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Fig. 2, Typical polar modulation based transmitter block diagram.
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Fig. 3. Power spectral density (PSD) of(a) composite CDMAsignaland(b) its
extracted envelope.

using an accurate current sensing technique, efficiency and lin-
earity of the supply modulator is further optimized. The organ-
ization ofthis paper is as follows: Section II describes the op-
eration of the PA supply modulator and techniques for perfor-
mance optimization. Section III details the circuit level imple-
mentations ofthe lincar amplifier, switch-mode regulator and
current sensing circuit. The measurementsetup and results are
presented in Section IV, followed by a conclusion in Section V.

II. DESIGN OF MASTER-SLAVE PA REGULATOR

A, Operation

Fig. 4 showsthe block diagram ofthe proposed master-slave
linear and switch-mode combined supply modulator loaded

with a PA. A high GBW linear amplifier in voltage follower
configuration ensures that output node V,(é) tracks the refer-
ence envelope voltage A(t). A current sensing circuit, high gain
transimpedance amplifier and switch-mode regulator forms a
global feedback control loop that suppresses the current output
from the linear amplifier within the switch-mode regulator
bandwidth, Consequently, a large portion of the load currentis
provided by the switch-mode regulator. The lower efficiency
linear amplifier sources small amounts of output current Jjj,(€)
to cancel out switch-moderegulator ripple and high frequency
signal content. The transient response ofcurrents at the output
of the switch-mode regulator J,,,(é), the linear amplifier Jy, (é)
and combined master-slave supply modulator J,(t) is shown
in Fig. 5. Assuming an infinite GBW linear amplifier, this
architecture will generate a ripple free output current [,(¢) to
the load. However, due to finite GBW ofthe linear amplifier,
only the ripple energy within the linear amplifier is cancelled.
This tradeoff between GBW of linear amplifier and ripple size
will be discussed later,

To gain further insight on the operation of master-slave
supply modulators, the current-mode frequency response of
the linear amplifier, switch-mode regulator, and their com-
bined response are analyzed. The steady state output current
of switch-mode regulator J,,,, can be defined by the linear
regulator current J}; as follows:

iy 1
fie jy beEyIgn =

where nis the current sense ratio, A,j, is the transimpedance
gain, S,. is the slope of the ramp in the switch-mode regulator
and /?, is the equivalent PA load resistance. The sensed current
is amplified by the transimpedance amplifier, comparator and
the voltage divider formed by equivalentseries resistance (ESR)
of the loading inductor and resistive component /?, of the PA
load. The second-order LC filter and the ESR set the dominant

pole location of the frequency response.
From (1), we can derive the transfer function of the combined

output current [, as follows:

iy 2 l
SO ey pe (2)
A Ek i+ 2Abin
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Fig. 5. Simplified block diagramofthe proposed regulator showingripple cancellation.

where Arepresents the input envelope signal and Ajj, is the
open loop gain of the linear amplifier. The switch-mode regu-
lator output current J.,, can be shown as

Tem _ l 1 l a
 

andfinally the linear amplifier output currentJjj,, is represented
by

fin_n+ S,-(L+s?+L-C) 1
A” Atia , 1+ = ‘

(4) 

As shown in (3) and (4), the output current response ofthe
switch-mode amplifier has a two-poletransfer function forming
a second-order low-pass characteristic, while the output current
responseofthe linear amplifier has a two-zero transfer function
that contains a second-orderhigh-pass characteristic. At low fre-
quencies, the linear amplifier current output is suppressed and
the switch-mode regulator dominates the output current. Con-
versely, at high frequencies, the switch-mode regulator current
responsestarts rolling off and the linear amplifier takes over the
output current. The switch-mode regulator and linear amplifier
current response combine and forma flat frequency response for
the master-slave regulator. The frequency where switch-mode
regulator current responserolls off and linear amplifier current
response takes overis called transition frequency, fi. This [re-
quency plays an important role on efficiency optimization and
will be discussed in the next section.

700
600

Current(mA}
100

 
1 1K

Frequency (Hz)

1M

Fig. 6, Current-mode frequency response ofthe linear amplilier, the switch-
mode regulator and the master-slave combined regulator.

Fig. 6 plots the current-mode frequency responseofthe linear
amplifier, switch-mode regulator and master-slave regulator. As
predicted in the mathematical analysis, second-order low-pass
and high-pass characteristics were obtained. The resulted flat
output current responseis suitable for high linearity implemen-
tation. In addition, the overall bandwidth extended by the linear

amplifier makes the supply modulator suitable for wide band-
width signal transmission.
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Fig. 7. Ripple energy fora 10 dBm. 100 kHz SSB suppressedcarrier modula-
tion waveformfor (a) a synchronousrectifier versus (b) a hysteretic controller.

B. Performance Optimization

Master—slave regulator configuration is commonly used for
audio amplifiers, and for these applications a switch-mode
regulator is typically configured in hysteretic control mode.
Hysteretic controllers do not need a clocked comparator; instead
they use a window comparator, and frequency of operation
depends onthe load conditions. The loop response ofhysteretic
controllers is quite fast during load transients. However, this
variable frequency operation generates wideband spurious
emissionsat the regulator output. This in turn increases the AC
power from the linear amplifier since more ripple energy falls
within class-AB amplifier bandwidth. The two powerspectral
density plots in Fig. 7 represent the ripple energy for a 10 dBm,
100 kHz single sideband (SSB) suppressed carrier modulation
waveform for a synchronous rectifier versus a hysteretic con-
troller. As shown in this figure. the integrated ripple energy
within the class-AB bandwidth is much higherfor a hysteretic
controller. For wideband modulation schemes, this analysis
shows that synchronousrectifiers are a better choice for low
power, low spurious emissions design.

To optimize the efficiency of a PA supply modulator, two
properties of the envelope signals should be considered: the
power level probability density function (PDF) discussed in
Fig. | and powerspectral density (PSD). As shownin Fig. 3,
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Fig. 8. Portion of CDMA spectrumamplified by linear amplifier and switch-
mode regulator at (a) low fy and (b) high fr.

the envelope PSD contains high DC content and most ofthe
envelope energy is accumulated at frequencies less than 2 MHz
with a small portion of the envelope energyrolling offat higher
frequencies, The bandwidth specifications of the switch-mode
regulator can be relaxed further reduce the switching losses and
use the linear amplifier to amplify the high frequency portion
of the signal. However,as the bandwidth ofthe high efficiency
switch-mode regulator becomes too low, the low efficiency
linear amplifier dominates the output current, reducing overall
efficiency. Fig. 8 showsthe portions of the envelope spectrum
amplified by the linear amplifier and switch-mode regulator
with different transition frequencies fr. Fig. 9 showsthat peak
efficiency of the supply modulator with a 20 dBm, 400 kHz
SSB suppressed carrier modulated input waveform is achieved
at 100 kHz fr.

As discussed earlier, output ripple is another critical spec-
ification requirement for PA supply modulator design due to
stringent ACPR and spurious emission requirements. [8]. In
the proposed master-slave linear and switch-mode regulator,
a significant portion of current ripple from the switch-mode
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Fig, 10, Peak-to-peak output voltage ripple versus (a) load inductor,
(b) switching frequency, and (c) linear amplifier GBW.

regulator is cancelled by the linear amplifier. This results in a
much smaller residue voltage and currentripple at the PA drain.
Output inductor and switching frequency also play an important
role on output ripple value. Fig. 10(a) and (b) shows output
ripple versus load inductor and switching frequency for the
proposed composite regulator. Since both ripple frequency and
output filter corner is determined by the transition frequency,
these parameters cannot be used for ripple optimization. There-
fore, the effectiveness ofcurrent ripple cancellation depends on
the GBWofthe linear amplifier. For the ripple specification, we
have assumed a worst case PA power supply rejection (PSR) of
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Fig. 13. Individual block and the combined frequency responses in switch-
mode regulator feedback loop.

0 dB and used —55 dBe per 30 kHz bandwidth ACPR require-
ments to extract a maximum ripple specification of 2 mVp,
at the overall regulator output [8]. As shownin Fig. 10(c), as
the linear regulator unity gain-bandwidth increases, the voltage
ripple at the output reduces, with the expense of reduced
efficiency and increased linear regulator power consumption.
For a given 2 mV,, ripple specification at a typical 16 dBm
output power level, a linear regulator unity gain-bandwidth of
100 MHzis selected.

C. Switch-Mode Regulator Feedback Loop

The switch-mode regulator feedback loop includes a current
sensing circuit, an error amplifier, a comparator, power stage and
a low-passfilter and is designed with maximum loop gain for
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Fig. 15. Switch-mode regulator in master-slave supply modulatorfor high efficiency amplification.

accurate envelope tracking and highest linear amplifier output
current suppression. For AC analysis, a linear modelis utilized.

As shownin Fig. 11, linearized gain of the comparatoris defined
by the ratio ofits output voltage swing to the amplitude ofits
rampinput. Viwm(#) is the switching version of V, (¢) that has
equal magnitude but containsstronger and more high-frequency
harmonics. A linear model is obtained and Fig. 12 shows the
linearized model of the system.

In the comparator design a ramp voltage swing of 0.3 V is
used,yielding an equivalent gain of 10. This gain is optimized
in such a way that there is minimum penalty to the loop band-
width and phase margin. The disadvantage of using a smaller
ramp voltage is the increased comparator response time. This
delay results in degradation in envelope tracking accuracy of the
switch mode output current and consumes morelinear amplifier
output current to correct the time delayerrors. Furthermore, ex-
cess comparator delays degrade the phase margin ofthe feed-
back loop around the combined regulator. In this design, with
the switching frequency of the supply modulator at 10 MHz
and a comparator BW of 96 MHz, the comparator achieves a
response time ofless than 6 ns. The delay introduces a phase
shift of less than 1° and requires almost no extra current from
the linear amplifier.

To ensure the stability of the feedback loop in the switch-
mode regulator, the bandwidth of the switch-mode regulating

loop should be at least ten times less than the switching fre-
quency. The limited operating bandwidth filters the high fre-
quency contents ofthe output current ripple and preventsinsta-
bility. To minimize current use from the linear amplifier, close
loop gain should be high. Thereis also a gain-attenuation at the
outputofthe switch-moderegulator: the ESR andresistive load
form a voltage divider that degrades the loop gain. Small ESR
is preferred to minimize attenuation and power losses.

Fig. 13 plots the frequency response ofcach block inside the
switch-mode regulating loop. It showsthat the total current to
voltage conversion gain of current sensing and transimpedance
stage is approximately 30 dB, followed by a comparator gain of
10 dB yielding an in-band gain of 40 dB. The transimpedance
error amplifier and comparator are designed to have wide BW.
Their poles should place beyond the GBW ofthe switch-mode
regulator. The loading inductor sets the GBWofthe close loop
below switching frequency.

If]. Cigcuir IMPLEMENTATION

A. Linear Amplifier

A two-stage class-AB amplifier with a common-source
output stage, as shown in Fig. 14, is used for the linear am-
plifier. The input stage is designed rail-to-rail in order to
enable arbitrary feedback configurations, including unity gain
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Fig. 16. Accurate currentsensing circuit sensing the load current in class-AB amplifier and transimedance amplitier driving the comparator load.

follower. System level simulations show that voltage follower
configuration provides the highest efficiency with minimum
group delay without the need for driving the passive feedback
network. System level models also show that input gm-control
circuitry is not required for the envelope tracking application
due to asymmetric nature of the envelope waveform. Because
the load resistance ranges from 3.33 2 to 8.4 Q, the output pole
is nominally set at 200 MHz for a 100 pF load capacitor to
ensure stability. The rail-to-rail input stage achieves 100 MHz
GBW with a load capacitance of 100 pF.

B. Switch-Mode Regulator

In the master-slave regulator configuration, the switch-mode
regulator serves as the slave stage, as shownin Fig. 15, and is
driven by the class-AB amplifier sensed output currents. The
transresistance gain of 10 k Q in the current-to-voltage conver-
sion stage enhances the switch-mode loop gain, increasing the
accuracy of the current-mode amplifier. The synchronous rec-
lifier utilizes a single-stage asynchronous latched comparator
with worst case settling time of 6 ns. The gate driver uses seven
cascaded tapered inverter stages, which is optimized for min-
imum delay. The size of the external LC filter and powerstageis
designed for optimum efficiency. The GBW ofthe switch-mode
regulatoris designed to be 100 kHz, and the switching [requency
is set at 10 MHz. The powerstageis sized to obtain minimum
gate drive and on-resistance loss. In order to ensure the stability
of the linear amplifier, the load capacitance needsto be limited
to 100 pF, yielding an inductor value of 20 ;zH for minimum
output current ripple and ESR.

C. Accurate Current Sensing and Switch-Mode Regulator
Input Referred Offset Reduction

In order for the current feedback mechanism to track the input
envelope accurately, the input referred system offset must be
minimized. Typical current sensing techniques utilize a small
series resistor and measure the voltage drop across it [9]. Al-
though this approach can sense load current accurately,it is not
suitable for CDMAsupply modulator applications where output
currents can be up to 380 mA. In the proposed accurate current
sensing circuit shown in Fig. 16, transistors M, — Mg — Ap
and M, — M,; — A, together form two low-loss accurate cur-

 
Fig. 17. Chip micrographof master-slave linear and switch-mode supply mod-ulator.

rent mirrors sensing output push and pull currents Jpusn(¢) and
Zpun(t) from the class-AB amplifier. The load currents in the
class-AB output stage formed by Mp and My is mirrored with
250:1 ratio to Mo, M; and passed through the sense resistances
Ro and Ry. To increase the operating voltage range ofthe cur-
rent mirrors and achieve a high current sensing accuracy, a DC
pedestal current source J, is added to guaranteetransistors My
and M;, alwaysstay in saturation. The BW of the current sensing
circuit was limited by the GBW ofthe gain-enhancing ampli-
fiers A, and A,al the current mirrors. With the use of moderate
gain,rail-to-rail input swing, folded cascode amplifiers A,, and
Ay. the current sensing circuit achieves less than 0.2% error and
10 MHz bandwidth.

In the sensing circuit inside switch-mode feedback loop,
matched resistor pairs Ro and Ry convert the sensed currents,
copied accurately by the current sensing circuit, to voltages
separately. The converted voltages Vo(t) and V(t) modulate
gate-source voltages of Mg and My and generate a replica
current across transistors Mg and M; with some gain. Drain
currents of Mg and Mz are summed and converted back to con-
trol voltage V.(t) by R. for the PWMcontroller. To minimize
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Fig. 19. Transient response of (a) CDMA envelope waveform with commercial PA load (CDMA signalbaseline shifted for clarity), (b) 30 dBm, 400 kHz SSB
suppressedcarrier envelope waveformand(c) 2.5 Vp), 2.5 MHz square waveform with 4.4 2 resistive load.

input referred offset, the DC level of the input rampis adjusted
to cancel any system mismatches inside the current sensing
circuit and transimpedance amplifier.

IV. TEST RESULTS

The master-slave, class-AB and switch-mode supply modu-
lator is fabricated in a 0.35 jum, 4-level metal CMOSprocess
and occupies a total core area of 4.6 mm? excluding the bond-
pads. A die micrograph of the IC with the pad ring is shown

in Fig. 17. The fabricated chip was packaged in a 44-pin LCC
package and mounted to a double-sided FR4 PCB for charac-
terization.

A typicallab setup for the transient and spectral density char-
acterization is shown in Fig. 18. Mathematical modeling soft-
ware is used to generate amplitude and phase information of
input waveform, and these vectors are uploaded toan arbitrary
waveform generator. An external mixer moduleis installed for
narrowband modulation of the phase to 835 MHz center fre-
quencyfor the PA characterization. The supply modulator has
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Fig. 20. Details transient response showing switching currentripple cancella-
tion takenplace at the output-summing node with 4.4 © resistive load.

Outputripple(mV) 
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Fig. 21. Peak-to-peak output voltage ripple versus output voltage.

been tested with a 4.4 2 resistive load with a 100 pF capacitive
load and a commercial saturated PA load,

Fig. 19(a) and (b) represents a typical transient response of
a CDMA envelope waveform and a 30 dBm, 400 kHz SSB
suppressed carrier envelope waveform in a master-slave supply
modulator with 4.4 ©load.Fast transientsat the envelope edges
represent a challenge to the wideband regulator. Fig. 19(c)
indicates the output transient signal settle within 60 ns with a
4.4 © resistive load. Fig. 20 details the current ripple cancella-
tion take placeat the output-summing nodeof the master-slave
supply modulator. Typical output current ripple and its opposite
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Fig. 22. (a) Efficiency comparison betweenlinear modulator and master-slave
supply modulator at different load levels. (b) Peak-to-peak ripple versus effi-
ciency trade-off in supply modulator.

phase cancellation current from the class-AB amplifier are
characterized with external 1 ( sense resistors. As shown in

the plot close to 25 mA,ripple is being cancelled by the linear
regulator. Fig. 21 plots the peak-to-peak output ripple voltage
at different de levels, Fig. 22(a) comparestheefficiency ofthe
standalone class-AB supply modulator with the master-slave
supply modulator at different de levels. Maximum efficiency
ofthe master-slave modulatoris 82% and its dynamic range is
65 dBc. The efficiency of the master-slave supply modulator
is three times higher than the efficiency ofthe linear amplifier
at 16 dBm output power and indicates a significant efficiency
improvement over the linear supply modulator at backed-off
powerlevels. Based on lab characterizations shownin Fig. 22(b)
modulatorefficiency is found to be optimum at 2.7 mV ripple.
In this characterization, the switching regulator bandwidth is
modified to sweep different ripple levels. A commercial PA is
used to characterize the ACPR performance ofthe proposed
regulator system with a composite IS-95 CDMA waveform.
The ACPR measurementis found in Fig. 23(a). At worst-case
in-band powerlevels, the ACPR! and ACPR?2, 885 kHz and
1.98 MHzoffset from the center frequency, are more than 46.6
and 57.4 dB, which meet the spectral mask density requirement
for IS-95 CDMAtransmission. A far-out plot of spectral den-
sity of the composite CDMA waveformis shown in Fig. 23(b).
At 10 MHz offset from the center frequency, switching ripple
adds less than —65 dB tonal content to the output spectrum.
Table I summarizes the linearity and efficiency performance of
the master-slave supply modulator. With 3.3 V power supply,
the regulator can provide 750 mA peak current with a quiescent
power consumption of 24 mA. The 2-tone SFDR at 10 MHz
with commercial PA load achieves —65 dBc.
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TABLEI
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inear amplifier quiescent current
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V. CONCLUSION

A wideband master-slave class-AB and switch-mode com-

bined supply modulator fabricated on a 0.35 jzm CMOS
technology is presented. A master class-AB regulator can-
cels distortion, supply noise and ripple associated with a
switch-mode regulator, while providing high frequency signal
content. A high linearity, high efficiency current sensing circuit
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is used to sense the class-AB amplifier output. This signal is
fed-forward to a current-controlled synchronousrectifier based
regulator providing the output envelope content within its
bandwidth, The measurementresults demonstrate that the com-

bined regulator has less than 2 mV),ripple at its output with
65 dBe SFDR and peak efficiency of 82% achieving 10 MHz
bandwidth. The master-slave supply modulator regulated PA
satisfies the CDMAspectral mask requirements.
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