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42 2 Image formation

easier to express exact rotations. When the angle is in radians, the derivatives of R with

respect to to can easily be computed (2.36).

Quaternions, on the other hand, are better if you want to keep track of a smoothly moving

camera, since there are no discontinuities in the representation. It is also easier to interpolate

between rotations and to chain rigid transformations (Murray, Li, and Sastry 1994; Bregler

and Malik 1998).

My usual preference is to use quaternions, but to update their estimates using an incre-

mental rotation, as described in Section 6.2.2.

2.1.5 3D to 2D projections

Now that we know how to represent 2D and 3D geometric primitives and how to transform

them spatially, we need to specify how 3D primitives are projected onto the image plane. We

can do this using a linear 3D to 2D projection matrix. The simplest model is orthography,

which requires no division to get the final (inhomogeneous) result. The more commonly used

model is perspective, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the 2 component of the three-dimensional coordi-

nate p to obtain the 2D point x. (In this section, we use p to denote 3D points and a: to denote

2D points.) This can be written as

If we are using homogeneous (projective) coordinates, we can write

Ot—‘O CDC)
0

0 15, (2.47)
1

81
ll

OOH
i.e., we drop the 2 component but keep the w component. Orthography is an approximate

model for long focal length (telephoto) lenses and objects whose depth is shallow relative

to their distance to the camera (Sawhney and Hanson 1991). It is exact only for telecentric

lenses (Baker and Nayar 1999, 2001).

In practice, world coordinates (which may measure dimensions in meters) need to be

scaled to fit onto an image sensor (physically measured in millimeters, but ultimately mea—

sured in pixels). For this reason, scaled orthography is actually more commonly used,

a: : [$I2X210]p. (2.48)

This model is equivalent to first projecting the world points onto a local fronto—parallel image

plane and then scaling this image using regular perspective projection. The scaling can be the

same for all parts of the scene (Figure 2.7b) or it can be different for objects that are being

modeled independently (Figure 2.7c). More importantly, the scaling can vary from frame to

frame when estimating structure from motion, which can better model the scale change that

occurs as an object approaches the camera.

Scaled orthography is a popular model for reconstructing the 3D shape of objects far away

from the camera, since it greatly simplifies certain computations. For example, pose (camera
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(a) 3D View

(c) scaled orthography

(e) perspective (f) object-centered

Figure 2.7 Commonly used projection models: (a) 3D View of world, (b) orthography, (c) scaled orthography,

(d) para-perspective, (e) perspective, (0 object-centered. Each diagram shows a top—down View of the projection.

Note how parallel lines on the ground plane and box sides remain parallel in the non-perspective projections.
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2 Image formation

orientation) can be estimated using simple least squares (Section 6.2.1). Under orthography,

structure and motion can simultaneously be estimated using factorization (singular value de-

composition), as discussed in Section 7.3 (Tomasi and Kanade 1992).

A closely related projection model is para—perspective (Aloimonos 1990; Poelman and

Kanade 1997). In this model, object points are again first projected onto a local reference

parallel to the image plane. However, rather than being projected orthogonally to this plane,

they are projected parallel to the line of sight to the object center (Figure 2.7d). This is

followed by the usual projection onto the final image plane, which again amounts to a scaling.

The combination of these two projections is therefore afi‘ine and can be written as

a00 a01 (102 (Log

53: (110 an 0.12 (L13 5- (2-49)
0 0 0 1

Note how parallel lines in 3D remain parallel after projection in Figure 2.7b—d. Para—perspective

provides a more accurate projection model than scaled orthography, without incurring the

added complexity of per-pixel perspective division, which invalidates traditional factoriza—

tion methods (Poelman and Kanade 1997).

Perspective

The most commonly used projection in computer graphics and computer vision is true 3D

perspective (Figure 2.7e). Here, points are projected onto the image plane by dividing them

by their 2 component. Using inhomogeneous coordinates, this can be written as

ac/z

(327320)): y/z . (2.50)
1

In homogeneous coordinates, the projection has a simple linear form,

15, (2.51)Ol—‘O
0

0

1

H:
II

OOH ooo
i.e., we drop the in component of p. Thus, after projection, it is not possible to recover the

distance of the 3D point from the image, which makes sense for a 2D imaging sensor.

A form often seen in computer graphics systems is a two-step projection that first projects

3D coordinates into normalized device coordinates in the range (as, y, z) E [—1, —1] X

[,1, 1] x [0, 1], and then rescales these coordinates to integer pixel coordinates using a view—

port transformation (Watt 1995; OpenGL—ARB 1997). The (initial) perspective projection

is then represented using a 4 x 4 matrix

1 0 0 0

- 0 1 0 0 ~
as = , 2.520 0 _Zfar/zrange Znearzfar/Zrange p ( )

0 0 1 0

where znear and Zfar are the near and far 2 clipping planes and zrange = Zfar — znear. Note

that the first two rows are actually scaled by the focal length and the aspect ratio so that

APPL-1010 / Page 7 of 16
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Figure 2.8 Projection of a 3D camera—centered point pC onto the sensor planes at location 19. 0C is the camera

center (nodal point), cs is the 3D origin of the sensor plane coordinate system, and 5,, and 59 are the pixel spacings.

visible rays are mapped to (as, y, z) E [—1, —1]2. The reason for keeping the third row, rather

than dropping it, is that Visibility operations, such as z-buflering, require a depth for every

graphical element that is being rendered.

If we set 2near = 1, Zfar —> co, and switch the sign of the third row, the third element

of the normalized screen vector becomes the inverse depth, i.e., the disparity (Okutomi and

Kanade 1993). This can be quite convenient in many cases since, for cameras moving around

outdoors, the inverse depth to the camera is often a more well-conditioned parameterization
than direct 3D distance.

While a regular 2D image sensor has no way of measuring distance to a surface point,

range sensors (Section 12.2) and stereo matching algorithms (Chapter 11) can compute such

values. It is then convenient to be able to map from a sensor—based depth or disparity value d

directly back to a 3D location using the inverse of a 4 X 4 matrix (Section 2.1.5). We can do

this if we represent perspective projection using a full—rank 4 x 4 matrix, as in (2.64).

Camera intrinsics

Once we have projected a 3D point through an ideal pinhole using a projection matrix, we

must still transform the resulting coordinates according to the pixel sensor spacing and the

relative position of the sensor plane to the origin. Figure 2.8 shows an illustration of the

geometry involved. In this section, we first present a mapping from 2D pixel coordinates to

3D rays using a sensor homography M5, since this is easier to explain in terms of physically

measurable quantities. We then relate these quantities to the more commonly used camera in—

trinsic matrix K, which is used to map 3D camera—centered points 19C to 2D pixel coordinates

5,.

Image sensors return pixel values indexed by integer pixel coordinates (903,313), often

with the coordinates starting at the upper-left corner of the image and moving down and to

the right. (This convention is not obeyed by all imaging libraries, but the adjustment for

other coordinate systems is straightforward.) To map pixel centers to 3D coordinates, we first

scale the (905, y,) values by the pixel spacings (sz, 5,) (sometimes expressed in microns for
solid-state sensors) and then describe the orientation of the sensor array relative to the camera

projection center 00 with an origin cs and a 3D rotation Rs (Figure 2.8).
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The combined 2D to 3D projection can then be written as

Sz 0 0 a:
0 s O S _

p: [ Rslcs] 0 0., 0 ys =Msms. (2.53)
1

0 0 1

The first two columns of the 3 X 3 matrix Ms are the 3D vectors corresponding to unit steps

in the image pixel array along the ms and ys directions, while the third column is the 3D

image array origin cs.

The matrix MS is parameterized by eight unknowns: the three parameters describing

the rotation R5, the three parameters describing the translation cs, and the two scale factors

(SI, 5y). Note that we ignore here the possibility of skew between the two axes on the image

plane, since solid—state manufacturing techniques render this negligible. In practice, unless

we have accurate external knowledge of the sensor spacing or sensor orientation, there are

only seven degrees of freedom, since the distance of the sensor from the origin cannot be

teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model MS with the required seven degrees of freedom

(i.e., where the first two columns are orthogonal after an appropriate re—scaling) is impractical,

so most practitioners assume a general 3 x 3 homogeneous matrix form.

The relationship between the 3D pixel center 1) and the 3D camera—centered point pc is

given by an unknown scaling s, p : 3pc. We can therefore write the complete projection

between pc and a homogeneous version of the pixel address 5:5 as

a, : aMs—lpc = Kpc. (2.54)

The 3 X 3 matrix K is called the calibration matrix and describes the camera intrinsics (as

opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and

eight degrees of freedom (the full dimensionality of a 3 X 3 homogeneous matrix) in practice.

Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras

1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular

matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover

the full K matrix based on external measurement alone. When calibrating a camera (Chap-

ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating

the intrinsic (K) and extrinsic (R, 1;) camera parameters simultaneously using a series of
measurements,

iS:K[R‘t]pw:Ppw, (2.55)

where pw are known 3D world coordinates and

P : K[R|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post—multiply

K by R1 and pre-multiply [R|t] by RT, and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.
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Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center (cm, cg). The image

width and height are W and H.

The choice of an upper-triangular form for K seems to be conventional. Given a full

3 x 4 camera matrix P = K[R|t], we can compute an upper—triangular K matrix using QR

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In

matrix algebra textbooks, R represents an upper—triangular (right of the diagonal) matrix; in

computer vision, R is an orthogonal rotation.)

There are several ways to write the upper—triangular form of K. One possibility is

fm 5 cos

K: 0 f, cy , (2.57)
0 0 l

which uses independentfocal lengths fm and fy for the sensor a: and y dimensions. The entry

3 encodes any possible skew between the sensor axes due to the sensor not being mounted

perpendicular to the optical axis and (ex, Cy) denotes the optical center expressed in pixel

coordinates. Another possibility is

f s cm

K = O af Cy , (2.58)
0 0 1

where the aspect ratio a has been made explicit and a common focal length f is used.

In practice, for many applications an even simpler form can be obtained by setting a = 1
and s : 0,

f 0 can

K: 0 f c,, . (2.59)
0 0 1

Often, setting the origin at roughly the center of the image, e.g., (cx, 0,) = (W/2, H/2),

where W and H are the image height and width, can result in a perfectly usable camera

model with a single unknown, i.e., the focal length f.

Figure 2.9 shows how these quantities can be visualized as part of a simplified imaging

model. Note that now we have placed the image plane in front of the nodal point (projection

center of the lens). The sense of the y axis has also been flipped to get a coordinate system

compatible with the way that most imaging libraries treat the vertical (row) coordinate. Cer—

tain graphics libraries, such as Direct3D, use a left-handed coordinate system, which can lead
to some confusion.
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Figure 2.10 Central projection, showing the relationship between the 3D and 2D coordinates, p and :c, as well

as the relationship between the focal length f, image width W, and the field of view 6.

A note on focal lengths

The issue of how to express focal lengths is one that often causes confusion in implementing

computer vision algorithms and discussing their results. This is because the focal length

depends on the units used to measure pixels.

If we number pixel coordinates using integer values, say [0, W) X [0, H), the focal length

f and camera center (cm, cy) in (2.59) can be expressed as pixel values. How do these quan-

tities relate to the more familiar focal lengths used by photographers?

Figure 2.10 illustrates the relationship between the focal length f, the sensor width W,

and the field of View 6, which obey the formula

6 W W (9 ’1

tan— 2 — or f: 3 [tan-] .2 2f 2 (2.60)

For conventional film cameras, W 2 35mm, and hence f is also expressed in millimeters.

Since we work with digital images, it is more convenient to express W in pixels so that the

focal length f can be used directly in the calibration matrix K as in (2.59).

Another possibility is to scale the pixel coordinates so that they go from [—1, 1) along

the longer image dimension and [—a_1,a_1) along the shorter axis, where a Z 1 is the

image aspect ratio (as opposed to the sensor cell aspect ratio introduced earlier). This can be

accomplished using modified normalized device coordinates,

m’ = (2$3 e W)/S and y; = (2ys — H)/S, where S : maXU/V, H). (2.61)
S

This has the advantage that the focal length f and optical center (cm, 0,) become independent

of the image resolution, which can be useful when using multi—resolution, image—processing

algorithms, such as image pyramids (Section 3.5).2 The use of S instead of W also makes the

focal length the same for landscape (horizontal) and portrait (vertical) pictures, as is the case

in 35mm photography. (In some computer graphics textbooks and systems, normalized device

coordinates go from [—1, 1] x [~1, l], which requires the use of two different focal lengths

to describe the camera intrinsics (Watt 1995; OpenGL-ARB 1997).) Setting 5' = W = 2 in

(2.60), we obtain the simpler (unitless) relationship

_ 6
f 1 = tan —. (2.62)2

2 To make the conversion truly accurate after a downsampling step in a pyramid, floating point values of W and
H would have to be maintained since they can become non-integral if they are ever odd at a larger resolution in the
pyramid.

 

\
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2.1 Geometric primitives and transformations

The conversion between the various focal length representations is straightforward, e.g.,

to go from a unitless f to one expressed in pixels, multiply by W/2, while to convert from an

f expressed in pixels to the equivalent 35mm focal length, multiply by 35/Wt

Camera matrix

Now that we have shown how to parameterize the calibration matrix K, we can put the

camera intrinsics and extrinsics together to obtain a single 3 X 4 camera matrix

P:K[R[t]. (2.63)

It is sometimes preferable to use an invertible 4 X 4 matrix, which can be obtained by not

dropping the last row in the P matrix,

~ K 0 R t ~

P_[0T liiOT 1]:KE, (2.64)
where E is a 3D rigid—body (Euclidean) transformation and K is the full-rank calibration

matrix. The 4 x 4 camera matrix P can be used to map directly from 3D world coordinates

pm 2 (30“,, gm, zw, 1) to screen coordinates (plus disparity), m3 : (ms, 3),, 1, d),

m, N 1511,, (2.65)

where N indicates equality up to scale. Note that after multiplication by P, the vector is

divided by the third element of the vector to obtain the normalized form :03 : (ms, 3),, 1, d).

Plane plus parallax (projective depth)

In general, when using the 4 X 4 matrix 15, we have the freedom to remap the last row to

whatever suits our purpose (rather than just being the “standard” interpretation of disparity as

inverse depth). Let us re—write the last row of 15 as p3 = 33[fi0|c0], where “7‘10“ 2 1. We
then have the equation

d = —(’fL0 ' pm + Co), (2.66)

where z 2 p2 - 5w : rz - (pm 4 c) is the distance of pm from the camera center 0 (2.25)

along the optical axis Z (Figure 2.11). Thus, we can interpret d as the projective disparity

or projective depth of a 3D scene point pm from the reference plane fig - pw + co : 0

(Szeliski and Coughlan 1997; Szeliski and Golland 1999; Shade, Gortler, He et al. 1998;

Baker, Szeliski, and Anandan 1998). (The projective depth is also sometimes called parallax

in reconstruction algorithms that use the term plane plus parallax (Kumar, Anandan, and

Hanna 1994; Sawhney 1994).) Setting 710 : 0 and c0 = 1, i.e., putting the reference plane

at infinity, results in the more standard d = 1/2 version of disparity (Okutomi and Kanade

1993).

Another way to see this is to invert the 13 matrix so that we can map pixels plus disparity

directly back to 3D points,

15,.) = P :05. (2.67)

In general, we can choose 13 to have whatever form is convenient, i.e., to sample space us-

ing an arbitrary projection. This can come in particularly handy when setting up multi—View

49
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2 Image formation

d=0.5 d=0 d=-0.25

 
image plane 1p ane

d = inverse depth d = projective depth

Figure 2.11 Regular disparity (inverse depth) and projective depth (parallax from a reference plane).

stereo reconstruction algorithms, since it allows us to sweep a series of planes (Section 11.1.2)

through space with a variable (projective) sampling that best matches the sensed image mo—

tions (Collins 1996; Szeliski and Golland 1999; Saito and Kanade 1999).

Mapping from one camera to another

What happens when we take two images of a 3D scene from different camera positions or

orientations (Figure 2.12a)? Using the full rank 4 X 4 camera matrix P = KE from (2.64),

we can write the projection from world to screen coordinates as

i‘o N KoEop : 130p. (2.68)

Assuming that we know the z-buffer or disparity value do for a pixel in one image, we can

compute the 3D point location p using

p N 193112,; 1:20 (2.69)

and then project it into another image yielding

- ~ ~ _ ~ —1~ ~ ~—1- -

:111 ~ KlElp = K1131E0 1KO 330 : P1PO x0 = M10330. (2.70)

Unfortunately, we do not usually have access to the depth coordinates of pixels in a regular

photographic image. However, for a planar scene, as discussed above in (2.66), we can

replace the last row of P0 in (2.64) with a general plane equation, fig - p + co that maps

points on the plane to do : 0 values (Figure 2.12b). Thus, if we set do = O, we can ignore

the last column of M10 in (2.70) and also its last row, since we do not care about the final

z-buffer depth. The mapping equation (2.70) thus reduces to

521 ~ Ernie, (2.71)

where £110 is a general 3 X 3 homography matrix and 51:1 and £0 are now 2D homogeneous

coordinates (i.e., 3—vectors) (Szeliski 1996).This justifies the use of the 8-parameter homog-

raphy as a general alignment model for mosaics of planar scenes (Mann and Picard 1994;

Szeliski 1996). ~
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in = (X,Y,Z,1)

 
(a) (b)
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Figure 2.12 A point is projected into two images: (a) relationship between the 3D point coordinate (X, Y, Z, 1)

and the 2D projected point (x, y, 1, d); (b) planar homography induced by points all lying on a common plane

’flo'p-I—COZO.

The other special case where we do not need to know depth to perform inter-camera

mapping is when the camera is undergoing pure rotation (Section 9.1.3), i.e., when to = t1.

In this case, we can write

521 N KlRlelKglcfro : KlRlngliO, (2.72)

which again can be represented with a 3 x 3 homography. If we assume that the calibration

matrices have known aspect ratios and centers of projection (2.59), this homography can be

parameterized by the rotation amount and the two unknown focal lengths. This particular

formulation is commonly used in image—stitching applications (Section 9.1.3).

Object-centered projection

When working with long focal length lenses, it often becomes difficult to reliably estimate

the focal length from image measurements alone. This is because the focal length and the

distance to the object are highly correlated and it becomes difficult to tease these two effects

apart. For example, the change in scale of an object viewed through a zoom telephoto lens

can either be due to a zoom change or a motion towards the user. (This effect was put to

dramatic use in some of Alfred Hitchcock’s film Vertigo, where the simultaneous change of

zoom and camera motion produces a disquieting effect.)

This ambiguity becomes clearer if we write out the projection equation corresponding to

the simple calibration matrix K (2.59),

 
Tm 'P“ to:: _ 2.73

$5 sz.p+tz+cx ( )
- t

ys : er +031, (2.74)
7‘2 'P“ tz

where rm, Ty, and rz are the three rows of R. If the distance to the object center tz >> Ilpll

(the size of the object), the denominator is approximately tz and the overall scale of the

projected object depends on the ratio of f to t2. It therefore becomes difficult to disentangle

these two quantities.
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To see this more clearly, let 772 = t‘1 and s = 772 f. We can then re—write the above
Z

equations as

 
Tac'p"tm

: — m 2.75
$3 51+nsz-p+c ( )

ry'p"ty
S I 2.76

y 81+77z712'p+cy ( )
(Szeliski and Kang 1994; Pighin, Hecker, Lischinski et al. 1998). The scale of the projection

5 can be reliably estimated if we are looking at a known object (i.e., the 3D coordinates p

are known). The inverse distance 772 is now mostly decoupled from the estimates of s and

can be estimated from the amount of foreshortening as the object rotates. Furthermore, as

the lens becomes longer, i.e., the projection model becomes orthographic, there is no need to

replace a perspective imaging model with an orthographic one, since the same equation can

be used, with 77;, —> 0 (as opposed to f and 75,, both going to infinity). This allows us to form

a natural link between orthographic reconstruction techniques such as factorization and their

projective/perspective counterparts (Section 7.3).

2.1.6 Lens distortions

The above imaging models all assume that cameras obey a linear projection model where

straight lines in the world result in straight lines in the image. (This follows as a natural

consequence of linear matrix operations being applied to homogeneous coordinates.) Unfor—

tunately, many wide—angle lenses have noticeable radial distortion, which manifests itself as

a visible curvature in the projection of straight lines. (See Section 2.2.3 for a more detailed

discussion of lens optics, including chromatic aberration.) Unless this distortion is taken into

account, it becomes impossible to create highly accurate photorealistic reconstructions. For

example, image mosaics constructed without taking radial distortion into account will often

exhibit blurring due to the mis—registration of corresponding features before pixel blending

(Chapter 9).

Fortunately, compensating for radial distortion is not that difficult in practice. For most

lenses, a simple quartic model of distortion can produce good results. Let (are, ya) be the

pixel coordinates obtained after perspective division but before scaling by focal length f and

shifting by the optical center (or, cy), i.e.,

'r‘x p+tx:EC :
r2 p+tz
r - ——t

ya 2 La, (2.77)
Tz'p__tz 

The radial distortion model says that coordinates in the observed images are displaced away

(barrel distortion) or towards (pincushion distortion) the image center by an amount propor-

tional to their radial distance (Figure 2.13a—b).3 The simplest radial distortion models use

low—order polynomials, e.g.,

 
506 : xc(1 + H17“? —— mgr?)

a = yctl + w? —— wt), (2.78) 

3 Anamorphic lenses, which are widely used in feature film production, do not follow this radial distortion model.
Instead, they can be thought of, to a first approximation, as inducing different vertical and horizontal scalings, i.e.,
non—square pixels.
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COMPUTER SCIENCE

Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of
the recent advances in computer vision research, the dream of having a computer interpret an image at the
same level as a two-year old remains elusive.Why is computer vision such a challenging problem and what is
the current state of the art?

Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to
analyze and interpret images. It also describes challenging real-world applications where vision is being suc-
cessfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such
as image editing and stitching, which students can apply to their own personal photos and videos.

More than just a source of “recipes," this exceptionally authoritative and comprehensive textbook/reference
also takes a scientific approach to basic vision problems, formulating physical models of the imaging process
before inverting them to produce descriptions of a scene.These problems are also analyzed using statistical
models and solved using rigorous engineering techniques.

Topics and Features:

~ Structured to support active curricula and project-oriented courses, with tips in the Introduction for using
the book in a variety of customized courses

- Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing

numerous suggestions for small mid-term projects

' Provides additional material and more detailed mathematical topics in the Appendices, which cover
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