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28 2 Image formation

(c) (d)

Figure 2.1 A few components of the image formation process: (a) perspective projection; (b) light scattering
when hitting a surface; (c) lens optics; (d) Bayer color filter array.
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2.1 Geometric primitives and transformations

Before we can intelligently analyze and manipulate images, we need to establish a vocabulary
for describing the geometry of a scene. We also need to understand the image formation
process that produced a particular image given a set of lighting conditions, scene geometry,
surface properties, and camera optics, In this chapter, we present a simplified model of such
an image formation process. .

Section 2.1 introduces the basic geometric primitives used throughout the book (points,
lines, and planes) and the geemetric transformations that project these 3D quantities into 2D
image features (Figure 2.1a). Section 2.2 describes how lighting, surface properties (Fig-
ure 2.1b), and camera eptics (Figure 2.1c) interact in order to produce the color values that
fall onto the image sensor, Section 2.3 describes how continuous color images are turned into
discrete digital samples inside the image sensor (Figure 2.1d) and how to avoid (or at least
characterize) sampling deficiencies, such as aliasing.

The material covered in this chapter is but a brief summary of a very rich and deep set of
topics, traditionally covered in a number of separate fields, A more thorough introduction to
the geometry of points, lines, planes, and projections can be found in textbooks on multi-view
geometry (Hartley and Zisserman 2004; Faugeras and Luong 2001) and computer graphics
(Foley, van Dam, Feiner et al. 1995). The image formation (synthesis) process is traditionally
taught as part of a computer graphics curriculum (Foley, van Dam, Feiner et al. 1995; Glass-
ner 1995; Watt 1995; Shirley 2005) but it is also studied in physics-based computer vision
(Wolff, Shafer, and Healey 1992a), The behavior of camera lens systems is studied in optics
(Méller 1988; Hecht 2001; Ray 2002). Two good books on color theory are (Wyszecki and
Stiles 2000; Healey and Shafer 1992), with (Livingstone 2008) providing a more fun and in-
formal introduction to the topic of color perception. Topics relating to sampling and aliasing
are covered in textbooks on signal and image processing (Crane 1997; Jihne 1997; Oppen-
heim and Schafer 1996; Oppenheim, Schafer, and Buck 1999; Pratt 2007; Russ 2007; Burger
and Burge 2008; Gonzales and Woods 2008).

A note to students: If you have already studied computer graphies, you may want to
skim the material in Section 2.1, although the sections on projective depth and object-centered
projection near the end of Section 2.1.5 may be new to you, Similarly, physics students (as
well as computer graphics students) will mostly be familiar with Section 2.2. Finally, students
with & good background in image processing will already be familiar with sampling issues
(Section 2.3} as well as some of the material in Chapter 3.

2.1 Geometric primitives and transformations

In this section, we introduce the basic 2D and 3D primitives used in this textbook, namely
points, lines, and planes. We also describe how 3D features are projected into 2D features.
More detailed descriptions of these topics (along with a gentler and more intuitive introduc-
tion) can be found in textbooks on multiple-view geometry (Hartley and Zisserman 2004;
Faugeras and Luong 2001).

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes,

In this section, we introduce points, lines, and planes. Later sections of the book discuss

29
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30 wH 2 Image formation

(a) (b)

Figure 2.2 (a) 2D line equation and (b} 3D plane equation, expressed in terms of the normal 7 and distance to
the origin d.

curves (Sections 5.1 and 11.2), surfaces (Section 12.3), and volumes (Section 12.5).

2D points. 2D points (pixel coordinates in an image) can be denoted using a pair of values,
x = (z,y) € R?, or alternatively,
® = [ “ ] ; (2.1)
Yy

(As stated in the introduction, we use the (zq, g, . ..) notation to denote column vectors.)

2D points can also be represented using homogeneous coordinates, & = (&, j,1) € P,
where vectors that differ only by scale are considered to be equivalent, P? = R* — (0,0,0)
is called the 2D projective space.

A homogeneous vector & can be converted back into an inhomogeneous vector & by
dividing through by the last element 1, i.e.,

& = (Z,§,w) = w(z,y,1) = ©F, (2.2)

where & = (z,y, 1) is the augmented vector. Homogeneous points whose last element is i =
0 are called ideal points or points at infinity and do not have an equivalent inhomogeneous
representation.

2D lines. 2D lines can also be represented using homogeneous coordinates I = (a, b, ¢).
The corresponding line equation is

F-l=ar+by+e=0. (2.3)

We can normalize the line equation vector so that | = (fiz, iy, d) = (1, d) with [|7i]| = 1. In
this case, i is the normal vector perpendicular to the line and d is its distance to the origin
(Figure 2.2). (The one exception to this normalization is the line ar infinity I= (0,0,1),
which includes all (ideal) points at infinity.)

We can also express fi as a function of rotation angle 8, A = (fig, 7t} = (cosf,sind)
{Figure 2.2a). This representation is commonly used in the Hough fransform line-finding
algorithm, which is discussed in Section 4,3.2. The combination (@, o) is also known as
polar coordinares.

When using homogeneous coardinates, we can compute the intersection of two lines as

& =1 x I, (2.4)
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2.1 Geometric primitives and transformations

where x i the cross product operator, Similarly, the line joining two points can be writlen as
[ =& x &, (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discusstd
in Exercize 2.1,

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

2 Qz=0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book,

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates z = (z,y, z) € R? or homogeneous coordinates & = (%, , Z,1) € P°. As before,
it is sometimes useful to denote a 3D point using the angmented vector & = (z,y, 2, 1) with
& = wE.

3D planes. 3D planes can also be represented as homogencous coordinates 71 = (a, b, ¢, d)
with a corresponding plane equation '

E-m=az+bytcx+d=0, (2.7

We can also normalize the plane equation as m = (fiz, iy, fiz, d) = (#, d) with ||/2]| = 1.
In this case, i is the normal vector perpendicular to the plane and d is its distance to the
origin (Figare 2.2b). As with the case of 2D lines, the plane at infinity m = (0,0,0,1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express i as a function of two angles (8, ¢),

i = (cos f cos ¢, sin f cos ¢, sin ¢), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors,

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is 1o use two points on the line, (p, q). Any other point on the ling can be
expressed as a linear combination of these two points

r=(1-Ap+Aq, 29)

p

as shown in Figure 2.3, If we restrict 0 < A < 1, we get the [ine segment joining p and q.

3
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2 Image formation

Figure 2.3 3D line equation, » = (1 — A)p + Aq.

If we use homogeneous coordinates, we can write the line as
T =nup+ Ag. (2.10)

A special case of this is when the second point is at infinity, i.e., § = (dx, dy, d=,0) = (d, 0).
Here, we see that d is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r=p+Ad. (2.11)

A disadvantage of the endpoint representation for 3D lines is that it has too many degrees
of freedom, i.e., six (three for each endpoint) instead of the four degrees that a 3D line truly
has. However, if we fix the two points on the line to lie in specific planes, we obtain a rep-
resentation with four degrees of freedom. For example, if we are representing nearly vertical
lines, then z = 0 and z = 1 form two suitable planes, ie., the (%,y) coordinates in both
planes provide the four coordinates describing the line. This kind of two-plane parameteri-
zation is wsed in the light field and Lumigraph image-based rendering systems described in
Chapter 13 to represent the collection of rays seen by a camera as it moves in front of an
ohject. The two-endpoint representation is also useful for representing line segments, even
when their exact endpoints cannot be seen {only guessed at).

If we wish to represent all possible lines without bias towards any particular orientation,
we can use Plilcker coordinates (Hartley and Zisserman 2004, Chapter 2; Faugeras and Luong
2001, Chapter 3). These coordinates are the six independent non-zero entries in the 4 x4 skew
symmetric matrix

L=5§" —ap (2.12)

where § and § are any two (non-identical) points on the line. This representation has only
four degrees of freedom, since L is homogeneous and also satisfies det(L) = 0, which results
in a quadratic constraint on the Pliicker coordinates.

In practice, the minimal representation is not essential for most applications. An ade-
quate model of 3D lines can be obtained by estimating their direction (which may be known
ahead of time, e.g., for architecture) and some point within the visible portion of the line
(see Section 7.5.1) or by using the two endpoints, since lines are most often visible as finite
line segments. However, if you are interested in more details about the topic of minimal
line parameterizations, Firsiner (2005) discusses various ways to infer and model 3D lines in
projective geometry, as well as how to estimate the uncertainty in such fitted models.
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2.1 Geometric primitives and transformations

A :
¥ sumlanly projective
:musl.m
—
Eur:lll;f.can affine

_h. 'S
X
Figure 2.4 Basic set of 2D planar transformations.
3D quadries. The 3D analog of a conic section is a quadric surface
#FQE=0 (2.13)

(Hartley and Zisserman 2004, Chapter 2). Again, while quadric surfaces are useful in the
study of multi-view geometry and can also serve as useful modeling primitives (spheres,
ellipsoids, cylinders), we do not study them in great detail in this book.

2.1.2 2D transformations

Having defined our basic primitives, we can now turn our attention to how they can be trans-
formed. The simplest transformations occur in the 2D plane and are illustrated in Figore 2.4,

Translation. 2D translations can be written as &’ = & + £ or
=T ¢t]s (2.14)

where I is the (2 x 2) identity matrix or

fﬂ[ui" ”ﬁ (2.15)
where 0 is the zero vector. Using a 2 x 3 matrix resulis in a more compact notation, whereas
using a full-rank 3 » 3 matrix (which can be obtained from the 2 % 3 matrix by appending a
[07 1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as & appears on both sides, it can always be
replaced with a full homogeneous vector &.

Rotation + translation. This transformation is also known as 2D rigid body motion or
the 213 Euclidean trangformation (since Euclidean distances are preserved). It can be writien
asx’' =Rz +tor

= [ "t ]ﬂ (2.16)
where i v
cosd —sin

is an orthonormal rotation matrix with RR™ = I and |R| = 1.

33
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2 Image formation

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as @ = sHx + t where 5 is an arbitrary scale factor. It can also be written as

a —b te | _
b a t"]z, (2.18)

=[sR t]&= [
where we no longer require that a® + b* = 1. The similarity transform preserves angles
between lines.

Affine. The affine transformation is written as @' = AF, where A is an arbitrary 2 » 3
matrix, i.e.,

il
o g [ Qoo @01 02 ].'J_: (2.19)
g G dag

Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

# = H#E, (2.20)

where H is an arbitrary 3 x 3 matrix. Note that H is homogeneous, i.e., it is only defined
up to a scale, and that two H matrices that differ only by scale are equivalent, The resulting
homogeneous coordinate & must be normalized in order to obtain an inhomogeneous result

x, 1.e.,
v _ hoow + hory + hoa G e hioz + b1y + Mg

= = . 21
haoz + hary + haa haoz + ha1y + haz (&
Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 x 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisscrman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, ie., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3,6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D
plane, can they also be used directly to transform a line equation? Consider the homogeneous
equation [ - & = 0. If we transform &' = Hx, we obtain

{.&="hAs=(F1s=I-8=0, (2.22)
i.c., {=H _Tf, Thus, the action of a projective transformation on a co-vector such as a 2D
line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H, since projective transformation matrices are homogeneous. Jim
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2.1 Geomeiric primitives and transformations

Transformation Matrix #Dol' Preserves Icon

translation 3 A 2 orientation I:J
rigid (Buclidean) [ R|[t], . 3  lengths O
similarity [sR|t],, 4  angles <>
affine [A s i  parallelism D
projective [ H ]sxa 8 straight lines |

Table 2.1 Hicrarchy of 2D coordinate transformations. Each transformation also preserves the properties listed
in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines, The 2 x 3
matrices are extended with a third [07 1] row to form a full 3 % 3 matrix for homogeneous coordinate transforma-

tions,

Blinn (1998) describes (in Chapters 9 and 10) the ins and outs of notating and manipulating
co-veclors.

While the above transformations are the ones we use most extensively, a number of addi-
tional transformations are sometimes used,

Stretch/squash. This transformation changes the aspect ratio of an image,

[}
r = 8S:34+1:

FJ = &yt
and iz a restricted form of an affine ransformation. Unfortunately, it does not nest cleanly
with the groups listed in Table 2.1.

Planar surface flow. This eight-parameter transformation (Horn 1986; Bergen, Anan-
dan, Hanna et al. 1992; Girod, Greiner, and Niemann 2000),

g = ag+aiz+ agy+ asz® + arzy
¥ = a3+ asz+agy+ ez’ + aszy,
arises when a planar surface undergoes a small 3D motion. [t can thus be thought of as a

small motion approximation to a full homography. Its main attraction is that it is linear in the
motion parameters, ay, which are often the quantities being estimated.

Bilinear interpolant. This eight-parameter transform (Wolberg 19907,

¥

¥ = ap+az+ aay+ agzy

v = a3+ asz+agy + arzy,

can be used to interpolate the deformation due to the motion of the four comer points of
a square. (In fact, it can interpolate the motion of any four non-collinear points.) While
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36 2 Image formation

Transformation Matrix #DoF Preserves Icon
translation [r|t],, 3  orentaton L]
rigid (Buclidean) [ R|¢ ], 6 lengths OL
similarity [sR|t],.. 7 angles <>
affine [ &L 12 parallelism E
projective [ i ]m 15 straight lines |

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserves the properties listed
in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines, The 3 x 4
matrices are extended with a fourth [07 1] row to form a full 4 x 4 matrix for homogeneous coordinate transfor-
mations. The mnemonic icons are drawn in 2D but are meant to suggest transformations occurring in a full 3D
cube.

the deformation is linear in the motion parameters, it does not generally preserve straight
lines (only lines parallel to the square axes), However, it is often quite useful, e.g., in the
interpolation of sparse grids using splines (Section 8.3).

2.1.3 3D transformations

The set of three-dimensional coordinate transformations is very similar to that available for
D transformations and is summarized in Table 2.2. As in 2D, these transformations form a
nested set of groups. Hartley and Zisserman (2004, Section 2.4) give a more detailed descrip-
tion of this hierarchy.

Translation. 3D translations can be written as ' = = 4 £ or

d=[1 t]= (2.23)
where T is the (3 x 3) identity matrix and 0 is the zero vector.
Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-
formation, it can be written as #’' = Rz + ¢ or

=R t]= (2.24)

where R is a 3 x 3 orthonormal rotation matrix with RR” = I and |R| = 1. Note that
sometimes it is more convenient to describe a rigid motion using

' = R(x — ¢) = Rz — Rc, (2.25)

where e is the center of rotation (often the camera center).
Compactly parameterizing a 3D rotation is a non-trivial task, which we describe in more
detail below.
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2.1 Geometric primitives and transformations

Scaled rotation. The 3D similarity transform can be expressed as @' = sl + ¢ where
5 15 an arbitrary scale factor. It can also be written as

a'=[sR t]& (2.26)

This transformation preserves angles between lines and planes. .

Affine. The affine transform is written as &' = AZ, where A is an arbitrary 3 » 4 matrix,

ie.,

T = | g 413 G2 i3 (2.27)
gy Og1  dgz Q23

Parallel lings and planes remain paralle] under affine transformations.

gy @p1 Gz ﬂ-ua]
/ &

Projective. This transformation, variously known as a 3D perspective transform, homog-
raphy, or collineation, operates on homogeneous coordinates,

& = H#, (2.28)
where H is an arbitrary 4 » 4 homogeneous matrix, As in 2D, the resulting homogeneous
coordinate &' must be normalized in order to obtain an inhomogeneous result =. Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix J2 is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
&£, &, ¥, and z, or @, ¥, and =, This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change
dramatically in response to a small change in rotation.! For these reasons, we do not even
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using
an explicit set of rigid transformations,

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis 7t and an angle @, or equivalently by a 3D
vector w = O, Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis fi to obtain

vy = #ffi-v) = (An’ )y, (2.29)

! In robotics, this is sometimes referred to as gimbal lock,

37
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38 ' 2 Image formation

Figure 2.5 Rotation around an axis £ by an angle &,

which is the component of v that is not affected by the rotation. Mext, we compute the
perpendicular residual of v from i,

vy =v—v) = (I-Aan")v (2.30)
We can rotate this vector by 90” using the cross product,
Uy = i X v =[] 1, 231
where [fi] . is the matrix form of the cross product operator with the vector 7t = (fiz, fiys Fiz)s
0 —-f: fy
[l = [ s 0 g ] : (2.32)
—fiy fiz ]
Mote that rotating this vector by another 90° is equivalent to taking the cross product again,
Uxx =Rt X vy = [A}v = —vy,

and hence
v =v—vy =V+Vex ={I+{ﬁ]i]u.

We can now compute the in-plane component of the rotated vector w as
1) = cosfu + sinfvy = (sinO[fi]x — cosd[A]% )v.
Putting all these terms together, we obtain the final rotated vector as
w=1uy +v) = (I +sinfit]x + (1—cosd)[R]%)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by # around an axis 7

as
R(#,0) = I +sin Ay + (1 — cos §)[A]Z, (2.34)

which is known as Rodriguez's formula (Ayache 1989).

The product of the axis 7t and angle §, w = 0ft = (w,, wy,w.), is a minimal represen-
tation for a 3D rotation. Rotations through common angles such as multiples of 90° can be
represented exactly (and converted to exact matrices) if € is stored in degrees, Unfortunately,
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2.1 Geometric primitives and transformations

this representation is not unique, since we can always add a multiple of 360° (27 radians) to
@ and get the same rotation matrix. As well, (7, §) and (—#i, —8) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice,
In particular, for small (infinitesimal or instantaneous) rotations and # expressed in radians,
Rodriguez's formula simplifies to

|.

1 —tly Wy
R(w) = I +sinffi], = I+ [64]x =

Wy T ] ; (2.35)
_wy iy 1

which gives a nice linearized relationship between the rotation parameters w and 12, We can
also write R(w)v = v + w x v, which is handy when we want to compute the derivative of
HRuv with respect to w,

0 =z -y
y -z 0

Another way to derive a rotation through a finite angle is called the exponential twist
(Murray, Li, and Sastry 1994). A rotation by an angle @ is equivalent to & rotations through
#/k. In the limit as k — oo, we obtain

1
R(#,6) = lim (I + —[00]x)* = exp [w]x. (2.37)
=] k
If we expand the matrix exponential as a Taylor series (using the identity [A]5* = —[A]E,
k = 0, and again assuming # is in radians), -
BE
3
6 . . 02 & 2
T+ (0~ g+ b + (5 — g7 +-- )l
I + sin 8[f) « + (1 — cos @))%, (2.38)

. o
I+ 0ffly + S + Sl 4

exp [w]

which vields the familiar Rodriguez's formula,

Unit quaternions

The unit quaternion representation is closely related to the angle/axis representation. A unit
quaternion is a unit length 4-vector whose components can be written as ¢ = (x, Gy, 7=, Gu)
or g = (z,y, z, w) for short. Unit quaternions live on the unit sphere ||g|| = 1 and antipodal
(opposite sign) quaternions, g and —g, represent the same rotation (Figure 2.6). Other than
this ambiguity (dual covering), the unit quaternion representation of a rofation is unique.
Furthermore, the representation is confinuous, i.e., as rotation matrices vary continuously,
one can find a continuous quaternion representation, although the path on the quaternion
sphere may wrap all the way around before returning to the “origin” q, = (0,0,0,1). For
these and other réasons given below, quaternions are a very popular representation for pose
and for pose interpolation in computer graphics (Shoemake 1983).

39
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40 2 Image formation

Figure 2.6 Unit quaternions live on the unit sphere ||g|| = 1. This figure shows a smooth trajectory through the
three quaternions gy, 4;, and g;. The antipodal point to q;, namely —qy, represents the same rotation as gg.

Quaternions can be derived from the axis/angle representation through the formula
. 8, ]

g = (v,w) = (gin g Th co8 E}’ (2.39)
where 7i and § are the rotation axis and angle, Using the trigonometric identities sinf# =
2sin £ cos § and (1 — cos6) = 2sin® §, Rodriguez's formula can be converted to

R(#,0) = I+sind[f]y + (1 - cos8)[Al%
= I+ 2uwlv)y+2[v)%. (2.40)

This suggests a quick way to rotate a vector v by a quaternion using a series of cross products,
scalings, and additions. To obtain a formula for R(qg) as a function of (z,y, 2, w), recall that

0 —=z y —y? — 22 zy Tz
Wlx=| 2 0 -z | and [v] = Ty —g? — 2% yz

-y = 0 Tz Yy —z2—yf

We thus obtain
1-202+5) Aoy—sm)  ez+yw)
Rig)=| 2Azy+zw) 1-2(z*+2%) 2yz—zw) |. (2.41)
Yer—yu)  Aystow) 1-2a+?)
The diagonal terms can be made more symmetrical by replacing 1 — 2(y* + 2*) with (=* +
w? — gy — 2%), ete.
The nicest aspect of unit quaternions is that there is a simple algebra for composing rota-

tions expressed as unit quaternions, Given two quaternions g, = (v, we) and g; = (v, w1),
the quaternion multiply operator is defined as

ga = qpq; = (vo X v1 + wovy + wivg, Woun — Vg - V1), (242)

with the property that R{q,) = R(qy)R(g,). Note that quaternion multiplication is not
commutative, just as 3D rotations and matrix multiplications are not.
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2.1 Geometric primitives and transformations

procedure slerp(qq, q,, @):
L g, =qy/aqp = (vr,wy)
2. ifw, < O then g, + —q,
3. 6, = 2tan™(||v.]|/w,)
4. fir = N(ve) = ve/]joe|l
. B =ab,

o Lh

Ga = {sinﬁgﬁ,,onﬂ Eﬁ‘}

=l

return g; = 4,4y

41

Algorithm 2.1 Spherical linear interpolation (slerp). The axis and total angle are first computed from the quater-
nion ratio. (This computation can be lifted outside an inner loop that generates a set of interpolated position for
animation.) An incremental quaternion is then computed and multiplied by the starting rotation quaternion.

Taking the inverse of a quaternion is easy: Just flip the sign of v or w (but not both!).
{You can verify this has the desired effect of transposing the B mairix in (2.41).) Thus, we
can also define quaternion division as

gz =qo/q1 = 'Iull';l = (g ¥ vy + wovy — wyvg, —wyuy — Yo - 1-*1)- (2.43)

This is useful when the incremental rotation between two rotations is desired.

In particular, if we want to determine a rotation that is partway between Iwo given rola-
tions, we can compute the incremental rotation, take a fraction of the angle, and compute the
new rotation. This procedure is called spherical linear interpolation or sferp for short (Shoe-
make 1985) and is given in Algorithm 2.1, Note that Shoemake presents two formulas other
than the one given here. The first exponentiates g, by alpha before multiplying the original
quaternion,

a3 = 4 do, (2.44)

while the second treats the quaternions as 4-vectors on a sphere and uses

. sin(l — a)f " sin af

g T ghg T (2.45)

da

where # = cos~!(q, - q,) and the dot product is directly between the quaternion 4-vectors,
All of these formulas give comparable results, although care should be taken when gy and q,
are close together, which is why I prefer to use an arctangent to establish the rotation angle,

Which rotation representation is better?

The choice of representation for 3D rotations depends partly on the application.

The axisfangle representation is minimal, and hence does not require any additional con-
siraints on the parameters (no need to re-normalize after each update). If the angle is ex-
pressed in degrees, it is easier to understand the pose (say, 907 twist around x-axis), and also

APPL-1012 / Page 19 of 211



42

2 Image formation

casier to express exact rolations. When the angle is in radians, the derivatives of R with
respect to w can easily be computed (2.36).

Quaternions, on the other hand, are better if you want to keep track of a smoothly moving
camera, since there are no discontinuities in the representation. It is also easier to interpolate
hetween rotations and to chain rigid transformations (Murray, Li, and Sastry 1994; Bregler
and Malik 1998).

My usual preference is to use guaternions, but to update their estimates using an incre-
mental rotation, as described in Section 6.2.2,

2.1.5 3D to 2D projections

MNow that we know how to represent 2D and 3D geometric primitives and how to transform
them spatially, we need to specify how 3D primitives are projected onto the image plane. We
can do this using a linear 3D to 2D projection matrix. The simplest model is orthography,
which requires no division to get the final (inhomogeneous) result. The more commonly used
model is perspective, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the z component of the three-dimensional coordi-
nate p to obtain the 2D point z. (In this section, we use p to denote 3D points and & to denote
2D points.) This can be written as

z = [Taxa0] p. (2.46)

If we are using homogeneous (projective) coordinates, we can write

1000
¢=|01 0 0 |p (2.47)
0001

i.e., we drop the z component but keep the w component. Orthography is an approximate
model for long focal length (telephoto) lenses and objects whose depth is shallow relative
to their distance to the camera (Sawhney and Hanson 1991). It is exact only for relecentric
lenses (Baker and Nayar 1999, 2001).

In practice, world coordinates (which may measure dimensions in meters) need to be
scaled to fit onto an image sensor (physically measured in millimeters, but ultimately mea-
sured in pixels). For this reason, scaled orthography is actually more commonly used,

o= [ng,.-_glﬂl . (2.48)

This model is equivalent to first projecting the world points onto a local fronto-parallel image
plane and then scaling this image nsing regular perspeetive projection. The scaling can be the
same for all parts of the scene (Figure 2.7b) or it can be different for objects that are being
modeled independently (Figure 2.7¢). More importantly, the scaling can vary from frame to
frame when estimating structure from motion, which can better model the scale change that
oceurs as an object approaches the camera.

Scaled orthography is a popular model for reconstructing the 3D shape of objects far away
from the camera, since it greatly simplifies certain computations. For example, pose (camera
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(a) 3D view

(c) scaled orthography

{e) perspective (f) object-centered

Figure 2.7 Commonly used projection models: (a) 3D view of world, (b) orthography, (c) scaled orthography,
(d) para-perspective, (e) perspective, (f) object-centered. Each diagram shows a top-down view of the projection.
Note how parallel lines on the ground plane and box sides remain parallel in the non-perspective projections.
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orientation) can be estimated using simple least squares (Section 6.2.1). Under orthography,
structure and motion can simultanecusly be estimated using factarization (singular value de-
composition), as discussed in Section 7.3 (Tomasi and Kanade 1992).

A closely related projection model is para-perspective (Aloimonos 1990; Poelman and
Kanade 1997). In this model, object points are again first projected onto a local reference
parallel to the image plane. However, rather than being projected orthogonally to this plane,
they are projected parallel to the line of sight to the object center (Figure 2.7d). This is
followed by the usual projection onto the final image plane, which again amounts to a scaling.
The combination of these two projections is therefore affine and can be written as

Ggp Go1 Qo2 Gos
F=| o @11 Gz o613 | P (2.49)
0 0 0 1

Note how parallel lines in 3D remain parallel after projection in Figure 2.7b-d. Para-perspective
provides a more accurate projection model than scaled orthography, without incurring the
added complexity of per-pixel perspective division, which invalidates traditional factoriza-
tion methods (Poelman and Kanade 1997).

Perspective

The most commonly used projection in computer graphics and computer vision is true 3D
perspective (Figure 2.7e). Here, points are projected onto the image plane by dividing them
by their z component, Using inhomogeneous coordinates, this can be written as

zfz
E=P:p)=| v/z |- (2.50)
1
In homogencous coordinates, the projection has a simple linear form,
1 000
E=|0 1 0 0|5, (2.51)
0010

i.e., we drop the w component of p. Thus, after projection, it is not possible to recover the
distance of the 3D point from the image, which makes sense for a 2D imaging sensor.

A form often seen in computer graphics systems is a two-step projection that first projects
3D coordinates into normalized device coordinates in the range (z,y,2) € |[-1,-1] %
[-1,1] [0, 1], and then rescales these coordinates to integer pixel coordinates using a view-
port transformation (Watt 1995; OpenGL-ARB 1997).  The (initial) perspective projection
is then represented using a 4 x 4 matrix

1 0 0 0

= 01 0 0 2

= G 2.52
00 —Zinrfzrmga znuuzrufzrmgn ¥ ( :
0 0 1 0

where zpear and zp, are the near and far z clipping planes and zrange = #far — Znear. NOle
that the first two rows are actually scaled by the focal length and the aspect ratio so that
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2.1 Geometric primitives and transformations

Figure 2.8 Projection of a 3D camera-centered point p,, onto the sensor planes at location p. (), is the camera
center (nodal point), €, is the 3D origin of the sensor plane coordinate system, and s, and s, are the pixel spacings.

visible rays are mapped to (z,1, 2) € [-1,— 1. The reason for keeping the third row, rather
than dropping it, is that visibility operations, such as z-buffering, require a depth for every
graphical element that is being rendered.

If we set Zngar = 1, Zfar — 00, and switch the sign of the third row, the third element
of the normalized screen vectar becomes the inverse depth, i.e., the disparity {Okutomi and
Kanade 1993). This can be quite convenient in many cases since, for cameras moving around
cutdoors, the inverse depth to the camera is often a more well-conditioned parameterization
than direct 3D distance.

While a regular 2D image sensor has no way of measuring distance to a surface point,
range sensors (Section 12.2) and stereo matching algorithms (Chapter 11) can compute such
values. Tt is then convenient to be able to map from a sensor-based depth or disparity value d
directly back to a 3D location using the inverse of a4 x 4 matrix (Section 2.1.5). We can do
this if we represent perspective projection using a full-rank 4 x 4 matrix, as in (2.64).

Camera intrinsics

Once we have projected a 3D point through an ideal pinhole using a projection matrix, we
must still transform the resulting coordinates according to the pixel sensor spacing and the
relative position of the sensor plane to the origin. Figure 2.8 shows an illustration of the
geometry involved. In this section, we first present a mapping from 2D pixel coordinates to
3D rays using a sensor homography M, since this is gasier to explain in terms of physically
measurable quantities. We then relate these quantities to the more commonly used camera in-
trinsic matrix K, which is used to map 3D camera-centered points p, to 2D pixel coordinates
T

Image sensors return pixel values indexed by integer pivel coordinates (4, Ys), often
with the coordinates starting at the upper-left corner of the image and moving down and to
the right. (This convention is not obeyed by all imaging libraries, but the adjustment for
other coordinate systems is straightforward.) To map pixel centers to 3D coordinates, we first
scale the (z,,y,) values by the pixel spacings (82, 5y) (sometimes expressed in microns for
solid-state sensors) and then describe the orientation of the sensor array relative to the camera
projection center O, with an origin ¢, and a 3D rotation J2, (Figure 2.8).
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The combined 21D to 3D projection can then be written as

sz 0 0 .
0D & 0O -

p= [ R, | Cs ] 0 J 0 [ ';l.;‘ } = M,E,. (2.53)
0 0 1 e

The first two columns of the 3 % 3 matrix M, are the 3D vectors corresponding to unit steps
in the image pixel array along the =, and y. directions, while the third column is the 3D
image array origin c;.

The matrix M, is parameterized by eight unknowns: the three parameters describing
the rotation 2., the three parameters describing the translation e, and the two scale factors
(83, 8y). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M, with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
s0 most practitioners assume a general 3 % 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point p, is
given by an unknown scaling s, p = sp,.. We can therefore write the complete projection
between p, and a homogeneous version of the pixel address &, as

&, =aM'p, = Kp,. (2.54)

The 3 = 3 matrix K is called the calibration matrix and describes the camera infringics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
cight degrees of freedom (the full dimensionality of a 3 % 3 homogeneous matrix) in practice,
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004, Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 65) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R, t) camera parameters simultaneously using a series of

measurements,
Z.=K[ R|t]p,=Pp., (2.55)

where p,, are known 3D world coordinates and
P = K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R, and pre-multiply [R|t] by R}, and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.
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Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center (cz, ¢;). The image

width and height are W and H.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3 » 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR
factorization {(Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, 2 is an orthogonal rotation.)

There are several ways lo write the upper-triangular form of K. One possibility is

f 8 ¢

K=[ﬂ % c,], (2.57)
o o0 1

which uses independent focal lengths f and f, for the sensor = and y dimensions. The entry

s encodes any possible skew between the sensor axes due to the sensor not being mounted

perpendicular to the optical axis and (c.,¢,) denotes the optical center expressed in pixel

coordinates. Another possibility is

f 8 (=
K=|0 af c,], 258)
g 0 1

where the aspect ratio a has been made explicit and a common focal length f is nsed.
In practice, for many applications an even simpler form can be obtained by settinga = 1

and s = 0,
Ff D e
g=|0 .:,]. (2.59)

00 1

Often, setting the origin at roughly the center of the image, e.g., (ex,¢y) = (W/2, H/2),
where W oand H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f,

Figure 2.9 shows how these quantities can be visualized as part of a simplified imaging
model. Note that now we have placed the image plane in front of the nodal point (projection
center of the lens). The sense of the i axis has also been flipped to get a coordinate system
compatible with the way that most imaging libraries treat the vertical (row) coordinate. Cer-
tain graphics libraries, such as Direct3D, use a left-handed coordinate system, which can lead
to some confusion.
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Wiz
2 i Z

(XY.Z)

Figure 210 Central projection, showing the relationship between the 3D and 2D coordinates, p and @, as well
as the relationship between the focal length f, image width W, and the field of view £.

A note on focal lengths

The issue of how to express focal lengths is one that often causes confusion in implementing
computer vision algorithms and discussing their results. This is becanse the focal length
depends on the units used to measure pixels.

If we number pixel coordinates using integer values, say [0, W) x [0, H), the focal length
f and camera center (¢, ¢, ) in (2.59) can be expressed as pixel values. How do these quan-
tities relate to the more familiar focal lengths used by photographers?

Figure 2.10 illustrates the relationship between the focal length f, the sensor width W,
and the field of view {1, which obey the formula

=1
tm-g:% ot f=%[mg] : 2.60)
For conventional film cameras, W = 35mm, and hence f is also expressed in millimeters.
Since we work with digital images, it is more convenient to express W in pixels so that the
focal length f can be used directly in the calibration matrix K as in (2.59).

Another possibility is to scale the pixel coordinates so that they go from [—1, 1) along
the longer image dimension and [—a~!,a™!) along the shorter axis, where a > 1 is the
image aspect ratio (as opposed to the sensor cell aspect ratio introduced earlier). This can be
accomplished using modified normalized device coordinates,

z, = (2z, — W)/S and ), = (2y, — H)/5, where 5= max(W,H). (2.61)

This has the advantage that the focal length f and optical center ez, ¢y ) become independent
of the image resolution, which can be useful when using multi-reselution, image-processing
algorithms, such as image pyramids (Section 3.5).2 The use of S instead of W also makes the
focal length the same for landscape (horizontal) and portrait (vertical) pictures, as is the case
in 35mm photography. (In some computer graphics textbooks and systems, normalized device
coordinates go from [—1,1] x [—1, 1], which requires the use of two different focal lengths
to describe the camera intrinsics (Watt 1995; OpenGL-ARB 1997).) Setting § = W = 21in
(2.60), we obtain the simpler (unitless) relationship
ft=tan g (2.62)
% To make the conversion truly accurate after & downsampling step in a pyramid, floating point values of W and
H would have to be maintained since they can become non-integral if they are ever odd at a larger resolution in the
pyramid.
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The conversion between the various focal length representations is straightforward, e.g.,
to go from a unitless f to one expressed in pixels, multiply by W/2, while to convert from an
f expressed in pixels to the equivalent 35mm focal length, multiply by 35/W.

Camera matrix .

Now that we have shown how to parameterize the calibration matrix K, we can put the
camera intrinsics and extrinsics together to obtain a single 3 x 4 camera marrix

P=K[R|t]. (2.63)

It is sometimes preferable to use an invertible 4 x 4 matrix, which can be obtained by not
dropping the last row in the PP matrix,

- K 0 Rt —
P=[DT ]HHT 1}_1{.5:, (2.64)

where E is a 3D rigid-body (Euclidean) transformation and K is the full-rank calibration
matrix. The 4 x 4 camera matrix P can be used to map directly from 3D world coordinates
Py = (Lo, Yuwy Zuy 1) 10 screen coordinates (plus disparity), x, = (25, ysy 1, d),

x, ~ PP, (2.65)

where ~ indicates equality up to scale. Note that after multiplication by P, the vector is
divided by the third element of the vector to obtain the normalized form =, = (z,,¥,, 1, d).

Plane plus parallax (projective depth)

In general, when using the 4 x 4 matnx P, we have the freedom to remap the last row to
whatever suits our purpose (rather than just being the “standard” interpretation of disparity as
inverse depth). Let us re-write the last row of P as py = s3[fig|co]. where [[fg]| = 1. We
then have the equation

d=2(ig - p, + o), (2.66)

where z = p, + P, = 7= - (p,, — ¢ is the distance of p,, from the camera center C' (2.25)
along the optical axis Z (Figure 2.11). Thus, we can interpret d as the projective disparity
or projective depth of a 3D scene point p,, from the reference plane fig - p, + ¢ = 0
(Szeliski and Coughlan 1997; Szeliski and Golland 1999; Shade, Gortler, He er al. 1998;
Baker, Szeliski, and Anandan 1998), (The projective depth is also sometimes called parallax
in reconstruction algorithms that use the term plane plus parallax (Kumar, Anandan, and
Hanna 1994; Sawhney 1994).) Setting fig = 0 and ¢ = 1, Le., putting the reference plane
at infinity, results in the more standard d = 1/z version of disparity (Okutomi and Kanade
1993),
Another way to see this is to invert the P matrix so that we can map pixels plus disparity
directly back to 3D points,
=P 'z, (2.67)

In general, we can choose P to have whatever form is convenient, i.c., to sample space us-
ing an arbitrary projection. This can come in particularly handy when setting up multi-view

49
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image plane

d=1.0 d=0.67 4=0.5 d d=0.5 d=0 d4=025
(X Yo Zr) (% YoaZoe)
z Z Z
H‘"""--.._\ )
\‘\"“‘-\_ image plane |
plane
d = inverse depth d = projective depth

Figure 2.11 Regular disparity (inverse depth) and projective depth (parallax from a reference plane).

stereo reconstruction algorithms, since it allows us to sweep a series of planes (Section 11.1.2)
through space with a variable (projective) sampling that best matches the sensed image mo-
tions (Collins 1996; Szeliski and Golland 1999; Saito and Kanade 1999).

Mapping from one camera to another

What happens when we take two images of a 3D scene from different camera positions or
orientations (Figure 2.12a)7 Using the full rank 4 x 4 camera matrix P = K E from (2.64),
we can write the projection from world to screen coordinates as

&g ~ KoEgp = Pop. (2.68)

Assuming that we know the z-buffer or disparity value dy for a pixel in one image, we can
compute the 3D point location p using

p~ B K, i (2.69)
and then project it into another image yielding

£ = Y am—La = ] -
ﬁlNK]EHJ:K]ElEHIKU :E:D=P1Pa ﬂ:n=Mmmu. {2?{]}

Unfortunately, we do not usually have access to the depth coordinates of pixels in a regular
photographic image. However, for a planar scene, as discussed above in (2.66), we can
replace the last row of Py in (2.64) with a general plane equation, fig - p + cg that maps
points on the plane to dy = 0 values (Figure 2.12b). Thus, if we set dy = 0, we can ignore
the last column of Mg in (2.70) and also its last row, since we do not care about the final
z-buffer depth. The mapping equation (2.70) thus reduces to

&1 ~ Hygdg, (2.71}

where H g is a general 3 x 3 homography matrix and &; and &, are now 2D homogeneous
coordinates (i.e., 3-vectors) (Szeliski 1996). This justifies the use of the 8-parameter homog-
raphy as a general alignment model for mosaics of planar scenes (Mann and Picard 1994;
Seeliski 1996).
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p=XY.Z1)

(a) (b)
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Figure 2.12 A point is projected into two images: (a) relationship between the 3D point coordinate (X, Y, Z,1)
and the 2D projected point (x,y, 1,d); (b) planar homography induced by points all lying on a common plane

fig - pHeo=0

The other special case where we do not need to know depth to perform inter-camera
mapping is when the camera is undergoing pure rotation (Section 9.1.3), i.e., when ty = 4,
In this case, we can write

@) ~ K Ry Ry K5 &g = K1 Ry Ky '@, (272)

which again can be represented with a 3 % 3 homography. If we assume that the calibration
matrices have known aspeet ratios and centers of projection (2.59), this homography can be
parameterized by the rotation amount and the two unknown focal lengths, This particular
formulation is commonly used in image-stitching applications (Section 9.1.3).

Object-centered projection

When working with long focal length lenses, it often becomes difficult to reliably estimate
the focal length from image measurements alone. This is becanse the focal length and the
distance to the object are highly correlated and it becomes difficult to tease these two effects
apart. For example, the change in scale of an object viewed through a zoom telephoto lens
can either be due to a zoom change or a motion towards the user. (This effect was put to
dramatic use in some of Alfred Hitcheoek's film Vertigo, where the simultaneous change of
zoom and camera motion produces a disquieting effect.)

This ambiguity becomes clearer if we write out the projection equation corresponding to
the simple calibration matrix I (2.59),

TI-P+tI

= — 273

Iy f'l";'jl"i'f-; + € ( )
ry-p+1

R e (2.74)

where v, ry, and r; are the three rows of R. If the distance to the object center ¢, > ||p||
(the size of the object), the denominator is approximately . and the overall scale of the
projected object-depends on the ratio of f to t.. It therefore becomes difficult to disentangle
these two guantities.
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To see this more clearly, let . = ¢ and 5 = 9. f. We can then re-write the above
equations as
Ty ptiz

Wl Mk 27

B = Ntmrep @)
Ty Pty

™ = —-E— % 2.‘?‘&

v 31-I-n,r,~p &y (2.76)

(Szeliski and Kang 1994; Pighin, Hecker, Lischinski er al. 1998). The scale of the projection
5 can be reliably estimated if we are looking at a known object (i.e., the 3D coordinates p
are known). The inverse distance 7, i now mostly decoupled from the estimates of s and
can be estimated from the amount of foreshortening as the object rotates. Furthermore, as
the lens becomes longer, i.e., the projection model becomes orthographic, there is no need to
replace a perspective imaging model with an orthographic one, since the same equation can
be used, with . — 0 {as opposed to f and 1, both going to infinity). This allows us to form
a natural link between orthographic reconstruction techniques such as factorization and their
projective/perspective counterparts (Section 7.3).

2.1.6 Lens distortions

The above imaging models all assume that cameras obey a linear projection model where
straight lines in the world result in straight lines in the image. (This follows as a natural
consequence of linear matrix operations being applied to homogeneous coordinates.) Unfor-
tunately, many wide-angle lenses have noticeable radial distortion, which manifests itself as
a visible curvature in the projection of straight lines. (See Section 2.2.3 for a more detailed
discussion of lens optics, including chromatic aberration.) Unless this distortion is taken into
account, it becomes impossible o create highly accurate photorealistic reconstructions. For
example, image mosaics constructed without taking radial distortion into account will ofien
exhibit blurring due to the mis-registration of corresponding features before pixel blending
(Chapter 9).

Fortunately, compensating for radial distortion is not that difficult in practice. For most
lenses, a simple quartic model of distortion can produce good results. Let (z, 1) be the
pixel coordinates obtained after perspective division but before scaling by focal length f and
shifting by the optical center (c., ¢y ), L.&.,

B e Ptis
¢ reeptis
_ ryptiy
Ve re Pty (2.77)

The radial distortion model says that coordinates in the observed images are displaced away
(barrel distortion) or towards (pincushion distortion) the image center by an amount propor-
tional to their radial distance (Figure 2.13a-b).> The simplest radial distortion models use
low-order polynomials, e.g.,

fe = @o(1+ K112 + Kard)
fe = yell+mird + rard), (2.78)

 Ansmarphic lenses, which are widely used in feature film production, do not follow this radial distortion model.
Instead, they can be thought of, to a first approximation, as inducing different vertioal and horizontal scalings, ie.,
neon-square pixels,
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{a) (b) (e)

Figure 2.13 Radial lens distortions: (a) barrel, (b) pincushion, and (¢) fisheye. The fisheye image spans almost

180° from side-to-side,

where r2 = 22 + y? and ; and #y are called the radial distortion parameters* After the
radial distortion step, the final pixel coordinates can be computed using

Ty = frltes
t = fuit+e (2.79)

A variety of techniques can be used to estimate the radial distortion parameters for a given
lens, as discussed in Section 6.3.5.

Sometimes the above simplified model does not model the true distortions produced by
complex lenses accurately enough (especially at very wide angles). A more complete ana-
Iytic model also includes tangential distortions and decentering distortions (Slama 1980), but
these distortions are not covered in this book.

Fisheye lenses (Figure 2.13c) require a model that differs from traditional polynomial
models of radial distortion. Fisheye lenses behave, to a first approximation, as equi-distance
projectors of angles away from the optical axis (Xiong and Turkowski 1997), which is the
same as the polar projection described by Equations (9.22-9.24). Xiong and Turkowski
{1997) describe how this model can be extended with the addition of an extra quadratic cor-
rection in ¢ and how the unknown parameters (center of projection, scaling factor s, elc.)
can be estimated from a set of overlapping fisheye images using a direct (intensity-based)
non-linear minimization algorithm.

For even larger, less regular distortions, a parametric distortion model using splines may
be necessary (Goshtashy 1989). If the lens does not have a single center of projection, it
may become necessary to model the 3D line (as opposed to direction) corresponding to each
pixel separately (Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée, Sautot et al.
1992; Grossberg and Nayar 2001; Sturm and Ramalingam 2004; Tardif, Sturm, Trudeau et
al. 2009). Some of these techniques are described in more detail in Section 6.3.5, which
discusses how to calibrate lens distortions.

4 Sometimes the relationship between x. and £, Is expressed the other way around, e, =0 = £(1 4+ r1 72 4
#af:2), This is convenient if we map image pixels into (warped) rays by dividing through by f. W can then undistort
the rays and have true 3D rays in space.
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Figure 2.14 A simplified model of photometric image formation. Light is emitted by one or more light sources
and is then reflected from an object’s surface. A portion of this light is directed towards the camera. This simplified
model ignores multiple reflections, which often occur in real-world scenes.

There is one subtle issue associated with the simple radial distortion model that is often
glossed over. We have introduced a non-linearity between the perspective projection and final
sensor array projection steps. Therefore, we cannot, in general, post-multiply an arbitrary 3 %
3 matrix K with a rotation to put it into upper-triangular form and absorb this into the global
rotation, However, this situation is not as bad as it may at first appear. For many applications,
keeping the simplified diagonal form of (2.59) is still an adequate model. Furthermore, if we
correct radial and other distortions to an accuracy where straight lines are preserved, we have
essentially converted the sensor back into a linear imager and the previous decomposition still
applies.

2.2 Photometric image formation

In modeling the image formation process, we have described how 3D geometric features in
the world are projected into 2D features in an image. However, images are not composed of
2D features. Instead, they are made up of diserete color or intensity values. Where do these
values come from? How do they relate to the lighting in the environment, surface properties
and geometry, camera optics, and sensor properties (Figure 2,14)7 In this section, we develop
a set of models to describe these interactions and formulate a generative process of image
formation. A more detailed treatment of these topics can be found in other textbooks on
computer graphics and image synthesis (Glassner 1995; Weyrich, Lawrence, Lensch et al,
2008; Foley, van Dam, Feiner et al. 1995; Watt 1995; Cohen and Wallace 1993, Sillion and
Puech 1994).

2.2.1 Lighting

Images cannot exist without light. To produce an image, the scene must be illuminated with
one or more light sources. (Certain modalities such as fluorescent microscopy and X-ray
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tomography do not fit this model, but we do not deal with them in this book.) Light sources
can generally be divided into peint and area light sources.

A point light source originates at a single location in space (e.g., a small light bulb),
potentially at infinity (e.g., the sun). (Note that for some applications such as modeling soft
shadows (penwmbras), the sun may have to be treated as an area light source.) In addition to
its location, a point light source has an intensity and a color spectrum, i.e., a distribution over
wavelengths L(A). The intensity of a light source falls off with the square of the distance
between the source and the object being lit, because the same light is being spread over a
larger (spherical) area. A light source may also have a directional falloff (dependence), but
we ignore this in our simplified model,

Area light sources are more complicated, A simple area light source such as a fluorescent
ceiling light fixture with a diffuser can be modeled as a finite rectangular area emitting light
equally in all directions (Cohen and Wallace 1993; Sillion and Poech 1994; Glassner 1995).
When the distribution is strongly directional, a four-dimensional lightfield can be used instead
(Ashdown 1993).

A more complex light distribution that approximates, say, the incident illumination on an
object sitting in an outdoor courtyard, can often be represented using an envivonment map
{Greene 1986) (originally called a reflection map (Blinn and Newell 1976)). This representa-
tion maps incident light directions & to color values (or wavelengths, A),

L(#; A), (2.80)

and is equivalent to assuming that all light sources are at infinity. Environment maps can be
represented as a collection of cubical faces (Greene 1986), as a single longitude—latitude map
(Blinn and Newell 1976), or as the image of a reflecting sphere (Watt 1995). A convenient
way to get a rough model of a real-world environment map is to take an image of a reflective
mirrored sphere and to unwrap this image onto the desired environment map (Debevec 1998).
Watt (1995) gives a nice discussion of environment mapping, including the formulas needed
to map directions to pixels for the three most commonly used representations.

2.2.2 Reflectance and shading

When light hits an object’s surface, it is scattered and reflected (Figure 2.15a). Many different
models have been developed to describe this interaction. In this section, we first describe the
most general form, the bidirectional reflectance distribution function, and then look at some
more specialized models, including the diffuse, specular, and Phong shading models. We also
discuss how these models can be used to compute the global illumination corresponding to a
scene.

The Bidirectional Reflectance Distribution Function (BRDF)

The most general model of light scattering is the bidirectional reflectance distribution func-
tion (BRDF).? Relative to some local coordinate frame on the surface, the BRDF is a four-
dimensional function that describes how much of each wavelength arriving at an incident

¥ Actually, even more genernl models of Hght transport exist, including some that model spatial variation along
the surface, sub-surface scattering, and atmospheric effects—see Section 12,7, 1—({Dorsey, Rushmeier, and Sillion
2007; Weyrich, Lawrence, Lensch et al, 2008).

35
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==

(a) (b)

Figure 2.15 (1) Light scatters when it hits a surface. (b) The bidirectional reflectance distribution function
(BRDF) f(6;, &y, 8, i) is parameterized by the angles that the incident, ©;, and reflected, 9, light ray directions
make with the local surface coordinate frame (d., d, 71).

direction #; is emitted in a reflected direction @, (Figure 2.15b). The function can be written
in terms of the angles of the incident and reflected directions relative to the surface frame as

fr{gi:‘#'i!ﬂrrfi’r;}'}- {251}

The BRDF is reciprocal, i.e., because of the physics of light transport, you can interchange
the roles of #; and @, and still get the same answer (this is sometimes called Hefmholtz
reciprocity).

Most surfaces are isotropic, i.e., there are no preferred directions on the surface as far
as light transport is concerned. (The exceptions are anisotropic surfaces such as brushed
{scratched) aluminum, where the reflectance depends on the light orientation relative to the
direction of the scratches.) For an isolropic material, we can simplify the BRDF to

fr{HiIET'II¢T _¢'l|;}l} or f.-{ﬁ{,ﬁ,-,ﬁ-; -"'}- {2-32]

since the quantities &;, &, and ¢, — ¢; can be computed from the directions 9y, ¥, and .

To calculate the amount of light exiting a surface point p in a direction 4, under a given
lighting condition, we integrate the product of the incoming light Li(#; A) with the BRDF
(some authors call this step a comvelution). Taking into account the foreshortening factor
cost §;, we obtain

Lr(ri0) = [ La(6i WV (91, 5,330 cos 0y, 2.83)

where
cos™ #; = max(0, cos 8;). (2.84)

If the light sources are discrete (a finite number of point light sources), we can replace the
integral with a summation,

Le(8r2) = Y Li(A) fr (i, Br, 745 A) cos™t 8y, (2.85)

BRDFs for a given surface can be obtained through physical modeling (Torrance and
Sparrow 1967; Cook and Torrance 1982; Glassner 1995), heuristic modeling (Phong 1975), or
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2.2 Photometric image formation

Figure 2.16 This close-up of a statue shows both diffuse (smooth shading) and specular (shiny highlight) reflec-
tion, as well as darkening in the grooves and creases due to reduced light visibility and interreflections. (Photo

courtesy of the Caltech Vision Lab, http:/fwww.vision.caltech.edu/archive. html.)

through empirical observation (Ward 1992; Westin, Arvo, and Totrance 1992, Dana, van Gin-
neken, Nayar et al. 1999; Dorsey, Rushmeier, and Sillion 2007; Weyrich, Lawrence, Lensch
et al. 2008).° Typical BRDFs can often be split into their diffuse and specular components,
a5 described below,

Diffuse reflection

The diffuse component (also known as Lambertian or matte reflection) scatters light uni-
formly in all directions and is the phenomenon we most normally associate with shading,
e.g., the smooth (non-shiny) variation of intensity with surface normal that i% seen when ob-
serving a statue (Figure 2.16). Diffuse reflection also often imparts a strong body color to
the light since it is caused by selective absorption and re-emission of light inside the object’s
material (Shafer 1985; Glassner 1995).

While light is scattered uniformly in all directions, i.e,, the BRDF is constant,

fli(ﬁnﬁrtﬁi}":l = .fr.fl:)"}r {236)

the amount of light depends on the angle between the incident light direction and the surface
normal £, This is because the surface area exposed to a given amount of light becomes larger
at oblique angles, becoming completely self-shadowed as the outgoing surface normal points
away from the light (Figure 2.17a). (Think about how you orient yourself towards the sun or
fireplace to get maximum warmth and how a flashlight projected obliquely against a wall is
less bright than one pointing directly at it.}) The shading equation for diffuse reflection can
thus be written as

La(B,50) = 3 Li(A) fa(A) cost 0 = > Le(A) fa(A)[d: - A] ™, (2.87)

& See hitpeffvrww 1.cs.columbia.cdw CAVE/software/curet! for o database of some empirically sampled BRDFs.
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Figure 2.17 (a) The diminution of returned light caused by foreshortening depends on 6 - fi, the cosine of the
angle between the incident light direction ©; and the surface normal 7. (b) Mirror (specular) reflection: The
incident light ray direction 4; is reflected onto the specular direction §; around the sarface normal 7i.

where
[ - ﬁ]"‘ = max(0, #; - 7). (2.88)

Specular reflection

The second major component of a typical BRDF is specular (gloss or highlight) reflection,
which depends strongly on the direction of the outgoing light. Consider light reflecting off a
mirrored surface (Figure 2.17b). Incident light rays are reflected in a direction that is rotated
by 180° around the surface normal 7. Using the same notation as in Equations (2.29-2.30),
we can compute the specular reflection direction 3; as

5 = vy — vy = (2AAT — Nu;. (2.89)

The amount of light reflected in a given direction ¥, thus depends on the angle 8, =
cos (@, - &) between the view direction @, and the specular direction ;. For example, the
Phong (1975) model uses a power of the cosine of the angle,

fo(0:i 2) = koX) cos™ 6, (2.90)
while the Torrance and Sparrow (1967) micro-facet model uses a Gaussian,
Fo(853 ) = ka(X) exp(—c263). (2.91)
Larger exponents k. (or inverse Gaussian widths e,) correspond to more specular surfaces
with distinct highlights, while smaller exponents better model materials with softer gloss.

Phong shading

Phong (1975) combined the diffuse and specular components of reflection with another term,
which he called the ambient illumination. This term accounts for the fact that objects are
generally illuminated not only by peint light sources but also by a general diffuse illomination
corresponding to inter-reflection (e.g., the walls in a room) or distant sources, such as the
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Figure 2.18 Cross-section through a Phong shading model BRDF for a fixed incident illumination direction:
() component values as a function of angle away from surface normal; (b) polar plot. The value of the Phong
exponent k., is indicated by the “Exp” labels and the light source is at an angle of 30° away from the normal.

blue sky. In the Phong model, the ambient term does not depend on surface orientation, but
depends on the color of both the ambient illumination L, (A) and the object kq(A),

fu{}‘] = ku{)‘JLn(-)":'- (2.92)
Putting all of these terms together, we arrive at the Phong shading model,
L83 2) = kaN La () + ka(A) 3 L) - Al + ky(A) Y Le(A)(Br - 8:)". (2.93)

Figure 2.18 shows a typical set of Phong shading model components as a function of the
angle away from the surface normal (in a plane containing both the lighting direction and the
viewer).

Typically, the ambient and diffuse reflection color distributions k, () and kg(A) are the
same, since they are both due to sub-surface scattering (body reflection) inside the surface
material (Shafer 1985). The specular reflection distribution k,(A) is often uniform (white),
since it is cavsed by interface reflections that do not change the light color, (The exception
to this are metallic materials, such as copper, as opposed to the more common dielectric
materials, such as plastics.)

The ambient illumination Lg(A) often has a different color cast from the direct light
sources Ly(A), e.g., it may be blue for a sunny outdoor scene or yellow for an interior lit
with candles or incandescent lights. {The presence of ambient sky illumination in shadowed
areas is what often causes shadows to appear bluer than the corresponding lit portions of a
scene). Note also that the diffuse component of the Phong model (or of any shading model)
depends on the angle of the incoming light source $;, while the specular component depends
on the relative angle between the viewer v, and the specular reflection direction &; (which
itself depends on the incoming light direction 6; and the surface normal ).

The Phong shading model has been superseded in terms of physical accuracy by a number
of more recently developed models in computer graphics, including the model developed by
Cook and Torrance (1982) based on the original micro-facet model of Torrance and Sparrow
(1967). Until recently, most computer graphics hardware implemented the Phong model but
the recent advent of programmable pixel shaders makes the use of more complex models
feasible.
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(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and match images: (a)
point-like interest operators (Brown, Szeliski, and Winder 2005) () 2005 IEEE; (b) region-like interest operators
{Matas, Chum, Urban et al. 2004) © 2004 Elsevier, (c) edges (Elder and Goldberg 2001) (€ 2001 IEEE; (d)
straight lines (Sinha, Steedly, Szeliski ef al. 2008) (© 2008 ACM.



4.1 Points and patches

Feature detection and matching are an essential component of many computer vision appli-
cations, Consider the two pairs of images shown in Figure 4.2. For the first pair, we may
wish to align the two images 5o that they can be seamlessly stitched into a composite mosaic
(Chapter 9). For the second pair, we may wish to establish a dense set of correspondences so
that a 3D model can be constructed or an in-between view can be generated (Chapter 11). In
either case, what kinds of feafures should you detect and then match in order to establish such
an alignment or set of correspondences? Think about this for a few moments before reading
on.

The first kind of feature that you may notice are specific locations in the images, such as
mountain peaks, building corners, doorways, or interestingly shaped patches of snow. These
kinds of localized feature are often called keypoint fearures or interest points (or even corners)
and are often described by the appearance of patches of pixels surrounding the point location
{Section 4.1). Another class of important features are edges, e.g., the profile of mountains
against the sky, (Section 4.2). These kinds of features can be matched based on their orien-
tation and local appearance (edge profiles) and can also be good indicators of object bound-
aries and ecclusion events in image sequences. Edges can be grouped into longer curves and
straight line segments, which can be directly maiched or analyzed to find vanishing points
and hence internal and external camera parameters (Section 4.3). :

In this chapter, we describe some practical approaches to detecting such features and
also discuss how feature correspondences can be established across different images. Point
features are now used in such a wide variety of applications that it is good practice to read and
implement some of the algorithms from (Section 4.1). Edges and lines provide information
that is complementary to both keypoint and region-based descriptors and are well-suited to
describing object boundaries and man-made objects. These alternative descriptors, while
extremely useful, can be skipped in a short introductory course.

4.1 Points and patches

Point features can be used to find a sparse set of corresponding locations in different im-
ages, often as a pre-cursor to computing camera pose (Chapter 7), which is a prerequisite for

-computing a denser set of correspondences using stereo matching (Chapter 11), Such corre-
spondences can also be used to align different images, e.g., when stitching image mosaics or
performing video stabilization (Chapter 9). They are also used extensively to perform object
instance and category recognition (Sections 14.3 and 14.4). A key advantage of keypoints
is that they permit matching even in the presence of clutter (occlusion) and large scale and
orientation changes.

Feature-based correspondence techniques have been used since the early days of stereo
matching (Hannah 1974; Moravec 1983; Hannah 1988) and have more recently gained pop-
ularity for image-stitching applications (Zoghlami, Faugeras, and Deriche 1997; Brown and
Lowe 2007) as well as fully automated 3D modeling (Beardsley, Torr, and Zisserman 1996;
Schaffalitzky and Zisserman 2002; Brown and Lowe 2003; Snavely, Seitz, and Szeliski 2006).

There are two main approaches to finding feature points and their correspondences. The
first is to find features in one image that can be accurately tracked uvsing a local search tech-
nique, such as correlation or least squares (Section 4,1.4), The second is to independently
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Figure 4.2 Two pairs of images to be matched. What kinds of feature might one use to establish a set of
correspondences between these images?

detect features in all the images under consideration and then mearch features based on their
local appearance (Section 4.1.3). The former approach is more suitable when images are
taken from nearby viewpoints or in rapid succession (e.g., video sequences), while the lat-
ter is more suitable when a large amount of motion or appearance change is expected, e.g.,
in stitching together panoramas (Brown and Lowe 2007), establishing correspondences in
wide baseline stereo (Schaffalitzky and Zisserman 2002), or performing object recognition
(Fergus, Perona, and Zisserman 2007).

In this section, we split the keypoint detection and matching pipeline into four separate
stages. During the feature detection (extraction) stage (Section 4.1.1), each image is searched
for locations that are likely to match well in other images. At the feature description stage
(Section 4.1.2), each region around detected keypoint locations is converted into a more com-
pact and stable (invariant) descripfor that can be matched against other descriptors. The
feature maiching stage (Section 4.1.3) efficiently searches for likely matching candidates in
other images. The feature tracking stage (Section 4.1.4) is an alternative to the third stage
that only searches a small neighborhood around each detected feature and is therefore more
suitable for video processing.

A wonderful example of all of these stages can be found in David Lowe’s (2004) paper,
which describes the development and refinement of his Scale Invariant Feature Transform
{SIFT). Comprehensive descriptions of alternative techniques can be found in a series of
survey and evaluation papers covering both featre detection (Schmid, Mohr, and Bauck-
hage 2000; Mikolajezyk, Tuytelaars, Schmid et al. 2005; Tuytelaars and Mikolajczyk 2007)
and feature descriptors (Mikolajezyk and Schmid 2005). Shi and Tomasi (1994) and Triggs
(2004) also provide nice reviews of feature detection techniques.
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Figure 4.3 Image pairs with extracted patches below. MNotice how some patches can be localized or matched

with higher accuracy than others.

4.1.1 Feature detectors

How can we find image locations where we can reliably find correspondences with other
images, i.e., what are good features to track (Shi and Tomasi 1994; Triggs 2004)? Look again
at the image pair shown in Figure 4.3 and at the three sample patches to see how well they
might be matched or tracked. As you may notice, textureless patches are nearly impossible
to localize. Patches with large contrast changes (gradients) are easier to localize, although
straight line segments at a single orientation suffer from the aperture problem (Horn and
Schunck 1981; Lucas and Kanade 1981; Anandan 1989), i.e., it is only possible to align
the patches along the direction normal to the edge direction (Figure 4.4b). Patches with
gradients in at least two (significantly) different orientations are the easiest to localize, as
shown schematically in Figure 4.4a.

These intuitions can be formalized by looking at the simplest possible matching criterion
for comparing two image patches, i.e., their (weighted) summed square difference,

Ewssp(u) = Zw[mi}ih (s 4+ u) — To(z)]?, (4.1)

where [y and I; are the two images being compared, u = (u, v) is the displacement vector,
w(x) is a spatially varying weighting (or window) function, and the summation i is over all
the pixels in the patch. Note that this is the same formulation we later use to estimate motion
between complete images (Section 8.1,

When performing feature detection, we do not know which other image locations the
feature will end tip being matched against. Therefore, we can only compute how stable this
metric is with respect to small variations in position Aw by comparing an image patch against
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(b) (c)

Figure 4.4 Aperture problems for different image patches: (a) stable {(“corner-like™) flow; (b} classic aperture
problem (barber-pole illusion); (c) textureless region. The two images [y (yellow) and Iy (red) are overlaid.
The red vector u indicates the displacement between the patch centers and the w(ax;) weighting function (patch
window) is shown as a dark circle.

itself, which is known as an auto-correlation function or surface

Exc(Au) = Z wlm) [To(z: + Au) — To(=:))? 4.2)

(Figure 4.5).! Note how the auto-correlation surface for the textured flower bed (Figure 4.5b
and the red cross in the lower right quadrant of Figure 4.5a) exhibits a strong minimum,
indicating that it can be well localized. The correlation surface corresponding to the roof
edge (Figure 4.5¢) has a strong ambiguity along one direction, while the correlation surface
corresponding to the cloud region (Figure 4.5d) has no stable minimum.

Using a Taylor Series expansion of the image function Jo(a; -+ Aw) = To(a;)+ Vo (@)
Awu (Lucas and Kanade 1981; Shi and Tomasi 1994), we can approximale the auto-correlation

surface as
Eac(Au) = Z_me}[fufm + Au) — Iz (4.3)
- Z w(w:)[To(:) + V(@) - A — Io(a;))? (4.4)
- i:w{m;}[?fg(m;j  Auf? (4.5)
- ﬂ:uTA.-'lu, (4.6)

where
Vio(ai) = (G2 o) @) @

is the image gradient at ;. This gradient can be computed using a variety of techniques
{Schmid, Mohr, and Bauckhage 2000). The classic “Harris” detector (Harris and Stephens
1988) uses a [-2 -1 0 1 2] filter, but more modern variants (Schmid, Mohr, and Bauckhage
2000; Triggs 2004) convolve the image with horizontal and vertical derivatives of a Gaussian
(typically with & = 1}.

1 Strictly speaking, a correlation is the product of two patches (3.12); I'm using the term here in a more qualitative
sense. The weighted sum of squared differences is often called an S50 surfuce (Section 8.1).
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(b) (e) (d)

Figure 4.5 Three auto-correlation surfaces FacAw) shown as both grayscale images and surface plots: (a) The
original image is marked with three red crosses to denote where the auto-correlation surfaces were computed; (b)
this patch is from the flower bed (good unique minimum); (c) this patch is from the roof edge (one-dimensional
aperture problem); and (d) this patch is from the cloud (no good peak). Each grid point in figures b—d is one value
of A,
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direction of the
fastest change

diréction of the
slowest change

Figure 4.6 Uncertainty ellipse corresponding to an eigenvalue analysis of the auto-correlation matrix A.

The anto-correlation matrix A can be written as

2 LI,

11, Ig . s

A=w*[

where we have replaced the weighted summations with discrete convolutions with the weight-

_ ing kernel w. This matrix can be interpreted as a tensor (multiband) image, where the outer

products of the gradients VI are convolved with a weighting function w to provide a per-pixel
estimate of the local (quadratic) shape of the anto-correlation function.

As first shown by Anandan (1984; 1989) and further discussed in Section 8.1.3 and (8.44),
the inverse of the matrix A provides a lower bound on the uncertainty in the location of a
matching patch. It is therefore a useful indicator of which patches can be reliably matched.
The easiest way to visualize and reason about this uncertainty is to perform an eigenvalue
analysis of the auto-correlation matrix A, which produces two eigenvalues (Ap, A1) and two
eigenvector directions (Figure 4.6). Since the larger uncertainty depends on the smaller eigen-
value, i.e., Ay 1“, it makes sense to find maxima in the smaller eigenvalue to locate good
features to track (Shi and Tomasi 1994).

Forstner—Harris. While Anandan and Lucas and Kanade (1981) were the first to analyze
the uncertainty structure of the auto-correlation matrix, they did so in the context of asso-
ciating certainties with optic flow measurements, Forstner (1986) and Harris and Stephens
(1988) were the first to propose using local maxima in rotationally invariant scalar measures
derived from the auto-correlation matrix to locate keypoints for the purpose of sparse feature
matching. (Schmid, Mohr, and Bauckhage (2000); Triggs (2004) give more detailed histori-
cal reviews of feature detection algorithms.) Both of these technigues also proposed using a
Gaussian weighting window instead of the previously used square patches, which makes the
detector response insensitive to in-plane image rotations.

The minimum eigenvalue Ay (Shi and Tomasi 1994) is not the only quantity that can be

 used to find keypoints. A simpler quantity, proposed by Harris and Stephens (1988), is

det{ A) — o trace(A)? = Aphi — a(Xho + A1)? (4.9)
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Figure 4.7 Isocontours of popular keypoint detection functions (Brown, Szeliski, and Winder 2004). Each

detector looks for points where the eigenvalues Ag, A; of A = w + VIVIT are both large.

with & = 0.06. Unlike eigenvalue analysis, this quantity does not require the use of square
roots and yet is still rotationally invariant and also downweights edge-like features where
A1 2 Ap. Triggs (2004) suggests using the quantity

ho —ahy (4.10)

(say, with @ = 0.05), which also reduces the response at 1D edges, where aliasing errors
sometimes inflate the smaller eigenvalue. He also shows how the basic 2 x 2 Hessian can be
extended to parametric motions to detect points that are also accurately localizable in scale
and rotation. Brown, Szeliski, and Winder (2005), on the other hand, use the harmonic mean,

det A _ Agh
tr A _}Lu+}L11

which is a smoother function in the region where Ay & A;. Figure 4.7 shows isocontours
of the various interest point operators, from which we can see how the two eigenvalues are
blended to determine the final interest value.

The steps in the basic auto-correlation-based keypoint detector are summarized in Algo-
rithm 4.1. Figure 4.8 shows the resulting interest operator responses for the classic Harris
detector as well as the difference of Gaussian (Do) detector discussed below.

(4.11)

Adaptive non-maximal suppression (ANMS). While most feature detectors simply
look for local maxima in the interest function, this can lead to an uneven distribution of
feature points across the image, e.g., points will be denser in regions of higher contrast. To
mitigate this problem, Brown, Szeliski, and Winder (2005) only detect features that are both
local maxima and whose response value is significantly (10%) greater than that of all of
its neighbors within a radius r (Figure 4.9c—d), They devise an efficient way to associate
suppression radii’ with all local maxima by first sorting them by their response strength and
then creating a second list sorted by decreasing suppression radius (Brown, Szeliski, and
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1. Compute the horizontal and vertical derivatives of the image I; and I, by con-
volving the original image with derivatives of Gaussians (Section 3.2.3).

2. Compute the three images corresponding to the outer products of these gradients.
(The matrix A is symmetric, so only three entries are needed.) .

3. Convolve each of these images with a larger Gaussian.
4. Compute a scalar interest measure using one of the formulas discussed above.

5. Find local maxima above a certain threshold and report them as detected feature
point locations,

Algorithm 4.1 Outline of a basic feature detection algorithm.

Figure 4.8 Interest operator responses: (a) Sample image, (b) Harris response, and (c) DoG response. The circle
sizes and colors indicate the scale at which each interest point was detected. Notice how the two detectors tend to
respond at complementary locations,

Winder 2005). Figure 4.9 shows a qualitative comparison of selecting the top n features and
using ANMS.

Measuring repeatability. Given the large number of feature detectors that have been
developed in computer vision, how can we decide which ones to use? Schmid, Mohr, and
Bauckhage (2000) were the first to propose measuring the repeatability of feature detectors,
which they define as the frequency with which keypoints detected in one image are found
within e (say, e = 1.5) pixels of the corresponding location in a transformed image. In their
paper, they transform their planar images by applying rotations, scale changes, illumination
changes, viewpoint changes, and adding noise. They also measure the information content
available at cach detected feature point, which they define as the entropy of a set of rotation-
ally invariant local grayscale descriptors. Among the techniques they survey, they find that
the improved (Gaussian derivative) version of the Harris operator with oy = 1 (scale of the
derivative Gaussian) and o; = 2 (scale of the integration Gaussian) works best.
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Figure 4.9 Adaptive non-maximal suppression (ANMS) (Brown, Szeliski, and Winder 2005) (© 2005 IEEE:
The upper two images show the strongest 250 and 500 interest points, while the lower two images show the
interest points selected with adaptive non-maximal suppression, along with the corresponding suppression radius

. Mote how the latter features have a much more uniform spatial distribution across the image.

Scale invariance

In many situations, detecting features at the finest stable scale possible may not be appro-
priate. For example, when matching images with little high frequency detail (e.g., clouds),
fine-scale features may not exist.

One solution to the problem is to extract features at a variety of scales, e.g., by performing
the same operations at multiple resolutions in a pyramid and then matching features at the
same level. This kind of approach is suitable when the images being matched do not undergo
large scale changes, e.g., when matching successive aerial images taken from an airplane or
stitching panoramas taken with a fixed-focal-length camera. Figure 4.10 shows the output of
one such approach, the multi-scale, oriented patch detector of Brown, Szeliski, and Winder
(2005), for which responses at five different scales are shown.

However, for most object recognition applications, the scale of the object in the image
is unknown. Instead of extracting features at many different scales and then matching all of
them, it is more efficient to extract features that are stable in both location and scale (Lowe
2004; Mikolajezyk and Schmid 2004).

Early investigations into scale selection were performed by Lindeberg (1993; 1998h),
who first proposed using extrema in the Laplacian of Gaussian (LoG) function as interest
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Figure 410 Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown, Szeliski, and Winder
2005) (€) 2005 IEEE, The boxes show the feature orientation and the region from which the descriptor vectors are

sampled.

point locations. Based on this work, Lowe (2004) proposed computing a set of sub-octave
Difference of Gaussian filters (Figure 4.11a), looking for 3D (space+scale) maxima in the re-
sulting structure (Figure 4.11b), and then computing a sub-pixel space-+scale location using a
quadratic fit (Brown and Lowe 2002). The number of sub-octave levels was determined, after
careful empirical investigation, to be three, which corresponds to a quarter-octave pyramid,
which is the same as used by Triggs (2004).

As with the Harris operator, pixels where there is strong asymmetry in the local curvature
of the indicator function (in this case, the Do) are rejected. This is implemented by first
computing the local Hessian of the difference image D,

D o

H= [ e~ ] 3 (4.12)
Doy Dy

and then rejecting keypoints for which

Tr(H)*

Det(H) > 10. (4.13)

While Lowe's Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris comer detector, Mikolajczyk and
Schmid (2004} evaluate the Laplacian of Ganssian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
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Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyramid (Lowe 2004) ©
2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid are subtracted to produce Difference of
Gaussian images; (b) extrema (maxima and minima) in the resulting 3D volume are detected by comparing a

pixel to its 26 neighbors.

region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al (2005); Tuytelaars
and Mikolajezyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor,

A better method is to estimate a dominant orientation at each detected keypoint. Once
the local orientation and scale of a keypoint have been estimated, a scaled and oriented patch
around the detected point can be extracted and used to form a feature descriptor (Figures 4.10
and 4.17).

The simplest possible orientation estimate is the average gradient within a region around
the keypoint. If a Gaussian weighting function is used (Brown, Szeliski, and Winder 2003),
this average gradient is equivalent to a first-order stecrable filter (Section 3.2.3), i.e., it can be
computed using an image convolution with the horizontal and vertical derivatives of Gaus-
sian filter (Freeman and Adelson 1991). In arder to make this estimate more reliable, it s
usually preferable to use a larger aggregation window (Gaussian kernel size) than detection
window (Brown, Szeliski, and Winder 2003). The orientations of the square boxes shown in
Figure 4.10 were computed using this technicgue.

Sometimes, however, the averaged (signed) gradient in a region can be small and therefore
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Figure 4,12 A dominant orientation estimate can be computed by creating a histogram of all the gradient orien-
tations (weighted by their magnitudes or after thresholding oot small gradients) and then finding the significant
peaks in this distribution (Lowe 2004) @ 2004 Springer.

Figure 4.13  Affine region detectors used to match two images taken from dramatically different viewpoints
(Mikolajczyk and Schmid 2004) (©) 2004 Springer.

an unreliable indicator of orentation. A more reliable technique is to look at the histogram
of orientations computed around the keypoint. Lowe (2004) computes a 36-bin histogram
of edge orientations weighted by both gradient magnitude and Gaussian distance to the cen-
ter, finds all peaks within 80% of the global maximum, and then computes a more accurate
orientation estimate using a three-bin parabolic fit (Figure 4.12).

Affine invariance

While scale and rotation invariance are highly desirable, for many applications such as wide
baseline stereo matching (Pritchett and Zisserman 1998; Schaffalitzky and Zisserman 2002)
or location recognition (Chum, Philbin, Sivic er al. 2007), full affine invariance is preferred.
Affine-invariant detectors not only respond at consistent locations after scale and orientation
changes, they also respond consistently across affine deformations such as (local) perspective
foreshortening (Figure 4.13). In fact, for a small enough patch, any continuous image warping
can be well approximated by an affine deformation.

To introduce affine invariance, several authors have proposed fitting an ellipse to the auto-
correlation or Hessian matrix (using eigenvalue analysis) and then using the principal axes
and ratios of this fit as the affine coordinate frame (Lindeberg and Garding 1997; Baumberg
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Figure 4.14  Affine normalization using the second moment matrices, as described by Mikolajezyk, Tuytelaars,
Schmid ef al. (2005) (© 2005 Springer. After image coordinates are transformed using the matrices A, Y2 and
Al_l"f ” they are related by a pure rotation J2, which can be estimated using a dominant orientation technique.

Figure 4.15 Maximally stable extremal regions (MSERs) extracted and matched from a number of images
(Matas, Chum, Urban et al. 2004) © 2004 Elsevier,

2000; Mikolajezyk and Schmid 2004; Mikolajezyk, Tuytelaars, Schmid et al. 2003; Tuyte-
laars and Mikolajezyk 2007). Figure 4.14 shows how the square root of the moment matrix
can be used to transform local patches into a frame which is similar up to rotation,

Another important affine invariant region detector is the maximally stable extremal region
{MSER) detector developed by Matas, Chum, Urban et al. (2004). To detect MSERs, binary
regions are computed by thresholding the image at all possible gray levels (the technique
therefore only works for grayscale images). This operation can be performed efficiently by
first sorting all pixels by gray value and then incrementally adding pixels to each connected
component as the threshold is changed (Nistér and Stewénius 2008). As the threshold is
changed, the area of each component (region) is monitored; regions whose rate of change of
area with respect to the threshold is minimal are defined as maximally stable. Such regions
are therefore invariant to both affine geometric and photometric (linear bias-gain or smooth
monotonic) transformations (Figure 4.15). If desired, an affine coordinate frame can be fit to
each detected region using its moment matrix.

The area of feature point detectors continues to be very active, with papers appearing ev-
ery year at major computer vision conferences (Xiao and Shah 2003; Koethe 2003; Cameiro
and Jepson 2005; Kenney, Zuliani, and Manjunath 2005; Bay, Tuytelaars, and Van Gool 2006;
Platel, Balmachnova, Florack er al. 2006; Rosten and Drummond 2006). Mikolajezyk, Tuyte-
laars, Schmid er al. (2005) survey a number of popular affine region detectors and provide
experimental comparisons of their invariance to common image transfurmations such as scal-
ing, rotations, noise, and blur. These experimental results, code, and pointers to the surveyed
papers can be found on their Web site at http://www.robots.ox.ac.uk/~vgg/research/affine/.

Of course, keypoints are not the only features that can be used for registering images.
Zoghlami, Fangeras, and Deriche (1997) use line segments as well as point-like features to
estimate homographies between pairs of images, whereas Bartoli, Coquerelle, and Sturm
(2004) use line segments with local correspondences along the edges to extract 3D structure
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Figure 416 Feature matching: how can we extract local descriptors that are invariant to inter-image variations
and yet still discriminative enough to establish correct correspondences?

and motion. Tuytelaars and Van Gool (2004) use affine invariant regions to detect corre-
spondences for wide baseline stereo matching, whereas Kadir, Zisserman, and Brady (2004)
detect salient regions where patch entropy and its rate of change with scale are locally max-
imal. Corso and Hager (2005) use a related technique to fit 2D oriented Gaussian kernels
to homogeneous regions. More details on techniques for finding and matching curves, lines,
and regions can be found later in this chapter.

4.1.2 Feature descriptors

After detecting features (keypoints), we must match them, i.e., we must determine which
features come from corresponding locations in different images. In some situations, e.g., for
video sequences (Shi and Tomasi 1994) or for stereo pairs that have been rectified (Zhang,
Deriche, Faugeras et al. 1995; Loop and Zhang 1999; Scharstein and Szeliski 2002), the lo-
cal motion around each feature point may be mostly translational. In this case, simple error
metrics, such as the swm of squared differences or normalized cross-correlation, described
in Section 8.1 can be used to directly compare the intensities in small patches around each
feature point. (The comparative study by Mikolajczyk and Schmid (2005), discussed below,
uses cross-correlation,) Because feature points may not be exactly located, a more accurate
matching score can be computed by performing incremental motion refinement as described
in Section 8.1.3 but this can be time consuming and can sometimes even decrease perfor-
mance (Brown, Szeliski, and Winder 2003),

In most cases, however, the local appearance of features will change in orientation and
scale, and sometimes even undergo affine deformations. Extracting a local scale, orientation,
or affine frame estimate and then using this to resample the patch before forming the feature
descriptor is thus usually preferable (Figure 4.17).

Even after compensating for these changes, the local appearance of image patches will
usually still vary from image to image. How can we make image descriptors more invariant to
such changes, while still preserving discriminability between different (non-corresponding)
patches (Figure 4.16)7 Mikolajezyk and Schmid (2005) review some recently developed
view-invariant local image descriptors and experimentally compare their performance. Be-
low, we describe a few of these descriptors in more detail.

Bias and gain normalization (MOPS). For tasks that do not exhibit large amounts of

" foreshortening, such as image stitching, simple normalized intensity patches perform reason-
ably well and are simple to implement (Brown, Szeliski, and Winder 2005) (Figure 4.17). In
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Figure 417 MOFPS descriptors are formed using an 8 » 8 sampling of bias and gain normalized intensity values,
with a sample spacing of five pixels relative to the detection scale (Brown, Szeliski, and Winder 2005) © 2005
IEEE. This low frequency sampling gives the features some robustness to interest point location error and is

achieved by sampling at a higher pyramid level than the detection scale.

order to compensate for slight inaccuracies in the feature point deteetor (location, orientation,
and scale), these multi-scale oriented patches (MOPS) are sampled at a spacing of five pixels
relative to the detection scale, using a coarser level of the image pyramid to avoid aliasing,
To compensate for affine photometric variations (linear exposure changes or bias and gain,
(3.3)), patch intensities are re-scaled so that their mean is zero and their variance is one.

Scale invariant feature transform (SIFT). SIFT features are formed by computing the
gradient at each pixel in a 16 x 16 window around the detected keypoint, using the appropriate
level of the Gaussian pyramid at which the keypoint was detected. The gradient magnitudes
are downweighted by a Gaussian fall-off function (shown as a blue circle in (Figure 4.18a) in
order to reduce the influence of gradients far from the center, as these are more affected by
small misregistrations,

In each 4 » 4 quadrant, a gradient orientation histogram is formed by (conceptually)
adding the weighted gradient value to one of eight orientation histogram bins, To reduce the
effects of location and dominant orientation misestimation, each of the original 256 weighted
gradient magnitudes is softly added to 2 x 2 x 2 histogram bins using trilinear interpolation,
Softly distributing values to adjacent histogram bins is generally a good idea in any appli-
cation where histograms are being computed, e.g., for Hough transforms (Section 4.3.2) or
local histogram equalization (Section 3.1.4).

The resulting 128 non-negative values form a raw version of the SIFT descriptor vector.
To reduce the effects of contrast or gain (additive variations are already removed by the gra-
dient), the 128-D vector is normalized to unit length. To further make the deseriptor robust to
other photometric variations, values are clipped to 0.2 and the resulting vector is once again
renormalized to unit length.

PCA-SIFT. Ke and Sukthankar (2004) propose a simpler way to compute descriptors in-
spired by SIFT, it computes the = and y (gradient) derivatives over a 39 x 39 patch and
then reduces the resulting 3042-dimensional vector to 36 using principal component analysis
(PCA) (Section 14.2.1 and Appendix A.1.2). Another popular variant of SIFT is SURF (Bay,
Tuytelaars, and Van Gool 2006), which uses box filters to approximate the derivatives and
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Figure 4.18 A schematic representation of Lowe's (2004) scale invariant feature transform (SIFT); (a) Gradient
orientations and magnitudes are computed at each pixel and weighted by a Gaussian fall-off function (blue circle).
(b) A weighted gradient orientation histogram is then computed in each subregion, using trilinear interpolation.
While this figure shows an 8 x 8 pixel patch and a 2 x 2 descriptor array, Lowe's actual implementation uses
16 x 16 patches and a 4 x 4 array of eight-bin histograms,

integrals used in SIFT.

Gradient location-orientation histogram (GLOH). This descriptor, developed by Miko-
lajezyk and Schmid (2003), is a variant on SIFT that uses a log-polar binning structure instead
of the four quadrants used by Lowe (2004) (Figure 4.19). The spatial bins are of radius 6,
11, and 15, with eight angular bins (except for the central region), for a total of 17 spa-
tial bins and 16 orientation bins. The 272-dimensional histogram is then projected onto
a 128-dimensional descriptor using PCA trained on a large database. In their evaluation,
Mikolajezyk and Schmid (2005) found that GLOH, which has the best performance overall,
outperforms SIFT by a small margin.

Steerable filters. Steerable filters (Section 3,2.3) are combinations of derivative of Gaus-
sian filters that permit the rapid computation of even and odd (symmetric and anti-symmetric)
edge-like and comer-like features at all possible orientations (Freeman and Adelson 1991).
Because they use reasonably broad Gaussians, they too are somewhat insensitive to localiza-
tion and orientation errors,

Performance of local descriptors. Among the local descriptors that Mikolajezyk and
Schmid (2005) compared, they found that GLOH performed best, followed closely by SIFT
(see Figure 4.25). They also present results for many other descriptors not covered in this
hook.

The field of feature descriptors continues to evolve rapidly, with some of the newer tech-
niques looking at local color information (van de Weijer and Schmid 2006; Abdel-Hakim
and Farag 2006). Winder and Brown (2007) develop & multi-stage framework for feature
descriptor computation that subsumes both SIFT and GLOH (Figure 4.20a) and also allows
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Figure 4.19 The gradient location-orientation histogram (GL.OH) descriptor uses log-polar bins instead of square
bins to compute orientation histograms (Mikolajezyk and Schmid 2005).
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Figure 4.20 Spatial summation blocks for SIFT, GLOH, and some newly developed feature descriptors (Winder
and Brown 2007) (€} 2007 IEEE: (a) The parameters for the new features, e.g., their Gaussian weights, are learned
from a training database of (b) matched real-world image patches obtained from robust structure from motion
applied to Internet photo collections (Hua, Brown, and Winder 2007).

them to learn optimal parameters for newer descriptors that outperform previous hand-tuned
descriptors, Hua, Brown, and Winder (2007) extend this work by learning lower-dimensional
projections of higher-dimensional descriptors that have the best discriminative power. Both
of these papers use a database of real-world image patches (Figure 4.20b) obtained by sam-
pling images at locations that were reliably matched using a robust structure-from-motion
algorithm applied to Internet photo collections (Snavely, Seitz, and Szeliski 2006; Goesele,
Snavely, Curless et al. 2007). In concurrent work, Tola, Lepetit, and Fua (2010) developed a
similar DAISY descriptor for dense stereo matching and optimized its parameters based on
ground truth stereo data.

While these techniques construct feature detectors that optimize for repeatability across
all object classes, it is also possible to develop class- or instance-specific feature detectors that
maximize discriminability from other classes (Ferencz, Learned-Miller, and Malik 2008).
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Figure 4.21 Recognizing objects in a cluttered scene (Lowe 2004) (©) 2004 Springer. Two of the training images
in the database are shown on the left. These are matched to the cluttered scene in the middle using SIFT features,
shown as small squares in the right image. The affine warp of each recognized database image onto the scene is
shown as a larger parallelogram in the right image.

4.1.3 Feature matching

Once we have extracted features and their deseriptors from two or more images, the next step
is to establish some preliminary feature matches between these images. In this section, we
divide this problem into two separate components. The first is to select a matching strategy,
which determines which correspondences are passed on to the next stage for further process-
ing. The second is to devise efficient data structures and algorithms to perform this matching
as quickly as possible. (See the discussion of related techniques in Section 14.3.2.)

Matching strategy and error rates

Determining which feature matches are reasonable to process further depends on the context
in which the matching is being performed. Say we are given two images that overlap to a fair
amount (e.g., for image stitching, as in Figure 4.16, or for tracking objects in a video). We
know that most features in one image are likely to match the other image, although some may
not match because they are occluded or their appearance has changed too much.

On the other hand, if we are trying to recognize how many known objects appear in a clut-
tered scene (Figure 4.21), most of the features may not match, Furthermore, a large number
of potentially matching objects must be searched, which requires more efficient strategies, as
described below.

To begin with, we assume that the feature descriptors have been designed so that Eu-
clidean (vector magnitude) distances in feature space can be directly used for ranking poten-
tial matches. If it turns out that certain parameters (axes) in a descriptor are more reliable
than others, it is usually preferable to re-scale these axes ahead of time, e.g., by determin-
ing how much they vary when compared against other known good matches (Hua, Brown,
and Winder 2007). A more general process, which invelves transforming feature vectors
into a new scaled basis, is called whitening and is discussed in more detail in the context of
eigenface-based face recognition (Section 14.2.1).
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Figure 4.22 False positives and negatives: The black digits 1 and 2 are features being matched against a database
of features in other images. At the current threshold setting (the solid circles), the green 1 is a true positive (good
match), the blue 1 is a fafse negative (failure to match), and the red 3 is a false positive (incorrect match). If we set
the threshold higher (the dashed circles), the blue 1 becomes a true positive but the brown 4 becomes an additional

false positive.

True matches  True non-matches

Predicted matches TP= 18 FP=4 P'=22 | PPV=082 |
Predicted non-matches FN=2 TN =76 MN'=78
P=20 N=80 Total = 100
| TPR=020 | FPR=0.05 | | AcC=094 |

Table 4.1 The number of matches correctly and incorrectly estimated by a feature matching algorithm, showing
the number of true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN). The columns
sum up to the actual number of positives (P) and negatives (N}, while the rows sum up to the predicted number of
positives (P') and negatives (N'). The formulas for the true positive rate (TPR), the false positive rate (FPR), the
positive predictive value (PPV), and the accuracy (ACC) are given in the text.

Given a Buclidean distance metric, the simplest matching strategy is to set a threshold
{maximum distance) and to return all matches from other images within this threshold. Set-
ting the threshold too high results in too many false positives, i.e., incorrect matches being
returned. Setting the threshold too low results in too many false negatives, i.c., too many
correct matches being missed (Figure 4.22),

We can quantify the performance of a matching algorithm at a particular threshold by
first counting the number of true and false matches and match failures, using the following
definitions (Fawcett 2006):

e TP: true positives, i.e., number of correct matches;

o FN: false negatives, matches that were not correctly detected;
o FP: false positives, proposed matches that are incorrect;

» TN: true negatives, non-matches that were correctly rejected.

Table 4.1 shows a sample confusion matrix (contingency table) containing such numbers.
We can convett these numbers into unit rates by defining the following quantities (Fawcett
2006):
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Figure 4.23 ROC curve and its related rates: (a) The ROC curve plots the true positive rate against the false
positive rate for a particular combination of feature extraction and matching algorithms. Ideally, the true positive
rate should be close to 1, while the false positive rate is close to 0. The area under the ROC curve (AUC) is often
used as a single (scalar) measure of algorithm performance. Alternatively, the equal error rate is sometimes used,
(b) The distribution of positives (matches) and negatives (non-matches) as a function of inter-feature distance d.
As the threshold # is increased, the number of true positives (TP) and false positives (FP) increases.

o true positive rate (TPR),

P TP
TPR = e (4.14)
s false positive rate (FPR),
FPR = LI E {(4.15)
T FP4TN S N7 ;
e positive predictive value (PPV),
TP TP
PPV = TP — P (4.16)
e accuracy (ACC),
TP+TN
ACC = —ral (4.17)

In the information retrieval (or document retrieval) literature (Baeza-Yates and Ribeiro-
Neto 1999; Manning, Raghavan, and Schiltze 2008), the term precision (how many returned
documents are relevant) is used instead of PPV and recall (what fraction of relevant docu-

ments was found) is used instead of TPR.

Any particular matching strategy (at a particular threshold or parameter setting) can be
rated by the TPR and FPR numbers; ideally, the true positive rate will be close to 1 and the
false positive rate close to 0. As we vary the matching threshold, we obtain a family of such
points, which are collectively known as the receiver operating characteristic (ROC curve)
(Fawcett 2006) (Figure 4.23a). The closer this curve lies to the upper left corner, i.e., the
larger the area under the curve (AUC), the better its performance. Figure 4.23b shows how
we can plot the number of matches and non-matches as a function of inter-feature distance d.
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Figure 4.24 Fixed threshold, nearest neighbor, and nearest neighbor distance ratio matching. At a fixed distance
threshold (dashed circles), descriptor D 4 fails to match Dy and Dp incorrectly matches De and Dy, If we
pick the nearest neighbor, D4 correctly matches Dy but Dp incorrectly matches D, Using nearest neighbor
distance ratio (NNDR)) matching, the small NNDR d, /d; correctly matches D)4 with D, and the large NNDR

{ /di carrectly rejects matches for Dp.

These curves can then be used to plot an ROC curve (Exercise 4.3). The ROC curve can also
be used to calculate the mean average precision, which is the average precision (PPV) as you
vary the threshold to select the best results, then the two top results, ete.

The problem with using a fixed threshold is that it is difficult to set; the useful range
of thresholds can vary a lot as we move to different parts of the feature space (Lowe 2004;
Mikolajczyk and Schmid 2005). A better strategy in such cases is to simply maich the nearest
neighbor in feature space. Since some features may have no matches (e.g., they may be part
of background clutter in object recognition or they may be occluded in the other image), a
threshold is still used to reduce the number of false positives,

Ideally, this threshold itself will adapt to different regions of the feature space. If sufficient
training data is available (Hua, Brown, and Winder 2007}, it is sometimes possible to leamn
different thresholds for different features. Often, however, we are simply given a collection
of images to match, e.g., when stitching images or constructing 3D models from unordered
photo collections (Brown and Lowe 2007, 2003; Snavely, Seitz, and Szeliski 2006). In this
case, a useful heuristic can be to compare the nearest neighbor distance to that of the second
nearest neighbor, preferably taken from an image that is known not to match the target (e.g.,
a different object in the database) (Brown and Lowe 2002; Lowe 2004). We can define this
nearest neighbor distance ratio (Mikolajezyk and Schmid 2005) as

d Dy —
NNDR:—-l——“ 4 — Dgl

&~ |Da—Dal’ @19

where d; and da are the nearest and second nearest neighbor distances, D4 is the target
descriptor, and Dg and D are its closest two neighbors (Figure 4.24).

The effects of using these three different matching strategies for the feature descriptors
evaluated by Mikolajezyk and Schmid (2005) are shown in Figure 4.25. As you can see, the
nearest neighbor and NNDR strategies produce improved ROC curves.
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Figure 4.25 Performance of the feature descriptors evaluated by Mikolajezyk and Schmid (2005) © 2005 IEEE,
shown for three matching strategies: (a) fixed threshold; (b) nearest neighbor; (c) nearest neighbor distance ratio
(NNDR). Mote how the ordering of the algorithms does not change that much, but the overall performance varies
significantly between the different matching strategies.
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Figure 4.26 The three Haar wavelet coefficients used for hashing the MOPS descriptor devised by Brown,
Szeliski, and Winder (2005) are computed by summing each 8 x 8 normalized patch over the light and dark gray

regions and taking their difference.

Efficient matching

Onece we have decided on a matching strategy, we still need to search efficiently for poten-
tial candidates. The simplest way to find all corresponding feature points is to compare all
features against all other features in each pair of potentially matching images. Unfortunately,
this is quadratic in the number of extracted features, which makes it impractical for most
applications.

A better approach is to devise an indexing structure, such as a multi-dimensional search
tree or a hash table, to rapidly search for features near a given feature. Such indexing struc-
tures can either be built for each image independently (which is useful if we want to only
consider certain potential matches, e.g., searching for a particular object) or globally for all
the images in a given database, which can potentially be faster, since it removes the need to it-
erate over each image. For extremely large databases (millions of images or more}, even more
efficient structures based on ideas from document retrieval (e.g., vocabulary trees, (Nistér and
Stewénius 2006)) can be used (Section 14.3.2).

One of the simpler techniques to implement is multi-dimensional hashing, which maps
descriptors into fixed size buckets based on some function applied to each descriptor vector,
At matching time, each new feature is hashed into a bucket, and a search of nearby buckets
is used to return potential candidates, which can then be sorted or graded to determine which
are valid maiches.

A simple example of hashing is the Haar wavelets used by Brown, Szeliski, and Winder
(2005) in their MOPS paper. During the matching structure construction, each 8 x 8 scaled,
oriented, and normalized MOPS patch is converted into a three-element index by perform-
ing sums over different quadrants of the patch (Figure 4.26). The resulting three values are
normalized by their expected standard deviations and then mapped to the two (of b = 10)
nearest 1D bins, The three-dimensional indices formed by concatenating the three quantized
values are used to index the 2* = § bins where the feature is stored (added). At query time,
only the primary (closest) indices are used, so only a single three-dimensional bin needs to
be examined. The coefficients in the bin can then be used to select k approximate nearest
neighbors for further processing (such as computing the NNDE).

A more complex, but more widely applicable, version of hashing is called locality sen-
sitive hashing, which uses unions of independently computed hashing functions to index
the features (Gionis, Indyk, and Motwani 1999; Shakhnarovich, Darrell, and Indyk 2006).
Shakhnarovich, Viola, and Darrell (2003) extend this technique to be more sensitive to the
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Figure 4.27 K-d tree and best bin first (BBF) search (Beis and Lowe 1999) (© 1999 IEEE: (a) The spatial
arrangement of the axis-aligned cutting planes is shown using dashed lines. Individual data points are shown as
small diamonds. (b) The same subdivision can be represented as a tree, where each interior node represents an
axis-aligned cutting plane (e.g., the top node cuts along dimension d1 at value .34) and each leaf node is a data
point. During a BBF search, a query point (denoted by “+") first looks in its containing bin (D) and then in its
nearest adjacent bin (B), rather than its closest neighbor in the tree (C).

distribution of points in parameter space, which they call parameter-sensitive hashing. Even
maore recent work converts high-dimensional deseriptor vectors into binary codes that can be
compared using Hamming distances (Torralba, Weiss, and Fergus 2008; Weiss, Torralba, and
Fergus 2008) or that can accommodate arbitrary kernel functions (Kulis and Grauman 2009;
Raginsky and Lazebnik 2009).

Another widely used class of indexing structures are multi-dimensional search trees. The
best known of these are k-d trees, also often written as kd-trees, which divide the multi-
dimensional feature space along alternating axis-aligned hyperplanes, choosing the threshold
along each axis so as to maximize some criterion, such as the search tree balance (Samet
1989). Figure 4.27 shows an example of a two-dimensional k-d tree. Here, eight different data
points A-H are shown as small diamonds arranged on a two-dimensional plane. The k-d tree
recursively splits this plane along axis-aligned (horizontal or vertical) cutting planes. Each
split can be denoted using the dimension number and split value (Figure 4.27b). The splits are
arranged so as to try to balance the tree, i.c., to keep its maximum depth as small as possible.
At query time, a classic k-d tree search first locates the query point (+) in its appropriate
bin (D), and then searches nearby leaves in the tree (C, B, ...) until it can guarantee that
the nearest neighbor has been found. The best bin first (BBF) search (Beis and Lowe 1999)
searches bins in order of their spatial proximity to the query point and is therefore usually
more efficient.

Many additional data structures have been developed over the years for solving nearest
neighbor problems (Arya, Mount, Netanyahu et al. 1998; Liang, Liu, Xu er al. 2001; Hjalta-
son and Samet 2003). For example, Nene and Nayar (1997) developed a technique they call
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slicing that uses a series of 1D binary searches on the point list sorted along different dimen-
sions to efficiently cull down a list of candidate points that lie within a hypercube of the query
point. Grauman and Darrell (2005) reweight the matches at different levels of an indexing
tree, which allows their technigue to be less sensitive to discretization errors in the tree con-
struction. Nistér and Stewénius (2006) use a metric tree, which compares feature descriptors
to a small number of prototypes at each level in a hierarchy. The resulting quantized visual
words can then be used with classical information retrieval (document relevance) techniques
to quickly winnow down a set of potential candidates from a database of millions of images
(Section 14.3.2). Muja and Lowe (2009) compare a number of these approaches, introduce a
new one of their own (priority search on hierarchical k-means trees), and conclude that mul-
tiple randomized k-d trees often provide the best performance. Despite all of this promising
work, the rapid computation of image feature correspondences remains a challenging open
research problem.

Feature match verification and densification

Once we have some hypothetical (putative) matches, we can often use geometric alignment
(Section 6.1) to verify which matches are inliers and which ones are outliers. For example,
if we expect the whole image to be translated or rotated in the matching view, we can fit a
global geometric transform and keep only those feature matches that are sufficiently close to
this estimated transformation. The process of selecting a small set of seed matches and then
verifying a larger set is often called random sampling or RANSAC (Section 6.1.4). Once an
initial set of comrespondences has been established, some systems look for additional matches,
.2, by looking for additional correspondences along epipolar lines (Section 11.1) or in the
vicinity of estimated locations based on the global transform. These topics are discussed
further in Sections 6.1, 11.2, and 14.3.1.

4.1.4 Feature tracking

An alternative to independently finding features in all candidate images and then matching
them is to find a set of likely feature locations in a first image and to then search for their
corresponding locations in subsequent images. This kind of detect then track approach is
more widely used for video tracking applications, where the expected amount of motion and
appearance deformation between adjacent frames is expected to be small.

The process of selecting good features to track is closely related to selecting good features
for more general recognition applications. In practice, regions containing high gradients in
both directions, i.e., which have high eigenvalues in the auto-correlation matrix (4.8), provide
stable locations at which to find correspondences (Shi and Tomasi 1994).

In subsequent frames, searching for locations where the comesponding patch has low
squared difference (4.1) often works well enough, However, if the images are undergo-
ing brightness change, explicitly compensating for such variations (8.9) or using normalized
cross-correlation (8.11) may be preferable. If the search range is large, it is also often more
efficient to use a hierarchical search strategy, which uses matches in lower-resolution images
to provide better initial guesses and hence speed up the search (Section 8.1.1). Alternatives
to this strategy involve learning what the appearance of the patch being tracked should be and
then searching for it in the vicinity of its predicted position (Avidan 2001; Jurie and Dhome

207
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Figure4.28 Feature tracking using an affine motion model (Shi and Tomast 1994) (©) 1994 IEEE, Top row: image
patch around the tracked feature location. Bottom row: image patch after warping back toward the first frame
using an affine deformation. Even though the speed sign gets larger from frame to frame, the affine transformation
maintains a good resemblance between the original and subsequent tracked frames.

2002; Williams, Blake, and Cipolla 2003). These topics are all covered in more detail in
Section 8.1.3.

If features are being tracked over longer image sequences, their appearance can undergo
larger changes. You then have to decide whether to continue matching against the originally
detected patch (feature) or to re-sample each subsequent frame at the matching location. The
former strategy is prone to failure as the original patch can undergo appearance changes such
as foreshortening. The latter runs the risk of the feature drifting from its original location
1o some other location in the image (Shi and Tomasi 1994). (Mathematically, small mis-
registration errors compound to create a Markov Random Walk, which leads to larger drift
over time.)

A preferable solution is to compare the original patch to later image locations using an
affine motion model (Section 8.2). Shi and Tomasi (1994) first compare patches in neigh-
boring frames using a translational model and then use the location estimates produced by
this step to initialize an affine registration between the patch in the current frame and the
hase frame where a feature was first detected (Figure 4.28). In their system, features are only
detected infrequently, i.e., only in regions where tracking has failed. In the usual case, an
area around the current predicted location of the feature is searched with an incremental reg-
istration algorithm (Section 8.1.3). The resulting tracker is often called the Kanade—Lucas—
Tomasi (KLT) tracker.

Since their original work on feature tracking, Shi and Tomasi's approach has generated a
string of interesting follow-on papers and applications. Beardsley, Torr, and Zisserman (1996)
use extended feature tracking combined with structure from motion (Chapter 7) to incremen-
tally build up sparse 3D models from video sequences. Kang, Szeliski, and Shum (1997)
tie togéther the comers of adjacent (regularly gridded) patches to provide some additional
stability to the tracking, at the cost of poorer handling of occlusions. Tommasini, Fusiello,
Trucco ef al. (1998) provide a better spurious match rejection criterion for the basic Shi and
Tomasi algorithm, Collins and Liu (2003) provide improved mechanisms for feature selec-
tion and dealing with larger appearance changes over time, and Shafique and Shah (2005)
develop algorithms for feature matching (data association) for videos with large numbers of
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Figure 4.29 Real-time head tracking using the fast trained classifiers of Lepetit, Pilet, and Fua (2004) ©) 2004

IEEE.

moving objects or points. Yilmaz, Javed, and Shah (2006) and Lepetit and Fua (2005) survey
the larger field of object tracking, which includes not only feature-based technigqoes but also
alternative techoiques based on contour and region (Section 5.1).

One of the newest developments in feature tracking is the use of learning algorithms to
build special-purpose recognizers to rapidly search for matching features anywhere in an
image (Lepetit, Pilet, and Fua 2006; Hinterstoisser, Benhimane, Navab ef al. 2008; Rogez,
Rihan, Ramalingam et al. 2008; Ozuysal, Calonder, Lepetit et al. 2010).2 By taking the time
to train classifiers on sample patches and their affine deformations, extremely fast and reliable
feature detectors can be constructed, which enables much faster motions to be supported
(Figure 4.29), Coupling such features to deformable models (Pilet, Lepetit, and Fua 2008) or
structure-from-motion algorithms (Klein and Murray 2008) can result in even higher stability.

4.1.5 Application: Performance-driven animation

One of the most compelling applications of fast feature tracking is performance-driven an-
imation, i.e., the interactive deformation of a 3D graphics model based on tracking a user’s
motions (Williams 1990; Litwinowicz and Williams 1994; Lepetit, Pilet, and Fua 2004),
Buck, Finkelstein, Jacobs et al. (2000) present a system that tracks a user’s facial expres-
sions and head motions and then uses them to morph among a series of hand-drawn sketches.
An animator first extracts the eye and mouth regions of each sketch and draws control lines
over each image (Figure 4,30a). At run ime, a face-tracking system (Toyama 1998) deter-
mines the current location of these features (Figure 4.30b). The animation system decides

% See also my previous comment on earlier work in leaming-based tracking (Avidan 2001; Jurie and Dhome
20002; Willimms, Blake, and Cipolla 2003).
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Figure 430 Performance-driven, hand-drawn animation (Buck, Finkelstein, Jacobs et al. 2000) © 2000 ACM:
(a) eye and mouth portions of hand-drawn sketch with their overlaid control lines; (b) an input video frame
with the tracked features overlaid; (c) a different input video frame along with its (d) corresponding hand-drawn
animation.

which input images to morph based on nearest neighbor feature appearance matching and
triangular barycentric interpolation. It also computes the global location and orientation of
the head from the tracked features. The resulting morphed eye and mouth regions are then
composited back into the overall head model to yield a frame of hand-drawn animation (Fig-
ure 4.30d),

In more recent work, Bamnes, Jacobs, Sanders et al. (2008) watch unsers animate paper
cutouts on a desk and then turn the resulting motions and drawings into seamless 21D anima-
tions.

4.2 Edges

While interest points are useful for finding image locations that can be accurately matched
in 2D, edge points are far more plentiful and often carry important semantic associations.
For example, the boundaries of objects, which also correspond to occlusion events in 3D, are
usually delineated by visible contours. Other kinds of edges correspond to shadow boundaries
or crease edges, where surface orientation changes rapidly. Iselated edge points can also be
grouped into longer curves or contours, as well as straight line segments (Section 4.3). It
is interesting that even young children have no difficulty in recognizing familiar objects or
animals from such simple line drawings.

4.2.1 Edge detection

Given an image, how can we find the salient edges? Consider the color images in Figure 4.31.
If someone asked you to point out the most “salient” or “strongest” edges or the object bound-
aries (Martin, Fowlkes, and Malik 2004; Arbeldez, Maire, Fowlkes et al. 2010), which ones
would you trace? How closely do your perceptions match the edge images shown in Fig-
ure 4,317
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Figure 4.31 Human boundary detection (Martin, Fowlkes, and Malik 2004) (€) 2004 IEEE. The darkness of the

edges corresponds to how many human subjects marked an object boundary at that location,

Qualitatively, edges occur at boundaries between regions of different color, intensity, or
texture. Unfortunately, segmenting an image into coherent regions is a difficult task, which
we address in Chapter 5. Ofien, it is preferable to detect edges using only purely local infor-
mation.

Under such conditions, a reasonable approach is to define an edge as a location of rapid
intensity variation.® Think of an image as a height field. On such a surface, edges occur
at locations of steep slopes, or equivalently, in regions of closely packed contour lines (on a
topographic map).

A mathematical way to define the slope and direction of a surface is through its gradient,

ar or
55" By
The local gradient vector J points in the direction of steepest ascent in the intensity function.
Its magnitude is an indication of the slope or strength of the variation, while its orientation
points in a direction perpendicular to the local contour.

Unformnately, taking image derivatives accentuates high frequencies and hence amplifies
noise, since the proportion of noise to signal is larger at high frequencies. It is therefore
prudent to smooth the image with a low-pass filter prior to computing the gradient. Because
we would like the response of our edge detector to be independent of orientation, a circularly
symmetric smoothing filter is desirable. As we saw in Section 3.2, the Gaussian is the only
separable circularly symmetric filter and so it is used in most edge detection algorithms,
Canny (1986) discusses alternative filters and a number of researcher review alternative edge
detection algorithms and compare their performance (Davis 1975; Nalwa and Binford 1986;
Nalwa 1987, Deriche 1987, Freeman and Adelson 1991; Nalwa 1993, Heath, Sarkar, Sanocki
et al. 1998; Crane 1997; Ritter and Wilson 2000; Bowyer, Kranenburg, and Dougherty 2001;
Arbeldez, Maire, Fowlkes ef al. 2010).

Because differentiation is a linear operation, it commutes with other linear filtering oper-

J(w)=VI(z)=( )(). {4.19)

3 We defer the topic of edge detection in color images.
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ations. The gradient of the smoothed image can therefore be written as

Jo(x) = V|G, () * I[(z)] = [VGol(z) * I(z), (4.20)
i.e., we can convolve the image with the horizontal and vertical derivatives of the Gaussian
kernel function, .
9G, 0G, i z? + 92
VGq(x) = ( a7 3—1))($) =[-z - y]ﬁ exp (— —-2‘"0_—2—) (4.21)

(The parameter o indicates the width of the Gaussian.) This is the same computation that
is performed by Freeman and Adelson’s (1991) first-order steerable filter, which we already
covered in Section 3.2.3.

For many applications, however, we wish to thin such a continuous gradient image to
only return isolated edges, i.e., as single pixels at discrete locations along the edge contours.
This can be achieved by looking for maxima in the edge strength (gradient magnitude) in a
direction perpendicular to the edge orientation, i.e., along the gradient direction.

Finding this maximum corresponds to taking a directional derivative of the strength field
in the direction of the gradient and then looking for zero crossings. The desired directional
derivative is equivalent to the dot product between a second gradient operator and the results

of the first,
Sy () =V - Jo(x) = [V2G,|() * I(z)]. (4.22)
The gradient operator dot product with the gradient is called the Laplacian. The convolution
kernel 4 5 410
1 zt+y T +y
2
VoG, (x) = p (2 — -7‘2—) exp (— 502 ) (4.23)

is therefore called the Laplacian of Gaussian (LoG) kernel (Marr and Hildreth 1980). This
kernel can be split into two separable parts,

2 2
VG,(a) = (1 - 523) GG ) + 5 (1- %) Got)Gola)  (420)
(Wiejak, Buxton, and Buxton 1985), which allows for a much more efficient implementation
using separable filtering (Section 3.2.1).

In practice, it is quite common to replace the Laplacian of Gaussian convolution with a
Difference of Gaussian (DoG) computation, since the kernel shapes are qualitatively similar
(Figure 3.35). This is especially convenient if a “Laplacian pyramid” (Section 3.5) has already
been computed.*

In fact, it is not strictly necessary to take differences between adjacent levels when com-
puting the edge field. Think about what a zero crossing in a “generalized” difference of
Gaussians image represents. The finer (smaller kernel) Gaussian is a noise-reduced version
of the original image. The coarser (larger kernel) Gaussian is an estimate of the average in-
tensity over a larger region. Thus, whenever the DoG image changes sign, this corresponds
to the (slightly blurred) image going from relatively darker to relatively lighter, as compared
to the average intensity in that neighborhood.

4 Recall that Burt and Adelson’s (1983a) “Laplacian pyramid” actually computed differences of Gaussian-filtered
levels.
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Once we have computed the sign function S(x), we must find its zero crossings and
convert these into edge elements (edgels). An easy way to detect and represent zero crossings
is to look for adjacent pixel locations =; and @; where the sign changes value, i.e., [S(z;) >
0] # [S(;) > 0].

The sub-pixel location of this crossing can be obtained by computing the “z-intercept” of
the “line” connecting S{x;) and 5(x;),

o - ZiS(®;) —;S(@i)
= S(z;) — (i)
The orientation and strength of such edgels can be obtained by linearly interpolating the
gradient values computed on the original pixel grid.

An alternative edgel representation can be obtained by linking adjacent edgels on the
dual grid to form edgels that live inside each square formed by four adjacent pixels in the
original pixel grid.® The (potential) advantage of this representation is that the edgels now
live on a grid offset by half a pixel from the original pixel grid and are thus easier to store
and access. As before, the orientations and strengths of the edges can be computed by
interpolating the gradient field or estimating these values from the difference of Gaussian
image (see Exercise 4.7). '

In applications where the accuracy of the edge orientation is more important, higher-order
steerable filters can be used (Freeman and Adelson 1991} (see Section 3.2.3). Such filters are
more selective for more elongated edges and also have the possibility of better modeling curve
intersections because they can represent multiple orientations at the same pixel (Figure 3.16).
Their disadvantage is that they are more expensive to compute and the directional derivative
of the edge strength does not have a simple closed form solution.®

(4.25)

Scale selection and blur estimation

As we mentioned before, the derivative, Laplacian, and Difference of Gaussian filters (4.20—
4.23) all require the selection of a spatial scale parameter o. If we are only interested in
detecting sharp edges, the width of the filter can be determined from image noise characteris-
tics (Canny 1986; Elder and Zucker 1998). However, if we want to detect edges that oceur at
different resolutions (Figures 4.32b—c), a scale-space approach that detects and then selects
edges at different scales may be necessary (Witkin 1983; Lindeberg 1994, 1998a; Nielsen,
Florack, and Deriche 1997).

Elder and Zucker (1998) present a principled approach to solving this problem. Given
a known image noise level, their technique computes, for every pixel, the minimum scale
at which an edge can be reliably detected (Figure 4.32d). Their approach first computes
gradients densely over an image by selecting among gradient estimates computed at different
scales, based on their gradient magnitudes. It then performs a similar estimate of minimum
scale for directed second derivatives and uses zero crossings of this latter quantity to robustly
select edges (Figures 4.32e—f). As an optional final step, the blur width of each edge can
be computed from the distance between extrema in the second derivative response minus the
width of the Gaussian filter.

¥ This algorthm is 4 2D version of the 3D marchisg cubes Lsosurface extraction algorithm (Lorensen and Cline

1987},
% In fact, the ndgcf:rimm:inn can have a 1807 ambiguity for “bar edges”, which makes the computation of zero

crossings in the derivative more tricky.

213

APPL-1012 / Page 70 of 211



214 4 Feature detection and matching

(d)

Figure 432 Scale selection for edge detection (Elder and Zucker 1998) (© 1998 IEEE: (a) original image; (b—c)
Canny/Deriche edge detector tuned to the finer (mannequin) and coarser {(shadow) scales; (d) minimum reliable
scale for gradient estimation; () minimum reliable scale for second derivative estimation; () final detected edges.

Color edge detection

While most edge detection technigues have been developed for grayscale images, color im-
ages can provide additional information. For example, noticeable edges between iso-luminant
colors (colors that have the same luminance) are useful cues but fail to be detected by grayscale
edge operators.

One simple approach is to combine the outputs of grayscale detectors run on each color
band separately.” However, some care must be taken. For example, if we simply sum up
the gradients in each of the color bands, the signed gradients may actually cancel each other!
(Consider, for example a pure red-to-green edge.) We could also detect edges independently
in each band and then take the union of these, but this might lead to thickened or doubled
edges that are hard to link.

A better approach is to compute the oriented energy in each band (Morrone and Burr
1988; Perona and Malik 1990a), e.g., using a second-order steerable filter (Section 3.2.3)
(Freeman and Adelson 1991), and then sum up the orientation-weighted energies and find
their joint best orientation, Unfortunately, the directional derivative of this energy may not
have a closed form solution (as in the case of signed first-order steerable filters), so a simple
zero crossing-based strategy cannot be used. However, the technique described by Elder and

7 Instead of using the raw RGE space, a more perceptually uniform color space such as L*a*b* {see Section 2.3.2)
can be used instead. When trying to match human performance (Martin, Fowlkes, and Malik 2004), this makes sense,
However, in terms of the physics of the underlying image formation and sensing, it may be a questionable strategy.
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Zucker (1998) can be used to compute these zero crossings numerically instead.

An alternative approach is to estimate local color statistics in regions around each pixel
(Ruzon and Tomasi 2001; Martin, Fowlkes, and Malik 2004). This has the advantage that
more sophisticated techniques (e.g., 3D color histograms) can be used to compare regional
statistics and that additional measures, such as texture, can also be considered. Figure 4.33
shows the output of such detectors.

Of course, many other approaches have been developed for detecting color edges, dating
back to early work by Nevatia (1977). Ruzon and Tomasi (2001) and Gevers, van de Weijer,
and Stokman (2006) provide good reviews of these approaches, which include ideas such as
fusing outputs from multiple channels, using multidimensional gradients, and vector-based
methods, :

Combining edge feature cues

If the goal of edge detection is to match human boundary detection performance (Bowyer,
Kranenburg, and Dougherty 2001; Martin, Fowlkes, and Malik 2004; Arbeldez, Maire, Fowlkes
et al. 2010), as opposed to simply finding stable features for matching, even better detectors
can be constructed by combining multiple low-level cues such as brightness, color, and tex-
ture,

Martin, Fowlkes, and Malik (2004) describe a system that combines brightness, color, and
texture edges to produce state-of-the-art performance on a database of hand-segmented natu-
ral color images (Martin, Fowlkes, Tal et al. 2001). First, they construct and train® separate
oriented half-disc detectors for measuring significant differences in brightness (luminance),
color (a* and b* channels, summed responses), and texture (un-normalized filter bank re-
sponses from the work of Malik, Belongie, Leung et al. (2001)). Some of the responses
are then sharpened using a soft non-maximal suppression technique. Finally, the outputs of
the three detectors are combined using a variety of machine-learning techniques, from which
logistic regression is found to have the best tradeoff between speed, space and accuracy .
The resulting system (see Figure 4.33 for some examples) is shown to outperform previously
developed techniques. Maire, Arbelacz, Fowlkes ef al. (2008) improve on these results by
combining the detector based on local appearance with a spectral (segmentation-based) de-
tector (Belongie and Malik 1998). In more recent work, Arbeldez, Maire, Fowlkes et al.
(2010) build a hierarchical segmentation on top of this edge detector using a variant of the
watershed algorithm,

4.2.2 Edge linking

While isolated edges can be useful for a variety of applications, such as line detection (Sec-
tion 4.3) and sparse stereo matching (Section 11.2), they become even more useful when
linked into continuous contours.,

If the edges have been detected using zero crossings of some function, linking them up
is straightforward, since adjacent edgels share common endpoints. Linking the edgels into
chains involves picking up an unlinked edgel and following its neighbors in both directions.
Either a sorted list of edgels (sorted first by = coordinates and then by y coordinates, for
example) or a 2D array can be used to accelerate the neighbor finding. 1f edges were not

% The training uses 200 Iabeled images and testing is performed on a different set of 100 images.

215

APPL-1012 / Page 72 of 211



216 4 Feature detection and matching

Figure 4.33 Combined brightness, color, texture boundary detector (Martin, Fowlkes, and Malik 2004) € 2004
IEEE. Successive rows show the outputs of the brightness gradient (BG), color gradient (CG), texture gradient
{TG), and combined (BG+CG+TG) detectors. The final row shows human-labeled boundaries denived from a
database of hand-segmented images (Martin, Fowlkes, Tal er al. 2001).
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Figure 434 Chain code representation of a grid-aligned linked edge chain. The code is represented as a series
of direction codes, ¢.g, 0 1 07 6 5, which can further be compressed using predictive and run-length coding,

4 4
3 : 3 W
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Figure 4.35 Arc-length parameterization of a contour: (a) discrete points along the contour are first transcribed
as (b) (z, y) pairs along the arc length s. This curve can then be regularly re-sampled or converted into alternative

(e.g., Fourier) representations.

detected using zero crossings, finding the continuation of an edgel can be tricky. In this
case, comparing the orientation (and, optionally, phase) of adjacent edgels can be used for
disambiguation. Ideas from connected component computation can also sometimes be used
to make the edge linking process even faster (see Exercise 4.8).

Once the edgels have been linked into chains, we can apply an optional thresholding
with hysteresis to remove low-strength contour segments (Canny 1986). The basic idea of
hysteresis is to set two different thresholds and allow a curve being tracked above the higher
threshold to dip in strength down to the lower threshold.

Linked edgel lists can be encoded more compactly using a variety of alternative repre-
sentations. A chain code encodes a list of connected points lying on an Nz grid using a
three-bit code corresponding to the eight cardinal directions (N, NE, E, SE, 5, SW, W, NW)
between a point and its successor (Figure 4.34). While this representation is more compact
than the original edgel list (especially if predictive variable-length coding is used), it is not
very suitable for further processing.

A more useful‘representation is the arc length parameterization of a contour, x(s), where
5 denotes the arc length along a curve. Consider the linked set of edgels shown in Fig-
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s=0=1

Figure 4.36 Matching two contours using their arc-length parameterization. If both curves are normalized to
unit length, s € [0, 1] and centered around their centroid @q, they will have the same deseriptor up to an overall
“temporal” shift (due to different starting points for s = 0) and a phase (z-y) shift (due to rotation).

() (b)

Figure 437 Curve smoothing with a Gaussian kernel (Lowe 1988) @ 1998 IEEE: (a) without a shrinkage
correction term; (b) with a shrinkage correction term.

ure 4.35a. We start at one point (the dot at (1.0, 0.5) in Figure 4.35a) and plot it at coordinate
5 = 0 (Figure 4.35b), The next point at (2.0, 0.5) gets plotted at s = 1, and the next point
at (2.5,1.0) gets plotted at § = 1.7071, i.e.,, we increment s by the length of each edge seg-
ment. The resulting plot can be resampled on a regular (say, integral) s grid before further
processing.

The advantage of the arc-length parameterization is that it makes matching and processing
(e.g., smoothing) operations much easier. Consider the two curves describing similar shapes
shown in Figure 4.36. To compare the curves, we first subtract the average values @g =
J, #(s) from each descriptor. Next, we rescale each descriptor so that s goes from 0 to 1
instead of 0 to 5, i.e., we divide () by 5. Finally, we take the Fourier transform of each
normalized descriptor, treating each @ = (z,y) value as a complex number. If the original
curves are the same (up to an unknown scale and rotation), the resulting Fourier transforms
should differ only by a scale change in magnitude plus a constant complex phase shift, due
to rotation, and a linear phase shift in the domain, due to different starting points for s (see
Exercise 4.9).

L2 Arc-length parameterization can also be used to smooth curves in order to remove digiti-
zation noise. However, if we just apply a regular smoothing filter, the curve tends to shrink
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Figure 4.38 Changing the character of a curve without affecting its sweep (Finkelstein and Salesin 1994) ©
1994 ACM: higher frequency wavelets can be replaced with exemplars from a style library to effect different local

appearances.

on itself (Figure 4.37a). Lowe (1989} and Taubin (1995} describe techniques that compensate
for this shrinkage by adding an offset term based on second derivative estimates or a larger
smoothing kernel (Figure 4.37b). An alternative approach, based on selectively modifying
different frequencies in a wavelet decomposition, is presented by Finkelstein and Salesin
{1994), In addition to controlling shrinkage without affecting its “sweep”, wavelets allow the
“character” of a curve to be interactively modified, as shown in Figure 4.38.

The evolution of curves as they are smoothed and simplified is related to “grassfire” (dis-
tance) transforms and region skeletons (Section 3.3.3) (Tek and Kimia 2003), and can be used
to recognize objects based on their contour shape (Sebastian and Kimia 2005). More local de-
scriptors of curve shape such as shape contexts (Belongie, Malik, and Puzicha 2002) can also
be used for recognition and are potentially more robust to missing parts due to occlusions.

The field of contour detection and linking continues to evolve rapidly and now includes
techniques for global contour grouping, boundary completion, and junction detection (Maire,
Arbelaez, Fowlkes et al, 2008), as well as grouping contours into likely regions (Arbeliez,
Maire, Fowlkes et al. 2010) and wide-baseline correspondence (Meltzer and Soatto 2008).

4.2.3 Application: Edge editing and enhancement

‘While edges can serve as components for object recognition or features for matching, they
can also be used directly for image editing.

In fact, if the edge magnitude and blur estimate are kept along with each edge, a visvally
similar image can be reconstructed from this information (Elder 1999). Based on this princi-
ple, Elder and Goldberg (2001) propose a system for “image editing in the contour domain”.
Their system allows users to selectively remove edges corresponding to unwanted features
such as specularities, shadows, or distracting visual elements. After reconstructing the image
from the remaining edges, the undesirable visual features have been removed (Figure 4.39).

Another potential application is to enhance perceptually salient edges while simplifying
the underlying image to produce a cartoon-like or “pen-and-ink” stylized image (DeCarlo and
Santella 2002). This application is discussed in more detail in Section 10.5.2.
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(d) (e

Figure 4.39 Image editing in the contour domain (Elder and Goldberg 2001) (€) 2001 IEEE: (a) and (d) original
images; (b) and (e) extracted edges (edges to be deleted are marked in white); (¢} and (f) reconstructed edited
images.

4.3 Lines

While edges and general curves are suitable for describing the contours of natural objects,
the man-made world is full of straight lines, Detecting and matching these lines can be
useful in a variety of applications, incloding architectural modeling, pose estimation in urban
environments, and the analysis of printed document layouts,

In this section, we present some techniques for extracting piecewise linear descriptions
from the curves computed in the previous section. We begin with some algorithms for approx-
imating a curve as a piecewise-linear polyline. We then describe the Hough transform, which
can be used to group edgels into line segments even across gaps and occlusions, Finally, we
describe how 3D lines with common vanishing points can be grouped together. These van-
ishing points can be used to calibrate a camera and to determine its orientation relative to a
rectahedral scene, as described in Section 6.3.2.

4.3.1 Successive approximation

As we saw in Section 4.2.2, describing a curve as a series of 2D locations @; = ®(s;) provides
a general representation suitable for matching and further processing. In many applications,
however, it is preferable to approximate such a curve with a simpler representation, e.g., asa
piecewise-linear polyline or as a B-spline curve (Farin 1996}, as shown in Figure 4.40.
Many techniques have been developed over the years to perform this approximation,
which is also known as line simplification. One of the oldest, and simplest, is the one proposed
by Ramer (1972) and Douglas and Peucker (1973), who recursively subdivide the curve at
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(a) (b) (c)

Figure 4.40 Approximating a curve (shown in black) as a polyline or B-spline: (a) original curve and a polyline
approximation shown in red; (b) successive approximation by recursively finding points furthest away from the
current approximation; (¢) smooth interpolating spline, shown in dark blue, fit to the polyline vertices.

{xﬁia*‘ b
4
Fi' L 0

¥

-] rm

x 0 a 360
(a) (b)

Figure 4.41 Original Hough transform: (a) each point votes for a complete family of potential lines r;(f) =
x; cos # + y; sin #; (b) each pencil of lines sweeps out a sinusoid in (r, #); their intersection provides the desired
line equation.

the point furthest away from the line joining the two endpoints (or the current coarse polyline
approximation), as shown in Figure 4.40. Hershberger and Snoeyink (1992) provide a more
efficient implementation and also cite some of the other related work in this area,

Onee the line simplification has been computed, it can be used to approximate the orig-
inal curve. If a smoother representation or visualization is desired, either approximating or
interpolating splines or curves can be used (Sections 3.5.1 and 5.1.1) (Szeliski and Ito 1986;
Bartels, Beatty, and Barsky 1987; Farin 1996), as shown in Figure 4.40c.

4.3.2 Hough transforms

While curve approximation with polylines can often lead to successful line extraction, lines
in the real world are sometimes broken up into disconnected components or made up of many
collinear line segments. In many cases, it is desirable to group such collinear segments into
extended lines. At a further processing stage (described in Section 4.3.3), we can then group
such lines into collections with common vanishing points.

The Hough transform, named after its original inventor (Hough 1962), is a well-known
technique for having edges “vote” for plausible line locations (Duda and Hart 1972; Ballard
1981; lllingworth and Kittler 1988). In its original formulation (Figure 4.41), each edge point
votes for all possible lines passing through it, and lines corresponding to high accumularor or
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Figure 442 Oriented Hough transform: (a) an edgel re-parameterized in polar (r, 8) coordinates, with fi; =
(cos By, sin ;) and r; = 7i; - 24 (b) (r,#) accumulator array, showing the votes for the three edgels marked in

red, green, and blue.
4
\

Figure 4,43 2D line equation expressed in terms of the normal #i and distance to the origin d.

bin values are examined for potential line fits.” Unless the points on a line are truly punctate,
a better approach (in my experience) is to use the local orientation information at each edgel
to vote for a single accumulator cell (Figure 4.42), as described below. A hybrid strategy,
where each edgel votes for a number of possible orientation or location pairs centered around
the estimate orientation, may be desirable in some cases.

Before we can vote for line hypotheses, we must first choose a suitable representation.
Figure 4.43 (copied from Figure 2.2a) shows the normal-distance (i, d) parameterization for
a line. Since lines are made up of edge segments, we adopt the convention that the line normal
#i points in the same direction (i.e., has the same sign) as the image gradient J () = VI (m)
(4.19), To obtain a minimal two-parameter representation for lines, we convert the normal
vector into an angle

0 = tan™" ny [Nz, (4.26)

as shown in Figure 4.43, The range of possible (6, d) values is [-180°, 180°) x [-v2,v2],
assuming that we are using normalized pixel coordinates (2.61) that lie in [—1, 1]. The number
of bins to use along each axis depends on the accuracy of the position and orientation estimate
available at each edgel and the expected line density, and is best set experimentally with some
test runs on sample imagery.

Given the line parameterization, the Hough transform proceeds as shown in Algorithm 4.2.

% The Hough transform can also be generalized to look for other geometric features such as circles (Ballard
1981, but we do not cover such cxtensions in this book.
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procedure Hough({(x,y, 8)}):

1. Clear the aceumulator array.

compute the value of
d=zn.+ymny

and increment the accumulator corresponding to (8, d).
3. Find the peaks in the accumulator corresponding to lines,

4. Optionally re-fit the lines to the constituent edgels.

2. For each detected edgel at location (%, y) and orientation § = tan™'n, /n.,

Algorithm 4.2 Outline of a Hough transform algorithm based on oriented edge segments.

b bva aly
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Figure 4.44 Cube map representation for line equations and vanishing points: (a) a cube map surrounding the
unit sphere; (b) projecting the half-cube onto three subspaces (Tuytelaars, Van Gool, and Proesmans 1997) ©

1997 IEEE.

Note that the original formulation of the Hough transform, which assumed no knowledge of
the edgel orientation &, has an additional loop inside Step 2 that iterates over all possible
values of & and increments a whole series of accumulators,

There are a lot of details in getting the Hough transform to work well, but these are
best worked out by writing an implementation and testing it out on sample data. Exercise
4.12 describes some of these steps in more detail, including using edge segment lengths or
strengths during the voting process, keeping a list of constituent edgels in the accumulator
array for easier post-processing, and optionally combining edges of different “polarity” into
the same line segments.

An alternative to the 2D polar (6, d) representation for lines is to use the full 3D m =
(i, d) line equation, projected onto the unit sphere. While the sphere can be parameterized
using spherical coordinates (2.8),

‘1 = (cosf cos ¢, sin @ cos ¢, sin ¢), (4.27)

this does not uniformly sample the sphere and still requires the use of trigonometry.

An alternative representation can be obtained by using a cube map, i.e., projecting m onto
the face of a unit cube (Figure 4.44a). To compute the cube map coordinate of a 3D vector
m, first find the largest (absolute value) component of m, ie., m = +max(|n.|, [n,|, |d|),
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and use this to select one of the six cube faces. Divide the remaining two coordinates by m
and use these as indices into the cube face. While this avoids the use of trigonometry, it does
require some decision logic,

One advantage of using the cube map, first pointed out by Tuytelaars, Van Gool, and
Proesmans (1997), is that all of the lines passing through a point correspond to line segments
on the cube faces, which is useful if the original (full voting) variant of the Hough transform
is being used. In their work, they represent the line equation as az + b+ y = (0, which
does not treat the = and ¥ axes symmetrically, Note that if we restrict d > 0 by ignoring the
polarity of the edge orientation (gradient sign), we can use a half-cube instead, which can be
represented using only three cube faces, as shown in Figure 4.44b (Tuytelaars, Van Gool, and
Proesmans 1997).

RANSAC-based line detection. Another alternative to the Hough transform is the RAN-
dom SAmple Consensus (RANSAC) algorithm described in more detail in Section 6.1.4. In
brief, RANSAC randomly chooses pairs of edgels to form a line hypothesis and then tests
how many other edgels fall onto this line. (If the edge orientations are accurate enough, a
single edgel can produce this hypothesis.) Lines with sufficiently large numbers of inliers
(matching edgels) are then selected as the desired line segments.

An advantage of RANSAC is that no accumulator array is needed and so the algorithm can
be more space efficient and potentially less prone to the choice of bin size. The disadvantage
is that many more hypotheses may need to be generated and tested than those obtained by
finding peaks in the accumulator array.

In general, there is no clear consensus on which line estimation technique performs best.
It is therefore a good idea to think carefully about the problem at hand and to implement
several approaches (successive approximation, Hough, and RANSAC) to determine the one
that works best for your application. '

4.3.3 Vanishing points

In many scenes, structurally important lines have the same vanishing point because they are
parallel in 3D. Examples of such lines are horizontal and vertical building edges, zebra cross-
ings, railway tracks, the edges of furniture such as tables and dressers, and of course, the
ubiquitous calibration pattem (Figure 4.45). Finding the vanishing points common to such
line sets can help refine their position in the image and, in certain cases, help determine the
intrinsic and extrinsic orientation of the camera (Section 6.3.2).

Owver the years, a large number of techniques have been developed for finding vanishing
points, including (Quan and Mohr 1989; Collins and Weiss 1990; Brillaut-0"Mahoney 1991;
McLean and Kotturi 1995; Becker and Bove 1995; Shufelt 1999; Tuytelaars, Van Gool, and
Proesmans 1997; Schaffalitzky and Zisserman 2000; Antone and Teller 2002; Rother 2002;
Kofeckd and Zhang 2005; PAugfelder 2008; Tardif 2009)—see some of the more recent pa-
pers for additional references. In this section, we present a simple Hough technique based
on having line pairs vote for potential vanishing point locations, followed by a robust least
squares fitting stage. For alternative approaches, please see some of the more recent papers
listed above.

The first stage in my vanishing point detection algorithm uses a Hough transform to accu-
mulate votes for likely vanishing point candidates. As with line fitting, one possible approach
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Figure 4.45 Real-world vanishing points: (a) architecture (Sinha, Steedly, Szeliski er al. 2008), (b) furniture
(Micusik, Wildenauer, and Kodeckd 2008) (€) 2008 IEEE, and (c) calibration patterns (Zhang 2000).

is to have each line vote for all possible vanishing point directions, either using a cube map
(Tuytelaars, Van Gool, and Proesmans 1997; Antone and Teller 2002) or a Gaussian sphere
(Collins and Weiss 1990), optionally using knowledge about the uncertainty in the vanish-
ing point location to perform a weighted vote (Collins and Weiss 1990; Brillaut-0'Mahoney
1991; Shufelt 19949). My preferred approach is to use pairs of detected line segments to form
candidate vanishing point locations. Let 7f; and 7f1; be the (unit norm) line equations for a
pair of line segments and l; and {; be their corresponding segment lengths. The location of
the corresponding vanishing point hypothesis can be computed as

Uiy = ﬁ'i:i X fﬁj (423}
and the corresponding weight set to
wiy = [[oglllsly. (4.29)

This has the desirable effect of downweighting (near-)collinear line segments and short line
segments. The Hough space itself can either be represented using spherical coordinates (4.27)
or as a cube map (Figure 4.44a).

Once the Hough accumulator space has been populated, peaks can be detecied in a manner
similar to that previously discussed for line detection. Given a set of candidate line segments
that voted for a vanishing point, which can optionally be kept as a list at each Hough accu-
mulator cell, T then use a robust least squares fit to estimate a more accurate location for each
vanishing point.

Consider the relationship between the two line segment endpoints {p,,, p;; } and the van-
ishing point v, as shown in Figure 4.46, The area A of the triangle given by these three points,
which is the magnitude of their triple product

A = |y x Pay) - v, (4.30)

is proportional to the perpendicular distance d; between each endpoint and the line through
v and the other endpoint, as well as the distance between py, and v. Assuming that the
accuracy of a fitted line segment is proportional to its endpoint accuracy (Exercise 4.13), this
therefore serves &s an optimal metric for how well a vanishing point fits a set of extracted
lines (Leibowitz (2001, Section 3.6.1) and PAugfelder (2008, Section 2.1.1.3)). A robustified
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Figure 4.46 Triple product of the line segments endpoints p;, and p;; and the vanishing point v, The area Ais
proportional to the perpendicular distance d; and the distance between the other endpoint p;g and the vanishing

point.

least squares estimate (Appendix B.3) for the vanishing point can therefore be written as

E=3 plA) =0T (Z w; [A{}mimf') v=v' Muv, (4.31)

where mm; = pyp X P;; is the segment line equation weighted by its length L, and w; =
p'(A;)/A; is the influence of each robustified (reweighted) measurement on the final error
(Appendix B.3). Notice how this metric is closely related to the original formula for the pair-
wise weighted Hough transform accumulation step. The final desired value for v is computed
as the least eigenvector of M.

While the technique described above proceeds in two discrete stages, better results may
be obtained by alternating between assigning lines to vanishing points and refitting the van-
ishing point locations (Antone and Teller 2002; Kofeckd and Zhang 2005; Pflugfelder 2008).
The results of detecting individual vanishing points can also be made more robust by simulta-
neously searching for pairs or triplets of mutually orthogonal vanishing points (Shufelt 1999;
Antone and Teller 2002; Rother 2002; Sinha, Steedly, Szeliski er al. 2008). Some results of
such vanishing point detection algorithms can be seen in Figure 445,

4.3.4 Application: Rectangle detection

Once sets of mutually orthogonal vanishing points have been detected, it now becomes pos-
sible to search for 3D rectangular structures in the image (Figure 4.47). Over the last decade,
a variety of techniques have been developed to find such rectangles, primarily focused on
architectural scenes (Kofeckd and Zhang 2005; Han and Zhu 2005; Shaw and Barnes 2006;
Mi&usik, Wildenauer, and Kodeckd 2008; Schindler, Krishnamurthy, Lublinerman et al. 2008).

After detecting orthogonal vanishing directions, Kofeckd and Zhang (2005) refine the
fitted line equations, search for corners near line intersections, and then verify rectangle hy-
potheses by rectifying the corresponding patches and looking for a preponderance of hori-
zontal and vertical edges (Figures 4.47a-b). In follow-on work, Mitufik, Wildenauer, and
Koseckd (2008) use a Markov random field (MRF) to disambiguate between potentially over-
lapping rectangle hypotheses. They also use a plane sweep algorithm to match rectangles
between different views (Figures 4.47d-f).

A different approach is proposed by Han and Zhu (2005), who use a grammar of potential
rectangle shapes and nesting structures (between rectangles and vanishing points) to infer the
most likely assignment of line segments to rectangles (Figure 4.47c).
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Figure 4.47 Rectangle detection: (a) indoor corridor and (b) building exterior with grouped facades (Kofecka
and Zhang 2005) (€ 2005 Elsevier; (¢) grammar-based recognition (Han and Zhu 2005) @ 2005 IEEE; (d-f)
rectangle matching using a plane sweep algorithm (Mito#ik, Wildenauer, and Kofeckd 2008) (€ 2008 [EEE.

4.4 Additional reading

One of the seminal papers on feature detection, description, and matching is by Lowe (2004).
Comprehensive surveys and evaluations of such techniques have been made by Schmid,
Mohr, and Banckhage (2000); Mikolajezyk and Schmid (2005); Mikolajezyk, Tuytelaars,
Schmid et al. (2005); Tuytelaars and Mikolajezyk (2007) while Shi and Tomasi (1994) and
Triggs (2004) also provide nice reviews.

In the area of feature detectors (Mikolajczyk, Tuytelaars, Schmid et al. 2003), in addition
to such classic approaches as Firstner—Harris (Forstner 1986; Harris and Stephens 1988) and
difference of Gaussians (Lindeberg 1993, 1998b; Lowe 2004), maximally stable extremal re-
gions (MSERs) are widely used for applications that require affine invariance (Matas, Chum,
Urban et al. 2004; Nistér and Stewénins 2008). More recent interest point detectors are
discussed by Xiao and Shah (2003); Koethe (2003); Carneiro and Jepson (2005); Kenney,
Zuliani, and Manjunath (2005); Bay, Tuytelaars, and Van Gool (2006); Platel, Balmachnova,
Florack et al. (2006); Rosten and Drummond (2006), as well as techniques based on line
matching (Zoghlami, Faugeras, and Deriche 1997; Bartoli, Coquerelle, and Sturm 2004) and
region detection (Kadir, Zisserman, and Brady 2004; Matas, Chum, Urban ez al. 2004; Tuyte-
laars and Van Gool 2004; Corso and Hager 2005).

A variety of Tocal feature descriptors (and matching heuristics) are surveyed and com-
pared by Mikolajczyk and Schmid (2005). More recent publications in this area include

APPL-1012 / Page 84 of 211



228

4 Feature detection and matching

those by van de Weijer and Schmid (2006); Abdel-Hakim and Farag (2006); Winder and
Brown (2007); Hua, Brown, and Winder (2007). Techniques for efficiently matching features
include k-d trees (Beis and Lowe 1999; Lowe 2004; Muja and Lowe 2009), pyramid match-
ing kernels (Grauman and Darrell 2005), metric (vocabulary) trees (Nistér and Stewénius
2006), and a variety of multi-dimensional hashing techniques {Shﬂkl{namvich, Viola, and
Darrell 2003; Torralba, Weiss, and Fergus 2008; Weiss, Torralba, and Fergus 2008; Kulis and
Grauman 2009; Raginsky and Lazebnik 2009).

The classic reference on feature detection and tracking is (Shi and Tomasi 1994). More
recent work in this field has focused on learning better matching functions for specific features
{Avidan 2001; Jurie and Dhome 2002; Williams, Blake, and Cipolla 2003; Lepetit and Fua
2005; Lepetit, Pilet, and Fua 2006; Hinterstoisser, Benhimane, Navab ef al. 2008; Rogez,
Rihan, Ramalingam et al, 2008; Ozuysal, Calonder, Lepetit et al. 2010).

A highly cited and widely used edge detector is the one developed by Canny (1986).
Alternative edge detectors as well as experimental comparisons can be found in publica-
tions by Nalwa and Binford (1986); Nalwa (1987); Deriche (1987); Freeman and Adelson
{1991); Nalwa (1993); Heath, Sarkar, Sanocki ef al. (1998); Crane (1997); Ritter and Wilson
{2000); Bowyer, Kranenburg, and Dougherty (2001); Arbeldez, Maire, Fowlkes et al. (2010).
The topic of scale selection in edge detection is nicely treated by Elder and Zucker (1998),
while approaches to color and texture edge detection can be found in (Ruzon and Tomasi
2001; Martin, Fowlkes, and Malik 2004; Gevers, van de Weijer, and Stokman 2006). Edge
detectors have also recently been combined with region segmentation techniques to further
improve the detection of semantically salient boundaries (Maire, Arbelaez, Fowlkes ef al.
2008:; Arbeldez, Maire, Fowlkes ef al. 2010). Edges linked into contours can be smoothed
and manipulated for artistic effect (Lowe 1989; Finkelstein and Salesin 1994; Taubin 1995)
and used for recognition (Belongie, Malik, and Puzicha 2002; Tek and Kimia 2003; Sebastian
and Kimia 2005).

An early, well-regarded paper on straight line extraction in images was written by Burns,
Hanson, and Riseman (1986). More recent techniques often combine line detection with van-
ishing point detection (Quan and Mohr 1989; Collins and Weiss 1990; Brillaut-O"Mahoney
1991: McLean and Kotturi 1995; Becker and Bove 1995; Shufelt 1999; Tuytelaars, Van Gool,
and Proesmans 1997; Schaffalitzky and Zisserman 2000; Antone and Teller 2002; Rother
2002; Kodeck4 and Zhang 2005; Pflugfelder 2008; Sinha, Steedly, Szeliski ef al. 2008; Tardif
2009).

4.5 Exercises

Ex 4.1; Interest point detector Implement one or more keypoint detectors and compare
their performance (with your own or with a classmate’s detector).
Possible detectors:

e Laplacian or Difference of Gaussian,
o Firstner—Harris Hessian (try different formula variants given in (4.9-4.11));

» oriented/steerable filter, looking for either second-order high second response or two
edges in a window (Koethe 2003), as discussed in Section 4.1.1.
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Other detectors are described by Mikolajezyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajezyk (2007). Additional optional steps could include:

1. Compute the detections on a sub-octave pyramid and find 3D maxima.

2. Find local orientation estimates using steerable filter responses or a gradient histograrh-
ming method.

3. Implement non-maximal suppression, such as the adaptive technique of Brown, Szeliski,
and Winder (2005).

4. Vary the window shape and size (pre-filter and aggregation).

To test for repeatability, download the code from http://www.robots.ox.ac.uk/~vgg/research/
affine/ (Mikolajczyk, Tuytelaars, Schmid ez al. 2005; Tuytelaars and Mikolajezyk 2007) or
simply rotate or shear your own test images. (Pick a domain you may want to use later, e.g.,
for outdoor stitching.)

Be sure to measure and report the stability of your scale and orientation estimates.

Ex 4.2: Interest point descriptor Implement one or more descriptors (steered to local scale
and orientation) and compare their performance (with your own or with a classmate’s detec-
tor).

Some possible descriptors include

o contrast-normalized patches (Brown, Szeliski, and Winder 2005);
e STFT (Lowe 2004);

o GLOH (Mikolajczyk and Schmid 2005);

e DAISY (Winder and Brown 2007; Tola, Lepetit, and Fua 2010).

Other detectors are described by Mikolajczyk and Schmid (2005).

Ex 4.3: ROC curve computation Given a pair of curves (histograms) plotting the number
of matching and non-matching features as a function of Euclidean distance d as shown in
Figure 4.23b, derive an algorithm for plotting a ROC curve (Figure 4.23a), In particular, let
t(d) be the distribution of true matches and f(d) be the distribution of (false) non-matches.
Write down the equations for the ROC, i.e., TPR(FPR), and the AUC.

(Hint: Plot the cumulative distributions T'(d) = [ ¢(d) and F(d) = [ f(d) and see if
these help you derive the TPR and FPR at a given threshold 6.)

Ex 4.4: Feature matcher After extracting features from a collection of overlapping or dis-
torted images,'” match them up by their descriptors either using nearest neighbor matching
or a more efficient matching strategy such as a k-d tree.

See whether you can improve the accuracy of your matches using techniques such as the
nearest neighbor distance ratio.

10 hytpu/fwww.robots.ox.ac.uk/~vgg/research/affine/,
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Ex 4.5: Feature tracker Instead of finding feature points independently in multiple images
and then matching them, find features in the first image of a video or image sequence and
then re-locate the corresponding points in the next frames using either search and gradient
descent (Shi and Tomasi 1994) or learned feature detectors (Lepetit, Pilet, and Fua 2006;
Fossati, Dimitrijevic, Lepetit ef al. 2007). When the number of tracked Eoints drops below a
threshold or new regions in the image become visible, find additional points to track.

(Optional) Winnow out incorrect matches by estimating a homography (6.19-6.23) or
fundamental matrix (Section 7.2.1).

(Optional) Refine the accuracy of your matches using the iterative registration algorithm
described in Section 8.2 and Exercise 8.2.

Ex 4.6: Facial feature tracker Apply your feature tracker to tracking points on a person’s
face, either manually initialized to interesting locations such as eye corners or automatically
initialized at interest points,

(Optional) Match features between two people and use these features to perform image
morphing (Exercise 3.25).

Ex 4.7: Edge detector Implement an edge detector of your choice. Compare its perfor-
mance to that of your classmates’ detectors or code downloaded from the Internet.
A simple but well-performing sub-pixel edge detector can be created as follows:

1. Blur the input image a little,

By(z) = Go(z) * I(z).

2. Construct a Gaussian pyramid (Exercise 3.19),

P = Pyramid{B,(x)}

3. Subtract an interpolated coarser-level pyramid image from the original resolution blurred
image,
S(x) = B, (z) — PlnterpolatedLevel(L).

4. For each quad of pixels, {(i, /), (i +1,5), (4,4 +1), (i+ 1,4 + 1)}, count the number
of zero crossings along the four edges.

5. When there are exactly two zero crossings, compute their locations using (4.25) and
store these edgel endpoints along with the midpoint in the edgel structure (Figure 4.48).

6. For each edgel, compute the local gradient by taking the horizontal and vertical differ-
ences between the values of S along the zero crossing edges.

7. Store the magnitude of this gradient as the edge strength and either its orientation or
tHat of the segment joining the edgel endpoints as the edge orientation.

8. Add the edgel to a list of edgels or store it in a 2D array of edgels (addressed by pixel
coordinates).

Figure 4.48 shows a possible representation for each computed edgel.
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struct SEdgel {

}i

float e[2][2]; // edgel endpoints (zero crossing)

float x, y; // sub-pixel edge position (midpoint)

float n_x, n_y; // orientation, as normal vector

float theta; // orientation, as angle (degrees)

float length; // length of edgel .
float strength; // strength of edgel (gradient magnitude)

struct SLine : public SEdgel {

}i

float line_length; // length of line (est. from ellipsoid)
float sigma; // estimated std. dev. of edgel noise
float r; // line equation: x * n_y — y # n.x = r

Figure 4.48 A potential C++ structure for edgel and line elements.

Ex 4.8: Edge linking and thresholding Link up the edges computed in the previous exer-
cise into chains and optionally perform thresholding with hysteresis.

The steps may include:

1. Store the edgels either in a 2D array (say, an integer image with indices into the edgel
list) or pre-sort the edgel list first by (integer) = coordinates and then y coordinates, for
faster neighbor finding.

2. Pick up an edgel from the list of unlinked edgels and find its neighbdrs in both direc-

tions until no neighbor is found or a closed contour is obtained. Flag edgels as linked
as you visit them and push them onto your list of linked edgels.

3. Alternatively, generalize a previously developed connected component algorithm (Ex-

ercise 3.14) to perform the linking in just two raster passes.

4. (Optional) Perform hysteresis-based thresholding (Canny 1986). Use two thresholds

”hi” and lo” for the edge strength. A candidate edgel is considered an edge if either
its strength is above the "hi” threshold or its strength is above the ”1o” threshold and it
is (recursively) connected to a previously detected edge.

5. (Optional) Link together contours that have small gaps but whose endpoints have sim-

ilar orientations.

6. (Optional) Find junctions between adjacent contours, e.g., using some of the ideas (or

references) from Maire, Arbelaez, Fowlkes et al. (2008).

Ex 4.9: Contour matching Convert a closed contour (linked edgel list) into its arc-length
parameterization dnd use this to match object outlines.

The steps may include:

231
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1. Walk along the contour and create a list of (z;,%;,s;) triplets, using the arc-length
formula .
8i41 = 84 = ||£B;'+1 — ﬁ'}“” (432)

2. Resample this list onto a regular set of (z;,y;, j) samples using linear interpolation of
each segment. "

3. Compute the average values of z and y, i.e., 7 and 7 and subtract them from your
sampled curve points.

4. Resample the original (z;,ys, 5;) piecewise-linear function onto a length-independent
set of samples, say j € [0,1023]. (Using a length which is a power of two makes
subsequent Fourier transforms more convenient.)

5. Compute the Fourier transform of the curve, treating each (z, %) pair as a complex
number.

6. To compare two curves, fit a linear equation to the phase difference between the two
curves. (Careful: phase wraps around at 360°. Also, you may wish to weight samples
by their Fourier spectrum magnitude—see Section 8.1.2.)

7. (Optional) Prove that the constant phase component corresponds to the temporal shift
in s, while the linear component corresponds to rotation.

Of course, feel free to try any other curve descriptor and matching technique from the com-
puter vision literature (Tek and Kimia 2003; Sebastian and Kimia 2005).

Ex 4.10: Jigsaw puzzle solver—challenging Write a program to automatically solve a jig-
saw puzzle from a set of scanned puzzle pieces. Your software may include the following
components:

1. Scan the pieces (either face up or face down) on a flatbed scanner with a distinctively
colored background.

2. (Optional) Scan in the box top to use as a low-resolution reference image.
3. Use color-based thresholding to isolate the pieces.
4. Extract the contour of each piece using edge finding and linking.

5. (Optional) Re-represent each contour using an arc-length or some other re-parameterization.
Break up the contours into meaningful matchable pieces. (Is this hard?)

6. (Optional) Associate color values with each contour to help in the matching.

7. (Optional) Match pieces to the reference image using some rotationally invariant fea-
‘ture descriptors.

8. Solve a global optimization or (backtracking) search problem to snap pieces together
and place them in the correct location relative to the reference image.

9. Test your algorithm on a succession of more difficult puzzles and compare your results
with those of others.
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Ex 4.11: Successive approximation line detector Implement a line simplification algorithm

(Section 4.3.1) (Ramer 1972; Douglas and Peucker 1973) to convert a hand-drawn curve (or
linked edge image) into a small set of polylines.

(Optional) Re-render this curve using either an approximating or interpolating spline or
Bezier curve (Szeliski and Ito 1986; Bartels, Beatty, and Barsky 1987; Farin 1996), “

Ex 4.12: Hough transform line detector Implement a Hough transform for finding lines
in images:

1. Create an accumulator array of the appropriate user-specified size and clear it. The user
can specify the spacing in degrees between orientation bins and in pixels between dis-
tance bins. The array can be allocated as integer (for simple counts), floating point (for
weighted counts), or as an array of vectors for keeping back pointers to the constituent
edges.

2. For each detected edgel at location (z,%) and orientation 8 = tan™—! ny /n,, compute
the value of
d=zng +yn, (4.33)

and increment the accumulator corresponding to (6, d).

(Optional) Weight the vote of each edge by its length (see Exercise 4.7) or the strength
of its gradient.

3. (Optional) Smooth the scalar accumulator array by adding in values from its immediate
neighbors. This can help counteract the discretization effect of voting for only a single
bin—see Exercise 3.7,

4. Find the largest peaks (local maxima) in the accumulator corresponding to lines,

5. (Optional) For each peak, re-fit the lines to the constituent edgels, using fotal least
squares (Appendix A.2). Use the original edgel lengths or strength weights to weight
the least squares fit, as well as the agreement between the hypothesized line orienta-
tion and the edgel orientation. Determine whether these heuristics help increase the
accuracy of the fit.

6. After fitting each peak, zero-out or eliminate that peak and its adjacent bins in the array,
and move on to the next largest peak.

Test out your Hough transform on a variety of images taken indoors and outdoors, as well
as checkerboard calibration patterns.

For checkerboard patterns, you can modify your Hough transform by collapsing antipodal
bins (# £ 180°, —d) with (6, d) to find lines that do not care about polarity changes. Can you
think of examples in real-world images where this might be desirable as well?

Ex 4.13: Line fitting uncei;tainty Estimate the uncertainty (covariance) in your line fit us-
ing uncertainty analysis.

1. After determining which edgels belong to the line segment (using either successive
approximation or Hough transform), re-fit the line segment using fotal least squares
(Van Huffel and Vandewalle 1991; Van Huffel and Lemmerling 2002), i.e., find the

233
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mean or centroid of the edgels and then use eigenvalue analysis to find the dominant
orientation.

2. Compute the perpendicular errors (deviations) to the line and robustly estimate the
variance of the fitting noise using an estimator such as MAD (Appendix B.3).

3. (Optional) re-fit the line parameters by throwing away outliers or using a robust norm
or influence function.

4. Bstimate the error in the perpendicular location of the line segment and its orientation.

Ex 4.14: Vanishing points Compute the vanishing points in an image using one of the tech-
niques described in Section 4.3.3 and optionally refine the original line equations associated
with each vanishing point. Your results can be used later to track a target (Exercise 6.5) or
reconstruct architecture (Section 12.6.1).

Ex 4.15: Vanishing point uncertainty Perform an uncertainty analysis on your estimated
vanishing points. You will need to decide how to represent your vanishing point, e.g., homo-
geneous coordinates on a sphere, to handle vanishing points near infinity.

See the discussion of Bingham distributions by Collins and Weiss (1990) for some ideas.
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(c) (d

Figure 6.1 Geometric alignment and calibration: (a) geometric alignment of 2D images for stitching (Szeliski
and Shum 1997) ©) 1997 ACM; (b) a two-dimensional calibration target (Zhang 2000) (©) 2000 IEEE; (c) cal-
ibration from vanishing points; (d) scene with easy-to-find lines and vanishing directions (Criminisi, Reid, and
Zisserman 2000} © 2000 Springer.
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Figure 6.2 Basic set of 2D planar transformations

Once we have extracted features from images, the next stage in many vision algorithms is
to match these features across different images (Section 4.1.3). An important component of
this matching is to verify whether the set of matching features is geometrically consistent,
e.g., whether the feature displacements can be described by a simple 2D or 3D geometric
transformation, The computed motions can then be used in other applications such as image
stitching (Chapter 9) or augmented reality (Section 6.2.3).

In this chapter, we look at the topic of geometric image registration, i.e., the computation
of 2D and 3D transformations that map features in one image to another (Section 6.1). One
special case of this problem is pose estimation, which is determining a camera’s position
relative to a known 3D object or scene (Section 6.2). Another case is the computation of a
camera's intrinsic calibration, which consists of the internal parameters such as focal length
and radial distortion (Section 6.3). In Chapter 7, we look at the related problems of how
to estimate 3D point structure from 2D matches (friangulation) and how to simultaneously
estimate 3D geometry and camera motion (structure from motion),

6.1 2D and 3D feature-based alignment

Feature-based alignment is the problem of estimating the motion between two or more sets
of matched 2D or 3D points. In this section, we restrict ourselves to global parametric trans-
formations, such as those described in Section 2.1.2 and shown in Table 2.1 and Figure 6.2,
or higher order transformation for curved surfaces (Shashua and Toelg 1997, Can, Stewart,
Roysam et al. 2002). Applications to non-rigid or elastic deformations (Bookstein 198%9;
Szeliski and Lavallée 1996; Torresani, Hertzmann, and Bregler 2008) are examined in Sec-
tions 8.3 and 12.6.4,

6.1.1 2D alignment using least squares

Given a set of matched feature points { (2, @)} and a planar parametric transformation’ of
the form

x' = flx;p), (6.1)

| For examples 6f non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

275
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Transform Matrix Parameters p Jacobian .J
I ‘0 e (1 0
translation 01 4 (tz,ty) |01
co —sp Iy [1 Q —spz—coy
Euclidean 89 ca ty {t:atvrﬂ} L0 1  egx— ssy
T 1+a b i (1 0 =z -y
similarity b 14a 1 (tz,ty,a,b) 01y =z
l+aw am it [1 0.z y 0 O
affine 1 14an iy {tmtmﬂumﬂm.ﬂm,ﬂu} | 0 1 0 0 =z w
1+hoo hoe  hoe
o hig 1+ hu M2 )
projective han hoy 1 (hoo, hor, - - -y han) {see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations @' = f(@;p) shown in Table 2.1, where we have
re-parameterized the motions so that they are identity for p = (.

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

Eis =Y lIrll? = > I1F (i 0) — 2%, (6.2)
1 i

where
ri= flzip) — =) =& — & (6.3)

is the residual between the measured location &; and its corresponding current predicted
location & = f(xy; p). (See Appendix A.2 for more on least squares and Appendix B.2 for
a statistical justification.)

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion Az = &' —
and the unknown parameters p,

Az =z'—x = J(z)p, (6.4)

where J = 9f /&p is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

2 I (@)p — A (6.5)

B

P [Z J"‘{wﬂi{m,—)} p—2p" IZ JT{mi}am} + 3 llaz|® (6.6)
i i i

pTAp—2pTh+ec. (6.7)
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The minimum can be found by solving the symmetric positive definite (SPD) system of nor-

mal equations”
Ap =5, (6.8)

where

A= ZJT{;I:,-]J[:.:J (6.9)

is called the Hessian and b =}, J7T (x;)Ag;. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids,

Uncertainty weighting. The above least squares formulation assumes that all feature
points are matched with the same accuracy. This is often not the case, since certain points
may fall into more textured regions than others. If we associate a scalar variance estimate o
with each correspondence, we can minimize the weighted least squares problem instead,?

Bwis =) o7 “llrl. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian A; (8.55) with the per-pixel noise covariance
o2 (8.44). Weighting each squared residual by its inverse covariance ¥ ! = 524, (which
is called the information matrix), we obtain
Eows = Z Irillg-s = Yol = Za;zr?.&iri. (6.11)
% T

L]

6.1.2 Application: Panography

One of the simplest (and most fun) applications of image alignment is a special form of image
stitching called panography. In a panograph, images are translated and optionally rotated and
scaled before being blended with simple averaging (Figure 6.3). This process mimics the
photographic collages created by artist David Hockney, although his compositions use an
opaque overlay model, being created out of regular photographs.

In most of the examples seen on the Web, the images are aligned by hand for best artistic
effect. However, it is also possible to use feature matching and alignment technigues to
perform the registration automatically (Nomura, Zhang, and Nayar 2007; Zelnik-Manor and
Perona 2007).

Consider a simple translational model. We want all the corresponding features in different
images to line up as best as possible. Let £; be the location of the jth image coordinate frame
in the global composite frame and ;5 be the location of the ith matched feature in the jth
image. In order to align the images, we wish to minimize the least squares error

Bpis = ) (&5 + =) — il (6.12)
i

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J (@ }p =
Ay Instead of the normal equations (Bjfrck 1996; Golub and Yan Loan 1996). However, such conditions rarely
arise in image registration.

3 problems where each megsurement can have a different variance or certainty are called heteroscedastic models.

4 htep:ffwww lickr.com/groups/panography/.
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Figure 6.3 A simple panograph consisting of three images antomatically aligned with a translational model and
then averaged together.

where ®; i3 the consensus (average) position of feature ¢ in the global coordinate frame,
{An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offzet to all the
frame and point locations #; and ;). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Weh,

6.1.3 lterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns, In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (£.,%,) and the rotation angle £, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of 8. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update Ap to the
current parameter estimate p by minimizing

Ents(Ap)

> If (i p+ Ap) — =) (6.13)

i

> (s p)Ap —ri? (6.14)
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= Ap" Y] JTJ} Ap —20p" N ITri| + > |l (6.15)
= ApTAAp—2ApTb +c, t (6.16)

where the “Hessian™ A is the same as Equation (6.9) and the right hand side vector .
b= T (@)rs (6.17)

is now a Jacobian-weighted sum of residual vectors. This makes intuitive sense, as the pa-
rameters are pulled in the direction of the prediction error with a strength proportional to the
Jacobian.

Once A and b have been computed, we solve for Ap using

(A + Mdiag(A))Ap = b, (6.18)

and update the parameter vector p < p -+ Ap accordingly. The parameter A is an addi-
tional damping parameter used to ensure that the system takes a “downhill” step in energy
(squared error) and is an essential component of the Levenberg-Marquardt algorithm (de-
scribed in more detail in Appendix A.3). In many applications, it can be set to 0 if the system
is successfully converging.

For the case of our 2D translation-+rotation, we end up with a 3 x 3 set of normal equations
in the unknowns (8t;, dt,,660). An initial guess for (¢, %y,6) can be obtained by fitting a
four-parameter similarity transform in (t,ty, ¢, s) and then setting = tan™'(s/c). An
alternative approach is to estimate the translation parameters using the centroids of the 2D
points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).

For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,
except for the projective 2D motion (homography), which arises in image-stitching applica-
tions (Chapter 9). These equations can be re-written from (2.21) in their new parametric form

as

s (14 hoo)z + hory + ho2 _ haox + (14 ha1)y + hao

= and 6.19
’ hoot + hory + 1 2 haox + ho1y + 1 S
The Jacobian is therefore
of 1[ez y 1 0 0 0 —2'z —2y
dp D|0 00 z y 1 —yz —yy |’ .

where D = hggz + haiy + 1 is the denominator in (6.19), which depends on the current
parameter settings (as do &’ and y/').

An initial guess for the eight unknowns {/qo, f01, - - - , hi21 } can be obtained by multiply-
ing both sides of the equations in (6.19) through by the denominator, which yields the linear
set of equations,

‘=gl _[2 9 1 0
'—y | |0 0 0 =z

5 The “Hessian”!A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f (zi; 2+ Ap).

. X hoo
0 —&'z —&'y

0
y 1 gz gy

B

(6.21)

o

ha1
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However, this is not optimal from a statistical point of view, since the denominator D), which
was used to multiply each equation, can vary quite a bit from point to point.5

One way to compensate for this is to reweight each equation by the inverse of the current
estimate of the denominator, D,

hao

1 [ & —=z _1 z y 1 0 0 0 -3z —dy ) 6.22)
y| D|0 00z y 1 —9z —gy i '
hgl

While this may at first seem to be the exact same set of equations as (6.21), because least
squares is being used to solve the over-determined set of equations, the weightings do matter
and produce a different set of normal equations that performs better in practice.

The most principled way to do the estimation, however, is to directly minimize the squared
residual equations (6.13) using the Gauss—Newton approximation, i.e., performing a first-
order Taylor series expansion in p, as shown in (6.14), which yiclds the set of equations

-z 1l=z y 1
-4 ] D[0 0 0

While these look similar to (6.22), they differ in two important respects. First, the left hand
side consists of unweighted prediction errors rather than point displacements and the solution
vector is a perturbation to the parameter vector p. Second, the quantities inside J involve
predicted feature locations (&', §') instead of sensed feature locations (2, ). Both of these
differences are subtle and yet they lead to an algorithm that, when combined with proper
checking for downhill steps (as in the Levenberg—Marquardt algorithmy), will converge to a
local minimum. Note that iterating Equations (6.22) is not guaranteed to converge, since it is
not minimizing a well-defined energy function.

FEquation (6.23) is analogous to the additive algorithm for direct intensity-based regis-
tration (Section 8.2), since the change to the full transformation is being computed. If we
prepend an incremental homography to the current homography instead, i.e., we use a com-
positional algorithm (described in Section 8.2), we get D = 1 (since p = 0) and the above
formula simplifies to

= _at Ahoo
0 -z -3y

0
y 1 —gz -y e

Ahgy

Ahgo
o A (6.24)
where we have replaced (%', 7’) with (z,y) for conciseness. (Notice how this results in the
same Jacobian as (8.63).)

6 Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct
linear transform, but that term is more commonly associated with pose estimation (Section 6.2). Note also that our
definition of the h;; parameters differs from that used in their book, since we define h;; to be the difference from
unity and we do not leave hao as a free parameter, which means that we cannot handle certain extreme homographies,
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6.1.4 Robust least squares and RANSAC

While regular least squares is the method of choice for measurements where the noise follows
a normal (Gaussian) distribution, more robust versions of least squares are required when
there are outliers among the correspondences (as there almost always are). In this case, it is
preferable to use an M-estimator (Huber 1981; Hampel, Ronchetti, Rousseeuw er al. 1986;
Black and Rangarajan 1996; Stewart 1999), which involves applying a robust penalty function
a(r) to the residuals

Eres(Ap) = ) pllir:l) (6.25)
instead of squaring them,
We can take the derivative of this function with respect to p and set it to 0,
3 7':. 'I,ﬂ' Ty 37'1

where y(r) = p'(r) is the derivative of p and is called the influence function. If we introduce
aweight function, w(r) = ¥(r) /r, we observe that finding the stationary point of (6.25) using
(6.26) is equivalent to minimizing the iteratively reweighted least squares (IRLS) problem

Brs =Y w({ril)lrl?, (6.27)

i

where the w(||r;||) play the same local weighting role as o; % in (6.10). The IRLS algo-
rithm alternates between computing the influence functions w(||v;||) and solving the result-
ing weighted least squares problem (with fixed w values). Other incremental robust least
squares algorithms can be found in the work of Sawhney and Ayer (1996); Black and Anan-
dan (1996); Black and Rangarajan (1996); Baker, Gross, Ishikawa et al. (2003) and textbooks
and tutorials on robust statistics (Huber 1981 Hampel, Ronchetti, Rousseeuw et al. 1986,
Rousseeuw and Leroy 1987, Stewart 1999,

While M-estimators can definitely help reduce the influence of outliers, in some cases,
starting with too many outliers will prevent IRLS (or other gradient descent algorithms) from
converging to the global optimum. A better approach is often to find a starting set of inlier
correspondences, i.e., points that are consistent with a dominant motion estimate.”

Two widely used approaches to this problem are called RANdom SAmple Consensus, or
RANSAC for short (Fischler and Bolles 1981), and least median of squares (LMS) (Rousseeuw
1984). Both techniques start by selecting (at random) a subset of k correspondences, which is
then used to compute an initial estimate for p. The residuals of the full set of correspondences

are then computed as
ri = Tz p) — 5, (6.28)
where & are the estimated (mapped) locations and i, are the sensed (detected) feature point
locations.
The RANSAC technique then counts the number of inliers that are within e of their pre-
dicted location, i.c., whose ||| = e (The e value is application dependent but is often
around 1-3 pixels.) Least median of squares finds the median value of the ||r;||* values. The

7 For pixel-based alignment methods (Section 8.1.1), hierarchical (coarse-to-fine) techniques are often used to
lock onto the dominant motion in o scene.
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k P 5
3 05 135
6 06 97
6 05 293

Table 6.2 Number of trials S to attain a 99% probability of success (Stewart 1999).

random selection process is repeated S times and the sample set with the largest number of
inliers (or with the smallest median residual) is kept as the final solution. EHither the initial
parameter guess p or the full set of computed inliers is then passed on to the next data fitting
stage,

When the number of measurements is quite large, it may be preferable to only score a
subset of the measurements in an initial round that selects the most plausible hypotheses for
additional scoring and selection. This modification of RANSAC, which can significantly
speed up its performance, is called Preemptive RANSAC (Nistér 2003). In another variant
on RANSAC called PROSAC (PROgressive SAmple Consensus), random samples are ini-
tially added from the most “confident” matches, thereby speeding up the process of finding a
(statistically) likely good set of inliers (Chum and Matas 2005).

To ensure that the random sampling has a good chance of finding a true set of inliers, a
sufficient number of trials S must be tried. Let p be the probability that any given correspon-
dence is valid and I be the total probability of success after S trials. The likelihood in one
trial that all & random samples are inliers is p*. Therefore, the likelihood that § such trials

will all fail is
1-P=(1-p*)% (6.29)
and the required minimum number of trials is
log(1 — P)
== (6.30)
log(1 — p*)

Stewart (1999) gives examples of the required number of trials S to attain a 99% proba-
bility of success. As you can see from Table 6.2, the number of trials grows quickly with the
number of sample points used. This provides a strong incentive to use the minimium number
of sample points k possible for any given trial, which is how RANSAC is normally used in
practice.

Uncertainty modeling

In addition to robustly computing a good alignment, some applications require the compu-
tation of uncertainty (see Appendix B.6). For linear problems, this estimate can be obtained
by inverting the Hessian matrix (6.9) and multiplying it by the feature position noise (if these
have not already been used to weight the individual measurements, as in Equations (6.10)
and 6.11)). In statistics, the Hessian, which is the inverse covariance, is sometimes called the
(Fisher) information matrix (Appendix B.1.1).

When the problem involves non-linear least squares, the inverse of the Hessian matrix
provides the Cramer—Rao lower bound on the covariance matrix, i.e., it provides the minimum
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amount of covariance in a given solution, which can actually have a wider spread (“longer
tails"™) if the energy flattens out away from the local minimum where the optimal solution is
found.

6.1.5 3D alignment ;

Instead of aligning 2D sets of image features, many computer vision applications require the
alignment of 3D points. In the case where the 3D transformations are linear in the motion
parameters, e.g., for translation, similarity, and affine, regular least squares (6.3) can be used.

The case of rigid (Euclidean) motion,
Epap =Y _ |l — Ray — ¢, (6.31)
i

which arises more frequently and is often called the absolute orientation problem (Horn
1987), requires slightly different techniques. If only scalar weightings are being used (as
opposed to full 3D per-point anisotropic covariance estimates), the weighted centroids of the
two point clouds ¢ and ¢ can be used to estimate the translation ¢ = ¢/ — Re.® We are then
left with the problem of estimating the rotation between two sets of points {&; = =z; — ¢}
and {&#; = &} — ¢'} that are both centered at the origin.

One commonly used technique is called the orthogonal Procrustes algorithm (Golub and
Van Loan 1996, p. 601) and involves computing the singular value decomposition (SVD) of
the 3 % 3 correlation matrix

C=) & =Uzv’, (6.32)

The rotation matrix is then obtained as R = UV . (Verify this for yourself when &’ = Rzx.)

Another technique is the absolute orientation algorithm (Horm 1987) for estimating the
unit quaternion corresponding to the rotation matrix 12, which involves forming a 4 x 4 matrix
from the entries in €' and then finding the eigenvector associated with its largest positive
eigenvalue.

Lorusso, Eggert, and Fisher (1995) experimentally compare these two techniques to two
additional techniques proposed in the literature, but find that the difference in accuracy is
negligible (well below the effects of measurement noise).

In situations where these closed-form algorithms are not applicable, e.g., when full 3D
covariances arc being used or when the 3D alignment is part of some larger optimization, the
incremental rotation update introduced in Section 2.1.4 (2.35-2.36), which is parameterized
by an instantaneous rotation vector w, can be used (See Section 9.1.3 for an application to
image stitching.)

In some situations, e.g., when merging range data maps, the correspondence between
data points is not known a prieri, In this case, iterative algorithms that start by matching
nearby points and then update the most likely correspondence can be used (Besl and McKay
1992; Zhang 1994; Szeliski and Lavallée 1996; Gold, Rangarajan, Lu ef al. 1998; David,
DeMenthon, Duraiswami et al. 2004; Li and Hartley 2007; Enqvist, Josephson, and Kahl
2009). These techniques are discussed in more detail in Section 12.2.1.

¥ When full covariances are used, they are transformed by the rotation and so a closed-form solution for ransla-
tion 15 not possible,
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6.2 Pose estimation

A particular instance of feature-based alignment, which occurs very often, is estimating an
object's 3D pose from a set of 2D point projections. This pese estimation problem is also
known as extrinsic calibration, as opposed to the intrinsic calibration of internal camera pa-
rameters such as focal length, which we discuss in Section 6.3. The problem of recovering
pose from three correspondences, which is the minimal amount of information necessary,
is known as the perspective-3-point-problem (P3P), with extensions to larger numbers of
points collectively known as PoP (Haralick, Lee, Ottenberg et al. 1994; Quan and Lan 1999;
Moreno-Noguer, Lepetit, and Fua 2007).

In this section, we look at some of the techniques that have been developed to solve such
problems, starting with the direct linear transform (DLT), which recovers a 3 % 4 camera ma-
trix, followed by other “linear” algorithms, and then looking at statistically optimal iterative
algorithms.

6.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a set of linear equations analo-
gous to those used for 2D motion estimation (6.19) from the camera matrix form of perspec-
tive projection (2.55-2.56),

o = PooXi+P0Yi+ poaZi + pos (6.33)
' P20 X +paYi + paaZi + paa
PoXi +puYi + e+ pia

P = — s 6.34

L PaoXy 4+ pnY; + oo 4 pas (o)

where (z;,y;) are the measured 2D feature locations and (X, ¥;, Z;) are the known 3D
feature locations (Figure 6.4). As with (6.21), this system of equations can be solved in a
linear fashion for the unknowns in the camera matrix P by multiplying the denominator on
both sides of the equation.” The resulting algorithm is called the direct linear transform
(DLT) and is commonly attributed to Sutherland (1974). (For a more in-depth discussion,
refer to the work of Hartley and Zisserman (2004).) In order to compute the 12 (or 11)
unknowns in P, at least six correspondences between 3D and 2D locations must be known.

As with the case of estimating homographies (6.21-6.23), more accurate results for the
entries in P can be obtained by directly minimizing the set of Equations (6.33-6.34) using
non-linear least squares with a small number of iterations,

Once the entries in P have been recovered, it is possible to recover both the intrinsic
calibration matrix K and the rigid transformation (R, t) by observing from Equation (2.56)
that

P = K|[R|t]. (6.35)

Since K is by convention upper-triangular (see the discussion in Section 2.1.5), both K and
R can be obtained from the front 3 x 3 sub-matrix of P using RQ factorization (Golub and
Van Loan 1996),10

? Because PP is unknown up to a seale, we can either fix one of the entries, e.g., pas = 1, or find the smallest
singular vector of the set of linear equations.

" Note the unfortunate clash of terminclogics: In matrix algebra textbooks, R represents an upper-triangular
matrix; in compater vision, /2 is an orthogonal rodation.

APPL-1012 / Page 103 of 211



6.2 Pose estimation

=X Y2 W)

285

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles and distances between

pairs of points.

In most applications, however, we have some prior knowledge about the intrinsic cali-
bration matrix K, e.g., that the pixels are square, the skew is very small, and the optical
center is near the center of the image (2.57-2.59). Such constraints can be incorporated into
a non-linear minimization of the parameters in K and (I, £), as described in Section 6.2.2.

In the case where the camera is already calibrated, ie., the matrix K is known (Sec-
tion 6.3), we can perform pose estimation using as few as three points (Fischler and Bolles
1981; Haralick, Lee, Ottenberg ef al. 1994; Quan and Lan 1999). The basic observation that
these linear PnP (perspective n-point) algorithms employ is that the visual angle between any
pair of 2D points &; and &; must be the same as the angle between their corresponding 3D
points p; and p; (Figure 6.4).

Given a set of corresponding 2D and 3D points {(&;, p;) }, where the ; are unit directions
obtained by transforming 2D pixel measurements @y 1o unit norm 3D directions &; through
the inverse calibration matrix K,

&y = N(K e = K a /| K ), (6.36)
the unknowns are the distances d; from the camera origin ¢ to the 3D points p,;, where
pi = didi +c (6.37)

(Figure 6.4). The cosine law for triangle A(e, p;, p;) gives us

Sisldiyd;) = df +d5 — 2didyeq; — df; = 0, (6.38)
where
c,-,— = OOSfJ;j = ﬁi # 5:_,' {639}
and
":E;.' = |lp; — Pj!fg' (6.40)

We can take any triplet of constraints ( figs fir, fix) and eliminate the d; and d;, using
Sylvester resultants (Cox, Little, and O'Shea 2007) to obtain a quartic equation in d?,

ijk(dF) = agdf + agdf + azd] +aydf +ag=0. (6.41)

Given five or mbre correspondences, we can generate —f"—_l-l}"-‘;ﬂi triplets to obtain a linear
estimate (using SVD) for the values of (df, d®, d}, d?) (Quan and Lan 1999). Estimates for
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d? can computed as ratios of successive ™" /d?" estimates and these can be averaged to
obtain a final estimate of d° (and hence d;).

Once the individual estimates of the d; distances have been computed, we can generate
a 3D structure consisting of the scaled point dircctions dyd;, which can then be aligned with
the 3D point cloud {p;} using absolute orientation (Section 6.1.5) to nbtmnr.d the desired
pose estimate. Quan and Lan (1999) give accuracy results for this and other techniques,
which use fewer points but require more complicated algebraic manipulations. The paper by
Moreno-Noguer, Lepetit, and Fua (2007) reviews more recent alternatives and also gives a
lower complexity algorithm that typically produces more accurate results.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer
from bas-relief ambiguities (e.g., depth reversals) (Section 7.4.3), it is often preferable to use
the linear six-point algorithm to guess an initial pose and then optimize this estimate using
the iterative lechnique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-
jection model and then iteratively refining this initial estimate using a more accurate perspec-
tive projection model (DeMenthon and Davis 1995), The attraction of this model, as stated
in the paper’s title, is that it can be implemented “in 25 lines of [Mathematica] code”.

6.2.2 lterative algorithms

The most accurate (and flexible) way to estimate pose is to directly minimize the squared (or
robust) reprojection error for the 2D points as a function of the unknown pose parameters in
(R,t) and optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher
and Witkin 1992), We can write the projection equations as

= flp; R, t, K) (6.42)
and iteratively minimize the robustified linearized reprojection errors
af af
= ——AK —ry 6.43
ENI.rP ZP( ﬂR'F ﬂ'ht+ oK Ti { }

where r; = &; — & is the current residual vector (2D error in predicted position) and the
partial derivatives are with respect to the unknown pose parameters (rotation, translation, and
optionally calibration). MNote that if full 2D covariance estimates are available for the 2D
feature locations, the above squared norm can be weighted by the inverse point covariance
matrix, as in Equation (6.11).

An easier to understand (and implement) version of the above non-linear regression prob-
lem can be constructed by re-writing the projection equations as a concatenation of simpler
steps, each of which transforms a 410 homogeneous coordinate p; by a simple transformation
such as translation, rotation, or perspective division (Figure 6.5). The resulting projection
equations can be written as

L'm = felpics) =pi—e (6.44)

y® = fay™;e;)=Rig)y", (6.45)
(2)

v = o™ =Y, (6.46)

z; = foly™;k)=Kk)y®, (6.47)
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Figure 6.5 A set of chained transforms for projecting a 3D point p; to a 2D measurement @; through a series of
transformations f (%) each of which is controlled by its own set of parameters. The dashed lines indicate the flow

of information as partial derivatives are computed during a backward pass.

Note that in these equations, we have indexed the camera centers ¢; and camera rotation
quaternions ¢; by an index j, in case more than one pose of the calibration object is being
used (sec also Section 7.4.) We are also using the camera center ¢y instead of the world
translation t;, since this is a more natural parameter to estimate.

The advantage of this chained set of transformations is that each one has a simple partial
derivative with respect both to its parameters and to its input. Thus, once the predicted value
of &; has been computed based on the 3D point location p; and the current values of the pose
parameters (c;, q;, k), we can obtain all of the required partial derivatives using the chain
rule *

af'i i Br,- ﬁ‘y r {648)
AplEl — Byk) Hplk)
where p'*) indicates one of the parameter vectors that is being optimized. (This same “trick”
is used in neural networks as part of the backpropagation algorithm (Bishop 2006).)

The one special case in this formulation that can be considerably simplified is the compu-
tation of the rotation update. Instead of directly computing the derivatives of the 3 » 3 rotation
matrix F2(q) as a function of the unit quaternion entries, you can prepend the incremental ro-
tation matrix AR(w) given in Equation (2.35) to the current rotation matrix and compute the
partial derivative of the transform with respect to these parameters, which results in a simple
cross product of the backward chaining partial derivative and the outgoing 3D vector (2.36).

6.2.3 Application: Augmented reality

A widely used application of pose estimation is augmented reality, where virtual 3D images
or annotations are superimposed on top of a live video feed, either through the use of see-
through glasses (a head-mounted display) or on a regular computer or mobile device screen
{Azuma, Baillot, Behringer et al. 2001; Haller, Billinghurst, and Thomas 2007). In some
applications, a special pattern printed on cards or in a book is tracked to perform the aug-
mentation (Kato, Billinghurst, Poupyrev et al. 2000; Billinghurst, Kato, and Poupyrev 2001).
For a desktop application, a grid of dots printed on a mouse pad can be tracked by a camera
embedded in an augmented mouse to give the user control of a full six degrees of freedom
over their position and orientation in a 3D space (Hinckley, Sinclair, Hanson ef al. 1999), as
shown in Figure 6.6.

Sometimes, the scene itself provides a convenient object to track, such as the rectangle
defining a desktop used in through-the-lens camera control (Gleicher and Witkin 1992). In
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© @

Figure 6.6 The VideoMouse can sense six degrees of freedom relative to a specially printed mouse pad using
its embedded camera (Hinckley, Sinclair, Hanson er al. 1999) (©) 1999 ACM: (a) top view of the mouse; (b) view
of the mouse showing the curved base for rocking; (¢) moving the mouse pad with the other hand extends the
interaction capabilities; (d) the resulting movement seen on the screen.

outdoor locations, such as film sets, it is more common to place special markers such as
brightly colored balls in the scene to make it easier to find and track them (Bogart 1991). In
older applications, surveying techniques were used to determine the locations of these balls
before filming. Today, it is more common to apply structure-from-motion directly to the film
footage itself (Section 7.4.2).

Rapid pose estimation is also central to tracking the position and orientation of the hand-
held remote controls used in Nintendo's Wii game systems. A high-speed camera embedded
in the remote control is used to track the locations of the infrared (IR) LEDs in the bar that
is mounted on the TV monitor, Pose estimation is then used to infer the remote control’s
location and orientation at very high frame rates. The Wii system can be extended to a variety
of other user interaction applications by mounting the bar on a hand-held device, as described
by Johnny Lee.!! :

Exercises 6.4 and 6.5 have you implement two different tracking and pose estimation sys-
tems for augmented-reality applications. The first system tracks the ountline of a rectangular
object, such as a book cover or magazine page, and the second has you track the pose of a
hand-held Rubik’s cube,

6.3 Geometric intrinsic calibration

As described above in Equations (6.42-6.43), the computation of the internal (intrinsic) cam-
era calibration parameters can occur simultaneously with the estimation of the (extrinsic)
pose of the camera with respect to a known calibration target. This, indeed, is the “classic”
approach to camera calibration used in both the photogrammetry (Slama 1980) and the com-
puter vision (Tsai 1987) communities. In this section, we look at alternative formulations
{which may not involve the full solution of a non-linear regression problem), the use of alter-
native calibration targets, and the estimation of the non-linear part of camera optics such as
radial distortion.?

' hitpe/johnnylee.net/projectsdwiil,
12 In some applications, you can use the EXIF tags associated with a JPEG image to obtain a rough estimate of a
camera's focal length but this technigue should be used with cantion as the results are often inaccurate,
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Figure 6.7 Calibrating a lens by drawing straight lines on cardboard (Debevec, Wenger, Tchou ef al. 2002) ©
2002 ACM: (a) an image taken by the video camera showing a hand holding a metal ruler whose right edge
appears vertical in the image; (b) the set of lines drawn on the cardboard converging on the front nodal point

(center of projection) of the lens and indicating the horizontal field of view,

6.3.1 Calibration patterns

The use of a calibration pattern or set of markers is one of the more reliable ways to estimate
a camera's intrinsic parameters. In photogrammetry, it is common to set up a camera in a
large field looking at distant calibration targets whose exact location has been precomputed
using surveying equipment (Slama 1980; Atkinson 1996; Kraus 1997). In this case, the trans-
lational component of the pose becomes irrelevant and only the camera rotation and intrinsic
parameters need to be recovered.

If a smaller calibration rig needs to be used, e.g., for indoor robotics applications or for
mobile robots that carry their own calibration target, it is best if the calibration ohject can span
as much of the workspace as possible (Figure 6.8a), as planar targets often fail to accurately
predict the components of the pose that lie far away from the plane. A good way to determine
if the calibration has been successfully performed is to estimate the covariance in the param-
eters (Section 6,1.4) and then project 3D points from various points in the workspace into the
image in order to estimate their 2D positional uncertainty,

An alternative method for estimating the focal length and center of projection of a lens
is to place the camera on a large flat piece of cardboard and use a long metal ruler to draw
lines on the cardboard that appear vertical in the image, as shown in Figore 6.7a (Debevee,
Wenger, Tchou et al. 2002). Such lines lie on planes that are parallel to the vertical axis of
the camera sensor and also pass through the lens' front nodal point. The location of the nodal
point (projected vertically onto the cardboard plane) and the horizontal field of view (deter-
mined from lines that graze the left and right edges of the visible image) can be recovered by
intersecting these lines and im:asuring their angular extent (Figure 6.7b),

If no calibration pattern is available, it is also possible to perform calibration simulta-
neously with structure and pose recovery (Sections 6.3.4 and 7.4), which is known as self-
calibration (Faugeras, Luong, and Maybank 1992; Hartley and Zisserman 2004; Moons, Van
Gool, and Vergatwen 2010). However, such an approach requires a large amount of imagery
to be accurate,
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(a)

Figure 6.8 Calibration patterns: (a) a three-dimensional target (Quan and Lan 1999) (© 1999 IEEE; (b) a two-
dimensional target (Zhang 2000) (©) 2000 IEEE. Note that radial distortion needs to be removed from such images
before the feature points can be used for calibration.

Planar calibration patterns

When a finite workspace is being used and accurate machining and motien control platforms
are available, a good way to perform calibration is to move a planar calibration target in a
controlled fashion through the workspace volume. This approach is sometimes called the ¥-
planes calibration approach (Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée,
Szeliski er al. 1992; Grossberg and Nayar 2001) and has the advantage that each camera pixel
can be mapped to a unique 3D ray in space, which takes care of both linear effects modeled
by the calibration matrix & and non-linear effects such as radial distortion (Section 6.3.5).

A less cumbersome but also less accurate calibration can be obtained by waving a pla-
nar calibration pattemn in front of a camera (Figure 6.8b). In this case, the pattern’s pose
has (in principle) to be recovered in conjunction with the intrinsics. In this technique, each
input image is used to compute a separate homography (6.19-6.23) H mapping the plane’s
calibration points (X}, ¥;, 0) into image coordinates (;, i),

€Ly Xi .
wi=|y |~K[ro m t]| Yi | ~Hp, (6.49)
1 1

where the r; are the first two columns of R and ~ indicates equality up to scale. From
these, Zhang (2000) shows how to form linear constraints on the nine entries in the B =
K TK™' matrix, from which the calibration matrix K can be recovered using a matrix
square root and inversion. (The matrix B is known as the image of the absolute conic (IAC)
in projective geometry and is commeonly used for camera calibration (Hartley and Zisserman
2004, Section 7.5).) If only the focal length is being recovered, the even simpler approach of
using vanishing points can be used instead.

6.3.2 Vanishing points

A common case for calibration that occurs often in practice is when the camera is looking at
" a man-made scene with strong extended rectahedral objects such as boxes or room walls. In
this case, we can intersect the 2D lines corresponding to 3D parallel lines to compute their
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(b)

|

Figure 6.9 Calibration from vanishing points: (a) any pair of finite vanishing points (Z;, £;) can be used to
estimate the focal length; (b) the orthocenter of the vanishing point triangle gives the optical center of the image

[N

vanishing points, as described in Section 4.3.3, and use these to determine the intrinsic and
extrinsic calibration parameters (Caprile and Torre 1990; Becker and Bove 1995; Licbowitz
and Zisserman 1998; Cipolla, Drummond, and Robertson 1999; Antone and Teller 2002;
Criminisi, Reid, and Zisserman 2000; Hartley and Zisserman 2004; Plugfelder 2008).

Let us assume that we have detected two or more orthogonal vanishing points, all of which
are finite, i.e., they are not obtained from lines that appear to be parllel,in the image plane
(Figure 6.9a). Let us also assume a simplified form for the calibration matrix K where only
the focal length is unknown (2.59). (It is often safe for rough 3D modeling to assume that
the optical center is at the center of the image, that the aspect ratio is 1, and that there is no
skew.) In this case, the projection equation for the vanishing points can be written as

Ij—Cx
& = I: wi—cy | ~Bpy=ri, (6.50)

f

where p; corresponds to one of the cardinal directions (1,0,0), (0,1,0), or (0,0,1), and r;
is the ith column of the rotation matrix H.
From the orthogonality between columns of the rotation matrix, we have

reerg e (3 — o) (@5 — o) + (i — o) (w5 — ) + f2 =0 (6.51)

from which we can obtain an estimate for f*. Note that the accuracy of this estimate increases
as the vanishing points move closer to the center of the image. In other words, it is best to tilt
the calibration pattern a decent amount around the 45° axis, as in Figure 6.9a. Once the focal
length f has been determined, the individual columns of R can be estimated by normalizing
the left hand side of (6.50) and taking cross products. Alternatively, an VD of the initial B
estimate, which is a variant on orthogonal Procrustes (6.32), can be used.

If all three vanishing points are visible and finite in the same image, it is also possible to
estimate the oplical center as the orthocenter of the triangle formed by the three vanishing
points (Caprile and Torre 1990; Hartley and Zisserman 2004, Section 7.6) (Figure 6.9b).
In practice, however, it is more accurate to re-estimate any unknown intrinsic calibration
parameters using non-linear least squares (6.42).
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Figure 6,10 Single view metrology (Criminisi, Reid, and Zisserman 2000) (€) 2000 Springer: (a) input image
showing the three coordinate axes computed from the two horizontal vanishing points (which can be determined
from the sidings on the shed); (b) a new view of the 3D reconstruction,

6.3.3 Application: Single view metrology

A fun application of vanishing point estimation and camera calibration is the single view
metrology system developed by Criminisi, Reid, and Zisserman (2000). Their system allows
people to interactively measure heights and other dimensions as well as to build piﬂct‘-‘-‘;‘iﬁﬂu
planar 3D models, as shown in Figure 6.10.

The first step in their system is to identify two orthogonal vanishing points on the ground
plane and the vanishing point for the vertical direction, which can be done by drawing some
parallel sets of lines in the image. (Alternatively, automated techniques such as those dis-
cussed in Section 4.3.3 or by Schaffaliteky and Zisserman (2000) could be used.) The user
then marks a few dimensions in the image, such as the height of a reference object, and
the system can automatically compute the height of another object. Walls and other planar
impostors (geometry) can also be sketched and reconstructed.

In the formulation originally developed by Criminisi, Reid, and Zisserman (2000), the
system produces an affine reconstruction, i.e., one that is only known up to a set of indepen-
dent scaling factors along each axis. A potentially more useful system can be constructed by
assuming that the camera is calibrated up to an unknown focal length, which can be recov-
ered from orthogonal (finite) vanishing directions, as we just deseribed in Section 6.3.2. Once
this is done, the user can indicate an origin on the ground plane and another point a known
distance away. From this, points on the ground plane can be directly projected into 3D and
points above the ground plane, when paired with their ground plane projections, can also be
recovered. A fully metric reconstruction of the scene then becomes possible.

Exercise 6.9 has you implement such a system and then use it to model some simple
3D scenes. Section 12.6.1 describes other, potentially multi-view, approaches to architectural
reconstruction, including an interactive piecewise-planar modeling system that uses vanishing
points to establish 3D line directions and plane normals (Sinha, Steedly, Szeliski ef al. 2008).
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Figure 6.11 Four images taken with a hand-held camera registered using a 3D rotation motion model, which

can be used to estimate the focal length of the camera (Szeliski and Shum 1997) (©) 2000 ACM.

6.3.4 Rotational motion

When no ealibration targets or known struetures are available but you can rotate the camera
around its front nodal point (or, equivalently, work in a large open environment where all ob-
jects are distant), the camera can be calibrated from a set of overlapping images by assuming
that it is undergoing pure rotational motion, as shown in Figure 6.11 (Stein 1995; Hartley
1997h; Hartley, Hayman, de Agapito et al. 2000; de Agapito, Hayman, and Reid 2001; Kang
and Weiss 1999; Shum and Szeliski 2000; Frahm and Koch 2003), When a full 360° mo-
tion is used to perform this calibration, a very accurate estimate of the focal length f can be
obtained, as the accuracy in this estimate is proportional to the total number of pixels in the
resulting cylindrical panorama (Section 9.1.6) (Stein 1995; Shum and Szeliski 2000).

To use this technique, we first compute the homographies H ¢ between all overlapping
pairs of images, as explained in Equations (6.19-6.23). Then, we use the observation, first
made in Equation (2.72) and explored in more detail in Section 9.1.3 (9.5), that each homog-
raphy is related to the inter-camera rotation J;; through the (unknown) calibration matrices
K and Ky,

Hy=KRR'K;'=KR;K;". (6.52)

The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., Ky = diag{ fi, fe, 1). (We number the pixel coordinates ac-
cordingly, i.e., place pixel (z,y) = (0,0) at the center of the image.) We can then rewrite
Equation (6.52) as

~ hoo  hor  fo thea
Ryg~K{'HywKp~ | hw  hn fothie |, (6.53)
fihao fihm  f5'fihes

where fi;; are the elements of Hyg.
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Using the orthonormality properties of the rotation matrix R and the fact that the right
hand side of (6.53) is known only up to a scale, we obtain

hio + hoy + fo 2hy = i +hdy + fo ki, (6.54)
and .
hoohio + horhi + fo 2hozhia = 0. (6.55)
From this, we can compute estimates for fj of
2 Py h%‘z = hﬁg :i_f h2 h2 hz h2 6 56
fo_h§0+h§1—h%0—h§1 oo Thgy # hig +hi; (6.56)
or e
2 021112 ;
=——* = _ if hoohig # —hoihi1. 6.57
fo T e oohio 7 —horhi (6.57)

(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f; as well, by analyzing the columns of H . If the focal
length is the same for both images, we can take the geometric mean of fy and f; as the
estimated focal length f = +/f1 fo. When multiple estimates of f are available, e.g., from
different homographies, the median value can be used as the final estimate.

A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-
parameter camera K; = K using the technique of Hartley (1997b). Observe from (6.52)
that Ry; ~ K 'Hy;K and R;;" ~ KTH,; K~T. Bquating Rij = R;; we obtain
K HyK ~ KTH,, K7, from which we get

Hy(KKT) ~ (KKT)H;; . (6.58)

This provides us with some homogeneous linear constraints on the entries in A = K K7,
which is known as the dual of the image of the absolute conic (Hartley 1997b; Hartley and
Zisserman 2004). (Recall that when we estimate a homography, we can only recover it up to
an unknown scale.) Given a sufficient number of independent homography estimates H ifs
we can recover A (up to a scale) using either SVD or eigenvalue analysis and then recover
K through Cholesky decomposition (Appendix A.1.4). Extensions to the cases of temporally
varying calibration parameters and non-stationary cameras are discussed by Hartley, Hayman,
de Agapito et al. (2000) and de Agapito, Hayman, and Reid (2001).

The quality of the intrinsic camera parameters can be greatly increased by constructing a
full 360° panorama, since mis-estimating the focal length will result in a gap (or excessive
overlap) when the first image in the sequence is stitched to itself (Figure 9.5). The resulting
mis-alignment can be used to improve the estimate of the focal length and to re-adjust the
rotation e%timates, as described in Section 9.1.4. Rotating the camera by 90° around its optic
axis and re-shooting the panorama is a good way to check for aspect ratio and skew pixel
problems, as is generating a full hemi-spherical panorama when there is sufficient texture.

Ultimately, however, the most accurate estimate of the calibration parameters (including
radial distortion) can be obtained using a full simultaneous non-linear minimization of the
intrinsic and extrinsic (rotation) parameters, as described in Section 9.2.
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6.3.5 Radial distortion

When images are taken with wide-angle lenses, it is often necessary to model lens distor-
tions such as radial distortion. As discussed in Section 2.1.6, the radial distortion model
says that coordinates in the observed images are displaced away from (barrel distortion) or
towards (pincushion distortion) the image center by an amount proportional to their radial
distance (Figure 2.13a—b). The simplest radial distortion models use low-order polynomials

(c.f. Equation (2.78)),

2(1+ k1r* + Kgr?)
= y(1+ K112 + mar?), (6.59)

B
I

L~

where 2 = 2% + 4 and x, and ko are called the radial distortion parameters (Brown 1971;
Slama 1980)."

A variety of techniques can be used to estimate the radial distortion parameters for a
given lens.' One of the simplest and most useful is to take an image of a scene with a lot
of straight lines, especially lines aligned with and near the edges of the image. The radial
distortion parameters can then be adjusted until all of the lines in the image are straight,
which is commonly called the plumb-line method (Brown 1971; Kang 2001; El-Melegy and
Farag 2003). Exercise 6.10 gives some more details on how to implement such a technique.

Another approach is to use several overlapping images and to combine the estimation
of the radial distortion parameters with the image alignment process, i.e., by extending the
pipeline used for stitching in Section 9.2.1. Sawhney and Kumar (1999) use a hierarchy
of motion models (translation, affine, projective) in a coarse-to-fine strategy coupled with
a quadratic radial distortion correction term. They use direct (intensity-based) minimiza-
tion to compute the alignment. Stein (1997) uses a feature-based approach combined with
a general 3D motion model (and quadratic radial distortion), which requires more matches
than a parallax-free rotational panorama but is potentially more general. More recent ap-
proaches sometimes simultaneously compute both the unknown intrinsic parameters and the
radial distortion coefficients, which may include higher-order terms or more complex rational
or non-parametric forms (Claus and Fitzgibbon 2005; Starm 2005; Thirthala and Pollefeys
2005; Barreto and Daniilidis 2005; Hartley and Kang 2005; Steele and Jaynes 2006; Tardif,
Sturm, Trudeau ef al. 2009).

When a known calibration target is being used (Figure 6.8), the radial distortion estima-
tion can be folded into the estimation of the other intrinsic and extrinsic parameters (Zhang
2000; Hartley and Kang 2007; Tardif, Sturm, Trudeau er al. 2009). This can be viewed as
adding another stage to the general non-linear minimization pipeline shown in Figure 6.5
between the intrinsic parameter multiplication box f and the perspective division box fp.
{See Exercise 6.11 on more details for the case of a planar calibration target.)

Of course, as discussed in Section 2.1.6, more general models of lens distortion, such as
fisheye and non-central projection, may sometimes be required. While the parameterization
of such lenses may be more complicated (Section 2.1.6), the general approach of either us-
ing calibration rigs with known 3D positions or self-calibration through the use of multiple

13 Sometimes the relationship between = and # is expressed the other way around, i.e., using primed (final)
coordinates on the right-hand side, & = (1 + w1 7% + ko). This is convenient if we map image pixels into
(warped) rays and then undistort the rays to obtain 3D rays in space, ie., if we are using inverse warping.

4 game of today's digital cameras are starting to remove radial distortion using software in the camera itself.
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overlapping images of a scene can both be used (Hartley and Kang 2007; Tardif, Sturm, and
Roy 2007). The same techniques used to calibrate for radial distortion can also be used to
reduce the amount of chromatic aberration by separately calibrating each color channel and
then warping the channels to put them back into alignment (Exercise 6.12).

&

6.4 Additional reading

Hartley and Zisserman (2004) provide a wonderful introduction to the topics of feature-based
alignment and optimal motion estimation, as well as an in-depth discussion of camera cali-
bration and pose estimation techniques,

Techniques for robust estimation are discussed in more detail in Appendix B.3 and in
monographs and review articles on this topic (Huber 1981; Hampel, Ronchetti, Rousseeuw ef
al. 1986; Rousseeuw and Leroy 1987; Black and Rangarajan 1996; Stewart 1999), The most
commonly used robust initialization technique in computer vision is RANdom SAmple Con-
sensus (RANSAC) (Fischler and Bolles 1981), which has spawned a series of more efficient
variants (Nistér 2003; Chum and Matas 2005).

The topic of registering 3D point data sets is called absolute orientation (Horn 1987) and
3D pose estimation (Lorusso, Eggert, and Fisher 1995). A variety of techniques has been
developed for simultaneously computing 3D point correspondences and their corresponding
rigid transformations (Bes] and McKay 1992; Zhang 1994; Szeliski and Lavallée 1996; Gold,
Rangarajan, Lu et al. 1998; David, DeMenthon, Duraiswami et al. 2004; Li and Hartley 2007;
Enqvist, Josephson, and Kahl 2009},

Camera calibration was first studied in photogrammetry (Brown 1971; Slama 1980; Atkin-
son 1996; Kraus 1997) but it has also been widely studied in computer vision (Tsai 1987;
Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée, Szeliski et al. 1992; Zhang
2000; Grossberg and Nayar 2001). Vanishing points observed either from rectahedral cali-
bration objects or man-made architecture are often used to perform rudimentary calibration
(Caprile and Torre 1990; Becker and Bove 1995; Liebowitz and Zisserman 1998: Cipolla,
Drummond, and Robertson 1999; Antone and Teller 2002; Criminisi, Reid, and Zisserman
2000; Hartley and Zisserman 2004; Pflugfelder 2008). Performing camera calibration without
using known targets is known as self-calibration and is discussed in textbooks and surveys on
structure from motion (Faugeras, Luong, and Maybank 1992; Hartley and Zisserman 2004:
Moons, Van Gool, and Vergauwen 2010). One popular subset of such techniques uses pure
rotational motion (Stein 1995; Hartley 1997b; Hartley, Hayman, de Agapito er al. 2000; de
Agapito, Hayman, and Reid 2001; Kang and Weiss 1999; Shum and Szeliski 2000; Frahm
and Koch 2003).

6.5 Exercises

Ex 6.1: Feature-based image alignment for flip-book animations Take a set of photos of
an action scene or portrait (preferably in motor-drive—continuous shooting—mode) and
align them to make a composite or flip-book animation.

1. Extract features and feature descriptors using some of the techniques described in Sec-
tions 4.1.1-4.1.2.
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%

3.

4.

5;

6.

Match your features using nearest neighbor matching with a nearest neighbor distance
ratio test (4.18).

Compute an optimal 2D translation and rotation between the first image and all subse-
quent images, using least squares (Section 6.1.1) with optional RANSAC for robustness
(Section 6.1.4), .

Resample all of the images onto the first image’s coordinate frame (Section 3.6.1) using
either bilinear or bicubic resampling and optionally crop them to their common area.

Convert the resulting images into an animated GIF (using software available from the
Web) or optionally implement cross-dissolves to turn them into a “slo-mo” video.

(Optional) Combine this technique with feature-based (Exercise 3.25) morphing.

Ex 6.2: Panography Create the kind of panograph discussed in Section 6.1.2 and com-
monly found on the Web,

1.
2.

10.

Ex 6.3: 2D rigid/Euclidean matching Several alternative approaches are given in Section 6.1.3

Take a series of interesting overlapping photos.

Use the feature detector, descriptor, and matcher developed in Exercises 4.1-4.4 (or
existing software) to match features among the images.

. Turn each connected component of matching features into a track, i.e., assign a unique

index i to each track, discarding any tracks that are inconsistent (contain two different
features in the same image).

. Compute a global translation for each image using Equation (6.12).

. Since your matches probably contain errors, turn the above least square metric into a

robust metric (6.25) and re-solve your system using iteratively reweighted least squares.

. Compute the size of the resulting composite canvas and resample each image into its

final position on the canvas. (Keeping track of bounding boxes will make this more
efficient.)

Average all of the images, or choose some kind of ordering and implement translucent
over compositing (3.8).

(Optional) Extend your parametric motion model to include rotations and scale, i.e.,
the similarity transform given in Table 6.1. Discuss how you could handle the case of
translations and rotations only (no scale).

. (Optional) Write a simple tool to let the user adjust the ordering and opacity, and add

Or remove imagas.

(Optional) Write down a different least squares problem that involves pairwise match-
ing of images. Discuss why this might be better or worse than the global matching
formula given in (6.12).

for estimating a 2D rigid (Euclidean) alignment.
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1. Implement the various alternatives and compare their accuracy on synthetic data, i.e.,
random 2D point clouds with noisy feature positions.

2. One approach is to estimate the translations from the centroids and then estimate ro-
tation in polar coordinates. Do you need to weight the angles obtained from a polar
decomposition in some way to get the statistically correct estimdte?

3. How can you modify your techniques to take into account either scalar (6.10) or full
two-dimensional point covariance weightings (6.11)? Do all of the previously devel-
oped “shortcuts” still work or does full weighting require iterative optimization?

Ex 6.4: 2D match move/augmented reality Replace a picture in a magazine or a book
with a different image or video.

1. With a webcam, take a picture of a magazine or book page.

2. Outline a figure or picture on the page with a rectangle, i.e., draw over the four sides as
they appear in the image.

3, Match features in this area with each new image frame.

4. Replace the original image with an “advertising” insert, warping the new image with
the appropriate homography.

5. Try your approach on a clip from a sporting event (e.g., indoor or outdoor soccer) to
implement a billboard replacement.

Ex 6.5: 3D joystick Track a Rubik’s cube to implement a 3D joystick/mouse control.
1. Get out an old Rubik’s cube (or get one from your parents).
2. Write a program to detect the center of each colored square.
3. Group these centers into lines and then find the vanishing points for each face.
4. Estimate the rotation angle and focal length from the vanishing points.

5. Estimate the full 3D pose (including translation) by finding one or more 3 x 3 grids and
recovering the plane’s full equation from this known homography using the technique
developed by Zhang (2000).

6. Alternatively, since you already know the rotation, simply estimate the unknown trans-
lation from the known 3D corner points on the cube and their measured 2D locations
using either linear or non-linear least squares.

7. Use the 3D rotation and position to control a VRML or 3D game viewer.

Ex 6.6: Rotation-based calibration Take an outdoor or indoor sequence from a rotating
camera with very little parallax and use it to calibrate the focal length of your camera using
the techniques described in Section 6.3.4 or Sections 9.1.3-9.2.1.

1. Take out any radial distortion in the images using one of the techniques from Exer-
cises 6.10-6.11 or using parameters supplied for a given camera by your instructor.
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2. Detect and match feature points across neighboring frames and chain them into feature
tracks.

3, Compute homographies between overlapping frames and nse Equations (6.56-6.57) to
get an estimate of the focal length,

L

4. Compute a full 360° panorama and update your focal length estimate to close the gap
(Section 9.1.4),

5. (Optional) Perform a complete bundle adjustment in the rotation matrices and focal
length to obtain the highest quality estimate (Section 9.2.1).

Ex 6.7: Target-based calibration Use a three-dimensional target to calibrate your camera.

1. Construct a three-dimensional calibration pattern with known 3D locations, It is not
easy to get high accuracy unless you use a machine shop, but you can get close using
heavy plywood and printed patterns.

2. Find the corners, e.g, using a line finder and intersecting the lines.

3. Implement one of the iterative calibration and pose estimation algorithms described
in Tsai (1987); Bogart (1991); Gleicher and Witkin (1992) or the system described in
Section 6.2.2.

4. Take many pictures at different distances and orientations relative to the calibration
target and report on both your re-projection errors and accuracy. (To do the latter, you
may need to use simulated data.)

Ex 6.8: Calibration accuracy Compare the three calibration techniques (plane-based, rotation-

based, and 3D-target-based).

One approach is to have a different student implement each one and to compare the results.
Another approach is to use synthetic data, potentially re-using the software you developed
for Exercise 2.3, The advantage of using synthetic data is that you know the ground truth
for the calibration and pose parameters, you can easily run lots of experiments, and you can
synthetically vary the noise in your measurements.

Here are some possible guidelines for constructing your test sets:

1. Assume a medium-wide focal length (say, 50° field of view).

2. For the plane-based tebhnique, generate a 2D grid target and project it at different
inclinations.

3. For a 3D target, create an inner cube corner and position it so that it fills most of field

of view.

4. For the rotation technique, scatter points uniformly on a sphere until you get a similar
number of points as for other techniques.

Before comparing your techniques, predict which one will be the most accurate (normalize
your results by the square root of the number of points used).

Add varying dmounts of noise to your measurements and describe the noise sensitivity of
your various techniques.
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Ex 6.9: Single view metrology Implement a system to measure dimensions and reconstruct
a 3D model from a single image of a man-made scene using visible vanishing directions (Sec-
tion 6.3.3) (Criminisi, Reid, and Zisserman 2000).

1. Find the three orthogonal vanishing points from parallel lines and use them to establish
the three coordinate axes (rotation matrix R of the camera relative to the scene). If
two of the vanishing points are finite (not at infinity), use them to compute the focal
length, assuming a known optical center. Otherwise, find some other way to calibrate
your camera; you could use some of the techniques described by Schaffalitzky and
Zisserman (2000).

2. Click on a ground plane point to establish your origin and click on a point a known
distance away to establish the scene scale. This lets you compute the franslation ¢
between the camera and the scene. As an alternative, click on a pair of points, one
on the ground plane and one above it, and use the known height to establish the scene
scale,

3. Write a user interface that lets you click on ground plane points to recover their 3D
locations. (Hint: you already know the camera matrix, so knowledge of a point’s z
value is sufficient to recover its 3D location.) Click on pairs of points (one on the
ground plane, one above it) to measure vertical heights.

4. Extend your system to let you draw quadrilaterals in the scene that correspond to axis-
aligned rectangles in the world, using some of the techniques described by Sinha,
Steedly, Szeliski ez al. (2008). Export your 3D rectangles to a VRML or PLY" file.

5. (Optional) Warp the pixels enclosed by the quadrilateral using the correct homography
to produce a texture map for each planar polygon.

Ex 6.10: Radial distortion with plumb lines Implement a plumb-line algorithm to deter-
mine the radial distortion parameters.

1. Take some images of scenes with lots of straight lines, e.g., hallways in your home or
office, and try to get some of the lines as close to the edges of the image as possible.

2. Extract the edges and link them into curves, as described in Section 4.2.2 and Exer-
cise 4.8.

3. Fit quadratic or elliptic curves to the linked edges using a generalization of the suc-
cessive line approximation algorithm described in Section 4.3.1 and Exercise 4.11 and
keep the curves that fit this form well.

4. For ‘each curved segment, fit a straight line and minimize the perpendicular distance
between the curve and the line while adjusting the radial distortion parameters.

5. Alternate between re-fitting the straight line and adjusting the radial distortion param-
eters until convergence.

15 http://meshlab.sf.net.
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Ex 6.11: Radial distortion with a calibration target Use a grid calibration target to de-
termine the radial distortion parameters.

L.

6.

Print out a planar calibration target, mount it on a stiff board, and get it to fill your field
of view.

. Detect the squares, lines, or dots in your calibration target.

. Estimate the homography mapping the target to the camera from the central portion of

the image that does not have any radial distortion.

. Predict the positions of the remaining targets and use the differences between the ob-

served and predicted positions to estimate the radial distortion.

(Optional) Fit a general spline model (for severe distortion) instead of the quartic dis-
tortion model.

(Optional) Extend your technique to calibrate a fisheye lens.

Ex 6.12: Chromatic aberration Use the radial distortion estimates for each color channel
computed in the previous exercise to clean up wide-angle lens images by warping all of the
channels into alignment. (Optional) Straighten out the images at the same time.

Can you think of any reasons why this warping strategy may not always work?
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Image stitching
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Figure 9.1 Image stitching: (a) portion of a cylindrical panorama and (b) a spherical panorama constructed
from 54 photographs (Szeliski and Shum 1997) @) 1997 ACM; () a multi-image panorama automatically assem-
bled from an unordered photo collection; a multi-image stitch (d) without and (e) with moving object removal
(Uyttendaele, Eden, and Szeliski 2001} © 2001 IEEE,
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Algorithms for aligning images and stitching them into seamless photo-mosaics are among
the oldest and most widely used in computer vision (Milgram 1975; Peleg 1981). image
stitching algorithms create the high-resolution photo-mosaics used to produce today’s digital
maps and satellite photos. They also come bundled with most digital cameras and can be used
to create beautiful ultra wide-angle panoramas. .

image stitching originated in the photogrammetry community, where more manually in-
tensive methods based on surveyed ground control poinis or manually registered tie points
have long been used to register aerial photos into large-scale photo-mosaics (Slama 1980).
One of the key advances in this community was the development of bundle adjustment al-
gorithms (Section 7.4), which could simultaneously solve for the locations of all of the cam-
era positions, thus yielding globally consistent solutions (Triggs, McLauchlan, Hartley et al.
1999). Another recurring problem in creating photo-mosaics is the elimination of visible
seams, for which a variety of techniques have been developed over the years (Milgram 1975,
1977; Peleg 1981; Davis 1998; Agarwala, Dontcheva, Agrawala ef al. 2004)

In film photography, special cameras were developed in the 1990s to take ultra-wide-
angle panoramas, often by exposing the film through a vertical slit as the camera rotated on its
axis (Meehan 1990). In the mid-1990s, image alignment techniques started being applied to
the construction of wide-angle seamless panoramas from regular hand-held cameras (Mann
and Picard 1994: Chen 1995; Szeliski 1996). More recent work in this area has addressed
the need to compute globally consistent alignments (Szeliski and Shum 1997; Sawhney and
Kumar 1999; Shum and Szeliski 2000), to remove “ghosts™ due to parallax and object move-
ment (Davis 1998; Shum and Szeliski 2000; Uyttendacle, Eden, and Szeliski 2001; Agarwala,
Dontcheva, Agrawala et al. 2004), and to deal with varying exposures (Mann and Picard 1994;
Uyttendaele, Eden, and Szeliski 2001; Levin, Zomet, Peleg et al. 2004; Agarwala, Dontcheva,
Agrawala er al. 2004; Eden, Uyttendaele, and Szeliski 2006; Kopf, Uyttendaele, Deussen et
al. 2007).! These techniques have spawned a large number of commercial stitching products
(Chen 1995; Sawhney, Kumar, Gendel et al. 1998), of which reviews and comparisons can
be found on the Web.2

While most of the earlier techniques worked by directly minimizing pixel-to-pixel dis-
similarities, more recent algorithms usually extract a sparse set of features and match them
to each other, as described in Chapter 4. Such feature-based approaches to image stitching
have the advantage of being more robust against scene movement and are potentially faster,
if implemented the right way. Their biggest advantage, however, is the ability to “recognize
panoramas”, i.e., to automatically discover the adjacency (overlap) relationships among an
unordered set of images, which makes them ideally suited for fully automated stitching of
panoramas taken by casual users (Brown and Lowe 2007).

What, then, are the essential problems in image stitching? As with image alignment, we

must first determine the appropriate mathematical model relating pixel coordinates in one im-
age to pixel coordinates in another; Section 9.1 reviews the basic models we have studied and
presents some new motion models related specifically to panoramic image stitching. Next,
we must somehow estimate the correct alignments relating various pairs (or collections) of
images. Chapter 4 discussed how distinctive features can be found in each image and then

1 A collection of some of these papers was compiled by Benosman and Kang (2001) and they are surveyed by
Szeliski (2006a).
2 The Photosynth Web site, http:/photosynth.net, allows people to create and upload panoramas for free.
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() translation [2 dof] (b) affine [6 dof] () perspective [8 dof]  (d) 3D rotation [3+ dof]

Figure 9.2 Two-dimensional motion models and how they can be used for image stitching.

efficiently matched to rapidly establish correspondences between pairs of images. Chapter 8
discussed how direct pixel-to-pixel comparisons combined with gradient descent (and other
optimization techniques) can also be used to estimate these parameters. When multiple im-
ages exist in a panorama, bundle adjustment (Section 7.4) can be used to compute a globally
consistent set of alignments and to efficiently discover which images overlap one another. In
Section 9.2, we look at how each of these previously developed techniques can be modified
to take advantage of the imaging setups commonly used to create panoramas.

Once we have aligned the images, we must choose a final compositing surface for warping
the aligned images (Section 9.3.1). We also need algorithms to seamlessly cut and blend over-
lapping images, even in the presence of parallax, lens distortion, scene motion, and exposure
differences (Section 9.3.2-9.3.4).

9.1 Motion models

Before we can register and align images, we need to establish the mathematical relationships
that map pixel coordinates from one image to another. A variety of such parametric motion
maodels are possible, from simple 2D transforms, to planar perspective models, 3D camera
rotations, lens distortions, and mapping to non-planar (e.g., cylindrical) surfaces.

We already covered several of these models in Sections 2.1 and 6.1. In particular, we saw
in Section 2.1.5 how the parametric motion describing the deformation of a planar surfaced
as viewed from different positions can be described with an eight-parameter homography
(2.71) (Mann and Picard 1994; Szeliski 1996). We also saw how a camera undergoing a pure
rotation induces a different kind of homography (2.72).

In this section, we review both of these models and show how they can be applied to dif-
ferent stitching situations. We also introduce spherical and cylindrical compositing surfaces
and show how, under favorable circumstances, they can be used to perform alignment using
pure translations (Section 9.1.6). Deciding which alignment model is most appropriate for a
given situation or set of data is a model selection problem (Hastie, Tibshirani, and Friedman
2001 ; Torr 2002; Bishop 2006; Robert 2007), an important topic we do not cover in this book,
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9.1.1 Planar perspective motion

The simplest possible motion model to use when aligning images is to simply translate and
rotate them in 2D (Figure 9.2a). This is exactly the same kind of motion that you would
use if you had overlapping photographic prints. It is also the kind of technique favored by
David Hockney to create the collages that he calls joiners (Zelnik-Manor and Perona 2007;
Momura, Zhang, and Nayar 2007). Creating such collages, which show visible seams and
inconsistencies that add to the artistic effect, is popular on Web sites such as Flickr, where they
more commonly go under the name panography (Section 6.1.2). Translation and rotation are
also usually adequate motion models to compensate for small camera motions in applications
such as photo and video stabilization and merging (Exercise 6.1 and Section 8.2.1).

In Section 6.1.3, we saw how the mapping between two cameras viewing a common plane
can be described using a 3 x 3 homography (2.71). Consider the matrix M o that arises when
mapping a pixel in one image to a 3D point and then back onto a second image,

= A -
&y ~ PIPD Tg = Mm:ﬂq. {9[}

When the last row of the Pg matrix is replaced with a plane equation fig - p-+¢p and points are
assumed to lie on this plane, i.e., their disparity is dy = 0, we can ignore the last column of
M 1 and also its last row, since we do not care about the final z-buffer depth. The resulting
homography matrix H 1o (the upper left 3 x 3 sub-matrix of Mg) describes the mapping
between pixels in the two images,

@ ~ Hyodo, (9.2)

This observation formed the basis of some of the earliest automated image stitching al-
gorithms (Mann and Picard 1994; Szeliski 1994, 1996). Because reliable feature matching
techniques had not yet been developed, these algorithms used direct pixel value matching, i.e.,
direct parametric motion estimation, as described in Section 8.2 and Equations (6.19-6.20).

More recent stitching algorithms first extract features and then match them up, often using
robust techniques such as RANSAC (Section 6.1.4) to compute a good set of inliers. The final
computation of the homography (9.2), i.e., the solution of the least squares fitting problem
given pairs of corresponding features, :

gy = 1+ hoo)o +howo +hoa o haoZo+ (L+ Paa)y + M
2 hao®o + haiyo +1 haomo + hayyo + 1

; (9.3)

uses iterative least squares, as described in Section 6.1.3 and Equations (6.21-6.23).

9.1.2 Application: Whiteboard and document scanning

The simplest image-stitching application is to stitch together a number of image scans taken
on a flatbed scanner. Say you have a large map, or a piece of child’s artwork, that is too large
to fit on your scanner. Simply take multiple scans of the document, making sure to overlap
the scans by a large enough amount to ensure that there are enough common features. Next,
take successive pairs of images that you know overlap, extract features, match them up, and
estimate the 2D rigid transform (2.16),

Tr41 = Hrox + Ik, (9.4)
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Figure 9.3 Pure 3D camera rotation. The form of the homography (mapping) is particularly simple and depends
only on the 3D rotation matrix and focal lengths,

that best matehes the features, using two-point RANSAC, if necessary, to find a good set
of inliers. Then, on a final compositing surface (aligned with the first sean, for example),
resample your images (Section 3.6.1) and average them together. Can you see any potential
problems with this scheme?

One complication is that a 2D rigid transformation is non-linear in the rotation angle £,
s0 you will have to either use non-linear least squares or constrain R to be orthonormal, as
described in Section 6.1.3.

A bigger problem lies in the pairwise alignment process. As you align more and more
pairs, the solution may drift so that it is no longer globally consistent. In this case, a global op-
timization procedure, as described in Section 9.2, may be required. Such global optimization
often requires a large system of non-linear equations to be solved, although in some cases,
such as linearized homographies (Section 9.1.3) or similarity transforms (Section 6.1.2), reg-
ular least squares may be an option,

A slightly more complex scenario is when you take multiple overlapping handheld pic-
tures of a whiteboard or other large planar object (He and Zhang 2005; Zhang and He 2007).
Here, the natural motion model to use is a homography, although a more complex model that
estimates the 3D rigid motion relative to the plane (plus the focal length, if unknown), could
in principle be used,

9.1.3 Rotational panoramas

The most typical case for panoramic image stitching is when the camera undergoes a pure ro-
tation. Think of standing at the rim of the Grand Canyon. Relative to the distant geometry in
the scene, as you snap away, the camera is undergoing a pure rotation, which is equivalent to
assuming that all points are very far from the camera, i.e., on the plane at infinity (Figure 9.3).
Setting £y = £; = 0, we get the simplified 3 x 3 homography

Hy= K \RiRy' Ky = K1 Ry Ky, (9.5)

where K. = diag(fi, fi, 1) is the simplified camera intrinsic matrix (2.59), assuming that
¢: = ¢y = 0, i.e., we are indexing the pixels starting from the optical center (Szeliski 1996).
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This can also be re-written as

Ty fi [ oﬁl Zp
y |~ f Rio £t Yo (9.6)
1 1 1 1
Or LN
1 Lo
yi | ~Rio | wo |, (9.7)
f Jo

which reveals the simplicity of the mapping equations and makes all of the motion parameters
explicit. Thus, instead of the general eight-parameter homography relating a pair of images,
we get the three-, four-, or five-parameter 3D rotation motion models corresponding to the
cases where the focal length f is known, fixed, or variable (Szeliski and Shum 1997).> Es-
timating the 3D rofation matrix (and, optionally, focal length) associated with each image is
intrinsically more stable than estimating a homography with a full eight degrees of freedom,
which makes this the method of choice for large-scale image stitching algorithms (Szeliski
and Shum 1997; Shum and Szeliski 2000; Brown and Lowe 2007).

Given this representation, how do we update the rotation matrices to best align two over-
lapping images? Given a current estimate for the homography H g in (9.5), the best way to
update R is to prepend an incremental rotation matrix R(w) to the current estimate Ryg
(Szeliski and Shum 1997; Shum and Szeliski 2000),

H(w) = K1 R(w)R1oKy ' = [K1R(W)K Y| [K1R1wK; | = DHj,. (9.8)

Note that here we have written the update rule in the compositional form, where the in-
cremental update I is prepended to the current homography Ho. Using the small-angle
approximation to R(w) given in (2.35), we can write the incremental update matrix as

1 —W, Jfiwy
Wy 1 = flw:z:

—wyffl wz/fl 1

Notice how there is now a nice one-to-one correspondence between the entries in the DD
matrix and the Rgg, . . ., hoy parameters used in Table 6.1 and Equation (6.19), i.e.,

D =K Rw)K7'~ K (I +[w]x)K7!= 9.9)

(hoo, ko1, hoz; hoo, ha1, haz, hao, ha1) = (0, —w., fiwy,w;,0, — frws, —wy/ f1,wz/ f1).

(9.10)
‘We can therefore apply the chain rule to Equations (6.24 and 9.10) to obtain
Al 3 Wy
[x —-z ] :[ —zy/fi A+ /f ]| ©.11)
7 -y —(h+y?/h) e/ o= [V

which give us the linearized update equations needed to estimate w = (w;, wy,w,).* Notice
that this update rule depends on the focal length f; of the target view and is independent

3 An initial estimate of the focal lengths can be obtained using the intrinsic calibration techniques described in
Section 6.3.4 or from EXTF tags.

# This is the same as the rotational component of instantaneous rigid flow (Bergen, Anandan, Hanna et al. 1992)
and the update equations given by Szeliski and Shum (1997) and Shum and Szeliski (2000).

L
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Figure 9.4 Four images taken with a hand-held camera registered using a 3D rotation motion model (Szeliski
and Shum 1997) © 1997 ACM. Notice how the homographies, rather than being arbitrary, have a well-defined
keystone shape whose width increases away from the origin.

of the focal length fy of the template view. This is because the compositional algorithm
essentially makes small perturbations to the target. Once the incremental rotation vector w
has been computed, the R; rotation matrix can be updated using iy «— R(w)H;.

The formulas for updating the focal length estimates are a little more involved and are
given in (Shum and Szeliski 2000). We will not repeat them here, since an alternative up-
date rule, based on minimizing the difference between back-projecied 3D rays, is given in
Section 9.2.1. Figure 9.4 shows the alignment of four images under the 3D rotation motion
model,

9.1.4 Gap closing

The techniques presented in this section can be used to estimate a series-of rotation matrices
and focal lengths, which can be chained together to create large panoramas, Unfortunately,
because of accumulated errors, this approach will rarely produce a closed 360° panorama,
Instead, there will invariably be either a gap or an overlap (Figure 9.5).

We can solve this problem by matching the first image in the sequence with the last one,
The difference between the two rotation matrix estimates associated with the repeated first
indicates the amount of misregistration. This error can be distributed evenly across the whole
sequence by taking the quotient of the two quaternions associated with these rotations and
dividing this “error quatermon™ by the number of images in the sequence (assuming relatively
constant inter-frame rotations). We can also update the estimated focal length based on the
amount of misregistration. To do this, we first convert the error quaternion into a gap angle,
fl, and then update the focal length using the equation f' = f(1 — #,/360°).

Figure 9.5a shows the end of registered image sequence and the first image. There is a
big gap between the last image and the first which are in fact the same image. The gap is
32° because the wrong estimate of focal length (f = 510) was used. Figure 9.5b shows the
registration after closing the gap with the correct focal length (f = 468). Notice that both
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(a) (k)

Figure 9.5 Gap closing (Szeliski and Shum 1997) © 1997 ACM: (a) A gap is visible when the focal length is
wrong (f = 510). (b) No gap is visible for the correct focal length ( f = 468).

mosaics show very little visual misregistration {except at the gap), yet Figure 9.5a has been
computed using a focal length that has 9% error. Related approaches have been developed by
Hartley (1994b), McMillan and Bishop (1995}, Stein (1995), and Kang and Weiss (1997) to
solve the focal length estimation problem using pure panning motion and cylindrical images.
Unfortunately, this particular gap-closing heuristic only works for the kind of “one-dimensional™
panorama where the camera is continuously mrning in the same direction. In Section 9.2, we
describe a different approach to removing gaps and overlaps that works for arbitrary camera
motions,

9.1.5 Application: Video summarization and compression

An interesting application of image stitching is the ability to summarize and compress videos
taken with a panning camera. This application was first suggested by Teodosio and Bender
(1993), who called their mosaic-based summaries salient stills. These ideas were then ex-
tended by Irani, Hsu, and Anandan (1995), Kumar, Anandan, Irani ef al. {(1995), and Irani and
Anandan (1998) to additional applications, such as video compression and video indexing.
While these early approaches used affine motion models and were therefore restricted to long
focal lengths, the techniques were generalized by Lee, ge Chen, lung Bruce Lin et al. (1997)
to full eight-parameter homographies and incorporated into the MPEG-4 video compression
standard, where the stitched background layers were called video sprites (Figure 9.6).

While video stitching is in many ways a straightforward generalization of multiple-image
stitching (Steedly, Pal, and Szeliski 20035; Baudisch, Tan, Steedly er al. 2006), the potential
presence of large amounts of independent motion, camera zoom, and the desire to visualize
dynamic events impose additional challenges. For example, moving foreground objects can
often be removed using median filtering, Alternatively, foreground objects can be extracted
into a separate layer (Sawhney and Ayer 1996) and later composited back into the stitched
panoramas, sometimes as multiple instances to give the impressions of a “Chronophotograph”
{Massey and Bender 1996) and sometimes as video overlays (Irani and Anandan 1998),
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Figure 9.6 Video stitching the background scene to create a single sprite image that can be transmitted and used
to re-create the background in each frame (Lee, ge Chen, lung Bruce Lin ef al. 1997) (©) 1997 IEEE.

Videos can also be used to create animated panoramic video textures (Section 13.5.2), in
which different portions of a panoramic scene are animated with independently moving video
loops (Agarwala, Zheng, Pal et al. 20035; Rav-Acha, Pritch, Lischinski er al. 2005), or to shine
“video flashlights” onto a composite mosaic of a scene (Sawhney, Arpa, Kumar ef al. 2002).

Video can also provide an interesting source of content for creating panoramas taken from
moving cameras. While this invalidates the usual assumption of a single point of view (opti-
cal center), interesting results can still be obtained, For example, the VideoBrush system of
Sawhney, Kumar, Gendel et al. (1998) uses thin strips taken from the center of the image to
create a panorama taken from a horizontally moving camera. This idea can be generalized
to other camera motions and compositing surfaces using the concept of mosaics on adap-
tive manifold (Peleg, Rousso, Rav-Acha ef al. 2000), and also used to generate panoramic
stereograms (Peleg, Ben-Ezra, and Pritch 2001). Related ideas have been used to create
panoramic matte paintings for multi-plane cel animation (Wood, Finkelstein, Hughes ef al,
1997), for creating stitched images of scenes with parallax (Kumar, Anandan, Irani er al
1993), and as 3D representations of more complex scenes using multiple-center-af-projection
images (Rademacher and Bishop 1998) and multi-perspective panoramas (Romén, Garg, and
Levoy 2004, Romdn and Lensch 2006; Agarwala, Agrawala, Cohen ef al. 2006).

Another interesting variant on video-based panoramas are concentric mosaics (Section 13.3.3)
{Shum and He 1999). Here, rather than trying to produce a single panoramic image, the com-
plete original video is kept and used to re-synthesize views (from different camera origing)
using ray remapping (light field rendering), thus endowing the panorama with a sense of 3D
depth. The same data set can also be used to explicitly reconstruct the depth using multi-
bascline stereo (Peleg, Ben-Ezra, and Pritch 2001; Li, Shum, Tang et al. 2004; Zheng, Kang,
Cohen er al. 2007).
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Figure 9.7 Projection from 3D to (a) cylindrical and (b) spherical coordinates.

9.1.6 Cylindrical and spherical coordinates

An alternative to using homographies or 3D motions to align images is to first warp the images
into cylindrical coordinates and then use a pure translational model to align them (Chen 1995;
Szeliski 1996). Unfortunately, this only works if the images are all taken with a level camera
or with a known tilt angle,

Assume for now that the camera is in its canonical position, i.e., its rotation matrix is the
identity, 2 = I, so that the optical axis is aligned with the z axis and the y axis is aligned
vertically. The 3D ray corresponding to an (z, y) pixel is therefore (z, y, f).

We wish to project this image onto a eylindrical surface of unit radius (Szeliski 1996),
Points on this surface are parameterized by an angle  and a height k, with the 3D cylindrical
coordinates corresponding to (6, i) given by

(sind, h, cos6) oc (z,y, f), (9.12)

as shown in Figore 9.7a. From this correspondence, we can compute the formula for the
warped or mapped coordinates (Szeliski and Shum 1997),

g = sﬂz.sta.n'l? (9,13)
Y = sh=s—it— 9.14)

N
where 5 is an arbitrary scaling factor (sometimes called the radius of the cylinder) that can be

set to s = f to minimize the distortion (scaling) near the center of the image.” The inverse of
this mapping equation is given by

T o= ftﬂﬂl[;:ftﬂ.'l]m-;}, (9.15)
y = h\..‘m2+_f"=%f 1+tﬂn2m’fs=f%se{:%, (9.16)

Images can also be projected onto a spherical surface (Szeliski and Shum 1997), which
is useful if the final panorama includes a full sphere or hemisphere of views, instead of just
a cylindrical strip. In this case, the sphere is parameterized by two angles (#, ¢), with 3D
spherical coordinates given by

(sin 0 cos ¢, sin ¢, cos § cos ¢) e (z,y, f), (9.17)

3 The scale can also be set to a larger or smaller value for the final compositing surface, depending on the desired
output panorama resolution—see Section 9.3,
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(a) (b)

Figure 9.8 A cylindrical panorama (Szeliski and Shum 1997) ©) 1997 ACM: (a) two cylindrically warped images
related by a horizontal translation; (b) part of a cylindrical panorama composited from a sequence of images.

as shown in Figure 9.7b. The correspondence between coordinates is now given by (Szeliski
and Shum 1997):

o = s0=stan") j_ (9.18)
Y = sp=stan"! ﬁ (9.19)
€T
while the inverse is given by
Il’
T o= ft:mf?:_,l"tan?, (9.20)

/
1 f

R !
y = \fg:2+_f?ta.n¢-—-l;m1%f 1+ta.n2:c’,r‘s=ftan“'r?seci—_.- (9.21)

Mote that it may be simpler to generate a scaled (z,y, z) direction from Equation (2.17)
followed by a perspective division by # and a scaling by f.

Cylindrical image stitching algorithms are most commonly used when the camera is
known to be level and only rotating around its vertical axis (Chen 1995). Under these condi-
tions, images at different rotations are related by a pure horizontal translation.” This makes
it attractive as an initial class project in an introductory computer vision course, since the
full complexity of the perspective alignment algorithm (Sections 6.1, 8.2, and 9.1.3) can be
avoided. Figure 9.8 shows how two cylindrically warped images from a leveled rotational
panorama are related by a pure translation {Szeliski and Shum 1997},

Professional panoramic photographers often use pan-tilt heads that make it easy to control
the tilt and to stop at specific detents in the rotation angle. Motorized rotation heads are also
sometimes used for the acquisition of larger panoramas (Kopf, Uyttendaele, Deussen ef al.
2007).% Not only do they ensure a uniform coverage of the visual field with a desired amount
of image overlap but they also make it possible to stitch the images using cylindrical or
spherical coordinates and pure translations. In this case, pixel coordinates (x, y, f) must first

6 Note that these are not the usaal spherical coordinates, first presented in Equation (2.8). Here, the y axis points
at the north pole instead of the z axis, since we are used to viewing images taken horizontally, i.e., with the y axis
pointing in the direction of the gravity vecior,

"Small vertical tilis can sometimes be compensated for with vertical translations.

#%ee also http:Mgigapan.org.
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Figure 9.9 A spherical panorama constructed from 54 photographs (Szeliski and Shum 1997) (€) 1997 ACM.

be rotated using the known tilt and panning angles before being projected into cylindrical
or spherical coordinates (Chen 1995). Having a roughly known panning angle also makes it
easier to compute the alignment, since the rough relative positioning of all the input images is
known ahead of time, enabling a reduced search range for alignment. Figure 9.9 shows a full
3D rotational panorama unwrapped onto the surface of a sphere (Szeliski and Shum 1997),

One final coordinate mapping worth mentioning is the polar mapping, where the north
pele lies along the optical axis rather than the vertical axis,

(cos @ sin o, sin @ sin ¢, cosd) = 5 (z, v, 2). (9.22)

In this case, the mapping equations become

¥

s sphoosf = 3? tan™ -, (9.23)

'

Yy = spsinfd= sr—l'r tan™

(9.24)

where r = +/z* 4+ y* is the radial distance in the (x,y) plane and sd plays a similar role
in the (z',y') plane. This mapping provides an altractive visualization surface for certain
kinds of wide-angle panoramas and is also a good model for the distortion induced by fisheye
lenses, as discussed in Section 2.1.6. Note how for small values of (z,y), the mapping
equations reduce to z' = sz /2, which suggests that s plays a role similar to the focal length

f.

9.2 Global alignment

So far, we have discussed how to register pairs of images using a variety of motion models. In
most applications, we are given more than a single pair of images to register. The goal is then
to find a globally consistent set of alignment parameters that minimize the mis-registration
between all pairs of images (Szeliski and Shum 1997; Shum and Szeliski 2000; Sawhney and
Kumar 1999; Coorg and Teller 2000).
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In this section, we extend the pairwise matching criteda (6.2, 8.1, and 8.50) to a global
energy Tunction that involves all of the per-image pose parameters (Section 9.2.1). Once
we have computed the global alignment, we often need to perform local adjustments, such
as parallax removal, to reduce double images and blurring due to local mis-registrations
(Section 9.2.2). Finally, if we are given an unordered set of images to fegislm, we need to
discover which images go together to form one or more panoramas. This process of panorama
recognition is described in Section 9.2.3,

9.2.1 Bundle adjustment

One way to register a large number of images is to add new images to the panorama one
at a time, aligning the most recent image with the previous ones already in the collection
{Szeliski and Shum 1997) and discovering, if necessary, which images it overlaps (Sawhney
and Kumar 1999). In the case of 360° panoramas, accumulated error may lead to the presence
of a gap (or excessive overlap) between the two ends of the panorama, which can be fixed
by stretching the alignment of all the images using a process called gap closing (Szeliski and
Shum 1997). However, a better alternative is to simultaneously align all the images using a
least-squares framework to correctly distribute any mis-registration errors.

The process of simultaneously adjusting pose parameters for a large collection of overlap-
ping images is called bundle adjustment in the photogrammetry community (Triggs, McLauch-
lan, Hartley et al. 1999). In computer vision, it was first applied to the general structure from
motion problem (Szeliski and Kang 1994) and then later specialized for panoramic image
stitching (Shum and Szeliski 2000; Sawhney and Kumar 1999; Coorg and Teller 2000).

In this section, we formulate the problem of global alignment using a feature-based ap-
proach, since this results in a simpler system. An equivalent direct approach can be obtained
either by dividing images into patches and creating a virtual feature correspondence for each
one (as discussed in Section 9.2.4 and by Shum and Szeliski (20001 or by replacing the
per-feature error metrics with per-pixel metrics.

Consider the feature-based alignment problem given in Equation (6.2}, i.e.,

Epaicwise—18 = $_ [Iill* = |2} (z; p) — &, (9.25)

For multi-image alignment, instead of having a single collection of pairwise feature corre-
spondences, {(z;, ;) }, we have a collection of n features, with the location of the ith feature
point in the jth image denoted by @;; and its scalar confidence (i.e., inverse variance) denoted
by c,-j.g Each image also has some associated pose parameters,

In this section, we assume that this pose consists of a rotation matrix R; and a focal
length f;, although formulations in terms of homographies are also possible (Szeliski and
Shum 1997; Sawhney and Kumar 1999). The equation mapping a 3D point 2; into a point
@;; in frame j can be re-written from Equations (2.68) and (9.5) as

Ty ~ KRy and @ ~ R K 8y, (9.26)

? Features that arc not seen in image 7 have ¢;; = 0, %nmnlsnusnﬁxﬂi:nrm:mmdmmmmza} in
place of ¢44, as shown in Equation (6,11},
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where K ; = diag(f;, f;,1) is the simplified form of the calibration matrix. The motion
mapping a point ;; from frame j into a point x;;, in frame k is similarly given by

Eig ~ Hyjdi; = KR R7VK T By (9.27)

Given an initial set of {(R;, f;)} estimates obtained from chaining pairwise alignments, how
do we refine these estimates?

One approach is to directly extend the pairwise energy Fpairwise—1s (9.25) to a multiview
formulation,

Buil-pairs—20 = Y Y Giscik || &k (455 Ry, £, Ri, i) — a1, (9.28)
i gk

where the &;); function is the predicted location of feature i in frame k given by (9.27),
&;; is the observed location, and the “2D” in the subscript indicates that an image-plane
error is being minimized (Shum and Szeliski 2000). Note that since &;;; depends on the &;;
observed value, we actually have an errors-in-variable problem, which in principle requires
more sophisticated techniques than least squares to solve (Van Huffel and Lemmerling 2002;
Matei and Meer 2006). However, in practice, if we have enough features, we can directly
minimize the above quantity using regular non-linear least squares and obtain an accurate
multi-frame alignment.

While this approach works well in practice, it suffers from two potential disadvantages.
First, since a summation is taken over all pairs with corresponding features, features that are
observed many times are overweighted in the final solution. (In effect, a feature observed m
times gets counted (’;) times instead of m times.) Second, the derivatives of &, with respect
to the {(R;, f;)} are a little cumbersome, although using the incremental correction to R;
introduced in Section 9.1.3 makes this more tractable.

An alternative way to formulate the optimization is to use true bundle adjustment, i.e., to
solve not only for the pose parameters {(R;, f;)} but also for the 3D point positions {z; },

Epa-—2p = Z Z cijllEis (i Ry, £5) — @512, (.29)
i

where Z;;(x;; R;, f;) is given by (9.26). The disadvantage of full bundle adjustment is that
there are more variables to solve for, so each iteration and also the overall convergence may
be slower. (Imagine how the 3D points need to “shift” each time some rotation matrices are
updated.) However, the computational complexity of each linearized Gauss—Newton step can
be reduced using sparse matrix techniques (Section 7.4.1) (Szeliski and Kang 1994; Triggs,
McLauchlan, Hartley ef al. 1999; Hartley and Zisserman 2004).

An alternative formulation is to minimize the error in 3D projected ray directions (Shum
and Szeliski 2000), i.e.,

Bpa-sp = Y Y cijll@i(&i; Ry, £5) — @il (9:30)
i g
where &;(x;; R, f;) is given by the second half of (9.26). This has no particular advantage

over (9.29). In fact, since errors are being minimized in 3D ray space, there is a bias towards
estimating longer focal lengths, since the angles between rays become smaller as f increases.
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However, if we eliminate the 3D rays @, we can derive a pairwise energy formulated in
3D ray space (Shum and Szeliski 2001},

Eul-paire-30 = 3 9 _ cisikll®i(@i; Ry, f5) — @il @ixs By Fi)]|?. (9.31)
i dk

This results in the simplest set of update equations (Shum and Szeliski 2000), since the fj can
be folded into the creation of the homogeneous coordinate vector as in Equation (9.7). Thus,
even though this formula over-weights features that occur more frequently, it is the method
used by Shum and Szeliski (2000) and Brown, Szeliski, and Winder (2005). In order to reduce
the bias towards longer focal lengths, we multiply each residual (3D error) by m , which
is similar to projecting the 3D rays into a “virtual camera” of intermediate focal length.

Up vector selection. As mentioned above, there exists a global ambiguity in the pose
of the 3D cameras computed by the above methods, While this may not appear to matter,
people prefer that the final stitched image is "upright” rather than twisted or tilted. More
concretely, people are used to seeing photographs displayed so that the vertical (gravity) axis
points straight up in the image. Consider how you usually shoot photographs: while you may
pan and tilt the camera any which way, you usually keep the horizontal edge of your camera
(its z-axis) parallel to the ground plane (perpendicular to the world gravity direction).

Mathematically, this constraint on the rotation matrices can be expressed as follows. Re-
call from Equation (9.26) that the 3D to 2D projection is given by

Tige ~ Ky Rp;. (9.32)

We wish to post-multiply each rotation matrix 1. by a global rotation i, such that the pro-
jection of the global y-axis, 5 = (0, 1,0) is perpendicular to the image z-axis, # = (1,0,0).'"
This constraint can be written as

iRy RG =0 (9.33)

{note that the scaling by the calibration matrix is irrelevant here). This is equivalent to re-
quiring that the first row of Ry, rro = i’ R} be perpendicular to the second column of Ry,
rg1 = Hgi. This set of constraints (one per input image) can be written as a least squares
problem,

Tyl = aTg mrin Zk:[rTrm}E - a.rgmfin rT l; rkurzu:| T, (9.34)

Thus, rg is the smallest eigenvector of the scarter or moment matrix spanned by the indi-
vidual camera rotation z-vectors, which should generally be of the form (e, 0, 5) when the

cameras are upright.

To fully specify the Hy global rotation, we need to specify one additional constraint. This
is related to the view selection problem discussed in Section 9.3.1. One simple heuristic is to
prefer the average z-axis of the individual rotation matrices, k = 3, fr.TRk to be close to
the world z-axis, rgz = Ryk. We can therefore compute the full rotation matrix R, in three
steps:

¥ Note that here we use the convention common in computer graphics that the vertical world axis comesponds to

" o). This is a natural choice if we wish the rotation matrix associnted with a “regular” fmage taken horizontally to be

the identity, rather than a $0° rotation around the z-axis,
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1. rg = min eigenvector (3, TroTg);
2 rgo = N((L i) X v}

3. T =Tgo X T,

where M (v) = v/||v|| normalizes a vector v.

9.2.2 Parallax removal

Once we have optimized the global orientations and focal lengths of our cameras, we may find
that the images are still not perfectly aligned, i.e., the resulting stitched image looks blurry
or ghosted in some places. This can be caused by a variety of factors, including unmodeled
radial distortion, 3D parallax (failure to rotate the camera around its optical center), small
scene motions such as waving tree branches, and large-scale scene motions such as people
moving in and out of pictures.

Each of these problems can be treated with a different approach. Radial distortion can be
estimated (potentially ahead of time) using one of the techniques discussed in Section 2.1.6.
For example, the plumb-line method (Brown 1971; Kang 2001; El-Melegy and Farag 2003)
adjusts radial distortion parameters until slightly curved lines become straight, while mosaic-
based approaches adjust them until mis-registration is reduced in image overlap areas (Stein
1997; Sawhney and Kumar 1999).

3D parallax can be handled by doing a full 3D bundle adjustment, i.e., by replacing the
projection equation (9.26) used in Equation (9.29) with Equation (2.68), which models cam-
era translations, The 3D positions of the matched feature points and cameras can then be si-
multanecusly recovered, although this can be significantly more expensive than parallax-free
image registration. Once the 3D structure has been recovered, the scene could (in theory) be
projected to a single (central) viewpoint that contains no parallax. However, in order to do
this, dense stereo correspondence needs to be performed (Section 11.3) (Li, Shum, Tang et al.
2004; Zheng, Kang, Cohen et al. 2007), which may not be possible if the images contain only
partial overlap. In that case, it may be necessary to correct for parallax only in the overlap
areas, which can be accomplished using a multi-perspective plane sweep (MPPS) algonithm
(Kang, Szeliski, and Uyttendaele 2004; Uyttendaele, Criminisi, Kang et al, 2004).

When the motion in the scene is very large, i.e., when objects appear and disappear com-
pletely, a sensible solution is to simply select pixels from only one image at a time as the
source for the final composite (Milgram 1977; Davis 1998; Agarwala, Dontcheva, Agrawala
et al. 2004), as discussed in Section 9.3.2. However, when the motion is reasonably small (on
the order of a few pixels), general 2D motion estimation (optical flow) can be used to perform
an appropriate comrection before blending using a process called local alignment (Shum and
Szeliski 2000; Kang, Uyttendaele, Winder e al. 2003). This same process can also be used
to compensate for radial distortion and 3D parallax, although it uses a weaker motion model
than explicitly modeling the source of error and may, therefore, fail more often or introduce
unwanted distortions,

The local alignment technique introduced by Shum and Szeliski (2000) starts with the
global bundle adjustment (9.31) used to optimize the camera poses. Once these have been
estimated, the desired location of a 3D point @; can be estimated as the average of the back-
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(b) (e)

Figure 9.10 Deghosting a mosaic with motion parallax (Shum and Szeliski 2000) © 2000 IEEE: (a) composite
with parallax; (b) after a single deghosting step (patch size 32); (c) after multiple steps (sizes 32, 16 and 8).

projected 3D locations,

‘ti’”Zﬂﬁi-‘@ij;ﬂi.fﬂ/Zﬂﬁ1 (9.35)
7 i

which can be projected into each image j to obtain a farget location &5 The difference
between the target locations &;; and the original features =;; provide a set of local motion
estimates

Wij = Bij — Tij, (9.36)

which can be interpolated to form a dense correction field u;(2;). In their system, Shum and
Szeliski (2000) use an inverse warping algorithm where the sparse —u;; values are placed at
the new target locations &;;, interpolated using bilinear kernel functions (Nielson 1993) and
then added to the original pixel coordinates when computing the warped (comrected) image.
In order to get a reasonably dense set of features to interpolate, Shum and Szeliski (2000)
place a feature point at the center of each patch (the patch size controls the smoothness in
the local alignment stage), rather than relying of features extracted using an interest operator
(Figure 9.10).

An alternative approach to motion-based de-ghosting was proposed by Kang, Uytten-
daele, Winder ef al, (2003), who estimate dense optical flow between each input image and a
central reference image. The accuracy of the flow vector is checked using a photo-consistency
measure before a given warped pixel is considered valid and is used to compute a high dy-
namic range radiance estimate, which is the goal of their overall algorithm. The requirement
for a reference image makes their approach less applicable to general image mosaicing, al-
though an extension to this case could certainly be envisaged.

9.2.3 Recognizing panoramas

The final piece needed to perform fully automated image stitching is a technique to recognize
which images actually go together, which Brown and Lowe (2007} call recognizing panora-
mas. If the user takes images in sequence so that each image overlaps its predecessor and
also specifies the first and last images to be stitched, bundle adjustment combined with the
process of fopology inference can be used to automatically assemble a panorama (Sawhney
and Kumar 1999). However, users often jump around when taking panoramas, e.g., they
may start a new row on top of a previous one, jump back to take a repeat shot, or create
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360° panoramas where end-to-end overlaps need to be discovered. Furthermore, the ability
to discover multiple panoramas taken by a user over an extended period of time can be a big
convenience.

To recognize panoramas, Brown and Lowe (2007) first find all pairwise image overlaps
using a feature-based method and then find connected components in the overlap graph, to
“recognize” individual panoramas (Figure 9.11). The feature-based matching stage first ex-
tracts scale invariant feature transform (SIFT) feature locations and feature descriptors (Lowe
2004) from all the input images and places them in an indexing structure, as described in Sec-
tion 4.1.3. For each image pair under consideration, the nearest matching neighbor is found
for each feature in the first image, using the indexing structure to rapidly find candidates and
then comparing feature descriptors to find the best match, RANSAC is used to find a set of in-
lier matches; pairs of matches are used to hypothesize similarity motion models that are then
used to count the number of inliers. (A more recent RANSAC algorithm tailored specifically
for rotational panoramas is described by Brown, Hartley, and Nistér (2007).)

In practice, the most difficult part of getting a fully automated stitching algorithm to
work is deciding which pairs of images actually correspond to the same parts of the scene.
Repeated structures such as windows (Figure 9.12) can lead to false matches when using
a feature-based approach. One way to mitigate this problem is to perform a direct pixel-
based comparison between the registered images to determine if they actually are different
views of the same scene. Unfortunately, this heuristic may fail if there are moving objects
in the scene (Figure 9.13). While there is no magic bullet for this problem, short of full
scene understanding, further improvements can likely be made by applying domain-specific
heuristics, such as priors on typical camera motions as well as machine learning techniques
applied to the problem of match validation.

9.2.4 Direct vs. feature-based alignment

Given that there exist these two approaches to aligning images, which is preferable?

Early feature-based methods would get confused in regions that were either too textured
or not textured enough. The features wounld often be distributed unevenly over the images,
thereby failing to match image pairs that should have been aligned. Furthermore, establishing
correspondences relied on simple cross-correlation between patches surrounding the feature
points, which did not work well when the images were rotated or had foreshortening due to
homographies.

Today, feature detection and matching schemes are remarkably robust and can even be
used for known object recognition from widely separated views (Lowe 2004). Features not
only respond to regions of high “cornerness” (Fiirstner 1986; Harris and Stephens 1988) but
also to “blob-like™ regions (Lowe 2004), and uniform areas (Matas, Chum, Urban er al, 2004;
Tuytelaars and Van Gool 2004). Furthermore, because they operate in scale-space and nse a
dominant orientation (or orientation invariant descriptors), they can match images that differ
in scale, orientation, and even foreshortening. Our own experience in working with feature-
based approaches is that if the features are well distributed over the image and the descriptors
reasonably designed for repeatability, enough correspondences to permit image stitching can
usually be found (Brown, Szeliski, and Winder 2005).

The biggest disadvantage of direct pixel-based alignment techniques is that they have a
limited range of convergence. Even though they can be used in a hierarchical (coarse-to-
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Figure 9.11 Recognizing panoramas (Brown, Szeliski, and Winder 2003), figures courtesy of Matthew Brown:
(a) input images with pairwise matches; (b) images grouped into connected components (panoramas); (¢) individ-
ual panoramas registered and blended into stitched composites.
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Figure 9.12 Matching errors (Brown, Szeliski, and Winder 2004): accidental matching of several features can
lead to matches between pairs of images that do not actually overlap.

Figure 9.13  Validation of image matches by direct pixel error comparison can fail when the scene contains
moving objects (Uyttendaele, Eden, and Szeliski 2001) ©) 2001 [EEE.
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fine) estimation framework, in practice it is hard to use more than two or three levels of a
pyramid before important details start to be blurred away.!! For matching sequential frames
in a video, direct approaches can usually be made to work. However, for matching partially
overlapping images in photo-based panoramas or for image collections where the contrast or
content varies too much, they fail too often to be useful and feature-based approaches are
therefore preferred. :

9.3 Compositing

Once we have registered all of the input images with respect to each other, we need to decide
how to produce the final stitched mosaic image. This involves selecting a final compositing
surface (flat, cylindrical, spherical, etc.) and view (reference image). It also involves selecting
which pixels contribute to the final composite and how to optimally blend these pixels to
minimize visible seams, blur, and ghosting.

In this section, we review techniques that address these problems, namely compositing
surface parameterization, pixel and seam selection, blending, and exposure compensation.
My emphasis is on fully automated approaches to the problem. Since the creation of high-
quality panoramas and composites is as much an artistic endeavor as a computational one,
various interactive tools have been developed to assist this process (Agarwala, Dontcheva,
Agrawala et al. 2004; Li, Sun, Tang et al. 2004; Rother, Kolmogorov, and Blake 2004).
Some of these are covered in more detail in Section 10.4.

9.3.1 Choosing a compositing surface

The first choice to be made is how to represent the final image. IF only a few images are
stitched together, a natural approach is to select one of the images as the reference and to
then warp all of the other images into its reference coordinate system. The resulting com-
posite is sometimes called a flat panorama, since the projection onto the final surface is still
a perspective projection, and hence straight lines remain straight (which is often a desirable
attribute}).'2 g

For larger fields of view, however, we cannot maintain a flat representation without ex-
cessively stretching pixels near the border of the image. (In practice, flat panoramas start
to look severely distorted once the field of view exceeds 90° or so.) The usual choice for
compositing larger panoramas is to use a cylindrical (Chen 1995; Szeliski 1996) or spherical
(Szeliski and Shum 1997) projection, as described in Section 9.1.6. In fact, any surface used
for environment mapping in computer graphics can be used, including a cube map, which
represents the full viewing sphere with the six square faces of a cube (Greene 1986; Szeliski
and Shum 1997). Cartographers have also developed a number of alternative methods for
representing the globe (Bugayevskiy and Snyder 1995).

The choice of parameterization is somewhat application dependent and involves a trade-
off between keeping the local appearance undistorted (e.g., keeping straight lines straight)

W Fourier-hased correlation (Szeliski 1996; Szeliski and Shum 1997) can extend this range but requires cylindrical

_ images or motion prediction to be useful.

12 Recently, some techniques have been developed 1o straighten curved lines in cylindrical and spherical panora-
mas {Carrall, Agrawala, and Agarwala 2009; Kopf, Lischinski, Deussen er al. 20097,
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and providing a reasonably uniform sampling of the environment. Automatically making
this selection and smoothly transitioning between representations based on the extent of the
panorama is an active area of current research (Kopf, Uyttendaele, Deussen ef al. 2007).

An interesting recent development in panoramic photography has been the use of stereo-
graphic projections looking down at the ground (in an outdoor scene) to create “little planet”
renderings.”

View selection. Once we have chosen the ontput parameterization, we still need to deter-
mine which part of the scene will be centered in the final view. As mentioned above, for a flat
composite, we can choose one of the images as a reference. Often, a reasonable choice is the
one that is geometrically most central. For example, for rotational panoramas represented as
a collection of 3D rotation matrices, we can choose the image whose z-axis is closest to the
average z-axis (assuming a reasonable field of view)., Alternatively, we can use the average
z-axis (or quaternion, but this is trickier) to define the reference rotation matrix.

For larger, e.g., cylindrical or spherical, panoramas, we can use the same heuristic if a
subset of the viewing sphere has been imaged, In the case of full 360° panoramas, a better
choice might be to choose the middle image from the sequence of inputs, or sometimes the
first image, assuming this contains the object of greatest interest. In all of these cases, having
the user control the final view is often highly desirable. If the “up vector” computation de-
seribed in Section 9.2.1 is working correctly, this can be as simple as panning over the image
or setting a vertical “center ling” for the final panorama.

Coordinate transformations. After selecting the parameterization and reference view,
we still need to compute the mappings between the input and output pixels coordinates,

If the final compositing surface is flat (e.g., a single plane or the face of a cube map)
and the input images have no radial distortion, the coordinate transformation is the simple
homography described by (9.5). This kind of warping can be performed in graphics hardware
by appropriately setting texture mapping coordinates and rendering a single quadrilateral.

If the final composite surface has some other analytic form (e.g., cylindrical or sphericai},
we need to convert every pixel in the final panorama into a viewing ray (3D point) and then
map it back into each image according to the projection (and optionally radial distortion)
equations. This process can be made more efficient by precomputing some lookup tables,
e.g., the partial trigonometric functions needed to map cylindrical or spherical coordinates to
3D coordinates or the radial distortion field at each pixel. It is also possible to accelerate this
process by computing exact pixel mappings on a coarser grid and then interpolating these
values, '

When the final compositing surface is a texture-mapped polyhedron, a slightly more so-
phisticated algorithm must be used. Not only do the 3D and texture map coordinates have to
be properly handled, but a small amount of everdraw outside the triangle footprints in the tex-
ture map is necessary, to ensure that the texture pixels being interpolated during 3D rendering
have valid values (Szeliski and Shum 1997).

13 These are iuapiré:ll by The Little Prince by Antoine De Saint-Exupery. Go to http:/fwww.fickr.com and search
for “little planet projection™.

397

APPL-1012 / Page 143 of 211



398

9 Image stitching

Sampling issues. While the above computations can yield the correct {fractional) pixel
addresses in each input image, we still need to pay attention to sampling issues. For example,
if the final panorama has a lower resolution than the input images, pre-filtering the input
images is necessary to avoid aliasing. These issues have been extensively studied in both the
image processing and computer graphics communities. The basic problem is to compute the
appropriate pre-filter, which depends on the distance (and arrangement) between neighboring
samples in a source image. As discussed in Sections 3.5.2 and 3.6.1, various approximate
solutions, such as MIP mapping (Williams 1983) or elliptically weighted Gaussian averaging
(Greene and Heckbert 1986) have been developed in the graphics community. For highest
visual quality, a higher order (e.g., cubic) interpolator combined with a spatially adaptive pre-
filter may be necessary (Wang, Kang, Szeliski er al. 2001). Under certain conditions, it may
also be possible to produce images with a higher resolution than the input images using the
process of super-resolution (Section 10.3).

9.3.2 Pixel selection and weighting (de-ghosting)

Once the source pixels have been mapped onto the final composite surface, we must still
decide how to blend them in order to create an attractive-looking panorama. If all of the
images are in perfect registration and identically exposed, this is an easy problem, i.e., any
pixel or combination will do. However, for real images, visible seams (due to exposure
differences), blurring (due to mis-registration), or ghosting (due to moving objects) can occur.

Creating clean, pleasing-looking panoramas involves both deciding which pixels to use
and how to weight or blend them. The distinction between these two stages is a little fluid,
since per-pixel weighting can be thought of as a combination of selection and blending. In
this section, we discuss spatially varying weighting, pixel selection (seam placement), and
then more sophisticated blending.

Feathering and center-weighting. The simplest way to create a final composite is to
simply take an average value at each pixel,

Cla) =" we(x)l(x) / > wi(e) (9.37)
k K :

where I (x) are the warped (re-sampled) images and wy (=) is 1 at valid pixels and 0 else-
where. On computer graphics hardware, this kind of summation can be performed in an
accumulation buffer (using the A channel as the weight).

Simple averaging usually does not work very well, since exposure differences, mis-
registrations, and scene movement are all very visible (Figure 9.14a). If rapidly moving
objects are the only problem, taking a median filter (which is a kind of pixel selection opera-
tor) can often be used to remove them (Figure 9.14b) (Irani and Anandan 1998). Conversely,
center-weighting (discussed below) and minimum likelihood selection (Agarwala, Dontcheva,
Agrawala ef al. 2004) can sometimes be used to retain multiple copies of a moving object
(Figure 9.17).

A better approach to averaging is to weight pixels near the center of the image more
heavily and to down-weight pixels near the edges. When an image has some cutout regions,
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figure 9.14 Final composites computed by a variety of algorithms (Szeliski 2006a): (a) average, (b) median, (c)
feathered average, (d) p-norm p = 10, (g) Voronoi, (f) weighted ROD vertex cover with feathering, (g) graph cut
seams with Poisson blending and (h) with pyramid blending.
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down-weighting pixels near the edges of both cutouts and the image is preferable. This can
be done by computing a distance map or grassfire transform,

wy (@) = arg njﬂn{ﬂy” | T(a + y) is invalid }, (9.38)

where each valid pixel is tagged with its Euclidean distance to the nearest invalid pixel (Sec-
tion 3.3.3). The Euclidean distance map can be efficiently computed using a two-pass raster
algorithm (Danielsson 198(; Borgefors 1986).

Weighted averaging with a distance map is often called feathering (Szeliski and Shum
1997; Chen and Klette 199%; Uyttendaele, Eden, and Szeliski 2001) and does a reasonable job
of blending over exposure differences. However, blurring and ghosting can still be problems
{(Figure 9.14c). Note that weighted averaging is not the same as compositing the individual
images with the classic over operation (Porter and Duff 1984; Blinn 1994a), even when using
the weight values (normalized to sum up to one) as alpha (translucency) channels. This is
because the over operation attenuates the values from more distant surfaces and, hence, is not
equivalent to a direct sum.

One way to improve feathering is to raise the distance map values to some large power,
ie., to use wi(x) in Equation (9.37). The weighted averages then become dominated by
the larger values, ie., they act somewhat like a p-norm. The resulting composite can often
provide a reasonable tradeoff between visible exposure differences and blur (Figure 9.14d).

In the limit as p — oo, only the pixel with the maximum weight is selected,

C(x) = Lz (), (9.39)

where
[ =arg mf.x wi () (9.40)

is the label assignment or pixel selection function that selects which image to use at each
pixel. This hard pixel selection process produces a visibility mask-sensitive variant of the fa-
miliar Voronoi diagram, which assigns each pixel to the nearest image center in the set (Wood,
Finkelstein, Hughes et al. 1997; Peleg, Rousso, Rav-Acha et al. 2000). The resulting com-
posite, while useful for artistic guidance and in high-overlap panoramas (manifold mosaics)
tends to have very hard edges with noticeable seams when the exposures vary (Figure 9.14¢).

Kiong and Turkowski (1998) use this Voronoi idea (local maximum of the grassfire trans-
form) to select seams for Laplacian pyramid blending (which is discussed below). However,
since the seam selection is performed sequentially as new images are added in, some artifacts
can occur.

Optimal seam selection. Computing the Voronoi diagram is one way to select the seams
between regions where different images contribute to the final composite. However, Voronoi
images totally ignore the local image structure underlying the seam.

A better approach is to place the seams in regions where the images agree, so that tran-
sitions from one source to another are not visible. In this way, the algorithm avoids “cutting
through” moving objects where a seam would look unnatural (Davis 1998). For a pair of
images, this process can be formulated as a simple dynamic program starting from one edge
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Figure 9.15 Computation of regions of difference (RODs) (Uyttendaele, Eden, and Szeliski 2001) © 2001
IEEE: (&) three overlapping images with a moving face; (b) corresponding RODs; (c) graph of coincident RODs.

of the overlap region and ending at the other (Milgram 1975, 1977; Davis 1998; Efros and
Freeman 2001).

When multiple images are being composited, the dynamic program idea does not readily
generalize. (For square texture tiles being composited sequentially, Efros and Freeman (2001}
run a dynamic program along each of the four tile sides.)

To overcome this problem, Uyttendaele, Eden, and Szeliski (2001) observed that, for
well-registered images, moving objects produce the most visible artifacts, namely translu-
cent looking ghosts. Their system therefore decides which objects to keep and which ones
to erase. First, the algorithm compares all overlapping input image pairs to determine re-
gions of difference (RODs) where the images disagree. Next, a graph is construeted with the
RODs as vertices and edges representing ROD pairs that overlap in the final composite (Fig-
ure 9.15). Since the presence of an edge indicates an area of disagreement, vertices (regions)
must be removed from the final composite until no edge spans a pair of remaining vertices.
The smallest such set can be computed using a vertex cover algorithm. Since several such
covers may exist, a weighted verfex cover is used instead, where the vertex weights are com-
puted by summing the feather weights in the ROD (Uyttendaele, Eden, and Szeliski 2001).
The algorithm therefore prefers removing regions that are near the edge of the image, which
reduces the likelihood that partially visible objects will appear in the final composite. (It is
also possible to infer which object in a region of difference is the foreground object by the
“edginess” (pixel differences) across the ROD boundary, which should be higher when an
object is present (Herley 2005).) Once the desired excess regions of difference have been
removed, the final composite can be created by feathering (Figure 9.141).

A different approach to pixel selection and seam placement is described by Agarwala,
Diontcheva, Agrawala ef al. (2004), Their system computes the label assignment that opti-
mizes the sum of two objective functions. The first is a per-pixel image objective that deter-
mines which pixels are likely to produce good composites,

Cp =) _ D(=,(x)), (9.41)
H i

where D(z, [) is the data penalty associated with choosing image [ at pixel z-. In their system,
users can select which pixels to use by “painting” over an image with the desired object or
appearance, which sets D(z,!) to a large value for all labels I other than the one selected
by the user (Figure 9.16). Alternatively, automated selection criteria can be used, such as
maximum likelihood, which prefers pixels that occur repeatedly in the background (for object
removal), or miriimum likelihood for objects that occur infrequently, i.e., for moving object
retention. Using a more traditional center-weighted data term tends to favor objects that are
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Figure 9.16 Photomontage (Agarwala, Dontcheva, Agrawala et al. 2004) (€) 2004 ACM. From a set of five
source images (of which four are shown on the left), Photomontage quickly creates a composite family portrait
in which everyone is smiling and looking at the camera (right). Users simply flip through the stack and coarsely
draw strokes using the designated source image objective over the people they wish to add to the composite. The
user-applied strokes and computed regions (middle) are color-coded by the borders of the source images on the
left,

centered in the input images (Figure 9.17).
The second term is a seam objective that penalizes differences in labelings between adja-
cent images,
Cs= Z 5{{31 yr'{{mj: I('y}:l. (9.42)
(® N
where S(x, y,1:,[,) is the image-dependent interaction penalty or seam cost of placing a
seam between pixels z and y, and A is the set of Ny neighboring pixels. For example,
the simple color-based seam penalty used in (Kwatra, Schidl, Essa et al. 2003; Agarwala,
Donicheva, Agrawala et al. 2004) can be written as

S(z, ¥, lz by) = |, (=) — I, ()] + 1. (%) = I, (W)]]. (9.43)

More sophisticated seam penalties can also look at image gradients or the presence of image
edges (Agarwala, Dontcheva, Aprawala ef al. 2004). Seam penalties are widely used in other
computer vision applications such as stereo matching (Boykov, Veksler, and Zabih 2001) to
give the labeling function its colierence or smoothness. An alternative approach, which places
seams along strong consistent edges in overlapping images using a watershed computation is
described by Soille (2006).

The sum of these two objective functions gives rise to a Markov random field (MRF),
for which pood optimization algorithms are described in Sections 3.7.2 and 5.5 and Ap-
pendix B.5. For label computations of this kind, the a-expansion algorithm developed by
Boykov, Veksler, and Zabih (2001) works particularly well (Szeliski, Zabih, Scharstein ef al.
2008).

For the result shown in Figure 9.14g, Agarwala, Donicheva, Agrawala er al. (2004) use
a large data penalty for invalid pixels and 0 for valid pixels. Notice how the seam placement
algorithm avoids regions of difference, including those that border the image and that might
result in objects being cut off. Graph cuts (Agarwala, Dontcheva, Agrawala er al. 2004) and
vertex cover (Uyttendaele, Eden, and Szeliski 2001) often produce similar looking results,
although the former is significantly slower since it optimizes over all pixels, while the latter
is more sensitive to the thresholds used to determine regions of difference.
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Figure 9.17 Set of five photos tracking a snowboarder’s jump stitched together into a seamless composite.
Becaunse the algorithm prefers pixels near the center of the image, multiple copies of the boarder are retained.

9.3.3 Application: Photomontage

While image stitching is normally used to composite partially overlapping photographs, it
can also be used to composite repeated shots of a scene taken with the aim of obtaining the
best possible composition and appearance of each element,

Figure 9.16 shows the Photomontage system developed by Agarwala, Dontcheva, Agrawala
et al, (2004), where users draw strokes over a set of pre-aligned images to indicate which re-
gions they wish to keep from each image. Once the system solves the resulting multi-label
graph cut (9.41-9.42), the various pieces taken from each source photo are blended together
using a variant of Poisson image blending (9.44-9.46). Their system can also be used to au-
tomatically composite an all-focus image from a series of bracketed focus images (Hasinoff,
Kutulakos, Durand et al. 2009) or to remove wires and other unwanted elements from sets of
photographs. Exercise 9,10 has you implement this system and try out some of its variants,

9.3.4 Blending

Once the seams between images have been determined and unwanted objects removed, we
still need to blend the images to compensate for exposure differences and other mis-alignments.
The spatially varying weighting (feathering) previously discussed can often be used to aceom-
plish this. However, it is difficult in practice to achieve a pleasing balance between smoothing
out low-frequency exposure variations and retaining sharp enough transitions to prevent blur-
ring (although using a high exponent in feathering can help).

Laplacian pyramid blending. An attractive solution to this problem is the Laplacian
pyramid blending technique developed by Burt and Adelson (1983h), which we discussed in
Section 3.5.5. Instead of using a single transition width, a frequency-adaptive width is used by
crealing a band-pass (Laplacian) pyramid and making the transition widths within each level
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Figure 9.18 Poisson image editing (Pérez, Gangnet, and Blake 2003) (©) 2003 ACM: (a) The dog and the two
children are chosen as source images Lo be pasted into the destination swimming pool. (b) Simple pasting fails (o
match the colors at the boundaries, whereas (c) Poisson image blending masks these differences.

a function of the level, i.e., the same width in pixels. In practice, a small number of levels,
i.e., as few as two (Brown and Lowe 2007), may be adequate to compensate for differences
in exposure. The result of applying this pyramid blending is shown in Figure 9.14h.

Gradient domain blending. An alternative approach to multi-band image blending is
to perform the operations in the gradient domain. Reconstructing images from their gradi-
ent fields has a long history in computer vision (Horn 1986), starting originally with work
in brightness constancy (Hom 1974), shape from shading (Hom and Brooks 1989), and
photometrnc stereo (Woodham 1981). More recently, related ideas have been used for re-
constrocting images from their edges (Elder and Goldberg 2001}, removing shadows from
images (Weiss 2001), separating reflections from a single image (Levin, Zomet, and Weiss
2004 Levin and Weiss 2007), and tone mapping high dynamic range images by reducing the
magnitude of image edges (gradients) (Fattal, Lischinski, and Werman 2002).

Pérez, Gangnet, and Blake (2003) show how gradient domain reconstruction can be used
to do seamless object insertion in image editing applications (Figure 9.18), Rather than copy-
ing pixels, the gradients of the new image fragment are copied instead. The actual pixel values
for the copied area are then computed by solving a Poisson equation that locally matches the
gradients while obeying the fixed Dirichlet (exact matching) conditions at the seam bound-
ary. Pérez, Gangnet, and Blake (2003} show that this is equivalent to computing an additive
membrane interpolant of the mismatch between the source and destination images along the
boundary.™ In earlier work, Peleg (1981) also proposed adding a smooth function to enforce
consistency along the seam curve.

Agarwala, Dontcheva, Agrawala ef al. (2004) extended this idea o a multi-source formu-
lation, where it no longer makes sense to talk of a destination image whose exact pixel values
must be matched at the seam. Instead, each source image contributes its own gradient field
and the Poisson equation is solved using Newmann boundary conditions, i.e., dropping any

1 The membrane interpolant is known to have nicer interpolation properties for arbitrary-shaped constraints than
frequency-domain interpolants (Miclson 1993),
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equations that involve pixels outside the boundary of the image.

Rather than solving the Poisson partial differential equations, Agarwala, Dontcheva, Agrawala

et al. (2004) directly minimize a variational problem,
i — Vi, % 9.44
min [VO(e) ~ Via)(@)| ©O44)
The discretized form of this equation is a set of gradient constraint equations

Cle+1)—C(z) = Iygy(z+1)— Lgy(x) and (9.45)
Clz +3) — Clx) Ty (@ + 7) — Ty (), (9.46)

where = (1,0) and 3 = (0, 1) are unit vectors in the z and y directions.'” They then solve
the associated sparse least squares problem. Since this system of equations is only defined
up to an additive constraint, Agarwala, Dontcheva, Agrawala et al. (2004) ask the user to
select the value of one pixel. In practice, a better choice might be to weakly bias the solution
towards reproducing the original color values.

In order to accelerate the solution of this sparse linear system, Fattal, Lischinski, and
Werman (2002) use multiprid, whereas Agarwala, Dontcheva, Agrawala ef al. (2004) use
hierarchical basis preconditioned conjugate gradient descent (Szeliski 1990b, 2006b) (Ap-
pendix A.5). In subsequent work, Agarwala (2007) shows how using a quadiree represen-
tation for the solution can further accelerate the computation with minimal loss in accuracy,
while Szeliski, Uyttendaele, and Steedly (2008) show how representing the per-image offset
fields using even coarser splines is even faster. This latter work also argues that blending
in the log domain, i.e., using multiplicative rather than additive offsets, is preferable, as it
more closely matches texture contrasts across seam boundaries. The resulting seam blending
works very well in practice (Figure 9.14h), although care must be taken when copying large
gradient values near seams so that a “double edge” is not introduced.

Copying gradients direcily from the source images after seam placement is just one ap-
proach to gradient domain blending. The paper by Levin, Zomet, Peleg ef al. (2004) examines
several different variants of this approach, which they call Gradient-domain Image STitching
(GIST). The techniques they examine include feathering (blending) the gradients from the
source images, as well as using an L1 norm in performing the reconstruction of the image
from the gradient field, rather than using an L2 norm as in Equation (9.44). Their preferred
technique is the L1 optimization of a feathered (blended) cost function on the original image
gradients (which they call GIST1-[;). Since L1 optimization osing linear programming can
be slow, they develop a faster iterative median-based algorithm in a multigrid framework.
Visual comparisons between their preferred approach and what they call optimal seam on
the gradients (which is equivalent to the approach of Agarwala, Dontcheva, Agrawala et al.
(2004)) show similar results, while significantly improving on pyramid blending and feather-
ing algorithms. :

Exposure compensation. Pyramid and gradient domain blending can do a good job
of compensating for moderate amounts of exposure differences between images. However,
when the exposure differences become large, alternative approaches may be necessary.

15 At seam locations, the right hand side is replaced by the average of the gradients in the two source images.
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Uyttendaele, Eden, and Szeliski (2001) iteratively estimate a local correction between
each source image and a blended composite. First, a block-based quadratic transfer function is
fit between each source image and an initial feathered composite. Next, transfer functions are
averaged with their neighbors to get a smoother mapping and per-pixel transfer functions are
computed by splining (interpolating) between neighboring block valugs. Once each source
image has been smoothly adjusted, a new feathered composite is computed and the process is
repeated (typically three times). The results shown by Uyttendaele, Eden, and Szeliski (2001}
demonstrate that this does a better job of exposure compensation than simple feathering and
can handle local variations in exposure due to effects such as lens vignetting.

Ultimately, however, the most principled way to deal with exposure differences is to stitch
images in the radiance domain, i.e., to convert each image into a radiance image using its
exposure value and then create a stitched, high dynamic range image, as discussed in Sec-
tion 10.2 (Eden, Uyttendaele, and Szeliski 2006),

9.4 Additional reading

The literature on image stitching dates back to work in the photogrammetry community in
the 1970s (Milgram 1975, 1977; Slama 1980). In computer vision, papers started appearing
in the early 1980s (Peleg 1981), while the development of fully automated techniques came
about a decade later (Mann and Picard 1994; Chen 1995; Szeliski 1996, Szeliski and Shum
1997; Sawhney and Kumar 1999; Shum and Szeliski 2000). Those techniques used direct
pixel-based alignment but feature-based approaches are now the norm (Zoghlami, Faugeras,
and Deriche 1997; Capel and Zisserman 1998; Cham and Cipolla 1998; Badra, Qumsich, and
Dudek 1998; McLauchlan and Jaenicke 2002; Brown and Lowe 2007). A collection of some
of these papers can be found in the book by Benosman and Kang (2001). Szeliski (2006a)
provides a comprehensive survey of image stitching, on which the material in this chapter is
based.

High-quality techniques for optimal seam finding and blending are another important
component of image stitching systems. Important developments in this field include work by
Milgram (1977), Burt and Adelson (1983b}), Davis (1998), Uyttendaele, Eden, and Szeliski
(2001),Pérez, Gangnet, and Blake (2003), Levin, Zomet, Peleg ef al. (2004), Agarwala,
Dontcheva, Agrawala ef al. (2004), Eden, Uyttendaele, and Szeliski (2006), and Kopf, Uyt-
tendaele, Deussen et al. (2007).

In addition to the merging of multiple overlapping photographs taken for aerial or ter-
restrial panoramic image creation, stitching techniques can be used for automated white-
board scanning (He and Zhang 2005; Zhang and He 2007), scanning with a mouse (Nakao,
Kashitani, and Kaneyoshi 1998), and retinal image mosaics (Can, Stewart, Roysam ef al.
2002). They can also be applied to video sequences (Teodosio and Bender 1993; Irani, Hsu,
and Anandan 1995; Kumar, Anandan, Irani er al. 1995; Sawhney and Ayer 1996; Massey
and Bender 1996; Irani and Anandan 1998; Sawhney, Arpa, Kumar ef al. 2002; Agarwala,
Zheng, Pal et al. 2005; Rav-Acha, Pritch, Lischinski et al. 2005; Steedly, Pal, and Szeliski
2005; Baudisch, Tan, Steedly et al. 2006) and can even be used for video compression (Lee,
_ ge Chen, lung Bruce Lin et al. 1997},
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9.5 Exercises

Ex 9.1: Direct pixel-based alipnment Take a pair of images, compuie a coarse-to-fine affine
alignment (Exercise 8.2) and then blend them using either averaging (Exercise 6.2) or a Lapla-
cian pyramid (Exercise 3.20). Extend your motion model from affine to perspective (homog-
raphy) to better deal with rotational mosaics and planar surfaces seen under arbitrary motion,

Ex 9.2: Featured-based stitching Extend your feature-based alignment technique from Ex-
ercise 6.2 to use a full perspective model and then blend the resulting mosaic using either
averaging or more sophisticated distance-based feathering (Exercise 9.9).

Ex 9.3: Cylindrical strip panoramas To generate cylindrical or spherical panoramas from
a horizontally panning (rotating) camera, it is best to use a tripod. Set your camera up to take
a series of 50% overlapped photos and then use the following steps to create your panorama:

1. Estimate the amount of radial distortion by taking some pictures with lots of long
straight lines near the edges of the image and then using the plumb-line method from
Exercize 6.10.

L

Compute the focal length either by using a ruler and paper, as in Figure 6.7 (Debevec,
Wenger, Tchou et al, 2002) or by rotating your camera on the tripod, overlapping the
images by exactly 0% and counting the number of images it takes to make a 360°
panorama.

3. Convert each of your images to cylindrical coordinates using (9.12-9.16).

4. Line up the images with a translational motion model using either a direct pixel-based
technique, such as coarse-to-fine incremental or an FFT, or a feature-based technique,

5. {Optional) If doing a4 complete 360° panorama, align the first and last images. Compute
the amount of accomulated vertical mis-registration and re-distribute this among the

images,
6. Blend the resulting images using feathering or some other technique.

Ex 9.4: Coarse alignment Use FFT or phase correlation (Section 8.1.2) to estimate the
initial alignment between successive images. How well does this work? Over what range of
overlaps? If it does not work, does aligning sub-sections (e.g., quarters) do better?

Ex 9.5: Antomated mosaicing Use feature-based alignment with four-point RANSAC for
homographies (Section 6.1.3, Equations (6.19-6.23)) or three-point RANSAC for rotational
motions (Brown, Hartley, and Nistér 2007) to match up all pairs of overlapping images.

Merge these pairwise estimates together by finding a spanning tree of pairwise relations,
Visualize the resulting global alignment, e.g., by displaying a blend of each image with all
other images that overlap it.

For greater robustness, try multiple spanning trees (perhaps randomly sampled based on
the confidence in pairwise alignments) to see if you can recover from bad pairwise matches
(Zach, Klopschitz, and Pollefeys 201(0). As a measure of fitness, count how many pairwise
estimates are consistent with the global alignment.
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Ex 9.6: Global optimization Use the initialization from the previous algorithm to perform
a full bundle adjustment over all of the camera rotations and focal lengths, as described in
Section 7.4 and by Shum and Szeliski (2000). Optionally, estimate radial distortion parame-
ters as well or support fisheye lenses (Section 2.1.6).

As in the previous exercise, visualize the quality of your registration by creating compos-
ites of each input image with its neighbors, optionally blinking between the original image
and the composite to better see mis-alignment artifacts.

Ex 9.7: De-ghosting  Use the results of the previous bundle adjustment to predict the loca-
tion of each feature in a consensus geometry. Use the difference between the predicted and
actual feature locations to correct for small mis-registrations, as described in Section 9.2.2
(Shum and Szeliski 2000).

Ex 9.8: Compositing surface Choose a compositing surface (Section 9.3.1), e.g., a single
reference image extended to a larger plane, a sphere represented using cylindrical or spherical
coordinates, a stereographic “little planet” projection, or a cube map.

Project all of your images onto this surface and blend them with equal weighting, for now
(just to see where the original image seams are).

Ex 9.9: Feathering and blending Compute a feather (distance) map for each warped source
image and use these maps to blend the warped images.
Alternatively, use Laplacian pyramid blending (Exercise 3.20) or gradient domain blend-

ing.

Ex 9.10: Photomontage and object removal Implement a “PhotoMontage” system in which
users can indicate desired or unwanted regions in pre-registered images using strokes or other
primitives (such as bounding boxes). '

(Optional) Devise an automatic moving objects remover (or “keeper”) by analyzing which
inconsistent regions are more or less typical given some consensus (e.g., median filtering) of
the aligned images. Figure 9.17 shows an example where the moving object was kept. Try
to make this work for sequences with large amounts of overlaps and consider averaging the
images to make the moving object look more ghosted.
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Stereo correspondence
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(g)

Figure 11.1 Stereo reconstruction techniques can convert (a-b) a pair of images into (¢) a depth map (http:
{{vision.middlebury.edu/stereo/data/scenes2003/) or (d-€) a sequence of images into (f) a 3D model (http://vision.
middlebury.edu/mview/data/). (g) An analytical stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can
generate (h) contour plots,

APPL-1012 / Page 156 of 211



11 Stereo correspondence

Stereo matching is the process of taking two or more images and estimating a 3D model of
the scene by finding matching pixels in the images and converting their 2D positions into
3D depths. In Chapters 6-7, we described techniques for recovering camera positions and
building sparse 3D models of scenes or objects. In this chapter, we address the question
of how to build a more complete 3D model, e.g., a sparse or dense depth map that assigns
relative depths to pixels in the input images. We also look at the topic of multi-view stereo
algorithms that produce complete 3D volumetric or surface-based object models.

Why are people interested in stereo matching? From the earliest inquiries into visual per-
ception, it was known that we perceive depth based on the differences in appearance between
the left and right eye.! As a simple experiment, hold your finger vertically in front of your
eyes and close each eye alternately. You will notice that the finger jumps left and right relative
to the background of the scene. The same phenomenon is visible in the image pair shown in
Figure 11.1a-b, in which the foreground objects shift left and right relative to the background.

As we will shortly see, under simple imaging configurations (both eyes or cameras look-
ing straight ahead), the amount of horizontal motion or disparity is inversely proportional to
the distance from the observer. While the basic physics and geometry relating visual disparity
to scene structure are well understood (Section 11.1), automatically measuring this disparity
by establishing dense and accurate inter-image correspondences is a challenging task.

The earliest stereo matching algorithms were developed in the field of photogrammetry
for automatically constructing topographic elevation maps from overlapping aerial images.
Prior to this, operators would use photogrammetric stereo plotters, which displayed shifted
versions of such images to each eye and allowed the operator to float a dot cursor around con-
stant elevation contours (Figure 11.1g). The development of fully automated stereo matching
algorithms was a major advance in this field, enabling much more rapid and less expensive
processing of aerial imagery (Hannah 1974; Hsieh, McKeown, and Perlant 1992).

In computer vision, the topic of stereo matching has been one of the most widely stud-
ied and fundamental problems (Marr and Poggio 1976; Barnard and Fischler 1982; Dhond
and Aggarwal 1989; Scharstein and Szeliski 2002; Brown, Burschka, and Hager 2003; Seitz,
Curless, Diebel ef al. 2006), and continues to be one of the most active research areas. While
photogrammetric matching concentrated mainly on aerial imagery, computer vision applica-
tions include modeling the human visual system (Marr 1982), robotic navigation and manip-
ulation (Moravec 1983; Konolige 1997; Thrun, Montemerlo, Dahlkamp et al. 2006), as well
as view interpolation and image-based rendering (Figure 11.2a—d), 3D model building (Fig-
ure 11.2e—f and h—j), and mixing live action with computer-generated imagery (Figure 11.2g).

In this chapter, we describe the fundamental principles behind stereo matching, following
the general taxonomy proposed by Scharstein and Szeliski (2002). We begin in Section 11.1
with a review of the geometry of stereo image matching, i.e., how to compute for a given
pixel in one image the range of possible locations the pixel might appear at in the other
image, i.e., its epipolar line. We describe how to pre-warp images so that corresponding
epipolar lines are coincident (rectification). We also describe a general resampling algorithm
called plane sweep that can be used to perform multi-image stereo matching with arbitrary
camera configurations.

1 The word stereo comes from the Greek for solid; stereo vision is how we perceive solid shape (Koenderink
1990).
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Figure 11.2 Applications of stereo vision: (a) input image, (b) computed depth map, and (c) new view generation
from multi-view stereo (Matthies, Kanade, and Szeliski 1989) © 1989 Springer; (d) view morphing between two
images (Seitz and Dyer 1996) (€) 1996 ACM; (ef) 3D face modeling (images courtesy of Frédéric Devernay): (g)
z-keying live and computer-generated imagery (Kanade, Yoshida, Oda et al. 1996) © 1996 IEEE; (h-j) building
3D surface models from multiple video streams in Virtualized Reality (Kanade, Rander, and Narayanan 1997).
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Figure 11.3 Epipolar geometry: (a) epipolar line segment corresponding to one ray; (b) corresponding set of

epipolar lines and their epipolar plane.

Next, we briefly survey techniques for the sparse stereo matching of interest points and
edpe-like featres (Section 11.2). We then turn to the main topic of this chapter, namely the
estimation of a dense set of pixel-wise correspondences in the form of a disparity map (Fig-
ure 11.1c). This involves first selecting a pixel matching criterion (Section 11.3) and then
using either local arca-based agpregation (Section 11.4) or global optimization (Section 11.5)
to help disambiguate potential matches. In Section 11.6, we discuss multi-view sfereo meth-
ods that aim to reconstruct a complete 312 model instead of just a single disparity image

(Figure 11.1d-f).

11.1 Epipolar geometry

Given a pixel in one image, how can we compute its correspondence in the other image? In
Chapter 8, we saw that a variety of search techniques can be used to match pixels based on
their local appearance as well as the motions of neighboring pixels. In the case of stereo
matching, however, we have some additional information available, namely the positions and
calibration data for the cameras that took the pictures of the same static scene (Section 7.2).

How can we exploit this information to reduce the number of potential correspondences,
and hence both speed up the matching and increase its reliability? Figure 11.3a shows how a
pixel in one image @y projects to an epipolar line segment in the other image. The segment
is bounded at one end by the projection of the original viewing ray at infinity p_, and at the
other end by the projection of the original camera center ¢ into the second camera, which
is known as the epipole e;, If we project the epipolar line in the second image back into the
first, we get another line (segment), this time bounded by the other corresponding epipole
ep. Extending both line segments to infinity, we get a pair of corresponding epipolar lines
(Figure 11.3b), which are the intersection of the two image planes with the epipolar plane
that passes through both camera centers cg and ¢; as well as the point of interest p (Faugeras
and Luong 2001; Hartley and Zisserman 2004},
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(b)

(c) (d)

Figure 11.4 The multi-stage stereo rectification algorithm of Loop and Zhang (1999) (©) 1999 IEEE. (a) Original
image pair overlaid with several epipolar lines; (b) images transformed so that epipolar lines are parallel; (c)
images rectified so that epipolar lines are horizontal and in vertial correspondence; (d) final rectification that
minimizes horizontal distortions.

11.1.1 Rectification

As we saw in Section 7.2, the epipolar geometry for a pair of cameras is implicit in the
relative pose and calibrations of the cameras, and can easily be computed from seven or more
point matches using the fundamental matrix (or five or more points for the calibrated essential
matrix) (Zhang 1998a,b; Faugeras and Luong 2001; Hartley and Zisserman 2004). Once this
geometry has been computed, we can use the epipolar line corresponding to a pixel in one
image to constrain the search for correspanding pixels in the other image. One way to do this
is to use a general correspondence algorithm, such as optical flow (Section 8.4), but to only
consider locations along the epipolar line (or to project any flow vectors that fall off back onto
the line).

A more efficient algorithm can be obtained by first rectifying (i.e, warping) the input
images so that corresponding horizontal scanlines are epipolar lines (Loop and Zhang 1999,
Faugeras and Luong 2001; Hartley and Zisserman 2004)* Afterwards, it is possible to match
horizontal scanlines independently or to shift images horizontally while computing matching
scores (Figure 11.4),

A simple way to rectify the two images is to first rotate both cameras so that they are
Jooking perpendicular to the line joining the camera centers ¢g and ¢;. Since there is a de-
gree of freedom in the filf, the smallest rotations that achieve this should be used. Next, o
determine the desired twist around the optical axes, make the up vector (the camera y axis)
perpendicular to the camera center line. This ensures that corresponding epipolar lines are

1 This makes most sense if the cameras ame next to each other, although by rotating the cameras, rectification can
be performed on any pair that is not venged too much ar has too much of a scale change. In those latter cases, using
plane sweep (below) or hypothesizing small planar patch locations in 30 (Goesele, Snavely, Curless er al. 2007) may
be preferable.
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Figure 11.5 Slices through a typical disparity space image (DSI) (Scharstein and Szeliski 2002) ©) 2002
Springer: (a) original color image; (b) ground truth disparities; (c—¢) three (x,y) slices for d = 10, 16, 21;
(f) an (z, d) slice for y = 151 (the dashed line in (b)). Various dark (matching) regions are visible in (c—e), e.g.,
the bookshelves, table and cans, and head statue, and three disparity levels can be scen as horizontal lines in (f).
The dark bands in the DSIs indicate regions that match at this disparity. (Smaller dark regions are often the result
of textureless regions.) Additional examples of DSIs are discussed by Bobick and Intille (1999).

horizontal and that the disparity for points at infinity is 0, Finally, re-scale the images, if nec-
essary, to account for different focal lengths, magnifying the smaller image to avoid aliasing.
{The full details of this procedure can be found in Fusiello, Trucco, and Verri (2000) and Ex-
ercise 11.1.) Note that in general, it is not possible to rectify an arbitrary collection of images
simultanecusly unless their optical centers are collinear, although rotating the cameras so that
they all point in the same direction reduces the inter-camera pixel movements to scalings and
translations.

The resulting standard rectified geometry is employed in a lot of stereo camera setups and
stereo algorithms, and leads to a very simple inverse relationship between 3D depths Z and
disparities d, B

d=f 7 (11.1}
where f is the focal length (measured in pixels), 7 is the baseline, and '
=z+dz,y), ¥=v9 (11.2)

describes the relationship between corresponding pixel coordinates in the left and right im-
ages (Bolles, Baker, and Marimont 1987; Okutomi and Kanade 1993; Scharstein and Szeliski
2002).3 The task of extracting depth from a set of images then becomes one of estimating the
disparity map d(z, y).

After rectification, we can easily compare the similarity of pixels at corresponding lo-
cations (z,y) and (¥',3') = (z + d,y) and store them in a disparity space image (DSI)
C'(z,y,d) for further processing (Figure 11.5). The concept of the disparity space (=, y, d)
dates back to early work in stereo matching (Marr and Poggio 1976), while the concept of a
disparity space image (volume) is generally associated with Yang, Yuille, and Lu (1993) and
Intille and Bobick (1994).

"3 Tho teem disparity was first introduced in the human vision litersture to describe the difference in location

of corresponding feamres seen by the lefl and right eyes (Marr 1982). Harizontal disparity i3 the most commonly
studied phenomenon, but vertical disparity is possible if the eyes are verged.
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Homography:
5 u=Hzx

t’ i -
¥ k
Input image &
Virtual camera 4 °a N L"

(a) (b)

Figure 11.6 Sweeping a set of planes through a scene (Szeliski and Golland 1999) (€ 1999 Springer: (a) The
set of planes seen from a virtual camera induces a set of homographies in any other source (input) camera image.
{b) The warped images from all the other cameras can be stacked into a generalized disparity space volume
I(z,y, d, k) indexed by pixel location (z, y), disparity d, and camera k.

11.1.2 Plane sweep

An alternative to pre-rectifying the images before matching is to sweep a set of planes through
the scene and to measure the photoconsistency of different images as they are re-projected
onto these planes (Figure 11.6). This process is commonly known as the plane sweep algo-
rithm (Collins 1996; Szeliski and Golland 1999; Saito and Kanade 1999),

As we saw in Section 2.1.5, where we introduced projective depth (also known as plane
plus parallax (Kumar, Anandan, and Hanna 1994; Sawhney 1994; Szeliski and Coughlan
1997)), the last row of a full-rank 4 x 4 projection matrix P can be set to an arbitrary plane
equation py = s3[fig|eo). The resulting four-dimensional projective transform (collineation)
(2.68) maps 3D world points p = (X, Y, Z, 1) into screen coordinates =, = (2., ¥s, 1,d),
where the prajecrive depth (or parallax) d (2.66) is () on the reference plane (Figure 2.11).

Sweeping d through a series of disparity hypotheses, as shown in Figure 11.6a, corre-
sponds to mapping each input image into the virfual camera P defining the disparity space
through a series of homographies (2.68-2.71),

@p ~ PP, = Hyd + ted = (Hy + [0 0 d) &, (11.3)

as shown in Figure 2.12b, where &3 and & are the homogeneous pixel coordinates in the
source and virtual (reference) images (Szeliski and Golland 1999). The members of the fam-
ily of homographies H(d) = H + £4[0 0 d], which are parametererized by the addition of
a rank-1 matrix, are related to each other through a planar homology (Hartley and Zisserman
2004, A5.2).

The choice of virtual camera and parameterization is application dependent and is what
gives this framework a lot of its flexibility. In many applications, one of the input cameras
(the reference camera) is used, thus computing a depth map that is registered with one of the
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input images and which can later be used for image-based rendering (Sections 13,1 and 13.2),
In other applications, such as view interpolation for paze correction in video-conferencing
(Section 11.4.2) (Ott, Lewis, and Cox 1993; Criminisi, Shotton, Blake et al. 2003), a camera
centrally located between the two input cameras is preferable, since it provides the needed
per-pixel disparities to hallucinate the virtual middle image, .

The choice of disparity sampling, i.e., the setting of the zero parallax plane and the scaling
of integer disparities, is also application dependent, and is usually set to bracket the range of
interest, i.e., the working volume, while scaling disparities to sample the image in pixel (or
sub-pixel) shifts. For example, when using stereo vision for obstacle avoidance in robot
navigation, it is most convenient to set up disparity to measure per-pixel elevation above the
ground (Tvanchenko, Shen, and Coughlan 2009),

As each input image is warped onto the current planes parameterized by disparity d, it
can be stacked into a generalized disparity space image .fl[:::+ y, d, k) for further processing
(Figure 11.6b) (Szeliski and Golland 1999). In most sterco algorithms, the photoconsistency
{e.g., sum of squared or robust differences) with respect to the reference image [, is calculated
and stored in the DSI

C{I,y,d} — ZPE-E{:Fqu d: k] = Ir{:r: y” (11.4)
&

However, it is also possible to compute alternative statistics such as robust variance, focus,
or entropy (Section 11.3.1) (Vaish, Szeliski, Zitnick er al. 2006) or to use this representation
to reason about occlusions (Szeliski and Golland 1999; Kang and Szeliski 2004). The gen-
eralized DSI will come in particularly handy when we come back to the topic of multi-view
stereo in Section 11.6.

Of course, planes are not the only surfaces that can be used to define a 3D sweep through
the space of interest. Cylindrical surfaces, especially when coupled with panoramic photog-
raphy (Chapter 9), are often used (Ishiguro, Yamamoto, and Tsuji 1992; Kang and Szeliski
1997; Shum and Szeliski 1999; Li, Shum, Tang et al. 2004; Zheng, Kang, Cohen ¢r al. 2007).
It is also possible to define other manifold topologies, e.g., ones where the camera rotates
around a fixed axis (Seitz 2001). )

Onece the DIS] has been computed, the next step in most stereo correspondence algorithms
is to produce a univalued function in disparity space d(z, y) that best describes the shape of
the surfaces in the scene. This can be viewed as finding a surface embedded in the disparity
space image that has some optimality property, such as lowest cost and best (piecewise)
smoothness (Yang, Yuille, and Lu 1993). Figure 11.5 shows examples of slices through a
typical DSI. More figures of this kind can be found in the paper by Bobick and Intille (1999).

11.2 Sparse correspondence

Early stereo matching algorithms were feature-based, i.e., they first extracted a set of poten-
tially matchable image locations, using either interest operators or edge detectors, and then
searched for corresponding locations in other images using a patch-based metric (Hannah
1974; Marr and Poggio 1979; Mayhew and Frisby 1980; Baker and Binford 1981; Arnold
1983; Grimson 1985; Ohta and Kanade 1985; Bolles, Baker, and Marimont 1987; Matthies,
Kanade, and Szeliski 1989; Hsich, McKeown, and Perlant 1992; Bolles, Baker, and Hannah
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Figure 11.7 Surface reconstruction from occluding contours (Szeliski and Weiss 1998) (€) 2002 Springer: (a)
circular arc fitting in the epipolar plane; (b) synthetic example of an ellipsoid with a truncated side and elliptic
surface markings; (c) partially reconstructed surface mesh seen from an oblique and top-down view; (d) real-
world image sequence of a soda can on a turntable; () extracted edges; (f) partially reconstructed profile curves;
(g) partially reconstructed surface mesh. (Partial reconstructions are shown so as not to clutter the images.)

1993), This limitation to sparse correspondences was partially due to computational resource
limitations, but was also driven by a desire to limit the answers produced by stereo algorithms
to maiches with high certainty. In some applications, there was also a desire to match scenes
with potentially very different illuminations, where edges might be the only stable features
{(Collins 1996). Such sparse 3D reconstructions could later be interpolated using surface fit-
ting algorithms such as those discussed in Sections 3.7.1 and 12.3.1.

More recent work in this area has focused on first extracting highly reliable features and
then using these as seeds to grow additional matches (Zhang and Shan 2000; Lhuillier and
Quan 2002). Similar approaches have also been extended to wide baseline multi-view stereo
problems and combined with 3D surface reconstruction (Lhuillier and Quan 2005; Strecha,
Tuytelaars, and Van Gool 2003; Goesele, Snavely, Curless ef al, 2007) or free-space reasoning
{Taylor 2003), as described in more detail in Section 11.6.

11.2.1 3D curves and profiles

Another example of sparse correspondence is the matching of profile curves (or occluding
contours), which occur at the boundaries of objects (Figure 11.7) and at interior self occlu-
sions, where the surface curves away from the camera viewpoint.

The difficulty in matching profile curves is that in general, the locations of profile corves
vary as a function of camera viewpoint. Therefore, matching curves directly in two images
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and then triangulating these matches can lead to erroneous shape measurements, Fortunately,
if three or more closely spaced frames are available, it is possible to fit a local circular arc to
the locations of corresponding edgels (Figure 11.7a) and therefore obtain semi-dense curved
surface meshes directly from the matches (Figures 11.7c and g). Another advantage of match-
ing such curves is that they can be used to reconstruct surface shape for untextured surfaces,
so long as there is a visible difference between foreground and background colors.

Crwver the years, a number of different techniques have been developed for reconstructing
surface shape from profile curves (Giblin and Weiss 1987; Cipolla and Blake 1992; Vaillant
and Faugeras 1992; Zheng 1994; Boyer and Berger 1997; Szeliski and Weiss 1998). Cipolla
and Giblin (2000) describe many of these technigques, as well as related topics such as in-
ferring camera motion from profile curve sequences. Below, we summarize the approach
developed by Szeliski and Weiss (1998), which assumes a discrete set of images, rather than
formulating the problem in a continuous differential framework.

Let us assume that the camera is moving smoothly enough that the local epipolar geometry
varies slowly, i.e., the epipolar planes induced by the successive camera centers and an edgel
under consideration are nearly co-planar. The first step in the processing pipeline is to extract
and link edges in each of the input images (Figures 11.7b and e). Next, edgels in successive
images are matched using pairwise epipolar geometry, proximity and (optionally) appearance.
This provides a linked set of edges in the spatio-temporal volume, which is sometimes called
the weaving wall (Baker 1989).

To reconstruct the 3D location of an individual edgel, along with its local in-plane normal
and curvature, we project the viewing rays corresponding to its neighbors onto the instanta-
neous epipolar plane defined by the camera center, the viewing ray, and the camera velocity,
as shown in Figure 11.7a. We then fit an esculating circle to the projected lines, parameteriz-
ing the circle by its centerpoint ¢ = (z., y.) and radius r,

CiZe + 8iye + 1 =dj, (11.5)

where ¢; = t;- fu. and 5; = —1?,; « fig are the cosine and sine of the angle between viewing ray
i and the central viewing ray 0, and & = (g; — gy ) - ftp is the perpendicular distance between
viewing ray i and the local origin g, which is a point chosen on the central viewing ray close
to the line intersections (Szeliski and Weiss 1998). The resulting set of linear equations can
be solved using least squares, and the quality of the solution (residual error) can be used to
check for erroneous correspondences,

The resulting set of 3D points, along with their spatial (in-image) and temporal (between-
image) neighbors, form a 3D surface mesh with local normal and curvature estimates (Fig-
ures 11.7¢c and g). Note that whenever a curve is due to a surface marking or a sharp crease
edge, rather than a smooth surface profile curve, this shows up as a 0 or small radius of curva-
ture. Such curves result in isolated 312 space curves, rather than elements of smooth surface
meshes, but can still be incorporated into the 3D surface model during a later stage of surface
interpolation (Section 12.3.1).

11.3 Dense correspondence

While sparse miatching algorithms are still occasionally used, most stereo matching algo-
rithms today focus on dense correspondence, since this is required for applications such as
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image-based rendering or modeling. This problem is more challenging than sparse corre-
spondence, since inferring depth values in textureless regions requires a certain amount of
guesswork. (Think of a solid colored background seen through a picket fence. What depth
should it be?)

In this section, we review the taxonomy and categorization scheme for dense correspon-
dence algorithms first proposed by Scharstein and Szeliski (2002). The taxonomy consists
of a set of algorithmic *building blocks” from which a large set of algorithms can be con-
structed. It is based on the observation that stereo algorithms generally perform some subset
of the following four steps:

1. matching cost computatioﬁ;

2. cost (support) aggregation;

3. disparity computation and optimization; and
4. disparity refinement.

For example, local (window-based) algorithms (Section 11.4), where the disparity com-
putation at a given point depends only on intensity values within a finite window, usually
make implicit smoothness assumptions by aggregating support. Some of these algorithms
can cleanly be broken down into steps 1, 2, 3. For example, the traditional sum-of-squared-
differences (SSD) algorithm can be described as:

1. The matching cost is the squared difference of intensity values at a given disparity.

2. Aggregation is done by summing the matching cost over square windows with constant
disparity.

3. Disparities are computed by selecting the minimal (winning) aggregated value at each
pixel.

Some local algorithms, however, combine steps 1 and 2 and use a matching cost that is based
on a support region, e.g. normalized cross-correlation (Hannah 1974; Bolles, Baker, and Han-
nah 1993) and the rank transform (Zabih and Woodfill 1994) and other ordinal measures (Bhat
and Nayar 1998). (This can also be viewed as a preprocessing step; see (Section 11.3.1).)

Global algorithms, on the other hand, make explicit smoothness assumptions and then
solve a a global optimization problem (Section 11.5). Such algorithms typically do not per-
form an aggregation step, but rather seek a disparity assignment (step 3) that minimizes a
global cost function that consists of data (step 1) terms and smoothness terms. The main dis-
tinctions among these algorithms is the minimization procedure used, e.g., simulated anneal-
ing (Marroquin, Mitter, and Poggio 1987; Barnard 1989), probabilistic (mean-field) diffusion
(Scha;stein and Szeliski 1998), expectation maximization (EM) (Birchficld, Natarajan, and
Tomasi 2007), graph cuts (Boykov, Veksler, and Zabih 2001), or loopy belief propagation
(Sun, Zheng, and Shum 2003), to name just a few.

In between these two broad classes are certain iterative algorithms that do not explicitly
specify a global function to be minimized, but whose behavior mimics closely that of iterative
optimization algorithms (Marr and Poggio 1976; Zitnick and Kanade 2000). Hierarchical
(coarse-to-fine) algorithms resemble such iterative algorithms, but typically operate on an

APPL-1012 / Page 166 of 211



11.3 Dense correspondence

image pyramid where results from coarser levels are used to constrain a more local search at
finer levels (Witkin, Terzopoulos, and Kass 1987; Quam 1984; Bergen, Anandan, Hanna et
al. 1992),

11.3.1 Similarity measures "

The first component of any dense stereo matching algorithm is a similarity measure that
compares pixel values in order to determine how likely they are to be in correspondence. In
this section, we briefly review the similarity measures introduced in Section 8.1 and mention a
few others that have been developed specifically for stereo matching (Scharstein and Szeliski
2002; Hirschmiiller and Scharstein 2009,

The most common pixel-based matching costs include sums of squared intensity differ-
ences (SSD) (Hannah 1974) and absolute intensity differences (SAD) (Kanade 1994). In
the video processing community, these matching criteria are referred to as the mean-squared
error (MSE) and mean absolute difference (MAD) measures; the term displaced frame dif-
Jference is also often used (Tekalp 1993).

More recently, robust measures (8.2), including truncated quadratics and contaminated
Gaussians, have been proposed (Black and Anandan 1996; Black and Rangarajan 1996;
Scharstein and Szeliski 1998). These measures are useful because they limit the influence
of mismatches during aggregation. Vaish, Szeliski, Zitnick et af. (2006) compare a number
of such robust measures, including a new one based on the entropy of the pixel values at a
particular disparity hypothesis (Zitnick, Kang, Uyttendaele er al, 2004), which is particularly
useful in multi-view stereo,

Other traditional matching costs include normalized cross-correlation (8.11) (Hannah
1974; Bolles, Baker, and Hannah 1993; Evangelidis and Psarakis 2008), which behaves
similarly to sum-of-squared-differences (S5D), and binary matching costs (i.e., match or no
match) (Marr and Poggio 1976), based on binary features such as edges (Baker and Binford
1981; Grimson 1985) or the sign of the Laplacian (Nishihara 1984). Because of their poor
discriminability, simple binary matching costs are no longer used in dense stereo matching,

Some costs are insensitive to differences in camera gain or bias, for example gradient-
based measures (Seitz 1989; Scharstein 1994), phase and filter-bank responses (Marr and
Poggio 1979; Kass 1988; Jenkin, Jepson, and Tsotsos 1991; Jones and Malik 1992), filters
that remove regular or robust (bilaterally filtered) means (Ansar, Castano, and Matthies 2004,
Hirschmiiller and Scharstein 2009), dense feature descriptor (Tola, Lepetit, and Fua 2010),
and non-parametric measures such as rank and census transforms (Zabih and Woodfill 1994),
ordinal measures (Bhat and Nayar 1998), or entropy (Zitnick, Kang, Uytiendaele et al. 2004,
Zitnick and Kang 2007), The census transform, which converts each pixel inside a moving
window into a bit vector representing which neighbors are above or below the central pixel,
was found by Hirschmiiller and Scharstein (2009) to be quite robust against large-scale, non-
stationary exposure and illumination changes.

It is also possible to correct for differing global camera characteristics by performing
a preprocessing or iterative refinement step that estimates inter-image bias—gain variations
using global regression (Gennert 1988), histogram equalization (Cox, Roy, and Hingorani
1995}, or mutual information (Kim, Kolmogorov, and Zabih 2003; Hirschmiiller 2008). Lo-
cal, smoothly varying compensation fields have also been proposed (Strecha, Tuytelaars, and
Van Gool 2003; Zhang, McMillan, and Yu 2006),
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Figure 11.8 Shiftable window (Scharstein and Szeliski 2002) (€ 2002 Springer. The effect of trying all 3 » 3
shifted windows around the black pixel is the same as taking the minimum matching score across all centered
(non-shifted) windows in the same neighborhood, (For clarity, only three of the neighboring shifted windows are
shown here.)

In order to compensate for sampling issues, i.e., dramatically different pixel values in
high-frequency areas, Birchiield and Tomasi (1998) proposed a matching cost that is less sen-
sitive to shifts in image sampling. Rather than just comparing pixel values shifted by integral
amounts (which may miss a valid match), they compare each pixel in the reference image
against a linearly interpolated function of the other image. More detailed studies of these
and additional matching costs are explored in (Szeliski and Scharstein 2004; Hirschmiiller
and Scharstein 2009). In particular, if you expect there to be significant exposure or appear-
ance variation between images that you are matching, some of the more robust measures
that performed well in the evaluation by Hirschmiiller and Scharstein (2009), such as the
census transform (Zabih and Woodfill 1994), ordinal measures (Bhat and Nayar 1998), bi-
lateral subtraction (Ansar, Castano, and Matthies 2004), or hierarchical mutual information
(Hirschmiiller 2008), should be used.

11.4 Local methods

Local and window-based methods aggregate the matching cost by summing or averaging
over a support region in the DSI C(z, y, d).* A support region can be either two-dimensional
at a fixed disparity (favoring fronto-parallel surfaces), or three-dimensional in z-y-d space
(supporting slanted surfaces). Two-dimensional evidence aggregation has been implemented
using square windows or Gaussian convolution (traditional), multiple windows anchored at
different points, i.e., shiftable windows (Arnold 1983; Fusiello, Roberto, and Trucco 1997;
Bobick and Intille 1999}, windows with adaptive sizes (Okotomi and Kanade 1992; Kanade
and Okutomi 1994; Kang, Szeliski, and Chai 2001; Veksler 2001, 2003), windows based on
connected components of constant disparity (Boykov, Veksler, and Zabih 1998), or the re-
sults of color-based segmentation (Yoon and Kweon 2006; Tombari, Mattoccia, Di Stefano
et al. 2008). Three-dimensional support functions that have been proposed include limited
disparity difference (Grimson 1985), limited disparity gradient (Pollard, Mayhew, and Frisby
1985), Prazdny's coherence principle (Prazdny 1985), and the more recent work (which in-
cludes visibility and occlusion reasoning)} by Zitnick and Kanade (2000).

4 For two recent surveys and comparisons of such techniques, please see the work of Gong, Yang, Wang ef al.
{2007) and Tombari, Mattoccia, Di Stefano ef al. (2008),
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Figure 11.9 Aggregation window sizes and weights adapted to image content (T ombari, Mattoccia, Di Stefano ef
al. 2008) (€ 2008 IEEE: (a) original image with selected evaluation points; (b) variable windows (Veksler 2003);
(¢) adaptive weights (Yoon and Kweon 2006); (d) segmentation-based (Tombari, Mattoccia, and Di Stefano 2007).
Notice how the adaptive weights and segmentation-based techniques adapt their support to similarly colored

pixels.

Aggregation with a fixed support region can be performed using 2D or 3D convolution,
C(=,y,d) = w(z,y, d) * Co(=, v,d), (11.6)

or, in the case of rectangular windows, using efficient moving average box-filters (Sec-
tion 3.2.2) (Kanade, Yoshida, Oda et al. 1996; Kimura, Shinbo, Yamaguchi et al, 1999).
Shiftable windows can also be implemented efficiently using a separable sliding min-filter
(Figure 11.8) (Scharstein and Szeliski 2002, Section 4.2). Selecting among windows of dif-
ferent shapes and sizes can be performed more efficiently by first computing a summed area
table (Section 3.2.3, 3.30-3.32) (Veksler 2003). Selecting the right window is important,
since windows must be large enough to contain sufficient texture and yet small enough so
that they do not straddle depth discontinuities (Figure 11.9). An alternative method for ag-
gregation is iterative diffusion, i.e., repeatedly adding to each pixel’s cost the weighted values
of its neighboring pixels’ costs (Szeliski and Hinton 1985; Shah 1993; Scharstein and Szeliski
1998).

Of the local aggregation methods compared by Gong, Yang, Wang et al. (2007) and
Tombari, Mattoccia, Di Stefano er all (2008), the fast variable window approach of Vek-
sler (2003) and the locally weighting approach developed by Yoon and Kweon (2006) con-
sistently stood out as having the best tradeoff between performance and speed.® The local
weighting technique, in particular, is interesting because, instead of using square windows
with uniform weighting, each pixel within an aggregation window influences the final match-
ing cost based on its color similarity and spatial distance, just as in bilinear filtering (Fig-
ure 11.9¢). (In fact, their aggregation step is closely related to doing a joint bilateral filter
on the color/disparity image, except that it is done symmetrically in both reference and target
images.) The scgmentation-based aggregation method of Tombar, Mattoccia, and Di Stefano
(2007) did even better, although a fast implementation of this algorithm does not yet exist.

In local methods, the nﬁpha.sis is on the matching cost computation and cost aggregation
steps. Computing the final disparities is trivial: simply choose at each pixel the disparity
associated with the minimum cost value. Thus, these methods perform a local “winner-
take-all” (WTA) optimization at each pixel. A limitation of this approach (and many other

3 More recent and exiensive results from Tombari, Mattoccia, Di Stefano e al. (2008) can be found at hp:
Hwror vision.deis unibo.itspeSFEHome. aspx.
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correspondence algorithms) is that uniqueness of matches is only enforced for one image
(the reference image), while points in the other image might match multiple points, unless
cross-checking and subsequent hole filling is used (Fua 1993; Hirschmiiller and Scharstein
2004},

11.4.1 Sub-pixel estimation and uncertainty

Most stereo correspondence algorithms compute a set of disparity estimates in some dis-
cretized space, e.g., for integer disparities (exceptions include continuous optimization tech-
niques such as optical flow (Bergen, Anandan, Hanna er al. 1992) or splines (Szeliski and
Coughlan 1997}). For applications such as robot navigation or people tracking, these may be
perfectly adequate. However for image-based rendering, such quantized maps lead to very
unappeali