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28 2 Imagefnrrmation

 
{C} {:1}

figure 2.] A few qumponnnts of III: image. farmafiuu PIECE-SS: {a} pampmfivn projecfiou: Eb) light Scattering
whnn hitting a sunken; [c] lens npfics; {d} Bays-.1“ color filter array.
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2.1 Geometric primltlves and transformations

Before we can intelligently analyse and manipulate images. we need to establish a vocabulary

for describing the geometry of a scene. We also need to understand the image formation

process that prodqu a particular image given a set of lighting conditions, scene geometry.

surface properties. and camera optics. In this chapter. we present a simplified model of such

an image formation process. ‘
Section 2.1 introduces the basic geometric primitives used duoughout the hook (points.

lines, and planes} and the geometric Iiansformations that project these 313 quantities into 2D

image features {Figure 2.1a). Section 2.2 describes how lighting, surface properties {Fig-

ure 2. | h}. and camera optics (Figure 2.1a} interact in order to produce the color values that

fall onto the image sensor. Section 2.3 describes how continuous color images are turned into

discrete digital samples inside the image sensor [Figure 2. id} and how to avoid {or at least

characterise] sampling deficiencies, such as aliasing.

The material covered in this chapter is but a hriefsummary of a very rich and deep set of

topics. traditionally covered in a number of separate fields. a more thorough introduction to

the geometry of points. lines. planes. and projections can he found in textbooks on multi—view

geometry [Hartley and Zisserman 2W4; Faugeras and Luong 2120]} and computer graphics

(Foley, van Darn, Feiner or m“. 1995). The image formation {synthesis} process is traditionally

taught as part of a computer graphics curriculum (Foley. van Dam. Feiner ct cl. I995; Glass-

ner 1995; 1Watt 1995; Shirley 2095} hot it is also studied in physics-based computer vision

(Wolff, Shallor, and Healey 1992a}. Tl'te behavior of camera lens systems is studied in optics

[Mdllcr 1933; Hccht 2091; Ray 2092). Two good books on color theory are (Wyssecki and

Stiles 2WD; Healey and Shafer I992), with {liviogstone 2993] providing a more fun and in—

formal introduction to the topic of color perception. Topics relating to sampling and aliasing

are covered in textbooks on signal and image processing {Crane 1991'; ldhnc 199?; Uppfllie

helm and Schafer 199d: Oppenheim, Scholar. and Bach I999; Pratt 2992‘, Russ 243W; Burger

and Huge 2993: Gonzales and Woods 2098}.

A note to students: If you have already studied computer graphics, you may want to

skim the material in Section 2.1. although the sections on projective depth and object—centered

projectictn near the end of Section 2.1.5 may he new to you. Similarly. physics students [as

well as computer graphics students) will mostly he familiar with Section 2.2. Finally. students

with a good background in image processing will already he familiar with sampling issues

{Section 2.3} as well as some of the material in Chapter 3.

2.1 Geometric primitivesand transformations

In this section, we introduce the basic 2D and 3D primitives used in this textbook, namely

points. lines. and planes. We also descIibe how 3D features are projected into 2]] features.

More detailed descriptions of these topics [along with a gentler and more intuitive introduc-

tion} can he found in textbooks on multiple-view geometry t'l-lsrtley and Zisserman 2094:

Fangeras and Luong 2:111}.

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes.

In this section, we introduce points. lines. and planes. later sections of the hook discuss

29
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30 '- I 2 Image ionisation

  
{hi

Figure 1.2 {a} 2D line equation and {In} 3D plane equation. expressed in terms of the normal it and distance to
the origin ti.

curves (Sections 5.1 and 11.2}. surfaoes (Section 12.3}. and volumes {Section 12.5}.

EU paints. 2D points {pixel coordinates in an image] can be denoted using a psiref values,

:1: = {my} E 122.01“ alternatively.

z = [ m ] . {2.1}if

{As stated in the introduction, we use the {231.9331 . . .] notation to denote eoiumn vectors.)

2D points can also he represented using homogeneous coordinates. i = {£11.13} (-3 P2.
where vectors that differ only by seals are considered to be equivalent. P2 = R3 — {13,01 ii}

is coiled the 2D projective space.

A homogeneous vector is can be converted back into so inhomogeneous vector at by

dividing through by the inst element iii. i.e..

i = (s, s, o} = «ms-.1,“ 1} = no, {so}

where i = (m, y, l} is the augmented vector. Homogeneous points whose last element is if: =

D are called ideal points or points at infinity and do not have an equivalent inhomogeneous

representation.

2D III'IBB. 2D lines can also he repteseuted using homogeneous coordinates i = (o. it. e].
The corresponding line equation is

s-i=ex+by+c=o. {2.3}

We can normalize the line equation vector so that! = (132.11... d] = [fit '3'} Willi "fill = 1- 11‘

this case. it is the some! vector perpendicular to the line and dis its distance to the origin

{Figure 2.2}. {'I'he one exception to this normalization is the line or irgfim'ty i- : (0.0.1).
which includes all {ideal} points at infinity.)

We can also express it. as a function ot'rotaliou angle 5. it = {one} = (onset, sin ii}

[Figure 2.2a}. This representation is commonly used in the Hottgh transform iiuefinding

algorithm, which is discussed in Section 4.3.2. The combination [(9.51]: is also known as

poior coordinates.

1|Ill-Then using homogeneous ooordinates, we can compute the intersection of tvro lines as

5'3 = fl 1' 121 {14}

APPL—1012 / Page 8 of 211
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2.1 Geometric primitives and transformations

where x is the cross product operator, Sirlailsi'ljr+ the linejoinjng two points can be written as

F=s1x ea. [2.53

When trying to fit an intersection point to multiple lines or. convcssely. a line to multiple

points, least squares techniques {Section 6.1.1 and Appendix All can be used, as discussed
in Exercise 2.1.

2D cont h: . There are other algebraic curves that can he expressed with simple polynomial

homogeneous equations. For example, the sonic sections {so called because they arise as the

intersection ofa plane sud a 3D cone] can be mitten using a quodrt'c equation

:ETQE = n. {2.6}

Quadrle equations play useful roles in the study ofmnltivuiew geometry and camera calibra-

tion {Hartleyr and Eissertnan 2W; Fhugeras and Luong 1001} but are not used eitttensinrel}r in
this book.

an points. Point coordinates in three dimensions can be written using inhomogeneous co-

ordinatesa: = (my, 2:] E R3 orhomogeneous coordinates i = {iiitfil E ‘Pa. selections.

it is sometimes useful to denote a 3]] point using the augmented vector 5: = {3, p, z. 1} with
5: = iii.

3D planes. 3]] planes can alsohe represented as homogeneous coordinates 1?: = (a, h, eJ rt}

with a corresponding plane equation '

tit-rit=ctc+hy+ez+d=fl. (2.?)

Wecan also normalize the plane equation as m. = {fih fry, fl.“ d} = (Ft, d] with ”fill = 1.

In This case. it is the sonnet vector perpendicular to the plane and d is its distance to the

origin [Figure 2.2m. As with the ease of so lines. the plane at infinity in = {one 1].

which contains all the points atinfinity'1 cannot be nonnslised tie, it does not have a unique

normal or a finite distance}.

We can express it as afunction oftwo angles {do}.

1‘1: {oochosd.s1‘nHoos¢r.sin¢t}l. {2.3)

i.e.. using spherical coordinates, but these are less COlnfllUfllj" used than polar coordinates

since they do not tniifornsty.r sample the space ofpossible normal vectors.

3-D lines. Lines in 3D tireless elegant than either lines in 2D or planes in 31]. One possible

representation is to use two points on the line, {go}. Any other point on the line can. he

expressed as a linear combination of dense two points

1" = {1 - its + is. (1-9}a'

as shown in Figure 2.3. If we restrict D 5 .1. S, 1. we get the line 5.23th joining p and q.

31
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32‘. 2 Image formation

 
Figure 2.3 3D line equation. to = {l — Alp + An.

if we use homogeneous coordinates, we can write the line as

F=p‘+.ltrf. {2.1m

A special case of this is when the second point is at infi nity. ie.. «E = (six, cl”, EL, {l} = (cl. [I].
Here. we see that d is the direction of the line. We can then reanite the inhomogeneous 3|}

line equation as

'r' = p+ sci. (2.11]

A. disadvantage of the endpoint representation for 3D lines is that: it has too runny degrees

of freedom. i.e.. six {three for each endpoint} instead of the four degrees that a 31) line truly

has. However. if we Ith the two points on the line to lie in specific planes. we obtain a rep-

resentation with tour degrees of freedom. For example. if we are representing nearly vertical

lines. then 2 = [1 and z = 1 form two suitable planes, i.e.. the {:r, y) coordinates in both

planes provide the four coordinates describing the line. This kind of two-plane psrmneterh

zation is used in the iightfleid and henigmph image-based rendering systems described in

Chapter 13 to retire-sent the collection of rays seen by a camera as it moves in front of an

ohjecL The two-endpoint representation is also useful for representing line segments. even

when their exact endpoints cannot be seen [only guessed at}.

If we wish to represent all possible lines without bias towards any particular orientation.

we can use Plflcker coordinates {Hartley and Zissermnn 2W. fltapter 2; Fangeras and Lueng

21:101. Chapter 3}. These coordinates are the six independentnon-zero entries in tired x4 skew

sytnrnetric matrix

L = is? — stir. (2.12;

where 15 and ii are any two (non—identical] points on the line. This representation has only

four degrees of freedom. since L is homogeneous and also satisfies detiL] = U. which rctults

in a quadratic constraint on the Pliieker coordinates.

1“. practice, the minimal representation is not essential for most applications. he ade
quate model of 31) lines can he obtained by estimating their direction {which may be known

ahead of time. e.g.. for architecture} and some point within the visible portion of the line

{see SeBfion Iii} or by using the two endpoints. since lines are most often visible as finite

line segments. However, if you are interested in more details shout the topic of minimal

line parameter-lemons. Ftirstner titlflfi} discusses various ways to infer and model 3D lines in

projective geometry. as well as how to estimate the uncertainty in such fitted models.

APPL-1012 / Page 10 of211
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2.1 Geometric primitives and transformations

 
Figure 2.4 Basic set of 2D planar transformations.

3D ouadrlea. "The 3D analog of a sonic section is a quadrie surface

aqu = o {2.13}

[Henley and Elisserman 2004.. Chapter 2}. Again. while quadrie surfaces are useful in the

study of mold-view geometry and can also serve as useful modeling primitives (spheres.

ellipsoids, cylinders}. we do not stud},r them in great detail in this hook.

2.1 .2 2D tranatorrnationa

Having defined our basic primitives. we can now turn our attention to how the}.r can be trans-

formed. The simplest transfomtations occur in the 2D plane and are illustrated in Figure 2.4.

Translation. 21:: translations can be wa‘itten as at = n: + t or

a“:[ I t]a (2.14}

where I is the [2 x 2} identity matrix or

I t

ffllfli iii {to}
where t] is the zero vector. Using a 2 x 3 matrix results in a more compact notation. whereas

using a full—rank 3 x 3 matrix (winch can be obtained from the 2 x 3 matrix by appending a

[HT 1] row] makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as it appears on both sidesr it can always be

replaced with a. full homogeneous vector i

Battalion 1- translation. This transformation is also lrnoa-rn as 2D rigid body motion or

the 2.0 Euclidean Imasfommrion {sinee Euclidean distanoes are preserved). It can be written
as m‘ = Ha: + t or

=[n we {2.16)

where ti . Elees —eln

,. R=laua mes ] {2'17}
is an orthonormal rotation matrix with RRT = I and [El = l.

33
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34 1 Image formation

Seated “Italian. Also known as the similarity transform. this transformation can be eit—

pressed as at’ = slits + t. where s is an arbitrary scale faetor. it one also be written as

a —i.'t 1.: _

b a for]; {2.13}m’ = [ sR t 15 = [
where we no longer require that n2 + it“ = l. The similarity transform preserves angles
henseen tines.

Affine. The affine transformation is written as m’ = An, where A is an arbitrary 2 x 3

matrix. Le.
t']

I: = [ HOD illll] no 13—: {.219}Bio Iii-ti R12

Parallel lines remain parallel under affine n'ansformations.

Projaetlve. This transformation. also known as a perspective tranjorm or hemography,
operates on homogeneous coordinates.

n’ = fin, {too}

where I} is an arbitrary 3 :u: 3 matrix. Note that 1:! is homogeneous. in. it is only defined

up to a scale. and that two fl“ matrices that differ only by sealelare equivalent The resulting
homogeneous coordinate :E’ must he annualized in order to obtain an inhomogeneous result
m.i.e..

I: _ hoo$+hoitt+ho2 and _ iltnfil+htitt+ his_ _ . 2]

hsnm + hart! + has heel“ + hoist + has {2“ l
Perspective oansfnnnannns preserve straight lines tie. they remain straight after the unna-
formation}.

 

Hiararohy of 2D tranafonnatlona. The preceding set of transformations are illuitrated

in Figure 2.4 and summarised in Table 2.1. The easiest way to think of them is as a set

of [potentially restricted) 3 x 3 matrices operating on 2D homogeneous coordinate veemrs.

Hartley and Zisserman {201214) contains a more detailed description of the hierarehy of 2D

planar transformations.

The above transformations form a nested set of groups. i.e.. they are elosed under eom—

position and have an inverse that is a member of the same group. {This will be important

later when applying these transformations to images in Section 3.6.} Bath {simpler} group is

a subset of the more oomplett group below it.

{lo-tractors. While the above transformations can be used to transform points in a. 1D

plans. can they also he used directly to n'ansform a line equation? Consider the homogeneous

equation l . i = it. lfwe transform in“ = Howe obtain

Fan’=ifl'frn=rr§rTf}Tn=i-s=o. {2.22}

i.e., r = iii—Ti. Thus, the aetion of a projective transfmmafion on a err-vector sneh as a 11']
line or 3D normal ean be represented by the transposed inverse of the matrix. which is equiv—

alent to the nose: of 1:1“. since projective transformation matrices are homogeneous. Jim

APPL-1012 / Page 12 of211



APPL-1012 / Page 13 of 211

2.1 Geometric primitives and transformations

Transformation Matrix # DUI" Preserves Ioon

translation [ I I it lass 2 orientation i:i

rigid {Euclidean} [ fl [ f. ]m_ 3 lengths O

sinnlarity [ HR | f. ]“3 4 angles 0

affine [ A ]2x3 E- parallelism E

projective [ 1? 13K: 8 straight lines I3
Tattle 11 Hierarchy of 2D coordinate transformations. Earth transformation also preserves the properties listed

in the rows helo'a-r it1 i.e.. similarity;-r preserves not onlyr angles trot also parallelism and straight lines. The ‘2 x 3

matrices are extended with a third {UT 1] row to form a full 3 x 3 man-ht for homogeneous coordinate transfonna-
Eons.

Elinll [1993] describes [in Chapters 9 and 1D) the ins and outs of mutating and manipulating
on-vettnrs.

We the above transfonnations are the ones we use most extensively, a number of addi—
tional transformations are sometimes used.

Strotohisqunsh. This transformation changes the aspect ratio ofan image,
tI

1: = sxm +t1

ii! = Etrif'" :‘III1

and is a restricted form of an affine transformation. Unfortunately, it does not nest cleanly

with the groups listed in Table 2.1.

Planar surfaoo flow. 'I'lds eighbparmnm transformation {Horn 3936; Bergem Anna.

nan, Hanna er ai. 1992; Girod. firemen and Niemann EDD-[ll],

2’ = no+alm+oss+nsai+aras

s’ = ns+ais+ass+arai+asaa

arises when a planar surface undergoes a small 3D motion. It can thus be thought of as a

small motion approximation to a full homography. Its main attraetion is that it is linear in the

motion parmnetets, up, which are often lhe quantitiets being estimated.

Bitlnear Interpolant. This eight-paramtor transform {Wolherg 1990},
I

a = an+aiz+n2s+asmtr

s’ = as + are + on: + area,

can he used to interpolate the deformation due to the motion of The four eot'net' points of

a square {In fact, it can interpolate die motion of an}r four non-collinear points.) While

APPL-1012 / Page 13 of211
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3d 2. Image fonnation

 

 Transformation Matrix -# DoF Preserves Icon

translation [ r | r. ]m 3 orientation i:i

rigid (Euclidean) [ R | a 13“ a lengths O.

similarity [ 51%|: 13“ ‘t angles 0

affine [ a ]m 12 parallelism fl

projective [ ri L“ is straight lines I 

Table 2.2 Hierarchy of 3D coordinate transformations. Each o-ansfortnation also preserves the properties listed
in the rows 'neloair it. i.e., similarity preserves not only.r angles but also parallelism: and straight lines. The 3 x 4

man-lees are eatertded with a fourth [UT 1] row to form a full 4 x 4 matrix for homogeneous eoordinate transforv
motions. The mnemonic icons are drawn in 2]] but are meant to suggest transformations occurring in a full 3D
cube.

the deformation is linear in tine motion parameters, it does not generally preserve straight

lines {only lines parallel in the square axes]. However. it is often quite useful. e.g,. in the

interpolation ofsparse grids using splines [Section 8.3].

2.1 .3 3D transformations

The set of three-dimensional coordinate transformations is very similar to that available for

2D transformations and is summarized in Table 2.2. As in ED. these transformations form a

nested set of groups. Hartleyr and Zissernian (2004. Section 2.4} give a more detailed descrip-

tion of this lucreichy.

Waterloo. 31) translations can be written as in“ = to + t or

e’=[r e ]e {2.23}

where I is the {3 x 3} identity matrix and D is the zero vector.

Rotation -t- translation. Also known as 3D rigid body motion or the 3D Euclidean trans—

formation. it can be written as te’ = Ra: + t or

z’=[R t]n {2.24}

where R is a s x a orthonormal rotation man-in: with 3.3“" = r and |Rl = 1. Nate that

sometimes it is more convenient to describe a rigid motion using

at’ = HIIa: - e} = Ra: — Re, {2.15}

where c is the center of rotation {often the camera center}.

Compactly parameterizing a EU rotation is a non—trivial task. 1arhicl't we describe in more
detail below.

APPL-1012/Page 14 of211
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2.1 Geometric primitives and transformations

Seated rotation. The 3D strafinrity transform can he expressed as :r:’ = 3R1: + It where

s is an arbitrary scale factor. it can also be written as

m“ = [ sfl‘. e lo. (2.215)

This transformation preserves angles between lines and planes. .

Affine. 'Ihe afiine transform is written as :e‘ = Ari. where A is an arbitrary 3 x It matrix.

i.c..

z = “It: I111 I312 are (2.2?)
flan 1121 Ilsa Baa

Parallel lines and planes remain parallel under afline transformations.

“on em no: nos]’ a

Projeottaa. This transformation. variously lrrtown as a JD perspective fmtlfllfl'l’m, honing—

rnphy. or collimation. operates on homogeneous coordinates.

a 2 tie. (2.2s)

where H is an arbitraryr 4 x d homogeneous matrix. are in 2D. the resulting homogeneous
coordinate a? must be normalized in order to obtain an inhomogeneous result re. Perspective

transformations preserve straight lines fire. they remain straight after the transformation].

2.1.4 3D rotations

The biggest diEemncc between 2E} and 3D coordinate transformations is that the parameter-

ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angtas

a rotation matrix can be formed as the product of three rotations around three cardinal axes.

e.g.. s. y. and z. or a', y. and a. This is generally a bad idea, as the result depends on the

order in which the treasforrns are applied. Ivt‘r'hat is worse. it is not always possible to move

smoothly in the parameter space. i.e.. sometimes one or more of the Euler angles change

dramatically in response to a small change in rotation." For these reasons. we do not even

give the formula for Euler angles in this book—interested readers can look in other textbooks

or technical reports {Faugeras 1993; Diebel enact. Note that. in some applications. if the

rotations are known to be a set of uni-axial transforms. they can always be represented using

an asphalt set of rigid transformations.

Atrialangla (attportantlal twist}

a relation can be represented by a rotation axis ft. and an angle it. or equivalently by a 3D

vector to = dr‘i. Figure 2.5 shows how we can compute the equivalent rotation. First, we

project the vector t.- onto the axis ft. to obtain

u" = are - v] = (salts, {2.29)

I lnrobotlcs. this is secretlnres referred toes girrrbrtttoctt.

3'?
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33 ' 1'. Image Formation

 
Figure 2.5 Rotation around an axis 7': h}! an sngic H.

which is the component of ‘t! that is not nfi'cctod by tho rotation. Next. we compntc tho

perpendicular residual ofn from fi.

1:. = u—u” = tr—nnTiu. (can;

We can wrote this vector lav 91:!“ using the cross product.

ox =fiXu= [film-.111 {2.31)

when: [fiix in tho matrix form of thc cross prothtct operator with tho vector fl. = (71,, ft“, fix}.

i} —-fi, Ft,

In] t = [ a. a —fi. ] . (2.32}
_fiy fix CI

Note that rotating this vector by snolhor ED“ is oqnivslllt to taking the cross product again.

on = 7‘: X W = [filiv = ‘flLr

andhcncc

1t"='l.t—'I'.IJ_ =fl+flxx ={I+{fi]i]u.

Wt: can nmv compute the in-plsnc component of tho rolntcd vector u as

ui = cos Hui +ninti'ox = {sin fifth — MSW}: in.

Putting all thcsc terms tognthcr. we obtain lilo final rotstcti vector as

u= or +1.!” = {I+sind|fi],. + [1 —oosd}[fi!§¢]u. {2.33}

We can mcrcforc mitt: tho rotation matrix corrcspornding to s rotation by H around an axis ii.
35

Rfiflflj =I+smn{a].. +[1—cmn}[n]i. {2.34:-

whioh is knttv-I'Il an Rodriguez h‘famuiu [hyachc 1989}.

The product. ofthc axis 15. and angle a, n: = M = [umwwwfih is a minimal reproach;

tanon [or a 3D rotation. Rotations through common angles such as multiples of 90“ can be

rcprcsnntod citactlf,r {and oortvcrtotl to oxact matriocn) fit? is stored in dogmas. Unfortunately1

APPL-1012 / Page 16 of211



APPL-1012 / Page 17 of 211

2.1 Geometric primitives and Iranshormatiorts

this representation is not unique. alone we can always and a multiple of 350° {Err radians] to

I? and get the same rotation matrix. its well, {r11 15*} anti (—i‘t. —6'} represent the same rotation.

Honnnrerr for small rotations leg" oon'eotions to rotations). this is an eaeellent choioe.

In particular. for small {infinitesimal or instantaneous} rotations and 5 expressed in radians.

Rodriguez's formula simplifies to
I.

l —n.rl in”.

RIEeJ] or I + sin F[fi]x an f+ [flfilp = to. 1 —n.r= I [2.35)

_wy w: 1

which gives a nice linearized relationship between the rotation parameters or and R. We can

also Write Rfiwln as t: + to x to which is handy when we want to compute the derivative of

fit: with respect to at.

Li 2 —y

EEE = _{ulx = [ _t o z I one}
Another way to derive a rotation through a finite angle is ealien the smarter-iris! twist

(Murray, LL and Sastrjrr 1994}. A rotation by an angle t? is equivalent to it rotations through

Elfin. In the limit as is —r no. we obtain

1

R{fi.3} = lira {1+ —[sa],Ji =ex'plwlx. {2.31}h—em k

If we expand the matrix exponential as a Taylor series [using the identity.r [fil:+2 = —[r'i.]’f¢,
i; :- fl. and again assuming El is in radians], -

ti” 33

Willi-”ls = I+9ifilx +§ifili +filfili +
33 _ _ ti"t n93 2

— no- fi‘l‘MJlfllr-CTiF—E‘l'mlifilx
= r+ans[n]K + {1 - coasnnfi, {asst

which yields the familiar Rodriguez's formula.

Unit quaternlona

The unit quaternion representation is closely related to the anglefaxis representation. A unit

quaternion is a unit length d-veetor whose components can be written as q = [on pm an. owl

or q = (a. p. z, to} for short. Unit quaternions live on the unit sphere ||q|l = l and antiporiai

[opposite sign} quaternionsrq and —q. represent the same rotation [Figure 2.6}. Other than
this ambiguity.r [dual oovering}, the unit quaternion representation of a rotation is unique.

Furthermore. the representation is continuous. i.e.. as rotation matrices vary continuously,

one can find a oonlinuoos quaternion representation. although the path on the qnsternion

sphere may wrap all the way around before returning to the "origin" on = {0.0.0.1}. For

these and other reasons given below. quaternions are a very popular representation for pose

and for pose interpolation in computer graphics {Shoemalte I985}.

39
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4i} 1 Image formation

 
Figure 115 Unit quaternions live on the unit sphere ||q|| = 1. This figure shows a smooth trajectory through the

three quaternions Gc- in. and in. The amipodai point to ‘12- nartieii.r —qg. reprcscuta the same rotation as '12-

Quatemiens can be derived from the aaisi'artglc representation through the formifla

q = {11,191 = {sin 21%., cos g}, {2.39}
where it and d are the rotation axis anti angle Using the trigonometric identities sind =

25in % cos % and {l — cost?) = 2 sin? %. Rodriguez‘s fonmtla can be converted to

Rise} = r+sns[a]x+t1—coafiiifi]i

= I+2wla1x+2[a]i. til-till)

This suggests a quick wavto rotate a vector” by aquaternion using a series of cross products.

scalings. and additions. To obtain a foimuia for Rfifl as a function of [317, y. z. to}, recall that

t] —z y flag—s: my to:

[a]x= z [I —e and [a]§¢= my —:r“-—s3 ya
—y ta {1 at: ya —::.-‘—pJ

We thus obtain

1 — ‘EEy3 + 23} 21:2;- — era-:1 flats + pic}

Rig} = 21:31: + m} l — 2&2 + a“) 2(ys ... aw} . {2.41)

an — am} as: + mi 1 — so} + so

The diagonal terms can he made more symmetrical hv replacing l — Eur2 + 22} with [:c" +
at“ — y” — z“). etc.

The nicest aspect of unit quaterniorts is that there is a simple algebra for composing rota—

tions expressed as unit quaternions. Given two quaternions on = {am we} and q, = [111.1111].

the quatsmion muitipiy operator is defined as

#2 = csq1=ivu x v: + new: +w1us.wnw1— ”Fri-'1}. (2.42}

with the property that Riga) = R(qfl]R{q-lj. Note that quatcmion multiplication is not

commutative. just as 3D rotations and matrix multiplications are not.
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prooeflttre sieipllzqfl, 9'1 , er}:

1- at = arias = [vi—no}

.Ewreflthenqrh—qf

. a =2ten’1flllurlliwr}

- fir =.i"u"'[t.r,:| = ”rillurll

. d.“ = odr

.qg = {singer‘s-moons 3;}

2". return q: = ‘i'u‘i'o

 
d1

Algorithm 1.! Spherical linear interpolation {sleet-p]. The axis and total angle are first computed from the quater—

nion ratio. {This computation can be lifted outside an inner loop that generates a set of interpolated position for

animation.) its increments] qnatesrtion is then eonipnted and multiplied by Ihe stoning rotation quaternion.

Taking the inverse of a quaternion is easy: Just flip the sign of n or ‘Ltl' {but not both”.

{You ean verify this has the desired effect of transposing the R matrix in {2.41).} Thus. we

ean also define quarantine division as

'32 = Guilt}: = 'Ioli'fl ={1'tt 3" "I + Weill — “hum —wn1-'-f1 — 1”o ' 111)- {2-43}

This is useful when the incremental rotation between two rotations is desired.

In particular. if we want to determine a rotation that is partway between two given rela-

tions, we can oomptlte Ihe incremental rotation, tain: a fraefion of the angle. and compute the

new rotation. This procedure is called spherical linear interpolation or slot}: for short {Shoo

make 19135} and is given in Algorithm 2.1. Note that Shoemake presents two formulas other

Than the one given here. The first exponentiates or by slphs before multiplying the original

quaternion,

 

on = effing. (144]

while the seoond treats the quaternions as 4-veflms on a Sphere and uses

sinfl — odd sin of?= _ .45
its sinii tl'o‘l' 5111391: [2 l

where 5' = ens—1WD - :31} and the dot produet is directly bemeen the quatemion d—veotors,

All of these formulas give comparable results. although care should be taken when fin and in

are close together. which is why I prefer to use so sretangent to establish the rotation angle.

Whleh rotation representation is better?

The ehoiee of mpresentsfion for 3D rotations depends partly on the applioafium

The axisisnfle representation is minimal. anti hence does not require anyr additional eon—

straine: on the parameters (no need to rue-normalise after each update}. If the angle is ex.—

pressed in degrees. it is easier to understand the pose (say. Fill" twist around e-axis}. and also
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easier to express exact rotations. When the angle is in radians. the derivatives of R with

respect to to can easily be computed {2.35}.

Quaternions. on the odrer hand, are better if you want to keep track of a smoothly moving

camera. since there are no discontinuities in the representation. it is also easier to interpolate

between rotations and to chain rigid transformations (Murray. Li. ““1. Sastry 1994: Bregler
and Maiilt 1993].

My usual preference is to ttsc quaternions. but to update their estimates using an incre-
mental rotation. as described in Section 6.2.2.

2.1.5 3|) to 2D projections

Now that we know how to represent ED and 3D geometric primitives and how to transform

them spatially, we need to specify how 3D primitives are projected onto the image plane. We
can do this using a linear 31) to 2]] projection matrix. The simplest model is orthography,

winch requires no division to get the final {inhomogeneous} result The more commonly used

model is perspective. since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the 2 component of the three-dimensional ooordi-

nate p to ohtain them point re. {In this section. we use p to denote 31] points and m to denote

2]] points.) This can be written as

:1'. = [ngglfl] p. {2'46}

If we are using homogeneoua {projective} coordinates. we can write

lflflll

e=oraoa. (as?)
user

i.e., we drop the a component but keep the to component. Orthography is an approximate

model for long focal length {telephoto} lenses and objects whoSc depth is shallow relative

to their distance to the camera (Sawhney and Hanson 1991}. It is exact only for refs-centric

lenses [Baker anti Mayer 1999. Elli}.

in practice. world coordinates {which may measure dimensions in meters) need to be

scaled to fit onto an image sensor (physically measured in millimeters. but ultimately mea-

sured in pixels). For this reason. scaled orthography is actually more commonly used.

:I: = [sfgxglfll j}. {243)

This model is equivalent to first projecting the world points onto a local fronto—parallel image

plane and then scaling this image using regular perspective projection. The scaling can he the

same for all parts of the scene [Figrn'e 1Tb} or it can be different for objects that are being

modeled independently {Figure Ho}. More importantly. the scaling can vary from frame to

frame when estimating srntctarefiom motion. which can better model the scale change that

occurs as an object approaches the camera

Scaled orthography is a popular model for reconstructing the 3D shape ofobjects faraway

from the camera. since it greatly simplifies certain computations. For e1ample.pore [camera
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[a] 3D viow

{a} perspective [ff] objacbaantamd

Figure 2.? Commonly used projection models: (a) 3D flow of world. {In} orthography. {a} soalod orthography.

{d} pm—pfispoofivo, {a} perspective, if} ubjact-canlmnd. Each diagram shows a tap-m flaw of Ilsa projachhu.

Note how parallel lines on. Hm ground plant. and box aides mmain parallel in Ila: non—pm’spaofiva projoolions.

APPL-1012/Page 21 of211



APPL-1012 / Page 22 of 211

2 Image formation

orientation} can be estimated using simple least squares {Section 6.2.1]. Under orthography,

structure and motion can simultaneously be estimated usingfactorization {singular value de-

composition}. as discussed in Section ‘13 ['Ihmasi and Kanade 1992}.

a closely related projection model is pore-perspective {aloimonos 19910; Poetnrae and

Kanade 199?]. In this model. object points are again first projectpd onto a local reference
parallel to the image plane. However. rather than being projected orthogonally to this plane.

they are projected parallel to the line of sight to the object center [Figure “L'l'dft. This is
followed by the usual projection onto the final image plane. which again amounts to a scaling.

The combination of these two projections is therefore gfl'iee and can be written as

Icon our Goa floa

i= fl1n I111 fire 013 5'3- {149'}
[l i] i} 1

Note how parallel lines in 31') remain parallel atlerprojection in Figure lib-d. Pararperspeetive

provides a more accurate projection model than sealed orthography. without incurring the
added complexity.r of per-pixel perspective division. which invalidates traditional factoriza-

tion methods {Peeler-an and Kanade 199?).

Perspective

The most commonly used projection in. computer graphics and computer vision is one 3]]

perspective {Figure lie}. Here. points are projected onto the image plane by dividing them

by their a component. Using inhomogeneous coordinates. this can be written as

of:

ii = ‘P,{r}} = W's . {2.50}
1

In homogeneous coordinates, the projection has a simple linear form.

1 t] I] ll

d = U 1 I] t] 15. {2.51}
It] [I 1 [II

i.c., we drop the to component of p. Thus, after projection. it is not possible to recover the

distance of the 3D point from the image. which makes sense for a 1D imaging sensor.

A. fonn often seen in computer graphics systems is a two—step projection that first projects

3D coordinates htto aonaaiized device coordinates in. the range (is. y. z} E [—11 —1] x

[—1, 1] 2-: [I]. l]. and then rescalcs these coordinates to integer pixel coordinates using a view-
porr transformation [Watt 1995‘. DpenGLrARE I991]. The {initial} perspective projection

is then represented using a 4 x 4 matrix

I. [I El 0

_ I] 1 i} [l _
a: = , 2.52I] [i —3£arld3rm3e zneuzrardzrango P II: J

[l [l l I]

where sum and at“ are the near and far a clipping planes and cm,” = am. - am. Note

that the first two rows are actualljr scaled by the focal length and the aspect ratio so that
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Figure 1.3 1Projection of a 3D camera—centered point pa onto the sensor planes at location 15'. 0.. is the centers
center (nodal point}. e, is the 3D origin of the sensor plane coordinate system. and a= and s, are the pixel spacings.

visible rays are mapped to {n.p, a} E [— l1 — IF. The reason foriteeping the third row. rather
than dropping it. is that visibility operations. such as z-buferieg. require a depth for ovary
graphical element that is being rendered.

If we set 3...... = 1. an. a no. and switch the sign of tile third new the third element
of the normalised screen vector becomes the inverse depth. i.e.. the d' rity [Ukutnmi and
Kansde 1993}. This can be quite convenient in many cases since. for cameras moving around
outdoors. the inverse depth to the camera is often a more well-conditioned paramcrerieation
than direct 3D distance.

1|titt‘ltilc a regular 2D image sensor has no way of measuring distance to a surface point.
rouge sensors (Section ill} and stereo matching algorithms {Chapter 1 i} can compute such
values. It is then convenient to be able to map from a sensor-based depth or disparity value it
directly back to a 3i) location using the inverse of a at x 4 matrix {Section 2.1.5). We can do
this if we represent perspective projection using a full-malt .1 x 4 matrix. as in {1.64}.

Camera tntrinslcs

lElnoe we have projected a 3]) point through an ideal pinhole using a projection matrix. we
must still transform the resulting coordinates according to the pixel sensor spacing and the
relative position of the sensor plane to the origin. Figure 2.3 shows an illustration of the
geometry involved. In this section. we first present a mapping from 2D pixel coordinates to
3D rays using a sensor homography M.. since this is easier to explain in tetrns of physically
measurable quantifies. We thenrciate these quantities to the more commonly used camera io~
trinsic matrix K. which is used to map 3D camera-centered points rig to 2D pixel coordinates
5:3,.

Image sensors return pixel valum indexed by integer pixel coordinates {a.,p,.}. often
with the coordinates starting at the upper-left corner of the image and moving down and to
the right. [This convention is not obeyed by all imaging libraries. but the adjusauent for
other coordinate systems is straightforward.) To map pixel centers to 3D coordinates. we first
scale the (shy...) values by the pixel spacings (as. sy} {sometimes expressed in microns for
solid~statc sensors) and then describe the orientation of the sensor array relative to the camera

projection center 0.. with an origin c. and a 3D rotation R, {Figure 2.3).
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The combined 2]) to 3D projection can then be written as

S

p=[Rs|f-:I] 1that“:
I a

me
[i i]

i] i] [ his ] = Mair {2-53)
U l

I.

The first two columns of the 3 2-: 3 matrix M, are the 3D vectors comrsponding to unit steps

in the image pixel array along the z, and. y, directions. while the third column is the 3D

image array origin (1,.

The matrix M. is patamcterised by eight unimowns: the three parameters describing

the rotation R... the three parameters describing the translation em and the two scale factors

[am ”all Note that we ignore here the possibility ofskew between the bare axes on the image
plane, since solid-state manufacturing techniques render this negligible. lo practise. tmless

we have accurate external knowledge of the sensor spacing or sensor orientation+ there are

only seven degrees of freedom, since the distance of the sensor from the origin cannot be

teased apart from the sensor spacing. based on external image measurement alone.

However, estimating a camera model M, with the required seven degrees of freedom

(in. where the first two columns are orthogonal afleran appropriate rescaling} is impracticalI

so most practitioners assume a general 3 x 3 homogeneous matrix form.

The relationship between the 3D pixel center 1: and the 3D camera-centered point F: is

given by an unknown sealing s. p = spa. We can flimefore write the complete projection

between pa and a homogeneous version of the pixel address 5:, as

s, = sari-pg = Kpc. (2.54}

The 3 x 3 matrix K is called the calibration matrix and describes the camera nominates {as

opposed to the camera‘s orientation in space. which are called the eflt‘ittslcs].

From the above discussion. we see that H has seven degrees of freedom in theory and

eight degrees of freedom {the full dimensionality of a 3 x 3 homogeneous matrix} in pracfico.

It‘t’hy, then, do most textbooks on 3D computer vision and multi~view geometry (Faugeras

1993: Hartley and Zisscrrnan EDD-ii; Faugeras anti Luong 211101] treat H as an upper-triangular

mob-ix with five degrees of freedom?

While this is usually not made explicit in these hooks, it is because we camtot recover

the full K matrix based on external measurement alone. When calibrating a camera (Chap-

ter 6} based on external 3]) points or outer measurements [Tsai 1937}. we end up estimating

the inn-ionic [K] and extrinsic (R, a} camera parameters simultaneously using a series of
measurements.

s.=K[ alt ]p...=Pr-... one

where pg are human 3D world coordinates and

P = K[R|sl (2.56]

is known as the camera matrix. Inspecting this equation, we see that we can post—multiply

K by El and pro-multiply [thl by RT. and still end up with a valid calibration. Thus. it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrirtsics.
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47

Figure 2.? Simplified camera intrinsies showing the focal length I and the optical ccnler{c=,e1,]. "Ilse image

width and height are W and H.

The choice of an upper-triangular form for K scents to be conventional. Given a full

3 x 4 camera matrix P = K[Rit]. we can compute an upper—triangular K matrix using QR

factorization {Goluh and Van Loam 1996]. [Note the unfortunate clash of terminologies: In

matrix algebra textbooks. H represents an upper-triangular (right of the diagtmall matrix: in

computer vision. H. is an orthogonal rotation}

There are setteral ways to write the upper-triangudar form of K. One possibility is

In: 5 G:

K: o r. a. . use
fl [} 1

which uses independentfocal lengths I, and II, for the sensor a: and 1; dimensions. The entry

at encodes any possible skew between the sensor axes due to the sensor not being mounted

perpendicular to the optical axis and {step} denotes the optical center expressed in pixel

coordinates. Another possibility is

f 3 5:

K: a of a]. {2.53}i] [I 1

where the aspect ratio a has been made explicit and a common focal length I is used.

In practicepfor many applications an. bitten simpler form can be obtained by setting a = 1
ands=tl.

I [I c==

K: a f a]. {2.59}[till

Often. setting the origin at roughly the center of the image. e.g.. {chop} = {Wfl HIE}.
where W and H are the image height and widdi. can result in a perfectly usable camera

model with a single unknown. i.e.. the focal length I.

Figtn-e 2.9 shows how these quantifies can be visualized as part of a simplified imaging

model. Note that now we have placed the image plane infionr of the nodal point [projection

center of the lens]. The sense of the y axis has also been flipped to get a coordinate system

compatible with the way that most imaging libraries treat the 1rertical {tow} coordinate. Cer—

tain graphics libraries. such as DirectflD. use a left-handed coordinate system. which can lead
to some confusion.
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Figure 1.10 Central projection, showing the relationship between the 3D and 2D coordinates. p and m. as well

as the relationship between the focal length 1’. image width W} and the field of view ii.

A fluid on focal lengths

The issue of how to express focal lengths is one that often causes confusion in implementing

computer vision algorithms and discussing their results. This is because the focal length

depmrds on the units used to measure pixels.

if we number pixel coordinates using integer values. say it}. W} x [ElI H:I. the focal length

I and camera eclter (cg, cu} in {2.59) can be expressed as pirtei values. How do these quan-
tities relate to the more familiar focal lengths used by photographers?

Figure 2.1t] illustrates the relationship between the focal length I. the sensor width W.

and the field of view H. which obey the formula

s w w s '1

tan '2" — "2? DI If — ? [tan E] .
For conventional film cameras, W = 35mm. and hence I is also expressed in millimeters.

Since we win}: with digital irnsges1 it is more convenient to express W in pixels so that the

focal length I can he used directly in the calibration man-is K as in {2.59}.

Another possibility is to scale the pixel coordinates so that they go Erom [—1,l} along

the longer image dimension and [—o—1,n—1} along the shorter axis. where o g 1 is the
image aspect ratio [as opposed to the sensor cell aspect ratio introduced earlier}. This can be

accomplished using modified nomeiized device contributes.

a“; = [2a, - ijS and y; = (fly, — HHS, where S=max|[W, H]. [2.61)

This has the advantage that the focal length I and optical center [on or) become independent

of the image resotntion. which can be usefuI when using multivrcsolution+ image-processing

ngorithms. such as image pyramids {Section 3.5}? The use of 3 instead of W also makes the

focal length the same for landscape {horizontai} and portrait {vertical} pictures. as is the case

in 35mm photography {In some computer graphics textbooks and systems, normalized device

coordinates go from [—111] x [—1.1]. which requires the use of two difi‘erent focal lengths

to describe the camera intrinsies Matt 1995; DpenGL—ARB 1993.] Setting S = W = 2 in

(2.61)]. we obtain the simpler [unitless} relationship

EI‘

r1 = too i' (2.62]
3 Th make Ute oomerst'on truly accurate after a downsampling slap in apyrsmid, [Loafing point values of W and

H would hate to be maintained since they can become nonwhrtcgrsl if they areeverodd at a larger resolution in the
pan-amid.

{EASE}
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The conversion between the various focal length representations is straightforward t3.g..

to go from a unitless f to one expressed in pixels, multiply by Wffl. while to convert from art

f expressed in pixels to the equivalent 35mm focal Iengthi multiply by BEfW.

Camera matrix ‘

Now that we have shown how to parameter-ice the calibration matrix K. we can put the

camera intnnsics and estrinsics together to obtain a single 3 x 4 camera matrix

P=rr[rt|r]. (ass)

[t is sometimes preferable to use an invertible 4 is 4 matrix. which can be obtained by not

dropping the last row in the P matrix.

- K (1 fit —

P=[DT tHoT 1]_rr.a', {2.64}
where E is a 3D rigid-body {Euclidean} transformation and R is the full-rank calibration

matrix. The 4 X 4 camera matrix 15 can be used to map directly from 3D world coordinates

p“ = {am pm am. 1] to screen coordinates {plus disparity). :, = (a, r y“ 11 d],

e. m 15pm, {2.65}

where m indicates equality up to scale. Note that after multiplication by 15, the vector is
divided by the third element of the vector to obtain the annualized form 3, = [on y" Lei}.

Plane plus parallax {projective depth}

in general1 when using the 4 x 4 matrix 13, we have the freedom to remap the last row to
whatever suits our purpose {rather than just being the "standard" interpretation of disparity as

inverse depth). Let us re-writc the last row of F as 193 = sflfiuicu]. where iii-all = i. We

then have the equation

 

d = agave - at + can, use
where a = p2 - 13” = r. ~ [pm — e) is the distance of p." from the camera center If} {2.25}

along the optical axis 3 {Figure 2.11]. Thus, we can interpret d as the projective dispcrinr

orprojec'tt've depth of a 3D scene point pw from the reference plane fin . pm + tin = U

[Sachski and Coughlan 199T: Szeliski and (Holland 1999*. Shade, Border. He at ai. 1993:

litalter+ Szelisld. and Anandan [993}. [The projective depth is also sometimes called parallax

in reconstruction algorithms that use the term plane plus par-altar {Kumae Amtlan. and

Hanna 1994'. Sawhney 1994).} Setting fin = {I and Cu = 1. Le, putting the reference plane

at infinityr results in the more standard a! = ig’z version of disparity [Olmtomi and Kanstle
1993}.

Another way to see this is to invert the 15 man-ht so that we can map pixels plus disparity

directly hack to 3]] points.

aw = 15—13,. as?)

In general+ we can choose 13' to have whatever form is convenient, i.e.. to sample space us

ing an arbitrary projection. This can cmnc in particularly handy when setting up multi-view

49
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image plane t

 
at = inverse depth d = projective depth

Figure 2.1] Regular dispute-it},r {inverse depth] and projective depth [parallax from a referenee plane}.

stereo reconsunmion algorithms. since it allows us to sweep a series of planes [Section I 1.1.2}

through space with a variable {projective} sampling that best matches the sensed iinage mo-

tions {Collins [996; Sseliski and ltiiollaud IS'BEI; finite and Kanad‘e 1999}.

Mapping from one camera to another

What happens when we taiw two images of a 3D scene from different camera positions or

orientations {Figure 212a}? Using the full rank 4 x 4 cnmera matrix P: KE from {2.I54},

we can wiite the projection from world to screen coordinates as

at ~ Itasca = Fee. {2.63}

Assuming that we know the z-hufi'er or disparityI value rig for a pixel in one image. we can

compute the 3]] point location 1: using

pm- stifle; (2.69}

and then project it into another image yielding
._l_._ .. _ -_1_. - _

511 ~ K1131; = KlElEfl 1K“ In: P1P“ to = Misfits {2-713}

Unfortunately. we do not usuallj.r have assess to the depth coordinates ofpixets in a ngtar

photographic image. However. for a planar some, as discussed above in {2.Eirti}. we can

replace the last row of Pain {26-1] with a general plane equet‘ionn‘tg p + 91] that maps

points on the plane to rig = D values {Figure 2.12‘o}. Thus. if we set dg—— I]. we can ignore

the last solemn of M11] in {2TB} and also its last. row. since we do not care about the final

z—hrufl'er depth. The mapping equation {2343} thus reduces to

5:; ~ rims“. {2.71}

where I?to is a general 3 x 3 homographv matrix and 5:; and in; are new 2D homogeneous
coordinates tie. Bevectors} (Ezeliain' 1996}.'I‘his justifies the use of the ll—parameter homog—

raphjt as a general alignment model for mosaics of planar scenes (Mann and Pieard 1994:

Seeliski 1996).
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Figure 2.12 a point is projected into two images: (a) relationship between Ihe 3]] point coordinate (X, Y, Z, l]
and the 2D projected point {:1 y. 1.5!}; Eb} planar homography htdueed by points all lying on a common plane

fig-p-f—GQEU.

The other special case when: we do not need to know depth to perform inter-earners

mapping is when the camera is undergoing pure rotation {Section 9. Ll’rjl+ i.e.r when ta = :1.
In this case, we can write

=i=1~ Kisses—Wales = Ktatnxs‘en: {2.12}

which again can he represented with a 3 x 3 homography. If we assume that the calibration

man-ices have known aspect ratios and centers of projection {2.59}, this homography can be

parametelined by the rotation amount and the two unknown focal lengths. This particular

formulation is commonly used in imagevstitching applications {Section 9.1.3).

Object-centered pmloctton

When working with long focal length lensesI it often becomes difficult to reliath estimate

the focal length from image measurements alone. This is because the focal length and the

distance to the object are highly con'elated and it becomes diffith to tease these two effects

apart. For example, the change in scale of an object viewed through a zoom telephoto lens

can either be due to a zoom change or a motion towards the user. {This effect was put to

dramatic use in some of Alfred Hitchcock‘s film l-hrrigo. where the simultaneous change of

zoom and camera motion produces a disquieting effect.)

This ambiguityr becomes clearer if we write out the projection equation corresponding to

the simple calibration matrix K {2.59}.

  
rI-F+t1'= 1T3

3: fr‘_p+tx +6.: { 1
r- - +t

a. = tT—"PEHHoI taro

where rm. 1-,]... and 1'; are the three rows of R. If the distance to the object center i; :s- ||p||
[the size of the object}. the denominator is approximately t, and the overall scale of the

projected object-depends on the ratio of f to h. It therefore becomes difficult to disentangle

these two quantities.
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2. Image formation

To see this more clearly, let Tl: = if and s = 17,}. We can then rc—write the above

equations as

7': ' p “l" t:= —+ at
I“ 31+azrt-a a” l 5]

7's 'P‘l'ttt
. = —+ . arep Si-Irttflrp c1. l i

[Srnliski and Kong 1994: Pighin. l-lecirer. Iischinslri et at. 1993}. The scale of the projection

s can be reliably estimated if we are looking at a know object {ie.. the 3D coordinates p

are lrnoun). The inverse distance to. is now mostly decoupled from the estimates of a and

can be estimated from the amount offisrestinrtening as the object rotates. Furthermore. as

the lens becomes longer. i.e., the projection model becomes orthographic. there is no need to

replace a perspective imaging modal with an orthographic one. since the same equation can

be used. with n; —t ll {as opposed to f and t, both going to infinity}. This allows us to form

a natural link between orthographic reeonshnotion techniques such as factorization and their

projectivetperspective counterparts {Section 7.3).

2.1.5 Lens distortions

The above imaging models all assume that cameras obey a itoear projection model where

straight lines in the world result in straight lines in the image. {This follows as in annual

consequence of linear matrix operations being applied to homogeneous coordinates.) Unfor—

tunately. many wide-angle lenses have noticeable radial distortion. which manifests itself as

a visible curvature in the projection of straight lines. [See Section 2.13 for a more detailed

discussion of lens optics, including chromalic'aherrflith Unless. this distortion is taken into

account, it becomes impossible to create highly,I accurate photorealistie reconstructions. For

example. image mosaics constructed without taking radial distortion into account will often

exhibit blurring due to the miscegisttation of corresponding features before pixel blending

{Chapter 9].

Fortunately. compensating for radial distortion is not that difficult in practice. For most

lenses. a simple quartic model of distortion can produce good results. Let (a... pa} be the

pixel coordinates obtained afier perspective division but More scaling by focal length I and

shifting by the optical earlier {cm cg}, i.e.,

:I.‘ = T's-'P+tn
e rc‘p'l'tr

= TI'F'l'i...
it's 1"; tail-Ft:- {2.77}

The radial distortion model says that coordinates in the obsened images are displaced away

{hart-ti distortion} or towards {pmcushiorr distortion} the image center by an amount propor-

tional to their radial distance {Figtn'e 2.13a—b}.3 The simplest radial distortion models use

low—order polynomials. eg.

in: = rs¢{l + £11": + Kari]

ti: = are-{1 + and.“ + sari). rats}

3 Anmnmphlelcnscs. whichare widely asedio Ecamrc film production. donor totlowtitls redial distortion model.
instead. they can he drought at. to a. first approximation. as inducing dill'creot tactical and horizontal ceilings. in.
non-aquatic pixels.
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“is“ "—

tn tn

  
is}

 
Figure 2.13 Radial lens distortions: (a) barrel. {i1} piticusitiott. and {o} ilfil'lfljl'fl. 'I'l'te fisheyt'. image spans almost
180" from side-to-side.

where TE = :17: -i- y: and s1 and Pig are called the radial distortion .ncruineters.‘1 After the
radial distortion step. the [inal pixel coordinates can be computed using

a. ; _.".-t:f:-t-r."1

in = fakes- {2.1'91

a. vat-jet]; of techniques can be used to estintate the radial distortion parameters for it aired

lens. as discussed in Section 5.3.5.

Sometimes the above simplified model does not model the true distortions produced by

complex lenses accuratelyr enough {especiallyr at very wide angles}. A more complete an. -

tyljc model also includes rangenrifll' distortions and dccenrering distortions (Slams iQEfl}. but
these distortions are not cot-cred in this book.

Pishcye lenses (Figure 3-1333 require a model that dio'crs from traditional polynomial

models of radial distortion. Fishcye lenses behave. to a first approximation. as egnisc'ist‘anc'e

projectors of angles away from the optical rods [Xiong and 'I‘urltowski [997). Iwhich is the

same as the polar projection described by Equations {9.22 43.24). Xiong and ‘I‘nrkowslri

{199?} describe how this model can be extended with the addition of an extra quadratic cor-

rection in d: and how the unknown parameters [center of projection. scaling factor 5. etc.)

can be estimator! from a set of overlapping fishcyc images using a direct tinteosily—hescd}

non-linear mini trtimtiort algorithm.

For even larger. less regular distortions. a parametric distortion model using splines Ina}t

be netz-nsantjtlI {Goshtasby I939}. If the lens does not have a single center of projection. it

may become necessary to model the 3D iinc (as opposed to direction} corresponding to each

pixel scugtaratel)r (Gremlin. Thorpe, and Kartade 1983; Chantpleboux. Levelle'e. Sautot c: or.

1992: Grossbcrg and Mayer Elliot: Storm and Ramalingaro zoos; Tardif. Storm. Trudeau of

at. anus}. Some of these techniques are described in more detail in Section 5.3.5. which
discusses how to calibrate tens distortions. 

4 Sometimes the-relationship between :1"; and tin is exprcSScd. the other was around. LL. 1': = ”jail + #153 'l'
reef-2). This is convenient itwc respirrutge pixels intotwarpedl rays by dividing through by I. We can meet undistort
d-ic rays and have true 3!?! rays in space.
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Flgnre 1.14 A simplified model of photometric image formation. Light is emitted by one or more light sources

and is then reflected from an object's surface. A portion of this lightis directed towards the camera. This simplified

model ignores multiple reflections. which ofien occur in real—world scenes.

There is one su'otle issue associated with the simple radial distortion model that is often

glossed over. We have introduced a non—linearity between the perspective projection and final

sensor array projection steps. Therefore, we cannot. in general. posturnultiply an arbitrary 3 x

3 matrix K with a rotation to put it into upper-triangular fonn and absorb this into the global

rotation. However. this situation is not as had as it may at first appear. For many applications.

keeping the simplified diagonal form of {2.59) is still an adequate model. Furthermore. if we
correct radial and other distortions to an accuracy where straight lines are preserved. we have

essentially convened the sensor hack into a linear imager and the previous decomposition still

applies.

2.2 Photometric image torrentlon

In modeling the image formation process. we have described how 3]] geometric features in

the world are projected into 2D features in an image. However. images are not composed of

II) features. Instead. they are made up of discrete color or intensity values. Where do these

values contra froln'iI How do they relate to the lighting in the environment. surface properties

and geometry. camera optics. and sensor properties {Figure 2.14}? in this section. we develop

a set of models to describe these interactions and formulate a generative process of image

formation. A more detailed treatrnent of these topics can be found in other teathoolts on

computer graphics and image synthesis {Glassner l995: Weyn'ieh. I..awrenoe. Lensch at at.

EDDIE; Foley. van Dam. Feiner er oi. 1995; Watt I995; Cohen and Wallace 1993;. Silllon and

Puech 1994}.

2.2.1 nghttng

Images cannot exist without light. To produce an image. the scene must he illuminated with

one or more light sources. {Cm-tam modalities such as fluorescent microscopy and X-ray
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tomography do not fit this model. but we do not deal with them in this hook.) Light sources

can generallyI be divided into point and area light sources.

.I'I. point light source originates at a single location in space [e.g., a small light bulb},

potentially at infinity {e.g.. the sun}. {Note that for some applications such as modeling soft

shadows {penntnltms}. the sun may have to he treated as an area light source} in additicnto

its location, a point Iight source has an intensity and a color spectrum. i.e.. a distribution over

wavelengths LU}. The intensityr of a light source falls off 1with the square of the distance

between the sconce and the object being lit, because the some light is being spread over a

larger {spherical} area. A light source may also have a directional fnlIoff {dependence}, but

we ignore this in our situpiiflcd model.

Arcs light sources are more complicated. it simple ates light source such as a flumcseent

ceiling light fixture with a diffuser can be modeled as a finite rectangular area emitting light

equally in all directions [Cohen and Wallace 1993‘. Sillion and Pueeh i994: Glassner 1995}.

When the distribution is strongly directional. a four-dimensional 1ightfield can he used instead

{Ashdown 1993}.

A. more complex light dish-ihution that approximates. say, the incident illumination on an

object sitting in an outdoor courtyard, can often he represented using an envimmnent mop

{Greene 1936} {originally called a reflection mop (Blinn and Howell illicit}. This representa-

tion maps incident light directions 1".- to color values {or wavelengths. A}.

Lifitiir case)

and is equivalent to assuming that all light sources are at infinity. Environment maps can he

represented as a collection of cubical faces [Greene 1935}. as a single longintdc—latitude map

{Blinn and Nowell l9'lt'i}. or as the image of a reficcdng sphere (Watt 1995}. A convenient

way to get a rough mode] of a real—world environment map is to take an image of a reflective

mirrored sphere and to unmap this image onto the desired environment map {Dchevec 1993}.

Wall (1995} gives a nice discussion of environment mapping. including the formulas needed

to map directions to pixels for the three most commonly used representations.

2.2.2 Reflectance and shading

When light hits an object's surface. it is scattered and reflected [Figure 2.15s}. Many different

models have been developed to describe this interaction. In this section. we first describe the

most general form. the bidirectional reflectance distribution function. and then look at some

more specialized models. including the diffuse, specular. and Phong shading models. We also

discuss honr these models can be used to compute the global illumination corresponding to a
scene.

The Bidirectional Reflectance Distribution Function {BEEF}

The most general model of light scatnn-ing is the bidirectional milestones distribution flots-

ticn {1312121131}.5 Relative to some local coordinate frame on the surface. the ERDF is a four-

dimeosional function that describes how much of each wavelength arriving at an incident

1 Actually, ovenyoore general models oi‘ light transmit exist. including some that model citadel satiation along
the sin-lace, sub-surface swearing. and ammspheric reflects—see Section it'll—(Dorsey. Rustuoeier. and Sittioo

2W; lilting-rich. Lowrance. launch el' hi. Elli-E}.

55
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(bl

Figure 2.15 {a} Light scatters when it hits a surface. [h] "The bidirectional reflectance distribution fisnotien
{BEEF} fldi, m. tilfl d.) is parameterized by the angles that the incident. in. and reflected, a.. light ray directions

rnalrc with tbclocnl surface ccordinatefi‘amc [L.dy,fi.}.

direction fin, is entitled in a reflected direction ii... (figure llfibl- The function can be written

in terms of the angles of the incident and reflected directions relative to the surface frame as

frigisifiilflrr‘i’rill [2.31)-

The BRDF is reciprocal. i.o.. because of the physics of light transport. you can interchange

the roles of in and or and still get the same answer {this is sometimes called Helmholtz

recipes-city}.

Moat surfaces are isotropic. i.o.. there are no prefened directions on the surface as for

as light transport is concerned. [The exceptions are anisotropic surfaces such as brushed

{scratched} aluminum. where the reflectance depends on the light orientation relative to the

direction of the scratches.) For an isotropic material. we can simplifyI the BRDF to

friaitflrtld'r _¢'lii‘u 0t“ Irifiirfirifii-M- (2-32]

since the quantifies Hi. d... and its. — do can be computed from the directions 13,-. or. and 1‘1.

To calculate the amount of light exiting a surface point p in a direction 1'5, under a given

lighting condition. we integrate the product of the incoming light Lifii‘n i A] with the BRDF

{some authors call this step a convolution]. 'I‘aldng into account the {creche-fleeing factor

ens’r 3:. we obtain

on..- s) = fLao; state.a a. c cots+ a are. can
where

ere-a+ t3.- = toastijil, cos-5;}. {2.34}

If the light sources are discrete {a finite number of point light sources). we can replace the

integral with a summation.

L.|;s.~, it = Zmum-sh a. a; i} ooe+ a. toss)

BRDFs for a given surface can be obtained through physical modeling [Torrance and

Sparrow 1961';ka and Torrance 1982;1Glassner I995}, heuristic modeling [Phnng 1915}, or
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Figure 2.16 This close-up of s ststac shows both diffuse (smooth shading} and specular [shiny highlight) reflec-

tion. as well as darkening in the grooves and creases due to reduced light visibility and interrelieeiiom. {Photo

eotntesy of the Caltech 1itulision Lab. htrpwwwmisioncal reeh.edtdarchiye.hunl.l

through empirical observation [Ward 1992;. Westin. Arvo. and Torrance 1992;131:113. 1ran Gin-

neken. Nays: er cl. 19519: Dorsey. Rushmeier, and Sillien Eflfli: Weyrich. Lawrence, Leusch

er at. 20%).“ Typical BRDFs can often be split into their dimes: and specular ournpouents1
as described below.

lei‘u so refleetlon

The diffuse component [also known as inarbsrn'an or mane reflection) scatters light uni-

formly in all directions and is the phenomenon we most normally associate with shading.

e.g.. tlte smooth {non-shiny} variation of intensity with surface normal that is soon when ob-

serving a statue {Figure 2.16}. Difiuse reflection also often napatts a strong body color to

the light sinec it is caused by selective absoretion and re—ereissioa of light inside the object's

material {Shafer 1935; Glassner 1995}.

While light is scattered uniformly in all directions1 i.e.. the BRIJF is constant.

Idtfinfirtfi'ijlil r Lilli}! {2'36}

the amount of light depends on the angle behsrecn the incident light direction and the surface

normal Eh. This is because the surface area exposed to a given amount of light becomes larger

at oblique angles. becoming completely self-shadowed as the outgoing surface normal points

away from the light {Figure 2.17s}. {Think about how you orient yourself towards the sun or

fireplace to get maximum warmth and how a flashlight projected obliquely against a wall is

less bright that: one pointing directly at it.) The shading equation for diffuse reflection can
thus be written as

age; it = Z craters; eos+ a; = Z migraine.- -s]+. res-r;

'5 See lutpflwarwl.cs.oeiumbia.edu.tt:M"E.tsnl‘twerelearea' [or a. database of some empirically sampled EHDFs.
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Figure 1.17 {a} The diminution of renuued light caused hyforeshorrening depends on {it - ii... the cosine of the

angle hemeen the incident light direction it; and the surface normal fl. {h} Mirror [specular] reflection: The

incident light raj.r direction it.- is reflected onto the specular direction in around the surfaoe normal “it.

where

[e.- .a]+ = moxm1fl; a). {seat

Specular reflection

The second major component of a typical EEDF is specular {gloss or highlight] reflection.

which depends strongly on the direction of the outgoing light. Consider light reflecting off a

mirrored surface [Figure 2.1%]. Incident light rays are reflected in a direction that is rotated

by 1313” around the surface normal it. Using the same notation as in Equations (2.29—2.33.

we can compute the specular reflection direction 5'.- as

s. = o" — oi = {annT - Hui. {sea}

The amount of light reflected in a given direction ii, thus depends on the angle ti. =

cos" (it, - 5;] between the View direction or and the specular direction 5.. For example. the

Phong (1915) model uses 3 power of the cosine of the angle.

Inigo: A} = haul-i “Wk' flu: {2-95}

while the Torrance and Sparrow {196?} micro-facet model uses a Gaussian.

sin; n = not opt—eith- can

Larger exponents it! {or inverse Gaussian widths '11,} correspond to more specular surfaces

with. distinct highlights. while smaller exponents better model materials with softer gloss.

Phony shading

Phong {1975} combined the diffuse and specular components of retiection with another term.

which he called the ambient illumutorion. This term accounts for the fact that objects are

generally illuminated not only by point light sources but also by a general diffuse illumination

corresponding to inter—reflection ie.g.. the walls in a room] or distant sources. such as the
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mmanseoo-u-non-Hennatflflmnlw Ill—'5 Nil! 41-1 4-1 41': M 1' 91'

tel {bi

Figure 1.13 Cross-section through a Phong shading model BRDF for a fixed incident illumination direction:

{a} component values as a function of angle away from surface normal; {h} polar plot. The value of the Phong

exponent is: is indicated by the "flap" labels and the light source is at an angle of ass away from the normal.

blue sky. in the Phong modelI the amhient term does not depend on surface orientation. but

depends on the color of both the ambient illumination no.) and the object irgihl,

foul] = kai‘J‘JLoidn- (2-92}

Putting all of these terms together, we arrive at the Phong shading model.

Lrifl'r; n = amino} + no) 2none - or + s. (A) Z Lrotta - as. {2.93)

Figure 2.18 shows a typical set of Phong shading model components as a function of the

angle away hem the surface normal {in a plane containing both the lighting direction and the
viewer).

Typically. the arobieol and difi‘nse reflection color distributions can} and input} are the
same. since they not both due to sub—surface seatnering [body reflection] inside the surface

material {Sharer 1935}. The specular reflection distribution 5:30.} is often uniform [while].

since it is caused by interface reflections that do not change the light color. {The exception

to this are metallic materials. such as copper. as opposed to the more common dielectric

materials. such as plastics.)

The ambient illumination L. {A} alien has a different color cast from the direct light

sources Lgt'Jt}. e.g., it may be blue for a sunny outdoor scene or yellow for an interior lit

with candles or incandescent lights. [The presence of ambient sky ilinmination in shadowed

areas is what often causes shadows to appear bluer than the corresponding lit portions of a

scene). Note also that the diffitse component of the Phong model [or of any shading model)

depends on the angle of the incoming light source iii. while the specular component depends

on the relative angle between the viewer u... and the specular reflection direction a [which

itself depends on the incoming light direction in; and the surface normal 1d}.

The Phong shading model has been superseded in trams of physical accuracy by a number

of more recently developed models in computer graphics, including the model developed by

Cook and Torrance [1982] based on the original micro-facet model of Torrance and Sparrow

{1961'}. Until recently. most computer graphics hardware implemented the Phong model but

the recent advent of programmable pixel shadors maloes the use of more complex models
feasible.
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{G} {d}

Figure 4.1 A. variety of feature detectors and dnscripmrs can be used to analyze. deem-i132 and match images: {a}!

paint-lib: internal upcraturs (Brmvn, Smfiski, and Winder 2005] @I EGGS IEEE; {h} mginninI-cc intmsl npcmtnrs

[Mama Chum. Urban e"! at. 2004} @ 1M4 Eiscviur; {c} edgcs [Elam- and Goldberg 24301) [53} 11361 LEEE'. {:1}

straight lines (Sim-La, Smedly, Ezeliski at at. 21333} {Er} 241103 ACM.
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4.1 Points and patches

Feature detection and matching are an essential component of many computer vision appliu

cations. Consider the two pairs of images shown in Figure 4.1. For the first. pain. we may

wish to align the two images so that they can he scandessly stitched into a composite mosaic

{Chapter 9}. For the second pair, we may wish to establish a dense set of correspondences so

that a 3D model can be constructed or an in-hctvteen view can be generated {Chapter It}. ”In
either case, what kinds offetrmrss should you detect and then match in order to establish such

an aligrunent or set of correspondences? Think about this for a few moments before reading
on.

The first kind of feamre that you may notice are specific locations in the images. such as
mountain peaks, building corners. dotn‘twys, or interestingly shaped patches of snow. These

kinds of localized feature are often called treypolnrfeatures or intersstpotnts {or even corners)

and are often described by the appearance of patches of pixels surrounding the point location

{Section 4.1}. Another class of important features are edges. e.g.. the profile of mountains

against the sky. {Section 4.2). These kinds of fcahrres can be matched hosed on their orien-
tation and local appearance [edge profiles} and can also be good indicators of object hound—

aries and occlusion events in image sequences. Edges can be grouped into longer curves and

straight line segments. which can be directly matched or analysed to find vanishing points

and hence internal and external camera parameters {Section 4.3}. '

In this chapter. we describe some practical approaches to detecting such features and

also discuss honr feature correspondences can he established across different images. Point

fenhues are now used in such a wide variety of applications that it is good practice to read and

implement some of the algorithms from [Section 4.1}. Edges and lines provide information

that is complementary to both keypoint and region-based descriptors and are well-suited to

describing object boundaries and man-made objects. These alternative descriptors. while

extremely useful, can be stripped in a short introductory course.

4.1 Points and patches

Point features can he used to find a sparse set of corresponding locations in different im-

ages. often as a pro-cursor to computing camera pose {Chapter T}. which is a prerequisite for

- computing a denser set of correspondences using stereo matching {Chapter 11}. Such corre-

spondences can also be used to align different images1 e.g.. whcn stitching image mosaics or
performing video stabilization [Chapter '9}. They are also used extensively to perform object

instance and category recognition {Sections 14.3 and 14.4}. A key advantage of keypoiots

is that they permit matching even in the presence of clutter {occlusion} and large scale and

orientation changes.

Fortune—based correspondence techniques have been used since the early days of stereo

matching {Hannah 1W4: Moravcc 1933: Hannah 1933} and have more recently gained pop—

ularity for image-stitching applications {Zoghlanu', Fangerss, and Derichc IQQT; Brown and

Lows 20D?) as well as fully automated 3D modeling (Beardsley. Torr. and Eisserman 1996;

Schaffalitzlty and Zisserman EDUZ: Bream and Lowe 2333: Snavely. Sella. and Sselisltl 2096}.

There are two main approaches to finding feature points and their correspondences. The

first is to find fed‘ttues in one image that can be accurately trucker! using a local search tech—

nique. stich as correlation or least squares {Section 4.1.4}. The second is to independently

153
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Figure 4.1 Two pairs of images to be matched. What kinds of feature might one use to establish a set of

correspondences between these images?

detect features in all die images under consideration and then motel: features based on their

local appearance (Section 41.3}. 'I'l'te fol-trier approach is more suitable when images are

taken Front nearby viewpoints or in rapid succession (e.g., video sequences}, 1tvhile the lat—

te: is more suitable when a large amount of motion or appearance change is expected. e.g..

in stitching together panoramas [Brown and leave 200?). establishing correspondences in

write baseline stereo (Schaffaliteltv :tntl Zissertrtan 2902}. or performing object recognition

(Fergus. Perona, and Zissermeu mill}.

In this section. we split the kevpoint detection and matching pipeline into four separate

stages. During fliefeoture defection {extraction} stage {Section 4. l . l J, each image is searched

for locations that are likely to match well in other images. At the feature description stage

{5 action 4. I .2}, each region around detected kevpoint locations is convened into a more com—

pact and stable {invariant} descriptor Hist can be matched against other descriptors. The

feature matching stage {Section 4.1.3]: efficittntljt searches for liitel},r matching candidates in

other images. The feature tracking stage (Section 4.i.-'-l-} is an alternative to the third stage

that only searches :1 small neighborhood around each detected feature and is therefore more

suitable for video processing.

A wonderful example of all of these stages can he found in. David Lowe‘s {zone} paper,

which describes the development and tcfinemcnt of his Sccie invariant Feature Tmnsihmt
{SLI'TL Comprehensch descriptions of alternative techniques can be found in a series of

survey and evaluation papers covering both feature detection {Schmid Mohr. and Baucltv

hage EDGE; Miltolajczyk, Tuvtelaars, Schrnid er oi. EDGE; Tuvtelaars and Mikolajceyk Eflfl'i}

and feature descriptors Wiknlajczyk and Schmid 24305}. Shi and Tomesi (1994) and Triggs

{2M4} also provide nice reviews of feature detection techniques.
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Figure 4.3 image pairs with extracted patches heIow. Notice how some patches can he localised or matched

with higher accuracy than others.

4.1.1 Feature detectors

How can we find image locations where we can reliably find correspondences with other

images. i.c., what are good features to track (Shi and Tomasi 1994; Triggs lflfld}? look again

at the image pair shown in Figure 4.3 and at the three sample patches to see how well theyr

might he matched or tracked. its you may notice1 lett'turelcss patches are nearlyr impossible

to localize. Patches with large contrast changes (gradients) are easier to localize. although

straight line segments at a aingie orientation suffer from the aperture problem [Horn and

Schunck 193i; Lucas and Kanade I'Qiil: Anandan 1939'). Le, it is only possible to align

the patches along the direction normal to the edge direction {Figure 4.4h}. Patches with

gradients in at least two {significantly} different orientations are the easiest to localize. as

shown schematically in Figure 4.4a.

These intuitions can he formalized by looking at the simplest possible ntatchi ng criterion

for comparing two irnage patches1 i.e.. their {weighted} summed square diffcrence.

assaults} = ZwEa’tijil1fz.+ a; — loin-H2. {4.1;

where In and I1 are the two images being compared. at = in. a} is the displacement vector.

artist} is a spatially varying- weighting {or window} function. and the summation i is D‘tI'Bl' ail

the pixels in the patch. Note that this is the same formulation we later use to estimate motion

hctween complete images (Section 3. I).

When performing Feature detection. we do not know which other image locations the

feature will end tip hcing matched agaittst. Therefore. we can only compote how stahle this

metric is with respect to small variations in position the: by comparing an itnage patch against
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{3:} {C}

Figure 4.4 Aperture problems for diIferent image patches: {a} stable ["corner-lilte“) flow; {b} classic sperbn'e
problem {barber-pole illusion]: {e} textttreless region. The two images In {yellow} and I1 (red) are overlaid.
The red vector it indicates the displacement between the patch centers and the tats-ti} weighting function {patch

window}. is shown as a dark circle

 
itself. which is ltoovm us an onto-eon‘elotimtftmetfon or seduce

Emma} = 2 1:11:35) [ratei + film} - Iqbal]: (4.2}

{Figure 4.53.1 Note how the auto—correlation surfiuee for the textured [lower bed {Figure 4.5b
and the red cross in the lower right quadrant of Figure 4.5a) exhibits a strong minimum,

indieating that it can be well localized. The correlation surface corresponding to the roof

edge [Figure 4.5:.) has a strung ambiguity along one direction1 while the correlation surface

WHGSPDflfliflg to the cloud region {Figure 4.5d) has no stable minimum.

Using a'Ihvlor Series expansion of the image function 'Iolmi +flu} re Infiei} +Vl’a {mi}-
flu [Lucas and Kanade ISIS-l: Shi uudTnmasi 1994]. we can approximate the auto~correlation
surface as

Esotfifll = Zwlmrlflulm + 31“} — fulfil}: E43}

“5 iwlmillfuli‘tl + Wallet} - flu — Meiji“ {4.4)

= imtfimfifiifimgj - mg (4.5)
= sauna, (4.45)

where

was: = 41%. $th on
is the Mega gmdient at m. This gradient can he computed using a variety.I of techniques

{Schmid.- Mobr. and Bauclthage 2WD}. The classic “Harris" detector {Harris and Stephens

1988} uses a [-2 -l I] i 2] filter. but more modern variants {Schmii Molar. and Bauelthage

soon; “Briggs 2W4) eonvolve the image with horizontal and vertical derivatives of a Gaussian

{typically with or = I}.

1 Strictly WHY-E- “munnis “Rpm: urtwn patehes {3.11}: I'm using thetermberein smote qualitative
sense. The weighted sum nct‘smiarcd difl‘erences is often celled so .335 Fulfill?! [Section SJ}.
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 :...--........... IlII-I-I-II 

{b} {D} {d}

Figure 5.5 Three autu-mrrclation surfaces Ehgflfluj shown as both gmysaaic images and surface plots: (3)1113

original image. is marked with Hire-u rud masses to denote where. the autu-cmmlaflun surfaces were computed: {b}

this patch is from the finwar bed {gnarl uniquz: minimum}; {cl this patch is from the roof cdgc tune—dimensional

aperture problem): and {:1} this patch is from the cloud [no good peak]. Each grid point in figures h—d is on: value
of flu.
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1! lreclin I of the

[latest change

  
direction of the

slowest change

Figure IMF Uncertainty ellipse con‘esponding to an eigenvalue analysis of the auto-correlation matrix A.

The auto-correlation matrix A can be written as

i: at,A: “*[IzIy I: :| {4-3}

where we have replaced the weighted summations with discrete convolutions with the weight-

ing kernel to. This matrix can he interpreted as a tensor {multihand} image. where the outer

products of the gradients ‘ii'l are convolved with a weighting function it] to provide a per—pixel

estimate of the local {quadratic} shape of the auto-correlation function.

As first shown by Ananrlan (1934; 1939} and htrthcrdisenssed in Section 3.1.3 and {3.44}.

the inverse of the matrix A provides slower bound on the uncertainty in the location of a

matching patch. It is therefore a Useful indicator of which patches can be reliably method.

The easiest viva].r to visualize and reason about this uncertainty is to perform an eigenvalue

analysis ofthe auto-correlation matrix A. which produces two eigenvalues {Jim in} and two

eigenvector directions {Figure 4.6}. Since the larger uncertainty depends on the smaller eigen—

Tvalue1 i.e.r All-L”, it makes sense to find maxima in the smaller eigenvalue to locate good
feamres to track {Sin and Tomasi 1994).

Ffimtntlr—Htlrrla. While Attention and Lucas and Kansde [1931} were the first to analyze

the uncertainty structure of the auto—correlation matrizlr+ they did so in the context of asso—

ciating certainties with optic flow measurements. Forsmer [19315) and Harris and Stephens

{1983} were the first to propose using local maxima in rotationally invariant scalar measures

derived front the ante-correlation matrix to locate keypnints for the purpose of sparse feature

matching. [Stillmth Mohr, and Battekhage {2M0}: Triggs {Edit-ti) give more detailed histori-

cal reviews of feature detection algorithms.) Both of these techniques also proposed using a

Gaussian weighting window instead of the previously used square patches. which makes the

detccuar response insensitive to in—plane image rotations.

The minimum eigenvalue Jun {Shi and Tomasi 1994] is not the only quantity that can he

used to find keypoints. A simpler quantity, proposed by Harris and Stephens (1988}. is

seen} — r: steers}? = nil — :1th + is}? (4.9}
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139

Figure 4.? [so-contours of popular keypoint detection functions (Brown, Szelisiri, and Winder 2004}. Eaeh

detector looks for points where the eigenvalues Au, it; of A = w e ”FNIT are both large

with n = llilti. Unlike eigenvalue analysis. this quantity does not require the use of square

roots and yet is still rotationally invariant and also doomweights edge-like feature: where

A1 Is:- An. Triggs {2004] suggests using the quantity

n. — es. (4.1m

(say. 1with n: = Elttlfil. which also reduces the response at 1D edges. where aliasing errors

sometimes inflate the smaller eigenvalue. He also shows how Ihe basic 2 X 2 Hessian can be

extended to parametric motions to detect points that am also accurately localizehle in scale

and rotation. Brown, Sseliski. and 1viil'inder (2W5). on the other hand. use the harmonic: mean,

detA _ 5.41.3.1
[IA —}tu+)t11

which is a smoother function in the region where Jig :5 A1. Figln'e 4.? shows isoeonlours

of the various interest point operators, from which we can see how the two eigenvalues are
blended to determine the final interest value.

The steps in the basic anto—eorrelation—hased keypoint detector are summarized in Algo-

rithm 4.]. Figure 4.8 shows the resulting interest operator responses for the classic Harris

detector as well as the difference of Gaussian [Until detector discussed below.

  

{4.11)

Adaptive non-maximal suppression {ARMS}. more most feature detectors simply
look for local manima in the interest function. this can lead to an uneven distrihulien of

feature points across the image. e.g.1 points will be denser in regions of higher contrast. To

mitigate this problem. Brown, Szelislti. and Winder {201115} only detect features that are both

local marines and whose response value is significantly-r [10%] greater than that of all of

its neighbors within a radius r {Figure 4.9e—d}. The}r devise an efficient way to associate

suppression radii with all local maxima by first sorting then: by their response strengdl and

then creating a second list sorted hp decreasing suppression radius (Brown. Seelislri. and

APPL-1012 / Page 46 of 211



APPL-1012 / Page 47 of 211

15"] 4 Feature detection and matching

_ Compute the horizontal and varricrrl derivatives of the image I: and far by con-

volving the original image with derivatives of Gaussians (Section 3.2.3}.

. Compute the three images corresponding to the outer products of these gradients.

{The matrix A is symmetric. so only three entries are needed.) ..

_ Convolve each of these images with a larger Gaussian.

_ Compute a scalar interest measure using one ol'the formulas discussed above.

. Find local maxima above a certain threshold and report them as detected feature

point locations.  

Algorithm 4.1 Outline of a basic feature detection algorithm.

 
Figure 4.3 Interest operator responses: in} Sample image. (b) Harris response. and {c} Dot]- rcsponse. Tire circle

sizes and colors indicate the scale at which each interest point was detected. Notice how the two detectors tend to

respond at complementary locations.

Winder 2905}. Figure 4.9 shows a qualitative comparison of selecting the top n features and

using ANNIE.

Measuring repeatability. Given the large number of feature detectors that have been

developed in computer vision. how can we decide which ones to use“?I Schrnld. Mohr. and

Bauekhage (soon) were the first to propose measuring the repeatability of feature detectors.

which they define as the frequency with which keypoints detected in one image are found

within a (say. 5 L 1.5} pixels of the corresponding location in a. transformed image. In their

paper. they transform their planar images by applying rotations, scale changesI illumination

changes, viewpoint changes. and adding noise. They also measure the information content

available at each detected feature point. which they define as the entropy of a set of rotation-

ally invariant ineai grayacaic descriptors. Among the techniques they survey. they find that

the improved (Gaussian derivative} version of the Harris operator with cd = 1 [scale of the

derivative Gaussian] and rr.- = 2 [scale of the integration Gaussian} works best.
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{c} ANMS 15D. 1' = 24 {1:1} areas fiflfl. :- = 16

  
Figure d3 Adaptive non—maximal suppression {ANMSII (Brown. Szeliski, and Winder EGGS) IE] 2005 IEEE:

The upper two images show the strongest 25d and EDD interest points. 1awhile the lower two images show the

interest points selected with adaptive non-maximal suppression. along with the corresponding suppmssion radius

1". Note how the latter feattues have a much more Uniform spatial distribution across the image.

Scale Invarlanea

In many situations, detecting features at the finest stable scaie possible may not he appro—

priate. For example. when matching images wid't little high frequency detail {e.g.. clouds).
fine-scale features may not exisL

One solution to the problem is to extract features at a variety of scales, e.g, by performing

the same operations at multiple restrictions in a pyramid and then matching features at the

saute level. This kind of approach is suitable when the images being matched do not undergo

large scale changes. e.g.. when matching successive aerial images talten from an airplane or

stitching panoramas taken with a fixed-focal-lcngth camera. Figure 4.10 shows the output of

one such approach. the mnlt'i-sca'le. oriented patch detector of Brown. Szeliski, and Winder

{EDGE}. for which responses at five different scales are shown.

However. for most object recognition applications. the scale of the object in the image

is unknown instead of extracting features at many different scales and then matching all of

them. it is more efficient to extract features that are stable in both location and scale {Lowe

EDD-4'. h'fiiltolajczylt and Schmid 2004}.

Early investigations into scale selection were performed by Lindeherg {1993; 199%}.

who first proposed using extrema in the Laplacian of Gaussian {LoGJ function as interest
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Figure 4.10 Matti-scale oriented patches {ll-[DPS] extracted at five pyramid levels (Brown. Szeiialci. and Winder

2111215) {:2} 2005 IEEE. The boxes show the feature orientation and the region from which the descriptor vectors are

sampled.

point locations. Based on this work. Lowe {EDD-5i} propoaed computing a act of sub-octave

Difference of Gaussian filters [Figure 4.1 in}. looking for 3D {apace+aca1e} maximal in the re-

sulting structure [Figurc 4.11m, and then computing a sub-pixel space+eeale location using a

quadratic lit (Brown and Lowe 204112]. The number of sub-octave levels was determined. after

careful empirical investigation, to he tt'rr'ee. which corresponds to a quarterectave pyramid.

which is the same as used by Trigga (2(104}.

As with the Harris operator. pixels where there is strong asymmetry in the local curvature

of the indicator function {in this case. the DUE} are rejected+ This is implemented by first

computing the local Hessian of the difl’erence image I}.

 

I} D ]H = 5‘ “1' r {4.12}[ Dru flea
and then rejecting keypoints for 1which

are)“ 1L1. 4.13
eater) } i 3

While Lowe‘s Scale invariant Feature Transform (SET; performs Well in practice, it is not

booed on Use same theoretical foundation of maximum spatial atai'nilitjir as the auto-correlation-

hased detectors. {In fact. its detection locations are often coinelementary.r to those produced

by such techniques and can therefore be used in conjunction with these other approaches.)

In order to add a scale selection mechanism to the Harris corner detector. ivflkolajczvk and

Scnmid {EDD-4) evaluate the Laplaoian of Gaussian function at each detected Harris point {in

a mulliuscalc pyramid} and keep only those points for wlu'eh the Laplacian is extremal {larger

or smaller than both its coarser arid finer-level value}. An optional iterative refinement for

both scale and position is also proposed and evaluated. Additional cxampIes of scale invariant
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Gaussian [DOG]

{a} [bi

Figure dill Scale-space feature detection using a sub-octave Difierenoe of Gaussian pyramid [isowe sous} @I
2004 Springer: {a} Adjacent levels of a sub-oetm Gaussian pyrarrdd are subtracted to produce Difference of
Gaussian images: {bl extrema (maxima and minimal in the resulting 3:) volume are detected by comparing a
pixel to its 26 neighbors.

region detectors are discussed by lv'liltolajezylr. Tuytelaars. Schmid at oi. {EDGE}: Tuytelsars
and Mikoiajnzyit {290?}.

Hotetlonai Inverter-roe and orientation aetlmatlon

in addition to dealing with scale changes. most image matching and object recognition algor
rithms need to deal with {at least} in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant {Schmid and lviohr 199?]. but such
descriptors have poor diseriminability. to. they map different looking patches to the same
deteriptor.

a better method is to estimate a dominmtt orientation at each detected keypoint. lClone
the local orientation and scale of a keypoint have been estimated, a sealed anti oriented patch
around the detected point can be extracted and used to form a feature descriptor {Figures '4. 1i]
and 4.17”].

The simplest possible orientation estimate is the average gradient within a region around
the keypoint. If a Gaussian weighting Erection is used {Bram Saelislri. and Winder 2005).
this average gradient is equivalent to a fimburder steerable filler [Sectimt 3.1.3],i.e., it can be
computed using an image convolution with the horizontal and vertical derivatives of '3va
sian filter {Freeman and Adelson 1991}. In order to make this estimate more reliable. it is
usually preferable to use a larger aggregation window [Gaussian kernel size} than detection
window {Erma-rm Sseiislri. and Winder EDGE). The orientations of the square boxes shown in
Figure 4.10 were computed using this technique.

Sometimes. however, theaveraged {signed} gradient in aregion can hesrnali and therefore
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lilflflih‘l
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55555555 . ..
IEIEEEIE fi’ angle histogram a
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filflflflfllfi
ISEHIIEI

Image gradients

Figure 4.12 A dominant orientation estimate can be computed by creating a histogram of all the gradient orien—

tations {weighted by their magnitudes or after thresholding nut small gradients} and then finding the significant

peaks in this distribution (Lowe 2111134} (I?) 2004 Springer.

  
Figure 4.13 Affine region detectors used to match two images taken from dramatically difl’erent viewpoints

{I'vliirolajczyk and Scan-sir] 21104] Er) Eflfld Springer.

an Unreliable indicator of orientation. A. more reliable technique is to look at the histogram

of orientations computed around the keypoint. Lowe {2004) computes a 36-hin histogram

of odge orientations weighted by both gradient magnitude and Gaussian distance to the cen-

ter. finds all peaks within 30% of the global maximum, and then computes a more accurate

orientation estimate using a three-bin parabolic lit [Figure 4.12}.

Afline Invariance

White scale and rotation invariance are highly desirable. for many applications such as wide

baseline srereo matching [Pritehett and Zisserman 1993;. Schafl’alitzlry and Zisserinan 2002}

or location recognition (Churn. Philhin. Sivic er al. 2007), full affine invariance is preferred.

Affine-invariant detectors not only respond at consistent locations after scale and orientation

Changes. they also respond consistently across affine deformations such as {local} perspective

foreshortening [Figure 4.13}. Infact. for a small enough patch, any continuous image warping

can be well approximated by an affine deformation.

To introduce affine invariance. several authors have proposed fitting an ellipse to the auto-

correlalion or Hessian matrix {using eigenvalue analysis) and then using the principal axes

and ratios of this fit as the affine coordinate frame [Lindeherg and Gardlng 199T; Eanmherg
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1515

 
Figure 4.14 Affine normalization using the second moment matrices1 as described by Mikolajcayh Thytelaars,

Schmid at at {201115} (313} flililfi Springer. After image coordinates are transformed using the matrices An— llr'a "and

211—1”. they are related by a pure rotation R, which can be estimated using a dominant orientation technique.

 
Figure 4.15 Maximaily stable esth'emal regions {MSERs} extracted and matched from a number of images

{lit-isms+ Churn1 Urban at at. 2%) (it) 213134 Eisevier.

2WD; Mil-:olajcaylr and Schmid 2fltl4'. Mikolajcaylr. Tuytelaars. Schmid or at. Zflflfr; Tuytc—

laars and l'vliltolajczyk MDT}. Figure 4.14 shows how the square root of the moment matrix

can be used to transform local patches into a frame which is similar up to rotation.

Another important affine invariant region detector is the maximally stable extremal region

[MSERJ detector developed by Mates. Chum, Urban ct oi. races). To detect MSERs. binaryr

regions are computed by threshoiding the image at all possible gray levels {the technique

therefore only works for grayscale images]. This operation can be performed efficiently by

first sorting all pixels by gray value and then incrementally addingpiitels to each connected

component as the dlrcsbold is changed {Nisldr and Stewénius IDES}. fits the threshold is

changed. the area of each component (region) is monitored; regions whose rate of change of

area with respect to the threshold is minimal are defined as morinmliy stable. Such regions

are therefore invariant to both affine geometric and photometric {linear bias-gain or smooth

monotonic) transformations [Figure 4. I5}. If desired1 an affine coordinate frame can be fit to

each detected region using its moment matrix.

The area of feature point detectors continues to be very active, with papers appearing ev-

ery year at major computer vision conferences {Xian and Shah 2003; [Cosme 2003; Carneiro

and lepson ZEUS: Kenney. Zuliani. and Manjunath 20135; Bay. Tnytelaars. and 1v'an Ecol 2006:

Piatcl. Balmachnova. Floraclr st of. Eflflfi: Rosten and Drurrrrnond 20135). l'vlilroiajczylr1 Tuyte—

tears. Sebmitl at at. (2005} survey a number of popular affine region detectors and provide

experimental comparisons of their invariance to common image transformations such as scal-

ing, rotations, noise. and blur. These experimental results. code, and pointers to the surveyed

papers can be found on their Web site at http:irmvw.robots.ox.ac.u|ti~vggfrescarchfafl_inei.

Di course. keypoints are not the only features that can be used for registering images.

Zoghlami, Fangeras. and Deriche {199T} use line segments as well as point-like features to

estimate homographies between pairs of images. whereas Eartoli. Coqueretle, and Storm

{Ell-[14} use line segments with local correspondences along the edges to eauact 3D structure
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Figure 4.16 Feature matching: how can we can-act local descriptors that are invariant to inter-image variations
and yet still discriminative enough to establish correct correspondences?

and motion. Tuytelaars and Van Gaol {29M} use affine invariant regions to detect. corre-

spondences for wide baseline stereo matching. whereas Kadir. Zisserman. and Brady {9.994}
detect salient regions where patch entropy and its rate of change with scale are locally mart“

imai. Corso and Hagar {2905} use a related technique to fit 21] oriented Gaussian kemels

to homogeneous regions. More details on techniques for finding and matching curves. lines.

and regions can he found later in this chapter.

4.1.2 Feature descriptors

After detecting features flreypoints), we must match them. i.e.. we must determine which

feamres come from corresponding locations in different images. In some situations. e.g.. for

video sequences (Shi and 'Ilomasi 1994} or for stereo pairs that have been rarefied (flung.
Dot-lobe. Faugetas at at. 1995'. Loop and Zbang 1999; Scherstein and Szelisiri 2092), the lo-

cal motion around each feature poirtt may be mostly translational. In this case, simple error

metrics. such as the sun: of squared dtjfi'erenees or nommlized cross-correlation. described

in Section B.l can be used to directly compare the intensities in small patches around each

feature point. [The comparative study by Milrolajceylr and Schmid [2995). discussed below.
uses erossrcorrelstionJ Because feature points may not be exactly located. a more accurate

matching score can be computed by performing incremental motion refinement as described
in Section 3.1.3 but this can be time consuming and can sometimes even decrease perfor-

mance (Brown. Szelisld. and Winder EMS}.

in most cases. however, the local appearance of features will change in orientation and

scale. and sometimes even undergo afline deformations. Extracting a local scale. orientation.

or affine frame estimate and then using this to resample the patch before forming the feattne

descriptor is thus usually preferable [Figure 4J1].

Even after compensating for these changes, the local appearance of image patches will

usually still very horn image to image. How can we matte image descriptors more invariant to

such changes. while still preserving disedminability beoareeu different {non-corresponding}

patches {Figure 4.16)? Miltolajczyl: and Sehmid {2005} review some recently developed
viewairrvariant local image descriptors and experimentally oompm their performance. Ee-
low. we describe a few of these descriptors in more detail.

Blast and galrt nom‘tattaetlon {MOPS}. For tasks that do not exhibit large amounts of

' foreshorterting. such as image stitching. simple normalize-d intensity patches perform reason-

ably weil and are simple to implement (Brown. Srelislti. and Winder EDGE} [Figure 4.1T}. In
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Figure 4.11 MCIPS descriptors are formed using an 8 x E sampling of bins and gain normalized intensityr values.

1.ivith a sample spacing of five pixels relative to the detection scale (Brown. Sseiislti. and Winder ‘Zflflfil @J lflflfi

IEEE. This low hencency sampling gives the features some robustness to interest point location error and is

achicVed by sampling a1 a higher pyramid level than the detection scale.

order to compensate for slight inaccuracies in the feature point detector (location, orientation.

and scale}. these multi—scale oriented patches [MOPS] are sampled at a spacing of five pixels

relative to the detection scale. using a coarser level of the image pyramid to avoid aliasing.

To compensate for affine photometric variations {linear exposure changes or bias and gain.

{3.3)}. patch intensifies are re-sealed so that their mean is zero and their variance is one.

Seals lnvs rtsnt tssturs transform (Eli-T]. SIFT features are formed by computing the

gradient at each pixel in a lti 3-: iii window around the detected ltevpoint. using the appropriate

level of the Gaussian pyramid at which the keypoint was detected. The gradient magnitudes

are detvntveighted by a Gaussian fall-off function {shown as a. blue circle in [Figure 4.13s} in

order to reduce the influence of gradients far front the center. as these are more aficcled by

small misrcgisttations.

In each 4 x 4 quadrant. a gradient orientation histogram is formed by (eoneepmaily)

adding the weighted gradient value to one of eight orientation histogram bins. To reduce the

effects of location and dominant orientation misestirnation. each of the original 256 weighted

gradient magnitudes is softly added to 2 x 2 x 2 histogram bins Using trilinear interpolation.

Softlv distributing values to adjacent histogram bias is generally a good idea in any appli—

cation tvhere histograms are being computed. e.g., for Hough transforms (Section 4.3.2] or

local histogram equalization {Section 3.1.4).

The resulting 123 non-negative values form a ratv version of the SET descriptor vector.

To reduce the effects of contrast or gain {additive variations are ahead].-r removed by the gra—

dieut}. the lEE—D vector is normalized to unit length. To further make the descriptor robust to

other photometric variations. values are clipped to {12 and the resulting vector is once again

reconnalized to unit length.

PISA-SEPT. Kc and Sultthanltar {20134} propose a simpler tvay to compute descriptors in-

spired by SlFI". it computes the .'L' and 1: (gradient) derivatives over a 39 x 39 numb and

then reduces the resulting BEE-dimensional vector to 36 using principal component analysis

{PCA} {Section [$.11 and Appendix All}. Another popular variant of STFT is SURF (Bay.

Tuvtelaars. and Van Gool EDGE}. which uses box filters to approximate the derivatives and
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(a) image gradients {b} keypoint descriptor

Figure 4.18 a schematic representation of Lowe’s {Hind} scale invariant feature transform {SEPT}: {a} Gradient
orientations and magnitudes are computed at each pixel and weighted by a Gaussian fall-off function (blue circle].

{h} A. weighted gradient orientation histogram is then computed in each subregion, using Irilinear interpolation.

While this figure shows an E x 8 pixel patch and a 2 x 2 descriptor array. Lowe’s actual implementation uses

16 x 16 patches and a 4 x if array of eight-bin histograms.

integrals used in SIFT.

firedtant lucatlonmrlanlatlon histogram [GLDl'l]. This descriptor. developed by Mike-

lajccyit and Schmid (2005}. is a variant on SFFT that uses a log-polar binning structure instead
of the four quadrants used by Lowe {2004} {Figure 4.19}. The spatial bins are of radius ti

l1, and 15. with eight angular bins [except for the central region), for a total of l? spa-

tial bins and in orientation bias. The Ill—dimensions! histogram is then projected onto

a lEE—dirnensional descriptor using PEA trained on a large database. In their evaluation.

lvlilcoisjczylr and Schtnid [2W5] found that GLCIH, which has the best performance overall,

outperforms SIFI‘ by a small margin.

Stoetabltt flltttt's. Steerable filters [Section 3.2.3} are combinations of derivative of Gaus-

sian tillers that permit the tepid computation of even and odd tsyuetric and anti-symmetric}

edgc‘like and corner—litre features at all possible oficntations {Freeman and Adeleon 199]].

Because they use reasonably broad Gaussians, they too are somewhat insensitive to localize.
tion and orientation errors.

Pertennance ct lttttal daflt‘tl'lplnl's. Among the local de5criplors that htliltolajczyk and

Sehmid {2005} compared. they found that GLIDE performed best. followed closely by SIFT

{see Figure 4.25}. They also present results for many other descriptors not covered in this
book.

The field of feature descriptors continues to evolve rapidly. with some of the newer tech—

niques looking at local color information [van de Weijer and Schmid ENG; Abdel—Hakim

and Farag 201115}. Winder and Brown (2007} develop a mold—stage framework for foam

descriptor computation that subsornes both SLFI' and GlflH {Figure 4.20a) and also allows
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[a] image gradients {in} keyp-oint descriptor

Figure 4.19 The gradient locatinnnorientation histogram {Glfllfl descriptor uses log-polar bins instead of square

bins to compute orientation histograms (lviikolajcsyi: and Schmid Zflflfij.

91: some with $533449de firmg-idwiln st: 1': puiiunplnammm
Minnie-dim H e WEWI murmurs-dim:

{a}

 
Figure 4.21] Spatial summation blocks for SIFT. GLIDH, and some newly developed feature descriptors [ll-finder

and Brown EMT} is} 2nd? EE: {3} The parameters for the new features. e.g.. their Gaussian weights. are Ieemed

frorn a training database of (b) matched real-world'image patches obtained from robust structure from motion

applied to Internet photo collections (Hue, Brown. and 'Wlnder 2113?).

them to learn optimal parameters for newer descriptors that outperform previous hand-mood

descriptors. Hus, Brown. and Winder {20W} extend this work by learning lower—dimensional

projections of highendimensional descriptors that have the best discriminative power. Both

of these papers use a dalabase of real—world image patches [Figure 4.211113} obtained by sam-

pling images at locations that 1were reliably.r matched using a robust struemre—from—molion

algorithm applied to Internet photo collections {Snauelm Seitz. and Szeliski zoos; Goesele.

Sharply. Cut-less er oi. 20W}. in concurrent worl-t. Tole. Lepelit, and Fee (Edit!) developed a

similar DMS‘I' descriptor for dense stereo matching and optimized its parameters based on

ground truth stereo data.

While these techniques construct feature detectors that optimize for repeatability-r across

el'i object classes. it is also possible to develop class— or instance-specific feature detectors that

maximize diseriminabiiior from other classes {Ferenem learned—Miller. and Mali]: 20:18}.
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Figure 4.21 Recognising objects in a cluttered scene {Lowe EDEN} (E) acne Springer. 'I'wo of the training images
in the database are shown on the left. These are matched to the cluttered scene in the middle using SIFT features.

shown as small squares in the right image. The affine warp of each recognized database image onto the scene is

shown as a larger parallelogram in the right image.

4.1.3 Feature matching

Once we have extracted features and their descriptors from two or more images. the next step

is to establish some preliminary feature matches betwoen these images. In this section. we

divide this problem into two separate components. The first is to select a marching strategy.

which determines which correspondences are passed on to the nest stage for thrther process—

ing. The second is to devise efficient data structures and nigorithms to perform this matching

as quickly as possible. (See the discussion of related techniques in Section 14.3.2.)

Matching strategy and error rates

Determining which feature matches are reasonable to process further depends on the context

in which the matching is being pcrtbrnmd. Say we are given two images that overiap to a fair

amount (e.g.. for image stitching, as in Figure 4.16, or for tracking objects in a 1irideoi. We

know that most features in one image are likely to match the other image, although some may

not match because they are occluded or their appearance has changed too much.

Cln the other hand. if we are trying to recognize how many known objects appear in a clut—

tered scene {Figure 4.21). most of the features mayI not match. Furthermore. a iarge number

ofpotentiaily matching objects must be searched, which requires more efficient strategies. as
described below.

To begin with. we assume that the feature deset‘iptflrs have been designed so that Eu"

ciidean {sector magnitude} distances in feamre space can be directly used for ranking petena

tiai matches. If it turns out that certain parameters fares} in a descriptor are more reliable

than others. it is usually preferable to re—scale these £11135 ahead of tine. c.g.. by determin-

ing how much they Vary when compared against other known good matches {l—lua. Brown,

and Winder 21.117]. A more general process. which involves transfonning feature vectors

into a new scaled basis. is ealied whitening and is discussed in more detail in the context of

eigenface—based face recognition [Section 14.2.1}.
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Figure 4.22 False positives and negatives: The black digits 1 and 2 are features being matched against a database

of features in other images. At the current threshold setting [the solid circles}. the green I is a true positive {good

match). the blue 1 is afairs negative {failure to match}. and the red 3 is afni'ss positive (irtcorrect match). Ifwe set

the threshold higher (the dashed circles}, the blue 1 becomes a true positive but the brown 4 becomes an additional

false positive.

True matches True non-matches

Predicted matches —-E-— PFV= 0-82
Predicted mummies

res. a can m see u use

'Ihble 4.1 The number of matches correctly and incorrectly estimated by a feature matching algorithm. showing

the number of true positives {TP}. false positives [FF]. false negatives (FM) and true negatives [TN]. The columns

sum up to the actual number of positives [P] and negatives {N}. while the rows sum up to the predicted number of

positives {1"} and negatives (11'). The formulas for the true positive rate CITE]. the false positive rate [PPR]. the

positive predictive value [PP‘I-I'}. and the accuracy [ACE] are given in the text.

 

Given a Euclidean distance metric. the simplest matching strategy is to set a threshold

(maximum distance] and to return all matches from other images within this threshold. Set—

ting the thrmhoid too high results in too many false positives. i.e.. incorrect matches being

returned. Setting the threshold too low results in too many false negatives. i.e.. too many

correct matches being missed (Figure 4.22}.

We can quantify the perfomtanoe of a matching algorithm at a particular threshold by

first counting the number of true and false matches and match failures. using the following

definitions (Fawcett eons):

. TP: true positives. i.e., number of correct matches;

e FN: false negatives. matches that were not correctly detected;

e F: false positives. proposed matches that are incorrect:

I TN: nue negatives, non-matches that were correctly rejected.

Table 4.1 shows a sample confusion matrix {confingency table) containing such numbers.

We can convert these numbers into tmit rates by defining the following quantities (Fawcett

zoos}:
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truepositiverate 
. l

[l [I 1 false positive rate
 

{a} [b]

Figure 4m RDC curve and its related rates: [a] The ROC curve plots the one positive rate agshist the false

positive rate for a particular combination of feature extracu'on and matching algorithms. Ideully. the true positive

rate should be elose to II while the false positive rate is close to D. The area under the RUG curve [AUG] is often

used as a single {sealer} measure of algorithm performance Alternatively. the equal error rate is sometimes used.

{h} The dishitution of positive: {matches} and negatives (non—matches} as a function of inter—feature distance ti.

As the tlueshold 9 is htcreasedt the number of true positives {TE} and false positives {FF} increases.

a truepo-sitive rate {TPR}.
 

 

 

 

'1? TP
2 = —' 4.14

TP+FN P 1 l 1

0 false positive rate {Wit}1

PPR — FF — FP- (4 15}
_ FP-t-TN _ N 1 l

a positive predictive value {PW}.

TP TP

PIE”:Ir = TP+FP = F, {4.115}

a accuracy [AGO],
TP+TN

soc _ Pm . (4.11]

In the hrfonnarion retrieval {or document retrieval} literature [Huerta—Yates anti Riheiro—

Nero 1999: Manning. Raghavan. and Sehiitze 2993}. the term precision (how many reusrnetl

documents are relevant} is used instead of PPV and recall [what fraction of relevant docu-

ments was found] is used instead ofTPR

Any particular matching strategy;r (at a particular flareshold or parameter‘ setting] can he

tutetl'hjr Ihe TPR and FPR numbers; ideally. the true positive rate will be close to l and the

false positive rate close to ll. As we vary the matching fliresholti. we obtain a familyr of such

points. which are collectively known as the receiver operating characteristic {ROC curve)

[Fawcett 2995} {Figure 4.23a}. The closer this curve lies to the upper left corner, i.e.. the

larger the area under the curve [AUG], the better its performance. Figure 4.23h shows how

weeanplot the number of matchesantinonvmatchesas shmction ofinter—feature distance if.
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Figure 4124 Fixed tlnesitold. nearest neighbor. and nearest neighbor distance ratio matching. At a fixed distance

threshold (dashed circles}. descriptor DA fails to match D3 and Dr; incorrectly matches Dr.- and 135. If we

pick the nearest neighbor. fig correctly matches D3 but fly incorrectly matches 39. Using nearest neighbor

distance ratio {NNDRJ matching, the small NNDR d1 Iii-3 correctly matches DA with DB. and the large NNDR

l (of; correctly rejects matches for Up.

These curves can then be used to plot art ROE curve {Exercise 4.3). The ROE curve can also

he used to calculate the mean average precision. which is the average precision (PP?) as you

vary the threshold to select the best results. then the two top results. etc.

The problem with using a fixed threshold is that it is difficult to set; the useful range

of tlnesholds can vary a lot as we more to different parts of the feature space {lowe 2004:

Mikolajczyit and Schmid EMS]. A better strateg in such cases is to simply match the nearest

neighbor in feature space. Since some features may have no matches {e.g.. they may be part

of background clutter in object recognition or theyr may he occluded in the other image]. a

threshold is still used to reduce the number of false positives.

Ideally. this threshold itself will adapt to different regions of the feature space. Ifsufficient

training data is available (Hus. Brown. and Winder 200?}. it is sometimes possible to learn

different thresholds for difl‘erent features. Often. however. we are simply given a collection

of images to match. c.g.. when stitching images or constructing 3D models from unordered

photo collections (Brown and Lowe Elli”. ltlflfi: Snavely. Bette. and Soeliski 201135). In this

case. a useful heuristic can be to compare the nearest neighbor distance to that of the second

nearest neighbor. preferably taken from an image that is known not to match the target (tag.

a difi‘erent ohjcct in the database} {Brown and Lowe EDGE; Lowe EDD-1). We can define this

nearest neighbor distance ratio Mikelajeeyk and Schmid IDES] as

s o —
NNDR=—1——ll "‘ Df'l

a ‘ to:car ‘4‘”)

where all and d: are the nearest and second nearest neighbor distances. DA is the target

descriptor. and DB and Dc.- are its closest two neighbors {Figure 4.24}.

The sheets of using these three different matching strategies for the feature descriptors

evaluated by hlikoiajcnyk and Schmid {33435} are shown in Figure 4.25. As you can see. the

nearest neighbor and NNDR strategies produce improved ROG curves.
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Figure 4.15 Perfumenee of the feature descriptors evaluated by Mikelajezykand Schmid {2005} {:3 2005 [BE

511mm fer flaree matching strategies: [9.) fixed fluesheld: {b} nearest neighbor; {e} nearest neighbor distance ratio

['NNDR}. Note how the ordering of the algorithms does not change that much but the overall performance varies

significantly between the difierent matching strategies.
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Figure 4.16 The three Hear wavelet coefficients used for hashing the MOPS descriptor devised by Brown.

Snelishi. and Winder {2005] are computed by summing each 3 x 8 annualized patch over the light and dark gray

regions and taltirtg their difference.

Efficient matching

Once we have decided on a matching strategy. we still need to search efliciently for poten—

tial candidates. The simplest way to find all corresponding feature points is to compare all

features against all other features in each pair of potentially matching images. Unfortunately.

this is quadratic in the number of extracted features. which malres it impractical for most

applications.

A hotter approach is to devise an declaring structure, such as a mold-dimensional search

tree or a hash table. to rapidly search for features near a given feature. Such indexing struc—

tures can either be built for each image independently (which is useful if we want to only

consider certain potential matches. e.g.. searching for a particular object] or globally for all

the images in a given database. which can potentially be faster. since it removes the need to it-

erate over each image. For enlrcnlely large databases {millions of images or more]. even more

efficient structures based on ideas from document retrieval (cg. vacnbrdnry trees. (Nistérand

Stewénius 2006)] can be used [Section 14.3.2}.

GHE- of the simpler techniques to implement is meld-dimensional hashing. which maps

descriptors into fitted size buckets based on some function applied to each descriptor vector.

At matching time. each new feature is bashed into a bucket1 and a search of nearby buckets

is used to return potential candidates. 1which can then be sorted or graded to determine which
are valid matches.

A simple example of hashing is the Hear wavelets used by Brown, Saclisld, and 1|«hinder

{201215} in their MOPS paper. During the matching structure construction. each 3 x E scaled,

oriented, and normalized MOPS patch is converted into a three-clement index by perform—

ing sums over difimnt quadrants of the patch [Figure 4.26}. The resulting three values are

normalized by their expected standard deviations and then mapped to the two {ofb = 113}

nearest 1D bias. The dime-dimensional indices formed by concatenating the three quantized

values are used to index the ‘23 = S bins where the feature is stored {added}. At query time.

only the primary {closest} indices are used, so only a single three—dimensional bin needs to

be examined. The coefficients in the bin can then he used to select i: approximate nearest

neighbors for further processing [such as computing the NNDR}.

A more complex. but more widely applicable. version of hashing is called locaiity sen-

sitive hashing. which uses unions of independently computed hashing functions to index

the features {Gionis Indylt. and Motwarti 1999; Shakhnarovich. Darrell. and Indy]: 2005}.

Shahhnarovich. Viola. and Darrell {211333) extend this technique to be more sensitive to the
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{a} {bi

Figure 4.27 K—d tree and best bin first [HEP] search {Eels and Lowe 1999] @I 1999 BEBE: {a} The spatial
arrangement of the axis-aligned cutting planes is shown using dashed lines. Individual data points are shown as
small diamonds. {b} The same subdivision can be represented as a tree. where each interior node represents an

artisualigned cutting plane I[e.g.+ the top node cuts along dimension dl at value .34} and each leaf node is a data
point. During a BB? search, a query point {denoted by “+“) first looks in its containing bin {D} and then in its
nearest adjacent bin {B}. rather than its closest neighbor in the tree {C}.

distribution of points in parameter space, which they call parameter-sensitive hushnrg. Even
more recent worlr converts high—dimensional descriptor vectors into binary codes that can be

compared using Hamming distances {‘lbrralba, Weiss, and Fergus 2003; Weiss. Torrath and
Fergus Eflflfll or that can accommodate arbitrary kernel functions (Rails and Grauman 2009;
Raginslty and laaehnilr 2009}.

Another widely used class of indexing strncntrcs are mold-dimensional search trees. The
best known of these are for: trees. also often written as lad-trees. which divide the multi—

dimensional feanue space along alternating axis-aligned hyper-planes, choosing the threshold

along each axis so as to maximize some criterion, such as the search tree balance {Sarnet

[989]. Figure 4.2? shows an example of a two-dimensional lz—d tree. Here, eight difierent data

points A-H are shorter as small diamonds arranged on a two—dimensional plane. The It—d tree
recursively splits this plane along axis-aligned {horizontal or vertical] cutting planes. Each

split can be denoted using the dimension number and split value {Figure 4.2%}. The splits are
arranged so as to try to balance the tree. ie.. to keep its maximum depth as small as possible.
At query time. a classic lr—d tree search first locates the query point {+] in its appropriate
bin (DJ. and then searches nearby leaves in the tree {(2. B. . . .3 until it can guarantee that

the nearest neighbor has been found. The best bin first {BEF} search {Eels and Lowe 1999}

searches bins in order of their spatial proximity to the query point and is therefore usually
more efficient.

Many additional data sn'uctntes have been developed over the years for solving nearest

neighbor problems {Arya Mount. Netanyahu at at 1993: Liang. Lin+ Xu et at Will; Hjalta—
son and Samet 2003). For example, Nose and Nsyar {199?} developed a technique they call
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slicing that uses a series of 1D binary searches on the point list sorted along difi'erent dimen—

sions to efficiently cull down alist of candidate points that lie witltin a hypercube of the query

point. Grauman and Darrell {RODS} reweight the matches at dilferent levels of an indexing

tree. which allows their technique to be less sensitive to discretization errors in the tree con-

struction. Mister and Stewdnius {Eflfifi} use a metric one. which compares featun: descriptors;

to a small nmnbcr of prototypes at each level in a hierarchy. The resulting quantized visual

word's can then he used with classical infomatiorn retrieval {document relevance} techniques

to quickly winnorw down a set of potential candidates front a database of millions of images

{Section 14.3.2}. Muja and Lowe {20139) compare a number of these approaches. introduce a

new one of their own [priority search on hierarchical l-r—means trees). and conclude that null-

tiple randomised kud trees often provide the best performance. Despite all of this promising

work. the rapid computation of image feamre correspondences remains a challenging open

research problem.

Feature match verification and donsllleation

Dace we have some hypothetical {putative} matches. we can often use geometric alignment

{Section 5.1} to Verify which matches are falters and which ones are outliers. For example.

if we expect the whole image to be translated or rotated in the matching view. we can fit a

global geometric transform and keep only those feature matches that are sufficiently close to

this estimated transformation. The process of selecting a small set of seed matches and then

verifying a larger set is often called random sampling or RANSAC {Section 6.1.4]. Once an

initial set of correspondences has been established. some systems look for additional matches.

e.g.. by looking for additional correspondences along epipolar lines [Section 11.1} or in the

vicinity of estimated locations based on the global transform. These topics are discussed
further in Sections 6.1. 11.2, and 14.3.1.

4.1.4 Feature tracking

r'tn alternative to independently finding features in all candidate images and then matching

them is to find a set of likely feature locations in a first image and to then search for their

corresponding locations in subseqth hnages. This kind of detect than track approach is

more widely used for video tracidng applications. where the expected amount of motion and

appearance deformation between adjacent frames is expected to be small.

The process of selecting good features to back is closely related to selecting good feaorres

for more general recognition applications. In practice. regions containhtg high gradients in

both directions. i.e.. which have high eigenvalues in the auto-correlation matrix (4.8]. provide

stable locations at which to find correspmrdences {Shi and Tomasi 1994].

In subsequent frames. searching for locations where the corresponding patch has low

squared difference {4.1} often works well enough. Hervever. if the images are undergo—

ing brightness change. explicitly compensating for such variations [8.9) or using normalized

cross-correlation {3J1} may be preferable. if the search range is large. it is also often more

efficient to use a Melamine-oi search strategy. which uses matches in lower-resolution images

to provide better initial guesses and hence speed up the search {Section 3.1.1}. Altmnadves

to this strategy invhlvc learning what the appearance of the patch being tracked should be and

than searching for it in the vicinity of its predicted position [Atddan 1001; Jolie and Dhomc

2i]?
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Figure 4.23 Feaurre tracking using an affine motion model {Shi and 'lbmasi 1994) r3?) 1994 IEEE. Top row: image
patch around the tracked feature location. Bottom raw: image patch after warping back toward the first frame
using an affine defamation. Even though the speed sign gets larger from frame to frame. the affine transformation
maintains a good resemblance between the origins] and subsequent tracked frames.

mill; Williams, Blake, and Cipella ltlt'lfi]. These topics are all covered in more detail in
Section 8.1.3.

If features are being tracked over longer image sequences. their appearance can undergo

larger changes. You then have to decide whether to continue matching against the originally
detected patch {feature} or to re-samplc each subsequent frame at the matching location. The
former strategy is prone to failure as the original patch can undergo appearance changes such
as foreshorteoing. The latter runs the risk of the feature drifting from its original location
to some other location in the image [Shi and Tomasi 1994]. (Mathematically, small mis-

registration ermrs compound to create a Markov Random Walk. which leads to larger drift
over time.)

A preferable solution is to compare the original patch to later image locations using an
afiine motion model {Section 3.2). Shi and Tomasi [1994} first compare patches in neigh-
boring frames osing a translational model and then use the location estimates produced by
this step to initialize an affine registration between the patch in the current frame and the
base frame where a feature was first detected (Figure 4.28]. in their system, features are only

detected infrequently. in. only in regions where tracking has failed. In the usual case. an
area around the current predicted location of the feature is searched with an incremental reg—

istration algorithm {Section 3.1.3}. The resulting tracker is often called the Kanade—Lucas—
Tomasi {lCL'l‘} tracker.

Since their original work on feature tracking, Shi and Tomasi‘s approach has generated a

string ofinteresting follow-on papers and applications. Beardsley. 'Ibrr. and Zisscrman [1996}
use extended feature tracking combined with su'ucnrre from motion {Chapter '5'} to incremen—

tally build up sparse 3D models from video sequences. Kang, Saciiski, and Sham {199?}
tie together the corners of adjacent [regularly gridded]: patches to provide some additional
stability to the tracking. at the cost of poorer handling of occlusions. Tommasini. Fltsiello.
Trueco et at. [1993] provide a better spurious match rejection criterion for the basic Shi and

Tomasi algorithm, Collins and Lid (2033} provide improved mechanisms for feature selec-
tion and dealing with larger appearance changes over time. and Shafique and Shah {2005)

develop algorithms for feature matching [data association] for videos with large numbers of
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Figure 4.29 Real-time head tracking using the fast trained classifiers of chet'u, Pilot, and Fun {211114) {E} ELI-[14
lEEE.

moving objects or points. ‘r'ilmae. lat-red, and Shah [211136] and Iepcrit and Fua [2005} survey

the larger field of object tracking, which includes not only feature‘hased techniques but also

alternative techniques based on contour and region {Section 5.1].

One of the nearest developments in feature tracking is the ttse of learning algorithms to

build special-purpose recognisers to rapidly search for matching features anywhere in an

image Heparin Pilot, and Fua 2006; I-linterstoisser. Benltintane. Naval-t et at. Ellflfi'. Regen,

Ril'tatt. Ramaiingarn et at. 2MB; fiauysal, Calender1 Lepetit at at. Etlltljt.2 By taking the time

to train classifiers on sample patches and their alTine deformations. extremely fast and reliable

feature detectors can be constructed, which enables much faster motions to he sopperted

{Figure 4.29). Coupling such features to deformable models III-"ilctr Lepctit, and Fun lfltlfl} or

structure-from—metion algorithms {Klein and Murray 21303} can result in even higher stability.

4.1.5 Application: Performance-driven animation

One of the most compelling applications of fast feature tracking is perfcnnence-driyen on—

t'marion. i.e.. the interactive defon’rtatien ofa 3D graphics model based on tracking a User‘s

motions {Williams 199th Litwittowica and Militants 1994: Lepetit. Pilot, and Fan 2934).

Huclt1 Finkelsteirt. Jacobs et‘ rti'. {ELEM} present a system that tracks a user‘s facial espres-

sions and heart motions and men uses them to morph among a series of hand-drawn sketches.

.t'ltn animator Iirst extracts the eye and mouth regions of each stretch and draws control lines

over each image [Figure 4.30s). At run time. a face-tracking system (Toyatna 1998] deter—

mines the current location of these features {Figure 4.3%}. The animation system decides

’- Eee also my precious comment on earL'ter work itt looming-based tracking {Mitten Etlfll'. June and Dhamc
2W2: Williams. Elaine. and Cip-alla Elm-J.
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is} in} {:1}

Figure 4.30 Ferfonnance-driyen. hand-drawn animation (Buck. Firtltelstein. Jacobs at of. EDGE} {:3} EDGE ACM:

[:1]: eye and mouth portions of handvdrawn sketch with their cyerlaid control lines; {b} an input video frame
with the tracked features overlaid; {c} a different input video frame along with its {d} corresponding hand-drawn
animation.

which input images to morph based on nearest neighbor feature appearance matching and

triangular baryccnnic interpolation. It also computes the global location and orientation of

the head from the tracked features. The resttlling morphed eye and mouth regions are then

composited back into the overall head model to yield a frame of hand-drawn animation {Fig-
ure 4.3Eldi.

In more recent work, flames. Jacobs. Sanders er of. (21308} watch users animate paper

cutouts on a desk and then turn the resulting motions and drawings into seamless 2D anima-
tions.

4.2 Edges

While interest points are useful for finding image locations that can be accurately matched

in 2D. edge points are far more plentiful and often carry important semantic associauons.

For example. the boundaries of objects. which also correspond to occlusion create in 3D, are

usually delineated by 1risibie contours. Odier kinds of edges correspond to shadow boundaries
or crease edges. where surface orientation changes rapidly. Isolated edge points can also be

grouped into longer curves or contours. as well as straight line segments {Section 4.3}. It

is interesting that even young children have no difficulty in recognizing familiar objects or

animals from such shnple line drawings.

4.2.1_ Edge detection

Given an image, how can we find the salient edges‘il Consider the color images in Figure 4.3 l.

Ifsomeone asked you to point out the most “salient" or ”strongest" edges orthe object bound-

aries Martin. Fowll-tes, and Mali}: 20M; Arbeldca. Maire. Fowlltes ct mi. 2010]. which ones

would you trace? How closely do your perceptions match the edge images shown in Fig—
ure 4.31?
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Figure 4.31 [~Iumau boundaryr detection (Martin. Fowtkes. and Malllt 200-4} (E) 21904 IEEE. The darkness of the

edges corresponds to how many human subjects marked an object boundary at that location.

Qualitatiyely. edges occur at boundaries between regions of different color. intensity. or

texture. Unfortunately. segmenting an image into coherent regions is a difficult task. which

we address in Chapter 5. Often. it is preferable to detect edges using only purely local infor—
mation.

Under such conditions. a reasonable approach is to define an edge as a location of rapid

intensity its:il'r'rr.tr'r.‘ln|.3 Think of an image as a height liclcl. [in such a surface, edges occur

at locations of steep slopes. or equivalently. in regions of closely packed contour lines {on a

topographic map}.

A. mathematical way to define the slope and direction of a surface is through its gradient.

Jim] = one} = (if. E”a? dillml' {4.19:

The local gradient vector J points in L1"!!! direction ofsteepesr ascent in the intensity function.

Its magnitude is an indication of the slope or strength of the variation. while its orientation

points in a direction perpendicular to the local contour.

Unfortunately. taking image derivatives accentuates high frequencies and hence amplifies

noise. since the proportion of noise to signal is larger at high frequencies. It is therefore

prudent to smooth Il'te image with a levaass filter prior to computing the gradian Because

we 1would like the reaponse of our edge detector to be independent of orientation. 3 circularly

symmetric smoothing filler is desirable. As we saw in Erection 3.2. lire Gaussian is die only

separable circularly symmetric filter and so it is used in meat edge detection algorithms.

Canny [1936] discusses alternative filters and a number of researcher review altematiye edge

detection algorithms and compare their performance [Davis 1915: Nalwa and Binford 1985;
Nalwa 1931': Deriche 1913?: Freeman and Adelsou 1991 '. Nalwa 1993'. Heath. Sarkar. Sanocki

end. 1993;. lCrane 199?; Ritter and Wilson 213121111; Bowyer, Kranenhurg. and iJougherty EWI:

Arbelaea. Maire. I-‘owilces er ct. Ztlltll.

Because dil'fercnljaticn is a linear operation, it commutes with other linear filtering eperv

3 We dct'crthe topic of edge When in color images.
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ations. The gradient of the smoothed image can therefore be written as

  

Joint) = V[Gglrc) * 1(a)] = [VGUKM =l= Hm), (4.20)

i.e., we can convolve the image with the horizontal and vertical derivatives of the Gaussian

kernel function, ..

8G,, 30,, 1 2:2 -|- y2
VGalfl’) — ( 6r : 33; ME) — [—e — y]; exp (___2-&_g_) (4-21)

(The parameter 0 indicates the width of the Gaussian.) This is the same computation that

is performed try-Freeman and Adelson‘s (1991) first~order steerable filter, which we already
covered in Section 3.2.3.

For many applications, however, we wish to thin such a continuous gradient image to

only return isolated edges, i.e., as single pixels at discrete locations along the edge contours.

This can be achieved by looking for mime in the edge strength (gradient magnitude) in a

direction perpendicular to the edge orientation, i.e., along the gradient direction.

Finding this maximum corresponds to taking a directional derivative of the strength field

in the direction of the gradient and then looking for zero crossings. The desired directional

derivative is equivalent to the dot product between a second gradient operator and the results

  

of the first,

aw=vam=menth am

The gradient operator dot product with the gradient is called the Iaplacian. The convolution

kernel 2 2 2 2
1 a +3; 3: +y

2

V Cake) 2 0—3 (2 —- 202 ) exp (— 202 ) (4.23)
is therefore called the Laplacicn of Gaussian (LOG) kernel Mar: and Hildreth 1980). This
kernel can be split into two separable parts,

2 l y?
vam=—@~~)emem+gp—%Qamew (we

(Wiej ak, Buxton, and Buxton 1985), which allows for a much more efficient implementation
using separable filtering (Section 3.2.1).

In practice, it is quite common to replace the Laplacian of Gaussian convolution with a

Difference of Gaussian (DoG) computation, since the kernel shapes are qualitatively similar

(Figure 3.35). This is especially convenientif a “Laplacian pyramid" (Section 3.5) has already
been computed.4

In fact, it is not strictly necessary to take differences between adjacent levels when com-

puting the edge field. Think about what a zero crossing in a “generalized” difference of

Gaussians image represents. The finer (smaller kernel) Gaussian is a noise—reduced version

of the; original image. The coarser (larger kernel) Gaussian is an estimate of the average in

tensity over a larger region. Thus, whenever the DoG image changes sign, this corresponds

to the (slightly blurred) image going from relatively darker to relatively lighter, as compared
to the average intensity in that neighborhood.

4 Recall that Burt andAdelson’s (1983a) “Laplaciau pyramid” actually computed differences of Gaussian-filteredlevels.
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Once we have computed the sign function SEm}. we must find its zero crossings and

convert these into edge elements (cdgeir). An easy way to detect and represent zero crossings

is to look for adjacent pixel locations I." and my where the sign changes value. i.e.. {Her} :2:

U] 3‘5 {Sims} I? o].

The sub-pixel location of this crossing can be obtained by computing the “nuintercept” of
the “Iine” cementing Stan} and .51ij.

_ 31'3le — eJ-Stei}
"“ ‘ Sisal — Sins} ‘

The orientation and strength of such edgels can be obtained by linearly interpolating the

gradient values computed on the original pixel grid.

An alternative edgel representation can he obtained by halting adjacent edgels on the

dual grid to form edgeIs that live inside each square formed by four adjacent pixels in the

original pixel grid.5 The {potential} advantage of this representation is that the edgels now

live on a grid offset by half a pixel from the original pixel grid and are thus easier to store

and access. As before. the orientations and strengths of the edges can be computed by

interpolating the gradient fieid or estimating these values from the difference of Gaussian

image (see Exercise 43']. I

in applications where the accuracy of the edge orientation is more important. higher-order

steerable filters can he used {Freeman and Adelsorn 1991) {see Section 3.2.3}. Such filters are

more selective for more elongated edges and also have thepossibility of honor modeling curve

intersections because they can represent multiple orientations at tile same pixel [Figure 3.15}.

Their diSadvantage is that they are more expensive to compute and the directional derivative

of the edge strength does not have a simple closed form solution.‘

{Ii-.25)

Scale selection and blur estimation

As we mentioned before. the derivative. Laplaeian. and Difierence of Gaussian filters [4.2G—

4.23) all require the selection of a spatial scale parameter or. if we are only interested in

detecting sharp edges. the width of the filter can be determined from image noise characteris—

tics {Canny 1986: Elder and chker 1998}. However. it' we want to detect edges that occur at

different resolutions [Figures 4.32b—c}. a sonic-specs approach that detects and then selects

edges at different scales may be necessary Within [933; Lindchcrg 1994. lilillia: l‘tlielsenI

Fioraelr, and Deriche 199T].

Elder and Zuclter [1993} present a principled approach to solving this problem. Given

a lrnown image noise level. their technique competes. for every pixei. the minimum scale

at which an edy can be reliably detected [Figure 4.32:1‘]. Their approach first computes

gradients densely over an image by selecting among gradient estimates computed at different

scales, based on dieir gradient magnitudes. It then performs a similar estimate of minimum

scale for directed second derivatives and uses zero crossings of this latter quantity to robustly

select edges {Figures 4.32e—fl. As an optional final step, the blur width of each edge can

be computed from the distance heir-veer] extrema in the second detivalive response minus the
width of the Gaussian filter.

5 This algorithm is a. 2]) version ortlte in melting cubes isosurfaee extraction algorithm {Inmsen and Cline
198?].

'5 1n titer1 the edgehiieitarinn can hate :1. 130° ambiguity for “her edges". which makes the computation ofaero
crossings in the derivative more tricky.

213
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Figure 4.3: Scale selection for edge detection {Elder and Zuckcr 1998]: @I 1993 IE: is} original image; fin—e)
Cannyifleriche edge detector tuned to the finer {mannequin} and coarser {shadow} scales: {d} minimum reliable
scale for gradient estimation: to} minimum reliable scale for second derivative estimation: {fl final detected edges.

Color edge detection

1While most edge detection techniques have been developed for grsyscale images. color im-

ages can provide additional information. For example. noticeable edges between iso-imninanr
colors {colors that have the same luminance} are useful cues but fail to be detected by grayacale

edge operators.

Cine simple approach is to combine the outputs of grayscale detectors nm on each color

band separately? However. some care must he taken. For essrnple. if we simply sum up

the gradients in each of the color bands. the signed gradients may actually cancel each other!
(Consider. for example a pure reclaim-green edge.) We could also detect edges independently

in each hand and Ihcn take the union of dense. but this might lead to thickened or doubled

edges that are hard to link.

A. better approach is to compute the oriented energy in each hand Mortonc and Burr
1935; Porous and Malik 1990a). c.g.. using a second-order steerable filter {Section 3.2.3]:

[Freeman and Adeison 199]). and then sum up the orientationvwoighted energies and find

theirjoinl best orientation. Unfortunately. the directional derivative of this energy may not

have a closed form solution (as in the case of signed first-order steerable filters]. so a simple

zero crossing-based strategy cannot be used. However. the technique described by Elder and 

T Instead pissing dueraw KGB space. a court: perceptually uniform colorspaoesuchas L"a*h'I (see Section 2.3.2]
can housed instead When trying to match human performancr. Martin. leisss. and Maiik 2W4). this makes some.

However. in terms ofthc physio: oftbe underlying image [minnow and sensing. it ms";I be nqnestionablc strategy.
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Zucltcr {1998} can be used to compute these core crossings numerically instead.

An alternative appmach is to estimate local color statistics in regions around each pixel

{Resort and Tomasi Efltllt Martin, Fowllres, and Malilt 20m). This has the advantage that

more sophisticated techniques ie.g., 3D color histograms] can be used to compare regional

statistics and that additional measures, such as texture, can also be considered. Figure 4.3?

shows the output of such detectors.

Of course, many other approaches have been developed for detecting color edges, dating

back to early work by Nevatia {19W}. Enron and 'I‘omasi {2W1} and Gevers, van de Weijer.

and Stolunan (1006} provide good reviews of these approaches. which include ideas such as

fusing outputs from multiple channels, using multidimensional gradients, and vector—based
methods.

Combining edge feature cues

If the goal of edge detection is to match human boundary detection performance {Bowyen

Kranenburg, and Daugherty 2W1: Martin, Fowlires, and Mali]: Edd-1: Arbebiez, Maire, Fowlltes

er of, 1WD), as opposed to simply finding stable features for matching, even better detectors

can be constructed by combining multiple low—level cues such as brightness, color, and teat.-
hire.

Martin, Fowllees, and Malilr [2004} describe a system that combines brightness, color, and

texture edges to produce state-of-the-art performance on a database of hand-segmented natu-

ral color images (Martin, Fowllres. Tal at at Zilt'll}. First, they construct and trains separate
oriented half-disc detectors for measuring significant differences in brighmess {luminance},

color fa‘ and b* channels, summed responses), and texture fun-normalized filter bank re-

sponses from the work of Malilt, Belongie, Leung et at. {Milli}. Some of the responses

are then sharpened using a soft non-maximal suppression technique. Finally. the outputs of
the three detectors are combined using a variety of machine-Ieaming techniques, from which

logistic regression is found to have the best tradeoff between speed, space and accuracy .

The resulting system {see Figure 4.33 for some examples] is shown to outperform previously

developed techniques. Maire, Arbelaes, Fowikes at at. GUIDE} improve on these results by

combining the detector based on local appearance with aspectrel {segmentation-based} de—

tector {Belongie and Malilt 1993). in more recent work, Arbeldez, Maire, Features at of.

{Zilltl} build a hierarchical segmentation on top of this edge detector using a variant of the

watershed algorithm.

4.2.2 Edge llnlting

While isolated edges can be useful for a variety of applications, such as line detection [Sec—

tion 4.3} and sparse stereo matching [Section Ill}, they become even more useful when
linked into continuous contours.

If lrl'te edges have been detected using zero crossings of some function, linking them up

is straightforward, since adjacent edgels share corrunon endpoints. Linking the edgels into

chains involves piclting up an unlinked edge] and following its neighbors in both directions.

Either a sorted list of edgels {sorted first by at coordinates and then by p coordinates. for

example} or a 2D array can be used to accelerate the neighbor finding. [f edges were not

*‘Ihctraiuinguaeslilfllabclcdimageeaodteatiuglsperfotmedonadiflirrmtsetoflllflimages.

215
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11.2

 
Figure 4.33 Combinnd hdghmfls, calm. chtum boundary dntcctur (Martin, Fowlkes, and Malik EDD-4] @I QUE-1

l'EEE. Succcssiw: rows show the. outputs of the. brightness gTadicnl {HG}. cola: gradient (CG), tcxum: gradient

{TO}. and combined {HG+CG+TG} detectors. The final mw 511m human-labeled hflundarics derived from a

database. of hand-segmented images (Martin. Fawkes, Tat at at 21101].
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Figure 4.34 Chain code representation of a grid-aligned linked edge chain. The code is represented as a series

of direction codes. e.g. t] l D ”I I5 5. which can further be compressed using predictive and run—length coding.
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Figure 4.35 Arc-length parameterization of a contour: {a} discrete points along the contour are first transcribed

as (h) {:c. 1;} pairs along the arc length 3. This curve can then be regularly re—sampled or concerted into alternative

[e.g.. Fourier} representations.

detected using zero crossings. finding the emuinttation of an edge] can be tricky. in this

case. comparing the orientation (and. optionally. phase} of adjacent edgels can he used for

disambiguation. Ideas fi'orn connected component computation can also sometimes he used

to make the edge linking process even faster {see Exercise 4.3}.

Once the edgels have been linked into chains. we can applyr an optional thresholding

with hysteresis to remove low-shengfli contour segments (Canny.r 1986}. The basic idea of

hysteresis is to set two different thresholds and allow a curve being tracked shove the higher

threshold to dip in strength down to the lower threshold.

Linked edgel lists can be encoded more compactly-r using a variety of alternative repre—

sentations. A chain code eneodes a list of connected points lying on an N; grid using a

three-hit code corresponding to the eight cardinal directions (N. NE. E. SE. 5. SW. W. NW}

between a point and its successor {Figure 4.34}. While this representation is more compact

titan the original edgel list [especially if predictive variable—length coding is used}. it is not

very suitable for further processing.

A more nseful’i‘epreeentation is the art: length parameterizstion of a contour. refs). where

s denotes the are length along a curve. Consider the linked set of edgels shown in Fig—
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s=ti=l

 
Figure 4.36 Matching two contours using their are—length parameterization. Ifboth curses are normalized to

unit length. a E [t]. I] and centered around their centroid en. the}r will have the same descriptor up to an overall

“tempo " shift {due to different starting points for a = Li} and a phase lie-y] shift [due to rotation).

 
fat to

Figure 4.37 Curve smoothing with a Gaussian kernel {Lowe 1933) {Q [9'93 IEEE: {a} without a shrinkage

correction term; {h} with a shrinkage correction term

are 4.35s We start at one point {the dot at {1.0. 0.5} in Figure 4.35a} and plot it at coordinate

a = [t (Figure 4.35m. The next point at {2.0. [15] gets plotted at a = 1. and the next point

at {2.5.1.0} gels plotted at a = 1.?0?1. i.e.. we increment s by the length of each edge seg-

ment. The resulting plot can be reaampled on a regular {sag integral] s grid before further

processing.

The advantage of the arc‘length parametetiaatiou is that it resists matching and processing

{e.g.. something] operations much easier. Consider the two etuvcs describing similar shapes

shown in Figure 4.35. To compare the curves, we first subtract the average values reg. =

fl sofa} flora each descriptor. Next. we rescale each descriptor so that s goes from t] to 1
instead of [J to S. i.e.. we divide ate} h}! 5'. Finally. we take the Fourier traosform of each

normalized descriptor. treating each a: 2 {any} value as a complex number. If the original

curves. are the same [up to an unknown scale and rotation]. the resulting Fourier transforms

should diEer trail}.I h}; a scale change in magnitude plus a constant complex phase shift. due

to rotation. and a linear phase shift in the domain. due to difierent starting points for s {see

Exercise 4.9].

” Arc—length parameteriaatjon can also he used to smooth curves in order to remove digiti—

zation noise. However. if we just applyr a regular smoothing filter. the curve tends to shrink
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( Q l

21‘)

Figure 4.38 Changing the character of a curve without affecting its sweep ['F'mitelstein and Salesin 1994} (if)
1994 ACM: lughea‘ frequency wavelets can be replaced with exemplars from a style library to effect different local
appearances.

on itself [Figure 4.37s]. Lowe {i939} and '[hubin {1995} describe techniques that compensate

for this shrinkage by adding an offset term based on second derivative estimates or a larger

smoothing kernel (Figure 4.31s). An alternative approach. based on selectively modifying

different frequencies in a wavelet decomposition. is presented by Finkelstciu and Salesin

{1994}. In addition to controlling shrinkage without affecting its "sweep". wavelets allow the

“character“ of a curve to be interactively modified. as shown in Figure 4.33.

The evolution of curves as they are smoodred and simplified is related to "grassfire" {dis-

tance} transforms and region skeletons {Section 3.3.3} (Tel: and Kirnia 20133}, and can be used

to recognize objects based on their contour shape {Sebastian and Kirnia 2095}. More local de-

scriptors of curve shape such as shape contexts {Belongic Maiik. and Puzicha EDGE) can also

be used for recognition and are potentially more robust to missing parts due to occlusions.

The field of contour detection and linking continues to evolve rapidly and now includes

teclnu'ques for global contour grouping. boundary completion. and junction detection (Maire,

.I‘trhelaea. Fowlirns at at. EDGE). as well as grouping contours into likely regions (maniacs.

Maire. Fowllaes st of. lfll ti] and wide—baseline correspondence {Meitzer and Soatto sees}.

4.2.3 Application: Edge editing and enhancement

While edges can scrim as components for object recognition or features for matching. they

can also he used directly for image editing.

In fact. if the edge magnitude and blur estimate are leer-t along 1with each edge, a visually

similar image can be reconstructed from this information [Elder 1999}. Based on this princi—

ple. Elder and Goldberg [211le propose a system for “image editing in the contour domain".

Their system allows users to selectively remove edges corresponding to unwanted feantres

such as speeularilies. shadows, or distracting visual elements. After reconstructing the image

from the remaining edges. the undesirable visual features have been removed [Figure 4.39].

Another potential application is to enhance pcrcepmally salient edges while simplifying

the underlying image to produce a cartoon-like or “penvanddnk” stylized image {DeCarlo and

Sarttella sear}. This application is discussed in more detail in Section 11115.2.
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Ed} lei

Figure 4.39 Iniage editing in the contour domain {Elder and Goldberg EDD” [E] mill IEEE: {a} and {d} original

images; [hi and {e} extracted edges (edges to be deleted are marked in white}: lo} and (fl reconstructed edited

images.

4.3 Lines

While edges and genie-a] curves are suitable for describing the contours of natural objects,

the man-made world is full of straight lines. Detecting and matching these lines can be

asefiJI in. a variety of applications. including sIChitecttual modeling. pose estimation in urban

environments, and the analysis ofprinted document layouts.

In this section. we present some techniques for extracting piecewise linear descriptions

from the curves computed in the previous section. We begin with some algorithms for approx—

imating a curve as a piecewise—linear polyline. We then describe the Rough transfom. which

can be used to group cdgels into line segments even across gaps and occlusions. Finally. we

describe how 3]) lines with common vanishing points can be grouped together. ‘I'hese van-

ishing points can be used to calibrate a camera and to determine its orientation relative to a

rectabedral scene. as described in Section 15.3.2.

4.3.1 Successive approximation

its we sassr in Section 4.2.2. describing a curve as a series anD locations 3; = mist} provides

a general representation suitable for matching and fisrther processing. In man].r applications,

however. it is preferable to approximate such a curve with a simpler representation. e.g., as a

piecewiselinear pnlyiine or as a B-spiine curve {Farin 1996}, as shown in Figure 4.411].

Many techniques have been developed over the years to pezi'orm this approximation.

which is also known as fine simplification. Dill: of the oldest, and simplest, is the one proposed

by Ramer (1W2) and Douglas and Poacher {iii-TB}. who recursively subdivide the curve at
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It:

{a} {bi [Cl

Figure 4.40 Approximating a curve {shown in black} as a polyiinc or B-spline: {a} original curve and a polyline

approximation shown in red; [b] successive approximation by recursively finding points furthest away from the

current approximation: [c] smooth interpolating spline shown in darlc blue. fit to the polpline vertices.

  
[a]

Figure 4.41 Original Hough transform: (a) eats] point votes for a complete familyr of potential lines nfd} =
2; cos I9 + pi sin d; {h} each pencil of lines sweeps out a sinusoid in [n19]; their intersection provides the desired
line equation.

the point finthest diva}.r from the line joining the two endpoints [or the current coarse polvline

approxiination]. as shown in Figure 4.4:]. Hershberger and Snoepinlt {1992} provide a more

efficient implementation and also cite some of the other related work in this area

Once the line simplification has been computed. it can be used to approximate the orig-

inal curve. If a smoother representation or visualization is desired. either approximating or

interpolating splines or curves can be used (Sections 3.5.1 and 5.1.1] {SueiisKi and lto 1936-.

Bat-leis. Realty, and Barsky 198T; Farin 1996). as shown in Figure 4.4m.

4.3.2 Hough transtorms

While curve approximation with polplines can often lead to successful line extraction, lines

in the real world are sometimes broken up into disconnected components or made up of man}r

collinear line segments. In manyr cases, it is desirable to group such collinear segments into

extended lines. At a further processing stage {described in Section 4.3.3}, we can then group

such lines into collections with conunun vanishing points.

The Hough transform. named after its original inventor {Hung}: 1962}, is a well-lumen

technique for having edges “vote” for plausible line locations [Duds and Hart 1W2; Ballard

1981'. lllingworth and Kittie: 1988). In its original formulation {Figure 4.41). each edge point

votes for all possible lines passing through it. and lines corresponding to high cccmulctor or
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{a} (bi

repsrarneterizcd in polar [1-, d] coordinates. with fig -——Figure 4.42 Oriented Heugb transform: {a} an edgel
showing the votes for the three edgels marked in

{one Hgsin 9;} and n = fii - my, {b} {r1 1?} accumulator array.
red. green. and blue.

 
Figure 4.43 212! line equation expressed in terms of the normal it. and distance to the origin d.

bin 1.raloes are examined for potential line fits.“ Unless the points on a line are truly ptmctate.
a better approach {in my experience} is to use the local orientation information at each edge!
to 1rote for a single accumulator cell {Figure 4.42], as described below. A hybrid strategy.
where each cdgel votes for a number of possible crientslion or location pairs centered around
the estimate orientation. may be desirable in some cases.

Before we can vote for line hypotheses, we must first choose a suitable representation.
Figure 4.43 {copied from Figure 2.2a]: shows the normal-distance [1%. d} parameteriealion for
a line. Since lines aremade up of edge segments, we adopt the convention that tlse line normal
fl points in the same direction fie.+ has the same sign} as the image gradient me} = ‘Flfim‘j
{4.19}. To obtain a minimal two-parameter representation for lines. we convert the normal
vector into an angle

H = tan—1 nyfnt, {4.26}

as shown in Figure 4.43. The range of possible {(3. d] 1ralues is 1—131)“. 1841“] x [-—‘.e"'§l {2'}.
assuming that we amusing nomialized pixel coordinates [2.61) thalliein [— 1, 1|. The number
of bins to'use along each axis depends on the accuracy of the position and orientation estimate
available ateach edge} and the expected line density. and is best set experimentally with some
test runs on sample imagery.

Given the line parameterieation. the Hough transform proceeds as shown in Algorithm41.

5' The Plough transform can also be generalized to look for other geometric featams such as circles [Ballard
I931}.butwedonolcomsochextensloosinthlsbook.
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procedure Hough H {:1 y. t9} H:

1. Clear the accumulator array.

223

2. For each detected edgel at location {my} and orientation 3—— tan' :npfni.
compute the value of

d = In; + y up

and increment the accumulator corresponding to {3, d}.

3. Find the peaks in the accumulator corresponding to lines.

4. I‘lelionallsr re-fit the lines to the constituent edgels.

Algorithm 4.2 Outline of a Hough transform algorithm based on oriented edge segments.

   

 
Edd-h:ui‘i Elsi iii. iiiil-l- -l- +1+li-i-H-l-

iii tilt ilzi iii: lib? tit“
flit tltl iii“. titt iii? ‘i‘i‘i‘

subspace l

tit-l

Figure 4.44 Cube map representation for line equations and vanishing points: {a} a cube map surrounding the

unit sphem: {bl projecting the half—cube onto three subspaces {'I‘uytelasrs, Van Soul, and Proesrnans 1997} @J
19'}? THEE.

Note that the original formulation of the Hough transform. whieh assumed no knowledge of

the edgei orientation ti. has an additional loop inside Step 2 that iterates over all possible
values of ti and increments a whole scrim: of accumulators.

There are a lot of details in getting the Hough transform to work well. but these are

best worked out by uniting an implementation and testing it out on sample data. Exercise

4.12 describes some of these steps in more detail. including using edge segment lengths or

strengths during the voting process. keeping a list of constituent edgels in the accumulator

arrayr for easier post-processing, and optionallyr combining edges of different “polarity" into

the same line segments.

An alternative to the 1D polar {Ed} representation for lines is to use the full 3D m =

{id} line equation1 projected onto Ihe unit Sphere. 1i'i’hile the sphere can he parameterized

using spherical coordinates [2.3).

'rh = {cos 3 cos 4:, aintiI cos tin. sin ti}, {4-27}

Ihis does not uniformlyr sample the sphere and still requires the use of trigonometry.

An alternative representation can he obtained by using a cube men. i.e., projecting or. onto

the face of a unit euhe {Figrue 4.44s}. To compute the cube map coordinate of a 3D vector

in. first find the largest (absolute value] component of in. Le. m = :l: maxi|n,[, Inyl. Idl].
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and use this to select one of the six cube faces. Divide the remaining two coordinates by m

and use these as indices into the cube face. While this avoids the use of trigonometry. it does

require some decision logic.

Cine advantage of using the cube map. first pointed out by Tuyteiaars, 1it'an final. and

Proesmans {199?}. is that all of the lines passing through a point correspond to line segments

on the cube faces. which is useful if the original [full voting} variant of the Hough transform

is being used. in their work. they represent the line cqu ation as ea + tr + p = t]. which
does not treat the a and y axes symmetrically. Note that if we restrict d 3: i} by ignoring the

polarity of the edge orientation {gradient sign]. we can use a half-cube instead, which can be

represented using only three cube fares. as shower in Figure 4.44b {Thytelaars ‘v'an Goo]. and
Procsmans 199T].

HANSAG-basod Ilne detection. Another alternative to the Hough transform is the RAN-

darn Satmple Consensus tithNSr'tC} algorithm described in more detail in Section til .4. in

brief. RANSAC randomly chooses pairs of edgels to form a line hypothesis and then tests

how many other edgels fall onto this line. (If the edge orientations are accurate enough. a

single edgel can produce this hypothesis} Lines with sufficiently large numbers of miter-r

{matching edgels) are then selected as the desired line segments.

An advantage of KANSAS is that no accumulator array is needed and so the algorithm can

be more space efficient and potentially less prone to the choice of bin size. The disadvantage

is that many more hypotheses may need to be generated and tested than those obtained by

finding peaks in the accumulator array.

In general. there is no clear consensus on which line estimation technique performs best.

It is therefore a good idea to thinlt carefully about the problem at hand and to implement

several approaches {successive approximation. Hongh. and RANSAC} to determine the one

that works beet for your application. I

4.3.3 Vanishing points

In many scenes. strucnrrally important lines have the same vanishing point because they are

parallel in 31]. Examples of such lines are horizontal and vertical building edges. zebra cross-

ings, railway tracks. the edges of furniture such as tables and dressers. and of course. the

ubiquitous calibration pattern {Figure 4.45). Finding the vanishing points common to such

line sets can help refine their position in the image and, in certain cases, help determine the

inuinsic and extrinsic orientation of the camera {Section 6.3.1].

Over the years, a large number of techniques have been developed for finding vanishing

points. including {Quan and Mohr 1939‘. Collins and Weiss 1990': Brillaut—U'Mahoney 1991;
McLean and Kottm'i 1995: Becker and Hove 1995; Shui'elt 1999; Tuytelaars. Van Gaol, and

Proesmans 199?; Schafl'alitsky and Zisserman 2000; Antone and Teller 20in: Rother 2W2:

Knsecira and Zheng 2005: Ptiugfclder 2003; Tardit" Eiiii9i-—see some of the more recent pa-

pers for additional references. In this section. we present a simple I-lough technique based

on having line pairs vote for potential vanishing point locations. followed by a robust least

squares fitting stage. For alternative approaches. please see some of the more recent papers
listed above.

The first stage in my vanishing point detection algorithm uses a Hough transform to accu-

mulate votes for likely vanishing point candidates. As with line fitting. one possible approach
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225

Figure 445 Real-world vanishing points: {a} architecture (Birdie. Steedly. Sectiski et at. EDDB). Eb} furniture

masons. Wildenauer, and Koseclra 20133} {{2} EDDE IEEE, and {c} calibration patterns {Zhang soon}.

is to have each line vote for oil possible vanishing point directions. either using a cube rnap

t'l‘ttvtelaars. 1|r'an Gool. and Proesnsnns 199?: Antone and Teller 21302) or a Gaussian sphere

(Collins and 1|Weiss 1990). optionally using knowledge about the uncertainty in the vanish-

ing point location to perform a weighted vote {Collins and Weiss £990; Erillant-G'Mahoney

191.11; Shufclt 1999}. My preferred approach is to use pairs of detected line segments to form

candidate vanishing point locations. Let iris, and fit] he the [unit norm) Iinc equations for a

pair of line segments and i.- and t;- be their corresponding segment lengths. The location of

the corresponding vanishing point hypothesis can be computed as

'flfi = fi'iii X til-j {4.23}

and the corresponding weight set to

lug} = livijll'liijr {4.29}

This has the desirable effect of doerWeighting [near-icoflinear line segments and short line

segments. The Hough space itsetian either be represented using spherical coordinates {42?}

or as a. cube map [Figure 4.44:1}.

Once the Hough accumulator space has been populated. peaks can be detected in a manner

similar to that previouslyr discussed for line detection. Given a set of candidate line segments

that voted for a vanishing point. which can oprtionaII}r be kept as a list at each l-iough accu—

mulator call. I then use a robust least squares fit to estimate a more accurate loca1ion for each

vanishing point.

Consider the relationship between the title line scgnient endpoints {pl-m pin} and the van-

ishing point 1:. as shotvn in Figure 4.45. The area A ot‘lhe triangle given by these three points,

which is the magnihidc of their triple product

A: = lite-u a an} -al. {4.30)

is proportional to the perpendicular distance rtl between each endpoint and the line through

'1: and the other endpoint, as well as the distanco between Pitt and tr. I.Iitssu|'rting that. the

accuracy of a fitted line segment is proportional to its endpoint accuracy (Exercise 4. l 3}. this

therefore serves as an optimal metric for how well a vanishing point fits a set of extracted

lines fleihowitz {2131]. Section 3.6.1} and Pflugfeltler {20%. Section 11.13)}. A robustifled
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Figure 4.446 Triple product of the line segmems endpoints Pin and p£1 and the vanishing point 1:. The area A is
proportional to the perpendicular distance ill and the distance between the other endpoint pm and the vanishing
point.

least squares estimate {Appendix 13.3) for the vanishing point can therefore be written as

s = Z flair) = vi" (2wring-sum?) 1: = eTMu, (4.31}
where m; = pm 3-: p“ is the segment line coalition weighted by its length ii. and 1th; =

p’{Ai]fA,- is the influence of each robustified {reweighted} measurement on the final error

{Appendix 13.3}. Notice how this metric is closely related to the original female for the pair—

wise weighted Hough transform accumulation step. The final desired value for u is computed

as the least eigenvector of M.

While the technique described shove proceeds in two discrete stages1 better results may

be obtained by alternating between assigning lines to vanishing points and refitting the van-

ishing point locations {Antone and Teller 1on2; Koseeka and Zhaug mes; Ptiugfelder Edith}.

The results of detecting hidividual vanishing points can also be made more robust by simulta

neously searching for pairs or triplets of mutually orthogonal vanishing points {Shufelt 1999:
Antone and Teller EDGE; Rother 2W2; Sinha. Steedly. Sneliski er oi. Edith). Some results of

such vanishing point detection algorithms can be seen in Figure 4.45.

4.3.4 Application: Rectangle detection

Once sets of mutually orthogonal vanishing points have been detected. it now becomes pos—

sible to search for 3D rectangular sn-uettoes in the image (Figure 4.4T}. Over the last decade,

a variety of techniques have been developed to find such rectangles, primarily focused on
architectural scenes [Rossetti and Zhang 20135: Han and Zhu 20135; Shaw and Barnes EDDIE;

Micusllt, 1i‘i'ildonaster. and Kosechti lflflfl; Schindler. Krishnamurthy. Lubiinerman er of. 2003}.

After detecting orthogonal vanishing directions, Koseckd and Zhang {2005} refine the

fitted line equations. search for comers near line intersections, and then verify rectangle hy-

potheses hy rectifying the corresponding patches and looking for a preponderance of hori—
zontal and vertical edges [Figures 4.4Ta—b}. [n follow—on work. Midaslk. deenauer. and

Koseckd {EDGE} use a Markov random field IIMEF} to disambiguate between potentially over-

lapping reetangle hypotheses. They also use a plane sweep algorldim to match rectangles
between different views [Figures 4.4‘ld—f].

A. different approach is proposed by Han and Zhn {2005}. who use a grammar of potential

rectangle shapes and nesting structures {between rectangles and vanishing points] to infer the

most likely assignment of line segments to rectangles [Figure 4.4%}.
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31'?

Figure 4.4? Rectangle detection: {a} indoor corridor and {b} building exterior with grouped facades (Knseckri

and Zhang 2:115] if.) 2005 Eisevier; {c} grammar—based recognition {Han and Zbu 2MB} @ Zflflfi IEEE: {d—f}

rectangle matching using a plane sweep algorithm (MiEuEk. ‘vitl'illflenauer+ and Koseokai Zfltlli) @I Eflflfl IEEE.

4.4 Additional reading

One of the seminal papers on feature detection. description. and matching is by inure {2004).

Comprehensive surveys and evaluations of such techniques have been made by Schmid.

Molar. and Bauckhage {zoos}; Miltolajczyk and Schmid (201215]; l'ulilrolajezylt1 Tuytelaars,

Sehruid at at. {213(15): T‘uytelaars and ivfiltolajcaylt {lfltl'i} while Sbl and Tomasi {1994} and

Triggs (Eflfl‘ij also provide nine reviews.

In the area of feature detectors {Mikolajezyh Tuytelaars. Schrnid et at. 2095}. in addition

to such classic approaches as Forstner—Han'is {Forstner 19%;. Harris and Stephens 1938] and

tfifference of Gaussians {Lindeberg 1993, 1993b: Lem 2W4}, maximally stable extremal re-

gions [MSERsi are widely used for applieallons that require affine invariance Mates, Chum.

Urban of all. EDD-ti: Mister and Stowe-sins BEIGE]. More recent interest point detectors are

discussed by Xian and Shah {2W3}: Koetlre {ME}; Cameiro and Jepson [2005): Kearney.

Zuiiani. and Manjlmath [EGGS]; Bay, Tuytalaars. and 1|tram. Goal {EDDIE}: Plate]. Balu1ael1nova.

Floraclt at at. {Willi}: Roster: and Diamond tacos). as well as techniques based on line

matching {ZogblarnL Faugeras. and Deriche IQBT; Bartoli. Coquerelle. and Stunt: 2004} and

region detection {KttdirT Zisserrnan. and Brady 2004'. Mates. Chum, Urban or at 2004: Tnyte‘

[ears and 1'tl’an l[Errol 2W4: Corso and l-Iager 231115).

fit variety of focal feature descriptors {and mashing horn-lanes} are surveyed and oom-

pared by Miltolajcayit and Schmid {NBS}. More recent publications in this area include
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those by van de Weijer and Sebtrtid [2000}; Abdel-Hakim and Farsg {2000); “Finder and
Brown {200?}; Has; Brown; and Winder [2007}. Techniques for efficiently matching features

include k—d trees ['Beis and Lowe 1909; Lowe 2004; Muja and Lowe 2009}. pyramid match-

ing kernels {Grauman and Darrell 2005}. metric (vocabulary) bees {Nistér and Stewénins

2006].. and a varietyr of multidimensional bashing techniques [Shallhynarovich Viola. and
Barrel] 2003; Torralha; Weiss. and Fergus 2003; Weiss. Tortolba, and Fergus 2003; Rolls and

Granman 2009; Raginslry and lazebnilr 2039].

The classic reference on feature detection and tracking is [Shi and Tomasi 1904}. More

recent work in dais field has focused on learning better matching functions for specific features

{Avidan 2001; Iuric and Dbome 2002; Williams, Blake. and Cipoila 2003;1eoetit and Fits

2005; lepeu‘t. Pilct. and Fua 2005: Hintetstoisscr, Bcnhimane. Navab or at 2003; Roger,
Rihan, Ramaiingam st oi. 2008; lii'Ilzuysal; Calender. Inpefit ct oi. 2010].

a highly cited and widely used edge detector is the one developed by Canny {1936).

Altcmalivc edge detectors as well as experimental comparisons can be fotmd in publica-

tions by Nalwa and Binford {1986}; Naiwa (193?); Derichc (193?); Freeman and Adelson

{195”}; Nalwa {1093}; Heath, Saritsr. Sanoclci at all. {1903}; Crane {199?}: Ritter and Wilson

{2000}; I'iovryer1 Kraneuburg. and Dougherty [200] J; hrbelt‘iez. Maire; FowIltee er oi. [2010}.

The topic of scale selection in edge detection is nicely treated by Elder and Zueiter {I998},

while approaches to color and texture edge detection can be found in [Enron and Tornasi
2001;. Martin. Fowllres, and Malil: 2004; (levers, van de Wcijer, and Stokman 2006}. Edge

detectors have also recently been combined with region segmentation techniques to further

improve the detection of semantically salient boundaries (Maire, erbclaez; Fowllres at at

2003; Arbelaea; Maire. Fowlices oi nl, 2010}. Edges linked into contours can be smoothed

and manipulated for artistic efiect {Lowe 1939: Finitclstein and Salesiu 1994:Tat1bin 1995}

and used for recognition {BelongieI Malilt. and Puzzicba 2002; Tel: and Kinda 2003; Sebastian

and ijia 2005].

An early; well-regarded paper on straight line extracu'on in images was written by Btrrns.

Hanson; and Risernan [1986}. More recent techniques often combine line detection with van—

ishing point detection [Quan and Mob: 1930; Collins and Weiss i990: Brillattt-UMahoney

1991; McLean and Kothici 1995; Becker and Here 1095; Shufoit 1999: Tuytclaars. 'v'an (loci.

and Procsrnans 199?: Sobaffalitriry and Zissennau 2000; Antone and Tbilcr 2002; Rather

2002; Kodcokfi and Zhang 2005: Pflogfelder 2003; Sinha1 Sleedly; Snelisiri at cl. 2003; Tardil'

2.009].

4.5 Examines

E: 4.1: Interest point detector implement one or more keypoint detectors and compare

their performance (with your own or with a classmate’s detector).
Possible detectors:

e Laplacian or Difference ofGaussien:

o Flirstner—Harris Hessian {try difi‘erent formula variants given in {4.9-4.1 1));

Ir orientedt'steerable filter. looking for either second-order high second response or two

edges in a window (Koetbc 2003}; as discussed in Section 4.1.1.
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Other detectors are described by Mikolajczyk, Tuytelaars, Schmid er at. (2005); Tuytelaars

and Mikolajczyk (2007). Additional optional steps could include:

1. Compute the detections on a sub-octave pyramid and find 3D maxima.

2. Find local orientation estimates using steerable filter responses or a gradient histogram—

niing method.

3. Implement non—maximal suppression, such as the adaptive technique of Brown, Szeliski,

and Winder (2005).

4. Vary the window shape and size (pre-filter and aggregation).

To test for repeatability, download the code from http:1"!vawrobots.or.ac.tlki'mvggiresearclul

affine! (Mikolajczyk, ’Duytelaars, Schmid et at. 2005; 'I‘uytelaars and Mjlrolajczyk 200'?) or

simply rotate or shear your owu test images. (Pick a domain you may want to use later, e.g.,

for outdoor stitching.)

Be sure to measure and report the stability of your scale and orientation estimates.

Ex 4.2: Interest point descriptor Implement one or more descriptors (steered to local scale

and orientation) and compare their performance (with your own or with a classmate’s detec-

tor).

Some possible descriptors include

o contrast—nonnalized patches (Brown, Szeliski, and Winder 2005);

I SIFT (Lowe 2004-);

o GLOH (Wolajczyk and Schmid 2005);

o DAISY (Winder and Brown 2007; Tola, Lepetit, and Fun 2010).

Other detectors are described by Mikolajczyk and Schmid (2005).

Ex 4.3: ROC curve computation Given a pair of curves (histograms) plotting the number

of matching and non—matching features as a function of Euclidean distance d as shown in

Figure 4.23b, derive an algorithm for plotting a ROC curve (Figure 4.23s). In particular, let

t(d) be the distribution of true matches and He?) he the distribution of (false) non-matches.
Write down the equations for the ROC, i.e., TPR(FPR). and the AUC.

(Hint: Plot the cumulative distributions T(d) = ft(d) and F01) : f flat) and see if
these help you derive the TPR and PPR at a given threshold 6.)

Ex 4.4: Feature watcher .. After extracting features from a collection of overlapping or dis—

torted images,m match them up by their descriptors either using nearest neighbor matching
or a more efficient matching strategy such as a lr-d tree.

See whether you can improve the accuracy of your matches using techniques such as the

nearest neighbor distance ratio.

in http:llwwwrobotscx.ac.ukf~vggfresearch}af.finef.

229
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Ex 4.5: Feature tracker Instead of finding feature points independently in multiple images

and then matching them, find features in the first image of a video or image sequence and
then re—locate the corresponding points in the next frames using either search and gradient
descent (Shi and Tomasi 1994) or learned feature detectors (Lepetit, Pilet, and Fua 2006;

Fossati, Dimitrijevic, Lepetit er a1. 2007). When the number of tracked points drops below a
threshold or new regions in the image become visible, find additional points to track.

(Optional) Winnow out mcorrect matches by estimating a homography (6.19-6.23) or
fundamental matrix (Section 7.2.1).

(Optional) Refine the accuracy of your matches using the iterative registration algorithm
described in Section 8.2 and Exercise 8.2.

Ex 4.6: Facial feature tracker Apply your feature tracker to tracking points on a person ’5

face, either manually initialized to interesting locations such as eye corners or automaticafly

initialized at interest points.

(Optional) Match features between two people and use these features to perform image
morphing (Exercise 3.25).

Ex 4.7: Edge detector Implement an edge detector of your choice. Compare its perfor—

mance to that of your classmates‘ detectors or code downloaded from the Internet.

A simple but well—performing sub—pixel edge detector can be created as follows:

1. Blur the input image a little,

Bohr) : Gate) 1: Km).

2. Construct a Gaussian pyramid (Exercise 3.19),

P = Pyramid{Ba(a:)}

3. Subtract an interpolated coarser-level pyramid image from the original resolution blurred

image,

301:) = Bahia) — P.1nterpolatedLevel(L).

4. For each quad ofpixels, {(s’,j), (11+ 1,3'), (1', j —1- l), (i + 1I j + 1)}, count the number

of zero crossings along the four edges.

5. When there are exactly two zero crossings, compute their locations using (4.25) and

store these edgel endpoints along with the midpoint in the edge] structure (Figure 4.48).

6. For each edge}, compute the local gradient by taking the horizontal and vertical differ-
ences between the values of S along the zero crossing edges.

7. Store the magnitude of this gradient as the edge strength and either its orientation or

diet of the segment joining the edgel endpoints as the edge orientation.

8. Add the edgei to a list of edgels or store it in a 2D array of edgels (addressed by pixel
coordinates).

Figure 4.48 shows a possible representation for each computed edgel.
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struot SEdgel {

l;

float e[2][2]; // edgel endpoints (zero crossing)

float x, y; // sub—pixel edge position (midpoint)
float n_x, n_y; // orientation, as normal vector

float theta; // orientation, as angle (degrees)
float length; // length of edgel s

float strength; // strength of edgel (gradient magnitude)

struct SLine : public SEdgel [

l:

float line_length; // length of line feet. from ellipsoid)

float sigma; // estimated std. dev. of edgel noise

float r; // line equation: x * n_y — y + n_x = I

Figure 4.48 A potential C++ structure for edgcl and line elements.

Ex 4.8: Edge linking and thresholding Link up the edges computed in the previous exer-

cise into chains and Optionally perform threshold'mg with hysteresis.

The steps may include:

1. Store the edgels either in a 2D array (say, an integer image with indices into the edgel

list) or pro—sort the edgel list first by (integer) :1: coordinates and then 3; coordinates, for

faster neighbor finding.

Pick up an edgel from the list of unlinked edgels and find its neighbors in both direc-
tions until no neighbor is found or a closed contour is obtained. Flag edgels as linked

as you visit them and push them onto your list of linked edgels.

Alternatively, generalize a previously developed connected component algorithm (Ex-

erciSe 3.14) to perform the linking in just two raster passes.

(Optional) Perform hysteresis—based thresholding (Canny 1986). Use two thresholds

"hi” and "10” for the edge strength. A candidate edgel is considered an edge if either

its strength is above the "hi” threshold or its su‘ength is above the ”lo" threshold and it

is (recursively) connected to a previously detected edge.

(Optional) Link together contours that have small gaps but whose endpoints have sim-
ilar orientations.

(Optional) Find junctions between adjacent contours, e.g., using some of the ideas (or

references) from Maire, Arbelaez, Fowlkes et al. (2008).

Ex 4.9: Contour matching Convert a closed contour (linked edge] list) into its arc-length

parameterization and use this to match object outlines.

The steps may include:

231
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1. Walk along the contour and create a list of (ml-,3!“ st) triplets, using the arc—length

formula .

3.54.1 = 311+ H$¢+1 — 1139;“. (4.32)

2. Resarnple this list onto a regular set of (:33- , yj , 3') samples using linear interpolation of

each segment. 5

3. Compute the average values of m and y, i.e., E and fl and subtract them from your

sampled curve pomts.

4. Resarnple the original (an, pg, 5.) piecewisenlinear function onto a length-independent

set of samples, say 3' E [0,1023]. (Using a length which is a power of two makes

subsequent Fourier transforms more cenvenient.)

5. Compute the Fourier transform of the curve, treating each (a, y) pair as a complex
number.

6. To compare two curves, fit a linear equation to the phase difference between the two

curves. (Careful: phase wraps around at 360°. Also, you may wish to weight samples

by their Fourier spectrum magnitude—see Section 8.1.2.)

7. (Optional) Prove that the constant phase component corresponds to the temporal shift

in 5, while the linear component corresponds to rotation.

Of course, feel free to try any other curve descriptor and matching technique from the com-

puter vision literature (Tek and Kimia 2003; Sebastian and Kimia 2005).

Ex 4.10: Jigsaw puzzle solver—challenging Write a program to automatically solve ajig

saw puzzle from a set of scanned puzzle pieces. Your software may include the following

oomponents :

1. Scan the pieces (either face up or face down) on a flatbed scanner with a distinctively

colored background.

2. (Optional) Scan in the box top to use as a low~rcsolution reference image.

3. Use color—based thresholding to isolate the pieces.

4. Extract the contour of each piece using edge finding and linking.

5. (Optional) Re-represent each contour Using an arc-length or some otherre~pararneterizafion

Break up the contours into meaningful matchable pieces. (Is this hard?)

6. (Optional) Associate color values with each contour to help in the matching.

7. (Optional) Match pieces to the reference image using some rotationally invariant fea—

'ture descriptors.

8. Solve a global optimization or (backtracking) search problem to snap pieces together

and place them in the correct location relative to the reference image.

9. Test your algorithm on a succession of more difficult puzzles and compare your results
with those of others.
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4.5 Exercises

Ex 4.11: Successive approximation line detector Implement a line simplification algorithm
{Section 4.3.1) (Ramer 1972; Douglas and Peucker 1973) to convert a hand-drawn curve (or
linked edge image) into a small set of polylines.

(Optional) Re—render this curve using eidrer an approximating or interpolating spline or
Bezier curve (Szeliski and Ito 1986; Bartels, Beatty, and Barsky 1987; Farin 1996). a

Ex 4.12: Hough transform line detector Implement a Hough transform for finding lines
in images:

1.
Create an accumulator array of the appropriate user-specified size and clear it. The user

can specify the spacing in degrees between orientation bins and in pixels between dis-

tance bins. The array can be allocated as integer (for simple counts), floating point (for
weighted counts), or as an array of vectors for keeping back pointers to the constituent
edges.

For each detected edgel at location (a, y) and orientation 6 = tan—1 11,, fax, compute
the value of

d = 931% + you (4.33)

and increment the accumulator corresponding to (B, d).

(Optional) Weight the vote of each edge by its length (see EXercise 4.7) or the strength
of its gradient.

(Optional) Smooth the scalar accumulator array by adding in values from its immediate

neighbors. This can help counteract the discretization effect of voting for only a single
bin—see Exercise 3.?.

Find the largest peaks (local maxima) in the accumulator corresponding to lines.

(Optional) For each peak, re—fit the lines to the constituent edgels, using total least

squares (Appendix A2). Use the original edgel lengths or strength weights to weight
the least squares fit, as well as the agreement between the hypothesized line orienta—

tion and the edgel orientation. Determine whether these heuristics help increase the
accuracy of the fit.

After fitting each peak, zero—out or eliminate that peak and its adjacent bins in the array,
and move on to the next largest peak.

Test out your Hough transform on a variety of images taken indoors and outdoors, as well

as checkerboard calibration patterns.

For checkerboard patterns, you can modify your Hough transform by collapsing anfipodal
bins (9 :1: 180°, —d) with (8, d) to find lines that do not care about polarity changes. Can you
think of examples in real-world images where this might be desirable as well?

Ex 4.13: Line fitting uncertainty Estimate the uncertainty (covariance) in your line fit us
ing uncertainty analysis.

1.
After determining which edgels belong to the line segment (using either successive

approximation or Hough transform), re—fit the line segment using total least squares
(Van Huffel and Vandewalle 1991; Van Huffel and Lemmerling 2002-), i.e., find the

233
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234 4 Feature detection and matching

mean or centroid of the edgels and then use eigenvalue analysis to find the dominant
orientation.

2. Compute the perpendicular errors (deviations) to the line and robustly estimate the

variance of the fitting noise using an estimator such as MAD (Appendix B .3).

3. (Optional) re-fit the line parameters by throwing away outliers or using a robust norm
or influence function.

4. Estimate the error in the perpendicular location of the line segment and its orientation.

Ex 4.14: Vanishing points Compute the vanishing points in an image using one of the tech-

niques described in Section 4.3.3 and optionally refine the original line equations associated

with each vanishing point. Your results can be used later to track a target {Exercise 6.5) or

reconstruct architecture (Section 12.6.1).

Ex 4.15: Vanishing point uncertainty Perform an uncertainty analysis on your estimated

vanishing points. You will need to decide how to represent your vanishing point, e.g., homo-

geneous coordinates on a sphere, to handle vanishing points near infinity.

See the discussion of Bingbanl distributions by Collins and Weiss (1990) for some ideas.
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{Ell lid}

Figure 6.1 Gmmetric alignmanl and calibration: {a} geometric alignment 0f 2D imagcs far stitching {Smliski

and Shum IE???) E) 1951'? ACM: {In} :I two-dimensional calibration taxgct (Zhang 2WD) {E} 2mm 1EEE: {c} cal—

ibraLiun from vaniahing painls: Ed} 5::an with maria—find lines and vanishing directions (Climinisi. Rtid. and

Zisserman 2000) @I 2001'} Springer.
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6.1 2!] and 3D feature-based alignment

NO panenanalatiort
H  
 

Figure til Basic set of 2D planar transformations

Once we have extracted features from images, the next stage in many vision algorithms is

to match these features across different images (Section 4.1.3}. An important component of

this matching is to serif).r whether the set of matching features is geometrically.r consistent.

e.g., whether the feature displacements can be described by a simple ED or 3D geometric
transformation. The computed motions can then be used in other applications such as image

stitching (Chapter 9} or augmented realityr {Section 6.2.3}.

In this chapter, we look at the topic of geometric image registration. i.e.. the computation

of 2D and 3D transformations that map features in one image to another [Section t5. 1}. One

special case of this problem is pose estimation. which is determining a camera's position

relative to a known 3D object or scene {Section 6.2}. smother case is the computation of a

camera‘s intrinsic calibration. which consists of the intents] parameters such as focal length

and radial distortion {Section 15.3}. in Chapter "t, we look at the related problems of how

to estimate 3D point structure from 2D matches {triangulation} and. bow to simultaneoust

estimate 3D groomers).r and camera motion {structure from motion).

6.1 2D and 3D feature-based alignment

Feamrobased aligrunent is the problem of estimating the motion between two or more sets

of matched 2D or 3]] points. In this section. we restrict ourselves to global parametric trans—

formations. such as those described in Section 2.1.2 and shown in Table 2.1 and Figure 15.2.

or higher order transformation for curved surfaces [Shashua and 'I'oelg 1997; Can, Steme

Roysam er of. does}. Applications to non-rigid or elastic deformations {Bookstein 1939;

Saelislcl and [availed 1996: 'Ibrresani. Hertzmarm. and Bregler 24308} are esarnined in Sec—
tions 3.3 and 12.6.4.

6.1.1 an alignment using least squares

Git-ten a set of matched feature points {{ati. atfl} and a planar parametric transformation1 of
the form

m“ = flap}, {til}

' For examples si non-planar parametric models. such as quadrics. see the wort ot‘ Shretbuu and Toelg {199?}:
Shashua and Weller {2031).

2'15
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2‘16

Transform

translation

Euclidean

similarity

afine

projective

6 Foam-based alignment

Matrix Parameters p Jaeohian J

1 U l, l i]

o 1 i, {this} a 1

as —39 t, 1 [l flea-cry

35! [in im {#:5tyra} fl 1 cam—33y

1+n —il :3 l E] s: —y

b 1+a t3. {twrtfllluttq t] l y :17

l+fioo no: t; 1 El. :1: 3; ill [I

an: 1.5111 g,” {twitLHaUUtaUlralflsfl'lfl} fl 1 t] t] :c y

hm 1+5]: hi:

1 + hm] hm ELM

hm hm 1 Utoo: hot: - - . that} {see Section 6.1.3}

Thhle 15.1 Jaeohians of the 2D coordinate transformations m‘ = flm; 13} shown in Table ll. where we have

re—parametetized the motions so that they are identity for p = I].

how can we produce the best estimate of the motion parameters at? The usual WEtju' to do this

is to use least squares. i.e.. to minimize the sum of squared residuals

Em = 2 Hull2 = Z ”fiesta — zilli. {so}
1' I.

where

n = strap) — a; = 5:1— at tan

is the residual bemoan the measured location i; and its 1:0nt current predicted

location if; = flan; 1:}. {See Appendix A2 for more on least squares and Appendix 13.2 for

a statistical justi fioan'on.)

Many of the motion models presented in Section 1L2 and Table ll. Lo” translation,

similarity and shine, have a linear relationship between the amount ofrnotion firm = in“ — m

and the unknown parameters It.

the = m' — m = J[:r:}p, 05.4}

where J = Efffip is the Jacobinn of the h'ansfonnation f with respect to the motion param—

eters 31 {see Table 6.1]. In this case. a‘sintple linear regression {linear least squares problem}
can be formulated as

Ens = Zines—earl“ so

= p?” [Z JT{w;]J{a:.-):| p — 211T [Z flannel] + Z "on H: {as}i 1: ti

pTAp — 231% + n. {so}
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6.1 2D and 3D teatime-based alignment

The minimum can be found by solving the symmetric positive definite {SPD} system of nor;

moi egrtattt'ott.r1
an = a, {as}

where

A = Estimate.) {as}

is called the Hessian and h = 2-; JWmdflmn For the case of pure translation. the result.
ing equations have a particularly simple form, i.e., the nanslation is the average translation

between corresponding points or1 equivalently. the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature

points are malclied with the same accuracy. This is often not the case. since certain points

may fall into more textured regions than others. If we associate a scalar variance estimate of
with each correspondence. we can minimise the weighted least squares problem insteadf‘

Ewe = Zarillrtlli- {6.10)

As shown in Section 3. l .3, a covariance estimate for patch-based matching can be obtained

by multiplying the inverse of the patch Hessian A; {3.55} with the per—pixel noise covariance

efi [3.44). Weighting each squared residual by its inverse covariance E: 1 = agar-1; (which
is called the ittfomiatien matrix}. we obtain

Eowts = Z llTillzrt = Zri‘Ei‘Lri = Zafirfam. (6.11}i 1'i

6.1.2 Application: Panography

One of the simplest [and most fun] applications of image aiigmnentis a special form of image

stitching called penography. in a panograph. images are translated and optionally rotated and

scaled before being blended with simple averaging {Figure 6.3}. This process mimics 'the

photographic collages created by artist David Hockney. although his compositions use an

opaque overlay modelI being created out of regular photographs.

In most of the examples seen on the Web. the images are aligned by hand [or best artistic

effect.“ However. it is also possible to use feature matching and alignment techniques to

perform. the registration automatically (Homers, Zhang. and Nayar 211W: Zelnilz—Manor and
Perona 200?}.

Consider a sitnple translational model. We want all the conespondiag features in different

images to line up as best as possible. Let t: be the location of the jth image coordinate frame

in the global composite frame and reg- be the location of the ith matched feature in the jth

image. In order to align the images. we wish to minimize the least squares error

Eris = 2 tie + sat — alt“. iii-12}
is 

1 as; poorly (customs prtlblents. it is betterto use its decomposition an lb: set at linear equations Jim-alt: =
that. instead of the normal equations {Bjfireit IEI'EIE'. Goiab and We latte [996}. However. such conditions rarely

arise in image regisngtlen.
3 Problem tamer-emum:can hat-treadimrrem variance or certainty arecalled Miemst‘edaflie models.

‘ huptiiwwwllielmetentgroupst’panogrnphyi.
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HE IS Feature-based alignment

 
Figure 15.3 A simple panograph consisting of three images automatically aligned with a translational model and

then averaged together.

where :e. is the consensus {average} position of feature r' in the global coordinate frame.

{An alternative approach is to register eaeh pair of overlapping irnagos separater and then

compute a consensus location for each frame—see Exercise 6.2.}

The above least squares problem is indeterminate [you eat: arid a constant offset to all the

frame and point locations the and reg}. To fill this. either pielc one frame as being at the origin

or add a constraint to make the average frame offsets he I].

The formulas for adding rotation and scale n'ansfonnations are su-aightfontrarti and are

left as an exercise [Exercise 6.2}. See if you can create some collages that you would be

happy to share with others on the Web.

6.1.3 lteratltra algorithms

While linear least squares is the simplest method for estimating para meters. most problems in

eornputer vision do not have a simple linear reiau'onship between the measurements and the

unknowns. in this case, the resulting probiern is nailed tron-linear least squares or arm—linear

regression.

Consider. for example. the problem of estimating a rigid Euelidean 2E) u-ansformation

[translation plus rotation) hetween two sets of points. If we parameterize this transfonnatina

by the translation amount (ti. is] and the rotation angle t9. as in Table 2.1. the .Tacohian of

this transformation. given in Table 6.1, depends on the ear-rent value of ti. Notice how in

Thole s. I. we have re-pararneterized the motion matrices so that the}r are always the identity

at the origin 3-;- 2 Eli. which makes it easier to initialize the motion parameters.

Th minimize the non—linear least squares problem. we iteratively find an update fit}: to the

current parameter estimate 1: by minimizing

estates} = Z llamas-r eat - mitt” tats)

* Z l Jtmt; Pitta rt IF {s14}
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6.1 2D and 3D feature-based alignment

Ag? [2 JTJ] Ap — mp?“ 2 flag + Z [tn-[[2 (6.15)  
= apTAnp _ 213pr + c, (5.15)

where the “Hessian”5 A is the same as Equation (6.9} and the right hand side vector 5

b = Z flagpo- (6.17)

is now a Jacobianeweighted sum of residual vectors. This makes intuitive sense, as the pa—

rameters are pulled in the direction of the prediction error with a strength proportional to the
lacobian.

Once A and b have been computed, we solve for Ap using

(A+Adiag(A))Ap = b, (6.18)

and update the parameter vector p <— p + A]: accordingly. The parameter A is an addi—

tional damping parameter used to ensure that the system takes a “downhill” step in energy

(squared error) and is an essential component of the LevenberguMarquardt algorithm (de—

scribed in more detail in Appendix A3). In many applications, it can be set to i] if the system

is successfully converging.

For the case of our 2D translation-t—rotation, we end up with a 3 x 3 set of normal equations

in the unknowns (6th city, 66). An initial guess for (t3, ty, 6) can be obtained by fitting a

four-parameter similarity transform in (tmtym, s) and then setting 6 = tan—1(s/c). An
alternative approach is to estimate the translation parameters using the centroids of the 2D

points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).
For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,

except for the projective 2D motion (homography), which arises in image-stitching applica-

tions (Chapter 9). These equations can be rewritten from (2.21) in their new parametric form
as

; (1 + houjx + holy "i' i102 _, = 111053 "i“ (1 + h11)y + hm’ = -————-—- and 6.19
J: 31203 + holy + l y h2om + haw + 1 ( )

The lacohian is therefore

3f 1 r y 1 O U 0 —:s"x —$'y

J 833 D O 0 0 m y 1 —-y’a: wy’y ’ (6 0)

where D = hgoa: + hgly —I- 1 is the denominator in (6.19), which depends on the current

parameter settings (as do :3’ and y’).

An initial guess for the eight unknowns {hm}, I101, . . . , hm} can be obtained by multiply-

ing both sides of the equations in (6.19) through by the denominator, which yields the linear

set of equations,

:3"—:c_:sy10
§’—y_000:r

5 The ‘Tlessian’i'A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).

Instead, it is the approximate Hessian. which neglects second (and higher) order derivatives of flan; p + AP}.

A, ., has
0 -$I —xy0

a 1 —fl’m —’§r’y (6'21)
h21

2'79
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280 6 Feature-based alignment

However, this is not optimal from a statistical point of view, since the denominator D, which

was used to multiply each equation, can vary quite a bit from point to point.6

One way to compensate for this is to reweighi each equation by the inverse of the current

estimate of the denominator, D,

has
1 aid—r 1 a: y 1 U 0 U —:i:"s: —:E*’y__ .=.-. : . 5.22Dir—ii DiOOOSyI—rm—a’i - l )

i121

While this may at first seem to be the exact same set of equations as (6.21), because least

squares is being used to solve the over‘determined set of equations, the weightings do matter

and produce a different set of normal equations that performs better in practice.

The most principled way to do the estimation, however, is to directly minimize the squared

residual equations (6.13) using the Gauss—Newton approximation, i.e., performing a first—

ordcr Taylor series expansion in p, as shown in (6.14), which yields the set of equations

Aft-co
-i_ -.r 1 . _-—i _-i

[a p ]: _ [ m y l (J 0 U in pig : . (6.23)y D 0 0 0 a: y 1 —yrr Hyy ‘
Abel

While these look similar to (6.22), they differ in two important respects. First, the left hand

side consists of unweighted prediction errors rather than point displacements and the solution

vector is a perturbation to the parameter vector 1). Second, the quantities inside J involve

predicted feature locations (55", 3]") instead of seared feature locations (if, :13"). Both of these

differences are subtle and yet they lead to an algorithm that, when combined with proper

checking for downhill steps (as in the Levenberg~Marquardt algorithm), will converge to a

local minimum. Note that iterating Equations (6.22) is not guaranteed to converge, since it is

not minimizing a well—defined energy function.

Equation (6.23) is analogous to the additive algorithm for direct intensity-based regis-

tration (Section 8.2), since the change-to the full transformation is being computed. If we

prepend an incremental homography to the current homography instead, i.e., we use a com-

positional algorithm (described in Section 8.2), we get D = 1 (since 33 = O) and the above

formula simplifies to

Ahgg

”3" 5 . (6.24)
Ahfll

l—_I “23%; || “tit-q t—I
||

l"'—I Czt-i Ova OH HO

where we have replaced (fi’, fi’) with (11:, y) for conciseness. (Notice how this results in the

same J'a'cobian as (8.63).)

 

5 Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct
linear transfonn, but that term is more commonly associated with pose estimation (Section 6.2). Note also that our

definition of the hi3- parameters differs from that used in their book, since we define h“: to be the difizrence from
unity and we do not leave fig; as a free parameter, which means that we cannot handle certain extreme homographies.
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6.1 2D and 3D feature-based alignment

5.1.4 Robust least squares and HANSAG

While regular least squares is the method of choice for measurements where the noise follows

a normal {Gaussian} distribution. more robust versions of least squares are required when

there are outliers among the correspondences {as there almost always are). In this case. it is

preferable to use an rid—estimator {Huber 1931; Harnpei. Ronehetti. Rousseeuw et ai. 1936;

Black and Rangai‘ajan 1996: Stewart 1999], which involves applying a robust penalty function

,alIr} to the residuals

 

estates} = Eaten} teas)

instead of squaring them.

We can take the derivative of this function with respect to p and set it to i},

ii 1"; “H 1;! 1‘; 51“;

Event} 5'9?” = L flilitnmiifi = a, {5.25)

where stilt] = p'{r] is the derivative of p and is called the influencefunction. Ifwe introduoe

a weightfunction. wit} = 'Iifrjft'. we observe that tinding the stationary point of (6.25} using

{6.2.6} is equivalent to minimizing the iteratively weighted least squares {lRLS} problem

Erase = Z willrillilirillnr (5-27}t.

where the some; II] play the same local weighting role as of 2 in {dill}. The lRLS algo—
rithm altentatcs between computing the influence functions te[||t*.-||]| and solving the result-

ing weighted least squares problem (with fixed to values]. Other incremental robust least

squares algorithms can be found in the work of Sawhney and Ayer [Wild]; Black and Finan—

dan [1996}; Blaclt and Rangerajan [1995]; Batter. Gross. Ishiltawa at al. [EMS] and textbooks

and tutorials on robust statistics {Huber 1931:. Hampel. Ronehetti. Rousseeuw et at. 19515;

Rousseeuw and Leroy 193?: Stewart i999).

While lull-estimators can definitely help reduce the influence of outliers. in some cases.

starting with too many outliers will prevent IRLS {or other gradient descent algorithm] from

converging to the global optimum. A better approach is often to find a starting set ofinlier

correspondences, i.e.. points that are consistent with a dominant motion estimate:F

'l'Wo widely used approaches to this problem are called RANdotn SAmple Consensus. or

RANSAC for short [Fisehler and Bolles 1981}, and ientt median ofsqttares {1M5} [Rousseeuw

1984}. Both techniques start by selecting [at random} a subset of it correspondences, which is

then used to compute an initial estimate for p. The residuals of the full set of correspondences

are then computed as

ri = tiflmitpj — at, {6.23}

where ab: are the estimated {mapped} locations and i: are the sensed {detected} feature point
locations.

The RANSAC technique then counts the number of irriiers that are within 5 of their pre

dicted location. i.c_r whose llrill 5 e. {The e value is application dependent but is often

around 1—3 pixels.) Least median of squares finds the median value of the ||r*.;||2 values. The

7' For pixelthased alignment methods [Suction It. LI), h‘itca'arcbioal {cosmetic-flee) techniques are often used to
loclt onto the dome-inn: motion in a scene.

:31
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it p S

3 0.5 35

I6 0.6 9'?

s 9.5 293

Table 6.1 Number of trials 5' to attain a 99% probability of success {Stewart 1999].

random selection process is repeated 3 times and the sample set with the largest number of

inliers {or with the smallest median residual} is ltcpt as the final solution. Either the initial

parameter guess p or the full set of computed intiers is then passed on to the next date fitting
stage.

When the number of measurements is quite large. it may be preferable to only score a

subset of the measurements in an initial round that selects the most plausible hypotheses for

additional scoring and selection. This modification of RhNSAC. which can significantly

speed up its performance, is called Preemptive KANSAS [blister 2003}. In another variant
on RANSAC called PROSAC [PRGgIessive Shmplc Consensus). random samples are ini—

tially added from the most "confident" matches, thereby speeding up tlte process of finding a

{statistically} likely good set of inliers {Chum and Mates 2W5}.

To ensure that the random sampling has a good chance of finding a true set of inllers. a

sufficient number of trials .5' must be tried. Let p be the probability that any given correspon-

dence is valid and P he the total probability of success shot 3 trials. The likelihood in one

trial that all it: random samples are inlicrs is pl‘. Therefore. the likelihood that 5' such trials
will all fail is

1 — P = t1 - ptji {are}

and the required minimum number of trials is

log{1 - P)S = —. (6.36}
hail - n")

Stervart (l999} gives examples of the required number of trials 3 to attain a 99% proba—

bility of success. As you can see from Table 6.2. the number of trials grows quickly with the

number of sample points used. This provides a strong incentive to use. the minimum number

of sample points it possible for any given trial, which is how RANSAC is annually used in

practice.

Uncertainty modeling

In addition to robustly computing a good alignment, some applications require the compu-

tation of uncertainty [see Appendix 5.5]. For linear problems. this estimate can be obtained

by inverting the Hessian matrix [6.9] and multiplying it by the feature position noise [if these

have not already been used to weight the individual measurements. as in Equations (s. it!)

and 5.11)). In statistics, the Hessian. which is the inverse covariance, is sometimes called the

{Fisher} info-mum: matrix {Appendix 13.1.1}.

when the problem involves non‘linear least squares. the inverse of the Hessian matrix

provides the Greater-Rae lower bound on the covariance matrix. i.e.. it provides the minimum
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6.1. 2D and 3D feature-based alignment

amount of covariance in a given solution, which can actually have a wider spread ("longer

tails"J if the energyr flattens cut away from the local minimum where the optimal solution is
found.

6.1.5 31] alignment

instead of aligning 21) sets of image features, many computer vision applications require the

alignment of 3D points. In the case where the 3D transformations are linear in the motion

parameters. e.g.1 for translation. similarity. and afline. regular least squares [15.5) can be used.

The case of rigid [Euclidean] motion.

Enact = Z Hei- — Hat — tlli. test}1'

which arises more frequently and is often called the absolute orientation problem (Horn

1931'}. requires slightlyr different techniques. 11' only scalar weightings are being used {as

opposed to full 3D per—point anisotropic covariance estimates), the weighted centroids of the

two point clouds r: and c’ can be used to estimate the translation t = r." — Re.” We are then
left with the problem of estimating the rotation beearcen two sets of points {a-.- = 1:; — e}

and {at = to; — c’} that are both centered at the origin.

Clue commonly used technique is called the orthogonot Procmstes algorithm {Goiuh and

‘v'an Loan 19515. p. 601) and involves computing the singular value decomposition {SVD} of
the 3 x 3 correlation mania

r; = 252’s?" = UEVT. (6.321

The rotation matrix is then obtained as R = UVT. {Verify this for yourself-when i=1 = REL]

Another technique is the absolute orientation algorithm {Horn 1931'} for estimating the

unit quaicrnion corresponding to the rotation matrix R. which involves forming a 4 x4 matrix

from the entries in C and then finding the eigenvector associated with its largest positive

eigenvalue.

Lnrusso. Eggert. and Fisher (1995} experimentally compare these two techniques to two

additional techniques proposed in the literature. but find that the difference in accuracy is

negligible {well below the clients of measurement noise}.

In situations where these ciosed-form algorithms are not applicable. e.g.. when full 3D

covariances are being used or when the 3D alignment is part of some larger optimization, the

incremental rotation update introduced in Section 2.1.4 {2.35—2.35}. which is parameterized

by an instantaneous rotation vector or. can be used {See Section 9.1.3 for an application to

image stitching.)

In some situations. e.g.. when merging range data maps. the correspondence between

data points is not known a priori. in this case, iterative algorithms that start by matching

nearby points and then update the most likely cot-reapondenee can be used [lies] and McKay

1992*, Zitang 1994; Seclislti and iavnllée 1996: Gold. RangaIajan. Lu et oi. 1993; David,

DcMenthon. Doraiswami er nl'. 2W4; Li and Hartley 2i1l3ti'; Enqvist. Josephson. and Kalil

2(109}. These techniques are discussed in more detail in Section 12.2.1.

I When lull commons are tuned. they are traitsforuteti by the attitudes and so a closed-form solution for neocla-
tinn is not possible.

233
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6.2 Pose estimation

A particular instance of feature-based alignment. which occurs very often. is estimating an

object's 3D pose from a set of 213 point projections. This pose animation problem is also

known as extrinsic calibration. as opposed to the intrinsic calibration of internal camera pa—

rameters such as focal length. which we discuss in Section 6.3. ‘I'ire‘problem of recovering

pose from tiuee correspondences. which is the minimal amount of information necessary.
is kflDWII as the perspective-i-poirtt‘pmhiem {P3P}. with extensions to larger numbers of

points collectively known as PnP (Haralich. Lee. Ctttenberg et at. 1994; Quan and Lea 1999;
Moreno-Nogucr. Lepctit. and Fua 299?}.

In this section, we look at some of the techniques that have been developed to solve such
pmbmms. starting with the direct linear transform {BLT}, which recovers a 3 3-: 4 camera ma—

trix. Followed by other “linear" algorithms. and then looking at statistically optimal iterative
algorithms.

5.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a act of linear equations analo-

gous to those used for 2D motion estimation {6.19} from the camera matrix form of perspec-
tive projection {2.55—2.5fi}.

PHDXi +th1Yr t-Pnszt +pes

Pan-Er +921}? + Paagr +1923

13'1er +P1ti‘i +Frszr +P1a
' = ——,.—. 15.34

1“ Pitt-Xi +PstYi +112er +Paa { }

£3 =
 

{6.33}

where (no. pi} are the measured 2D feature locations and (Xi, H.211} are the known 3D
feature locations (Figure 6.4}. its with [6.21]. this system of equations can be solved in a

linear fashion for the unknowns in the camera matrix P by multiplying the denominator on

both sides of the equation.5| The resulting algorithm is called the direct linear wander-m
{BLT} and is commonly attributed to Sutherland {I994}. {For a more in—dcpth discussion.
refer to the work of Hartley and Zisserrnan [2W4i.i in order to compute the 12 {or 11]
unknowns in .P. at least six correspondences between 3]] and 2D locations must he known.

he with the case of estimating homographies [fill—filfl]. more accurate results for the

entries in P can be obtained by directly minimizing the set of Equations {633—1534} using
non-linear least squares with a small number of iterations.

Once the entries in P have been recovered. it is pomible to recover both the intrinsic

calibration matrix K and the rigid nansformab’on (R. t] by observing from Equation [2.56]
that

P = H[th]. {15.35}

Since It? is by convention upper—triangular {see the discussion in Section 2.1.5). both If and

R can be obtained from the front 3 x 3 sub-matrix of P using RQ factorization {Gclub and
van Loan reset.” 

9 Because Pia tmlmown up to a scale. we canelmcrti: crieofnreenn-ies, cg. p93 = 1.. or End the nastiest
singular vecrnrert‘ the set ottirreareqnatinns.

to Note the nnfortrmate clash of terminologies: in matrix algebra tcatbooits. R represents an new-triangular
matrix; in computer vision. R is an orthogonal rotation.
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Figure 6.4 Pose estimation by the direct linear transition and by measuring visual angles antl distances between

pairs of points.

In most applications. hmvever, we have some prior knmvledge about the intrinsic cali—

bration matrix H, tag. that the pixels are square. the straw is very small. and the optical

oenter is near the center of the image {EST—2.59). Such oonsttaints can be incorporated into

a non-linear minimization of the parameters in K and (R, t}. as described in Section 6.2.2.

in the case where the earners is already calibrated, i.e.I the matrix K is known {Sec—

tion 5.3]. we can perform pose estimation using as few as three points [Fischler anti Belles

1931; I-Iaraliclt, Lee. Ottenberg et at. [994; Dunn and Lap 1999}. The basic observation that

these iii-rear FnF (parspeen've a-paintj algorithms employ is that the visual angle between any

pair of 2]] points it and it must be the same as the angle between their eorrespontiing ED

points pi and jtJIif (Figure 6.4].

Given a set of corresponding 2D and 3D points “it. pill}. where the e; are unit directions

obtained by transforming 2D pixel measurements n; to unit norm 3D directions ii through
the inverse calibration matrix K.

a =NEK'1eJ =K'1etIIIK'1e1I. {6.361

the unknowns are the distances d; from the earners origin as to the 3D points pi, where

p; = [iii-.- + c [153?]

{Figure (1.4]. The cosine law for triangle hie, 11;, pi} gives us

fifth. sj} = sf +s§ — satiric“ — a; = a, {ass}

where

(31' = (DOSE-ii; = i; ' 531' {5-39}

and

iii: = iiF-i — Fjiii' (5-40}

We can take any triplet of constraints my, fig, fig} and eliminate the iii and ti; using
Sylvester resultants (Colt. Little. and D'Shea 20W} to obtain a quartie equation in elf.

staid?) = aid? + and? + and? + and? + on = D. {15.41}

Given five or more correspondences. we can generate Ely—:21 triplets to obtain a linear
intimate {using SVD} for the values of (of, d3, if, f} {Quan anti Lan 1999]. Estimates for
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d? can computed as ratios of successive dEM‘Ifa?" estimates and these can he averaged to
obtain a final estimate of cl? (and hence rig).

Once the individual estimates of the rt.- distances have been computed, we can generate

a 3D structure consisting of the scaled point directions shin. which can then be aligned with

the 3]] point cloud {1].} using absolute orientation {Section E I .5} to obtained the desired

pose estimate Quart and l_.-HII {1999) give accuracy results for this and otiter techniques

which use fewer points but require more complicated algebraic manipulations. The paper by

lviort.=.no-l*«loguer1 lepetit. and Fun (EM?) reviews more recent alternatives and also gives a

lower complexity algorithm that typically produces more accurate results.

Unfortunately+ because minimal PnP solutions can be quite noise sensitive and also suffer

from hes—relisfombr'guirr'es (cg, depth reversals} [Section 14.3]. it is often preferable to use

the linear six—point algorithm to guess an initial pose and then optimize this estimate using

the iterative technique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-

jectlon model and then iteratively refining this initial estimate using a more accurate perspec—

tive projection model [DeMenthon and Davis 1995}. The attraction of this mode]. as stated

in the paper's titleI is that it can be implemented "in 25 lines of [Mathematics] code".

6.2.2 lteratlve algorithms

The most accurate {and flexible) way to estimate pose is to directly minhnizc the squared {or

robust) reprojection error for the 2'!) points as a function of the unknown pose parameters in

(H, t) and optionally K using non—linear least squares [Tsai 195?; Bogart 1991; Gleieher

and Within 1992). We can write the projection equations as

= first R. t. KII [6.42]

and iteratively minimize the robustified linearized reprojection errors

3.1” 5f
— ——riti'{' . 15.43ENLP_ Zp(§-"RmflR‘l' —rflt+ 5K 1" i: l

where n = 5:4 — rh- is the cun'ent residual vector [2D error in predicted position} and the

partial derivatives are with respect to the unknown pose parameters {rotation+ translation, and

optionally calibration}. Note that if full 2D covariance estimates are available for the 2D

feature locations+ the above squared norm can be weighted by the inverse point covariance

matrix. as in Equation {6.11}.

An easier to understand (and implement) version of the above non-linear regression pmh-

Iem can be constructed by re—wrlting the projection equations as a concatenation of simpler

steps, each of which transforms a 4D homogeneous coordinate pi by a simple transformation

such as translation. rotation. or perspective division {Figure 6.5}. The resulting projection

equations can be written as

Hm = fTiPricji=Pt—cir {6‘44}

at2i = fatal”:vri=fllvrlym= {6'45”

to _ or Elm
y — JePly i: z—[2}t {5'46}

e.- = rotatable]: Kelsi”. {can
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Figure 5.5 A set of chained transforms for projecting a 31') point p; to a 2D measurement at.- through a series of

transformations If”). each of which is controlled by its own set of parameters. The dashed lines indicate the flow
of infomtaticn as partial derivatives are computed during a backward pass.

Note that in these equations. we have indexed the camera centers ej and camera rotation

quaternions 9': by an indent j. in case more than one pose of the calibration object is being
used {see also Section '14.) We are also using the camera center ej instead of the world

translation ti= since this is a more natural parameter to estimate.
The advantage of this chained set of transforntations is that each one has a simple partial

derivative with respect both to its parameters and to its input. Thus. once the predicted value

of i.- has been computed based on the 3D point location pi and the current values of die pose

parameters {CJ'qu-1k). we can obtain all of the required partial derivatives using the chain
rule

Br.- _ 5r.- first":
spat — syto spear

where pm indicates one of the parameter vectors that is being optimized. {This same “trick"

is used in neural networks as part of the bnchtmpngrttioe algorithm ("Bishop 2%).)

The one special case in this formulation that can be considerably simplified is the com u-

tation of the rotation update. instead of directly computing the derivatives of the 3 x 3 rotation

matrix qu} as a function of the unit quaterrrion entries. you can prepcod the incremental ro—

tation matrix fifties] given in Equation (2.35} to the current rotation matrix and compute tlte

partial derivative of the transform with respect to these paramatcrs. which results in a simple
cross product of the backward chaining partial derivative and the outgoing 3D vector {2.36}.

{5.48)
   

5.2.3 Application: Augmented realityr

A vrrirlaeljrr used application of pose estimation is augmented reality. where virtual 3D images

or annotations are superhnpuacd on top of a live video feed. either through the use of scc~

through glasses {a head—mounted display) or on a regular computer or mobile device screen

(hearse. Baillot. Behringer at at. 2m]; Holler. Billinghnrst and Thomas liltl'r'}. in some

applications. a special pattern printed on cards or in a book is tracked to perform the aug—

mentation [Kato. Billiughut'st. Paupyiev at of. 2.000: Billinghurst. Kate. and Poupyrev 2WD.
For a desktop application. a grid of dots printed on a mouse pad can be tracked by a camera

embedded in an augmented mouse to give the user control of a lirll sirr degrees of freedom

over their position and orientation in a 3D spaee {l-iineklev. Sinclair. Hansen et at. 1999}. as

shown in Figure 6.5.

Sometimes. the scene itself provides a convenient object to tracts. such as the rectangle

defining a desktop used in through-tireless camera control {Gieicher and Within 1992). in
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Figure 6.6 The 1itI''1deol'nr'lorttso can sense six degrees of freedom relative to a specially printed mouse pad using

its embedded camera [I-Iincltley. Sinclair. Hansen er al. 1999} {2) 1999 ACM: {a} top view of the mouse; [h] view

of the mouse showing the ctn'ved base for rocking; to} moving the mouse pad with the other hand extends the

interaction capabilities: lid) the resulting movement seen on the screen.

outdoor locations. such as film sets, it is more common to place special markers such as

brightly colored balls in the scene to make it easier to find and track them {Bogart 1991}. In

older applications. surveying tcobniones were used to determine the locations of these halls

before filming. Today. it is more common to apply structtne-frorn-niotion directly to the film

footage itself [Section 14.2].

Rapid pose estimation is also central to tracking the position and orientation of the hand—

held remote controls used in Nintendo's Wii game systems. A high-speed camera embedded

in the remote control is used to track the locations of the infrared [IR] LEDs in the her that
is mounted on the TV monitor. Pose estimation is then used to infer the remote oontrol‘s

location and orientation at very high frame rates. The Wii system can be extended to a variety

of other user interaction applications by mounting the bar on a handheld device, as described

by Johrmy Lee.” -

Exorcism 6.4 and 6.5 have you implement two difi'erent tracking and pose estimation sys—

tems for angmented~reality applications. The first system tract-ts the outline of a rectangular

object. Such as a book cover or magazine page, and the second has you track the pose of a
hand—held Rnbilc‘s cube.

6.3 Geometric intrinsic calibration

As described above in Equations {6.42-5.43}. the computation of the internal [intrinsic] cam-

era calibration parameters can occur simultaneously with the estimation of the {extrinsic}

pose of the camera with respect to a known calibration target. This, indeed. is the “classic"

approach to camera calibration used in both the photograrnmetry [Slams I9Etl} and the com-

puter vision {Tsai 193?] communities. In this section. we loolr at altentative fonnnlations

[which may not involve the full solution of a non—linear regression problem}. the use of alter—

native calibration targets, and the estimation of the non-linear part of camera optics such as

radial distortion.”

” http:.t.fiohnnyiec.netfprojectsttwiit
'3 Ia someapplications. yoneanose theEKtFufisssociatetl withalPEG imagetoobtaiaarooghestimateet’a

canm‘s fecal Icngm but this technique should be used withcautiee as the ITSIJIE moflen inaccurate.
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Figure l5."l' Calibrating a lens by drawing straight lines on cardboard {Believed Wenger. Tchou er al. Ell-L12) ti}

2002 ACM: is) an image taken by the video camera showing a hand holding a metal ruler whose right edge

appears vertical in the image; (b) the set of lines drawn on the cardboard converging on the front nodal point

{center of projection} oftbe lens and indicating the horizontal field of view.

6.3.1 Calibration patterns

The use of a calibration pattem or set of markers is one of the more reliable ways to estimate

a camera‘s intrinsic parameters. in photogramrnetry, it is common to set up a camera in a

]arge field looking at distant calibration targets whose exact location has been precomputed

using surveying equipment [Slants 1930'. Atkinson 1996'. Kraus 199?}. In this case, the trans-

lational component of the pose becomes irrelevant and only the camera rotation and intrinsic

parameters need to be recovered.

li' a smaller calibration rig needs to be used, e.g.1 for indoor robotics applications or for

mobile robots that carry their own calibration target. it is best it‘ll-re calibration object can span

as much of the workspace as possible {Figure 5.3a). as planar targets often fail to accurately

predict the components of the pose that lie far away from the plane. A good way to determine

if the calibration has been successfully performed is to estimate the covariance in the param-

eters {Seenon 6.1.4} and then project 3D points from serious points in the workspace into the

image in order to estimate Ll'telr 2D positional uncertainty.

An alternative method for estimating the focal length and center of projection of a lens

is to place the camera on a large flat piece of cardboard and use a long metal ruler to draw

lines on the cardboard that appear vertical in the image, as shown in Figure IISJa filebovec.

Wenger, Tchou er oi. 21112]. Such lines lie on planes that are parallel to the vertical axis of

the camera sensor and also pass through the lensr front nodal point. The location ofthe nodal

point (projected vertically onto the cardboard plane} and the horizontal field of view {deter‘

mined from lines that graze the left and right edges of the visible image] can be recovered by

intersecting these lines and measuring their angular extent {Figure bib).

If no calibration pattern is availabler it is also possible to perform calibration simulta—

rteously with structure and pose recovery {Sections 5.3.4 and 14]. which is known as self

calibration tFaugeras. Luong. and Maybank [Ell-H; Hartley and Kisser-mart 2004: Moons. Van

Gent, and 1'v'rogau'wen 2D] ll}. However. such an approach requires a large amount oi‘ imagery
to be accurate.
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Figure 6.3 Calibration patterns: (a) a three-dimensional target (Dean and Lao l999) (5;) 199‘} lEEE: {b} a two-

dimensional target ('Zl'tang Eilllflj @I lililll} [BEE Note that radial distortion needs to be removed from such images

before the feantre points can be used for calibration.

Planar calibration patterns

When a finite workspace is being used and accurate machining and motion control platforms

are available. a good way to perform calibration is to move a planar calibration target in a

controlled fashion through the workspace volume. This approach is sometimes called the N?

planes calibration approach EGremban. Thorpe. and Kanade 1933‘; Chanlpleboua. Lavallee
Szelislti eral. 1992: Grossberg anti Hagar 20M} and has the advantage that each camera pixel

can be mapped to a unique 3D ray in space, which takes care of both linear efi‘ects modeled

by the calibration matrix K and non-linear effects such as radial distortion {Section 6.3.5}.

A. less cumbersome but also less accurate calibration can be obtained by waving a pla—

nar calibration pattern in front of a camera {Figure Enlib}. In this case. the pattern's pose

has [in principle} to be recovered in conjunction with the intrinsics. In this technique. each

input image is used to compute a separate homographyr {5.19-6.23} I? mapping the plane's
calibration points {It}. ‘31-,ll} into image coordinates (an, pi).

Ii Xi -
as: yr main. r, ll] r.- ~Hp,.. {ass}

1 1  
where the r'.- are the first two columns of R and «a indicates equality.r up to scale. From

these1 Zhaog (coco) shows how to form linear constraints on the nine entries in the H =

Elf—TX“ matrix. from which the calibration matrix K can be recovered using a matrix

square root and inversion. (The matrix B is known as the image ofthe absolute conic [mill

in projective geometry and is comment},r used for camera calibration [Hartley and Zisserman

3:01:14, Section 7.5).} If only the focal length is being recoverisi. the even simpler approach of

using vanishing points can be used instead.

5.3.2 Vanishing points

a common case for calibration that occurs often in practice is when the camera is looking at

a man-made scene with strong extended rectahedral objects such as boxes or room walls. In

this case. we can intersect the 2D lines corresponding to 3D parallel lines to compute their
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Figure 15.9 Calibration fi‘om vanishing points: {a} any pair of finite vanishing points [ii-.1315} can be used to

estimate the focal length: [b] the orthocenter of the vanishing point triangle gives the optical center of the image
11

vanishing patina. as described in Section 4.3.3. and use these to determine the intrinsic and

extrinsic calibration parameters {Captfle and Torre E999; Becker and Hove 1995; Liehowitz

anti Zisserman 1993; Cipolla. Drummonrl. and Robertson 1999'. Antone and Teller 2092;

Criminisi. Reid, and Zissennan 20th]; Hartley and Zisserman 2004: Pfiugfeitier 2093].

Let us assume that we have detected two or more orthogonal vanishing points. all of which

arefim’te, Le... they are not obtained from lines that appear to be painiieli injl'te image plane

[Figure 5.9a}. Let us also assume a simplified form for the calibration matrix K where only

the focal length is unhnownt [2.59]. [It is often safe for rough 3E) modeling to assume that

the optical center is at the center of the image. that the aspect ratio is i. and that titers is no

skew.) In this case, the projection equation for the vanishing points can be written as

It " '3:-

at = in —r:1.

f

where 1.11- correspontls to one of the cardinal directions {1, t]. ll], {0, 1, fl}. or {t}, CI, 1}. and t",-
is the ith column of the rotation matrix R.

From the orthogonality between columns of the rotation matrix. we have

N RI]: : r‘il {55ml 

“Pr“;Nlat-miltfij'6yi+{tn-flyiltercyl+f2=fl {15-51}

from which we can obtain an estimate for f“. Note that the accuracy of this estimate increases

as the vanishing points move closer to the center of the image In other words. it is best to tilt

the calibration pattern a decent amount around the 45" axis, as in Figure 6.9a. Once the focal

length f has been determined. the individual columns of R can be estimated by normalizing

the left hand side of (15.50] and taking cross products. Alternatively. an 3913 of the initial R

estimate. which is a variant on orthogonal Procrastes [6.32]. can be used.

If all three vanishing points are visible and finite in the same image. it is also possible to

estimate the optical center as the orthoeenter of the triangle formed by the three vanishing

points {Capriie anti ‘Ibne 199i]; Hartley and Zisserman 2994. Section 7.6} {Figure 6.9b}.

In practice. however. it is more accurate to tit-estimate any unknown intrinsic calibration

parameters using non—linear least squares {6.42}.
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Figure {all} Single view metrology {tiltirnjnisiT Reid. and Zissernlan 2000] (it) EDGE! Springer: in} input image

showing the three coordinate axes computed from the two horizontal vanishing points {which can be dcumnined

from the sidings on the shed]: {is} a new view of the ED reconsn‘uction.

6.3.3 Application: Single view metrology

A. fun application of varnishing point estimation and. camera calibration is the shigle view

manning system developed by Crimhiisi. Reid. and Zisscnnan {2WD}. Their system allows

people to interactively measure heights and other dimensions as well as to build piecewise-

planar 3D models. as shown in Figure tilt].

The first step in liteir system is to identify two orthogonal vanishing points on the ground

plane and the vanishing point for the vertical direction. which can be done by drawing some

parallel sets of lines in the image. (Alternatively, automated techniques such as those dis‘

cussed in Section 4.3.3 or by Schafi’alitaky and Zisscrrnan {200d} could he used.) The user

then marks a few dimensions in Ihc image. such as the height of a reference object, and

the system can automatically compute the height of another object. Walls and other planar

impostnrs {geometry} can also be sketched and reconstructed.

1n the formulation originally developed by Criminisi. liteidI and Zisserman {scan}. the

system produces an afi'ine reconstruction. i.e.. one that is only known up to a set of indepen-

dent scaling factors along each axis. A potentially more useful system can be constructed by

assuming that the camera is calibrated up to an unknown focal length. which can he recov—

ered from orthogonal {finite} vanishing directions, as we just described in Section 15.3.1. Once

this is done. the user can indicate an origin on the ground plane and another point a lotowrl

distance away. From this. points on the ground plane can be directly projected into 3D and

points above the ground planeI when paired with their ground plane projections, can also be

recovered. a fully InfilIlC reconstruction of the some men becomes possible.

Exercise 6.9 has you implement such a system and men use it to model some simple

3D scenes. Section 12.6.1 describes other. potentially multi—vicW. approaches to architectural

reconstruction. including an interactive piecewise-planar modeling system that uses vanishing

points to establish 3D line directions and plane ntmnals [Sinha. Steedly. Szelislti at at. EDGE].
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Figure ti.11 Four images taken with a hand-held camera registered using a 3D rotation motion modelI which

can be used to estimate the focal length of the camera (Seelislti and Shum 199?} {331) seen ACM.

6.3.4 Rotational motion

When no calibration targets or known structures are available but you can rotate the camera

around its Front nodal point (or, equivalently. work in a large open environment where all ob-

jects are distant). the camera can be calibrated from a set of overlapping images by ass-startling

that it is undergoing pure rotational motion, as shown in Figure 6.11 {Stein l'iiEifi: Hartley

199Th: Hartley, Hayman, de .i'tgapitu et at. 2001.1; tie Agapito. Hayman. and Reid 2001'. Kang

attd Weiss 1999; Shum and Sachski sane; Frahm and Koch 2003). When a full 360° mo—

tion is used to perform this calibration. a very accurate estimate of the focal length f can be

obtained, as the accuracy in this estimate is proportionai to tire total number of pixels in the

resulting cylindrical panorama {Section 9.1.6} {Stein Iii-‘95; Shunt and Ezelisiti 200D).

To use this technique, we first compute the homographies Iii”- between all overlapping
pairs of images. as explained in Equations {filial—45.23}. Then. we use the observation. first

made in Equation [232} and explored in more detail in Section 9.1.3 {9.5}. that each homog-

raphy is related to the inter-camera rotation Hi1- through the {unknown} calibration matrices

K1 and K1'.

rim-J = K.ILR;1K;1= aiming-1. {seat

The simplest way to obtain the calibration is to use the simplified form of die calibra-

tion matrix {2.59}. where we assume that the pixels are square and the optical center lies at

the center of the image, i.e., K]: = diagifk, It“ 1}. {We number the pixel coordinates ac—

cordingly, i.e.. piace pixel (my) r {End} at Ll'te center of the image.) We can then rewrite

Equation {6.52) as

_ lino lint fol-lies
Rte N Klethe N lite IlHI rig—lilts , [5.5951

{than fillet fflfrhaa

where iii,- are the elements off—I11].
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Using the orthonormality properties of the rotation matrix R10 and the fact that the right

hand side of (6.53) is known only up to a scale, we obtain

a. + a. + first = hit + hi1 + act—”ha (6.54)

and a

hcuhm + heihn + fey—ghmhfl = 0- (5-55)

From this, we can compute estimates for f9 of

2 __ his _ 032 if h2 112 hZ 1.12 6 56
fe—ngm 00+ in?”é 10+ 11 (- l

or it h2 02 12 .
=-——------—-‘lfh h ..—h h . 6.5?

ft) hoehm + hfllhll on 10 i" 01 11 ( 3
(Note that the equations originally given by Szeliski and Shurn (1997) are erroneous; the

correct equations are given by Shum and Szeliski (2000).) If neither of these conditions

holds, we can also take the dot products between the first (or second) row and the third one.

Similar results can be obtained for f1 as well, by analyzing the columns of 1:710. If the focal

length is the same for both images, we can take the geometric mean of f0 and f1 as the

estimated focal length f r:- m. When multiple estimates of f are available, e.g., from

different homographies, the median value can be used as the final estimate.

A more general (upper—triangular) estimate of K can be obtained in the case of a fixed-

parameter camera K; = K using the technique of Hartley (1997b). Observe from (6.52)

that RU- ~ Kyla-jar and RgT ~ KTfiQjTK—T. Equating in, 2 12,—3.1" we obtain
K—lflg-K N KTISIQTK—T, from which we get

fig(KKT) ~ (KKTfier. (6.58)

This provides us with some homogeneous linear constraints on the entries in A =2 KKT,

which is known as the deal of the image of the absolute conic (Hartley 1997b; Hartley and

Zisserman 2004). (Recall that when we estimate a homography, we can only recover it up to

an unknown scale.) Given a sufficient number of independent homography estimates fig,
we can recover A (up to a scale) using either SVD or eigenvalue analysis and then recover

K through Cholesky decomposition (Appendix A.l .4). Extensions to the cases of temporally

varying calibration parameters and non—stationary cameras are discussed by Hartley, Hayman,

de Agapito er al. (2000) and de Agapito, Hayman, and Reid (2001).

The quality of the intrinsic camera parameters can be greatly increased by constructing a

full 360° panorama, since misvestimating the focal length will result in a gap (or excessive

overlap) when the first image in the sequence is stitched to itself (Figure 9.5). The resulting

nus—alignment can be used to improve the estimate of the focal length and to re—adjust the

rotation estimates, as described in Section 9.1.4. Rotating the camera by 90° around its optic
axis and rte-shooting the panorama is a good way to check for aspect ratio and skew pixel

problems, as is generating a full berm-spherical panorama when there is sufficient texture.

Ultimately, however, the most accurate estimate of the calibration parameters (including

radial distortion) can be obtained using a full simultaneous non-linear minimization of the

intrinsic and extrinsic (rotation) parameters, as described in Section 9.2.
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6.3 Geometric intrinsic calibration

6.3.5 Ftadlal distortion

1|itihen images are taken with wide-angle lenses. it is often necessary to mode] tans distor-
tions such as radial distortion. As discussed in Section 2.1.6. the radial distortion model

says tlrat coordinates in the observed images are displaced away from [barrel distortion] or

towards {pincttrhicn distortion]: the image center by an amount proportional to their radial

distance (Figure 2.13am}. The simplest radial distortion models use low-order polynomials

{c.f. Equation (2.73)}.

= rfl+ttrr2+tsgr41I

= yi1+atri+se-‘}. toss)

H:

Eta

where 7'2 = e2 -t- 1:2 and 51 and M3 are called the radial distortion poramstsnr [Brown 1971'.

Slams 19$D).13

A variety of techniques can he used to estimate the radial distortion parameters for a

given lens. ‘4 One of the simplest and most useful is to take an image of a scene with a lot

of straight lines. especially lines aligned with and near the edges of the image. The radial

distortion parameters can then he adjusted until all of the lines in the image are straight.

which is commonly called the pltrmh-it'na method {Brown 197 l: Kang Elli]: El—lv'lelegy and

Farag sous}. Exercise ti. it} gives some more details on how to implement such a technique.

Anodter approach is to use several overlapping images and to combine the estimation

of the radial distortion parameters with the image alignment process. i.c.. by extending the

pipeline used for stitching in Section 9.2.1. Sawhncy and Kurnar {1999) use a hierarchy

of motion models (translation. affine. projective} in a coarse—to—fine strategy coupled with

a quadratic radial distortion correction term. They use direct {intensity-based} minimiza-

tion to compute the alignment. Stein {1997} uses a [centre-hosed approach combined with

a general 3D motion model {and quadratic radial distortion}. which requires more matches

than a parallax—free rotational panorama but is potentially more general. More recent ap-

proaches sonmtirncs simultaneously compute both the unknown intrinsic parameters and the

radial distortion coefficients. which may include higher-order tertns or more complex rational

or non-parametric forms [Claus and Fitzgihhon BEDS: Storm 2005'. 'Ihirthata and Pollet'eys

EGGS; Senate and Daniilidis lflflS; Hartley and Kong EDGE; Steele and Jaynes 243015: ’i‘ardif.
Storm. Trudeau ct oi. Efldg'l.

When a known calibration target is being used {Figure 15.8}, the radial distortion estima—

tion can be folded into the estimation of the other intrinsic and extrinsic parameters {Zions

soon; Hartley and Kang EMT; Tardif. Sturm. Trudeau ct rd. 2M). This can be viewed as

adding another stage to the genera] non~linear minimization pipeline shown in Figure 15.5

bctween the intrinsic parameter multiplication box ft: and the perspective division boat f5...

[See Exercise 5.11 on more details for the case of a planar calibration target}

Of course. as discussed in Section 2.1.5. more general models of lens distortion. such as

fisheyc and non-central projection. may sometimes he required. While the parameterization

of such lenses may he more complicated {Section 2.1.6}. the general approach of either us-

ing calibration rigs 1with known 3]) positions or selficalibration through the use of multiple

'3 Sanctions the relationship bassoon is and i is expressed the other any mad. i.a.. using primed {final}

coordinates on the right-hand side. e = sit -|- atria + “.14). "this is convenient if we asap hang: pixels into
{warped} rays and then undistort the rays to ohmic 3D rays in space. ie.. it'wc are using inverse warping.

'4 Some of today's digital cameras are starting a: remove mum distortion using safer-taro in the centers itself.

295
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overlapping images of a scene can both be used (Hartley and Hang 209?: Tardif. Sturro. and

Roy 200?]. The same teclmiqucs used to calibrate for radial distortion can also be used to

reduce the amount of chromatic aberration by separately calibrating each color channel and

then warping the channels to put them back into alignment {Exercise 5.12}.
In

6.4 Additional reading

Hartley and Zisserman {20114} preside a wonderful introduction to the topics of feature-based

alignment and optimal motion estimation. as well as an in-depth discussion of camera cali-
bration and pose estimation techniques.

Techniques for robust estimation are discussed in more detail in Appendix 3.3 and in

monographs and review articles on this topic (Huber 1931; Hampel. Roachetti. Rousseeuw or

at. I936; Rousseeuw and Leroy [982: Black and Rsngarajan 1996; Stewart 1999}. The most

commonly used robust initialization technique in computer vision is RANdom SAmple Con-
sensus (RANSAE) tfischler and Belles 1931]. which has spawned a series of more efficient

variants [Nistér 2003: Chum and Mates 20%}.

The topic of registering 3121 point data sets is called ubsohuc orientation {Horn 1932:: and

3.“? pore estimation {Lorusso. Eggert, and Fisher 1995). A variety of techniques has been

developed for simultaneously computing 3]] point correspondences and their corresponding
rigid transformations {Real and McKay 1992; Zhang 1994: Saclislti and LavaJIEe 199-5; Gold,

Rangarajan. Lu erot. 1998: David. Deb'lcnthon. Duraiswami st oi. 2W4: Li and Hartley 2W:
Enqvist, Josephson, and Kala] 2099).

Camera calibration was first studied in photogrammetry {Brown 19".:r l : Slams 198:]: Atkin-

son 1995: Kraus 199?} but it has also been widely studied in computer vision {Tsai l9ET:

Grembsn. ThorpeI and Kanade 193$: Champleboua. Lavaliee. Sachsld et at. [992: Zhang
2illllfl: Grossberg and Mayer 20m}. Vanishing points observed either from reetahedral cali-

bration objects or man-made architecture are often used to perform rudimentary calibration

{Caprile and Torre I990; Becker and Hove 1995; Liebowite and Zisserrnan 1993: Cipolla,
Drummond. and Robertson 1999-. Antone and Teller 2W2: Criminisi, Reid, and Zisserman

243N210; Hartley and Zisserman 201114; Pfiugfelder 2003}. Performing camera calibration without

using known targets is known as self-calibration and is discussed in textbooks and sunreys on
structure from motion {Fang-eras. Luong. and Maybauk 1992; Hartley and Zisserman 2904;

Moons. Van fleet, and Vergauwen 2919]. One popular subset of such techniques uses pure
rotational motion [Stein I995: Hartley 1992b: Hartley1 Hayrnan, de Agapito et oi. soon; dc

titgapitoI Hayman. and Reid 2901; Kong and Weiss 1999; Shum and Seelisltj sons; Frahm
and Koch 2993}.

6.5 Exercises

Es 6.1: Featureubased image alignment for flipnhflflk animations "flake a set of photos of
an action scene or portrait {preferably in motor—thive—continuous shooting—mode} and
align them to make a composite or flip—book anintation.

1. Extract features and feattue descriptors using some of the techniques described in Sec-
tions 4.1.14.1.2.
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2.

3.

4.

5.

6.

Match your features using nearest neighbor matching with a nearest neighbor distance

ratio test (4.18).

Compute an optimal 2D translation and rotation between the first image and all subse-

quent images, using least squares (Section 6.1 .l) with optional RANSAC for robustness

(Section 6.1.4). ‘

Resample all of the images onto the first image’s coordinate frame (Section 3.6.1) using

either bilinear or bicubic resampling and optionally crop them to their common area.

Convert the resulting images into an animated GIF (using software available from the

Web) or optionally implement cross—dissolves to tum them into a “slo-mo” video.

(Optional) Combine this technique with feature-based (Exercise 3.25) morphing.

Ex 6.2: Panography Create the kind of panograph discussed in Section 6.1.2 and com—

monly found on the Web.

1.

2.

10.

Ex 6.3: 2D rigidI-Euclidean matching Several alternative approaches are given in Section 6.1.3

Take a series of interesting overlapping photos.

Use the feature detector, descriptor, and matcher developed in Exercises 4.1—4.4 (or

existing software) to match features among the images.

. Turn each connected component of matching features into a track, i.e., assign a unique

index a to each track, discarding any tracks that are inconsistent (contain two different

features in the same image).

Compute a global translation for each image using Equation (6.12).

Since your matches probably contain errors, turn the above least square metric into a

robust metric (6.25) and re—solve your system using iteratively reweighted least squares.

Compute the size of the resulting composite canvas and resample each image into its

final position on the canvas. (Keeping track of bounding boxes will make this more

efficient.)

Average all of the images, or choose some kind of ordering and implement translucent

over compositing {3.8).

(Optional) Extend your parametric motion model to include rotations and scale, i.e.,

the similarity transform given in Table 6.1. Discuss how you could handle the case of

translations and rotations only (no scale).

(Optional) Write a simple tool to let the user adjust the ordering and opacity, and add

or remove images.

(Optional) Write down a difierent least squares problem that involves pairwise match—

ing of images. Discuss why this might be better or worse than the global matching

formula given in (6.l2).

for estimating a 2D rigid (Euclidean) alignment.
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1. Implement the various alternatives and compare their accuracy on synthetic data, i.e.,

random 2D point clouds with noisy feature positions.

2. One approach is to estimate the translations from the centroids and then estimate ro-

tation in polar coordinates. Do you need to weight the angles obtained from a polar

decomposition in some way to get the statistically correct estimate?

3. How can you modify your techniques to take into account either scalar (6.10) or full

two-dimensional point covariance weightings (6.11)? Do all of the previously devel~

oped “shortcuts” still work or does full weighting require iterative optimization?

Ex 6.4: 2D match movelaugmentecl reality Replace a picture in a magazine or a book

with a different image or video.

1. With a webcam, take a picture of a magazine or book page.

2. Outline a figure or picture on the page with a rectangle, i.e., draw over the four sides as

they appear in the image.

3. Match features in this area with each new image frame.

4. Replace the original image with an “advertising" insert, warping the new image with

the appropriate homography.

5. Try your approach on a clip from a sporting event (e.g., indoor or outdoor soccer) to

implement a billboard replacement.

Ex 6.5: 3D joystick Track a Rubik’s cube to implement a 3D joysticklmouse control.

1. Get out an old Rubik's cube (or get one from your parents).

2. Write a program to detect the center of each colored square.

3. Group these centers into lines and then find the vanishing points for each face.

4. Estimate the rotation angle and focal length from the vanishing points.

5. Estimate the full 3D pose (including translation) by finding one or more 3 x 3 grids and

recovering the plane’s full equation from this known homography using the technique

developed by Zhang (2000).

6. Alternatively, since you already know the rotation, simply estimate the unknown trans-

lation from the known 3D corner points on the cube and their measured 2D locations

using either linear or non-linear least squares.

7. Use the 3D rotation and position to control a VRML or 3D game viewer.

Ex 6.6: Rotation-based calibration Take an outdoor or indoor sequence from a rotating

camera with very little parallax and use it to calibrate the focal length of your camera using

the techniques described in Section 6.3.4 or Sections 9. 1.3e9.2. 1.

1. Take out any radial distortion in the images using one of the techniques from Exer-

cises 6.10—6.11 or using parameters supplied for a given camera by your instructor.
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2. Detect and match feature points across neighboring frames and chain them into feature
tracks.

3. Compute homographies between overlapping frames and use Equations (6.56—6.57) to

get an estimate of the focal length. \

4. Compute a full 360° panorama and update your focal length estimate to close the gap

(Section 9.1.4).

5. (Optional) Perform a complete bundle adjustment in the rotation matrices and focal

length to obtain the highest quality estimate (Section 9.2.1).

Ex 6.7: Target-based calibration Use a three-dimensional target to calibrate your camera.

1. Construct a three~dimensi0nal calibration pattern with known 3D locations. It is not

easy to get high accuracy unless you nee a machine shop, but you can get close using

heavy plywood and printed patterns.

2. Find the corners, e.g, using a line finder and intersecting the lines.

3. Implement one of the iterative calibration and pose estimation algoritinns described

in Tsai (1987); Bogart (1991); Gleicher and Witkin (l992) or the system described in
Section 6.2.2.

4. Take many pictures at different distances and orientations relative to the calibration

target and report on both your re—projectiOn errors and accuracy. (To do the latter, you

may need to use simulated data.)

Ex 6.8: Calibration accuracy Compare the three calibration techniques (plane-based, rotation~

based, and 3D—target—based).

One approach is to have a different student implement each one and to compare the results.

Another approach is to use synthetic data, potentially re—using the software you developed

for Exercise 2.3. The advantage of using synthetic data is that you know the ground truth

for the calibration and pose parameters, you can easily run lots of experiments, and you can

synthetically vary the noise in your measurements.

Here are some possible guidelines for constructing your test sets:

1. Assume a medium~wide focal length (say, 50° field of view).

2. For the plane—based technique, generate a 2D grid target and project it at different
inclinations.

3. For a 313 target, create an inner cube corner and position it so that it fills most of field
of view.

4. For the rotation technique, scatter points uniformly on a sphere until you get a similar

number of points as for other techniques.

Before comparing your techniques, predict which one will be the most accurate (normalize

your results by the square root of the number of points used).

Add varying amounts of noise to your measurements. and describe the noise sensitivity of

your various techniques.
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Ex 6.9: Single view metrology Implement a system to measure dimensions and reconstruct

a 3D model from a single image of a man-made scene using visible vanishing directions (Sec—

tion 6.3.3) (Crintinisi, Reid, and Zisserman 2000).

1. Find the three orthogonal vanishing points frorn parallel lines and use them to establish

the three coordinate axes (rotation matrix R of the camera relative to the scene). If

two ,of the vanishing points are finite (not at infinity), use them to compute the focal

length, assuming a known optical center. Otherwise, find some other way to calibrate

your camera; you could use some of the techniques described by Schaffalitzky and

Zisseiman (2000).

2. Click on a ground plane point to establish your origin and click on a point a known

distance away to establish the scene scale. This lets you compute the translation t

between the camera and the scene. As an alternative, click on a pair of points, One

on the ground plane and One above it, and use the known height to establish the scene
scale.

3. Write a user interface that lets you click on ground plane points to recover their 3D

IncatiOns. (Hint: you already know the camera matrix, so knowledge of a point’s a

value is sufficient to recover its 3D location.) Click on pairs of points (one on the

ground plane, one above it) to measure vertical heights.

4. Extend your system to let you draw quadrilaterals in the scene that correspond to axis—

aligned rectangles in the world, using some of the techniques described by Sinha,

Steedly, Szeliski er al. (2008). Export your 3D rectangles to a VRML or PLY15 file.

5. (Optional) Warp the pixels enclosed by the quadrilateral using the correct homography

to produce a texture map for each planar polygon.

Ex 6.10: Radial distortion with plumb lines Implement a plumb—line algorithm to deter— _'

mine the radial distortion parameters.

1. Take some images of scenes with lots of straight lines, e.g., hallways in your home or *

office, and try to get some of the lines as close to the edges of the image as possible. :2

 2. Extract the edges and link them into curves, as described in Section 4.2.2 and Exer—

cise 4.8. _.

3. Fit quadratic or elliptic curves to the linked edges using a generalization of the suc—

cessiVe line approximation algorithm described in Section 4.3.1 and Exercise 4.11 and

keep the curves that fit this form well.
J‘oxfii...'i-'-I'.'...-..

4. Forl'each curved segment, fit a straight line and minimize the perpendicular distance

between the carve and the line while adjusting the radial distortion parameters.

5. Alternate between re-fitting the straight line and adjusting the radial distortion param-

eters until coavergence. .I'_'_';';.%,_..--.:-
‘5 httpfimeshlabsfinet.
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Ex 6.11: Radial distortion with a calibration target Use a grid calibration target to de-

termine the radial distortion parameters.

1.

6.

Print out a planar calibration target, mount it on a stiff board, and get it to fill your field
of View.

Detect the squares, lines, or dots in your calibration target.

Estimate the homography mapping the target to the camera from the central portion of

the image that does not have any radial distortion.

Predict the positions of the remaining targets and use the differences between the ob-

served and predicted positions to estimate the radial distortion.

(Optional) Fit a general spline model (for severe distortion) instead of the quarlic dis-
tortion model.

(Optional) Extend your technique to calibrate a fisheye lens.

Ex 6.12: Chromatic aberration Use the radial distortion estimates for each color channel

computed in the previous exercise to clean up wide-angle lens images by warping all of the

channels into alignment. (Optional) Straighten out the images at the same time.

Can you think of any reasons why this warping strategy may not always work?
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Figure 9.] Imago stitching: {a} portion of a cylindrical panorama and {h} a spherical panorama confiU‘llclcd

from 54 photographs {Szcliski :1an Sham I99?) {:3 :99? ELEM; {c} a mulLi-imagc panorama automaticallyr assent-

blod from an unordered photo collection: a ntttltl—imagc stitch Ed} without and {c} wilh moving object removal

(Uytlcndaalc, Edon, and Smlialti lflfll} {Q 2001 LEEE.
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9 Image stitching

Algorithms for aligning images and stitching them into seamless photo—mosaics are among

the oldest and most widely used in computer vision (Milgram 197’5; Peleg 1981). image

stitching algorithms create the high—resolution photo-mosaics used to produce today’s digital

maps and satellite photos. They also come bundled with most digital cameras and can be used

to create beautiful ultra wide-angle panoramas. %

image stitching originated in mefphotogramrnetry community, where more manually in-

tensive methods based on surveyed ground control points or manually registered its points

have long been used to register aerial photos into large-scale photo-mosaics (Slams 1980).

One of the key advances in this community was the deveIOpment of bundle adjnsnnem al-

gorithms (Section 7.4), which could simultaneously solve for the locations of all of the cam

era positions, thus yielding globally consistent solutions (Triggs, McLauchlan, Hartley et at.

1999). Another recurring problem in creating photo—mosaics is the elimination of visible

seams, for which a variety of techniques have been developed over the years (Milgram 1975,

1977; Peleg 1981; Davis 1998; Agarwala, Dontcheva, Agrawala er al. 2004)

In film photography, special cameras were developed in the 1990s to take ultra—wide—

angle panoramas, often by exposing the film through a vertical slit as the camera rotated on its

axis (Meehan 1990). In the mid-19905, image alignment techniques started being applied to

the construction of wide—angle seamless panoramas from regular hand-held cameras (Mann

and Picard 1994; Chen 1995; Szeliski 1996). More recent work in this area has addressed

the need to cempute globally consistent alignments (Szeliski and Shum 1997; Sawhney and

Kumar 1999; Shum and Szeliski 2000), to remove “ghosts” due to parallax and object move-

ment (Davis 1998; Sham and Szeliski 2000; Uyttendaele, Eden, and Szeliski 2001; Agarwala,

Dontcheva, Agrawala ct cl. 2004), and to deal with Varying exposures (Mann and Picard 1994;

Uyttendaele, Eden, and Szeliski 2001; Levin, Zomet, Peleg ct cl. 2004; Agarwala. Dontcheva,

Agrawala er al. 2004; Eden, Uyttendaele, and Szeliski 2006; Kopf, Uyttendaele, Deussen et

at. 2007").1 These techniques have spawned a large number of commercial stitching products

{Chen 1995; Sawhney, Kumar, Gendel at al. 1998), of which reviews and comparisons can

be found on the Web.2

While most of the earlier techniques worked by directly minimizing pixel-to—pixel dis-

similarities, more recent algorithms usually extract a sparse set of features and match them

to each other, as described in Chapter 4. Such feature-based approaches to image stitching

have the advantage of being more robust against scene movement and are potentially faster,

if implemented the right way. Their biggest advantage, however, is the ability to “recognize

panoramas”, i.e., to automatically discover the adjacency (overlap) relationships among an

unordered Set of images, which makes them ideally suited for fully automated stitching of

panoramas taken by casual users (Brown and Lowe 2007).

What, then, are the essential problems in image stitching? As with image alignment, we I

must first determine the appropriate mathematical model relating pixel coordinates in one im-

age to pixel coordinates in another; Section 9.1 reviews the basic models we have studied and

presents some new motion'models related specifically to panoramic image stitching. Next,
we must somehow estimate the correct alignments relating various pairs (or collections) of

images. Chapter 4 discussed how distinctive features can be found in each image and then

1 A collection of gems of these papers was compiled by Benosrnan and Kong (2001) and they are surveyed by
Szeljski (2006s).

2 The Photosynth Web site. http:f!photosynth.net, allows people to create and upload panoramas for free.

377
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5| image stitching

{a} translation [2 def] [h] affine [a dot] {c} perspective [3 dot] {d} 31) rotation [3+ dofl

Figure 9.2 Two—dimensional motion models and how they can be used for image stitching.

efficiently matched to rapidly establish correspondences between pairs of images. Chapter it

discussed how direct pixel-toapiltel comparisons combined with gradient descent {and other

optimization techniques) can also he used to estimate these parameters. When multiple im—

ages exist in a panorama. bundle adjustment [Section 14) can be used to compute a globally
consistent set of alignments and to efficiently discover which images overlap one another. In

Section 9.2. we look at how each of these previously developed techniques can be modified

to taite advantage of the imaging setups commonly used to create panoramas.

Once we have allg ned the images. we must choose a final compositing surface for warping

the aligned images (Section 9.3.1). We also need algorithms to seamlessly cut and blend over-

lapping images. even in the presence of parallax. lens distortion. scene motion. and exposure
differences :[Section 93.2—93.4}.

9.1 Motion models

Before we can register and align images1 we need to establish the mathematical relationships

that map pixel coordinates from one image to another. .t't variety of such parametric motion

model's are possible. from simple 2D transforms. to planar perspective models. 3D camera

rotations. lens distortions. and mapping to non-planar (cg. cylindrical} surfaces.

We already covered several of these models in Sections 2.1 and EL] . in particular. we saw

in Section 1.1.5 how the parametric motion describing the defomtstion ofa planar surfaced

as viewed from different positions can he described with an eight—parameter hemography

{2.11) [Mann and Picard 1994; Saellslti 1996]. We also saw how a camera undergoing a pure

rotation induces a different kind of homograpliy {2.112}.

in this section. we review both of these models and show how they can be applied to dif—

ferent stitching situations. We also introduce spherical and cylindrical compositing surfaces

and show how. under favorable circumstances. they can be used to perform alignment using

pure translations [Section 9.1.6}. Deciding which alignment model is most appropriate for a

given situation or set of data is a model selection problem {l-lastlc. Tibshirani. and Friedman

Emil; Torr 211432; Bishop Edit-6'. Robert 211W}. an important topic we do not cover in this book.
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9.1.1 Planar perspective motion

The simplest possible motion model to use when aligning images is to simply translate and
rotate them in 2D [Figure 9.2a}. This is exactly the same kind of motion that you would

use it' you had overlapping photographic prints. It is also the Itind of technique favored by
David Hockney to create the collages that he calls jebters {Zelnik—Maner and Forms soar;

Nomtua. Zhang. and Mayer EllilTJ. Creating such collages. which show visible seams and

inctmsistencies that add to the artistic effect. is popular on 1|blob sites such as Flickr. where they

more commonly go under the name panegmpity [Section 6.1.2}. Translation and rotation are

also usually adequate motion models to compensate for small camera motions in applications

such as photo and video stabiiisatiorn and merging {Exercise 5.1 and Section 3.2.1}.

In Section 5.1.3. we saw how the mapping between two cameras viewing a common plane

can be described using a 3 x 3 [tomography {1'11}. lConsider the matrix Mto that arises when

mapping a pixel in one image to a 3D point and then baclr onto a second image.

- ‘- ~—1_ -
3131 N PIPE. min = M1330. (9.”

When the last row of the Pa matrix is replaced with a plane equation rig -p+cu and points are

assumed to lie on this plane. i.e.. their disparity is do = i]. we can ignore the last colunat of

M to and also its last row. since we do not care about the final a-bul‘fer depth. The resulting

homography matrix ffto {the upper left 3 x 3 subrmatrix of Mm} describes the mapping

between pixels in the two images.

521 t“ Htoi'o- (9-2}

This observation formed the basis of some of the earliest automated image stitching al—

gorithms {Mann and Picard 1994: Sselislti 1994. 1996}. Because reliable feature matching

techniques had not yet been developed. these algorithms used direct pixel value matching. i.e..

direct parametric motion estimation. as described in Section 3.2 and Equations [6.194.243].

More recent stitching algorithms first extract feamres and then match theta up. often using

robust techniques such as RANSAC {Section 15.1.4} to compute a good set of inliers. The final

computation of the homograpby {9.2}. i.e.. the solution of the least squares fitting problem

given pairs of corresponding features, '

_ htan +i1+iittitfc + hma F———— .
an 3'” hmau+hmsn+1 ’ {93)m = i1 +hcol1'o +hotslc+has

3 hzufifi'i' halyu+1

uses iterative least squares. as described in Section 6.1.3 and Equations {b.El—filS}.

9.1.2 Application: Whiteboard and document scanning

The simplest lmagestitching application is to stitch together a number of image scans taken

on a flatbed scanner. Say you have a large map. or a piece of child’s artwork. that is too large

to fit on your scanner. Simply talte multiple scans of the document. making sure to overlap

the scans by a large enough amount to ensure that there are enough common features. Next.

take successive pairs of images that you know overlap. extract features, match them up. and

estimate the 2D rigiti transform [lift].

3H1 = Rhine + 3a. (9.4}

379
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Hm:

ffl.fl,fi.l}-p= i}

_ 5:}; = {rhythm it = [xuyitm
RH}

Figure 9.3 F'tu'e 3D camera rotation. The form of the homography {mapping} is particularly simple and depends

only on the 3D rotation matrix and focal lengths.

that best matches the features. using two—point RANSAC. if necessary, to find a good set

of inliers. Then. on a final compositing surface [aligned with the first scan. for example],

resample your images {Section 3.5.1} and average them together. Can you see anyr potential

problems with this scheme?

Dnc complication is that a 2D rigid transformation is non-linear in the rotation angle ii.

so you 1trill have to either use non-linear least squares or constrain R to be orthonormal. as
described in Section 6.1.3.

A bigger problem lies in the pairwise alignment process. As you align more and more

pairs. the solution may drift so that it is no longer globally consistent. in this case. a global op-

timization procedure. as described in Section 9.2, may be required. Such global optimization

often requires a large system of non‘linear equations to be solved. although in some cases.

such ss linearized humographies {Section 9.1.3} or similarity transforms [Section :5. I .2}. mg.

ular least squares may be an option.

A slightly more complex scenario is when you take multiple overlapping handheld pic—

hues of a whiteboard or other large planar object {He and Zhang 2M5; Zhsng and He 200?}.

Here. the natural motion model to use is a bomography. although a morecomplea; model that

estimates the 3D rigid motion relative to the plane {plus the focal length. it' uttltnownjl1 could

in principle be used.

9.1.3 Rotational panoramas

The most typical case for panoramic image stitching is when the camera undergoes a pure ro-

tation. Think of standing at the rim of the Grand Canyon. Relative to the distant geometry in

the scene. as you snap away. the camera is undergoing a punt rotation. which is equivalent to

sewn-tinglitat all points are 1rery far from the camera. i.e.. on fireplace at infinity [Figure 9.3).

Setting tn. = t1 = D. we get the simplified 3 x 3 homography

I'Its = KIRIHfi—l-Kcil = KtRmKa‘. {as}

where Kg = diagUhfg. I] is the simplified camera intrinsic matrix {2.59}. assuming that

.3: = E,” = Ell. i.e.. we are indexing the pixels starting from the optical center {Seeiiski 1996).
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This can also be re-written as

$1 f1 fofll 5‘70

in ~ f1 R10 if go (9.6)
1 1 1 1

or ‘-
$1 160

.91 N R10 to a (9.?)

f1 f0

which reveals the simplicity of the mapping equations and makes all of the motion parameters

explicit. Thus, instead of the general eight-parameter homography relating a pair of images,

we get the three-, four-, or five-parameter 3D rotation motion models corresponding to the

cases where the focal length f is known. fixed, or variable (Szeliski and Shum 19970.3 Es-

timating the 3D rotation matrix (and, optionally, focal length) associated with each image is

intrinsically more stable than estimating a homography with a full eight degrees of freedom,

which makes fine the method of choice for large-scale image stitching algorithms (Szelislri

and Shum 1997; Shore and Szeliski 2000; Brown- and Lowe 2007).

Given this representation, how do we update the rotation matrices to best align two over-

lapping images? Given a current estimate for the homography I}10 in (9.5), the best way to

update R10 is to prepend an incremental rotation matrix Rho) to the current estimate Rm

(Szeliski and Shunt 1997; Shum and Szeliski 2000),

me) = K1R(w)Rngl = [K1R(w)K;1][K1R10K31] = Dfi'm. (9.8)

Note that here we have written the update rule in the compositional form, where the in-

cremental update D is prepanded to the current homography H10. Using the small—angle
approximation to R(w) given in (2.35), we can write the incremental update matrix as

l _wz flwy

D = K1R(w)K1‘l as K1(I + [w]X)K1_1 = at, 1 41oz . (9.9)

“Wu/f1 Luz/fl 1

Notice how there is now a nice one-to-one correspondence between the entries in the D

matrix and the hog, . . .,h21 parameters used in Table 6.1 and Equation (6.19), i.e.,

(hon, hoiihoea hoe, hit, 3112,3120. 3121) = (U, —wz; flwyswzi 0! "fit-”‘3: —wy/f1awe/f1)-
(9.10)

We can therefore apply the chain rule to Equations (6.24 and 9.10) to obtain

a: 2 Wm

[3 —:c ] =[ firs/f1 f1+x /f1 —y w (9.11)9—1; —(f1+y2/f1) wit/f1 3? J ’

which give us the linearized update equations needed to estimate to = {[03, wy, wz)."' Notice

that this update rule depends on the focal length f1 of the target view and is independent

3 An initial estimate of the focal lengths can be obtained using the intrinsic calibration techniques desen'bed in
Section 6.3 .4 or fromjilflP tags.

4 This is the same as the rotational component of instantaneous rigid flow (Bergen, Anandan. Hanna at at. 1992)
and the update equations given by Szeliski and Shun] (199?) and Sham and Saelislci (2000).

J

381
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Figure 9.4 Four images taken with a hautlvltuitl camera registered using a 3D rotation motion model {Szelislti

and Shum Willi © 199'! Am. Notice how the homegraphies. rather than being arbitrary, have a well-defined

keystone shape whose width increases away from the origin.

of the focal length in. of the tenmlate view. This is because the compositional algorithm

essentially makes small perturbations to the target. Once the incremental rotation vector LIJ'

has been computed. the R] rotation matrix can be updated using R. +— lelfll.

The formulas for updating the focal length estimates are a little more involved and are

given in (Shum and Seclislri MD}. We will not repeat them here. since an altemative up

date rule. based on minimizing the difference between hack-projected 3D rays. is given in

Section 1’§|'_2_l. Figure 9.4 shows the alignment of four images under the 3D rotation motion
model.

9.1.4 Gap cloning

The techniques presented in this section can be used to estimate a series-of rotation matrices

and focal lengths, whiclt can he chained together to create large panoramas. Unfortunately,

because of accumulated errors, this approach will rarely produce a closed Stitl“ panorama.

Instead, there will invariably be either a gap or an overlap {Figure 9.5}.

We can solve this problem by matching the first image in the sequence with lite last one.

The difference between the two rotation matrix estimates associated with the repeated first

indicates the amount of misregistration. This error can be distributed evenly across the whole

sequence by taking the quotient of the two quatemions associated with these rotations and

dividing this “error quaternion" by the number of images in the sequence {assuming relatively

constant inter—[tame rotations). We can also update the estimated ibcal length based on the

amount of htisregistration. To do this. we first convert the error quaternion into a gap angle.

HF and then update the focal length using the equation I" = {{l -- Hgfdfitl‘j.

Figure 9.5a shows the end of registered image sequence and the first image. There is a

big gap between the last image and the first which are in fact the same image. The gap is

32“ because the wrong estimate of focal length if : 51D} was used. Figure 9.5!:- shows the

registration after closing the gap with the correct focal length if 2 468]. Notice that both
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(ill {b}

Figure 9.5 Gap closing (Saeliski and Sham l???) @ 1997' REM: (a) it gap is visihle when the focal length is

wrong U" *— Eltll. to} No gap is visible for the correct focal length [I = £1.63].

mosaics show very little visual misregistration [except at the gap}. yet Figure 9.5a has been

computed using a focal length that has 9% error. Related approaches have been developtfl by

Hartley {[994h), McMillan and Bishop {1995], Stein {1995], and Kong and Weiss ([99?) to

solve the focal length estimation problem using pure panning motion and cylindrical images.

Unfortu nately, this particular gap-closing heuristic only works for the kind of “one-dimensional"

panorama where the camera is continuously turning in the same direction. In Section 9.2. we

describe a different approach to removing gaps and overlaps that works For arbitrary camera
motions.

9.1.5 Application: Video summarization and compression

An interesting application of image stitelting is the ability to summarize and compress videos

taken with a panning camera. "this application was first suggested hy Teodosio and Bender

{HEB}. who called their mosaic-hesed summaries soften! stills. These ideas were then er;-

tended by Irani. Hsn. and Anandan {1995]. Kumar. Anandan. irani ct ei. {[995}. and lrani and

Anandan {Will-i} to additional applications, such as video compression and video indexing.

1|iiil'tile these early approaches used afline motion models and were therefore restricted to long

focal lengths. the techniques were generalized by Lee. ge lChen. lung Bruce Lin oi oi. “99?)

to full eight-parameter homographies and incorporated into the MPEG-4 video compression

standard. where the stitched background layers were called video sprites (Figure Elli].

1it'hile video stitching is in many ways a straightforward generalization of mtdliple-intage

stitching (Steamy, Fol. andflzeliskl 2905; Enudisch, Tan, Sleedly er oi, Ellflfi}, the potential

presence of large amounts of independent motion. camera zoom. and the desire to visualize

dynamic events impose additional challenges. For example, moving foreground objects can

often he removed using median fiirefing. Alternatively, foreground objects can be extracted

into a separate layer [Sawhney and Ayer I996} and later compositecl hack into the stitched

panoramas. sometimes as multiple instances to give the impressions of a "Chronophotograph"

{Massey and Bender 1996i} and sometimes as video overlays {hard and floatation 1993}.
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Figure 9.6 Video stitching the background scene to create a single sprite image that can be transmitted and used

to re—ereate the background in each frame (lee, ge Chen. lung Bruce Lin at at. 199?} @I I??? lEEE.

Videos can also he used to create animated pancreatic video textures {Section I152}, in

which diEEerent portions of a panoramic scene are animated with independently moving video

loops {figanlt‘alm Zheng. Pal et ai. zoos; Rev—delta. Pritoii. Lischinsid et el. 2005}. or to shine

“video flashlights“ onto a composite mosaic of a scene liliaivhney+ tau-pa. Kumar et at. zoos}.

Video can also provide an interesting source of content for creating panoramas taken from

moving cameras. While this invalidates the usual assumption of a single point of vicar {opti-

cal center). interesting results can still he obtained. For example. the ‘tfideoBrush system of

Sawhney, Kumar, Scandal at at (1993) uses thin strips taken from the center of the image to

create a panorama taken from a horizontally moving camera. This idea can be generalized

to other camera motions and compositing surfaces using the concept of mosaics on adap‘

tive manifold (Pcteg, Rousso1 Ravvatcha at at. zoos), and also used to generate panoramic

stereograms (Feleg. Ben-Esra, and Pritch soot}. Related ideas have been used to create

panoramic matte paintings for multi—plane eel animation (Wood. Finitcistein. Hughes at at.

[99?], for creating stitched images of scenes with parallax {Kutnan Jitnandanr lrani at cl.

I995], and as 3D representations of more complex scenes Using multipie~cemer~ofiprojecfion

images [Rademacher and Bishop 1998} and maid-pa tapecrive panoramas (Roman, Gang. and

Levoy 2094‘, Roman and Lensch EDfl-fi: ii'tgar's'alar Agravrala. Cohen at (it zoos).

Another interesting variant on video—based panoramas are concentric mosaics {Section 13.3.3}

(Sham and He 1999}. Here, rather titan trying to produce a single panoramic image. the com—

plete original video is kept and used to re—synlhesize views [from different camera origins}

using rayr remapping {light fieid rendering}. thus endowing the panorama with a sense of 3D

depth. The same data set can also he used to explicitly reconstruct the depth using multi—

hasclinc stereo {Pcteg, Ben-Em and Pritch Eflfli; Li, Shunt. Tang et at. EDD-4'. Zheng, Kang1

Cohen at at 200?}.

APPL—1012 / Page 130 of 211



APPL-1012 / Page 131 of 211

9.] Motion models

P=iliKZl

 sira'iI cosp. sine.

cost? coop} 
{b}

Figure 9.? Projection from 3D to {a} cylindrical and {h} spherical coordinates.

9.1.6 Cylindrical and spherical coordinates

An alternative to using homographies or 3-D motions to align images is to first warp the images

into eyiimirr'oci coordinates and then use a pure translational model to align them {Chen 1995:

Smelislti 1996}. Unfortunately. this only worirs if the images are all talten with a level camera

or with a known tilt angle.

Assume for now that the camera is in its canonical position. i.e.. its rotation matrix is the

identity. R = I. so that the optical axis is aligned with the z axis and the y axis is aligned

vertically. The 3D ray corresponding to an (a. y} pixel is therefore (a. it. ii

We wish to project this image onto a cyiimiricai seduce of unit radius {Sneliski [995}.

Points on this surface are pararneterizetl by an angle a and a height h. with the 3D cylindrical

coordinates corresponding to {9. it) given by

commas tear). (9.12:

as shown in Figure 93a. From this correspondence. we can compute the formula for the

named or amped coordinates {Szeliski and Sham 199?},

-1 E

I I

y’ = sh =a--—Iy—-, {9.14}
tats." + f2 -

where a is an arbitrary scaling factor [sometimes called the radius of the cylinder} that can be

set to a = f to minimise the distortion {sealing} near the center of the image.5 The inverse of

this mapping equation is given by

.I‘

c: = stizstan (9.13)

e = ftandzftan'é. {9.15}

y = htmz+f1=§f 1+ton2m’fs=fygrsec%. {9.16}
Images can also be projected onto a sphericoi rut-face {Szoliski anti Shunt 1997}. which

is useful if the final panorama includes a full sphere or hemisphere of views. instead of just

a cylindrical strip. In this case. the sphere is parameterized by two angles {3, a}. with 3D

spherical coordinates given by

{EEHMdtsmdtcmfimil 0-: {and}. (9-1?)

5 'i'hestniecmelsohesortoa targerorsntaller value forthefirtaicompnsiling stufaoe.depeodiogonthedesired
outpvtpancrama resolution—sec Section 9.3.

335

APPL—1012 / Page 131 of211



APPL-1012 / Page 132 of 211

336 9 Image stitching
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Figure 9.3 A. cylindrical panorama {S zclislri and Shunt 199?] @‘r 1991' ACM: {a} two cylindrically warperI images

related by a horizontal translation; {h} part of a cylindrical panorama eornposlted from a sequence of images.

as shown in Figure 93b? The correspondence bettveen coordinates is now given by {Seeliski
and Shunt 199?}:

_|3

a." = sE=stan i” (9.13]
r _ I!

= arit=stan 1—~—, {9.19)
y .I'E‘E +‘f2

while the inverse is given by

If

m = ftantl=ftan:: (9.213}
'"'“ iti iti If

y = 1.an + Fifi-11¢ -——- tartgf l +tarr2 :c’fs = ftan:sec E.- {Elli}

Note that it may be simpler to generate a scaled (my. 2.} direction from Equation {9.1T}

foliotverl by a perspective division by e and a scaling by f.

Cylindrical image stitching algorithms are ntost commonlyr used when the camera is.

known to be level and only rotating around its vertical axis [Chen 1995). Under these condi‘

tions. intages at different rotations are related by a pure horizontal translation."II This makes

it attractive as an initial class project in an introductory contputer vision course, since the

full complexity of the perspective alignment algorithm {Sections til. 8.2. and 9.1.3} can be

avoided. Figure 9.8 shows how two cylindrically warped images from a leveled rotational

panorama are related by a pure translation {Szelisiti and Share IFS-T}.

Professional panoramic photographers often use pan—tilt heads that make it easy to control

the tilt and to stop at specific deter-its in the rotation angle. Motorised rotation heads are also

sometimes used for the acquisition of larger panoramas IIKopf, Uyttenriaclc, Deussen er. oi.

anon? Not only do they ensure a uniform coverage of the visual field with a desired amount

of image irrerlap but they also make it possible to stitch the images using cylindrical or

spherical coordinates and pure translations. in this case, pixel coordinates [:e.y, _.|"] must first

5 Note that these are not the ttsunl spherical coordinates. first rn'esented in Equation (2.3). Here. the y can points
at the north pole instead of the 3 Hit since we are used to vica'ing images taken horizontally. in. with the y axis
pointing in the direction ofthe gravity vector.

Tfimaii vertical tilts can sometimes be cmnpensaitd for with vertical trmslatioae.
tSec also ltttpattgigarpancrg.
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Figure 9.9 ft spherical panorama consU'uctcd from 54 photographs [Seeiiskj and Shem IEI'EIT) [it]: WW ACM.

be rotated using the known tilt and panning angles be fore heing projected into cylindrical

or spherical coordinates {Chen 1995). Having a roughly known panning angle also makes it

easier to compute the alignment. since the rough relative positioni ag of all the input images is

known ahead of time1 enabling a reduced search range for alignment. Figure 9.9 shows a full

3D rotational panorama unwrapped onto the surface of a sphere {Ezelislri and Sham 199?}.

One final coordinate mapping worth mentioning is the polar mapping, where the north

polo lies along the optical axis rather than the iaeriical axis,

(Cmflfiillnfirfiiflflsiltdi,ctfi¢l} 2 s[:,y.z}. {9.22)

in Lhis case, flit: mapping oquau'ons become

I _
at’ = sdnaotsti=s+tazn1I" 3. {9.23}z

y' = sn‘isiufl == sr—I'r tan '1 :1 (9.24;.2'

whore :— = “in“ + y“ is the indioi distance in the [any] plane and ad: plays a similar role

in the [I’,y’} plane. This mapping provides an attractive visualization surface for certain

kinds of Iaside-angle panoramas and is also a good model for the distortion induced hyjishsys

lenses. as discussed in Section 2.l.o. Note how for small 1trahIes of {my}. the mapping

equations reduce to e’ as Sigh-21. which suggests that 3 plays a role similar to the focal length

I.

9.2 Global alignment

So far. we have discussed how to register pairs of images using a variety of motion models. in

most applications, we are given more than a single pair of images to register. The goal is then

to find a global]y consistent set of alignment parameters that minimize mo mis—registrati on

bettireen all pairs'of images [Szolislri and Shunt. [99h Shoot and Szeliski EDEN]; Sawhney and

Kumar 1999; Coorg and Teller zoos).

APPL—1012 / Page 133 of211



APPL-1012 / Page 134 of 211

9 Image stitching

in this section, we extend the pairwise matching criteria {5.2, 3.]. and Bill} to a global

energy function that involves all of the per—image pose parameters {Section 9.2.1}. I{Since

we have computed the global alignment. we often need to perform local adjustments. such

as parallax removal. to reduce double images and blurring due to local ails—registrations

[Section 9.2.2}. Finally. if we are given an unordered set of irnages te IregisterI we need to
discover which images go together to form one or more panoramas. This process ofpanornmn

recognition is described in Section 9.2.3.

9.2.1 Bundle adjustment

One way to register a large number of images is to add new images to the panorama. one

at a time aligning the most recent image with the previous ones already in the collection

(SzeIislri and Sham 199T} and discovering, if necessary. which images it overlaps {Sawhney

and Kumar 1999). In tile case of 360° panoramas. accumulated error may lead to the presence
of a gap {or excessive overlap] between the two ends of the panorama, which can be fined

by streaming the alignment of ah the images using a process called gap closing {Szeliski and

Sham 199?). However. a better altemative is to simultaneously align all the images using a

least—squares framework to correctly distribute any mis—regiatration errors.

The process of simultaneously adjusting pose parameters for a large collection of overlap-

ping images is called handle adjustment in the photogrammetry commu nity {'I'riggs. McLauch‘

Ian. Hartley er oi. Iggy}. in computer visionI it was first applied to the general structure from

motion prohIem [Sneliski and Kang I994} and then later specialized for panoramic image

stitching {Sham and Ezeliski iflflfl: Sawhney and Knmar 1999; Coorg and Teller 2flfltl}.

in this section, we forrnalate the problem of global alignment using a techno-based ap-

proach, since this results in a simpler system. An equivalent direct approach can be obtained

either by dividing images into patches and creating a virtual feature correspondence for each

one {as discussed in Section 9.2.4 and by Sham and Saeiislci {20%)} or by replacing the

perrfeamre error metrics with per—pier metrics.

Consider the feature-based alignment problem given in Equation {I52}. i.e..

Examine—Ls =anss = lliiiecal at? can

For malti—image alignment, instead of having a single reflection of pairwise feehae corte-

spondences. {fan , dtfl}. we have a collection of it features, with the location of the ith feature

point in the jtb image denoted by any and its scalar confidenec {i.e., inverse variance} denoted

by cg?!" Each image also has some associated pose parameters.

In this section. we assume that this pose consists of a rotation matrix R} and a. focal

length If. although formulations in terms of homographies are also possible [Sneiislri and

Sham 199T; Sawhney and Kumar 1999}. The equation mapping a 3D point as; into a point

mg- in frame 3' can be re-written from Equations {Elf-ii} and [9.5) as

s.)- ~ Ky-Rj-atg and m; w safari—leg. {are}

9Featnresfl1atuenntseenhiimagejhameil- =B,%eannlaouse2x2hwmemvnriamemau-lmga_1 hi
place ol'ei1| . as shown in Equation {6.11}.
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where KJ- : diag(fJ-, 331,1) is the simplified form of the calibration matrix. The motion

mapping a point $.53- from frame 3' into a point $530 in frame is is similarly given by

53,), ~ range”- : KrRkaKj-lap. (9.27)

Given an initial set of {(Rj, 3%)} estimates obtained from chaining pairwise alignments, how
do we refine these estimates?

One approach is to directly extend the pairwise energy Epajrwgge_L3 (9.25) to a multiview
formulation,

Eall—pairSmZD = Z Z cijc‘iklliék(é§lejtfj1R-klfk) “ fitsllza [9-23)
1? jk

where the 5:“, function is the predicted location of feature r' in frame is given by (9.27),

e,,- is the observed location, and the “2D” in the subscript indicates that an image-plane

error is being minimized (Shunt and Sreliski 2000). Note that since 53,1; depends on the dzij

observed value, we actually have an errors-in—variable problem, which in principle requires

more sophisticated techniques than least squares to solve (Van Huffel and Lemmerling 2002;

Matei and Moor 2006). However, in practice, if we have enough features, we can directly

minimize the above quantity using regular non—linear least squares and obtain an accurate

mold—frame alignment.

While this approach works well in practice, it suffers from two potential disadvantages.

First, since a summation is taken over all pairs with corresponding features, features that are

observed many times are overweighted in the final solution. (In effect, a feature observed an

times gets counted (7;) times instead of m times.) Second, the derivatives of in, with respect
to the {(Rj, 3-)} are a little cumbersome, although using the incremental correction to R3-
introduced in Section 9.1.3 makes this more tractable. I

An alternative way to formulate the optimization is to use true bundle adjustment, i.e., to

solve not only for the pose parameters {{Rj, fjj} but also for the 3D point positions {an},

Ens—2o = ZZ Ctjllfizflmr; Rj: fr) # 53in?» (9:29)
i .1"

where in}; (an; Rj, fj) is given by (9.26). The disadvantage of full bundle adjustment is that

there are more variables to solve for, so each iteration and also the overall convergence may

be slower. (Imagine how the 3D points need to “shift” each time some rotation matrices are

updated.) However, the computational complexity of each linearized Gauss-Newton step can

be reduced using sparse matrix techniques (Section 7.4.1) (Szeliski and Kang 1994; Triggs,

McLauchlan, Hartley er a1. 1999; Hartley and Zisserrnan 2004).

An alternative formulation is to minimize the error in 3D projected ray directions (Shum

and Szeliski 2000), i.e.,

EBA—3D = ZZ c..- Hates; 12,-, e) — with (9.30)
i 3'

where 5:¢(m¢j; Rj, fj) is given by the second half of (9.26). This has no particular advantage

over (9.29). In fact, since errors are being minimized in 3D ray space, there is a bias towards

estimating longer focal lengths, since the angles between rays become smaller as f increases.

389
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However. if we eliminate the ED rays 3;. we can derive a pairwise energy formulated in

3D ray spaee [Shunt and Szelislri coco},

Eall—paEntI—ED = Z zfificttcllitlitj: Hi: It} — iiliik: Rt: fsillz- {9-31}
i in:

This results in the simplest set of update equations [Shum and Ezellslti lellfl). since the f]. can

be folded into the creation of the homogeneous coordinate vector as in Equation {9.7}. Thus.

even though this formula over—weights features that occur more frequently, it is the method

used by Shum and Szelislti {Elliltl} and Brown, Saeliski, and Winder {211115}. In order to reduoe

the bias towards longer focal lengths. we multiply each residual {3D error} by m. which
is similar to projecting the 3D rays into a "virtual camera" of intermediate focal length.

Up vector aeteotlctt. As mentioned above. there exists a global ambiguity in the pose

of the 3D cameras computed by the above methods. While this may not appear to matter,

people prefer that the final stitched image is “upright” rather than twisted or tilted. More

concretelyI people are used to seeing photographs displayed so that the vertical {gravity} axis

points straight up in the image. Consider how you usually shoot photographs: while you may

pan and tilt the camera any which way. you usually lteep the horizontal edge of your camera

[its m—axis} parallel to the ground plane [perpendicular to the world gravity direction].

Mathematically. this constraint on. the rotation matrices can be expressed as follows. Ro—

call fi'om Equation (9.26} that the 3B! to 2D projection is given by

in: ~ Kkflkflii- {9.32}

We wish to post-multiply each rotation matrix Rt; by a global rotation Ra such that the pro-

jection of the global y—axis. j = {l}, 1, ft) is perpendicular to the image n—axis. i = {1, l]. til.”
This eonsuaint can be written as

tilting} = o {9.33}

{note that the scaling by the calibration matrix is irrelevant here}. This is equivalent to re—

quiring that the first row of R1,. 1—H; = iTR;c be perpendicular to the second column of Rs-
r51 = R53. This set of constraints [one per input image} can be written as a least squares

problem.

7's] = arg mrin gErTrguji = argmlrin rr [2 martin] 1'. (9.34}
Thus+ r“ is the smallest eigenvector of the scatter or moment matrix spanned by the hidi-

vidual camera rotation :c-vectors. which should generally be of the form [c.ft, s} when the

cameras ate uptight.

To fully specify the Rs global rotation. we need to specify one additional constraint. This

is related to the view selection problem discussed in Section 9.3.1. One simple heuristic is to

prefer the average s—axis of the individual rotation matrices, it— 2 2t: icTiR,= to be close to
the world basis, r32 = Rgfc. We can therefore compute the full rotation matrix Rs in three
steps:

to Note met him: we use the mammalian Donaldson in computer graphics dial! the vertical world axis mud: to
' y.'Ihisisansutralchoiceit"s-nowt'shthcrotatira'tmlttixassociatedwitha"tegulnr"imngeniltenboriaontallytobe

die irim‘tlily. rathnrthan a 9f)“ rotation around the z-axis.
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1. 1-5. = min eigenvector {2k Margin};

2. r50 = MHZ; res} 5“ 1’31}:

3. r5: = ran it r31,

where Mitt} = uf||ul| normalizes a vector a.

9.2.2 Parallax removal

Once we have optimized the global orientations and focal lengths of our cameras. we may find

that the images are still not perfectly aligned. i.e.. the resulting stitched image looks blurry

or ghosted in some places. This can be caused by a variety of factors. including unmodeled

radial distortion. 3D parallax {failure to rotate the camera around its optical center}. small

scene motions such as waving tree branches, and large—scale scene motions such as people

moving in and out of pictures.

Each of these problems can he treated with a difierent approach. Radial distortion can be

estimated {potentially ahead of time) using one of the techniques discussed in Section 2.1.6.

For example, the plumb-line method [Brown l9'l'l; Kang Zfllll; El—l'v'lelegy and Farag 2W3}

adjusts radial distortion parameters until slightly curved lines bacorne straight. while mosaic—

hasod approaches adjust them until this-registration is reduced in image overlap areas {Stein

1991: Sawhney and Kumar 1999}.

3D parallax can he handled by doing a full 3D bundle adjustment. l.e.. by replacing the

projection equation [9.26] used in Equation {9.29} with Equation [2.53]. which models came

era translations. The 313 positions of the matched feature points and cameras can then be si-

multaneously recovered. although this can be signi ficantly more expensive than parallax‘free

image registration. Once the 3D structure has been recovered, the scene could {in theory} be

projected to a single {central} viewpoint that contains no parallax. However. in order to do

this. dense stereo correspondence needs to he performed {Section I 1.3} (Li. Shum. Tang et al.

2W; Zheng. Kong. Cohen et al. Ell-ill}. which may not be possible ifthe images contain only

partial overlap. in that case. it may be necessary to correct for parallax only in the overlap

areas. which can be accomplished using a multirperrpectt've plane sweep {Ml-"P53 algorithm

(Kong. Szelislti. and Uyttendaele 2004: Uyttendaele. Ctiminisi. Kaog et‘ ul. aces}.

When the motion in the scene is very large. i.e.. when objects appear and disappear com—

plemly. a sensible solution is to simply select pixels from only one image at a time as the

source for the final composite [Milgtarn 19".”; Davis 1993; hgarwala. Donteheva, hgrawala

et al. 2904). as discussed in Section 9.3.2. However. when the motion is reasonably small {on

the order of a few pixels}. general 21') motion estimation {optical flow) can he used to perform

an appropriate correction before blending using a process called local aligrunent [Sham and

Seelislti Eililt}; Kang. Uylteudacle. 1vlt'inder ct oi. 201133}. This same process can also be used

to compensate for radial distortion and 3D parallax. although it uses a weaker motion model

than explicitly modeling the source of error and may. therefore. fail more often or introduce
unwanted distortions.

The local alignment technique introduced by Sham. and Szelislti {mild} starts with the

global bundle adj'itstment (9.31] used to optimize the camera poses. Once these have been

estimated. the desired location of a 3D point at.- can be estimated as the average of the back-
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lb] {61'

Figure Stilt} Deghosting a mosaic with motion parallax [Sham and Saelislri zone) {1:2} ltltltl IEEE: {a} composite
with parallax: {b} after a single deghosting step (patch sine 32}; to]: afler multiple steps {sizes 32. to and S}.

projected 3D locations.

it“Ziai-‘iiitiflrufri/ch. {9.35}i i

which can be projected into each image 3' to obtain a target location tin-j. The difference

between the target locations at. and the original features reg provide a set of local motion
estimates

ill-ii = 1-7.1: — Eu, {9.36}

which can be interpolated to form a dense correction Iield njfmj}. In their system. Shum and
Saclislrl {Etiilil} use an inverse warping algorithm where the sparse —'H1'j values are placed at

the new target locations mg. interpolated using bilinear hemel functions {Nielsen 1993} and
then added to the original pixel coordinates when computing the warped {corrected} image.

in order to get a reasonably dense set of features to interpolate. Shum and Szelislci cacao}

place a feature point at the center of each patch {the patch size controls the smoothness in
the local alignment stage}, rather than relying of features extracted using an interest operator

{Figure 9. ID}.

An altemative approach to motion-based de—ghosting was proposed by Kang. Uytten—

daele, “finder et' at. (EMS). who estimate dense optical flow between each input image and a

central reference image. The accuracy of the flow vector is checked using a photo-consistency

measure before a given warped piste! is considered valid and is used to compute a high dy—

namic range radiance estimate. which is the goal of their overall algorithm. The requirement

for a reference image makes their approach less applicable to general image mosaicing. al-

though an extension to this case could certainly he envisaged.

9.2.3 Recognizing panoramas

The final piece needed to perform fully automated image stitching is a technique to recognize

which images actually go together. which Brown and Lowe {EIGHT} call recognizing panora-

mas. If the user takes images in sequence so that each image overlaps its predecessor and

also specifies the first and last images to he stitched. handle adjustmtmt combined with the

process of topology inference can he used to automatically assemble a panorama (Sawhney

and Kurnar 1999}. However. users often jump around when taking panoramas. e.g.. they

mayr start a new row on top of a previous one. jump back to take a repeat shot. or create
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.‘lfitl‘ panoramas where end—to—end overlaps need to be discovered. Furthermore, the ability

to discover multiple panoramas taken by a user over an extended period of time can be a big
convenience.

1b recognize panoramas. Brown and lows {200?} first find all pairwise image overlaps

using a feature—based method and then find connected components in the overlap grame

"recognize" individual panoramas (Figure 9.11}. The feature-based numbing stage first es-

tracts scale invariant feature transform [3 LFT} fealrne locations and feature descriptors {Lowe

EDD-fl from all the input images and places them in an indexing structure. as described in Sec—

tion 4. l .3. For each image pair under consideration, the nearest matching neighbor is found

for each feature in the first imageI using the indexing structure to rapidly find candidates and

then comparing feature descriptors to find the best match. RANSAC is used to find a set of in-

lr'er matches: pairs of matches are used to hypothesize similarity motion models that are then

used to count the number of iniiers. {A more recent RANSAC algorithm tailored specifically

for rotational panoramas is described by Brown, Hartley. and Mister {Emil}

in practice. the most difficult part of getting a fullyr automated stitching algorithm to

work is deciding which pairs of images actually correspond to the same parts of the scene.

Repeated structures such as windows [Figure 9.12) can lead to false matches when using

a featurobased approach. One way to mitigate this problem is to perform a direct pixel—

based comparison between the registered images to determine if they actually are different

views of the saute scene. Unfortunately. this heuristic may fail if there are moving objects

in the scene {Figure 9.13}. While there is no magic bullet for this problem. short of full

scene understanding. further improvements can Iilrely be made by applying domain-specific

heuristics. such as priors on typical camera motions as well as machine learning techniques

applied to the problem of match validation.

9.2.4 Direct vs. feature-based allgntnent

{liven that there exist these two approaches to aligning images. which is preferable?

Early featurebased methods would get confused in regions that were either too textured

or not textured enough. The features would often be distributed unevenly over the iinages.

thereby failing to match image pairs that should haste been aligned. Furthermore, establishing

correspondences relied on simple cross-correlation between patches surrounding the feature

points. which did not work well when the images were rotated or had fercshortening due to

homographies.

Today. feature detection and matching schemes are remarkably robust and can even be

used for known object recognition from widely separated views (Lowe mild). Features not

only respond to regions of high “ceraerness” (Forstner 19%: Harris and Stephens lgflfil but

also to "blob-like" regions {Lowe Edit-1], and uniform areas Mates. Chum. Urban er cl. 2W4:

Tuytelaars and Van Gool 2W4}. Furthermore. because they operate in seale~space and use a

dominant orientation [or orientation invariant descriptors). they can match images that differ

in scale. orientation. and even foreshortening. Our own experience in working with feature-

based approaches is that if the features are well distributed over the image and the descriptors

reasonably designed for repeatability. enough correspondences to permit image stitching can

usually be found (Brown. Snellski. and Winder Etltlfij.

The biggest disadvantage of direct pixel-based alignment techniques is that they have a

limited range of convergence. Even though they can be used in a hierarchical [coarse-to

393
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Figure SLII Recugnixing panoramas; [Eruwm Szeliski. and Winder 2005}. figures courtesy of Mnuhew Bmwn:

{:1} input images with pain-wire matches; (h) images gmupcd inm {:mmflcted cumpunuurs {panoramas}: {c} individ-

ual panuramas registered and blended inm stitched cnmpflsitex.
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Figure 9.12 Matching errors (Brawl, SZeliski, and Winder EDIM}: amidentaI malehing nl' several features can

lead Ln matches between pairs 01' images Lhat dn nnl: :IEIUELHj-r nverlap.

 
Figure 9.13 Validation of image matches by direct pixel error comparison can fail when the seem: eunlains

mm'ing nhjecrs {Uyttendaele Eden. and Szel'tski 2am; {Eh mm [EEE
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line} estimation hmneworit. in practice it is hard to use more than two or three levels of a

pyramid before important details start to he blurred away.11 For matching sequential frames

in a video. direct approaches can usually he made to work. However. for matching partially

overlapping images in photo-based panoramas or for image collections where the contrast or

content varies too much. they fail too often to be useful and feature-bpscd approaches are
therefore preferred.

9.3 Compositing

Once we have registered all of the input images with respect to each other. we need to decide

howr to produce the final stitched mosaic image. This involves selecting a final compositing

s ace (flat. cylindrical. spherical. etc.) and view {reference image}. It also involves selecting

it ich pixels contribute to the final composite and how to optimally blend these pixels to
minimize visible seams. blur. and ghosting.

In this secu'on, we review techniques that address these problems. namely compositing

surface parameterization. pixel and scam selection. blending. and exposure compensation.

lvly emphasis is on fullyr automated approaches to the problem. Since the creation of high-

qnality panoramas and composites is as much an artistic endeavor as a computational one.

various innrractive tools have been developed to assist this process (regenerate. Donteheva.

Agrawala et' al. SUD-1: Li. Sun. Tang et at. 2W4: Rother. Kolmogorov. and Blake EGO-fl}.
Some of these are covered in more detail in Section lit-4.

9.3.1 Choosing a ecmposlttng surface

The first choice to be made is how to represent the final image if only a few images are

stitched together. a natural approach is to select one of the images as the reference and to

then warp all of the other images into its reference coordinate system. The resulting com—

posite is sometimes called aflut panorama. since the projection onto the final surface is still

a perspective projection. and hence straight lines remain straight [which is often a dcsirable

attribute}.12 ‘

For larger fields of view. howaver. we cannot maintain a flat representation without eit—

eessively stretching pixels near the border of the image. {In practice. fiat panoramas start

to look seveme distorted once the field of view exceeds 91]“ or so} The usual choice for

compositing larger panoramas is to use a cylindrical {Chen 1995; Szeh'sici Wild} or spherical

{Snellslti and Shum 199’?) projection. as described in Section 9.1.6. in fact. any surface used

for environment mapping in computer graphics can be used. including a cube map. which

represents the full viewing sphere with the sin square faces of a cube (Greene 1935'. Szelisid

and Shum 199T]. Cartographers have also developed a number of alternative methods for

representing the globe [Bugayevsltiy and Snyder 1995}.

The choice of parameteriaation is somewhat application dependent and involves a trade-

off between keeping the local appearance undistorted {e.g.. keeping straight lines straight}

1' Fourier-based correlation: {Sealislti IEI'SIfi-tSsetisld andSburn [991'ch ntend this range but requires cylindrical

_ images or ovation prediction to be useful.
13 Recently, some techniques have been developed to straighten trim-ed lines in cylindrical and spherical panora-

mas [Canal]. Agtawala. and Agarwala 2039: Kopf. ljschinslti. Dena-sen II! at. 2009}.
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and providing a reasonably uniform sampling of the environment. Automatically melting

this selection and smoome transitioning between representations based on the extenth the

panorama is an active area of current research {Kept Uyttcndaele, Deussen at cl. mill}.

An interesting recent development in panoramic photography has been the use of stereo-

graphie projections looking down at the ground {in an outdoor scene} to create “little planet:r

renderings.”

View eeleefien. Once we have chosen the output parameteriration. we still need to deter-

mine which pert of the scene will be centered in the final view. As mentioned above. for a flat

composite, we can choose one of the images as a reference (then, a reasonable choice is the

one that is geometrically most central. For example. for rotational panoramas represented as

a collection of 3D rotation matrices, we can choose the image whose a-axis is closest to the

average z—axis {assuming a reasonable field of view}. Alternatively, we can use the average

e-axis {or qualcrnion, but this is trickier] to define the reference rotation matrix.

For larger, e.g., cylindrical or spherical, panoramas, we can use the same heuristic if a

subset of the viewing sphere has been imaged. in the case of fufi Edi)“ panoramas, a better

choice might be to choose the middle image from the sequence ofinputs, or sometimes the

first image, assuming this contains the object of greatest interest. In all of these cases, having

the user control the final view is often highly desirable. If the “up vector’ ' computation de-

scribed in Section 9.2.1 is working correctly. this can be as simple as panning over the image

or setting a veni "center line" for the final panorama.

Coordinate transformatlona. After selecting the parameterization and reference view,

we still need to compute the mappings between the input and output pixels coordinates.

if the final compositing surface is flat {e.g., a single plane or the face of a cube map}

and the input images have no radial distortion. the coordinate transformation is the simple

homography deactibed by {9.5). This lrind of warping can be performed in graphics hardware

by appropriately setting texture mapping coordinates and rcodming a single quadrilateral.

If the final ccntpodte surface has some other analytic form [e.g.. cylindrical or spherical),

we need to convert every pixel in the final panorama into a viewing ray {3D point} and then

map it back into each image according to the projection {and optionally radial distortion}

equations. This process can be made more efficient by precomputing some lockup tahlm,

e.g.. the partial trigonometric functions needed to map cylindrical or spherical coordinates to

3D coordinates or the radial distortion field at each pixel. It is also possible to accelerate this

process by computing exact pixel mappings on a coarser grid and then interpolating these
values. '

1|i‘tl'hen the final compositing surface is a texture-mapped polyhedron, a slightly more so-

phisticated algorithm must he used. Not only do the 3-D and texture map coordinates have to

he properly handled. but a small amount of overdmw outside the triangle footprints in the tex-

ture map is necessary. to ensure that the texture pixels being interpolated during 3D rendering

have valid values {Seclislti and Shunt 199T].

_—‘_,—

ll 'l'hese are inspired by The little Prince by Antoine Dc Saint-Exam. Go to hltpttlwuovfl ieltrcum and search
for “titrle planet proleedon".

39‘?
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Sampling issues. 1|1‘1I'hile the above computations can yield the correct [fractional] pixel
addresses in each input image. we still need to pay attention to sampling issues. For example.

if the final panorama has a lower resolution than the input images. pie-filtering the input
images is necessary to avoid aliasing. These issues have been extensively studied in both the
image processing and computer graphics communities. The basic problemis to compute the
appropriate pre--liitcr. which depends on the distance {and arrangement} between neighboring
samplesin a source image. As discussed'in Sections 35.2 and 3.ii. I. various approximate
solutions. such as lvflP mapping Willliams i933} or elliptically weighted Gaussian averaging

{Greene and l-lcclrbcrt [936} have been developed in the graphics community. For highest

visual quality. a higher order [e.g.. cubic]: interpolatcr combined with a spatially adaptive pre—
filter may be necessary (Wang. Kahg, Sselislti at of. 2M1}. Under certain conditions, it may
also be possible to produce images with a higher resolution than the input images using the

process of superrres‘dlttil'mt {Section “3.3).

9.3.2 Pixel selection and weighting (deughostingl

Dncc the source pixels have been mapped onto the final composite surface. we must still
decide how to blend them in order to create an attractive-looking panorama if all of the

images are in perfect registration and identically exposed. this is an easy problem. i.e.. any
pixel or combination will do. However. for real images. visible seams (due to exposure
differences]. blurring [due to rnisaregistration}. or ghosting {due to moving objects} can rtccnr.

Creating clean. pleasingvlooiting panoramas involves both deciding which pixels to use
and how to weight or blend them. The distinction between these two stages is a little fluid.

since per—pixel weighting can be thought of as a combination of selection and blending. in
this section. we discuss spatially varying weighting. pixel selection [seam placement}. and

then more sophisticated blending.

Feathering and centernwelghting. The simplest way to create a final composite is to

simply taire an average value at each pixel.

are} = Zsunshine} /2write} . (as?)a t: ’

where fgfm} are the warped {rosampled} images and whiz] is l at valid pixels and [l else-
where. I‘Jn computer graphics hardware. this irind of summation can be performed in an
nocunatlotr‘on bufier [using the A channel as the weight].

Simple averaging usually does not work very well. since exposure differences. mis-
registrations. and scene movement are all very visible {Figure 9.14s}. if rapidly moving

objects are the only problem. taking a median filter (which is a lrind ofpixei selection opera-
tor} can often be used to remove them (Figure 9.14m iirani and Auandan i993). Conversely.

center-weightiug [discussed below} and minimum likelihood selection [Agarwnim Dontcheva.

Agrawala st of. 2004] can sometimes be used to retain multiple copies of a moving object
(Figure 9.17}.

A better approach to averaging is to weight pixels near the center of the image more
heavily and to down-weight pixels near the edges. When an image has some cutout regions.
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"igure 9.14 Finn] cumpnsitcn mumputud 113' 11 9:111:11; {1F algarilhmn {Smiiskt lfl‘flfia): {:1} average, {11} median. [is]

feathered average. [de p-nrjrm p = 10. I33} Var-1110i. {f} weighmi ROD vertex cover with feathering {15,} graph tut

scams with Poisson blending and {In with pyramid blending.
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down-weighting pixels near the edges of both cutouts and the image is preferable. This can

be done by computing a distance map or grossfire transform,

togfre} = arg spams” | the + y} is invalid }, {9.33}

where each valid pixel is tagged with its Euclidean distance to the neahest invalid pixel {Sec—
tion 3.3.3). The Euclidean distance map can be efficiently computed using a two-pass raster

algorithm {Danielsson 1939: Borge‘fors IBEfi}.

Weighted averaging with a distance map is often called feathering [Snelislti and Shunt

l99‘i': I{L'hen and Klerte 1999: Uyttendaele. Eden. and Sseliski lflfllj and does a reasonable job

of blending over exposure differences. However, binning and ghosting can still be problems

[Figure 9.14e}. Note that weighted averaging is not the same as compositing the individual

images with the classic over operation [Porter and 13qu 1934; Blinn l9‘94a}. even when using

the weight values tnonualized to sum up to one] as alpha (translucencyl channels. This is

because the over operation attenuates the values from more distant surfaces and. hence, is not

equivalent to a direct sum.

lElsie wayr to improve feathering is to raise the distance map values to some large power.

i.e.. to use with} in Equation [9.3T]. The weighted averages then become dominated by
the larger values. i.e.. they act somewhat like a p-norm. The resulting composite can often

provide a reasonable tradeofl'.’ between visible exposure difl'erenccs and blur (Figure 9.14d}.

In the limit as p —a- oo. only the pixel with the maximum weight is selected,

Ciel = inane}. {9.39)

where

l = mg Info: tog {re} {9.40}

is the label assignment or pixel selection function that selects which image to use at each

pixel. This hard pixel selection process produces a visibility mash-sensitive variant of the fa-

miliar 'llbronoi diagram, which assigns each pixel to the nearest image center in the set (Wood.

Finkelstein. Hughes et ul. 1991': Peleg. Rousso. Rev-Ache at at 1999}. The resulting com—

posite. while useful for artistic guidance and in high-overlap panoramas [manifold mosaics)

tends to have very hard edges with noticeable seams when the exposures vary {Figure 9.144s).

Xioug and 'l‘urltowslri [1993} use this Voronoi idea {local maximum of the grassfire trans-

form} to select scams for Laplacian pyramid blending [which is discussed below). However.

since the seam selection is performed sequentially as new images are added in. some artifacts
can occur.

Uplll'flal seam eclectlon. Computing the Voronoi diagram is one way to select the seams

between regions where different images contribute to the final composite. However. Voronci

images totally ignore the local image structure underlying the seam.

A better approach is to place the seams in regions where the images agree. so that tran—

sitions from one source to another are not visible. In this way. the algorithm avoids "cutting

through" moving objects where a seam would look unnatural ("Davis 1993). For a pair of

images. this process can be formulated as a simple dynamic program starting from one edge
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Figure 9.15 Computation of regions of difference tROOs} [Uyttendaele. Eden. and Sxelislti 2001} {(2) Elli“
[EBB {a} three overlapping images with a moving face; {b} eorresponding RODs; to} graph of coincident RODs.

of the overlap region and ending at the other ['Milgram 1975. 197?; Davis 1993; Efros and
Freeman Eflfll}.

When multiple images are being eomposited. the dynamic program idea does not readily

generalize. {For square texture tiles being comp-united sequendslly. Efros and Freeman [2th] 1]

run a dynamic program along each of the four tile sides.)

Tb overcome this problem. Uyttcndaele. Eden. and Szeljslri [soon observed that. for

well—registered images. moving objects produce the most visible artifacts. namely translu-

cent looking ghosts. Their system therefore decides which objects to keep and which ones

to erase. First. the algorithm compares all overlapping input image pairs to determine re-

gions efdtfi'erence tROIJs} where the images disagree. Next. a graph is constructed with the
RODs as vertices and edges representing ROD pairs that overlap in the final composite [Fig

are 9.15]. Since the presence of an edge indicates an area of disagreement. vertices {regions}

must be removed from the final composite until no edge spans a pair of remaining vertices.

The smallest such set can he computed using a vertex cover algorithm. Since several such

covers may exist. a weighted vertex cover is used instead. where the vertex weights are com-

puted by summing the feather weights in the ROD [Uyrtendacle Eden. and Szeliski 2001).

The algorithm therefore prefers removing regions that are near the edge of the image. which
reduces the likelihood that partially visible objects will appear in the final composite. {It is

also possible to infer which object in a region of difl'erence is the foreground object by the

“edginess” [pixel differences} across the ROD boundary. which should be higher when an

object is present {Harley 2005).) Once the desired excess regions of difiemnee have been

removed. the final composite can be created by feathering {Figure 9.1451.

it. different approach to pixel selection and seem placement is described by Aganvala.

Dontcheva. Agrawsla et at. {EEO-111. Their system computes the label assignment that opti-

mizes the sum of two objective functions. The first is a per-pixel image objective that deter-

mines which pixels are likely to produce good composites.

c3 = Z D{m, Hath, {9.4131‘

where litre. i} is the date penalty associated with choosing image 1 at pixel in. in their system.

users can select which pixels to use by “painting“ over an image with the desired object or

appearance. which sets D{:c.i]l to a large value for all labels 1 other than the one selected

by the user (Figure 9.16}. Alternatively. automated selection criteria can be used. such as
maxhrntm likelihood. which prefers pixels that occur repeatedly in the background (for object

removal}. or mittirmrm likelihood for objects that occur infrequently. i.e.. for moving object

retention. Using a more traditional center-weighted data term tends to favor objects that are
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Figure 9.16 Photomoatage [Agarwala Dontchevs. Agrawala er cl. Emil-1} to} zone ACM. From a set of live

source images (of which four are shown on the left}, Photomontagc quickly creates a composite family portrait

in which everyone is smiling and looking at the earners {right}. Users simply flip through the stack and coarser

draw strokes using the designated source image objective ever the people they wish to add to the composite. The

user-applied strokes and computed regions {middle} are color—coded by the borders of the source images on the
left,

centered in the input images (Figure Bull).

The second term is a scrim objective that penalizes differences in labelings between adja—

cent images,

C3 = E 51:31 y,f{a‘:l, HEIDI {9-42}
(ill-HEN

where Sfm, y. titty) is the image-dependent interaction penalty or seam cost of placing a

seam between pixels :1: and y, and J's" is the set of N4 neighboring pixels. For example.

the simple color-based seam penaltyr used in [Kwatrtn Schiidl. Essa et at. 213133; Agarwala,

Donteheva. Agrawala er cf. 20134} can be written as

Stamens} = Mitre} — age)“ + titty} -- Meal. (9.43)

More sophisticated seam penalties can also look at image gradients or the presence of image

edges fhgarwaln, Donteheva. Agrawala er oi. 2012M}. Seam penalties are widely used in other

computer vision applications such as stereo matching {Boykow Vekslcr, and Zahih Etlttll to

give the labeling function its coherence orsmeothness. An alternative approac h, which places

seams along strong consistent edges in overlapping images using a watc rshed computation is

described by Soille (zone).

The sum of these two objective functions gives rise to a Markov random field {MRF'}.

for which good optimization algorithms are described in Sections 3.1.2 and 5.5 and Ap-

pendix E.S_ For label computations of this kind. the ctr-expansion algorithm developed by

Eoyltov. Veksler. and Zabih {Emil} works particularly well {Srclislrh Zabih, Scharstein et at.

21308).

For the result shown in Figure Iitldg, Agarwala. Dontcheva. Agrawala er of. {2W4} use

a large dnla penalty for invalid pixels and El for valid pixels. Notice how the seam placement

algorithm avoids regions of difference. including those that border the image and that might

result in objects being cutoff. Graph cuts {litgarwala1 Deatcheva. Agrawnla er of. 2004) and

vertex cover I:Iiyttemisteler Elicia, and Sseiislti 2am} often produce similar looking results1

alfl'tough the former is significantly slower since it optimises over all pixels, while Ihe latter

is more sensitive to the thresholds used to determine regions of difference.
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Figure 9.]? Set of five photos tracking a snowboarder's jump stitched together into a seamless composite

Because the algorithm prefers pixels near the center of the image. multiple copies of the boarder are retained.

9.3.3 Application: Photomontage

While image stitching is normally used to composite partially meflspping photographs. it

can also be used to composite repeated shots of a scene taken with the aim of obtaining the

best possible composition and appearance: of each eIEmertL

Figure 9.15 shows the Photomentege system developed by FigarililalaT Dontcheve, hgrawala

at oi. (sees). where users draw strokes over a set ofpre-aligned images to indicate which re—

gions they wish to keep from each unage. lI'Jnce the syswm solves the resulting multi-lahel

graph cut {9.41—9.42}. the various pieces taken from each source photo are blended together

using a variant of Poisson image blending {9.44—9.4151. Their system can also be used to an—

tomatically composite an all-focus image from a series ofhrselteted focus images Ilfil-lasincft‘I

Kutulakos. Durand at oi. 1009} or to remove wires and other unwanted elements from sets of

photographs. Exercise 9.10 has you impIemenl this system and try out some of its variants.

9.3.4 Blendlng

Once the seams between images have been determined and unwanted objects removed. we

still need to blend the images to compensate for exposure difi'crericcs and other unis-alignments.

The spatially varying weighting {feathering} previously discussed can often be used to accom-

plish this. However. itis difficult in practice to achieve a pleasing balance between smoothing

out low-frequmcy exposure variations and retaining sharp enough transitions to prevent blur—

ring {sithough using a high exponent in feathering can haip}.

Laplaolan pyramld blending. An attractive solution to this problem is the Laplacian

pyramid blending technique developed by Burt and sidelson [iQBSbL which we discussed in

Section 3.5.5. Instead ofusing a single transition width. a Frequency-adaptive width is used by

creating a band—pass (Lapiaeianjt pyramid and making the transition widths within each level
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Figure 9.18 Poisson image editing t‘li’i‘res1 Gangnet, and Blake EDGE} @ 2W3 ACM: {:1} The dog and the two

children are chosen as source images to be pasted into the destination swimming pool. {h} Simple pasting fails to

match the colors at the boundaries, whereas {c} Poisson image hlending masks these differences.

a fitnetion of the level. i.e., the same width in pixels. In practice. a small number of levelsI

i.e., as few as two (Brown and LOWE. 2:307“). may he adequate to compensate for dificrcnces

in exposure. The result of applying this pyramid blending is shown in Figure 9.]4h.

Gradient don‘tsln blending. An alternativ: approach to mold-band image blending is

to perform the operations in the gradient domain. Reconstructing images from their gradi—

ent fields has a long history in computer vision [Horn 19315}. starting originally with work

in brightness constancy (Hm-n It'll-i}. shape from shading {Horn and Brooks 1989). and

photometric: stereo [Woodham i931}. More recently. related ideas have been used for re

constructing images from their edges {Elder and Goldberg 2001}, removing shadows from

images [Weiss Ztltll}. separating reflections from a single image (Levin. Zomel. and Weiss

20M; Levin and Weiss 209T}. and tons mopping high dynamic range images by reducing the

magnitude of image edges [gradients] (Faisal. Lischinski. and Wemtan EDGE}.

Perez. Gangnct, and Elsi-to {2W3} show how gradient domain reconstruction can he used

to do seamless object insertion in image editing applications [Figure 5". [3}. Rather than copy—

ing pixels. the gradients of the new image fragment are copied instead. The actual pixel values

for the copied area are then computed by solving a Poisson equation that locally matches the

gradients while obeying the fixed Dirichiet {enact matching) conditions at the seam bound—

ary. Farce. Gangnet. and Blake (2W3) shnvtr that this is equivalent to computing an additive

maritime interpoiant of the mismatch between the source and destination images along the

boundary." to earlier work. Peleg {193}; also proposed adding a student Emotion to enforce

consistency along the seam curve.

lfl'n'garwala,r Doctcheva, Agrawala at oi. {Emil-J extended this idea to a mold-source formu-

lation, where it no longer makes sanse to tail: ofa destination image whose exact pixel values

must be matched at the seam. Instead1 each source image contributes its own gradient field

and the Poisson equation is solved using Neamonn boundary conditions. i.e.. dropping any

1“ The membrane interpolant is known to have nicer interpolation properties for arbitrary-shaped constraints than
frequency-domain intctpolanla Wiclami i993].
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equations that involve pixels outside the boundary of the image.

4435

Rather than solving the Poisson partial differential equations. Aganwala. Dnntcheva. Agrawala

er at. {200*} directly minimize a variational problem,

iiiii neon; — vitamin? {9.14}

The discretiaed form of this equation is a set of gradient constraint equations

on: + i} — C(m} = mafia + t] — him-yin} and [9.45)

CW: + 3'} — Che} = litre] {3 + .il — firmilI}. til-4d)

where i = {Lil} and? = {0,1} are urdt vectors in the :c and y directions.15 They then solve

the associated sparse least squares problem Since this system of equations is only defined

up to an additive constraint. Agamala, Dontcheva. Agrawala er al. {20M} ask the user to

select the value of one pixel. In practice, a better choice might be to weakly bias the solution

towards reproducing the original color values.

in order to accelerate the solution of this sparse linear system. Fattal, Lischiuski, and

Werman {21102} use multigrid+ whereas Agarwala, Dontcbeva. Agrawala at at. {2W4} use

hierarchical basis preconditioned conjugate gradth descent {Szelislti 199%, cause; {Ap-

pendix 3.5]. In subsequent work, Agarwala {200?} shows how using a quadtree rcpresen-

tation for the solution can further accelerate the computation with minimal loss in accuracy.

while Szelisiti. Llyttendnele. and Stecdly {2003) show how representing the per-image offset

fields using even coarser splines is even faster. This latter work also argtms that blending

in the log domain. i.e., using multiplicative rather than additive oEsets. is preferable. as it

more closely matches texture contrasts across seam boundaries. The resulting seam blending

works very 1itvell in practice {Figure 9.1411}, although care must be taken when copying large

gradient values near seams so that a "double edge" is not introduced.

Copying gradients directly from the source images after seam placement is just one ap-

proach to gradient domain blending. The paper by Levin. Zomet. Peleg er ad. {2111941 examines

several different variants of this approach, which they call Gmdientvdovnain Image meshing

{GIST}. The techniques they examine include feathering {blending} the gradients from the

source images. as well as using an L1 norm in performing the reconstruction of the image

from the gradient field, rather titan using an L2 norm as in Equation [9.44]. Their preferred

technique is the Li optimization of a feflhet‘cd (blended) cost function en the original image

gradients {which they call GISTl—il}. Since Ll optimisation using linear programming can

be slow, they develop a faster iterative median—based algorithm in a multigrid framework.

visual comparisons between their preferred approach and what deny call aptimo'i seem an

the gradients {which is equivalent to the approach of hgarwala. Dontcheva. Agrawala at .m'.

(Edit-ii] show similar results, while significantly improving on pyramid blending and feather—

ing algorithms.

Exposure compensation. Pyramid and gradient domain blending can do a good job

of compensating for moderate amounts of exposure differences between images. Howeven

when the exposure differences become large. alternative approaches may be necessary.

'5 iltt seam. locations. the right hand side is replaced by the average of the gradients in the two source images.
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Uyttendaeie. Eden. and Saeliski {2991} iteratively estimate a local correction between

each source image and a blended composite. First. a block-based quadmfic transfer function is

fit between each source image and an initial feathered composite Heat. transfer functions are

averaged with their neighbors to get a smoother mapping and per—pixel transfer functions are

computed by splitting [interpolating] between neighboring block values. lCince each source

image has been smoothly adjusted. a new feathered composite is computed and the process is

repeated [typically three times}. The results showrt by LTyttendaeie. Eden, and Szeliski {Etltll}
demonstrate that this does a better job of exposure compensation than sirnpie feathering and

can handle local variations in exposure due to efi‘ects such as lens vignetting.

Ultimately, however. the most principled way to deal with exposure differences is to stitch

images in the radiance domain, i.e.. to convert each image into a radiance image using its

exposure value and then create a stitched. high dynamic range image. as discussed in Sec-

tion “3.2 (Eden, Uyttendaele. and Saeliski Mild}.

9.4 Additional reading

The literature on image stitching dates back to work in the photogramrnetry comtrnmity in

the 1999s flviilgram l9‘i5. 19W: Slams 1939]. In computer vision. papers started appearing

in the early l9iitls (Peleg 1931]. while the development of fully automated techniques came

about a decade later {Mann and Pich 1994'. Chen 1995‘. Szelislti 1996'. Secliahi and Shuru

i99'f; Sawhney and Kumar 1999; Shunt and Ezelislci 2999]. Those techniques used direct

pixel-based alignment but feabire-based approaches are now the norm {'Zoghlarni. Faugeras.
and Det‘iche 199T; Capcl and Zisserman [998: Charo and Cipolla 1993'. Eadra. Qtunsich. and

Dndeit i993; McLauchIan and .iaeniclte 2992: Brown and Lowe 2997}. A collection of some

of diese papers can be found in the book by Benosman and Rang {21191}. Ezeiislti {29953}

provides a comprehensive survey of image stitching. on which the material in this chapter is
based.

High-quality techniques for optimal seam finding and blending are another important

component of image stitching systems. Important developments in this field include work by

Milgram [19?T}. Burt and Adeison {193%}. Davis (1993}. Liyttendaele. Eden, and Szeiiski

{2991}.P6rez. Gangnet. and Blake (21133}. Levin. Zuni-ct. Peleg at oi. {2994]. Agarwala.

Dontchevm Agrawala at :11. [2994). Eden. Uytlctttlaeie. and Snelisln {EDD-ti}. and Kopf, Uy‘b

tendaele. Deussen et at. iflflflij.

In addition to the merging of multiple overlapping photographs taken for aerial or ter—

restrial panoramic image creation. stitching techniques can be used for automated white-

board scanning {I-Ie and Zhang 2995;. Zhang and Ho 2997}. scanning with a mouse {Nahum

Kashitaui. and Kaneyoshi 1991i}. and retinal image mosaics (Can. Stewart. Roysam el' rd.

2on2). They can also be applied to Video sequences {'l‘eodosio and Bender 1993: lrani, Hsu.

and An'andan [995; Kumar, Anandan. Irenj at at 1995: Sawhney and Aye: 1996'. Massey

and Bender 199:3; Irnni and Anandan 1993;. Sawbney. Art-pa. Kumar er ni'. 2902: Agarwala.

Zheng, Pal at at. 2905'. Rev-Ache. Prileh. Liscbinsizi at at. 2995: Steedly. Pal. and Szclislti

2W5; Baudisch, Tan. Steedly e: of. 2906) and can even be used for video compression (Lee.

_ ge Chen. lung Bruce Lin et ai. 1997}.
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9.5 Exercises

Ex 9.1: Direct pixel-based alignment 'lhlte a pair of images. computes coarsoto—fine affine

alignment {Exercise 3.2} and then blend them using either averaging [Exercise 6.2} ora Lapla—

cian pyramid [Exercise 3.20}. Extend your motion model from affine to perspcctive {homog—

raphy} to better deal with rotational mosaics and planar surfaces seen under arbitrary motion,

For 9.1: Featured-hand stitching Extend your featurobased alignment technique from Ett-

ercise 6.2 to use a full perspective model and then blend the resulting mosaic using either

averaging or more sophisticated distance-based feathering (Exercise 9.9}.

E): 9.3: Cylindrical strip panoramas To generate cylindrical or spherical panoramas from

a horizontally panning {rotating} camera. it is host to use a tripod. Set your camera up to take

a series of 59% overlapped photos and then use the following steps to create your panorama:

1. Estimate the amount of radial distortion by taking some pictures with lots of long

straight lines near the edges of the image and then using the plumb-line method from
Exercise ti. It].

2. Compute the Focal length either by using a ruler and paper. as in Figure 45.? [Behave-c.

Wenger. Tchou er of. 212102} or by rotating your camera on the tripod. overlapping the

images by exactly [1% and counting the number of images it takes to make a 36ft“
panorama.

3. Convert each of your images to cylindrical coordinates using {9. 11—9. Id}.

4. Line Up the images with a translational motion model using either a direct pixel—based

technique. such as coarse~to-fine incremental or an FFI'. or a feamre-based technique.

5. (Optional) If doing a complete Still" panorama. align the first and last images. Compute

the amount of accumulated vertical nus-registration and re-disn‘ibure this among the

images.

a. Blend the resulting images using feathering or some other technique.

Exiles: Coarse alignment Use FFT or phase correlation {Section 3.1.2) to estimate the

initial alignnmt between successive images. How well does this work? Dyer what range of

overlaps? If it does not work. does aligning sub-sections (cg. quarters) do better?

Ex 9.5: Automated mosaicing Use featurebased alignment with four-point RANSAC for

homograpln'es [Section 15.1.3. Equations (6.1945231‘1 or three-point RANSAC for rotational

motions (Brown. Hartley, and Mister Eflfl?) to match up all pairs of overlapping images.

Merge these pairwise estimates together by finding a spanning tree of pairwise relations.

Visualize the resulting global alignment. e.g.. by displaying a blend of each image with all

other images that overlap it.

For greater robustness. try multiple spanning trees {perhaps randomly sampled based on

the confidence in pairs-rise alignments} to see if you can recover from bad pairwise matches

(Zach. Klopschitii. and Pollefeys Etllt'l}. As a measure of fitness. count how many pairwise

estimates are consistent with the global alignmenL
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Ex 9.6: Global optimization Use the initialization from the previous algorithm to perform

a full bundle adjustment over all of the camera rotations and focal lengths, as described in

Section 7.4 and by Shurn and Szeliski (2000). Optionally, estimate radial distortion parame-

ters as well or support fisheye lenses (Section 2.1.6).

As in the previous exercise, visualize the quality of your registration by creating compos-

ites of each input image with its neighbors, optionally blinking between the original image

and the composite to better see nus-alignment artifacts.

Ex 9.7: Due-ghosting Use the results of the previous bundle adjustment to predict the loca-

tion of each feature in a consensus geometry. Use the difference betvveen the predicted and

actual feature locations to correct for small this—registrations, as described in Section 9.2.2

(Shum and Szeliski 2000).

Ex 9.8: Compositing surface Choose a compositing surface (Section 9.3.1), e.g., a single

reference image extended to a larger plane, a sphere represented using cylindrical or spherical

coordinates, a stereographic “little planet” projection, or a cube map.

Project all of your images onto this surface and blend them with equal weighting, for now

(just to see where the original image Seams are).

Ex 9.9: Feathering and blending Compute a feather (distance) map for each Warped source

image and use these maps to blend the warped images.

Alternatively. use Laplacian pyramid blending (Exercise 3.20) or gradient domain blend-

iug.

Ex 9.10: Photomontage and object removal Implement a “PhotoMontage” system in which

users can indicate desired or unwanted regions in pro—registered images using strokes or other

primitives (such as bounding boxes). '

(Optional) Devise an automatic moving objects remover (or “keeper”) by analyzing which

inconsistent regions are more or less typical given some consensus (e.g., median filtering) of

the aligned images. Figure 9.1? shows an example where the moving object was kept. Tiy

to make this work for sequences with large amounts of overlaps and consider averaging the
images to make the moving object look more ghosted.
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(Ell

Figure 11.1 Emma reconstruction mchniqucs can convert {3—1:} a pair of [111:1ch into in] a depth map (Mp:

Hvisiunmiddlcbunaedufsicranidatnfsccntsfiflflm or [ml—e] a sequence {:1 images into if] a 3D mfldfll {htipih'viSiflrla

midid[chumedmnwicwfdamfl {g} Pm analytical starcn planer. courtesy of Kflnney ficrial Mapping. Inc” can

generate {h} contour plots.

APPL—1012 / Page 156 0f211



APPL-1012 / Page 157 of 211

11 Stereo correspondence

Stereo matching is the process of taking two or more images and estimating a 3D model of

the scene by finding matching pixels in the images and converting their 2D positions into

3D depths. In Chapters 6—7, we described techniques for recovering camera positions and

building sparse 3D models of scenes or objects. In this chapter, we address the question

of how to build a more complete 3D model, e.g., a sparse or dense depth map that assigns

relative depths to pixels in the input images. We also look at the topic of main—view stare-o
algorithms that produce complete 3D volumetric or surface-based object models.

Why are people interested in stereo matching? From the earliest inquiries into visual per-

ception, it was known that we perceive depth bated on the diflerences in appearance between

the left and right eye.l As a simple experiment, hold your finger vertically in front of your

eyes and close each eye alternately. You will notice that the finger jumps left and right relative
to the background of the scene. The same phenomenon is visible in the image pair shown in

Figure I 1.1a—b, in which the foreground objects shift left and right relative to the background.

As we will shortly see, under simple imaging configurations (both eyes or cameras look—

ing straight ahead), the amount of horizontal motion or dispariw is inversely proportional to

the distance from the observer. While the basic physics and geometry relating visual disparity

to scene structure are well understood (Section 11.1), automatically measuring this disparity

by establishing dense and accurate inter-image correspondences is a challenging task.

The earliest stereo matching algorithms Were developed in the field of photogrammeny

for automatically constructing topographic elevation maps from overlapping aerial images.

Prior to this, operators would use photogrammetric stereo plotters, which displayed shifted

versions of such images to each eye and allowed the operator to float a dot cursor around con—

stant elevation contours (Figure 11.1g). The development of fully automated stereo matching

algorithms was a major advance in this field, enabling much more rapid and less expensive

processing of aerial imagery (Hannah 1974; Hsieh, McKeown, and Perlant 1992).

In computer vision, the topic of stereo matching has been one of the most widely stud—
ied and fundamental problems (Marr and Poggio 1976; Barnard and Fischler 1982; Dhond

and Aggarwal 1989; Scharstein and Szeliski 2002; 13mm, Burschka, and Hager 2003; Seitz,

Curless, Diebel at at. 2006), and Continues to be one of the most active research areas. While

photogrammetric matching concentrated mainly on aerial imagery, computer vision applica-

tions include modeling the human visual system (Mar: 1982), robotic navigation and manip—

ulation (Moravec 1983; Konolige 1997; Thrun, Montemerlo, Dahlkamp at at. 2006), as wall

as view interpolation and image-based rendering (Figure 11.2a—d), 3D model building (Fig-

ure 11.2e—f and hmj), and mixing live action with computer-generated imagery (Figure 11.2g).

In this chapter, we describe the fundamental principles behind stereo matching, following

the general taxonomy proposed by Scharstein and Szeliski (2002). We begin in Sectiou 11.1

with a review of the geometry of stereo image matching, i.e., how to compute for a given

pixel in one image the range of possible locations the pixel might appear at in the other

image, i.e., its cpipolor line. We describe how to pre-warp images so that corresponding

epipolar lines are coincident (rectification). We also describe a general resampling algorithm

called plane sweep that can be used to perform multi—image stereo matching with arbitrary

camera configurations.

1 The word stem; comes from the Greek for solid; stereo vision is how we perceive solid shape (Koenderink
1990).
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{i}

Figure 11.2 Applications of stereo 1.rision: to} input image. (In) computed deplh map. and to} new 1.tiew generation

[rem mule-view stereo (Martens, Ksnade, and smash {939] (ii) 1939 Springer; {:1} View morphing between two

images {Seitz and Dyer I996) {E} 1996 ACM: {e—f} 3D face modeling {images courtesy of Frederic Bevel-nay}; {g}

z—keping live and computer-generated integer}.r (“K-made. ‘r’oshide1 Ode e: of. 1996) Co) 19961EEE: (it—j} building

313 surface models from multiple video streams in Virtuaiized Reelit}r {Kmade‘ Render. and Nertwensn 199T}.
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4T1

 
Figure 11.3 Epipolar geometry: {a} epipoiar line segment. corresponding to one ray: (h) corresptmding set of

npipolar lines and their epipolar plane.

Next. we briefly survey techniques for the sparse stereo matching of interest points and

edge-like feantres {Section 11.2]. We then hire to the main topic of this chapter. namelyr the

estimation of a dense- set of pixelnwise correspondences in the form of a disparity amp (Fig;

ure I1.1c}. This invokes first. selecting a pixel matching criterion [Section I13) and then

using either local area-hased aggregation [Section 11.4} or global optimization (Section I LE}

to help disambiguate potential matches. In Section 11.6, we discuss mum-view stereo meth—

ods that aim to reconstruct a complete 3D modal instead of just a single disparityr image

[Figure 11.1a-n.

11.1 Eplpelar geometry

Given a pixel in one image. how can we compute its correspondence in the other image? In

Chapter 3. we saw that a 1-I'arie’t1.r of search techniques can be used to match pixels based on

their local appearance as Well as the motions of neighboring pixels. In the case of stereo

matching, i'n'nit'e'lter1 we have some additional information available. namely.r the positions and

calibration data for the cameras that took the pictures of the same static scene {Section 12).

How can we exploit this information to reduce the number of potential correspondences,

and hence both speed up the matching and increase its reliability? Figure 11.3a shows how a

pixel in one image an projects to an epipciar line segment in the other image. The segment

is hounded at one end by the projection of the original viewing tap at infinity pm and at the

other end by the projection of the original camera center on into the second camera. which

is known as the spgpoie all. If we project the epipnIer line in the second image back into the

first, we get another line {segment}, this time hmmdnd by the other corresponding epipole

en. Extending hoth line segments to infinity, we get a pair of corresponding epipolnr liner

{Figure 113‘s}. which are the intersection of the two image planes with the eptpoior plane

that passes through both camera centers an and c; as well as the point of interest p [Fangeras

and Luong Will; Hartley and Zisserman anon.
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t’cl tdl

Figure 11.4 The ninlti—stage stereo rectification algorithm of Loop and Zheng {1999} {:3 “1'99 IElili. [a] Original
image pair overlaid with several epipolar lines; {hl images transformed so that epipolar lines are parallel; to]
images rectified so that epipolar lines are horizontal and in yertial correspondence: {d} final rectification that
minimizes horizontal distortions.

1 1 .1.1 Hectlfleatlon

its we sarir in Suction 1.2. the epipolar geometry for a pair of cameras is implicit in the

relative pose and calibrations of the cameras, and can easily be contputed from seven or more

point matches using the fundamental matrix {or fire or more points for the calibrated essential
matrix) {Zhaag 1993a.h: Faugeras and Luong soar; Hartley and Zisscrntan 3394}. Once this

geometry has been computed. we can use the epipolar line corresponding to a pixel in one
image to constrain the search for corresponding pixels in the other image Cine way to do this
is to use a general correspondence algorithm. such as optical flor-r (Seclion 8.4}, but to only
consider locations along the epipolar line {or to project any florar tractors that fall off back onto

the line).

A ntore efficient algorithm can he obtained by first rectifying (Le. warping] the input

images so that corresponding horizontal seaniiaes are epipoiar lines [loop and Zhang 1999'.
Faugeras. and Luong mill; Hartley and Zisserman 2004}? Afterwards. it is possible to match
horizontal scattlines independently or to shift images horizontally while compo ting matching

scores (Figure ital-l.

A. simple way to rectify the two images is to first rotate lioth cameras so that they are
looking perpendicular to the line joining the camera centers on and c.. Since there is a de-
gree of freedom in tire tilt. the smallest rotations that achieve this should he used. Next. to
determine the desired twist around the optical sites, snake the up vector [the camera y axis}

perpendicular to the camera center line. This ensures that corresponding epipolar lilies are

he pufomsod on any pair that r: not mgr-d too much or has too notch cl'a scale change. In these latter cases. using
plane weep (below-fl or hypothesizing small planer patch lucafifll‘ll ill 3” {Gocseln Simmely. Curlers 9" Ili- m mall
be preferable.
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{fl

Figttre 11.5 Slices through a typical disparity space image {D313 {Scharstein and Sselislti ZDDE} @I 20512

Springer: [at original color image; {b} ground truth disparities; {ts—c] three {my} slices for d = 10.15.21:

it) an {mi} slice for y = 151 {the dashed line in (bi). Various dark [matching] regions are t.I'isible in {rt—e]. e.g.,
the bookshelves, table and cans, and head statue, and three disparity levels can be seen as horizontal lines in {f}.

The dark bands in the DSIs indicate regions that match at this disparity. {Smaller dark regions are often the result

of testorcless regions.) Additional examples of 13515 are discussed by Iii-chick and intille {1999}.

horizontal and that the disparity for points at infinity is ft. Finally. rerscalc the images. if nec-

essary, to account for different focal lengths. magnifying the smaller image to avoid aliasing.
[The full details of this procedure can be found in Fusicllo. Tween. and Verri {Ell-DU} and Ear—

ercise I ll.) Note that in general. it is not possible to rectify art arbitrary collection of images

simultaneously unless their optical centers are collinear. although rotating the cameras so that

they all point in the same direction reduces the inter-camera pixel movements to scalings and
translations.

"The resulting standard rectified geometry is employed in a lot of stereo camera setups and

stereo algorithms. and leads to a very simple inverse relationship between Slit depths Z and

disparities d.
B

d — jE’ f 1 Ll]I
where f is the focal length (measured in pixels), 13 is the baseline, and '

x'=:e+dl:1:,y]. y'=y [11.21

describes the relationship between corresponding pittel coordinates in the left and right im—

ages (Belles, Baker. and Marimorit IQE'F: Dktttoini and Kanade 1993; Scharstein and Sitelislti

2002)? The reel: of extracting depth from a set of images thon becomes one of estimating the

rfisparifl' map tiIIse, 3;].

After rectification, we can easily compare the similarity of pixels at corresponding its

cations [n.y} and {:c’, y’} = {a- + my} and store them in a dt's‘pan't‘y space bridge {D31}

Uin,y,d} for further processing (Figure 11.5}. "The concept of the disparity space {e,p,d]
dates back to early work in stereo matching (Mart and Pogg'to Hid), while the concept of s

disparity space image {volume} is generally associated with Yang, Yuille, and La [1993) and
Intille and Bohick [1994}.

1' The term disparity was first introduced in die human vision literature to describe the difi'ercnoo in location
of corresponding fesnrres seen by the left and right eyes {ll-lair i932}. Horizontal disparity is the most conunonty
sttrdicd phenomena. but vertical disparity is possible ii'the eyes are Forged.
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{a} {b}

Figure 1.1.6 Sweeping a set of planes linnugh a scene [Seeiiski and Golland I999} [El 1999 Springer. {a} The

set of planes seen from a virtual camera induees a set of homographies in any other source {input} eamere image.

[h] The warped images from ail the other cameras can be stacked into a generalized disparity space volume
Hire, 1;, oi.l is) indexed by pixel Iocah'on its, 1;}, disparity d, and camera. it,

11.1.2 Plane asleep

An alternative to pre-rectifyhig the images befme matching is to sweep in set of pIane-s through

the scene and to measure the photoconeirteney of difl'erent images as they are re—projeeted

onto these planes {figur- llfi. This process is commonly known as the plane sweep algo-

rithm {Collins 1996‘. Sneliski and Golianrl 1999‘. State and Katmde 1999].

As we saw in Section 2.1.5.. where we introdueed projective depth {also bin-W1] as plane

plat parallax (Kramer. Attendee. and Hanna 1994'. Sawhney 1994: Szelisiti and Coughian

1991)}. the last row of a full-rank 4 x 4 projection matrix I?“ can he set to an arbitrary plane
equation p3 = sa[rig|ou]. The resulting four-dimensions] projective transform {roiit‘neatt'en}

{2.63} maps 3D world points p = (LY. 3.1) into sereen coordinates re, = (3,, y,, Lit},

where the projective depth {or parallax} d {2.65) is (1 on the reference plane {Figure 2.1 1}.

Sweeping :1 through a series of disparity hypotheses. as shown in Figure 11.6:1. corre-

sponds to mapping eseh input image into the virtue! camera 13 defining the disparity space
through a series of homographies {2.63—2.71}.

a... ~13k13_1m, = Rte+ne = {flk+tk[flfld]}i, {11.3)

as shown in Figure 2.12h. where Ire;r and :i: are the hmnogeneous pier coordinates in The

source and virtual {referenee} images (Seelislri end Goliand 19991. The members of the fam—
iiy of homogrephies Hg {d} = fl'i. + “[1] '1} d]. which are parameterenzed hy the addition of

a rank-l matrix. are related to each other through a planar hemeiegy [Hartley and Zisserman

20114, A52}.

The choice of 1.n'rtual camera and pararneterieatinn is application dependent and is what

gives this framework a lot of its flexibility. In many applications, one of the input cameras

{the reference camera} is used, thus oompuu'ng a depth map that is registered with one of the

APPL—1012 / Page 162 of211



APPL-1012 / Page 163 of 211

11.2 Sparse correspondence

input images and which can later be used for imagobased rendering {Secti ons lit and 13.2}.

In other applications. such as view interpolation for game correction in video-conferencing

{Section 11.4.2] {0th Iewls. and Cox 1993; Crinrinisi. Shorten. Blake et at. 21103}. a camera

$611113“! locale-d batman the two input cameras is preferable. since it provides the needed

per-pixel disparities to hallucinate the virtual middle image. h
The choice of disparity sampling, i.e.. the setting of the zero parallax plane and the scaling

of integer disparities. is also application dependent. and is usually set to bracket the range of

interest. Le. the working volume, while sealing disparities to sample the image in pier {or

sch-pixel} shifts. For example. when using stereo vision for obstacle avoidance in robot

navigation+ it is most convenient to set up disparity to measure per—pier elevation above the

ground (Ivanchenko. Siren. and Coughlan 20139}.

As each input image is warped onto the clnrent planes parameterired by disparity d. it

can be. stacked into a generalized disparity space trudge Elite, y. El. 1:} for further processing
(Figure ll.fib} {Szelisld and Golland 1999). in most stereo algorithms, the photoeonsisteney

{e.g.. sum of squared or robust differences} with respect to the reference image 1'. is calculated
and stored in the DST.

C(I,y.tfl = Zpljlmtytdrkl _ Irlflfiltll “1-4)H

However, it is also possible to compute altemative statistics such as robust Matteo, focus.

or entropy [Section 11.3.1} {"t’aish. Saeliski. Zitnielt et at. 2006} or to use this representation

to reason about occlusions [Saclisiri and Gollaud 1999: Kang and Szeliski 29M]. The gene

eralizrcd [151 will come in particularly handy when we come back to the topic of mum-view
stereo in Section 11.6.

Of course, planes are not the only surfaces that can he used to define a 3D sweep through

the space of interest. Cylindrical surfaces. especially when coupled with panoramic photog-

raphy [Chapter 9]. are often ust'd {Isbigurm Yarnamoto. and Tsuji I992; Kong and See-lislci

1951?; Shunt and Szeliski 1999; Li. Shunt. Tang et HI. 20134; Zheng. Kong+ Cohen et‘ al'. 200?).

It is also possible to define other manifold topologies. e.g.. ones where the camera rotates

around a fixed axis [Salts 2001}. _

Once the D3] has been computed. the next step in most stereo correspondence algorithms

is to produce a univalued function in disparity space d[c. y} that best describes the shape of

the surfaces in the scene. This can be viewed as finding a surface embedded in the disparity

space image that has some optimality propeny. such as lowest cost and best {piecewise}

smoothness (Yang. libido. and Lu 1993}. Figure 11.5 shows examples of slices through a

typical D31. More figures of this kind can be found in the paper by Bobiek and Intille [1999'].

11.2 Sparse correspondence

Early stereo matching algorithms werefeature-based. i.e.. they first extracted a set of poten—

tially trtatchable image locations. using either interest operators or edge detectors. and then

searched for corresponding locations in. other images using a patch-based metric (Hannah

lift-l; Marr and Poggio 1W9: Math and Frisby [93!]: Baker and Binl‘ord 1931‘. Arnold

1933: Grimsou 'l9flfi: Gina and Kanade 1935; Eolles. Baker. and Marimont 1937: Matthies.

Kanade. and Szelislo' 1959; Hsielt. MeKeowm and Perlaat 1992'. Belles. Butter. and Hannah

4'15
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Figure 11.? Surface reconstruction from occluding contours {Seeiiski and Weiss 19913} (5"?) EDGE Springer: {a}

circular arc fining in the epipoiar plane: {is} synthetic example of an ellipsoid with a mmeated side and elliptic

surface markings; is} partially reconstructed surface mesh seen from an oblique and top-down View: {d} real-

world image sequence of a soda can on a nrrntahie; {e} estracted edges; {fl partially reconstructed profile curves:

{g} partially reconstructed surface mesh. {Partial reconstructions are shown so as not to clutter the images}

1993}. This limitation to sparse correspondences was parn'ally due to computational resource

limitations. but was also driven by a desire to limit the answers produced by stereo algorithms

to matches with high certainty. In some applications. there was also a desire to match scenes

with potentially very dilferent illuroinations. where edges might be the only stable features

{Collins 1996). Such sparse 3D reconstructions could later be interpolated using surface fit—

ting algorithms such as diose discussed in Sections 3.7.1 and 12.3.1.

More recent work in this area has focused on first extracting highly reliable features and

then using these as seeds to grow additional matches {Zhang and Shun zone; lhuillier and

Quart 2:102}. Similar approaches have also been extended to wide baseline multi—iriew stereo

problems and combined with 3D surface reconstruction {Lhuillier and Quan EMS: Strecha.

Tuytelaars. and Van (iciol291213;lilies-sell:1 Snayely, Curlcss at al. 2011?} or free-space reasoning

[Taylor 24113}. as described in more detail in Section 11.6.

11.2.1 SD curves and profiles

Another example of sparse correspondence is the matching of profile E'IWES [or occluding

contours]. which occur at the boundaries of objects {Figure 11.?) and at interior self occlu-

sions, where the surface curves away from the camera viewpoint.

The difliculty in matching profile curves is that in general. the locations of profile curves

vary as a function of camera viewpoint. Therefore. matching comes directly in two images
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and then niangulating these matches can tear] to erroneous shape measurements. Fortunately,

if three or more closely spaced frames are available, it is possible to fit a local circular arc to

the locations of corresponding edgeis [Figure l 1.1a] and therefore obtain semi-dense curved

surface meshes directly From the matches [Figures 11.Te and g}. Another advantage of match-

ing such curves is that they can be used to reconstruct surface shape for untexttn'ed surfaces.

so long as there is a visible difference between foreground and background colors.

Over the years, a number of different techniques have been developed for reconstructing

surface shape from profile curves (Gihlin and Weiss 1937'; Cipotla and Blake 1992‘, 'v'aiilant

and Faugeras 1992: Zheng MEI-4;. Boyer and Berger 199?: Szelislri and Weiss I998). Cipolla

and l[(iibiirr aorta} describe trrtuty of these techniques. as well as related topics such as in-

fen'ing camera motion from profile curve sequences. Below, we summarize the approach

developed by Snelislri and Weiss {limb}, which assumes a discrete set of images, rather than

formulating the problem in a continuous differential framework.

Let: us assume that the camera is moving srrtoofltly enough that. the local epipolar geomcu-y

varies slowly, i.e., the epipolar planes induced by lite successive earners centers and an cdgel

under consideration are nearly co—pianar. The first step in the processing pipeline is to extract

and link edges in each of the input images {Figures [13b and all. Next, edgels in successive

images are matched using pairwise epipelar geometry, proximity and {optionally} appearance

This provides a linked set of edges in the spade-temporal volume, which is sometimes called

the weaving wail [Baker 1989].

To reconstruct the 3D location of an individual edge], along with its local io-plane normal

and curvature, we project the viewing rays corresponding to its neighbors onto the instanta-

neous epipolar plane defined by the camera center, the viewing ray. and the camera velocity.

as shown in Figure ll.7a. We then fit an escalating circle to the projected lines. parmuctetiz-

irtg the cloth: by its centetpoint c = {In an} and radius r.

ors+stvc+r=dn [11.5)

where (3,; = iii - {D and s; = —li; - fin are the cosine and sine of the angle between viewing, my

1? and the central viewing ray El. and d. = [oi — on] -fi-n is the perpendicular distance between

viewing ray ianrl the local origin film which is a point chosen on the central viewing ray close

to the line intersections {Sseiislri and Weiss 1993]. The resulting set of linear equations can

be solved using least squares, and the quality of the solution {residual error} can be used to

check [or erroneous correspondences.

The resulting set of 3D points, along with their spatial {in—image) and temporal {between—

imsge} neighbors. form a 3D surface mesh with local normal and curvature estimates {Fig-

ures i1.Tc and g}. Note that whenever a curve is due to a sin-face marking ora sharp crease

edge, rather than a smooth surface profile curve, this shows up as a I] or small radius of curva—

ture. Such curves result in isolated 3D space curves. rather than elements of smooth surface

meshes. but can still be incorporated into the 3D surface model during a later stage of surface

interpolation {Section 12.3.1].

11.3 Dense correspondence

While sparse matching algorithms are still occasionally used, most stereo matching algo~

titlirns today focus on dense correspondence, since this is required for applications such as

4??
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image-based rendering or modeling. This problem is more challenging than sparse corre-

spondence, since inferring depth values in textureless regions requires a certain amount of

guesswork. (Think of a solid colored background seen through a picket fence. What depth

should it be?)

In this section, we review the taxonomy and categorization scheme for dense correspon-
dence algorithms first proposed by Scharstein and Szeliski (2002). The taxonomy consists

of a set of algorithmic “building blocks” from which a large set of algorithms can be con-

structed. It is based on the observation that stereo algorithms generally perform some subset

of the following four steps:

1. matching cost computation;

2. cost (support) aggregation;

3. disparity computation and optimization; and

4. disparity refinement.

For example, local (window—based) algorithms (Section 11.4), where the disparity com-

putation at a given point depends only on intensity values within a finite window, usually

make implicit smoothness assumptions by aggregating support. Some of these algorithms

can cleanly be broken down into steps 1, 2, 3. For example, the traditional sum—of~5quared-

differences (SSD) algorithm can be described as:

1. The matching cost is the Squared difference of intensity values at a given disparity.

2. Aggregation is done by summing the matching cost over square windows with constant

disparity.

3. Disparities are computed by selecting the minimal (winning) aggregated value at each

pixel.

Some local algorithms, however, combine steps 1 and 2 and use a matching cost that is based

on a support region, c.g. annualized cross—correlation (Hannah 1974‘, Belles, Baker, and Han»

nah 1993) and the rank transform (Zabih and Woodfill 1994) and other ordinal measures (Bhat

and Nayar 1998). (This can also be viewed as a preprocessing step; see (Section 11.3.1).)

Global algorithms, on the other hand, make explicit smoothness assumptions and then

solve a a global optimizatiou problem (Section 11.5). Such algorithms typically do not per-

form an aggregation step, but rather seek a disparity assignth (step 3) that minimizes a

global cost function that consists of data (step 1) terms and smoothness terms. The main dis—

tinctions among these algorithms is the minimization procedure used, e.g., simulated anneal-

ing (Marroquin, Mitter, and Poggio 1987; Barnard 1989), probabilistic (mean—field) diffusion

(Scharstein and Szeliski 1998), expectation maximization (EM) (Birchfield, Natatajau, and
Tomasi 2007), graph cuts (Boykov, Veksler, and Zabih 2001), or loopy belief propagation

(Sun, Zheng, and Shunt 2003}, to name just a few.

In between these two broad classes are certain iterative algorithms that do not explicitly

specify a giobal function to be minimized, but whose behavior mimics closely that of iterative

optimization algorithms (Mart and Poggio 1976; Zimick and Kanade 2000). Hierarchical

(coarse-to-fine) algorithms resemble such iterative algorithms, but typically operate on an
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image pyramid where results from coarser levels are used to constrain a more local search at

finer levels [Witkim Terzopoulos. and Kass 198?; Quam 1934: Bergen. Anandan. Hanna er

of. 1992].

11.3.1 Similarity measures .

The first component of any dense stereo matching algorithm is a similarity measure that

compares prsel values in order to determine how likely they are to he in correspondence. In

this section. we briefly review The similarity measures introduced in Section 3.1 andmention a

few others that have been developed specifically for stereo matching [Scharstein and Seelisici

2001: I'fitschmiiiler and Scherstein 2%).

The most common pixel—based matching costs include sums of squared intenrr‘ry airfar—

ences' {3312)} {Hannah 19%) and absolute intensity difi'srenees (SAD) {Kanade 1994}. In

the video processing ecnonunity. fl'tese matching criteria are referred to as the massacred

error {M513} and mean absolute d'ifi‘ereece {MAD} measures; the team displaced flame dfl’v

fer-secs is also often used [Tekalp 19951.

More recently. robust measures {8.2}. including truncated quariratics and contaminated

lGaussians. have been proposed [Black and Anandan 1996: Black and Rangerajan 19915;

Scharstein and Sceliski 1998}. These measures are useful because they limit the influence

of mismatches during aggregation. Wish. Szelislci. Zitnielt of ref. {2006} compare a number

of such robust measures. including a new one based on the entropy of the pixel values at a

particular disparity hypothesis {Zitaiclc Hang. Uyttendaele er al. 21314}. which is particularly
useful in multi-view stereo.

Other traditional matching costs include normalized cross-correlation (3.11} {Harmah

1994; Bolles. Batter. and Hannah 1993; Evangelidis and Fsarakis 111103}. which behaves

similarly to surn-of-squsred-difi'erenees {BSD}. and binary matching costs (to. match or no

match} Gainer and Poggio 191'6}. based on binaryr features such as edges (Halter and Einford

1931; Stimson 1935) or the sign of the Laplacian {Nisbihara 1984}. Because of their poor

discriminability. simple binary matching costs are no longer used in dense stereo matching.

Some costs are insensitive to differences in camera gain or bias. for example gradient-

bascd measures (Sch: 1939: Scharstein 1994}. phase and filter-hank responses {Marr and

Poggio 1979; Kass 1938; Jeolcin. lepson. and Tsotsos 1991; Jones and Malil: 1992}. falters

that remove regular or robust [bilaterally filtered} means (Amer. Castano. and Matthies 2W4:

Hirschtniiller and Scharstein 11399]. dense feature descriptor (Tole. Lepetit. and Fee 201(1).

and non-parametric measures such as rank and census transforms {Zabih and Woodt'ill I994).

ordinal measures that and Mayer 1998). or entropy which Kang. Uyttendaele er. rd. 2.0114:

Zitaick and Kang 209?]. The census transform. which converts each pixel inside a moving

window into a bit vector representing which neighbors are above or inflow the central pixel.

was found by Hirschmttller and Scharsteia {2009} to be quite robust against large-scale. non—

atatiouary exposure and illumination changes.

It is also possible to correct for differing global camera characteristics by performing

a preprocessing or iterative refinement step that estimates inter‘image bias—gain variations

using global regression {Gennert i933). histogram equalization (Corr. Roy. and l-Iingorani

1995). or mutual information (Kim. Kolmogorov. and Zabih 21393; l-lirschmiiller Edith}. Lo-

cal. smoothly varying compensation fields have also been proposed {Strecha Tuytelaars. and

Van Ecol 2093; Zhang. McMillan. and Yu EDDIE}.

4T9
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Figure 11.8 Shit‘tablc tvindottuI {Scharstein and Ezelislti 21002} {p 112101 Springer. The effect of trying all 3 x 3

shifled windows around the black pixel is the same as taking the minimum matching score across all centered

(non—shifted) windows in the same neighborhood. (For clarity. only three of the neighboring shifted windmvs are

shown here]

In order to compensate for sampling issues. in. dramatically different pixel values in

high-frequency areas. Birchfield and Tomasi {1993} proposed a matching cost that is less sen—

sitive to shifts in image sampling. Rather Ihanjust comparing pixel values shifted by integral

amounts (which may miss a valid match}. theyr compare each pixel in the reference image

against a linearlyr interpolated function of the other image. More detailed studies of these

and additional matching costs are explored in [Szclisiri and Scharstein 201.14; Hirschnitillcr

and Scharstein 2009). in particular. if you expect there to be significant exposure or appear—

ance variation between images that you are matching. some of the more rotatat measures

that perfumed well in the evalualion by Hirschmiiller and Splints-loin {EDGE}. such as the

census transform {Zahilt and Woodfill 1994], ordinal measures [Bhat and Napar 1993}. bi-

lateral suhtraction (Ansar. Castano. and Matthias 11154}. or hierarchical mutual information

{Hirschmiiller 2W3}. should be used.

11.4 LOG-“Bl methods

Local and window-based methods aggregate the matching cost by sunnniug or averaging

over a rapport region in the D51 Gist. y. dj.‘ A support region can hoeithcr two-dhncnsional
at a fixed disparity {favoring ironic—parallel surfaces], or three-dimensional in at—p—d space

{supporting slanted surfaces]. livedimensional evidence aggregation has been implemented

using square windows or Gaussian convolution {traditional}. multiple windows anchored at

difl’ercnt points, i.e., shiftahle windows [Arnold 1983; Fuaicflo. Roberto, and Trucco 199?;

Bobicit and Intille 1999}. windows 1with adaptive sizes [fitness] and [Canada 1992‘. Kanade

and Gluttomi 1994; Hang. Seeiisid. and Chai 2am: Veksler 2001. 2.1303}. windows based on

connected components of constant disparity {Boykon 1itl'elitsler. and Zahih 1998), or the. re-

sults of color—based segmentation {Yoon and Korean 20116;"1‘ornhari. Mattoccia. Di Stefano

at at. zoos). 'l'hree—dimcnsional support functions that have been propoeed include limited

disparity difference {Stimson 1955}. limited disparityr gradient (Pollard. Mayhem and Frish}.r

1935}. Pres-day‘s coherence principle [Prat-sting 1935). and the more recent work {which in-

cludes visibilityr and occlusion reasoning} by Zitniclt and Kanade {mild}.

‘ For two meant my: and comparisons ofauch techniques, please see the work of Gong, Yang.War1g at at.
{2m and Tomhari. Murdoch. Di Stefano rt at [2.003].
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Figure 11.9 Aggregation window sizes and weights adapted to image content {'I'omhari. Mattoecia, Di Stefano er
al. 2003] {it} 20GB THEE; {a} original image with selected evaluation points; {h} variable windows tVeltsler 2003}:

{c} adaptive weights (Yoon and chon Eflflfil; {d} segmentation-based [TombarL Mattoccia, and Di Stefano 211i”).

Notice how the adaptive weights and segmentation-based techniques adapt their support to similarly colored

pixels.

Aggregation with a fixed support region can he performed using 2D or SD convolution.

Gin-*1 that = uttered] *Ccievtfilt {11.45)

or, in the case of rectangular windows, Luring eificient moving average hos-filters (Sec;

tion 3.2.2} tKanade. Yoshida. one at at. 1996: Kimura Shinho. Yamagnehi et at [999}.

Shiftahle windows can also be implemented efficiently using a separable sliding min-filter

{Figure [1.8] {Scharstein and Snelislti 2002. Section 4.2]. Selecting among windows of dif—
ferent shapes and sizes can he perfonned more efficiently by first computing a summed area

tattle {Section 3.2.3. lid—3.32} Whittier 2003}. Selecting the right window is important.

since windows must be large enough to contain sufficient texture and yet small enough so

that they do not straddle depth discontinuities {Figure 11.9}. An alternative method for ag—

gregation is iterative diflirsr'on. i.e., repeatedly adding to each pittel‘s cost the weighted values
of its neighboring pthels' costs {Szelislti and Hinton [St-:5: Shah 1993; Seharstein and Srclislti
1993).

Of the local aggregation methods compared by Gong, Yang, Wang at at. {2007} and

Tomhari, Mattoccia, Di Stefano at at. (21113), the fast variable window approach of Vet:-

s1er{2flf}3) and the locally weighting approach developed by Yoon and Kweon {20nd} con-

sistentiy stood out as having the best tradeoff between performance and speed.5 The local
weighting technique, in particular, is interesting because, instead of using square windows
with uniform weighting. each pixel within an aggregation window influences the final match-

ing cost hascd on its color similarity and spatial distance, just as in hilinear filtering {Fig—

ure tilts]. (In fact. their aggregation step is closely related to doing a joint bilateral filter

on the coloridisparity image. except that it is done symmetrically in both reference and target

images.) The segmentation-based aggregation method of Totnhari. Mattoceia, and Di Stefano
(200?) did even better, although a fast implementation of this algorithm does not yet exist.

In local methods, the emphasis is on the matching cost computation and cost aggregation

steps. Computing the final disparities is trivial: simply choose at each pixel the disparity
associated with the minimum cost value. Thus. these methods perform a local "winnerv

take-all" (Whit) optimization at each pixel. A. limitation of this approach {and many other 

5 More recent. aid extensive results from Turnhat'i. Mattnccia. Di Stefano ernl. [zoos] can he found at http:
mew-w.visinu.deis.nnihotittspetSFEl-lome.asps.
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correspondence algorithms} is that uniqueness of matches is only enforced for one image

{the reference image}. while points in the other image might malch multiple points. unless

cross-checking and subseqth hole filling is used (Fua 1993: Hirschmtlllor and Scharstein

letlil}.

11.4.1 Sub-pixel estimation and uncertainty

Most stereo correspondence algorithms compute a set of disparity estimates in some dis-

cretized space. e.g.. for integer disparities [exceptions include continuous optimization tech.

niques such as optical flow (Bergen. Anandan. Hanna ct at 1992} oszplines {Szeliski and
Coughlan 199?}; For applications such as robot navigation or people tracking. Ihese may be

perfectly adequate. However for image-based rendering. such quantired maps [cad to very

unappealing view synthesis results. i.e.. the scene appears to he made up of many thin shear-

ing layers. To remedy this situation. many algorithms apply a sub-pixel refinement stage after

the initial discrete correspondence stage. {An alternative is to simply start with more discrete

disparity levels (Snelislri and Scimrstein 2on4”

Sub-pixel disparity estithes can be computed in a variety of ways. including iterative

gradient descent and fitting a curve to the matching costs at discrete dispau'ty levels (Ryan.

Gray. and Hunt 1930: Lucas and Kanade 1931'. Tian and Huhns 1986‘. lvlatthics. Hansen.

and Szelisio' 1939: Kanadc and Ukutomi 1994}. This provides an easy way to increase the

resolution of a stereo algorithm with little additional computation. However. to work well.

the intensities being matched must vary smoothly. and the reflons over which these estimates

are computed must he on the same [correct] surface.

Recently, some questions have been raised shout the advisability of fitting correlation

curves to integcrusampled matching costs (Shimizn ant] Ulnttomi mill}. This situation may

even be worse when sampling—insensitive dissimilarity measures are used {Birchfield and

Tontasi HE‘S). These issues are explored in more depth by lizelislci and Soharstein (2004).

Besides sub-pixel computations. there are other ways of post-processing the computed

disparities. Uoclnded areas can he detected using cross-checking. i.e.. comparing left—to—

right and right—to—left disparity maps {Fits 1993]. A median filter can he applied to clean

up spurious misrnatChm. and holes due to ecolusion can he filIod by surface fitting or by

distributing neighboring disparity estimates {'Birchfield and Tomasi I999: Scharstcin r999;

Hirschmtiller and Scharstein 1009].

Another kind of post—processing. which can be useful in later processing stages. is to asso-

ciate confidencas with perspiael dopth estimates {Figure l I .itl}. which can be done by looking

at the curvature of the correlation surface. i.e.. how strong the minimum in the D31 image is

at the winning disparity. Matthias. Kanade. and Saeliski [1939} show that under the assump—

tion of small noises photometrically calihrated images. and densely sampled disparities. the

variance ofa local depth estimate can be estimated as

as

Vat—{d} = :1. (11.?)

where c is the curvature of the 1331 as a function of d. which can he measured using a local

parabolic fit or by squaring all the horizontal gradients in the window. and er} is the vari-

ance of the image noise. which can be estimated from the minimum SSD score. {See also

Section 5. L4. (8.44}. and Appendix 13.6.}

APPL—1012 / Page 170 of 211



APPL-1012 / Page 171 of 211

Hot Local Inetltuds

 
Figure 11.11} Uncertainty in stereo depth estimation (Szeliski lElth}: {a} input image; (b) estimated depth

map [blue is closer}; {c} estimated confidencetred is higher}. As you can see. more textured areas have higher
confidence.

11.4.2 Application: Stereo-based head tracking

A common application of real-time stereo algorithms is for tracking the position of a user

interacting with a computer or game system. The use of stereo can dramatically improve

the reliability of such a system compared to trying to use monocular color and mtensity

information (Darrell. Gordon. Harville .et oi. scoot. l[.‘Ince recovered. this information can

be used in a variety of applications. including controlling a virtual environment or game.

correcting the apparent gaze during video conferencing. and background replacement. We

discuss the first two applications below and defer the discussion of background replacement
to Section I 1.5.3.

The use of head tracking to control a user‘s virtual viewpoint while viewing a 3D object

or environment on a computer monitor is sometimes calledjislt tank virtual reality. since the

user is observing a 3D world as if it were contained inside a fish tank (Ware. Arthur. and

Booth 1993}. Early versions of these systems used mechanical head tracking devices and

stereo glasses. Today. such systems can be controlled using stereo-based head tracking and

stereo glasses can be replaced with autostereosccpie displays. Head tracking can also be used
to construct a “virtual ndnof*. where the user's head can be modified in real—time using a

variety of visual effects (Darrell. Baker. Eli-ow er .al. 199?}.

Another application of stereo head tracking and 3D reconstruction is in gaze correction

(Git. Lewis. and Cox 1993}. When a user participates in a desktop video—conference or video

chat. the camera is usually placed on top of the monitor. Since the person is gazing at a

window somewhere on the screen. it appears as if they are ionizing down and away from the

other participants, instead of straight at them. Replacing the single camera with two or more
cameras enables a virtual view to be constructed right at the position where they are looking

resulting in virtual eye contact. Real-time stereo matching is used to Donahuet an accurate 3D

head model and view interpolation {Section 13.1} is used to synthesize the novel ill—between

view {Criminish Shctlen. Blake ct at. 20433}.
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11.5 Global optlmlzation

Global stereo matching methods perform some optimization or iteration steps after the dis-

parity commutation phase and often skip the aggregation step altogether. because the global

smoothness constraints perform a similar function. Many global methods are formulated in

an energy—minimization framewrlr. where. as we saw in Sections 3.? tame—sacs} and as.
the objective is to find a solution ti that minimizes a global energy.

are} = Ed{d}+.tE.{d]. {11.3}

"The data term, Edd], measures how well the disparity function ti agrees with the input image

pair. Using our previously defined disparity space image, we define this energy as

East = 2 Sta adiasii. {113}
{all}

where C is the {initial or aggregated] matching cost DSI.

Tire smoothness term E. {d} encodes the smoothness assumptions made by the algoritlnn.

'Ib males the optimization computationally tractable. the smoothness term is often restricted

to measuring only the differences between neighboring pisels‘ disparities.

and} = 2 states} - d{z + 1.er + pistes} — new 1}}. {11.10}

where p is some monotonically increasing Function of disparity dili'erencc. It is also possi—

ble to use larger neighborhoods, such as N3. which can lead to better boundaries {'Boykov

and Koimogorov 2003}. or to use secondrorder smoothness terms [Woodford Reid, Torr at

at. zoos), but such terms require more complex optimization techniques. An alternative to

sinnodtness functionals is to use a lower—dimensional representation such as splines {Sneliski

and Coughlan 1991'}.

1a standard regularization [Section 3.11]. .o is aquadrstic frmetion. which makes d smooth

everywhere and may lead to poor results at object boundaries. Energy functions that do not
have this problem are called discomimtttyrpreset‘vlng and are based on robust p functions

['Terzopoulos 1986b: Black and Rangamjan 1996]. The seminal paper by Geman and Ge.

man {1934} gave a Bayesian interpretation of these kinds of energy functions and proposed a

discontinuity-preserving energy function based on Markov random fields ['thst and addi—

tional line processes. which are additional binary variables that control whether smoothness

penalties are enforced or not. Black and Rangerajan {1995} show how independent line pro.

eess variables can be replaced by robust pairvdse disparity terms.

The terms in E, can also be made to depend on the intensity differences. eg.1

soldiers} .. it: + 111d} 'arillfistsi - If: + Lsrlllh Ell-11]

where p: is some monotonically decreasing function of intensity differences that lowers

smoothness costs at high-intensity gradients. This idea {Gamble and Poggio 193?; Fan 1993:

Bohiclt and lntillc 1999; Boyhov. Voltsler. and Zahih mill] encourages disparity discontinu-

ities to coincide with intensity or color edges and appears to account for some of the good

performance of global optimization approaches. While most researchers set these functions
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heuristically, Seltarstein and Pal {200?} show how the free parameters in such conditional

random fields (Section 3.12, {3.113)} can be learned from ground truth disparity maps.

Once the global energy has been defined, a variety of algorithms can be used to find a

[local] minimum. Traditional approaches associated with regularization and Markov random

fields include continuation [Blake and Zissermaa 193?}, simulated annealing (Geman apd

Gemau 1934: Marroquitt. Mitter. and Poggio 193?: Barnard 1939). highest confidence first

{Chou and Brown 1990). and mean-field annealing [Geiger and Ghost l99l).

lvtore recendy, mar-flow and graph cnt methods have been proposed to solve a special

class of global optimization problems (Roy and Corr 199E: chkov. Vehicles, andZabih ittill:

lsltiirawa 201313}. Such methods are more efficient than simulated annealing and have produced

good restate, as have techniques based on loopy belief pmpagation (Sun, Zheng. and Sham

21103: Tappen and Freeman 2113}. Appendix 13.5 and arecent survey paper on MRF inference

(Scolislti. Zuhih. Scharstein at at. 2093} discuss and compare such inchniqttes in more detail.

While global optimization techniques currently produce the best stereo matching results,

there are some alternative approaches worth studying.

Conparatlvo algorithms. Cooperative algorithms, inspired by computational models of

human stereo vision, were among the earliest methods proposed for disparity computation

{Dev l9‘l-1:Man‘snd Poggio l9'r'ti: Marroquin 1933: Ezeliski and Hinton 1935: Zitniclr and

Kanade 2090}. Such algorithms iteratively update disparity estimates using non—linear op—

erations that result in an overall behavior similar to global optimization algorithms. in fact.

for some of these algorithms. it is possible to explicitly state a global function that is being

minimized {Scharstein and Szelislo' i998).

Coarse-tattoo and tneremental warping. Most of today’s best algorithms first enn-

mcrate all possible matches at all possible disparities and tlten select the best set of matches

in some way. Faster approaches can sometimes be obtained using methods inspired by classic

{infinitesimal} optical flow computation. Here, images are successively warped and disparity

estimates incrementally updated until a satisfactory registration is achieved, These techniques

are most often implemented within a coarse-to—fine hierarchical refinement framework [Qnam

1934: Bergen. dnandan, Hanna er oi. 1992: Barton. Fleet. and Beanchemin 1994: Szelislci

and Conghlan 199?}.

11.5.1 Dynamic programming

A different class of global optimization algorithm is timed on dynnrrucprngrarrantng. While

the 2D optimization of Equation (11.3] can be shown to be NP—hard for common classes

of smoothness functions {Whaler 1999}, dynamic programming can find the global mini—

mum for independent seanlincs in polynomial time, Dynamic programming was first used

for stereo vision in sparse, edge—based mclhoda (Baker and Binford l9BI: Ohm and Kanadc

1985}. More recent approaches have focused on the dense {intensity-based) scanliue match—

ing problem {Eelltnmcur I996: Geiger. Ladendorf. and Yuille 1992; Cox, i-lingorani. Run at
cl. I996: Bobick and Intille i999: BirChfield anti 'I‘omasi 1999). "These approaches work by

computing the minimum-cost path through the matrix of all pairwise matching costs between

two corresponding scanlinee. i.e.. through a horizontal slice of the DSL Partial occlusion is
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Figure 11.11 Stereo matching using dynamic 1:!rugynrnmiag1 as illustrated by {a} Schal'stein and Szelisld {20132}

{63‘} 2M Springcr and (h) Kolmogorov. Crhninisi. Blake et at. (20116].@ 2006 IEEE. For each pah-cf correspond—

ing scanliacs. a minimizing path through Ihc matrht of all pairuosc matching costs {£151} is selected lowercase

letters {a—-lt} symbolize the intensifies along each scanlin-c. Uppercase letters rcpresent the selected path through

the matrix. Matches are indicated by M, while partially occluded points {which have a fixed cost} an: indicated by

L or R. corresponding to points only visible in the leftorright images. respectively. Usually. only alimited dispar-

ity range is considered [ll-4 in the figure, indicated by the non-shaded squares}. The representation in {a} allows

for diagonal moves while the representation in (bi does not. Note that these diagrams. which use the Cyclamen

representation of depth. i.c.. depth relative to a camera between the two input cameras. show an ‘hnskewed" c—d

slice through the DSI.

handled explicitly by assigning a group of pixels in one image to a single pixel in the other

image Figure 11.11 schematically shows how DP works. while Figure I‘LSf shows a real
DSI slice over which the DP is applied.

To implement dynamic programming for a scaniine g. each entry {state} in a 21) cost

matrix D{m, n] is computed by combining its D31 value

01mm} = C{m+n.m- my} ' (11.12}

with one of its predecessor cost values. Ushtg the representation shown in Figure 11.1 laT

which allows for “diagonal" moves. the aggregated match costs can he recursively compared
35

D{m.n,M] = ntin{lJ[m—l1rt-l,M],DEm—i.n,L},D{m—l,n-1,R}j

+G'ltmfli

D{m,n,L-J = min[D|:m—11rt—1.Mj,Dfm-l.n.L}]l +0 (11.13}

Dfrn.n.RJ = min{D[m.n—-1. M}.D[m.n-1. RH +111}+

where 0 is a per-pixel occlusion cost. The aggregation mica conesponding to Figure 11.11h

aregivcn by Kolmogoroy. Criminisi. Blake e: at. [EDDIE]. whealsousc atwo-state foreground-

haCkgi-ound model for iii-layer segmentation.

Problems with dynamic programming stereo include the selection of the right cost for

occluded pixels and the difficulty of enforcing inter-scanline consistency. although several
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is)

Figure 11.11 Segmentation—based stereo rrtatching {Zimich Kang. Uyttendaele at at 2904) @1 2094 ACM:
is} input color image: {b} antler-based segmentation; {c} initial disparity estimates; {d1 final piecewise-smoothed

disparities: {e} MRF neighborhood defined over the segments in the disparity space distribution [Zimick and Kang

IUD?) @J Elli}? Swinger.

methods propose ways of addressing the latter {fibre and Kanade 1985: Eelhumeur 1996;

Cox. Hingorani. Run at at 1996; Bobiclt and lntille 1999'. Birchlield and Tontasi 1999:

Kolmogorov. Criminisi. Blake er al. 2995}. Another problem is that the dynamic program-

ming approach requires enforcing the monotoniciry or ordering constraint {Yuille and Poggio

I934}. This constraint requires that the relative ordering of pixels on a scanline remain the

same between the two views. which may not be the case in scenes containing narrow fore-

ground objects.

An allernalit'e to traditional dynamic programming+ introduced by Scharstein and Szelislti

[2992), is to neglect the vertical smoothness constraints in {11.111} and simply optimize in—

dependent scanh‘nes in the global energy function {11.31+ which can easily be done using a
recursive algorithm,

DE$1y1rfl = mega} + up; {the —1,y,d’}+ pita — fl}. {11.I4J

The advantage of this scoutiae optimization algorithm is that it computes the same represen-
tation and minimizes a rcdtteed version of the same energy function as the full 21) energy

function (11.8}. Unfortunatelyr it still suffers front the same streaking artifacts as dynamic

programming. .

A much better approach is to evaluate the cumulative cost function f l 1.14} from multiple

directions. e.g. from the eight cardinal directions, N, E, W. 5, NE, SE. SW. NW [Hirschn'tiiller

21103]. The resulting smirglobdl optimisation performs quite well and is extremely efficient

to imploctnenl.

Even though dynamic programming and seanlinc optimization algorithms do not gen—

erally produce the most accurate stereo reconstructions. when combined with sophisticated

aggregation strategies, they can produce very fast and high-quality results.

1 1.5.2 Sagmentation-haeed technlquao

1|l‘r'hile most stereo matching algorithms perform their computations on a per—pixel basis. some

of the more recent techniques first segment the images into regions and then try to label each

region with a disparity.

For example; Tao, Sawhney. and Kumar (211111} segment the reference image. estimate

per—piaei disparities using a local techniquer and then do local plane fits inside each segment
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{bi

Figure 11.13 Stereo matching with adaptive Dyer-segmentation and matting flhguchi. Wilbum. and Zitniclt
2003) (E 2W3 IEEE: (a) segment boundaries are refined during the optimisation. leading to more accurate results

{c.g.. the thin green leaf in the bottom row): {bl alpha mattea are extracted at segment boundaries. which leads to

visually better compositing results {middle colu inn}.

  

  

 
   

before applying smoothness constraints between neighboring segments. Zimiclt, Kang. Uyt-
tendaele st of. {21104} and Zimiclt and Kong (Will?) use over—segmentation to mitigate initial

bad segmentations. After a set of initial cost 1talttes for each segment has been stored into

a disparity spore distribution {BSD}. iterative relaxation {or loopy belief propagation. in the

more recent worlt of Zitniclt and Kang (Kalil) is used to adjust the disparity estimates for

each segment. as shown in Figure 11.12. Taguehi. Wilbur-n. and Zimiclt {2.003} refine the

segment shapes as part of the optimization process. which leads to much improved results. as

shown in Figure ll.13.

Even more accurate results are obtained by Klaus. Hermann. and Kamer {sacs}. who first

segment the reference image using mean shift. nm a small [3 x 3} SAD plus gradient SAD
{weighted by cross-checking) to get initial disparity estimates. fit local planes. re~lil with

global planes. and then run a final MRF on plane assigrunents with loopy belief propagation.

When the algorithm was first introduced in soon. it was the top ranked algorithm on the

evaluation site at http:fiyisionmiddlcburyeduistereo; in early 2016. it still had the top rank
on the new evaluation datasete. -

The highest ranked algorithm. by Wang and Zheng [2003}. follows a similar approach of

segmenting the image. doing local plane fits. and then performing cooperative optimization

of neighboring plane fit parameters. Another highly ranked algorithm. by Yang. 1|it'ang. Yang

er of. (2M9). uses the color correlation approach of Yuan and Kweon {EDDIE} and hierarchical

belief propagation to obtain an initial set of disparity estimates. After left—right consistency

checking to detect occluded pixels. the data terms for low-confidence and occluded pixels

are reoomputed using segmentation-based plane fits and one or more rounds of hierarchical

belief propagation are used to obtain the final disparity estimates.

Another important ability of segmentation-based stereo algorithms. which they share with

algorithms that use explicit layers (Halter, Szelislti. and Anandan 1993‘. Saeliski and lHolland

1999} or boundary extraction flinsinoff. Kong. and Szelislti 2006). is the ability to extract

fractional pixel alpha mouse at depth discontinuities {Bleycn Gelauta. Rother at at. Etltlt'l].

This ability is crucial when attempting to create 1.tirtual yiew interpolation without clinging

boundary or tearing artifacts (Blanch. Kang. Uyttendaelo er of. 201“) and also to seamlessly

insert virtual objects (Taguchi. Wilburn. and Zitniclt Edits}. as shown in Figure ll.13h.
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Figure 11.14 Background replacement using :t—l-te'ying with a hi-iaycr segmentation algorithm lKo]mogoroy.

Ct‘irnlttisi. Hialte 2: cl. roost {cj 2nns IEEE.

Since net-.-I stereo matching algorid'trns continue to be intredueetl every year. it. is it good

idea to periodically check the Middlcbury evaluation site at httlgru'itrision.ntiddlehuryedurr

stereo fer a listing of the most recent algorithms to be evaluated.

11.5.3 Application: Z—lteying and background replacement

Another application of real-time stereo matching is r-itsying, which is the process of seg-

menting a foreground actor from the background using depth information. usually for the

purpose of replacing the background with some computer-generated imagery. as shown in

Figure 1].2g.

Originally. a—keying systems required expensive custemrbuill hardware to produce the

desired depth maps in real time and were. therefore. restricted to broadcast studio appliea~

tions [Kanade Yeshide, Dds er el. lass; Iddan and Yahav soon. l[iii—line systerns 1were also

developed for estimating 3D mule-viewpoint geometryr from video streams {Section 13.5.4}

{Kanatlm Rander. and Natayattatt 199?; l|.'.'.'a.'t'ran:—'.a, Theoball, Magner e: HE. 2003: Zilnlek.

Kong. Uyttendsele er oi. Eli-D4; Vedule. Baker. and Kanade 11365}. Recent advances in highlyr

accurate real-Lime stereo matching. however. now malte it possible to perform zukeying on

regular PCs, enabling desktop videoconferencing applications such. as those shown in Fig—

ure 1l.14 (Kehneget'ov, Criminisi, Blake er ill. Eflflfi}.

11.6 Multinriew stereo

While matching pairs of images. is a useful way of obtaining depth information. snatching

more images can lead to even better results. In this section. We review not only techniques for

creating complete 3]] object models1 but also simpler techniques for improving the quality of

depth maps using multiple source images.

As we saw in our discussion of plane sweep (Section 11.1.2), it is possible to resatnple

all neighboring ir images at each disparity hypothesis d into a generalized disparity space
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{a} {b}

Figure 11.15 Epipolar plane image £EPI} [Gordon Gnosaczuk. Seelisltl er of. 1996) (d) 1996 ACM and a
schematic EPl (Kong. Ezeiislri. and Cltai 2011 l} @J 21101 IEEE. {a} The Lurnigraph {light field} {Smtion 13.3}

is the 4D space of all light rays passing through a volume of space. Taking a 2D slice results in all of the light rays

embedded in a plane and is equivalent to a scanlinc talren from a stacked EPl volume. Objects at. different depths

move sideways with velocities [slop-es} proportional to their inverse depth. Declcsion {and nanslucencyj effects

can easily be seen in this representation. {b} The E?! corresponding to Figure 11.16. showing the three images

(middle. left1 and right} as slices dirongh the EM volume. The spatially and temporally shifted window around

the blaclt pixel is indicated by the rectangle, showing the right image is not being used in matching.

volume Hang, d, la}. The simplest way to take advantage of these additional images is to sum

up their differences from the reference image .71.. as in {1 L4),

Ciasrd}=Zsljlm.s.drkl-le.vll- {II-151
1:

This is the basis of the well-Mme sum of summed—squaredadifference (SEED) and SEAL!

approaches {Ukutomi and Kanade 1993: Kang. Webb, Zirniclr er al. 1995]. which can be ex—

tended to reason about likely patterns of seclusion makmnma. Matsuura. Satoh er of. 1995}.

More recent work by Gallup+ Prelim, Mordohai er‘ rrl. {2903} show how to adapt the base-

lines used to the eapected depth in order to get the best tradeoff between geometric accuracy

(wide baseline) and robustness to occlusion (narrow baseline}. Alternative mulri-view cost

metrics include measures such as synthetic focus sharpness and the entropy of the pixel color

distribution Walsh. Szclislti, Zitnick et at. 211116}.

A useful way to visualize the multivframe stereo estimation problem is to csarnine the

epipohrr plane image {EPI} formed by stacking corresponding scanlinres fiom all the images.

as shown in Figures ELIE-c and 11.15 (Bones. Baker+ and Marimont 1931'; Baker and Belles

1939; Halter 1989}. As you can see in Figure 11.15+ as a camera translates horizontally [in a

standard horizontally rectified gcomco'y]. objects at difl’erent depths move sideways at a rare

inversely proportional to their depth {1 1.11.5 Foreground objects occlude background objects.

3 The Eom-dinmrsional generalisation ofthc El'l is the lightfield. which We study in Section 13.3. In WIRING.
there is enough nation-radios in a light l’reldto recover both the all-ape and the BRDF ofobjeets {Snider Yeast. and Jill
M}, ahbough relaiiveiy h'ule pmgme has been made to date on this topic.
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Figure 11.16 Spade-temporally shiftahle windows {Kang1 Szcljslri. and Chai will) {é} 20D] IEEE: A simple

three-image sequence {the middle image is the reference image}. which has a moving frontal gray square {marked

F} and a stationary background. Regions B. C. D. and E are partially occluded. {a} A. regular ESL”- algorithm

will malte mistakes when matching PlelE in these regions (mg. the window centered on the black pixel in region

B} and in windows straddling depth discontinuities (the window centered on the white pixel in region F]. {b}

Shiftable windows help mitigate the problems in partially occluded regions and near depth discontinuities. The

shifted window centered on the white pixel in region F matches correctly in all frames. The shifted window

centered on the black piste] in region B matches cot-rectl'y in the left image, but requires temporal sclecdon to

disable matching the right image. Figure 11.151: shows an EPl corresponding to this sequence and describes in

more detail how temporal selection works.

which can be seen as EFfvstrips {CriminisL Kang. Swamlnatban at at. EMS} occluding other

strips in the EFL if we are given a dense enough set of images. we can find such strips and

reason about their relationships in order to both reconshuct the 3]] scene and make inferences

about translucent objects {Tsin1 Kang. and Sastisid EDDIE} and specular reflections [Swami—

aathanI Kong. Seclisld at al. zoos; Crimlnisi. Kang. Swamirtathan or al. Emil. Alternatively,

we can treat the series of images as a set of sequential observations and merge them using

Kalman filtering {Matthies Kanade. and Szelislti 1939'] or maximum likelihood inference

(Cox 1994].

When fewer images are available. it becomes necessary to fall back on aggregation tech—

niques such as sliding windows or global optimization. It-‘i'itl't additional input images. bow—

euer. the likelihood of occlusions increases. It is therefore prudent to adjust not only the host

window locations using a shii‘table window approach. as shown in Figure ll.lda. but also to

optionally select a subset of neighboring frames in order to discount those images where the

region of interest is occluded. as shown in Figure ll.ltib [Kang. Ezelislti. and Chai 201111}.

Figurel 1.15b shows how such spade-temporal selection or shifting of windows corresponds

to selecting the most liltely tin-occluded 1Itolnrnetiic region in the epipolar plane image yol-
ante.

The results of applying these techniques to the multi-framofimver garden image sequence

are shown in Figure 11.1T. which compares the results of using regular (non-shifted) SSSD

with spatially shifted windows and full spatio-temporal window selection. {The task of

applying stereo to a. rigid scene filmed with a moving camera is sometimes cafled motion

stereo). Similar amusements fiom using spade-twpnrsl selection are reported by [Kang

and Sselislri EDEN-ft and are evident even when local measurements are combined with global

optimization.

1ult'l'tilc oompu'ting a depth map from multiple inputs ouqierfon'us pairwise swt'eo metab-

ing. even more dramatic improvements can be obtained by cstirnan'ag multiple depth maps
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Figure 11.1‘lr Local {5 at 5 window-based} matching results (Kang. Saclisiri. and [Haul soon (E) will lEEE: {a}

window that is not spatially perturbed {centered}: {h} spatially perturbed window: {c} using the best five of 10

neighboring framesI id} using the better half sequence. Notice how the results near tlte tree trunk are improved

using temporal selection.

simultaneously [Saelislti 1999‘. Kang and Ssclisiri Edda}. The existence of multiple depth

maps enables more accurate reasoning about occiI-Isions+ as regions which are oeeiuded in

one image may be visibie [and matchable} in others. The mtllti-view reconstruction problem

can be formulated as the simultaneous estimation of depth maps at key frames {Figure li.l3c]

while maximizing not only photoeonsistency and piecewise disparity smoothness but also the

consistency between disparity estimates at different frames. While Szelislti {1999) and Kang

and Saclislri (20134} use soft {penalty-based} constraints to encourage multiple disparity maps

to be consistent. Kolmogorov and Zabih [2M2] show how such consistency measures can

be encoded as hard constraints, which guarantee that the multiple depth maps are not only

similar but actually identical in overlapping regions. Newer algorithms that simultaneously

estimate multiple disparity maps include papers by Maitre. Shinagawa. and Do {le08} and
thmg. Jia, Wong et‘ tel. {20%}.

a closely related topic to multi-frame stereo estimation is scene flow. in which multiple

cameras are used to capture a dynamic scene. The task is then to simultaneously recover the

3D shape of the object at every instant in time and to estimate the full 3D motion of every

surface point between frames. Representative papers in this area include those by 1'v"edula.

Halter, Render e1 oi. (Hills). Zhang and ‘lt'.ambha.rnettu{3311313}+ Fons. Keriveu. and Faugeras

{200T}. Huguct and Devernay [EMT], and Weds]. Babe. 1|van-drey er till. {2003). Figure [Lilla

shows an image of the 3D scene flow for the tango dancer shown in Figure llltbnj. while

Figure il.llib shows 3D scene flows captured from a moving vehicle for the purpose of

obstacle avoidance. In addition to supporting mensuration and safety applications. scene

flow can he used to support both spatial and temp-oral view interpolation (Section 13.5.4}. as

demonstrated by 1iil'etlula, Baker, and Kanade {Elli}.

11.6.1 1Iv'olurnetrlc and 3D surface reconstructlon

According to Sells. Curless. Diebel er ol. {zoos}:

I'fie goal nfmuIfi-vr'evv stereo is to reconstruct is complete 3D object modeifrom

o collecrion of integer miter: from known comers viewpoints.

The most challenging but potentially most useful vari am of mule-vicar stereo reconstruc—

tion is to create globally consistent SD models. This topic has a long history in computer

vision. starting with surface mesh reconstruction techniques such as the one developed by
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1%) {b}

Figure 11.1.5 ‘l1uee-tlimensionttl scene flow: {a} computed from a meld-camera dome surrounding the dancer
shown in Figure I l.2l't—j {Vedula Baker. Randcr at 01'. 21105] (E) 20115 IEEE: (bl computed from stereo cameras

mounted on :1 moving vehicle {WetleL Raise. Validity et oi. 211113} {E} 211113 Springer.

Fun and Leclerc {1995} {Figure 11.19a}. A. variety of approaches :utd representations have

boon used to solve this problem. including 31') vosel representations [Seitz and Dyer l999;
Szelisici and Golland IFS-19'. De Ftonet and Viola I999; Kutulaltos and Sen: 2111111: Blsert. Stein-

hnch, and Gired “211011; Slabaugh. Culbertson. Slahau gh el oi. 211114; Sinha and Pollefeys 211115:

Vogiateis. Hemandes. 'l‘orr er mt 2111111; Hiep. Keriven. l-‘ons st mi. 21109}. level see {Faugeras

and Keriven 1993:. Pens. Ket‘ivel't. and Fauget'tls sons). polygonal meshes {Fun and Lederc

1995; Narnyanan, Render, and Kanacle 1993: Hernandez. and Schmitl 211114; Funtltnwa and

Ponce 211119}, and multiple dep111 maps (Kotmogorov and Zahili 20112}. Figure 11.1131 shows

representative examples of 3D object models reconstructed using some of these techniques.

In order to organize and compare all these techniques. Seitz. Curless. Dieliel et at. {2095}

developed a sis—poi nt taxonomy that can help classify algorithms according to the scene rep;

remainder-1, plmroeonsistency measure. visibility model, shops prions. reconstmction nigo~

mm, and initialization requirements they use. Below+ we snmmnriZe some of these choices

and list a few representative papers. For more details. please consult the full survey paper

(Suite. Curless. Dish-e1 er oi. 2111151 and the evaluation Welt site, httntllvision.niiddlehruryedol

ntviewl. winch contains pointers to even more reoent papers and results.

Selene representation. One of the more popular 31') representations is a uniform grid

of 3-D Vflxflifij which can be reconstructed using a variety of carving [Selle nrtd Dyer 1999:

Kutulskos and Scit'z. 2111111} or oph'mimtion {Sinha and Pollet'eys 2111315: Vogiatais. Hernandez.

Torr et al. 2111111. Hiep. Ker-iven. Potts et all. 211119) techniques. level set techniques (Sec;

tion 5.1.4} also opontte on a uniform grid hut. instead of representing a binary occupancy

map. theyr represent the signed distance to the surface {Faugeras and Kenven 11193: Fons.

Keriven. and Faugeras 2110?}. which can encode a finer level of detail. Polygons! meshes

are another popular representation [Fun and Leclerc 1995'. Namyanan. Renderr and Kanade
1993: Isidore and Scleroff 2111B; Hernandez and Schmitl 20114; Furukawa and Ponce 20119;

l-l'tep, Keriven, Pens et‘ al. 211199}. Meshes are the standard representation used in computer

graphics and she: readily support the computation of visibility and occlusions. Finally. as we

discussed in the previous section, multiple depth maps can also he used {Sreliski I999; Kol-

mogorov and Zahlh 20112; Kang and Satellski 2004}. Many algorithms also list: more little a

single representation. e.g.. they may start by computing multiple depth maps and then merge

"' For outd—oor anemia. that go to inl'utity. almo-uuifom‘l gridding of spate tna’yhopre let-shin {Slabatlglh Cullnzrtson.
Siettaugh er at ELEM}.
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(11)

Figure 11.19 Multi‘view stereo algorithms: is] surface-hosed stereo [Fun and Lecterc 1995}: {h} trottel coloring

[Seine and Dyer 1999) [Q] 1999 Springer: [c] depth map merging t'NaIayanan. Render, anti Kanacle lQ'QR}; [ell level

set evolution {Fangeras and Keriyen 1993} (E) [9'93 LBEE; tc} silhouette and stereo Fusion (Hernandez. and Schmitt

20114} ['53) 2004 Elseyier: (f) mulljuy'iew image matching (Fons. Keriyen. and Fengcras EflDS} IE} Etlflfi iLlEE: {g}

volumetric graph cut Wegiatzis. Torr. and Cipolla 2W5) {c} 2on5 TEEE: {h} carved yisnul hulls {I-‘urukawa and

Ponce EDD?) {Q Eflfl'il Springer.

them into a 3D object model (Narayanztn. Render, and Kenade 1993: I'm-nitswe and Ponce

21109; Gocsele. Curless. and Seitz 2tlilfi'. Gocseie, .Elninrely1 Cnriess til at. 200?; Funtltawa.

Cu rlcss. Seitz er el. Ell] ill.

Phatacunalstartcy measure. As we discussed in {Section 11.3. i), a variety of similar—

ity measures can he used to compare pixel Values in different images. including measures that

try to discount iltnminafinn efl‘eets or be less sensitive to outliers. In mnili-triew stereo. algo—

rithms have a choice of computing these measures directly on the surface or the model. i.e.. itt

scene spams. or projecting pixel values From one image (or from a textured model] hack into

another image i.e., in image space. {The latter corresponds more closely to a Bayesian ap-

proach, since input images are noisy measurements of the colored 3D model.} The geometry

of the object. i.e.. its distance to each camera and its local surface not‘tnt-tlr when available, can

he used to adjust the matching windows used in Ihe computation to account for t'oteshortening

anti scale change tGoescle, Snot-clyr Cnrless et at. 2130?}.
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I|ti'lsrllrtlllty model. it big advantage that mnlti-view stereo algorithms have over single-

dcpth-map approaches is their ability to reason in a principled manner about visibility and

occlusions. Techniques that use the current state of the 3D model to predict which surface

pixels are visible in each image {Kumlalros and Suite 2300'. Faugcras and Keriven 1993'.
1|troglatais. Hernandea. Tbrr et of. 20W; lllep. Keriven. Pons er oi. EDGE!) are classified qs

using geometric visibility models in the taxonomy of Seita. Ceriess. Diebei er al. (20015).

Techniques that select a neighboring subset of image to match are called quasi-geometric

tNarayanan. Render. and Kanade 1993; Kang and Sselisln' 24114: Hernandez and Schmitt

illtltl}. while techniques that use traditional robust similarity measures are called earlier-

based. TWhile full geometric reasoning is the most principled and accurate approach. it can

be very slow to evaluate and depends on the evolving quality of the current surface estimate

to predict visibility. which can he a bit of a chicken-and—egg pmbhm. unless conservative

assumptions are used, as they are by Kutulalros and Sell: trons).

Elton-E prints. Because stereo matching is often underconstrained. especially in [extinc-

less regionsT most matching algorithms adopt {either eaplicitly or implicitly) some form of

prior model for the expected shape. Many of the techniques that rely on optimisation use a

3D smoothness or area-based photoconsistency constraint. which. because of the natural tau-

dency of smooth surfaces to shrink inwards, often results in a minimalmrfitce prior [Faugeras

and Keriven 1993-. Sinha and Pnllefeys 2905; Vogiatzis. Hernandez. Torr et‘ at. 200?}. Ap-

proaches that carve away the volume of space often stop once a photo-consistent solution is

found [Soils and Dyer 1999; Knurlairos and Salts note}. which corresponds to a Hmfimal sar-

firce bias. i.e.. these techniques tend to over-estimate the true shape. Finally. multiple depth

map approaches often adopt traditional image-based smoothness {regularization} constraints.

Heccnstructlon algorithm. The details of how the actual reconstruction algorithm pro-

ceeds is where the largest variety—and greatest innovation—in multi~view stereo algorithms
can he found.

Some approaches use global optimization defined over a three—dimensional photoconsis-

teney volume to recover a complete surface. Approaches based on graph cuts use polynomial

complexity binary segmentation algorithms to recover the object model detlued on the voxel

grid [Sinha and Pollefeys 2005; TItiogiatais. Hernandez. Tar: at cl. 20W; Hiep, Kea'iven. Fons

at al. EDIE). Level set approaches use a continuous surface evolution to find a good mini-

mum in the configuration space of potential surfaces and therefore require a reasonably good

initialization {Faugeras and Keriveu 1993: Fons. Keriven. and Fangeras ElllZI‘l'}. In order for

the photoconsislency volrtme to be meaningful. matching costs need to be computed in some

robust fashion. s.g.. using sets of limited views or by aggregating multiple depth maps.

An alternative approach to global optimization is to sweep through the 3]) volume while

computing both photoconsisteney and visibility simultaneously. The verei coloring algorithm

of Salt: and Dyer {1999) performs a front-to-baet: plane sweep. On every plane. any voacls

that are sufficiently photoconsistent are labeled as part of the object. The corresponding

pixels in the source images can then be “erased". since they are already accounted for. and

therefore do not contribute to further photooonsistency computations. {A similar approach.

albeit without use fi'ont—to-baelr sweep mast. is used by Seeliski and Golland {1999).} The

resulting 3D volume. under noise- and resampling—[ree conditions. is guaranteed to produce

495
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tel {d} it]

Figure 11.211 The rnulti—vietv stereo data sets captured by finite, lC'nrless, Dlebel or at (20%) (c) mos Springer.

Only (a) and {b} are currently used for evaluation.

    
(fl

both a photoonnsistent 3D model and to enclose whatever true 3D object model generated the
imagcs.

Unfortunately, voxel coloring is only guaranteed to work if all of the cameras lie on the

same side of the sweep planes. 1which is not possible in general ring configurations of cameras.

Kutulaltos and finite {mod} generalize vosel coloring to space carving. where subsets of

cameras that satisfy the vase] coloring constraint are iteratively selected and the 312) voxel

grid is alternately carved away along different aaos.

Another popular approach to multi-vietv stereo is to first independently compute multiple

depth maps and then merge these partial maps into a complete ill) model. Approaches to

depth map merging, which are discussed in more detail in Section 12.2.1, include signed

distance functions {Curless and Lovey 19%}, used by Goesele, Curtess, and Sells {2306),

and Poisson surface reconstruction {Kaahdam Bolitho, and Hoppe zoos}. used by Goeselc.

Snavcly. Curless er of. (200?). It is also possible to reconstruct sparser representations, such

as 3D points and lines, and to interpolate them to full 3D surfaces (Section 12.3.1} [Taylor

2W3}.

tnitlaltzatlon requirements. one final clcn'teut discussed by Sena, Cut-less, Dicbel st

til. (2W6) is the varying degrees of initialization required by different algorithms. Because

some algorithms refine or evolve a rough 3D model, they require :1 reasonably accurate {or

overcompletc} initial model, which can often be obtained by reconstructing a volume from

object silhouettes, as discussed in Section 11.6.2. However, if the algorithm performs a global

optimization (Kolcv. Klodt, Bros etnl. sues; Kolev and Crentcrs 2009}, this dependence on
initialization is not an issue.

Empirical evaluation, In order to evaluate the large number of design alternatives in
multi~vietv stereo, Seitx, Cnrless, Dicbel et at. tame) collected a dataset of calibrated images

using a spherical gantry. A representative image from each of the sir. dares-era is shown in

Figure 11.113, although only the first two dataficts have as yet been fully processed and need

for evaluation. Figure ”.21 shows the results of running seven different algorithms on the

temple dataset. As you can see, most of the techniques do an impressive job of capturing

the fine details in the columns. although it is also clear that the techniques employ difiering

amounts of smoothing to achieve these results.

Since the publication of the survey by Scitn Curless, Dicbel er of. {20126}, the field of
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Figure 11.1“ Remonstruetiou reeults {details} for seven fligoriElJttts {Hernandez and Sehmitl 2004: l‘tu'ukaws and

Ponce 2009'. Ports. Keriven, and Faugeras 2005: Goeseie. Curless. and Soil: 2005'. Vogiatzis, Torr. and Cipoiin

2005'. Term and Davis 2002-, Kolrnogorov and Znhih 2002} evaluated by Selle. Curless, Diehcl e: ol'. (2000} on

the 4T-intage Temple Ring dataset. The numbers underneath eoclt tleteil inutge are the accuracy of each ol‘titese

techniques measured in ouiflmcters.

mom—view stereo has continued to advance at a rapid pace [So-echo, Franseus. anti ‘v'ah

Gout 2000'. Hernandez. Vogiseos. and Cipolls 200?; thheci-rc untl Kohbelt 100T: Fumkswa

and Ponce 100?; 1|tu'oginteis. Ilemander.. Torr er oi. 2000-, Gmtsele. Shoveiv. Curlers et‘ of.

200?; Siohn, Monlohni. anti l’oliefeys 200?; Gargaflo, Prados, and Storm 200T; Mcrrcll. stir-

burwdtlll. Wang et‘ al. 200?: Each. Peck. and Bisehoi‘ 200%; Furuknwe lil'ltl Ponce 2003:

Homuttg. Zeng. and Kobbelt 2000: Bradley. Eouhekeur, end Heinrich 2003'. Each 2008;

Campbell, Vngiatzis, Hernaindez er mi. 20133; Kolcv. Klodl. Bron er al. 2009; Hiep, liferiverlI
Fons er al. 21009; littnlltawe, Curl-355, Seitz e: of. 20W}. 'I'lte tIJulti—vifltv stereo evaluation site1

htt[_:l:i'i“vision.ntidt‘lieizntI11,-.erlui'tnvirmri1 provides quantitative results for these algorithms along

with pointers to when: to find these papers.

11.5.2 Shape from silhouettes

Ln many situations. performing a fomglflund—hockgrouncl segmentation of the object of ins

latest is u good way to initialize or lit a 3D model (Gt—Juneau. Slmkllhorovich, and Darren

2003;1v'lesie. Enron. Mentsil-t et ul'. 2003} or to impose 5'. comes not ofconetraints un mulli—

view stereo [Kolev and Crcmors 200E). lElves the years. a number oi" techniques have been

developed to reconstruct :1 ED volumetric model from me intersection of the him-31'}.r silhou~

ettee projected into 31). The resulting model is called a visual hull (or nometimee a line hull}.

analogous with the convex. hull of 2: set of points. since the volume is maximal with respect
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Figure 11.22 Volumetric octree reconstruction from binary silhouettes (Szeliski 1993) © 1993 Elscvier: (a)

octree representation and its corresponding (b) tree structure; (c) input image of an object on a turntable; (d)

computed 3D volumetric octree model.

to the visual silhouettes and surface elements are tangent to the viewing rays (lines) along

the silhouette boundaries (Laurentini 1994). It is also possible to carve away a more accu—

rate reconstruction using multi-view stereo (Sinhs and Pollefeys 2005) or by analyzing cast

shadows (Savarese, Andreetto, Rushmeier er of. 2007).

Some techniques first approximate each si]houctte with a polygonal representation and

then intersect the resulting faceted conical regions in three—space to produce polyhedral mod—

els (Baumgart 19%; Martin and Aggarwal 1983; Matusik, Buehler, and McMillan 2001),

which can later be refined using triangular splines (Sullivan and Ponce 1998). Other ap-

proaches use voxelwbased representations, usually encoded as oclrees (Samet 1989), because

of the resulting space—time efficiency. Figures 11.22a—b show an example of a 3D octree

model and its associated colored tree, where black nodes are interior to the model, white

nodes are exterior, and gray nodes are of mixed occupancy. Examples of octree~based re—

construction approaches include thQSe by Potmesil {1987), Noborio, Fukada, and Arimoto

(1988). Srivasan, Liang, and Hackwood (1990), and Szcliski (1993).
nit approach of Szeliski (1993) first converts each binary silhouette into a one—sided

variant of a distance map, where each pixel in the map indicates the largest square that is

completely inside (or outside) the silhouette. This makes it fast to project an octiee cell

into the silhouette to confirm whether it is completely inside or outside the object, so that

it can be colored black, white, or left as gray (mixed) for further refinement on a smaller

grid. The octree construction algorithm proceeds in a coarse-to—fine manner, first building an
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octree at a relatively coarse resolution. and then refining it by revisiting and subdividing all

the input images for the gray {mixed} cells whose occupancy has not yet been detetmincd.

Figure ll.22d shows the resulting octree model computed fi'cm a coffee cup relating on a
turntable.

More recent work on visual hull computation borrows ideas Erem image-based rendering.
and is hence called an mange-based visual hull (Matusilt. Euehler. Rasltar er of. 2114211)}. instead

of precomputing a global 3D model. an image-based visual hull is recomputed for each new

viewpoint. by successively intersecting viewing ray segments with the binary silhouettes in

each image. This not only leads to a fast computation algorithm but also enables fast texturing

of the recovered model with color values born the input images. This approach can also

be combined with high-quality deformable templates to capture and rc—animate whole body

motion (music. Eaten. Matusik at an“. 2MB}.

11 .7 Additional reading

The field of stereo correspondence and depth estimation is one of the oldest and most widely

studied topics in computer vision. A number of good surveys have been written over the years

(Mart and Poggio 1976'. Bernard and Fiscbler 1932: Dhend and Aggarwal 1989; Schnisteiu

and Saelislci M2; Emu-n, Burschlta. and Huger .2003: SeitzT lCurless. Diebel ct oi. EDDIE} and

they can serve as good guides to this extensive literature.

Because of computational limitations and the desire to find appearance-invariant cor-

respondences. early algorithms often focused on finding sparse correspondences [Hannah

1994: Mart and Poggio 1999: Mayhew and Frisby 1939: Baker and Binford 1931; Arnold
1933: Gritnson 1935'. Clhta and Kanadc 1985; Belles. Baker. and Marimout 1931': Matthias,

Kanade. and Saclisln‘ 1959; Hsich. McKeown. and Perlant 1992: Belles. Halter. and Hannah

1993}.

The topic of computing cpip-olar geometry and pro-rectifying images is covered in Sec—

tinns 12 and 11.1 and is also treated in textbooks on multi-view gunmen-y {Faugeras and

Luong ill-:11; Hartley and Zisserman EDD-4} and articles specifically on this topic {Torr and

Murray 199?: Zhang 1993a.h}. The concepts of the disparity space and disparity space in:-

age are often associated with the seminal work by Mart {1932) and the papers of 1fang. Ytt ille,

and Lu [1993} and lntille and Bobiclt (1994}. The plane sweep algorithm was first popular—

ized by Collins [1996} and then generalised to a [all arbitrary projective setdng by Szeliaio

and (inflated {1999} and Saito and Kanade [1999). Piano sweeps can also be formulated using

cylindrical surfaces fishiguroI Yamamoto. and Tsuji 1992: Kang and Srielislti 199T: Sham

and Szelislti 1999: Li. Sham. Tang et oi. 2094: Ebeng. Kang. Cohen et at. 290?} or even more

general topologies (Seitz 212191}.

Dace the topology for the cost volume or DSI has been set up. we need to compute the

actual photoconsisteacy measures for each pixel and potential depdi. a wide range of such

measures have been proposed. as discussed in Section 1 1.3.1. Some of these are compared in
recent surveys and evaluations of matching costs {SchaIstein and Szelislti 20112; Hirsehmtiller

and Sebarstein 2W9}.

To compute an actual depth map from these costs. some form of optimization or selection

criterion must. be used. The simplest of these are sliding windows of various kinds. which

are discussed in Section 1 L4 and surveyed by (long. Yang. Wang at of. Gilli?) and "Ibmbari.
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Mattoccia. Di Stefano at at {211113}. More commonly. global optimization frameworks are

used to compute the best disparity field. as described in Section 11.5. "these techniques

include dynamic programming and truly global optimization algorithms. such as graph cuts

and loopy belief propagation. Because the literature: on this is so extensive. it is described in

more detail in Section 11.5. A good place to find pointers to the latosll results in this field is
the Middlebury Stereo 1iot'ision Page at http:#vision.middlehury.edutstereo.

Algorithms for multi-vicw stereo typically fall into [WEI categories. The first include at-

gorithms that cornpute traditional depth maps using several images for computing photocon—

sistency measures {Olrutomi and Kanadc 1993; Hang. Webb. Zimick er at 1993'. Naloatnura.
Matsuura. Satoh at at. 1996: Seeliski and lHolland 1999; Kong. Scelislti. and lChai 211111:

1'i’aish. Szelislri. Zimicir et al. 211015; Gallup. Fralrrn. Mordohai et oi. 2111.13}. Optionally. some

of these techniques compute multiple depth maps and use additional constraints to encourage

the difl’erent depth maps to be consistent {Seebski 1999: Kolroogorov and Zabih 2002'. Kang

and Steljski 211114: Maine. Shiuagawa. and Do 2993'. Ehang. lia. Wong et at 20113}.

The second category consists of papers that compute true 31] volumetric or surface-based

object models. Again. because of the large number of papers published on this topic. rather

than citing them here. we refer you to the material in Section Hail. the survey by Seitz.

Curlcss. Diebel at at {21111115}. and the on—line evaluation Web site at http:.t.lvision .middlebury.
edutmviewl.

11.8 Examines

Fat 11.1: Stereo pair ratification Implement the following simple algorithm [Section I l.1.l]|'.

i. Rotate both cameras so that they are looking perpendicular to the line joining the two

camera centers flu and cl. The smallest rotation can be computed from the cross prod-

not between the original and desired optical axes.

2. T'wist the optical axes so that the horizontal axis of each camera looks in the direction

of the other camera. (Again. the cmss product between the current tr-axis after the first

rotation and the line joining the cameras gives the rotation.) '

3. if needed. scale up the smaller [loss detailed} image so that it has the same resolution

{and hence line-Iodine correspondence] as the other image.

Now compare your results to the algorithm proposed by Loop and Zhang (1999}. Can you

think of situations where their approach may be preferable":ll

E}: 11.2: Rip-i direct alignment Modify your spline-based or optical flow motion estima—

tor ftorn Exercise 3.4 to use epipolar geometry. he. to only estimate disparity.

(Optional) Extend your algorithm to simultaneously estimate the cpipoiar geometry {with-

out first using point correspondences) by estimating a base bomography corresponding to a

reference plane for the dominant motion and then an epipole for the residual parallax (ino-
tiou}.

Ex 11.3: Shape from profiles Reconstruct a surface model from a series of edge images

{Seeh‘on 11.2.1}.
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1. Extract edges and link them (Exercises 4.7—4.8).

2. Based on previously computed epipolar geometry, match up edges in triplets (or longer

sets) of images.

3. Reconstruct the 313 locations of the curves using escalating circles (11.5). h

4. Render the resulting 3D surface model as a sparse mesh, i.e., drawing the reconstructed

3D profile curves and links between 3D points in neighboring images with similar
escalating circles.

Ex 11.4: Plane sweep Implement a plane sweep algorithm (Section 11.1.2).

If the images are already pre—rectified, this consists simply of shifting images relative to

each other and comparing pixels. If the images are not pre—rectified, compute the homography

that resamples the target image into the reference image’s coordinate system for each plane.

Evaluate a subset of the following similarity measures (Section 11.3.1) and compare their

performance by visualizing the disparity space image (1381), which should be dark for pixels
at correct depths:

I squared difference (SD);

- absolute differenCe (AD);

0 truncated or robust measures;

a gradient differences;

o rank or census transform (the latter usually performs better);

o mutual information from a pre-computed joint density function.

Consider using the Birchfield and Tomasi (1998) technique of comparing ranges between

neighbou'ng pixels (different shifted or warped images). Also, try prewcompensating images

for bias or gain variations using one or more of the techniques discussed in Section 11.3.1.

Ex 11.5: Aggregation and window-based stereo Implement one or more of the matching

cost aggregation strategies described in Section 11.4:

o convolution with a box or Gaussian kernel;

:- shifting window locations by applying a min filter (Scharstein and Szelisld 2002);

- picking a window that maximizes some matchwreliability metric (Veksler 2001, 2003);

o Weighting pixels by their similarity to the central pixel (Yoon and Kweon 2006).

Once you have aggregated the costs in the D51, pick the winner at each pixel (winner—take-

all), and then optionally perform one or more of the following post-processing steps:

1. compute matches both ways and pick only the reliable matches (draw the others in

another color);

2. tag matches that are unsure (whose confidence is too low);

501
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3. fill in the matches that are unsure from neighboring values;

4. refine your matches to sub-pixel disparity by either fitting a parabola to the DSI values

around the Wilmer or by using an iteration of Lukas—Kanade.

Ex 11.6: Optimization-based stereo Compute the disparity space image (DSI) volume us-

ing one ofthe techniques you implemented in Exercise 1 1.4 and then implement one (or more)

of the global optimization techniques deacribed in Section 11.5 to compute the depth map.
Potential choices include:

0 dynamic programming or scanline optimization (relatively easy);

I semi-global optimization (I-lirschrniiller 2008), which is a simple extension of scanline

optimization and performs well;

a graph cuts using alpha espansions (Boykov, Veksler, and Zabih 2001), for which you

will need to find amaxeflow or min-cut algorithm (http:r‘l’visionmiddleburyedulstereo);

o loopy belief propagation (Appendix 13.5.3).

Evaluate your algorithm by running it on the Middlebury stereo data sets.

How well does your algorithm do against local aggregation (Yeon and Kwaon 2006)?I

Can you think of some extensioas or modifications to make it even better?

Ex 11.7: View interpolation, revisited Compute a dense depth map using one of the tech—

niques you developed above and use it (or, better yet, a depth map for each source image) to

generate smooth in-between views from a stereo data set.

Compare your results against using the ground truth depth data (if available).

What kinds of artifacts do you see? Can you think of ways to reduce them?

More details on implementing such algorithms can be found in Section 13.1 and Exercises
13.1—13.4.

Ex 11.8: Mimi-frame stereo Extend one of your previous techniques to use multiple input

frames (Section 11.6) and try to improve the results you obtained with just two views.

Ifhelpful, try using temporal selection (Kang and Szcliski 2004) to deal with the increased
number of occlusions in mold—frame data sets.

You can also try to simultaneously estimate multiple depth maps and make them consis-

tent (Kolmogorov and Zabih 2002; Kang and Szeliski 2004).

Test your algorithms out on some stande multi-view data sets.

Ex 11.9: Volumetric stereo Implement voxel coloring (Seitz and Dyer 1999) as a simple

extension to the plane sweep algorithm you implemented in Exercise 11.4.

1. Instead of computing the complete DSI all at once, evaluate each plane one at a time
from from to back.

2. Tag every voxel whose photoconsisteucy is below a certain threshold as being part of

the object and remember its average (or robust) color (Seitz and Dyer 1999; Eisert,

Steinbach, and Girod 2000; Kutulakos 2000; Slabaugh, Culbertson, Slabaugh et at.

2004).
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3. Erase the input pixels corresponding to tagged voiels in the input images, e.g., by

setting their alpha value to 0 (or to some reduced number, depending on occupancy).

4. As you evaluate the next plane, use the source image alpha values to modify your

photoconsistency score, e.g., only consider pixels that have full alpha or weight pixels

by their alpha values. ~

5. If the cameras are not all on the same side of your plane sweeps, use space carving

(Kutulalcos and Seitz 2000) to cycle through different subsets of source images while

carving away the volume from different directions.

Ex 11.10: Depth map merging Use the technique you developed for mum—frame stereo in

Exercise 11.8 or a different technique, such as the one described by Goesele, Snavely, Curless

at at. (200?), to compute a depth map for every input image.

Merge these depth maps into a coherent 3D model. e.g., using Poisson surface reconstruc-

tion (Kazhdan, Bolitho, and Hoppe 2006).

Ex 11.11: Shape from silhouettes Build a silhouette-based volume reconstruction algo-

rithm (Section 11.6.2). Use an octree or some other representation of your choosing.

503
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313 Rotations, see Rotations

3D alignment, 283

absolute orientation, 283, 515

orthogonal Procrastes, 283

3D photography, 537

3D video, 564

Absolute orientation, 283, 515

Active appearance model (AAM), 598

Active contours, 238

Active illumination, 512

Active rangefinding, 512

Active shape model (ASM), 243, 598

Activity recognition, 534

Adaptive smoothing, 111

Affine transforms, 34, 37

Affluities (segmentation), 260

nomializing, 262

Algebraic multigrid, 254

Algorithms

testing, viii

Aliasing, 69, 41'?

Alignment, see Image alignment

Alpha

opacity, 93

pre-multiplied, 93

Alpha matte, 93

Ambient illumination, 58 _

Analog to digital conversion (ADC), 68

AnisotroPic diffusion, 111

Anisotropic filtering, 148

Anti-aliasing filter, 70, 4]?

Aperture, 62 ‘"

Aperture problem, 347

Applications, 5

3D model reconstruction, 319, 327

3D photography, 537

augmented reality, 287, 325

automotive safety, 5

background replacement, 489

biometrics, 58 8

colorization, 442

de-interlacing, 364

digital heritage, 5 1'?

document scanning, 379

edge editing, 219

facial animation, 528

flash photography, 434

frame interpolation, 368

gaze correction, 483

head tracking, 483

hole filling, 457

image restoration, 169

image search, 630

industrial, 5

intelligent photo editing, 621

Internet photos, 32'?

location recognition, 609

machine inspection, 5

match move, 324

medical imaging, 5, 268, 358

morphing, 152

mosaic-based video compression, 383

non-photorealistic rendering, 458

Optical. character recognition (OCR), 5

panography, 277

performance-driven animation, 209

photo pop-up, 623
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Photo Tourism, 548

Photomontage, 403

planar pattern tracking, 28?
rotoscoping, 249

scene completion, 621

scratch removal, 45'!

single view reconstruction, 292
tonal adjustment, 97

video denoising, 364

video stabilization, 354

video summarization, 3 83

video-based walkthroughs, 566

VideoMouse, 288

view morphing, 315
visual effects, 5

whiteboard scanning, 379

z-keying, 489

Are length parameterization of a curve, 217
Architectural reconstruction, 524

Area statistics, 115

mean (centroid), 115

perimeter, 1 1 5
second moment (inertia), 115

Aspect ratio, 47, 48

Augmented reality, 287, 298, 325
Auto-calibration, 313

Automatic gain control (AGC), 67

Axisfangle representation of rotations, 37

B-snake, 241

B—spline, 151, 152, 220, 241, 246, 359
cubic, 128

multilevel, 518

octree, 523

Background plate, 454

Background subtraction (maintenance), 531
Bag of words (keypoints), 612, 639

distance metrics, 613

Band-pass filter, 104
Bartlett filter, see Bilinear kernel '

Bayer pattern (RGB sensor mosaic), 1’6
demosaicing, 76, 440.

Bayes’ rule, 124, 159, 66'?
MAP (maximum a postcriori) estimate, 668

posterior distribution, 66‘.1r

Bayesian modeling, 158, 66?

MAP estimate, 159, 668

matting, 449

posterior distribution, 159, 667

prior distribution, 159, 66?
uncertainty, 159 I».

Belief propagation (BP), 163, 672

update rule, 673

Bias, 91, 339

Index

Bidirectional Reflectance Distribution Function, sec
BRDF

Bilateral filter, 110

joint, 435

range kernel, 110

tone mapping, 428

Bilinear blending, 97

Bilinear kernel, 103

Biometrics, 588

Bipartite problem, 322

Blind image deconvolution, 437
Block-based motion estimation

(block matching), 341
Blocks world, 10

Blue screen matting, 94, 171, 445

Blur kernel, 62

estimation, 416, 463

Blur removal, 126, 174

Body color, 57

Boltzmann distribution, 159, 668

Boosting, 582

AdaBoost algorithm, 584

decision stump, 582

weak learner, 582

Border (boundary) efi'ects, 101, 173

Boundary detection, 215
Box filter, 103

Boxlet, 107

BRDF, 55

anisotropic, 56

isotropic, 56

recovery, 536

spatially varying (SVBRDF), 536

Brightness, 91

Brightness constancy, 3, 338

Brightness constancy constraint, 338, 345, 360
Bundle adjustment, 320
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Calibration, see Camera calibration

Calibration matrix, 46

Camera calibration, 45, 86

accuracy, 299

aliasing, 417

extrinsic, 46, 284

intrinsic, 45, 288

optical blur, 416, 463

patterns, 289

photometric, 412

plumb—lme method, 295, 300

point spread function, 416, 463

radial distortion, 295

radiometric, 412, 421, 461

rotational motion, 293, 298

slant edge, 41']r

vanishing points, 290

vignetting, 416

Camera matrix, 46, 49

Catadioptric optics, 64

Category-level recognition, 611

bag of words, 612, 639

data sets, 631

part—based, 615

segmentation, 620

surveys, 635

CCD, 65

blooming, 65

Central difference, 104

Chained transformations, 28?, 321

Chamfer matching, 1 13

Characteristic function, 115, 248, 516, 522

Characteristic polynomial, 649

Chirality, 306, 3 10

Cholesky factorization, 650

algorithm. 650

incomplete, 659

sparse, 65?

Chromatic aberration, 63, 301

Chromaticity coordinates, 73

C15 L*a*b*, see Color

CIE L*u*v*, see Color

CIE XYZ, see Color

Circle of confusién, 62

CLARE, see Histogram equalization

Clustering

agglomerative, 25 1

cluster analysis, 237, 268

divisive, 251

CMOS, 66 ,_

Co-vector, 34

Coefficient matrix, 156

Collineation, 37

Color, '1' 1

balance, 76, 85, 171

camera, 75

demosaicing, ‘16, 440

fringing, 442

hue, saturation, value (HSV), 79

L*a*b*, 74

L*u*v*, 74, 254

primaries, 71

profile, 414

ratios, 79

RGB, 72

transform, 92

twist, 76, 92

XYZ, 72

YIQ, 78

YUV, ”3'8 _

Color filter array (CFA), 76, 440

Color line model, 450

ColorChecker chart, 414

Colorization, 442

Compositing, 92, 169, 171

image stitching, 396

opacity, 93

over operator, 93

surface, 396

transparency, 93

Compression, 80

Computational photography, 409

activa illumination, 436

flash and non-flash, 434

high dynamic range, 419

references, 411, 460

tone mapping, 427

Concentric mosaic, 384, 556

CONDENSATION, 246

Condition number, 657

795
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Conditional random field (CRF), 165, 484, 621

Confusion matrix (table), 201
Conic section, 31

Conjugate gradient descent (CG), 657

algorithm, 658 .
non-linear, 658

preconditioned, 659

Connected components, 115, 114

Constellation model, 618

Content based image retrieval (CBIR), 630

Continuation method, 158

Contour _

arc length parameterization, 21?

chain code, 217

matching, 218, 231

smoothing, 218

Contrast, 91

Controlled—continuity spline, 155
Convolution, 100

_ kernel, 98

mask, 98

superposition, 100

Coring, 134, 1'17

Correlation, 98, 340

windoWed, 342

Correspondence map, 350

CrameruRao lower bound, 282, 349, 678

Cube map

Hough transform, 223

image stitching, 396
Curve

arc length parameterization, 21'?

evolution, 218

matching, 218

smoothing, 218

Cylindrical coordinates, 385

Data energy (term), 159, 668
Data sets and test databases, 680

recognition, 631
De»inter1acing', 364
Deciniation, 130

Decimation kernels

bicubic, 131

binomial, 130, 132‘

QMF, 131

windowed sine, 130

Demosaicing (Bayer), 76, 440

Depth from defocus, 51]

Depth map, see Disparity map

Depth of field, 62, 83 ,
Di-chmrnatic reflection model, 60

Difference matting (keying), 94, 172, 446, 531

Difiercnce of Gaussians (DoG), 135

Difference of low—pass (DOLP), 135

Diffuse reflection, 57

Diffusion

anisotropic, 111

Digital camera, 65

color, 75

color filter array (CFA), 76

compression, 80

Direct current (DC), 81

Direct linear transform (DLT), 284

Direct sparse matrix techniques, 655

Directional derivative, 105

selectivity, 106
Discrete cosine transform (DCT), 81, 125

Discrete Fourier transform (DFT), 118

Discriminative random field (DRF), 16'?

Disparity, 45, 473

Disparity map, 473, 492

multiple, 491

Disparity space image (DSI), 4'73

generalized, 4‘15

Displaced frame difference (DFD), 338

Displacement field, 150

Distance from face space (DFFS), 590

Distance in face space (DIFS), 590

Distance map, see Distance transform

Distance transform, 113, 174

Euclidean, 114

image stitching, 398

Manhattan (city block), 113

signed, 114

Domain (of a function), 91

Domain scaling law, 14'}fl

Downsampljng, see Decimation

Dynamic programming (DP), 485, 670

monotonicity, 487

ordering constraint, 48'?r
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scanline optimization, 487

Dynamic snake, 243

Dynamic texture, 563

Earth mover’s distance (EMD), 613

Edge detection, 210, 230

boundary detection, 215

Canny, 21 1

chain code, 217

color, 214

Difference of Gaussian, 212

edgel (edge element), 212

hysteresis, 21’?

Laplacian of Gaussian, 212

linking, 215, 231

marching cubes, 213

scale selection, 213

steerable filter, 213

zero crossing, 212

Eigenface, 589

Eigenvalue decomposition, 242, 589, 64‘?

Eigenvector, 64'?
Elastic deformations, 358

image registration, 358

Elastic nets, 239

Elliptical weighted average (EWA), 148

Environment map, 55, 555

Environment matte, 556

Epanechnikov kernel, 259

Epipolar constraint, 307

Epipolar geometry, 30?, 471

pure rotation, 311

pure translation, 31 l

Epipolar line, 471

Epipolar plane, 471, 477

image (EPI). 490, 552

Epipolar volume, 552

Epipole, 308, 471
Error rates

accuracy (ACC), 202

false negative (FN), 201

false positive (PP), 201

positive predictive value (PPV), 202 '

precision, 202

recall, 202

‘ ROC curse, 202

true negative (TN), 201

true positive (TP), 201
Errors-in—variable model, 389, 653

heteroscedastic, 654

Essential matrix, 308

5—point algorithm, 310

eight-point algorithm, 308
renormalization, 309

seven-point algorithm, 309

twisted pair, 310

Estimation theory, 662

Euclidean transformation, 33, 36

Euler angles, 32

Expectation maximization (EM), 256

Exponential twist, 39

Exposure bracketing, 421

Exposure value (EV), 62, 412

F-number (stop), 62, 84

Face detection, 578

boosting, 582
cascade of classifiers, 583

clustering and PCA, 580

data sets, 63 1

neural networks, 580

support vector machines, 582

Face modeling, 526

Face recognition, 588

active appearance model, 598
data Sets, 631

eigenface, 589

elastic bunch graph matching, 596

local binary patterns (LBP), 635

local feature analysis, 596

Face transfer, 561

Facial motion capture, 528, 530, 561

Factor graph, 160, 669, 672

Factorization, 14, 315

missing data, 318

projective, 318

Fast Fourier transform (EFT), 118

Fast matching method (FMM), 248

Feature descriptor, 196, 229

bias and gain normalization, 196

GLOH, 198

patch, 196
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PCA-SIFT, 197

performance (evaluation), 198

quantization, 207, 607, 612

SIF'I‘, 197

steerable filter, 198

Feature detection, 183, 185, 228

Adaptive non-maximal suppression, 189
affine invariance, 194

auto-correlation, 185

Forstner, 188

Harris, 1 8 8

Laplacian of Gaussian, 191

MSER, 195

region, 195

repeatability, 190
rotation invariance, 193

scale invariance, 191

Feature matching, 183, 200, 229

densification, 20'?

efficiency, 205

error rates, 201

hashing, 205

indexing structure, 205

k-d trees, 206

locality sensitive hashing, 205

nearest neighbor, 203

strategy, 200

verification, 207

Feature tracking, 207, 230

affine, 208

learning, 209

Feature tracks, 315, 327

Feature-based alignment, 275

2D, 275 '

BB; 283

iterative, 278

Jacobian, 276

least squares, 275

match verification, 603

RANSAC, 281

robust, 281

Field of Experts (FoE), 163

Fill factor, 67

Fill-in, 322, 656
Filter

adaptive, 11 1

band-pass, 104

bilateral, 110

directional derivative, 105

edge—preserving, 109. I ll

Laplacian of Gaussian, 104

median, 108

moving average, 103

non-linear, 108

separable, 102, 173

steerable, 105, 174

Filter coefficients, 98

Filter kernel, see Kernel

Finding faces, see Face detection

Finite element analysis, 155

stiffness matrix, 156

Finite impulse response (FIR) filter, 98, 107

Fisher information matrix, 277, 282, 664, 678

Fisher’s linear discriminant (FLU), 593

Fisheye lens, 53

Flash and non—flash merging, 434

Flash matting, 454

Flip-book animation, 296

Flying spot scanner, 514

Focal length, 47, 48, 61

Focus, 62

shape—from, 511, 539

Focus of expansion (FOE), 311

Form factor, 60

Forward mapping, see Forward warping

Forward warping, 145, 177

Fourier transform, 1. 16, 174

discrete, 118

examples, 119

magnitude (gain), 117

pairs, 119
Parseval’s Theorem, 1 19

phase (shift). 11'?

power spectrum, 123

properties, 11 8

two~din1ensional, 123

Fourier-based motion estimation, 341

rotations and scale, 344

Frame interpolation, 368

Free-viewpoint video, 564
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Fundamental matrix, 312 scaled rotation, 34, 37

estimation, see Essential matrix _ similarity, 34, 3?
Fundamental radiometric relation, 65 ‘ translation, 33, 36

Geometry image, 520

Gain, 91: 339 Gesture recognition, 530 ~-
Gamma, 92 Gibbs distribution, 159,668
Gamma correction, '17, 85 Gibbs sampler, 570
Gap closing (image stitching), 382 Gimbal lock, 37
Garbage matte, 454 Gist (ofa scene), 623, 626
Gaussian kernel, 103 Global illumination, 60
Gaussian Markov random field (GMIRF), 163, 168, 438 Global opmmzafion, 153
Gaussian mixtures, see Mixture of Gaussians GPU algorithms, 533
Gaussian pyramid, 132 Gradient location-orientation histogram (GLOH), 198
Gaussian 59315 ”91911135 (GSM), 163 Graduated non—convexity (GNC), 158
Gaze correction, 483 Graph outs
Geman—McCInre function, 338 MRF infarellce, 161, 574
Generalized cylinders, 11, 515, 519 normalized cuts, 250
Geodesic active contain, 248

Geodesic distance (segmentation), 267

Geometric image formation, 29

Graph-based Segmentation, 252

Grassfire transform, 114, 219, 398

Ground control points, 309, 377
Geometric lens aberrations, 63

Geometric primitives, 29

homogeneous coordinates, 30

lines, 30, 31

normal vector, 30

normal 'vectors, 31

planes, 31

points, 30, 3 1
Geometric transformations

2.)), 33, 145

3D, 36

3D perspective, 37

3D rotations, 37

affine, 34, 37

bilinear, 35

calibration matrix, 46

collineation, 37

Euclidean, 33, 36

forward warping, 145, 177

hierarchy, 34

homograpiiy, 34, 37, 50, 379

inverse waiping, 146
perspective, 34

projections, 42

projective, 34

rigid-body, 33, 36

Harnmersley—Clifford theorem, 159, 668

Haon window, 121

Harris corner detector, see Feature detection

Head tracking, 483

active appearance model (AAM), 598

Helmholtz reciprocity, 56

Hessian, 156, 189, 277, 279, 282, 346, 350, 652

eigenvalues, 349

image, 346, 361

inverse, 282, 349, 352

local, 360

patch—based, 35 1

rank-deficient, 326

reduced motion, 322

sparse, 322, 334, 655

Heteroscedastic, 2'17, 654

Hidden Markov model (HMM), 563

Hierarchical motion estimation, 341

High dynamic range (I-IDR) imaging, 419
formats, 426

tone mapping, 427

Highest confidence first, 670

Highest confidenée first (HCF), I61

Hilbert transform pair, 106

Histogram equalization, 94, 172
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locally adaptive, 96, 172

Histogram intersection, 613

Histogram of oriented gradients (HOG), 585

History of computer visiOn, 10

Hole filling, 457

Homogeneous coordinates, 30, 306

Homography, 34, 50, 379

Hough transform, 221, 233

cascaded, 224

cube map, 223

generalized, 222

Human body shape modeling, 533

Human motion tracking, 530

activity recognition, 534

adaptive shape modeling, 533

backgron subtraction, 531

flow-based, 531

initialization, 531

kinematic models, 532

particle filtering, 533

probabilistic models, 533

Hyper-Laplacian, 158, 162, 164

Ideal points, 30

Ill-posad (ill—conditioned) problems, 154
Illusions, 3

Image alignment
feature—based, 275, 475

intensity-based, 337

intensity—based vs. featurewbased, 393

Image analogies, 458

Image blending

feathering, 400

GIST, 405

gradient domain, 404

image stitching, 398

Poisson, 404

pyramid, 140, 403

Image compositing, see Compositing

Image compression, 80

Image decimation, 130

Image deconvolution, see Blur removal

Image filtering, 98

Image formation

geometric, 29

photometric, 54

Image gradient, 104, 112, 345

constraint, 156 I

Image interpolation, 127

Image matting, 443, 464

Image processing, 89

textbooks, 89, 169

Image pyramid, 12?, 1'15

Image resampling, 145, 1'15

test images, 176

Image restoration, 126, 169

blur removal, 126, 174, 175

deblocking, 179

inpa'nning, 169

noise removal, 126, 1'14, 178

using MRFs, 169

Image search, 630

Image segmentation, see Segmentation

Image sensing, see Sensing

Image statistics, 115

Image stitching, 375

automatic, 392

bundle adjustment, 388

compositing, 396

coordinate transformations, 397

cube map, 396 _

cylindrical, 385, 407

tie—ghosting, 392, 401, 408

direct vs. feature-based, 393

exposure compensation, 405

feathering, 400

gap closing, 382

global alignment, 387

homography, 379

motion models, 378

panography, 27'?

parallax removal, 391

photograrmnetry, 377

pixel selection, 398

planar perspective motion, 3'19

recognizing panoramas, 392

rotational motion, 380

seam selection, 400

spherical, 385

up vector selection, 390

Image warping, 145, 177, 341

Index
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Image—based modeling, 547

Image—based rendering, 543
concentric mosaic, 556

environment matte, 556

impostors, 549

layered depth image, 549

layers, 549

light field, 551

Lumigraph, 551

modeling vs. rendering continuum, 559

sprites, 549

surface light field, 555

unstructured Lumigraph, 554

view interpolation, 545

view—dependent texture maps, 54'?

Image-based visual hull, 499

ImageNet, 629

Implicit surface, 522

Impostors, see Sprites

Impulse response. 100
Incremental refinement

motion estimation, 341, 345

Incremental rotation, 41

Indexing structure, 205

Indicator function, 522

Industrial applications, 5

Infinite impulse response (DR) filter, 10'!

Influence function, 158, 281, 666

Information matrix, 277, 282, 326, 664, 628

Inpainting, 457

Instance recognition, 602

algorithm, 606

data sets, 631

geometric alignment, 603
inverted index, 604

large scale, 604

match verification, 603

query expansion, 608

stop list, 605
visual words, 605

vocabulary tree, 60'?

Integrability constraint, 509

Integral image, 106

Integrating sphere, 414

Intelligent scissors, 247

Interaction potential, 159, 160, 668, 672

Interactive computer vision, 53'?

International Color Consortium (ICC), 414

Internet photos, 327

Interpolation, 127

Interpolation kernels
bicubic, 128

bilinear, 12’?

binomial, 127

sine, 130

Spline, 130
Intrinsic camera calibration, 288

Intrinsic images, 11

Inverse kinematics (IK), 532

Inverse mapping, see Inverse Warping

Inverse problems, 3, 154

Inverse warping, 146

ISO setting, 6'?

Iterated closest point (ICP), 239, 283, 515

Iterated conditional modes (ICM), 161, 670

Iterative back projection (IBP), 437

Iterative feature-based alignment, 218

Iterative sparse matrix techniques, 656

conjugate gradient, 65'}:Ir

Iteratively reweighted least squares

(IRIS), 281', 286, 350, 666

Jacobian, 276, 287, 321, 345, 654

image, 346
motion, 350

sparse, 322, 334, 655
Joint bilateral filter, 435

Joint domain (feature space), 259

K—d trees, 206

K-means, 256

Kalmau snakes, 243

Kanade—Lucas—Tomasi (KLT) tracker, 208

Karhunen—Lo‘cve transform, 125, 589

Kernel, 103

bilinear, 103

Gaussian, 103

low-pass, 103

Sobel operator, 104

unsharp mask, 103

Kernel basis function, 155
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Kernel density estimation, 257

Keypoint detection, see Feature detection

Kinematic model (chain), 532

Kruppa equations, 314

L*a*b*, see Color

L*u*v*, see Color

L1 norm, 158, 338, 361, 523

L00 norm, 324

Lambertian reflection, 57

Laplacian matting, 451

Laplacian of Gaussian (LOG) filter, 104

Laplacian pyramid, 135

blending, 141, 126, 403

perfect reconstruction, 135

Latent Dirichlet process (LDP), 626

Layered depth image (LDI), 549

Layered depth panorama, 556

Layered motion estimation, 365

transparent, 368

Layers

image-based rendering, 549

Layout consistent random field, 621

Learning in computer vision, 627

Least median of squares (LMS), 281

Least squares

iterative solvers, 286, 656

linear, 83, 275, 283, 337, 648, 651, 662, 665, 68'?

non—linear, 278, 286, 306, 654, 666, 687

robust, see Robust least squares

sparse, 322, 656, 687

total, 653

weighted, 27?, 433, 436, 443
Lens

compound, 63

nodal point, 63
thin, 61

Lens distortions, 52

calibration, 295

decentering, 53

radial, 52

spline-based, 53

tangential, 53

Lens law, 61

Level of detail (LOD), 520

Level Sets, 248, 249

fast matching method, 248

geodesic active contour, 248

Levenberg—Marquardt, 279, 326, 334, 655, 684

Lifting, see Wavelets

Light field ..

higher dimensional, 558

light slab, 552

ray space, 553

rendering, 551

surface, 555

Lightness, 74

Line at infinity, 30

Line detection, 220

Hongh transform, 221, 233

RANSAC, 224

simplification, 220, 233

successive approximation, 221, 233

Line equation, 30, 31

Line fitting, 83, 233

uncertainty, 233

Line hull, see Visual hull

Line labeling, 11

Line process, 170, 484, 669

Line spread function (LSF), 417

Line—based structure from motion, 330

Linear algebra, 645

least squares, 65 1

matrix decompositions, 646

references, 646

Linear blend, 91

Linear discriminant analysis (LDA), 593

Linear filtering, 98

Linear operator, 9]

superposition, 91

Linear shift invariant (LSD filter, 100

Live-wire, 247

Local distance functions, 596

Local operator, 98

Locality sensitive hashing (L8H), 205

Locally adaptive histogram equalization, 96

Location recognition, 609

Loopy belief propagation (LBP), 163, 673

Low-pass filter, 103

sine, 103

Lumigraph, 551
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unstructured, 554 triangulation, 445, 454

Luminance, 73 trimap, 446

Lumisphere, 555 two screen, 445
video, 454

M-estimator, 281’ 338’ 666 Maximally stable extremal region (MSER), 195
Mahalanobis distance, 256, 591, 594, 663 Maximum a posteriori (MAP) estimate, 159’ 668

Manifold “195$“ 400' 569 Mean absolute difference (MAD), 479
Markov chain Monte Carlo (MCMC), 665, 670 Mean average precision, 202

Markos random field, 158, 668 Mean Shift, 254, 258
cilques’ 160' 669 bandwidth selection, 259
directed edges, 266 Mean square error (MSE), 81, 479
dynanuc, 675 Measurement equation (model), 306, 662

Measurement matrix, 3 16

. Measurement model, see Bayesian model

layout cons1stent, 621 Medial axis transform (MAT), 114
learning parameters, 158 . . .

_ Median absolute devratron (MAD), 3384 66
11116 process, 170, 48 , 9 Median filter, 108

' hb h 160,668neig or 00d, weighted, 109
de, 160, 669 . . . .

or I Medical image registration, 358
random walker, 267 M di 31' , 268
stereo matching, 484 e c image segmentatlon,

flux, 266

inference, see MRF inference

Marr’s fi'amework, 12 Membrane21155 _
computational theory, 12 Mesh-base wamegi 149. 177

Metamer, 72
hardware implementation, 12

representations and algorithms, 12
Match move, 324

Matrix decompositions, 646

Metric learning, 596

Metric tree, 20? .

MIP-mapping, 147

triljnear, 148
Choiesky, 650

eigenvalue (ED), 64’? Mixture of Gaussians, 239, 243, 256
QR, 649 color model, 447
singular value (SVD), 646 expectation maximization‘(EM), 256
square root, 650 mixing coefficient, 256

Matte reflection, 57 59ft 3598131113119 256
Matting, 92’ 94, 443’ 464 Model selection, 378, 668

alpha matte, 93 Model—based reconstruction, 523
Bayesian, 449 architecture, 524
blue screen, 94, 171, 445 heads 31119 faces, 525

difference, 94, 172, 446, 531 human body. 530

flash. 454 Model-based stereo, 524, 547

GrabCut, 450 Models

Laplacian, 451 Bayesian, 158, 667
natural, 446 forward. 3

optinfization-based, 450 physically based, 13
Poisson, 450 physics-based, 3

shadow, 452 probabilistic, 3

smoke, 452 Modular eigenspace, 595
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Modulation transfer function (M’I‘F), 70, 417

Morphable model

body, 533

face, 528, 561

multidimensional, 561

Morphing. 152, 178, 545, 546

3D body, 533

3D face, 528

automated, 3’12

facial feature, 561

feanirewbascd, 152, 1'18

flow-based, 372

video textures, 563

view morphing, 546, S70

Morphological operator, 112

closing, 112

dilation, 1 1 2

erosion, 112

opening, 112

Morphology, 112

Mosaic, see Image stitching
Mosaics

Motion compensated video compression, 341, 370

motion models, 378

video compression, 383

whiteboard and document scanning, 379

Motion compensation, 81

Motion estimation, 337

affine, 350

aperture problem, 347

compositional, 351

Fourier—based, 341

frame interpolation, 368

hierarchical, 341

incremental refinement, 345

layered, 365

learning, 354,361

linear appearance variation, 349

optical flow, 360

parametric, 350

patch—based, 33?, 351

phase correlation, 343

quadtree spline-based, 358
reflections, 369 '—

spline-based, 355

Index

translational, 337

transparent, 368

uncertainty modeling, 34'?

Motion field, 350
Motion models

learned, 354

Motion segmentation, 373

Motion stereo, 491

Motion-based user interaction, 373

Moving least squares (MLS), 522

MRF inference, 161, 669

alpha expansion, 163, 675

belief propagation, 163, 672

dynamic programming, 6’30

espansion move, 163, 6'15

gradient descent, 670

graph cuts, 161, 614

highest confidence first, 161

highest confidence first (HCF), 6'10
iterated conditional modes, 161, 670

linear programming (LP), 676

loopy belief propagation, 163, 633
Markov chain Monte Carlo, 670

simulated annealing, 161, 670

stochastic gradient descent, 161, 670

swap move (alpha—beta), 163, 615

Swendsen~Wang, 670

Multi-frarne motion estimation, 363

Multi-pass transforms, 149

Multi—perspective panoramas, 3S4

Mold—perspective plane sweep (MPPS), 391
Multiwview stereo, 489

epipolar plane image, 490
evaluation, 496

initialization requirements, 496

reconstruction algorithm, 495

scene representation, 493

shape priors, 495

silhouettes, 497

Space carving, 496

spade-temporally shiftable window, 491

taxonomy, 493

visibility, 495

volumetric, 492

voxel coloring, 495
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Multigrid, 660

algebraic (AMG), 254, 660

Multiple hypothesis tracking, 243

Multiple—center—of-projection images, 384, 569

Multiresolution representation, 132

Mutual information, 340, 358

Natural image matting, 446

Nearest neighbor

distance ratio (N'NDR), 203

matching, see Feature matching

Negative posterior log likelihood, 159, 664, 66'!

Neighborhood operator, 98, 108

Neural networks, 580

Nintendo Wii, 288

Nodal point, 63
Noise

sensor, 67, 415

Noise level function {NLF), 68, 84, 415, 462

Noise removal, 126, 174, 178

Non—linear filter, 108, 169

Non-linear least squares

seeLeast squares, 278

Non—maximal suppression, see Feature detection

Non—parametric density modeling, 257

Non-photorealistic rendering (NPR), 458

Non—rigid motion, 332

Normal equations, 27?, 346, 652, 654

Normal map (geometry image), 520

Normal vector, 3 1

Normalized cross-correlation (NCC), 340, 371, 479

Normalized cuts, 260

intervening contour, 262
Normalized device coordinates (NBC), 44, 48

Normalized sum of squared differences

(NSSD), 340
Norms

L1, 158, 338,361, 523

LOO, 324

Nyquist rate I frequency, 69

Object detection, 578

car, 585, 634

face, 578

part-hased,’ 586

pedestrian, 585, 601

Object-centered projection, 51

Occluding contours, 4'76

Octree reconstruction, 498

Octree spline, 359

Omnidirectional vision systems, 566

Opacity, 93

Operator

linearity, 91

Optic flow, see Optical flow

Optical center, 47

Optical flow, 360

anisotropic smoothness, 361

evaluation, 363

fusion move, 363

global and local, 360
Markov random field, 361

multi—frame, 363

normal flow, 34?

patch-based, 360

region—based, 367

regularization, 360

robust regularization, 361
smoothness, 360

total variation, 361

Optical flow constraint equation, 345

Optical illusions, 3

Optical transfer function (OTF), 70, 416

Optical triangulation, 513

Optics, 6]
chromatic aberration, 63

Seidel aberrations, 63

vignetting, 64, 462

Optimal motion estimation, 320

Oriented particles (points), 521

Orthogonal Procrastes, 283

Orthographic projection, 42

Osculating circle, 47?

Over operator, 93

Overview, 17

Padding, 101, 173

Panography, 277, 29?

Panorama, see Image stitching

Panorama with depth, 384, 475, 556

Para—perspective projection, 44

Parallel tracking and mapping (PTAM), 325
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Parameter sensitive hashing, 205 Plane-based structure from motion, 331
Parametric motion estimation, 350 Plenoptic function, 551

Parametric surface, 519 Plenoptic modeling, 546

Parametric transformation, 145, 177 Plumb-line calibration method, 295, 300

Parseval’s Theorem, see Fourier transform Point distribution model, 242

Part-based recognition, 615 Point operator, 89

constellation model, 618 Point process, 89

Particle filtering, 243, 533, 665 Point spread function (PSF), '70

Parzen window, 25'? estimation, 416, 463

PASCAL Visual Object Classes Challenge (VCC), 631 Point-based representations, 521

Patch—based motion estimation, 337 Points at infinity, 30

Peak signal-to-noise Ratio (PSNR), 81, 126 Poisson

Pedestrian detection, 585 blending, 404

Penumbra, 55 equations, 523

Performance-driven animation, 209, 530, 561 matting, 450

Perspective n-point problem (PnP), 285 noise, 68

Perspective projection, 44 surface reconstruction, 523

Perspective transform (2D), 34 Polar coordinates, 30

Phase correlation, 343, 371 Polar projection, 53, 387

Phong shading, 58 Polyphase filter, 127

Photo pop-up, 623 Pop-out effect, 4

Photo Tourism, 548 Pose estimation, 284

Photo-mosaic, 37'? iterative, 286

Photoconsistency, 474, 494 Power spectrum, 123

Photometric image formation, 54 Precision, see Error rates

calibration, 412 mean average, 202.

global illumination, 60 Preconditioning, 659

lighting, 54 Principal component analysis (PCA), 242, 580, 589,

optics, 61 648, 664

radiosity, 60 face modeling, 526
reflectance, 55 generalized, 649

shading, 58 missing data, 318, 649

Photometric stereo, 510 Prior energy (term), 159, 668

Photometry, 54 Prior model, see Bayesian model

PhotomOntage, 403 Profile curves, 476

Physically based models, 13 Progressive mesh (PM), 520

Physics-based vision, 15 Projections

Pictorial structures, 11, 17, 616 object-centered, 51

Pixel transform, 91 . orthographic, 42
Pliicker coordinates, 32 para-perspective, 44

Planar pattern tracking, 28'? perspective, 44

Plane at infinity, 31 Projective (uncalibrated) reconstruction, 312

Plane equation, 31 _ Projective depth, 49, 474

Plane plus parallax, 49', 356, 366, 474, 549 Projective disparity, 49, 474

Plane sweep, 474, 501 - Projective space, 30
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PROSAC (PROgressive SAmple Consensus), 282

PSNR, see Peak signal-to-noise ratio

Pyramid, 127, 175

blending, 141, 176

Gaussian, 132

half—octave, 135

Laplacian, 135
motion estimation, 341

octave, 132

radial frequenby implementation, 140

steerable, 140

Pyramid match kernel, 613

QR factorization, 649

Quadratic form, 156

Quadrature mirror filter (QMF), 131

Quadiic equation, 31, 32

Quadtree spline

motion estimation, 358

restricted, 358

Quaternions, 39

antipodal, 39

multiplication, 40

Query by image content (QBIC), 630

Query expansion, 608

Quincunx sampling, 135

Radial basis function, 151, 155, 518

Radial distortion, 52

barrel, 52

calibration, 295

parameters, 52

pincushion, 52

Radiance map, 424

Radiometric image formation, 54

Radiometric response function, 4-12

Radiometry, 54

Radiosity, 60

Random walker, 267, 675

Range (of a function), 91

Range data, see Range scan

Range image, see Range scan

Range scan

alignment, 5'15, 540

largelscenes'. 517
merging, 516

registration, 515, 540

segmentation, 5 15

volumetric, 516

Range sensing (rangefinding), 512

coded pattern, 513

light stripe, 513

shadow stripe, 513, 540

spacetime stereo, 515

stereo, 514

texture pattern (checkerboard), 5 14

time of flight, 514
RANSAC

(RAndom SAmple Consensus), 281

inliers, 281

preemptive, 282

progressive (PROSAC), 282

RAW image format, 68

Ray space (light field), 553

Ray tracing, 60

Rayleigh quotient, 262

Recall, see Error rates

Receiver Operating Characteristic

area under the curve (AUC), 202

mean average precision, 202

ROC curve, 202, 229

Recognition, 575

3D models, 637

category (class), 611

color simiiarity, 630

context, 625

contour—based, 636

data sets, 631

face, 588

instance, 602

large scale, 628

learning, 627

part-based, 615

scene understanding, 625

segmentation, 620

shape context, 636

Rectangle detection, 226

Rectification, 472, 500

standard rectified geometry, 473
Recursive filter, 107

Reference plane, 49
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Reflectance, 55

Reflectance map, 509

Reflectance modeling, 535
Reflection

(ii—chromatic, 60

diffuse, 57

specular, 58

Region

merging, 251

Splitting, 251

Region segmentation, see Segmentation

Registration, see Image Alignment
feature—based, 275

intensity-based, 337

medical image, 358

Regularization, 154, 356

robust, 157

Regularization parameter, 155

Residual error, 276, 281, 306, 320, 338, 346, 350, 361,

651, 658

RGB (red green blue), see Color

Rigid body transformation, 33, 36
Robust error metric, sec Robust penalty function

Robust least squares, 224, 226, 281, 338, 666

iteratively reweighted, 281, 286, 350, 666

Robust penalty function, 157, 338, 349, 437, 475, 479,
480, 484, 666

Robust regularization, 157
Robust statistics, 33 8, 666

inliers, 281

M—estirnator, 281, 338, 666

Rodriguez‘s formula, 38

Root mean square error (RMS), 81, 339

Rotations, 37

Euler angles, 37

axisfanglc, 37

exponential twist, 39
incremental, 41

interpolation, 41

quaternions, 39

Rodriguez’s formula, 38

Sampling, 69
Scale invariant feature transform (SI'FI‘), 197

Scale-space, 12, 1045135, 249
Scatter matrix, 589

between-class, 593

withinwclass, 592

Scattered data interpolation, 15 1, 518

Scene completion, 621

Scene flow, 492, 565

Scene understanding, 625

gist, 623, 626

scene alignment, 628

Schur complement, 322, 656

Scratch removal, 457

Seam selection

image stitching, 400

Second~order cone programming (SOCP), 324

Seed and grow

stereo, 476

structure from motion, 328

Segmentation, 235
active contours, 23 8

aflinities, 260

binary MRF, 160, 264
CONDENSATION, 246

connected components, 115. 174

energy-based, 264

for recognitiou, 620

geodesic active contour, 248

geodesic distance, 267

GrabCut, 266, 450

graph cuts, 264

graph~based, 252

hierarchical, 251, 254

intelligent scissors, 24'?

joint feature space, 259

k—means, 256

level sets, 248

mean shift, 254, 258

medical image, 268

merging, 251

minimum description length (MDL), 264
mixture of Gaussiaus, 256

Mumford—Shah, 264

non-parametric, 257
normalized cuts, 260

probabilistic aggregation, 253
random walker, 267

snakes, 238
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splitting, 251

stereo matching, 487

thresholding, 112

tobogganing, 247, 251

watershed, 251

weighted aggregation (SWA), 263
Seidel aberrations, 63

Self-calibration, 313

bundle adjustment, 315

Kruppa equations, 3 14

Sensing, 65

aliasing, 69, 41';l

color, 71

color balance, '16

gamma, '1'?

pipeline, 66, 413

sampling, 69

sampling pitch, 67

Sensor noise, 6?, 415

amplifier, 6‘?

dark current, 67

fixed pattern, 6'?

shot noise, 6'?

Separable filtering, 102, 173

Shading, 58

equation, 5?

shape-from, 508

Shadow matting, 452

Shape context, 219, 636

Shape from

focus, 511, 539

photometric stereo, 510

profiles, 476

shading, 503

silhouettes, 497

specularities, 511

stereo, 467

texture, 5 10

Shape parameters, 242, 598

Shape-from—X, 12

focus, 12

photometric stereo, 12

shading, 12

texture, 12"

Shift invariance, 100

Shiftable multi—soale transform, 140

Shutter speed, 66

809

Signed distance function. 248, 515, 521. 522

Silhouette-based reconstruction, 4-97
octree, 498

visual hull, 49?

Similarity transform, 34, 37’

Simulated annealing, 161, 670

Simultaneous localization and mapping (SLAML 324
Sine filter

interpolation, 130

low~pass, 103

Windowed, 130

Single View metrology, 292, 300

Singular value decomposition (SVD). 646
Skeletal set, 324, 328

Skeleton, 114, 219

Skew, 46, 47

Skin color detection, 85

Slant edge calibration, 417

Slippery spring, 240

Smoke matting, 452

Smoothness constraint, 155

Srnoothness penalty, 155

Snakes, 238 -

ballooning, 239

dynamic, 243

internal energy, 238

Kalman, 243

shape priors, 241

slippery spring, 240

Soft assignment, 256

Software, 682

Space carving

multi—view stereo, 496

Spacetirne stereo, 515

Sparse flexible model, 617

Sparse matrices, 655, 687

compressed sparse row (CSR), 655

skyline storage, 655

Sparse methods

direct, 655, 687

iterative, 656, 68'?

Spatial pyramid matching, 614

Spectral response function, 75
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Spectral sensitivity, 1'5

Specular flow, 5 11

Specular reflection, 58

Spherical coordinates, 31, 223, 225, 385

Spherical linear interpolation, 41

Spin image, 515

Splatting, see Forward warping
volumetric, 521

Spline

controlled continuity, 155

octree, 359

quadtree, 358

thin plate, 155

Spline-based motion estimation, 355

Splining images, see Laplacian pyramid blending

Sprites

image—based rendering, 549
motion estimatiou, 365

video, 563

video compression, 383

with depth, 550

Statistical decision theory, 662, 665

Steerable filter, 105, 174

Steerable pyramid, 140
Steerable random field, 162

Stereo, 46'?

aggregation methods, 481, 501

coarse—to—fine, 485

cooperative algorithm, 485

corresptmdence, 469

curve-based, 476

dense correspondence, 4'17

depth map, 469

dynamic programming, 485

edge~based, 4'15

epipolar geometry, 471
feature~based, 4'15

global optimization, 484, 502

graph cut, 485

layers, 488

local methods, 480

model-based, 524, 547

multi-view, 489

non—parametric similarity measures, 429

photoconsistency, 424

plane sweep, 474, 501

rectification, 472, 500

region-based, 480

scanline optimization, 487

seed and grow, 4'16 ,_

segmentation—based, 480, 48?

semi-global optimization, 487

shiftable window, 491

similarity measure, 479

spacen'rne, 515

sparse correspondence, 475

sub-pixel refinement, 482

support region, 480

taxonomy, 469, 478

uncertainty, 482

ndndow—based, 480, 501

wmner-take-all (WTA), 481

Stereo—based head tracking, 483

Stiffness matrix, 156

Stitching, see Image stitching

Stochastic gradient descent, 161

Structural Similarity (SSIM) index, 126

Structure from motion, 305

affine, 311r

has-relief ambiguity, 326

bundle adjustment, 320

constrained, 329

factorization, 315

feature tracks, 32'1“

iterative factorization, 318

line-based, 330

multi—frarne, 3 15

non-rigid, 332

orthographic, 315

plane-based, 319, 33 l

projective factorization, 318

seed and grow, 328

self—calibration, 313

skeletal set, 324, 328

unto-frame, 30'?

uncertainty, 326

Subdivision surface, 519

subdivision connectivity, 520

Subspace learning, 596

Index

Sum of absolute differences (SAD), 33 8, 371, 479
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Sum of squared differences (SSD), 33?, 371, 479

bias and gain, 339

Fourier-based computation, 342
normalized, 340

surface, 186, 348

weighted, 339

windowed, 339

Sum of sum of squared differences (SSSD), 489

Summed area table, 106

Super—resolution, 436, 463

example—based, 438

faces, 439

hallucination, 438

prior, 43'?

Superposition principle, 91

Superquadric, 522

Support vector machine (SVM), 582, 585

Surface element (surfel), 521

Surface interpolation, 5 18

Surface light field, 555

Surface representations, 518

non-parametric, 5 19

parametric, 519

point-based, 521

simplification, 520

splines, 519

subdivision surface, 519

symmetry-seeking, 519

triangle mesh, 519

Surface simplification, 520

SwendsennWang algorithm, 670

Telecentric lens, 42, 512

Temporal derivative, 346, 360

Temporal texture, 563

Term frequency—inverse document frequency (TF—IDF),
605

Testing algorithms, viii

TextonBoost, 621
Texture

shape-from, 510

Texture addressing mode, 102

Texture map

recovery, S34

flew-dependent, 535, 547

Texture mapping

anisotropic filtering, 148

MlP-mapping, 147

multi-pass, 149

trilinear interpolation, 148

Texture synthesis, 455, 465 ..

by numbers, 459

hole filling, 457

image quilting, 456

non-parametric, 455

transfer, 45%

Thin lens, 61

Thin—plate spline, 155

Thresholding, 112

Through—the-lens camera control, 287, 324

'Ibbogganing, 247, 251

Tonal adjustment, 9?, 172

Tone mapping, 42'?

adaptive, 423?l

bilateral filter, 428

global, 427

gradient domain, 430

halos, 428

interactive, 43 1

local, 42'?

scale selection, 431

Total least squares (TLS), 233, 349, 653

Total variation, 158, 361,523

Tracking

feature, 207

head, 483

human motion, 530

multiple hypothesis, 243

planar pattern, 287

PTAM, 325

Translational motion estimation, 337

bias and gain, 339

Transparency, 93

Travelling salesman problem (TSP), 239

Tri—cbromatic sensing, ’72

Tri—stimulus values, 72, 75

Triangulation, 305

Trilinear interpolation, see lWP~mapping

Trimap (matting), 446

Trust region method, 655

Two-dimensional Fourier transform, 123
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Uncanny valley, 3

Uncertainty

correspondence, 277

modeling, 282, 678

weighting, 277

Unsharp mask, 103

Upsainpling. see Interpolation

Vanishing point

detection, 224, 234

Plough, 224

least squares, 226

modeling, 524

uncertainty, 234

Variable reordering, 656

minimum degree, 656

multi—frontal, 656

nested dissection, 656

Variable state dimension filter (VSDF), 323

Variational method, 154

Video compression

motion compensated, 341

Video compresaion (coding), 370

Video denoising, 364

Video matting, 454

Video objects (coding), 365

Video sprites, 563

Video stabilization, 354, 372

Video texture, 561

Video-based animation, 560

Vidco~based rendering, 560

3D video, 564

animating pictures, 564

sprites, 563

video texture, 561

virtual viewpoint video, 564

walkthroughs, 566

VideoMouse, 288

View correlation, 324

Wow interpolation, 315, 545, 570

View morphing, 315,546,563

VieW~based eigenspaee, 595

View-dependent texture maps, 547

Vignetting, 64, 339, 416, 462

mechanical, 65"

natural, 64

Virtual vieWpoint video, 564

Visual hull, 497

image-based, 4-99

Visual illusions, 3

Visual odometry, 324

Visual words, 207, 605, 612

Vocabulary tree, 20?, 607

Volumetric 3D reconstruction, 492

Index

Volumetric range image processing (VRIP), 516

Volumetric representations, 522

Voronoi diagram, 400

Voxel coloring

multi-view stereo, 495

Watershed, 251, 257

basins, 251, 257

oriented, 25 1

Wavelets, 136, 176

compression, 176

lifting, 138

OVercomplete, 137, 140

second generation, 139

self-inverting, 140

tight frame, 137

weighted, 139

Weaving wall, 477 '

Weighted least squares (WIS), 431, 443

Weighted prediction (bias and gain), 339

White balance, 76, 85

Whitening transform, 591

Wiener filter, 123, 124, 174

Wire removal, 457

Wrapping mode, 102

XYZ, see Color

Zippering, 516
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