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Fig. 2. Typical polar modulation based transmitter block diagram.
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Fig. 3. Power spectral density (PSDlol'ta) composite CDMA signal and (b) its
extracted envelope.

using an accurate current sensing technique. efficiency and lin-
earity of the supply modulator is further optimized. The organ-
ization of this paper is as follows: Section ll describes the op-
eration of the PA supply modulator and techniques for perfor-
mance optimization. Section III details the circuit level imple-
mentations of the linear amplifier. switch-mode regulator and

current sensing circuit. The measurement setup and results are

presented in Section N. followed by a conclusion in Section V.

II. DESIGN OF MASTER-SLAVE PA REGULATOR

A. Operation

Fig. 4 shows the block diagram of the proposed master—slave
linear and switch-mode combined supply modulator loaded

with a PA. A high GBW linear amplifier in voltage follower
configuration ensures that output node Va“) tracks the refer-

ence envelope voltage AU). A current sensing circuit. high gain
transimpcdance amplifier and switch-mode regulator forms a
global feedback control loop that suppresses the current output
from the linear amplifier within the switch-mode regulator
bandwidth. Consequently, a large portion of the load current is
provided by the switch-mode regulator. The lower efficiency
linear amplifier sources small amounts of output current 15,,(6)
to cancel out switch-mode regulator ripple and high frequency
signal content. The transient response of currents at the output
of the switch-mode regulator Andi}, the linear amplifier Inuit)
and combined master-slave supply modulator IOU.) is shown

in Fig. 5. Assuming an infinite GBW linear amplifier. this
architecture will generate a ripple free output current IOU.) to

the load. However. due to finite GBW of the linear amplifier.
only the ripple energy within the linear amplifier is cancelled.
This tradeoff between GBW of linear amplifier and ripple size
will he discussed later

To gain lurlher insight on the operation 01 master—slave
supply modulators the current-mode lrequeney response oi
the linear amplifier, switch-mode regulator, and their com-

bined response are analyzed. The steady state output current
of switch-mode regulator 15,“ can be defined by the linear
regulator current Ir," as follows:

Ilin 1 l. 1
15:11:—'Atia"—'—"‘.,I—'— (I)

where n is the current sense ratio, Am. is the transimpedance
gain. 8, is the slope of the ramp in the switch-mode regulator
and [BL is the equivalent PA load resistance. The sensed current
is amplilied by the transimpedance amplifier, comparator and

the voltage divider formed by equivalent series resistance (ESR)
of the loading inductor and resistive component RL of the PA
load. The second-order LC filter and the ESR set the dominant

pole location of the frequency response.
From (1 ), we can derive the transfer function of the combined

output current 10 as follows:

I l l
=— — (2)

_"

A HL 1+—.-1+
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Current Loop
| Response. Klf)

LIn ear , Switch Mode
Amplifier ct Amplifier  

  

Lit)
 

Fig. 3. Simplified block diagram ofthe proposed regulator showing ripple cancellation.

where .-'l represents the input envelope signal and Arm is the
open loop gain of the linear amplifier. The switch-mode regu-
lator output current I5“, can be shown as
 

= —..~—— - _ ' — [3)r -$,.'[1+s--L-C)-R , L
A 1 + i Am i RL 1 + An"

and finally the linear amplifier output current In“ is represented
by

E rl-Sr-(t+sg-L-C)I t
:‘1 Aria

—- (4)
l + slim

 

As shown in (3) and (4). the output current response of the

switch-mode amplifier has a two—pole transfer function forming
a second-order low-pass characteristic. while the output current
response ofthe linear amplifier has a two-zero transfer function
that contains a second-order high-pass characteristic. At low fre-
quencies, the linear amplifier current output is suppressed and
the switch-mode regulator dominates the output current. Con-
versely. at high frequencies. the switch-mode regulator current

response starts rolling off and the linear amplifier takes over the
output current, The switch-mode regulator and linear amplifier
current response combine and form a flat frequency response for
the master—slave regulator. The frequency where switch-mode
regulator current response rolls off and linear amplifier current
response takes over is called transition frequency. fr. This fre-
quency plays an important role on efficiency optimization and
will he discussed in the next section.

700
500

Currert(mA)
100

 
1 1K 1M 16

Frequency (Hz)

Fig. t3. Current-mode frequency response of the linear amplilicr. the switch-
mode regulator and the master—slave combined regulator.

Fig. 6 plots the current—mode frequency response of the linear
amplifier. switch-mode regulator and mastcrfislave regulator. As
predicted in the mathematical analysis, second-order low-pass
and high-pass characteristics were obtained. The resulted flat
output current response is suitable for high linearity implemen-
tation. In addition. the overall bandwidth extended by the linear

amplifier makes the supply modulator suitable for wide band-
width signal transmission.



 

 

A 20
a
a UDm
D.

ia0
e
5
Ee

g 4 ”mi1

l tit/l
o 10 20 so 40 50

FrequencthIrt)
(a)

rum—c—Mflfiza-

5 eE

8 -2t]iu. |

r 40! m

E sol {LI-“ML.”
a ; thas -an:
2 l

Emmi
42!);

o 10 20 30 4e 50

Frequencth-tz)
(h)

Fig. '3. Ripple energy for a 10 dBm. 100 kHz SSB suppressed carrier modulav
tion wa\‘uform for {a} a synchronous rectifier versus lb] 3 hysteretic controller.

B. Peljfiu'mrtrtce Opriritizarr'mt

Master—slave regulator configuration is commonly used for

audio amplifiers, and for these applications a switch-mode
regulator is typically configured in hysteretie control mode.

Hysteretic controllers do not need a clocked comparator; instead
they use a window comparator. and frequency of operation
depends on the load conditions. The loop response ot‘hysteretic
controllers is quite fast during load transients. However. this

variable frequency operation generates wideband spurious
emissions at the regulator output. This in turn increases the AC
power from the linear amplifier since more ripple energy falls
within class—AB amplifier bandwidth. The two power spectral
density plots in Fig. 7 represent the ripple energy for a 10 (”3111.
100 kHz single sideband (SSB) suppressed carrier modulation
waveform for a synchronous rectifier versus a hysteretic con-

troller. As shown in this figure. the integrated ripple energy
within the class-AB bandwidth is much higher for a hysteretic
controller. For wideband modulation schemes. this analysis
shows that synchronous rectifiers are a better choice for low
power. low spurious emissions design.

To optimize the efficiency of a PA supply modulator. two

properties of the envelope signals should he considered: the
power level probability density function (PDF) discussed in
Fig. I and power spectral density {PSD). As shown in Fig. 3.
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Fig. 8. Portion of CDMA spectrum amplified by linear amplifier and switch-
mode regulator at ta) low f;- and (b) high fr.

the envelope PSD contains high DC content and most of the
envelope energy is accumulated at frequencies less than 2 MHZ
with a small portion ofthe envelope energy rolling offal higher
frequencies. The bandwidth specifications of the switch-mode

regulator can be relaxed further reduce the switching losses and
use the linear amplifier to amplify the high frequency portion
of the signal. However, as the bandwidth of the high efficiency
switch-mode regulator becomes too low. the low efficiency
lincar amplifier dominates the output current, reducing overall
efficiency. Fig. 8 shows the portions of the envelope spectrum
amplified by the linear amplifier and switch-mode regulator
with different transition frequencies fr. Fig. 9 shows that peak
efficiency of the supply modulator with a 20 dBm. 4-00 kHz

SSB suppressed carrier modulated input waveform is achieved
at 100 kHz fr.

As discussed earlier, output ripple is another critical spec-
ification requirement for PA supply modulator design due to

stringent ACPR and spurious emission requirements. [8]. In
the proposed master—slave linear and switch-mode regulator.

a significant portion of current ripple from the switch—mode
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regulator is cancelled by the linear amplifier. This results in a
much smaller residue voltage and current ripple at the PA drain.
Output inductor and switching frequency also play an important
role on output ripple value. Fig. 10{a) and (b) shows output
ripple versus load inductor and switching frequency for the
proposed composite regulator. Since both ripple frequency and
output tiller corner is determined by the transition frequency.
these parameters cannot be used for ripple optimization. There-
fore. the effectiveness of current ripple cancellation depends on
the GBW of the linear amplifier. For the ripple specification. we
have assumed a worst case PA power supply rejection (PSR) of
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Fig l3. Individual block and the combined frequency responses in switch-
mode regulator feedback loop.

0 dB and used —55 dBc per 30 kHz bandwidth ACPR require-

ments to extract a maximum ripple specification of 2 mVpp
at the overall regulator output [8]. As shown in Fig. lOtc). as
the linear regulator unity gain-bandwidth increases. the voltage
ripple at the output reduces. with the expense of reduced
efficiency and increased linear regulator power consumption.

For a given 2 mVpp ripple specification at a typical to dBm
output power level. a linear regulator unity gain-bandwidth of
tilt) Mill is selected.

C. Switch-Mode Regulator Feedback Loop

The switch—mode regulator feedback loop includes a current
sensing circuit. an error amplifier, a comparator. power stage and
a low-pass filter and is designed with maximum loop gain for
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Fig. 14. Rait-to-rail input linear class-AB ampliticr with common-source output stage in voltage follower configuration for ripple cancellation and master—slave
supply modulator bandwidth extension.
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Fig. 15. Switch-mode regulator in master—slave supply modulator for high efficiency amplification.

accurate envelope tracking and highest linear amplifier output
current suppression. For AC analysis. a linear model is utilized.

As shown in Fig. l l. linearized gain ot‘the comparator is defined

by the ratio of its output voltage swing to the amplitude of its

ramp input. prmttl is the switching version of I"; (t) that has
equal magnitude but contains stronger and more high-frequency
harmonics. A linear model is obtained and Fig. 12 shows the
linearized model of the system.

In the comparator design a ramp voltage swing of il.3 V is
used. yielding an equivalent gain of It). This gain is optimized

in such a way that there is minimum penalty to the loop band-
width and phase margin. The disadvantage of using a smaller
rarnp voltage is the increased comparator response time. This
delay results in degradation in envelope tracking accuracy of the
switch mode output current and consumes more linear amplifier
output current to correct the time delay errors. Furthermore. ex-
cess comparator delays degrade the phase margin of the feed-

back loop around the combined regulator. In this design. with
the switching frequency of the supply modulator at 10 MHz
and a comparator BW of 96 MHz, the comparator achieves a
response time of less than 0 as. The delay introduces a phase
shift of less than |° and requires almost no extra current from
the linear amplifier.

To ensure the stability of the feedback loop in the switch-
modc regulator. the bandwidth of the switch-mode regulating

loop should be at least ten times less than the switching fre-
quency. The limited operating bandwidth filters the high fre-
quency contents of the output current ripple and prevents insta-
bility. To minimize current use from the linear amplifier. close
loop gain should be high. There is also a gain-attenuation at the
output ol'the switch-mode regulator: the ESR and resistive load
form a voltage divider that degrades the loop gain. Small ESR

is preferred to minimize attenuation and power losses.
Fig. I} plots the frequency response ol'cacli block inside the

switch-mode regulating loop. It shows that the total current to
voltage conversion gain of current sensing and transimpedance
stage is approximately 30 dB. followed by a comparator gain of
[0 dB yielding an iii-band gain of 40 dB. The transimpedance
error amplifier and comparator are designed to have wide BW.
Their poles should place beyond the GBW of the switch-mode
regulator. The loading inductor sets the GBW of the close loop
below switching frequency.

III. CIRCUIT IMPLEMENI‘A‘I‘lON

A. Linear Amplifier

A two-stage class-AB amplifier with a common‘source
output stage. as shown in Fig. 14. is used for the linear am—
plifier. The input stage is designed raii-to-rail in order to
enable arbitrary feedback configurations. including unity gain
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Fig. [6. Accurate current sensing circuit sensing the load current in class-AB amplifier and transimedance amplifier driving the comparator load.

follower. System level simulations show that voltage follower
configuration provides the highest efficiency with minimum

group delay without the need for driving the passive feedback
network. System level models also show that input gin-control
circuitry is not required for the envelope tracking application
due to asymmetric nature of the envelope waveform. Because
the load resistance ranges from 3.33 9 to 8.4 Q, the output pole
is nominally set at 200 MHz for a 100 pF load capacitor to
ensure stability. The rail-to-rail input stage achieves lOO MHZ
GBW with a load capacitance of 100 pF.

8. Snitch-Mode Regulator

1n the master—slave regulator configuration. the switch-mode

regulator serves as the slave stage, as shown in Fig. 15. and is
driven by the class-AB amplifier sensed output currents. The

transresistance gain of 10 k S} in the current-to-voltage conver—
sion stage enhances the switch-mode loop gain. increasing the
accuracy of the current-mode amplifier. The synchronous rec-
tifier utilizes a single—stage asynchronous latched comparator
with worst case settling time of 6 as. The gate driver uses seven
cascaded tapered inverter stages. which is optimized for min-
imum delay. The size oftlic external LC filter and power stage is
designed for optimum efficiency. The GBW ofthe switch-mode

regulator is designed to be 100 kHz. and the switching frequency
is set at 10 MHz. The power stage is sized to obtain minimum
gate drive and on-resistance loss. In order to ensure the stability

of the linear amplifier, the load capacitance needs to be limited
to 100 pF. yielding an inductor value of 20 [.LH for minimum
output current ripple and ESR.

C. Accurate Current Sensing and Switch-Mode Regulator
Input Referred Ofiser Reduction

In order for the current feedback mechanism to track the input
envelope accurately. the input referred system offset must be
minimized. Typical current sensing techniques utilize a small
series resistor and measure the voltage drop across it [9]. Al-
though this approach can sense load current accurately, it is not
suitable for CDMA supply modulator applications where output
currents can be up to 380 mA. In the proposed accurate current

sensing circuit shown in Fig. ts, transistors Mp — MU — AP
and Mn — Ml -— All together form two low-loss accurate cur-

 
Fig. 1?. Chip micrograph of master—slave linear and switch-mode supply mod-ulator.

rent mirrors sensing output push and pull currents Ipusliit) and
Ip.,l1(t) from the class-AB amplifier. The load currents in the

class-AB output stage formed by MF and Mn is mirrored with
250: l ratio to MD, Ml and passed through the sense resistances

R0 and R1. To increase the operating voltage range of the cur-
rent mirrors and achieve a high current sensing accuracy. 3 DC

pedestal current source Is is added to guarantee transistors M_.
and Mg, always stay in saturation. The BW ofthc current sensing

circuit was limited by the GBW of the gain~enhancing ampli-

liers Al, and A” at the current mirrors. With the use of moderate
gain. rail-to—rail input swing, folded cascode amplifiers AI, and
A". the current sensing circuit achieves less than 0.2% error and
10 MHz bandwidth.

In the sensing circuit inside switch-mode feedback loop.
matched resistor pairs R0 and R1 convert the sensed currents.
copied accurately by the current sensing circuit, to voltages

separately. The converted voltages 1/110) and VIU.) modulate
gatc~source voltages of Mg and MT and generate a replica
current across transistors Mg and M,- with sortie gain. Drain
currents of MB and M,— are summed and converted back to con—

trol voltage VCU) by RC for the PWM controller. To minimize
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Fig. l9. Transient response of (a) CDMA envelope waveform with commercial PA load {CDMA signal baseline shifted for clarity). (b) 30 tilim, 400 kHz SSll
suppressed carrier envelope waveform and (c) 2.5 Vim. 2.5 MHz square wavel‘urm with 4.4 Q resistive load.

input referred offset, the DC level of the input ramp is adjusted
to cancel any system mismatches inside the current sensing
circuit and transimpedance amplifier.

iV. TEST RESULTS

The master—slave. class-AB and switch-mode supply modu-
iator is fabricated in a 0.35 ‘am. 4-level metal CMOS process

and occupies a total core area of 4.6 mm2 excluding the bond-
pads. A die micrograph of the [C with the pad ring is shown

in Fig. [7. The fabricated chip was packaged in a 44-pin LCC
package and mounted to a double-sided FR4 PCB for charac-
tet‘ization.

A typical lab setup for the transient and spectral density char-
acterization is shown in Fig. 18. Mathematical modeling soft-
ware is used to generate amplitude and phase information of

input waveform. and these vectors are uploaded to an arbitrary

waveform generator. An external mixer module is installed for
narrowband modulation of the phase to 835 MHz center l‘re~
quency for the PA characterization. The supply modulator has
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Fig. 20. Details transient response showing switching current ripple cancella-
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Fig. 2 l. Pcak-lo-peak output voltage ripple versus output voltage.

been tested with a 4.4 Q resistive load with a 100 pF capacitive
load and a commercial saturated PA load.

Fig. l9(a) and (b) rcprcscnls a typical transient response of

a CDMA envelope waveform and a 30 dBm, 400 kHz SSB

suppressed carrier envelope waveform in a master—slave supply
modulator with 4.4 SE load. Fast transients at the envelope edges
represent a challenge to the wideband regulator. Fig. 19(c)
indicates the output transient signal settle within 60 us with a

4.4 Q resistive load. Fig. 20 details the current ripple cancella-
tion take place at the output-summing node of the master-slave
supply modulator. Typical output currcttt ripple and its opposite

2M?

+ Master-slave supply
-— Linear supply

Efficiency(‘14) 
Pm (dBm)

 
Outpu ripple (min

(b)

Fig. 22. (a) Efficiency comparison between linear modulator and roaster—slave
supply modulator at different load levels. lhl Peak-to-peak ripple versus effi-
ciency trade-off in supply modulator.

phase cancellation current front the class-AB amplifier are
characterized with external 1 S2 sense resistors. As shown in

the plot close to 25 mA. ripple is being cancelled by the linear
regulator. Fig. 2[ plots the peak-to-peak output ripple voltage

at different dc levels. Fig. 22(a) compares the efficiency of the
standalone class-AB supply modulator with the master—slave

supply modulator at different dc levels. Maximum efficiency

of the master—slave moduiator is 82% and its dynatnic range is
65 dBc. The efficiency of the master—slave supply modulator
is three times higher than the efficiency of the linear amplifier
at In dBm output power and indicates a signilicant efficiency
improvement over the linear supply modulator at backed—off
power levels. Based on lab characterizations shown in Fig. 22(b)
modulator efficiency is found to be optimum at 2.7 mV ripple.
In this characterization. the switching regulator bandwidth is
modified to sweep different ripple levels. A commercial PA is
used to characterize the ACPR performance of the proposed
regulator system with a composite lS-95 CDMA wavefon'n.
The ACPR measurement is found in Fig. 23(a). At worst-case
in-band power levels. the ACPRI and ACPRZ. 885 kHz and
1.98 MHz offset from the center frequency. are more than 46.6
and 57.4 dB. which meet the spectral mask density requirement
for IS~95 CDMA transmission. A far-out plot of spectral den-
sity of the composite CDMA waveform is shown in Fig. 23(b).
At IO MHz offset from the center frequency, switching ripple
adds less than —(15 dB tonal content to the output spectrum.
Table I summarizes the linearity and efficiency performance of
the master—slave supply modulator. With 3.3 V power supply.

the regulator can provide 750 mA peak current with a quiescent
power consumption of 24 mA. The 2-tone SFDR at 10 MHz
with commercial PA load achieves —65 dBc.
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TABLE I
PERFORMANCE SUMMARY or NIAS'l'liR-SIAVI'Z Cmss-AB .tNt)

Sworn-Moot: SIJI'I'LY MUDL‘I A't‘tlk Wl't'tl CoMMIitt‘tm. PA Loan

Values
0.35um CMOS

2.1mm x 2.2mm
3.3V

0.3 - 3V
0 -750m

DC — tOMHz
24mA
-65dBc

52%
lUI’tfl-Iz

Parameters

e: hnology

‘

O drivel. c ran
Output EMS current
'andwidth
incar amplifier quiescent current
4am: SFDR at low:
odulator eak efficienc-

witchin fre-uent:

—
_
m
m_
m
—
_
_

_
 

V. CONCLUSION

A wideband master—slave class-AB and switch-mode com-

bined supply modulator fabricated on a 0.35 [cm CMOS
technology is presented. A master class-AB regulator can—
cels distortion. supply noise and ripple associated with a
switch-mode regulator. while providing high frequency signal

content. A high linearity. high efficiency current sensing circuit
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is used to sense the class-AB amplifier output. This signal is
fed-forward to a current-controlled synchronous rectifier based
regulator providing. the output envelope content within its
bandwidth, The measurement results demonstrate that the com~

bined regulator has less than 2 me, ripple at its output with
65 dBe SFDR and peak efficiency of 82% achieving IO MHz
bandwidth. The master—slave supply modulator regulated PA
satisfies the CDMA spectral mask requirements.
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