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42 2 Image formation

easier to express exact rotations. When the angle is in radians, the derivatives of R with
respect to w can easily be computed (2.36).

Quaternions, on the other hand,are better if you want to keep track of a smoothly moving

camera, since there are no discontinuities in the representation.It is also easier to interpolate
between rotations and to chain rigid transformations (Murray, Li, and Sastry 1994; Bregler

and Malik 1998).

Myusual preference is to use quaternions, but to update their estimates using an incre-
mental rotation, as described in Section 6.2.2.

2.1.5 3D to 2D projections

Nowthat we know howto represent 2D and 3D geometric primitives and how to transform

them spatially, we need to specify how 3D primitives are projected onto the image plane. We
can do this using a linear 3D to 2D projection matrix. The simplest model is orthography,

which requires nodivision to get the final (inhomogeneous)result. The more commonly used
modelis perspective, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the z componentof the three-dimensional coordi-
nate p to obtain the 2D point x. (In this section, we use p to denote 3D points and x to denote

2D points.) This can be written as

If we are using homogeneous(projective) coordinates, we can write

1 0 0 0

z=/|/0 1 0 01] p, (2.47)
000 1

i.e., we drop the z component but keep the w component. Orthography is an approximate

model for long focal length (telephoto) lenses and objects whose depth is shallow relative
to their distance to the camera (Sawhney and Hanson 1991). It is exact only for telecentric

lenses (Baker and Nayar 1999, 2001).

In practice, world coordinates (which may measure dimensions in meters) need to be
scaled to fit onto an image sensor (physically measured in millimeters, but ultimately mea-

sured in pixels). For this reason, scaled orthographyis actually more commonly used,

x = [sIgx2|0] p. (2.48)

This modelis equivalentto first projecting the world points onto a local fronto-parallel image

plane and then scaling this image using regular perspective projection. The scaling can be the
samefor all parts of the scene (Figure 2.7b) or it can be different for objects that are being
modeled independently (Figure 2.7c). More importantly, the scaling can vary from frame to
frame whenestimating structure from motion, which can better model the scale changethat

occurs as an object approaches the camera.

Scaled orthography is a popular model for reconstructing the 3D shape of objects far away
from the camera, since it greatly simplifies certain computations. For example, pose (camera
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2.1 Geometric primitives and transformations 43

  
(a) 3D view (b) orthography

  
 

(c) scaled orthography

(e) perspective (f) object-centered

Figure 2.7 Commonly usedprojection models: (a) 3D view of world, (b) orthography, (c) scaled orthography,
(d) para-perspective, (e) perspective, (f) object-centered. Each diagram showsa top-down viewofthe projection.
Note how parallel lines on the ground plane and boxsides remain parallel in the non-perspective projections.
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2 Image formation

orientation) can be estimated using simple least squares (Section 6.2.1). Under orthography,
structure and motion can simultaneously be estimated using factorization (singular value de-

composition), as discussed in Section 7.3 (Tomasi and Kanade 1992).
A closely related projection model is para-perspective (Aloimonos 1990; Poelman and

Kanade 1997). In this model, object points are again first projected onto a local reference

parallel to the image plane. However, rather than being projected orthogonally to this plane,
they are projected parallel to the line of sight to the object center (Figure 2.7d). This is
followed by the usual projection onto the final image plane, which again amountsto a scaling.
The combination of these two projectionsis therefore affine and can be written as

G00 401 G02 403

=| aio G11 G12 413|P. (2.49)
0 0 0 1

Note howparallel lines in 3D remain parallel after projection in Figure 2.7b—d. Para-perspective
provides a more accurate projection model than scaled orthography, without incurring the
added complexity of per-pixel perspective division, which invalidatestraditional factoriza-
tion methods (Poelman and Kanade 1997).

Perspective

The most commonly used projection in computer graphics and computer vision is true 3D
perspective (Figure 2.7e). Here, points are projected onto the image plane by dividing them
by their z component. Using inhomogeneouscoordinates, this can be written as

z£=P.(p)=| y/z |. (2.50)
1

In homogeneouscoordinates, the projection has a simple linear form,

1 0 0 0

z=|/0 1 0 0/9, (2.51)
00 1 0

i.e., we drop the w component of p. Thus, after projection, it is not possible to recover the
distance of the 3D point from the image, which makessense for a 2D imaging sensor.

A form often seen in computer graphics systems is a two-step projection thatfirst projects
3D coordinates into normalized device coordinates in the range (x,y,z) € [-1,—1] x

[—1, 1] x [0, 1], and then rescales these coordinates to integer pixel coordinates using a view-
port transformation (Watt 1995; OpenGL-ARB 1997). The(initial) perspective projection
is then represented using a 4 x 4 matrix

1 0 0 0

~ 0 1 0 0 =
c= ; 2520 0 Par]Zrange PnceBian}Somme p (

0 0 1 0

where Znear and Zfa, are the near and far z clipping planes and Zrange = Zfar — Znear- Note
that the first two rows are actually scaled by the focal length and the aspect ratio so that
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Figure 2.8 Projection of a 3D camera-centered point p, onto the sensor planesat location p. O, is the camera
center (nodalpoint), c, is the 3D origin ofthe sensor plane coordinate system, and s, and s,, are the pixel spacings.

visible rays are mapped to (x, y, z) € [—1, —1]?. The reasonfor keepingthe third row, rather
than droppingit, is that visibility operations, such as z-buffering, require a depth for every
graphical element that is being rendered.

If we set Zncar = 1, Ztar —> ©, and switch the sign of the third row, the third element

of the normalized screen vector becomesthe inverse depth,i.e., the disparity (Okutomi and
Kanade 1993). This can be quite convenient in manycases since, for cameras moving around
outdoors, the inverse depth to the camera is often a more well-conditioned parameterization
than direct 3D distance.

While a regular 2D image sensor has no way of measuring distance to a surface point,
range sensors (Section 12.2) and stereo matching algorithms (Chapter 11) can compute such
values. It is then convenient to be able to map from a sensor-based depth or disparity value d
directly back to a 3D location using the inverse of a 4 x 4 matrix (Section 2.1.5). We can do
this if we represent perspective projection using a full-rank 4 x 4 matrix, as in (2.64).

Cameraintrinsics

Once wehave projected a 3D point through an ideal pinhole using a projection matrix, we
muststill transform the resulting coordinates according to the pixel sensor spacing and the

relative position of the sensor plane to the origin. Figure 2.8 showsan illustration of the
geometry involved. In this section, we first present a mapping from 2D pixel coordinates to
3D rays using a sensor homography M,, since this is easier to explain in termsof physically
measurable quantities. We then relate these quantities to the more commonly used camera in-
trinsic matrix K,, which is used to map 3D camera-centered points p, to 2D pixel coordinates
Zs.

Image sensors return pixel values indexed by integer pixel coordinates (xs, Ys), often
with the coordinates starting at the upper-left corner of the image and moving down and to

the right. (This convention is not obeyed by all imaging libraries, but the adjustment for
other coordinate systems is straightforward.) To map pixel centers to 3D coordinates, wefirst
scale the (x;, ys) values by the pixel spacings (sz, 8) (sometimes expressed in microns for
solid-state sensors) and then describe the orientation of the sensorarray relative to the camera

projection center O, with an origin c, and a 3D rotation R, (Figure 2.8).
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2 Image formation

The combined 2D to 3D projection can then be written as

Ss, O 0 x
0 s, O ° —

p=[Rsles}] 9 4 9||us|= Mets. (2.53)
1

0 O 1

Thefirst two columnsof the 3 x 3 matrix IM, are the 3D vectors correspondingto unit steps
in the image pixel array along the x, and y, directions, while the third column is the 3D
image array origin C,.

The matrix M,, is parameterized by eight unknowns: the three parameters describing
the rotation R,, the three parameters describing the translation c,, and the two scale factors

(Sz, Sy). Note that we ignore here the possibility of skew between the two axes onthe image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are

only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurementalone.

However, estimating a camera model M, with the required seven degrees of freedom
(i.e., where the first two columnsare orthogonal after an appropriate re-scaling) is impractical,
so mostpractitioners assume a general 3 x 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point p,is
given by an unknownscaling s, p = sp,. We can therefore write the complete projection
between p, and a homogeneousversion ofthe pixel address %, as

&,=aM,'p, = Kp,. (2.54)

The 3 x 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, whicharecalled the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3 x 3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover

the full K matrix based on external measurement alone. Whencalibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (AC) and extrinsic (A, t) camera parameters simultaneously usingaseries of
measurements,

@,—K| B|t | p,= Pr, (2.55)
wherep,,, are known 3D world coordinates and

P=K[R{t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R,and pre-multiply [R|¢] by RY, and still end up with a valid calibration. Thus,it
is impossible based on image measurements alone to know thetrue orientation of the sensor
and the true camera intrinsics.
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Figure 2.9 Simplified cameraintrinsics showingthe focal length f and the optical center (c,, cy). The image
width and height are W and H.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3 x 4camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR
factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonalrotation.)

There are several ways to write the upper-triangular form of K. One possibility is

tee S Cy

K=|0 fy q |, (2.57)
0 Oo 1

which uses independentfocal lengths f, and fy for the sensor « and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (c,,c,) denotes the optical center expressed in pixel
coordinates. Another possibility is

f 8s Cz

Kk=]/ 0 af vc |, (2.58)
0 oO 41

where the aspect ratio a has been made explicit and a commonfocallength f is used.
In practice, for many applications an even simpler form can be obtained bysetting a = 1

and s = 0,

f 0 &

K=|0 f vx |. (2.59)
00 1

Often, setting the origin at roughly the center of the image,e.g., (Cz,cy) = (W/2, H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown,i.e., the focal length f.

Figure 2.9 shows how these quantities can be visualized as part of a simplified imaging
model. Note that now we have placed the image plane in front of the nodal point (projection
center of the lens). The sense of the y axis has also been flipped to get a coordinate system

compatible with the way that most imaginglibraries treat the vertical (row) coordinate. Cer-
tain graphics libraries, such as Direct3D,use a left-handed coordinate system, which can lead
to some confusion.
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Figure 2.10 Central projection, showing the relationship between the 3D and 2D coordinates, p and a, as well
as the relationship between the focal length f, image width W,andthe field of view 6.

A note on focal lengths

The issue of how to express focal lengths is one that often causes confusion in implementing

computer vision algorithms and discussing their results. This is because the focal length
depends on the units used to measure pixels.

If we numberpixel coordinatesusing integer values, say [0, W) x [0, H), the focal length
f and cameracenter (cz, Cy) in (2.59) can be expressed as pixel values. How do these quan-
tities relate to the more familiar focal lengths used by photographers?

Figure 2.10 illustrates the relationship between the focal length f, the sensor width W,
and the field of view 0, which obey the formula

-1

tan = 7 or f= “ an 4 5 (2.60)
For conventional film cameras, W = 35mm,and hence f is also expressed in millimeters.

Since we work with digital images, it is more convenient to express W in pixels so that the

focal length f can be useddirectly in the calibration matrix K asin (2.59).
Anotherpossibility is to scale the pixel coordinates so that they go from [—1, 1) along

the longer image dimension and [—a~',a~') along the shorter axis, where a > 1 is the
image aspectratio (as opposedto the sensor cell aspect ratio introducedearlier). This can be

accomplished using modified normalized device coordinates,

xl, = (2a, -—W)/S and y, = (2y, —H)/S, where S = max(W, #). (2.61)

This has the advantage that the focal length f and optical center (cz, cy) become independent
of the image resolution, which can be useful when using multi-resolution, image-processing

algorithms, such as image pyramids(Section 3.5).” The use of S' instead of W also makesthe
focal length the same for landscape (horizontal) and portrait (vertical) pictures, as is the case

in 35mm photography. (In some computer graphics textbooks and systems, normalized device

coordinates go from [—1, 1] x [—1, 1], which requires the use of two different focal lengths
to describe the camera intrinsics (Watt 1995; OpenGL-ARB 1997).) Setting S = W = 2in

(2.60), we obtain the simpler (unitless) relationship

f-+ =tan (2.62) 

2 To make the conversiontruly accurate after a downsamplingstep in a pyramid,floating point values of W and
H would have to be maintained since they can become non-integral if they are ever odd at a larger resolution in the
pyramid. \
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2.1 Geometric primitives and transformations

The conversion between the various focal length representations is straightforward,e.g.,

to go from a unitless f to one expressedin pixels, multiply by W/2, while to convert from an
f expressed in pixels to the equivalent 35mm focal length, multiply by 35/W.

Camera matrix

Now that we have shown how to parameterize the calibration matrix K, we can put the

camera intrinsics and extrinsics together to obtain a single 3 x 4 camera matrix

P=K[R|t]. (2.63)

It is sometimes preferable to use an invertible 4 x 4 matrix, which can be obtained by not

dropping the last row in the P matrix,

~ [K 0|[Rt -=| or tf ge | | =e. (2.64)
where E is a 3D rigid-body (Euclidean) transformation and K is the full-rank calibration
matrix. The 4 x 4 camera matrix P can be used to map directly from 3D world coordinates

Dy = (Zw; Yw; Zw; 1) to screen coordinates(plus disparity), x; = (Xs, ys, 1, d),

xz, ~ Pp,,, (2.65)

where ~ indicates equality up to scale. Note that after multiplication by P, the vector is
divided by the third element ofthe vector to obtain the normalized form 2, = (25, Ys, 1, d).

Plane plus parallax (projective depth)

In general, when using the 4 x 4 matrix P, we havethe freedom to remap the last row to
whateversuits our purpose(rather than just being the “standard” interpretation of disparity as
inverse depth). Let us re-write the last row of P as pz = s3[fio|co|, where||fo|| = 1. We
then have the equation

d= = (tg ‘Du +), (2.66)
where z = p.- Pp, = 12+ (DP, — C) is the distance of p,, from the camera center C’' (2.25)
along the optical axis Z (Figure 2.11). Thus, we can interpret d as the projective disparity

or projective depth of a 3D scene point p,, from the reference plane fio - p,, + co = 0
(Szeliski and Coughlan 1997; Szeliski and Golland 1999; Shade, Gortler, He et al. 1998;

Baker, Szeliski, and Anandan 1998). (The projective depth is also sometimescalled parallax
in reconstruction algorithms that use the term plane plus parallax (Kumar, Anandan, and

Hanna 1994; Sawhney 1994).) Setting Ao = O and co = 1, 1.e., putting the reference plane

at infinity, results in the more standard d = 1/z version of disparity (Okutomi and Kanade
1993).

Another wayto see this is to invert the P matrix so that we can mappixels plus disparity
directly back to 3D points,

py =Pag. (2.67)
In general, we can choose P to have whatever form is convenient, i.e., to sample space us-
ing an arbitrary projection. This can comein particularly handy whensetting up multi-view

49
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d=0.5 d=0 d=-0.25

 
image plane

 
plane

d= inverse depth d= projective depth

Figure 2.11 Regular disparity (inverse depth) and projective depth (parallax from a reference plane).

stereo reconstruction algorithms, since it allows us to sweepaseries of planes (Section 11.1.2)

through space with a variable (projective) sampling that best matches the sensed image mo-
tions (Collins 1996; Szeliski and Golland 1999; Saito and Kanade 1999),

Mapping from one camera to another

What happens when wetake two images of a 3D scene from different camera positions or
orientations (Figure 2.12a)? Using the full rank 4 x 4 camera matrix P = KE from (2.64),

we can write the projection from world to screen coordinates as

Lo ow KoEop = Pop. (2.68)

Assuming that we know the z-buffer or disparity value do for a pixel in one image, we can
compute the 3D point location p using

~—1

p~E,'Ko £0 (2.69)

and then project it into another image yielding
43 = = -1p-1- ~ «1. ~
@~ KiE\p=K,E\E)'K, to=PiP, %o = Mioixo. (2.70)

Unfortunately, we do not usually have access to the depth coordinates of pixels in a regular
photographic image. However, for a planar scene, as discussed above in (2.66), we can

replace the last row of Po in (2.64) with a general plane equation, fio - p + co that maps
points on the plane to dp = 0 values (Figure 2.12b). Thus, if we set do = 0, we can ignore
the last column of M19 in (2.70) andalso its last row, since we do not care aboutthe final

z-buffer depth. The mapping equation (2.70) thus reduces to

#1 ~ Hioxo, (2.71)

where H19 is a general 3 x 3 homography matrix and x, and @ are now 2D homogeneous
coordinates(i.e., 3-vectors) (Szeliski 1996).Thisjustifies the use of the 8-parameter homog-
raphy as a general alignment model for mosaics of planar scenes (Mann and Picard 1994;
Szeliski 1996). ¥
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p=(%Y,Z1)

 
(a) (b)
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Figure 2.12 A point is projected into two images: (a) relationship between the 3D point coordinate (X,Y, Z, 1)
and the 2D projected point (x, y, 1, d); (b) planar homography induced by pointsall lying on a commonplane
Ao: pt+co =O.

The other special case where we do not need to know depth to perform inter-camera

mapping is when the camera is undergoing pure rotation (Section 9.1.3), ie., when to = ¢4.
In this case, we can write

&@, ~ K,R,R)'Koto = KiRiK> xo, (2.72)

which again can be represented with a 3 x 3 homography. If we assumethat the calibration
matrices have knownaspectratios and centers of projection (2.59), this homography can be

parameterized by the rotation amount and the two unknownfocal lengths. This particular
formulation is commonly used in image-stitching applications (Section 9.1.3).

Object-centered projection

When working with long focal length lenses, it often becomesdifficult to reliably estimate

the focal length from image measurements alone. This is because the focal length and the

distance to the object are highly correlated and it becomesdifficult to tease these two effects

apart. For example, the change in scale of an object viewed through a zoom telephoto lens
can either be due to a zoom change or a motion towards the user. (This effect was put to

dramatic use in some of Alfred Hitchcock’s film Vertigo, where the simultaneous change of

zoom and camera motion producesa disquieting effect.)

This ambiguity becomesclearer if we write out the projection equation corresponding to

the simple calibration matrix Kk (2.59),

 
Te Pr ty=OT2,13Ts i ptt, 1? (2.73)

: b
Ys = pryPty + Cy, (2.74)

Tz° pr tz

where rz, ry, and r, are the three rows of R. If the distance to the object center t, > ||p||
(the size of the object), the denominator is approximately t, and the overall scale of the

projected object dependsontheratio of f to t,. It therefore becomesdifficult to disentangle

these two quantities.
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To see this more clearly, let 7, = t;! and s = n,f. We can then re-write the abovez

equations as

 
Te Dt+tz

—goPe oo, 2.75Xs *Tinw,-p ( )
ry Ptty

7 2.76u “Tine, ( )
(Szeliski and Kang 1994; Pighin, Hecker, Lischinski et al. 1998). The scale of the projection
s can be reliably estimated if we are looking at a known object(i.e., the 3D coordinates p

are known). The inverse distance 7, is now mostly decoupled from the estimates of s and

can be estimated from the amount of foreshortening as the object rotates. Furthermore, as

the lens becomeslonger,1.e., the projection model becomesorthographic, there is no need to

replace a perspective imaging model with an orthographic one, since the same equation can
be used, with 7, — 0 (as opposed to f and t, both going to infinity). This allows us to form

a natural link between orthographic reconstruction techniques such as factorization and their

projective/perspective counterparts (Section 7.3).

2.1.6 Lens distortions

The above imaging models all assume that cameras obey a Jinear projection model where

straight lines in the world result in straight lines in the image. (This follows as a natural

consequenceoflinear matrix operations being applied to homogeneous coordinates.) Unfor-
tunately, many wide-angle lenses have noticeable radial distortion, which manifests itself as

a visible curvature in the projection of straight lines. (See Section 2.2.3 for a more detailed

discussion of lens optics, including chromatic aberration.) Unless this distortion is taken into

account, it becomes impossible to create highly accurate photorealistic reconstructions. For

example, image mosaics constructed without taking radial distortion into account will often

exhibit blurring due to the mis-registration of corresponding features before pixel blending

(Chapter 9).

Fortunately, compensating for radial distortion is not that difficult in practice. For most

lenses, a simple quartic model of distortion can produce goodresults. Let (2,,y-) be the
pixel coordinates obtained after perspective division but before scaling by focal length f and

shifting by the optical center (cz, cy), ie.,

To PottsLo. = ——
Tz: ptt,
Ty: ptt

Yo = Pty (2.77)
Tz: ptt, 

The radial distortion model says that coordinates in the observed images are displaced away

(barrel distortion) or towards (pincushion distortion) the image center by an amount propor-
tional to their radial distance (Figure 2.13a—b).> The simplest radial distortion models use
low-order polynomials,e.g.,

Zo = «(1+ Kir? + Kors)

Ge = yc(l+Kir2 + kore), (2.78)  

3 Anamorphic lenses, which are widely usedin feature film production,do not follow this radial distortion model.
Instead, they can be thoughtof, to a first approximation, as inducing different vertical and horizontal scalings,i.e.,
non-square pixels.
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COMPUTER SCIENCE

Humansperceive the three-dimensional structure of the world with apparentease. However, despite all of
the recent advances in computervision research, the dream of having a computerinterpret an image at the
samelevel as a two-year old remains elusive.Why is computer vision such a challenging problem and whatis
the current state of the art?

ComputerVision: Algorithms and Applications explores the variety of techniques commonly used to
PYRE ANEAOTC MITcigORT LCemLeUOMM(oeotalMAT(CLaTUN)ARLeononicerLog wherevision is being suc-
cessfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such
as image editing and stitching, which students can apply to their own personal photos and videos.

Morethan just a source of“recipes,” this exceptionally authoritative and comprehensive textbook/reference
also takes a scientific approachto basic vision problems, formulating physical models of the imaging process
before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical
models and solved using rigorous engineering techniques.

Topics and Features:

* Structured to supportactive curricula and project-oriented courses, with tips in the Introduction for using
the book in a variety of customized courses

* Presents exercises at the end of each chapter with a heavy emphasis ontesting algorithms and containing
numeroussuggestions for small mid-term projects

* Provides additional material and more detailed mathematical topics in the Appendices, which cover
linear algebra, numerical techniques, and Bayesian estimation theory

* Suggests additional reading at the end of each chapter, including the latest research in each sub-field, in
addition to a full Bibliography at the end of the book

SMMAUoNUceTmaUSMUaCRome(Le LAL Noete! website,http://szeliski.org/Book/

Suitable for an upper-level undergraduate or graduate-level course in computer science or CleteaXaara
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