BIOLOGICAL ABSTRACTS INC.(R)
PROCESSING COMPLETED FOR L12
PROCESSING COMPLETED FOR L23
PROCESSING COMPLETED FOR L19
PROCESSING COMPLETED FOR L21
L25 58 DUP REM L12 L23 L19 L21 L23 (10 DUPLICATES REMOVED)
ANSWERS '1-37' FROM FILE CAPLUS
ANSWERS '38-43' FROM FILE MEDLINE
ANSWER '44' FROM FILE WPIDS
Prepared by Toby Port, STIC, Biotech Library 308-3534

```

ANSWERS '45-58' FROM FILE BIOSIS
\(\Rightarrow d\) ibib \(a b 125\) 38-58
L25 ANSWER 38 OF 58
MEDLINE
DUPLICATE 6
ACCESSION NUMBER: 2001335647 MEDLINE
DOCUMENT NUMBER: 21296319 PubMed ID: 11402584
TITLE: Oral drug therapy for erectile dysfunction.
AUTHOR: Padma-Nathan H; Giuliano F
CORPORATE SOURCE: Department of Urology, Keck School of Medicine, University
of Southern California Beverly Hills, California, USA.
SOURCE: UROLOGIC CLINICS OF NORTH AMERICA, (2001 May) 28 (2)
321-34. Ref: 39
Journal code: 0423221. ISSN: 0094-0143.
PUB. COUNTRY:
United States
Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
LANGUAGE: English
FILE SEGMENT: Abridged Index Medicus Journals; Priority Journals
ENTRY MONTH: 200106
ENTRY DATE: Entered STN: 20010702
Last Updated on STN: 20010702
Entered Medline: 20010628
\(A B\) Oral drugs are a well-established, first-line therapy for erectile dysfunction. As a result of the success of sildenafil, a plethora of new drugs for erectile dysfunction are on the horizon. Apomorphine and IC351 are in late phase III development. Vardenafil (Bayer, New Haven, CT), a PDE5 inhibitor, and the combination of yohimbine and L-arginine (NitroMed, Boston, MA) are in early phase III development. Early clinical and preclinical studies are investigating new phosphodiesterase inhibitors, cyclic AMP activators, alpha-adrenergic antagonists, dopamine agonists, melanocyte-stimulating hormone, potassium channel modulators, endothelin antagonists, and new nitric oxide donors. The future is bright for this infant field of sexual pharmacotherapy.

L25 ANSWER 39 OF 58 MEDLINE
ACCESSION NUMBER: 2002117405 MEDLINE
DOCUMENT NUMBER: 21838816 PubMed ID: 11850737
TITLE: IC351 (tadalafil, Cialis): update on clinical
experience.
AUTHOR: Porst H
CORPORATE SOURCE: Urological practice, Hamburg, Germany.. Porst20354@aol.com
SOURCE:
INTERNATIONAL JOURNAL OF IMPOTENCE RESEARCH, (2002 Feb) 14
Suppl 1 S57-64. Ref: 12
Journal code: 9007383. ISSN: 0955-9930.
PUB. COUNTRY: England: United Kingdom
Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW LITERATURE)
LANGUAGE:
English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200206
ENTRY DATE: Entered STN: 20020220
Last Updated on STN: 20020613
Entered Medline: 20020612
AB IC351 (tadalafil, trade name Cialis) is a new representative compound of the second generation of selective phosphodiesterase 5 (PDE-5) inhibitors. The selectivity ratio vs PDE-5 is more than 10000 for PDE-l through PDE-4 and PDE-7 through PDE-10 and 780 for PDE-6. In the European daily-dosing trial, the efficacy rates were up to 938 for successful

Prepared by Toby Port, STIC, Biotech Library 308-3534
intercourses with completion in the \(50-\mathrm{mg}\) dose in patients with mild to moderate erectile dysfunction (ED). In two different dose-ranging studies with \(2-25 \mathrm{mg}\) taken as needed, efficacy rates of up to \(88 \%\) improvement in erections and up to \(73 \%\) successful intercourses with completion were achieved. In a placebo-controlled, fixed-dose (10- and \(20-\mathrm{mg}\) ) trial in diabetic patients, improved erections of \(56 \%\) and \(64 \%\) were reported compared with \(25 \%\) after placebo. Drug-related adverse effects, with headache in up to \(23 \%\) of patients (placebo, up to 17\%), dyspepsia in up to \(11 \%\) (placebo, up to 7\%), back pain in up to \(4.7 \%\) (placebo, 0\%), and myalgia in up to \(4.1 \%\) (placebo, up to \(2.4 \%\) ), were mostly mild to moderate. Neither drug-related serious cardiovascular adverse events nor color vision disturbances were encountered. The long half-life (>17 h), with a comfortably long window of opportunity, releases couples from the need to plan sexual activities and therefore provides the highest amount of spontaneity for sexual activities.
```

L25 ANSWER 40 OF 58 MEDLINE NED NEDLINE
DOCUMENT NUMBER: 21658223 PubMed ID: 11799971
TITLE: Towards optimal ED management: educational forum - II.
AUTHOR: Brock G
CORPORATE SOURCE: Division of Urology, Department of Surgery, University of
Western Ontario, London, Ontario.
SOURCE: Can J Urol, (2001 Dec) 8 (6) 1419-20.
Journal code: 9515842. ISSN: 1195-9479.
Canada
Conference; Conference Article; (CONGRESSES)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 200202
ENTRY DATE: Entered STN: 20020125
Last Updated on STN: 20020206
Entered Medline: 20020205

```
L25 ANSWER 41 OF 58 MEDLINE
ACCESSION NUMBER: 2001342867 MEDLINE
DOCUMENT NUMBER: 21298873 PubMed ID: 11406522
TITLE: Importance of NF-kappaB in rheumatoid synovial tissues: in
    situ NF-kappaB expression and in vitro study using cultured
    synovial cells.
AUTHOR: Yamasaki S; Kawakami A; Nakashima T; Nakamura H; Kamachi M;
    Honda S; Hirai Y; Hida A; Ida H; Migita K; Kawabe Y; Koji
    T; Furuichi I; Aoyagi T; Eguchi K
CORPORATE SOURCE: The First Department of Internal Medicine, Nagasaki
        University School of Medicine, 1-7-1 Sakamoto, Nagasaki,
        Japan.
SOURCE: ANNALS OF THE RHEUMATIC DISEASES, (2001 Jul) 60 (7) 678-84.
    Journal code: 0372355. ISSN: 0003-4967.
PUB. COUNTRY:
LANGUAGE:
FILE SEGMENT: Priority Journals
ENTRY MONTH:
    200107
ENTRY DATE: Entered STN: 20010716
    Last Updated on STN: 20010716
    Entered Medline: 20010712
AB OBJECTIVES: To examine whether inhibition of NF -kappaB induces apoptosis
    of human synovial cells stimulated by tumour necrosis factor alpha
        (TNFalpha), interleukin lbeta (ILlbeta), and anti-Fas monoclonal antibody
        (mAb). METHODS: The expression of proliferating cell nuclear antigen
        (PCNA), NF-kappaB, and the presence of apoptotic synovial cells were
Prepared by Toby Port, STIC, Biotech Library 308-3534
determined in synovial tissues. Apoptosis of cultured synovial cells was induced by inhibition of \(N F-k a p p a B\) nuclear translocation by
2-Leu-Leu-Leu-aldehyde (LLL-CHO). The activation of caspase-3 and expression of XIAP and CIAP2 in synovial cells in LLL-CHO induced apoptosis was also examined. RESULTS: Abundant PCNA+ synovial cells were found in rheumatoid arthritis (RA) synovial tissue, though a few apoptotic synovial cells were also detected in the RA synovial tissues. Nuclear NF-kappaB was expressed in RA synovial cells. Electrophoretic mobility shift assay showed that treatment of cells with TNFalpha or IL1beta significantly stimulated nuclear NF-kappaB activity. A small number of apoptotic synovial cells expressing intracellular active caspase-3 were found after treatment of cells with LLL-CHO. Although treatment of RA synovial cells with TNFalpha or ILlbeta alone did not induce apoptosis, apoptosis induced by LLL-CHO and caspase-3 activation were clearly enhanced in TNFalpha or ILlbeta stimulated synovial cells compared with unstimulated synovial cells. Furthermore, induction of apoptosis of synovial cells with caspase-3 activation by anti-Fas mAb was clearly increased by LLL-CHO. The expression of CIAP2 and XIAP in synovial cells may not directly influence the sensitivity of synovial cells to apoptosis induced by LLL-CHO. CONCLUSION: The results suggest that NF-kappaB inhibition may be a potentially important therapeutic approach for RA by correcting the imbalance between apoptosis and proliferation of synovial cells in RA synovial tissue.

on-demand IC351 at doses up to 25 mg was well tolerated and significantly improved erectile function.
```

L25 ANSWER 43 OF 58 MEDLINE
ACCESSION NUMBER: 2002005986 MEDLINE
DOCUMENT NUMBER: 21064306 PubMed ID: 11122955
TITLE: Recent developments in male sexual dysfunction.
AUTHOR: Shabsigh R
CORPORATE SOURCE: Department of Urology, Columbia-Presbyterian Medical
Center, 161 Fort Washington Avenue, New York, NY 10032,
USA.. rs66@columbia.edu
SOURCE: Curr Psychiatry Rep, (2000 Jun) 2 (3) 196-200. Ref: }
Journal code: 100888960: ISSN: 1523-3812.
PUB. COUNTRY:
LANGUAGE:
FILE SEGMENT:
ENTRY MONTH:
ENTRY DATE:
United States
Journal; Article; (JOURNAL ARTICLE)
General Review; (REVIEW)
(REVIEW, TUTORIAL)
English
Priority Journals
200204
Entered STN: 20020121
Last Updated on STN: 20020501
Entered Medline: 20020430

```

AB The past few years have witnessed major developments in the management of male sexual dysfunction. The introduction of the first efficacious and safe oral medication (sildenafil) resulted in the expansion of the patient base and, the change in health care delivery, with erectile dysfunction (ED) entering the primary care physician's practice. New guidelines for the diagnosis and treatment of ED have been developed, including the Process of Care in the USA and the 1st International Consultation on ED sponsored by the World Health Organization. Well-defined algorithms for diagnosis and treatment have been adopted. These recent developments have brought up challenging issues, including the cardiovascular safety of sexual activity, societal changes, internet prescriptions, definition of the patient, expansion of clinical and laboratory research, rise of interest in female sexual dysfunction, and a significant economic impact. The recent developments in male sexual dysfunction continue with the study of new oral medications. Some of these new medications, such as sublingual apomorphine, have a central mode of action, whereas others, such as the phosphodiesterase inhibitor IC351, have a selective peripheral vasodilation-enhancing action.
```

L25 ANSWER 44 OF 58 WPIDS (C) }2002\mathrm{ THOMSON DERWENT
ACCESSION NUMBER: 2000-572170 [53] WPIDS
DOC. NO. CPI: C2000-170623
TITLE:
DERWENT CLASS:
INVENTOR(S):
New nitrosated and nitrosylated prostaglandins, useful
for treating or preventing e.g. sexual dysfunction in
males and females, cerebrovascular disorders and
glaucoma.
B05
GARVEY, D S; GASTON, R D; LETTS, G L; SAENZ DE TEJADA, I;
TAM, S W; WORCEL, M
(NITR-N) NITROMED INC
PATENT ASSIGNEE(S):
COUNTRY COUNT:
90

```
PATENT INFORMATION:

```

W: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
AU 2000037136 A 20000921 (200065)

```

\section*{APPLICATION DETAILS:}
\begin{tabular}{llll} 
PATENT NO KIND & APPLICATION & DATE \\
\hdashline\(--2000051978 ~ A 1\) & WO 2000-US5286 & 20000301 \\
WO 20000037136 A & AU 2000-37136 & 20000301
\end{tabular}

FILING DETAILS:
```

 PATENT NO KIND PATENT NO
 AU 2000037136 A Based on WO 200051978
PRIORITY APPLN. INFO: US 1999-138502P 19990609; US 1999-122273P
19990301
AB WO 200051978 A UPAB: 20001023
NOVELTY - Nitrosated and nitrosylated prostaglandins (I) and compositions
comprising them are new, also compositions comprising a prostaglandin and
S-nitrosothiol compound.
DETAILED DESCRIPTION - Nitrosated and nitrosylated prostaglandins of
formula (I) are new:
bonds a', b', c', d' = single or double bonds;
R1 = -OD1 or Cl;
R2, R8 = H; or
R1+R2 = =CH2 or =O;
R3, R4 = H, -OD1 or Me;
R5, R6 = H, -OD1, Me, OMe or -CH=CH2;
R7 = H or OD1;
R9 = H or absent when the C to which it is attached is the central
carbon of an allene; or
R8+R9+attached chain atoms = a substituted benzene ring provided that
R1 is O which is attached to the C at the position of the benzene ring
defined by B';
A = -CH=, -CH2-, -S- or -O-;
B' = -CH=, -CH2-, -S- or -C (O)-;
X = -CH2OR11, -C(O)OR11 or -C(O)N(D1)R12;
R1l = D1, 1-10C alkyl or a group of formula (i):
R12 = -S (O)2CH3 or -C(O)CH3;
Z' = ethyl, butyl, hexyl, benzyl, -CH2-O-CH2-CH3,
-CH(CH3)-(CH2)3-CH3 or a group of formula (ii) or (iii):
R13 = H or Cl;
D1 = H or D; provided that at least 1 D1 is D;
D = Q or K;
Q = -NO or NO2;
K = -Wa-Eb-(C(Re)(Rf))p-Ec-(C(Re) (Rf))x-Wd - (C(Re) (Rf))y-Wi-Ej-Wg-
(C(Re)(Rf))z-T-Q;
a, b, c, d, g, i, j = 0-3;
p, x, y, z = 0-10;
E = -T-, alkyl, aryl, (C(Re)(Rf))h-,
W = -C(O)-, -C(S)- or as defined for E;
h = 1 10;
q = 1-5;
Re, Rf = H, alkyl, cycloalkoxy, halo, OH, hydroxyalkyl, alkoxyalkyl,
aryl-heterocyclic, alkylaryl, cycloalkylalkyl, heterocyclic-alkyl, alkoxy,
haloalkoxy, NH2, alkylamino, dialkylamino, arylamino, diarylamino,
Prepared by Toby Port, STIC, Biotech Library 308-3534

```
alkylarylamino, alkoxyhaloalkyl, haloalkoxy, sulfonic acid, sulfonic ester, alkylsulfonic acid, arylsulfonic acid, arylalkoxy, alkylthio, arylthio, cycloalkylthio, cycloalkenyl, CN, aminoalkyl, aminoaryl, aryl, arylalkyl, alkylaryl, carboxamido, alkylcarboxamido, arylcarboxamido, amidyl, carboxyl, carbamoyl, alkylcarboxylic acid, arylcarboxylic acid, alkylcarbonyl, arylcarbonyl, ester, carboxylic ester, alkylcarboxylic ester, arylcarboxylic ester, haloalkoxy, sulfonamido, alkylsulfonamido, arylsulfonamido, sulfonic ester, a urea, phosphoryl, nitro, -T-Q or -(C(Re) (Rf))k-T-Q; or

Re+Rf+attached \(C\) atoms = carbonyl, methanthial, heterocyclic, cycloalkyl or a bridged cycloalkyl;
\(\mathrm{k}=1-3\);
\(\mathrm{T}=\mathrm{a}\) covalent bond, carbonyl, \(\mathrm{O},-\mathrm{S}(\mathrm{O}) \mathrm{O}\) - or \(-\mathrm{N}(\mathrm{Ra}) \mathrm{Ri}-\);
○ \(=0-2\); \(\mathrm{Ra}=\mathrm{a}\) lone pair of electrons, H or alkyl; Ri \(=H\), alkyl, aryl, alkylcarboxylic acid, arylcarboxylic acid, alkylcarboxylic ester, arylcarboxylic ester, alkylcarboxamido, arylcarboxamido, alkylaryl, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, sulfonamido, carboxamido, carboxylic ester, amino alkyl, amino aryl, \(-\mathrm{CH} 2-\mathrm{C}(\mathrm{T}-\mathrm{Q})(\mathrm{Re})(\mathrm{Rf})\) or \(-(\mathrm{N} 2 \mathrm{O} 2)-\mathrm{M}+\);
\(\mathrm{M}+=\) an organic or inorganic cation;
provided that when Ri is \(-\mathrm{CH} 2-\mathrm{C}(\mathrm{T}-\mathrm{Q})(\mathrm{Re})(\mathrm{Rf})\) or \(-(\mathrm{N} 2 \mathrm{O} 2) \mathrm{M}\); or Re or Rf are \(T-Q\) or ( \(C(R e)(R f)) k-T-Q\), then \(T-Q\) can be \(H\), alkyl, alkoxy, alkoxyalkyl, aminoalkyl, OH, heterocyclic or aryl; and provided that when \(X\) is \(-C(O) O D 1\) and \(D 1\) is \(K\), then \(K\) is not alkyl or cycloalkyl mononitrate; benzoic acid substituted benzyloxy mononitrate; ethylene glycol
mononitrate; polyethylene glycol mononitrate; the regioisomeric esters of glycerol dinitrate and oligomers as disclosed in wo9858910.

INDEPENDENT CLAIMS are included for the following:
(a) compositions and kits comprising (I) and at least 1 compound that donates, transfers or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase, and/or at least 1 vasoactive agent; and
(b) compositions and kits comprising at least 1 prostaglandin and at least 1 s-nitrosothiol compound, useful for treating sexual dysfunction, a cerebrovascular disorder, cardiovascular disorder, benign prostatic hyperplasia, organ transplants, glaucoma or peptic ulcer, or for inducing an abortion.

ACTIVITY - Vasotropic; Cerebroprotective; Cardiant; Cytostatic; Ophthalmological; Antiulcer; Gynecological; Relaxant.

MECHANISM OF ACTION - Smooth muscle relaxant; Nitric oxide donor; Endothelium-derived relaxing factor agonist.

USE - For treating or preventing sexual dysfunction in males or females, treating a cerebrovascular disorder, cardiovascular disorder, benign prostatic hyperplasia, organ transplants, glaucoma or peptic ulcer, or for inducing an abortion (all claimed).

ADVANTAGE - The combination of a prostaglandin and a S-nitrosothiol gives synergistic results.
Dwg.0/4
L25 ANSWER 45 OF 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
ACCESSION NUMBER: 2002:355438 BIOSIS
DOCUMENT NUMBER: PREV200200355438
TITLE:
AUTHOR(S):
Efficacy and safety of tadalafil in men with erectile dysfunction with and without hypertension.
Padma-Nathan, H. (1); Brock, G.; McMahon, C.; Chen, K. K.; Anglin, G.; Costigan, T.; Shen, W.; Watkins, V.; Whitaker, J. S.

CORPORATE SOURCE: (1) Keck School of Medicine, University of Southern California, Beverly Hills, CA USA

Prepared by Toby Port, STIC, Biotech Library 308-3534


Prepared by Toby Port, STIC, Biotech Library 308-3534
\begin{tabular}{|c|c|}
\hline SUMMARY LANGUAGE: & English \\
\hline \multicolumn{2}{|l|}{L25 ANSWER 49 OF 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.} \\
\hline ACCESSION NUMBER: & 2001:381536 BIOSIS \\
\hline DOCUMENT NUMBER: & PREV200100381536 \\
\hline TITLE: & Cellular localisation of phosphodiesterase type 11 (PDE11) in human corpus cavernosum and the contribution of PDE11 inhibition on nerve-stimulated relaxation. \\
\hline AUTHOR(S): & Baxendale, Rhona W. (1); Wayman, Christopher P. (1); Turner, Leigh (1); Phillips, Stephen C. (1) \\
\hline \multirow[t]{4}{*}{CORPORATE SOURCE: SOURCE:} & (1) Sandwich UK \\
\hline & Journal of Urology, (May, 2001) Vol. 165, No. 5 Supplement, pp. 223-224. print. \\
\hline & Meeting Info.: Annual Meeting of the American Urological \\
\hline & Association, Inc. Anaheim, California, USA June 02-07, 2001 ISSN: 0022-5347. \\
\hline DOCUMENT TYPE: & Conference \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
LANGUAGE: \\
SUMMARY LANGUAGE:
\end{tabular}} & English \\
\hline & English \\
\hline \multirow[t]{4}{*}{L25 ANSWER 50 OF ACCESSION NUMBER: DOCUMENT NUMBER: TITLE:} & 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. \\
\hline & 2001:262700 BIOSIS \\
\hline & PREV200100262700 \\
\hline & CialisTM (IC351): Effective and well-tolerated treatment for ED. \\
\hline AUTHOR(S) : & Brock, G. (1); Iglesias, J.; Toulouse, K.; Ferguson, K.; Pullman, W.; Anglin, G. \\
\hline \multirow[t]{5}{*}{CORPORATE SOURCE: SOURCE:} & (1) Univ W Ontario, London, ON Canada \\
\hline & Journal of Andrology, (May June, 2001) No. Supplement, pp. 185. print. \\
\hline & Meeting Info.: VIIth International Congress of Andrology \\
\hline & Montreal, Canada June 15-19, 2001 \\
\hline & ISSN: 0196-3635. \\
\hline DOCUMENT TYPE: & Conference \\
\hline LANGUAGE: & English \\
\hline SUMMARY LANGUAGE: & English \\
\hline & 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. \\
\hline \multirow[t]{3}{*}{L25 ANSWER 51 OF ACCESSION NUMBER: DOCUMENT NUMBER: TITLE: AUTHOR (S) :} & 2001:389604 BIOSIS \\
\hline & PREV200100389604 \\
\hline & Efficacy and safety of IC351 treatment for ED. \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
AUTHOR(S): \\
CORPORATE SOURCE: SOURCE:
\end{tabular}} & Brock, G. (1); Iglesias, J.; Toulouse, K.; Ferguson, K.; Pullman, W.; Anglin, G. \\
\hline & (1) Univ. of W. Ontario, London, ON Canada \\
\hline & European Urology, (March, 2001) Vol. 39, No. Suppl. 5, pp. 106. print. \\
\hline & Meeting Info.: XVIth Congress of the European Association of Urology Geneva, Switzerland April 07-10, 2001 ISSN: 0302-2838. \\
\hline DOCUMENT TYPE: & Conference \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
LANGUAGE: \\
SUMMARY LANGUAGE:
\end{tabular}} & English \\
\hline & English \\
\hline \multirow[t]{4}{*}{L25 ANSWER 52 OF ACCESSION NUMBER: DOCUMENT NUMBER: TITLE:} & 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. \\
\hline & 2001:391998 BIOSIS \\
\hline & PREV200100391998 \\
\hline & IC351 enhances NO-mediated relaxation of human arterial and trabecular penile smooth muscle. \\
\hline \multirow[t]{3}{*}{AUTHOR(S) :} & Angulo, J. (1); Gadau, M.; Fernandez, A.; Gabancho, S.; \\
\hline & Cuevas, P.; Martins, T.; Florio, V.; Ferguson, K.; Saenz De Tejada, I. \\
\hline & Prepared by Toby Port, STIC, Biotech Library 308-3534 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline DOCUMENT TYPE: & Conference \\
\hline LANGUAGE: & English \\
\hline SUMMARY LANGUAGE: & English \\
\hline L25 ANSWER 56 OF 5 & 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. \\
\hline ACCESSION NUMBER: & 2000:356088 BIOSIS \\
\hline DOCUMENT NUMBER: & PREV200000356088 \\
\hline TITLE: & Daily IC351 treatment of erectile dysfunction. \\
\hline AUTHOR (S) : & Giuliano, Francois (1); Meuleman, Eric; Saoud, Jay; Ferguson, Kenneth; Whitaker, Steven; Porst, Hartmut \\
\hline CORPORATE SOURCE: & (1) Department of Urology, University Hospital of Bicetre, Le Kremlin France \\
\hline SOURCE : & \begin{tabular}{l}
European Urology, (March, 2000) Vol. 37, No. Suppl. 2, pp. 80. print. \\
Meeting Info.: XVth Congress of the European Association of Urology Brussels, Belgium April 12-15, 2000 \\
ISSN: 0302-2838.
\end{tabular} \\
\hline DOCUMENT TYPE: & Conference \\
\hline LANGUAGE: & English \\
\hline SUMMARY LANGUAGE: & English \\
\hline L25 ANSWER 57 OF 5 & 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. \\
\hline ACCESSION NUMBER: & 1999:160377 BIOSIS \\
\hline DOCUMENT NUMBER: & PREV199900160377 \\
\hline TITLE: & Effects of IC351 on erectile response to visual sexual stimulation. \\
\hline AUTHOR(S) : & Meuleman, Eric; Nijeholt, Guus Lycklama A; Slob, Koos; Roeleveld; Damen, Lianne; Brazao, Gouveia De C.; Harin, Padma-Nathan; Rosen, Raymond \\
\hline CORPORATE SOURCE: & Nijinegen Netherlands \\
\hline SOURCE: & \begin{tabular}{l}
Journal of Urology, (April, 1999) Vol. 161, No. 4 SUPPL., pp. 212. \\
Meeting Info.: 94th Annual Meeting of the American Urological Association, Inc. Dallas, Texas, USA May 1-6, 1999 American Urological Association \\
. ISSN: 0022-5347.
\end{tabular} \\
\hline DOCUMENT TYPE: & Conference \\
\hline LANGUAGE: & English \\
\hline L25 ANSWER 58 OF 5 & 58 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. \\
\hline ACCESSION NUMBER: & 1980:167480 BIOSIS \\
\hline DOCUMENT NUMBER: & BA69:42476 \\
\hline TITLE: & CYTO GENETIC STUDIES ON FISHES 2. KARYOTYPES OF 4 CARANGID FISHES. \\
\hline AUTHOR(S) : & MUROFUSHI M; YOSIDA T H \\
\hline CORPORATE SOURCE: & LAB. BIOL., MISHIMA JR. COLL., NIHON UNIV., MISHIMA, TOKYO 411, JPN. \\
\hline SOURCE : & JPN J GENET, (1979) 54 (5), 367-370. CODEN: IDZAAW. ISSN: 0021-504X. \\
\hline FILE SEGMENT: & BA; OLD \\
\hline LANGUAGE: & English \\
\hline AB All Trachurus cialis all had consisted of a the largest ch sexfasciatus. species by con acrocentric pa any of the 4 differentiatio & japonicus, Caranx equula, C. sexfasciatus and Alectis d a diploid chromosome number of 48. The karotype all acrocentric chromosomes (no. 1-24) in A. cilialis, but hromosome pair no. 1 was subtelocentric in \(C\). equula and \(C\). In \(T\). japonicus the karyotype was 'different from the other nsisting of 15 biarmed chromosome pairs (no. 1-15) and 9 airs (no. 16-24). The sex chromosomes cannot be identified in spp. studied. The relationship between karyotype on and species diversity of carangid fishes was discussed. \\
\hline
\end{tabular}

Prepared by Toby Port, STIC, Biotech Library 308-3534


Please find below and/or attached an Office communication concerning this application or proceeding.


\section*{Period for Reply}

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH (S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event. however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days. a reply within the statutory minimum of thirty (30) days will be considered timely
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b)

\section*{Status}
1) \(\square\) Responsive to communications) filed on \(\qquad\) .

2a) \(\square\) This action is FINAL. ab) \(\boxtimes\) This action is non-final.


Since this application is in condition for allowance except for formal matters, prosecution as to the mends is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453.O.G. 213.

\section*{Disposition of Claims}
4) \(\boxtimes\) Claims) 1-17 is/are pending in the application.

4a) Of the above claims) \(\qquad\) is/are withdrawn from consideration.
5) \(\square\)

Claim (s) \(\qquad\) is/are allowed.
6) \(\boxtimes\) Claim (s) \(1-17\) is/are rejected.Claim (s) \(\qquad\) is/are objected to.
8) \(\square\) Claim (s) \(\qquad\) are subject to restriction and/or election requirement.

\section*{Application Papers}
9) \(\square\)

The specification is objected to by the Examiner.
10)he drawing (s) filed on \(\qquad\) is/are: a) \(\square\) accepted or \(b) \square\)objected to by the Examiner. Applicant may not request that any objection to the drawings) be held in abeyance. See 37 MFR \(1.85(a)\)The proposed drawing correction filed on \(\qquad\) is: \(a) \square\) approved \(b\) ) \(\qquad\) disapproved by the Examiner.
If approved, corrected drawings are required in reply to this Office action.
12) The oath or declaration is objected to by the Examiner.

\section*{Priority under 35 U.S.C. §§ 119 and 120}
13) \(\boxtimes\) Acknowledgment is made of a claim for foreign prionty under 35 U.S.C. § 119 (a)-(d) or (f).
a) \(\triangle\) All b) \(\square\) Some * \(c) \square\) None of:Certified copies of the priority documents have been received.Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3. \(\boxtimes\) Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.
14) \(\boxtimes\) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
a) \(\square\) The translation of the foreign language provisional application has been received.
15) \(\square\) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

\section*{Attachment (s)}
1) \(\boxtimes\) Notice of References Cited (PTO-892)
2) \(\square\) Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) Information Disclosure Statements) (PTO-1449) Paper Nos) 4.
4)
5)
new Summary (PTO-413) Paper Nos)
6)

Application/Control Number: 10/031,556
Page 2
Art Unit: 1614

Claims 9-12 are objected to under 37 CFR 1.75(c), as being of improper dependent form for failing to further limit the subject matter of a previous claim. Applicant is required to cancel the claim(s), or amend the claim(s) to place the claim(s) in proper dependent form, or rewrite the claim(s) in independent form. Intended use does not lend patentability to a composition claim.

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 1-17 are rejected under 35 U.S.C. 103(a) as being unpatentable over 6,140,329.
'329 (column 3, lines 48-65, column 5, lines 60-65, claims 16-17) disclose the instant compound and a method of using it to treat sexual dysfunction. It further discloses oral administration and a dosage within the recited range. It also discloses that individual enantiomers may be prepared.

The instant claims differ over ' 329 in reciting a unit dosage composition and a specific enantiomer. However, once a method of using a composition is known it is with the skill of the artisan to determine the optimum route of administration. Furthermore, in the absence of a showing of unexpected results in Declaration form no unobviousness is seen in using a specific enantiomer.

Applicants are requested to identify any related applications in which there may be double patenting.

\section*{.......}

Application/Control Number: 10/031,556
Art Unit: 1614
Any inquiry concerning this communication or earlier communications from the examiner should be directed to Examiner Cook whose telephone number is (703) 3084724. The examiner can normally be reached on Monday through Thursday from 5:30 am to 4:00 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Marianne Seidel, can be reached on (703) 308-4725. The fax phone number for the organization where this application or proceeding is assigned is (703) 308-4556.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is (703) 3081235.

August 29, 2002

\section*{Notice of References Cited}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Application/Control No. \\
\(10 / 031,556\)
\end{tabular} & \begin{tabular}{l}
\(l\) \\
Applicant(s)/Patent Under \\
Reexamination \\
PULLMAN ET AL.
\end{tabular} \\
\hline Examiner & Art Unit . & Page 1 of 1 \\
Rebecca Cook & 1614 & \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline * & & Document Number
Country Code-Number-Kind Code & Date MM-YYYY & Name & Classification \\
\hline & A & US-6,140,329 & 10-2000 & Daugan & 514/250 \\
\hline & B & US- & & & \\
\hline & C & US- & & & \\
\hline & D & US- & & & \\
\hline & E & US- & & & \\
\hline & F & US- & & & \\
\hline & G & US- & & & \\
\hline & H & US- & & & \\
\hline & 1 & US- & & & \\
\hline & J & US- & & & \\
\hline & K & US- & & - & \\
\hline & L & US- & & & \\
\hline & M & US- & & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(*\) & & \begin{tabular}{c} 
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c} 
Date \\
MM-YYY
\end{tabular} & Country & Name & Classification \\
\hline & N & & & & & \\
\hline & O & & & & & \\
\hline & P & & & & & \\
\hline & Q & & & & & \\
\hline & R & & & & \\
\hline & S & & & & \\
\hline & T & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS
\begin{tabular}{|l|l|l|}
\hline\(*\) & & Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) \\
\hline & U & \\
\hline & V & \\
\hline & W & \\
\hline & & \\
\hline
\end{tabular}
*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

\begin{tabular}{||l|l||}
\hline EXAMINER \\
\hline \begin{tabular}{l} 
*XXAMINER: \\
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
\end{tabular} \\
\hline
\end{tabular}


All participants (applicant, applicant's representative, PTO personnel):
(1) Rebecca Cook.
(3) \(\qquad\)
\(\qquad\) -.
(2) James Napoli.
(4) .

Date of Interview: 13 November 2002 .
Type: a) \(\square\) Telephonic b) \(\square\) Video Conference
c) \(\boxtimes\) Personal [copy given to: 1) \(\square\) applicant
2) \(\boxtimes\) applicant's representative]

Exhibit shown or demonstration conducted: d) \(\square\) Yes e) \(\square\) No.
If Yes, brief description: \(\qquad\) .

Claims) discussed: claims pending .
Identification of prior art discussed: art of record .
Agreement with respect to the claims f) \(\square\) was reached. g) \(\boxtimes\) was not reached. h) \(\square \mathrm{N} / \mathrm{A}\).

Substance of Interview including description of the general nature of what was agreed to if an agreement was reached, or any other comments: Examiner will consider a showing of unexpected results to overcome the rejection under 35 U.S.C. 103(a) .
(A fuller description, if necessary, and a copy of the amendments which the examiner agreed would render the claims allowable, if available, must be attached. Also, where no copy of the amendments that would render the claims allowable is available, a summary thereof must be attached.)
i) \(\boxtimes\) It is not necessary for applicant to provide a separate record of the substance of the interview(if box is checked).

Unless the paragraph above has been checked, THE FORMAL WRITTEN REPLY TO THE LAST OFFICE ACTION MUST INCLUDE THE SUBSTANCE OF THE INTERVIEW. (See MPEP Section 713.04). If a reply to the last Office action has already been filed, APPLICANT IS GIVEN ONE MONTH FROM THIS INTERVIEW DATE TO FILE A STATEMENT OF THE SUBSTANCE OF THE INTERVIEW. See Summary of Record of Interview requirements on reverse side or on attached sheet.

Examiner Note: You must sign this form unless it is an Attachment to a signed Office action.

Examiner's signature, if required

Manual of Patent Examining Procedure (MPEP), Section 713.04, Substance of Interview Must be Made of Record
A complete written statement as to the substance of any face-to-face, video conference, or telephone interview with regard to an application must be made of record in the application whether or not an agreement with the examiner was reached at the interview.

\section*{Title 37 Code of Federal Regulations (CFR) § 1.133 Interviews}

Paragraph (b)
In every instance where reconsideration is requested in view of an interview with an examiner, a complete written statement of the reasons presented at the interview as warranting favorable action must be filed by the applicant. An interview does not remove the necessity for reply to Office action as specified in \(\S \S 1.111,1.135\). ( 35 U.S.C. 132)
\[
37 \text { CFR §1.2 Business to be transacted in writing }
\]

All business with the Patent or Trademark Office should be transacted in writing. The personal attendance of applicants or their attorneys or agents at the Patent and Trademark Office is unnecessary. The action of the Patent and Trademark Office will be based exclusively on the written record in the Office. No attention will be paid to any alleged oral promise, stipulation, or understanding in relation to which there is disagreement or doubt.

The action of the Patent and Trademark Office cannot be based exclusively on the written record in the Office if that record is itself incomplete through the failure to record the substance of interviews.

It is the responsibility of the applicant or the attorney or agent to make the substance of an interview of record in the application file, unless the examiner indicates he or she will do so. It is the examiner's responsibility to see that such a record is made and to correct material inaccuracies which bear directly on the question of patentability.

Examiners must complete an Interview Summary Form for each interview held where a matter of substance has been discussed during the interview by checking the appropriate boxes and filling in the blanks. Discussions regarding only procedural matters, directed solely to restriction requirements for which interview recordation is otherwise provided for in Section 812.01 of the Manual of Patent Examining Procedure, or pointing out typographical errors or unreadable script in Office actions or the like, are excluded from the interview recordation procedures below. Where the substance of an interview is completely recorded in an Examiners Amendment, no separate Interview Summary Record is required.

The Interview Summary Fom shall be given an appropriate Paper No., placed in the night hand portion of the file, and listed on the "Contents" section of the file wrapper. In a personal interview, a duplicate of the Fomm is given to the applicant (or attorney or agent) at the conclusion of the interview. In the case of a telephone or video-conference interview, the copy is mailed to the applicant's correspondence address either with or prior to the next official communication. If additional correspondence from the examiner is not likely before an allowance or if other circumstances dictate, the Form should be mailed promptly after the interview rather than with the next official communication.

The Form provides for recordation of the following information:
- Application Number (Series Code and Serial Number)
- Name of applicant
- Name of examiner
- Date of interview
- Type of interview (telephonic, video-conference, or personal)
- Name of participant(s) (applicant, attomey or agent, examiner, other PTO personnel, etc.)
- An indication whether or not an exhibit was shown or a demonstration conducted
- An identification of the specific prior art discussed
- An indication whether an agreement was reached and if so, a description of the general nature of the agreement (may be by attachment of a copy of amendments or claims agreed as being allowable). Note: Agreement as to allowability is tentative and does not restrict further action by the examiner to the contrary.
- The signature of the examiner who conducted the interview (if Form is not an attachment to a signed Office action)

It is desirable that the examiner orally remind the applicant of his or her obligation to record the substance of the interview of each case unless both applicant and examiner agree that the examiner will record same. Where the examiner agrees to record the substance of the interview, or when it is adequately recorded on the Form or in an attachment to the Form, the examiner should check the appropriate box at the bottom of the Form which informs the applicant that the submission of a separate record of the substance of the interview as a supplement to the Form is not required.

It should be noted, however, that the Interview Summary Form will not nomally be considered a complete and proper recordation of the interview unless it includes, or is supplemented by the applicant or the examiner to include, all of the applicable items required below concerning the substance of the interview.

A complete and proper recordation of the substance of any interview should include at least the following applicable items:
1) A brief description of the nature of any exhibit shown or any demonstration conducted,
2) an identification of the claims discussed,
3) an identification of the specific prior art discussed.
4) an identification of the principal proposed amendments of a substantive nature discussed, unless these are already described on the Interview Summary Form completed by the Examiner,
5) a brief identification of the general thrust of the principal arguments presented to the examiner, (The identification of arguments need not be lengthy or elaborate. A verbatim or highly detailed description of the arguments is not required. The identification of the arguments is sufficient if the general nature or thrust of the principal arguments made to the examiner can be understood in the context of the application file. Of course, the applicant may desire to emphasize and fully describe those arguments which he or she feels were or might be persuasive to the examiner.)
6) a general indication of any other pertinent matters discussed, and
7) if appropniate, the general results or outcome of the interview unless already described in the Interview Summary Form completed by the examiner.

Examiners are expected to carefully review the applicant's record of the substance of an interview. If the record is not complete and accurate, the examiner will give the applicant an extendable one month time period to correct the record.

\section*{Examiner to Check for Accuracy}

If the claims are allowable for other reasons of record, the examiner should send a letter setting forth the examiner's version of the statement attributed to him or her. If the record is complete and accurate, the examiner should place the indication, "Interview Record OK" on the paper recording the substance of the interview along with the date and the examiner's initials.



\section*{REMARKS}

Claims 1-17 are pending in the application. Claims 9 and 10 have been cancelled by this amendment. Therefore, claims 1-8 and 11-17 are at issue.

The amendments are described in more detail below. Pursuant to 37 C.F.R. §1.121, a marked-up version of the changes made to the claims by the present amendment is attached hereto following the signature page of this amendment. The first page of the marked-up version of the changes is captioned "Version With Markings to Show Changes Made."

The courteous interview granted to appli-
cants' undersigned attorney by Examiner Cook on November 13, 2002 is hereby acknowledged with appreciation. During the interview, the outstanding Office Action, cited reference, claims on file, and proposed claim amendments were discussed in detail.

Claims 9-12 are objected to as being in improper form because an intended use in a dependent claim does not further limit an independent composition claim. In response, applicants have cancelled claims 9 and 10, and have amended claims 11 and 12 to recite a method and depend from independent claim 13. Accordingly, it is submitted that the objection to claims 11 and 12 has been overcome and should be withdrawn.

Claim 13 has been amended to recite that the unit dose is administered orally. Support for this amendment can be found in the specification at page 5 , lines 16-25 and in Examples 5-7.

Claims \(1-17\) stand rejected under 35 U.S.C. \(\S 103\) as being obvious over Daugan U.S. Patent No. 6,140,329 ('329). This rejection is based on the con-- 3 -
tention that the ' 329 patent discloses the compound recited in the claims, use of the compound to treat sexual dysfunction, oral administration, and a dosage encompassing the recited dosage range. In view of the unexpected results demonstrated by the claimed compound at the claimed low dosage, it is submitted that this rejection is in error and should be withdrawn.

The present claims recite a unit dosage composition containing about 1 to about 20 mg of a specifically claimed compound and suitable for oral administration, and use of the unit dosage composition, up to a maximum dose of 20 mg per day, to treat sexual dysfunction. The oral unit dosage can be used to treat sexual dysfunction, including, for example, male erectile dysfunction (MED) and female arousal disorder (FAD), as recited in the claims. As discussed hereafter, the cited reference fails to teach or suggest an oral dosage form containing about 1 to about 20 mg of the claimed PDE5 inhibitor, or its use in a method of treating sexual dysfunction using a maximum total dose of about 20 mg per day.

It is submitted that the examiner's obviousness conclusion is incorrect because the ' 329 patent fails to teach or suggest a low oral dosage of the claimed PDE5 inhibitor to effectively treat sexual dysfunction. In addition, the presently claimed invention provides unexpected benefits and is a substantial advance in the art. In particular, the presently claimed invention (a) effectively treats sexual dysfunction using a low dose of a particular PDE5 inhibitor, (b) eliminates or reduces various adverse side effects associated with current PDE5 inhibitor therapy
used to treat sexual dysfunction, i.e., VIAGRA \({ }^{\circledR}\), and (c) increases the population treatable for sexual dysfunction using a PDE5 inhibitor.

In particular, the 329 patent discloses a class of PDE inhibitors, including the compound recited in claim 1, useful in oral dosage forms over a range of \(0.2-400 \mathrm{mg}\) to treat sexual dysfunction. However, all examples in the ' 329 patent teach using 50 mg of active compound per dosage form. See columns 8-10 of the '329 patent. The ' 329 patent provides no teaching or suggestion of a preferred unit dose, except for the 50 mg dose in the examples. Thus, the lowest dose of PDE5 inhibitor embodied in the 329 patent in a unit dose composition is 50 mg of the active ingredient.

Therefore, although the ' 329 patent teaches a unit dosage range for the disclosed compounds of 0.2 to 400 mg , administered once or several times per day, the ' 329 patent does not teach or suggest a low maximum daily dose for effective treatment of sexual dysfunction. An important feature of the present invention is administration of an oral dose of the claimed unit dosage composition at 20 mg or less, per day, to treat sexual dysfunction (see claims 1 and 13). Such features are neither taught nor suggested in the ' 329 patent.

The 329 patent discloses thirteen specific compounds, and two preferred compounds; for the treatment of impotence. One of the preferred com-pounds, i.e., Example \(I\) (Compound A) of the ' 329 patent is Compound (I) recited in the present claims. The ' 329 patent also states that individual enantiomers can be prepared, as stated by the examiner.

Even though Compound (I) is disclosed as a preferred compound, the ' 329 patent contains no teaching or suggestion that Compound (I) was expected to successfully perform at a dosage less than 50 mg . The ' 329 patent merely teaches a broad dosage range for a class of compounds and for particular individual compounds. The only specific dosage disclosed in the '329 patent is 50 mg . Accordingly, insofar as the ' 329 patent does not disclose any dose below 50 mg , the ' 329 patent may be read to teach that a 50 mg dose is an effective dose of Compound (I). The lack of an example or any disclosure relating to a lower dose (i.e., less than 50 mg ) for the preferred compounds of the '329 patent implies that it was not understood a lower dose of the claimed compound could effectively treat sexual dysfunction.

The \(\mathbf{~} 329\) patent contains no disclosure that would lead a person skilled in the art to consider using the presently claimed low dose of Compound (I) with any reasonable expectation of successfully treating sexual dysfunction. In contrast, the present claims are enabled and supported by the clinical trials set forth in the specification. The specification, in Examples 6 and 7 , clearly shows that a low dose of Compound (I) successfully treats sexual dysfunction and leads to a reduction or elimination of various adverse side effects.

In summary, there is no basis to contend that the presently claimed unit dosage composition or method would have been obvious from the ' 329 patent, which merely teaches a broad dosage range for a class of PDE5 inhibitors to treat sexual dysfunction. Furthermore,
there is no incentive to provide a claimed unit dosage composition based on the examples of the ' 329 patent (limited to 50 mg dose).

The examiner states that no unexpected results are demonstrated for the claimed enantiomer. To the contrary, as discussed below, the claimed enantiomer possesses improved properties over its three stereoisomers.

In particular, one important aspect of the present invention is the discovery of a bioavailable compound having a high potency and selectivity with respect to inhibiting PDE5. Bioavailability is one property that allows the PDE5 inhibitor to perform its intended function at a low dose. A high potency with respect to PDE5 is another property that allows administration of a low dose of the compound to inhibit PDE5: Selectivity is important because, coupled with bioavailability and potency, the PDE5 inhibitor can be administered at a sufficiently low dose such that it still can perform its intended function while other PDE enzymes are essentially unaffected. Undesired side effects attributed to inhibition of PDE enzymes other than PDE5, therefore, are avoided or reduced.

Compound (I) meets all of the above criteria of bioavailability, potency, and selectivity, which makes it useful in a low oral dosage form. In one series of tests, Compound (I) exhibited an \(I_{50}\) vs. PDE5 of 2.5 nM , an \(\mathrm{IC}_{50}\) vs. PDE6 of 3400 nM , and an \(\mathrm{IC}_{50}\) vs. PDElc of \(10,000 \mathrm{nM}\). This series of tests show that Compound (I) is a potent inhibitor of PDE5 (low IC50) and is selective in inhibiting PDE5 (PDE6/PDE5 IC50 ratio of 1360 , and PDE1c/PDE5 \(\mathrm{IC}_{50}\) ratio of 4,000 ).

The discovery of a PDE5 inhibitor useful in a low unit dosage form to treat sexual dysfunction is not straightforward. In particular, not only do different compounds exhibit substantially different pharmacological properties, stereoisomers of a particular compound exhibit substantially different properties. For example, the following structures are Compound (I) (the ( \(R, R\) ) isomer) and its three stereoisomers.

( \(R, R\) ) isomer Compound (I)

(R,S) isomer

(S,S) isomer

(S,R) isomer
In a comparative test, Compound (I) had an \(I_{50}\) value. vs. PDE5 of about 1 nM . The ( \(\mathrm{R}, \mathrm{S}\) ), ( \(\mathrm{S}, \mathrm{S}\) ), and ( \(\mathrm{S}, \mathrm{R}\) ) stereoisomers had \(I_{50}\) values of vs. PDE5 14, 6,000, and 900 nM , respectively. The stereoisomers of a single compound, therefore, can have profoundly different properties with respect to PDE5 inhibition.

In addition, the presently claimed oral dosage form also satisfies a long-felt need in the art. A pharmaceutical product that provides a PDE5 inhibitor to treat erectile dysfunction is commercially available under the tradename VIAGRA \({ }^{\otimes}\), which contains the active ingredient sildenáfil citrate. VIAGRA \({ }^{\circledR}\) is sold as an article of manufacture including 25,50 , or 100 mg tablets of sildenafil citrate and a package insert. While VIAGRA \({ }^{\circledR}\) has obtained significant commercial
success, it has fallen short due to its adverse side effects, including facial flushing (i.e., \(10 \%\) incidence rate). Adverse side effects also limit the use of sildenafil by patients suffering from vision abnormalities.

The VIAGRA \({ }^{\text {® }}\) package insert (submitted concurrently with this amendment) teaches that sildenafil is a more potent inhibitor of PDE5 than other known phosphodiesterases. The \(\mathrm{IC}_{50}\) for sildenafil against PDE5 has been reported as 3 nM (Boolel et al., Int. J. of Impotence, 8, pp. 47-52 (1996)). Sildenafil is described as having only a lo-fold \(\mathrm{IC}_{50}\) selectivity for PDE5 versus PDE6. Its relative lack of selectivity for PDE6 is theorized to be the basis for abnormalities related to color vision, i.e., a blue-green vision, suffered by some users of VIAGRA ( \(3 \%\) incidence rate).

VIAGRA \({ }^{( }\)also has a disadvantage in that ingestion of a meal prior to oral administration of a VIAGRA \({ }^{\left({ }^{( }\right)}\)tablet adversely effects the efficacy of the erectile dysfunction treatment. Sildenafil citrate also has a relatively short half-life after administration, such that sexual activity must be completed in about four hours after administration. Sexual activity, therefore, must be relatively carefully preplanned. In addition, the lowest labeled dose for VIAGRA \({ }^{\circledR}\) labeled is 25 mg , with the insert providing for dosages up to 100 mg . The greater the dose of sildenafil, the more probable an adverse side effect will occur. The VIAGRA insert also has a warning that individuals suffering from a myocardial infarction within the last six months, or suffering from a retinal disease, such as retinitis pigmentosa, should not use
the product. Thus, even with the availability of VIAGRA \({ }^{\circledR}\), there remains a need to identify improved PDE5 inhibitor pharmaceutical products that are useful in the treatment of sexual dysfunction.

A unit dosage composition containing Compound (I) is in the final approval stages at the Food and Drug Administration. After approval, which may occur in the second half of 2003 , the unit dosage form containing Compound (I), also known as tadalafil, will be marketed under the tradename CIALIS \({ }^{\circledR}\). CIALIS \({ }^{\circledR}\) will be in direct competition with VIAGRA \({ }^{\circledR}\). As discussed hereafter, CIALIS \({ }^{\ominus}\) (i.e., a unit dosage composition of the present invention) overcomes some of the disadvantages associated with VIAGRA \({ }^{\circledR}\), and provides an unexpected improvement in the"art.

Applicants have discovered that the compound recited in independent claims 1 and 13 can be administered in a unit dosage composition containing about 1 to about 20 mg of the compound to provide an effective sexual dysfunction treatment, while reducing or eliminating various adverse side effects associated with VIAGRA \({ }^{\oplus}\). The present invention is based on detailed experiments and clinical trials, and the unexpected discovery that various side effects previously believed attributable to PDE5 inhibition can be reduced to clinically insignificant levels by the selection of (a) a particular PDE5 inhibitor and (b) a particular low unit dosage. This unexpected discovery led to the development of a unit dosage composition incorporating about 1 to about 20 mg of Compound (I) that, when orally administered, effectively treats sexual dysfunction and eliminates or reduces various undesirable side
effects previously believed attributable to PDE5 inhibition, and; therefore, unavoidable. These adverse effects include facial flushing and vision abnormalities.

When administered in about 1 to about 20 mg unit dosage forms, the minimal effect of Compound (I) on PDE6 allows the treatment of sexual dysfunction in individuals who also may be suffering from a retinal disease, like diabetic retinopathy or retinitis pigmentosa. Such individuals previously shunned PDE5 inhibitor treatment for sexual dysfunctions because of warning on the VIAGRA \({ }^{(1)}\) label, for example. Additional individuals that previously were excluded from, or shunned, PDE5 inhibitor treatment include those having suffered a myocardial infarction three to six months prior to the onset of PDE5 inhibitor therapy and those : suffering from class 1 congestive heart failure. The present invention allows these individuals to use a PDE5 inhibitor to treat sexual dysfunction. The package insert for VIAGRA \({ }^{(1}\) warns such patients to avoid using sildenafil.

Clinical studies have shown that a presently claimed unit dosage composition is an effective product having a reduced tendency to cause flushing or visual abnormalities in susceptible individuals. See Examples 5-7, at pages 26-30 of the specification wherein using the claimed unit dosage composition also reported incidence of flushing below 2 \%. This incidence rate of flushing demonstrates marked improvement over VIAGRA \({ }^{\oplus}\), i.e., \(10 \%\) flushing incidence rate.

In particular, Example 6 shows that 5 to 20 mg doses of Compound (I) are efficacious, wich less
than a \(1 \%\) incidence of flushing and no reports of vision abnormalities. In contrast, the minimum labeled dose of sildenafil citrate is 25 mg , which has a \(10 \%\) incidence of flushing. Example 7 shows that doses of Compound (I) less than 25 mg administered not more than once every twenty-four hours, produced a significant improvement in sexual performance relative to a placebo.

The incidence of adverse side effects attributed to administration of Compound (I) is set forth at page 32 of the specification. This table shows a lower incidence rate of various adverse side effects compared to the adverse events reported in the VIAGRA \({ }^{\oplus}\) insert, at page 15.

Examples 6 and 7 of the specification show. that a unit dose containing about 1 to about 20 mg of. Compound (I), administered up to a maximum of 20 mg per 24-hour period, effectively treats sexual dysfunction and reduces or eliminates the occurrence of various adverse side effects. Importantly, no vision abnormalities were reported, and flushing was essentially eliminated, when a unit dose composition of the present invention was administered. It is unexpected that Compound (I) is efficacious at about 1 to 20 mg dosage forms and reduces or eliminates various adverse side effects. In contrast, the labeled 25 to 100 mg dose of sildenafil citrate required to treat sexual dysfunctions results in increased adverse events.

The present invention, therefore, is an improvement over the only commercial PDE5 inhibitor treatment for sexual dysfunction, i.e., VIAGRA \({ }^{\oplus}\). VIAGRA \({ }^{\circledR}\) must be administered orally in a dose of at
least 25 mg (the lowest labeled dosage), and can be administered up to 100 mg . Administration of sildenafil citrate also leads to various adverse side effects, as indicated in the VIAGRA \({ }^{\otimes}\) insert submitted concurrently with this amendment as Exhibit A. In addition, particular individuals are precluded from using sildenafil, as noted in the warnings and contraindications present on the VIAGRA \({ }^{\circledR}\) insert. The present invention reduces or eliminates some of these adverse side effects, and allows more individuals to use PDE5 inhibitor therapy to treat sexual dysfunction.

The present invention also provides an oral PDE5 inhibitor treatment for sexual dysfunction that previously was unavailable to a portion of the popula-: ;" tion. In particular, the present invention provides a : PDE5 inhibitor treatment for sexual dysfunction to \(\quad \therefore\). persons who could not, or preferred not to, undergo the treatment. Persons prone to flushing and vision ab- w normalities now can more freely use a PDE5 inhibitor \(\because\). treatment and have little to no concern with respect tow these adverse effects. In addition, persons who were precluded from PDE5 inhibitor treatment now have an available treatment, e.g., persons suffering from a retinal disease, suffering from class 1 congestive heart failure, or having a myocardial infarction 3 to 6 months prior to onset of PDE5 inhibitor treatment. In addition to a decrease in adverse side effects, a present unit dosage composition improves the spontaneity of sexual relations. First, ingesting a meal prior to administration of a claimed unit dose does not adversely affect the efficacy of Compound (I). Users of the present oral unit dosage composition,
therefore, are free to practice a more normal lifestyle without a reduction in treatment efficacy. Second, Compound (I) has a longer effective half-life than sildenafil after ingestion. Users of the present oral unit dosage composition, therefore, have a longer time frame in which to engage in sexual relations.

A person skilled in the art would not have been motivated from the \(\cdot 329\) patent to provide a unit dose composition as recited in the present claims with any expectation that the unit dosage composition would provide such unexpected results in the treatment of sexual dysfunction. From a reading of the ' 329 patent, it would have been expected that a dose greater than 20 mg of Compound (I) is needed to treat sexual dysfunc:tion effectively, i.e., about 50 mg . Additional unexpected benefits of the present invention are the improvements demonstrated by a claimed unit dosage composition over commercially available VIAGRA \({ }^{\circledR}\). The: present invention, therefore, not only is nonobvious: over the '329 patent, but also satisfies unmet needs;.in the art.

In summary, the presently claimed invention would not have been obvious over the \(\cdot 329\) patent, and the invention satisfies a long-felt need in the art. All examples in the \(\cdot 329\) patent teach a 50 mg dose of the active compound. The cited art absolutely fails to suggest that a low dose of any PDE5 inhibitor, let alone the specific PDE5 inhibitor recited in claims 1 and 13, can be used to successfully treat sexual dysfunction, while eliminating or reducing various adverse side effects associated with the current PDE5 inhibitor treatment for sexual dysfunction.

The present invention is not directed to optimizing the dosage of PDE5 inhibitor or the route of administration, but is directed to the discovery of an oral dosage composition containing about 1 to about 20 mg of a specific PDE5 inhibitor that effectively treats sexual dysfunction. The reduced PDE5 inhibitor dosage not only performs its intended function, but reduces or eliminates various adverse effects associated with administration of sildenafil citrate, and allows a previously precluded segment of the population to undergo PDE5 inhibitor therapy to treat sexual dysfunction.

Applicants, therefore, have discovered a particular low unit dosage composition containing a particular PDE5 inhibitor that effectively treats ED, while avoiding or reducing various adverse side effects and expanding the population that is treatable using a PDE5 inhibitor. The \(\quad 329\) patent broadly discloses a \(\because\) dosage range for various PDE5 inhibitors, but fails to : teach or suggest the specific dosage and the specific \(s\) compound of the present invention that provides such new and unexpected benefits.

In view of all of the above, claims \(1-8\) and 11-17 would not have been obvious to a person skilled in the art, and the rejection of the pending claims under 35 U.S.C. §l03 over the ' 329 patent should be withdrawn.

The examiner requested the identity of related applications in which double patenting may be an issue. In response, applicants bring U.S. Patent No. 6,451,807, U.S.S.N. 09/834,442, and U.S.S.N. 10/198,903 to the attention of the examiner for consideration.

It is submitted that the claims are now in proper form and scope for allowance. An early and favorable action on the merits is respectfully requested.

Should the examiner wish to discuss the foregoing, or any matter of form in an effort to advance this application toward allowance, the examiner is urged to telephone the undersigned at the indicated number.


Chicago, Illinois February 6, 2003

\section*{"Version With Markings to Show Changes Made" (Pullman et al. U.S.S.N. 10/031,556)}

IN THE CLAIMS:

Claims 9 and 10 have been cancelled without prejudice.

Claims 11, 12, and 13 have been amended as follows:
11. (Amended) The [dosage form] method of claim [10] 13 wherein the sexual dysfunction is male erectile dysfunction.
12. (Amended) The [dosage form] method
of claim [10] 13 wherein the sexual dysfunction is female arousal disorder.
13. (Amended) A method of treating sexual dysfunction in a patient in need thereof comprising orally administering one or more unit dose containing about 1 to about 20 mg , up to a maximum total dose of 20 mg per day, of a compound having the structure


U.S. Prescribing Information
roncs
1.escription

Clinical Fharmacology
Indication and Usage
Contraindications
W'arnings
Irecautions
Adverse Reatctions
onerdosage
Duserge and
Administration
How supplied

\section*{DESCRIPTION}

VIAGRA \({ }^{\circledR}\), an oral therapy for erectile dysfunction, is the citrate salt of sildenafil, a selective inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5 (PDE5).

Sildenafil citrate is designated chemically as 1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-
1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxyphenyl]sulfonyl]-4-methylpiperazine citrate and has the following structural formula:


Sildenafil citrate is a white to off-white crystalline powder with a solubility of \(3.5 \mathrm{mg} / \mathrm{mL}\) in water and a molecular weight of 666.7 . VIAGRA (sildenafil citrate) is formulated as blue, film-coated rounded-diamond-shaped tablets equivalent to 25 mg , 50 mg and 100 mg of sildenafil for oral administration. In addition to the active ingredient, sildenafil citrate, each tablet contains the following inactive ingredients: microcrystalline cellulose, anhydrous dibasic calcium phosphate, croscarmellose sodium, magnesium stearate, hydroxypropyl methylcellulose, titanium dioxide, lactose, triacetin, and FD \& C Blue \#2 aluminum lake.

\section*{CLINICAL PHARMACOLOGY}

\section*{Mechanism of Action}

The physiologic mechanism of erection of the penis involves release of nitric oxide (NO) in the corpus cavernosum during sexual stimulation. NO then activates the enzyme guanylate cyclase, which results in increased levels of cyclic guanosine monophosphate (cGMP), producing smooth muscle relaxation in the corpus cavernosum and allowing inflow of blood. Sildenafil has no direct relaxant effect on isolated human corpus cavernosum, but enhances the effect of nitric oxide ( NO ) by inhibiting phosphodiesterase type 5 (PDE5), which is responsible for degradation of cGMP in the corpus cavernosum. When sexual stimulation causes local release of NO, inhibition of PDE5 by sildenafil causes increased levels of cGMP in the corpus cavernosum, resulting in smooth muscle relaxation and inflow of blood to the corpus cavernosum. Sildenafil at recommended doses has no effect in the absence of sexual stimulation.

Studies in vitro have shown that sildenafil is selective for PDE5. Its effect is more potent on PDE5 than on other known phosphodiesterases ( \(>80\)-fold for PDE1, \(>1,000-\) fold for PDE2, PDE3, and PDE4). The approximately 4,000 -fold selectivity for PDE5 versus PDE3 is important because that PDE is involved in control of cardiac contractility. Sildenafil is only about 10 -fold as potent for PDE5 compared to PDE6, an enzyme found in the retina; this lower selectivity is thought to be the basis for abnormalities related to color vision observed with higher doses or plasma levels (see Pharmacodynamics).

In addition to human corpus cavernosum smooth muscle, PDE5 is also found in lower concentrations in other tissues including platelets, vascular and visceral smooth muscle, and skeletal muscle. The inhibition of PDE5 in these tissues by sildenafil may be the basis for the enhanced platelet antiaggregatory activity of nitric oxide observed in vitro, an inhibition of platelet thrombus formation in vivo and peripheral arterial-venous dilatation in vivo.

\section*{Pharmacokinetics and Metabolism}

VIAGRA is rapidly absorbed after oral administration, with absolute bioavailability of about \(40 \%\). Its pharmacokinetics are dose-proportional over the recommended dose range. It is eliminated predominantly by hepatic metabolism (mainly cytochrome P450 \(3 \mathrm{~A} 4)\) and is converted to an active metabolite with properties similar to the parent, sildenafil. The concomitant use of potent cytochrome P450 3A4 inhibitors (e.g., erythromycin, ketoconazole, itraconazole) as well as the nonspecific CYP inhibitor, cimetidine, is associated with increased plasma levels of sildenafil (see DOSAGE AND ADMINISTRATION). Both sildenafil and the metabolite have terminal half lives of about 4 hours.

Mean sildenafil plasma concentrations measured after the administration of a single oral dose of 100 mg to healthy male volunteers is depicted below:


Figure 1: Mean Sildenafil Plasma Concentrations
in Healthy Male Volunteers.
Absorption and Distribution: VIAGRA is rapidly absorbed. Maximum observed plasma concentrations are reached within 30 to 120 minutes (median 60 minutes) of oral dosing in the fasted state. When VIAGRA is taken with a high fat meal, the rate of absorption is reduced, with a mean delay in \(T_{\max }\) of 60 minutes and a mean reduction in \(C_{\text {max }}\) of \(29 \%\). The mean steady state volume of distribution (Vss) for sildenafil is 105 L , indicating distribution into the tissues. Sildenafil and its major circulating Ndesmethyl metabolite are both approximately \(96 \%\) bound to plasma proteins. Protein binding is independent of total drug concentrations.

Based upon measurements of sildenafil in semen of healthy volunteers 90 minutes after dosing, less than \(0.001 \%\) of the administered dose may appear in the semen of patients.

Metabolism and Excretion: Sildenafil is cleared predominantly by the CYP3A4 (major route) and CYP2C9 (minor route) hepatic microsomal isoenzymes. The major circulating metabolite results from N -desmethylation of sildenafil, and is itself further metabolized. This metabolite has a PDE selectivity profile similar to sildenafil and an in vitro potency for PDE5 approximately \(50 \%\) of the parent drug. Plasma concentrations of this metabolite are approximately \(40 \%\) of those seen for sildenafil, so that the metabolite accounts for about \(20 \%\) of sildenafil's pharmacologic effects.

After either oral or intravenous administration, sildenafil is excreted as metabolites predominantly in the feces (approximately \(80 \%\) of administered oral dose) and to a lesser extent in the urine (approximately \(13 \%\) of the administered oral dose). Similar values for pharmacokinetic parameters were seen in normal volunteers and in the patient population, using a population pharmacokinetic approach.

\section*{Pharmacokinetics in Special Populations}

Geriatrics: Healthy elderly volunteers (65 years or over) had a reduced clearance of sildenafil, with free plasma concentrations approximately \(40 \%\) greater than those seen in healthy younger volunteers (18-45 years).

Renal Insufficiency: In volunteers with mild (CLer=50-80 mL/min) and moderate
(CLer \(=30-49 \mathrm{~mL} / \mathrm{min}\) ) renal impairment, the pharmacokinetics of a single oral dose of VIAGRA ( 50 mg ) were not altered. In volunteers with severe (CLcr=<30 \(\mathrm{mL} / \mathrm{min}\) ) renal impairment, sildenafil clearance was reduced, resulting in approximately doubling of AUC and \(C_{\text {max }}\) compared to age-matched volunteers with no renal impairment.

Hepatic Insufficiency: In volunteers with hepatic cirrhosis (Child-Pugh A and B), sildenafil clearance was reduced, resulting in increases in AUC (84\%) and \(C_{\max }\) (47\%) compared to age-matched volunteers with no hepatic impairment.

Therefore, age \(>65\), hepatic impairment and severe renal impairment are associated with increased plasma levels of sildenafil. A starting oral dose of 25 mg should be considered in those patients (see DOSAGE AND ADMINISTRATION).

\section*{Pharmacodynamics}

Effects of VIAGRA on Erectile Response: In eight double-blind, placebo-controlled crossover studies of patients with either organic or psychogenic erectile dysfunction, sexual stimulation resulted in improved erections, as assessed by an objective measurement of hardness and duration of erections (RigiScan \({ }^{\circledR}\) ), after VIAGRA administration compared with placebo. Most studies assessed the efficacy of VIAGRA approximately 60 minutes post dose. The erectile response, as assessed by RigiScan \({ }^{\circledR}\), generally increased with increasing sildenafil dose and plasma concentration. The time course of effect was examined in one study, showing an effect for up to 4 hours but the response was diminished compared to 2 hours.

Effects of VIAGRA on Blood Pressure: Single oral doses of sildenafil ( 100 mg ) administered to healthy volunteers produced decreases in supine blood pressure (mean maximum decrease of \(8.4 / 5.5 \mathrm{mmHg}\) ). The decrease in blood pressure was most notable approximately 1-2 hours after dosing, and was not different than placebo at 8 hours. Similar effects on blood pressure were noted with \(25 \mathrm{mg}, 50 \mathrm{mg}\) and 100 mg of VIAGRA, therefore the effects are not related to dose or plasma levels. Larger effects were recorded among patients receiving concomitant nitrates (see CONTRAINDICATIONS).


Figure 2: Mean Change from Baseline in Sitting Systolic Blood Pressure, Healthy Volunteers.

Effects of VIAGRA \(n\) Cardiac Parameters: Single oral doses of sildenafil up to 100 mg produced no clinically relevant changes in the ECGs of normal male volunteers.

Studies have produced relevant data on the effects of VIAGRA on cardiac output. In one small, open-label, uncontrolled, pilot study, eight patients with stable ischemic heart disease underwent Swan-Ganz catheterization. A total dose of 40 mg sildenafil was administered by four intravenous infusions.

The results from this pilot study are shown in Table 1; the mean resting systolic and diastolic blood pressures decreased by \(7 \%\) and \(10 \%\) compared to baseline in these patients. Mean resting values for right atrial pressure, pulmonary artery pressure, pulmonary artery occluded pressure and cardiac output decreased by \(28 \%, 28 \%, 20 \%\) and \(7 \%\) respectively. Even though this total dosage produced plasma sildenafil concentrations which were approximately 2 to 5 times higher than the mean maximum plasma concentrations following a single oral dose of 100 mg in healthy male volunteers, the hemodynamic response to exercise was preserved in these patients.

\section*{TABLE 1. HEMODYNAMIC DATA IN PATIENTS WITH STABLE ISCHEMIC HEART DISEASE AFTER IV ADMINISTRATION OF 40 MG SILDENA FIL}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Means \(\pm\) SD & & \multicolumn{3}{|l|}{At rest} & \multicolumn{4}{|r|}{After 4 minutes of exercise} \\
\hline & & Baseline (B2) & & Sildenafil (DI) & & Baseline & & Sildenafıl \\
\hline PAOP (mmHg) & 8 & \(8.1 \pm 5.1\) & 8 & \(6.5 \pm 4.3\) & 8 & \(36.0 \pm 13.7\) & & \(27.8 \pm 15.3\) \\
\hline Mean PAP (mmHg) & 8 & \(16.7 \pm 4\) & 8 & \(12.1 \pm 3.9\) & 8 & \(39.4 \pm 12.9\) & & \(31.7 \pm 13.2\) \\
\hline Mean RAP (mmHg) & 7 & \(5.7 \pm 3.7\) & 8 & \(4.1 \pm 3.7\) & & & & - \\
\hline Systolic SAP (mmHg) & 8 & \(150.4 \pm 12.4\) & [8 & \(140.6 \pm 16.5\) & 8 & \(199.5 \pm 37.4\) & & \(187.8 \pm 30.0\) \\
\hline \[
\begin{aligned}
& \text { Diastolic SAP } \\
& (\mathrm{mmHg})
\end{aligned}
\] & 8 & \(73.6 \pm 7.8\) & 8 & \(65.9 \pm 10\) & 8 & \(84.6 \pm 9.7\) & 8 & \(79.5 \pm 9.4\) \\
\hline Cardiac output (L/min) & 8 & \(5.6 \pm 0.9\) & 8 & \(5.2 \pm 1.1\) & 8 & \(11.5 \pm 2.4\) & & \(10.2 \pm 3.5\) \\
\hline Heart rate (bpm) & 8 & \(67 \pm 11.1\) & 8 & \(66.9 \pm 12\) & 8 & \(101.9 \pm 11.6\) & & \(99.0 \pm 20.4\) \\
\hline
\end{tabular}

Effects of VIAGRA on Vision: At single oral doses of 100 mg and 200 mg , transient dose-related impairment of color discrimination (blue/green) was detected using the Farnsworth-Munsell 100-hue test, with peak effects near the time of peak plasma levels. This finding is consistent with the inhibition of PDE6, which is involved in phototransduction in the retina. An evaluation of visual function at doses up to twice the maximum recommended dose revealed no effects of VIAGRA on visual acuity, intraocular pressure, or pupillometry.

\section*{Clinical Studies}

In clinical studies, VIAGRA was assessed for its effect on the ability of men with erectile dysfunction (ED) to engage in sexual activity and in many cases specifically on the ability to achieve and maintain an erection sufficient for satisfactory sexual activity. VIAGRA was evaluated primarily at doses of \(25 \mathrm{mg}, 50 \mathrm{mg}\) and 100 mg in 21 randomized, double-blind, placebo-controlled trials of up to 6 months in duration, using a variety of study designs (fixed dose, titration, parallel, crossover). VIAGRA was administered to more than 3,000 patients aged 19 to 87 years, with ED of various etiologies (organic, psychogenic, mixed) with a mean duration of 5 years. VIAGRA demonstrated statistically significant improvement compared to placebo in all 21 studies. The studies that established benefit demonstrated improvements in success rates for sexual intercourse compared with placebo.

The effectiveness of VIAGRA was evaluated in most studies using several assessment instruments. The primary measure in the principal studies was a sexual function questionnaire (the International Index of Erectile Function - IIEF) administered during a 4 -week treatment-free run-in period, at baseline, at follow-up visits, and at the end of double-blind, placebo-controlled, at-home treatment. Two of the questions from the IIEF served as primary study endpoints; categorical responses were elicited to questions about (1) the ability to achieve erections sufficient for sexual intercourse and (2) the maintenance of erections after penetration. The patient addressed both questions at the final visit for the last 4 weeks of the study. The possible categorical responses to these questions were ( 0 ) no attempted intercourse, (1) never or almost never, (2) a few times, (3) sometimes, (4) most times, and (5) almost always or always. Also collected as part of the IIEF was information about other aspects of sexual function, including information on erectile function, orgasm, desire, satisfaction with intercourse, and overall sexual satisfaction. Sexual function data were also recorded by patients in a daily diary. In addition, patients were asked a global efficacy question and an optional partner questionnaire was administered.

The effect on one of the major end points, maintenance of erections after penetration, is shown in Figure 3, for the pooled results of 5 fixed-dose, dose-response studies of greater than one month duration, showing response according to baseline function. Results with all doses have been pooled, but scores showed greater improvement at the 50 and 100 mg doses than at 25 mg . The pattern of responses was similar for the other principal question, the ability to achieve an erection sufficient for intercourse. The titration studies, in which most patients received 100 mg , showed similar results. Figure 3 shows that regardless of the baseline levels of function, subsequent function in patients treated with VIAGRA was better than that seen in patients treated with placebo. At the same time, on-treatment function was better in treated patients who were less impaired at baseline.
Effect of VIA GRA on Maimenance of Erection by Baseline Score



Figure 3. Effect of VIAGRA and Placebo on Maintenance of Erection by Baseline Score.

The frequency of patients reporting improvement of erections in response to a global question in four of the randomized, double-blind, parallel, placebo-controlled fixed dose studies ( 1797 patients) of 12 to 24 weeks duration is shown in Figure 4. These patients had erectile dysfunction at baseline that was characterized by median categorical scores of 2 (a few times) on principal IIEF questions. Erectile dysfunction was attributed to organic ( \(58 \%\); generally not characterized, but including diabetes and excluding spinal cord injury), psychogenic ( \(17 \%\) ), or mixed ( \(24 \%\) ) etiologies. Sixtythree percent, \(74 \%\), and \(82 \%\) of the patients on \(25 \mathrm{mg}, 50 \mathrm{mg}\) and 100 mg of VIAGRA, respectively, reported an improvement in their erections, compared to \(24 \%\) on placebo. In the titration studies ( \(n=644\) ) (with most patients eventually receiving 100 mg ), results were similar.


Figure 4. Percentage of Patients Reporting an Improvement in Erections.

The patients in studies had varying degrees of ED. One-third to one-half of the subjects in these studies reported successful intercourse at least once during a 4-week, treatment-free run-in period.

In many of the studies, of both fixed dose and titration designs, daily diaries were kept by patients. In these studies, involving about 1600 patients, analyses of patient diaries showed no effect of VIAGRA on rates of attempted intercourse (about 2 per week), but there was clear treatment-related improvement in sexual function: per patient weekly success rates averaged 1.3 on \(50-100 \mathrm{mg}\) of VIAGRA vs 0.4 on placebo; similarly, group mean success rates (total successes divided by total attempts) were about \(66 \%\) on VIAGRA vs about \(20 \%\) on placebo.

During 3 to 6 months of double-blind treatment or longer-term (1 year), open-label studies, few patients withdrew from active treatment for any reason, including lack of effectiveness. At the end of the long-term study, \(88 \%\) of patients reported that VIAGRA improved their erections.

Men with untreated ED had relatively low baseline scores for all aspects of sexual function measured (again using a 5-point scale) in the IIEF. VIAGRA improved these aspects of sexual function: frequency, firmness and maintenance of erections; frequency of orgasm; frequency and level of desire; frequency, satisfaction and enjoyment of intercourse; and overall relationship satisfaction.

One randomized, double-blind, flexible-dose, placebo-controlled study included only patients with erectile dysfunction attributed to complications of diabetes mellitus ( \(n=268\) ). As in the other titration studies, patients were started on 50 mg and allowed to adjust the dose up to 100 mg or down to 25 mg of VIAGRA; all patients, however, were receiving 50 mg or 100 mg at the end of the study. There were highly statistically significant improvements on the two principal IIEF questions (frequency of successful penetration during sexual activity and maintenance of erections after penetration) on VIAGRA compared to placebo. On a global improvement question, \(57 \%\) of VIAGRA patients reported improved erections versus \(10 \%\) on placebo. Diary data indicated that on VIAGRA, \(48 \%\) of intercourse attempts were successful versus \(12 \%\) on placebo.

One randomized, double-blind, placebo-controlled, crossover, flexible-dose (up to 100 mg ) study of patients with erectile dysfunction resulting from spinal cord injury ( \(n=178\) ) was conducted. The changes from baseline in scoring on the two end point questions (frequency of successful penetration during sexual activity and maintenance of erections after penetration) were highly statistically significantly in favor of VIAGRA. On a global improvement question, \(83 \%\) of patients reported improved erections on VIAGRA versus \(12 \%\) on placebo. Diary data indicated that on VIAGRA, \(59 \%\) of attempts at sexual intercourse were successful compared to \(13 \%\) on placebo.

Across all trials, VIAGRA improved the erections of \(43 \%\) of radical prostatectomy patients compared to \(15 \%\) on placebo.

Subgroup analyses of responses to a global improvement question in patients with psychogenic etiology in two fixed-dose studies (total \(n=179\) ) and two titration studies (total \(n=149\) ) showed \(84 \%\) of VIAGRA patients reported improvement in erections compared with \(26 \%\) of placebo. The changes from baseline in scoring on the two end point questions (frequency of successful penetration during sexual activity and maintenance of erections after penetration) were highly statistically significantly in favor of VIAGRA. Diary data in two of the studies ( \(n=178\) ) showed rates of successful intercourse per attempt of \(70 \%\) for VIAGRA and \(29 \%\) for placebo.

A review of population subgroups demonstrated efficacy regardless of baseline severity, etiology, race and age. VIAGRA was effective in a broad range of ED patients, including those with a history of coronary artery disease, hypertension, other cardiac disease, peripheral vascular disease, diabetes mellitus, depression, coronary artery bypass graft (CABG), radical prostatectomy, transurethral resection of the prostate (TURP) and spinal cord injury, and in patients taking antidepressants/antipsychotics and antihypertensives/diuretics.

Analysis of the safety database showed no apparent difference in the side effect profile in patients taking VIAGRA with and without antihypertensive medication. This analysis was performed retrospectively, and was not powered to detect any prespecified difference in adverse reactions.

\section*{TOP}

\section*{INDICATION AND USAGE}

VIAGRA is indicated for the treatment of erectile dysfunction.

\section*{Top}

\section*{CONTRAINDICATIONS}

Consistent with its known effects on the nitric oxide/cGMP pathway (see CLINICAL PHARMACOLOGY), VIAGRA was shown to potentiate the hypotensive effects of nitrates, and its administration to patients who are using organic nitrates, either regularly and/or intermittently, in any form is therefore contraindicated.

After patients have taken VIAGRA, it is unknown when nitrates, if necessary, can be safely administered. Based on the pharmacokinetic profile of a single 100 mg oral dose given to healthy normal volunteers, the plasma levels of sildenafil at 24 hours post dose are approximately \(2 \mathrm{ng} / \mathrm{mL}\) (compared to peak plasma levels of approximately \(440 \mathrm{ng} / \mathrm{mL}\) ) (see CLINICAL PHARMACOLOGY: Pharmacokinetics and Metabolism). In the following patients: age \(>65\), hepatic impairment (e.g., cirrhosis), severe renal impairment (e.g., creatinine clearance \(<30 \mathrm{~mL} / \mathrm{min}\) ), and concomitant use of potent cytochrome P450 3A4 inhibitors (erythromycin), plasma levels of sildenafil at 24 hours post dose have been found to be 3 to 8 times higher than those seen in healthy volunteers. Although plasma levels of sildenafil at 24 hours post dose are much lower than at peak concentration, it is unknown whether nitrates can be safely coadministered at this time point.

VIAGRA is contraindicated in patients with a known hypersensitivity to any component of the tablet.
top

\section*{WARNINGS}

There is a potential for cardiac risk of sexual activity in patients with preexisting cardiovascular disease. Therefore, treatments for erectile dysfunction, including VIAGRA, should not be generally used in men for whom sexual activity is inadvisable because of their underlying cardiovascular status.

VIAGRA has systemic vasodilatory properties that resulted in transient decreases in supine blood pressure in healthy volunteers (mean maximum decrease of \(8.4 / 5.5 \mathrm{mmHg}\) ), (see CLINICAL PHARMACOLOGY: Pharmacodynamics). While this normally would be expected to be of little consequence in most patients, prior to prescribing VIAGRA, physicians should carefully consider whether their patients with underlying cardiovascular disease could be affected adversely by such vasodilatory effects, especially in combination with sexual activity.

There is no controlled clinical data on the safety or efficacy of VIAGRA in the following groups; if prescribed, this should be done with caution.
- Patients who have suffered a myocardial infarction, stroke, or life-threatening arrhythmia within the last 6 months;
- Patients with resting hypotension ( \(\mathrm{BP}<90 / 50\) ) or hypertension ( \(\mathrm{BP}>170 / 110\) );
- Patients with cardiac failure or coronary artery disease causing unstable angina;
- Patients with retinitis pigmentosa (a minority of these patients have genetic disorders of retinal phosphodiesterases).

Prolonged erection greater than 4 hours and priapism (painful erections greater than 6 hours in duration) have been reported infrequently since market approval of

VIAGRA. In the event of an erection that persists longer than 4 hours, the patient should seek immediate medical assistance. If priapism is not treated immediately, penile tissue damage and permanent loss of potency could result.

The concomitant administration of the protease inhibitor ritonavir substantially increases serum concentrations of sildenafil ( \(\mathbf{1 1}\)-fold increase in AUC). If VIAGRA is prescribed to patients taking ritonavir, caution should be used. Data from subjects exposed to high systemic levels of sildenafil are limited. Visual disturbances occurred more commonly at higher levels of sildenafil exposure. Decreased blood pressure, syncope, and prolonged erection were reported in some healthy volunteers exposed to high doses of sildenafil ( \(200-800 \mathrm{mg}\) ). To decrease the chance of adverse events in patients taking ritonavir, a decrease in sildenafil dosage is recommended (see Drug Interactions, ADVERSE REACTIONS and DOSAGE AND ADMINISTRATION).

\section*{TOP}

\section*{PRECAUTIONS}

\section*{General}

The evaluation of erectile dysfunction should include a determination of potential underlying causes and the identification of appropriate treatment following a complete medical assessment.

Before prescribing VIAGRA, it is important to note the following:
Patients on multiple antihypertensive medications were included in the pivotal clinical trials for VIAGRA. In a separate drug interaction study, when amlodipine, 5 mg or 10 mg , and VIAGRA, 100 mg were orally administered concomitantly to hypertensive patients mean additional blood pressure reduction of 8 mmHg systolic and 7 mmHg diastolic were noted (see Drug Interactions). Controlled studies of drug interactions between VIAGRA and other antihypertensive medications have not been performed.

The safety of VIAGRA is unknown in patients with bleeding disorders and patients with active peptic ulceration.

VIAGRA should be used with caution in patients with anatomical deformation of the penis (such as angulation, cavernosal fibrosis or Peyronie's disease), or in patients who have conditions which may predispose them to priapism (such as sickle cell anemia, multiple myeloma, or leukemia).

The safety and efficacy of combinations of VIAGRA with other treatments for erectile dysfunction have not been studied. Therefore, the use of such combinations is not recommended.

In humans, VIAGRA has no effect on bleeding time when taken alone or with aspirin. In vitro studies with human platelets indicate that sildenafil potentiates the antiaggregatory effect of sodium nitroprusside (a nitric oxide donor). The combination of heparin and VIAGRA had an additive effect on bleeding time in the anesthetized
rabbit, but this interaction has not been studied in humans.

\section*{Information f r Patients}

Physicians should discuss with patients the contraindication of VIAGRA with regular and/or intermittent use of organic nitrates.

Physicians should discuss with patients the potential cardiac risk of sexual activity in patients with preexisting cardiovascular risk factors. Patients who experience symptoms (e.g., angina pectoris, dizziness, nausea) upon initiation of sexual activity should be advised to refrain from further activity and should discuss the episode with their physician.

Physicians should warn patients that prolonged erections greater than 4 hours and priapism (painful erections greater than 6 hours in duration) have been reported infrequently since market approval of VIAGRA. In the event of an erection that persists longer than 4 hours, the patient should seek immediate medical assistance. If priapism is not treated immediately, penile tissue damage and permanent loss of potency may result.

The use of VIAGRA offers no protection against sexually transmitted diseases. Counseling of patients about the protective measures necessary to guard against sexually transmitted diseases, including the Human Immunodeficiency Virus (HIV), may be considered.

\section*{Drug Interactions \\ Effects of Other Drugs on VIAGRA}

In vitro studies: Sildenafil metabolism is principally mediated by the cytochrome P450 (CYP) isoforms 3A4 (major route) and 2C9 (minor route). Therefore, inhibitors of these isoenzymes may reduce sildenafil clearance.

In vivo studies: Cimetidine ( 800 mg ), a nonspecific CYP inhibitor, caused a \(56 \%\) increase in plasma sildenafil concentrations when coadministered with VIAGRA ( 50 mg ) to healthy volunteers.

When a single 100 mg dose of VIAGRA was administered with erythromycin, a specific CYP3A4 inhibitor, at steady state ( 500 mg bid for 5 days), there was a \(182 \%\) increase in sildenafil systemic exposure (AUC). In addition, in a study performed in healthy male volunteers, coadministration of the HIV protease inhibitor saquinavir, also a CYP3A4 inhibitor, at steady state ( 1200 mg tid) with VIAGRA ( 100 mg single dose) resulted in a \(140 \%\) increase in sildenafil \(C_{\text {max }}\) and a \(210 \%\) increase in sildenafil AUC. VIAGRA had no effect on saquinavir pharmacokinetics. Stronger CYP3A4 inhibitors such as ketoconazole or itraconazole would be expected to have still greater effects, and population data from patients in clinical trials did indicate a reduction in sildenafil clearance when it was coadministered with CYP3A4 inhibitors (such as ketoconazole, erythromycin, or cimetidine) (see DOSAGE AND ADMINISTRATION).

In another study in healthy male volunteers, coadministration with the HIV protease inhibitor ritonavir, which is a highly potent P 450 inhibitor, at steady state ( 500 mg bid) with VIAGRA ( 100 mg single dose) resulted in a \(300 \%\) (4-fold) increase in sildenafil
\(\mathrm{C}_{\max }\) and a \(1000 \%\) (11-fold) increase in sildenafil plasma AUC. At 24 hours the plasma levels of sildenafil were still approximately \(200 \mathrm{ng} / \mathrm{mL}\), compared to approximately 5 \(\mathrm{ng} / \mathrm{mL}\) when sildenafil was dosed alone. This is consistent with ritonavir's marked effects on a broad range of P450 substrates. VIAGRA had no effect on ritonavir pharmacokinetics (see DOSAGE AND ADMINISTRATION).

Although the interaction between other protease inhibitors and sildenafil has not been studied, their concomitant use is expected to increase sildenafil levels.

It can be expected that concomitant administration of CYP3A4 inducers, such as rifampin, will decrease plasma levels of sildenafil.

Single doses of antacid (magnesium hydroxide/aluminum hydroxide) did not affect the bioavailability of VIAGRA.

Pharmacokinetic data from patients in clinical trials showed no effect on sildenafil pharmacokinetics of CYP2C9 inhibitors (such as tolbutamide, warfarin), CYP2D6 inhibitors (such as selective serotonin reuptake inhibitors, tricyclic antidepressants), thiazide and related diuretics, ACE inhibitors, and calcium channel blockers. The AUC of the active metabolite, N -desmethyl sildenafil, was increased \(62 \%\) by loop and potassium-sparing diuretics and \(102 \%\) by nonspecific beta-blockers. These effects on the metabolite are not expected to be of clinical consequence.

\section*{Effects of VIAGRA on Other Drugs}

In vitro studies: Sildenafil is a weak inhibitor of the cytochrome P450 isoforms 1A2, 2C9, 2C19, 2D6, 2E1 and 3A4 (IC50 \(>150 \mu \mathrm{M}\) ). Given sildenafil peak plasma concentrations of approximately \(1 \mu \mathrm{M}\) after recommended doses, it is unlikely that VIAGRA will alter the clearance of substrates of these isoenzymes.

In vivo studies: When VIAGRA 100 mg oral was coadministered with amlodipine, 5 mg or 10 mg oral, to hypertensive patients, the mean additional reduction on supine blood pressure was 8 mmHg systolic and 7 mmHg diastolic.

No significant interactions were shown with tolbutamide ( 250 mg ) or warfarin ( 40 mg ), both of which are metabolized by CYP2C9.

VIAGRA ( 50 mg ) did not potentiate the increase in bleeding time caused by aspirin ( 150 mg ).

VIAGRA ( 50 mg ) did not potentiate the hypotensive effect of alcohol in healthy volunteers with mean maximum blood alcohol levels of \(0.08 \%\).

In a study of healthy male volunteers, sildenafil ( 100 mg ) did not affect the steady state pharmacokinetics of the HIV protease inhibitors, saquinavir and ritonavir, both of which are CYP3A4 substrates.

\section*{Carcinogenesis, Mutagenesis, Impairment of Fertility}

Sildenafil was not carcinogenic when administered to rats for 24 months at a dose resulting in total systemic drug exposure (AUCs) for unbound sildenafil and its major
metabolite of 29- and 42-times, for male and female rats, respectively, the exposures observed in human males given the Maximum Recommended Human Dose (MRHD) of 100 mg . Sildenafil was not carcinogenic when administered to mice for 18 21 months at dosages up to the Maximum Tolerated Dose (MTD) of \(10 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\), approximately 0.6 times the MRHD on a \(\mathrm{mg} / \mathrm{m}^{2}\) basis.

Sildenafil was negative in in vitro bacterial and Chinese hamster ovary cell assays to detect mutagenicity, and in vitro human lymphocytes and in vivo mouse micronucleus assays to detect clastogenicity.

There was no impairment of fertility in rats given sildenafil up to \(60 \mathrm{mg} / \mathrm{kg} /\) day for 36 days to females and 102 days to males, a dose producing an AUC value of more than 25 times the human male AUC.

There was no effect on sperm motility or morphology after single 100 mg oral doses of VIAGRA in healthy volunteers.

\section*{Pregnancy, Nursing Mothers and Pediatric Use}

VIAGRA is not indicated for use in newborns, children, or women.

Pregnancy Category B. No evidence of teratogenicity, embryotoxicity or fetotoxicity was observed in rats and rabbits which received up to \(200 \mathrm{mg} / \mathrm{kg} /\) day during organogenesis. These doses represent, respectively, about 20 and 40 times the MRHD on a \(\mathrm{mg} / \mathrm{m}^{2}\) basis in a 50 kg subject. In the rat pre- and postnatal development study, the no observed adverse effect dose was \(30 \mathrm{mg} / \mathrm{kg} /\) day given for 36 days. In the nonpregnant rat the AUC at this dose was about 20 times human AUC. There are no adequate and well-controlled studies of sildenafil in pregnant women.

Geriatric Use: Healthy elderly volunteers (65 years or over) had a reduced clearance of sildenafil (see CLINICAL PHARMACOLOGY: Pharmacokinetics in Special Populations). Since higher plasma levels may increase both the efficacy and incidence of adverse events, a starting dose of 25 mg should be considered (see DOSAGE AND ADMINISTRATION).

\section*{TOP}

\section*{ADVERSE REACTIONS}

\section*{PRE-MARKETING EXPERIENCE:}

VIAGRA was administered to over 3700 patients (aged \(19-87\) years) during clinical trials worldwide. Over 550 patients were treated for longer than one year.

In placebo-controlled clinical studies, the discontinuation rate due to adverse events for VIAGRA (2.5\%) was not significantly different from placebo (2.3\%). The adverse events were generally transient and mild to moderate in nature.

In trials of all designs, adverse events reported by patients receiving VIAGRA were generally similar. In fixed-dose studies, the incidence of some adverse events increased
with dose. The nature of the adverse events in flexible-dose studies, which more closely reflect the recommended dosage regimen, was similar to that for fixed-dose studies.

When VIAGRA was taken as recommended (on an as-needed basis) in flexible-dose, placebo-controlled clinical trials, the following adverse events were reported:

TABLE 2. ADVERSE EVENTS REPORTED BY \(\geq 2 \%\) OF PATIENTS TREATED WITH VIAGRA AND MORE FREQUENT ON DRUG THAN PLA CEBO IN PRN FLEXIBLE-DOSE PHASE II/III STUDIES
\begin{tabular}{lcc} 
Adverse Event & \begin{tabular}{c} 
Percentage of Patients Reporting Event \\
VIAGRA
\end{tabular} \\
& \(\mathrm{N}=734\) & PLACEBO
\end{tabular}
*Abnormal Vision: Mild and transient, predominantly color tinge to vision, but also increased sensitivity to light or blurred vision. In these studies, only one patient discontinued due to abnormal vision.

Other adverse reactions occurred at a rate of \(>2 \%\), but equally common on placebo: respiratory tract infection, back pain, flu syndrome, and arthralgia.

In fixed-dose studies, dyspepsia ( \(17 \%\) ) and abnormal vision ( \(11 \%\) ) were more common at 100 mg than at lower doses. At doses above the recommended dose range, adverse events were similar to those detailed above but generally were reported more frequently.

The following events occurred in \(<2 \%\) of patients in controlled clinical trials; a causal relationship to VIAGRA is uncertain. Reported events include those with a plausible relation to drug use; omitted are minor events and reports too imprecise to be meaningful:

Body as a whole: face edema, photosensitivity reaction, shock, asthenia, pain, chills, accidental fall, abdominal pain, allergic reaction, chest pain, accidental injury.

Cardiovascular: angina pectoris, AV block, migraine, syncope, tachycardia, palpitation, hypotension, postural hypotension, myocardial ischemia, cerebral thrombosis, cardiac arrest, heart failure, abnormal electrocardiogram, cardiomyopathy.

Digestive: vomiting, glossitis, colitis, dysphagia, gastritis, gastroenteritis, esophagitis, stomatitis, dry mouth, liver function tests abnormal, rectal hemorrhage, gingivitis.

Hemic and Lymphatic: anemia and leukopenia.
Metabolic and Nutritional: thirst, edema, gout, unstable diabetes, hyperglycemia, peripheral edema, hyperuricemia, hypoglycemic reaction, hypernatremia.

Musculoskeletal: arthritis, arthrosis, myalgia, tendon rupture, tenosynovitis, bone pain, myasthenia, synovitis.

Nervous: ataxia, hypertonia, neuralgia, neuropathy, paresthesia, tremor, vertigo, depression, insomnia, somnolence, abnormal dreams, reflexes decreased, hypesthesia.

Respiratory: asthma, dyspnea, laryngitis, pharyngitis, sinusitis, bronchitis, sputum increased, cough increased.

Skin and Appendages: urticaria, herpes simplex, pruritus, sweating, skin ulcer, contact dermatitis, exfoliative dermatitis.

Special Senses: mydriasis, conjunctivitis, photophobia, tinnitus, eye pain, deafness, ear pain, eye hemorrhage, cataract, dry eyes.

Urogenital: cystitis, nocturia, urinary frequency, breast enlargement, urinary incontinence, abnormal ejaculation, genital edema and anorgasmia.

\section*{POST-MARKETING EXPERIENCE:}

\section*{Cardiovascular}

Serious cardiovascular events, including myocardial infarction, sudden cardiac death, ventricular arrhythmia, cerebrovascular hemorrhage, transiént ischemic attack and hypertension, have been reported post-marketing in temporal association with the use of VIAGRA. Most, but not all, of these patients had preexisting cardiovascular risk factors. Many of these events were reported to occur during or shortly after sexual activity, and a few were reported to occur shortly after the use of VIAGRA without sexual activity. Others were reported to have occurred hours to days after the use of VIAGRA and sexual activity. It is not possible to determine whether these events are related directly to VIAGRA, to sexual activity, to the patient's underlying cardiovascular disease, to a combination of these factors, or to other factors (see WARNINGS for further important cardiovascular information).

\section*{Other events}

Other events reported post-marketing to have been observed in temporal association with VIAGRA and not listed in the pre-marketing adverse reactions section above include:

Nervous: seizure and anxiety.
Urogenital: prolonged erection, priapism (see WARNINGS) and hematuria.

Ocular: diplopia, temporary vision loss/decreased vision, ocular redness or bloodshot appearance, ocular buming, ocular swelling/pressure, increased intraocular pressure, retinal vascular disease or bleeding, vitreous detachment/traction and paramacular edema.

\section*{rop}

\section*{OVERDOSAGE}

In studies with healthy volunteers of single doses up to 800 mg , adverse events were similar to those seen at lower doses but incidence rates were increased.

In cases of overdose, standard supportive measures should be adopted as required. Renal dialysis is not expected to accelerate clearance as sildenafil is highly bound to plasma proteins and it is not eliminated in the urine.

\section*{DOSAGE AND ADMINISTRATION}

For most patients, the recommended dose is 50 mg taken, as needed, approximately 1 hour before sexual activity. However, VIAGRA may be taken anywhere from 4 hours to 0.5 hour before sexual activity. Based on effectiveness and toleration, the dose may be increased to a maximum recommended dose of 100 mg or decreased to 25 mg . The maximum recommended dosing frequency is once per day.

The following factors are associated with increased plasma levels of sildenafil: age >65 ( \(40 \%\) increase in AUC), hepatic impairment (e.g., cirrhosis, \(80 \%\) ), severe renal impairment (creatinine clearance \(<30 \mathrm{~mL} / \mathrm{min}, 100 \%\) ), and concomitant use of potent cytochrome P450 3A4 inhibitors [ketoconazole, itraconazole, erythromycin (182\%), saquinavir ( \(210 \%\) )]. Since higher plasma levels may increase both the efficacy and incidence of adverse events, a starting dose of 25 mg should be considered in these patients.

Ritonavir greatly increased the systemic level of sildenafil in a study of healthy, nonHIV infected volunteers ( 11 -fold increase in AUC, see Drug Interactions.) Based on these pharmacokinetic data, it is recommended not to exceed a maximum single dose of 25 mg of VIAGRA in a 48 hour period.

VIAGRA was shown to potentiate the hypotensive effects of nitrates and its administration in patients who use nitric oxide donors or nitrates in any form is therefore contraindicated.

\section*{HOW SUPPLIED}

VIAGRA \({ }^{\circledR}\) (sildenafil citrate) is supplied as blue, film-coated, rounded-diamondshaped tablets containing sildenafil citrate equivalent to the nominally indicated amount of sildenafil as follows:
\begin{tabular}{|c|c|c|c|}
\hline Wimatume &  & 50 mg & 100 mg , \\
\hline Obverse & VGR25 & VGR50 & VGR100 \\
\hline Reverse & PFIZER & PFIZER & PFIZER \\
\hline Bottle of 30 & NDC-0069-4200-30 & NDC-0069-4210-30 & NDC-0069-4220-30 \\
\hline Bottle of 100 & N/A & NDC-0069-4210-66 & NDC-0069-4220-66 \\
\hline
\end{tabular}

Recommended Storage: Store at controlled room temperature, \(15^{\circ}\) to \(30^{\circ} \mathrm{C}\left(59^{\circ}\right.\) to \(86^{\circ}\) \(\mathrm{F})\).

\section*{Rx only}
© 2000 PFIZER INC

69-5485-00-6
Printed in U.S.A.
Revised January 2000
4?
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE


\section*{SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT}

Commissioner for Patents
Washington, D.C. 20231
Sir:

Pursuant to their duty of disclosure under 37 C.F.R. §1.56, applicants hereby bring to the examiner's attention information that may be material to the examination of the above-identified application. Therefore, in compliance with 37 C.F.R. §1.97 and §1.98, applicants enclose a completed Form PTO-1449 identifying the possibly pertinent information, and a copy of the information.

This Supplemental Information Disclosure Statement is submitted more than three months after the filing date of the above-identified application, and after the mailing date of a first Office Action on the
merits in the above-identified application. This Supplemental Information Disclosure Statement, however, is filed before the mailing date of a final action and before the mailing date of a notice of allowance. Therefore, under 37 C.F.R. §1.97(c), this Supplemental Information Disclosure statement shall be considered by the Patent Office because it is accompanied by the fee set forth in 37 C.F.R. §1.17(p).

The Commissioner is hereby authorized to charge any fee which may be required during the pendency of this application under 37 C.F.R. 1.16 or 37 C.F.R. 1.17 to Deposit Account No. 13-2855. A duplicate copy of this Transmittal is enclosed herewith.

Respectfully submitted,
MARSHALL, GERSTEIN \& BORUN

By
Jaues
(Registration No. 32, 361)
Attorneys Eor Applicants
6300 Sears Tower
233 South Wacker Drive
Chicago, Illinois 60606
\((312) 474-6300\)

Chicago, Illinois February 6, 2003


IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

\begin{tabular}{ll} 
Applicant(s): & ) \begin{tabular}{l} 
Title: UNIT DOSAGE FORM \\
WILLIAM ERNEST PULLMAN ET AL.
\end{tabular} \\
Serial No: \(10 / 031,556\) & ) \\
& Group Art Unit: 1614 \\
Filed: October 19, 2001 & ) Examiner: Rebecca Cook \\
Attorney Docket No. \(29342 / 36206 \mathrm{~A}\) & )
\end{tabular}

\section*{AMENDMENT TRANSMITTAL WITH PETITION FOR EXTENSION OF TIME}

Commissioner for Patents
Washington, D.C. 20231

Sir:
Transmitted herewith is an amendment for the above application.

\section*{CERTIFICATE OF MAILING (37 CFR 1.8)}

I hereby certify that this paper and the documents referred to as enclosed therewith are being deposited with the United States Postal Service as first class mail, postage prepaid, on February 6, 2003 in an envelope addressed to the Commissioner for Patents, Washington, D.C. 20231.
\(02 / 10 / 2003\) WABDELR1 0000009910031556
OE FC:1253
930.000 F


\section*{1. Small Entity Status}
\begin{tabular}{ll}
\(\square\) & Verified statement(s) claiming small entity status is(are) attached. \\
\(\square\) & Small entity status has been established and is still effective. \\
\(\boxtimes\) & Has not been established.
\end{tabular}

\section*{2. Extension of Time}
\(\boxtimes \quad\) This is a petition for an extension of time under 37 CFR 1.136 for the total number of months checked below:
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
EXTENSION \\
(Months)
\end{tabular}} & \multicolumn{2}{|c|}{ FEE FOR LARGE ENTITY } & \multicolumn{2}{c|}{ FEE FOR SMALL ENTITY } \\
\hline One Month & & \(\$ 110.00\) & & \(\$ 55.00\) \\
\hline Two Months & & \(\$ 410.00\) & & \(\$ 205.00\) \\
\hline Three Months & x & \(\$ 930.00\) & & \(\$ 465.00\) \\
\hline Four Months & & \(\$ 1,450.00\) & & \(\$ 725.00\) \\
\hline Fifth Month & & \(\$ 1,970.00\) & & \(\$ 985.00\) \\
\hline
\end{tabular}

\section*{If an additional Extension of Time is required, please consider this a petition therefor.}

Extension Fee: \(\$ 930.00\)
\(\square \quad\) An extension for - month(s) has already been secured and the fee paid therefor of \$ is deducted from the total fee due for the total months of extension now requested.

Deduction: \(\$ 0.00\)
Extension Fee Due With This Request \(\mathbf{\$ 9 3 0 . 0 0}\)

\section*{3. Fee for Claims}
 shown below:

4. Method of Payment of Fees

囚
Attached is a check in the amount of:
\(\$ 930.00\)
Charge Deposit Account No. 13-2855
in the amount of:
\$
A copy of this Transmittal is enclosed.

\section*{5. Deposit Account and Refund Authorization}

The Commissioner is hereby authorized to charge any deficiency in the amount enclosed or any additional fees which may be required during the pendency of this application under 37 CFR 1.16 or 1.17 to Deposit Account No. 13-2855. A copy of this Transmittal is enclosed.

Please refund any overpayment to Marshall, Gerstein \& Borun at the address below.
Respectfully submitted,
MARSHALL, GERSTEIN \& BORUN
6300 Sears Tower
233 South Wacker Drive
Chicago, Illinois 60606-6357
(312) 474-6300


February 6, 2003


Please find below and/or attached an Office communication concerning this application or proceeding.


In view of the amendments to the claims the earlier objection is overcome.
The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 1-8, 11-17 are again rejected under 35 U.S.C. 103(a) as being unpatentable over \(6,140,329\) for the reasons given in Paper No. 5. Applicants argue that '329 fails to suggest the instant low oral dosage, since the examples are to 50 mg . This is not persuasive, In ' 329 , column 3 , line 51 discloses a dosage range that includes the instant dose and column 10, lines \(1-3\) recites that other doses [than 50 mg ] may be prepared. Applicant also argues that the instant examples show a low incidence of side effects as compared to adverse events reported in the VIAGRA (sildenafil) insert. This is not persuasive, since the compound of ' 329 is the instant compound and is not sildenafil.

In the absence of a showing of unexpected results no unobviousness is seen in using 20 mg of the instant enantiomer over 50 mg of the compound of ' 329 .

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the
shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136 (a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Examiner Cook whose telephone number is (703) 3084724. The examiner can normally be reached on Monday through Thursday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Marianne Seidel, can be reached on (703) 308-4725. The fax phone number for the organization where this application or proceeding is assigned is (703) 308-4556.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is (703) 3081235.


April 9, 2003

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Complete if Known } \\
\hline Application Number & \(10 / 031,556\) \\
\hline Filing Date & October 19, 2001 \\
\hline First Named Inventor & William E. Pullman et al. \\
\hline Group Art Unit & 1614 \\
\hline Examiner Name & Rebecca Cook \\
\hline Attorney Docket Number & \(29342 / 36206 \mathrm{~A}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{7}{|c|}{ U.S. PATENT DOCUMENTS } \\
\hline \begin{tabular}{l} 
Examiner \\
(nitials
\end{tabular} & \begin{tabular}{l} 
Cite \\
No.
\end{tabular} & Document Number & \(\ddots\) & \begin{tabular}{l} 
Publication Date \\
MM-DD-YYYY
\end{tabular} \\
\hline & & & & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ FOREIGN PATENT DOCUMENTS } \\
\hline \begin{tabular}{l} 
Examiner| \\
Initials*
\end{tabular} & \begin{tabular}{l} 
Cite \\
No.
\end{tabular} & Foreign Patent Document & \begin{tabular}{l} 
Publication Date \\
MM-DD-YYYY
\end{tabular} \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

OTHER PRIOR ART - NONPATENT LITERATURE DOCUMENTS
 \begin{tabular}{|l|l|l|}
\(\begin{array}{l}\text { Initials }\end{array}\) & \(\begin{array}{l}\text { item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), } \\
\text { publisher, city and/or country where published. }\end{array}\) \\
\hline No. & & \(\begin{array}{c}\text { NDA 20-895 (New Drug Application) Sildenafil for Male Impotence, pages 99-103 and 183-187, } 22\end{array}\) \\
\hline
\end{tabular} January 1998, author unknown.
\begin{tabular}{l|l|l|}
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Examiner Signature & 120100 & Date Considered & \(4 / 9 / 03\) \\
\hline
\end{tabular}
"EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Applicants:
WILLIAM ERNEST PULLMAN ET AL.
Serial No.: 10/031,556
Filed: October 19, 2001
FOr: UNIT DOSAGE FORM

Attorney Docket No. 29342/36206A
Group Art Únit: 1614

Examiner: Rebecca Cook

I hereby certify that this paper is being deposited with the United States Postal Service with sufficient. postage, as first class mail. in an envelope addressed to: Commissioner for Patents P.O. Box 1450

Alexandria, VA 22313-1450

Dated: July 24, 2003


Registration NO. 32,361 Attorney for Applicants

\section*{SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT}

Commissioner for Patents P.O. Box 1450

Alexandria, Virginia 22313-1.450

Sir:

Pursuant to their duty of disclosure under 37
C.F.R. §1.56, applicants hereby bring to the examiner's attention a patent that may be material to the examination of the above-identified application.

Therefore, in compliance with 37 C.F.R. §1.97 and §1.98, appli.cants enclose a completed Form PTO-1449 listing the possibly pertinent patent and a copy. of the patent

This Supplemental Information Disclosure
Statement is submitted more than three months after the filing date of the above-identified application, which is presently under final rejection. Therefore, under 37 C.F.R. §1.97(d), this Supplemental Information Disclosure

Statement shall be considered by the Patent Office because: (1) each item of information contained in this Supplemental Information Disclosure Statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Supplemental

Information Disclosure Statement (37 C.F.R. §1.97(e)(1)), and (2) the fee set forth in 37 C.F.R. §1.17(p) is submitted herewith.

The Commissioner, however, is hereby authorized to charge any fee which may be required during the pendency of this application under 37 C.F.R. 1.16 or 37 C.F.R. 1.17 to Deposit Account No. 13-2855. A duplicate copy of this Transmittal is enclosed herewith.

A copy of the Hungarian Search Report, and an
English language translation, is enclosed for the convenience of the examiner and to complete the file. Please not that references cited in a previous Information Disclosure Statement are not cited herein. In addition, the enclosed U.S. Patent No. 6,451,807 corresponds to HU POOO1632A.

Respectfully submitted,
MARSHALL, GERSTEIN \& BORUN LLP 6300 Sears Tower 233 South Wacker Drive Chicago, Illinois 60606-6402 (312) 474-6300


July 24, 2003

\section*{PATENT－NO FEE}

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}


\section*{AMENDMENT＂B＂AFTER FINAL UNDER 37 C．F．R．§1．116}

Mail Stop \(\mathbf{A F}\)
Commissioner for Patents
P．O．Box 1450
Alexandria，Virginia 22313－1450
Sir：

In response to the Office Action of April 11， 2003，please amend the above－identified application as follows．Reconsideration and allowance of the applica－ tion are respectfully requested．

Approved for uge inough 0731/2008, OMB O651-0032
Tradomark Othe; U.S. DEPARTMENT OF COMMERCE




\title{
Marshall, Gersitin \& Borun LLP \\ ATTORNEYS AT LAW \\ 6300 SEARS TOWER \\ 233 SOUTH WACKER DRIVE \\ CHICAGO, ILLINOIS 60606-6357 \\ (312) \(474-6300\) \\ FAX: (312) 474-0448
}

September 9, 2003

\section*{FACSIMILE TRANSMISSION SHEET}
\begin{tabular}{ll} 
TO & Examiner R. Cook \\
COMPANY & U.S. Patent \& Trademark Office \\
FAX NO. & 7037465317 \\
PHONE NO. &
\end{tabular}
\begin{tabular}{lcrr} 
FROM: James J. Napoli & & EXTENSION: & 811 \\
PAGES (INCLUDING THLS PAGE): & 16 & CLIENT NO: & 29342 \\
& & MATTER NO: & 36206A \\
PLEASE CONFIRM RECEIPT: & No & COUNTRY CODE: & US
\end{tabular}
message:

Please contact if you do not receive all of the pages in good condition.

The material of this transmission contains confidential information intended only for the addressee. If you are not the addressee, any disclosure or use of this information by you is strictly prohibited. If you have received this facsimile in error, please notity us by telephone immediately.
1.-10. (Cancelled)
11. (Previously amended) The method of claim 13 wherein the sexual dysfunction is male erectile dysfunction.
12. (Previously amended) The method of claim 13 wherein the sexual dysfunction is female arousal disorder.
13. (Previously amended) A method of treating sexual dysfunction in a patient in need thereof comprising orally administering one or more unit dose containing about 1 to about 20 mg , up to a maximum total dose of 20 mg per day, of a compound having the structure

14. (Original) The method of claim 13 wherein the unit dose contains about 2 to about 20 mg of the compound.
15. (Original) The method of claim 13 wherein the unit dose contains about 5 mg of the compound.
16. (Original) The method of claim 13 wherein the unit dose contains about 10 mg of the compound and is administered once per day.
17. (Original) The method of claim 13 wherein the unit dose is in a form selected from the group consisting of a liquid, a tablet, a capsule, and a gelcap.
18.-19. (Cancelled)
20. (New) The method of claim 13 wherein the unit dose contains about 2.5 mg of the compound.
21. (New) The method of claim 20 wherein the unit dose is administered once per day.
22. (New) The method of claim 15 wherein the unit dose is administered once per day.
23. (New) The method of claim 13 wherein the compound is administered as a free drug.

\section*{REMARKS}

Claims 1-8 and 11-17 are pending in the application. Claims 1-8 have been cancelled by this amendment. New claims 20-23 have been added to the application. Therefore, claims 11-17 and 20-23 are at issue.

This amendment is submitted in accordance with 37 C.F.R. \(\$ 1.116(a)\) and \(\$ 1.116(b)\) in order to present the rejected claims in a better form for allowance or appeal. The amendment is necessary to eliminate a rejection under 35 U.S.C. §103. This amendment was not presented earlier because applicants believed and still believe that the amendment mailed February 6, 2003 overcame the rejection under 35 U.S.C. 5103. The amendment should be entered because (a) it places the application in better form for allowance or appeal, and the amendment does not require further searching or present any new issues, and (b) a Request for Continued Examination (RCE) is submitted concurrently with this amendment.

The courteous telephonic interview granted to applicants' undersigned attorney by Examiner Cook on August 26, 2003 is hereby acknowledged with appreciztion. During the interview, the outstanding Office Action, cited reference, and claims on file were discussed in detail.

New claims 20-23 have been added to the application, These new claims are fully supported in the application as originally filed, see, for example, original, and now-cancelled, claim 4 and claim 16, and
the specification at page 7 , lines \(26-28\), and page 9 , line 32 through page 10 , line 3.

Claims 1-8 and 11-17 stand rejected under 35
U.S.C. \(\$ 103\) as being obvious over Daugan U.S. Patent No. 6,140,329 ('329). This rejection is based on the contention that the ' 329 patent discloses the compound recited in the claims, use of the compound to treat sexual dysfunction, oral administration, and a dosage encompassing the recited dosage range. In view of the unexpected results demonstrated by the claimed compound at the claimed low dosage (i.e., about 1 to about 20 mg ) and claimed low maximum total daily dose (i.e., maximum \(20 \mathrm{mg} /\) day), it is submitted that this rejection is in error and should be withdrawn.

In particular, composition claims 1-8 have been cancelled without prejudice. In view of the telephonic interview, these composition claims have been cancelled to facilitate prosecution, and not because of questions relating to patentability. The composition claims will be pursued in a continuation application.

It is submitted that for the reasons set forth in Armendment "A" mailed February 6, 2003 and incorporated herein by reference, and because of the new and unexpected results achieved by the present invention, it is submitted that method claims 11-17 and new claims 20-23 would not have been obvious to a person skilled in the art, and the rejection of the pending claims under 35 U.S.C. \(\$ 103\) over the 329 patent should be withdrawn.

The present claims recite a method of treating sexual dysfunction in a patient in need thereof by
the oral administration of a unit dosage composition containing about 1 to about 20 mg of a specifically claimed compound, up to a maximum dose of 20 mg per day. The method can be used to treat sexual dysfunction, including, for example, male erectile dysfunction (MED) and female arousal disorder (FAD), as recited in the claims. As discussed in Amendment "A" and hereafter, the cited reference fails to teach or suggest a method of treating sexual dysfunction using about 1 to about 20 mg of the claimed PDE5 inhibitor, up to a maximum total dose of about 20 mg per day. It is submitted that the examiner's obviousness conclusion is incorrect because the ' 329 patent fails to teach or suggest a low oral dosage of the claimed PDE5 inhibitor to effectively treat sexual dysfunction. In addition, the presently claimed invention provides unexpected benefits and is a substantial advance in the art. In particular, the presently claimed invention (a) effectively treats sexual dysfunction using a low dose of a particular PDE5 inhibitor, (b) eliminates or reduces various adverse side effects associated with current PDE5 inhibitor therapy used to treat sexual dysfunction, i.e., VIAGRA \({ }^{\oplus}\), and (c) increases the population treatable for sexual dysfunction using a PDE5 inhibitor.

In particular, the ' 329 patent discloses a class of PDE inhibitors, including the compound recited in claim 13, useful in oral dosage forms over a range of \(0.2-400 \mathrm{mg}\) to treat sexual dysfunction. However, all examples in the ' 329 patent teach using 50 mg of active compound per dosage form. See columns 8-10 of
the ' 329 patent. The ' 329 patent provides no teaching or suggestion of a preferred unit dose, except for the 50 mg dose in the examples. Thus, the lowest dose of PDE5 inhibitor embodied in the ' 329 patent in a unit dose composition is 50 mg of the active ingredient.

Although column 10, lines \(1-3\) of the 1329 patent states that "other doses may be prepared," this teaching does not address the dosage needed for an effective treatment of sexual dysfunction. This statement in the ' 329 patent merely is directed to teaching those skilled in the art how to make a different unit dose. This teaching of the ' 329 patent, however, fails to instruct whether the 50 mg dose should be increase or decreased.

Therefore, although the ' 329 patent teaches a unit dosage range for the disclosed compounds of 0.2 to 400 mg , administered once or several times per day, the '329 patent does not teach or suggest a low maximum daily dose for effective treatment of sexual dysfunction. An important feature of the present invention is administration of an oral dose of the claimed unit dosage composition at 20 mg or less, per day, to treat sexual dysfunction (see claim 13). Such a feature is neither taught nor suggested in the ' 329 patent.

The ' 329 patent discloses thirteen specific compounds, and two preferred compounds, for the treatment of impotence. One of the preferred com-pounds, i.e., Example 1 (Compound A) of the ' 329 patent is Compound (I) recited in the present claims. Even though Compound (I) is disclosed as a preferred compound, the ' 329 patent contains no teach-
ing or suggestion that compound (I) can be expected to successfully perform at a dosage less than 50 mg . The ' 329 patent merely teaches a broad dosage range for a class of compounds and for particular individual compounds. The only specific dosage disclosed in the ' 329 patent, and particularly for Compound (I), is 50 mg .

Accordingly, insofar as the 1329 patent does not disclose any dose below 50 mg for Compound (I) or any other compound, the ' 329 patent can be read to teach that a 50 mg dose is an effective dose of compound (I). The disclosure at column 10, lines 1-3 of the ' 329 patent does not alter this teaching for the reasons set forth above. The lack of an example or any specific disclosure relating to a lower dose (i.e., less than 50 mg ) for the preferred compounds of the ' 329 patent implies that it was not understood a lower dose of the claimed compound could effectively treat sexual dysfunction.

The ' 329 patent contains no disclosure that would lead a person skilled in the art to consider using the presently claimed low unit dose and maximum daily dose of Compound (I) with any reasonable expectation of successfully treating sexual dysfunction. In contrast, the present claims are enabled and supported by the clinical trials set forth in the specification. The specification, in Examples 6 and 7, clearly shows that a low dose of Compound (I) successfully treats sexual dysfunction and leads to a reduction or elimination of various adverse side effects.

In summary, there is no basis to contend that the presently claimed unit dosage composition or method
would have been obvious from the ' 329 patent, which merely teaches a broad dosage range for a class of PDE5 inhibitors to treat sexual dysfunction. Furthermore, there is no incentive to provide a claimed unit dosage composition based on the examples of the ' 329 patent (limited to 50 mg dose).

The examiner states that no unexpected results are demonstrated for the claimed enantiomer. To the contrary, as discussed in Amendment "A" at pages 79, and incorporated herein by reference, the claimed enantiomer possesses improved properties over its three stereoisomers.

In addition, the presently claimed invention satisfies a long-felt need in the art. A unit dosage composition containing Compound (I) is in the final approval stages at the Food and Drug Administration. After approval, which is expected in late 2003, the unit dosage form containing Compound (I), also known as tadalafil, will be marketed under the tradename CIALIS®. CIALIS \({ }^{\otimes}\) will be in direct competition with VIAGRA \({ }^{\otimes}\). CIALIS \({ }^{\oplus}\) (i.e., a unit dosage composition of the present invention) overcomes some of the disadvantages associated with prior PDE5 inhibitor treatments of sexual dysfunction, e.g., VIAGRA, and provides an unexpected improvement in the art.

Applicants have discovered that the compound recited in independent claim 13 can be administered in a unit dosage composition containing about 1 to about 20 mg of the compound, up to a ramimum dose of 20 mg/day, to provide an effective method of treating sexual dysfunction, while reducing or eliminating
various adverse side effects associated with VIAGRA \({ }^{\text {© }}\). This aspect of the present invention is discussed in Amendment "A," pages 11-14, incorporated herein by reference.

For example, clinical studies have shown that a method of treating sexual dysfunction utilizing a presently claimed unit dosage effectively reduces flushing or visual abnormalities in susceptible individuals. See Examples 5-7, at pages 26-30 of the specification, wherein administration of the claimed unit dosage composition reported incidence of flushing below 2\%. This incidence rate of flushing demonstrates marked improvement over VIAGRA \({ }^{\infty}\), i.e., lo\& flushing incidence rate reported on the VIAGRA label.

A person skilled in the art would not have been motivated from the ' 329 patent to provide a method as recited in the present claims with any expectation that claimed unit dosage and low maximum daily dose would provide such unexpected results in the treatment of sexual dysfunction. From a reading of the ' 329 patent, it would have been expected that a dose greater than a daily 20 mg maximum dose of Compound (I) is needed to treat sexual dysfunction effectively, i.e., about 50 mg . Additional unexpected benefits of the present invention are the improvements demonstrated by the clajmed over present-day, commercially available PDE5 inhibitor treatment for sexual dysfunction. The present invention, therefore, not only is nonobvious over the ' 329 patent, but also satisfies long-felt and unmet needs in the art.

In summary, the presently claimed invention would not have been obvious over the ' 329 patent, and the invention satisfies a long-felt need in the art. All examples in the ' 329 patent teach a 50 mg dose of the active compound. The cited art absolutely fails to suggest that a low dose of any PDE5 inhibitor, let alone the specific PDE5 inhibitor recited in claim 13, can be used in a method to successfully treat sexual dysfunction, while eliminating or reducing various adverse side effects associated with the current PDE5 inhibitor treatment for sexual dysfunction.

Applicants, therefore, have discovered a method of treating sexual dysfunction wherein a particular low unit dosage composition containing a particular PDE5 inhibitor effectively treats sexuel dysfunction using a \(20 \mathrm{mg} /\) day maximum dose, while avoiding or reducing various adverse side effects. The '329 patent broadly discloses a dosage range for various PDE5 inhibitors, but fails to teach or suggest the specific unit dosage, maximum daily dosage, and the specific compound of the present invention that provides such new and unexpected benefits.

It is submitted, therefore, that the claims are now in proper form and scope for allowance. An early and favorable action on the merits is respectfully requested.

Should the examiner wish to discuss the foregoing, or any matter of form in an effort to advance this application toward allowance, the examiner is urged to telephone the undersigned at the indicated number.

1
i

Respectfully submitted, MARSHALL, GERSTEIN \& BORUN LLP
\(B y\)


Attorneys for Applicants 6300 Sears Tower 233 South Wacker Drive Chicago, Illinois 60606 (312) 474-6300

Chicago, Illinois September 9, 2003


This is a Request for Continued Examination (RCE) under 37 MFR 1.114 of the above-fdentified application. Request tor Continued Examination (RCE) practice under 37 CR 1.114 does not apply to any utility or plant application filed prior to June,
8. 1995, or to any dasher application.
\(\square\)
1. Submission required under 37 CFR 1.114 Note: If the RCE is proper, any previously fled unentered amendments and amendments enclosed with the RCE will be entered in the order in which they were fid unless applicant instructs otherwise. If applicant does not wish to have any previously filed unentered amendments) entered, applicant must request nan-entry of such
amendments).
a. \(\square\) Previously submitted. If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked
i.
ii. \(\qquad\) Consider the arguments in the Appeal Brief or Reply Ariel previously filed on
. \(x\) Enclosed
i. \(x\) Amendment/Reply
iii. \(\square\) Information Disclosure Statement (IDS)
ii.Affidavit(s)/Declaration(s)
iv. \(\square\) Other \(\qquad\)
2.


Suspension of action on the above-identified application is requested under 37 CFR 1.103(c) for a period of \(\qquad\) months. (Period of suspension shall not exceed 3 months: Fee under 37 CR 1.17 (i) required)
b. Other
3. Fees

Fees The RCE fee under 37 CR 1.17 (e) is required by 37 CR 1.114 when the RCE is filed.
a. X he Director is hereby authorized to charge the following fees, or credit any overpayments, to Deposit Account No. \(\qquad\)
i. \(x\) RCE fee required under 37 CFR 1.17(e)
ii. x Extension of time fee (37 CFR 1.136 and 9.17
iii. Other
b. \(\square\) Check in the amount of \(\$\) \(\qquad\) enclosed
c. \(\square\) Payment by credit card (Form PTO-2038 enclosed)



09/11/2003 FPATTERS 00000002 13285510031556
01 FC:1252 410.00 DA


Please find below and/or attached an Office communication concerning this application or proceeding.


\section*{DETAILED ACTION}

\section*{Continued Examination Under 37 CFR 1.114}

A request for continued examination under 37 CFR 1.114 , including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on September 9, 2003 has been entered.

\section*{Claim Rejections - 35 USC § 103}

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 11-17, 20-23 are rejected under 35 U.S.C. 103(a) as being unpatentable over \(6,140,329\) (Daugan) for the reasons given in Paper No. 5. Daugan (col. 1, compound (I), col. 3, lines 48-65, col. 5, lines 60-65,col. 7, Ex. 1, Compound A, claims 16-17) disclose the instant compound and a method of using it to treat sexual dysfunction. It further discloses oral administration and a dosage within the recited range.

Applicants continue to argue that the instant compound has reduced side effects when compared with Viagra. This is not persuasive, since the two compounds are structurally different.

Applicants continue to argue that Daugan fails to suggest the instant low dose, since the examples are to 50 mg . This is not persuasive. Daugan discloses (column 3, lines \(50-52\) ) a dose ranging from \(0.5-800 \mathrm{mg}\), which includes the instant \(1-20 \mathrm{mg}\). In the absence of a showing of unexpected results comparing the disclosed 50 mg dose of Daugan with upper dosage range of 20 mg of instant claim 13 no unobviousness is seen in the dosage range of the instant claims.

\section*{Double Patenting}

The nonstatutory double patenting rejection is based on a judicially created doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the unjustified or improper timewise extension of the "right to exclude" granted by a patent and to prevent possible harassment by multiple assignees. See In re Goodman, 11 F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); In re Longi, 759 F.2d 887, 225 USPQ 645 (Fed. Cir. 1985); In re Van Ornum, 686 F.2d 937, 214 USPQ 761 (CCPA 1982); In re Vogel, 422 F.2d 438, 164 USPQ 619 (CCPA 1970);and, In re Thorington, 418 F.2d 528, 163 USPQ 644 (CCPA 1969).

A timely filed terminal disclaimer in compliance with 37 CFR 1.321 (c) may be used to overcome an actual or provisional rejection based on a nonstatutory double patenting ground provided the conflicting application or patent is shown to be commonly owned with this application. See 37 CFR 1.130(b).

Effective January 1, 1994, a registered attorney or agent of record may sign a terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with 37 CFR 3.73(b).

Claims 11-17, 20-23 are rejected under the judicially created doctrine of obviousness-type double patenting as being unpatentable over claim1-7 of U.S. Patent No. \(6,451,807\). Although the conflicting claims are not identical, they are not patentably distinct from each other because the comprising language of the instant claims would include treating sexual dysfunction in a patient suffering from a retinal disease or the heart conditions recited in claim 4 of ' 807 . Furthermore, claim 7 of ' 807 teaches the compound of the instant method.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Examiner Cook whose telephone number is (703) 3084724. The examiner can normally be reached on Monday through Thursday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Marianne Seidel, can be reached on (703) 308-4725. The fax phone number for the organization where this application or proceeding is assigned is (703) 308-4556.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is (703) 3081235.


September 16, 2003


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{OTHER PRIOR ART - NONPATENT LITERATURE DOCUMENTS} \\
\hline Examiner Initials & Cite & include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book. magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published. \\
\hline & & \(\bar{\square}\) - \\
\hline & & Co: \\
\hline & & DRC9 \\
\hline & & RESTHMAMEABLE COPY \\
\hline & & 50 \\
\hline & & \\
\hline & & ? \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

*EXAMINER: Initial if reference considered, whether or not citation is in confonmance with MPEP 609. Draw line through citation if not in conformance and not considered. include copy of this form with next communication to applicant.


All participants (applicant, applicant's representative, PTO personnel)
(1) Rebecca Cook.
(2) James Napoli.
(3) \(\qquad\) .
(4) \(\qquad\) -

Date of Interview: 26 August 2003.
Type: a) \(\boxtimes\) Telephonic b) \(\square\) Video Conference c) \(\square\) Personal [copy given to: 1) \(\square\) applicant
2) \(\square\) applicant's representative]

Exhibit shown or demonstration conducted: d) \(\square\) Yes
e) \(\square\) No If Yes, brief description: \(\qquad\) _.

Claims) discussed: pending claims.
Identification of prior art discussed: art of record.
Agreement with respect to the claims f) \(\square\) was reached. g) \(\boxtimes\) was not reached. h) \(\square\) N/A.

Substance of Interview including description of the general nature of what was agreed to if an agreement was reached, or any other comments: Examiner informed attorney for applicants that the composition claims are not allowable and that a showing of unexpected results commensurate in scope with the claims is required to overcome the prior art for the method claims.
(A fuller description, if necessary, and a copy of the amendments which the examiner agreed would render the claims allowable, if available, must be attached. Also, where no copy of the amendments that would render the claims allowable is available, a summary thereof must be attached.)

THE FORMAL WRITTEN REPLY TO THE LAST OFFICE ACTION MUST INCLUDE THE SUBSTANCE OF THE INTERVIEW. (See MPEP Section 713.04). If a reply to the last Office action has already been filed, APPLICANT IS GIVEN ONE MONTH FROM THIS INTERVIEW DATE, OR THE MAILING DATE OF THIS INTERVIEW SUMMARY FORM, WICHEVER IS LATER, TO FILE A STATEMENT OF THE SUBSTANCE OF THE INTERVIEW. See Summary of Record of Interview requirements on reverse side or on attached sheet.

Examiner Note: You must sign this form unless it is an Attachment to a signed Office action.


Examiner's signature, if required

Manual of Patent Examining Procedure (MPEP), Section 713.04, Substance of Interviow Must be Made of Record
A complete written statement as to the substance of any face-to-face, video conference, or telephone interview with regard to an application must be made of record in the application whether or not an agreement with the examiner was reached at the interview.

\section*{Title 37 Code of Federal Regulations (CFR) § 1.133 Interviews}

Paragraph (b)
In every instance where reconsideration is requested in view of an interview with an examiner, a complete written statement of the reasons presented at the interview as warranting favorable action must be filed by the applicant. An interview does not remove the necessity for reply to Office action as specified in \(\$ \S 1.111,1.135\). (35 U.S.C. 132) 37 CFR \(\S 1.2\) Business to be transacted in writing.
All business with the Patent or Trademark Office should be transacted in writing. The personal attendance of applicants or their attomeys or agents at the Patent and Trademark Office is unnecessary. The action of the Patent and Trademark Office will be based exclusively on the written record in the Office. No attention will be paid to any alleged oral promise, stipulation, or understanding in relation to which there is disagreement or doubt.

The action of the Patent and Trademark Office cannot be based exclusively on the written record in the Office if that record is itself incomplete through the failure to record the substance of interviews.

It is the responsibility of the applicant or the attomey or agent to make the substance of an interview of record in the application file, unless the examiner indicates he or she will do so. It is the examiner's responsibility to see that such a record is made and to correct material inaccuracies which bear directly on the question of patentability.

Examiners must complete an Interview Summary Form for each interview held where a matter of substance has been discussed during the interview by checking the appropriate boxes and filling in the blanks. Discussions regarding only procedural matters, directed solely to restriction requirements for which interview recordation is otherwise provided for in Section 812.01 of the Manual of Patent Examining Procedure, or pointing out typographical errors or unreadable script in Office actions or the like, are excluded from the interview recordation procedures below. Where the substance of an interview is completely recorded in an Examiners Amendment, no separate Interview Summary Record is required.

The Interview Summary Form shall be given an appropriate Paper No., placed in the right hand portion of the file, and listed on the "Contents" section of the file wrapper. In a personal interview, a duplicate of the Form is given to the applicant (or attorney or agent) at the conclusion of the interview. In the case of a telephone or video-conference interview, the copy is mailed to the applicant's correspondence address either with or prior to the next official communication. If additional correspondence from the examiner is not likely before an allowance or if other circumstances dictate, the Form should be mailed promptly after the interview rather than with the next official communication.

The Form provides for recordation of the following information:
- Application Number (Series Code and Serial Number)
- Name of applicant
- Name of examiner
- Date of interview
- Type of interview (telephonic, video-conference, or personal)
_ Name of participant(s) (applicant, attomey or agent, examiner, other PTO personnel, etc.)
- An indication whether or not an exhibit was shown or a demonstration conducted
- An identification of the specific prior art discussed
- An indication whether an agreement was reached and if so, a description of the general nature of the agreement (may be by attachment of a copy of amendments or claims agreed as being allowable). Note: Agreement as to allowability is tentative and does not restrict further action by the examiner to the contrary.
- The signature of the examiner who conducted the interview (if Form is not an attachment to a signed Office action)

It is desirable that the examiner orally remind the applicant of his or her obligation to record the substance of the interview of each case. It should be noted, however, that the interview Summary Form will not normally be considered a complete and proper recordation of the interview unless it includes, or is supplemented by the applicant or the examiner to include, all of the applicable items required below conceming the substance of the interview.

A complete and proper recordation of the substance of any interview should include at least the following applicable items:
1) A brief description of the nature of any exhibit shown or any demonstration conducted,
2) an identification of the claims discussed,
3) an identification of the specific prior art discussed,
4) an identification of the principal proposed amendments of a substantive nature discussed, unless these are already described on the Interview Summary Form completed by the Examiner,
5) a brief identification of the general thrust of the principal arguments presented to the examiner
(The identification of arguments need not be lengthy or elaborate. A verbatim or highly detailed description of the arguments is not required. The identification of the arguments is sufficient if the general nature or thrust of the principal arguments made to the examiner can be understood in the context of the application file. Of course, the applicant may desire to emphasize and fully describe those arguments which he or she feels were or might be persuasive to the examiner.)
6) a general indication of any other pertinent matters discussed, and
7) if appropriate, the general results or outcome of the interview unless already described in the Interview Summary Form completed by the examiner.

Examiners are expected to carefully review the applicant's record of the substance of an interview. If the record is not complete and accurate, the examiner will give the applicant an extendable one month time period to correct the record.

Examiner to Check for Accuracy

If the claims are allowable for other reasons of record, the examiner should send a letter setting forth the examiner's version of the statement altributed to him or her. If the record is complete and accurate, the examiner should place the indication, "Interview Record OK" on the paper recording the substance of the interview along with the date and the examiner's initials.


All participants (applicant, applicant's representative, PTO personnel):
(1) Rebecca Cook.
(3) Soonhee Jang.
(2) James Napoli.
(4) \(\qquad\) .

Date of Interview: 10 December 2003.
Type: a) \(\square\) Telephonic b) \(\square\) Video Conference c) Personal [copy given to: 1) 【 applicant 2) \(\square\) applicant's representative]
e)No.
Exhibit shown or demonstration conducted: d) \(\square\) Yes If Yes, brief description: \(\qquad\) .

Claim(s) discussed: Calims pending.
Identification of prior art discussed: art of record.
Agreement with respect to the claims f) \(\square\) was reached. g) \(\square\) was not reached. h) \(\square \mathrm{N} / \mathrm{A}\).

Substance of Interview including description of the general nature of what was agreed to if an agreement was reached, or any other comments: Attorneys for applicants will submit a Declaration under 37 CFR 1.132 which shows unexpected reduction of side effect at 20 mg when compared to the 50 mg dosage disclosed in Daugan. They will also submit a Terminal Disclaimer over 6,451,807. Examiner will consider a showing of unexpected results favorably. -
(A fuller description, if necessary, and a copy of the amendments which the examiner agreed would render the claims allowable, if available, must be attached. Also, where no copy of the amendments that would render the claims allowable is available, a summary thereof must be attached.)

THE FORMAL WRITTEN REPLY TO THE LAST OFFICE ACTION MUST INCLUDE THE SUBSTANCE OF THE INTERVIEW. (See MPEP Section 713.04). If a reply to the last Office action has already been filed, APPLICANT IS GIVEN ONE MONTH FROM THIS INTERVIEW DATE, OR THE MAILING DATE OF THIS INTERVIEW SUMMARY FORM, WICHEVER IS LATER, TO FILE A STATEMENT OF THE SUBSTANCE OF THE INTERVIEW. See Summary of Record of Interview requirements on reverse side or on attached sheet.

Manual of Patent Examining Procedure (MPEP), Section 713.04, Substance of Interview Must be Made of Record
A complete written statement as to the substance of any face-to-face. video conference, or telephone interview with regard to an application must be made of record in the application whether or not an agreement with the examiner was reached at the interview.

\section*{Title 37 Code of Federal Regulations (CFR) § 1.133 Interviews}

Paragraph (b)
In every instance where reconsideration is requested in view of an interview with an examiner, a complete written statement of the reasons presented at the interview as warranting favorable action must be filed by the applicant. An interview does not remove the necessity for reply to Office action as specified in \(\$ \S 1.111,1.135\). (35 U.S.C. 132)

37CFR §1.2 Business to be transacted in writing
All business with the Patent or Trademark Office should be transacted in writing. The personal attendance of applicants or their attorneys or agents át the Patent and Trademark Office is unnecessary. The action of the Patent and Trademark Office will be based exclusively on the written record in the Office. No attention will be paid to any alleged oral promise, stipulation, or understanding in relation to which there is disagreement or doubt.

The action of the Patent and Trademark Office cannot be based exclusively on the written record in the Office if that record is itself incomplete through the failure to record the substance of interviews.

It is the responsibility of the applicant or the attorney or agent to make the substance of an interview of record in the application file, unless the examiner indicates he or she will do so. It is the examiner's responsibility to see that such a record is made and to correct material inaccuracies which bear directly on the question of patentability.

Examiners must complete an Interview Summary Form for each interview held where a matter of substance has been discussed during the interview by checking the appropriate boxes and filling in the blanks. Discussions regarding only procedural matters, directed solely to restriction requirements for which interview recordation is otherwise provided for in Section 812.01 of the Manual of Patent Examining Procedure, or pointing out typographical errors or unreadable script in Office actions or the like, are excluded from the interview recordation procedures below. Where the substance of an interview is completely recorded in an Examiners Amendment, no separate Interview Summary Record is required.

The Interview Summary Form shall be given an appropriate Paper No., placed in the right hand portion of the file, and listed on the "Contents" section of the file wrapper. In a personal interview, a duplicate of the Form is given to the applicant (or attorney or agent) at the conclusion of the interview. In the case of a telephone or video-conference interview, the copy is mailed to the applicant's correspondence address either with or prior to the next official communication. If additional correspondence from the examiner is not likely before an allowance or if other circumstances dictate, the Form should be mailed promptly after the interview rather than with the next official communication.

The Form provides for recordation of the following information:
- Application Number (Series Code and Serial Number)
- Name of applicant
- Name of examiner
- Date of interview
- Type of interview (telephonic, video-conference, or personal)
- Name of participant(s) (applicant, attomey or agent, examiner, other PTO personnel, etc.)
- An indication whether or not an exhibit was shown or a demonstration conducted
- An identification of the specific prior art discussed
- An indication whether an agreement was reached and if so, a description of the general nature of the agreement (may be by attachment of a copy of amendments or claims agreed as being allowable). Note: Agreement as to allowability is tentative and does not restrict further action by the examiner to the contrary.
- The signature of the examiner who conducted the interview (if Form is not an attachment to a signed Office action)

It is desirable that the examiner orally remind the applicant of his or her obligation to record the substance of the interview of each case. It should be noted, however, that the Interview Summary Form will not normally be considered a complete and proper recordation of the interview unless it includes, or is supplemented by the applicant or the examiner to include, all of the applicable items required below concerning the substance of the interview.

A complete and proper recordation of the substance of any interview should include at least the following applicable items:
1) A brief description of the nature of any exhibit shown or any demonstration conducted,
2) an identification of the claims discussed,
3) an identification of the specific prior art discussed,
4) an identification of the principal proposed amendments of a substantive nature discussed, unless these are aiready described on the Interview Summary Form completed by the Examiner,
5) a brief identification of the general thrust of the principal arguments presented to the examiner,
(The identification of arguments need not be lengthy or elaborate. A verbatim or highly detailed description of the arguments is not required. The identification of the arguments is sufficient if the general nature or thrust of the principal arguments made to the examiner can be understood in the context of the application file. Of course, the applicant may desire to emphasize and fully describe those arguments which he or she feels were or might be persuasive to the examiner.)
6) a general indication of any other pertinent matters discussed, and
7) if appropriate, the general results or outcome of the interview unless already described in the Interview Summary Form completed by the examiner.

Examiners are expected to carefully review the applicant's record of the substance of an interview. If the record is not complete and accurate, the examiner will give the applicant an extendable one month time period to correct the record.

\section*{Examiner to Check for Accuracy}

If the claims are allowable for other reasons of record, the examiner should send a letter setting forth the examiner's version of the statement attributed to him or her. If the record is complete and accurate, the examiner should place the indication, "Interview Record OK" on the paper recording the substance of the interview along with the date and the examiner's initials.


\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}


\section*{RESPONSE TO OFFICE ACTION}

Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450
Sir:

This is a response to the Office Action of September 17, 2003. Reconsideration and allowance of the application are respectfully requested.

The following sets forth the current status of the claims:
1.-10. (Cancelled)
11. (Previously amended) The method of claim 13 wherein the sexual dysfunction is male erectile dysfunction.
12. (Previously amended) The method of claim 13 wherein the sexual dysfunction is female arousal disorder.
13. (Previously amended) A method of treating sexual dysfunction in a patient in need thereof comprising orally administering one or more unit dose containing about 1 to about 20 mg , up to a maximum total dose of 20 mg per day, of a compound having the structure

14. (Original) The method of claim 13 wherein the unit dose contains about 2 to about 20 mg of the compound.
15. (Original) The method of claim 13 wherein the unit dose contains about 5 mg of the compound.
16. (Original) The method of claim 13 wherein the unit dose contains about 10 mg of the compound and is administered once per day.
17. (Original) The method of claim 13 wherein the unit dose is in a form selected from the group consisting of a liquid, a tablet, a capsule, and a gelcap.
18.-19. (Cancelled)
20. (Previously presented) The method of claim 13 wherein the unit dose contains about 2.5 mg of the compound.
21. (Previously presented) The method of claim 20 wherein the unit dose is administered once per day.
22. (Previously presented) The method of claim 15 wherein the unit dose is administered once per day.
```

23. (Previously presented) The method of claim 13 wherein the compound is administered as a free drug.
```
24. (New) The method of claim 13 wherein the unit dose contains about 20 mg of the compound.

Claims 11-17 and 20-23 are pending in the application. New claim 24 has been added to the application. Therefore, claims 11-17 and 20-24 are at issue.

New claim 24 recites a unit dose of about 20 mg of Compound (I). Support for claim 24 can be found, for example, in claims 13 and 14.

The courteous interview granted to applicants' undersigned attorney and Soonhee Jang by Examiner Cook on December 10, 2003 is hereby acknowledged with appreciation. During the interview, the outstanding Office Action, cited reference, and claims on file were discussed in detail.

Claims 11-17 and 20-23 stand rejected under the judicially created doctrine of obviousness-type double patenting over U.S. Patent No. 6, 451,807. In view of the terminal disclaimer filed concurrently with this response, it is submitted that this rejection has been overcome and should be withdrawn.

Claims 11-17 and 20-23 stand rejected under 35 U.S.C. §103 as being obvious over Daugan U.S. Patent No. 6,140,329 ('329). This rejection is based on the contention that the ' 329 patent discloses the compound recited in the claims, use of the compound to treat sexual dysfunction, oral administration, and a dosage encompassing the recited dosage range. For the reasons set forth herein, it is submitted that claims 11-17 and 20-24 would not have been obvious to a person skilled in the art under 35 U.S.C. \(\$ 103\) over the 329 patent.

The present claims recite a method of treating sexual dysfunction in a patient in need thereof by the oral administration of a unit dosage composition
containing about 1 to about 20 mg of Compound (I), up to a maximum dose of 20 mg per day. The method can be used to. treat sexual dysfunction, including male erectile dysfunction (MED) and female arousal disorder (FAD), as recited in the claims. The 1329 patent discloses the use of compounds \(A\) and \(B\) for treating sexual dysfunction over the broad range of \(0.5-800 \mathrm{mg}\), and in tablet or capsule dosage forms over a range of 0.2-400 mg to treat sexual dysfunction (column 3, lines 48-55).

The unit dose range of \(1-20 \mathrm{mg}\) as claimed in independent claim 13 of the present application is important because at this dose range it has surprisingly low adverse side effects while still unexpectedly found to be efficacious. The present specification discloses clinical study results showing that a dose range of about 2 mg to 100 mg are efficacious (specification, page 31), but doses at a level greater than about \(20 \mathrm{mg}(e . g ., 25 \mathrm{mg}\) to 100 mg ) result in unpleasant adverse events, such as headache, dyspepsia, and back pain (specification, page 30, lines 15-23 and page 32, lines 15-20). The present specification further discloses "even though efficacy in the treatment of \(E D\) was observed at 25 mg to 100 mg unit doses, the adverse events observed from 25 mg to 100 mg dose must be considered" (Example 7 of the specification shows that undesirable adverse events are dose related). Consequently, doses of Compound (I) above about 20 mg would have reduced tolerability because of an increased level of adverse events.

Although the ' 329 patent teaches a unit dosage range for the disclosed compounds of 0.2 to 400 mg , administered once or several times per day, the ' 329
patent does not teach or suggest a low maximum daily dose for effective treatment of sexual dysfunction. An important feature of the present invention is administration of an oral dose of the claimed unit dosage composition at about 20 mg or less, per day, to treat sexual dysfunction, while substantially reducing adverse events associated with this PDE5 inhibitor treatment.

The ' 329 patent does not suggest or forecast that a low unit dose of about 1 to about 20 mg of Compound (I) would exhibit unexpected efficacy and at the same time unexpectedly reduce the number of adverse events. The ' 329 patent discloses a broad dose range of \(0.2-400 \mathrm{mg}\) in tablets or capsules, but this disclosure would not have suggested to one of ordinary skill in the art at the time invention was made that the low claimed dose range presently claimed would exhibit the unexpectedly surprising results of not only being efficacious, but also substantially reducing the number of adverse events as discussed above. The 329 patent broadly discloses a dosage range for various PDE5 inhibitors, but fails to teach or suggest the specific unit dosage, maximum daily dosage, and the specific compound of the present invention that provides such new and unexpécted benefits. Although column 10, lines 1-3 of the ' 329 patent states that "other doses may be prepared," it provides largely or at best an.illustrative purpose as to show those skilled in the art how to make a different formulation.

In addition to the above remarks, the Declaration of Gregory D. Sides, M.D. (Sides Declaration) submitted concurrently with this response, illustrates
and corroborates the new and unexpected results provided by the presently claimed invention, i.e., the discovery that the compound recited in independent claim 13 can be orally administered in one or more unit dose containing about \(l\) to about 20 mg of the compound, up to a maximum dose of \(20 \mathrm{mg} / \mathrm{day}\), to provide an effective method of treating sexual dysfunction, while substantially reducing various adverse events. The original signed copy of the Sides Declaration will be retained in applicants' file, but will be forwarded to the examiner upon request.

It is submitted that the claims are in proper form and scope for allowance. An early and favorable action on the merits is respectfully requested. Should the examiner wish to discuss the foregoing, or any matter of form in an effort to advance this application toward allowance, the examiner is urged to telephone the undersigned at the indicated number.

Respectfully submitted,
MARSHALL, GERSTEIN \& BORUN LLP
By Saues

Chicago, Illinois January 12, 2004

\begin{tabular}{|c|c|}
\hline Applicants： & ）I hereby certify that this paper \\
\hline & ，is being deposited with the United \\
\hline WILITAM ERNEST PULLMAN ET AL． & ）States Postal Service with suffi－ \\
\hline & ）cient postage，as first class \\
\hline Serial No．：10／031，556 & ）mail，in an envelope addressed to： \\
\hline & ）Commissioner for Patent \\
\hline Filed：October 19， 2001 & ）P．O．Box 1450 \\
\hline & ，Alexandria，VA 22313－1450 \\
\hline FOX：UNIT DOSAGE FORM & \\
\hline Attorney Docket No． \(29342 / 36206 A\) & ，Scums OTon \\
\hline & ）James J．Napoli \\
\hline Group Are Unit： 1614 & ）Registration No．32，361 \\
\hline & ）Attorney for Applicants \\
\hline Examiner：Rebecca Cook & ）Attorney for Applicants \\
\hline
\end{tabular}
DECLARATION OF DR. GREGORY D. SIDES, M.D., F.A.C.E.P.,
                    F.A.C.P.
                            UNDER 37 C.E.R. S1. 132
Commissioner for Patents
P.O. Box 1450
Alexandria, Virgiṇia 22313-1450
Sir:

NOW COMES Dr．Gregory D．Sides，Declarant herein，and states as follows：

1．I presently hold the position of Medical Director，Primary Care Products，Cialis® Product Team at Eli Lilly and Company，Lilly Corporate Center， Indianapolis，Indiana 46285.

2．My previous posịtions were：

Director，Bioproduct Medical，Eli Lilly and Company， Indianapolis，Indiana（Jan 2002 －Jan 2003）
```

Director of Operations, Global Clinical Research, Eli
Lilly and Company, Indianapolis, Indiana (Eeb 2001 -
Jan 2002)
Acting Director, Cardiovascular Medical, Eli Lilly and
Company, Indianapolis, Indiana (Jul 2000 - Feb 2001)
Senior Clinical Research Physician, Cardiovascular,
Medical, Eli Lilly and Company, Indianapolis, Indiana
(Jan 1999 -.Jul 2000)
Clinical Research Physician, Cardiovascular Division,
Eli Lilly and Company, Indiaxapolis, Indiana (Ju1 1994

- Dec 1.998)
Clinical Research Physician, Infectious Diseases
Division, Eli. Lilly and Company, Indianapolis, Indiana
(Mar 1990 - Jul 1994)
Associate Clinical Research Physician, Infectious
Diseases Division, Eli Lilly and Company, Indianapolis,
Indiana (Feb 1988 - Mar 1990),
Partner, Kirtley, Paschall, Sides Emergency Physicians,
Inc., Danville, Indiana (Nov 1984 - Mar 1988)
Hendricks Community Hospital, Danville, Indiana (Nov
1984 - Mar 1988)
Emergency Physician, Midwest Medical Management, Inc.
Indianapolis, Indiana (Jul 1983-Nov 1984)

```

3．I received a degree in Medicine from the Indiana University of Medicine，Indianapolis，Indiana in 1980．I received a B．S．in Chemistry，Magna Cum Laude，from Indiana State University，Terre Haute， Indiana in 1977.

I completed an Internship and Residency in Internal Medicine at Methodist Hospital，Indianapolis，Indiana （1980－1983）

I am board certified in Internal Medicine and Emergency Medicine：Board of Certification：Diplomate，American Board of Internal Medicine，September 14， 1983 （\＃092096）；Diplomate：American Board of Emergency Medicine，March 17， 1989 －December 31，1999， Recertification，December 24， 1998 －December 31， 2008 （\＃870725）

4．I have practiced medicine for twenty three（23）years，conducted research，published about 28 articles， 4 book chapeers and 35 abstracts，and presented lectures at numerous conferences，served as a member on numerous editorial boards and scientific or medical advisory boards，and have a membership in numerous societies，such as American Association of Pharmaceutical Physicians，American College of Emergency Physicians，and American College of Physicians．

5．One of my main Eields of research and interest is in the field of Internal Medicine，in particular primary care product，cardiovascular，and infectious diseases．

3

6．I have read and understand U．S．Patent Application serial No．10／031，55．6，and I am familiar with the September 29， 2003 Office Action in the above－ identified application．

7．The invention disclosed in that applica－ tion is directed to a method of treating sexual dys－ function（Claims 11－17 and 20－23），including，but not limited to，male erectile dysfunction and female sexual arousal disorder，which comprises orally administering to a patient in need thereof one or more unit dose containing about 1 to about 20 mg of Compound（I），up to a maximum total dose of 26 mg per day．

（I）

8．The present invention＇is based on
detailed experiments and clinical trials，and the unexpected discovery of a unit dosage form incorporating about 1 to about 20 mg of Compound（I） that，when orally administered，effectively treats sexual dysfunction and substantially reduces various， undesirable adverse events．
9. The new and surprisingly unexpected results achieved by the present invention are illustrated in Example 7 of the specification and in an analysis of pooled data from eight subsequent Phase 3 clinical trials. Example 7 shows that compound (I) is efficacious in the treatment of erectile dysfunction at \(2 \mathrm{mg}, 5 \mathrm{mg}\), and 10 mg dosages.
10. Example 7 also shows the unexpected decrease in treatment-emergent adverse events in the table at page 32 of the specification. The results in the table of Example 7 were further corroborated in controlled Phase 3 studies. / The results of an analysis of pooled data from eight Phase 3 .studies for placebo, \(5 \mathrm{mg}, 10 \mathrm{mg}\), and 20 mg doses are set forth in the following table, together with the data from the table of Example 7 for placebo and the 50 mg dose. The Phase 3 studies were conducted using, 20 mg or lower doses because higher doses above 20 mg of Compound (I) had a sufficient number of adverse events such that the do'se would have reduced tolerability to the general public.
\begin{tabular}{|c|c|c|c|c|}
\hline & Placebo & \[
\begin{gathered}
\text { Tadalaf } \\
\text { il (1) } \\
5 \text { mg }
\end{gathered}
\] & \[
\begin{gathered}
\text { Tadalaf } \\
\text { il } \\
10_{(1)} \mathrm{mg}
\end{gathered}
\] & \[
\begin{gathered}
\text { Tadalaf } \\
\text { il } \\
20 \mathrm{mg} \\
\text { (1) }
\end{gathered}
\] \\
\hline Adverse Event & ( \(\mathrm{N}=476\) ) & ( \(\mathrm{N}=151\) ) & ( \({ }^{(10394}\) ) & ( \(\mathrm{N}=635\) ) \\
\hline Headache & \(5 \%\) & 11\% & 118 & 15\% \\
\hline Dyspepsia & 1\% & 4 7 & 88 & 10\% \\
\hline Back pein & 3\% & 38 & 5\% & 68 \\
\hline Myalgia & 1\% & 18 & 48 & 38 \\
\hline Nasal congestion & 1\% & 2\% & 32 & 3\% \\
\hline Flushing & \(1 \%\) & 2\% & 34 & 3\% \\
\hline \[
\begin{aligned}
& \text { Pain in } \\
& \operatorname{limb}
\end{aligned}
\] & \(1 \%\) & \(1 \%\) & 34 & 38 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Placebo \\
\((2)\) \\
\((N=134)\)
\end{tabular} & \begin{tabular}{c} 
Tadalaf \\
il \\
50 mg \\
\((2)\)
\end{tabular} \\
\hline \(10 \%\) & \(34 \%\) \\
\hline \(6 \%\) & \(20 \%\) \\
\hline \(5 \%\) & \(24 \%\) \\
\hline \(3 \%\) & \(20 \%\) \\
\hline-- & -- \\
\hline \(0 \%\) & \(3 \%\) \\
\hline-- & -- \\
\hline
\end{tabular}
(1) Data from an analyoig of pooled data from tight controlled Phase 3 studies (Table 7, CIALIS US Packet Insert. Nov 2003) coded using Medical Dictionary for Regulatory Activities (version 5.0); adverse events with 22 f incidence on tadalafil ( 10 or 20 mg ) and more frequent on drug than placebo, and
(2) Data from table of Example 7 of specification (an analysis of data pooled from three phase 2 studies (LVBF/DSDO6, LVBG/DSDO4 and LVAC); adverse events coded using the COSTART dictionary).
11. The data in paragraph 10 shows a dramatic reduction in adverse events associated with common adverse events, such as headache, dyspepsia and back pain between the 20 mg and 50 mg dosages, and further reductions for the 5 mg and 10 mg dosages. This decrease of adverse events coupled with an efficacy across the claimed dose range is.an unexpected advance in the art.
12. All statements made herein of my own knowledge are true and all statements made on information and belief are believed to be true; further, these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or document or any patent resulting therefrom.


Date: \(\qquad\) 2004

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

Applicants:
WILIIAM E. PULLMAN ET AL.
Serial No.: 10/031,556
Filed: October 19, 2001
FOI: UNIT DOSAGE FORM
Attorney Docket No. 29342/36206A

Group Art Unit: 1614

Examiner: Rebecca Cook
I hereby certify that thi
paper is being deposited
with the United States
Postal Service with suffi-
cient postage, as first
class mail, in an envelope
addressed to:
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450
Dated: January 12, 2004


TERMINAL DISCLAIMER TO OBVIATE A DOUBLEPATENTING REJECTION OVER AN ISSUED PATENT

Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

Sir:

The undersigned, having power of attorney from the assignee, Lilly ICOS LLC, has executed this document on behalf of petitioner, Lilly ICOS LLC. Petitioner is a Delaware limited liability company, 1209 Orange Street, Wilmington, Delaware 19801, and is the owner of \(100 \%\) interest in the instant application, as shown by the assignment recorded March 25, 2002, at Reel 12740, Frame 679. Petitioner hereby disclaims, except as provided below, the terminal part of the statutory term of any patent granted on the instant application, which would extend beyond the expiration
date of the full statutory term defined in 35 U.S.C. \(\$ 154\) to \(\$ 156\) and \(\$ 173\), as presently shortened by any terminal disclaimer of prior Patent No. 6,451,807. Petitioner also is the owner of \(100 \%\) interest in U.S. Patent No. 6,451,807 as shown by the assignment recorded on August 3, 2000 at Reel 11017, Frame 503. Petitioner hereby agrees that any patent so granted on the instant application shall be enforceable only for and during such period that it and U.S. Patent No. 6,451,807 are commonly owned. This agreement runs with any patent granted on the instant application and is binding upon the grantee, its successors, or assigns.

In making the above disclaimer, petitioner does not disclaim the terminal part of any patent granted on the instant application that would extend to the expiration date of the full statutory term as defined in 35 U.S.C. \(\$ 154\) to \(\$ 156\) and \(\$ 173\) of prior Patent No. 6,451,807, as presently shortened by any terminal disclaimer, in the event that it later: expires for failure to pay a maintenance fee, is held unenforceable, is found invalid by a court of competent jurisdiction, is statutorily disclaimed in whole or terminally disclaimed under 37 C.F.R. §1.321, has all claims cancelled by a reexamination certificate, is reissued, or is in any manner terminated prior to the expiration of its full statutory term as presently shortened by any terminal disclaimer.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; further, these statements are made with the knowledge that willful false statements and the like so
made are punishable by fine or imprisonment, or both, under Section 1001, Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereof.

The Commissioner is hereby authorized to credit any overpayment or charge any additional fees which may be required during the pendency of this application under 37 C.F.R. §1.16 or 37 C.F.R. §1.17 or under applicable rules (except payment of issues fees), to Deposit Account No. 13-2855. A copy of this transmittal is enclosed.


Dated: January 12, 2004

囚 Our firm check in the amount of \(\$ 110.00\) is enclosed in payment of the requisite Terminal Disclaimer fee under 37 C.F.R. \(\$ 1.20(\mathrm{~d})\).

\(01 / 16 / 2004\) CHGUYEN 0000007010031556
01 FC:1251
110.00 OP

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Complete if Known } \\
\hline Application Number & \(10 / 031,556-\) Conf. \#6526 \\
\hline Filing Date & October 19, 2001 \\
\hline First Named Inventor & William E. Pullman \\
\hline Examiner Name & R. Cook \\
\hline Art Unit & 1614 \\
\hline Attomey Docket No. & \(29342 / 36206 A\) \\
\hline
\end{tabular}

( FEE CALCULATION (continued)

\begin{tabular}{|cc}
\multicolumn{1}{c}{ Large } & Fee \\
Code & F \\
1051 & 1 \\
1052 & 50
\end{tabular}


> SUBTOTAL (1)
(s)
(\$)


Multiple Dependent
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Large Entity} & \multicolumn{2}{|l|}{Small Entity} & \multirow[b]{2}{*}{Fee Description} \\
\hline \[
\begin{aligned}
& \text { Fee } \\
& \text { Code }
\end{aligned}
\] & Fee (\$) & Fee Code & Fee (\$) & \\
\hline 1202 & 18 & 2202 & 9 & Claims in excess of 20 \\
\hline 1201 & 86 & 2201 & 43 & Independent claims in excess of 3 \\
\hline 1203 & 290 & 2203 & 145 & Multiple dependent claim, if not paid \\
\hline 1204 & 86 & 2204 & 43 & ** Reissue independent claims over original patent \\
\hline 1205 & 18 & 2205 & 9 & ** Reissue claims in excess of 20 and over original patent \\
\hline & & & SUB & BTOTAL (2) (\$) 0.00 \\
\hline
\end{tabular}

Fee Description Fee Paid
Utility flling fee lant fling fee ee fee 0.00
2. EXTRA CLAIM FEES FOR UTILITY AND REISSUE


I hereby certify that this correspondence is being deposited with the U.S. Postal Service with sufficient postage as First Class Mail, in an envelope addressed to: Commissioner for Patents_P-Box 1450, Alexandia, VA 22313-1450, on the date shown below.
Dated: January 12, 2004
Signatures Saces
 \(<\frac{1}{2}\) \(\qquad\) (James J. Napoli)


Please find below and/or attached an Office communication concerning this application or proceeding.


\section*{DETAILED ACTION}

\section*{Terminal Disclaimer}

The terminal disclaimer filed on January 12, 2004 disclaiming the terminal portion of any patent granted on this application which would extend beyond the expiration date of \(6,451,807\) has been reviewed and is accepted.

\section*{Claim Rejections - 35 USC § 103}

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 11-17 and 20-24 are rejected under 35 U.S.C. 103(a) as being unpatentable over 6,140,329 (Daugan) for the reasons given in Paper No. 5.

The Declaration under 37 CFR 1.132 of January 15, 2004 by Dr. Sides has been thoroughly considered but is not persuasive because decreased side effects are expected at lower doses. There is no showing of similar efficacy comparing 20 mg of the compound of the instant method with the 50 mg disclosed by Daugan.

\section*{Conclusion}

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within

TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Examiner Cook whose telephone number is (571) 2720571 . The examiner can normally be reached on Monday through Thursday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Marianne Seidel, can be reached on (571) 272-0584.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to Renee Jones (571) 272-0547 in Customer Service.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

The official fax number is 703-872-9806


Primary Examiner Art Unit 1614

May 17, 2004




\section*{PATENT--NO FEE}

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

\section*{Applicants:}

WILLIAM ERNEST PULLMAN ET AL.

Serial No.: 10/031,556
Filed: October 19, 2001
For: UNIT DOSAGE FORM
Attorney Docket No. 29342/36206A
Group Art Unit: 1614
Examiner: Rebecca Cook


SECOND SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

Pursuant to their duty of disclosure under 37 C.F.R. §1.56, applicants hereby bring to the examiner's attention patent documents that may be material to the examination of the above-identified application. Therefore, in compliance with 37 C.F.R. \(\$ 1.97\) and §1.98, applicants enclose a completed Form PTO-1449 listing the possibly pertinent patent documents and a copy of each document.

This Second Supplemental Information Disclosure Statement is submitted more than three months after the filing date of the above-identified applica-
tion, and after the mailing date of a first Office Action on the merits.

However, each item of information contained in this Second Supplemental Information Disclosure Statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this Second Supplemental Information Disclosure Statement (37 C.F.R. \(\$ 1.97\) (e) (1)). Accordingly, no fee as set forth in 37 C.F.R. \(\$ 1.17(\mathrm{p})\) is due.

The Commissioner, however, is hereby authorized to charge any fee which may be required during the pendency of this application under 37 C.F.R. 1.16 or 37 C.F.R. 1.17 to Deposit Account No. 13-2855. A duplicate copy of this transmittal is enclosed herewith.

A copy of the European Search Report is enclosed for the convenience of the examiner and to complete the file. Several references cited in the European Search Report are not cited in this Second Supplemental Information Disclosure Statement. These references were cited in previously filed Information Disclosure Statements.

\section*{Respectfully submitted, \\ MARSHALL, GERSTEIN \& BORUN LLP \\ By \\  \\ (Registration No. 32,361) \\ Attorneys for Applicants 6300 Sears Tower \\ 233 South Wacker Drive \\ Chicago, Illinois 60606 \\ (312) 474-6300}

Chicago, Illinois May 20, 2004

\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{7}{|c|}{ U.S. PATENT DOCUMENTS } \\
\hline \begin{tabular}{l} 
Examiner \\
Initials*
\end{tabular} & \begin{tabular}{l} 
Cite \\
No.
\end{tabular} & Document Number & \(\cdot\) & \begin{tabular}{l} 
Publication Date \\
MM-DD-YYY
\end{tabular} \\
\hline & & & \(\cdot\) & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ FOREIGN PATENT DOCUMENTS } \\
\hline \begin{tabular}{l} 
Examiner \\
initials*
\end{tabular} & \begin{tabular}{l} 
Cite \\
No.
\end{tabular} & \multicolumn{1}{|c|}{ Foreign Patent Document } & \begin{tabular}{l} 
Publication Date \\
MM-DD-YYY
\end{tabular} \\
\hline & & WO 99 59584 & \(11 / 25 / 1999\) \\
\hline & & WO 00 53148 & \(09 / 14 / 2000\) \\
\hline & & WO 0066114 & \(11 / 09 / 2000\) \\
\hline & & WO 0180860 & \(11 / 01 / 2001\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{OTHER PRIOR ART - NONPATENT LITERATURE DOCUMENTS} \\
\hline Examiner Initials & Cite
No. & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published. \\
\hline & & . \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner & & \begin{tabular}{l} 
Date \\
Signature
\end{tabular} & Considered
\end{tabular}
*EXAMINER: Initial it reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

This Page Is Inserted by IFW Operations and is not a part of the Official Record

\section*{BEST AVAILABLE IMAGES}

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):
- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

\section*{IMAGES ARE BEST AVAILABLE COPY.}

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.


INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(72) Inventor; and
(75) Inventor/Applicant (for US only): ESTOK, Thomas, Mark [US/US]; 1515 Charlotte Road, Plainfield, NJ 07060 (US).
(54) Title: COMBINATION OF PHENTOLAMINE AND CYCLIC GMP PHOSPHODIESTERASE INHIBITORS FOR THE TREATMENT OF SEXUAL DYSFUNCTION
(57) Abstract

A method of treating sexual dysfunction comprising administering a therapeutically effective amount of a combination of phentolamine and cGMP PDE inhibitor such as sildenafil, as well as pharmaceutical compositions and kits useful in those methods, are disclosed.

\section*{FOR THE PURPOSES OF INFORMATION ONLY}

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AL & Albania & ES & Spain & LS & Lesotho & SI & Slovenia \\
\hline AM & Armenia & FI & Finland & LT & Lithuania & SK & Slovakia \\
\hline AT & Austria & FR & France & LU & Luxembourg & SN & Senegal \\
\hline AU & Australia & GA & Gabon & LV & Larvia & SZ & Swaziland \\
\hline AZ & Azerbaijan & GB & United Kingdom & MC & Monaco & TD & Chad \\
\hline BA & Bosnia and Herzegovina & GE & Georgia & MD & Republic of Moldova & TG & Togo \\
\hline BB & Barbados & GH & Ghana & MG & Madagascar & TJ & Tajikistan \\
\hline BE & Belgium & GN & Guinea & MK & The former Yugoslav & TM & Turkmenistan \\
\hline BF & Burkina Faso & GR & Greece & & Republic of Macedonia & TR & Turkey \\
\hline BG & Bulgaria & HU & Hungary & ML & Mali & TT & Trinidad and Tobago \\
\hline BJ & Benin & IE & Ireland & MN & Mongolia & UA & Ukraine \\
\hline BR & Brazil & IL & Israel & MR & Mauritania & UG & Uganda \\
\hline BY & Belarus & IS & Iceland & MW & Malawi & US & United States of America \\
\hline CA & Canada & IT & Italy & MX & Mexico & UZ & Uzbekistan \\
\hline CF & Central African Republic & JP & Japan & NE & Niger & VN & Viet Nam \\
\hline CG & Congo & KE & Kenya & NL & Netherlands & YU & Yugoslavia \\
\hline CH & Switzerland & KG & Kyrgyzsıan & NO & Norway & 2w & Zimbabwe \\
\hline CI & Core d'Ivoire & KP & Democratic People's & NZ & New Zealand & & \\
\hline CM & Cameroon & & Republic of Korea & PL & Poland & & \\
\hline CN & China & KR & Republic of Korea & PT & Portugal & & \\
\hline CU & Cuba & KZ & Kazakstan & RO & Romania & & \\
\hline CZ & Czech Republic & LC & Saint Lucia & RU & Russian Federation & & \\
\hline DE & Germany & LI & Liechtenstein & SD & Sudan & & \\
\hline DK & Denmark & LK & Sri Lanka & SE & Sweden & & \\
\hline EE & Esionia & LR & Liberia & SG & Singapore & & \\
\hline
\end{tabular}

\title{
COMBINATION OF PHENTOLAMINE AND CYCLIC GMP PHOSPHODIESTERASE INHIBITORS FOR THE TREATMENT OF SEXUAL DYSFUNCTION
}

\section*{BACKGROUND}

The present invention relates to pharmaceutical compositions comprising a combination of phentolamine and cyclic guanosine \(3^{\prime}, 5^{\prime}\)-monophosphate phosphodiesterase (cGMP PDE) inhibitors and to methods of treating sexual dysfunction, especially erectile dysfunction, comprising administering an effective amount of a combination of phentolamine and cGMP PDE inhibitors.

The use of the pharmaceutical compositions and methods of this invention results in an unexpected potentiation of human sexual response.

\section*{SUMMARY OF THE INVENTION}

The present invention is directed to the use of phentolamine in combination with cyclic guanosine \(3^{\prime}, 5^{\prime}\)-monophosphate phosphodiesterase (cGMP PDE) inhibitors for the treatment of human sexual dysfunction. Preferably, the invention contemplates the use of Type V cGMP PDE inhibitor in combination with phentolamine with sildenafil being the preferred Type \(V\) cGMP PDE inhibitor.

More particularly, the present invention relates to a method of treating sexual dysfunction, especially erectile dysfunction, comprising administering to a human in need of such treatment an effective amount of a combination oi phentolamine, or a pharmaceutically acceptable salt, solvate or ester thereof, and a cGMP PDE inhibitor, or a pharmaceutically acceptable salt or solvate thereof. Preferably, the invention contemplates the use of Type \(V\) cGMP PDE inhibitor in combination with phentolamine, with sildenafil being the preferred Type \(V\) cGMP PDE inhibitor.

Phentolamine mesylate and sildenafil citrate are the most preferred active ingredients for use in the methods of this invention.

In a second aspect, the invention relates to a pharmaceutical composition comprising an effective amount of phentolamine, or a pharmaceutically acceptable salt, solvate or ester thereof, and a cGMP PDE inhibitor, or a pharmaceutically acceptable salt solvate thereof. Preferably, the pharmaceutical compositions envisioned by the present invention comprise phentolamine, or a pharmaceutically acceptable salt, solvate or ester thereof, and a Type \(V\) cGMP PDE inhibitor, or a pharmaceutically acceptable salt solvate thereof, with sildenafil being the preferred Type \(V\) cGMP PDE inhibitor. Phentolamine mesylate and sildenafil citrate are the most preferred active ingredients of the pharmaceutical compositions of this invention.

In a third aspect, the invention relates to a kit comprising in one container an effective amount of phentolamine, or a pharmaceutically acceptable salt, solvate or ester thereof in a pharmaceutically acceptable carrier, and in a separate container, an effective amount of a cGMP PDE inhibitor, or a pharmaceutically acceptable salt, solvate thereof in a pharmaceutically acceptable carrier, with sildenafil being the preferred Type V cGMP PDE inhibitor. Phentolamine mesylate and sildenafil citrate are the most preferred active ingredients for use in the kits of this invention.

In a fourth aspect, the invention relates to a pharmaceutical composition for the treatment of human sexual dysfunction comprising a therapeutically effective amount of a first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof, a therapeutically effective amount of a second vasodilating. agent or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier. Preferably, the first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is an adrenergic blocker. More preferably, the adrenergic blocker is an alpha-adrenergic blocker. Also preferred is that the alpha adrenergic blocker is selected from the group consisting of an alpha1-adrenergic blocker, an alpha2-adrenergic blocker or both an alpha1-adrenergic blocker and an alpha2-adrenergic blocker. Preferably, the second vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is a cGMP PDE inhibitor. Also preferrred is that the first vasodilating agent or a pharmaceutically acceptable salt or solvate or
ester thereof is an adrenergic blocker and the second vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is a cGMP PDE inhibitor. The adrenergic blocker can be selected from the group consisting of phentolamine, phentolamine mesylate, phentolamine hydrochloride, phenoxybenazmine, tolazoline, dibenamine, yohimbine, terazosin, doxazosin, prazosin and the like. The cGMP PDE inhibitor can a cGMP PDE V inhibitor. Preferably, the cGMP PDE V inhibitor is selected from the group consisting of: sildenafil, (6R, 12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrizino[2',1':6,1]pyrido[3,4-b]indole-1,4-dione (Compound A), and (3S,6R,12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2',1':6,1]pyrido[3,4-b]indole-1,4-dione (Compound B) or a pharmaceutically acceptable salt or solvate thereof.

In a fifth aspect, the invention relates to a method of treating human sexual dysfunction comprising the simultaneous or sequential administration of a therapeutically effective amount of a therapeutically effective amount of a first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof, a therapeutically effective amount of a second vasodilating agent or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceuticaliy acceptable carrier. . The classes and types of compounds which can be used in the methodare described in the fourth aspect, above.

\section*{DETAILED DESCRIPTION}

Humans include, of course, males and females. Although the pharmaceutical compositions of the present invention are envisaged primarily for the treatment of erectile dysfunction or male sexual dysfunction, they may also be useful for the treatment of female sexual dysfunction. Such female sexual dysfunction may include orgasmic dysfunction due to clitoral irregularities or disturbances.

Phentolamine, 3-[[(4,5-dihydro-1H-imidazol-2-yl)methyl](4methylphenyl)amino]phenol, and pharmaceutically acceptable salts, solvates, hydrates, crystalline polymorph forms and the free base thereof,
are useful in the treatment of sexual dysfunction. A rapidly disintegrating tablet and method of use to treat sexual dysfunction is disclosed in United States Patent No. 5,731,339, also incorporated herein by reference. Representative formulations comprising phentolamine are disclosed in U.S. \(5,731,339\). Phentolamine can exist in unsolvated as well as solvated forms, including hydrated forms, e.g. hemi-hydrate. In general, the solvated forms, with pharmaceutically acceptable solvents such as water, ethanol and the like are equivalent to the unsolvated forms for purposes of the invention. Phentolamine can form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for salt formation are hydrohalic acids such as hydrochloric and hydrobromic; as well as other acids such as sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic, toluenesulfonic and other mineral and carboxylic acids known to those skilled in the art. The salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous sodium hydroxide, potassium carbonate, ammonia and sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the salts are otherwise equivalent to their respective free base form for purposes of this invention. Phentolamine can also form crystalline polymorph forms or crystalline forms thereof using suitable or conventional crystallization procedures.

The present invention is directed to the use of cyclic guanosine \(3^{\prime}, 5^{\prime}\)-monophosphate phosphodiesterase (cGMP PDE) inhibitors in combination with the salts or esters of phentolamine, preferably, with phentolamine mesylate for the treatment of human sexual dysfunction, preferably erectial dysfunction Examples of cGMP PDE inhibitors contemplated in this invention are as follows and are described in the following documents, as indicated. The disclosure of each of the below-referred to document is incorporated herein by reference.

European published ápplication number 0201188, which discloses compounds of the formula

and the pharmaceutically acceptable salts thereof. in which:
\(R_{1}\) is a lower alkyl of from one to six carbon atoms, a lower alkenyl of from one to six carbon atoms, a lower hydroxyalkyl of from one to six carbon atoms, a lower hydroxyalkenyl of from two to six
carbon atoms, a lower aminoalkyl of from one to slx carbon atoms, or a lower aminoalkenyl of from two to six carbon atoms:
\(n\) is 0 or an integer of from 1 to 4: and
Ar is a radical of the following general formula \(\left(\mathrm{R}_{2}\right)\)
\(\left(R_{2}\right)\)

or 2, 3, or 4-pyridyl, in which \(X, Y\). and \(Z\) are. independently. (1) hydrogen; (2) lower alkyl of from one to six carbon atoms: (3) halogen, (4) hydroxyl; (5) lower alkoxy of from one to six carbon atoms; (6) nitro: (7) amino; (8) NR'R" wherein \(R^{\prime}\) and \(R^{-}\) are each, independenty, (a) hydrogen or (b) lower alkyl of from one to six carbon atoms optionally substituted by (i) amino. (ii) morpholino or (iii) cycloalkyl of from. five to seven carbon atoms; (9) sulfonyl; or
(10)-SO,NR'R" wherein \(R^{\prime}\) and \(R^{\prime \prime}\) are as defined above:
with the proviso that not all of \(X, Y\), and \(Z\) can be nitro, amino, or NR'R" at once.

Preferred compounds include:

\[
-7-
\]

European published application number 0214708, which discloses compounds of the formula

(I)
in which:

A represents a group of formula:
(a)

(c)


(d)

or (e)

\(R^{\prime}\) and \(R^{\prime}\) are the same or different and each represents a hydrogen atom, a halogen atom or a group of tormula -OR';
\(R^{\prime}\) and \(R^{\prime}\) are the same or different and each represents a carbamoyl group or a carboxy group:
\(A^{8}\) and \(R^{4}\) both represent hydrogen atoms or together they represent an extra carbon-carbon bond between the carbon atoms to which they are attactied:
\(R^{\prime}\) represents a hydrogen atom, a halogen atom or a group al formula -OR', \(-N R^{* *} R^{\prime \prime}\) or \(-S R^{\prime}\) :
\(R^{*}\) represents a halogen atom or a group of formula -OR', -NR'R"' or -SA":
\(\mathrm{R}^{\prime}\) represents a hydrogan atom. a \(\mathrm{C}_{1}\)-Ca alkyl ; group. an alkylsulphonyl group. a haloalkylsulphonyl group, an arylsulphonyl group or a hydroxyprotecting group;
\(R^{\prime \prime}\) and \(R^{\prime \prime}\) are the same or different and each
represents a hydrogen atom, a hydroxy group. a \(C_{1}-C_{4}\) alkyl group. a \(C_{1}-C_{4}\) hydroxyalkyl group, a \(C_{1}\) C. aminoalkyl group. an aralkyl group, ari aryl group, a C.-C. alkoxy group. an aralkyloxy group. an amino group, a \(C_{1}-C_{\infty}\) aliphatic acyl group or an aromatic acyl group; or \(R^{10}\) and \(R^{11}\) together represent a substituted methylene group, or \(\mathrm{R}^{\circ 0}\) and \(\mathrm{R}^{\prime \prime}\). together with the nitrogen atom to which they are attached, represent a heterocyclic group having 5 or 6 ring atoms, of which, in addition to the nitrogen atom shown. 0 or 1 are additional oxypen, nitrogen or sulphur helero-atorns, said heterocyclic group being unsubstituted or having from 1 to 3 C .C. alkyl and/or C,-C. alkoxy substituents:
\(R^{12}\) represents a \(C_{1}-C_{s}\) alkyl group:
\(Z\) represents a hydrogen atom, a hydroxy group or a substituted hydroxy group: and

W represents an alkoxy group or an aralkoxy group:
provided that. when A represents said group of
tormula ( \(\theta\) ), \(\mathrm{R}^{6}\) and \(\mathrm{R}^{6}\) both represent hydrogen atoms:
and pharmaceutically acceptable salts and esters thereof.

\section*{Preferred compounds include:}

2-Amino-6-desamino-6-hydroxygriseolic acid and pharmaceutically acceptable salts and esters thereof.

2-Amino-6-desamino-6-hydroxygriseolic acid J'-amide and pharmaceutically acceptable \(^{\text {and }}\) salts and esters thereof.
. 2-Aminogriseolic acid and pharmaceutically acceptable salts and esters thereof.

Bis(pivaloyloxymethyl) 2-2mino-6-desamino-6-hydroxygriseolate and pharmaceutically accoptable saits thereof.

2-Amino- \(\mathbf{N}\) "-methoxygriseolic acid and pharmaceutically acceptable salts and esters thereof.

2-Amino-Nㅡ-benzyloxygriseolic acid and pharmaceutically acceptable salts and esters thereof.

2-Fiuorogriseofic acid and pharmaceutically acceptable salts and esters thereof.

2-Chlorogriseolic acid and pharmaceutically acceptable salts and esters thereof.
--. 2-Amino-6-desamino-6-hydroxy-7'-desoxygriseolic acid and pharmaceutically acceptable salts and estars thereof.

2-Amino-T-desoxygriseolic acid and pharmaceutically acceptable satts and esters thereot.

2-Chloro-7'desoxygriseolic acid and pharmaceutically acceptable salts and esters thereof.

2-Amino-6-desamino-6-hydroxy-2'-chloro2 -desoxygriseolic acid and pharmaceutically acceptable salts and esters thereof.
\(\therefore\) 2-Amino-6-desamino-6-hydroxy-2'-desoxygriseolic acid and pharmaceutically acceptable salts and estars thereof.

2-Amino-2'-chloro-2'-desoxygriseolic acid and phamaceutically acceptable sahts and esters thereof.
. 2-Amino-2'desoxygriseolic acid and pharmaceutically acceptable salts and esters thereof.

2-Chloro-2'-desoxygriseolic acid and pharmaceutically acceptable salts and esters thereof.

Griseolic acid \(\mathrm{N}^{\prime}\)-oxide and pharmaceutically acceptable salts thereol.

2-Acetylamino-6-desamino-6-hydroxy-4'.5'difyydrogriseolic acid and pharmaceutically acceptable salts and estors thereof.

2-Anino-6-desamino-6-hydroxy-4'.5dihydrogrisedic acid and pharmaceutically accoptable calts and esters thereof.

2-Acetylamino-6-desamino-6-hydroxy-4'.5'-dihydro-7-desoxygriseolic acid and pharmaceutically acceptable salts and estors thereof.

2-Amino-6-desamino-6-hydroxy-4. \(5^{\prime}\) -dihydro-7'-desoxygriseollc acid and pharmaceutically acceptable salts and esters thereof.

2,6-Dichioro-6-desamino-4'.5'-dihydrogriseolic acid and pharmacoutically acceptable salts and esters thereof.

2-Chloro-4'.5'-dihydrogriseolic acid and pharmacestically acceptable salts and esters thereof.

(1)
in which:
A represents a group of formula:

\(R^{1}\) and \(R^{2}\) are the same or different and each represents a hydrogen atom, a halogen atom or a group of
formula -OR
\(R^{3}\) and \(R^{6}\) are the same or different and each represents a carbamoyt-groupror a carboxy group;
\(R^{5}\) and \(R^{6}\) both represent hydrogen atoms;
\(\mathrm{A}^{9}\) represents a hydrogen atom, a \(\overline{\mathrm{C}}_{1}-\mathrm{C}_{6}\) alkyl group. an alkylsulphonyl group, a haloalkytsulphonyl group, an arylsulphony! group or a hydraxy-protecting group;
\(R^{12}\) represents a \(C_{1}-C_{6}\) alkyl group:
and pharmaceutically acceptable salts and esters thereot.

European published application number 0293063, which discloses compounds of the formula

or a pharmaceutically acceptable salt thereoi, wherein
\(R^{1}\) is \(C_{1.6}\) alkyl.or \(C_{2-s}\) alkenyl, and
\(\mathrm{A}^{2}\) is hydrogen or hydroxy.

Preferred compounds include:

2-(2-propoxyphenyl)-6-purinone. 2-(2-ethoxyphenyl)-6-purinone. 2-(2-buloxyphenyl)-6-purinone, 2-(2-isobuloxyphenyl)-6-purinone. 2-(2-propoxyphenyl)purine-6,8-dione, 2-(2-methoxyphenyl)purine-6,8-dione, 2-\{2-othoxyphenyl)purine-6,8-dione, 2-(2-butoxyphenyl)purine-6.8-dione. 2-(2-isobutoxypheny)purine-6.8-dione, or 2-(2-allytoxyphenyl)purine-6-8-dione or a pharmaceutically acceptable salt thereof.

European published application number 0347027, which discloses compounds of the formula

or a pharmaceuticafly acceptable salt thereof, whereln
\(X \quad\) is O or S :

\(R^{2}\) is hydrogen, -CN, -CONR \(R^{8} R^{5},-\mathrm{CO}_{2} R^{7}\), 5-tetrazolyl. \(-\mathrm{NO}_{2},-N H_{2}\) or \(-N H C O R^{8}\) wherein \(R^{5}, R^{6}, R^{7}\) and
\(\mathrm{R}^{8}\) are independently hydrogen or \(\mathrm{C}_{1-4}\) alkyl;
\(R^{3} \quad\) is hydrogen or \(C_{1}-4\) alkyl; and
\(R^{6} \quad\) is hydrogen or \(\mathrm{C} \cdot-4\) altyl:
with the proviso that \(R^{\text {: }}\) Is not methyl when \(A^{2}\) is \(-\mathrm{CO}_{2} \mathrm{H},-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) or \(-\mathrm{CN}, \mathrm{X}\) is \(0, R^{3}\) is hydrogen and
\(\mathrm{R}^{*}\) is hydrogen or methyl.

Preferred compounds include:
```

3-cyano-6-{2-propoxyphenyl)-2(1H)-pyridinone.
6-(2-propoxyphenyl)-1.2-dihydro-2-oxopyridine-3-carboxamide.
6-{2-propoxyphenyl}-1,2-dihydro-2-oxopyridine-3-carboxylic acid.
methyl 6-(2-propoxyphenyl)-1.2-dihydro-2-oxopyridine-3-carboxylate.
6-(2-propoxyphenyI)-3-(1H-tetrazol-5-y1)-2(1H)-pyridinone.
6-(2-propoxyphenyl)-2(1H)-pyridinone,
3-nitro-6-(2-propoxyphenyI)-2(1H)-pyridinone.
3-cyano-6-(2-ethoxyphenyl)-2(1H)-pyridinone .
3-amino-6-(2-propoxyphenyI)-2(1H)-pyridinone,
3-cyano-4-methyl-6-(2-propoxyphenyl)-2(1H)-pyridinone,
3-cyano-5-methyl-6-(2-propoxyphenyl)-2(1H)-pyridinone.
3-cyano-6-(2-(1,1.2.3.3.3-hexafluoropropoxy)phenyl-2(1H)-pyridinone.
3-cyano-6-(2-propoxypheny1)-2(1H)-pyridinethione.
1.2-dihydro-4-methyl-2-0x0-6-(2-propoxyphenyl)pyridine-3-carboxylic acid,
methyl 1,2-dihydro-4-methyl-2-oxo-6-(2-propoxyphenyl)-pyridine-3-carboxylate.
1.2-dihydro-4-methyl-2-oxo-6-(2-propoxyphenyl)pyridine-3-carboxamide.
3-cyano-6-(2-cyclopropylmethoxyphenyl)-2(1H)-pyndinone.
6-(2-butoxyphenyl)-3-cyano-2(1 H)-pyridinone.
6-(2-aliyloxyphenyl)-3-cyano-2(1H)-pyridinone.
3-cyano-6-[2-(2-methylpro\rhooxy)phenyl]-2{1H)-pyridinone.
6-(2-ethoxyphenyl)-1.2-dihydrn-2-oxopyridine-3-carboxamide.
E-(2-cyclopropylmethoxyphenyi)-1.2-dihydro-2-oxopyridine-3-carboxamide.
6-(2-butoxyphenyl)-1,2-dihydro-2-oxopyridine-3-carboxamide.
6-{2-allyloxyphenyl)-1,2-dihydro-2-oxopyridine-3-carboxamide, or
6-{2-(2-methylpropoxyphenyl)-1,2-dihydro-2-oxopyridine-3-carboxamide.
or a pharmaceutically acceptable salt thereof

```

\section*{European published application number 0347146, which discloses compounds of the formula}

or a pharmaceutically acceptable saft thereof, wherein

is a ring of sub-formula (a). (b). (c), (d), (e), (f) or (g):

(a)

(b)

(c)

(£)


(g),

(d)

(e)
\(R^{\prime}\) is \(C_{-6}\) alkyl, \(C_{2-6}\) alkenyl. \(C_{3-s c y c l o a l k y l} C_{1-6}\) alkyl, or \(C_{1-6}\) alkyl substituted by 1 to 6 fluoro groups; \(R^{2}\) is \(C_{1-5}\) alkylthio. \(C_{1-6}\) alkylsulphonyl. \(C_{1-5}\) alkoxy, hydroxy, hydrogen, hydrazino, \(C_{1-6}\) alkyl, phenyl, \(-N H C O R^{3}\) wherein \(\boldsymbol{R}^{3}\) is hydrogen or \(C_{1-6}\) alkyl. or \(-N R^{4} R^{5}\) wherein \(R^{s}\) and \(R^{5}\) together with the nitrogen atom to which they are attached form a pyrrolidino, piperidino, hexahyoroazepino, morpholino or piperazino ring. or \(\mathrm{R}^{4}\) and \(\mathrm{R}^{5}\) are independently hydrogen, \(\mathrm{C}_{3}-5\) cycloalkyl or \(\mathrm{C}_{1-5}\) alkyl which is optionally substituted by \(-\mathrm{CF}_{3}\), phenyl, \(-\mathrm{S}(\mathrm{O})_{n} \mathrm{C}_{1}\)-ratryl wherein \(n\) is 0,1 or \(2,-O R^{6},-\mathrm{CO}_{2} R^{7}\) or \(-N R^{8} \mathrm{R}^{9}\) wherein \(\mathrm{R}^{6}\) to \(\mathrm{R}^{9}\) are independently hydrogen or \(\mathrm{C}_{1}-6\) alkyl. provided that the carbon atom adjacent to the nitrogen atom is not substituted by said \(-\mathrm{S}\left(\mathrm{O}_{0} \mathrm{C}\right.\), ¢ alkyl. -OR \(\mathrm{OR}^{5}\) or \(-\mathrm{NR}^{8} \mathrm{R}^{9}\) groups; and
\(R\) is hydrogen and can also be hydroxy when \(R^{2}\) is hydroxy.

\section*{Preferred compounds include:}

2-(2-propoxyphenyl)pyrido[2,3-d]pyrimid-4(3H)-one.
2-(2-propoxyphenyl)pyrido[3.4-d]pyrimid-4(3H)-one.
2-(2-propoxyphenyl)pyrido[4,3-d]pyrimid-4(3H)-one.
2-(2-propoxyphenyl)pyrido[3,2-d]pyrimid-4(3H)-one,
2-(2-propoxyphenyl)pteridin-4(3H)-one.
2-(2-propoxyphenyl)pteridin-4,6(3H.5H)-dione,
2-(2-propoxyphenyl) pteridin-4.6.7(3H.5H,8H)-trione,
5.6-dihydro-3-methylthio-5-oxo-7-(2-propoxyphenyl)pyrimido(5,4-e] [1,2.4]triazine.

3-amino-5,8-dihydro-5-ox0-7-2-propoxyphenyl)pyrimido[5,4-eZ \(1,2,4\) ]triazine. ? 3-methylamino-5,6-dihydro-5-0x0-7-22-propoxyphenyl)pyrimido[5,4-e][1, 2.4]triazine. 3-methoxy-5.6-dihydro-5-oxo-7-)2-propoxyphenyl)pyrimido[5,4-e][1,2,4 ftriazine. 3-methylthio-8-oxo-6-(2-propoxyphenyl)-7,8-dihydropyrimida[4.5-e][1 2.4]triazine. 3-amino-8-oxo-6-(2-propoxyphenyl)-7,8-dihydropyrimido(4,5-a \(1,2,4]\) triazine. 3-methylamino-8-ax0-6-(2-propoxyphenyl)-7,8-dihydropyrimido[4.5-e]I1 ,2,4]triazine, 3-methoxy-8-oxo-b-(2-propoxyphenyl)-7,8-dihydropyrimido[4.5-e]I \(1,2,4\) ]triazine, 3,8-dioxo-8-(2-propoxyphenyl)-3,4,7,8-tetrahydropyrimido \(4,5-e] 1,2,4]\) triazine. 3-dimethylamino-8-oxo-8-(2-propoxyphenyl)-7.8-dihydropyrimido[4,5-e][1,2,4]triazine. 3-methylthio-8-0xo-6-(2-allyloxyphenyl)-7.8-dihydropyrimido[4,5-e II \(, 2,4\) ]riazine, 3-mathylthio-8-oxo-6-(2-isobutoxyphenyl)-7,8-dihydropyrimido[4,5-e][ \(1,2,4]\) triazine, 3-methyltalo-8-axo-6-(2-cyciopropylmethoxyphenyl)-7.8dihydropyrimida[4.5-e][1,2.4]triazine or 3-methythio-8-oxo-6-(2-methoxyphenyl)-7.8-dihydropyrimido[4.5-e][1, 2.4]triazine or a phamaceutically acceptabte salt thereof.

European published application number 0349239, which discloses compounds of the formula

(1)
or a pharmaceutically acceptable salt thereof, whereln

is a ring of sub-formula (a), (b) or (c):

(a)

(b)

(c),
\(X\) is oxygen or sulphur, and
\(R^{1}\) is \(C_{1}\)-s alkyl, \(C_{2-6}\) alkenyl, \(C_{3-s c y c l o a l k y l} C_{1-4}\) alkyl, or \(C_{1}\)-salkyd substituted by 1 to 6 filuoro groups.

\section*{Preferred compounds include:}

6-(2-propoxyphenyl)pyrazoio(3.4-dlpyrimidin-4(5H)-one, 2-(2-propoxypheny) thieno [2,3-d]pyrimkdin-4(3H)-On, 2-2-propoxyphenylf ( \(1,2,5\) ]oxadiazolo [ 3,4 -d]pyrimidin-4(3H)-one, or 2-(2-propoxypheny) [1,2,6]thiadiazolo 3,4 -d]pyrimiddr-4(3H)-one, or a pharmaceutically acceptable salt thereof.

\section*{European published application number 0351058, which discloses compounds of the formula \\ }
or a pharmaceutically acceptable salt thersof, wherein
\(R^{3}\) is \(C_{1-6}\) alkyl, \(C_{2-5}\) alkenyl, \(C_{3-5}\) cycloalkylC \(C_{1-6}\) alkyl, or \(C_{1-6}\) afinyl substituted by 106 fluoro groups; \(R^{2}\) is \(C_{1-6}\) alkylthio, \(C_{1-6}\) alkylsulphonyl, \(C_{1-6}\) alkoxy, hydroxy, hydrogen, hydrazino, \(C_{1-6}\) alkyl, phenyl, \(-N H C O R^{3}\) wherein \(R^{3}\) is hydrogen or \(C_{1-6}\) alkyl, or \(-N R^{4} R^{5}\), wherein \(R^{4}\) and \(R^{5}\) together with the nitrogen atom to which they are attached form a pyrrolidino, piperidino. hexahydroazepino, morpholino or piperazino ring, or \(\mathrm{R}^{4}\) and \(\mathrm{R}^{5}\) are independentiy hydrogen, \(\mathrm{C}_{9-5}\) Cycloalkyl or \(\mathrm{C}_{1-5}\) alkyl which is optionally substituted by \(-\mathrm{CF}_{3}\), phenyl, \(-\mathrm{S}\left\{(\mathrm{O})_{7} \mathrm{C}_{1-6}\right.\) alkyl wherein \(n\) is 0,1 or \(2,-O R^{6},-\mathrm{CO}_{2} \mathrm{R}^{\boldsymbol{7}}\) or \(-\mathrm{NR}^{8} \mathrm{R}^{9}\) wherein \(\mathrm{R}^{6}\) to \(\mathrm{R}^{9}\) are independently hydrogen or \(\mathrm{C}_{1}\)-f alkyl, provided that the carbon atom adjacent to the nitrogen atom is not substituted by sald \(-\mathrm{S}(\mathrm{O})_{n} \mathrm{C}_{1-6}\) alkyl, \(-\mathrm{OR}^{6}\) or \(-N \mathrm{R}^{8} \mathrm{R}^{9}\) groups; and

is a ring of sub-formula (a) or (b):

(a)

(b).

\section*{Preferred compounds include:}

7-methylthlo-4-axo-2-(2-propoxyphanyl)-3.4-dihydropyrimido[4.5-d]pyrimidine, 7-methylthlo-2-(2-ethoxyphenyl)-4-0xo-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-methylthio-2-(2-methoxyphenyl)-4-0xo-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-methylthio-2-(2-isobutoxyphenyl)-4-axo-3,4-dihydropyrimido(4,5-d pyrimidine, 7-methylthio-2-\{2-cyclopropylmethoxyphenyl\}-4-0xo-3,4-dihydropyrimido[4.5-d]pyrimidine. 7-methylthio-2-\{2-allyloxyphenyl)-4-0x0-3.4-dihydropyrimido[4,5-d]pyrimidine, 7-arnino-4-axo-2-(2-propoxyphenyl)-3,4-dihydropyrimidol4,5-d]pyrimidine. 7-mathylamino-4-axo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-dimethylamino-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine. 7-hydrazino-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine, 4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine. 7-өthylamino-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropynimido[4,5-d]pyrimidine, 7-(2-hydroxyethylamino)-4-oxo-2-(2-propoxyphenyl)-3.4-dihydropyrimido[4.5-d]pyrimidine, 7-athyi-4-0x0-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4.5-d]pyrimidine. 7-methylamino-2-(2-methoxyphenyl)-4-0xo-3,4-dihydropyrimido\{4.5-d]pyrimidine, 7-phenyl-4-axo-2-(2-propaxyphenyl)-3.4-dlhydropyrimido[4.5-d]pyrimidine,

\footnotetext{
7-morpholino-4:oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]oyrimidine. 7-cyclopropylamino-4-oxo-2-(2-propoxyphenyi)-3.4-dihydropyrimido[4.5-d)pyrimidine, 7-acetamido-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4.5-d]pyrimidine. 7-propylamino-4-axo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-(3-hydroxypropylamino)-4-oxo-2-(2-propoxyphenyl)-3.4-dihydropyrimido[4.5-d]pyrimidine, 7-(2-mothoxyethylamino)-4-0xo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-(2-dimethylaminoathylamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pynimidine. 7-(2-hydroxypropylamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-(3-methytthiopropylamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine. 7-(2-aminoөthytamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine hydrochloride, 7 - 3 -methylsulphinylpropylamino)-4-oxo-2-(2-propoxyphenyi)-3.4-dihydropyrimido[4,5-d]pyrimidine, 7-(3-methylsulphonylpropylamino)-4-oxo-2-(2-propoxypheriy)-3,4-dihydropyrimido[4,5-d]pyrimidine. 4,7-dioxo-2-(2-propoxyphenyl)-3.4,7,8-tetrahydropyrimido\{4,5-d]pyrImidine. 7-methylsulphonyi-4-oxo-2-(2-propoxyphenyi)-3,4-dihydropyrimido[4,5-d]pyrimidine. 7-diethylamino-4-oxo-2-\{2-propoxyphenyl)-3,4-dihydropyrimido(4,5-d]pyrimidine. 7-(2-ethoxycarbonyiethylamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d)pyrimidine, 7-(ethoxycarbonyimethylamino)-4-oxo-2-(2-propoxyphenyi)-3,4-dihydropyrimido[4,5-dIpyrimidine. 7-(2-carboxyethylamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d lpyrimidine. 7-(carboxymethylamino)-4-0xo-2-(2-propoxyphenyl)-3,4-dihydropyrimido(4,5-d]pyrimidine, 7-ethoxy-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine, 7-methoxy-4-oxo-2.(2-propoxyphery)-3.4-dihydropyrimido[4,5-d]pyrimidine. 7-(2,2,2-trifluoroethylamino)-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimido[4,5-d]pyrimidine. 7-propoxy-4-oxo-2-2-propoxypheny()-3.4-dihydropyrimido[4,5-d]pyrimidine. 7-(N-ethyl-N-hydroxyethylamino)-4-oxo-2-\{2-propoxyphenyl)-3,4-dihydropytimido[4,5-d]pyrimidine. 7-dlpropylamino-4-oxo-2-(2-propoxyphenyl)-3,4-dihydropyrimldo[4,5-d]pyrimidine,
7-(2-phenethylamino)-4-oxo-2-(2-propoxyphenyl)-3.4-dihydropyrimido[4,5-d)pyrimidine, or 4-oxo-2-(2-propaxyphenyi)-3.4-dihydropyrimido[5,4-d]pyrimidine.
or a phermaceutically acceptable salt thereof.
}

\section*{European published application number 0352960, which discloses compounds of the formula}

or a pharmaceutically acceptable salt thereol, wherein
\(R^{2}\) is \(C_{1}-6\) alkyl, \(C_{2-6 a l k e n y l, ~} C_{3-5}\) cycioalkyIC \(C_{1} \rightarrow\) alkyl, phenyl \(C_{1-4}\) alkyl or \(C_{1-4}\) alkyl substituted by 1 to 6 fluoro groups:
\(\mathrm{FP}^{2}\) is hydrogen, hydroxy, \(\mathrm{C}_{1}-\) alkyl, phenyl, mercapto, \(\mathrm{C}_{1-4}\) alkylthio, \(\mathrm{CF}_{3}\) or amino:
 cyano or \(\mathrm{C}_{1}-4\) alkylS(O)n;
\(R^{4}\) and \(R^{5}\) are independently hydrogen or \(C_{1}-4 a r k y t ;\) and
\(n\) is 0.1 or 2:
provided that \(R^{3}\) is not hydrogen when \(R^{\prime}\) is \(C_{1} \rightarrow\) alkyl or \(C_{2-5}\) alkenyl and \(R^{2}\) is hydrogen or hydroxy.

Preferred compounds include:

> 2-(2-2.2,2-trifiuoroethoxylphenyl)purin-6-one, 2-(2-cyclopropylmethoxyphenyl)purin-6-one, 2-(2-cyclopropylmethoxyphenyl)purin-8,8-dione, 2-(2-benzyloxyphenyl)purin-8,8-dione, 2-(2-propoxyphenyl)-8-trifluoromethylpurin-6-one, 2-(2-propoxyphenyl)-8-phenylpurin-6-one, 2-(2-propoxyphenyl)-8-methylpurin-6-one, 2-(2-propoxyphenyl)-8-mercaptopurin-6-one, 2-(2-propoxyphenyi)-8-methylthiopurin-6-one, 2-(2-propoxyphenyl)-8-aminopurin-6-one, 2-(2-propoxy-5-nitrophenyl)purin-6-one, 2-(2-propoxy-5-aminophenyl)purin-6-one, 2-(2-propoxy-5-acetamidophenyl)purin-6-one, 2-(2-propoxy-4-methoxyphenyl)purin-6-one, 2-(2-propoxy-5-methoxyphenyl)purin-6-one, 2-(2-propoxy-5-chlorophenyl)purin-6-one, 2-(2-propoxy-4-methyiphenyl)purin-6-one, 2-(2-propoxy-5-flucrophenyl)purin-6-one, 2-(2-propoxy-5-dimethylsulphamoyiphenyl)purin-6-one, 2-(2-propoxy-5-methylsulphamoylphenyl)purin-6-one, 2-(2-propoxy-5-sulphamoyiphenyl)purin-6-one, 2-(2-propoxy-4-methylthiophenyl)purin-6-one. 2-(2-propoxy-5-cyanophenyl)purtn-6-ane, or, 2-(2-propoxy-5-carbamoylphanyl)purin-6-one, or a pharmaceutically acceptable salt thereof.

European published application number 0371731, which discloses compounds of the formula

or a phamaceutically acceptable salt thereof, wherein
 fluoro groups;
\(\mathrm{R}^{2}\) is trydrogen. \(\mathrm{C}_{7}-\mathrm{alkyI}, \mathrm{C}_{1}-6\) alkylthio, \(\mathrm{C}_{1}-\) alkoxy, nitro or \(-\mathrm{NR}^{3} \mathrm{R}^{4}\) : and
\(R^{3}\) and \(R^{4}\) are independently hydrogen or \(C_{t-t}\) elkyl optionally substtuted by hydroxy provided that the carbon atom adjacent to the nitrogen atom is not substiluted by hydroxy; with the proviso that \(R^{1}\) is not methyl or ethyl when \(R^{2}\) is hydrogen.

\section*{Preferred compounds include:}

2-(2-propoxyphenyl)quinazolin-4(3H)-one,
7-methylthio-2-(2-propoxypheny!quuinazolin-4(3H)-one, 7-nitro-2-(2-propoxyphenyl)-4(3H)-qułnazolinone,
7-amino-2-(2-propoxyphenyl)-4(3H)-quinazolinone, or 7-methylamino-2-(2-propoxyphenyl)-4(3H)-quinazolinone or a pharmaceuticaliy acceptable salt thereof.

European published application number 0395328, which discloses compounds of the formula

or a pharmaceutically acceptable salt thereof, wherein
\(R^{1}\) is \(C_{1-6}\) alkyl, \(C_{2-5}\) alkenyl, \(C_{3-5}\) cycloalkyIC \(C_{1-6}\) alkyl. phenyl \(C_{1-6}\) alkyl or \(C_{1-5}\) alkyl substituted by 1 to 6
nuoro groups; and
\(R^{2}\) is \(C_{1-6}\) alkyl, phenyl. hydroxy, \(\mathrm{C}_{1}-5\) alkoxy, halo. -NHCOR \({ }^{3}\), \(\mathrm{NHCONHA}^{4}\). 5-tetrazolyl, \(-\mathrm{CO}_{2} \mathrm{R}^{5}\). cyano -CONR \({ }^{6} R^{3}\), or \(-N R^{8} R^{9}\) wherein \(R^{3}\) to \(R^{7}\) are independently hydrogen or \(C_{1-6}\) alkyi and \(R^{8}\) and \(R^{y}\) are independently hydrogen or \(\mathrm{C}_{1}-5\) alky optionally substituted by hydroxy provided that the carbon atom adjacent to the nitrogen atom is not substituted by hydroxy:

\section*{Preferred compounds include:}

6-amino-2-(2-propoxyphenyl)pyrimidin-4 3 3Hj-one,
6 -acetamido-2-\{2-propoxyphenyl)pyrimidin-4[3H]-one,
6-propionamido-2-(2-propoxyphenyl)pyrimidin-4(3H)-one,
6-butyramido-2-(2-propoxyphenyl)pyrimidin-4[3H]-one.
6-N -methylureldo-2-(2-propoxyphenyl)pyrimidin-4[3H]-one
4,6-dihydroxy-2-(2-propoxyphenyl)pyrimidine.
4-chloro-6-hydroxy-2-(2-propoxyphenyl)pyrimidine,
6 -ethylamino-2-(2-propoxyphenyl)pyrinidin-4[3H)-ane.
6 -propylamino-2-(2-propoxyphenyl)pyrimidin-4[3H]-one.
6 -(2-hydraxyethylamino)-2-(2-propoxyphenyl)pyrimldin-4[3H]-ane.
6 -(3-hydroxypropylamino)-2-(2-propoxyphenyl)pynimidin-4[3H)-one.
4-hydroxy-6-methyl-2-(2-propoxyphenyl)pyrimidine.
6-hydroxy-2-(2-propoxyphenyl)pyrimidino-4-carboxylic acid.
ethyl 6 -hydroxy-2\{2-propoxyphenyl)pyrimidine-4-carboxylate, 6-hydroxy-2-(2-propoxypheny)pyrimldine-4-carboxamide.
4-cyano-6-hydroxy-2-(2-propoxyphenylpoyrimldine,
2 -(2-propoxyphenyl)-6-(1H-tetrazol-5-yi)pyrimidin-4(3H)-one,
4 -ethy-6-hydroxy-2-(2-propoxyphenyl)pyrimidine.
4-hydroxy-6-phenyl-2-(2-propoxyphenyl)pyrimidine.
\(N\)-methyl 6 -hydroxy-2-(2-propoxyphenyl)pyrimidine-4-carboxamide,
N-ethyl 6-hydroxy-2-(2-propoxyphenyl)pyrimidine-4-carboxamide.
N -propyl 6 -hydroxy-2-(2-propoxyphenyl)pyrimidine-4-carboxamide.
6-ethoxy-2 2 -propoxyphenyl) pyrimidir-4(3H)-one, or
6-N,N-bis-\{2-hydroxyethyl)arnino-2-(2-propoxyphenyl)pyrimidin-4(3H)-one,
or a pharmaceutically acceptable salt thereof.

European published application number 0400583, which discloses compounds of the formula

wherein -
A is N or CH ;
\(B\) is \(\mathrm{NCR}_{3}\);
D is N or \(\mathrm{CR}_{2}\) :
\(R, R_{1}\), are the same or independently hydrogen, hydroxy, loweralkyl, lower alkoxy, phenyloxy, \(R_{6} S(O)_{n}-\). W-ALK-Q-



\(R_{2}\) is hydrogen. lower alkyl, phenyl which may be substituted by up to three methoxy groups, lower alkyl substituted by phenyl which may be substituted by up to three methoxy groups, = lower alkyl \(-\mathrm{N}\left(\mathrm{R}_{\mathrm{B}}\right)_{2}\).
- loweralkyl-N

pyridinyl or tower-alkyl pyridinyl;
\(R_{3}\) is hydrogen, lower alkyl. phenyl, bower alkylphenyl, pyridinyl or loweralkyl pyridinyl; \(R_{4}, R_{5}\) are the same or independently hydrogen or lower alkyl;
\(\mathrm{R}_{6}\) is lower alkyl, phenyl, lower alkylphemyl or pyridinyl;
fy are the same or independently hydrogen, loweralkyl, phenyl, pyridinyl.

\(\mathrm{R}_{8}\) are the same or independently lower alkyl, phenyl or pyridinyl;




ALK is a \(C_{1}-C_{4}\) straight or branched chain alkyl;
\(R_{9}\) is hydragen. lower alkyl or phenyl;
\(\mathrm{F}_{10}\) are the same or independently hydrogen, loweralkyl or phenyt:
\(R_{1,}\) are the same or independently hydrogen or lower alkyl:
\(X\) is \(-\mathrm{CH}_{2}-,-\mathrm{O}, \mathrm{S}(\mathrm{O})_{n,}-\mathrm{NR}_{10}\) :
\(n\) is the integer 0.1 or 2 and
\(p\) is the integer 0 or 1 .
with the provisos that:
a) one and only one of \(B\) or \(D\) must be \(N\);
b) when \(A\) is \(C H\), when \(D\) is \(N\), when \(B\) is \(C R_{3}\) where \(R_{3}\) is \(H\), when \(R_{2}\) is hydrogen, tower alkyl or pheny! then \(R\) and/or \(R_{1}\) must be

or W-ALK-Q-:
and the pharmaceutically acceptable salts thereof.

\section*{Preferred compounds include:}

1-ethyl-8-(1 H-imidazol-1-yi)-3-methylimidazo[ \(1,5-\)-a]quirıoxalin-4-(5H)-one,1-ethyf- - -14-imidazol-1-yl)imidazo[1,5-a]quinoxalin-4(5H)-one, 1 -ethyl-3-methyt-8-(4-morpholino)-im idazo [1,5-a]quinoxalin-4(5H)-one; . 1-ethyl-8-(2-ethyl-4-methyl-1H-imidazol-1-y1)3-methylimidaza[1,5-a]. imidazol-1-yl)-1-methyi-imidazo[1.5-a]quinoxalin-4(5H)-onel-1-yl)imidazo[1.5a]quinoxalin-4(5H)-one, 8-(1H-a)quinoxalin-4(5H)-one, 1-((morpholin-4-noxalin-4(5H)-one, 1 -ethyl-3-methyi-8-(pyrrolidin-1-yl)!midazo[1,5-(2-athyt-4-methyl-1H-imidazot-1-yl)-3-methylimidazoldazo[1,5-a]quinaxalin-4(5H)-one, or 6-ethoxy-1-ethyl-88 - 7 H-imid \((1,5-a)\) quinoxalin-4( 5 H )-ones
8-\{1H-imidazof-1-yl)imidazo\{1,2a]quinoxalin-4(5H)-one imidazo[1.2-a\} zo[1,2-a]quinoxalin-4(5H)-one.,
 methy-1H-imidazol-1-yl) imidazo[1,5-alpyrido [3,2-e]pyrazin-5(6H)-one, \(8[(2\)-ethyl-1H-imidazot-1-yl)methylf imidazo or 1 -ethylimidazo 1 ,5-appyrido[4,3-e]-pyrazin-4-\{5H)-one
pyrido[2,3-e]pyrazin-4(5H)-one, or 2-(1H-imidazol-1-yl)imidazo[1,2-alpyido[3-2-one, 2-phenylimidazo[1,2-a]-

\title{
-21- \\ European published application number 0400799, which discloses compounds of the formula
}

or a pharmaceutically acceptable salt thereof, wherein
\(\mathrm{R}^{\prime}\) is \(\mathrm{C}_{1-6}\) alkyl. \(\mathrm{C}_{2-6}\) alkenyl, \(\mathrm{C}_{3-5}\) cycloalky \(\mathrm{C}_{1-5}\) alky filoto groups: and hydrogen or \(\mathrm{C},-6\) alkyl

\section*{Preferred compounds include:}

1,6-dihydro-6-oxo-2-(2-propoxypheny)pyrimidine-5-carboxamide.
N -methyl 1.6 -aihydro-6-oxo-2-(2-propaxyphenyl)pyrimidine-5-carboxamide,
N.N-dimethyl 1.6 -dihydro-6-oxo-2-(2-propoxyphenyl)pyrimidine-5-carboxamide,

5-2no-2-(2-propoxyphenyl)pyrimidin-4(34)-one,
5 -acetamido-2-(2-propoxyphenyl)pyrimidin-4(3H)-one, or
2-(2-propoxyphenyl)pyrimidin-4(3H)-one.
or a pharmaceutically accoptable salt thereot.

\title{
European published application number 0428268, which discloses compounds of the formula
}

(1)
or a pharmaceutically acceptable salt thereal, wherein
\(X\) is \(O\) or \(S\);
\(R^{1}\) is \(C_{1}-6\) alkyl, \(C_{2-6}\) alkenyl, \(C_{2-s}\) cycloalky \(\mid C_{1-s}\) alkyl, or \(C_{1-4}\) alkyl substituted by 1 to 3 fluoro groups:
\(R^{2}\) is hydrogen, \(-C N,-C^{2} R^{5} R^{6},-\mathrm{CO}_{2} R^{7} .5\)-tetrazolyl. \(-\mathrm{NO}_{2},-\mathrm{NH}_{2}\) or \(-\mathrm{NHCOR}^{8}\) wherein \(\mathrm{R}^{5}\) to \(\mathrm{R}^{\mathrm{B}}\) are independently hydrogen or \(\mathrm{C}_{1-4}\) alkyt: \(R^{3}\) is hydrogen or \(C_{1-4}\) alkyl:
\(R^{+}\)is hydrogen or \(C_{1-4}\) alkyl;: and
\(R\) is halo, \(\mathrm{C}_{1}-4\) alkyl, \(\mathrm{C}_{1-4}\) alkoxy, cyano, \(-\mathrm{CONR}^{9} \mathrm{R}^{10},-\mathrm{CO}_{2} \mathrm{R}^{11},-\mathrm{S}(0)_{n} \mathrm{C}_{1-4}\) alkyl. \(-\mathrm{NO}_{2},-\mathrm{NH}_{2},-\mathrm{NHCOR}^{12}\), or \(-\mathrm{SO}_{2} N R^{13} R^{14}\) wherein \(n\) is 0,1 or 2 and \(R^{9}\) to \(R^{14}\) are independendy hydrogen or \(\mathrm{C}_{1}-4\) alkyl; with the proviso that \(R^{1}\) is not methyt when \(R^{2}\) is \(-\mathrm{CO}_{2} \mathrm{H}_{1}-\mathrm{CO}_{2} \mathrm{CH}_{3} \mathrm{CH}_{3}\) or \(-\mathrm{CN}, \mathrm{X}\) is \(0, R^{3}\) is hydrogen. \(\mathrm{R}^{4}\) is hydrogen or mathyl and \(R\) is 6 -methoxy.

\section*{Preferred compounds include:}

3-cyano-6-(2-methoxy-4-methylthiophenyi)-2(1 H)-pyridinone,
3-cyano-6-(4-methylthlo-2-propoxyphanyl)-2(1H)-pyridinone.
1,2-dihydro-6-4-methylltio-2-propoxyphenyl)-2-oxo-3-pyridine carboxamide.
3-cyano-6-(2-metioxy-4-methylsulphinylphenyl)-2(1H)-pyridinone.
3-cyano-6-(4-methylsulphinyl-2-propoxyphenyl)-2(1H)-pyridinone.
3-cyano-6-(4-methylsulphonyl-2-propoxyphenyl)-2( 1 H )-pyridinone.
3-cyano-6-(2-methoxy-4-methyisulphonylphenyl)-2(1-1)-pyridinone,
3-cyano-6-(5-fluoro-2-propoxyphenyl)-2(1H)-pyridinone.
1.2-dihydro-6-(5-fluoro-2-propoxyphenyl)-2-oxo-3-pyridine carboxamide.

3-cyano-6-(4-methoxy-2-propoxyphenyl)-2(1H)-pyridinone.
1,2-dihydro-6-(4-methoxy-2-propoxyphenyl)-2-oxo-3-pyridin
1,2-dihydro-6-(5-methoxy-2-propoxyphenyl)-2-oxo-3-pyrid
3-суало-6-(5-cyano-2-propoxyphonyi)-2(1H)-pyridinone,
3-(3-carboxamido-1,2-dihydro-2-oxo-6-pyridinyl)-4-propoxybenzamide,
methyl 3-(3-cyano-1,2-dihydro-(2-oxo-6-pyridinyl)-4-propoxybenzoato,
3-ł3-cyano-1,2-dihydro-2-oxo-6-pyridiny)-4-propoxybenzamide,
N -methyl-3-(3-cyano-1,2-dihydro-2-oxo-6-pyridinyl-4-propoxybenzamide.
N -methyl 3-(3-carboxamido-1.2-dihyctro-2-oxo-6-pyridinyl)-4-propoxybenzamide,
\(\mathrm{N}, \mathrm{N}\)-dimethyl-3-(3-cyano-1,2-dihydro-2-oxo-6-pyridinyi)-4-propoxybenzamide,
N,N-dimethyl 3-(3-carboxamido-1,2-dihydro-2-oxo-6-pyridinyl)-4-propoxybenzamide,
4-(3-cyano-1,2-dihydro-2-oxo-6-pyridinyl)-3-propoxybenzanitrile.
4-(3-canoxamido-1,2-ditydro-2-oxo-6-pyridinyl)-3-propoxybenzamide.

3-cyano-6-(5-methylthio-2-propoxyphenyl)-2(it)pyridinone,
3-(3-cyano-1,2-dinydro-2-oxo-6-pyridinyl)-4-propoxy-N,N-dimethylbenzenesulphonamide,
3-(3-carboxamido-1,2-dihydro-2-oxo-6-pyridinyl)-4-propoxy-N,N-dimethylbenzenesulphonamide.
6 -(2-cyclopropylmethoxy-5-flourophenyl()-1,2-dihydro-2-oxopyridine-3-carboxamide,
6-(5-fluoro-2-(2-methylpropoxy)phenyl)-1,2-dihydro-2-oxopyridine-3-carboxamide,
3-cyano-6-(5-nitro-2-propoxyphenyl)-2(1H)-pyridinone.
1,2-dihydro-6-(5-nitro-2-propoxyphenyl)-2-oxo-3-pyridinone carboxamide.
3-cyano-6-(5-amino-2-propoxyphenyl)-2(1H)-pyridinone.
1,2-dihydro-6-(5-amino-2-propoxyphenyl)-2-oxo-3-pyridinone carboxamide.
3-cyano-6-(5-acetamido-2-propoxyphenyl)-2(1 H )-pyridinone or
1,2-dihydro-6-55-asetamido-2-propoxyphenyl)-2-oxo-3-pyridine carboxamide. or a pharmaceutically acceptable salt thereof.

European published application number 0442204, which discloses compounds of the formula

or a pharmaceutically acceptable salt thereof, wherein
\(R^{1}\) is \(C_{1-8}\) alkyl, \(C_{2-8}\) alkenyl, \(C_{3-5}\) cydoaikyi \(C_{1-6}\) alkyl, or \(C_{1-8}\) alkyl substituted by 1 to 6 fluoro groups:
 NHCOR \({ }^{3}\) wherein \(R^{3}\) is hydrogen or \(C_{1-\infty}\) alkyl, or \(-N R^{4} R^{5}\), wherein \(R^{4}\) and \(R^{5}\) together with the nitrogen atorn to which they are attached form a pyrrolidino, piperidino, hexahydrozzepino, morpholino or piperazino ring, or \(R^{4}\) and \(R^{5}\) are independently hydragen, \(C_{2-8}\) cycloalkyl or \(C_{1-8}\) alkyd which is oplionally substituted by \(-\mathrm{CF}_{3}\), phenyl, \(-S(O)_{n} \mathrm{C}_{1-8}\) alkyl wherein
\(n\) is 0,1 or \(2,-O R^{8},-\mathrm{CO}_{2} R^{7}\) or \(-N R^{8} R^{9}\) whersin \(R^{6}\) to \(R^{9}\) are independently hydrogen or \(C_{1-s a l k y, ~ p r o-~}^{\text {ald }}\)
wided that the carbon atom adjacent to the nitrogen atom is not substituted by sald -S(O), Cr_oalkyt, -OR \({ }^{6}\) or -NR \({ }^{8} R^{9}\) groups :
 or \(\mathrm{SO}_{2} \mathrm{NR}^{14} \mathrm{R}^{15}\) wherein \(n\) ts 0,1 or 2 and \(\mathrm{R}^{10}\) to \(\mathrm{R}^{15}\) are independently hydrogen or \(\mathrm{C}_{4}\) alkyl : and

is a ring of sub-formula
(a)
(b) :

(a)

(b) -

\section*{European published application number 0579496, which discloses compounds of the formula}

wherein \(=\) represents a single or double bond;
\(R^{\prime}\) is hydrogen or \(\mathrm{C}_{\boldsymbol{L}}\) alkyi;
\(Y\) is a single bond or \(C_{1-\delta}\) alkylene:
\(A\) is
(i) \(-\mathrm{CyA}-\left(\mathrm{R}^{2}\right)_{1}\).
(ii) \(-\mathrm{O}-\mathrm{R}^{0}\) or \(-\mathrm{S}(\mathrm{O})_{p}-\mathrm{R}^{0}\), or
(iii) \(-N R^{16} R^{17}\);
in which \(R^{0}\) is hydrogen. \(C_{1-\alpha}\) alkyl. hydroxy- \(\mathrm{C}_{1-\alpha}\) alkyl or -CyA- \(\left(\mathrm{R}^{2}\right)_{\text {, }}\)
\(R^{16}\) and \(R^{17}\) independently are hydrogen or \(C_{1-\infty}\) alkyt;
\(\rho\) is \(0-2\) :
CyA is
(1) a 3-7 membered, saturated or unsaturated carbacycte,
(2) a 4-7 membered, unsaturated or partially saturated heterocycle containing one nitrogen alom,
(3) a 4-7 membered, unsaturated or partially saturated heterocycte containing one nitrogen atom and one oxygen atom.
(4) a 4-7 membered, unsaturated or partially saturated heterocycie containing one nitrogen atom and two oxygen atoms.
(5) a 4-7 membered, unsaturated or parlially saturated heterocycle containing two nitrogen atoms and one oxygen atom,
(6) a 4.7 membered, unsaturated or partially saturated heterocycle containing one or two sulfur atoms, (7) a 47 membered, unsaturated, partially saturated or fully saturated heterocycle containing one or two oxygen atoms:
\(R^{2}\) is (1) hydrogen, (2) \(C_{1-4}\) alkyl, (3) \(C_{1-4}\) alkoxy, (4) -COOR6, in which \(R^{6}\) is hydrogen or \(C_{1-\alpha}\) alkyt, (5) \(-N R^{6} R^{7}\), in which \(R^{6}\) and \(R^{7}\) independently are hydrogen or \(C_{1-4}\) alky, (6) \(-\mathrm{SO}_{2} N R^{6} R^{7}\), in which \(R^{6}\) and \(R^{7}\) are as hereinbefore defined, (7) halogen, (8) trifluonomethyl, (9) nitro or (10) trifluoromethoxy; Z is a single bond, methylene, ethylene, virylene or ethynylene; CyB is
(1) a 4-7 membered, unsalurated or partially saturated heterocyde containing one nitrogen atom,
(2) a 47 membered, unsaturated or partially salurated heterocyde containing two nitrogen atoms,
(3) a 4 -7 membered, unsalurated or partally saturated heterocyde containing three niltrogen atoms,
(4) a 4-7 membered, unsaturated or partially saturated heterocycle contalning one ortwo oxygen atoms,
(5) a 4-7 membered, unsaturated or partially saturated heterocycle containing one or two sulfur atoms. \(R^{3}\) is hydrogen, \(C_{1-\alpha}\) alkyl, \(C_{1-4}\) alkoxy, hadogen or trifluoromethyl;
\(R^{4}\) is (1) hydrogen, (2) \(C_{1-4}\) alkyl, (3) \(C_{1-4}\) alkoxy, (4) -COOR \({ }^{8}\), in which \(R^{8}\) is hydrogen or \(C_{1-4}\) alkyl, (5) \(-N R^{9} R^{10}\), in which \(R^{9} \mathrm{ks}\) hydrogen. \(C_{1-4}\) alkyl or phenyl( \(C_{1-4}\) alkyl) and \(R^{10}\) is hydrogen or \(C_{1-4}\) alkyl. (6) \(-\mathrm{NHCOR}^{11}\), in which \(\mathrm{R}^{11}\) is \(\mathrm{C}_{1-4}\) alkyl, (n)-NHSO2R\({ }^{11}\), In which \(\mathrm{R}^{11}\) is as herelnbefore defined, ( 8 ) \(S O_{2} N R^{9} R^{10}\) in which \(R^{9}\) and \(R^{10}\) are as hereinbefore defined. (9)-OCOR \({ }^{11}\). in which \(R^{11}\) is as hereinbefore defined, (10) halogen, (11) trifluoromethyl, (12) tydroxy, (13) nitro, (14) cyano, (15) \(-\mathrm{SO}_{2} \mathrm{~N}=\mathrm{CHNR}^{12} \mathrm{R}^{13}\) in which \(R^{12}\) is hydrogen or \(C_{1-4}\) alkyl and \(R^{12}\) is \(C_{1-4}\) alkyl. (16) -CONR \(R^{14} R^{16}\) in which \(R^{14}\) is hydrogen or
 \(\mathrm{C}_{1-1}\) alkytsuffonyl. (20) ethynyt, (21) hydroxymethyl, (22) tri( \(\mathrm{C}_{1-\alpha}\) alkyl) silylethymyl or (23) acetyl: and \(\mathrm{I}, \mathrm{m}\) and n independently are 1 or 2 ; with the proviso that
(1) CyA-( \(\left.R^{2}\right)\), does not represent cyclopentyl or trifluoromethytphenyl when \(Y\) ia a single bond.
(2) CyB does not bond to \(Z\) through a nitrogen atom when \(Z\) is vinylene or ethymylene,
(3) CyB is not pyridine or thiophene when CyA is a 4-7 membered unsaturated, partially saturated or fully saturated heterocyde containing one or two oxygen atoms, and
(4) Y ts not a single bond when \(A\) is (i) \(-O-R^{0}\) or \(-S(O)_{p}-R^{0}\) or (iii) \(-N R^{16} R^{17}\) : or a pharmaceutically acceptable sall thereof, or a mydrate thereof.

\section*{Preferred compounds include:}

4-phenylmet hylamino-2-(3-pyridyl)quinazoline,
4-(3-methylphenylmethyl)amino-2-(3-pyridyl)quinazoline.
4-(3,4-dimethoxyphenylmethyl)amino-2-(3-pyridyi)quinazoline,
4-(4-carboxyphenylmethyl)amino-2-(3-pyridyl)quinazoline.
4-(3-methoxycarbonylphenylmethyl)amino-2-(3-pyridyi)quinazoline, 4-(4-(N,N-dimethylamino)phenylmethyl)amino-2-(3-pyridyt)quinazoline 4-(4-sulfamoylphenymethyl)amino-2-(3-pyridyt)quinazoline. 4-(3-chlorophenylmethyl)amino-2-(3-pyridyl)quinazoline,
4-(3-trifluoromethylphenyimethyl)amino-2-(3-pyridyl)quinazoline.
4-(3-nitrophenyimethyl)amino-2-(3-pyridyl)quinazoline,
4-phenylmethylamino-2-(6-methyl-9-pyridyt)quinazoline,
4-phenylmet hylamino-2-(6-methoxy-3-pyridyl)quinzzoline,
4-phenylmet hylamino-2-(6-chloro-3-pyridyl)quinazoline.
4-phenylmethylamino-2-(6-trifluoromethyl-3-pyridyl)quinazoline,
4-phenylmethylamino-6-methyl-2-(3-pyridy)quinazoline,
4-phenymethyiamino-6-methoxy-2-(3-pyridyl)quinazoline,
4-phenylmethylamino-6,7-dimethoxy-2-(3-pyridyl)quinazoline. 4-phenylmethylamino-6-carboxy-2-(3-pyridyl)quinazoline, 4-phenylmethylamino-6-met hoxycarbonyl-2-(3-pyridyl)quinazoline, 4-phenyimet hylamino-6-amino-2-(3-pyridyl)quinazoline, 4-phenylmethylamino-6-(N,N-dimethytamino)-2-(3-pyridyl)quinazoline, 4-phenylmethytamino-6-acetylamino-2-(3-pyridyl)quinazoline,
4-phenylmethylamino-6-méthanesulfonylamino-2-(3-pyridy)quinazoline,
4-phenylmet hylamino-6-sulfamoyl-2-(3-pyridyi)quinazoline.
4-phenylmethylamino-6-acetoxy-2-(3-pyridyl)quinazoline,
4-phenylmethylamino-6-chloro-2-(3-pyridyl)quinazoline,
4-phenylmet hylamino-6-bromo-2-(3-pyridyl)quinazoline,
4-phenylmet hylamino-7-fluoro-2-(3-pyridyl)quinazoline, 4-phenymet hylamino-6-trtiluoromet hyt-2-(3-pyridyl)quinazoline, 4-phenylmethylamino-6-trifluoromethoxy-2-(3-pyridyl)quinazoline. 4-phenylmethylamino-6-hydroxy-2-(3-pyridyl)quinazoline, 4-phenylmet hylamino-6-nitro-2-(3-pyridy) quinazoline, 4-phenylmethylamino-6-cyano-2-(3-pyridyl)quinazoline,
4-phenylmethyfamino-6-methyl-2-(4-pyridy)quinazoline.
4-phenylmet hyamino-6-met hoxy-2-(4-pyridyl)quinazoline,
4-phenytmethylamino-6,7-dimethoxy-2-(4-pyridyi)quinazoline, 4-phenytmethylamino-6-carboxy-2-(4-pyridyi)quinazoline. 4-phenyimethylamino-8-methoxycarbomy-2-(4-pyridyi)quinazoline, 4-phenyimethylamino-6-amino-2-(4-pyridyi)quinazoline, 4-phenylmet hytamino-6-( \(\mathrm{N}, \mathrm{N}\)-dimet hylamino)-2-(4-pyridy) quinazoline, 4-phenylmethylamino-6-acetylamino-2-(4-pyridyi)quinazoline.
- 4-phenylmethylamino-6-methanesulfonylamino-2-(4-pyridyl)quinazoline,

4-phenylmet hylamino-6-sulfamoyl-2-(4-pyridyl)quinazoline. 4-phenylmethylamino-6-acetoxy-2-(4-pyridyl)quinazoline, 4-phenylmet hylamino-6-chloro-2-(4-pyridyl)quinazoine. 4-phenyimet hytamino-6-bromo-2-(4-pyridyl)quinazoline. 4-phenyimet hylamino-7-fluoro-2-(4-pyridyi)quinazoline, 4-phenyimethytamino-6-tritluoromet hyl-2-(4-pyridyl)quinazoline,
4-phenylmethylamino-6-trifluoromethoxy-2-(4-pyridyl)quinazaline. 4-phenylmethytamino-6-hydroxy-2-(4-pyridyi)quinazoline,
4-phenylmet hylamino-6-nitro-2-(4-pyridy) quinazoline.
4-phenytmethylamino-6-cyano-2-(4-pyridyl)quinazoline, 4-phenylamino-2-(3-pyridyl)quinazoline.
4-(3-methoxycartonyiphenyl)amino-2-(3-pyridyi)quinazoline, 4-phenyfethylamino-2-(3-pyridy)quinazoline.

\section*{-26-}

4-phenyimet hylamino-2-(2-pyridyl)quinazoline,
4-phenylmelhylamino-2-(4-pyridyl)quinazoline.
4-phenylmethylamino-2-(2-(3-pyridyl)ethyl)quinazoline.
4-phenylmethylamino-2-(2-(3-pyridyl) vinyl)quinazoline,
6-iodo-4-phenyimethylamino-2-(3-pyridyl)quinazoline,
4-(3-carboxyphenyl)amino-2-(4-pyridyl)quinazoline.
6-fluoro-4-phenyimethylamino-2-(3-pyridyl)quinazoline.
4-(cyclopropylmethyl)amino-2-(3-pyridy)quinazoline,
4-(cyclohexylmethyl)amino-2-(3-pyridyl)quinazoline.
4-(2-azepinylmethyl)amino-2- -3 -pyridyl)quinazoline,
4-(3-pyridylmethyl)amino-2-(3-pyridy) quinazoline
4-((1-methyl-2-pyrrolyl)methy)amino-2-(3-pyridyi)quinazoline, 4-(3-isoxazoly) amino-2-(3-pyridyl)quinazoline,
4-(3-isoxazolylmethy) amino-2-(3-pyridy)quinazoline.
4-(2-Ihienyimethyl)amino-2-(3-pyridyl)quinazoline.
4-(2-furylmethyl)amino-2-(1 -imidazolyl)quinazoline.
4-(2-tetratydrofur̈anylmethyl)amino-2-(1 -imidazoly) quinazoline,
4-(4-tetrahdyrapyranylmethyl)amino-2-(1-imidazoly) quinazoline, 6-methoxy-4-(4-fetrahydropyranylmethyl)amino- 2 -(1-imidazolyl)quinazoline, 6-chloro-4-(4-tetrahydropyranylmethyl)arnino-2-(1-imidazolyl)quinazoline, 4-(2-phenoxyethyl)amino-2-( 1 -imidazoly')quinazoline, 4-(2-thienylmethyl)amino-2-(1-imidazolyl)quinazoline. 4-(2-methoxyet hyl)amino-2-( 1 -imidazolyl)quinazoline, 4-(1.1-dimethyl-2-methoxyethyl)amino-2-(1-imidazoly) quinazaline. 6-methoxy-4-(2-methoxyethyl)amino-2-(1-imidazolyt)quinazoline, 6-chloro-4-(2-methoxyethyl)amino-2-(1-imidazoly')quinazoline. 4-(3-ethoxypropy) amino-2-(1-imidazoty)quinazoline. 6-nitro-4-(2-methoxyethyl)amino-2-(1-imidazolyl)quinazoline. 6-chloro-4-(2-ethoxyethyl)amino-2-(3-pyridyl)quinazoline. 6,7-dimethoxy-4-(2-methoxyethyl)amino-2-(1-imidazolyl)quinazoline. 6-chloro-4-(2-(2-hydroxyethoxy)ethyl)amino-2-(1-imidazolyl)quinazoline, 6-chloro-4-(2-dimethylaminoethyl)amino-2-( 1 -imidazolyl)quinazoline, 6-methoxy-4-(2-(2-hydraxyethaxy)ethyl)amino-2-(1-imidazoly) quinazaline, 4-(2-methoxyethyl)amino-6-iodo-2-(1-imidazoly)quinazoline
4-(2-methaxyethyl)amino-6-methoxy-2-(2-methyl-1-imidazolyl)quinazoline, 4-(2-hydroxyethyl)amino-6-methoxy-2-(1-imidazoivi) quinazoline, 4-(2-methoxyethyl)amino-6,8-diiodo-2-(1-imidazolyl)quinazoline, 4-(2-(2-hydroxyethoxy)ethyl)amino-6-iodo-2-(1-imidazolyl)quinazoline, 4-(2-methoxyethyl)amino-6-methylthio-2-(1-imidazoty)quinazoline. 4-(2-methoxyethyl)amino-6-methyisutinyl-2-(1-imidazotyl)quinazoline. 4-(2-methoxyethyl)amino-6-methylsulfonyl-2-(1-imidazolyl)quinazoline, 4-(2-(2-hydroxyethoxy)ethyt)amino-6-methylsulfinyt-2-(1-imidazzoly)-quinazoline 6-(1-kmidazoly)-4-(2-methoxyethyl)amino-6-(2-triet hylsitylethynyl)quinazoline, 6-acetyi-4-(2-methoxyethyl) amino-2-(3-pyridyl)quinazoline, 6-ethymyl-4-(2-methoxyethyl)amino-2-(3-pyridyl)quinazoline,
4-[2-(2-hydroxyethoxy)athyl]amino-6-acetyl-2-(1-tmidazoly)quinazoline,
4-(2-methylthioethyl) ernino-6-methoxy-2-(1-imidazoly) quinazoline,
4-(2-methylsulfinylethyl) amino-6-methoxy-2-(1-imidazotyt)quhnazoline.
4-(2-methyisulfonylethyl)amino-6-methoxy-2-(1-imidazoly)quinazoline.
4-[2-(2-hydroxyethoxy)ethyl)amino-6-methoxycarbony 1-2-(-lmidazolyl)-quinazoline
4-[2-(2-hydroxyethoxy)ethyl]amino-6-hydroxymethyl-2-(1-imidazodyl)-quinazoline,
4-(2-methoxyethyl) amino-6-hydroxymethyl-2-(1-imidazolyl)quinazoline.
4-(2-methoxyethyl)amino-G-methoxycarbonyl-2-(1-imidazolyl)quinazoline,
4-(3-methoxypropyl)amino-6-methoxy-2-(1-imidazoiy) )quinazoline.
4-(2-(2-hydroxyethoxy)ethyl) amino-6-methylthio-2-( 1 -Imidazolyl)quinazoline,
2-(1-imidazoty)-4-[2-(2-hydroxyethoxy)ethyl]amino-6-(2-triisopropyl- silylethynyl)-quinazoline, 2-(1-midazoly)-4-[2-(2-hydroxyethoxy)ethyl]amino-6-ethynylquinazoline, 4-phenylmethylamino-6-methyl-2-(1-imidazoly) quinazoline.
4-phenylmet hylamino-6-methoxy-2-( 1 -midazolyl)quinazoline,
4-phenylmethylamino-6,7-dimethoxy-2-(1-imidazoly)quinazoline,
4-phenylmethylamino-6-caboxy-2-(1-imidazoly)quinazoline.
4-phenyimethylamino-0-methoxycarbonsi-2-(1-imidazolyl)quinazoline,

4-phenylmet hylamino-6-amino-2-(1-imidazolyl)quinazoline,
4-phenylmethylamino-6-(N,N-dimathylamino)-2-(1-imidazolyl)quinazoline,
4-phenyimethylamino-6-acetylamino-2-(1-imidazolyl)quinazoline.
4-phenylmet hylamino-6-methanesulfonylamino-2-( 1 -imidazoiy)quinazoline,
4-phenylmethylamino-6-sulfamoyl-2-(1-imidazolyl)quinazoline,
4-phenyImethylamino-6-acetoxy-2-(1-imidazolyl)quinazoline,
4-phenylmet hyiamino-6-chloro-2-(1-imidazoly')quinazoline,
4-phenylmet hylamino-6-bromo-2-( 1 -imidazolyl)quinazoline,
4-phenylmethylamino-7-fluoro-2-(1-imidazoly) quinazoline,
4-phenylmet hylamino-6-trifluoromet hyl-2-(1-imidazolyl)quinazoline,
4-phenylmethylamino-6-trifluoromet hoxy-2-(1-imidazoly)quinazoline,
4-phenylmethylamino-6-hydroxy-2-(1-imidazoly)quinazoline.
4 -phenyimet hylamino-8-nitro-2-(1-imidazolyl)quinazoline,
4-phenyimet hylamino-6-cyano-2-( 1 -imidazolyl)quinazoline,
4-phenylmethylamino-2-(1-imidazolyl)quinazoline,
4-phenylmethylamino-2-((1-imidazolyl)methyl)quinazoline,
4-phenylmethylamino-2-(2-methyl-1-imidazoly')quinazoline,
6-bromo-4-phenylmethylamino-2-(1-imidazolyl)quinazoline,
7-chloro-4-phenylmethylamino-2-(1-imidazolyt)quinazoline, 6 -chloro-4-phenylamino-2-(1-imidazolylmethyl)quinazoline. 6-nitro-4-phenylmethylamino-2-(1-imidazoly)quinazoline, 6 -methoxy-4-phenylmethylamino-2-(1-imidazoly)quinazoline. 6-chloro-4-phenylmet hylamino-2-(1-imidazolymethyl)quinazoline, 8-chloro-4-(3-carboxyphenyl)amino-2-(1-imidazolylmethyl)quinazoline, 6 -dimet hylaminosulfanyl-4-phenylmethylamino-2-(1-imidazolyl)quinazoline. 6,7-dimethoxy-4-phenyimethylamino-2-(1-imidazolyl)quinazoline, 4-(3,4-dimethoxyphenyimethyl)amino-2-(1-imidazolyl)quinazoline. 6 -dimet hylaminomethylideneaminosulfonyl-4-phenylmethylamino-2-(1-imidazolyl)quinazoline, 6 -(phenylmethylaminosulfonyl)-4-phenylmethylamino-2-(1-imidazoly
4-(2-phenylethy) amino-2-(1 -imidazolyl)quinazoline,
4-cyclohexydmethylamino-2-(1-imidazolyl)quinazoline,
6 -carboxy-4-phenymethylamino-2-(1-imidazoly)quinazoline,
6-phenylmethylaminocarbanyl-4-phenylmethylamino-2-(1-imidazolyl)quinazoline, 6-iodo-4-phenylmethylamino-2-(1-imidazolyl)quinazoline.
6-ethoxycarbonyl-4-phenylmethylamino-2-(1-imidazolyl)quinazoline,
6-hydroxy-4-phenyimethylamino-2-(1-imidazolyt)quinazoline,
4-(4-Irifuloromethoxyphenylmet hyl)amino-2-(1-imidazoly)quinazoline,
4-phenylmethylamino-2-(2-azepinyl)quinazoline,
4-phenytmethylamino-2-(1,5-diazepin-2-y) \()\) quinazoline,
4-phenylmethylamino-2-(2-pyrimidinyl)quinazoline.
4-phenylmethylamino-2-(2-triazinyl)quinazoline,
4-phenymethylamino-2-(2-pyrrolyl)quinazoline.
4-phenylmethylamino-2-(1-trizzoly))quinazoline,
6-hydroxy-4-phenylmethytamino-2-(1-imidazoly)quinazoline,
4-(3-trifluoromethoxyphemylmethyl)amino-2-(1-imidazolyl)quinazoline
4-phenylmethylamino-6,8-diiodo-2-(1-Imidazoly)quinazoline.
4-(2-phenoxyet hyl)amino-6-methoxy-2-( 1 -imidazolyi)quinazoline,
6-hydroxymethyl-4-phenyimethyiamino-2-(3-pyridyi)quinazoline
6-methythto-4-phenylmethylamino-2-(3-pyridyl)quinazoline,
6 -methylsuifinyt-4-phenylmethylamino-2-(3-pyridyl)quinazoline.
6-methylsuffinyt-4-phenylmethylamino-2-(3-pyridyt)quinazoline,
4-phenylmethylamino-2-(2-thienyl)quinazoline.
4-phenylmet hyiamino-2-(2-fury) quinazoline,
4-phenylmethylamino-2-(1-imidazoy yl)-5,6,7,8-tetrahydroquinazoline,
6 -carboxy-4-phenylmethylamino-2-(1-imidazoly')-5,6,7,8-tetrahydroquinazoilne,
6 -ethoxycarbonyl-4-phenylmethylamino-2-(1-imidazoly)-5,6,7,8-fetrahydroquinazoline,
6 -ethylaminocarbonyt-4-phenylmet hylamino-2-(1-Imidazody)-5,6,7,8-tetrahydroquinazoline.
4-(2-methoxyelhyl)amino-2-(1-imidazolyl)-5,6,7,0-tefrahydroquinazoline or
4-(2-(2-hydroxyethoxy)ethyi)amino-2-(1-Imidazoly)-5,6,7.8-tetrahydroquinazoline.

\title{
-28- \\ European published application number 0636626, which discloses compounds of the formula
}

,
and saits and solvates (e.g. hydrates) thereof, in which:
\(R^{1}\) represents arylmethyl or \(C_{1-6}\) alkyl optionally substituted by one or more fluorine atoms;
\(R^{2}\) represents methyl;
\(R^{3}\) represents \(C_{7-4}\) alkyl:
\(R^{4}\) represents nitro. cyano. \(\mathrm{C}_{1-5}\) alkoxy, \(\mathrm{C}(=X) \mathrm{NR}^{6} \mathrm{R}^{7}\). \(N R^{8} R^{9},\left(\mathrm{CH}_{2}\right)_{m} N R^{10} \mathrm{C}(=Y) R^{11}\) or a 5 -membered
heterocyclic ring selected from thienyl, thiazolyl and \(1,2,4\)-triazolyl each ring optionally substituted by a \(C_{1-4}\) atkyl or aryl group; or when \(R^{\prime}\) is arylmethyi or \(C_{1-5}\) alkyl substituted by one or more fluorine aloms then \(R^{4}\) may also represent hydrogen;
\(R^{5}\) represents hydrogen or \(C_{1-6}\) alkyl;
\(R^{\text {b }}\) represents hydrogen or \(C_{1-s \text { alkyl; }}\)
\(R^{3}\). represents hydtogen, amino, hydroxyl, \(C_{1-5}\) alkyl, aryl or aryIC \(C_{1}\) - 1 alkyl;
\(R^{8}\) represents hydrogen or \(C_{1-\text { salkyl: }}\)
\(\mathrm{R}^{9}\) represents hydrogen, \(\mathrm{C}_{1-5}\) alkyl, \(\mathrm{SO}_{2} \mathrm{R}^{12}, \mathrm{CO}_{2} \mathrm{R}^{12}, \mathrm{G}\left(=\mathrm{NCN}^{10}\right) \mathrm{SR}^{12}\) or \(\mathrm{C}\left(=\mathrm{NCN}^{12}\right) \mathrm{NR}^{13} \mathrm{R}^{14}\) :
\(R^{10}\) represents hydrogen or \(\mathrm{C}_{1-6}\) alkyl:
\(R^{11}\) represents \(C_{1-6}\) alkyl optionally substituted by one or more halogen atoms, or \(R^{17}\) represents aryl. arylC \(\mathrm{C}_{1}-\) alkyl, thienyl. \(\mathrm{NR}^{15} \mathrm{R}^{16}, \mathrm{CH}_{2} \mathrm{NR}^{17} \mathrm{R}^{18}\) or \(\mathrm{R}^{10}\) and \(\mathrm{R}^{11}\), together represent \(-\mathrm{A}\left(\mathrm{CH}_{2}\right)_{n}\)-i \(R^{12}\) represents \(C_{1-6}\) alkyl, aryl or aryIC \(\mathrm{C}_{1-4}\) alkyl;
\(R^{13}\) represents hydrogen or \(C_{1}-\) alkyl:
\(R^{14}\) represents hydrogen, \(C_{1-5}\) alkyl, aryl, arylC \(C_{1-4}\) alkyl or \(R^{13}\) and \(R^{14}\) together with the nitrogen atom to which they are attached form a morpholine, piperazine or \(\mathrm{N}-\mathrm{C}_{1}-4\) alkylpiperazine ring:
\(R^{15}\) represents hydrogen or \(\mathrm{C}_{1-6}\) alkyl or \(\mathrm{R}^{10}\) and \(R^{15}\) together represent \(-\mathrm{A}\left(\mathrm{CH}_{3}\right)_{n^{-}}\);
\(R^{16}\) represents hydrogen. \(\mathrm{C}_{1-5}\) alkyl, aryl, arylC \(\mathrm{C}_{1-4}\) alkyl. \(\mathrm{CO}_{2} R^{12}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}^{12}\) or \(\mathrm{R}^{13}\) and \(\mathrm{R}^{16}\) together with the nitrogen atom to which they are attached form a morpholine, piperazine or \(\mathrm{N}-\mathrm{C}_{1}\) - talkytpiperazine ring:
\(R^{17}\) represents hydrogen or \(\mathrm{C}_{1-6}\) alkyl;
\(R^{18}\) represents hydrogen, \(\mathrm{C}_{1-5}\) alkyl, aryl, aryIC \(\mathrm{C}_{1-4}\) alky, COR \(^{12}\) or \(\mathrm{R}^{17}\) and \(\mathrm{R}^{18}\) together with the nitrogen atom to which they are attached form a morpholine, piperazine or \(\mathrm{N}-\mathrm{C}_{1}-4\) alkylpiperazine ring: A represents \(\mathrm{CH}_{2}\) or \(\mathrm{C}=\mathrm{O}\);
\(m\) represents zero or 1 ;
n represents 1,2 or 3;
\(X\) represents \(S\) or NH, or when \(R^{7}\) represents amino then \(X\) may also represent \(O\); \(Y\) represents \(O\) or \(S\); for use in therapy.

\section*{Preferred compounds include:}

\footnotetext{
1,3-Dimethyl-6-2-propoxy-5-acetamidophenyl)-1,5-dihydropyrazolo[3.4-d]pyrimidin-4-one; 1-ethyl-3-methyl-6-\{2-propoxy-5-(4-methyl-2-thiazolyl)phenyl]-1.5-dihydropyrazolo[3,4-d]pyrimidir-4-one: 1-ethyl-3-methyl-6-[2-propoxy-5-(2-(3-pyridyl)-4-thiaz)phenyl]-1,5-dihydropyrazolo[3,4-d]pyrimidin-4-one: one:

1,3-dimethyl6-[2-propoxy-5-(3-phethyl-4-thiazoly)phenyl]-1,5-dihydropyrazolo[3,4-d]pyrimidin-4-one; one:
1,3-dimethyl-6-(2-propoxy-5-methanesulfonamidophenyl)-1.5-dihydro-pyrazolo[3.4-d lpyrimidin-4-one; and physlologically acceptable salts and solvates (e.g. hydrates) thereof.
}

wherein \(A\) is a bond. C1-4 alkylene or C1-4 oxyalkylene:
\(Y\) is a bond, C1-4 alkylene, C1-4 alkyleneoxy, C1-4 alkoxyphenylene or phenyl(C1-4)alkylene;
\(Z\) is a bond or vinylene;
R1 is 4-15 membered heterocyclic ring containing one or two nitrogen atoms optionally substituted by one or two groups chosen from C1-4 alkyl, C1-4 alkoxy, halogen, frifluoromethyl and nitro;

R2 is (i) 4-15 membered heterocyclic ring containing one ar two hetero atoms chosen from nitrogen, oxygen, and sulphur, not more than one hetero atom being sulphur, optionally substituted by one or two groups chosen from C1-4 alkyl, C1-4 alkoxy, halogen, trifluoromethyl, nitro and groups of formula:
-COOR10
wherein R10 is hydrogen or C1-4 alky,
(ii) C4-15 carbocyctic ring,
(iii) C1-4 alkoxy.
(iv) hydroxy(C4-4 alkoxy) or
(v) hydroxy.
\(R 3\) is (i) 4-15 membered heberocydic ring containing one or two hetero atoms chosen from nitrogen. oxygen and sulphur, not more than one hetero atom being oxgen or sulphur, optionally substituted by one or two groups chosen from C1-4 alkyl, C1-4 alkoxy, halogen, trifluoromethyl, nitro. cyano, ethynyl and groups of formula:
-SONR7R8
wherein R7 and R8 are independently hydrogen or C1-4 alkyi.
(ii) C4-15 carbocyclic ring.
(iii) a group of formula:

\section*{\(\mathrm{CH} 2=\mathrm{CH}(\mathrm{X})\)}
wherein \(X\) is halogen, or
(iv) hydrogen.
and \(l\) is 1 or 2 .
provided that: R2 is not hydroxy when \(Y\) is a bond: R1 is not bonded through its nilrogen atom when \(Z\) is vinylene; and exduding compounds of the formula:


Wherein RNA is methyt or n-propyt:
\(R^{86}\) is cydopentyl, cyclohexyl, 2-hydroxyettyl, methoxyethyl, 2-(1-piperidinyl)ethyl, or phenyi or benzyl which may be substituted by 1 or 2 of methyl, methoxy, chloro, nitro and trifluoramethy: \(R^{c c}\) is hydrogen or methyl;
\(R^{00}\) is methyl or n-propyl, lsopropyl or benzyl; and \(R^{E E}\) is hydrogen or methyt;
and the compound of formula:

and its pharmaceutically soceptable salts.

\section*{Preferred compounds include:}

2-(1-imidazoly)-4-[2-(2-hydroxyethoxy)ethyl]amino-5-(3-methoxypheny)-methyipyrimidine 2-(1-imidazalyl)-4-phenylmethylaminopyrimidine;
2-(1-Imidazolyi)-4-(2-methoxyethyi)aminopyrimidine,
2-(1-Imidazoly) -5-ethyl-4-phenylmethylaminopyrimidine.
2-(1-Imidazolyl)-5-phenytmethyi-4-phenyimethylaminopyrimidine
2-(1-imidazolyt)-5-methyl-4-phenylmethylaminopyrimidine.
2-(1-imidazolyi)-5,6-dimethyi-4-phenylmethylaminopyrimidine

2-(1-Imidazolyt)-5-(3-methoxyphenyl)methyl-4-(2-methoxyethyi)amino-pyrimidine.
2-(1-Imidazoly)-5-(4-methoxyphemyl)methyl-4-[2-(2-hydroxyethoxy)ethyl)-aminopyrimidine,
2-(1-Imidazolyt)-5-(4-methoxyphenyl)methyl-4-(2-methoxyethyl)amino-pyrimidine.
2-(1-lmidazaly)-5-(4-methoxyphenyl)methyl-4-phenylmethylamino-pyrimidine.
2-(1-|midazoly) -5 -phenoxymethyl-4-phenylmethylaminopyrimidine.
2-(1-Imidazolyi)-5-(1-imidazolyi)methyl-4-phenylmethylaminopyrimidine,
2-(1-Imidazoly)-5-(1-chlorovinyl)-4-phenylmethylaminopyrimidine.
2-(9-Imidazolyt)-5-(2-thienyt)-4-phenylmethylaminopyrimidine,
2-(1-Imidazolyl)-5-(2-thiazolyt)-4-phenylmethylaminopyrimid ine.
2-(1-Imidazolyt)-5-(2-thienyl)-4-( 1,3 -dioxaindan-5-yl) methylaminopyrimidine,
2-(1-Imidazalyt)-5-(2-thienyl)-4-[2-(2-hydroxyethoxy)ethyl] aminopyrimidine.
2-(1-Imidazoly)-5-(2-thienyl)-4-(1-naphthyl) methylaminopyrimidine,
2-(1-Imidazolyl)-5-(2-thienyl)-4-(4-methoxyphenyl) methylaminopyrimidine.
2-(1-imidazoty)-5-(2-thienyl)-4-(3-methoxyphenyl) methylaminopyrimidine,
2-(1-Imidazolyl)-5-(2-thienyl)-4-(2-furyl) mettrylaminopyrimidine,
2-(1-imidazolyl)-5-(2-thienyl)-4-(2-ihienyl) methylaminopyrimidine.
2-(1-imidazolyl)-5-(2-thienyl)-4-(3-pyridyl) methylaminopyrimidine.
2-(1-Imidazolyl)-5-(2-thienyl)-4-(2-methoxyethyl) aminopyrimidine,
2-(1-Imidazoiyl)-5-(2-thienyl)-4-phenytmethoxyaminopyrimidine,
2-(1-Imidazaly)-5-(2-thienyl)-4-(4-chloraphenyi) methylaminopyrimidine.
2-(1-imidazolyl)-5-(2-thienyl)-4-(3-chlorophenyl) methylaminopyrimidine,
2-(1-Imidazaly)-5-(2-thienyl)-4-(1,3-dloxaindan-5-yl) methytaminopyrimidine.
2-(1-Imidazo \({ }^{\prime}\) |)-5-(4-methylphenyl)-4-(1,3-dioxalndan-5-y1) methylamino-pyrimidine,
2-(1-Imidazaly)-5-(4-methoxyphenyl)-4-(1,3-dioxaindan-5-yi) methylamino-pyrimidine,
2-(1-Imldazoly)-5-(5-methyl-2-thienyl)-4-(1,3-dioxaindan-5-yl)methylamino-pyrimidine,
2-(1-Imidazoly)-5-(2-thienyl-4-[4-(1-imidazolyi)phenyl] methylamino-pyrimidine,
2-(1-Imidazolyi)-5-(3-pyridyl)-4-(1,3-dioxaindan-5-yi) methyiaminopyrimidine,
2-(1-Imidazoly)-5-(3-fury)-4-(1,3-dioxaindan-5-yl) methylaminopyrimidine,
2-(1-Imidazolyl)-5-(3-pyridyl)-4-phenyimethyiaminopyrimidine,
2-(1-Imidazoly)-5-(4-chlorophenyl)-4-(1,3-dioxaindan-5-yl) methylamino-pyrimidine,
2-(Benzimidazol-1-yl)-5-(2-thieny)-4-(1,3-dioxalndan-5-yl) methylamino-pyrimidine,
2-(1-Imidazoly)-5-(2-thlenyl)-4-(4-ethoxycarbonylphenyl) methylamino-pyrimidine,
2-(1-Imidazalyi)-5-(2-naphthyl)-4-(1,3-dioxaindan-5-yl) methylamino-pyrimidine,
2-(3-Pyridyl)-5-(2-thienyl)-4-(1,3-diaxaindan-5-yl) methylaminopyrimidine,
2-[2-(3-Pyridyl) vinyl]-5-(2-thienyl)-4-(1.3-dioxaindan-5-yl) methyiamino-pyrimidine.
2-(2-Methyl-1-Imidazolyl)-5-(2-thlenyi)-4-(1,3-dloxalndan-5-yl)methytamino-pyrimidine or 2-(1-Imidazoly)-5-(2-thienyl)-4-(benzimidazol-5-yl) methytaminopyrimidine

\title{
European published application number 0668280, which discloses compounds of the formula
}

wherein \(R^{1}\) and \(R^{2}\) are the same or different and represent hydrogen, lower alkyl (which is optionally substituted with one to three substituents which are the same or different and are cyctoalkyl, hydroxy. lower alkoxy, carboxy, lower alkoxycarbonyl, amino, monoalkyl-substituted amino. dialkyl-substituted amino. nitro, halogen, alicyclic heterocycle group (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl, aralkyl, aryl optionally substituted with one to three substituents which are the same or different and are lower alkoxy, or aromatic heterocycle group)), cycloalkyl, bicycloalkyl. benzocycloalkyl (which is optionally substituted with one to three substiluents which are the same or different and are lower alkyl, hydroxy, lower alkoxy. carboxy, lower alkoxycarbonyl, amino, monoalkyl-substituted amino, dialkyl-substituted amino, nitro, sutfonamide, halogen, or trifluoromethyl), tower alkenyl, aryl (which is optionally substituted with one to three substituents which are the same or ditferent and are lower atkyl, hydroxy, lower alkoxy, carboxy, bower alkoxycarbonyl, amino. monoalkyl-substituted amino, dialkyl-substituted amino, nitro, sulfonamide, halogen, or trifluoromethyl), aromatic heterocycle group-substituted alkyl (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl, amino. monoalkyl-substituted amino, dialkyl-substituted amino, nitro, sulfonamide. halogen or trilluoromethyl and where said alkyl part is optionally substituted with aryll, aromatic heterocycle group (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl, amino, monoalkylsubstituted amino, dialkyl-substituted amino, nitro, sulfonamide, halogen, or trifluoromelhyl). or aralkyl (where the aryl part of said aralkyl is optionally substituted with one to three substituents which are the same or different and are hower alkyl. lower alkoxy, dialkyl-substituted amino, halogen, or trilluoromethyl), or \(R^{\prime}\) and \(R^{2}\) are taken together to represent heterocycle group containing nitrogen atom (which is optionally substituted with one to three substituents which are the same or different and are fower alkyl, aryl, or aralkyl), \(\mathbf{R}^{3}\) represents hydrogen, fower alkyl (which is optionally substituted with one to three substituents which are the same or different and are cycloalkyl, hydroxy, lower alkoxy. carboxy, lower alkoxycarbonyl, amino, monoalkyl-substituted amino, dialkyl-substituted amino, nitro, halogen, or alicyclic heterocycle group (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl, aralkyl, aryl optionally substituted with one to three substituents which are the same or different and are lower alkoxy, or aromatic heterocycle group)). cycloalkyl, lower alkenyl, aryl (which is optionally substituted with one to three substituents which are the same or different and are lower alkyl, hydroxy, lower alkoxy, carboxy, lower alkoxycarbonyl, amino. monoalkyl-substituted amino, dialkyl-substituted amino, nitro, sulfonarnide, hadögen, or trifluoromethyl). aromatic heterocycle group-substituted alkyl (where said aromatic heterocycle group part is optionally substituted with one to three substituents which are the same or different and are lower alkyl, hydroxy. lower alkoxy, carbaxy, lower alkoxycarbonyl, amino, monoalkyl-substituted amino, dialkyl-substheted amino, nitro, sulfonamide, halogen or trifluoromethyl, and where the alkyl part is optionally substituted with \(a r y\) (), aromatic hetarocycle group (where said aromatic heterocycle group is optionally substituted
with one to three substituents which are the same or different and are lower alkyl, hydroxy, iower alkoxy, carboxy, lower alkoxycarbonyl, amino, monoalkyl-substituted amino, dialkyl-substituted amino. nitro. suffonamide, halogen, or triffuoromethyl), or aralkyl (where the aryl part of said aralkyl is optionally substituted with one to three substituents which are the same or different and are lower alkyl, lower alkoxy, dialky-substituted amino. halogen, or trifluoromethyl), and X reprosents oxygen atom or sulfur atom, or pharmacologically acceptable salts thereof.

European published application number 0669324, which discloses compounds of the formula

(I)
(wheriein \(R^{\prime}, R^{2}, R^{3}, R^{4}\) and \(R^{5}\) may be the same or different from each other and each represents hydrogen atom, a halogen atom, a lower alkyl group or a lower alkoxy group; and
\(R^{6}\) and \(R^{7}\) may be the same or different from each other and each represents a hydrogen atom, a lower alkyi group, a hydroxyalkyl group, a lower alkoxyalkyl group, a cyanoalkyl group, a heteroarylalkyl group, a cycloalkyl group, a cycloalkylalkyl group or a carboxyl alkyl group which may be protected, or atrernatively \(\mathrm{F}^{\text {fi }}\) and \(\mathrm{R}^{2}\) may form a ring together with the nitrogen atom to which they are bonded, this ring optionally having a substituent).
or a pharmacologically acceptable salt thereof:

WO91/19717 discloses compounds of the formula

and

wherein
\(J\) is oxygen or sulfur,
\(\mathrm{R}^{1}\) is hydrogen, alkyl or alkyl substituted with aryl or hydroxy;
\(\mathbf{R}^{\mathbf{2}}\) is hydrogen, aryl, heteroaryl, cycloalkyl, alkyl or alkyl substituted with aryl, heteroaryl, hydroxy, alkoxy, amino, monoalkyl amino or ciakylamino, or \(-\left(\mathrm{CH}_{2}\right)_{m}\) TCOR 20 wherein \(m\) is an integer from 1 to \(6 . \mathrm{T}\) is oxygen or -NH - and \(\mathrm{R}^{20}\) is hydrogen, aryl, heteroaryl, alkyl or alkyl substituted with aryl or heteroaryl;
\(\mathrm{R}^{3}\) is hydrogen, halo, trifluoromethyl, alkoxy, alkylthio, alkyl, cycloalkyl, aryl, aminosulfonyl, ámino, monoalkylamino, dialkylamino, hydroxyalkylamino, aminoalkylamino, carboxy, alkoxycarbonyl or aminocarbonyl or alkyl substituted with aryl, hydroxy, alkoxy, amino, monoalkylamino or dialkylamino;
\(R^{a}, R^{b}, R^{c}\) and \(R^{d}\) independently represent hydrogen, alkyl, cycloakyl or aryl; or ( \(R^{a}\) and \(R^{b}\) ) or ( \(R^{c}\) and \(R^{d}\) ) or ( \(R^{b}\) and \(R^{c}\) ) can complete a saturated ring of 5- to 7-carbon atoms, or ( \(R^{\mathrm{a}}\) and \(\mathrm{R}^{b}\) ) taken together and ( \(R^{b}\) and \(R^{C}\) ) taken together, each complete a saturated ring of 5- to 7-carbon atoms, wherein each ring optionally can contain a sulfur or oxygen atom and whose carbon atoms may be optionally substituted with one or more or the following: alkenyl, alkynyl, hydroxy, carboxy, alkoxycarbonyl, alkyl or alkyl substituted with hydroxy, carboxy or alkoxycarbonyl; or such saturated ring can have two adjacent carbon atoms which are shared with an adjoining aryl ring; and
n is zero or one.

Preferred compounds include:
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-3-(phenylmethyl)-cyclopenta[4,5]imidazo[2,1-b]purin-4-one;
7.8-Dihydro-5-methyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)one:
cis-6a,7,8,9,10,10a-Hexahydro-5-methyl-3-(phenylmethyl)-3H-benzimidazo[2,1-b] purin-4(5H)-one;
5,7,8,9-Tetrahydro-5-methyl-3-(phenylmethyl)pyrimido[2,1-b]purin-4(3H)-one;
7,8-Dihydro-8-phenyl-5-methyl-3-(phenylmethyl)-3H-imidazo[2,1-blpurin-4(5H)-one;
5',7'-Dihydro-5'-methyl-3'-(phenylmethyl)spiro[cyclohexane-1, \(8^{\prime}-(8 \mathrm{H})\) -imidazo[2,1-b]purin]-4'(3'H)-one;
cis-5,6a,11,11a-Tetrahydro-5-methyl-3(phenylmethyl)indeno[ \(\left.1^{\prime}, 2^{\prime}: 4,5\right]\) imidazo[2,1-b]purin-4(3H)-one;
5,7'-Dihydro-2',5' dimethyl-3'-(phenyimethyl)spiro\{cyciohexane-1,7'(8'H)-imidazo[2,1-b]purin]-4'(3'H)-one:
7,8-Dihydro-2,5,7.7,8(R,S)-pentamethyl-3H-Imidazo[2,1-b]purin-4(5H)one:
cis-5,6a,7,11b-Tetrahydro-5-methyl-3-
cis-5,6a,7,8,9,9a-Hexahydro-2,5-dimethyl-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4-(3H)-one;
5'-Methyl-3'-(phenylmethyl)-spiro[cyclopentane-1,7'(8'H)-(3'H)-imidazo[2,1-b]purin]-4'(5'H)-one;
7,8-Dihydro-2,5,7,7-tetramethyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5'H)-one;
7,8-Dihydro-7(R)-phenyl-2,5-dimethyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-3,7(R)-bis(phenytmethyl)-3H-imidazol2,1-b]purin-4(5H)-one:
\(( \pm)\)-7,8-Dihydro-2.5-dimethyl-7-ethyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
6a(S)-7,8,9,10,10a(R)-Hexhydro-2,5-dimethyl-3-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4(5H)-one;
6a(R)-7,8,9,10,10a(S)-hexahydro-2,5-dimethyl-3-(phenyimethyl)-3H-benzimidazo[2,1-b]purin-4 (5H)-one;
7.8-Dihydro-2,5-dimethyl-7(R)-isopropyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5,7(R)-trimethyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
cis-7,7a,8,9,10,10a-Hexahydro-2,5-dimethyl-3-(phenylmethyl)-3H-cyclopenta[5,6]pyrimido[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-7(S)-(1-methyipropyl)-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-7(R)-(2-methyipropyl)-3-(phenyimethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-7(R,S)-(methoxycarbonyl)-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-7(R,S)-(1-propyl)-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-7(S)-(1-methylethyl)-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7.6-Dihydro-2,5,7,7,8(R,S)-pentamethyl-3H-imidazo[2,1-b]purin-4(5H)one:
5,7,8,9-Tetrahydro-2,5,7,9(R,S)-pentamethyl-3-(phenylmethyl)-pyrimido[2,1-b]purin-4(3H)-one;
5,6a(R),7,8,9,9a(5)-Hexahydro-2,5-dimethyl-3-(phenylmethyl)cyclopent[4.5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(S),7,8,9,9a(R)-Hexahydro-2,5-dimethyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;

\section*{-35-}
cis-6a,7,8,9,10,10a-Hexahydro-2,5-dimethyl-3-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4(5H)-one;
5',7'-Dihydro-2',5'-dimethyl-3'-(phenylmethyl)spiro[cyclohexane-1, \(8^{\prime}\) \((8 H)\)-imidazo[2,1-b]purin]-4'( \(3^{\prime} H\)-one;
cis-5,6a,7,8,9,9a-Hexahydro-2,5-dimethyl-3-(phenylmethyl)-cyciohept[6,7]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-2-ethyl-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-6a,7,8,9,10,10a-Hexahydro-5-methyl-2-ethy!-3-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4-(5H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-2-ethyl-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-2-pheny!-3-(phenyimethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-6a,7,8,9,10,10a-Hexahydro-5-methyl-2-phenyl-3-(phenylmethyl)-3H-benzimidazo[2.1-b]purin-4(5H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methylcyclopenta[4,5]imidazo[2,1-b]purin-4 (3H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-2,5-dimethylcyclopenta[4,5]imidazo[2,1-b]-purin-4(3H)-one;
cis-5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-di-methylcyclopent \([4,5]\) imidazo[2,1-b]purin-4(3H)-one;

2'-Methyt-3'-spiro\{cyclopentane-1,7'(8'H)-(3'H]-imidazo[2,1-b]purin\}\(4^{\prime}\left(5^{\prime} H\right)\)-one:
7,8-Dihydro-2,5-dimethyl-7(R)-(1-methylethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5,7,7-tetramethyl-3H-imidazo[2,1-b]purin-4(5H)-one;
7,8-Dihydro-2,5-dimethyl-7(S)-(1-methylethyl)-3H-imidazo[2,1-b]purin-4(5H)-one;
6a(R),7,8,9,10,10a(S)-Hexahydro-2,5-dimethyl-3H-benzimidazo[2,1-b]purin-4(5H)-one;
5',7'-Dihydro-2', 5'-dimethylspiro\{cyclohexane-1, \(7^{\prime}\left(8^{\prime} \mathrm{H}\right)\)-imidazo[2,1-b]purin\}-4'(3'H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-3-(phenylmethyl)cyclopenta[4,5]imidazo[2,1-b]purin-4(3H)-thione;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-thione;
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-3-(4-chlorophenyl-methyl)cyclopenta[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-5-methyf-3-(cyclohexylmethyl)-
cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a, 7,8,9,9a-Hexahydro-5-methyl-3-(2-naphthylmethyl)-
cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
bromophenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(R)-7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(4-methoxyphenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;
cis-5,6a,7,8,9,9a-Hexahydro-2,3,5-trimethylcyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-2-(hydroxymethyl)-5-methy-3-(phenyimethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;
cis-5,6a,7,8,9,9a-Hexahydro-2-methylthio-5-methyl-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-3,4,5,6a,7,8,9,9a-Octahydro-5-methyl-4-oxo-3-(phenyimethyl)cyclopent \([4,5\) ]imidazo[2,1-b]purin-2-carboxylic acid;
cis-3,4,5,6a, 7,8,9,9a-Octahydro-5-methyl-4-oxo-3-(phenylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-2-carboxylic acid, methyl ester;
cis-5,6a,7,8,9,9a-Hexahydro-2-bromo-5-methyl-3-(phenyImethyl)-cyclopent[4.5]imidazo[2,1-b]purin-4(3H)ons;
cis-5,6a,7,8,9,9a-Hexahydro-2-(methylaminosulfonyl)-5-methyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;
cis-1-Cyclopentyl-5,6a,7,8,9,9a-hexahydro-5-methyl-cyclopent[4,5]imidazo[2,1-b]purin-4-(1-f)one;
cis-5,6a,7,8,9,9a-Hexahydro-3,5-bis-(phenyimethyl) cyclopent(4,5)Imidazo(2.1-b)purin-4(3H)one;
cis-6a,7,8,9,10,10a-Hexahydro-3,5-bis-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4(5H)one;
cis-3-Cyclopentyl-5,6a,7,8,9,9a-hexahydro-5-methyl-cyclopent[4,5]imidazo(2,1-b)purin-4(3H)one;
\(5^{\circ}\)-Methyl-3'-(phenylmethyl)spiro[cyclopentane-1, \(7^{\prime}\left(8^{\prime} H\right)-\left(3^{\prime} H\right)-\) imidazo[2,1-b]purin]-4'(5'H)one;
\(2^{\prime}, 5^{\prime}\)-Dimethyl-3'-(phenylmethyl)-spiro[cyclopentane-1, \(7^{\prime}\left(8^{\prime}-H\right)-\left(3^{\prime} H\right)-\) imidazo[2,1-b]purin]-4'(5'H)one;
cis-5,6a,(R)7,8,9,9a(S)-Hexahydro-5-methyl-3-(phenyimethyl)cyclopent[4,5]imidazo(2,1-b)purin-4(3H)one;
cis-3-Cyclopentyl-5,6a,7,8,9,9a-Hexahydro-2,5-dimethylcyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;36
5'-Methyl-2'-trifluoromethyl-3'-(phenylmethyl)spiro\{cyclo-pentane1,7 (8'H2-(3'H2imidazo[2,1-b]purin)-4'(5'H)-one;
7,8-Dihydro-5,7,7-trimethyl-2-trifluoromethyl-3-(phenylmethyl)-3H-Imidazo[2.1-b]purin-4(5H)-óne;
(+/-)-cis-5,6a, 7,8,9,9a-Hexahydro-5-methyl-2-trifluoromethyl-3-(pheny!methyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
(+/-)-6a, 7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3-(phenylmethyl)-3H-pentaleno[ \(6 a^{\prime}, 1\) ':4,5] imidazo[2,1-b] purin-4(5H)-one;
(+)-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3-phenylmethyl-3HpentalenoI \(6 a^{\prime}, 1\) ':4,5] imidazo[2,1-b] purin-4(5H)-one;
(-)-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3-phenylmethyl-3Hpentaleno[6a', \(\left.1^{\prime}: 4,5\right]\) Imidazo[2,1-b] purin-4(5H)-one;
(t/-) 6a, \(7,8,9,9 a, 10,11,11 a-O c t a h y d r o-2,5\)-dimethyl-3H-pentaleno[ 6a', 1: 4,5] imidazo[2,1-b] purin-4(5H)-one;.
(+)-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3H-pentaleno[ \(\left.6 a^{\prime}, 1^{\prime}: 4,5\right]\) imidazo[2,1-b] purin-4(5H)-one;
(-)-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3Hpentaleno[6a', \(\left.1^{\prime}: 4,5\right]\) imidazo[2,1-b] purin-4(5H)-one;
6a,7,8,9,10,10a,11,12,13,13a-Decahydro-2,5-dimethyl-(3-phenylmethyl)napth[1,8a-d]imidazo[2,1-b]purin-4(5H)one;
7(R)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3-(phenylmethy!)-3H-imidazo[2,1-b]purin-4(3H)-one;
7(R)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3H-imidazo[2,1-b]purin-4(5H)one:
7(S)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3-(phenylmethyl)-3H-imidazo[2,1-b]purin-4(3H)-one;
7(S)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3H-imidazo[2,1-b]purin-4(5H)-one;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-[ (trimethylacetoxy) methyl]-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;
5,6a(R), 7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(4-pyridylmethyl)-cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-[2-(1morpholinyl)ethy \(]\) cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-[acetoxymethyi]cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a,7,8,9,9a-Hexahydro-2,5,6a-trimethyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(R),7(S),8,9,9a-Hexahydro-2,5,6a-trimethyl-3-(phenyimethyl)cyciopent[4,5]imidazo[2,1-b]purin-4(3H)-one:
5,6a(S),7(R),8,9,9a-Hexahydro-2,5,6a-trimethyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]pirin-4(3H)-one]; cis-6a,7,8,9,10,10a-Hexahydro-2,5,7-trimethyi-3-(phenylmethyI)-3H-benzimidazo[2,1-b]purin-4(5H)-one];
cis-5,6a,7,8,9,9a-Hexahydro-2,5,6a-trimethylcyclopent[4,]imidazo[2,1-b]purin-4(3H)-one\}; or
cis-6a,7,8,9,10,10a-Hexahydro-2,5,7-trimethyl-3H-benzimidazo[2,1-b]purin-4(5H)-one].

WO 94/19351 discloses compounds of the formula

or a pharmaceutically acceptable salt thereof, wherein:
\(\mathrm{R}_{1}, \mathrm{R}_{2}\) and \(\mathrm{R}_{3}\) are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, halogeno, hydroxy, (dilower alkyl)amino, 4-morpholinyl, 1-pyrrolidinyl, 1-pyrrolyl, -CF \({ }_{3}\), -OCF \({ }_{3}\), phenyl and methoxyphenyl; or \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together are methylenedioxy; or \(R_{1}\) and \(R_{2}\) together with the carbon atoms to which they are attached form a benzene ring; and
\(R^{a}\) is hydrogen and \(R^{b}\) and \(R^{c}\), together with the carbon atoms to which they are attached, form a saturated ring of 5 carbons; or \(\mathrm{Ra}^{\mathrm{a}}\) is lower alkyl, \(R^{b}\) is hydrogen or lower alkyl, and \(R^{c}\) is hydrogen; or \(R^{a}, R^{b}\) and the carbon atom to which they are attached form a saturated ring of 57 carbons, and \(R^{c}\) is hydrogen; or \(R^{a}\) is hydrogen, and \(R^{b}, R^{c}\) and the carbon atoms to which they are attached form a tetrahydrofuran ring; or Ra and \(R^{b}\), together with the carbon atom to which they are attached, and \(\mathrm{R}^{\mathrm{b}}\) and \(\mathrm{Rc}^{\text {c }}\), together with the carbon atoms to which they are attached, each form a saturated ring of 5-7 carbons.

Preferred compounds include:

2'-benzyl-spiro[cyclopentane-1'.7' (8'H)-[3'H]-imidazo[2, \(1-\) b]purin-4'-(5'H)-one;

2'-benzyl-5,7,7-trimethyl-3H-imidazo[2,1-b]purin-4-(5H)-one;
(+)-2-benzyl-7, 8-dihydro-5-methyl-7-(1-methylethyl)-1H-imidazo[2,1-b]-purin-4(5H)-one;
(t,-)-6a, 7, 8, 9, 9a, 10, 11, 11a-octahydro-5-methyl-2-(3,4-methylene-dioxyphenylmethyl)-3H-pentalen[6a,1:4,5]imidazo 2,1 -b]purin-4(5H)-one; and
(+)-cis-6a, 7, 9, 9a-tetrahydro-5-methyl-2-[4-(trifluoromethyl)-phenyimethyl]-3H-furo[3', 4':4,5]imidazo[2,1-b]purin-4(5H)-one.

WO 94/22855 discloses compounds of the formula
i. A nitrogen-containing fused-heterocyclic compound having the formula (I) or a pharmacologically acceptable salt thereof:

in which ring A represents a benzene, pyridine or cyclohexane ring and \(B\) represents a pyridine, imidazole or pyrimidine ring, with the proviso that rings \(A\) and \(B\) are bonded to each other with two atoms being shared by them, and the shared atoms may be any of carbon and nitrogen atoms;
\(R^{1}\) represents a group represented by the formula: \(-N R^{4} R^{5}\) (wherein \(R^{4}\) and \(R^{5}\) may be the same or different
from each other and each represent a hydrogen atom, a lower alkyl or acyl group or a carboxyd group which may be protected, or alternatively \(R^{4}\) and \(R^{5}\) may form a ring together with the nitrogen atom to which they are bonded, provided that the ring may be substituted), or a heteroaryl group which has one or two nitrogen atoms and may be substituted:
\(R^{2}\) represents a hydrogen atom, a group represented by the formula:

(wherein \(R^{8}\) represents a carboxyl or tetrazolyl group which may be protected).
or a halogen atom;
and
\(\mathrm{R}^{3}\) represents a hydrogen atom or a group
represented by the formula:

(wherein \(R^{6}\) and \(R^{7}\) each represent a hydrogen or halogen atom or a lower alkoxy group, or alternatively \(R^{6}\) and \(R^{7}\) may together form a methylenedioxy or ethylenedioxy group ).

WO 95/19978 discloses compounds of the formula

and salts and solvates thereof, in which:
\(\mathrm{R}^{\circ}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alkyl;
\(R^{1}\) represents hydrogen, \(C_{1-6}\) alkyl, \(C_{26}\) alkenyl, \(C_{26}\) alkynyl, halo \(C_{1}\)
 heteroarylC \({ }_{1-3}\) alkyl;
\(\mathrm{R}^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally
substituted bicyclic ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5- or 6-membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
\(R^{3}\) represents hydrogen or \(C_{13}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3 or 4 - membered alkyl or alkenyl chain.

Preferred compounds include:

Cis-2,3,6,7,12,12a-hexahydro-2-(4-pyridylmethyl)-6-(3,4-methylenedioxyphenyl)-pyrazino[ \(2^{\prime}, 1^{\prime}:\) 6,1]pyrido[3,4-6]indole-1,4-dione; Cis-2,3,6,7,12,12a-hexahydro-6-(2,3-dihydrobenzo[b]furan-5-y|)-2-methyl-pyrazino[ \(2^{\prime}, 1^{\prime}: 6,1\) 1pyrido[3,4-b]indole -1,4-dione; Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-methylpyrazino[2', 1 ':6,1]pyrido[3,4-b]indole -1,4-dione;

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-methylphenyl)pyrazino[ \(2^{\prime}, 1^{\prime}: 6,1\) ]pyrido 3,4 -b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)-pyrazino[ 2 ', \(1: 6,1\) ]pyrido[ 3,4 -b]indole \(-1,4\)-dione; ( \(6 R, 12 a R\) )-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-(3,4-methylenedioxyphenyl)-pyrazino[ 2 ', \(1: 6,1\) ]pyrido[ 3,4 -b]indote \(-1,4\)-dione; (6R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopropylmethyl-6-(4-methoxyphenyl)-pyrazino( 2 ', \(\left.1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole \(-1,4\)-dione: (6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methyl-pyrazino[ \(2^{\prime}, 1\) : \(: 6,1\) ]pyrido \([3,4\)-b]indole -1,4-dione; ( \(6 R, 12 a R\) )-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[ \(2^{\prime}, 1\) ':6,1]pyrido[3,4-b]indole-1,4-dione; ( \(6 \mathrm{R}, 12 \mathrm{aR}\) )-2,3,6,7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)pyrazino[ 2 ', 1': 6,1] pyrido [3,4-b] indole-1,4-dione;
(5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3,4-
methylenedioxyphenyl)-pyrrolo[1",2" : 4',5']pyrazino[2',1' : 6,1]pyrido[3,4-b]indole-5-1,4-dione;
and physiologically acceptable salts and solvates thereof.
U.S. Patent No. 5,294,612 discloses compounds of the formula

wherein:
\(R^{1}\) is hydrogen, alkyt, \(C_{4}\) to \(C_{7}\) cycloalkyl, \(C_{4}\) to \(C_{T}\) cycloalkyl substituted by \(C_{1}\) to \(C_{10}\) alkyl or hydroxyl, 2-or 3-tetrahydrofuranyl, 3-tetrahydrothienyI 1,1,-dioxide, \(C_{4}\) to \(C_{7}\) eycloalkyl- \(C_{1}\) to \(C_{10}\) alkyl, carboxy- \(C_{1}\) to \(C_{10}\) alkyl, carbo- \(C_{i}\) to \(C_{4}\) how er-alkoxy-C \(C_{1}\) to \(C_{10}\) alkyl, dialkylamino \(C_{1}\) to \(C_{10}\) alkyt, phenyl-Cit ro \(C_{6}\) lower-allkyl, phenyl- \(C_{1}\) to \(C_{f}\) lower-alkyl in which the phenyl ring is substituted in the 2,3 , or 4 -position by one or two substituents, the sume or different, selected from the group consisting of amino, halogen, \(C_{1}\) to \(C_{10}\) alkyl, carboxyl, carbo- \(C_{1}\) to \(C_{4}\) lower-alkoxy, carbamnyl, \(\mathrm{NHSO}_{2}-\) (quinolinyl), nitro and cyano:
\(R^{3}\) is, \(C_{1}\) to \(C_{6}\) lower-alkyl, phenyl- \(C_{1}\) to \(C_{4}\) loweraikyL. lower-alkoryphenyl- \(C_{1}\) to \(C_{4}\) hower-alkyt, \(\mathrm{diC}_{1}\) to \(\mathrm{C}_{4}\) fower-alkoxy-phenyl- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) loweralkyl, pyridyl-C \(C_{1}\) to \(C_{4}\) lower-alkyl, \(C_{4}\) to \(C_{7}\) cy cloalkìl-C, to Calower-alkyl, phenylamino, diCito \(\mathrm{C}_{10}\) alkylamino, halogen, trifluoromethyl, \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) lower-alkylthio, cyano or nitro, and
\(R^{6}\) is a nine or ten membered bicyclic ring having carbon and from one to two nitrogen atoms, and
the heterocycle is made up of fused 5 or 6 mem bered rings or such ring substituted at any a vailable carbon atom by one or two substituents, the same or different, selected from the group consisting of \(C_{1}\) to \(C_{4}\) lower-alkyl; halogen, \(C_{1}\) to \(C_{4}\) loweralkoxy, \(C_{4}\) to \(C_{7}\) cycloalkyloxy, 4 morpholinyl, \(C_{1}\) to \(C_{4}\) lower-alkoxy. \(C_{1}\) to \(C_{4}\) lower-alkoxy, hydroxy. imidazolyl, oxo and 4 -morpholinyl- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) lower-aikoxy, or at any available nitrogen atom by \(C_{1}\) to \(C_{4}\) bower-alkyl, \(C_{2}\) to \(C_{4}\) lower-alkanoyl, or trifluoroacetyl; or a pharmaceutically acceptable acid-addition salt thereof.

\section*{U.S. Patent No. 5,405,847 discloses compounds of the}

\section*{formula}

where the benzo ring can also contain a nitrogen atorn instead of a CY group either in position 6,7,8 or 9 und the radicals \(\mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}\) and \(\mathbf{R}_{4}\) have the following meanings:
\(\mathrm{R}_{1}: \mathrm{C}_{2}\) - \(\mathrm{C}_{6}\)-alkenyi, \(\mathrm{C}_{2}-\mathrm{C}_{6}\)-alkyniyl. hydroxy, \(\mathrm{C}_{1}-\mathrm{C}_{6}\) alkoxy, \(\mathrm{C}_{3}\)-C6-alkenyioxy, \(\mathrm{C}_{3}\)-C6-alkynylory, \(\mathrm{C}_{2}\)-C6-alkanoyloxy, benzoyloxy, morpholinocarbonyloxy, \(C_{1}-C_{6}\)-alkyloxycarbonyloxy, \(C_{I}-C_{6}-\) alkylaminocarbonyloxy, \(\quad C_{1}\)-C6-dialkylaminocarbonylony or the group
-Alk-A
where Alk: is \(\mathrm{C}_{1}-\mathrm{C}_{6}\)-alkyl, \(\mathrm{C}_{2}\) - \(\mathrm{C}_{6}\)-hydroxyalkyl or \(\mathrm{C}_{3}-\mathrm{C}_{6}\)-cycloalkyl and the symbol \(A\) represents:
1) Hydrogen, halogen, hydraxy, \(\mathrm{C}_{1}\)-C6-alkory, \(\mathrm{C}_{2}-\mathrm{C}_{6}\)-alkanoyloxy, phenyl;
2) \(-\mathrm{NHR}_{5}\), \(\mathrm{NR}_{5} \mathrm{R}_{6}\), \(\mathrm{NR}_{5} \mathrm{~N}_{6} \mathrm{R}_{7}\), pyridylamina, imidazolyl, pyrrolidinỳ, N-Cl-C6-alkylpyrrolidi-
nyl, piperidytamino, \(\quad \mathrm{N}\)-(phenyl- \(\mathrm{C}_{1}-\mathrm{C}_{4}\)-alkyl)piperidylamino where \(R_{s}\) and \(R_{6}\) may be the same or different and represent hydrogen, \(\mathrm{C}_{1}-\mathrm{C}_{6}\) alkyl, \(\mathrm{C}_{3}\)-C7-cycloalkyl, \(\mathrm{C}_{3}\)-C7-hydroxycycloalky1, mor-pholino-C1-C6-alkyl, phenyl, phenyl-C1-C6-alkyI or phenyl- \(C_{2}-C_{6}\)-oxyalkyl, it also being possible for the phenyl radicals in \(\mathrm{R}_{5}\) and \(\mathrm{R}_{6}\) to be substituted by haloger and \(R_{7}\) is hydrogen or \(C_{1}\)-C6-alkyl;
3) The group:
--
where D is phenyl, \(\mathrm{C}_{1}-\mathrm{C}_{6}\)-alkyl, \(\mathrm{C}_{3}-\mathrm{C}_{7}\)-cycloalkyl, hydroxy, \(C_{1}-C_{6}\)-alkoxy, \(C_{3}-C_{7}\)-cycloalkyloxy, morpholino, pyrrolidino, piperidino, homopiperidino, piperaxino, -NHRs or -NRsR6 and \(R_{5}\) and \(R_{6}\) have the meamings given hereinaboves
4) The group:

where \(n\) can be the integers 1-3 and \(E\) represents \(\mathrm{CH}_{2}\), oxygen, sulfur, \(\mathrm{NH}, \mathrm{CHOH}, \mathrm{CH}-\mathrm{C}_{1}-\mathrm{C}_{6}\) alkyloxy, \(\mathrm{CH}_{2} \mathrm{C}_{2}\)-C6-alkanoyloxy, \(\mathrm{CHC}_{6} \mathrm{H}_{5}\), \(\mathrm{CHOOD}, \mathrm{CH}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{~N}-\mathrm{C}_{1}-\mathrm{C}_{6} \mathrm{Cl}_{6} \mathrm{Cl}_{5}\), \(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{hyd}^{2}\) roryalkyl, \(\mathrm{N}, \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5}\), \(\mathrm{N}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{~N}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{OH}\) \(\mathrm{N}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{OH}\) or NCOD and the phenyd radicals ( \(\mathrm{C}_{6} \mathrm{H}_{5}\) ) may also be substituted by halogen, \(C_{1}-C_{6}\)-alkoxy, trifluoromethyl, \(C_{1}-C_{6}\)-alkyl, methylenedioxy or cyan and \(D\) has the meanings given hereinabove;
\(R_{2}\) and \(R_{3}\), which may be the same or different: hydrogen, hajogen, hydroxy, \(C_{1}-C_{\text {dalk }}\) alkl, trifluoromethyl, - \(\mathrm{CN}_{1} \mathrm{C}_{1}-\mathrm{C}_{6}\)-alkory, \(\mathrm{C}_{3}-\mathrm{C}_{6}\)-alkenyloxy, \(\mathrm{C}_{3}\) - \(\mathrm{C}_{6}\)-alkyayloxy, -NHR \(\mathrm{N}_{5}, \mathrm{NR}_{5} \mathrm{R}_{6}\). \(\mathrm{NR}_{5 \mathrm{R}_{6} \mathrm{R}_{7}}\) (meanings \(R_{5}, R_{6}, R_{7}\) as given hereinabove) or the group -G-Alk-A, where Alk and A have the meanings given. hereinabove and \(G\) is oxygen, solfiur,
NH or \(N R s\) and R , can also
\[
\mathrm{NH} \text { or NRs and } R_{2} \text { can also be }
\]


R4: hydrogen or halogen, where \(R_{1}\) can also be hy drogen, when \(\mathbf{R}_{\mathbf{2}}\) is the group

and \(R_{s}\) represents phenyl. \(C_{1}-C_{4}\)-alkoxyphenyl or diphenylmethyl and \(R_{3}\) and \(R_{4}\) are hydrogen, and and quaternary amplly acceptable acid addition salts and quaternary ammonium salts, with the exception of the compounds of Formula I where \(\mathbf{R}_{1}\) is ethyl, morpholinoethyi or pyl, dimethylaminoand \(R_{4}\) are hydrogen and pyrrolidinoethyl, \(R_{2} R_{3}\) contain a nitrogen atom instead of a CH does not
U.S. Patent No. 5,436,233 discloses compounds of the

(1)
wherein \(R^{\prime}\) is hydrogen or \(\mathrm{Cl}-4\) alkyl;
\(Y\) is single bond or C1-6 alkylene;
\(A\) is
\[
\begin{aligned}
& \text { (i) }-\mathrm{CyA}-\left(\mathrm{R}^{2}\right) l \text {, } \\
& \text { (ii) }-\mathrm{O}-\mathrm{R}^{0}
\end{aligned}
\]
(ii) \(-\mathrm{O}-\mathrm{R}^{\mathrm{o}}\) or \(-\mathrm{S}(\mathrm{O})_{p-\mathrm{R}^{0} \text {, }, ~ \text {, }}\)
in which \(\mathrm{R}^{\circ}\) is \(\mathrm{R}^{04}\) or \(\mathrm{R}^{0 B}\);
\(\mathrm{R}^{04}\) is -CyA- \(\left(R^{2}\right) 1\);
\(\mathrm{K}^{O B}\) is hydrogen or Cl-4 alkyl;
\(p\) is \(0-2\)
CyA is
(1) 3-7 mombered, saturated or unsaturated, monocyclic carbocyclic ring,
(2) 7-membered, unsaturated or partially saturated. monocyclic hetero ring containing as hetero atoms, ore nitrogen atom, one nitrogen and one oxygen atoms, two mitrogen and one oxygen atoms, or one nitrogen and two oxygen atoms,
(3) 6 -membered, unsaturated or partially saturated monocyclic hetero ring containing as hetero atoms, one nitrogen and one oxygen atoms, swo nitrogen and one oxygen atoms, or one nitrogen and two oxygen atoms.
(4) 6 -membered, unsaturated or partially saturated, monocyclic hetero ring containing as a hetero atom, one nitrogen atom,
(5) 4 or 5 -membered, unsaturated or partially saturated, monocyclic hetero ring containing as hetero atoms, one nitrogen atom, one nitrogen and one oxygen atoms, two mitrogen and one oxygen atoms, or one nitrogen and two oxygen atoms,
(6) 4-7 membered, unsaturated or partially samrated, monocyclic hetero ring containing as hetero atoms, one or two sulfur atoms or
(7) 4-7 membered, unsaturated or partially or fully saturated, monocyclic hetero ring containing as hetero atoms, one or two oxygen atom;
\(R^{2}\) is \(R^{24}\) or \(R^{2} B\);
\(\mathrm{R}^{2 A}\) is (1) - NR \({ }^{6} \mathrm{AR}^{7 A}\), in which \(\mathrm{R}^{6 A}\) and \(\mathrm{R}^{7 A}\) independently are hydrogen or Cl-4 alkyl (with the proviso that \(\mathrm{R}^{6 A}\) and \(\mathrm{R}^{7 A}\) are not hydrogen at same time), (2) - \(\mathrm{SO}_{2} \mathrm{NR}^{6} \mathrm{R}^{7}\), in which \(\mathrm{R}^{6}\) and \(\mathrm{R}^{7}\) independently are hydrogen or Cl-4 alkyl, (3) trifluoromethyl or (4) trifluoromethoxy;
\(\mathrm{R}^{2 B}\) is (1) hydrogen, (2) C1-4 alkyl, (3) Cl-4 alkoxy, (4) -COOR \({ }^{5}\), in which \(\mathrm{R}^{5}\) is hydrogen or \(\mathrm{Cl}-4\) alkyl, (5) halogen, ( \((9)\) nitro ar (7) -NRGBR \({ }^{7 B}\), in which \(R^{6 B}{ }^{\text {and }} R^{7 B}\) are hydrogen;
\(Z\) is \(Z A\) or \(Z B\);
\(Z^{\prime}\) is methylene, ethylene, vinylene or ethyaylenes
\(Z^{6}\) is single bond;
CyB is
(1) T-membered, unsaturated or partially saturrated, monocyclic betem ring containing as hetero atoms, one, two or three nitrogen atoms,
(2) 6-membered, misaturated or partially saturated, monocyclic betero ring containing as hetero atoms, two or threc nitrogen atoms,
(3) 6-membered, unsaturated or partially saturated, monocyclic hetero ring containing as a hetero atom, one nitrogen atom,
(4) 4 or 5 -membered, umsaturated or partialiy satarated, monocyclio hetero ring containing as hetero atoms, one, two or three nitrogen atoms, or
(5) 4-7 membered, unsaturated or partially saturated, monocyclic hetero ring contaiming as hetcro atoms, one or two oxygen atoms, or one or two sulfur atoms;
\(R^{3}\) is hydrogen, C1-4 alkyl, Cl-4 alkoxy, halogen or trifunromethyl;
\(\mathbf{R}^{4}\) is \(R^{4 /}\) or \(R^{48}\).
\(\mathrm{R}^{41}\) is (1) \(-\mathrm{NHSO}_{2} \mathrm{R}^{11}\), in which \(\mathrm{R}^{11}\) is \(\mathrm{Cl}^{1-4}\) alkyl,
(2) \(\mathrm{SO}_{2} \mathrm{NR}^{9} \mathrm{R}^{10}\), in which
\(\mathbf{R}^{9}\) is hydrogen, Cl-4 alkyi or phenyl(Cl-4 alkyl) and \(R^{10}\) is hydrogen or \(\mathrm{Cl}-4\) alkyi, (3) \(-\mathrm{OCOR}^{11}\). in which \(R^{11}\) is as hercinbefore defined, (4) hydroxy, (5) - \(\mathrm{SO}_{2} \mathrm{~N}=\mathrm{CHNR}^{12} \mathrm{R}^{13}\) in which \(\mathrm{R}^{12}\) is hydrogen or \(C 1-4\) alkyl and \(R^{13}\) is \(\mathrm{Cl}^{-4}\) alkyl, (G)
CONR \({ }^{14} \mathrm{R}^{15}\) in which \(\mathrm{R}^{14}\) is hydrogen ar \(\mathrm{Cl}_{-4}\) - CONR \({ }^{14} \mathrm{R}^{15}\) in which \(\mathrm{R}^{14}\) is hydrogen ar Ci-4 4 (7) ethynyl, (8) tri(CI-4 alkyl) silyiethynyl or (9)
acetyl;
\(\mathrm{R}^{4 B}\) is (1) hydrogen, (2) C1-4 alkyl, (3) \(\mathrm{Cl}-4\) alkoxy, (4) - \(\mathrm{COOR}^{8}\), in which \(\mathrm{R}^{8}\) is hydrogen or \(\mathrm{Cl}-4\) alkyl, (5) - NR \({ }^{9} \mathrm{R}^{10}\), in which \(\mathrm{R}^{9}\) and \(\mathrm{R}^{10}\) are as hereinbefore defined, ( 6 ) --NHCOR \({ }^{11}\), in which \(\mathbf{R}^{11}\) is as hereinbefore defined, (7) halogen, (8) trifluoromethyl. (9) nitro, (10) cyano, (II) Cl-4 alkylthio, (12) \(\mathrm{Cl}-4\) alkylsulfinyl, ( 13 ) \(\mathrm{Cl}-4\) alkyisulfonyl, (14) hydroxymethyl, and \(1, m\) and \(n\) independently are 1 or 2 ; with the proviso that
(1) the group of the formula: - \(\mathrm{CyA}-\left(\mathrm{R}^{2}\right)_{l}\) does not represent a cyclopentyl and trifuoromethylphenyt group when \(Y\) is a single bond, that
(2) a CyB ring does not bond to \(Z\) through a nitrogen atom th the CyB ring when \(Z\) is vinylene or ethynylene, that
(3) a CyB ring is not pyridine or thiophene when CyA is a ring of CyA-(7) that
(4) \(Y\) is not a single bond, when \(A\) is (ii) 一O- \(R^{0}\) or \(-\mathrm{S}(\mathrm{O})_{p-\mathrm{R}^{0} \text { and that }}\)
(5) \(A\) is not \(-C y A-\left(R^{2} B\right) 1\) and \(-O R^{0 B}\), when \(Z\) is \(Z^{B}\) and \(R^{4}\) is \(\mathrm{R}^{4 \beta}\); or pharmaceutically acoeptable acid addition salts thereof, pharmaceutically acceptable salts thereof, or hydrates thereof.

\section*{Preferred compounds include:}

\footnotetext{
4-phenylmethylamino-2-((1-imidazolyl)rnethyl) quinazoline,
4-phenylmethylamino-2-((1-imidazolyl)methyl)quinazoline,
6-chioro-4-phenylmethylamino-2-(1-imidazolylmethyDquinazoline,
6-chlora-4-phenylamino-2-(1-imidazolylmethyl)quinazoline,
6-chloro-4-(3-carboxypbenyl)amino-2-(1-imidazolylmethyl)quinazoline
or
4-phenylmethylamino-2-(2-(3-pyridyl)vinyl)quinazoline,
and pharmaceutically acceptable acid addition salts thereof, pharmaceutically acceptable salts thereof, or hydrates thereof.

6-dimethylamicosulfonyl-4-pbenylmethylamino-2-ílimidazolyl)quinazoline,
6-dimethylaminomethylideneaminosulfonyl-4 phenylmethylamino-2- 1 -imidazolyl)quinazoline,
6-(phenylmethylaminosulfonyi)-4-phenyime-thylamino-2-(1-imidazolyl)quinazoline,
6-phenylmethylaminocarbonyl-4-phenylme thylamino-2-(1-imidazolyl)quinazoline,
6-ethylaminocarbonyl-4-phenylmethylansino-2-(1-imidazolyl)-5,6,7,8-tetrahydroquinazoline,
6-hydroxy-4-phenyimethylamino-2-(1-imidazolyl)quinazoline,
6-(1-i midazolyl)-4-(2-merhoryethyl)amino-6-(2-triethylsilylethynyl)quinazoline.
6-elhynyl-4-(2-methoxyethyl)amino-2-(1-imidazolyl)quinazoline,
6-(1-imidazoly)-4-phenylmethylamino-6-ethynyIquinazoline or
6-acetyl-4-(2-methoxyethyl)amino-2-(1-imidazoly1) quinazoline,
and pharraaceutically acceptable acid addition salts thereof, pharmaceutically acceptable salts thercof, or hydrates thereof.
}

4-(2-methylthioethyl)amino-6-methoxy-2-(1innidazolyl)quivazoline,
4-(2-methylsulfinylethyl)amino-6-methoxy-2-(1imidazolyl)quinazoline,
4-(2-methylsulfonylethyl)amino-6-methoxy-2-(1imidazolyl)quinazoline,
4-(3-trifluoromethylphenylmethyl)amino-2-(3pyridyl)quinazoline,
4-(4-(N,N-dimethylamino)phenylmethyl)amino-2-(3pyridyl)quinazoline,
4-(4-sulfamoylphenyimethyl)anino-2-(3-pyridyl)quinazoline,
4-(4-trifuloromethoxyphenylmethyl)amino-2-(1imidarolyl)qninazoline,
4-(3-trifluoromethoxyphenylmethyl)amino-2-(1imidazolyl)quinazoline,
4-(2-phenoxyethyl)amino-6-methoxy-2-(1imidazolyl)quinazoline or
4-(2-phenoxycthyl)amino-2-(1-imidazolyl)quinazoline.
and pharmaceutically acceptable acid addition salts

\section*{U.S. Patent No.. 5,576,322 discloses compounds of the}

\section*{formula}

(I)

whercin RI, R3, and R4, each of which may be the same or different from edth other, may each represent a hydragen atom, a halogen atom or a lower alkyl group or a lower alkoxy hydrogen atom, R2 is a halogen or cyan grosp RS is a group represented by the formula:

wherein \(u\) is 3 or 4 and R61 represents a carboxyl group which may be proticted or a helernaryl group; or RS is a group represented by the formula:

and R6 is a group represented by the formula

wherein \(X\) is hydrugen atom or a halogen atom or


Or die pharmaculogically acocptable salt thereof.

Preferred compounds include:

2-(4-carboxypiperidino)-4-(3,4-methylene-dioxybenzyl) amino-6-chloroquinazoline- or a pharmaceutically acceptable salt thercof.

Sodium 2-(4-carboxypiperidino)-4-(3,4-methylene. dioxybertzyl) amiso-6-chloraquinazoline.

\section*{WO 94/29277 discloses compounds of the formula}


Formula (1)
or a pharmaceutically acceptable salt thereof, wherein
Ar is an optionally substituted aryl or heteroaryl ring selected from phenyl, naphthyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, imidazolyl, thienyl, oxazolyl,
benzimidazolyl, benzoxazolyl, indolyl or thianaphthenyl,
\(X\) is CH or N ;
\(R^{0}\) is \(N R^{1} R^{2}\) or hydrogen; and \(R^{1}\) and \(R^{2}\) are independently hydrogen or \(C_{1-6}\) alkyl.

Preferred compounds include:
3-amino-4-[4-(3-pyridyl)]anilino-3-cyclobutene-1,2-dione,
3-amino-4-[3-(4-imidazolyl)anilino]-3-cyclobutene-1,2-dione,
3-methylamino-4-[3-(5-methyl-4-imidazolyl)anilino]-3-cyclobutene-1,2-dione,
3-dimethylamino-4-[3-(5-methyl-4-imidazolyl)anilino]-3-cyclobitene-1,2-dione.
3-amino-4-[3-(3-methyl-4-pyridyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-oxazolyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(4-pyridyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(3-pyridyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-pyridyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-thienyl)anilino]-3-cyclobutene-1.2-dione,
3-amino-4-[3-(3-thienyl)anilino]-3-cyclobutene-1,2-dione,

3-amino-4-[3-(2-thianaphthenyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(5-pyrimidyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-benzoxazoy])anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-benzimidazolyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-indolyl)anilino]-3-cyciobutene-1,2-dione,
3-amino-4-(3-phenyl)anilino-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-hydroxyphenyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-methoxyphenyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(3-hydroxy-2-pyridyl)anilino]-3-cyclobutene-1,2-dione,
3-amino-4-[3-(2-imidazolyl)anilino]-3-cyclobutene-1,2-dione,
3-amina-4-[6-(4-pyridyl)-2-pyridylamino]-3-cyclobutene-1,2-dione, or
3-[3-(4-pyridyl)anilino]-3-cyclobutene-1,2-dione,
or a pharmaceutically acceptable salt thereaf.

WO 95/19978 discloses compounds of the formula

and salts and solvates thereof, in which:
\(\mathrm{RO}^{0}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alkyl;
\(R^{1}\) represents hydragen, \(\mathrm{C}_{1-6 \text { aikyl, }} \mathrm{C}_{26}\) alkenyl, \(\mathrm{C}_{26}\) alkynyl, halo \(\mathrm{C}_{1-}\) 6alkyl, \(\mathrm{C}_{3-8}\) cycloalkyl, \(\mathrm{C}_{3-8}\) cycloalkylC q-3 alkyl, aryl \(_{\text {1-3 }}\) alky! or heteroarylC \({ }_{1-3}\) alkyl;
\(R^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally
substituted bicyclic ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5- or 6-membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and \(R^{3}\) represents hydrogen or \(C_{13}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3or 4 membered alkyl or alkenyl chain.

Preferred compounds include:
Cis-2,3,5,7,12,12a-hexahydro-2-(4-pyridylmethyl)-6-(3,4-methylenedioxyphenyl)-pyrazino[ \(2^{\prime}, 1^{\prime}: 6,1\) ]pyrido[3,4-b]indole-1,4-dione; Cis-2,3,6,7,12,12a-hexahydro-6-\{2,3-dihydrobenzo[b]furan-5-yl]-2-methyl-pyrazino[ 2 ', \(1:: 6,1\) ]pyrido[3,4-b]indole -1,4-dione; Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-methylpyrazino[ \(2^{\prime}, 1^{\circ}: 6,1\) ]pyrido [3,4-b]indole -1,4-dioné;
Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-methylphenyl)pyrazino[ \(2^{\prime}, 1^{\prime}: 6,1\) ]pyrido[3,4-b]indole -1,4-dione: ( 6 R, 12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)-pyrazino[ \(\left.2^{\prime}, 1^{1}: 6,1\right]\) pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-(3,4-methylenedioxyphenyl)-pyrazina[2', \(\left.\mathbf{1}^{\dagger}: 6,1\right]\) pyrido[ 3,4 -b] indole \(-1,4\)-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopropylmethyl-6-(4-methoxyphenyt)-pyrazino[ \(2^{\prime}, 1^{1}: 6,1\) ]pyrido[ 3,4 -b]indole \(-1,4\)-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methyl-pyrazino[ 2 ', 1 ::6,1]pyrido 3,4 -b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[ 2 ', \(1: 6,1]\) pyrido[3,4-b]indole-1,4-dione; (6R, 12aR)-2,3,6,7,12,12a-Hexahiydro-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1': 6,1] pyrido [3,4-b] indole-1,4-dione; (5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3,4-methyienedioxypheryl)-pyrrolo[1",2"' : 4',5']pyrazino[2', 1' : 6,1]pyrido[3,4-b]indole-5-1,4-dione;
and physiologically acceptable salts and solvates thereof.

WO 96/28429 discloses compounds of the formula

wherein:
\(R^{1}\) is tert-butyl, or cyclopentyl;
\(R^{3}\) is methyl, ethyl, or pherlylmethyl;
X is \(-\mathrm{CH}_{2}-\), -O , or \(-\mathrm{NH}-\); and
\(R^{6}\) is phenyl for phenyl substituted by from one to three, the same or different, substituents selected from the group
consisting of lower-alkoxy, hydroxy, halogen, carboxylower-alkoxy. 4-morpholinyl-lower-alkoxy, 5-tetrazolyl-lower-alkoxy, diloweralkylamino, trifluoromethyl. nitro, amino. loweralkylsulfonylamino. dilower-alkylamino-lower-alkylphenyl carbonyloxy, and 1 -imidazolyl); or when \(x\) is \(-\mathrm{CH}_{2}-\mathrm{R}^{6}\) is additionally 2-.3-. or 4-pyridinyl. 1-pyrrolyl, 1-benzimidazolyl, 1.2.3.4-tetrahydro-2-isoquinolinyl. 1.2.3.4-tetrahydro-1guinolinyl, hydroxy. 1-imidazolyl, 1-lower-alkyl-2.3.4, or 5pyrrolyl, 1-pyrazolyl. 3-.4-. or 5 -isoxazolyl(or 3.4, or 5isoxazolyl substituted on any available carbon atom thereof by lower-alkyl), 2-thienyl, or 3-thienyl; or a pharmaceutically acceptable acid-addition salt and/or hydrate thereof.

Preferred compounds include:
1-cyclopentyl-3-ethyl-6-(4-methoxyphenylmethyl)pyrazolo [3,4-d]pyrimindin-4-one,

1-cyclopentyl-3-ethyl-6-(4-hydroxyphenylmethyl)pyrazolo [3,4-d]pyrimindin-4-one.

1-cyclopentyl-3-ethyl-6-(phenylmethyl)pyrazolo(3,4-d)
pyrimindin-A-one, and
1-cyclopentyl-3-ethyl-6-(4-aminophenylmethyl) pyrazolo [3,4-d]pyrimindin-4-one.

WO 96/28448 discloses compounds of the formula

wherein:
\(R^{1}\) is tert-butyl, or cyclopentyl;
\(R^{3}\) is lower-alkyl, or phenyl-lower-alkyl; and
\(R^{6}\) is phenyl, or phenyl substituted by from one to three. the same or different, substituents selected from the group consisting of lower-alkoxy, lower-alkyl, hydroxy. l-imidazolyl.
lower-alkenyloxy, dilower-alkylamino-lower-alkoxy, 4-morpholinyl-lower-alkoxy, lower-alkoxycarbonyl-lower-alkoxy. carboxyloweralkoxy, trifluoromethyl, l-piperidinyl-lower-alkoxy. I-pyrrolidinyl-lower-alkoxy, nitro, halo, amino, -( \(\left.\mathrm{CH}_{2}\right)\) 2O-, loweralkylsulfonylamino. lower-alkoxy-lower-alkoxy, jower-alkenyl. dilower-alkylamino. \(-\mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\). 4-morpholinyicarbonyl-loweralkoxy, 4-thiomorpholinyl-lower-alkoxy, pyridinyi-lower-alkoxy, 1-lower-alkyl-3-hexahydroazepinyloxy, and l-lower-alkyl-4piperidinyl oxy; or a pharmaceutically acceptable acid-addition salt and/or hydrate thereof.

Preferred compounds include:

1- cyclopentyl-3-ethyl-6-(2-propoxyphenyl)pyrazolo(3.4-d) pyrimindin-i-one.

1-cyclopentyl-3-ethyl-6-(4-(1-imidazolyl)phenyl]pyrazolo [3.4-d]pyrimindin-4-one.

1-cyclopentyl-3-ethyl-6-(3-(2-(4-morpholinyl) ethoxy) phenyllpyrazolo[3,4-d]pyrimindin-4-one.

1-ç゙ニlopentyl-3-echyl-6-(2-ethoxy-4-(1-imidazolyl)phenyll pyrazolo[3, \(k\)-d]pyrimindin-4-one, and

1-cyclopentyl-3-ethyl-6-[2-( \(\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right)\) phenyl]pyrazolo (3.4-d) pyrimindin-4-one.

\section*{WO 96/32003 discloses compounds of the formula}

and salts and solvates thereof, in which:
\(R^{\circ}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alkyl;
\(R^{1}\) is selected from the group consisting of:
(a) hydrogen;
(b) \(\quad C_{1-6}\) alkyl optionally substituted by one or more substituents selected from phenyl, halogen, \(-\mathrm{CO}_{2} \mathrm{R}^{\mathrm{a}}\) and \(-\mathrm{NR}^{\mathrm{a}} \mathrm{R}^{\mathrm{b}}\);
(c) \(\mathrm{C}_{3-6}\) cyctoalkyl;
(d) phenyl; and
(e) a 5- or 6-membered heterocyclic ring containing at least one heteroatom selected from oxygen, nitrogen and sulphur, and being optionally substituted by one or more \(\mathrm{C}_{1.6}\) alkyl, and optionally linked to the nitrogen atom to which \(R^{1}\) is attached via \(C_{1-\sigma}\) alkyl;
\(R^{2}\) is selected from the group consisting of.
(f) \(\quad C_{3-6}\) cycloalkyl;
(g) phenyl optionally substituted by one or more substituents selected from \(-O R^{a},-N R^{a} R^{b}\), halogen, hydroxy, trifluoromethyl, cyano and nitro;
(h) a 5- or 6-membered heterocyclic ring containing at least one heteroatom selected from oxygen, nitrogen and sulphur; and
(i) a bicyclic ring
 attached to the rest of the molecule via one of the benzene ring carbon atoms and \(A\) is a 5 - or 6 -membered heterocyclic ring as defined in point (h); and
\(R^{a}\) and \(R^{b}\) independently represent hydrogen or \(C_{1.6}\) alkyl.

Preferred compounds include:
Cis-2-benzyl-5-(3,4-methylenediaxyphenyl)-5,6,11.11a-tetrahydro-1H-imidazo [ \(\left.1^{\prime}, 5 ': 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione:
Trans-2-benzyl-5-\{3,4-methylenedioxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-5-(4-methoxyphenyl)-2-methyl-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-ethyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5:1,6] pyrido[3.4-b]indole-1.3(2H)-dione;
Trans-2-ethyl-5-(4-methoxyphenyl)-5,6,11.11a-tetrahydro-1H-imidazo[1',5':1.6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-ethyl-5-(3,4-methylenedioxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [ \(\left.1^{\prime}, 5 ': 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-ethyl-5-(2-thienyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-5-(4-dimethylaminophenyl)-2-ethyl-5,6.11.11a-tetrahydro-1H-imidazo
[ \(\left.1^{\prime}, 5 ': 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-9-methyl-5-phenyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-9-bromo-2-butyl-5-pherryl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-butyi-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1'.5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-butyl-9-fluoro-5-(4-methoxyphenyi)-5,6,11,11a-tetrahydro-1H-imidazo [ \(\left.{ }^{\prime}, 5 ': 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione:
Trans-2-butyl-9-fluoro-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1', 5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-5-(3,4-methylenedioxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [ \(\left.1^{\prime}, 5^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione:
Cis-2-butyl-5-(3-chlorophenyl)-5,6,11,11a-tetrahydro-1H-imidazo[ \(\left.1^{\prime}, 5{ }^{\prime}: 1,6\right]\) pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-5-(3-chlorophenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido (3,4-b]indole-1,3(2H)-dione;

\section*{Cis-2-butyl-5-(4-chlorophenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione; \\ Trans-2-buty-5-(4-chlorophenyl)-5,6,11,11a-tetrahydro-1H-imidazo \(\left[1^{\prime}, 5^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione: \\ Trans-2-butyl-5-(4-fluorophenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1,5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;}

Trans-2-butyl-5-(4-hydroxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1', \(5^{\prime}: 1,6\) ] pyrido [3,4-b]indole-1,3(2H)-dione; .
Cis-2-butyl-5-(4-trifluoromethylphenyi)-5,6,11,11a-tetrahydro-1H-imidazo
[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-butyl-5-(4-cyanophenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-2-butyl-5-(4-cyanophenyl)-5,6,11,11a-tetrahydro-1 H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-butyl-5-(4-nitrophenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1'.5':1,6]pyrido [3.4-b]indole-1.3(2H)-dione;
Trans-2-butyl-5-(4-nitropheny)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-butyl-5-(3-pyridyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido [3,4-b] indole-1,3(2H)-dione;
Cis-2-butyl-5-(3-thienyl)-5,6,11.11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido [3,4-bjindole-1,3(2H)-dione;
Trans-2-butyl-5-(3-thienyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-butyl-5-(3-furyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido [3,4 b]indole-1,3(2H)-dione;
Trans-2-butyl-5-(3-furyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-blindole-1.3(2H)-dione;
Cis-2-cyclohexyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-iH-imidazo [1'.5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-cyctohexyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [1'.5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Cis-2-cyclohexyi-8-fluoro-5-(4-methoxyphenyl)-5.6.11,11a-tetrahydro-1Himidazo[1'.5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione:
Trans-2-cyclohexyl-9-fluoro-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1Himidazo[ \(\left.1^{\prime}, 5^{\prime}: 1,6\right]\) pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-benzyl-5-phenyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido [3,4-bjindole-1,3(2H)-dione;

Cis-2-benzyl-5-\{4-methoxyphenyl)-5,6,11.11a-tetrahydro-1H-imidazo[1'.5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-2-benzyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
(5R,11aR)-2-benzyl-5-(3,4-methylenedioxyphenyl)-5,6,11,11a-tetrahydro-1Himidazo [1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-benzyl-5-(4-hydroxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [19,5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;

Trans-2-(2-chloroethyl)-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo [ \(\left.1^{\prime} .55^{\prime}: 1,6\right]\) pyrido[3.4-b]indole- \(1,3(2 \mathrm{H})\)-dione;
Cis-2-benzy-5-cyclohexyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-benzyl-5-cyclohexyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione:
Trans-2-butyl-5-phenyt-5,6.11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-cyclohexyl-5-phenyl-5,6.11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Cis-2-cyclohexyl-5-phenyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3.4-b]indole-1,3(2H)-dione;
Trans-2-ethoxycarbonylmethyl-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1Himidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-5-(4-methoxyphenyl)-2-[2-(2-pyridyl)-ethyl]-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-cyclopropyl-5-phenyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]
pyrido[3,4-b]indole-1,3(2H)-dione;
Trans -2-phenethyl-5-phenyl-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-5-phenyt-2-(2-pyridylmethyl)-5,6.11;11a-tetrahydro-1H-imidazo [1',5': 1,6]pyrido 3,4 -b]indole-1,3(2H)-dione;

Trans-5-phenyl-2-(4-pyridylmethyl)-5,6,11,11a-tetrahydro-1H-imidazo [1'.5':1.6]pyrido[3.4-b]indole-1,3(2H)-dione;
Trans-5-(4-methoxyphenyl)-2-(3-pyridylmethyl)-5,6,11,11a-tetrahydro-1H-
imidazo[ \(\mathcal{I}^{\prime}, 5\) ':1,6]pyrido[3,4-b]indole-1,3(2H)-dione;
Trans-2-(2-dimethylamino-ethyl)-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-2-(3-dimethylamino-propyl)-5-(4-methoxyphenyi)- 5,6,11,11a-tetrahydro -
1H-imidazo[1',5:1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-2-(2-morpholin-4-yl-ethyl)-5-phenyl-5,6,11,11a-teirahydro-1H-
imidazo[1',5:1,6] pyrido [3,4-b]indole-1,3(2H)-dione;
Trans-5-(4-methoxyphenyl)-2-\{3-(4-methyl-piperazin-1-yl)-propyl]-5,6,11,11a-tetrahydro-1H-imidazo[ \(\left.1^{\prime}, 5 ': 1,6\right]\) pyrido \([3,4-b]\) indole-1,3(2H)-dione;
Trans-5-(4-methoxyphenyl)-2-(2-pyrrolidin-1-ytethyl)-5,6,11,11a-tetrahydro-1Himidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dion;
Trans-5-(4-methoxyphenyl)-2-\{2-(1-methyl-pyrrolidin-2-yl)-ethyl]-5,6,11,11atetrahydro -1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3(2H)-dione; Trans-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1.3 (2H)-dione;
Cis-5-(4-methoxyphenyl)-5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6] pyrido [3,4-b]indole-1,3 (2H)-dione:
and pharmaceutically acceptable salts and solvates thereof.

WO 96/32379 discloses compounds of the formula

```

 wherein
 Rl is hydrogen, halogen, nitro, carboxy, protected
 carboxy, acyl, cyano, hydroxyimino(lower)alkyl,
 lower alkenyl optionally substituted with oxo, or
 lower alkyl optionally substituted with protected
 carboxy, carboxy or hydroxy;
 R}\mp@subsup{}{}{2}\mathrm{ is hydrogen, halogen, lower alkenyl, acyl, or lower
 alkyl optionally substituted with protected
 carboxy, carboxy, lower alkoxy or hydroxy;
 R}\mp@subsup{}{}{3}\mathrm{ is lower alkenyl or lower alkyl, both of which are
optionally substituted with one or more
substituent(s) selected from the group consisting
of
(1) oxo,
(2) aryl optionally substituted with one.or more
substituent(s) selected from the group
consisting of halogen, aryl, lower alkoxy,
lower alkylenedioxy, cyano, nitro, carboxy,
protected carboxy, acyl, and amino optionally
substituted with acyl or protected carboxy.
and
(3) a heterocyclic group optionally substituted
with halogen; and
R4}\mathrm{ is carboxy, protected carboxy, acyl, cyano, halogen,
a heterocyclic group, amino optionally substituted
with acyl or protected carboxy, or lower alkyl

```
```

 optionally substituted with protected carboxy,
 carboxy or acyl:
 in addition to their significances above,
R1}\mathrm{ and }\mp@subsup{R}{}{2}\mathrm{ , together with the carbon atoms to which
they are attached, represent a 4- to 7-
membered carbocyclic ring optionàlly
substituted with oxo,
or its pharmaceutically acceptable salt.

```

WO 97/03070 discloses compounds of the formula

wherein \(R^{\prime}\) is a hydrogen atom or a halogen atom;
\(\mathbf{R}^{2}\) is a phenyl-lower alkyl group;
\(R^{3}\) is a heterocyclic group selected from the group consisting of an indolyl group, indolinyl group, 1H-indazolyl group, 2(1H)-quinolinonyl group, 3,4-dihydro-2(1H)-quinolinonyl group and 3,4-dihydro-1،4(2H)-benzoxazinyl group, said heterocyclic group may have 1 to 3 substituents selected from the group consisting of:
a group of the formula \(-B-R^{4}\), ( \(B\) is a lower alkylene group; \(R^{4}\) is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and

\begin{abstract}
oxo group) or a group of the formula \(-N R^{3} R^{6}\left(R^{5}\right.\) and \(R^{6}\) are each the same or different, and \(a\) hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group.or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further \(R^{5}\) and \(R^{6}\) may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group;
\end{abstract}

A is a lower alkylene group; and
n is 0 or 1.

Preferred compounds include:
1-Benzyl-6-chloro-2-\{1-[3-(imidazal-1-
Yl)propyl]indol-5-ylaminocarbonyl\}benzimidazole.
1-Benzyl-6-chloro-2-\{1-[3-(N-Cyclohexyl-Nmethylamino) propyl]indol-5-ylaminocarbonyl\}benzimidazole.
```

 -60-
 1-Benzyl-6-chloro-2-{1-{3-(pyrazol-1-
 yl)propyl]indol-5-ylaminocarbonyl)benzimidazole.
1-Benzyl-6-chloro-2-{1-[3-(1,2,4-triazol-1-
yl)propyl]indol-5-ylaminocarbonyl}benzimidazole.
1-Benzyil-6-chloro-2-{1-[3-(3,5-
dimethylisoxazol-4-ylcarbonylamino)propyljindol-5-
Ylaminocarbonyl}benzimidazole.
1-Benzyl-6-chloro-2-{1-[3-(4-phenyl-4-
hydroxypiperidin-1-yl)propyl}indol-5-ylaminocarbonyl}-
benzimidazole.
1-Benzyl-6-chloro-2-{4-[3-(pyridin-2-
ylcarbonylamino)propyl]-3,4-dihydro-1,4(2H)-benzoxazin-
7-ylaminocarbonyl}benzimidazole.

```

WO 97/03675 discloses compounds of the formula

and salts and solvates (e.g. hydrates) thereof, in which:
\(\mathrm{R}^{\circ}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alkyt;
\(\mathrm{R}^{1}\) represents hydrogen, \(\mathrm{C}_{1-6 \text { alkyl, }} \mathrm{C}_{2-6}\) alkenyl, \(\mathrm{C}_{2-5}\) alkynyl, halo \(\mathrm{C}_{1-6 \text { alkyl, }}\)

\(\mathrm{R}^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic
ring
 attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
\(R^{3}\) represents hydrogen or \(C_{1-3}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3- or 4 membered alkyt or alkenyl chain;
for the manufacture of a medicament for the curative or prophylactic treatment of erectile dysfunclion in a male animal, including man.

Preferred compounds include:

Cis-2,3,6,7,12,12a-hexahydro-2-(4-pyridylmethyl)-6-(3,4-methylenedioxyphenyl)pyrazino[2', \(\left.1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole-1,4-dione;
Cis-2,3,6,7,12,12a-hexahydro-6-(2,3-dihydrobenzo[b]furan-5-yl)-2-methylpyrazino[ \(2^{\prime}, 1^{\prime}: 6,1\) ]pyrido[3,4-b]indole -1,4-dione;
Cis-2,3,6,7,12,12a-hexahydro-6-(5-bromo-2-thienyl)-2-methytpyrazino[ \(2^{\prime}, 1^{'}: 6,1\) ]pyrido[3,4-b]indole \(-1,4\)-dione:

Cis-2,3,6,7,12,12a-hexahydro-2-butyl-6-(4-methylphenyl)pyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)pyrazino[ \(2^{\prime}, 1^{\prime}: 6,1\) ]pyrido[3,4-b]indole -1,4-dione;
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyclopentyl-6-(3,4-4
methylenedioxyphenyl)-pyrazino[2', \(\left.1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7,12,12a-Hexahydro-2-cyciopropyimethyl-6-(4-methoxyphenyl)pyrazino[ \(2^{\prime}, 1^{\prime}: 6,1\) ]pyrido[3,4-b]indole -1,4-dione;
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methylpyrazino[2', 1':6,1]pyrido[3,4-b]indole -1,4-dione; (6R,12aR)-2,3,6,7.12,12a-Hexahydro-2-methyl-6-(3,4-methylenedioxyptienyl)pyrazino \(\left\{2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole-1,4-dione;
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1': 6,1] pyrido [3,4-b] indole-1,4-dione;
(5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3,4-methylenedioxyphenyD-pyrrolo[1", \(\left.2^{\prime \prime}: 4^{\prime}, 5^{\prime \prime}\right]\) pyrazino[2',1' : 6,1]pỵrido[3,4-bjindale-5-1,4-dione;
Cis-2,3,6,7,12,12a-hexahydro-2-cyclopropyt-6-(3,4-methylenedioxyphenyl)pyrazino \(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole -1,4-dione;
(3S, 6R,12aR)-2,3,6,7,12,12a-hexahydro-3-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[ \(\left.2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole -1,4-dione; and physiologically acceptable salts and solvates (e.g. hydrates) thereof.

WO 97/03985 discloses compounds of the formula

(1)
and solvates thereof, in which:
\(\mathrm{R}^{\circ}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alkyl;
\(\mathrm{R}^{1}\) represents hydrogen or \(\mathrm{C}_{1-6}\) alkyl;
\(R^{2}\) represents the blcyclic ring

which may be optionally substituted by one or more groups selected from halogen and \(\mathrm{C}_{1-3}\) alkyl; and
\(R^{3}\) represents hydrogen or \(C_{1-3}\) alkyl.

Preferred compounds include:
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-benzofurany)-2-methyl-pyrazino [ \(2^{\prime}, 1^{1}: 6,1\) ]pyrido[3,4-b]indole-1;4-dione: (6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-benzofuranyl)-pyrazino[ 2 ', 1 ':6,1] pyrido [3,4-b]indole-1,4-dione; (3S, 6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-benzófuranyl)-3-methyt pyrazino[ \(2^{\prime}, 1\) ':6,1] pyrido [3,4-b]indole-1,4-dione;
(3S. 6R, 12aR)-2.3,6,7,12.12a-Hexahydro-6-(5-benzofuranyl)-2,3-dimethylpyrazino \(\left[2^{\prime}, 1^{\prime}: 6,1\right]\) pyrido [3,4-b]indole-1,4-dione;
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(5-benzofuranyl)-2-isopropyl-pyrazino [ \(2^{\prime}, 1\) ':6,1] pyrido [3,4-b]indole-1,4-dione; and physiologically acceptable solvates thereof.

WO 97/43287 discloses compounds of the formula

wherein
\(R^{0}\) represents -hydrogen or halogen;
\(R^{1}\) is selected from the group consisting of:
-hydrogen,
\(-\mathrm{NO}_{2}\).
-trifluoromethyl,
-trifluoromethoxy,
-halogen,
-cyano.
a 5- or 6-membered heterocyclic group containing at least one heteroatom selected from oxygen, nitrogen and sulphur (optionally substituted by \(-C(=0) O R^{*}\) or \(C_{1-\text { alkyl), }}\)
\(-C_{1-c}\) alkyl optionally substituted by \(-O R^{a}\).
-C1.3alkoxy.
\(-C(=0) R^{*}\),
-O-C \(=0) R^{2}\).
\(-C(=0) O R^{2}\).
-C, alkylene \(C(=0) O R^{*}\).

- \(C_{i-a l k y l e n e-Q-C, a l k y l e n e-C(=0) O R ", ~}^{\text {al }}\)
\(-\mathrm{C}=0) \mathrm{NR}^{2} \mathrm{SO}_{2} \mathrm{R}^{\mathrm{c}}\).
\(-C(=0) C_{\text {salkytene }}\) Het. wherein Het represents 5- or 6-membered heterocyclic group as defined above,
\(-C_{1-a l k y i e n e ~}^{N R} R^{\circ} R^{6}\),
\(-C_{2-8}\) alkenylene \(N R^{2} R^{b}\).
\(-C(=0) N R^{*} R^{b}\).
\(-C(=0) N R^{\bullet} R^{c}\),
\(-C(=0) N R^{-} C_{1-a l k y l e n e ~} O R^{\text {b }}\)
\(-C(=0) N R^{2} C_{1, a l k y l e n e ~ H e t, ~ w h e r e i n ~ H e t ~ r e p r e s e n t s ~ a ~}\) 5- or 6 -membered
-64-
heterocyclic group as defined above,
-OR'
-OC 2 alkylene \(N R^{\circ} R^{\text {D }}\),
-OC, malkylene- \(\mathrm{CH}\left(\mathrm{OR}^{2}\right) \mathrm{CH}_{2} \mathrm{NR}^{\text {R }}{ }^{0}\).
- O-C, alkylene Het, wherein Het represents a 5 - or 6 - membered heterocyelic group as defined above,
-O-C \(\mathrm{C}_{2}\) alkylene-OR',
-O-C2_alkylene-NR'-C( \(=0\) )-OR \({ }^{\text {b }}\)
\(-N R^{\circ} R^{\circ}\),
\(-N R^{\circ} C_{\text {- -alkylene }} N R^{*} R^{\circ}\).
\(-N R^{\circ} C(=0) R^{b}\).
-NR"C(=0)NR"R \({ }^{\text {b }}\).
\(-\mathrm{N}\left(\mathrm{SO}_{2} \mathrm{C}_{1-\text { alky }}\right)_{2}\),
\(-\mathrm{NR}^{*}\left(\mathrm{SO}_{2} \mathrm{C}_{1-\text {-alkyl }}\right.\),
\(-\mathrm{SO}_{2} \mathrm{NR}^{2} \mathrm{R}^{\mathrm{b}}\), and
- \(\mathrm{OSO}_{2}\) trifluoromethyl:
\(R^{2}\) is selected from the group consisting of:
-hydrogen,
-halogen,
-OR'.
\(-\mathrm{C}_{1-6}\) alkyl.
\(-\mathrm{NO}_{2}\), and
\(-N R^{2} R^{6}\),
or \(R^{1}\) and \(R^{2}\), together form a 3- or 4-membered alkyiene or alkenylene chain. optionally containing at least one heteratom ;
\(R^{3}\) is selected from the group consisting of:
-hydrogen,
-halogen,
\(-\mathrm{NO}_{2}\)
-trifluoromethoxy.
-C.falkyl, and
\(-C(=0) O R^{*} ;\)
\(R^{4}\) is hydrogen,
or \(R^{3}\) and \(R^{4}\) together form a 3- or 4 membered alkylene or alkenylene chain, optionally containing at least one heteratom;
\(R^{\prime}\) and \(R^{g}\), which may be the same or different, are independently selected from hydrogen and \(\mathrm{C}_{1-\text { alkyl; }}\)
\(\mathrm{R}^{\mathrm{c}}\) represents phenyl or \(\mathrm{C}_{46}\) cycloaikyl, which phenyl or \(\mathrm{C}_{46 \text { cycloalkyl can be }}\) optionally substituted by one or more halogen atoms, one or more \(-C(=0) O R^{*}\) or one or more -OR";
\(n\) is an integer selected from 1,2 and 3 ;
\(m\) is an integer selected from 1 and 2 ;
and pharmaceutically acceptable salts and solvates thereof.
U.S. Patent No. 5,393,755 discloses compounds of the formula

or

wherein
\(J\) is oxygen or sulfur,
\(\mathbf{R}^{1}\) is hydrogen, alkyl or alkyl substituted with aryl or hydraxy;
\(R^{2}\) is hydrogen, ary1, heteroaryl, cyclosikyl, alkyi or alkyl substituted with aryl, heteroaryl; hydroxy, alkoxy, amino, monoalkyl amino or dialkylamino, or - \(\left(\mathrm{CH}_{2}\right)_{\pi 1}\) TCOR \({ }^{20}\) wherein \(m\) is an integer from 1 to 6, Tis oxygen or - NH - and \(\mathrm{R}^{20}\) is hydrogen, aryl, heteroaryl, alkyl or alkyl substituted with aryl or heteroaryl;
\(\mathbf{R}^{3}\) is hydrogen, halo, triffuoromethyl, alkoxy, alkylthio, alkyl, cycloalkyl, aryl, aminosulfonyl, amino, monoalkylamino, disikylamino, hydroxyalkylamino, aminoalkylamino, carboxy, alkoxycarbonyl or aminocarbonyl or altyl substituted with aryl, hydroxy, alkoxy, amino, monoalkylamino or dialkylamino;
\(\mathbf{R}^{d}, \mathbf{R}^{d}, \mathbf{R}^{c}\) and \(\mathbf{R}^{d}\) independently represent hydrogen, alkyl, cycloalkyl or aryl; or ( \(R^{a}\) and \(R^{b}\) ) or ( \(R^{c}\) and \(\mathbf{R}^{d}\) ) or ( \(\mathbf{R}^{b}\) and \(R\) ) can camplete a saturated ring of 5- to 7-carbon atoms, or ( \(R^{a}\) and \(R y\) ) taken together and ( \(R^{b}\) and R9) taken together, each complete 2 satorated ring of 5 - to 7 -carbon atoms, wherein each ring optionally can contain a sulfur or oxygen atom and whose carbon atoms may be optionally substiarted with one or more or the following. alkenyl, alkynyi, hydroxy, carboxy, alkoxycarbonyl, alkyl or alkyl substituted with hydrozy, carboxy or alkozycarbonyl; or such saturated ring can have two adjacent carbon atoms which are shared with an adjoining aryl ring; and
\(n\) is zero or one.

\section*{Preferred compounds include:}
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-3-phenylme-thyl)cyclopenta[4,5]imidazo[2,1-b]purin-4-one;
7,8-Dihydro-5-methyl-3-(phenylmethyl)-3Himidazo 2,1 -b]purin-4(5H)-one;
cis-6 ,7,8,9,10,10a-Hexahydro-5-methyl-3-(phenylme-
thyl)-3H-benzimidazo[ \(2,1-\mathrm{b}]\) purin-4(SH)-one;
5,7,8,9-Tetrahydro-5-methyl-3-(phenylmethyl)pyrimido 2,1 -b]purin \(4(3 \mathrm{H})\)-ane;
7,8-Dihydro-8-phenyl-5-methyl-3-(phenylmethyl)-3Himidazo[ \(2, \mathrm{l}-\mathrm{b}]\) purin \(4(\mathrm{SH})\)-one,
5', 7'-Dibydro-5'-methyl-3'-(phenylmethyl)spiro[cyclohexane \(-1,8^{\prime}-(8 \mathrm{H})\) imidazo \([2,1-\mathrm{b}]\) purin] \(] 4^{\prime}\left(3^{\circ} \mathrm{H}\right)\)-one; cis- \(5,6 a, 11,11 \mathrm{a}-\) Tetrahydro-5-methyl-3-(phenylmethyl)indeno \(\left[1^{\prime} 2^{2}: 4,5\right]\) imidazo \(2,1-\) b]purin-4 \((3 H)\)-ane;
\(5^{\prime}, 7^{\prime}\)-Dihydro- \(\mathbf{2}^{\prime}\), 's'dimethyl- \(^{\prime \prime}\)-(phenyimethyl)spiro (cy-clohexane-1, \(7^{\prime}\left(8^{\prime} H\right.\) )-imidazo[2,1-b]purin \(\}-4^{\prime}\) -(3'H)-one;
7,8-Dihydro-2,5,7,7,8(R,S)-pentamethyl-3H-imidazo[2,1-blpurin-4(5H)-one;
cis-5,6a, 7,11b-Tetrahydro-5-methyl-3-(phenylmethy])indeno \(\left[2^{\prime}, 1^{\prime} ; 4,5\right.\),5imidazo \([2,1-b]\) purin-4(3H)-one;
cis- \(5,68,7,8,9,9 \mathrm{a}\)-Hexabydro- 2,5 -dimethyl-3-(phenylme-thyl)cyclopent[4,5]imidazo[2,1-b]purin-4-(3H)-one;
\(5^{\circ}\)-Methyl-3'-(phenylmethyl)-spiro[cyclopentane-1,7'\(\left(8{ }^{\prime} \mathrm{H}\right)\)-( \(3^{\prime} \mathrm{H}\) )imidazo[2,1-b]purin]-4( \(\left.\mathbf{5}^{\prime} \mathrm{H}\right)\)-one:
7,8-Dihydro-2,5,7,7-tetramethyl-3-(phenylmethyl)-3Himidazo \(\left[2,1\right.\)-b]purin-4( \(\left.5^{\circ} \mathrm{H}\right)\)-one;
7,8-Dibydro-7(R)-phenyl-2,5-dimethyl-3-(phenylme-thyl)-3H-imidazo[2,1-b]purin-4(5H)-ade;
7,8-Dihydro-2,5-dimethy1-3,7(R)-bis(phenylmethyl)-3H-imidazo (2,1-b]purin-4(5H)-one;
( \(\pm\) )-7,8-Dikydro-2,5-dimethyl-7-ethyl-3-\{phenylme-thyil-3H-imidazo \([2, \mathrm{I}\)-b]purin 4 ( 5 H )-one;
\(6 a(S)-7,8,9,10,10 a(R)\)-Hexhydro- 2,5 -dimethy1-3-(phenyfmethyl)-3H-benzimidazo[2,1-b]purin-4(5H)-one;
6a(R)-7,8,9,10,10a(S)-hexahydro-2,5-dimethyl-3-(phenylmethyl)-3H-benximidazo[2,1-b]purin4 (5H)-one:
7,8-Dihydro-2,5-dimethyl-7(R)-isopropyl-3-(phenylme-thyl)-3H-imidazo[2,1-b]purin-4(5H)-one,
7,8-Dilhydro-2,5,7(R)-trimethyl-3-phenylmethyl)-3Himidazo \([2,1\)-b] purin-4( 5 H )-ones
cis-7,7a, 8,9,10,10a-Hexahydro-2,5-dimethyl-3-(phenyl-methyl)-3H-cyclopeata(5,6]pyrimido[2,1-b]purin4( 5 H )-one;
7,8-Dihydro-2,5-dimethyl-7(S)-(1-methylpropyi)-3. (pheaylmethyl)-3H-imidazo\{2,1-b]parin-4(5H)-one;
7,8-Dikydro-2,5-dimethyi-7(R)-(2-methylpropyl)-3-(phenyluethyl)-3H-imidazo[2, 1-b]purin-4( 5 H )-one, 7,8-Dihydro-2,5-dimethyl-7(R,S)-(methoxycarbony1)-3-(phenylmethyl)-3H-midazo \(2,1-\) b]purin-4(SH)-one;
7,8-Dihydro-2,5-dimethyl-7(R,S)-(1-propyl)-3-(phenyl-methyl)-3H-imidazo(2,1-blpurin-4(SH)-one;
7,8-Dibydro- 2,5 -dimethyl-7(S)-(1-methylethyl)-3-(phenylmethyl)-3H-imidazo[ \(2,1-\mathrm{b}]\) purin-4(5H)-one;
7,8-Dihydro- \(2,5,7,7,8(\mathrm{R}\), S)-pentamethyl-3Himidazo[ \(2,1-\mathrm{b}]\) parin-4 (5H)-ane,
5,7,8,9-Tetrahydro-2,5,7,9(R,S)-pentamethyl-3-phenyl-methyl)-pyrimido [2,1-blparin-4(3H)-one;
5,6a(R), 7,8,9,9a(S)-Hexahydro-2,5-dimethy1-3-(phenylmethyl)cyclopeat \([4,5]\) jimidazo \([2,1\)-b purin- 4 ( 3 H )-one;
\(5,6 \mathrm{a}(\mathrm{S}, 7,8,9,9 \mathrm{a}\) (R)-Hcxahydro-2,5-dimethyi-3-(phenylmethyl) eyciopent [4,5]imidazo [2,1-b] paria-4(3H)-one;
cis-6a, 7,8,9.10,10a-Hiexahydro-2,5-dimethyl-3-(phenyl-methyl)-3H benzimidazo[2,1-b]purin-4(5H)-ones
\(5^{\prime}, T^{\prime}\)-Dihydro- \(2^{\prime}, 5^{\prime}\)-dimethyl- \(3^{\prime}\)-(phenylmethyl)spiro[cy clohexane-1,8-(8H)-imidazo[2,1-b]porin]-4-(3'H)-one; cis-5,6a,7,8,9,9a-Hexahydro-2,5-dimethyl-3-(pheaylmethyl)cyclohept [6,7]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a, 7,8,9,9a-Hexahydro-5-methyl-2-ethyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin. 4(3H)-one;
cis-6a, 7, 8,9,10,10a-Herahydro-5-methyl-2-ethyl-3-(phenylmethyl)-3H-benzimidazo[2,1-b]purin-4 ( 5 H )-one,
cis-5,6a, 7,8,9,9a-Hexahyöro-5-methyl-2-ethyl-3 (phenylmethyl)cyclopent [4,5]imidazo[2,1-b]purin 4(3H)-one;
cis-5,6a, 7,8,9,9a-Hexahydro-5-methyl-2-phenyl-3 (phenylmethyl)cyclopent[4,S]imidazo[2,1-b]purin-4(3H)-one;
cis-6a, 7,8,9,10,10a-Hexahydro-5-methyl-2-phenyl-3-(phenylmethyl)-3H-benzimidazo \([2,1-6]\) purin-4(5H)-one;
cis-5,6a, 7,8.9,9a-Hexahydro-5-methylcyclopenta 4 , 5]imidazo[2,1-b]purin-4(3H)-onej
cis-5,6a,7,8,9,9a-Hexahydro-2,5-dimethylcyclopenta[4, 5 ]imidazo [2, 1-b]purin-4(3H)-one;
cis-5,6a(R), 7,8,9,9a(S)-Hexahydro-2,5-di-methylcyclopent \([4,5]\) imidazo \([2,1-\mathrm{b}]\) purin-4 ( 3 H )-one:
\(2^{\prime}, 5^{\prime}\)-dimethyl-spiro \{cyclopentane-1, \(7^{\prime}-\left(8^{\prime} \mathrm{H}\right)-\left(3^{\prime} \mathrm{H}\right)\). imidazo \(2,1-\mathrm{b}]\) purin\} \(-4^{\prime}\left(5^{\prime} \mathrm{H}\right)\)-one,
7,8-Dihydro-2,5-dimethyl-7(R)-(l-methylethyl)-3Himidaro [2, 1-6] purin-4(5H)-one,
7,8-Dihydro-2,5,7,7-tetramethyl-3H-imidazo[2,1-b]pu rin-4(5H)-one.
7,8-Dihydro-2,5-di methyl-7(S)-(1-methylethyl)-3H imidazo \([2,1-b]\) purin-4(5H)-one,
6a(R), 7,8,9,10,10a(S)-Hexahydro-2,5-dimethyl-3FI-be nzimidazo \(\{2,1-6]\) purin- \(4(5 \mathrm{H})\)-one
\(5^{\prime}, 7^{\prime}-\) Dihydro-2',5'-dimethylspiro \{cyclohexane-1,7( 8 'H)-imidazo \([2,1-6]\) puria \(]-4^{\prime}\left(3^{\prime} \mathrm{H}\right)\)-one;
cis-5,6a, 7,8,9,9a-Hexahydm-5-methyl-3-(phenylme-thyl)cyclopenta[4,5]imidazo[2,1-b]purin-4(3H)thione:
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(pheny1-methyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)thione:
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-3-(4-chloro-phenylmethyl)cyciopenta[4,5]imidazo[2,1-b]parin-4(3F)-one-
cis-5,6a,7,8,9,9a-Hexahydro-5-methyl-3-(cyclohexylmethy \()\) cyclopent \([4,5\) ]imidazo \([2,1\)-b]purin-4(3H)-one
cis-5, 6a, 7,8,9,9a-Hexabydro-5-methyl-3-(2-naphthyme thyl)cyclopent 44,5\(]\) imidazo[ \(2,1-\mathrm{b}]\) purin- \((3 \mathrm{H})\)-one;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(4 bromophenylmetiyl)cyclopeat[4,5]imidsro \([2,1-b] \mathrm{pu}-\) rin-4(3H)-ane-
5,6a(R)-7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(4-
methoxyphenylmethyl)-cyclopent 4,5\(]\) imidazo \([2,1\) b] purin-4(3H)-one;
cis-5,6a,7,8,9,9a-Hexahydro-2,3,5-trimethylcy-clopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
cis-5,6a, 7, 8,9,9a-Hexahydro-2-(hydroxymethyl)-5 methyl-3-(phenylmethyl)cyclopent[4,5]midazo [2,1-b]parin-4(3H)-one;
cis-5,6a, 7,8,9,9a-Hexahydro-2-ruethylthio-5-methyl-3-(Phenyimethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one)
cis-3,4,5,6a, 7,8,9,9a-Octahydio-5-methyl-4-0xo-3(phenyimethyl)oyclopeat 4,5\(]\) imidazo[2,1-b]purin-2carboxylic acid;
cis-3,4,5,6a,7,8,9,9a-Octahydro-5-methyl-4-oxo-3-
(phenylmethyl)cyclopent[4,5]imidazo[2,1-6]porin-2.
carboxylic acid, methyl ester,
cis-5,6a, 7,8,9,9a-Hcxahydro-2-bromo-5-methyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin4(3H)one;
cis-5,6a, 7, B,9,9a-Hexahydro-2-(methylaminosulfonyl) 5 -methyl-3-(phenylmethyl)cyclopent[4, 5]imidazo[ \(2,1-b]\) purin-4(3H)one,
cis-1-Cyclopentyl-5, 6a, 7, 8,9,9a-hexahydro-5-methylcy clopent[4,5]imidazo[2,1-b]parin-4-(1H)one;
cis-5,6a, 7,8,9,9a-Hexahydro-3,5-bis-(phenylmethyl)cy-clopent(4,5)imidazo(2,1-b)purin-4(3H)one;
cis-6a, 7,8,9,10,10a-Hexahydro-3,5-bis-(phenylmethyl)-3H-benzimidazo[ \(2,1-\mathrm{b}\) ]purin-4(5H)one;
cis-3-Cyclopentyl-5,6a,7,8,9,9a-hexahydro-5-methylcyclopent \([4,5]\) imidazo \((2,1-b)\) purin-4( 3 H ) one;
5'-Methyl-3'-(phenylmethyl)spiro[cyclopentane-1,7( \(8^{\circ} \mathrm{H}\) )-(3'H)imidazo[2,1.b]purin]-4-(5H)one;
2',5'-Dimethyl-3'-(phenylmethyl)-spiro[cyclopentane-1,7-( \(8^{\prime} \mathrm{H}\) )-(3H)imidazo[2,1-b]purin]-4-( \(5^{\prime} \mathrm{H}\) )one;
cis-5,6a,(R)7,8,9,9a(S)-Hexahydro-5-methyl-3-(phenyl-methyl)eyclopent[4,5]imidazo(2,1-b)purin-4(3H)one;
cis-3-Cyclopentyl-5,6a, 7,8,9,9a-Hexahydro-2,5-dime-thylcyclopent[4,5]imidazo[2,1-b]purin-4(3H)one;
\(5^{\prime}\)-Methyl-2'-trifluoromethyl-3'-(phenylmethyl)spiro\{ cyclo-pentane-1, \(7^{\prime}\left(8^{\prime} \mathrm{H}\right)\)-( \(\left.3^{\prime} \mathrm{H}\right)\) imidazo[ \(\left.2,1-\mathrm{b}\right]\) purin]-4 (5'H)-one;
7,8-Dihydro-5,7,7-trimethyl-2-1rifluoromethyl-3-(phenylmethyI)-3H-imidazo[2,1-b]purin-4(5H)-one;
( \(+/-\) )-cis-5,6a, 7,8,9,9a-Hexahydro-5-methyi-2-tri-fluoromethyl-3-(phenylmethyl)cyclopent[4,-5]imidazo[2,1-b]purin-4(3H)-one;
( \(+/-\) )-6a, \(7,8,9,9 a, 10,11,11\) a-Octahydro-2,5-dimethyl-3-(phenylmethyl)-3H-pentaleno[ \(6 \mathrm{a}^{\prime}, 1^{\circ}: 4,-\) 5]imidazo \([2,1\)-b]purin-4(5H)-one;
(+)-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3-phenylmethy]-3H-pentaleno[6a', \(\left.{ }^{\prime}: 34,5\right]\) imidazo[2,1-b]purin-4(5H)-one;
( - )-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimetibyl-3-phenylmethyi-3F-pentaleoo[6a', \(\left.1^{\prime}: 4,5\right]\) Imidazo \([2,1-\) b] purix-4(5H)-onc.
\((+/-) 69,7,8,9,9 \mathrm{a}, 10,11,11 \mathrm{a}-\) Octahydro-2,5-dimethyl-3H-pentaleno[6a', \(\left.1^{\prime}, 4,5\right]\) imidazo[2,1-b]puin-4(5H)-one;
( + )-6a,7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3Hpentaleno \(\left[69^{\prime}, 1^{\prime}: 4,5\right]\) jimidazo \(\left.2,1-b\right]\) purin-4(5H)-oce;
(-)-6a, 7,8,9,9a,10,11,11a-Octahydro-2,5-dimethyl-3Hpentaleno \(\left[6 a^{\prime}, 1^{\circ}: 4,5\right]\) imidazo \([2,1-b]\) purin- \(4(5 H)\)-one;
\(6 \mathrm{a}, 7,8,9,10,102,11,12,13,13 \mathrm{a}-\) Decahydro-2,5-dimethyl-(3-phenylmethyl)napth[1,8a-d]imidazo[2,1-b]purin4(5H)one;
7(R)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3-(phenyl: methyl)-3H-imidazo 2,1 -b)purin-4(3H)-one,
7(R)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3Eimidazo \([2,1-6]\) purin-4(5H)-one;
7(S)-Cyclobexyl-7,8-dibydro-2,5-dimethyl-3-(phenyl-methyl)-3H-imidazo[2,1-b]purin-4(3H)-one-
7(S)-Cyclohexyl-7,8-dihydro-2,5-dimethyl-3Himidazo[2, 1-b]purin-4(5H)-one;
5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(trime-thylacetoxy)methyl]-cyciopent[4,5]imidazo[2,1-b]pu-rin-4(3H)-one;
5,6a(R) 7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-(4-pyridylmethyl)cyclopent[4,5]imidaza[2,1-b]purin-4(3H)-one;

5,6a(R),7,8,9,9a(S)-Hexahydro-2,5-dimethyl-3-[2-(1-morpholinyl)ethyl]cyclopent[4,5]imidazo[2,1-b]pu-rin-4(3H)-one;
5,62(R),7,8,9,9a(S)-Hexahydro-2,5-diruethyl-3-[acetoxymethyl]cyclopent \(\{4,5\) ]imidazo[2.1-b]purin. 4(3H)-опе,
5,6a,7,8,9,9a-Hexahydro-2,5,6a-trimethyl-3-(phenyime-thyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(R),7(S),8,9,9a-Hexabydro-2,5,6a-trimethyl-3-(phenylmethyl)cyclopent[4,5]imidazo[2,1-b]purin-4(3H)-one;
5,6a(S),7(R),8,9,9a-Hexahydro-2,5,6e-trimethyl-3- ' (phenylmethyl)cyclopent[4,5]imidazo [2,1-b]parin-4(3H)-one
cis-6a, 7,8,9, 10,10a-Hexahydro-2,5,7-trimethyl-3-(phenyimethyl)-3H-berwirnidazo[2, 1-b]purin-4(5H)-one:
cis-5,6a,7,8,9,9a-Hexahydro-2,5,6a-trimethylcy-clopent[4,5]imidazo[2,1-b]purin-4(3H); or
cis-6a, 7,8,9,10,10a-Hexahydro-2,5,7-irimethyl-3H-benzimidazo [2,1-b]porin-4(5H)-one].
U.S. Patent No. 5,439,895 discloses compounds of the
formula

wherein \(R^{1}\) is hydrogen or C1-4 alkyl;
Y is \(\mathrm{Cl}-6\) alkylene;
\(A\) is \(-O-R^{0}\) or \(-S(O) p-R^{0}\),
in which \(\mathrm{R}^{0}\) is Cl-4 alkyl-hydroxy:
\(p\) is \(0-2\);
\(\mathcal{Z}\) is single bond, methylene, ethylene, vinylene or ethynylene;
CyB is
(1) 7-membered, unsaturated or partially saturated, monocyclic hetero ring containing as hetero atoms, one, two or three nitrogen atoms,
(2) 6-membered, unsaturated or partially saturated, monocyclic hetero ring containing as betero atoms, two or three nitrogen atoms,
(3) 6-membered, unsaturated or partially samurated, monocyclic hetero ring containing as hetero atom, one nitrogen atom,
(4) 4-or 5 -membered, ansaturated or partially saturated, monocyclic hetero ring containing as hetero atoms, one, two or three nitrogen atoms, or
(5) 477 membered, unsaturated or partially saturated, monocyclic hetero ring containing as hetero atoms, one or two oxygen atoms, or one or two sulfur atoms:
\(\mathbf{R}^{3}\) is hydrogen, C1-4 alkyl, C1-4 alkoxy, halogen or trifluoromethyl;
\(\mathrm{R}^{4}\) is (1) hydrogen, (2) C1-4 alkyl, (3) C1-4 alkoxy, (4) -COOR \({ }^{8}\). in which \(\mathrm{R}^{8}\) is hydrogen or \(\mathrm{Cl}-4\) alkyl; (5) - NR \({ }^{9} R^{10}\), in which \(R^{9}\) is hydrogen, Cl-4 alkyl or phenyl(Cl-4 alkyl) and \(\mathrm{R}^{10}\) is hydrogen or Cl-4 alkyl, (6) - NHOOR \({ }^{[1]}\), in which \(R^{11}\) is C1-4 alkyl, (T) - \(\mathrm{NHSO}_{2} \mathrm{R}^{11}\), in which \(\mathrm{R}^{11}\) is as hereinbefore defined, ( 8 ) \(\mathrm{SO}_{2} \mathrm{NR}^{9} \mathrm{R}^{10}\), in which \(\mathrm{R}^{9}\) and \(\mathbf{R}^{10}\) are as hereinbefore defined, (9) -OCOR \({ }^{11}\). in which \(R^{11}\) is as hereinbefore defined, (10) halogen, (11) trifluoromethyl, (12) hydroxy, (13) nitro,
\[
-70-
\]
(14) cyano, (15) - \(\mathrm{SO}_{2} \mathrm{~N}=\mathrm{CHNR}{ }^{12} \mathrm{R}^{13}\) in which \(\mathrm{R}^{12}\) is hydrogen or \(\mathrm{Cl}_{1-4}\) alkyl and \(\mathrm{R}^{13}\) is \(\mathrm{Cl}_{1-4}\) alkyl, (16) -CONR \({ }^{14} \mathrm{R}^{15}\) in which \(\mathrm{R}^{14}\) is hydrogen or \(\mathrm{Cl}-4\) alkyl and \(\mathrm{R}^{15}\) is \(\mathrm{Cl}-4\) alkyl or phenyl( \(\mathrm{Cl}-4\) alkyl), (17) Cl-4 alkylthio, (18) Cl-4 alkylsulfinyl, (19) Cl-4 alkylsulfonyl, (20) ethynyl, (21) hydroxymethyl, (22) tri(Cl-4 alkyl)silylethynyl or (23) aceryl; and \(m\) and \(n\) independently are 1 or 2 ; with the proviso that
(1) a CyB ring does not bond io \(Z\) through a nitrogen atom in the CyB ring when Z is vinylene or ethynylene;
or pharmaccutically acceptable acid addition salts thereof, pharmaceutically acceptable salts thereof, or hydrates thereof.

\section*{Preferred compounds include:}

4-2-(2-hydroxycthoxy)ethyl]amino-6-acetyl-2-(1imidazolyl)quinazoline.
2-(1-imidazoly)-4-[2-(2-hydroxyethaxy)ethyl]amino-6-cthynylquinazoline.
2-(1-imidazoly])-4-[2-(2-hydroxyethoxy)ethy]]amino6 -(2-triisopropylsilylethynyl)quinazoline,
4-[2-(2-hydroxyethoxy)ethyl]amino-6-hydroxymeth-y-2-(1-imidazolyl)quinazoline,
4-(2-(2-hydroxyethoxy)ethyl)amino-6-methylsulfinyl-2-(1-imidazolyl)quinazoline,
E-chloro-4-(2-(2-hydroxyethoxy)ethyl)amino-2-(1imidazolyl)quinazoline,
4-[2-(2-hydroxyethoxy)ethyl]amino-6-methó xycar-bonyl-2-( 1 -imidazolyl)quinazoline,
4-(2-(2-hydroxyethoxy)ethyl)amino-6-methylthio-2-(1-imidazolyi)quinazoline,
4-(2-(2-hydrox yethoxy)ethyl)amino-6-iodo-2-(1imidazolyl)quinazoline,
4-(2-(2-hydroxyethoxy)ethyi)amino-2-(1-imidazolyl)-5,6,7,8-tetrahydroquinazoline or
6-melhoxy-4-(2-(2-hydroxyethoxy)ethyl)amino-2-(1imidazolyl)quinazoline,
and pharmaceutically acceptable acid addition salts thereof, pharmacentically acceptable salts thereof, or hydrates thereof.

wherein:
\(R^{1}\) is lower-alkyl, phenyl-lower-alkyl, or cycloalkyl;
\(\mathrm{K}^{2}\) is hydrogen, or lower-alkyl;
\(K^{3}\) is hydrogen, lower-alkyl, or hydroxylower-alkyl;
\(R^{4}\) is cycloalkyi or cylcoalkyl substituted by from one to (wh), the same or different, substituens selected from the group consistieg of lower-alkoxycarbonyl, carboxy. lower-alkylhio-lower-alkoxy carbonyl, hydroxyloweralkyl, bydroxy, oxo, lower-alkoxy, lower-alkyl, and halogen; and
\(R^{s}\) is from one to threc, the same or differeat, substitucnts selected from the group consisting of hydrogen, loweralkoxy, hydroxy, dilower-alkylamino-lower-alkoxy, carboxylower-alkoxy, lewer-alkoxycarbonyl-loweralkoxy, nitro, polyhydroxylower-alkoxy, amino, epoxy-lower-alkoxy, carboxy, lower-alkanoylamino, loweralkoxycarbonyl, pyridinyl, 4 -mopholinyl-loweralkoxy, lower-alkylsulfonyl, cyano: 1-imidazolyl. halogen, dilower-alkylaminosolfonyl, oxadiazolyl (or oxndiazolyl substituted on any available carbon atom thereof by lower-alkyl), lower-alkylsulfinyl, 1-pyrazolyl (or I-pyrazolyl substituted on any available carbon atom thereof by lower-alkyl), trifluoromethyisul[onyL. lower-alkenyl, lower-alkyl, and lower-alkynyl; or a pharmaceutically acceptable acid-addition salt and/or hydrate and/or solvate thereof, or, where applicablc, a stexenimimer or a ractmic mixure thereof.

\section*{Preferred compounds include}
```

1-eluyl-6-nitno-N[S(+)-1-(cyclohexyl) ethyl]-1H-pyra-
zolo (3,4-b)quinolin-4-amiac,
I-cthyl -6-nitm-N-[cyclohexylmethyl]- 1H-pyrazolo
[3,4-h]quinolin-4-umine,
1-ethy1-6-cyamo-N-[S(+)-1-(cyclohcxy])cthyl]-1H-pyra-
zolo (3,4-b]quinolin-4-amine.
I-elhyl-6-bromo-N-[S(+)-1-(cyclohcxyl)eciyy]-1'H-pyra-
zolo (3,4-blquinolin-4-aminc, and
1-e(hyl-6-(1-pyrazolyl)-N-[S(+)-1-(cyclohcxyl)cthyl]-
1H-pyrazolo [3.4-b)quinolin-4-amine.

```
U.S. Patent No. 5,525,064 discloses compounds of the
formula

wherein \(\Lambda\) is \(\Omega\) bond, \(C_{1-\mu}\) alkylenc or \(C_{1-\uparrow}\) oxyalkylenc;
\(Y\) is a bond, \(C_{1-1}\) alkylenc, \(C_{i-1}\) alkysencoxy, \(C_{1-1}\) alkoxyphenylene or phenyl( \(C_{t .1}\) ) alkylene;
\(\%\) is a bond or vinylenc;
\(\mathrm{R}^{1}\) is a betcrocyclic ring selected from the group consisting of pyrole, pyridine, aycplne, imidaole, pyrazole, pyrimidinẹ, pyrazine, pyridazine, berzimidavole, quinolite, isoquinoline and partally or fully seaturated ringe thercol;
\(R^{2}\) is
(i) a hatrocyclic ring selecred from the group consisting of pyrrole, pyridine, azepinc, imidazole, pyrazole, pyrimidinc. pyrazine, pyidaacine, benzimida zole, quinoline, isoquinoline, furan, pyran, dioxolc, dioxine, benzofuran, benzopyran, benzodioxole, benzodioxinc, thiopherse, thioine, benzothiophene, berizothionc and partially or fully saturated zings thereof,
(ii) \(\mathrm{C}_{\text {e. }} 15\) carbocyclic ring,
(iii) \(\mathrm{C}_{1-4}\) alkoxy,
(iv) hydroxy ( \(C_{1-1}\) alknxy), or
(v) hydroxy;
with the proviso that:
when \(\mathrm{R}^{1}\) is pyridine or pyridine substituted by one or two of \(\mathrm{C}_{1-4}\) alkyl.
\(C_{1-4}\) alkoxy, halogen, trifurornmethyl or nitm then \(R^{2}\) is a member sciected only from the group consistiag of benzodioxole or benzodioxole substituted by one or two of \(\mathrm{C}_{1,4}\) alkyl, \(\mathrm{C}_{\mathrm{i}, \mathrm{A}}\) alkoxy, halogen, trifocoromethyl, nitro or a group or the formuln:
\(-\mathrm{COOR}^{10}\)
wherein \(R^{111}\) is hydrogen or \(C_{1-4}\) alkyl, and hydroxy ( \(\mathrm{C}_{1 \rightarrow \mathrm{~A}}\) alkoxy);
\(\mathrm{R}^{3}\) is
(i) a heterocyclic ring selected from the group consisting of pyrrole, pyridine, azepine, imidazolc, pyrazole, pyrimidine, pyrazinc, pyridazinc, benzimidazole, quinoline, isoquinolipe, furan, pyran, benzoforan, benzopyran, thiophenc, thioinc, benzothiophenc, beazuthione, triacoule, iscuthidecole, Inarine. beacothiazole, benzoisothiazole, benzothiazine and partially or fully saturated rings thereof,
(ii) \(\mathrm{C}_{4-15}\) carbocyclic ring,
(iii) a group of formuls:

\section*{\(\mathrm{CH}_{3}=\mathrm{CH}(\mathrm{X})_{-}\)}
wherein \(X\) is halogen, or
(iv) bydrogen,

1 is 1 or 2 .
With the proviso that:
the ring rapresented by \(R^{\prime}\) may be substiluted by one or two of \(C_{1-4}\) alkyl, \(C_{1-4}\) alkoxy, halogen, trifiuoromcthyl or miurn;
the ring represented by \(R^{2}\) may ba substiturted by one or two of \(C_{1-4}\) ulkyl, \(C_{1,4}\) alkoxy, balogen, trilluoromothyl. vitu or a group of the formula:
```

-COOR }\mp@subsup{}{}{10
wherein R }\mp@subsup{}{}{10}\mathrm{ is hydrngen or C C14 alkyl, and the ring
rcpresented by }\mp@subsup{\textrm{R}}{}{3}\mathrm{ may be substituted by one or two
of C (1-4 alkyl, C C 1-4 alkoxy, bulogen, tilfuomomnelhyl,
nitro, cyano, ethynyl or a group of the formula:
-SONR7'R
wherein R}\mp@subsup{R}{}{7}\mathrm{ and }\mp@subsup{R}{}{N}\mathrm{ are independently hydrogen or }\mp@subsup{C}{1-4}{
alkyl, and with the proviso that
R}\mp@subsup{}{}{2}\mathrm{ is not hydroxy when }Y\mathrm{ is a bond; and
R}\mp@subsup{}{}{1}\mathrm{ is not bonded through its nitrogen atom when }Z\mathrm{ is
vinylene.
or phammaceutically acceptable acid addition salts thereof
or phamnaccutically acceptable salts thereof.

```

\section*{Preferred compounds include}

2-(1-Imiuncolyl)-4-[2-(2-hydroxycthoxy)cthylinmino-5-(3 -methoxyphcayl)medhytpyrimidinc,
2-(1-Imidazolyl)-4-phenylmethylsmioopyrimidinc,
2-(1-Imida\%olyl)-4-(2-methoxycthyl)aminopyrimidinc,
2-(1-Imidayoly)-5-athyl-4-phenylnethylaminopyrimidine,
2-(1-lmidazoly)-5-pitenylmuthyl-4-phenylfucliyiamituopyrimidine.
2-(1-Inidazoly) -5-methyl-4-phenylmethylaniionyrimidinc,
2-(1-imiduzolyl)-5,6-dimethyl-4-phenylmelhylaminupyrimidinc.
2-(1-Imidarolyl)-5-(3-methoxyphenyl)methyl-4-(2-methoxycthy)amunopyrimidinc,
2-(1-Imidarolyl)-5-(4-methoxyphenyl)mathyl-4-[2-(2-hydroxyethoxy)cihyljaminopyrimidinc,
2-(1-Imidarolyl)-5-(4-methoxyphenyl)nethyl-4-(2-methoxychyl)aminopyrimidine or
2-(1-Imida\%olyl)-5-(4-methoxyphenyl)mechyl-4-phenyimcdylaruinopyrimidinc.
2(1-lmidayolyl)-5-phenoxymethyl-4-phenylinethylaminopyrimidinc.
2-(1-Imidazolyl)-5-(1-Imddazoly1)melhyl-4-phenylmethylaminopyrimidinc.
2-( I-Imidarolyl)-5-(1-chlorovinyl)-4-phenylmuthylatainopyrimidinc,
2-(i-lmidazolyl)-5-(2-thicnyl)-4-phenylmeabylaminopyrimidioc,
2-(1-Imidarolyl)-5-(2-thazolyl)-4-pheaylmethylaminopyri midinc,
2-(1-Imidavolyl)-5-(2-thienyl)-4-(1,3-dioxaindan-5-yl)methylaminopyrimidine,
2-(1-Imidazoly1)-5-(2-thieny) -4-(2-(2-hydroxyothoxylethyljaminopyrimidine,
2-(1-Imidazolyl)-5-(2-thienyl)-4-(1-naphthyl)methylaminopyrimidioc,
2-(1-imidacolyl)-5-(2-inienyl)-4-(4-methoxyphenyl)incitylaminopyriuddioc.

2-(1-Imidayolyl)-5-(2-thicnyl)-1-(3-methoxyphenyl)melihylaminopyrimidinc.
2-(1-1midavolyl)-5-(2-thienyl)-4-(2-furyl)nothylaminopyrimidine,
2-(1-Imidazolyl)-5-(2-thicnyl)-4-(2-thicnyl)nichylaminopyrimidiac,
2-(1-imidarolyl)-5-(2-thienyl)-4-(3-pyridyl)nethylatuinopyrimidine,
2-(1-tinida\%olyl)-5-(2-titicuyl)-4-(2-mathoxycihyl)aminopysimidinc.
2-(1-Inidazolyl)-5-(2-llicuyl)-4-phenylancthoxyamimopyrimidinc,
2-(1-lnaidazolyl)-5-(2-thienyl)-4-(4-chloruphenyl)meihylaminopyrimidinc,
2-(1-Imida\%olyl)-5-(2-thlenyl)-4-(3-chiorophenyl)ucthylaminopyrimidinc,
2-(1-lmidazolyl)-5-(2-thienyl)-4-(1,3-dioxaindath-5-yl)m cthylaminopyrinidine,
2-(1-Itnidazoly1)-5-(4-methylphenyl)-4-(1,3-dioxaindan-5-yl)ncthylaminopyrimidine,
2-(1-Lenidazoly) -5-(4-methoxyphcuyl)-4-(1,3-dioxaindan-5-yl)nuethydaminupyrinidine,
2-(1-Imldawolyl)-5-(5-methyl-2-dhicnyl)-4-( 1,3-dinxain-dan-5-yl)mathylaminopyrimidinc,
2-(1-inidazolyl)-5-(2-thienyl)-4\{4-( 1-imidaralyl)phenyl] molhylaminopyrinidinc.
2-(1-Imldarolyl)-5-(3-pyridyl)-4-(1,3-dioxuindar- 5-yl)mchylaminopyrimidinc.
2-(1-Imidarolyl)-5-(3-furyl)-4-(1,3-dioxaindan-5-yl)methylxminupyrimidínc.
2-(1-Imidazelyl)-5-(3-pyridy1)-4-phenylmechylaminopyrimidinc,
2-(1-Inidazulyl)-5-(4-chlorophenyl)-4-(1,3-dioxaindan-5yl)nethylansinopyrimaldinc.
2-(Henzimidazal-1-yl)-S-(2-thicnyl)-4-(1,3-dioxaindan-Syl)melhylaminopyrimldine,
2-(1-1midarniyl)-5-(2-thicryl)-4-(4-cihnxycurtony)phenyl)methylamloopydmidinc.
2-(1-Imidazolyl)-5-(2-nuphuhyl)-4-(1,3-diuxaindun-5-yl)mclhylaminopyrimidinc,
2-(3-Pyridyl)-5-(2-thicnyl)-4-(1,3-diuxaindan-5-yl)methy laminopyrimidinc,
2-[2-(3-Pyridyl)vinyl]-5-(2-thicnyl)-4-(1,3-dioxaindan-5yl)methylaminopyrimidine,
2-(2-Mchlyl-1-Inidarolyl)-5-(2-thicny)-4-(1,3-dioxain-dan-5-yl)methylaminopyrimldinc or
2-(1-Inidazolyl)-5-(2-thienyi)-4-(benrimidazol-5-yl)mcllylaminopyrimidinc.

European published paten t application No. 0728759 discloses compounds of the formula

(I)
wherein

is a heterocycle selected from




and

n is 0.1 or 2;
\(Y\) is single band or C1-6 alkylene;
\(Z\) is single bond, C1-2 alkylene or vinylene;
\(E\) is
(i) 4-15 membered, unsaturated. partially saturated or fully saturated, mono or bicyclic hetero ring containing one or two hetero atoms, chosen from nitrogen, axygen and suffur, not more than one hetero atom being sulfur (ii) 4-15 membered, unsaturated or partialy saturated, mono or bicyclic carbocyclic ring, or
(iii) \(-\mathrm{OR}^{4}\); in which \(\mathrm{R}^{4}\) is hydrogen atom, \(\mathrm{C} 1-4\) akyl or \(\mathrm{C} 1-4\) alkyl substituted by a hydroxy group;

Cyc is 5-7 membered, unsaturated, partially saturated or fully saturated, monocyclic hetero ring containing one or two nitrogen atoms or 5-7 membered, unsaturated or partially saturated, monocyclic carbocyclic ring: \(R^{1}\) is hydrogen atom or C1-4 alky!;
\(R^{2}\) is hydrogen atom, C1-4 alkyl, C1-4 alloxy or halogen atom:
\(R^{3}\) is hydrogen atom, C1-4 alkyl. C1-4 alloxy or -COOR \({ }^{5}\); in which \(R^{5}\) is hydrogen atom or C1-4 alkyt: with the proviso that
(1) a Cyc ring does not bond to \(Z\) through a nitrogen atom in the Cyc ring where \(Z\) is vinylene and that (2) \(Y\) is not a single bond, when \(E\) is -OR4; or a pharmaceutically acceptable acid achition salt, pharmaceutically acceptable salt or hydrate thereof.
U.S. Patent No. 5,541, 187 discloses compounds of the
formula
 wherein:
\(\mathrm{R}^{3}\) is hydrogen, alkyl, cycloalkyl, cycloalkyl substituted by alkyl or hydroxyl, 2- or 3-terahydrofuranyl, 3-tetrallydrothienryl 1,1,-dioxide, cycloalkyl-alkyl, cartoxy-
alkyl. carbo-lower-alkoxy-alkyl, dialkylaminoalkyl,
phenyl-lower-alkyl, phenyl-lower-alkyl in which the phenyl ring is substituted in tic 2, 3, or 4-position by onc or two substituents, the same or differcnt, selected from the gronp consisting of amino, halogen, alkyl. carboxyl, carbo-lower-alkoxy, carbamoyl, \(\mathrm{NHSO}_{2}-\) (quinolinyl), nitro and cyano:
\(\mathrm{R}^{3}\) is hydrogen, lower-alkyl, phenyl-lower-alkyl, lower-alkoxyphenyl-lower-alkyl, dilower-alkoxy-phenyl-lower-alkyl, pyridyl-lower-alkyl, cycloalkyl-loweralkyl, phenylamino, dialkylamino, halogen, trifluoromethyl, lower-alkylthio, cyano or nitro; and
\(R^{0}\) is a five or six membered heterocyclic ring containing from one to two nitrogen atoms, substituted-or unsub-stituted-at any available carbon atom by one or two substituents, the same or different, selected from the group consisting of lower-alkyl, balogen, lower-alkoxy, cycloalkyloxy, 4-morpholinyl, Jower-alkoxy-loweralkoxy, hydroxy, imidazolyl, oxo and 4-morpholinyl-lower-alkoxy; or at any available nitrogen atorn by lower-ulkyl, luwer-alkanoyl, or trifuoroacetyl: or a pharmaceutically acceptable acid-addition salt thereof.

\section*{Preferred compounds include:}

1-Cycloprenyl-3-mechyl-6-(4-pyridyl)pyrazolo[3.4-d] pyrimidin-4-one,

1-Cyclopentyl-3-cthyl-6-(3-cthoxy-4-pyridy1)pyrazolo \(3,4-\) d]pyrimidin-4-one

1-Cyclopentyl-3-ethyl-6-(3-methoxy-4-pyridyl)pyra-zolo[3,4-d]pytimidin-4-nne,

1-Cyclopentyl-3-trifuoromethyl-6-(3-ethoxy-4-py-ridyl)pyrazolo[3,4-d]pyrimidio-4-one.

1-Cyclopentyl-3-ethyl-6-(2-(1-imidazolyl)-4-py-ridyl)pyrazolo[3,4-d]pyrimidin-4-one.




in which
A represents oxiranyl which is optionally substituted by straight-chain or branchod alkyt having up to 8 carbon atoms, which in turn can be substituted by plenyl, or represents a radical of the furmula

wherein
\(\mathbf{R}^{1}\) denotes hydrogen or straight-chain or tranctied aikyl having up to 6 carton atoms,
\(\mathrm{R}^{2}\) denotes straight-chain or branched alkyl having up to 8 carbon atorns, which is optionslly substituted by pheayl,
\(R^{3}\) denotes straight-ctain or branctred allyy having up to \(S\) carbon atoms or a grous of the formola -OR \({ }^{6}\), wherrin
\(\mathbf{R}^{6}\) denotes hydrogen, a bydroxyl-protecting group or straight-chain or tranched alkyi having op to 5 carbon atomas.
\(\mathrm{R}^{4}\) denotes straight-chain or branched alkyl having 2 to 10 carbon atoms, which is optionally subsututed by phenyl.
L denotes a radical of the formula - CO - \(-\mathrm{CH}(\mathrm{OH})\), \(-\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{N}_{3}\right)\) or \(-\mathrm{CH}\left(\mathrm{OSO}_{2} \mathrm{R}^{2}\right)\).

\section*{whercin}
\(\mathbf{R}^{\mathbf{7}}\) denotes straight-chain or branctiod alkyl having up to 4 carbon aroms or phenyl
\(R^{5}\) denotes straight-chaid or branched alkyl having 3 to 8 carbon atoms which is substitured by phengl, or denotes benzyl or 2-phenylethyl.
D represents hydrogen, or represents a group of the formula \(-\mathrm{SO}_{2}-\mathrm{NR}^{\mathrm{*}} \mathrm{R}^{9}\).
whercis
\(\mathbf{R}^{\mathbf{2}}\) and \(\mathbf{R}^{\rho}\) are identical or differeat and denote tydrogen, pisenyl or straight-chain or branched alkyl having up to 6 carton atoms, which is optionally substitatod by hydroxyl, or, together with the nitrogen atom foam a 5 to 6-membered satucated heterocyclic radical which has up to 2 furticer hetero atoms from the series consisting of S. N andfor \(O\) and is optionally substituted including via a frec \(N\) function, by straightchain or branched alkyl haying op to 6 carbon atoms. which in turn can be sabstinuted by hydroxyl. and
E represents straight-chain or brancted altyl having up to 8 carbon toms, and tautomers and ealts thereof.

Preferred compounds include:






U.S. Patent No. 5,294,612 discloses compounds of the formula


\section*{wherein:}
\(R^{1}\) is hydrogen, alkyl, \(C_{4}\) to \(C_{7}\) cycloalkyl, \(C_{4}\) to \(C_{7}\) cycloalkyl substituted by \(C_{1}\) to \(C_{10}\) alkyl or hydroxyl, 2-or 3-tetrahydrofuranyl, 3 -tevahaydrothienyl 1,1 , -dioxide, \(C_{4}\) to \(C_{7}\) cyeloalkyl- \(C_{1}\) to \(C_{10}\) alkyl, carboxy- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{10}\) alkyl, carbo- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) low-er-alkoxy- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{10}\) alkyl, dialkyiamino \(\mathrm{C}_{1}\) to \(\mathrm{C}_{10}\) alkyl, phenyl- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) lower-alkyl, phenyl- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) lower-alkyl in which the phenyl ring is substituted in the 2,3 , or 4 -position by one or two substituents, the same or different, selected from the group consisting of amino, halogen, \(C_{1}\) to \(C_{10}\) alkyl, carboxyl, carbo-C1 to \(\mathrm{C}_{4}\) lower-alkoxy, carbamoyl, \(\mathrm{NHSO}_{2}\) (quinolinyl), nitro and cyano:
\(R^{3}\) is, \(C_{1}\) to \(C_{4}\) lower-alkyl, phenyl- \(C_{1}\) to \(C_{4}\) loweralkyl, lower-alkoxyphenyl- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) lower-alkyl, \(\mathrm{diC}_{1}\) to \(\mathrm{C}_{4}\) lower-alkoxy-phenyl- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) loweralkyl, pyridyl- \(C_{1}\) to \(C_{1}\) lower-alkyl, \(C_{4}\) to \(\mathrm{C}_{7} \mathrm{cy}\) -cloalkyl- \(\mathrm{C}_{1}\) to \(\mathrm{C}_{1}\) lower-alkyl, phenylamino, diC \(\mathrm{C}_{1}\) to \(\mathrm{C}_{10}\) alkylamino, halogen, trifluoromethyl, \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) lower-alkylthio, cyano or nitro; and
\(\mathrm{R}^{6}\) is a nine or ten membered bicyclic.ring having carbon and from one to two nitrogen atoms, and the hetcrocycle is made up of fused 5 or 6 membered rings or such ring substituted at any a vailable carbon atom by one or two substituents, the same or different, selected from the group consisting of \(C_{1}\) to \(C_{4}\) lower-aikyl, halogen, \(C_{1}\) to \(C_{4}\) loweralkoxy, \(C_{4}\) to \(C_{7}\) cyclaalkyloxy, 4 -morpholinyl, \(C_{1}\) to \(C_{4}\) lower-alkoxy- \(C_{1}\) to \(C_{4}\) lower-atkoxy, hydroxy imidazolyl, oxo and 4-morpholinyl- \(C_{1}\) to \(C_{4}\) fower-alkoxy, or at any available nitrogen atom by \(\mathrm{C}_{1}\) to \(\mathrm{C}_{4}\) lower-alkyl, \(\mathrm{C}_{2}\) to \(\mathrm{C}_{4}\) lower-alkanoyl, or trifluosoncetyl; or a pharmaceutically acceptable acid-addition salt thercof.

Preferred compounds include:

1-Cyclopentyl-3-methyl-6-(4-quinolinyI)-pyrizolo(3,4-d)pyrimidin-4-one



Preferred compounds include:
```

 2-{2-ethoxy-5-[4-(2-hydroxyethyl)-I-piperazinyl-
 sulphonyl]phenyl}-8-methylquinazolin-4-(3H)-one;
2-{5-[4-(2-hydroxyethyl)-1-piperazinylsulphonyl]-
2-n-propoxyphenyl}-8-methylquinazolin-4(3H)-one;
8-methyl-2-{5-[2-(4-methyl-I-piperazinylcarbonyl)-
ethenylj-2-n-propoxyphenyl}quinazolin-4(3H)-one;
8-carbamoyl-2-{2-ethoxy-5-{4-(2-hydroxyethyl}-1-
piperazinylsulphonyl]phenyl}quinazolin-4(3H)-one;
and 8-ethylcarbamoyl-2-(2-n-propoxyphenyl)quinazolin-
4(3H)-one;
and pharmaceutically acceptable salts thereof.

```

WO 93/07149 discloses compounds of the formula

```

or a pharmaceutically acceptable salt thereof,
wherein R^{1} is $C_{1}-C_{6}$ alkyl;
R^{2} is H , methyl or ethyl;
R^{3} is $\mathrm{C}_{2}-\mathrm{C}_{4}$ alkyl;
R^{4} is. $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl optionally substituted
with $\mathrm{NR}^{5} \mathrm{R}^{6}, \mathrm{CN}, \mathrm{CONR}^{5} \mathrm{R}^{6}$ or $\mathrm{CO}_{2} \mathrm{R}^{7} ; \mathrm{C}_{2}-\mathrm{C}_{4}$ alkenyl
optionally substituted with $\mathrm{CN}_{r} \operatorname{CONR}^{5} \mathrm{R}^{6}$ or
$\mathrm{CO}_{2} \mathrm{R}^{7} ; \mathrm{C}_{2}-\mathrm{C}_{4}$ alkanoyl optionally substituted
with $\mathrm{NR}^{5} \mathrm{R}^{6}$; $\mathrm{SO}_{2} \mathrm{NR}^{5} \mathrm{R}^{6}$; $\mathrm{CONR}^{5} \mathrm{R}^{6}$; $\mathrm{CO}_{2} \mathrm{R}^{7}$; or halo;
R^{5} and R^{6} are each independently n or $C_{1}-C_{4}$
alkyl, or together with the nitrogen atom to
which they are attached form a pyrrolidino,
piperidino, morpholino, 4-(NR ${ }^{8}$)-1-piperazinyl
or l-imidazolyl group wherein said group is
optionally substituted by one or two $s_{1}-c_{4}$
alkyl groups;
R^{7} is H or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl;
and
R^{8} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl or hydroxy $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkyl.

```

Preferred compounds include: "
```

 6-(5-bromo-2-n-propoxyphenyl)-3-methyl-I-n-propyI-
 1,5-dihyäro-4H-pyrazolo[3,4-d]pyrimidin-4-one;
3-methyl-6-(5-morpholinosulphonyl-2-n-
propoxyphenyl}-1-n-propyl-1,5-dihydro-4H-pyrazolo[3,4-
d]pyrimidin-4-one;
6-[5-(2-carboxyvinyl)-2-n-propoxyphenyl]-3-methyl-
1-n-propyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-
one;
6-[5-(2-t-butoxycarbonylvinyl)-2-n-propoxyphenyl]-
3-methyl-1-n-propy1-1,5-dihydro-4H-pyrazolo[3,4-
d]pyrimidin-4-one;
3-methyl-6-[5-(2-morpholinocarbonylvinyl)-2-n-
propoxyphenyl]-I-n-propyl-1,5-dihydro-4H-pyrazolo[3,4-
d]pyrimidin-4-one;
and 3-methyl-6-[5-(2-morpholinocarbonylethyl)-2-n-
propoxyphenyl]-1-n-propyl-1;5-dinydro-4H-pyrazolo[3,4-
d]pyrimidin-4-one;
and pharmaceutically acceptable salts thereof.

```

European published patent application No. 0607439 discloses compounds of the formula

[in formula (1), ring A represents a benzene ring, a pyridine ring or a cyclohexane ring; ring \(B\) represems a pyridine ring, a pyrimidine ring, or an imidazole ring.

Provided that the ring \(A\) and the ring \(B\) are combined sharing two atoms and the atoms shared may be either a carbon alom or a nitrogen atom.

In the case where the ring \(A\) is a pyridine ring and that except the case where the ring-b shares the nitrogen atom of this pyridine ring to combine therewith, the ring \(A\) is represented by

\(R^{1}, R^{2}, R^{3}\) and \(R^{4}\), each of which may be the same or different from one another, represent each a hydrogen atom, a halogen atom, a lower alkyl group which may be substituted with a halogen atom. a cycloaikyl group which may be substituted, a lower alkoxy group, a hydroxyalkyl'group, a nitro group, a cyano group. an acylamino group, a carboxyl group which may be protected, a group represented by the formula
\[
\begin{gathered}
(0)_{\|} \\
-S-R^{7}
\end{gathered}
\]
(wherein \(R^{7}\) represents a tower alkyl group, and \(n\) represents 0 or an integer of 1 to 2). or a group represented by the formula

(wherein \(R^{45}\) and \(R^{45}\), each of which may be the same or different from each other, represent each a hydrogen atom or a lower alkyl group; or \(R^{45}\) and \(\mathbf{R}^{46}\) can form a ring which may contain anolher nitrogen atom or oxygen atom together with the nitrogen atom to which they are bonded with the proviso that this ring may be substituted); or, two of \(R^{1}, R^{2}, R^{3}\) and \(R^{4}\) may together form methylenedioxy. ethylenedioxy or a phenyl ring.
\(R^{5}\) represents a hydrogen atom, a halogen atom, a hydroxyl group, a hydrazino group, a lower alkyt group, a cycloalkyl group which may be substituted, a fower alkoxy group, a lower alkenyi group. a carboxyalkyi group which may be protected, a carboxyalkenyl group which may be protecled. a hydroxyalkyl group, a carboxyl group which may be protected, a group represented by the formula
\[
\begin{gathered}
(0) \\
-S-R^{8}
\end{gathered}
\]
(wherein \(R^{B}\) represents a lower alkyi group, and \(m\) represents 0 or an integer of i' to 2), a group represented by the formula -O-R \(\mathrm{R}^{\mathrm{D}}\) (wherein \(\mathrm{R}^{\mathrm{D}}\) represents a hydroxyalkyl group which may be protected, a carboxyalkyl group which may be protected or a benzyl group which may be substituted). a group represented by the formula

(wherein \(\mathrm{R}^{23}\) represents a hydroxyl group, a lower alkyl group, a lower alkoxy group, a hydroxyalkyl group or a hydroxyalkyloxy group), a heteroaryl group which may be substituted, a 1,3-benzdioxolyl group which may be substituted, a 1.4-benzdioxyl group which may be substituted, a 1,3 -benzdioxolytalkyl group which may be substituted, a 1,4 -benzdiaxyladky group which may be substituted, a group represented by the formula \(-\mathrm{C}\left(\mathrm{R}^{24}\right)=X\) (wherein \(X\) represents an oxygen atom, a sulfur atom or a group represented by the formula \(=\mathrm{N}-\mathrm{R}^{10}\) (whereln \(\mathrm{R}^{10}\) represents a hydroxyt group, a cyano group or a carboxyaikyloxy group which may be protected); and \(\mathrm{R}^{24}\) represents a hydrogen atom or a bower alkyl group], or a group represented by the formula -NR' \(\mathbf{R}^{10}\) (whereln \(\mathbf{R}^{\prime \prime}\) and \(\mathbf{R}^{13}\). each of which may

\section*{-84-}
be the same or different from each other, represent each a hydrogen atom. a lower alkyl group, a hydroxyalkyl group, an aminoalkyl group, a carboxyalkyl group which may be protecled, an alkylcarbamoyl group, a carboxyalkylcarbamoyl grou"p which may be protected, a heteroarylalkyl group which may be substituled, a 1,3-benzoxolylalkyl group or a 1,4 -benzdioxylzikyl group; or, further, \(R^{11}\) and \(R^{12}\) can form a ring which may contain another nitrogen atom or oxygen atom together with a nitrogen atom to which they are bonded with the proviso that this ring may be substituted)
\(R^{6}\) represents a hydrogen atom, a halogen atom, a hydroxyl group. an amino group, a tower alkyl group. a lower alkoxy group, a lower alkenyl group, a 1,3-benzdioxolylalkyloxy group, a 1,4-benzdioxylalkytoxy group, a phenylalkyloxy group which may be substituted, a group represented by the formula

(wherein \(R^{13}\) and \(R^{14}\), each of which may be the same or different from each other, represent each a tydrogen alom, a lower alkyl group or a lower alkoxy group; or, further, \(R^{13}\) and \(R^{14}\) may together form methylenedioxy or ethylenedioxy), a group represented by the formula

(in these formulas, \(R^{15}\) and \(R^{15}\). each of which may be the same or different from each other, represent each a hydrogen atom, a lower alkyl group or a lower alkoxy group; or, further, \(R^{15}\) and \(R^{16}\) may together form methylenedioxy or ethylenedioxy), a piperidne-4-spiro-2"-dioxan-1-yl group, a group represented by the formula

(wherein \(\mathrm{R}^{48}\) and \(\mathrm{R}^{49}\), each of which may be the same or different from each other, represent each a hydrogen atom, a lower alkyl group or a lower alkoxy group; or, further, \(\mathrm{R}^{48}\) and \(\mathrm{R}^{49}\) may together form methylenedioxy or ethylenedioxy; and \(Z\) represents a sulfur atom or an oxygen atom), a group represented by tha formula

(wherein \(\mathrm{R}^{\text {fo }}\) represents a hydroxyl group, a halogen atom, a lower alkyl group, a lower alkoxy group, a carboxyl group which may be protected, a cyano group, a hydroxyalkyl group or a carboxyalkyl group), a group represented by the formula
\[
\left.\right|_{-N-Y-R^{18}} ^{R^{17}}
\]
[wherein \(\mathbf{R}^{17}\) represents a hydrogen atom, a lower alkyl group, an acyl group, a lower alkoxyalkyl group, a carboxyalkyl group which may be protected or a hydroxyalkyl group; \(Y\) represents a group represented by the formula - \(\left(\mathrm{CH}_{2}\right)_{\mathrm{q}}\) ( (wherein q is 0 or an integer of \(\mathbf{1}\) to 8 ), or a group represented by
the formula
\[
\begin{gathered}
0 \\
0 \\
-\mathrm{C}-:
\end{gathered}
\]
further, in the group represented by the formula - \(\left(\mathrm{CH}_{2}\right)_{q^{-}}\)-, when q is an integer of \(\mathbf{1}\) to B , each carbon atom may have 1 to 2 substituent(s); and \(\mathrm{R}^{18}\) represents a hydrogen atom, a hydroxyl group, a carboxyl group winich may be protected, a cyano group, an acyl group, a heteroaryl group which may be substituted or a cycloalkyl group which may be substituted], or a group represented by the formula

(wherein \(\mathrm{R}^{49}\) represents a hydrogen atom, a lower alkyl group, a bwer alkoxyalkyl group, an acyl
 which may be the same or different from one another, reprosent each a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a nitro group, a lower alkyl group, a lower alkoxy group, a tower alkoxyalkyl group, a lower alkenyl group, an acyl group, an acylamino group, an alkylsut fonylamino group. a hydroxyiminoalkyl group, an alkyloxycarbonytamino group, an alkyloxycarbonyloxy group or a heteroaryl group which may be substituted; or, further, two of \(\mathbf{R}^{20}, \mathbf{R}^{21}\) and \(\mathbf{R}^{22}\) may together form a saturated or unsaturated ring which may contain a nitrogen atom, a suttur atom or an oxygen atom: and \(r\) represents \(\mathbf{0}\) or an integer of \(\mathbf{I}\) to 8)].

WO 93/06104 discloses compounds of the formula

or a pharmaceuticaliy acceptable salt thereof,
wherein \(R^{i}\) is methyl or ethyl;
\(R^{2}\) is ethyl or n-propyl;
and \(\quad R^{3}\) and \(R^{4}\) are each indepdendently \(H\), or \(C_{1}-C_{6}\) alkyl optionally substituted with \(\mathrm{C}_{5}-\mathrm{C}_{7}\) cycloalkyl or with morpholino.

Preferred compounds include:

> 5-[2-ethoxy-5-(3-morpholinopropylsulphamoyl)phenyl]-1,3-dimethyI-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one;
> l-ethyl-5-[5-(n-hexylsulphamoyI)-2-n-propoxyphenyl]-3-methyi-1,6-dihydro-7H-pyrazolo[4,3a]pyrimidin-7-one;
> 1-ethyl-5-(5-diethylsulphamoyl-2-n-propoxyphenyl)-3-methyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one;
> and 5-[5-(N-cyclohexylmethyl-N-methylsulphamoyl)-2-npropoxyphenyl]-l-ethyl-3-methyl-i,6-dihydro-7Hpyrazolo[4,3-d]pyrimidin-7-one;
> and pharmaceutically acceptable salts thereof.
U.S. Patent No. 5,346,901 discloses compounds of the
formula

(a)
wherein
\(\mathrm{R}^{1}\) is \(\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{3}\) alkyl, \(\mathrm{C}_{3}-\mathrm{C}_{5}\) cycloalkyl or \(\mathrm{C}_{1}-\mathrm{C}_{3}\) perfluoronlky;
\(\mathrm{R}^{2}\) is \(\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}\) alkyl optionally substituted by OH , \(\mathrm{C}_{1}-\mathrm{C}_{3}\) alkoxy or \(\mathrm{C}_{3}-\mathrm{C}_{6}\) cycloalkyl, or \(\mathrm{C}_{1}-\mathrm{C}_{3}\) perfluoroalkyl;
\(R^{3}\) is \(C_{1}-C_{6}\) alkyl, \(C_{3}-C_{6}\) alkenyl, \(C_{3}-C_{6}\) alkynyl, \(\mathrm{C}_{3}-\mathrm{C}_{7}\) cycloalkyl, \(\mathrm{C}_{1}-\mathrm{C}_{6}\) pcrfuomalkyl or ( \(\mathrm{C}_{3}-\mathrm{C}_{6}\) cycloalkyl) \(\mathrm{C}_{1}\) - \(\mathrm{C}_{6}\) alkyl;
\(\mathrm{R}^{4}\) taken together with the nitrogen atom to which it is attached completes a pyrrolidinyl, piperidino, or morpholino group;
\(\mathrm{R}^{5}\) is \(\mathrm{H}_{1} \mathrm{C}_{1}-\mathrm{C}_{4}\) alkyl, \(\mathrm{C}_{1}-\mathrm{C}_{3}\) alkoxy, \(\mathrm{NR}^{7} \mathrm{R}^{8}\), or CONRTR \({ }^{8}\).
\(\mathrm{R}^{7}\) and \(\mathrm{R}^{8}\) are each independently \(\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{4}\) alkyl, ( \(\mathrm{C}_{1}-\mathrm{C}_{3}\) alkoxy) \(\mathrm{C}_{2}-\mathrm{C}_{4}\) alkyl or hydroxy \(\mathrm{C}_{2}-\mathrm{C}_{4}\) al. kyl; and pharmacentically acceptable salts thereof.
European published patent application No. 0442204 discloses compounds of the formula

or a pharrnaceutically acceptable salt thereof, wherein
\(R^{1}\) is \(C_{1-8}\) alkyl, \(C_{2-\infty}\) alkenyl, \(C_{3-5}\) cycloalkyl \(C_{1-\infty}\) alkyl, or \(C_{1-8}\) alkyl substituted by 1 to 6 fluoro groups ; \(R^{2}\) is \(C_{1, s}\) alkyithio, \(C_{\text {_oalkyisulphonyt, }} C_{1-\text { alkoxy, }}\) hydroxy, hydrogen, hydrazino, \(C_{1, a}\) alkyl, phenyt, NHCOR \({ }^{3}\) wherein \(R^{3}\) is hydrogen or \(C_{1-0}\) alkyl, or \(-N R^{4} R^{5}\). wherein \(R^{4}\) and \(R^{5}\) together with the nitrogen atorn to which they bre attached form a pyrrolidino, piperidino, hexahydroazepino, morpholino or piperazino ring, or \(R^{4}\) and \(R^{5}\) are Independently hydrogen, \(C_{3-5}\) cycloalkyl or \(C_{1-8}\) alkyl which is optionally substituted by \(-\mathrm{CF}_{3}\), phenyt, \(-S(\mathrm{O})_{n} \mathrm{C}_{\text {i-p }}\) alkyl wherein
\(n\) is 0.1 or \(2,-O R^{8},-C O_{2} R^{7}\) or \(-N R^{6} R^{9}\) wherain \(R^{6}\) to \(R^{9}\) are independently hydrogen or \(\mathrm{C}_{1-8}\) alkyt, pro-
 or -NR \({ }^{8} R^{9}\) groups :
 or \(\mathrm{SO}_{2} \mathrm{NR}^{14} \mathrm{R}^{15}\) wherein n ts \(\mathrm{O}, 1\) or 2 and \(\mathrm{R}^{10}\) to \(\mathrm{R}^{15}\) are independently hydrogen or \(\mathrm{C}_{\text {ma }}\) alkyl ; and
A is a ring of sub-formula (a) or (b):

(a)

(b).

Preferred compounds include:

2-(5-cyano-2-propoxyphenyl)-7-methylthiopyrimido-[4,5-d]]pyrimidin-4(3H)-one,
2-(5-carboxamido-2-propoxyphenyl)-7-methylthiopyrimido[4,5-o]pyrimido-4(3H)-one, or 2-(5-carboxamido-2-propoxyphenyl)-7-cyclopropylamino[4,5-d]pyrimido-4(3H)-one. or a pharmaceutically acceptable salt thereof.
U.S. Patent No. 5,010,086 discloses compounds of the
formula

wherein
\(R_{1}\) and \(R_{3}\) are hydrogen or lower-alky;
\(R_{5}\) is fower-alkyl or fluorinated lower-alkyl; and the pyridine-N-oxide is attached at the 4 or 3 -position: or a pharmaceutically acceptable acid-addition calt thereof.

Preferred compounds include:

1,3-Dihydro-6-(4-pyridinyl)-5-trifuaromethyl-2H-
imidazo 4,5 -b]pyridin-2-one N-(py)-oxide
U.S. Patent No. 5,290,933 discloses compounds of the

(1)
or a pharmaceutically acceptable sall thercof, wherein \(R^{1}\) is \(C_{1-6 a l k y l}, C_{2-6 a l k e n y l}, C_{3}\)-scycloalkylC \(C_{1-6 a l k y l}\), phenylC \(C_{1-6 \text { alkyl }}\) or \(C_{1 \text {-galkyl substituted }} 1\) to 6
fluoro groups; and
\(R^{2}\) is hydrogen, -NHCOR \({ }^{3}\), or - \(\operatorname{CONR}^{4} R^{5}\), wherein
\(R^{3}\) is \(C_{l-6 \text { alkyl. }} R^{4}\) is


\section*{Preferred compounds include:}

N-methyl 1,6-dihydro-6-oxo-2-(2-propoxypnenyl)-pyrimidine-5-carboxamide.
N,N-dimethyl 1,6-dihydro-6-oxo-2-(2-propoxyphenyl)-pyimidine-5-carboxamide,
5-acetamido-2-(2-propoxyphenyi)pyrimidin-4(3H)-one, or
2-(2-propoxyphenyl)pyrimidin-4(3H)-one,
or a pharenaceutically acceptable salt thercof.
U.S. Patent No. 5,073,559 discloses compounds of the formula

(1)
or pharmaceutically acceptable salt thercof, wherein \(R^{\prime}\) is \(C_{1-6 a l k y l} C_{2-6 a l k e n y l, ~} C_{3-s c y c i o a l k y l} C_{1-4 a l k y l}\), phenylC \(C_{1-a l l y y l}\) or \(C_{1}\) aslkyl substituted by 1 to 6 Iluoro groups;
\(R^{2}\) is hydrogen, hydroxy. \(C_{1-4 a l k y!\text {, pheriyl, mer- }}\) capto, \(\mathrm{C}_{1}\)-alkylthio, CF3 or amino
\(R^{3}\) is bydrogen, nitro, amino, \(C_{1}\) _alkanoylamino, \(C_{1-\text {-alkoxy, }} C_{1 \text {-alkyl, halo, }} \mathrm{SO}_{2} \mathrm{NR}^{4} \mathrm{R}^{\mathrm{S}}\). \(\mathrm{CONR}^{4} \mathrm{R}^{5}\), cyano or \(\mathrm{C}_{\mathrm{j}}\) \&alkyIS(O) O i
\(R^{4}\) and \(R^{9}\) are independently hydrogen or \(C_{l-a l k y l}\); and
\(n\) is 0,1 or 2 ;
provided that \(R^{3}\) is not bydrogen when \(R^{1}\) is \(C_{1-6 a l k y l}\) or \(C_{2-\infty}\) alkenyl and \(R^{2}\) is hydrogen or hydraxs.

Preferred compounds include:

> 2-(2 2-\{2,2,2-trinuorocthoxy\}phonyl)purin-6-one, 2-(2 2-cyclopropylmethoxyphenyl)purin-6-one, 2 -( 2 -benzyloxyphenyl)purin 6,8 -dionc,
> 2-(2 2-propoxyphenyl)-8-rinivoromethytpurin-6-one. 2-(2 2-propoxyphenyl)-8-phenylpurin-6-anc. 2-(2 2-propoxyphenyl)-8-methylpurin-6-one. 2-(2-propoxypheny()-8-mercapropuri- 6 -олс,
> 2-(2 2-propoxypheny)-8-methylthiopurin-6-ane,
> 2-( 2 2-propoxypheny)-8-2minopurin-6-one.
> 2-(2 2-propoxy-5-nitrophenyl)purin-6-ane.
> 2-(2 2-propoxy-5-aminophenyl)purin-6-one,
> 2-(2-(2-propoxy-5-aceumidophenyl)purin-6-onc.
> 2-(2 2-propoxy-4-methoxyphenyl)pario-6-0ne.
> 2-(2 2 -propoxy-5-methoxyphenyl)purin-6-one.
> 2-(2 2-propoxy-4-methylphenyl)purin-6-one.
> 2-(2 2-propoxy-5-nuorophenyl)purin-6-one,
> 2-(2 2-propoxy-5-dimechylsulphamoylphenyl)purin-
> 6-one.
> 2-(2 2-propoxy-5-methylsulphamoylphenyl)purn. 6-ame.
> 2-(2 2-propoxy-S-sulphamoylphenyl)purin-6-one.
> 2-(2 2-propax y-4-methyithiophenyl)purin-6-one.
> 2-(2 2-propoxy-5-cyanophenyl)purin-6-one, and 2-(2-(2-propoxy-5-carbaraoylphenyl)purio-6-one. or a pharmacentically acceptable salt thereof.

International Patent Publication PCT/EP96/03024 (WO97/03675) discloses compounds of the formula:

and salts and solvates (e.g. hydrates) thereof, in which:
\(\mathrm{R}^{0}\) represents hydrogen, halogen or \(\mathrm{C}_{1-6}\) alky;
\(R^{1}\) represents hydrogen. \(C_{1-6}\) alkyl, \(C_{2-6}\) alkenyl, \(C_{26}\) alkynyl, halo \(C_{1-6 a l k y l, ~}^{\text {a }}\),

\(R^{2}\) represents an optionally substituted monocydic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic
ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring \(A\) is a 5 - or 6 -membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and
\(R^{3}\) represents hydrogen or \(C_{7-3}\) alkyl, or \(R^{1}\) and \(R^{3}\) together represent a 3- or 4 membered alkyl or alkenyl chain.

Preferred compounds include:

Cis-2,3,6,7.12.12a-hexahydro-2-butyi-6-(4-methylphenyl)pyrazino[2', 1: 6,1]pyrido[3.4-b]indole -1,4-dione:
(6R, 12aR)-2,3,6,7, 12,12a-Hexahydro-2-isopropyl-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1 ':6,1]pyrido[3.4-b]indole -1,4-dione:
(6R,12aR)-2,3.6,7,12,12a-Hexahydro-2-cyclopentyl-6-(3.4-methylenedioxyphenyl)-pyrazino[ 2,1 ':6.1]pyrido[3,4-b]indole -1,4-dione: (6R, 12aR)-2.3,6.7.12,12a-Hexahydra-2-cyclopropylmethyl-6-(4-methaxyphenyl)pyrazino[2', 1':6.1]pyrido[3.4-b]indole -1.4-dione:
(6R,12aR)-2,3,6,7,12,12a-Hexahydro-6-(3-chloro-4-methoxyphenyl)-2-methylpyrazino[2', \(\left.1^{\circ}: 6,1\right]\) pyrido[3.4-b]indole -1,4-dione;
(6R.12aR)-2,3,6,7,12,12a-Hexahydro-2-methyl-6-(3.4-methyienedioxyphenyl)-pyrazino[2',1':6,7]pyrido[3,4-b]indole-1,4-dione:
(6R, 12aR)-2,3,6,7,12,12a-Hexahydro-6-(3.4-methylenedioxyphenyl)pyrazino[2'. 1': 6,1] pyrido [3.4-b] indole-1.4-dione:
(5aR, 12R, 14aS)-1,2,3,5,6,11,12,14a-Octahydro-12-(3.4
 bjindole-5-1.4-dione:
Cis-2,3.6.7.12,12a-hexahydro-2-cyclopropyl-6-(3,4-methylenedioxyphenyl)-pyrazina[2',1':6,1]pyrido[3,4-b]indole -1.4-dione:
(3S. 6R.12aR)-2,3.6.7.12.12a-hexahydro-3-methyl-6-(3.4-
methylenedioxyphenyl)-pyrazino[2', 1 ':6,1]pyrido[3,4-b]indole -1,4-dione; and physiologically acceptable salts and solvates (e.g. hydrates) thereof.
The specific compounds of the invention are:
(6R, 12aR)-2.3,6,7,12,12a-hexahydro-2-methyt-6-\{3,4-methylenedioxyphenyl)pyrazino[ \(2^{\prime}, 1^{\prime}: 6,1\) ]pyrido[3,4-6]indole-1,4-dione (Compound A); and
(3S, 6R. 12aR)-2,3.6.7.12,12a-hexahydro-2.3-dimethyl-6-(3.4-
methylenedioxyphenyl)-pyrazino[2',1': 6.1]pyrido[3.4-b]indole-1.4-dione (Compound B):
and physiologicaliy acceptable salts and solvates (e.g. hydrates) thereof.

Examples of cGMP PDE inhibitors contemplated in this invention are also described in United States Patent No. 5,346,901 and published Intemational Patent Publication WO 94/28902, both of which documents are incorporated herein by reference.

Sildenafil, 1-[[3-(4,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxyphenyl]sulfonyl]-4-methylpiperazine, and salts thereof are disclosed in WO 94/28902.

Phentolamine, 3-[[(4,5-dihydro-1H-imidazol-2-yl)methyl](4methylphenyl)amino]phenol, and salts and esters thereof, and the use of phentolamine in the treatment of sexual dysfunction is disclosed in United States Patent No. 5,731,339, also incorporated herein by reference.

Sildenafil and phentolamine are each known to treat sexual dysfunction. The effectiveness of phentolamine for treatment of sexual dysfunction is demonstrated by test procedures described in U.S \(5,731,339\). Similar procedures can be used to determine the effectiveness of sildenafil and combinations of phentolamine and sildenafil.

Since the present invention relates to a method of treatment comprising the administration of a combination of two components, the components can be co-administered simultaneously or sequentially. Altematively, a single pharmaceutical composition comprising sildenafil, or a pharmaceutically acceptable salt thereof, and phentolamine, or a
pharmaceutically acceptable salt or ester thereof, in a pharmaceutically acceptable carrier can be administered. The components of the combination can be administered individually or together in any conventional oral dosage form such as a capsule, tablet, chewable tablets, powder, cachet, suspension or solution. The formulations can be prepared using conventional pharmaceutical excipients and additives using conventional techniques. Such pharmaceutically acceptable excipients and additives include non-toxic compatible fillers, binders, disintegrants, buffers, preservatives, anti-oxidants, lubricants, flavorings, thickeners, coloring agents, emulsifiers and the like.

Information on formulations comprising sildenafil are disclosed in WO 94/28902. Representative formulations comprising phentolamine are disclosed in U.S. 5,731,339. It is contemplated that where the two active ingredients are administered as a single composition, the dosage forms as disclosed in the aforementioned patent or application may readily be modified using the knowledge of one skilled in the art.

A typical formulation for sildenafil comprises 25,50 or 100 mg of active and as inactive ingredients, microcrystalline cellulose, anhydrous dibasic calcium phosphate, croscarmellose sodium, magnesium stearate, hydroxypropylmethylcellulose, titanium dioxide, lactose, triacetin, and FD\&C Blue \#2 aluminum lake.

A typical formulation for phentolamine is as follows:
\begin{tabular}{cc} 
Component & \(\mathrm{mg} /\) Tablet (w/w\%) \\
\hline phentolamine mesylate, USP & \(40 .(10)\) \\
Microcrystalline Cellulose, NF & \(341.6(85.4)\) \\
Croscarmellose Sodium, NF & \(16(4.0)\) \\
Colloidal Silicon Dioxide, NF & \(0.4(0.1)\) \\
Magnesium Stearate, NF & \(2(0.5)\) \\
Total & \(400(100)\)
\end{tabular}

The following are exemplary formulations for the phentolamine mesylate/sildenafil citrate combination:
-94-

\section*{Direct Compression Formulation}
\begin{tabular}{cc} 
Component & \(\mathrm{mg} /\) Tablet \\
\hline Phentolamine Mesylate & 80 \\
Sildenafil Citrate & 100 \\
Microcrystalline Cellulose & \(207.5-209.0\) \\
Croscarmellose Sodium & 10 \\
Silicon Dioxide & 0.5 \\
Magnesium Stearate & \(0.5-2\) \\
Total & 400
\end{tabular}

The direct -compression formulation is manufactured by blending the active ingredients and excipients and compressing the mixture into tablets.

\section*{Wet-Granulation Formulation}
\begin{tabular}{cc} 
Component & \(\mathrm{mg} /\) Tablet \\
\hline Phentolamine Mesylate & 80 \\
Sildenafil Citrate & 100 \\
Microcrystalline Cellulose & 80 \\
Lactose & \(114-115.5\) \\
Sodium Starch Glycolate & 12 \\
Povidone & 12 \\
Water & (evaporates) \\
Magnesium Stearate & \(0.5-2\) \\
Total & 400
\end{tabular}

The wet-granulation formulation is manufactured using the following steps:
1. the active ingredients are combined with
microcrystalline cellulose, lactose and sodium starch glycolate in a mixer/granulator;
2. povidone is added to water to form a solution;
3. the granulating solution (from step 2 ) is added to the powder blend (from step 1) with agitation to form a granulation, and the resulting granulation is dried;
4. the dry granulation is blended with magnesium stearate; and
5. the mixture is compressed into tablets.

\section*{Fast-Dissolving_Formulations}

A
\begin{tabular}{cc} 
Component & \(\mathrm{mg} /\) Tablet \\
\hline Phentolamine Mesylate & 40 \\
Sildenafil Citrate & 50 \\
Gelatin & 30 \\
Mannitol & 29 \\
Flavor & 1 \\
Water & (evaporates) \\
Total Dry Tablet Weight & 150
\end{tabular}

The above tablet form is manufactured by:
1. forming a uniform dispersion achieved by adding the active ingredients and excipients to water with agitation;
2. filling aliquots of the dispersion into molds; and
3. lyophilizing to form dry tablets.

B
\begin{tabular}{cc} 
Component & \(\mathrm{mg} /\) Tablet \\
\hline Phentolamine Mesylate & 40 \\
Sildenafil Citrate & 50 \\
Microcrystalline Cellulose & 95 \\
Crospovidone & 10 \\
Sodium Bicarbonate & 2 \\
Citric Acid & 2 \\
Flavor & 1 \\
Total & 200
\end{tabular}

The tablets are made by blending the combination of the actives and excipients and compressing the mixture into tablets.

The compounds in the combination of this invention for treating sexual dysfunction are administered in accordance with the treatment regimens described in each of the above listed publications. For example, for a combination of a Type V cGMP PDE inhibitors such as

Sildenafil in combination with phentolamine, the typical dosage is 5 to 100 mg of Sildenafil and 5 to 75 mg of phentolamine per dose, usually administered approximately one hour prior to intercourse. It is expected that the dosage of the individual components in the combination will be less than the dosage required when the individual components are administered alone. The exact dose of either component of the combination to be administered and the timing thereof is determined by the attending clinician and is dependent on the potency of the compound administered, the age, weight, condition and response of the patient. Where the components of a combination are administered separately, the separate dosage forms need not be administered simultaneously.

Since the present invention relates to treatment with a combination of active ingredients wherein said active ingredients may be administered separately, the invention also relates to combining separate pharmaceutical compositions in kit form. That is, a kit is contemplated wherein two separate units are combined: for example, a sildenafil pharmaceutical composition and a phentolamine pharmaceutical composition. The kit will preferably include directions for the administration of the separate components. The kit form is particularly advantageous when the separate components must be administered in different dosage forms (e.g. tablet and capsule) or are administered at different dosage intervals.

What is claimed is:
1. A pharmaceutical composition for the treatment of human sexual dysfunction comprising a therapeutically effective amount of phentolamine or a pharmaceutically acceptable salt or solvate or ester thereof, a therapeutically effective amount of a cGMP'PDE V. inhibitor or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
2. A composition of claim 1 wherein the cGMP PDE \(V\) inhibitor is sildenafil or a pharmaceutically acceptable salt or solvate thereof.
3. The composition of claim 1 wherein the phentolamine is phentolamine mesylate.
4. The composition of claim 1 wherein the sildenafil is sildenafil citrate.
5. The composition of claim 1 wherein the phentolamine is phentolamine mesylate and the cGMP PDE \(V\) inhibitor is sildenafil citrate.
6. A method of treating human sexual dysfunction comprising the simultaneous or sequential administration of a therapeutically effective amount of phentolamine or a pharmaceutically acceptable salt, solvate or ester thereof, and a therapeutically effective amount of a cGMP PDE V inhibitor or a pharmaceutically acceptable salt thereof.
7. The method of claim 6 wherein the cGMP PDE \(V\) inhibitor is sildenafil or a pharmaceutically acceptable salt or solvate thereof.
8. The method of claim 6 wherein the phentolamine is phentolamine mesylate.
9. The method of claim 6 wherein the cGMP PDE \(V\) inhibitor is sildenafil citrate.
10. The method of claim 6 wherein the phentolamine is phentolamine mesylate and the cGMP PDE inhibitor \(V\) is sildenafil citrate.
11. A kit comprising in separate containers in a single package, pharmaceutical compositions for use in combination to treat sexual dysfunction which comprises in one container a therapeutically effective amount phentolamine or a pharmaceutically acceptable salt, solvate or ester thereof in a pharmaceutically acceptable carrier and in a second container a therapeutically effective amount of a cGMP PDE V inhibitor or a pharmaceutically acceptable salt of solvate thereof in a pharmaceutically acceptable carrier.
12. A pharmaceutical composition for the treatment of human sexual dysfunction comprising a therapeutically effective amount of a first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof, a therapeutically effective amount of a second vasodilating agent or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
13. The pharmaceutical composition of claim 12 wherein said first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is an adrenergic blocker.
14. The pharmaceutical composition of claim 13 wherein said adrenergic blocker is an alpha-adrenergic blocker.
15. The pharmaceutical composition of claim 14 wherein alpha adrenergic blocker is selected from the group consisting. of an alpha1adrenergic blocker, an alpha2-adrenergic blocker or both an alpha1adrenergic blocker and an alpha2-adrenergic blocker.
16. The pharmaceutical composition of claim 12 wherein said second vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is a cGMP PDE inhibitor.
17. The pharmaceutical composition of claim 12 wherein said first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof is an adrenergic blocker and said second vasodilating agent
or a pharmaceutically acceptable salt or solvate or ester thereof is a cGMP PDE inhibitor.
18. The pharmaceutical composition of claim 17 wherein the adrenergic blocker is selected from the group consisting of phentolamine, phentolamine mesylate, phentolamine hydrochloride, phenoxybenazmine, tolazoline, dibenamine, yohimbine, terazosin, doxazosin and prazosin.
19. The pharmaceutical composition of claim 17 wherein the cGMP PDE inhibitor is a cGMP PDE V inhibitor.
20. The pharmaceutical composition of claim 17 wherein the cGMP PDE \(V\) inhibitor is selected from the group consisting of: sildenafil, (6R, 12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrizino[2', 1 ':6,1]pyrido[3,4-b]indole-1,4-dione (Compound A), and (3S,6R,12aR)-2,3,6,7,12,12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl)-pyrazino[ 2 ',1':6,1]pyrido[3,4-b]indole-1,4-dione (Compound B) or a pharmaceutically acceptable salt or solvate thereof.
21. A method of treating human sexual dysfunction comprising the simultaneous or sequential administration of a therapeutically effective amount of a therapeutically effective amount of a first vasodilating agent or a pharmaceutically acceptable salt or solvate or ester thereof, a therapeutically effective amount of a second vasodilating agent or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.

\section*{INTERNATIONAL SEARCH REPORT}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
A. CLASSIFICATION OF SJBJECT MATTER \\
IPC 6 A61K31/415 A61K \(31 / 505\) \\
According to Intemational Patent Classitication (IPC) or to both national classification and IPC
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{B. FIELDS SEARCHED} \\
\hline \multicolumn{4}{|l|}{Minimum documentation searched (classitication system followed by classitication symbols) IPC 6 A61K} \\
\hline \multicolumn{4}{|l|}{Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched} \\
\hline \multicolumn{4}{|l|}{Electronic data base consulted during the international search (name of data base and, where practical, search terms used)} \\
\hline \multicolumn{4}{|l|}{C. DOCUMENTS CONSIDERED TO BE RELEVANT} \\
\hline Category * & Citation of document, with indication, where appropria & levant passages & Relevant to claim No. \\
\hline \(X\)



\(P, X\) & \begin{tabular}{l}
GOMAA A ET AL: "Topical tr erectile dysfunction: rand blind placebo controlled containing aminophylline, dinitrate, and co-dergocr comments!." \\
BMJ (CLINICAL RESEARCH ED 312 (7045) 1512-5. , XPO021 abstract \\
the whole document \\
SOLI M ET AL: "Vasoactive erectile dysfunction: chem of PGE1, papaverine and ph JOURNAL OF UROLOGY, ( 1998 551-5. , XP002115286 abstract the whole document
\end{tabular} & \begin{tabular}{l}
nt of double f cream bide ylate 'see 96 JUN 15) \\
ails for tability mine." 60 (2)
\[
-/--
\]
\end{tabular} & \[
12-15,21
\]
\[
12-15,21
\] \\
\hline \multicolumn{4}{|l|}{\(X\) Further documents are listed in the continuation of box \(C\). X ( Patent family members are listed in annex.} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
\({ }^{2}\) Special categories of cited documents: \\
" \(A\) " document defining the general state of the an which is not considered to be of particular relevance \\
" \(E\) " eatier document but published on or after the international liting date \\
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) \\
"O" document retering to an oral disclosure, use, exhibition or other means \\
"P" document published prior to the intemational filing date but later than the priority date claimed \\
"T" later document published atter the intemational filing date or priority date and not in conflict with the application but cited to understand the principle or theory undertying the invention \\
" X " document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone \\
" \(Y\) " document of particular relevance; the claimed invention cannot be considered to invotve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. \\
" 8 " document member of the same patent family
\end{tabular}} \\
\hline Date of the & \begin{tabular}{l}
actual completion of the intemational search \\
4 September 1999
\end{tabular} & \begin{tabular}{l}
Date of mai \\
28/
\end{tabular} & port \\
\hline Name and & \begin{tabular}{l}
naiiing address of the ISA \\
European Patent Ottice, P.B. 5818 Patentlaan 2 \\
NL - 2280 HV Rijswijk \\
Tet. ( \(+31-70\) ) 340-2040, Tx. 31651 epo nt. \\
Fax: (+31-70) 340-30 16
\end{tabular} & \begin{tabular}{l}
Authorized \\
Econ
\end{tabular} & \\
\hline
\end{tabular}

Form PCT/ISA/210 (second sheel) (July 1992)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Patent document cited in search report & & \[
\begin{aligned}
& \text { Publication } \\
& \text { date }
\end{aligned}
\] & \multicolumn{2}{|r|}{Patent family member(s)} & \[
\begin{aligned}
& \text { Publication } \\
& \text { date }
\end{aligned}
\] \\
\hline US 5731339 & A & 24-03-1998 & \begin{tabular}{l}
AU \\
BG \\
CA \\
CZ \\
EP \\
HU \\
LT \\
LV \\
LV \\
MD \\
NO \\
NZ \\
PL \\
SI \\
SK \\
WO \\
ZA
\end{tabular} &  & \[
\begin{aligned}
& 18-11-1996 \\
& 30-04-1998 \\
& 31-10-1996 \\
& 18-03-1998 \\
& 16-04-1997 \\
& 28-06-1999 \\
& 25-06-1998 \\
& 20-05-1998 \\
& 20-08-1998 \\
& 31-07-1999 \\
& 23-12-1997 \\
& 29-06-1999 \\
& 02-03-1998 \\
& 30-06-1998 \\
& 03-06-1998 \\
& 31-10-1996 \\
& 08-11-1996
\end{aligned}
\] \\
\hline WO 9428902 & A & 22-12-1994 & \begin{tabular}{l}
AT \\
AU \\
AU \\
CA \\
CN \\
CZ \\
DE \\
DE \\
DK \\
EP \\
ES \\
FI \\
GR \\
IL \\
IL \\
JP \\
LV \\
NO \\
NZ \\
PL \\
ZA
\end{tabular} & 163852 T
676571 B
6797394 A
2163446
1124926
\(\mathrm{~A}, \mathrm{C}\)
9503242 A
69408981
69408981 & \[
\begin{aligned}
& 15-03-1998 \\
& 13-03-1997 \\
& 03-01-1995 \\
& 22-12-1994 \\
& 19-06-1996 \\
& 17-07-1996 \\
& 16-04-1998 \\
& 02-07-1998 \\
& 06-04-1998 \\
& 27-03-1996 \\
& 01-05-1998 \\
& 08-12-1995 \\
& 31-07-1998 \\
& 27-12-1998 \\
& 27-12-1998 \\
& 22-04-1997 \\
& 20-05-1999 \\
& 24-11-1995 \\
& 24-03-1997 \\
& 18-03-1996 \\
& 08-12-1995
\end{aligned}
\] \\
\hline W0 9703675 & A & 06-02-1997 & \begin{tabular}{l}
AU \\
AU \\
BR \\
CA \\
CN \\
CZ \\
EP \\
HU \\
NO \\
PL \\
SK
\end{tabular} & \[
\begin{array}{r}
704955 \mathrm{~B} \\
6419196 \mathrm{~A} \\
9609758 \mathrm{~A} \\
2226784 \mathrm{~A} \\
1195290 \mathrm{~A} \\
9800033 \mathrm{~A} \\
0839040 \mathrm{~A} \\
9900065 \mathrm{~A} \\
980153 \mathrm{~A} \\
324495 \mathrm{~A} \\
3998
\end{array}
\] & \[
\begin{aligned}
& 13-05-1999 \\
& 18-02-1997 \\
& 26-01-1999 \\
& 06-02-1997 \\
& 07-10-1998 \\
& 13-05-1998 \\
& 06-05-1998 \\
& 28-05-1999 \\
& 10-03-1998 \\
& 25-05-1998 \\
& 08-07-1998
\end{aligned}
\] \\
\hline EP 0611248 & A & 17-08-1994 & US & 5567706 A & 22-10-1996 \\
\hline
\end{tabular}

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
(51) International Patent Classification \({ }^{7}\) : \\
A61K \\
A2
\end{tabular} & \begin{tabular}{l}
(11) International Publication Number: \\
WO 00/53148 \\
(43) International Publication Date: \\
14 September 2000 (14.09.00)
\end{tabular} \\
\hline \begin{tabular}{l}
(21) International Application Number: \\
PCT/US00/05711 \\
(22) International Filing Date: \\
3 March 2000 ( 03.03 .00 ) \\
(30) Priority Data: \\
60/123,244 \\
8 March 1999 (08.03.99) \\
US \\
(71) Applicants (for all designated States except US): MERCK \& CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). WALDSTREICHER, Joanne [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). \\
(72) Inventor; and \\
(75) Inventor/Applicant (for US only): STONER, Elizabeth [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). \\
(74) Common Representative: MERCK \& CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
\end{tabular} & \begin{tabular}{l}
(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, \(A Z, B Y, K G, K Z, M D, R U, T J, T M\) ), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). \\
Published \\
Without international search report and to be republished upon receipt of that report.
\end{tabular} \\
\hline
\end{tabular}
(54) Title: METHODS AND COMPOSITIONS FOR TREATING ERECTILE DYSFUNCTION

\section*{(57) Abstract}

The present invention provides for a method for the treatment of erectile dysfunction in a male or female human subject in need of such treatment comprising administration of a therapeutically effective amount of an agonist of the melanocortin receptor in combination with a therapeutically effective amount of a cyclic-GMP-specific phosphodiesterase inhibitor or an alpha-adrenergic receptor antagonist. Further, the present invention provides for pharmaceutical compositions useful in the methods of the present invention, as well as a method of manufacture of a medicament useful for treating erectile dysfunction.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AL & Albania & ES & Spain & LSS & Lesotho & SI & Slovenia \\
\hline AM & Ammenia & FI & Finland & LT & Lithuania & SK & Slovakia \\
\hline AT & Austria & FR & France & LU & Luxembourg & SN & Senegal \\
\hline AU & Ausiralia & GA & Gabon & LV & Larvia & SZ & Swaziland \\
\hline AZ & Azerbaijan & GB & United Kingdom & MC & Monaco & TD & Chad \\
\hline BA & Bosnia and Herzegovina & GE & Georgia & MD & Republic of Moldova & TG & Togo \\
\hline BB & Barbados & GH & Ghana & MG & Madagascar & TJ & Tajikistan \\
\hline BE & Belgium & GN & Guinea & MK & The former Yugoslav & TM & Turkmenistan \\
\hline BF & Burkina Faso & GR & Greece & & Republic of Macedonia & TR & Turkey \\
\hline BG & Bulgaria & HU & Hungary & ML & Mali & TT & Trinidad and Tobago \\
\hline BJ & Benin & 1 E & Ireland & MN & Mongolia & UA & Ukraine \\
\hline BR & Brazil & 12 & Israel & MR & Mauritania & UG & Uganda \\
\hline BY & Belarus & IS & Iceland & MW & Malawi & US & United States of America \\
\hline CA & Canada & 1 T & Italy & MX & Mexico & UZ & Uzbekistan \\
\hline CF & Central African Republic & JP & Japan & NE & Niger & VN & Viet Nam \\
\hline CG & Congo & KE & Kenya & NL & Netheriands & YU & Yugoslavia \\
\hline CH & Switzerland & KG & Kyrgyzstan & NO & Norway & ZW & Zimbabwe \\
\hline Cl & Cote d'lvoire & \(\mathbf{K P}\) & Democratic People's & NZ & New Zealand & & \\
\hline CM & Cameroon & & Republic of Korea & PL & Poland & & \\
\hline CN & China & KR & Republic of Korea & PT & Portugal & & \\
\hline CU & Cuba & KZ & Kazakstan & RO & Romania & & \\
\hline CZ & Czech Republic & LC & Saint Lucia & RU & Russian Federation & & \\
\hline DE & Germany & LI & Liechtenstein & SD & Sudan & & \\
\hline DK & Denmark & LK & Sri Lanka & SE & Sweden & & \\
\hline EE & Estonia & LR & Liberia & SG & Singapore & & \\
\hline
\end{tabular}

\section*{TITLE OF THE INVENTION \\ METHODS AND COMPOSITIONS FOR TREATING ERECTILE DYSFUNCTION}

\section*{FIELD OF THE INVENTION}

The present invention provides for novel methods for the treatment of erectile dysfunction comprising a drug combination. More particularly, the drug combination of the present invention comprises an agonist of the melanocortin receptor with a cyclic-GMP-specific phosphodiesterase inhibitor or an alphaadrenergic receptor antagonist. The present invention also provides for pharmaceutical compositions comprising such drug combinations useful in the methods to treat erectile dysfunction. Moreover, the present invention provides for a method of manufacture of a medicament useful in the treatment of erectile dysfunction.

\section*{BACKGROUND OF THE INVENTION}

Erectile dysfunction denotes the medical condition of inability to achieve penile erection sufficient for successful sexual intercourse. The term "impotence" is oftentimes employed to describe this prevalent condition.
Approximately 140 million men worldwide, and, according to a National Institutes of Health study, about 30 million American men suffer from impotency or erectile dysfunction. It has been estimated that the latter number could rise to 47 million men by the year 2000. Erectile dysfunction can arise from either organic or psychogenic causes, with about \(20 \%\) of such cases being purely psychogenic in origin. Erectile dysfunction increases from \(40 \%\) at age 40 , to \(67 \%\) at age 75 , with over \(75 \%\) occurring in men over the age of 50 . In spite of the frequent occurrence of this condition, only a small number of patients have received treatment because existing treatment alternatives, such as injection therapies, penile prosthesis implantation, and vacuum pumps, have been uniformly disagreeable [for a discussion, see "ABC of sexual health - erectile dysfunction," Brit. Med. J. 318: 387-390 (1999)]. Only more recently have more viable treatment modalities become available, in particular orally active agents, such as sildenafil citrate, marketed by Pfizer under the brand name of Viagra \({ }^{\circledR}\). Sildenafil is a selective inhibitor of type \(V\) phosphodiesterase (PDE-V), a cyclic-GMP-specific phosphodiesterase isozyme [see R.B. Moreland et al., "Sildenafil: A Novel Inhibitor of Phosphodiesterase Type 5 in Human Corpus Cavernosum Smooth Muscle Cells," Life Sci., 62: 309-318 (1998)]. Prior to the introduction of Viagra \({ }^{\circledR}\)
on the market, less than \(10 \%\) of patients suffering from erectile dysfunction received treatment. Sildenafil is also being evaluated in the clinic for the treatment of female sexual dysfunction.

The regulatory approval of Viagra \({ }^{\circledR}\) for the oral treatment of erectile dysfunction has invigorated efforts to discover even more effective methods to treat erectile dysfunction. Several additional selective PDE-V inhibitors are in clinical trials. UK-114542 is a sildenafil backup from Pfizer with supposedly improved properties. IC-351 (ICOS Corp.) is claimed to have greater selectivity for PDE-V over PDE-VI than sildenafil. Other PDE-V inhibitors include M-54033 and M-54018 from Mochida Pharmaceutical Co. and E-4010 from Eisai Co., Ltd.

Other pharmacological approaches to the treatment of erectile dysfunction have been described [see, e.g., "Latest Findings on the Diagnosis and Treatment of Erectile Dysfunction," Drug News \& Perspectives, 9: 572-575 (1996); "Oral Pharmacotherapy in Erectile Dysfunction," Current Opinion in Urology, 7: 349353 (1997)]. A product under clinical development by Zonagen is an oral formulation of the alpha-adrenoceptor antagonist phentolamine mesylate under the brand name of Vasomax \({ }^{\circledR}\). Vasomax \({ }^{\circledR}\) is also being evaluated for the treatment of female sexual dysfunction.

Drugs to treat erectile dysfunction act either peripherally or centrally. They are also classified according to whether they "initiate". a sexual response or "facilitate" a sexual response to prior stimulation [for a discussion, see "A Therapeutic Taxonomy of Treatments for Erectile Dysfunction: An Evolutionary Imperative," Int. J. Impotence Res., 9: 115-121 (1997)]. While sildenafil and phentolamine act peripherally and are considered to be "enhancers" or "facilitators" of the sexual response to erotic stimulation, sildenafil appears to be efficacious in both mild organic and psychogenic erectile dysfunction. Sildenafil has an onset of action of \(30-60\) minutes after an oral dose with the effect lasting about 4 hours, whereas phentolamine requires \(5-30\) minutes for onset with a duration of 2 hours. Although sildenafil is effective in a majority of patients, it takes a relatively long time for the compound to show the desired effects. The faster-acting phentolamine appears to be less effective and to have a shorter duration of action than sildenafil. Oral sildenafil is effective in about \(70 \%\) of men who take it, whereas an adequate response with phentolamine is observed in only \(35-40 \%\) of patients. Both compounds require erotic stimulation for efficacy. Since sildenafil indirectly increases blood flow in the systemic circulation by enhancing the smooth muscle relaxation effects of nitric
oxide, it is contraindicated for patients with unstable heart conditions or
cardiovascular disease, in particular patients taking nitrates, such as nitroglycerin, to treat angina. Other adverse effects associated with the clinical use of sildenafil include headache, flushing, dyspepsia, and "abnormal vision," the latter the result of inhibition of the type VI phosphodiesterase isozyme (PDE-VI), a cyclic-GMP-specific phosphodiesterase that is concentrated in the retina. "Abnormal vision" is defined as a mild and transient "bluish" tinge to vision, but also an increased sensitivity to light or blurred vision. Moreover, since some patients have developed a tolerance to prior phosphodiesterase inhibitors, sildenafil may prove to have a similar outcome in some percentage of patients when used over a long period of time.

Synthetic melanocortin receptor agonists (melanotropic peptides) have been found to initiate erections in men with psychogenic erectile dysfunction [See H . Wessells et al., "Synthetic Melanotropic Peptide Initiates Erections in Men With Psychogenic Erectile Dysfunction: Double-Blind, Placebo Controlled Crossover Study," J. Urol., 160: 389-393 (1998); Fifteenth American Peptide Symposium, June 14-19, 1997 (Nashville TN)]. Activation of melanocortin receptors of the brain appears to cause normal stimulation of sexual arousal. In the above study, the centrally acting \(\alpha\)-melanocyte-stimulating hormone analog, melanotan-II (MT-II), exhibited a \(75 \%\) response rate, similar to results obtained with apomorphine, when injected intramuscularly or subcutaneously to males with psychogenic erectile dysfunction. MT- \(\Pi\) is a synthetic cyclic heptapeptide, Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]- \(\mathrm{NH}_{2}\), which contains the 4-10 melanocortin receptor binding region common to \(\alpha-\mathrm{MSH}\) and adrenocorticotropin, but with a lactam bridge. MT-II (also referred to as PT-14) (Erectide \({ }^{\circledR}\) ) is presently in clinical development by Palatin Technologies, Inc. and TheraTech, Inc. as a non-penile subcutaneous injection formulation. An oral transmucosal delivery system for the drug is also being developed. It is considered to be an "initiator" of the sexual response. The time to onset of erection with this drug is relatively short (10-20 minutes) with a duration of action approximately 2.5 hours. Adverse reactions observed with MT-II include nausea, flushing, loss of appetite, stretching, and yawning.

Adverse effects associated with MT-II may be the result of the lack of selectivity of the compound for a particular melanocortin receptor subtype. To date, five melanocortin receptor subtypes have been cloned. Evidence has been presented suggesting that the erectogenic properties of melanocortin agonists are mediated via binding to the MC-4R subtype. Whereas MC-3R is expressed in the brain, gut, and
placenta, the MC-4R subtype is uniquely"expressed in the brain, and inactivation has been found to cause obesity.

Because of the unresolved deficiencies of the various pharmacological agents discussed above, there is a continuing need in the medical arts for improved methods and compositions to treat individuals suffering from psychogenic and/or organic erectile dysfunction. Such methods should have wider applicability, enhanced convenience and ease of compliance, short onset of action, reasonably long duration of action, and minimal side effects with few contraindications, as compared to agents now available.

It is therefore an object of the present invention to provide methods of treating erectile dysfunction which comprise the administration to a human subject in need thereof a centrally-acting agent that "initiates" an erectogenic response in combination with another centrally-acting agent or a peripherally-acting agent that "facilitates" or "enhances" the response to erotic stimulation. The human subject may be either male or female.

It is another object of the present invention to provide pharmaceutical compositions comprising the combination that are useful in the methods of the present invention.

It is still a further object of the present invention to provide a method of manufacture of a medicament useful in the treatment of erectile dysfunction.

\section*{SUMMARY OF THE INVENTION}

The present invention provides for methods of treating erectile dysfunction in a human subject in need of such treatment comprising administration of a therapeutically effective amount of an agonist of the melanocortin receptor in combination with a therapeutically effective amount of a cyclic-GMP-specific phosphodiesterase inhibitor or an alpha-adrenergic receptor antagonist. Further, the present invention provides for pharmaceutical compositions useful in the methods of the present invention, as well as a method of manufacture of a medicament useful to treat erectile dysfunction.

\section*{DETALED DESCRIPTION OF THE INVENTION}

The present invention is concemed with the combination of an agonist of the melanocortin receptor with a cyclic-GMP-specific phosphodiesterase inhibitor or an alpha-adrenergic receptor antagonist for the treatment of erectile dysfunction in
\(\therefore\)
a male or female human subject. This particular combination produces unexpectedly superior pharmacokinetic and pharmacodynamic results in the treatment of male or female erectile dysfunction. Thus, it is an object of the instant invention to describe the combination of the two drugs in the treatment of erectile dysfunction. In addition, it is an object of the instant invention to describe preferred embodiments within each category of compounds which are used as elements in the instant combination. It is a further object of this invention to describe compositions containing each of the compounds for use in the treatment of erectile dysfunction. It is a still further object of this invention to describe a method of manufacture of a medicament containing the present drug combination which is useful for the treatment of erectile dysfunction. Further objects will become apparent from a reading of the following description.

The instant combination for the treatment of erectile dysfunction contains as a first element an agonist of the melanocortin receptor. Representative agonists of the melanocortin receptor are disclosed in the following publications, which are incorporated by reference herein in their entirety:
(1) M. E. Hadley et al., "Discovery and Development of Novel Melanogenic Drugs," in Integration of Pharmaceutical Discovery and Development: Case Studies, edited by Borchardt et al., Plenum Press, New York, 1998;
(2) R.T. Dort, et al., "Evaluation of Melanotan-II, A Superpotent Cyclic Melanotropic Peptide in a Pilot Phase-I Clinical Study," Life Sci., 58: 1777-1784 (1996); and (3) R.A.H. Adan, "Identification of Antagonists for Melanocortin MC3, MC4, and MC5 Receptors," European J. Pharmacol., 269: 331-337 (1994).

Compositions and methods for the treatment of psychogenic erectile dysfunction comprising melanotropic peptides are disclosed in U.S. Patent No. \(5,576,290\) and CA \(2,158,425\), which are incorporated by reference herein in their entirety.

In the instant combination for the treatment of erectile dysfunction, the first element of the combination is an agonist of the melanocortin receptor. In one embodiment of the combination of the present invention, the agonist of the melanocortin receptor is melanotan-II (MT-II).

In another embodiment of the combination of the present invention, the agonist of the melanocortin receptor is selective for the MC-4R subtype. Selective \(\mathrm{MC}-4 \mathrm{R}\) agonists have been described, and reference is made to the following disclosures; which are incorporated by reference herein in their entirety:
(1) C. Haskell-Luevano, et al., "Discovery of Prototype Peptidomimetic Agonists at the Human Melanocortin Receptors MCIR and MC4R," J.Med. Chem., 40: 21332139 (1997); and
(2) H.B. Schioth, et al., "Discovery of Novel Melanocortin-4 Receptor Selective MSH

Analogues," Brit. J. Pharmacol., 124: 75-82 (1998).
In the instant combination for the treatment of erectile dysfunction, the second element of the combination is composed of either a cyclic-GMP-specific phosphodiesterase inhibitor or an alpha-adrenergic receptor antagonist. In a further embodiment of the combination of the present invention, the second element of the combination is a cyclic-GMP-specific phosphodiesterase inhibitor selective for the type V phosphodiesterase isozyme (PDE-V). Representative PDE-V inhibitors are disclosed in the patent and scientific literature. The Pfizer pyrazolo[4,3-d]pyrimidin-7-one PDE-V inhibitors are disclosed in WO 94/28902; WO 96/16644; WO 96/16657; EP 0,702,555; EP 0,463,756; CA 2,163,446; and U.S. Patent No. \(5,250,534\); all of which are incorporated by reference herein in their entirety. Sildenafil is the generic name for 1-[4-ethoxy-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)phenylsulfonyl]-4-methyl-piperazine. For a discussion of its efficacy in the treatment of male erectile dysfunction, reference is made to I. Goldstein et al.; N. Engl. J. Med., 338: 1397-1404 (1998) and M. Boolell et al., "Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction;" Int. J. Impotence Res., 8: 47-52 (1996).

The ICOS Corp. tetracyclic PDE-V inhibitors are disclosed in WO 95/19978; WO 97/03675; and WO 97/19978; all of which are incorporated by reference herein in their entirety. IC-351 represents ( \(6 \mathrm{R}, 12 \mathrm{aR}\) ) \(-2,3,6,7,12,12 \mathrm{a}\) -hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2', 1': 6,1]pyrido[3,4-b]indole-1,4-dione and is disclosed in WO \(97 / 03675\) for the treatment of impotence.

The Mochida Pharmaceutical Co. pyridocarbazole series of PDE-V inhibitors, of which M-54018 and M-54033 are members, is disclosed in WO 97/45427, which is incorporated by reference herein in its entirety. Other structural classes of PDE-V inhibitors are disclosed in WO 98/16224 (E. Merck GmbH), WO 99/02161 (Forssmann), WO 98/07430 (Eisai), and JP 8225541 (Eisai); all of which are incorporated by reference herein in their entirety.

In a class of this embodiment of the present invention, the combination for the treatment of erectile dysfunction comprises an agonist of the melanocortin
receptor and a PDE-V inhibitor selected from the group consisting of sildenafil citrate, IC-351, M-54018, and M-54033. In a subclass of this class of the present invention, the agonist of the melanocortin receptor is MT-II. In another subclass of this class of the present invention, the combination of the present invention comprises a selective agonist of the melanocortin-4 receptor and a PDE-V inhibitor selected from the group consisting of sildenafil citrate, \(\mathrm{IC}-351, \mathrm{M}-54018\), and \(\mathrm{M}-54033\). An especially preferred combination is a selective agonist of the melanocortin-4 receptor (MC-4R) and sildenafil citrate.

In another embodiment of the combination of the present invention, the second element of the combination is an alpha-adrenergic receptor antagonist. In a class of this embodiment of the present invention, the alpha-adrenergic receptor antagonist is selective for the alpha- 2 receptor subtype. In a subclass of this class of the present invention, the alpha- 2 receptor antagonist is yohimbine or delquamine. The efficacy of yohimbine in the treatment of psychogenic erectile dysfunction is reported in Lancet, pp. 42-43 (1987). Delquamine is an alpha adrenoreceptor antagonist, with a greater affinity for the alpha- 2 receptor subtype [see A. Morales et al., "Oral and topical treatment of erectile dysfunction," Urol. Clin. North Am., 22: 879-885 (1995)].

In another subclass of this class of the present invention, the alpha-2 receptor antagonist is an arylquinolizine derivative disclosed in U.S. Patent Nos. \(4,824,849\) and \(4,710,504\), both of which are incorporated by reference herein in their entirety. In a subclass of this subclass of the present invention, the alpha-2 receptor antagonist is the benzofuroquinolizine analog, MK-912, disclosed in U.S. Patent No. 4,824,849. MK-912 represents \(1^{\prime}, 3^{\prime}\)-dimethylspiro( \(1,3,4,5^{\prime}, 6,6^{\prime}, 7,12 \mathrm{~b}\)-octahydro- 2 H -benzo[b]-furo[ 2,3 -a]quinolizine)- \(2,4^{\prime}\) 'pyrimidin- \(2^{\prime}\)-one and is a potent, orally active agent with a pharmacologic profile consistent with alpha- 2 antagonism [see D.J. Pettibone, et al., "Pharmacological profile of a new potent and specific alpha2adrenoceptor antagonist, L-657,743," Naunyn-Schmiederberg's Arch. Pharmacol., 336: 169-175 (1987)]. The effect of the drug on penile erections in healthy male volunteers was observed by B.J. Gertz et al. and reported in Clin. Pharmacol. Ther., 46: 566-575 (1989). An especially preferred combination is a selective agonist of the melanocortin-4 receptor (MC-4R) and MK-912.

The instant combination of an agonist of the melanocortin receptor and a cyclic-GMP-specific phosphodiesterase inhibitor or an alpha-adrenergic receptor antagonist is useful in the therapeutic treatment of erectile dysfunction. Although the
methods and compositions comprising drug combinations of the present invention are envisaged primarily for the treatment of male erectile dysfunction, they may also be useful for the treatment of female sexual dysfunction, including orgasmic dysfunction related to clitoral disturbances.

The combination of an agonist of the melanocortin receptor and a cyclic-GMP-specific phosphodiesterase inhibitor or an alpha-adrenergic receptor antagonist provides an unexpectedly superior effect in the treatment of erectile dysfunction. The combination provides for effective treatment of either psychogenic or organic erectile dysfunction in a greater percentage of the affected population than either element of the combination separately. The combination provides for a shorter onset of action and longer duration of action than either element of the combination separately. The combination also has fewer side effects and contraindications than either member of the combination separately.

For use in medicine, the salts of the compounds of this invention refer to non-toxic "pharmaceutically acceptable salts." Other salts may, however, be useful in the preparation of the compounds according to the invention or of their pharmaceutically acceptable salts. Salts encompassed within the term "pharmaceutically acceptable salts" refer to non-toxic salts of the compounds of this invention which are generally prepared by reacting the free base with a suitable organic or inorganic acid. Representative salts include the following:

Acetate, Benzenesulfonate, Benzoate, Bicarbonate, Bisulfate, Bitartrate, Borate, Bromide, Camsylate, Carbonate, Chloride, Clavulanate, Citrate, Dihydrochloride, Edetate, Edisylate, Estolate, Esylate, Fumarate, Gluceptate, Gluconate, Glutamate, Glycollylarsanilate, Hexylresorcinate, Hydrabamine, Hydrobromide, Hydrochloride, Hydrox ynaphthoate, Iodide, Isothionate, Lactate, Lactobionate, Laurate, Malate, Maleate, Mandelate, Mesylate, Methylbromide, Methylnitrate, Methylsulfate, Mucate, Napsylate, Nitrate, N-methylglucamine ammonium salt, Oleate, Oxalate, Pamoate (Embonate), Palmitate, Pantothenate, Phosphate/diphosphate, Polygalacturonate, Salicylate, Stearate, Sulfate, Subacetate, Succinate, Tannate, Tartrate, Teoclate, Tosylate, Triethiodide and Valerate. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g., sodium or potassium salts; alkaline earth metal salts, e.g., calcium or magnesium salts; and salts formed with suitable organic ligands, e.g., quatemary ammonium salts.

The compounds of the present invention may have chiral centers and occur as racemates, racemic mixtures and as individual diastereomers, or enantiomers with all isomeric forms being included in the present invention. Therefore, where a compound is chiral, the separate enantiomers, substantially free of the other, are included within the scope of the invention; further included are all mixtures of the two enantiomers. Also included within the scope of the invention are polymorphs and hydrates of the compounds of the instant invention.

The present invention includes within its scope prodrugs of the compounds of this invention. In general, such prodrugs will be functional derivatives of the compounds of this invention which are readily convertible in vivo into the required compound. Thus, in the methods of treatment of the present invention, the term "administering" shall encompass the treatment of erectile dysfunction with the compound specifically disclosed as an element of the combination or with a compound which may not be specifically disclosed, but which converts to the specified compound in vivo after administration to the patient. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in "Design of Prodrugs," ed. H. Bundgaard, Elsevier; 1985. Metabolites of these compounds include active species produced upon introduction of compounds of this invention into the biological milieu.

The term "therapeutically effective amount" shall mean that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by a researcher or clinician.

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.

In the combination of the present invention, the agonist of the melanocortin receptor may be administered separately or in conjunction with the cyclic-GMP-specific phosphodiesterase inhibitor or the alpha-adrenergic receptor antagonist. In addition, the administration of one element of the combination of the present invention may be prior to, concurrent to, or subsequent to the administration of the other element of the combination.

The elements of the combination of the present invention may be administered by oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous or subcutaneous injection, or implant), buccal, nasal, vaginal, rectal, sublingual, or
topical (e.g.. ocular eyedrop) routes of administration and may be formulated, alone or together, in suitable dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles appropriate for each route of administration.

The pharmaceutical compositions for the administration of the compounds of this invention may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the carrier which constitutes one or more accessory ingredients. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation. In the pharmaceutical composition the active object compound is included in the combination in an amount sufficient to produce the desired pharmacologic effect upon the process or condition of erectile dysfunction..

The pharmaceutical compositions containing the active ingredient suitable for oral administration may be in the form of discrete units such as hard or soft capsules, tablets, troches or lozenges, each containing a predetermined amount of the active ingredient; in the form of a dispersible powder or granules; in the form of a solution or a suspension in an aqueous liquid or non-aqueous liquid; in the form of syrups or elixirs; or in the form of an oil-in-water emulsion or a water-in-oil emulsion. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide a pharmaceutically elegant and palatable preparation.

Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules. In such solid dosage forms, the active compounds are admixed with at least one inert pharmaceutically acceptable carrier such as sucrose, lactose, or starch. Such dosage forms can also comprise, as is normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents.

Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients may also be manufactured by known methods.

The excipients used may be for example, (1) inert diluents such as calcium carbonate, lactose, calcium phosphate or sodium phosphate; (2) granulating and disintegrating agents, such as corn starch or alginic acid; (3) binding agents such as starch, gelatin or acacia; and (4) lubricating agents such as magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated by the techniques described in the U.S. Pat. Nos. \(4,256,108 ; 4,160,452\); and \(4,265,874\) to form osmotic therapeutic tablets for controlled release.

In some cases, formulations for oral use may be in the form of hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example calcium carbonate, calcium phosphate or kaolin. They may also be in the form of soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Besides such inert diluents, compositions can also include adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.

Aqueous suspensions normally contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients may be
1) suspending agents such as sodium carboxymethyl-cellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia;
(2) dispersing or wetting agents which may be
(a) a naturally-occurring phosphatide such as lecithin,
(b) a condensation product of an alkylene oxide with a fatty acid, for example, polyox yethylene stearate,
(c) a condensation product of ethylene oxide with a long chain aliphatic alcohol, for example, heptadecaethyleneoxycetanol,
(d) a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol such as polyoxyethylene sorbitol monooleate, or
(e) a condensation product of ethylene oxide with a partial ester derived from a fatty acid ąnd a hexitol anhydride, for example polyoxyethylene sorbitan monooleate.
The aqueous suspensions may also contain one or more preservatives, for example, ethyl or n-propyl p-hydroxybenzoate; one or more coloring agents; one or more flavoring agents; and one or more sweetening agents, such as sucrose or saccharin.

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents and flavoring agents may be added to provide a palatable oral preparation. These compositions may be prepared by the addition of an antioxidant such as ascorbic acid.

Dispersible powders and granules are suitable for the preparation of an aqueous suspension. They provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example, those sweetening, flavoring and coloring agents described above may also be present.

The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil such as olive oil or arachis oils, or a mineral oil such as liquid paraffin or a mixture thereof. Suitable emulsifying agents may be (1) naturally-occurring gums such as gum acacia and gum tragacanth, (2) naturally-occurring phosphatides such as soybean and lecithin, (3) esters or partial esters derived from fatty acids and hexitol anhydrides, for example, sorbitan monooleate, (4) condensation products of said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.

Syrups and elixirs may be formulated with sweetening agents, for example, glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.

The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension or solution. The suspension may be formulated according to known methods using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic parenterally-acceptable diluent or solvent, for example à a solution in 1,3-butane- diol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition. fatty acids such as oleic acid find use in the preparation of injectables.

Preparations according to this invention for parenteral administration include sterile aqueous or non-aqueous solutions, suspension, or emulsions. Examples of non-aqueous solvents or vehicles are propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and com oil, gelatin, and injectable organic esters such as ethyl oleate. Such dosage forms may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. They may be sterilized by, for example, filtration through a bacteria-retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions. They can also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. The combination of this invention may also be administered in the form of suppositories for rectal administration. This composition can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols. Compositions for buccal, nasal or sublingual administration are also prepared with standard excipients well known in the art.

For topical administration the combination of this invention may be formulated in liquid or semi-liquid preparations such as liniments, lotions, applications; oil-in-water or water-in-oil emulsions such as creams, ointments, jellies or pastes, including tooth-pastes; or solutions or suspensions such as drops, and the like.

The dosage of the active ingredients in the compositions of this invention may be varied. However, it is necessary that the amount of the active ingredient be such that a suitable dosage form is obtained. The selected dosage depends upon the desired therapeutic effect, on the route of administration and on the duration of the treatment. Dosage ranges in the combination for the melanocortin receptor agonist and cyclic-GMP-specific phosphodiesterase inhibitor or alphaadrenergic receptor antagonist are approximately one tenth to one times the clinically effective ranges required to induce the desired erectogenic effect, respectively when the compounds are used singly. Generally, dosage levels of the melanocortin receptor agonist of between about 0.001 mg per kg of body weight per day ( \(\mathrm{mg} / \mathrm{kg} / \mathrm{day}\) ) to about \(100 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\), preferably 0.01 to \(10 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\), and most preferably 0.1 to 5.0 \(\mathrm{mg} / \mathrm{kg} / \mathrm{day}\). For oral administration, the compositions are preferably provided in the form of tablets containing \(0.01,0.05,0.1,0.5,1.0,2.5,5.0,10.0,15.0,25.0,50.0\), 100,250 and 500 milligrams of each of the active ingredients for the symptomatic adjustment of the dosage to the patient to be treated. A medicament typically contains from about 0.01 mg to about 500 mg of each of the active ingredients, preferably, from about 1 mg to about 100 mg of each of the active ingredients. Intravenously, the most preferred doses will range from about 0.1 to about \(10 \mathrm{mg} / \mathrm{kg} /\) minute during a constant rate infusion. Advantageously, compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. Dosage levels of the cyclic-GMPspecific phosphodiesterase inhibitor or alpha-adrenergic receptor antagonist of between about 0.001 to \(50 \mathrm{mg} / \mathrm{kg}\) of body weight daily, preferably about 0.005 to about \(25 \mathrm{mg} / \mathrm{kg}\) per day, and more preferably about 0.01 to about \(10 \mathrm{mg} / \mathrm{kg}\) per day are administered to a patient to obtain effective treatment of erectile dysfunction.

An especially preferred combination is that wherein the agonist of the melanocortin receptor is selective for the MC-4R subtype, the cyclic-GMP-specific phosphodiesterase inhibitor is the PDE-V inhibitor sildenafil citrate or IC-351, and the alpha-adrenergic receptor antagonist is the alpha-2 antagonist MK-912. In this especially preferred combination, dosage levels of each component are as noted above; however, it is even more preferred that the agonist of the MC-4R subtype be administered at a dosage rate of about 0.01 to about \(10 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\), especially about 0.05 to about \(5.0 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\), and more particularly about 0.1 to about \(5 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\), and that the PDE-V inhibitor, sildenafil citrate or IC-351, or the alpha-2 antagonist MK-912 be administered at a dosage level of about 0.001 to about \(20 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\),
especially about 0.005 to about \(10 \mathrm{mg} / \mathrm{kg} /\) day, and more particularly about 0.01 to about \(5 \mathrm{mg} / \mathrm{kg} / \mathrm{day}\).

More particularly illustrating the invention is a pharmaceutical composition comprising any of the compounds described above and a pharmaceutically acceptable carrier. Another example of the invention is a pharmaceutical composition made by combining any of the compounds described above and a pharmaceutically acceptable carrier. Another illustration of the invention is a process for making a pharmaceutical composition comprising combining any of the compounds described above and a pharmaceutically acceptable carrier.

The dosage regimen utilizing the compounds of the present invention is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound or salt thereof employed. An ordinarily skilled physician, veterinarian or clinician can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition.

The test procedures used to measure the efficacy of the combination of the present invention to treat erectile dysfunction are described below in the following examples. These examples are not intended to be limitations on the scope of the instant invention in any way, and they should not be so construed.

\section*{EXAMPLE 1}

\section*{Binding Assay.}

The membrane binding assay is used to identify competitive inhibitors of \(125 \mathrm{I}-\alpha\)-NDP-MSH binding to cloned human melanocortin receptors expressed in L - or CHO - cells.

Cell lines expressing melanocortin receptors are grown in T-180 flasks containing selective medium of the composiiton: 1 L Dulbecco's modified Eagles Medium (DMEM) with 4.5 g L-glucose, 25 mM Hepes, without sodium pyruvate, (Gibco/BRI); \(100 \mathrm{ml} 10 \%\) heat-inactivated fetal bovine serum (Sigma); \(10 \mathrm{ml} 10,000\) unit/ml penicillin \& \(10,000 \mu \mathrm{~g} / \mathrm{ml}\) streptomycin (Gibco/BRl); 10 ml 200 mML glutamine ( \(\mathrm{Gibco} / \mathrm{BRI}\) ); \(1 \mathrm{mg} / \mathrm{ml}\) Geneticin ( G 418 ) (Gibco/BRl). The cells are grown at \(37^{\circ} \mathrm{C}\) with \(\mathrm{CO}_{2}\) and humidity control until the desired cell density and cell number are obtained.

The "medium is poured off and \(10 \mathrm{mls} /\) monolayer of enzyme-free dissociation media (Specialty Media Inc.) is added. The cells are incubated at \(37^{\circ} \mathrm{C}\) for 10 minutes or until cells slough off when flask is banged against hand.

The cells are harvested into 200 ml centrifuge tubes and spun at 1000 \(\mathrm{pm}, 4^{\circ} \mathrm{C}\), for 10 min . The supernatant is discarded and the cells are resuspended in 5 \(\mathrm{mls} /\) monolayer membrane preparation buffer having the composition: 10 mM Tris pH 7.2-7.4; \(4 \mu \mathrm{~g} / \mathrm{ml}\) Leupeptin (Sigma); \(10 \mu \mathrm{M}\) Phosphoramidon (Boehringer Mannheim); \(40 \mu \mathrm{~g} / \mathrm{ml}\) Bacitracin (Sigma); \(5 \mu \mathrm{~g} / \mathrm{ml}\) Aprotinin (Sigma); 10 mM Pefabloc (Boehringer Mannheim). The cells are homogenized with motor-driven dounce (Talboy setting 40), using 10 strokes and the homogenate centrifuged at 6,000 rpm, \(4^{\circ} \mathrm{C}\), for 15 minutes.

The pellets are resuspended in \(0.2 \mathrm{mls} /\) monolayer membrane prep. buffer and aliquots are placed in tubes (500-1000 \(\mu \mathrm{l} /\) tube) and quick frozen in liquid nitrogen and then stored at \(-80^{\circ} \mathrm{C}\).

Test compounds or unlabelled NDP- \(\alpha-\mathrm{MSH}\) is added to \(100 \mu \mathrm{~L}\) of membrane binding buffer to a final concentration of \(1 \mu \mathrm{M}\). The membrane binding buffer has the composition: 50 mM Tris \(\mathrm{pH} 7.2 ; 2 \mathrm{mM} \mathrm{CaCl} 2 ; 1 \mathrm{mM} \mathrm{MgCl} 2 ; 5 \mathrm{mM}\) \(\mathrm{KCl} ; 0.2 \% \mathrm{BSA} ; 4 \mu \mathrm{~g} / \mathrm{ml}\) Leupeptin (SIGMA); \(10 \mu \mathrm{M}\) Phosphoramidon (Boehringer Mannheim); \(40 \mu \mathrm{~g} / \mathrm{ml}\) Bacitracin (SIGMA); \(5 \mu \mathrm{~g} / \mathrm{ml}\) Aprotinin (SIGMA); and 10 mM Pefabloc (Boehringer Mannheim). One hundred \(\mu\) l of membrane binding buffer containing \(10-40 \mu \mathrm{~g}\) membrane protein is added, followed by \(100 \mu \mathrm{M} 125 \mathrm{I}-\mathrm{NDP}-\alpha-\) MSH to final concentration of 100 pM . The resulting mixture is voriexed briefly and incubated for 90-120 min at room temperature while shaking.

The mixture is filtered with a Packard Microplate 196 filter apparatus using Packard Unifilter 96-well GF/C filter with \(0.1 \%\) polyethyleneimine (Sigma). The filter is washed ( 5 times with a total of 10 ml per well) with room temperature of filter wash having the composition: 50 mM Tris- HCl pH 7.2 and 20 mM NaCl . The filter is dried, and the bottom sealed and \(50 \mu \mathrm{l}\) of Packard Microscint-20 is added to each well: The top is sealed and the radioactivity quantitated in a Packard Topcount Microplate Scintillation counter.

\section*{EXAMPLE 2}

Functional assay.

Functional cell based assayis are developed to discriminate melanocortin agonists and antagonists.

Cells (for example, CHO - or L-cells or other eukaryotic cells) expressing a human melanocortin receptor [see e.g. Yang-YK; Ollmann-MM; Wilson-
5 BD; Dickinson-C; Yamada-T; Barsh-GS; Gantz-I; Mol. Endocrinol., 11: 274-80 (1997)] are dissociated from tissue culture flasks by rinsing with Ca and Mg free phosphate buffered saline (14190-136, Life Technologies, Gaithersburg, MD) and detached following 5 minutes incubation at \(37^{\circ} \mathrm{C}\) with enzyme free dissociation buffer (S-014-B, Specialty Media, Lavellette, NJ). Cells are collected by centrifugation and

\section*{EXAMPLE 3}

\section*{Rat Ex Copula Assay.}

Sexually mature male Caesarian Derived Sprague Dawley (CD) rats (over 60 days old) are used with the suspensory ligament surgically removed to prevent retraction of the penis back into the penile sheath during the ex copula evaluations. Animals receive food and water ad lib and are kept on a normal lightdark cycle. Studies are conducted during the light cycle.
a) Conditioning to Supine Restraint for Ex Copula Reflex Tests. This conditioning takes \(\sim 4\) days. Day 1 , the animals are placed in a darkened restrainer and left for 15-30 minutes. Day 2, the animals are restrained in a supine position in the restrainer for 15-30 minutes. Day 3, the animals are restrained in the supine position with the penile sheath retracted for 15-30 minutes. Day 4, the animals are restrained in the supine position with the penile sheath retracted until penile responses are observed. Some animals require additional days of conditioning before they are completely acclimated to the procedures; non-responders are removed from further evaluation. After any handling or evaluation, animals are given a treat to ensure positive reinforcement.
b) Ex Copula Reflex Tests. Rats are gently restrained in a supine position with their anterior torso placed inside a cylinder of adequate size to allow for normal head and paw grooming. For a 400-500 gram rat, the diameter of the cylinder is approximately 8 cm . The lower torso and hind limbs are restrained with a nonadhesive material (vetrap). An additional piece of vetrap with a hole in it, through which the glans penis will be passed, is fastened over the animal to maintain the preputial sheath in a retracted position. Penile responses will be observed, typically termed ex copula genital reflex tests. Typically, a series of penile erections will occur spontaneously within a few minutes after sheath retraction. The types of normal reflexogenic erectile responses include elongation, engorgement, cup and flip. An elongation is classified as an extension of the penile body. Engorgement is a dilation of the glans penis. A cup is defined as an intense erection where the distal margin of the glans penis momentarily flares open to form a cup. A flip is a dorsiflexion of the penile body.

Baseline and or vehicle evaluations are conducted to determine how and if an animal will respond. Some animals have a long duration until the first response while others are non-responders altogether. During this baseline evaluation
latency to first response, number and type of responses are recorded. The testing time frame is 15 minutes after the first response.

After a minimum of 1 day between evaluations, these same animals are administered the test compound or combination at \(20 \mathrm{mg} / \mathrm{kg}\) and evaluated for penile reflexes. All evaluations are videotaped and scored later. Data are collected and analyzed using paired 2 tailed \(t\)-tests to compare baseline and/'or vehicle evaluations to drug- or combination- treated evaluations for individual animals. Groups of a minimum of 4 animals are utilized to reduce variability.

Positive reference controls are included in each study to assure the validity of the study. Animals can be dosed by a number of routes of administration depending on the nature of the study to be performed. The routes of administration include intravenous (IV), intraperitoneal (IP), subcutaneous (SC) and intracerebral ventricular (ICV).

\section*{Models of Female Sexual Dysfunction}

Rodent assays relevant to female sexual receptivity include the behavioral model of lordosis and direct observations of copulatory activity. There is also a urethrogenital reflex model in anesthetized spinally transected rats for measuring orgasm in both male and female rats. These and other established animal models of female sexual dysfunction are described in McKenna KE et al, A Model For The Study Of Sexual Function In Anesthetized Male And Female Rats, Am. J. Physiol. (Regulatory Integrative Comp. Physiol 30): R1276-R1285, 1991; McKenna
KE et al, Modulation By Peripheral Serotonin Of The Threshold For Sexual Reflexes In Female Rats, Pharm. Bioch. Behav., 40:151-156, 1991; and Takahashi LK et al, Dual Estradiol Action In The Diencephalon And The Regulation Of Sociosexual Behavior In Female Golden Hamsters, Brain Res., 359:194-207, 1985.

EXAMPLE 5
As a specific embodiment of an oral composition of a combination of the present invention, 5 mg of a melanocortin agonist and 10 mg of a type V phosphodiesterase (PDE-V) inhibitor are formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size \(O\) hard gelatin capsule.

\section*{EXAMPLE 6}

As another specific embodiment of an oral composition of a combination of the present invention, 2.5 mg of a melanocortin agonist and 5 mg of an alpha- 2 receptor antagonist are formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size \(O\) hard gelatin capsule.

While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various changes, modifications and substitutions can be made therein without departing from the spirit and scope of the invention. For example, effective dosages other than the particular dosages as set forth herein above may be applicable as a consequence of variations in the responsiveness of the patient being treated for erectile dysfunction. Likewise, the specific pharmacological responses observed may vary according to and depending upon the particular active compound or combination selected or whether there are present pharmaceutical carriers, as well as the type of formulation and mode of administration employed, and such expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. It is intended, therefore, that the invention be defined by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.

\section*{WHAT IS CLAIMED IS:}
1. A method for the treatment of erectile dysfunction which comprises administering to a human subject in need of such treatment an effective amount of an agonist of the melanocortin receptor in combination with an effective amount of a cyclic-GMP-specific phosphodiesterase inhibitor or an alpha-adrenergic receptor antagonist.
2. The method of Claim 1 wherein said human subject is male:
3. -.. The method of Claim 1 wherein said human subject is female.
4. The method of Claim 1 wherein the agonist of the melanocortin receptor is melanotan-II (MT-II).
5. The method of Claim 1 wherein the agonist of the melanocortin receptor agonist is selective for the melanocortin-4 receptor (MC-4R) subtype.
6. The method of Claim 1 wherein the inhibitor of the cyclic-GMP-specific phosphodiesterase is an inhibitor of the type \(V\) phosphodiesterase (PDE-V) isozyme.
7. The method of Claim 6 wherein the inhibitor of PDE-V is selected from the group consisting of:
a) sildenafil citrate,
b) IC-351,
c) M-54033,
d) M-54018, and
e) E-4010.
8. The method of Claim 7 wherein the inhibitor of PDE-V is sildenafil citrate.
9. The method of Claim 8 wherein the agonist for the melanocortin receptor is selective for the melanocortin-4 receptor subtype.
10. The method of Claim 1 wherein the alpha-adrenergic receptor antagonist is selective for the alpha- 2 receptor subtype.
11. The method of Claim 10 wherein the alpha-2 receptor antagonist is yohimbine, delquamine, or MK-912.
12. The method of Claim 11 wherein the alpha-2 receptor antagonist is MK-912.
13. The method of Claim 12-wherein the agonist for the melanocortin receptor is selective for the melanocortin- 4 receptor subtype.
14. A pharmaceutical composition for the treatment of erectile dysfunction which comprises a pharmaceutically acceptable carrier, a therapeutically effective amount of an agonist of the melanocortin receptor and a therapeutically effective amount of a cyclic-GMP-specific phosphodiesterase inhibitor or an alphaadrenergic receptor antagonist.
15. The pharmaceutical composition of Claim 14 wherein the inhibitor of the cyclic-GMP-specific phosphodiesterase is an inhibitor of the type \(V\) phosphodiesterase (PDE-V) isozyme and the alpha-adrenergic receptor antagonist is selective for the alpha-2 receptor subtype.
16. The pharmaceutical composition of Claim 15 wherein the alpha-2 receptor antagonist is MK-912.
17. The pharmaceutical composition of Claim 15 wherein the PDE\(V\) inhibitor is selected from the group consisting of:
a) sildenafil citrate,
b) IC-351,
c) M-54018,
d) M-54033, and
e) E-4010.
18. The pharmaceutical composition of Claim 17 wherein the PDEV inhibitor is sildenafil citrate.
19. The pharmaceutical composition of Claim 14 wherein the antagonist is MK-912.
24. The use of Claim 20 wherein the agonist of the melanocortin receptor is selective for the melanocortin-4 receptor (MC-4R) subtype. 22. The use of Claim 21 wherein the inhibitor of the type \(V\) phosphodiesterase isozyme is sildenafil citrate.
23. The use of Claim 20 wherein the alpha-adrenergic receptor specific phosphodiesterase is an inhibitor of the type \(V\) phosphodiesterase (PDE-V)
isozyme. isozyme.
20. The use of an agonist of the melanocortin receptor in combination with a cyclic-GMP-specific phosphodiesterase inhibitor or an alphaadrenergic receptor antagonist for the preparation of a medicament useful to treat erectile dysfunction.
21. The use of Claim 20 wherein the inhibitor of the cyclic-GMPagonist of the melanocortin receptor is selective for the melanocortin-4 receptor (MC4R) subtype.
(19) World Intellectual Property Organization International Bureau
(43) International Publication Date 14 September 2000 (14.09.2000)


PCT

(10) International Publication Number WO 00/53148 A3
(51) International Patent Classification': 31/415. 31/505
(21) International Application Number: PCT/US00/05711
(22) International Filing Date: 3 March 2000 (03.03.2000)
(25) Filing Language:
(26) Publication Language:

English
(30) Priority Data: 60/123.244 8 March 1999 (08.03.1999) US
(71) A pplicants (for all designated States except US): MERCK \& CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway. NJ 07065-0907 (US). WALDSTREICHER, Joanne [US/US]; 126 East Lincoln Avenue, Rahway, NJ 070650907 (US).
(72) Inventor; and
(75) Inventor/Applicant (for US only): STONER, Elizabeth [US/US]; 126 East Lincoln Avenue, Rahway, NJ 070650907 (US).
(74) Common Representative: MERCK \& CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA. CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM. KE, LS, MW, SD, SL, SZ. TZ, UG, ZW), Eurasian patent (AM, AZ. BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

\section*{Published:}
- With international search report.
(88) Date of publication of the international search report: 14 December 2000

For two-letter codes and other abbreviations, refer to the "Guidance Notes, on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
(54) Title: METHODS AND COMPOSITIONS FOR TREATING ERECTILE DYSFUNCTION
(57) Abstract: The present invention provides for a method for the treatment of erectile dysfunction in a male or female buman subject in need of such treatment comprising administration of a therapeutically effective amount of an agonist of the melanocortin receptor in combination with a therapeutically effective amount of a cyclic-GMP-specific phosphodiesterase inhibitor or an alphaadrenergic receptor antagonist. Further, the present invention provides for pharmaceutical compositions useful in the methods of the present invention, as well as a method of manufacture of a medicament useful for treating erectile dysfunction.

International application No. PCT/US00/0S711
A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : A61K 38/08, \(31 / 415,31 / 505\)
US CL : 514/11
According to lnternational Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : \(514 / 11\)


Form PCT/1SA/210 (second sheet) (July 1998)*
\begin{tabular}{|c|c|c|}
\hline & INTERNATIONAL SEARCH REPORT \(\quad\)\begin{tabular}{|l|l|} 
Intemational applica \\
PCT/USOO/05711
\end{tabular} & ation No. \\
\hline \multicolumn{3}{|l|}{C (Continuation). DOCUMENTS CONSIDERED TO be relevant} \\
\hline Category* & Citation of document, with indication, where appropriate, of the relevant passages & Relevant to claim No. \\
\hline Y, P & \multirow[t]{2}{*}{\begin{tabular}{l}
Wo 99/30718 A2 (SCOTT) 24 June 1999 (24.06.99), see entire document (impotence combination of prostaglandins, anaesthics instead of "VIAGRA" (SILDENAFIL). \\
WO 96/16657 Al (PFIZER LIMITED) 06 June 1996 (06.06.96),' see entire document (sildenafil-like pyrazo pyrimioinones, or acternatively, erectile dysfunction combinations of papaverine, phentolamine and prostaglanoins).
\end{tabular}} & 1-24 \\
\hline Y & & 1-24 \\
\hline Y & US 6,037,346 A (DOHERTY, JR. et al.) 14 March 2000 (14.03.00), see entire document (kit of sildenafil and yohimbines). & 1-24 \\
\hline Y, P & US 6,007,824 A (DUCKETT et al.) 28 December 1999 (28.12.99), see entire document ("VIAGRA" or synergistic natural sexual dysfunction agent combinations). & 1-24 \\
\hline Y, P & US 5,994,294 A (GARVEY et al.) 30 November 1999 (30.11.99), see entire document (erectile dysfunction combination of yohimbine and phentolamines). & 1-24 \\
\hline Y, P & US 5,962,528 A (SCOTT) 05 October 1999 (05.10.99), see entire document (impotence treating combination of prostaglandins). & 1-24 \\
\hline Y, P & US \(5,932,538\) A (GARVEY et al.) 03 August 1999 (03.08.99), see entire document (erectile combination of yohimbine and pitewtolamine). & 1-24 \\
\hline Y & US 5,731,339 A (LOWREY) 24 March 1998 (24.03.98), see entire document (impotence combination of yohimbine and phentolamine). & 1-24 \\
\hline Y & US 5,567,706 A (GAVRAS) 22 October 1996 (22.10.96), see entire document (combination of yohimbine and known impotence adrenoceptor agents). & 1-24 \\
\hline Y & US 5,576,290 A (HADLEY) 19 November 1996 (19.11.96), see entire document. & 1-24 \\
\hline Y, E & US 6,051,555 A (HADLEY) 18 April 2000 (18.04.00), see entire document. & 1-24 \\
\hline
\end{tabular}

Form PCT/ISA/210 (continuation of second sheet) (July 1998)*

INTERNATIONAL SEARCH REPORT

Intemational application No. PCT/US00/05711


Form PCT/ISA/210 (coatinuation of second sheet) (July 1998)*

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
\begin{tabular}{|l|l|l|l|}
\hline (51) International Patent Classification 7: \\
A61K 31/395 & A1 & \begin{tabular}{l} 
(11) International Publication Number: \\
(43) International Publication Date: \(\quad 9\) November 2000 (09.11.00)
\end{tabular} \\
\hline
\end{tabular}
(21) International Application Number:

PCT/USO0/11128
(22) International Filing Date:

26 April 2000 (26.04.00)
(30) Priority Data:
\(60 / 132,129\)
30 April 1999 (30.04.99)
US
(71) Applicant (for all designated States except US): LILLY ICOS LLC [US/US]; 1209 Orange Street, Wilmington, DE 19801 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): ALLEMEIER, Lora, L. [US/US]; 1627 Springmill Ponds Circle, Carmel, IN 46032 (US). BRASHEAR, Diane, L. [US/US]; 10431 Spring Highland Drive, Indianapolis, IN 46290 (US). FERGUSON, Kenneth, M. [US/US]; 23221 14th Place West, Bothell, WA 98021 (US). PULLMAN, William, E. [US/US]; 3004 Towne Drive, Carmel, IN 46032 (US).
(74) Agent: NAPOLI, James, J.; Marshall, O'Toole, Gerstein, Murray \& Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).
(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN; YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

\section*{Published}

With international search report.
(54) Title: TREATMENT OF FEMALE AROUSAL DISORDER

\section*{(57) Abstract}

A method of treating female arousal disorder (FAD) in a female patient is disclosed. The method includes orally administering an agent that inhibits cyclic guanosine \(3^{\prime} 5^{\prime}\)-monophosphate specific phosphodiesterase type 5 to the female patient.

\section*{FOR THE PURPOSES OF INFORMATION ONLY}

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational applications under the PCT.
\begin{tabular}{llll} 
AL & Albania & ES & Spain \\
AM & Armenia & FI & Finland \\
AT & Austria & FR & France \\
AU & Australia & GA & Gabon \\
AZ & Azerbaijan & GB & United Kingdom \\
BA & Bosnia and Herzegovina & GE & Georgia \\
BB & Barbados & GH & Ghana \\
BE & Belgium & GN & Guinea \\
BF & Burkina Faso & GR & Greece \\
BG & Bulgaria & HU & Hungary \\
BJ & Benin & IE & Ireland \\
BR & Brazil & IL & Israel \\
BY & Belarus & IS & Iceland \\
CA & Canada & IT & Italy \\
CF & Central African Republic & JP & Japan \\
CG & Congo & KE & Kenya \\
CH & Switzerland & KG & Kyrgyzstan \\
CI & Côte d'Ivoire & KP & Democratic People's \\
CM & Cameroon & & Republic of Korea \\
CN & China & KR & Republic of Korea \\
CU & Cuba & KZ & Kazakstan \\
CZ & Czech Republic & LC & Saint Lucia \\
DE & Germany & LI & Liechienstein \\
DK & Denmark & LK & Sri Lanka \\
EE & Estonia & LR & Liberia
\end{tabular}
\begin{tabular}{ll} 
LS & Lesotho \\
LT & Lithuania \\
LU & Luxembourg \\
LV & Latvia \\
MC & Monaco \\
MD & Republic of Moldova \\
MG & Madagascar \\
MK & The former Yugoslav \\
& Republic of Macedonia \\
ML & Mali \\
MN & Mongolia \\
MR & Mauritania \\
MW & Malawi \\
MX & Mexico \\
NE & Niger \\
NL & Netherlands \\
NO & Norway \\
NZ & New Zealand \\
PL & Poland \\
PT & Portugal \\
RO & Romania \\
RU & Russian Federation \\
SD & Sudan \\
SE & Sweden \\
SG & Singapore \\
&
\end{tabular}
\begin{tabular}{ll} 
SI & Slovenia \\
SK & Slovakia \\
SN & Senegal \\
SZ & Swaziland \\
TD & Chad \\
TG & Togo \\
TJ & Tajikistan \\
TM & Turkmenistan \\
TR & Turkey \\
TT & Trinidad and Tobago \\
UA & Ukraine \\
UG & Uganda \\
US & United States of America \\
UZ & Uzbekistan \\
VN & Viet Nam \\
YU & Yugoslavia \\
ZW & Zimbabwe
\end{tabular}

\title{
TREATMENT OF FEMALE AROUSAI DISORDER
}

\section*{CROSS-REFERENCE TO RELATED APPLICATION}

This application claims the benefit of provisional patent application Serial Nó. 60/132,129, filed April 30, 1999.

FIELD OF THE INVENTION
selective phosphodiesterase (PDE) enzyme inhibitors and to their use to treat female arousal disorder (FAD), also known as female sexual arousal disorder (FSAD). In particular, the present invention relates to potent inhibitors of cyclic guanosine 3',5'-monophosphate specific phosphodiesterase type 5 (PDE5) that, when administered as a pharmaceutical product, are useful for the treatment of \(F A D\).

\section*{BACKGROUND OF THE INVENTION}

Female sexual dysfunction (FSD) is a highly prevalent condition (R.T. Micheal et al., Sex in America, Little Brown, Boston, MA (1994)). However, in contrast to the overwhelming interest in treatment of male erectile dysfunction (MED) (Feldman et al. 1994, NIH Consensus Development Panel on Impotence 1993, Rosen et al. 1997; Sildenafil Study Group 1998), relatively little attention has been paid to sexual problems in women. There are few studies of the physiological process of the female sexual response, and there are few effective treat-
ments available to women for sexual problems. Furthermore, a barrier to research and development in this area has been the lack of established diagnostic classifications, or of established endpoints, for testing new drugs in clinical trials for the treatment of FSD.

FSD has been used as a "catchall" phrase to include a variety of sexual disorders in woman including sexual desire disorders, sexual arousal disorders, orgasmic disorders, sexual pain disorders, vaginismus, dyspareunia, trauma from sexual contact, sexual inhibition, sexual panic disorders, childhood sexual abuse, and sexual addiction or compulsive behavior. From the multitude of disorders, The American Psychiatric Association, Diagnostic and Statistical Manual, Mental Disorders, Ed. 3, Washington, DC, APA (1980) and the International Classification of Diseases (World Health Organization) have identified four major categories of female sexual dysfunction: (1) sexual desire disorders, (2) sexual arousal disorders, (3) orgasmic disorders, and (4) sexual pain disorders. Each of these categories can be further sub-typed as follows: lifelong versus acquired type; generalized versus situational type; etiologic classification (e.g., organic, psychogenic, mixed, unknown).

Sexual desire disorders are defined by the following two diagnoses. Hypoactive Sexual Desire Disorder (HSDD) is the persistent or recurrent deficiency (or absence) of sexual fantasies/thoughts and/or desire for, or receptivity to, sexual activity, which causes personal distress. Sexual Aversion Disorder is the persistent or recurrent
phobic aversion to, and avoidance of, sexual contact with a sexual partner, which causes personal distress.

Sexual arousal disorders are defined as a recurrent inability to attain, or maintain until completion of sexual activity, an adequate lubrication/swelling response of sexual excitement. The arousal response consists of vasocongestion in the pelvis, vaginal lubrication, and expansion and swelling of external genitalia. The disturbance must cause marked distress or interpersonal difficulty.

Orgasmic disorders are defined as the persistent or recurrent difficulty, delay in, or absence of, attaining orgasm following sufficient sexual stimulation and arousal, which causes personal distress.

Sexual pain disorders' are defined by the following three diagnoses. Dyspareunia is a recurrent or persistent genital pain associated with sexual intercourse. Vaginismus is a recurrent or persistent involuntary spasm of the musculature of the outer third of the vagina that interferes with vaginal penetration, which causes personal distress. Noncoital Sexual Pain Disorder is a recurrent or persistent genital pain induced by noncoital sexual stimulation.

Unfortunately, use of the term "female sexual dysfunction" as a catchall phrase to broadly encompass all disorders fails to distinguish the significant clinical and physiological differences between these disorders, and offers little guidance to the attending physician with respect to how to
properly diagnose and prescribe pharmacological treatment. Because pharmacological treatment is not uniformly effective against all varieties of female sexual dysfunction, there remains a need in the art to identify which pharmacological therapy is useful to treat which sexual disorder.

Place et al. U.S. Patent No. 5, 877,216 discloses a method of treating sexual dysfunction in a female individual by administering a pharmaceutical formulation containing a selected vasodilating agent to the vagina and/or vulvar area of the individual undergoing treatment. The application is directed to prostaglandins, but additional vasodilation agents that are useful in conjunction with the invention are disclosed and include, inter alia, phosphodiesterase inhibitors. Phosphodiesterase inhibitors are not further defined. Neither PDE5 inhibitors or their use to treat female arousal disorder are disclosed.

EP 0702555 describes the method of treating male erectile dysfunction with a PDE inhibitor and particularly a PDE5 inhibitor. The patent application further suggests that a PDE inhibitor may be used for female sexual dysfunction, particularly orgasmic dysfunction related to clitoral disturbances. Neither PDE inhibitor, PDE5 inhibitor, nor female sexual dysfunction are defined further except by reference to compounds specifically disclosed and referenced to orgasmic dysfunction.

Sildenafil citrate (sildenafil, sold under the trademark VIAGRA \({ }^{\oplus}\) ), is a known PDE5 inhibitor, and has been shown to facilitate erectile function
in men suffering from MED. In particular, sildenafil amplifies the effect of central and peripheral physiologic signals resulting in cyclic guanosine monophosphate (CGMP) mediation of corpus cavernosum smooth muscle relaxation, leading in turn to vasodilation and blood pooling which produces an erection. While there are obvious external anatomical differences between male and female external genitalia, there also is a recognized tissue homology. In addition, there is accumulating evidence of analogous physiological responses (for example, relaxation of clitoral corpus cavernosum and genital vasodilation, K. Park et al., Biochem. Biophys. Res. Commun., 249(3):612-617 (1998)), in female sexual tissue. However, the clinical significance of a response in female sexual tissue, and what, if any, disorder this response correlates to has not been disclosed.

While sildenafil is approved for use in males, several publications have referenced clinical studies in women. M. Fava et al., in Psychother. Psychosom., 67(6): 328-31 (1998), studied the effects of sildenafil on antidepressant-induced sexual dysfunction in 14 depressed patients ( 9 men and 5 women). Antidepressant-induced sexual dysfunction is generally characterized by a lack of desire (sexual desire disorder) and delayed orgasm and anorgasmia (orgasmic disorder), but also may include arousal difficulties, H.G. Nurnberg et al., J. Clin. Psychiatry, 60(1), 33-35 (1999). The study reports a statistically significant improvement in all domains of sexual functioning with a \(69 \%\) rate of patients reporting improvement. However, the study
fails to indicate the response by gender (9 out of 14 patients were men). In addition, the study was not placebo controlled, and fails to correct the data for a placebo effect. The authors could not "rule out the possibility that clinical improvements in sexual functioning in our patients may be the result of nonspecific placebo-like effects." These shortcomings in the study leave a person skilled in the art unable to draw conclusions with respect to the efficacy of using sildenafil in treating sexual desire disorder and anorgasmia, and the study offers no motivation to study its usefulness to treat female arousal disorder.

Kaplan et al., in Urology 53(3):481-6 (1999), studied the safety and efficacy of sildenafil in postmenopausal woman with self-described sexual dysfunction. The form of sexual dysfunction being treated was not further defined or characterized. Sildenafil was studied in thirty-three postmenopausal women with sexual dysfunction. The study used the Female Sexual Function Index, which contains one question on vaginal dryness, with other questions focused on sexual desire, pain, satisfaction, and clitoral sensation. The study was not directed to arousal disorder. Six patients reported significant improvement in therapeutic response. Improvement in lubrication and clitoral sensation improved by \(0.54(23.2 \%)\) and 0.67 ( \(31.3 \%\) ), respectively. Clitoral discomfort and "hypersensitivity" occurred in 7 woman ( 3 of whom withdrew from the study). While the authors concluded that sildenafil is well tolerated in postmenopausal women, they also
\[
-7-
\]
concluded that sildenafil did not significantly improve overall sexual function.

Finally, sildenafil was studied for the treatment of iatrogenic serotonergic antidepressant medication-induced sexual dysfunction in four patients (two men, two woman) by H.G. Nurnberg et al. in J. Clin. Psychiatry, 60(1):33-5 (1999). The antidepressant medication-induced dysfunction is reported as erectile dysfunction and anorgasmia (orgasmic dysfunction). Female arousal disorder is not disclosed. The study reports that all four patients responded positively, however, the authors reserve drawing conclusions on the usefulness of sildenafil in treating antidepressant induced sexual dysfunction pending randomized placebo-controlled studies.

Thus, the limited studies of sildenafil to treat female sexual dysfunction have focused primarily on antidepressant induced sexual dysfunction (primarily indicative of orgasmic dysfunction and sexual desire dysfunction) and have lead to inconclusive results.

It has been discovered that the compounds of structural formula (I) are highly effective in treating female arousal disorders. Accordingly, the present invention provides methods of treating female arousal disorder, which comprise administering a compound of formula (I) to a patient in need thereof. Such methods are novel and unsuggested by the prior art.

\section*{- 8 - \\ SUMMARY OF THE INVENTION}

The present invention provides a method of treating female arousal disorder (FAD) in a female patient, which comprises orally administering to said patient a pharmaceutically effective amount of an agent that inhibits cyclic guanosine \(3^{\prime 5} 5^{\prime-m o n o-~}\) phosphate specific phosphodiesterase type 5.

The invention further provides a method of treating a female patient suffering from female arousal disorder comprising inhibiting cyclic guanosine 3'5'-monophosphate specific phosphodiesterase type 5 a sufficient amount to enhance genital and vaginal blood flow in said patient.

The invention also provides for the use of a PDE5 inhibitor to treat female arousal disorder.

\section*{DETAILED DESCRIPTION OF THE INVENTION}

For the purposes of the present invention, as disclosed and claimed herein, the following terms are defined as follows:

The phrase "female arousal disorder" (EAD) as used herein refers to a condition characterized by an inability or delay in becoming aroused, or a failure to maintain an aroused state. Symptoms of the condition include a lack of genital or somatic responses such as throbbing, tingling, lubrication, and the subjective feelings of excitement and arousal. It is a subtype of female sexual dysfunction, and is largely independent of desire and orgasm. Patients likely to respond to therapy have experienced successful sexual experiences and have
acquired the disorder through any number of organic factors, psychogenic factors, or other unknown reasons.

The term "IC 50 " is the measure of potency

The term "inhibiting" or "inhibits" refers to blocking the enzymatic activity of cyclic guanosine 3'5'-monophosphate specific phosphodiesterase type 5 to a sufficient degree to enhance genital and vaginal blood flow and produce a clinically significant response.

The phrase "orally administering" refers to the administration of a PDE5 inhibitor by any number of recognized oral dosage forms, including liquid dosage forms, tablets, capsules, gel-caps, and the like.

The term "PDE5 inhibitor" means an agent that inhibits cyclic guanosine \(3^{\prime} 5^{\prime}\)-monophosphate specific phosphodiesterase type 5 (PDE5) enzyme and has an \(\mathrm{IC}_{50}\) value against PDE5 of 10 nM or less.

The term "a pharmaceutically effective amount" represents an amount of a compound that is capable of inhibiting PDE5 in females and causes in clinically significant response. The clinical response includes an improvement in the condition treated or in the prevention of the condition. The
particular dose of the compound administered according to this invention will, of course, be determined by the particular circumstances surrounding the case, including the compound administered, the particular condition being treated and similar considerations.

The term "agent" refers to a chemical compound suitable for pharmaceutical use.

As noted above, the present invention provides the use of a compound of formula (I) that inhibits cyclic guanosine 3'5'-monophosphate specific phosphodiesterase type 5 for treating female arousal disorder (FAD). The method comprises orally administering a pharmaceutical formulation comprising a PDE5 inhibitor to the female patient.

The compounds of structural formula (I), and their methods of manufacture, are disclosed in Daugan U.S. Patent No. 5,859,006 and Daugan et al. U.S. Patent No. 5,981,527, each incorporated herein by reference.

(I)
and salts and solvates (e.g., hydrates) thereof, wherein \(R^{3}\) is hydrogen or methyl.
include:
(6R, 12aR)-2, 3, 6, 7, 12, 12a-hexahydro-2-methyl-6-(3, 4methylenedioxyphenyl) pyrazino[2',1':6,1]pyrido[3,4b] indole-1,4-dione;
(3S, 6R, 12aR)-2, 3, 6, 7, 12, 12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl) pyrazino[2', 1':6,1]-pyrido[3,4-b]indole-1,4-dione; physiologically acceptable solvates thereof, and mixtures thereof.

Compounds of structural formula (I), and their preparation, are disclosed in U.S. Patent No. 5,859,006, incorporated herein by reference, and are particularly advantageous due to their selectivity for PDE5.

The methods of the present invention can be carried out by incorporating a compound of formula (I) into a suitable formulation and administering a pharmaceutically acceptable amount of the
- 12 -

PDE5 inhibitor to a-patient in need thereof. Any pharmaceutically acceptable excipients for oral use are suitable for preparation of such formulations. Suitable pharmaceutical formulations include those described in wo 96/38131. Preferably, the formulations comprise generally recognized as safe pharmaceutical excipients such as lactose, microcrystalline cellulose, starch, calcium carbonate, magnesium stearate, stearic acid, talc, and colloidal silicon dioxide.

The formulations are prepared by standard pharmaceutical manufacturing techniques as described in Remington's Pharmaceutical Sciences, 18 th Ed., Mack Publishing Co., Easton, PA (1990). Such techniques include, for example, wet granulation followed by drying, milling, and compression into tablets with or without film coating; dry granulation followed by milling and compression into tablets, with or without film coating; dry blending followed by compression into tablets, with or with film coating; molded tablets; wet granulation, dried, and filled into gelatin capsules; dry blend filled into gelatin capsules; or suspension and solution filled into gelatin capsules. Generally, the solid dosage forms have identifying marks which are debossed or imprinted on the surface.

The PDE5 inhibitor is administered orally in an amount that is capable of inhibiting PDE5 in females and causing a clinically significant response. The clinical response includes an improvement in the condition treated or in the prevention of the condition. The particular dose of the compound administered according to this invention, of
course, is determined by the particular circumstances surrounding the case, including the compound administered, the severity of the condition being treated, and similar considerations. Preferably, the dose is 1 to 400 mg , and more preferably a 1 to 20 mg dose, as needed, up to the total dose for the day. Preferably, the dose administered is 5 to 20 mg/day, and most preferably a 10 mg dose is administered once per day, as needed.

The following preparations and examples are presented to further illustrate the method of the claimed invention. The scope of the present invention is not to be construed as merely consisting of the following preparation and examples.

\section*{Preparation 1}
(6R,12aR)-2,3,6,7,12,12a-hexahydro-2-
methyl-6-(3,4-methylenedioxyphenyl)pyrazino-
[2', 1': 6, 1] pyrido[3,4-b]indole-1,4-dione was prepared as described in U.S. Patent No. 5, 859,006, and formulated into tablets using wet granulation. Povidone was dissolved in water to make a \(10 \%\) solution. The active compound, microcrystalline cellulose, croscarmellose sodium, and sodium lauryl sulfate were added to a high shear mixer, and mixed for 2 minutes. The powders were wet granulated with the povidone solution and extra water as required to complete the granulation. The resultant mixture was dried in a fluid bed drier with inlet air at \(70^{\circ} \mathrm{C} \pm\) \(5^{\circ} \mathrm{C}\) until the loss on drying was below 2.5\%. The granules were passed through a Comil with a suitable screen (or a sieve) and added to a suitable mixer.

The extragranular croscarmellose sodium and sodium lauryl sulfate, and the Colloidal anhydrous silica were passed through a suitable sieve (e.g., 500 micron), added to the mixer and blended 5 minutes. Magnesium stearate was added and blended for 2 minutes. The blend was compressed to a target compression/weight of 250 mg using 9 mm round normal concave tooling.

The core tablets were coated with an aqueous suspension of Opadry OY-S-7322 using an Accelacota (or similar coating pan) using inlet air at \(50^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) until the tablet weight was increased by approximately 8 mg .
\begin{tabular}{|l|l|l|}
\hline Component & \begin{tabular}{l} 
Formulations \\
(mg per tablet)
\end{tabular} & \\
\hline Agent (PDE5 inhibitor) & 1 & 5 \\
\hline \begin{tabular}{l} 
Hydroxypropyl methylcellulose \\
phthalate
\end{tabular} & 1 & 5 \\
\hline Microcrystalline cellulose & 221.87 & 213.87 \\
\hline Croscarmellose sodium & 5.00 & 5.00 \\
\hline Sodium lauryl sulfate & 2.50 & 2.50 \\
\hline Povidone K30 & 9.38 & 9.38 \\
\hline \begin{tabular}{l} 
Purified water, usp (water \\
for irrigation)
\end{tabular} & q.s. & q.s. \\
\hline Croscarmellose sodium & 5.00 & 5.00 \\
\hline Sodium lauryl sulfate & 2.50 & 2.50 \\
\hline Colloidal anhydrous silica & 0.50 & 0.05 \\
\hline Magnesium stearate & 1.25 & 1.25 \\
\hline \begin{tabular}{l} 
Total core subtotal (film \\
coat opadry oy-S-7322)
\end{tabular} & 250.00 & 250.00 \\
\hline
\end{tabular}

Opadry OY-S-7322 contains methylhydroxypropylcellulose Ph.Eur., titanium dioxide Ph.Eur, Triacetin

USP. Opadry increases the weight of each tablet to about 258 mg . The amount of film coat applied per tablet can be less than that stated depending on the process efficiency.

5 and accompanied by package insert describing the safety and efficacy of the compound.

Preparation 2
10

15
preparing the finished dosage form.
\begin{tabular}{|l|r|}
\hline Ingregient & Quantity (mg) \\
\hline Granulation & \\
\hline Agent (PDE5 inhibitor) & 10.00 \\
\hline Lactose monohydrate & 153.80 \\
\hline Lactose monohydrate (Spray Dried) & 25.00 \\
\hline Hydroxypropylcellulose & 4.00 \\
\hline Croscarmellose sodium & 9.00 \\
\hline Hydroxypropylcellulose & 1.75 \\
\hline Sodium lauryl sulfate & 0.70 \\
\hline Outside Powders & 37.50 \\
\hline Microcrystalline cellulose & 7.00 \\
\hline Croscarmellose sodium & 1.25 \\
\hline Magnesium stearate & 250 mg \\
\hline & 11.25 mg \\
\hline
\end{tabular}

30
Purified Water, USP is used in the manufacture of these tablets. Water is removed during processing and minimal levels remain in the finished product.

Tablets are manufactured.using a wet granulation process. A step-by-step description of the process follows:

The drug and excipients to be granulated are security sieved. The active agent is dry blended with lactose monohydrate (spray dried), hydroxypropyl cellulose, croscarmellulose sodium, and lactose monohydrate. The resulting powder blend is granulated with an aqueous solution of hydroxypropyl cellulose and sodium lauryl sulfate using a Powerex high shear granulator. Additional water may be added to reach the desired endpoint. A mill may be used to delump the wet granulation and facilitate drying. The wet granulation is dried using either a fluid bed dryer or drying oven. Once the material is dried, it may be sized to eliminate any large agglomerates. Microcrystalline cellulose, croscarmellose sodium, and magnesium stearate are security sieved and added to the dry sized granules. These excipients and the dry granulation are mixed until uniform using a tumble bin, ribbon mixer, or other suitable mixing equipment. The mixing process may be separated into two phases; the microcrystalline cellulose, croscarmellose sodium and the dried granulation are added to the mixer and blended during the first phase, followed by the addition of the magnesium stearate to this granulation and a second mixing phase.

The mixed granulation is then compressed into tablets using a rotary compression machine. The core tablets are film coated with an aqueous suspension of the appropriate color mixture in a coating pan (e.g., Accela Cota). The coated tablets
- 17 -
may be lightly dusted with talc to improve tablet handling characteristics.

\section*{Example 1}

FAD clinical studies

The use of an agent that inhibits PDE5 for the treatment of female arousal disorder is demonstrated in a clinical study assessing the physiological effect of the agent in enhancing genital blood flow in the presence of sexual stimulation and measuring clinical endpoints for assessing improvement in arousal. This study is a double-blinded placebo controlled crossover study in normal, healthy woman. Patients are administer study drug (at doses from 1 to 20 mg ) or placebo. After administration, the patients are exposed to a variety of stimuli including visual, tactile, or olfactory stimuli. Endpoints assessed include altered vaginal blood flow as measured using a vaginal photoplethysmography amplitude (VPA). Subjective endpoints of genital response (throbbing, tingling, and arousal) are measured.

\section*{Example 2}

FAD clinical studies

The use of an agent that inhibits PDE5 for the treatment of female arousal disorder is demonstrated in a clinical study assessing the physiological effect of the agent in enhancing genital blood flow in the presence of sexual stimulation and measuring clinical endpoints for assessing improve-
ment in arousal. The stu"dy is conducted in women suffering from mild to moderate acquired female arousal disorder. The study is a double-blinded, placebo controlled study in 200 woman. In the study, subjects receive either drug or placebo at a doses of \(5 \mathrm{mg}, 10 \mathrm{mg}\), or 20 mg (daily or on demand as needed) for up to three months. Endpoints of the study are measured using a validated questionnaire (Female Sexual Functioning Index) which assesses five domains, with one domain specifically focused on arousal. This questionnaire is given at baseline and at each monthly visit. In addition, sexual experience is evaluated using an event diary focusing on arousal and sexual satisfaction.

The present invention is based on the discovery that successful therapy is achieved through (1) proper diagnosis of patients suffering from female arousal disorder, which is a distinct subset of patients suffering from female sexual dysfunction; and (2) the use of a PDE5 inhibitor having a potency (i.e., an \(\mathrm{IC}_{50}\) versus PDE5) of 10 nM or less. Patients who suffer from female arousal disorder and respond to the methods described herein are those who have acquired an inability or delay in becoming aroused, or a failure to maintain an aroused state. Symptoms of the condition includes a lack of somatic responses such as throbbing, tingling, lubrication and the subjective feelings of excitement or arousal. Woman who suffer from female arousal disorder have experienced successful sexual experiences and have acquired the disorder through any number of organic factors, psychogenic factors or other unknown reasons. Significantly, Applicants
- 19 -
have found that the-desire is not a requisite for the treatment of arousal. Whether desire is present or not does not influence the diagnosis and treatment of female arousal disorder. However, success- ful treatment of \(F A D\) leads to better sexual experiences, which in turn can lead to improvement in desire and orgasm.

The principles, preferred embodiments, and modes of operation of the present invention have been described in the foregoing specification. The invention that is protected herein, however, should not be construed as limited to the particular forms disclosed, because they are to be regarded as illustrative rather than restrictive.
1. A method of treating female arousal disorder in a female patient comprising orally administering to said patient a pharmaceutically effective amount of a compound having the structural formula

and salts and solvates thereof,
wherein \(R^{3}\) is hydrogen or methyl.
2. The method of claim 1 wherein the female arousal disorder is acquired female arousal disorder.

3: The method of claim 1 wherein the compound is selected from the group consisting of ( \(6 \mathrm{R}, 12 \mathrm{aR}\) ) - \(2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-methyl-6-(3,4methylenedioxyphenyl)pyrazino[2', 1':6,1]pyrido [3,4b] indole-1,4-dione: ( \(3 \mathrm{~S}, 6 \mathrm{R}, 12 \mathrm{aR}\) ) \(-2,3,6,7,12,12 \mathrm{a}\)-hexahydro- 2,3 -dimethyl-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1': 6, 1]-pyrido[3,4-b]indole-1,4-dione; physiologically acceptable salts and solvates thereof; and mixtures thereof.
4. The method of claim 1 wherein the compound has the structure

5. Use of an inhibitor of cyclic guanosine 3'5'-monophosphate specific phosphodiesterase type 5 in the preparation of a medicament for the treatment of female arousal dysfunction.


Form PCT/ISA/210 (second sheet) (July 1998)*

\section*{B. FIELDS SEARCHED}

Electronic data bases consulted (Name of data base and where practicable terms used):

REGISTRY, CA. USPATFULL, WPIDS. TOXLIT, TOXLINE, BIOSIS, MEDLINE scarch terms include: phosphodiesterase(5a)inhibitor\#\#, female(5a)arousal\# or sex or sexual(6a)disorder\#, pdeS or pde 5 and inhibit\#\#\#\#\#

Form PCT/ISA/210 (extra sheet) (July 1998)*
(19) World Intellectual Property Organization

International Bureau

\section*{(43) International Publication Date \\ 1 November 2001 (01.11.2001)}


PCT
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(10) International Publication Number WO 01/80860 A2
(51) International Patent Classification \({ }^{7}\) : 31/505, A61P 15/10
(21) International Application Number: PCT/USO 1/12512
(22) International Filing Date: 13 April 2001 (13.04.2001)
(25) Filing Language: English
(26) Publication Language:

English
(30) Priority Data: 09/558,911

26 April 2000 (26.04.2000)
US
(71) Applicant for all designated States except US): LILLY ICOS LLC [US/US]; 1209 Orange Street, Wilmington, DE 19801 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): WHITAKER, John, S. [US/US]; 19340 162nd Avenue, Woodinville, WA 98072 (US). DE TEJADA, Inigo, Saenz [ES/US]; FI \& DA, Antonio Robles, 4-90 C, E-28034 Madrid (ES). FERGUSON, Kenneth, M. \{US/US]; 23221 14th Place West, Bothell, WA 98021 (US).

A61K31/52
(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY; DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

\section*{Published:}
- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
(57) Abstract: The present invention relates to phosphodiesterase (PDE) enzyme inhibitors and to their use in pharmaceutical articles of manufacture. In particular, the present invention relates to potent inhibitors of cyclic guanosine 3',5'-monophosphate specific phosphodiesterase type 5 (PDE5) that when incorporated into a pharmaceutical product at about 1 to about 10 mg unit dosage are useful for the treatment of sexual dysfunction by daily administration of the PDE5 inhibitor. The articles of manufacture described herein are characterized by PDE5 inhibition, and accordingly, provide a benefit in therapeutic areas where inhibition of PDE5 is desired, especially erectile dysfunction, with minimization or elimination of adverse side effects resulting from inhibition of other phosphodiesterase enzymes and with an improvement of vascular conditioning.
- 1 -

\section*{DAILY TREATMENT FOR ERECTILE DYSFUNCTION USING A PDE5 INHIBITOR}

\section*{CROSS REFERENCE TO RELATED APPLICATIONS}

This application is a continuation-in-part of U.S. application Serial No. 09/558,911, filed April 26,2000 , which claims the benefit of provisional patent application Serial No. 60/132,036, filed April 30, 1999.

\section*{FIELD OF THE INVENTION}

The present invention relates to phosphodiesterase (PDE) enzyme inhibitors and to their use in pharmaceutical articles of manufacture. In particular, the present invention relates to potent inhibitors of cyclic guanosine \(3^{\prime}, 5^{\prime}\)-monophosphate specific phosphodiesterase type 5 (PDE5) that when incorporated into a pharmaceutical product are Liseful for the treatment of sexual dysfunction.

BACKGROUND OF THE INVENTION

The biochemical, physiologicāl, and clinj.. cal effects of cyclic guanosine \(3^{\prime}, 5^{\prime}-m o n o p h o s p h a t e\) specific phosphodiesterase (cGMP-specific PDE) inhibitors suggest their utility in a variety of disease states in which modulation of smooth muscle, remal, hemostatic, inflammatory, and/or endocrine function is desired. Type 5 cGMP-specific phosphodiesterase (PDE5) is the major cGMP hydrolyzing ernzyme in vascular smooth muscle, and its expression
in penile corpus cavernosum has been reported (Taher et al., U. Urol., 149:285A (1993)). Thus, PDE5 is an attractive target in the treatment of sexual dysfunction (Murray, DN\&P 6(3):150-56 (1993)).

A pharmaceutical product that provides a PDE5 inhibitor is currently available, and is marketed under the trademark VIAGRA \({ }^{\circledR}\). The active ingredient in VIAGRA \({ }^{\circledR}\) is sildenafil. The product is sold as an article of manufacture including 25, 50, and 100 mg tablets of sildenafil and a package insert. The package insert provides that sildenafil is a more potent inhibitor of PDE5 than other known phosphodiesterases (greater than 80 fold for PDE1 inhibition, greater than 1,000 fold for PDE2, PDE3, and PDE4 inhibition). The \(I_{50}\) for sildenafil against PDE5 has been reported as 3 nM (Drugs of the Future, 22(2), pp. 128-143 (1997)), and as 3.9 nM (Boolell et al., Int. J. of Impotence Res., 8 p. 4752 (1996)). Sildenafil is described as having a 4,000-fold selectivity for PDE5 versus PDE3, and only a 10-fold selectivity for PDE5 versus PDE6. Its relative lack of selectivity for PDE6 is theorized to be the basis for abnormalities related to color vision.

While sildenafil has obtained significant commercial success, problems in the treatment of erectile dysfunction (ED) still exist. First, ED therapy using sildenafil is based on an on-demand or PRN therapy. "On demand" dosing is defined as an acute administration of a drug for treating erectile dysfunction prior to expected sexual activity. The user therefore must plan ahead, and, as presently labeled, ingest a relatively large oral dose (i.e.,
at least 25 mg ) of sildenafil at least one hour prior to engaging in sexual activity. The onset of beneficial effects may be delayed when sildenafil is administered with a meal.

Second; the relatively large on-demand dose of sildenafil results in significant adverse side effects, including facial flushing ( \(10 \%\) incidence rate). Thus, even with the availability of siidenafil, there remains a need to identify improved pharmaceutical products that are useful and more convenient in treating sexual dysfunction.

The present invention provides an article of manufacture for human pharmaceutical use, comprising a package insert, a container, and an oral dosage form comprising a PDE5 inhibitor at unit dosages between about 1 and about \(10 \mathrm{mg} /\) dosage form. The package insert provides a dosing regimen characterized by a chronic administration of the PDE5 inhibitor. The beneficial effects of a chronic dosing regimen were observed in clinical studies and through the discovery that the administration of a PDE5 inhibitor improves or conditions the vasculature such that the corpus cavernosum smooth muscle tissue responds to therapy at doses below that required to yield the same response with on-demand or acute therapy. The benefits of a low, chronic administration of a PDE5 inhibitor include improved
 the corpus cavernosum smooth muscle tissue, lower toxicity attributed to a lower dose of PDE5 inhibitor, and a return to normalcy, i.e., the patient is not required to plan sexual activity around administration of the PDE5 inhibitor. The

\begin{abstract}
- 4 -
dosing regimen of the present invention allows a spontaneity of sexual activity desired by the patient.
\end{abstract}

SUMMARY OF THE INVENTION

The present invention provides an article of manufacture for human pharmaceutical use, comprising a package insert, a container, and an oral dosage form comprising about 1 to about 10 mg of a PDE5 inhibitor per dosage form for chronic, and preferably daily, dosing.

The present. invention further provides a method of treating male erectile dysfunction comprising administering to a patient in need thereof an oral dosage form containing abcut 1 to about 10 mg of a PDE5 inhibitor, chronically, up to a total dose of \(10 \mathrm{mg} / \mathrm{day}\).

The present invention further provides a method of improving the relaxant response in corpus cavernosum smooth muscle tissue, which comprises chronically administering a dose of \(1 \mathrm{mg} / \mathrm{day}\) to 10 mg/day of a PDE5 inhibitor.

The present invention provides an article of manufacture for human pharmaceutical use, comprising a package insert, a container, and an oral dosage form comprising about 1 to about 10 mg of a selective PDE5 inhibitor, said package insert providing for a chronic administration of the PDE5 inhibitor to treat a patient suffering from erectile dysfunction.

The present invention provides an article of manufacture for human pharmaceutical use,
- 5 -
comprising a package insert, a container, and an oral dosage form of a selective PDE5 inhibitor; said package insert providing for a chronic administration of the PDE5 inhibitor to treat a patient suffering from erectile dysfunction.

The present invention further provides an article of manufacture for human pharmaceutical use comprising:
(a) an oral dosage furm comprising about 1 to about 10 mg of a PDE5 inhibitor having an \(I_{50}\) less than 10 nM , and a sufficient bioavailability to be effective in about 1 to about 10 mg unit oral dosages;
(b) a package insert providing that. the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof, and has a chronic dosing regimen of about 1 to about \(10 \mathrm{mg} /\) day, wherein the chronic dosing regimen improves vascular conditioning; and
(c) a container.

The present invention further provides an article of manufacture for human pharmaceutical use comprising:
(a) an oral dosage form comprising about 1 to about 10 mg of a PDE5 inhibitor having (i) an \(\mathrm{IC}_{50}\) less than 10 nM , and (ii) a sufficient bioavailability to be effective in about 1 to about 10 mg unit oral dosages;
(b) a package insert providing that the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof, and has a chronic dosing regimen of about 1 to about \(10 \mathrm{mg} / \mathrm{day}\), wherein
the chronic dosing regimen improves vascular conditioning; and
(c) a container.

\section*{DETAILED DESCRIPTION}

For purposes of the present invention as disclosed and described herein, the following terms and abbreviations are defined as follows.

The term "container" means any receptacle and closure therefor suitable for storing, shipping, dispensing, and/or handling a pharmaceutical product.

The term "IC \(C_{50}\) " is the measure of potency of a compound to inhibit a particular PDE enzyme (e.g., PDE1c, PDE5, or PDE6). The \(I_{50}\) is the concentration of a compound that results in \(50 \%\) enzyme inhibition in a single dose-response experiment. Determining the \(I C_{50}\) value for a compound is readily carried out by a known in vitro methodology generally described in Y. Cheng et al., Biochem. Pharmacol., 22, pp. 3099-3108 (1973).

The term "package insert" means information accompanying the product that provides a description of how to administer the product, along with the safety and efficacy data required to allow the physician, pharmacist, and patient to make an informed decision regarding use of the product. The package insert generally is regarded as the "label" for a pharmaceutical product.

The term "oral dosage form" is used in a general sense to reference pharmaceutical products administered orally. Oral dosage forms are recog-
nized by those skilled in the art to include such forms as liquid formulations, tablets, capsules, and gelcaps.

The terms "day" and "daily" refer to the administration of the product one or more times, generally one to three times, still more preferably one time, per about 24 -hour period. "About 24-hour period" refers to a time span of about 20 to about 28 hours.

The term "chronic or chronically" refers to the regular administration of the product.in intervals unrelated to the onset of sexual activity. To receive the full benefit of the present invention, chronic administration generally refers to regular administration for an extended period, preferably daily for three or more days, and still more preferably daily as long as the patient suffers from erectile dysfunction (in the absence of therapy). The term "chronic" administration encompasses other regimens in addition to daily dosing. For example, chronic administration encompasses administration of a sustained release formulation that provides sufficient PDE5 inhibitcr on a regular basis and unrelated to the onsec of sexual activity. Contrary to acute or on-demand administration, chronic administration does not link the administration of the PDE5 inhibitor to the onset of sexual activity (e.g., one hour prior to intercourse).

The term "PDE5 inhibitor" refers to com-pounds having an \(I C_{50}\) value for inhibition of PDE5 of less than 10 nM . Preferred PDE5 inhibitors are selective for PDE5 inhibition, such as those having:
(1)" an \(I C_{50}\) value for the inhibition of PDE5 at least 100 times less than the \(\mathrm{IC}_{50}\) value for the inhibition of PDE6;
(2) an \(I C_{50}\) value for the inhsibition of PDE5 at'least 1,000 times less than the \(I C_{50}\) value for the inhibition of PDE1c; and
(3) an \(I C_{50}\) value for the inhibition of PDE5 less than 10 nM .
- PDE5 inhibitors vary significantly in chemical structure, and their use in the present invention is not dependent on chemical structure, but rather on the potency parameters disclosed herein.

The term "vision abnormalities" means abnormal vision characterized by blue-greer vision believed to be caused by PDE6 inhibition.

The term "free drug" means solid particles of drug not intimately embedded in a polymeric coprecipitate.

As previously stated, the present invention is directed to an article of manufacture for human pharmaceutical use, comprising a package insert, a container, and a dosage form comprising about 1 to about 10 mg of a PDE5 inhibitor per unit dosage form. A PDE5 inhibitor useful in the present invention is a PDE5 inhibitor having an \(I_{50}\) value for PDE5 inhibition of less than 10 nM , and is sufficiently bioavailable to be effective in about 1 to about io mg unit dosages.

Preferred PDE5 inhibitors selectively inhibit PDE5 versus PDE6 and FDEIc. Selectivity is quantified by the differential in \(\mathrm{IC}_{50}\). The differential is expressed as a PDE6/PDE5 ratio of IC \(_{50}\) values, i.e., the ratio of the \(\mathrm{IC}_{50}\) value versus PDE6
to the \(I_{50}\) value versus PDE"5 (PDE6/PDE5) is greater than 100, more preferably greater than 300 , and most preferably greater than 500.

Similarly, the ratio of \(I C_{50}\) value versus

PDE1c to \(I_{50}\) value versus PDE5 (PDE1c/PDE5) is greater than 1000. Preferred PDE5 inhibitors have a greater than 3,000 fold differential between the inhibition of PDE5 and PDE1c, more preferably greater than a 5,000 fold differential between \(\mathrm{IC}_{50}\) value versus PDE5 and PDElc. The potency of the inhibitor, as represented by the \(I_{50}\) value versus PDE5, is less than 10 nM , preferably less than 5 nM , more preferably less than 2 nM , and most preferably less than 1 nM.

The package insert provides a description of how to administer a pharmaceutical product, along with the safety and efficacy data required to allow the physician, pharmacist, and patient to make an informed decision regarding the use of the product. The package insert generally is regarded as the label of the pharmaceutical product. The package insert incorporated into the present article of manufacture indicates that the PDE5 inhibitor is useful in the treatment of conditions wherein inhibition of PDE5 is desired, particularly sexual dysfunction, and particularly male exectile dysfunction and female sexual arousal disorder.

The package insert also provides instructions to administer one or more about 1 to about 10 mg unit dosage forms, chronically, and preferably daily, for at least three days, up to a maximum total dose of 10 mg per day. The dose administered typically is about 1 to about \(10 \mathrm{mg} /\) day, more pref-
erably about 2 to about 10 mg , and most preferably an about 5 mg to about 10 mg dosage form administered daily.

Because a presentiy claimed article of manufacture provides a chronic dosing regimen that is more efficacious than the equivalent on-demand or acute dose, incidences of side effects are notably reduced. Therefore, the preferred article of manufacture provides a package insert having reported incidences of flushing below 2\%, preferably below 1\%, and most preferably below \(0.5 \%\), of the patients administered the dosage form. The incidence rate of flushing demonstrates marked improvement over prior pharmaceutical products containing a PDE5 inhibitor.

The container used in the present article of manufacture is conventional in the pharmaceutical arts. Generally, the container is a blister pack, foil packet, glass or plastic bottle and accompanying cap or closure, or other such articie suitable for use by the patient or pharmacist. Preferably, the container is sized to accommodate 1 -1000 solid dosage forms, preferably 1 to 500 solid dosage forms, and most preferably, 5 to 30 solid dosage forms.

Oral dosage forms are recognized by those skilled in the art to include, for exampie, such forms as liquid formulations, tablets, capsules, and gelcaps. Preferably the dosage forms are solid dosage forms, particularly, tablets comprising about 1 to about 10 mg of a PDE5 inłibitor. Any pharmaceutically acceptable excipients for oral use are suitable for preparation of such dosage forms. Suitabie pharmaceutical dosage forms include copre-
- 11 -
cipitate forms described, for example, in Butler U.S. Patent No. 5,985,326, incorporated herein by reference. In preferred embodiments, the unit dosage form of the present invention is a solid free of a coprecipitate form of the PDE5 inhibitor, but rather contains a solid PDE5 inhibitor as a free drug.

Preferably, the tablets comprise pharma-
- ceutical excipients generally recognized as safe such as lactose, microcrystalline cellulose, starch, calcium carbonate, magnesium stearate, stearic acid, talc, and colloidal silicon dioxide, and are prepared by standard pharmaceutical manufacturing techniques as described in Remington's Pharmaceutical Sciences, l8th Ed., Mack Publishing Co., Easton, PA (1990). Such techniques include, for example, wet granulation followed by drying, milling, and compression into tablets with or without film coating; dry granulation followed by milling, compression into tablets with or without film coating; dry blending followed by compression into tablets, with or without film coating; molded tablets; wet granulation, dried and filled into gelatin capsules; dry blend filled into gelatin capsules; or suspension and solution filled into gelatin capsules. Generally, the solid dosage forms have identifying marks which are debossed or imprinted on the surface.

The oral dosage form also can be in the form of sustained release formulation that chronically provides about 1 to about \(10 \mathrm{mg} /\) day of the PDE5 inhibitor to an individual over the course of a few to several days.

The present invention is based on detailed experiments and clinical trials, and the unexpected observations that sexual dysfunction can be treated using a chronic, low dose of a PDE5 inhibitor having an \(I_{50}\) value for inhibition of PDE5 less than 10 nM .

A chronic, and preferably daily, dosing regimen of about 1 to about 10 mg of a PDE5 inhibitor also provides other benefits including (a) spontaneity in sexual relations, (b) unexpected efficacy for such a low oral dose of PDE5 inhibitor, including an observation of a greater response to the PDE5 inhibitor from a lower chroric PDE5 inhibitor dose than to the currently labeled 25 mg acute, on-demand dose of sildenafil, and (c) no to low adverse effects attributed to the selective PDE5 inhibitor and a low dose.

Overall, it has been demonstrated that chronic dosing of a PDE5 inhibitor having the properties enumerated above provides the same or improved efficacy at about 1 mg to 10 mg than a higher acute on-demand dosage presently administered. The enhanced efficacy demonstrated by low daily dosing of a PDE5 inhibitor in treating erectile dysfunction is not dependent on drug accumulation, but rather results from improved vascular responsiveness when the PDE5 inhibitor is present continuously, or essentially continuously, in plasma.

The "vascular conditioning" effect has not been demonstrated previously with PDE5 inhibitors in particular, or PDE inhibitors in general. In particular, vascular conditioning has not been observed in on-demand dosing of a PDE5 inhibitor, or in individuals taking an acute PDE5 inhibitor dose for
- 13 -
a short time span of two to three days. It is expected that vascular conditioning occurs after chronic administration of the PDE5 inhibitor, for example, after about three daily doses of up to 10 \(m g\), preferably after five days of daily dosing, and more preferably after seven days of daily dosing. In addition, after about three days of daily dosing. intermittently missing one chronic dose may lead to a reduction in vascular conditioning, but not a complete loss of conditioning.

It is theorized, but not relied upon herein, that vascular conditioning is caused by a partial or complete reversal of circulatory dysfunctions in penile circulation arising from conditions such as diabetes; atherosclerosis; smoking, hypertension, or a combination of such factors. These conditions result in thickening of the arterial wall, decreased arterial compliance, and decreased responsiveness to endogenous vasodilators, such as nitric oxide.

PDE5 inhibitors vary significantly in
chemical structure, and the use of a PDE5 inhibitor as defined in the present invention is not dependent on a particular chemical structure, but rather on • the critical parameters outlined herein. However, preferred compounds having the required potency and preferred selectivity can be readily identified by tests described herein from compounds described in Daugan U.S. Patent No. 5, 859,006, Daugan et al. U.S. Patent No. 5,981,527, and Daugan et al. U.S. Patent No. 6,001,847, each of which is incorporated herein by reference.

Prefierred compounds of. Daugan U.S. Patent No. 5,859,006 and Daugan et al. U.S. Patent No. 5,981,527 are represented by structural formula (I):

(I)
wherein \(R^{0}\) is selected from the group consisting of hydrogen, halogen, and \(\mathrm{C}_{1-5}\) alkyl;
\(R^{1}\) is selected from the group consisting of hydrogen, \(\mathrm{C}_{1-6}\) alkyl, \(\mathrm{C}_{2-6}\) alkenyl, \(\mathrm{C}_{2-6}\) alkynyl, haloc \(\mathrm{C}_{1-5}{ }^{-}\) alkyl, \(C_{3.8}\) cycloalkyl, \(C_{3-9}\) cycloalkylC \(C_{1-3}\) alkyl, aryl-\(C_{1-3} a l k y l\), wherein aryl is phenyl or phenyl substituted with one to three substituents selected from the group consisting of halogen, \(C_{1-6} a l k y l, C_{1-6} a l k o x y\), methylenedioxy, and mixtures thereof, and heteroarylc \(C_{1-3}\) alkyl, wherein heteroaryl is thienyl, furyl, or pyridyl, each optionally substituted with one to three substituents selected from the group consisting of halogen, \(C_{1-6} a l k y l, C_{1-6}\) alkoxy, and mixtures thereof;
\(R^{2}\) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan, and pyridine, or an optionally substituted bicyclic ring

attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring A is a 5- or 6-membered ring, saturated or partially or fully unsaturated, and comprises carbon atoms and optionally one or two heteroatoms selected from the group consisting of oxygen, sulphur and nitrogen;
\(R^{3}\) represents hydrogen or \(C_{1-3} a l k y l\), or \(R^{1}\) and \(R^{3}\) together represent a 3 - or 4-membered alkyl or alkenyl chain; and salts and solvates thereof.

Other preferred compounds are those of formula (I) wherein:
```

R0}\mathrm{ is hydrogen, halogen, or C C1-6}\mp@code{alkyl;
R1}\mathrm{ is hydrogen or C C1-6 alkyl;
R

```

which can be optionally substituted by one or more groups selected from halogen and \(C_{1-3} a l k y l ; ~ a n d ~\)
\(R^{3}\) is hydrogen or \(C_{1-5}\) alkyl.
Preferred compounds are:
(6R, 12aR)-2, 3, 6: 7, 12, 12a-hexahydro-2-methyl-6-(3,4methylenedioxyphenyl) pyrazino[2', 1': 6, 1] pyrido [3, 4b] indole-1,4-dione; and (3S, 6R, 12aR)-2, 3, 6, 7, 12, 12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1': 6, 1]-pyrido[3,4-b]indole-1,4-dione;
and physiologícally acceptable salts and solvates (e.g., hydrates) thereof.

An especially preferred selective PDE5 inhibitor useful in the present invention is (6Rtrans) -6-(1,3-benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-2-methylpyrazino[1', 2': 1, 6] pyrido[3,4b] indole-1,4-dione, alternatively named (6R,12aR)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-6-(3,4-m e t h y l e n e-~\) dioxyphenyl) pyrazino[2', 1': 6, 1] pyrido [3, 4-b] indole-
10 1,4-dione, which is disclosed in Daugan U.S. Patent No. 5,859,006, and represented by structural formula (II) :

(II)

Other exemplary compounds useful in the present invention are disclosed in Daugan et al. U.S. Patent No. 6,001,847, WO 97/43287, and WO \(00 / 15639\), incorporated herein by reference.

In addition, sildenafil and vardenafil can be used as the PDE5 inhibitor for daily dosing.
- 17 -



With respect to sildenafil and vardenafil, the dose for chronic administration is about 1 to about 25 \(\mathrm{mg} /\) day, and preferably about 1 to about \(20 \mathrm{mg} /\) day.

Othér useful PDE5 inhibitors that can be used in a chronic dosing, regimen of the present invention include, but are not limited to: 5-(2-ethoxy-5-morpholinoacetylphenyl)-1-methyl-3-n- propyl-1,6-dihydro-7H-pyrazolo[4,3-d] pyrimidin-7one;
5-(5-morpholinoacetyl-2-n-propoxyphenyl)-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d] pyrimidin-7one;
5- [2-allyloxy-5-(4-methyl-1-piperazinylsulphonyl)-phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo-[4,3-d].pyrimidin-7-one;
5-\{2-ethoxy-5-[4-(2-propyl)-1-piperazinylsulphonyl] -phenyl\}-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo-[4,3-d] pyrimidin-7-one;
5- \{2-ethoxy-5-[4-(2-hydroxyethyl)-1-piperazinylsulphonyl) phenyl\}-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one; 5-\{5-[4-(2-hydroxyethyl)-1-piperazinylsulphonyl]-2-n-propoxyphenyl\}-1-methyl-3-n-propyl-1,6-dihydro-7Hpyrazolo [4, 3-d] pyrimidin-7-one; 5- [2-ethoxy-5-(4-methyl-1-piperazinylcarbonyl) -phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo-[4,3-d] pyrimidin-7-one; and
5- [2-ethoxy-5-(1-methyl-2-imidazolyl) phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3d] pyrimidin-7-one.

\section*{PREPARATIONS}

Human PDE5 Preparation

Recombinant production of human PDE5 was carried out essentially as described in Example 7 of
U.S. Patent No. 5, 702,936, incorporated herein by reference, except that the yeast transformation vector employed, which is derived from the basic ADH2 plasmid described in V. Price et al., Methods in Enzymology, 1985, pages 308-318 (1990), incorporated yeast ADH2 promoter and terminator sequences rather than \(A D H 1\) promoter and terminator sequences and the Saccharomyces cerevisiase host was the protease-deficient strain BJ2-54 deposited on August 31, 1998 with the American Type Culture Collection, Manassas, Virginia, under accession number ATCC 74465. Transformed host cells were grown in 2X SCleu medium, pH 6.2, with trace metals, and vitamins. After 24 hours, YEP medium containing glycerol was added to a final concentration of 2 X YEP/3\% glycerol. Approximately 24 hours later, cells were harvested, washed, and stored at \(-70^{\circ} \mathrm{C}\).

Cell pellets ( 29 g ) were thawed on ice with an equal volume of lysis buffer ( 25 mM Tris-Cl, \(\mathrm{pH} 8,5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.25 \mathrm{mM}\) dithiothreitol, 1 mM benzamidine, and \(10 \mu \mathrm{M} \mathrm{ZnSO}_{4}\) ). Cells were lysed in a microfluidizer with \(N_{z}\) at 20,000 psi. The lysate was centrifuged and filtered through 0.45 \(\mu \mathrm{m}\) disposable filters. The filtrate was applied to a 150 mL column of \(Q\) Sepharose Fast Flow (Pharmacia). The column was washed with 1.5 volumes of Buffer A (20 mM Bis-Tris Propane, \(\mathrm{pH} 6.8,1 \mathrm{mM} \mathrm{MgCl}_{2}\), 0.25 mM dithiothreitol, \(10 \mu \mathrm{M} \mathrm{ZnSO}_{4}\) ) and eluted with a step gradient of 125 mM NaCl in Buffer A followed by a Iinear gradient of \(125-1000 \mathrm{mM} \mathrm{NaCl}\) in Buffer \(A\).

Active fractions from the linear gradient were applied to a 180 mL hydroxyapatite column in Buffer B (20 mM Bis-Tris Propane ( pH 6.8 ), 1 mM
\(\mathrm{MgCl}_{2}, 0.25 \mathrm{mM}\) dithiothreitol, \(10 \mu \mathrm{M} \mathrm{ZnSO}_{2}\), and 250 mM KCl). After loading, the column was washed with 2 volumes of Buffer \(B\) and eluted with a linear gradient of 0-125 mM potassium phosphate in Buffer
B. Active fractions were pooled, precipitated with 60\% ammonium sulfate, and resuspended in Buffer C (20 mM Bis-Tris Propane, \(\mathrm{pH} 6.8,125 \mathrm{mM} \mathrm{NaCl}, 0.5 \mathrm{mM}\) dithiothreitol, and \(\left.10 \mu \mathrm{M} \mathrm{ZnSO}_{4}\right)\). The pool was - applied to a 140 mL column of Sephacryl. S-300 HR and eluted with Buffer C. Active fractions were diluted to \(50 \%\) glycerol and stored at \(-20^{\circ} \mathrm{C}\). The resultant preparations were about \(85 \%\) pure by SDS-PAGE.

\section*{Assay for PDE Activity}
strate (iinear assay conditions). The assay is initiated by addition of substrate (1 mM [ \(\left.{ }^{32} \mathrm{P}\right] \mathrm{CGMP}\) ), and the mixture is incubated for 12 minutes. Seventy-five (75) \(\mu \mathrm{g}\) of Crotalus atrox venom then is added, and the incubation is continued for 3 more minutes (15 minutes total). The reaction is stopped by addition of 200 mL of activated charcoal \((25 \mathrm{mg} /-\) mL suspension in \(0.1 . \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{pH} 4\) ). After centrifugation (750 x 9 for 3 minutes) to sediment the charcoal, a sample of the supernatant is taken for radioactivity determination in a scintillation counter and the PDE5 activity is calculated. The preparations had specific activities of about 3 رmoles cGMP hydrolyzed per minute per milligram protein.

\section*{Bovine PDE6 Preparation}

Bovine PDE6 was supplied by Dr. N. Virmaux, INSERM U338, Strasbourg. Bovine retinas were prepared as described by Virmaux et al., FEBS Letters, \(12(6)\), pp. 325-328 (1971) and see also, A. Sitaramayya et al:, Exp. Eye Res., 25, pp. 163-169 (1977). Briefly, unless stated otherwise, all operations were done in the cold and in dim red light. Eyes were kept in the cold and in the dark for up to four hours after slaughtering.

Preparation of bovine retinal outer segment (ROS) basically followed procedures described by Schichi et al., J. Biol. Chem., 224:529 (1969). In a typical experiment, 35 bovine retinas were ground in a mortar with \(35 \cdot \mathrm{~mL} 0.066 \mathrm{M}\) phosphate buffer, pH 7.0 , made up to \(40 \%\) with sucrose,
followed by homogenization in a Potter homogenizer (20 up and down strokes). The suspension was centrifuged at \(25,000 \mathrm{x} g\) for 20 minutes. The pellet was homogenized in 7.5 mL 0.006 M phosphate buffer ( \(40 \%\) in sucrose), and carefully layered under 7.5 mL of phosphate buffer. (containing no sucrose). Centrifugation was conducted in a swing-out rotor at \(45,000 \mathrm{x} \mathrm{g}\) for 20 minutes, and produced a pellet which is black at the bottom, and also a red band at the interface 0.066 M . phosphate- \(-40 \%\) sucrose/0.066 M phosphate (crude ROS). The red material at the interface was removed, diluted with phosphate buffer, spun down to a pellet, and redistributed in buffered \(40 \%\) sucrose as described above. This procedure was repeated 2 or 3 times until no pellet was formed. The purified ROS was washed in phosphate buffer and finally.spun down to a pellet at \(25,000 \mathrm{x}\) \(g\) for 20 minutes. All materials were then kept frozen until used.

Hypotonic extracts were prepared by suspending isolated ROS in 10 mM Tris-Cl \(\mathrm{pH} 7.5,1 \mathrm{mM}\) EDTA, and 1 mM dithioerythritol, followed by centrifugation at \(100,000 \mathrm{x} \mathrm{g}\) for 30 minutes.

The preparation was reported to have a specific activity of about 35 nmoles cGMP hydrolyzed per minute per milligram protein.

PDE1c Preparation from Spodoptera fuqiperda Cells (Sf9)

Cell pellets ( \(5 g\) ) were thawed on ice with 20 ml of Lysis Buffer (50mM MOPS pH 7.4 , \(10 \mu \mathrm{M} \mathrm{ZnSO}_{4}\), \(0.1 \mathrm{mM} \mathrm{CaCl}{ }_{2}, 1 \mathrm{mM} \mathrm{DTT}, 2 \mathrm{mM}\) benzamidine \(\mathrm{HCl}, 5 \mu \mathrm{~g} / \mathrm{ml}\)
each of pepstatin, leupeptin, and aprotenin). Cells were lysed by passage through a French pressure cell (SLM-Aminco) while temperatures were maintained below \(10^{\circ} \mathrm{C}\). The resultant cell homogenate was centrifuged at \(36,000 \mathrm{rpm}\) at \(4^{\circ} \mathrm{C}\) for 45 minutes in a Beckman ultracentrifuge using a Type TI 45 rotor. The supernatant was discarded and the resultant pellet was resuspended with 40 ml of Solubilization
- Buffer (Lysis Buffer containing \(1 \mathrm{M} \mathrm{NaCl}, 0.1 \mathrm{M} \mathrm{MgCl}_{2}\), \(1 \mathrm{mM} \mathrm{CaCl}{ }_{2}, 20 \mu \mathrm{~g} / \mathrm{ml}\) calmodulin, and \(1 \%\) Sulfobetaine SB12 (Z3-12) by sonicating using a VibraCell tuner with a microtip for \(3 \times 30\) seconds. This was performed in a crushed ice/salt mix for cooling. Following sonication, the mixture was slowly mixed for 30 minutes at \(4^{\circ} \mathrm{C}\) to finish solubilizing membrane bound proteins. This mixture was centrifuged in a Beckman ultracentrifuge using a type TI45 rotor at \(36,000 \mathrm{rpm}\) for 45 minutes. The supernatant was diluted with Lysis Buffer containing \(10 \mu \mathrm{~g} / \mathrm{ml}\) calpain inhibitor \(I\) and II. The precipitated proiein was centrifuged for 20 minutes at 9,000 rpm in a Beckman JA-10 rotor. The recovered supernatant then was subjected to Mimetic Blue AP Agarose Chromatography.

In order to run the Mimetic Blue AP Agarose Column, the resin initially was shielded by the application of 10 bed volumes of \(1 \%\) polyvinylpyrrolidine (i.e.; MW of 40,000 ) to block nonspecific binding sites. The loosely bound PVP-40 was removed by washing with 10 bed volumes of 2 M NaCl , and 10 mM sodium citrate pH 3.4 . Just prior to addition of-the solubilized PDElc sample, the column was equilibrated with 5 bed volumes of Column Buffer

A \(\left(50 \mathrm{mM}\right.\) MOPS \(\mathrm{pH} 7.4,10 \mu \mathrm{M} \mathrm{ZnSO}_{4}, 5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 0.1 \mathrm{mM}\) \(\mathrm{CaCl}_{2}, 1 \mathrm{mM}\) DTT, 2 mM benzamidine HCl ).

The solubilized sample was applied to the column at a flow rate of \(2 \mathrm{ml} / \mathrm{min}\) with recycling such that the total sample was applied 4 to 5 times in 12 hours. After loading was completed, the' column was washed with 10 column volumes of Column Buffer \(A\), followed by 5 column volumes of Column Buffer B (Column Buffer A containing \(20 \mathrm{mM} 5^{\prime}\)-AMP), and followed by 5 column volumes of Column Buffer \(C\) ( 50 mM MOPS \(\mathrm{pH} 7.4,10 \mu \mathrm{M} \mathrm{ZnSO}_{1}, 0.1 \mathrm{mM} \mathrm{CaCl}_{2}\), 1 mM dithiothreitol, and 2 mM benzamidine HCl). The enzyme was eluted into three successive pools. The first pool consisted of enzyme from a 5 bed volume wash with Column Buffer \(C\) containing 1 mM CAMP. The second pool consisted of enzyme from a 10 bed volume -wash with Column Buffer C containing 1 M NaCl . The final pool of enzyme consisted of a 5 bed volume wash with Column Buffer C containing 1 M NaCl and 20 mM CAMP.

The active pools of enzyme were collected and the cyclic nucleotide removed via conventional gel filtration chromatography or chromatography on hydroxy-apatite resins. Following removal of cyclic nucleotides, the enzyme pools were dialyzed against Dialysis Buffer containing 25 mM MOPS pH 7.4 , \(10 \mu \mathrm{M}\) \(\mathrm{ZnSO}_{4}, 500 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{CaCl}_{2}, 1 \mathrm{mM}\) dithiothreitol, 1 mM benzamidine HCl , followed by dialysis against Dialysis buffer containing 50\% glycerol. The enzyme was quick frozen with the aid of dry ice and stored at \(-70^{\circ} \mathrm{C}\).

The resultant preparations were about \(>90 \%\) pure by SDS-PAGE. These preparations had specific
activities of about 0.1 to \(1.0 \mu m o l\) CAMP hydrolyzed per minute per milligram protein.

IC \(C_{50}\) Value Determinations

The parameter of interest in evaluating the potency of a competitive erizyme inhibitor of PDE5 and/or PDElc and PDE6 is the inhıbition cornstant, i.e., \(K_{i}\). This parameter can be approximated by determining the \(\mathrm{IC}_{50}\), which is the inhibitor concentration that results in 50\% enzyme inhibition, in a single dose-response experiment under the following conditions.

The concentration of inhibitor is always much greater than the concentration of enzyme, so that free inhibitor concentration (which is unknown) is approximated by total inhibitor concentration (which is known).

A suitable range of inhibitor concentrá tions is chosen (i.e., inhibitor concentrations at least several fold greater and several fold less than the \(K_{i}\) are present in the experiment). Typically, inhibitor concentrations ranged from 10 nM to 10 MM.

The concentrations of enzyme and substrate are chosen such that less than \(20 \%\) of the substrate is consumed in the absence of inhibitor (providing, e.g., maximum substrate hydrolysis of from 10 to 15\%), so that enzyme activity is approximately constant throughout the assay.

The concentration of substrate is less than one-tenth the Michaelis constant ( \(K_{m}\) ). Under these conditions, the \(\mathrm{IC}_{\text {so }}\) will closely approximate
the \(K_{i}\). This is because of the cheng-Prusoff equation relating these two parameters: \(I C_{50}=K_{i}\left(1+S / K_{m}\right)\), with \(\left(1+S / K_{m}\right)\) approximately 1 at low values of \(S / K_{m}\).

The \(I_{50}\) value is estimated from the data points by fitting the data to a suitable model of the enzyme inhibitor interaction. When this interaction is known to involve simple competition of the inhibitor with the substrate, a two-parameter model can be used:
\[
\mathrm{Y}=\mathrm{A} /(1+\mathrm{X} / \mathrm{B})
\]
where the \(y\) is the enzyme activity measured at an inhibitor concentration of \(x\), \(A\) is the activity in the absence of inhibitor and \(B\) is the \(I_{50}\). See \(Y\). Cheng et al., Biochem. Pharmacol., 22:3099-3108 (1973) .

Effects of inhibitors of the present invention on enzymatic activity of PDE5 and EDE6 preparations as described above were assessed in either of two assays which differed from each other principally on the basis of scale and provided essentially the same results in terms of \(\mathrm{IC}_{50}\) values. Both assays involved modification of the procedure of Wells et al., Biochim. Biophys. Acta, 384:430 (1975). The first of the assays was performed in a total volume of \(200 \mu \mathrm{l}\) containing 50 mM Tris pH 7.5, 3 mM Mg acetate, 1 mM EDTA, \(50 \mu \mathrm{~g} / \mathrm{mL}\) snake venom nucleotidase and \(50 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]-\mathrm{CGMP}\) (Amersham). Compounds of the invention were dissolved in DMSO finally present at \(2 \%\) in the assay. The assays were incubated for 30 minutes at \(30^{\circ} \mathrm{C}\) and stopped by addition of \(800 \mu \mathrm{Hl}\) of 10 mM Tris pH 7.5 , 10 mM EDTA,

10 mM theophylline, 0.1 mM adenosine, and 0.1 mM guanosine. The mixtures were loaded on to 0.5 mL QAE Sephadex columns, and eluted with 2 mL of 0.1 M formate ( pH 7.4) . The eluted radioactivity was measured by scintillation counting in Optiphase Hisafe 3.

A second, microplate, PDE assay was developed using Multiscreen plates and a vacuum manifold. The assay ( \(100 \mu \mathrm{~L}\) ) contained 50 mM Tris \(\mathrm{pH} 7.5,5 \mathrm{mM} \mathrm{Mg}\) acetate, 1 mM EDTA and \(250 \mu \mathrm{~g} / \mathrm{mL}\) snake venom nucleotidase. The other components of the reaction mixture were as described above. At the end of the incubation, the total volume of the assays were loaded on a QAE Sephadex microcolumn plate by filtration. Free radioactivity was eluced with \(200 \mu \mathrm{l}\) of water from which \(50 \mu \mathrm{l}\) aliquots were analyzed by scintillation counting as described above.

The following examples are presented to further illustrate the preparation of the claimed invention. The scope of the present invention is not to be construed as merely consisting of the following examples.

The compound of structural formula (I) was prepared as described in U.S. patent 5, 859,006 and formulated in tablets using wet granulation. Povidone was dissolved in water to make a \(10 . \%\) solution. The active compound, microcrystalline cellulose, croscarmellose sodium, and sodium lauryl sulfate were added to a high shear mixer and mixed for 2
minutes. The powders were wet granulated with the povidone solution and extra water as required to complete the granulation. The resultant mixture was dried in a fluid bed drier with inlet air at \(70^{\circ} \mathrm{C} \pm\) \(5^{\circ} \mathrm{C}\) until the loss on drying was below 2.5\%. The granules were passed through a Comil with a suitable screen (or a sieve) and added to a suitable mixer. The extragranular croscarmellose sodium and sodium lauryl sulfate, and the colloidal anhydrous silica were passed through a suitable sieve (e.g., 500 micron) and added to the mixer and blended 5 minutes. Magnesium stearate was added and blended for 2 minutes. The blend was compressed to a target compression/weight of 250 mg using 9 mm round normal concave tooling.

The core tablets were coated with an aqueous suspension of Opadry OY-S-7322 using an Accelacota (or similar coating pan) using inlet air at \(50^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) until the tablet weight was increased by approximately 8 mg . Opadry OY-S-7322 contains methylhydroxypropylcellulose Ph.Eur., titanium dioxide Ph. Eur., Triacetin USP. Opadry. increases the weight of each tablet to about 258 mg . The amount of film coat applied per tablet may be less than that stated depending on the process efficiency.

The tablets are filled into blister packs and accompanied by package insert describing the safety and efficacy of the compound.
- 29 -
\begin{tabular}{|l|c|c|}
\hline Component & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Formulations \\
(mg per tablet)
\end{tabular}} \\
\hline Selective pDE5 Inhibitor) & 1 & 5 \\
\hline \begin{tabular}{l} 
Hydroxypropylmethylcellulose \\
phthalate
\end{tabular} & 1 & 5 \\
\hline Microcrystalline Ceilulose & 221.87 & 213.87 \\
\hline Croscarmellose Sodium & 5.00 & 5.00 \\
\hline Sodium Lauryl Sulfate & 2.50 & 2.50 \\
\hline Sulfate Povidone K3o & 9.38 & 9.38 \\
\hline \begin{tabular}{l} 
Purified Water, USP (water \\
for irrigation)
\end{tabular} & \(q .5\). & 9.5. \\
\hline Croscarmellose Sodium & 5.00 & 5.00 \\
\hline Sodium Lauryl Sulfate & 2.50 & 2.50 \\
\hline Colloidal Anhydrous Silica & 0.50 & 0.50 \\
\hline Magnesium Stearate & 1.25 & 1.25 \\
\hline Tctal core subtotal & 250.00 & 250.00 \\
\hline (Film coat Opadry oY-S-7322) & about 8 mg & about 8 mg \\
\hline
\end{tabular}
1) Compound of structural formula (I).

Example 2

The following formula is used in preparing a finished dosage form containing 10 mg of the compound of structural formula (I).
- 30 -

Purified Water, USP is used in the manu-
facture of the tablets. The water is removed during processing and minimal levels remain in the finished product.

Tablets are manufactured using a wet granulation process. A step-by-step description of the process is as follows. The drug and excipients to be granulated are security sieved. The selective PDE5 inhibitor is dry blended with lactose monohydrate (spray dried), hydroxypropylcellulose, croscarmellulose sodium, and lactose monohydrate. The resulting powder blend is granulated with an aqueous solution of hydroxypropylcellulose and sodium lauryl sulfate using a Powrex or other suitable high shear
granulator. Additional watér can be added to reach the desired endpoint. A mill can be used to delump the wet granulation and facilitate drying. The wet granulation is dried using either a fluid bed dryer or a drying oven. Once the material is dried, it can be sized to eliminate any large agglomerates. Microcrystalline cellulose, croscarmellose sodium, and magnesium stearate are security sieved and added to the dry sized granules. These excipients and the dry granulation are mixed until uniform using a tumble bin, ribbon mixer, or other suitable mixing equipment. The mixing process can be separated into two phases. The microcrystalline cellulose, croscarmellose sodium, and the dried granulation are added to the mixer and blended during the first phase, followed by the addition of the magnesium stearate to this granulation and a second mixing phase.

The mixed granulation then is compressed into tablets using a rotary compression machine. The core tablets are film coated with an aqueous suspension of the appropriate color mixture in a coating pan (e.g., Accela Cota). The coated tablets can be lightly dusted with talc to improve tablet handling characteristics.

The tablets are filled into plastic containers (30 tablets/container) and accompanied by package insert describing the safety and efficacy of the compound.

\section*{- 32 -}

Example 3

The following formula is used in preparing a finished dosage form of 5 mg of the compound of structural formula (I).
\begin{tabular}{|c|c|}
\hline Ingredient & Quantity (mg) \\
\hline Granulation & \\
\hline Selective PDE5 Inhibitor \({ }^{1 /}\) & 2.50 \\
\hline Lactose Monohydrate & 79.395 \\
\hline Lactose Monohydrate (spray dried) & 12.50 \\
\hline Hydroxypropylcellulose & 2.00 \\
\hline Croscarmellose Sodium & 4.50 \\
\hline Hydroxypropylcellulose (EF) & 0.875 \\
\hline Sodium Lauryl Sulfate & 0.35 \\
\hline Outside Powders & \\
\hline ```
Microcrystalline Cellulose (granular-
102)
``` & 18.75 \\
\hline Croscarmellose Sodium & 3.50 \\
\hline Magnesium Stearate (vegetable) & 0.63 \\
\hline & Total 125 mg \\
\hline \multicolumn{2}{|r|}{Film coat (approximately) 6.875} \\
\hline
\end{tabular}

The dosage form of Example 3 was prepared in an identical manner to the dosage form of Example 2.

Example 4
\begin{tabular}{|l|c|c|}
\hline \multicolumn{2}{|c|}{ Solution Capsule } \\
\hline Ingredient & mg/Capsule & Percent (\%) \\
\hline Selective PDES Inhibitor \({ }^{2 \prime}\) & 10 & 2 \\
\hline PEG400 NF & 490 & 98 \\
\hline Fill Weight & 500 & 100 \\
\hline
\end{tabular}

The gelatin capsules are precisely filled by pumping an accurate fill volume of predissolved drug formulation into the partially sealed cavity of a capsule. Immediately following injection fill of the drug solution formulation, the capsule is completely heat sealed.

The capsules are filled into plastic containers and accompanied by a package insert.

\section*{Example 5}

In two randomized, double-blinded placebo controlled studies, the compound of structural formula (I), at a range of doses in both daily dosing and for on demand therapy for sexual encounters ard intercourse in the home setting, was administered to patients in need thereof. Doses from 5 to 20 mg of the compound of structural formula (I) were efficacious and: demonstrated no flushing and no reports of vision abnormalities. It was found that a 10 mg dose of the compound of structurai formula (I) was fully efficacious and demonstrated minimal side effects (no flushing and no reports of blue vision).

Erectile function was assessed by the International Index of Erectile Function (IIEF) (Rosen et al., Urology, 49, pp. 822-830 (1997)), diaries of sexual attempts, and a global satisfaction question. The compound of structural formula (I) significantly improved erectile function as assessed by all endpoints. In both "on demand" and daily dose regimens, the compound of structural formula (I) sig-- nificantly improved erectile function in doses beťween 1 and 20 mg .

\section*{Example 6}

Data from five clinical studies were integrated to show the efficacy of daily dosing of 5 mg and 10 mg of a compound of structural formula (I) (Study Drug). One study was of eight weeks duration, and the other four studies were of twelve weeks duration. The Study Drug was administered "daily" to patients with male erectile dysfunction. . A. "Erectile dysfunction (ED)" is defined as the persistent inability to attain and/or maintain an erection adequate to permit satisfactory sexual performance.

The study population consisted of four subgroups as follows: (a) Study Drug taken less than \(30 \%\) of the time during the study; (b) Study Drug taken \(30 \%\) to \(50 \%\) of the time during the study; (c) Study Drug taken \(50 \%\) to \(70 \%\) of the time during the study; and (d) Study Drug taken greater than \(70 \%\) of the time during the study.

The Study Drug was orally administered as tablets of coprecipitate of study Drug made in
accordance with Butler U.S."Patent No. 5,985,326 and as tablets containing the Study Drug as a free drug. The Study Drug was administered in 5 mg and 10 mg doses, "daily" and not more than once every 24 hours. No other approved or experimental medications, treatments, or devices used to treat ED were allowed.

The two primary efficacy variables were the ability of a subject to penetrate his partner and his ability to maintain an erection during intercourse, as measured by the International Index of Erectile Function (IIEF). The IIEF Questionnaire contains fifteen questions, and is a brief, reliable measure of erectile function. See R.C. Rosen et al., Urology, 49, pp. 822-830 (1997).

Secondary efficacy variables were IIEF domain scores for erectile function, orgasmic function, sexual desire, intercourse satisfaction and overall satisfaction; the patient's ability to achieve an erection, ability to insert his penis into his partner's vagina, completion of intercourse with ejaculation, satisfaction with the hardness of his erection, and overall satisfaction, all as measured by the Sexual Encounter Profile (SEP) diary, especially, Question 2 and Question 3. The SEP is a patient diary instrument documenting each sexual encounter during the course of the study. The safety analysis of the study included all enrolled subjects, and was assessed by evaluating all reported adverse events, and•changes in clinical laboratory values, vital signs, physical examination results, and electrocardiogram results.

Overall, integration of the five. scudies demonstrated a trend toward better response with increased frequency of dose, both in the 5 mg and 10 mg -group, and in all three primary efficacy variables.. The results are summarized in following Tables 2-4.

Table 2. Summary of IIEF Erectile Function Domain
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Dose} & \multirow[b]{2}{*}{Statistics} & \multicolumn{4}{|l|}{Percent of the time taken drug during the study} \\
\hline & & <30\% & 30\% to 50\% & 50\% to 70\% & >70\% \\
\hline \multirow[t]{4}{*}{5 mg} & N & 97 & 54 & 28 & 13 \\
\hline & Mean Baseline & i3.2 & 13.5 & 14.1 & 13.1 \\
\hline & Mean Endpoint & 17.4 & 17.5 & 20.9 & 22.1 \\
\hline & Mean Change & 4.3 & 4.0 & 6.8 & 9.0 \\
\hline \multirow[t]{4}{*}{10 mg} & N & 164 & 75 & 41 & 43 \\
\hline & Mean Baseline & 14.1 & 14.4 & 13.9 & 14.8 \\
\hline & Mean Endpoint & 20.0 & 21.4 & 21.5 & 22.2 \\
\hline & Mean Change & 5.9 & 6.9 & 7.6 & 7.4 \\
\hline
\end{tabular}

Table 3. Summary of SEP Question 2
(Ability to insert penis)
Percent of the time taken drug during

Example 7

A double-blind, placebo-controlled study assessed the safety and efficacy of daily treatment using a compound of formula (I) (Study Drug) in men 21-72 years of age and experiencing mild to moderate erectile dysfunction. Men having a histcry of radical prostatectomy or diabetes mellitus were excluded. In this study, following a three-week treatment free run-in period, the subjects were randomized to a three week daily treatment with placebo or study Drug (\(10,25,50\), or to 100 mg). All participants in the study agreed to attempt four sexual encounters during both the run-in and treatment periods. Baseline International Index of Erectile Function (IIEF) scores, sexual encounter profile (SEP) diary data, and the global assessment question (GAQ) were collected duririg the treatment period. Primary endpoints were change from baseline in Questions 3 (treatment effect on penetration ability) and 4 (treatment effect on erection maintenance) of the IIEF. Secondary endpoints
- 38 -
included change from baseline in all IIEF domains and in SEP and GAQ responses. The results for the group administered 10 mg of study Drug daily were comparable to, or better than, results for groups administered 25,50 , and 100 mg of Study prug daily.

Compared to the placebo, the study Drug significantly improved erectile function as assessed by all study endpoints. For example, in groups treated with the study Drug, the change in IIEF Question 3 was about 1.4 (compared to placebo) with daily 10 mg treatment. The change in Question 4 was about 1.8 (compound to placebo) with 10 mg daily treatment. Successful intercourse rates using the Study Drug, as reported in SEP diaries, were up to 82\% with 10 mg daily therapy, compared to \(40.4 \%\) for placebo. In addition, \(90 \%\) of the subject receiving 10 mg daily dose of study Drug reported improved erection on the GAQ compared to \(30 \%\) of subjects administered a placebo. Adverse events were doserelated, and attenuated with continued daily treatment. The most common adverse events were headache, back pain, myalgia, and dyspepsia. Treatment-related headache, the most common adverse event, was observed in \(13 \%\) to \(46 \%\) of subjects receiving daily study Drug compared to \(3 \%\) for placebo. There were no treatment-related changes in vital signs, ECG, or laboratory measures.

In accordance with the present invention, a daily unit dose of about 1 to about 10 mg , preferably about 2 to about 10 mg , and most preferably about 5 to about 10 mg , administered daily up to a maximum of 10 mg per day for at least three days,
effectively treats ED, minimizes or eliminates the occurrence of adverse side effects, and improves vascular conditioning. Importantly, the patient is provided spontaneity with respect to sexual activi- ties and a more"rapid return to a prearoused state. Surprisingly, in addition to treating ED in individuals, a greater response was observed using a low daily dose compared to a higher on-demand dose of PDE5 inhibitor, in addition to a lower instances of adverse events attributed to lower dose.

The principles, preferred embodiments, and modes of operation of the present invention have been described in the foregoing specification. The invention intended to be protected herein, however, is not construed to be limited to the particular forms disclosed, because they are to be regarded as illustrative rather than restrictive. variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

WHAT IS CLAIMED IS:
1. An article of manufacture for human pharmaceutical use comprising:
(a) an oral dosage form comprising a PDE5 inhibitor having an \(\mathrm{IC}_{50}\) for the inhibition of PDE5 less than 10 nM , and sufficient bioavailability to be effective in about 1 to about 10 mg unit oral dosages;
(b) a package insert providing that the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof by utilizing a chronic dosing regimen; and
(c) a container.
2. An article of manufacture for human pharmaceutical use comprising:
(a) an oral dosage form comprising a PDE5 inhibitor having an ICso \(_{50}\) less than 10 nM , and a sufficient bioavailability to be effective in about 1 to about 10 mg unit oral dosages;
(b) a package insert providing that the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof by utilizing a chronic dosing regimen, wherein the chronic dosing regimen improves vascular conditioning; and
(c) a container.
3." An article of manufacture for human pharmaceutical use comprising:
(a) an oral dosage form comprising of a PDE5 inhibitor having an \(\mathrm{IC}_{50}\) less than 10 nM , and a sufficient bioavailability to be effective in about 1 to about 10 mg unit oral dosages;
(b) a package insert providing that the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof by utilizing a chronic dosing regimen, wherein the chronic dosing regimen improves vascular conditioning compared to an acute or on-demand dosing of sildenafil; and
(c) a container.
4. An article of manufacture for human pharmaceutical use comprising:
(a) an oral dosage form comprising a PDE5 inhibitor having an \(\mathrm{IC}_{50}\) less than 10 nM , and a sufficient bioavailability to be effective in about 1 to about 10 mg unit oral dosages;
(b) a package insert providing that the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof by utilizng a chronic dosing regimen, wherein the chronic dosing regimen improves vascular conditioning compared to an acute or on-demand dosing of vardenafil; and
(c) a container.
- 42 -
5. The article of manufacture of claims 1 through 4, wherein the PDE5 inhibitor further has
(i) at least a 100 fold differential
in \(\mathrm{IC}_{50}\) values for the inhibition of PDE5 versus PDE6, and
(ii) at least 1000 fold differential
in \(\mathrm{IC}_{50}\) values for the inhibition of PDE5 versus PDE1c.
6. The article of claims 1 through 4 wherein the oral dosage form comprises about 1 mg , about 2 mg , about 5 mg , or about 10 mg , of the PDE5 inhibitor.
7. The article of claims 1 through 4 wherein the chronic dosing regimen is a daily dosing regimen.
8. The article of claims 1 through 4 wherein the chronic dosing regimen comprises administration of about \(1 \mathrm{mg} /\) day to about \(10 \mathrm{mg} /\) day of the PDE5 inhibitor.
9. The article of claims 1 through 4 wherein the package insert provides a maximum dosage of the PDE5 inhibitor of about 10 mg per day.
10. The article of claims 1 through 4 wherein the PDE5 inhibitor is selected from the group consisting of
(6R,12aR)-2, 3, 6, 7, 12, 12a-hexahydro-2-methyl-6-(3,4methylenedioxyphenyl) pyrazino[2', 1': 6, 1] pyrido [3,4b] indole-1,4-dione;
(3S, 6R, 12aR)-2, 3, 6, 7, 12, 12a-hexahydro-2,3-dimethyl-6-(3,4-methylenedioxyphenyl) pyrazino [2', \(\left.1^{\prime}: 6,1\right]\) pyrido [3,4-b] indole-1,4-dione;
5-(2-ethoxy-5-morpholinoacetylphenyl)-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7one;
5-(5-morpholinoacetyl-2-n-propoxyphenyl)-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d] pyrimidin-7one;
5-[2-allyloxy-5-(4-methyl-1-piperazinylsulphonyl)-phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo-[4,3-d] pyrimidin-7-one;
5-\{2-ethoxy-5-[4-(2-propyl)-1-piperazinylsulphonyl] -phenyl\}-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo-[4,3-d] pyrimidin-7-one;
5-\{2-ethoxy-5-[4-(2-hydroxyethyl)-1-piperazinylsulphonyl) phenyl\}-1-methyl-3-n-propyl-1, 6-dihydro-7Hpyrazolo [4,3-d]pyrimidin-7-one;
5- \{5- [4-(2-hydroxyethyl)-1-piperazinylsulphonyl]-2-n-propoxyphenyl\}-1-methyl-3-n-propyl-1,6-dihydro-7Hpyrazolo [4,3-d] pyrimidin-7-one;
5-(2-ethoxy-5-(4-methyl-1-piperazinylcarbonyl)-phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo-[4,3-d] pyrimidin-7-one; and 5-[2-ethoxy-5-(1-methyl-2-imidazolyl) phenyl]-1me: ehyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4, 3-
djpyrimidin-7-one.
11. The article of claim 10 wherein the chronic dosing regimen comprises administration of about \(1 \mathrm{mg} /\) day to about \(10 \mathrm{mg} /\) day of the PDE5 inhibitor.
12. The article of claims 1 through 4 wherein the PDE5 inhibitor is selected from the group consisting of sildenafil and vardenafil.
13. The article of claims 1 through 4, wherein the PDE5 inhibitor has the structure

14. A method of treating sexual dysfunction comprising using an article of manufacture of claims 1 through 4.
15. A method of treating sexual dysfunction comprising a chronic administration to an individual in need thereof of one or more oral dosage form of a PDE5 inhibitor in an amount of about 1 mg/day to about \(10 \mathrm{mg} /\) day for at least three days.
- 45 -
16. The method of claim 15 wherein the chronic administration of a PDE5 inhibitor is a daily administration.
17. A method of improving a relaxant response in corpus cavernosum smooth muscle comprising a chronic administration of a PDE5 inhibitor selected from (\(6 \mathrm{R}, 12 \mathrm{aR}\)) - \(2,3,6,7,12,12 a-h e x a h y d r o-2\)-meth-yl-6-(3,4-methylenedioxyphenyl)pyrazino[2', 1':6,1]pyrido [3,4-b]indole-1,4-dione for at least three days.
18. The method of claim 17 comprising the chronic administration of about \(1 \mathrm{mg} / \mathrm{day}\) to about 25 mg/day of the PDE5 inhibitor.
19. Use of a PDE5 inhibitor selected from (6R, 12aR)-2, 3, 6, 7, 12, 12a-hexahydro-2-methyl-6-(3, 4methylenedioxyphenyl) pyrazino[2', \(\left.1^{\prime}: 6,1\right]\) pyrido[3,4-b]indole-1,4-dione and vardenafil for the manufacture of a medicament having a package insert providing that the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof by chronic dosing of about 1 to about 10 mg of the PDE5 inhibitor for at least three days.
20. Use of a PDE5* inhibitor selected from (\(6 \mathrm{R}, 12 \mathrm{aR}\)) \(-2,3,6,7,12,12 \mathrm{a}\)-hexahydro-2-methyl-6-(3,4methylenedioxyphenyl) pyrazino[2', 1': 6,1] pyrido[3,4-b]indole-1,4-dione and vardenafil for the manufacture of a medicament having a package insert providing that the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof by chronic dosing of about 1 to about 10 mg of the PDE5 - inhibitor for at least .three days, and that the treatment is accompanied by improved vascular conditioning. .
21. Use of a PDE5 inhibitor selected from (6R, 12aR)-2, 3, 6, 7, 12, 12a-hexahydro-2-methyl-6-(3, 4methylenedioxyphenyl) pyrazino[2', 1':6, 1] pyrido[3,4b] indole-1,4-dione and vardenafil for the manufacture of a medicament having a package insert providing that the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof by chronic dosing of about 1 to about 10 mg of the PDE5 inhibitor for at least three days, and improves vascular conditioning compared to a chronic or ondemand dosing of sildenafil.
22. Use of a PDE5 inhibitor selected from (6R, 12aR)-2, 3, 6, 7, 12, 12a-hexahydro-2-methyl-6-(3, 4methylenedioxyphenyl) pyrazino[2',1':6,1]pyrido[3,4b] indole-1,4-dione for the manufacture of a medicament having a package insert providing that the PDE5 inhibitor is useful to treat sexual dysfunction in a patient in need thereof by chronic dosing of about 1 to about 10 mg of the PDE5 inhibitor for at least three days, and improves vascular conditioning
compared to a chronic or on-demand dosing of vardenafil.
(19) World Intellectual Property Organization International Bureau

\section*{(43) International Publication Date 1 November 2001 (01.11.2001)}

PCT

(10) International Publication Number WO 01/80860 A3
(51) International Patent Classification \({ }^{\text {? }}\) : 31/505. A61P 15/10
(21) International Application Number: PCT/US01/12512
(22) International Filing Date: 13 April 2001 (13.04.2001)
(25) Filing Language:

English
English
(30) Priority Data:
\(09 / 558.911 \quad 26\) April 2000 (26.04.2000) US
(71) Applicant (for all designated States except US): LILLY ICOS LLCIUS/US]: 1209 Orange Street, Wilmington. DE 19801 (US).
(72) Inventors; and
(75) Inventors/Applicants (for U/S only): WHITAKER, John, S. [US/US]: 19340162nd Avenue, Woodinville. WA 98072 (US). DE TEJADA, Inigo, Saenz [ES/US]; FI \& DA, Antonio Robles. +90 C. E-28034 Madrid (ES). FERGUSON, Kenneth, M. |US/US]; 2.3221 14th Place West, Bothell. WA 98021 (US).
(74) Agent: NAPOLI, James, J.; Marshall, O’Toole, Gerstein, Murray \& Borun. 6300 Sears Tower, 233 South Wacker Drive. Chicago. IL 60606 (US).

A61K 31/52, (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG. BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ. DE, DK. DM, DZ, EE, ES, FI, GB. GD. GE, GH, GM. HR. HU, ID, IL, IN, IS. JP. KE, KG. KP. KR, KZ. LC. LK. LR. LS, LT, LU, LV, MA, MD, MG. MK. MN, MW, MX, MZ. NO. NZ. PL. PT, RO, RU. SD, SE. SG. SI. SK. SL. TJ, TM, TR, TT, TZ. UA, UG, US, UZ, VN, YU, ZA. ZW.
(84) Designated States (regional): ARIPO patent (GH, GM, KE. LS, MW. MZ. SD. SL. SZ. TZ. UG. ZW), Eurasian patent (AM, AZ. BY, KG, KZ. MD. RU, TJ, TM), European patent (AT, BE. CH. CY, DE, DK. ES, FI, FR, GB, GR, IE, IT, LU. MC. NL. PT. SE. TR). OAPI patent (BF. BJ. CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

\section*{Published:}
-- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
(88) Date of publication of the international search report:

6 June 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{According to Intemational Patent Classification (IPC) or to boih national classitication and IPC} \\
\hline \multicolumn{4}{|l|}{B. Felds searched} \\
\hline \multicolumn{4}{|l|}{Minimum documentation searched (classification system totlowed by classitication symbols) IPC 7 A61K A61P} \\
\hline \multicolumn{4}{|l|}{Documentation searched other than minimum documentation to the extent that such documents are included in the fietas searched} \\
\hline \multicolumn{4}{|l|}{Electronic data base consulled during the inlernational search (name of data base and. where practical. search terms used) EPO-Internal, WPI Data, PAJ, CHEM ABS Data, EMBASE, SCISEARCH, BIOSIS} \\
\hline \multicolumn{4}{|l|}{C. DOCuments Considerid to be relevant} \\
\hline Category \({ }^{\circ}\) & Cilation of document. wilh indication, where approgna & levant passages & Relevant to claim No. \\
\hline \begin{tabular}{l}
\(X\) \\
\(Y\) \\
X. \\
\(Y\)
\end{tabular} & \begin{tabular}{l}
WO 9428902 A (PFIZER LTD PFIZER RES \& DEV (IE); ELL 22 December 1994 (1994-12page 1, line 1-4 \\
page 2, paragraph THIRD \\
page 9 \\
page 6 -page 7 ; claims 1,5 page 10 -page 11 \\
US 6001847 A (DAUGAN ALA ET AL) 14 December 1999 (1 column 5, line 39,40 column 6, line 36-53 claims \(1,7,13\)
\end{tabular} & \begin{tabular}{l}
\[
R \text { (US); }
\] \\
ER (GB);) \\
UDE-MARIE \\
-14) \\
-/--
\end{tabular} & \[
\begin{aligned}
& 1-11 \\
& 19-22 \\
& 1-9,13 \\
& 19-22
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{X Further documents are listed in the continuation ol box C . X Patent famity members are listed in annex.} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
- Special calegories of ciled documents : \\
' \(A\) ' document defining the general state of the an which is not considered to be of particular relevance \\
' \(E\) ' eartier document but published on or after the international filing date \\
'L' document which may throw doubls on prionily claim(s) or which is cined to establish the publication date of another citation or other special reason (as specified) \\
-O' document reterring to an oral disclosure. use. exnibition or other means \\
-P' document published prior to the international tiling date but later than the priority date claimed \\
-T• Later document published ather the international filing date or prority date and not in conflict with the application bu cited to understand the principte or theory undertying the invention \\
- \(x\) ' document of particular relevance: the claimed invention cannot be considered novel or cannol be considered to involve an inventive step when the document is taken abne \\
' \(Y\) ' document of particular relevance: the claimed invention cannol be considered to involve an inventive step when the document is combined with one or more other such documents. such combination being obvious io a person skilled in the art. \\
- " 8 " document member of the same patent tamity
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{|c|c|}
\hline Date of the actual completion of the inlernallonal search & Date of mailing of the inlemationat search repor \\
19 March 2002 & \(-28 / 03 / 2002\) \\
\hline
\end{tabular}} \\
\hline Name and & \begin{tabular}{l}
aiting address of the ISA \\
European Palent Ortice. P.B. 5818 Patentlaan 2 \\
NL - 2280 HV Riiswijk \\
Tel. \((+31-70) 340-2040\). Tx. 31651 epo ni. \\
Fax: (+31-70) 340-3016
\end{tabular} & \begin{tabular}{l}
Authorized \\
Bru
\end{tabular} & \\
\hline
\end{tabular}

INTERNATIONAL SEARCH REPORT

Form PCT/ISA2210 (continuation of second sheet) (duly 1992)

Continuation of Box I. 2
Claims Nos.: 1-9

Present claims l-9 relate to compounds defined by reference to a desirable characteristic or property, namely "..a PDE5 inhibitor having an IC50 for the inhibition of PDE5 less than 10 nM , and sufficient bioavailability to be effective in about 1 to about 10 mg unit oral dosages..".

The claims cover all compounds having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such compounds. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compounds by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to the compounds as disclosed in claims 10, 12 and 13 of the present application.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Patent documen cited in search report & & Publication & & Patent family member(s) & Publication date \\
\hline WO 9428902 & A & 22-12-1994 & \begin{tabular}{l}
AT \\
AU \\
AU \\
CA \\
CN \\
CZ \\
DE \\
DE \\
DK \\
WO \\
EP \\
ES \\
FI \\
GR \\
IL \\
\({ }_{\mathrm{JP}}^{\mathrm{IL}}\) \\
JP \\
JP \\
JP \\
KR \\
LV \\
LV \\
NO
NO \\
NO \\
NZ \\
PL \\
RU
\end{tabular} & & \[
\begin{aligned}
& 15-03-1998 \\
& 13-03-1997 \\
& 03-01-1995 \\
& 22-12-194 \\
& 19-06-1996 \\
& 17-07-1996 \\
& 16-04-1998 \\
& 02-07-1998 \\
& 06-04-1998 \\
& 22-12-1994 \\
& 27-03-1996 \\
& 01-05-199 \\
& 08-12-1995 \\
& 31-07-1998 \\
& 27-12-1988 \\
& 27-12-1998 \\
& 19-10-1999 \\
& 28-09-1999 \\
& 26-07-1999 \\
& 22-04-1997 \\
& 01-09-2000 \\
& 20-05-1999 \\
& 20-08-1999 \\
& 24-11-1995 \\
& 24-11-1995 \\
& 24-11-1995 \\
& 24-03-1997 \\
& 18-03-1996 \\
& 27-05-1999 \\
& 08-12-1995
\end{aligned}
\] \\
\hline US 6001847 & A & 14-12-1999 & \(A T\)
\(A U\)
\(A U\)
\(B R\)
\(D E\)
\(E P\)
\(J P\)
\(U S\)
\(C A\)
\(C N\)
\(W O\)
\(U S\) & \[
\begin{gathered}
211139 \mathrm{~T} \\
702548 \mathrm{~B} 2 \\
661896 \mathrm{~A} \\
9609503 \mathrm{~A} \\
69618231 \mathrm{D} 1 \\
085978 \mathrm{~A} 2 \\
11509517 \mathrm{~T} \\
614357 \mathrm{~A} \\
2226759 \mathrm{~A} 1 \\
1195350 \mathrm{~A} \\
963203 \mathrm{~A} 2 \\
6218400 \mathrm{~B} 1
\end{gathered}
\] & \[
\begin{aligned}
& 15-01-2002 \\
& 25-02-1999 \\
& 30-10-1996 \\
& 08-03-2000 \\
& 31-01-2002 \\
& 26-08-1998 \\
& 24-08-1999 \\
& 07-11-200 \\
& 17-10-1996 \\
& 07-10-1998 \\
& 17-10-1996 \\
& 17-04-2001
\end{aligned}
\] \\
\hline WO 9703675 & A & 06-02-1997 & \begin{tabular}{l}
\(A U\) \\
AU \\
BR \\
CA \\
CN \\
CZ \\
WO \\
EP \\
HU \\
JP \\
NO \\
PL \\
SK
\end{tabular} & \[
\begin{array}{r}
704955 \mathrm{~B} 2 \\
6419196 \mathrm{~A} \\
9609758 \mathrm{~A} \\
226784 \mathrm{~A} 1 \\
1195290 \mathrm{~A} \\
980033 \mathrm{~A} 3 \\
9703675 \mathrm{A1} \\
0839040 \mathrm{~A} 1 \\
990065 \mathrm{~A} 2 \\
11509221 \mathrm{~T} \\
980153 \mathrm{~A} \\
324495 \mathrm{Al} \\
3998 \mathrm{~A} 3 \\
6140329 \mathrm{~A}
\end{array}
\] & \[
\begin{aligned}
& 13-05-1999 \\
& 18-02-1997 \\
& 26-01-1999 \\
& 06-02-1997 \\
& 07-10-1998 \\
& 13-05-1998 \\
& 06-02-1997 \\
& 06-05-1998 \\
& 28-05-1999 \\
& 17-08-1999 \\
& 10-03-1998 \\
& 25-05-1998 \\
& 08-07-1998 \\
& 31-10-2000
\end{aligned}
\] \\
\hline
\end{tabular}

Form PCT/ISA/2 10 (patent tamily amex) (July 1992)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:
WILLIAM ERNEST PULLMAN ET AL.

Serial No.: 10/031,556
Filed: October 19, 2001

For: UNIT DOSAGE FORM

Attorney Docket No. 29342/36206A

Group Art Unit: 1614

Examiner: Rebecca Cook

I hereby certify that this paper is being deposited with the United States Postal Service with sufficient postage, as first class mail, in an envelope addressed to:
Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dated: July 21, 2004

\section*{RESPONSE AFTER FINAL UNDER 37 C.F.R. §1.116}

MAIL STOP AF
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

Sir:

This is a response to the Office Action of
May 21, 2004. Reconsideration and allowance of the application are respectfully requested.

\section*{STATUS OF THE CLAIMS}

Claims 11-17 and 20-24 currently are pending in the application. All other claims have been cancelled.

All pending claims stand rejected under 35 U.S.C. §103.

The following more particularly sets forth the current status of the claims:
1.-10. (Cancelled)
11. (Previously amended) The method of claim 13 wherein the sexual dysfunction is male erectile dysfunction.
12. (Previously amended) The method of claim 13 wherein the sexual dysfunction is female arousal disorder.
13. (Previously amended) A method of treating sexual dysfunction in a patient in need thereof comprising orally administering one or more unit dose containing about 1 to about 20 mg , up to a maximum total dose of 20 mg per day, of a compound having the structure

14. (Original) The method of claim 13 wherein the unit dose contains about 2 to about 20 mg of the compound.
15. (Original) The method of claim 13 wherein the unit dose contains about 5 mg of the compound.
16. (Original) The method of claim 13 wherein the unit dose contains about 10 mg of the compound and is administered once per day.
17. (Original) The method of claim 13
wherein the unit dose is in a form selected from the group consisting of a liquid, a tablet, a capsule, and a gelcap.
18.-19. (Cancelled)
20. (Previously presented) The method of claim 13 wherein the unit dose contains about 2.5 mg of the compound.
21. (Previously presented) The method of claim 20 wherein the unit dose is administered once per day.
22. (Previously presented) The method of claim 15 wherein the unit dose is administered once per day.
23. (Previously presented) The method of claim 13 wherein the compound is administered as a free drug.
24. (New) The method of claim 13 wherein the unit dose contains about 20 mg of the compound.

\section*{RESPONSE UNDER 37 C.F.R. S1. 116}

This response is submitted in accordance with 37 C.F.R. \(\$ 1.116(a)\) and \(\$ 1.116(b)\). This response was not presented earlier because applicants believed, and still believe, that the response filed on January 15 , 2004, overcame all outstanding issues. The response should be entered because it places the application in better form for allowance or appeal, and the response does not require further searching or present any new issues.

THE FINAL REJECTION IS IMPROPER AND SHOULD BE WITHDRAWN

Applicants respectfully submit that the final rejection is not proper in this case because the examiner has raised a new ground of rejection in addition to the rejection stated on Paper No. 5. The examiner states in this Office Action (FINAL) that there is no showing of similar efficacy comparing 20 mg of the compound of the instant method with the 50 mg disclosed in Daugan U.S. Patent No. 6,140,329. The examiner did not specifically raise this ground of rejection in the previous Office Action, and it is not clear that this ground of rejection is solely based on the currently outstanding rejection under 35 U.S.C. §103. Because the rejection on the above basis is new, applicants have not been given an opportunity to present the arguments to overcome and/or traverse the rejection on this ground. In view of the above, applicants submit that a new ground of rejection has been raised in this Office Action (FINAL), which was not previously stated in the

Paper No. 5. Accordingly, applicants respectfully request that the final rejection be withdrawn.

\section*{SUMMARY OF THE INVENTION}

The present invention and all pending claims are directed to a method of treating sexual dysfunction in a patient by orally administering a unit dose containing about 1 to about 20 mg of a compound (6R,12aR)\(2,3,6,7,12,12 a-h e x a h y d r o-2-m e t h y l-6-(3,4-m e t h y l e n e-\) dioxyphenyl) pyrazino[2', 1':6,1]pyrido[3,4-b]-indole-1,4-dione) (also referred to as Compound (I)) up to a maximum total dose of 20 mg per day. See, for example, page 5, lines \(10-30\) of the specification. The sexual dysfunction includes, but is not limited to, male erectile dysfunction (ED) (claim 11) and female arousal disorder (FAD) (claim 12).

\section*{ISSUE}

Whether claims 11-17 and 20-24 are patentable under 35 U.S.C. \(\$ 103\) over Daugan U.S. Patent No. 6,140,329.

\section*{ARGUMENTS}

The present invention is not obvious over Daugan et al. (U.S. Patent No. 6,140,329) under 35 U.S.C. \$103.

Briefly, U.S. Patent No. 6, 140, 329 (hereafter '329 patent) discloses a broad range of dosing relating to Compound A and B. Specifically, the ' 329 patent discloses: "in particular compounds A and B will generally be in the range of from \(0.5-800 \mathrm{mg}\) for an aver-
- 6 -
age adult patient (70 kg) . Thus for a typical adult patient, individual tablets or capsules contain from \(0.2-400 \mathrm{mg}\) of active compound." (Column 3 lines 4855.)

In this case, the ' 329 patent gives neither an indication of which parameters are critical nor a direction as to which of many possible choices is likely to be successful. See In re O'Farrell, 853 F .2 d 894 (Fed. Cir. 1988). In other words, the ' 329 patent generally discloses the broad range and nothing more.

\section*{Surprising and Unexpected Results of the Present Invention}

The present invention as a whole would not have been obvious over ' 329 patent because the present invention has surprising and unexpected results as discussed below.

An applicant may overcome the rejection under \(\$ 103\) by establishing "that the claimed range is crit-. ical" generally by showing that the claimed range achieves results relative to the prior art range. In re Geisler, 43 U.S.P.Q.2d 1362, 1365 (Fed. Cir. July 7, 1997). The unit dose range of about 1 to about 20 mg as claimed in claim 13 is critical because this dose range exhibits the surprising and unexpected results of low adverse side effects and still being unexpectedly efficacious in treating sexual dysfunction. The present specification discloses the combined clinical studies as illustrated in Table of IIEF (page 31), which shows the efficacy of the compound at a dosing range of \(2-100 \mathrm{mg}\). It is worth noting from this table that the lower doses are found to be efficacious. The
present specification also discloses that doses at a higher level (i.e., above 20 mg), although efficacious, result in an increased level of unpleasant adverse events (see page 32, lines 15-20). The table in Example 7 at page 32 of the specification clearly shows that undesirable adverse side effects, such as headache, dyspepsia, and back pain, are dose related; and an increase in adverse side effects with an increase in unit dose (doses from 25 mg to 100 mg). Also see specification, page 30 , lines \(15-23\) and page 32.

The present specification further discloses "even though efficacy in the treatment of \(E D\) was observed at 25 mg to 100 mg unit doses, the adverse events observed from 25 mg to 100 mg dose must be considered," which indicates a dose above 20 mg (or above 25 mg) is not desirable due to an increased level of unwanted adverse side effects; in other words a higher dose above 20 mg would be less tolerable. Accordingly, the present invention teaches that a unit dose of about 1 to about 20 mg , about 2 to about 20 mg , and about 5 to about 20 mg of compound (I) is preferred.

Moreover, it has been recognized by the court that ranges which overlap or lie inside ranges disclosed by the prior art may be patentable if the applicant can show criticality in the claimed range by evidence of unexpected results. In re Wertheim, 191 U.S.P.Q. 90, 100 (CCPA 1976); and In re Geisler. As stated above, applicants showed the criticality of. the claimed range by the evidence of unexpected and surprising results provided by the claimed dose range. This was further corroborated with the Declaration by Dr. Gregory D. Sides filed January 15, 2004. Moreover,
these findings of surprising and unexpected results are commensurate in scope with the claimed range. See In re Greenfield, 197 U.S.P.Q. 227, 230 (CCPA 1978) ("Moreover, the applicant's showing of unexpected result must be commensurate in scope with the claimed range.") Additionally, patentability is imparted in this case in view of the ' 329 patent because the results achieved at the claimed range are unexpected and surprisingly good as discussed above. See In re Antonie, 559 F.2d 618, 620 (CCPA 1977).

The examiner stated in the Office Action that the first declaration of Dr. Sides is not persuasive because decreased side effects are expected at lower doses. Applicants respect.fully submit that the examiner failed to appreciate the present invention as a whole. In particular, while decreasing a dose of drug often decreases side effects, it also often decreases efficacy. In contrast, the surprising and unexpected results of the present invention include at least two factors: the claimed unit dose range of about 1 to about 20 mg provides substantially decreased adverse side effects while still retaining efficacy. The observed divergence of retained efficacy from decreased side effects in these substantially lower doses is unexpected. It is not predictable that the low dose of about 1 to about 20 mg of Compound (I) would be efficacious. More significantly, it is neither expected from nor suggested by the ' 329 disclosure that the presently claimed low dose range of about 1 to about 20 mg would be efficacious as well as reduce the adverse events to such level that a patient suffering from erectile dysfunction would be treated effectively. In
other words, the ' 329 patent does not describe or forecast that a low dosage range of about 1 to about 20 mg would have the effects of efficacy and at the same time achieve unexpectedly low adverse side effects.

Therefore, in this case, patentability is imparted because the \(\quad 329\) patent fails to suggest to one of ordinary skilled in the art that the claimed range of the present invention should be carried out and would have likelihood of success. Moreover, the ' 329 patent disclosure of the broad range of \(0.2-400 \mathrm{mg}\) (in tablets or capsules) would not have suggested to one of ordinary skill in the art at the time invention was made that the low dose range of about 1 to about 20 mg would have unexpected surprising results of not only being efficacious but also having low adverse side effects as discussed above.

The examiner also stated in the Office Action that there is no showing of similar efficacy comparing 20 mg of the compound of the instant method with the 50 mg disclosed in the ' 329 patent. Applicants respectfully submit that the examiner's rejection based on this reason cannot be maintained. As stated above, the present application discloses efficacy data ranging from 2 mg to 100 mg . The examiner has not shown any rational and/or reasonable basis as to why a 20 mg would not be efficacious when the specification clearly discloses that doses below 20 mg and above 20 mg are efficacious (see page 31). One skilled in the art would understand that a 20 mg dose would be efficacious based on the clinical data disclosed in Example 7 of the specification. It is submitted that the examiner is requesting specific data without explaining why that
showing is necessary in this instance. However, in the interest of facilitating prosecution of this application toward a favorable decision, applicants herein file the Second Declaration by Dr. Gregory D. Sides, which shows that the efficacy of a 20 mg dose of Compound (I) is comparable to that of a 50 mg unit dose of Compound (I) in treating ED.

In view of the above, it is submitted that the present claims would not have been obvious over the '329 patent disclosure. Accordingly, applicants respectfully request that the rejection on this ground be withdrawn.

Should the examiner wish to discuss the fore-. going, or any matter of form in an effort to advance this application toward allowance, the examiner is urged to telephone the undersigned at the indicated number.

Respectfully submitted,
MARSHALL, GERSTEIN \& BORUN LLP

Chicago, Illinois
July 21, 2004

\section*{PATENT--FEE}

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

Applicants:
WILLIAM ERNEST PULLMAN ET AL.
Serial No.: 10/031,556
Filed: October 19, 2001
For: UNIT DOSAGE FORM
Attorney Docket No. 29342/36206A
Group Art Unit: 1614
Examiner: Rebecca Cook
) I hereby certify that this
) paper is being deposited
) with the United States
) Postal Service with
) sufficient postage, as
) first class mail, in an
) envelope addressed to:
) Commissioner for Patents
) P.O. Box 1450
Alexandria, VA 22313-1450
)
) Dated: July 21,2004
 Attorney for Applicants

DECLARATION OF DR. GREGORY D. SIDES, M.D., F.A.C.E.P., F.A.C.P. UNDER 37 C.F.R. \$1. 132

Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450
Sir:

NOW COMES Dr. Gregory D. Sides, Declarant herein, and states as follows:
1. I presently hold the position of Medical Director, Primary Care Products, Cialis® Product Team at Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285.

Serial No.: 10/031,556
2. My previous positions were:

Director, Bioproduct Medical, Eli Lilly and Company, Indianapolis, Indiana (Jan 2002 - Jan 2003)

Director of Operations, Global Clinical Research, Eli Lilly and Company, Indianapolis, Indiana (Feb 2001 - Jan 2002)

Acting Director, Cardiovascular Medical, Eli Lilly and Company, Indianapolis, Indiana (Jul 2000 - Feb 2001)

Senior Clinical Research Physician, Cardiovascular, Medical, Eli Lilly and Company, Indianapolis, Indiana (Jan 1999 - Jul 2000)

Clinical Research Physician, Cardiovascular Division, Eli Lilly and Company, Indianapolis, Indiana (Jul 1994 - Dec 1998)

Clinical Research Physician, Infectious Diseases Division, Eli Lilly and Company, Indianapolis, Indiana (Mar 1990 - Jul 1994)

Associate Clinical Research Physician, Infectious Diseases Division, Eli Lilly and Company, Indianapolis, Indiana (Feb 1988 - Mar 1990)

Partner, Kirtley, Paschall, Sides Emergency Physicians, Inc., Danville, Indiana (Nov 1984 - Mar 1988)

Hendricks Community Hospital, Danville, Indiana (Nov 1984 - Mar 1988)

Emergency Physician, Midwest Medical Management, Inc. Indianapolis, Indiana (Jul 1983 - Nov 1984)
3. I received a degree in Medicine from the Indiana University of Medicine, Indianapolis, Indiana in 1980. I received a B.S. in Chemistry, Magna Cum Laude, from Indiana State University, Terre Haute, Indiana in 1977.

I completed an Internship and Residency in Internal Medicine at Methodist Hospital, Indianapolis, Indiana (1980-1983).

I am board certified in Internal Medicine and Emergency Medicine: Board of Certification: Diplomate, American Board of Internal Medicine, September 14, 1983 (\#092096); Diplomate: American Board of Emergency Medicine, March 17, 1989 December 31, 1999, Recertification, December 24, 1998 - December 31, 2008 (\#870725).
4. I have practiced medicine for twenty three (23) years, conducted research, published about 28 articles, 4 book chapters and 35 abstracts, and presented lectures at numerous conferences, served as a member on numerous editorial boards and scientific or medical advisory boards, and have a membership in numerous societies, such as American Association of Pharmaceutical Physicians, American College of Emergency Physicians, and American College of Physicians.
5. One of my main fields of research and interest is in the field of Internal Medicine, in particular primary care product, cardiovascular, and infectious diseases.
6. I have read and understand U.S. Patent Application Serial No. 10/031,556, and I am familiar with the May 21, 2004 Office Action (Final) in the above-identified application.
7. The invention disclosed in that application is directed to a method of treating sexual dysfunction (Claims 11-17 and 20-23), including, but not limited to, male erectile dysfunction and female sexual arousal disorder, which comprises orally administering to a patient in need thereof one or more unit dose
containing about 1 to about 20 mg of Compound (I) (also refer herein as "tadalafil"), up to a maximum total dose of 20 mg per day.

(I)
8. The present invention is based on detailed experiments and clinical trials, and the unexpected discovery of a unit dosage form incorporating about 1 to about 20 mg of Compound (I) that, when orally administered, effectively treats sexual dysfunction and substantially reduces various undesirable adverse events.
9. The new and surprisingly unexpected results achieved by the present invention are illustrated in Example 7 of the specification in the tables at pages 31 and 32 , which show that the lower doses of Compound (I) are not only efficacious but also more tolerable than higher doses (i.e., doses above 20 mg) in treating male erectile dysfunction.
10. Example 7 of the specification in the table at page 31 specifically shows efficacy of Compound (1) at doses ranging from 2 mg to 100 mg evaluated by IIEF. The Table below shows that the efficacy of Compound (I) at 20 mg dose, from an analysis of pooled data from 11 randomized, double-blind, 12-week placebo-controlled trials, is comparable with 50 mg dose (data from Example 7 of the specification).

Table: Efficacy at 20 mg dose and 50 mg dose

\({ }^{(1)}\) Data from an analysis of pooled data from 11 randomized, double-blind, 12-week placebocontrolled trials
\({ }^{(2)}\) Data from the table of Example 7 of the specification (an analysis of data pooled from three Phase 2 studies)
* Change = change from baseline in the erectile function domain of the International Index of Erectile Function (IIEF): Mean
11. The data in paragraph 10 shows that dose at 20 mg is efficacious in treating erectile dysfunction; the mean IIEF EF domain score increased by 8.6 points for 20 mg tadalafil compared to a less then 1 point in the placebo group (0.9). Similarly, the mean IIEF EF domain score increased by 9.8 compared to a less than 1 point in the placebo group (0.8) for 50 mg dose as shown above. Therefore, the efficacy of 20 mg dose is comparable to the efficacy of 50 mg dose.
12. All statements made herein of my own knowledge are true and all statements made on information and belief are believed to be true; further, these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or document or any patent resulting therefrom.

Gregory D. Sides, M.D.

Date:
 2004

\section*{CBEST AVAIIABLE COPY}

\section*{RESPONSE AFTER FINAL UNDER 37 C.F.R. \(\$ 1.116\)}

MAIL STOP AF
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

Sir:

This is a response to the Office Action of
May 21, 2004. Reconsideration and allowance of the application are respectfully requested.

Please find below and/or attached an Office communication concerning this application or proceeding.

Continuation of 5. does NOT place the application in condition for allowance because: Applicants' argument that final rejection should be withdrawn is not persuasive, since the statement regarding comparing the efficacy of the instant 20 mg of the compound of the instant mehtod with the 50 mg disclosed in Daugan is in response to the Declaration under 37 CFR 1.132 submitted on January 15, 2004. The Declaration under 37 CFR 1.132 of July 26, 2004 is not persuasive, since no unexpected results is seen comparing the instant 20 mg with the 50 mg of Daugan when the standard deviation data are considered. Furthermore, the Declaration of July 25, 2004 does not include SD data or the \(P\) value.
- \(\cdot\)
\[
E=r \cdot w
\]

E-
0

\(\sigma 0\)

\[
0 \square 0
\]
\(\phi_{4}\)
\[
\begin{gathered}
9 \\
\vdots \\
\vdots \\
\hdashline
\end{gathered}
\]
1
0
0
 CS

\section*{NOTICE OF ALLOWANCE AND FEE(S) DUE}

\author{
\(04743 \quad 7590\) 11/17/2004 \\ MARSHALL, GERSTEIN \& BORUN LLP \\ 6300 SEARS TOWER \\ 233 S. WACKER DRIVE \\ CHICAGO, IL 60606
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ EXAMINER } \\
\hline COOK, REBECCA \\
\hline ART UNIT & PAPER NUMBER \\
\hline 1614 & \\
\hline
\end{tabular}

DATE MAILED: 1I/17/2004
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(10 / 031,556\) & \(10 / 19 / 2001\) & William Emest Pullman & \(29342 / 36206 \mathrm{~A}\) & 6526
\end{tabular}

TITLE OF INVENTION: COMPOSITIONS COMPRISING PHOSPHODIESTERASE INHABITORS FOR THE TREATMENT OF SEXUAL DISFUNCTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE & PUBLICATION FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & NO & \(\$ 1370\) & \(\$ 0\) & \(\$ 1370\) & \(02 / 17 / 2005\)
\end{tabular}

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE REFLECTS A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE APPLIED IN THIS APPLICATION. THE PTOL-85B (OR AN EQUIVALENT) MUST BE RETURNED WITHIN THIS PERIOD EVEN IF NO FEE IS DUE OR THE APPLICATION WILL BE REGARDED AS ABANDONED.

\section*{HOW TO REPLY TO THIS NOTICE:}
I. Review the SMALL ENTITY status shown above

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box \(5 b\) on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5 a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and \(1 / 2\) the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL should be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). Even if the fee(s) have already been paid, Part B - Fee(s) Transmittal should be completed and returned. If you are charging the fee(s) to your deposit account, section " 4 b " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page 1 of 3
PTOL-85 (Rev. 11/04) Approved for use through 04/30/2007.

\section*{PART B - FEE(S) TRANSMITTAL}

\section*{Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE P.O. Box 1450 \\ Alexandria, Virginia 22313-1450 \\ or Fax \\ (703) 746-4000}

INSTRUCTIONS: This form should be used for transmiting the ISSUE FEE and PUBLICATION FEE (if requircd). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{CURRENT CORRESPONDENCE ADDRESS (Note: Usc Block : for any change of address)
\(\begin{gathered}04743\end{gathered} \quad 7590\)} & \multicolumn{2}{|l|}{Note: A certificate of mailing can only be used for domestic mailings of the Fec(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{MARSHALL, GERSTEI 6300 SEARS TOWER 233 S. WACKER DRIVE CHICAGO, IL 60606}} & & \multicolumn{2}{|l|}{\begin{tabular}{l}
Certificate of Mailing or Transmission \\
1 hercby certify that this Fec(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (703) 746-4000, on the date indicated below.
\end{tabular}} \\
\hline & & & & (Depositor's name) \\
\hline & & & , & (Signature) \\
\hline & & & & (Date) \\
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \multicolumn{2}{|l|}{10/031,556 10/19/2001} & William Emest Pullman & 29342/36206A & 6526 \\
\hline
\end{tabular}

TITLE OF INVENTION: COMPOSITIONS COMPRISING PHOSPHODIESTERASE INHABITORS FOR THE TREATMENT OF SEXUAL DISFUNCTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FE & PUBLICATION FEE & TOTAL FEE(S) DUE & Date due \\
\hline nonprovisional & NO & \$1370 & \$0 & \$1370 & 02/17/2005 \\
\hline \multicolumn{2}{|c|}{EXAMINER} & ART UNI & CLASS-SUBCLASS & & \\
\hline \multicolumn{2}{|c|}{COOK, REBECCA} & 1614 & 514-250000 & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. Change of correspondence address or indication of "Fec Address" (37 CFR 1.363). \\
Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached.
"Fce Address" indication (or "Fec Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.
\end{tabular}} & \multicolumn{2}{|l|}{(2) the name of a single firm (having as a member a registered attomey or agent) and the names of up to 2 registered patent attomeys or agents. If no name is listed, no name will be printed.} & n \\
\hline \multicolumn{6}{|l|}{3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or typc)} \\
\hline \multicolumn{6}{|l|}{PLEASE NOTE: Unless an assignce is identificd below, no assignce data will appear on the patent. If an assignce is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.} \\
\hline
\end{tabular}

The Director of the USPTO is requested to apply the Issuc Fce and Publication Fce (if any) or to re-apply any previously paid issuc fce to the application identified above.
NOTE: The Issue Fce and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attomey or agent; or the assignee or other party in NOTE: The Issuc Fce and Publication Fee (if required) wili not be accepted from any
interest as shown by the records of the United States Patent and Trademark Office.

Authorized Signature \(\qquad\) Datc \(\qquad\)
Typed or printed name \(\qquad\) Registration No \(\qquad\)
This collection of information is required by 37 CFR 1.311 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collcction is cstimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete his form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O Box 1450, Alexandra, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alcxandria, Virginia 22313-1450.
Under the Paperwork Reduction Aet of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

United States Patent and Trademark Office
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline 10/031,556 & 10/19/2001 & William Emest Pullman & 29342/36206A & 6526 \\
\hline 04743 & \multicolumn{2}{|l|}{11/17/2004} & \multicolumn{2}{|c|}{EXAMINER} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MARSHALL, GERSTEIN \& BORUN LLP 6300 SEARS TOWER}} & & \multicolumn{2}{|c|}{COOK, REBECCA} \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{233 S. WACKER DRIVE} & & ART UNIT & PAPER NUMBER \\
\hline \multicolumn{2}{|l|}{CHICAGO, IL 60606} & & 1614 & \\
\hline
\end{tabular}

Determination of Patent Term Extension under 35 U.S.C. 154 (b)
(application filed after June 7, 1995 but prior to May 29, 2000)
The Patent Term Extension is 0 day(s). Any patent to issue from the above-identified application will include an indication of the 0 day extension on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Extension is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (703) 305-1383. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at (703) 305-8283.

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.
1. \(\boxtimes\) This communication is responsive to interview of November 10, 2004.
2. \(\boxtimes\) The allowed claim(s) is/are 13, 11-12, 14-17, 20-24, now 1-12.
3.The drawings filed on \(\qquad\) are accepted by the Examiner.
4. \(\square\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) \(\square\)

b) \(\square\) Some \(^{*}\)None of the:
1. Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \(\qquad\) _.
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: \(\qquad\) —.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
5. \(\square\) A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
6. \(\square\) CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
(a) \(\square\) including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached
1) \(\square\) hereto or 2)to Paper No./Mail Date \(\qquad\) _.
(b) \(\square\) including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \(\qquad\) _.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to \(\mathbf{3 7}\) CFR 1.121 (d).
7.DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

\section*{Attachment(s)}
1. Notice of References Cited (PTO-892)
2. Notice of Draftperson's Patent Drawing Review (PTO-948)Information Disclosure Statements (PTO-1449 or PTO/SB/08), Paper No./Mail Date
4. \(\square\) Examiner's Comment \(\overline{\text { Regarding Requirement for Deposit }}\)

OLFC:123 900.00 m
5.Notice of Informal Patent Application (PTO-152)
6. \(\triangle\) Interview Summary (PTO-413), Paper No./Mail Date 11/10/04.
7.Examiner's Amendment/Comment
8. Examiner's Statement of Reasons for Allowance 9.Other \(\qquad\) _.

Application/Control Number: 10/031,556
Page 2
Art Unit: 1614

\section*{REASONS FOR ALLOWANCE}

The following is an examiner's statement of reasons for allowance:
No statistical difference seen in the change from the baseline for the placebo at 20 mg of tadalafil and 50 mg of tadalafil, which is respectively .9 vs .8 . No statistical difference seen in the change in efficacy between 20 mg and 50 mg , which is 8.6 vs . 9.8 , respectively. However, the adverse side effects at 20 mg are dramatically reduced when compared to 50 mg . This data has been set forth in the showings submitted on July 26, 2004 and January 15, 2004. This demonstrates unexpected results of the 20 mg dose of tadalafil over the 50 mg dose.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

\section*{Extension of Time}

The Director may charge Deposit Account No. 13-2855 for any fees for extension of time that might be required. Any extension of time under 37 CFR 1.136(a) that may be required has been authorized by Mr. Napoli.

\section*{Conclusion}

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Examiner Cook whose telephone number is (571) 2720571 . The examiner can normally be reached on Monday through Thursday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Christopher Low, can be reached on (571) 272-0951.

Art Unit: 1614

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to Renee Jones (571) 272-0547 in Customer Service.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR.
Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

The official fax number is 703-872-9806
Rebecca Cook

Primary Examiner Art Unit 1614
November 10, 2004
\begin{tabular}{|c|l|l|l|}
\hline \multirow{3}{*}{ Interview Summary } & \multicolumn{2}{|l|}{\begin{tabular}{l}
Application No. \\
\(10 / 031,556\)
\end{tabular}} & \multicolumn{2}{|l|}{ Applicant(s) } \\
PULLMAN ET AL. \\
\cline { 2 - 4 } & Examiner & Art Unit & 1614
\end{tabular}

All participants (applicant, applicant's representative, PTO personnel):

\section*{(1) Rebecca Cook. \\ (2) James Napoli.}

Date of Interview: 10 November 2004.
Type: a) \(\square\) Telephonic b) \(\square\) Video Conference
c) \(\boxtimes\) Personal [copy given to: 1) \(\square\) applicant 2) \(\boxtimes\) applicant's representative]

Exhibit shown or demonstration conducted: d) \(\square\) Yes e) \(\boxtimes\) No.
If Yes, brief description: \(\qquad\) —.

Claims) discussed: claims pending.
Identification of prior art discussed: art of record.
Agreement with respect to the claims f\() \boxtimes\) was reached. g) \(\square\)was not reached. h)NA.

Substance of Interview including description of the general nature of what was agreed to if an agreement was reached, or any other comments: see attached page.
(A fuller description, if necessary, and a copy of the amendments which the examiner agreed would render the claims allowable, if available, must be attached. Also, where no copy of the amendments that would render the claims allowable is available, a summary thereof must be attached.)

THE FORMAL WRITTEN REPLY TO THE LAST OFFICE ACTION MUST INCLUDE THE SUBSTANCE OF THE INTERVIEW. (See MPEP Section 713.04). If a reply to the last Office action has already been filed, APPLICANT IS GIVEN ONE MONTH FROM THIS INTERVIEW DATE, OR THE MAILING DATE OF THIS INTERVIEW SUMMARY FORM, WHICHEVER IS LATER, TO FILE A STATEMENT OF THE SUBSTANCE OF THE INTERVIEW. See Summary of Record of Interview requirements on reverse side or on attached sheet.

Examiner Note: You must sign this form unless it is an Attachment to a signed Office action.

Examiner's signature, if required

\section*{Summary of Record of Interview Requirements}

\section*{Manual of Patent Examining Procedure (MPEP), Section 713.04, Substance of Interview Must be Made of Record}

A complete written statement as to the substance of any face-to-face, video conference, or telephone interview with regard to an application must be made of record in the application whether or not an agreement with the examiner was reached at the interview.

Title 37 Code of Federal Regulations (CFR) § 1.133 Interviews
Paragraph (b)
In every instance where reconsideration is requested in view of an interview with an examiner, a complete written statement of the reasons presented at the interview as warranting favorable action must be filed by the applicant. An interview does not remove the necessity for reply to Office action as specified in \(\S \S 1.111,1.135\). (\(35 \mathrm{U} . \mathrm{S} . \mathrm{C}\). 132)

37CFR §1.2 Business to be transacted in writing.
All business with the Patent or Trademark Office should be transacted in writing. The personal attendance of applicants or their attorneys or agents at the Patent and Trademark Office is unnecessary. The action of the Patent and Trademark Office will be based exclusively on the written record in the Office. No attention will be paid to any alleged oral promise, stipulation, or understanding in relation to which there is disagreement or doubt.

The action of the Patent and Trademark Office cannot be based exclusively on the written record in the Office if that record is itself incomplete through the failure to record the substance of interviews.

It is the responsibility of the applicant or the attorney or agent to make the substance of an interview of record in the application file, unless the examiner indicates he or she will do so. It is the examiner's responsibility to see that such a record is made and to correct material inaccuracies which bear directly on the question of patentability.

Examiners must complete an Interview Summary Form for each interview held where a matter of substance has been discussed during the interview by checking the appropriate boxes and filling in the blanks. Discussions regarding only procedural matters, directed solely to restriction requirements for which interview recordation is otherwise provided for in Section 812.01 of the Manual of Patent Examining Procedure, or pointing out typographical errors or unreadable script in Office actions or the like, are excluded from the interview recordation procedures below. Where the substance of an interview is completely recorded in an Examiners Amendment, no separate Interview Summary Record is required.

The Interview Summary Form shall be given an appropriate Paper No., placed in the right hand portion of the file, and listed on the "Contents" section of the file wrapper. In a personal interview, a duplicate of the Form is given to the applicant (or attorney or agent) at the conclusion of the interview. In the case of a telephone or video-conference interview, the copy is mailed to the applicant's correspondence address either with or prior to the next official communication. If additional correspondence from the examiner is not likely before an allowance or if other circumstances dictate, the Form should be mailed promptly after the interview rather than with the next official communication.

The Form provides for recordation of the following information:
- Application Number (Series Code and Serial Number)
- Name of applicant
- Name of examiner
- Date of interview
- Type of interview (telephonic, video-conference, or personal)
- Name of participant(s) (applicant, attorney or agent, examiner, other PTO personnel, etc.)
- An indication whether or not an exhibit was shown or a demonstration conducted
- An identification of the specific prior art discussed
- An indication whether an agreement was reached and if so, a description of the general nature of the agreement (may be by attachment of a copy of amendments or claims agreed as being allowable). Note: Agreement as to allowability is tentative and does not restrict further action by the examiner to the contrary.
- The signature of the examiner who conducted the interview (if Form is not an attachment to a signed Office action)

It is desirable that the examiner orally remind the applicant of his or her obligation to record the substance of the interview of each case. It should be noted, however, that the Interview Summary Form will not normally be considered a complete and proper recordation of the interview unless it includes, or is supplemented by the applicant or the examiner to include, all of the applicable items required below concerning the substance of the interview.

A complete and proper recordation of the substance of any interview should include at least the following applicable items:
1) A brief description of the nature of any exhibit shown or any demonstration conducted,
2) an identification of the claims discussed,
3) an identification of the specific prior art discussed,
4) an identification of the principal proposed amendments of a substantive nature discussed, unless these are already described on the Interview Summary Form completed by the Examiner,
5) a brief identification of the general thrust of the principal arguments presented to the examiner,
(The identification of arguments need not be lengthy or elaborate. A verbatim or highly detailed description of the arguments is not required. The identification of the arguments is sufficient if the general nature or thrust of the principal arguments made to the examiner can be understood in the context of the application file. Of course, the applicant may desire to emphasize and fully describe those arguments which he or she feels were or might be persuasive to the examiner.)
6) a general indication of any other pertinent matters discussed, and
7) if appropriate, the general results or outcome of the interview unless already described in the Interview Summary Form completed by the examiner.

Examiners are expected to carefully review the applicant's record of the substance of an interview. If the record is not complete and accurate, the examiner will give the applicant an extendable one month time period to correct the record.

\section*{Examiner to Check for Accuracy}

If the claims are allowable for other reasons of record, the examiner should send a letter setting forth the examiner's version of the statement attributed to him or her. If the record is complete and accurate, the examiner should place the indication, "Interview Record OK" on the paper recording the substance of the interview along with the date and the examiner's initials.

Ms Jang reviewed the results of the two showings. The change from the baseline for the placebo at both 20 mg of tadalafil and 50 mg of tadalafil is respectively .9 vs . 8 , which is virtually the same. The change from baseline for tadalafil at 20 mg compared to the change for 50 mg of tadalafil is 8.6 vs .9 .8 . There is no statistically difference seen in the change in efficacy between 20 mg and 50 mg . Furthermore, the adverse side effects at 20 mg are dramatically reduced when compared to 50 mg . This demonstrates unexpected results of the 20 mg dose of tadalafil over the 50 mg dose.

Mr. Napoli authorized the Office to charge deposit account 13-2855 for any fees for extension of time that might be required.
\begin{tabular}{|c|c|c|c|}
\hline Issue Classification & Application No.
10/031,556 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant(s) \\
PULLMAN ET AL.
\end{tabular}} \\
\hline & \begin{tabular}{l}
Examiner \\
Rebecca Cook
\end{tabular} & Art Unit
\[
1614
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ISSUE CLASSIFICATION} \\
\hline \multicolumn{4}{|c|}{ORIGINAL} & & \multicolumn{3}{|l|}{CROSS REFERENCE(S)} & \% \\
\hline & CLASS & & SUBCLASS & CLASS & \multicolumn{4}{|c|}{SUBCLASS (ONE SUBCLASS PER BLOCK)} \\
\hline & 514 & & 250 & & & & & \% \\
\hline \multicolumn{4}{|r|}{International classification} & & & & & \\
\hline & 611 & & 311495 & & & & & \\
\hline A & L 1 & \(K\) & 31150 & & & & & \\
\hline & & & 1 & & NuT & \(\square\) & & \\
\hline & & & 1 & & & & & \\
\hline & & & 1 & & & & & \\
\hline \multicolumn{5}{|c|}{(Assistant Examiner) (Date)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{}} & \multicolumn{2}{|l|}{Total Claims Allowed:} \\
\hline & \[
\int_{\text {Legal }}
\] & & ents Examiner) & \begin{tabular}{l}
15104 \\
ate)
\end{tabular} & & & & O.G. Print Fig. 0 \\
\hline
\end{tabular}

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

\section*{INTERVIEW SUMMARY}

Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450
Sir:

The courteous interview granted to applicants' undersigned attorney and Soonhee Jang by Examiner Cook on November 10, 2004 is hereby acknowledged with appreciation. During the interview, the Advisory Action and the January 15 and July 25, 2004 Declarations of Dr. Gregory D. Sides were discussed.

An agreement was reached and Examiner Cook stated that a Notice of Allowance would be issued.
\(-*\)

> Respectfully submitted,
> MARSHALI, GERSTEIN \& BORUN ILP

Chicago, Illinois
November 22, 2004

INSTRUCTIONF. This form should be uscd for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where titrapiataisi further correspondence including the Patent, advance orders and notification of maintenance fecs will be mailed to the current correspondence address as infequapless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenanec fee notifications.
CURRENT CORRESPONDENCE ADDRESS (Note: Use Block ! for any change of address) Note: A certificate of mailing can only be used for domestic mailings of the
\[
\begin{array}{lll}
04743 & 7590 & 11 / 17 / 2004
\end{array}
\]

MARSHALL, GERSTEIN \& BORUN LLP
6300 SEARS TOWER
233 S. WACKER DRIVE

Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

\section*{Certificate of Mailing or Transmission}

I hercby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (703) 746-4000, on the date indicated below.
James J.Napoli (Depositor's name)
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(10 / 031,556\) & \(10 / 19 / 2001\) & William Emest Pullman & \(29342 / 36206 \mathrm{~A}\) \\
\hline
\end{tabular}

TITLE OF INVENTION: COMPOSITIONS COMPRISING PHOSPHODIESTERASE INHABITORS FOR THE TREATMENT OF SEXUAL DISFUNCTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE & PUBLICATION FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & NO & \$1370 & \$0 & \$1370 & 02/17/2005 \\
\hline \multicolumn{2}{|c|}{EXAMINER} & ART UNIT & CLASS-SUBCLASS & & \\
\hline \multicolumn{2}{|c|}{COOK, REBECCA} & 1614 & 514-250000 & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \\
\(\square\) Change of correspondence address (or Change of Correspondence Address form \(\mathrm{PTO} / \mathrm{SB} / 122\)) attached.
"Fce Address" indication (or "Fce Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
2. For printing on the patent front page, list \\
(1) the names of up to 3 registered patent attomeys or agents OR, alternatively, \\
(2) the name of a single firm (having as a member a
\end{tabular}} \\
\hline
\end{tabular}
3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or typc)

PLEASE NOTE: Unless an assignce is identificd below, no assignce data will appear on the patent. If an assignec is identificd below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

LILLY ICOS LLC.
Wilmington, Delaware
Please check the appropriate assignec category or categorics (will not be printed on the patent): \(\quad \square_{\text {Individual }} \forall_{\text {Corporation or other private group entity }} \square_{\text {Govemment }}\) 4a. The following fec(s) are enclosed

4b. Payment of Fec(s):
X Issue Fce
Publication Fce (No small entity discount permitted)
相 Advance Order - \# of Copies \(\qquad\)
A check in the amount of the fee(s) is enclosed.
\(\square\) Payment by credit card. Form PTO-2038 is attached.
The Director is hercby atthorizod jocharge the required fee(s), or credit any overpayment, to Deposit Account Number 1
5. Change in Entity Status (from status indicated above)

The Director of the USPTO is requested to apply the Issue Fee and Publication Fee (if any) or to re-apply any previously paid issuc fec to the application identificd above. NOTE The Issuc Fec and Publication Fece (ifrequired) will not be accepted from anyone other than the applicant; a registered attomey or agent; or the assignee or other party in interest as shown by the records of the United Statesfatent and Trademark Office.
Ambions spume Sawe To pe
Typed or printed namc James J. Napoli

Date Decemhe 6,2004
Registration No. 32,361
This collection of information is required by 37 CFR 1.311. The information is requircd to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completcd application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chicf Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O.
Box 150, Alexandra, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alcxandria, Virginia \(22313-1450\).
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

\section*{PRINTER RUSH \\ (PTO ASSISTANCE)}

\begin{tabular}{|l|l|l|}
\hline DOC CODE & DOC DATE & \multicolumn{1}{|c|}{ MISCELLANEOUS } \\
\(\square\) (1449 & \(5-24-04\) & \(\square\) Continuing Data \\
\(\square\) IDS & - & \(\square\) Foreign Priority \\
\(\square\) LM & - & \(\square\) Document Legibility \\
\(\square\) IIFW & - & \(\square\) Fees \\
\(\square\) SRFW & - & \(\square\) Other \\
\(\square\) DRW & - & \\
\(\square\) OATH & - \\
\(\square\) 312 & - \\
\(\square\) SPEC & \\
\hline
\end{tabular}

[XRUSH] RESPONSE: \(\qquad\)
\(\qquad\)

INITIALS:
NOTE: This form will be included as part of the official USPTO record, with the Response document coded as XRUSH.
REV 10/04

Please find below and/or attached an Office communication concerning this application or proceeding.

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.
1.This communication is responsive to \(\qquad\) .
2.The allowed claim(s) is/are \(\qquad\) -.
3.The drawings filed on \(\qquad\) are accepted by the Examiner.
4.Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) \(\square\) All b) \(\square\) Some* c)None of the:
1.Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \(\qquad\) .Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: \(\qquad\) _.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
5.A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
6.
\(\square\) CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
(a)including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached 1) \(\square\) hereto or 2)to Paper No./Mail Date \(\qquad\) _.
(b)including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \(\qquad\) .
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121 (d).
7.

DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

\section*{Attachment(s)} Notice of Draftperson's Patent Drawing Review (PTO-948)
3. \(\boxtimes\) Information Disclosure Statements (PTO-1449 or PTO/SB/08), Paper No./Mail Date 5/24/04Examiner's Comment Regarding Requirement for Deposit of Biological Material
5. Notice of Informal Patent Application (PTO-152)
6.Interview Summary (PTO-413),Paper No./Mail Date Examiner's Amendment/Comment
8.Examiner's Statement of Reasons for Allowance
9.Other

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{U.S. PATENT DOCUMENTS} \\
\hline Examiner Initials* & Cite No. & Document Number & Publication Date MM-DD-MY & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{FOREIGN PATENT DOCUMENTS} \\
\hline Examiner Initials* & \[
\begin{aligned}
& \text { Cite } \\
& \text { No. }
\end{aligned}
\] & Foreign Patent Document & & Publication Date MM-DD-MY & - \(\cdot\) \\
\hline 10 & & WO 9959584 & 11/25/1999 & & \\
\hline \(\dot{\sim}\) & & WO 0053148 & 09/14/2000 & & \\
\hline 0 & & WO 0066114 & 11/09/2000 & & \\
\hline 4 & & WO 0180860 & 11/01/2001 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{OTHER PRIOR ART - NONPATENT LITERATURE DOCUMENTS} \\
\hline Examiner & cine
No. & Include name of the author (in CAPITAL LETTERS), titte of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s). publisher, city and/or country where published. \\
\hline & & \\
\hline & 1 & . \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & - \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
Examiner \\
Signature
\end{tabular} & \(7101 / 2\) & \begin{tabular}{l}
Date \\
Considered
\end{tabular} & \(2 / 3 / 05\) \\
\hline
\end{tabular}
-EXAMINER: Initial it reference considered, whether or not citation is th conformance with MPEP 609. Draw line through chation if not in conformance and not considered. Include copy of this form with next communication to applicant.

\section*{PRINTER RUSH \\ (PTO ASSISTANCE)}

NOTE: This form will be included as part of the official USPTO record, with the Response document coded as XRUSH.
REV 10/04

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
```

Application of:
WILLIAM E. PULLMAN ET AL.
Patent No. 6,943,166
Issued: September 13, 2005
Serial No. 10/031,556
Filed: October 19, 2001
For: COMPOSITIONS COMPRISING
PHOSPHODIESTERASE INHIBITORS FOR
the treatment of Sexual ,
DYSFONCTION
Attorney Docket No. 29342/36206A
I hereby certify that this
paper is being deposited
with the United States
Postal Service with suffi-
cient postage, as first
class mail, in an envelope
addressed to:
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450.
Dated: May 16, 2006
Tanes 8<br>al
James J. Napoli
Registration No. 32,361
Attorney for Applicants
REQUEST FOR CERTIFICATE OF CORRECTION UNDER RULES 322 (a) \& 323
Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450
Sir:
Patentees respectfully request a Certificate of Correction to be issued for the above-identified U.S. Patent correcting the patent as noted in the attached "Certificate of Correction" form PTO 1050. Duplicate copies of the form are attached hereto.
Errors in the patent can be verified by reference to the application as follows:

```

> Certifing. MAY of Correction

MAY 2 A 2908
\begin{tabular}{|c|c|c|c|c|}
\hline Appln. Page \# & Appln. Line \# & Column \# & Line \# & Error by \\
\hline Notice of Allowance & - & First Page & 54 & PTO \\
\hline Notice of Allowance & & 1 & 1-4 & PTO \\
\hline 2 & 2 & 1 & 35 & PTO \\
\hline 2 & 2,3 & 1 & 35 & PTO \\
\hline 2 & 6 & 1 & 38 & PTO \\
\hline 2 & 20 & 1 & 51 & PTO \\
\hline 2 & last line & 1 & 62 & applicants \\
\hline 3 & 22 & 2 & 14 & PTO \\
\hline 4 & 15 & 2 & 36 & PTO \\
\hline 4 & 24 & 2 & 44 & PTO \\
\hline 7 & 1 & 3 & 45 & PTO \\
\hline 9 & 14 & 4 & 45 & PTO \\
\hline 11 & 30 & 5 & 53-54 & PTO \\
\hline 12 & 29-30 & 6 & 15 & PTO \\
\hline 12 & 32 & 6 & 17 & PTO \\
\hline 12 & 34 & 6 & 19 & PTO \\
\hline 13 & 24 & 6 & 41 & PTO \\
\hline 14 & 6 & 6 & 53 & PTO \\
\hline 14 & 14 & 6 & 61 & PTO \\
\hline 17 & 10-11 & 8 & 7 & PTO \\
\hline 18 & 26 & 8 & 48 & PTO \\
\hline 21 & 2 & 9 & 43-44 & PTO \\
\hline 26 & 26 & 12 & 11 & PTO \\
\hline
\end{tabular}

Our check in the amount of \(\$ 100.00\) to correct the error (s) by patentee(s) is submitted herewith.

Respectfully submitted,
MARSHALL, GERSTEIN \& BORUN LLP

(Registration No. 32,361)
Attorneys for Applicants 6300 Sears Tower
233 South Wacker Drive
Chicago, Illinois 60606
(312) 474-6300

Chicago, Illinois
May 16, 2006

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}
\begin{tabular}{lll}
PATENT NO. & \(:\) & \(6,943,166\) \\
DATED & \(:\) & \(09 / 13 / 2005\) \\
INVENTOR(S) & \(:\) & PULLMAN ET AL.
\end{tabular}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
```

First page, line 54, in the title, "INHABITORS"

```
should be --INHIBITORS-- and "DISFUNCTION" should be
- -DYSFUNCTION - -
Column 1, lines 1-4, in the title, "INHABITORS"
should be --INHIBITORS-- and "DISFUNCTION" should be
--DYSFUNCTION--
Column 1, line 35, "CGMP" should be -- CGMP --
Column 1, line 35, delete "lyzing"
Column 1, line 38, "PDES" should be -- PDE5 --
Column 1, line 51, "3 rM" should be -- 3 nM --
Column 1 line 62, "vison" should be -- vision --
Column 2, line 14, "PDES" should be -- PDE5 --

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}
\begin{tabular}{lll}
PATENT NO. & \(:\) & \(6,943,166\) \\
DATED & \(:\) & \(09 / 13 / 2005\) \\
INVENTOR(S) & \(:\) & PULLMAN ET AL.
\end{tabular}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
```

Column 2, line 36, delete "in" between "the" and "product"
Column 2, line 44, "for-sexual" should be -- for sexual --
Column 3, line 45, "in vitro" should be italicized
Column 4, line 45, "Iarts." should be -- arts. --
Column 5, lines 53-54, "VIAGRA" should be -- VIAGRA" --
Column 6, line 15, "2xSC-leu" should be -- 2X SC-leu --
Column 6, line 17, "2xYEP/" should be -- 2X YEP/ --
Column 6, line 19, "-700C." should be -- -70o}\textrm{C}. -
Column 6, line 41, "ZnSO,)." should be -- ZnSO4). --
Column 6, line 53, "[32p]cGMP to [32p]5'GMP" should be
-- [\mp@subsup{}{}{32}P] CGMP to [\mp@subsup{}{}{32}P]5'GMP --

```

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}
\begin{tabular}{lll}
PATENT NO. & \(:\) & \(6,943,166\) \\
DATED & \(:\) & \(09 / 13 / 2005\) \\
INVENTOR(S) & \(:\) & PULLMAN ET AL.
\end{tabular}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
```

Column 6, line 61, "MgCl," should be -- MgCl2, --
Column 8, line 7, "polyvinylpurrolidine" should be
-- polyvinylpyrrolidine --
Column 8, line 48, "ICS,," should be -- IC50, --
Column 9, lines 43-44, "scintillatio n" should be
-- scintillation --
Column 12, line 11, "PDES" should be -- PDE5 --

```

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}
\begin{tabular}{lll}
PATENT NO. & \(:\) & \(6,943,166\) \\
DATED & \(:\) & \(09 / 13 / 2005\) \\
INVENTOR(S) & \(:\) & PULLMAN ET AL.
\end{tabular}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
```

First page, line 54, in the title, "INHABITORS"

```
should be --INHIBITORS-- and "DISFUNCTION" should be
- -DYSFUNCTION--
Column 1, lines 1-4, in the title, "INHABITORS"
should be --INHIBITORS-- and "DISFUNCTION" should be
--DYSFUNCTION--
Column 1, line 35, "CGMP" should be -- cGMP --
Column 1, line 35, delete \(" l y z i n g "\)
Column 1, line 38, "PDES" should be -- PDE5 --
Column 1, line 51, "3 rM" should be -- 3 nM --
Column 1 line 62, "vison" should be -- vision --
Column 2, line 14, "PDES" should be -- PDE5 --

MAILING ADDRESS OF SENDER:
James J. Napoli, Ph.D.
MARSHALL, GERSTEIN \& BORUN LLP
233 S. Wacker Drive, Suite 6300
Sears Tower
Chicago, Illinois 60606-6357

PATENT NO.: 6,943,166
No. of additional copies: 1
-

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}
\begin{tabular}{lll}
PATENT NO. & \(:\) & \(6,943,166\) \\
DATED & \(:\) & \(09 / 13 / 2005\) \\
INVENTOR(S) & \(:\) & PULLMAN ET AL.
\end{tabular}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
```

Column 2, line 36, delete "in" between "the" and "product"
Column 2, line 44, "for-sexual" should be -- for sexual --
Column 3, line 45, "in vitro" should be italicized
Column 4, line 45, "Iarts." should be -- arts. --
Column 5, lines 53-54, "VIAGRA" should be -- VIAGRA ' --
Column 6, line 15, "2xSC-leu" should be -- 2X SC-leu --
Column 6, line 17, "2xYEP/" should be -- 2X YEP/ --
Column 6, line 19, "-700C." should be -- -700}\textrm{C}. --
Column 6, line 41, "ZnSO,)." should be -- ZnSO4). --
Column 6, line 53, "['32p]cGMP to [32p]5'GMP" should be
-- [\mp@subsup{}{}{32}P] cGMP to [\mp@subsup{}{}{32}P]5'GMP --

```

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}
\begin{tabular}{lll}
PATENT NO. & \(:\) & \(6,943,166\) \\
DATED & \(:\) & \(09 / 13 / 2005\) \\
INVENTOR(S) & \(:\) & PULLMAN ET AL.
\end{tabular}

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
```

Column 6, line 61, "MgCl," should be -- MgCl2, --
Column 8, line 7, "polyvinylpurrolidine" should be
-- polyvinylpyrrolidine --
Column 8, line 48, "ICS,," should be -- IC50, --
Column 9, lines 43-44, "scintillatio n" should be
-- scintillation --
Column 12, line 11, "PDES" should be -- PDE5 --

```

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

PATENT NO. : 6,943,166 B1
Page 1 of 2 APPLICATION NO. : 10/031556
DATED : September 13, 2005
INVENTOR(S) : Pullman et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

First page, line 54, in the title, "INHABITORS" should be --INHIBITORS-- and "DISFUNCTION" should be --DYSFUNCTION--

Column 1, lines 1-4, in the title, "INHABITORS" should be --INHIBITORS-- and "DISFUNCTION" should be --DYSFUNCTION--

Column 1, line 35, "CGMP" should be -- cGMP --
Column 1, line 35, delete "lyzing"
Column 1, line 38, "PDES" should be -- PDE5 --
Column 1, line 51, " 3 rM " should be -- \(3 \mathrm{nM}-\mathrm{I}\)
Column 1 line 62, "vison" should be --vision --
Column 2, line 14, "PDES" should be -- PDE5 --
Column 2, line 36, delete "in" between "the" and "product"
Column 2, line 44, "for-sexual" should be -- for sexual --
Column 3, line 45, "in vitro" should be italicized
Column 4, line 45, "Iarts." should be -- arts. --

Column 5, lines 53-54, "VIAGRA" should be -- VIAGRA \({ }^{\circledR}\)--
Column 6, line 15, "2xSC-leu" should be -- 2X SC-leu --
Column 6, line 17, " 2 xYEP "' should be -- 2 X YEP/ --
Column 6, line 19 , "-700C." should be \(--70^{\circ} \mathrm{C}\). -
Column 6, line 41, " ZnSO ,)." should be -- \(\mathrm{ZnSO}_{4}\)). --

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION}

PATENT NO. \(: 6,943,166\) B1
Page 2 of 2 APPLICATION NO. : \(10 / 031556\)
DATED : September 13, 2005
INVENTOR(S) : Pullman et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 6, line 53, " \(\left.{ }^{32} \mathrm{p}\right]\) cGMP to [32p]5'GMP" should be -- \(\left[{ }^{32} \mathrm{P}\right]\) cGMP to [\(\left.{ }^{32} \mathrm{p}\right]\) 5'GMP --

\section*{Signed and Sealed this}

Eighth Day of August, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office

Paper 13

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE \\ BEFORE THE PATENT TRIAL AND APPEAL BOARD \\ \(\qquad\) INTELGENX CORPORATION, Petitioner,
}
v.

ICOS CORPORATION, Yatent Uwner.

Case IPR2016-00678
Patent 6,943, 166 B1

Before SHERIDAN K. SNEDDEN, SUSAN L. C. MITCHELL, and ZHENYU YANG, Administrative Patent Judges.

YANG, Administrative Patent Judge.

\section*{DECISION}

Denying Institution of Inter Partes Review 37 C.F.R. § 42.108

\section*{INTRODUCTION}

IntelGenX Corporation ("Petitioner") filed a Petition (Paper 1, "Pet.") to institute an inter partes review of claims 1-12 of U.S. Patent No. 6,943,166 B1 (Ex. 1001, "the '166 patent"). ICOS Corporation ("Patent Owner") timely filed a Preliminary Response. Paper 11 ("Prelim. Resp.").

Based on this record, we determine Petitioner has not established a reasonable likelihood that it would prevail in showing the unpatentability of at least one challenged claim. See 35 U.S.C. § 314(a). Therefore, we deny institution ol an inter partes review.

\section*{Related Proceedings}

According to the parties, there are no related matters that would affect or be affected by this proceeding. Pet. 59; Paper 8, 2.

\section*{The '166 Patent}

The '166 patent relates to a highly selective phosphodiesterase (PDE) enzyme inhibitor and its use in a pharmaceutical unit dosage form. Ex. 1001, Abstract, 1:14-16.

Type 5 cGMP-specific PDE (PDE5) is an attractive target in the treatment of sexual dysfunction. Id. at 1:34-39. Before the '166 patent invention, a pharmaceutical product, which provides a PDE5 inhibitor, was available and marketed for treating male erectile dysfunction ("ED") under the trademark VIAGRA®. Id. at 1:41-43. The active ingredient in VIAGRA® is sildenafil. Id. at 1:43-44. According to the '166 patent, however, "[w]hile sildenafil has obtained significant commercial success, it has fallen short due to its significant adverse side effects." Id. at 1:58-60.

The ' 166 patent discloses a pharmaceutical unit dosage composition comprising about 1 to about 20 mg of compound tadalafil, which has the

IPR2016-00678
Patent 6,943, 166 B1
following structure: •

Id. at 3:11-28. The ' 166 patent discloses that the pharmaceutical unit dosage is suitable for oral administration, and is useful for treating sexual dysfunction. Id. at 3:29-31.

\section*{Illustrative Claim}

Claim 1 is the sole independent claim challenged in the Petition. It reads:
1. A method of treating sexual dysfunction in a patient in need thereof comprising orally administering one or more unit dose containing about 1 to about 20 mg , up to a maximum total dose of 20 mg per day, of a compound having the structure [of formula (I)].

\section*{Asserted Grounds of Unpatentability}

Petitioner asserts the following grounds, each of which challenges the patentability of claims \(1-12\) :
\begin{tabular}{|c|c|}
\hline Basis & References \\
\hline\(\S 103\) & Daugan \(^{1}\) \\
\hline\(\S 103\) & Daugan and SNDA \(^{2}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Daugan, WO 97/03675, published Feb. 6, 1997 (Ex. 1002, "Daugan").
\({ }^{2}\) Center for Drug Evaluation and Research, Approval Package for VIAGRA®, Approval Date March 27, 1998 (Ex. 1003, "SNDA").
}

IPR2016-00678
Patent 6,943, 166 B1
In support of its patentability challenges, Petitioner relies on the Declaration of Drs. Wayne J.G. Hellstrom (Ex. 1005) and Douglas Reid Patterson (Ex. 1007).

\section*{ANALYSIS \\ Claim Construction}

In an inter partes review, the Board interprets a claim term in an unexpired patent according to its broadest reasonable construction in light of the specification of the patent in which it appears. 37 C.F.R. § 42.100(b); Cuozzo Speed Techs., LLC v. Lee, 136 S. Ct. 2131, 2144-46 (2016). Under that standard, and absent any special definitions, we assign claim terms their ordinary and customary meaning, as would be understood by one of ordinary skill in the art at the time of the invention, in the context of the entire patent disclosure. In re Translogic Tech., Inc., 504 F.3d 1249, 1257 (Fed. Cir. 2007).

Claim terms need only be construed to the extent necessary to resolve the controversy. Wellman, Inc. v. Eastman Chem. Co., 642 F.3d 1355, 1361 (Fed. Cir. 2011). On this record and for purposes of this Decision, we see no need to construe any term expressly.

\section*{Prior Art Disclosures}

\section*{Daugan}

Daugan identifies (6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylene-dioxyphenyl)pyrazino[2',1':6.1] pyrido[3,4-b]indole-1,4dione, also known as compound (A), as a compound of the invention.

Ex. 1002, 3:24-25. Compound (A) is the same as the compound of formula (I) in the ' 166 patent, i.e., tadalafil.

Daugan teaches that tadalafil is useful for treating male or female

IPR2016-00678
Patent 6,943,166 B1
sexual dysfunction. Id. at 4:25-28. According to Daugan, tadalafil may be administered orally to treat erectile dysfunction. Id. at 3:30-32. It also teaches that "for a typical adult patient, individual tablets or capsules contain from \(0.2-400 \mathrm{mg}\) of active compound, in a suitable pharmaceutically acceptable vehicle or carrier, for administration in single or multiple doses, once or several times per day." Id. at 5:4-7. Specifically, Daugan teaches preparing tablets with 50 mg active compound. \(I d\). at 12:15-14:16.

SNDA
SNDA teaches sildenafil is a potent PDE5 inhibitor and is useful for treating ED. Ex. 1003, 35. Sildenafil is therapeutically effective for treating ED at doses of 25,50 , and 100 mg . Id. at 127-28, 215, 217-19. According to SNDA, in some patients, doses as low as 5 and 10 mg are therapeutically effective over placebo. Id. SNDA states that the "maximum recommended dosing frequency is once per day." Id. at 50.

\section*{Obviousness Grounds}

Petitioner contends that claims \(1-12\) would have been obvious over the teachings of Daugan, either alone or in combination with SNDA.
Pet. 20-46. In both obviousness grounds, Petitioner relies on both Daugan and SNDA for suggesting tadalafil dose recited in claim 1. Based on the current record, we determine Petitioner has not established a reasonable likelihood that it would prevail in this assertion.

Specifically, Petitioner points to Daugan for teaching tadalafil formulations comprising individual tablets or capsules containing "from 0.2400 mg of active compound." Id. at 22, 25 (citing Ex. 1002, 5). According to Petitioner, while Daugan provides examples of 50 mg dosage forms for oral administration, it teaches that "other strengths" and "other doses" may

IPR2016-00678
Patent 6,943,166 B1
be prepared, and that "lower dose ranges may be merited." Id. at 23, 25 (citing Ex. 1002, 12-16). In addition, Petitioner refers to SNDA for teaching that sildenafil is therapeutically effective in treating ED at doses of 25,50 , and 100 mg . Id. at 39 (citing Ex. 1003, 127-28, 215, 217-19). In some patients, Petitioner asserts, sildenafil is therapeutically effective in dosages as low as 5 to 10 mg . Id. at 26, 39 (citing Ex. 1003, 127-28, 215, 217-19).

According to Petitioner, because tadalafil is a more potent and highly selective PDES inhibitor, an ordınary artisan would have had a reason to use doses lower than the 50 mg dose exemplified in Daugan, including doses lower than the known effective doses of sildenafil, and would have had a reasonable expectation of success in doing so. \(I d\). at 26-28, 42-44. As a result, Petitioner contends, one of ordinary skill in the art would have arrived at the method of claim 1 either by following the express teachings and guidance in Daugan, or through routine optimization. Id. at 29, 44.

In its Preliminary Response, Patent Owner does not address the "unit dose containing about 1 to about 20 mg " limitation. Patent Owner, instead, emphasizes that Petitioner fails to account for another essential claim limitation-"a maximum total dose of 20 mg per day." Prelim. Resp. 13-22. We agree with Patent Owner.

In an inter partes review, the petition must specify where each element of the claim is found in the prior art. 37 C.F.R. § 42.104(b)(4). Claim 1 recites "orally administering one or more unit dose containing about 1 to about 20 mg , up to a maximum total dose of 20 mg per day." In general, all patent claim terms are presumed to have meaning. Bicon, Inc.v. Straumann Co., 441 F.3d 945, 950 (Fed. Cir. 2006). Petitioner, however,
paraphrases the claim as "recit[ing] a method of treating sexual dysfunction comprising administering a tadalafil dose range of 'about 1 to about 20 mg .'" Pet. 21. In other words, Petitioner appears to ignore the maximum-total-dose requirement. Petitioner's analysis reflects this omission. Assuming, without deciding, that tadalafil would have been expected to be therapeutically effective at doses from "about 1 to about 20 mg ," Petitioner does not point to the asserted prior art or otherwise explain why an ordinary artisan would limit the tadalafil dose to 20 mg per day.

As a result, based on the current record, we conclude Petitioner has not established a reasonable likelihood it would prevail in showing that claim 1 would have been obvious over Daugan, either alone or in combination with SNDA.

\section*{CONCLUSION}

On this record, Petitioner has not demonstrated a reasonable likelihood of prevailing on its challenges to the patentability of any challenged claim of the ' 166 patent on the grounds asserted in the Petition.

\section*{ORDER}

Accordingly, it is
ORDERED that Petitioner's request for an inter partes review of claims 1-12 of the '166 patent is denied and no inter partes review is instituted.

IPR2016-00678
Patent 6,943, 166 B1

\section*{PETITIONER:}

Patrick A. Doody
Bryan P. Collins
Pillsbury Winthrop Shaw Pittman, LLP
patrick.doody@pillsburylaw.com
bryan.collins@pillsburylaw.com

\section*{PATENT OWNER:}

Mark J. Feldstein
Joshua L. Goldberg
Yieyie Yang
Finnegan, Henderson, Farabow, Garrett \& Dunner, LLP
mark.feldstein(ā)finnegan.com
joshua.goldberg@finnegan.com
yieyie.yang@finnegan.com
Mark J. Stewart
Dan L. Wood
Eli Lilly and Company
stewart_mark@lilly.com
wood_dan_1@lilly.com

Case 1:16-cv-01120-GBL-IDD Document 4 Filed 09/07/16 Page 1 of 1 PageID\# 32
\begin{tabular}{|cc|}
\hline AO 120 Rev. Os/10) & Mail Stop 8 \\
O: & Director of the U.S. Patent and Trademark Ofice \\
& P.O. Box 1450 \\
& Alexandria, VA 22313-1450 \\
\hline
\end{tabular}

\section*{REPORT ON THE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}

In Compliance wifh 35 U.S.C. \(\$ 290\) and/or 15 U.S.C. § 1116 you are hereby advised that a court action has been filed in the U.S. District Court Eastern District of Virginia on the following
\(\square\) Trademarks or \(\square\) Patents.he patent action involves 35 U.S.C. \(\$ 292\). :
\begin{tabular}{|c|c|c|}
\hline DOCKET NO.
\(1: 16 \mathrm{cV} 1120\) & DATE FILED
\(9 / 2 / 2016\) & U.S. DISTRICT COURT Eastern District of Virginia \\
\hline \[
\begin{aligned}
& \text { ELANTIFF } \\
& \text { Eli Lily and Compan }
\end{aligned}
\] & & \begin{tabular}{l}
DEFENDANT \\
Alembic Pharmarceuticals Ltd., et al.
\end{tabular} \\
\hline PATENT OR TRADEMARK NO. & DATE OF PATENT OR TRADEMARK & HOLDER OF PATENT OR TRADEMARK \\
\hline 1 6,943,766 & 9/13/2005 & Lily ICOS LLC. \\
\hline \multicolumn{3}{|l|}{2} \\
\hline \multicolumn{3}{|l|}{3} \\
\hline \multicolumn{3}{|l|}{4} \\
\hline 5 & & \\
\hline
\end{tabular}

In the above-entitled case, the following patent(s)/ trademark(s) have been included:

In the above---entitled case, the following decision has been rendered or judgement issued:
\begin{tabular}{|l|l|l|}
\hline DECISION/IUDGEMENT & (BY) DEPUTY CLERK & \\
\hline
\end{tabular}

Copy 1 - Upon intitiation of actom, mail this copy to Birector Copy \(3-\) Upon termination of action, mail tbis copy to Director Copy \(2-\) Upon filing document adding patent(s), mail this copy to Director Copy 4 - Case fise copy

AO 120 (Rev. 08/10)
\begin{tabular}{cc}
Mail Stop 8 \\
TO: & Director of the U.S. Patent and Trademark Office \\
P.O. Box 1450 \\
& Alexandria, VA 22313-1450
\end{tabular}
REPORT ON THE
FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. \(\$ 290\) and/or 15 U.S.C. \(\S 1116\) you are hereby advised that a court action has been filed in the U.S. District Court Eastern District Virginia - Alexandria on the following \(\square\) Trademarks or \(\quad \square\) Patents. (\(\square\) the patent action involves 35 U.S.C. § 292.):
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { DOCKET NO. } \\
\text { 1:16-cv-1122 }
\end{array}
\] & \begin{tabular}{|c}
DATE FILED \\
\(9 / 2 / 2016\)
\end{tabular} & U.S. DISTRICT COURT
Eastern District Virginia - Alexandria \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
PLAINTIFF \\
Eli Lilly and Company, et al.
\end{tabular}} & \begin{tabular}{l}
DEFENDANT \\
Mylan Pharmaceuticals Inc.
\end{tabular} \\
\hline PATENT OR TRADEMARK NO. & DATE OF PATENT OR TRADEMARK & HOLDER OF PATENT OR TRADEMARK \\
\hline 1] \(6,943,166\) & 9/13/2005 & Eli Lilly and Company \\
\hline \multicolumn{3}{|l|}{2} \\
\hline \multicolumn{3}{|l|}{3} \\
\hline 4 & & \\
\hline 5 & & \\
\hline
\end{tabular}

In the above-entitled case, the following patent(s)/trademark(s) have been included:
\begin{tabular}{|l|c|c|}
\hline DATE INCLUDED & \multicolumn{1}{|c|}{\begin{tabular}{l}
INCLUDED BY \\
PATENT OR \\
TRADEMARK NO.
\end{tabular}} & \begin{tabular}{c}
DATE OF PATENT \\
OR TRADEMARK
\end{tabular} \\
\hline 1 & & \(\square\) Answer \(\quad \square\) Cross Bill \(\quad \square\) Other Pleading \\
\hline 2 & & \\
\hline 3 & & \\
\hline 4 & & \\
\hline 5 & & \\
\hline
\end{tabular}

In the above-entitled case, the following decision has been rendered or judgement issued:

\section*{DECISION/JUDGEMENT}
\begin{tabular}{|l|l|l|l|}
\hline CLERK & (BY) DEPUTY CLERK & DATE \\
\hline
\end{tabular}

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy
\begin{tabular}{|cc|}
\hline AO \(120(\) Rev. 08/10 \()\) \\
TO: & Mail Stop 8 \\
& Director of the U.S. Patent and Trademark Office \\
& P.O. Box 1450 \\
& Alexandria, VA 22313-1450 \\
\hline
\end{tabular}

\section*{REPORT ON THE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}

In Compliance with 35 U.S.C. \(\$ 290\) and/or 15 U.S.C. \(\$ 1116\) you are hereby advised that a court action has been filed in the U.S. District Court Eastern District - Virginia on the followingTrademarks or \(\square\) Patents. (\(\square\) the patent action involves 35 U.S.C. \(\S 292\).):
\begin{tabular}{|c|c|c|}
\hline DOCKETNO.
\(1: 16-\mathrm{cV}-1208\) & \begin{tabular}{|r}
DATE FILED \\
\(9 / 22 / 2016\)
\end{tabular} & U.S. DISTRICT COURT Eastern District - Virginia \\
\hline \multicolumn{2}{|l|}{PLAINTIFF
Eli Lilly and Company, et al.} & \begin{tabular}{l}
DEFENDANT \\
Cipla Limited, et al.
\end{tabular} \\
\hline \begin{tabular}{l}
PATENT OR \\
TRADEMARK NO.
\end{tabular} & DATE OF PATENT OR TRADEMARK & HOLDER OF PATENT OR TRADEMARK \\
\hline 1 6,943,166 & 9/13/2005 & Lilly ICOS, LLC \\
\hline \multicolumn{3}{|l|}{2} \\
\hline \multicolumn{3}{|l|}{3} \\
\hline 4 & & \\
\hline 5 & & \\
\hline
\end{tabular}

In the above-entitled case, the following patent(s)/trademark(s) have been included:
\begin{tabular}{|l|c|c|}
\hline DATE INCLUDED & \multicolumn{1}{|c|}{\(\square\) Amendment } \\
\hline \begin{tabular}{c}
PATENT OR \\
TRADEMARK NO.
\end{tabular} & \begin{tabular}{l}
DATE OF PATENT \\
OR TRADEMARK
\end{tabular} & \(\square\) Answer \(\quad \square\) Cross Bill \(\square\) Other Pleading \\
\hline 1 & & \\
\hline 2 & & \\
\hline 3 & & \\
\hline 4 & & \\
\hline 5 & & \\
\hline
\end{tabular}

In the above-entitled case, the following decision has been rendered or judgement issued:
\(\square\)
\begin{tabular}{|l|l|l|}
\hline CLERK & (BY) DEPUTY CLERK & DATE \\
\hline
\end{tabular}

Copy I-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director
Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy```

[^0]: .

