
Toshiba_Apricorn 1010-0001
IPR2018-01067

||||||||||[||||||||l||||||l|l|||||||l|l|l|||||||||||||||||l||||||||l|]||||l

United States Patent [19]

Culley et al.

[54]

['35]

[7'3]

[le

[22

[51]
[52]
[58]

[56]

EXPANSION CARI} [NSI‘ZR’I‘ION ANI)
REMOVAL

Inventors: Paul R. Culley, Cypress; Alan L.
Goudrum, 'I‘omhal]; Raymond Y.L.
Chow, Cypress; Barry S. Basile,
Houston, all of Tax.

Astignee: Compaq Computer Corporation,
Houston, Tex.

App]. No.: 08,458,602

Filed: Jun. 5, 1996

Int. Cl.“ G06!“ 131’00
US. Cl. 3951’283; 395.:‘75631; SOL-798
Field of Search 395.1283, 750.

395.5231, 232, TSUDI, 750.02, 750.07; 439173,
803, 832, 863, 864; 361.026, 732, 740,

759, 798

References Cited

US. PATENT DOCUMENTS

3361974 ll’lt'l‘JTB Donovan, Jr. et al. 31mm
3,853,3T0 IEEI‘J'M Goodman e! n]. 339375
4,506,007 NIQSI: LnC-reco elnl. . Eflfit'Sfi
4,523,413 12.4986 Spclaw 351,415
4,835,737 5x'l989 [IL-trig el ul. . 364me
4,375,867 Il|f|989 H00 . “WIS?
4,999,?8? 33'1991 Meanly el 3!. . 364514
5,003,431 33'“ng lrnsdahl . 361.!415
$010,426 43'1991 Krcnz .. 360397.01
5.191.9'3'0 33'1093 Broekwa}; cl at. ZEHJBSS
5.241le 93'1993 Mutoh et al. . 3953325
5.310.998 5EI‘J‘3‘4 Oktluo 235L380
5,3IT,482 $1904 Bujtas .. 3(313’708
5.311483 51"]994 Swindlcr .. 361E801
5,380,567 {£1995 Lien ct 31. 3953653
5,428,5t17 b.4995 (Thalci cl Eli. 361.1798
5,454,080 9:1995 I-‘asig et n]. 3951283
5,473,499 [2.31905 Wcir 36|f53
5,504,656 411995 Joist 3613754
5,513,329 4;“1996 I’econe , 395-“281
5,530,302 6:1996 ['Inmrc et al. .. 307II47

Immmwmt

U5005943482A

[11] Patent Number: 5,943,482

[45] Date of Patent: Aug. 24, 1999

5,555,51l1 WHEN: Verse-11.1191 al. 395.5282
5,581,312 IZIlWfi ilcrrman 3953233
5,625,238 4H9“)? Ady ct all 3(JW14T
5,529,835 5:199? Wright 361.9755

FOREIGN I’KI‘ENT DOCUMENTS

E} 24] 905 Iii-“[98? European Pitt. 00'. .
t} 254 450 LINES European l’al. ()IT. .
28 50 4411] SHOT-'9 Germany .
34 0‘) 02] 9.4985 Germany .

W0 93f15459 BMW)?» WIPO .

OTHER I’U BLICKFIONS

IBM Technical Diseiosnre Bulletin, vol. 34 No. 6. Nov.
1991, pp. 353—304, "Hot Plug, Receptacle Actuated
Mechanical Latch."

Maintenance & Service Guide, COMPAQ Doskpro XI.
Series of Personal Computers; pp. 3—18, 5—34; COMPAQ
Computer Corp, Houston, 'I'X.; Dec. 15, 1995.
Don Anderson, PCMCIA Syslcm Architecture, PC System
Architecture Series, Second Edition, pp. 31—83, 113—141.
145-162, 229—3fl9, 321—332, Copyright © 1995 by Mind-
Sharu, [nc., Richardson, TX.
Don Anderson/[om Shanley. CarrlBus System Architecture,
PC System Architecture Series, pp. lT—29, 39—58, 227436,
321—36], Copyrigh1© 1996 by MindSham, Inc. Richard—
son, TX.
Compactl’CI‘“ Specification, PCI Industrial Computers,
Revision 10, Nov, 1, I995, pp. 14. 36, and 50.

Priomrv Exmniner—Glenn A. Auve
Attorney. Agent, or Finn—Williams, Morgan 8‘: Amerson,
RC.

15?] ABSTRACT

A computer system has a lms, a connector for a circuit card,
and a Clamp configured to soleclively prcvenl removal ()I‘tht:
circuit card from the connector when the clamp is engaged.
The computer system has circuitry connected to monitor the
engagement status of the clamp and to regulate deliver},r of
power to the connector based on the engagement state of the
clamp.

26 Claims, 127 Drawing Sheets

lEl (OWL SISIlIS
POL” [I I :fll

mun WEI DWI
MICE mmt

Toshiba_Apricorn 1010-0001
|PR2018—01067

Toshiba_Apricorn 1010-0002
IPR2018-01067

5,943,482Sheet 1 of 127Aug. 24, 1999US. Patent

D......

E

emHam

.5:“we:

m=ml_u__1:<2=_._
N
N

8m=mJSS

.=_.=#5:;
:25:55$

2“55

EN

:35mun—”=—5o:E3328as:

E

(E-..

:3525:258mug—mmmax: 2

E

3:3585225:

Toshiba_Apricorn 1010-0002

|PR2018—01067

Toshiba_Apricorn 1010-0003
IPR2018-01067

5,943,482Sheet 2 of 127Aug. 24, 1999US. Patent

 I .35“magmaaEsfiaamsmzsgz

_as

.£522:aU5.5%is:
E222::

onIII.1“as:1..qu..Ildl5.2.‘l‘lI...33::g’Ezwfififii.,2.“flew“3-.’fl’rrr,32...., _ _rIEzanomlfi52éfikELWv‘lWl‘flW-Fflflh533%:“IEma.‘1

£555SE28552mm=32.532\3E2:E;zSE342%35288..

N.o:

.2395E:Newmum—E:

|PR2018—01067
Toshiba_Apricorn 1010-0003

Toshiba_Apricorn 1010-0004
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 3 0f127 5,943,482

119 118 116

BUS I-i PEI i PU
WATCHER

104 “‘25

128

3126
Secondary PCl Bus

FIG. 3

Toshiba_Apricorn 1010-0004
|PR2018—01067

Toshiba_Apricorn 1010-0005
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 4 0f127 5,943,482

155

Cable

Decoder

Trunsudion

(suntan

 160 161 162

Toshiba_Apricorn 1010-0005
|PR2018—01067

Toshiba_Apricorn 1010-0006
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 5 0f127 5,943,482

PC} CLK 1
PM 33Mhz

F013 I 00 Mhz

Queueinfi and PG slatemachine agit

PCLKPHII

Masher Cable I/F

_

{ABLE_(lKl

PU- fl Slave (able VF Master Cable I/F
PClKPHIl

180

Gawain and PC! state

machine 091:

“a 5 PC! [LKZ

Toshiba_Apricorn 1010-0006
|PR2018—01067

Toshiba_Apricorn 1010-0007
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 6 0f127 5,943,482

 [0(K INDICATION

3X CLOCK

PI.L

200 VCO
IUD Mhz

I97

203

DIV 3

State

Machine

ExternuI (LII IX (LOCK

FIG. 6

Toshiba_Apricorn 1010-0007
|PR2018—01067

Toshiba_Apricorn 1010-0008
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 7 of 127 5,943,482

2 “.5
a ua:

3 E
'3 '5u U

FIG]
PCLKS PCLKPHI]:n:d

U
a—

Toshiba_Apricorn 1010-0008
|PR2018—01067

Toshiba_Apricorn 1010-0009
IPR2018-01067

5,943,482Sheet 8 of 127Aug. 24, 1999US. Patent

2E
m:mmn

=EE
a
h

u... .---—. mm... -

:EE:2—:Q::E

as:«35EUIESSwas2a:
EU.—95..

Toshiba_Apricorn 1010-0009
|PR2018—01067

Toshiba_Apricorn 1010-0010
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 9 0f127 5,943,482

mun!
2‘3 PHll nu

Cubic Data I.
can or

FLFUOUTIS910]

IIIFTR [1:0]

226 33:; Pointer um‘mm

[ClKPHH RI

224

Eth3 v cu: (LRI
Hum" EUUTCNT

FIG. 9

Toshiba_Apricorn 1010-0010
|PR2018—01067

Toshiba_Apricorn 1010-0011
IPR2018-01067

5,943,482Sheet 10 of 127Aug. 24, 1999US. Patent

.252.5&25.535...:
3m

2.9:
:55:

2512532:

Toshiba_Apricorn 1010-0011
|PR2018—01067

Toshiba_Apricorn 1010-0012
IPR2018-01067

5,943,482Sheet 11 01'12?Aug. 24, 1999US. Patent

m

:.m:=EEEEEaEpa.2E.2.s
=.2

=§§Elm:5.2::21.:

|PR2018—01067

Toshiba_Apricorn 1010-0012

Toshiba_Apricorn 1010-0013
IPR2018-01067

5,943,482Sheet 12 of 127Aug. 24, 1999US. Patent

m:Em.....u

Ed:
3:592552:

ES;“:2.mE:NE:_E:aE:E:U23

525238

Toshiba_Apricorn 1010-0013
|PR2018—01067

Toshiba_Apricorn 1010-0014
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 13 nl'127 5,943,482

3X ELK — - -

3X CLK

FIG. 13

Toshiba_Apricorn 1010-0014
|PR2018—01067

Toshiba_Apricorn 1010-0015
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 14 of 127 5,943,482

E:3
a:
z
‘8.

=3

5.’E=a:h
‘5

Ea
a

Upsirenm-Io—Downslreum
omlU

Toshiba_Apricorn 1010-0015

|PR2018—01067

Toshiba_Apricorn 1010-0016
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 15 nl'127 5,943,482

Sin?le Address 2nd phase subsequentCy: e phases

3:-

cbul'l <2>

tbull<l > bulletl

_u

Dela ed

Rea /Write

Request

parity

BE<> lH

U-

HEE—"U I:

5%? Memory data ready data ready
perineum

'I:
n 1'".Q

Stream Canned

buffill‘

parity

BE<> a: mAI

end of completion and of completion

date ready

purity

Dela ed

Rea /Write

Completion

au-

dato read

FIG. 15A

Toshiba_Apricorn 1010-0016
|PR2018—01067

Toshiba_Apricorn 1010-0017
IPR2018-01067

5,943,482Sheet 16 of 127Aug. 24, 1999US. Patent

$3;.E3333

:3232.:E
2::

been:128...333.2:5=3..3so:2::$225.25

Toshiba_Apricorn 1010-0017
|PR2018—01067

Toshiba_Apricorn 1010-0018
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 17 nl'127 5,943,482

Impedance (Difiereniiall 108 +/- 5 Ohms

Impedance (Single-ended) 67 +/~ 5 Ohms

 Propagation Delay 1.54 ns/H minr 1.58 ns/fi max

Aflenuation (Differential)

DC Resistance

FIG. 16

Toshiba_Apricorn 1010-0018
|PR2018—01067

Toshiba_Apricorn 1010-0019
IPR2018-01067

5,943,482Sheet 18 of 127Aug. 24, 1999US. Patent

gum—ififizmiumwb

8”E59::

8”EGags:
:23355.8

Em

Sum:33H_

S”Ein:
SHEgee

2d:
=25.sz

E—E32“:3“22:25“mm

mmm
535d

fin
55.3

85:35

 E15333
.35

33333:
552

35%.:

8m

Toshiba_Apricorn 1010-0019
|PR2018—01067

Toshiba_Apricorn 1010-0020
IPR2018-01067

5,943,482Sheet 19 of 127Aug. 24, 1999US. Patent

2a:Eaéééufia—EE5:2EEEEEEEEHBREEas5235%EggInag-Egg22.2;555%as:2E32.5....BEBE-EgggsgsEEEEEEEEEEEEEEEE3%eggsBan-EggEggs

$3$85332.$3$33M“5%$32533mmmmmmmmmm:3:.$2.28mmmmmmwu“an."“an“:2:3::52:£52.5

3mm33$32:.
:2:

Toshiba_Apricorn 1010-0020
|PR2018—01067

Toshiba_Apricorn 1010-0021
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 20 of 122 5,943,482

 00 No Error

41034424
_2200410 42005212

2400 5232 44 00:01
_E£Efl- 50333
11110110]—
270115535 41005333
480114000
490334
_—440347
4000511311
440114211
40035434
—21005131 42004404
410015
—30UNCER 50005717
3101101 510025

il
FIG. 1‘) 110.1911 110.190

IIIIIIIIIII?
—EEILIIIE-—

55 UNCER

“3101111:-

MEI——

3—F UNCER

Toshiba_Apricorn 1010-0021
|PR2018—01067

Toshiba_Apricorn 1010-0022
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 21 of 127 5,943,482

 60 0859 19

fllfllfil-——_
WEI 32 0940 20
——A3 0353 13

E4 9333 13

E 0953 33 1

DB36 16

UNEER

0942 22 02

EA 9941 21 0

33 9929 09 EB 0334 14
EC UNCER

60 0859 39 I ' BD 0359 39 AD UNCER ED D339 19
aim-mEE 0950 30
—E]IR[E_—— EF 0354 34 14

F0 DB 58 18

1 UNCER

F3 UNCER

5 9926 06

6092101

97 0345 2505—— F? 0956 36 1
DB UNCER 3 0930

—99 0949 29 9 UNCER
"HIRE-WFA 0955 15

F9 0953 38 1

FC UNCER

FD 9347 27 0

FE UNCER

BF UNCER F UNCER

9

C5D!

m

a"-

O"-
I'I'Il'l'l

"II-l

'l'l

"H

“in-I

C'-

Toshiba_Apricorn 1010-0022
|PR2018—01067

Toshiba_Apricorn 1010-0023
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 22 of 127 5,943,482

Muster B

FIG. 20A

Toshiba_Apricorn 1010-0023
|PR2018—01067

Toshiba_Apricorn 1010-0024
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 23 of 127 5,943,482

Toshiba_Apricorn 1010-0024

|PR2018—01067

Toshiba_Apricorn 1010-0025
IPR2018-01067

5,943,482Sheet 24 of 127Aug. 24, 1999US. Patent

8..”

Balzfigfiawmlfiqslii
Sm

E3..-;:58::
inIn

335g-Hafiz;523..EExcuseSm

..S”:Eu:52.525:
I35:

:5332.1325.2...

Eusséfié3.5:a:EE.I$35...E.

:a:é-
Egg:25:2§sg§§=_=.§§. an

a:35

52:55.5<32:55..853:5.EH3
ENSsin“:

$2$215.:
an

Ems;a:33.52331.25%am:1;35%2:28,.5%.;

3sz5:5

agaiamo:555.23z@523435%:z
 “2:3255z

.5522Eu:5

S”:5.5:

Toshiba_Apricorn 1010-0025
|PR2018—01067

Toshiba_Apricorn 1010-0026
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 25 of 127 5,943,482

RESET

GNU-2'11] =
HEWGNT [1:0]

(HANGING_EHT = 0

KHANGWGJSNT = 1
8!" [7:0] = NUGNT
CHRMAST [2:0] =

unmsr [2:01
UPDATE RRJMST [2:01

GNT [M] =

HEWGNT [7:0]

[HANGIHG_GHT

FIG. 22

@099: warm 3. mum 2. BHSJDLE s. m_cuamsn = comm / (HANGINILGHT = 1
“ GNTU:D]=HIJGHT

mam [2:0] = unmet [to]
was: [2:0]

=n_nn_m51 [7.11]
LISIATE [m] =

11415!an n :0]

orEH_wmnow & mama: a. BUS_IDLE s. (LCLIRMAST = cumsn
mm [1 :0] = ILLISTATE [1:0]

(9 oreu_wmnow & mgunmsn = cumsn / cmxusms_am = 1
GHTI7201 = Mosm

(um [2:01 = N_£URMAST [2:0]

mm: RR_MAS[[2;D]

LISI‘ATE u :0] = «4mm [1:01

Toshiba_Apricorn 1010-0026
|PR2018—01067

Toshiba_Apricorn 1010-0027
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 26 of 127 5,943,482

!BhL_DEl_REfl / mummy = 1

n_cum51 [2:0] = Hum [2:0]

onu‘wmnow = 513991350 +

”55” MIH_GRANT+ lcumsuzm

AHY_SLDT_REO /

N CURMAST = H_RR_MAST 'AI._DEL_REO / N_(URMAST [2:0] = BALBOA
ADLRLMAST = 0

!ANY_SLDT_REB /

N_(URMAST [2:0] = mam, ADLRLMN = o

OPELWINDIJW =

!BAI._DEL_REO + BMJEI'RIE!

“Lumen s. mmsLREn/

n_cumsn2:01= W_MAST [2:0]

AD‘LRLMAST = n

® !EAL_DEL_RE{1 +
BM_DEl_REO s. :mvmsum

AHLSLOLRED / ADV_RR_MAST = 1

N_CURMAST [2:0] = N_nn_ms1[2:o]

FIG. 23

Toshiba_Apricorn 1010-0027
|PR2018—01067

Toshiba_Apricorn 1010-0028
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 27 nl'127 5,943,482

CURMAST [2:0] NEWGNT [7:0]

00000001

_—
——
-—
——

7

FIG. 24

Toshiba_Apricorn 1010-0028
|PR2018—01067

Toshiba_Apricorn 1010-0029
IPR2018-01067

5,943,482Sheet 28 of 127Aug. 24, 1999US. Patent

5mm$.52.N-_ux
ESalxm<sl<~c

:52

mm.m:

uva—UHSIES

mmm

EzusazqfiéE:222as:3”:£31.55::5E:65aas$5....25:53:22-535:
5555.2.52

5

EE5<215=21a35
mm:

Aads.—

can

«383

“massage”:aEasels”:aas$22.35a5:55.53
zzlgaab

=5Esazlzsz

Toshiba_Apricorn 1010-0029
|PR2018—01067

Toshiba_Apricorn 1010-0030
IPR2018-01067

5,943,482Sheet 29 of 127Aug. 24, 1999US. Patent

h-_"x
E23253

<3.o:

E2322

Em

222932-229
52.52.558s_2=._===.a§

Toshiba_Apricorn 1010-0030
|PR2018—01067

Toshiba_Apricorn 1010-0031
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 30 of 127 5,943,482

I4

PRIMARY PCI BUS

PEI-PEI

BRIDGE

CHIP

26

28

4B

32

SECONDARY PEI BUS

323

SBBBRDINATE
325 PCI BUS

327A 327B

FIG. 26B

Toshiba_Apricorn 1010-0031
|PR2018—01067

Toshiba_Apricorn 1010-0032
IPR2018-01067

5,943,482Sheet 31 of 127Aug. 24, 1999US. Patent

600000000000000000000000OD00°
guzzcfiflwz322224|?

N852:

_.__.uEz:W
2;

mom:5

33.:

3m5.;“E«3ms:
:9.uEz_._

a

End:a,

m3:5

Toshiba_Apricorn 1010-0032
|PR2018—01067

Toshiba_Apricorn 1010-0033
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 32 nl'127 5,943,482

32

SECONDARY PCI BUS

PDUT [28]

POUT [39:16]

36::

POUT [22]

EN

CLK

SWITCH

CIRCUIT

SWITCH

CIRCUIT

 POUT [34]

EU

I. ._
I
I
I
I
I
|
I

I
I
I
I
I
I
I
I
I
I
|
I
I
I
I

: Vss
I

I VOLTAGE

I I SUPPLY
—————————————————(:7 — ‘ " LEVEL

4]

FIG. 28

Toshiba_Apricorn 1010-0033
|PR2018—01067

Toshiba_Apricorn 1010-0034
IPR2018-01067

5,943,482Sheet 33 of 127Aug. 24, 1999US. Patent

.353._._$55.5anm

._..._..._.......:....fl_.:mm.m_.........:......=_._..........__....==....J...E5........
Ia

:—555E
:2:5.5522%

a...

.===1.=..._=1...

._...$.....zfi._wn)\$552.3...:23...$23....mya.............2

5......a

E..141..Iva“WEE....5....55...I..2.ca}I. IIHI.25...a.a...as...a.”fianfi...2..a...3......N
a

2...5......a.
Toshiba_Apricorn 1010-0034

|PR2018—01067

Toshiba_Apricorn 1010-0035
IPR2018-01067

5,943,482Sheet 34 of 127Aug. 24, 1999US. Patent

558:5%:55:5..—SEEEmma

Num...mm

on.2”.2Em.2

u33\2:33NumuE

1.35.35

:—32z:EEzz:3;:2...$22:

W28

Toshiba_Apricorn 1010-0035
|PR2018—01067

Toshiba_Apricorn 1010-0036
IPR2018-01067

5,943,482Sheet 35 of 127Aug. 24, 1999US. Patent

8»558:r5552.

523:52

*EVE:

:22855.1:

.U
—I

3:58#5\E

m

ind:

aE52.5

Toshiba_Apricorn 1010-0036
|PR2018—01067

Toshiba_Apricorn 1010-0037
IPR2018-01067

5,943,482Sheet 36 of 127Aug. 24, 1999US. Patent

 ES5:weaims“E...E5:51.:52...:E:2:E95.5._z.Iz:Egan.zE:2Eggs5é em59-E:3.--ms"3:35am9 ‘Emmugfl5:35a-o.55435so:an :2E5525...”asE.:2:IE52:E22525%H..325a"5x5:"_x§In5..Emma=35a
u335%.

m3:2:5.nuE:25.:53:E. n3551;'I.uEa:u82%E35.._Ena
................................f

|PR2018—01067
Toshiba_Apricorn 1010-0037

Toshiba_Apricorn 1010-0038
IPR2018-01067

5,943,482Sheet 37 of 127Aug. 24, 1999US. Patent

3::55:3E5”

a:
E

_

62:33

anS.e:

3:i=2.a
E.

as”

$2552.:

Toshiba_Apricorn 1010-0038
|PR2018—01067

Toshiba_Apricorn 1010-0039
IPR2018-01067

5,943,482Sheet 38 of 127Aug. 24, 1999US. Patent

«3

3:29:”.3m:

52—55::3

S”Eawn—3.:Hon—23m=2:a

58%:aanS”Egala:

Toshiba_Apricorn 1010-0039
|PR2018—01067

Toshiba_Apricorn 1010-0040
IPR2018-01067

5,943,482Sheet 39 of 127Aug. 24, 1999US. Patent

G“Egmzlzfiwm2.

3o
733mass.5

Toshiba_Apricorn 1010-0040
|PR2018—01067

Toshiba_Apricorn 1010-0041
IPR2018-01067

5,943,482Sheet 40 of 127Aug. 24, 1999US. Patent

m.

3;:a:E. -
SEa.Ea:

8:22:2.5::
a;5:

Ra

Em.2”.5:28“.5:3:28:52.a

S”ES:#42:
E

3:2:9:“E:
m;

3a

S”EEmlfizfima8”.2S:mas—E8”.2322:5:E”5Elisa;2353

Toshiba_Apricorn 1010-0041

|PR2018—01067

Toshiba_Apricorn 1010-0042
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 41 of 127 5,943,482

as; R“ csuc_o = lGElTING_BYTE

on mowflorr
ST0P_SCAN csn_o ="1"

cm_susv__smus = "u"

sun_noue = "o"

smmmm

on mom_orr

csnc_o = "1"

csu_o = "o"

CLR_BUSY_STATUS = "0"

cs:c_o = "0"

csu_o = "1"

(La_ausv_smus = "0"

cs:c_o = 1:51:41

csu_o = "1"

(LR_BUSY_STATUS

=ssmus_3m

SCAN_DONE = smugsum

STOP__SCAN =(BYTE_PTR_EI1UAL_CNT& GEITING_BYTE) 0R[(BYFE[1]&

BIT [0] 8. CHECK_SWITCH__0NLY) 0R (BYTE [4] 8. BIT [0]

8. ![HECK_SWITCH_0NLY)) & EGEITINLBYTE

FIG. 32A

Toshiba_Apricorn 1010-0042
|PR2018—01067

Toshiba_Apricorn 1010-0043
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 42 of 127 5,943,482

ClK

l | I | I I l I

I I | | | I : I I

 : :.:.:.:.A.A.A.l;l

FIG. 328

Toshiba_Apricorn 1010-0043
|PR2018—01067

Toshiba_Apricorn 1010-0044
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 43 nl'127 5,943,482

820

CLK

RST SWITCH SU_U PDATE

SLOT_EN [5:0] CSULLU

SLOT RST [5:0]

50_U PDATLDONE 993

CONTROL SIGNALS

PWREN [5:0]

““91: 0mm (lKEN#[5:0]
(MGM EOGIC BUSEN # [5:0]

RST # [5:0]

999

FIG. 33A

Toshiba_Apricorn 1010-0044
|PR2018—01067

Toshiba_Apricorn 1010-0045
IPR2018-01067

5,943,482Sheet 44 of 127Aug. 24, 1999US. Patent

3*853

Wm.mum._wmmM:EmmmM:En.n"_"Lulu-[Ir:IHJIM:"_uu"Ham”—2&3??-W__W_.WEI|IW=WIWII.HwM.iiimmmm.E:m:mmMM.u_M:.II3:252U112.}u.
{[lllllk35:ch:38$38

._.illIlsl:II.3532:$2:{T55.5%.5$3.:

:22SE

Toshiba_Apricorn 1010-0045
|PR2018—01067

Toshiba_Apricorn 1010-0046
IPR2018-01067

US Patent Aug- 24, 1999 Sheet 45 of 127

R51 ELSE

\ o c

[50LC_0 = "1"

B 50_UPDATE = A OR B 0R E

A = sw_rwaou on ammo"

.3H8 3E SU__UPDATE = '0‘
GUILD = "1'

lSU_UPDATE_DUNE

50*UPDATE_DUNE
CAYREU # = "0'

OFF_ARE] SU_UI’DATE = "0"

A- SW0mm“ GOULD: 1
Hw_mun

. CAYGNT#— "1'
a: ma

[SW_SW" (501ch :cmsm
PWRUPR3310945]

{mats (AVENUE: "0'

50_UPDATE [sou_o="1'
so_urnm = "1'
£AYREO#="1‘

Hw_mow: ANYsmLOPEN
MID 'FOK_PWRUF !SU_UPDATE_DONE

sw_man: (50_UPDATE on @ (SULc_0="1'
50_GO_awvon so_urnm="o-
(DO_RESET AND !FIRST__TIME)
AND mum LTD 9

FIG. 33(

5,943,482

FIG. 338

Toshiba_Apricorn 1010-0046
|PR2018—01067

Toshiba_Apricorn 1010-0047
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 46 nl'127 5,943,482

ESO_UPDATE_DONE

CSDLC_0 = “I"

SO_UPDATE_DONE

(AYREQ # = "D"

SO_UPDATE = "0"

(SOLE_0 = "1“

0FF_ARB2

CAYGNT # = “1 "

CSOLC_0 = !CAYGNT #

csmc_o = "1"
SO_UPDATE = "1"
CAYREO#="I"

!SO_UPDATE_DDNE

CSOLC_0 = "1"

SO_UPDATE = “0"

FIG. 330

Toshiba_Apricorn 1010-0047
|PR2018—01067

Toshiba_Apricorn 1010-0048
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 47 nl'127 5,943,482

!SO_UPDATE_DONE .
SD_UPDATE = "o"

csmc_o = "I"

SO_UPDATE_DONE

CAYREW: "o"

orunaa SO_UPDATE ="o"
CSDLC_0 = "1"

. CAYGNT#= "1"

w CSOLE_0 = !CAYGNT #
CAYGNT#=“0"

0 (sum :9"
SO_UPDATE = "1"

EAYREO#="I"

so PDATE DONE_" - !SD_UPDATE_DONE

® W (SOLC__D = "1"

CSDlC_0 = "1"

CAYREQ # = "1"

FIG. 33E

Toshiba_Apricorn 1010-0048
|PR2018—01067

Toshiba_Apricorn 1010-0049
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 48 of 127 5,943,482

(sow: = "1'

so_urnm = A on B on:

so UPDATE = "0"
I _.SILUI’DJ'JEJJWE .® {sum}: uso_urnm£_nou£

csmc_o ="0"

5031mm = "1'

SI}_UPDATE = "0"

!11MER_TIMEOUT .® (SOLE.0="1'
TIMERJIMEUUT

so_umm = "0'

mums] (sou ="l'
mm 9 = "0"

.. _ SO_UPDATE= "0'WW # = 1 .w (sow) = (mm
(mm 9 = "o-

(SDLCJI = "1"

CAYREQ # = "1“

CSOLCJJ = "1"

FIG. 33F SO_UPDATE = "1"

FIG. 33F

Toshiba_Apricorn 1010-0049
|PR2018—01067

Toshiba_Apricorn 1010-0050
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 49 of 127 5,943,482

lTlMER_TIMEOUT

were”: "0' . SO_UPDATE = "a“
csou_o = "1"

so_urnm = "n" EMERJIMEOUT
csmc_o = mam

. so_um15="o'
DN_ARB2 CSOLC_0 = “1"

CAYRED # = "fl"

CSOlC_fl = "0"

csmc_o="1“ SD_UPDATE="I"
(AYREG # = "1"

EAYGNT#="1'
(AYGHW = "1'

. SO_UPDAIE="0'
csmc_o = [mm #

0H_ARBS (AYGNT # = "on

SO_UPDATE_DOHE @ (fig: .1].
SO’UPDATE = "a"

£50m) = "1'
09331940" csmc_0="1'

SD_UPDATE = "0'

lSO_UPDATE_DONE .

FIG. 33G

Toshiba_Apricorn 1010-0050
|PR2018—01067

Toshiba_Apricorn 1010-0051
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 50 of 127 5,943,482

SOJJPDATE = "0"!SD_UPDATE_DOHE
CSDLC_U = “1“

so_urnm_nou£

CAYREQ # = "O"

SO_UPDATE = "0"

ESOlC_0 = "l"

Toshiba_Apricorn 1010-0051
|PR2018—01067

Toshiba_Apricorn 1010-0052
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 51 of 127 5,943,482

SHIFT Cl“

319w M
COUNTER

mum [5:01

SCI—UPDATE DONE

DATE 033;“SO UP 5
‘ STATE LOAD_CNTR

920 MACHINE CSOSC_0

ELK

PWREN [5:0]

BUSEH # [5:0]

CLKEN # [5:0]

RST # [5:0] CSOC_0
GPOA [3:0]

LEDS [1 1:0]

924

FIG. 34

Toshiba_Apricorn 1010-0052
|PR2018—01067

Toshiba_Apricorn 1010-0053
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 52 of 127 5,943,482

RST

!SO_UPDATE csnsc_o = "1'
LOAD_CNTR = SO_UPDATE

mgcu TR = "o"

 so_urnm

csosc_o = "0"

LOAD_(N1R = "o"

mum = "a“

 csosc_o = "o"

LOAD_CNTR = "0"
mums = "o"

csosc_o ="1"

mum = "0“

mum = "0'

IMALCNT

mum = W“
mum = 1mm

csosc_o = 1mm

FIG. 35A

Toshiba_Apricorn 1010-0053
|PR2018—01067

Toshiba_Apricorn 1010-0054
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 53 nl'127 5,943,482

——__._ _q_..__

FIG.353

mlNEWPfllfl[39:0]sfsmus !
ELK ($le0

Toshiba_Apricorn 1010-0054
|PR2018—01067

Toshiba_Apricorn 1010-0055
IPR2018-01067

5,943,482Sheet 54 of 127Aug. 24, 1999US. Patent

H.532;

RE:E2

em.9:

$3252ENE52Snag.52

E5\3.5

:—2.5m

slag

Toshiba_Apricorn 1010-0055
|PR2018—01067

Toshiba_Apricorn 1010-0056
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 55 nl'127 5,943,482

 NMI

HAN DER

BUS HANG

?

CALL

BIDS

ISOLATE

HANDLER

(ALL

OTHER

PROCEDURES

FIG. 37

Toshiba_Apricorn 1010-0056
|PR2018—01067

Toshiba_Apricorn 1010-0057
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 56 of 127 5,943,482

BIOS DEIELTS

ASR BOOT

444

ISOLATION

IN PROGRESS

EV SEE
1|

446

BUS

HANG

PENDING

'2'

RE-ENABLE

ALL smrs

EXCEPT ONES 443
ENABLED

PRIOR TO ASR

450

CALL

BIOS

LOG FAILURE ISOLAIE

(LEAR EV HANDLER

452

BUS HANG

PENDING

?

RESET BUS

HANG PENDING

BIT

@ FIG. 38

Toshiba_Apricorn 1010-0057
|PR2018—01067

Toshiba_Apricorn 1010-0058
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 57 of 127 5,943,482

410

SET ISOLATION IN

PROGRESS EV,

RESET BUS

PENDING BIT

FIG. 39 He. 39%

 LOG ADDRESS /
DATA HISTORY
AND BUS

STATE 1II'EL'TORS

RE-ENABLE ONE SLOT,
READ / WRITE FROM IT'S
PEI CONFIG SPACE

 BUS HANG

'ENDING SET?

LOG FAILURE

SET FAILURE

RE-ENABLE

READ / WRITE
SLOT I

 BUS HANG

PENDING SET

FIG. 39A

Toshiba_Apricorn 1010-0058
|PR2018—01067

Toshiba_Apricorn 1010-0059
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 58 nl'127 5,943,482

413 .
DISABLE SLOT

UPDATE ISOLATION IN

PROGRESS EV,

PROCEED TO NEXT

POPULATED $101 “0

 TRIED ALI.

POPULATED SLOTS?———IIO

416

YES

I in: E [I '
FAILURE FLAG SEI

”IIIDIIEEEEELSASTIEIIJII FOR ANY SLOT?

DISABLE SLOTIS), LOG
FAILURE 44"

YES

RE-ENABLE NON-FAILED
SLOTS

426

FIG. 39B

Toshiba_Apricorn 1010-0059
|PR2018—01067

Toshiba_Apricorn 1010-0060
IPR2018-01067

5,943,482Sheet 59 of 127Aug. 24, 1999US. Patent

352Salami:Ed:3”583.56:35:33:25:S5“92.2.3,:2:a:a...mg
a:

8E35:;
Sc

S:

8d:

553;an.5:ms:

salazlé2.2%E2632EElma_“.5aa;

5.5EE:5;...SE«Susie3.225.55.”:a523.2.3;5.22::E:5..

éa:32%E
SE223:3:5.22::a:ma

 :3:33.3513“=5E:E529%“2.2%E22:15was;-Ias:H.g53%”aEm“2.5.zmluflmwcan::8“2:SnI
23..9:5.

.5.

SEREUza_“3EE;

.6Es“;his.
:5“I2:$2:.5E8:53...

SEwas.

5.259134;2.22::Ev

Toshiba_Apricorn 1010-0060
|PR2018—01067

Toshiba_Apricorn 1010-0061
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 60 of 127 5,943,482

!SE[_HAHG_PEND

BR_M_ABORT =0
BR_T_ABORT = o

RtOVLACflVE = o

SELHANGJEND

/ may = mzvssL

PELIDLE /
BR_M_ABURT = 1

SERILEN = 1

 FRAML/

BR LABGRT =1
SEELEN = 1

DEV_SE_L_WAS

TIME um 15 a. mum:
/ mm = I

!FRAME_
/ SIDP_D = l

HANE_PEND

457

4-311

comma

PClK

FIG. 41

Toshiba_Apricorn 1010-0061
|PR2018—01067

Toshiba_Apricorn 1010-0062
IPR2018-01067

5,943,482Sheet 61 of 127Aug. 24, 1999US. Patent

Bing...m3

“252'“;

m3

3‘d:

53...:S.2“.

<$d:

sated?”

$5535.93
Toshiba_Apricorn 1010-0062

|PR2018—01067

Toshiba_Apricorn 1010-0063
IPR2018-01067

5,943,482Sheet 62 of 127Aug. 24, 1999US. Patent

3339325

:2

3315.2;

a?.o:

as???

3—.

53::a;

35:29:

ad9
aaa

a?

E:

5.5Elsi...532:
E

Toshiba_Apricorn 1010-0063
|PR2018—01067

Toshiba_Apricorn 1010-0064
IPR2018-01067

5,943,482Sheet 63 of 127Aug. 24, 1999US. Patent

2‘d:

5:122:

a

Toshiba_Apricorn 1010-0064

|PR2018—01067

Toshiba_Apricorn 1010-0065
IPR2018-01067

5,943,482Sheet 64 of 127Aug. 24, 1999US. Patent

93.3an2|2:IE:33:2:IE:IS:863«2.5955:
3qu.E=IE>Im=m

=.58.—I9:I23

33.55%:

as“

II. E:
522::E:as

3:I551;—

S:E:as

a:

__________._________fl___

_s.52::I5:ma
__.___

___________..a:a:.5_.______________

5m::62.IE:I25«33.2%:I5:I955533.3
3d:_

Toshiba_Apricorn 1010-0065
|PR2018—01067

Toshiba_Apricorn 1010-0066
IPR2018-01067

US. Patent

 BRIDGE EIREUII' IB

EQUAL TO ZERO

I012

1014 lHEREMENT
{URRENLFELBUS

Aug. 24, 1999

IERD

SET SEEONDARY ?
BUS NUMBER BE

BUS_ASSIGN

SET PEI BUS IOOO
EOUAITD

EURRENT_PEI BUS;
INIIIALIIE DEV-
AND FEN

1024

PEI_BUS
EDUAITD

Sheet 65 of 127

1026

SEISUBORDINATE
Bus NUMBER OF
PEI - PEI BRIDGE

EBBBLEB

EURRENLPELBIIS

RESTORE

PEI_BUS, DEI'
AND FEN

CALL

BUS_ASSIGN

5,943,482

OR SLOT 36 TIMI IS
POWERED DOWN OR

EMPTY ON PEI BUS;
UPDATE DEV AND FEN

SET PRIMARY BUS
NUMBER BE PEI - PEI
BRIDGE EOUALTO

EURRENLPELBOS

FIG. 45

FIND NEXT PEI - PEI BRIDGE

INEREMENT

EURRENT_PEI_BUS

SEI SECONDARY

BUS NUMBER OF
PEI - PEI BRIDGE

EOIJIII. TO

EURRENT__PEI__BUS

SEI' SUBORDINATE
BUS NUMBER OF
PEI - PEI BRIDGE

EOUAI. TO MAXIMUM
NUMBER OF PEI BUSES

1022

I020

PRESERVE

PE|_BUS, DEV
MID PEN

IOIB

IOIG

Toshiba_Apricorn 1010-0066
|PR2018—01067

Toshiba_Apricorn 1010-0067
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 66 nl'127 5,943,482

MEM_AI.LOE

INITIAIIZE

SEAREH

PARAMETERS

102B

FWD NEXT

PCI FUNCTION,

EMPTY SLOT,
OR POWERED DOWN SLOT

ALLOCATE DEFAULT

MEMORY SIZE

AND ALIGNMENT FOR

EMPTY OR

POWERED DOWN SLOT

ALLOCATE MEMORY

RESOURCES AS

SPECIFIED BY THE1038
Ptl FUNCTION

FIG. 46

Toshiba_Apricorn 1010-0067
|PR2018—01067

Toshiba_Apricorn 1010-0068
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 67 nl'127 5,943,482

I/ D_ALLDC

INTTTALIZE

SEARCH

PARAMETERS

1040

 FWD NEXT

PEI FUNCTION,

EMPTY SLOT, OR
POWERED DOWN SLOT

ALLOEATE DEFAULT

l/ 0 SIZE
AND ALIGNMENT FOR

EMPTY DR

POWERED DOWN SLOT

ALLOCATE | / D

RESOURCES AS

SPEEIFIED BY THE
'05" PCI ruucnon

FIG. 47

Toshiba_Apricorn 1010-0068
|PR2018—01067

Toshiba_Apricorn 1010-0069
IPR2018-01067

US. Patent Aug.24, 1999 Sheet as of 127 5,943,482

CIIRD_IIIT

1053 .
1.9 I "1’

II REDISTERDDD 1052
TD EIIID NEWLY
INSERTED CARD “057

V 1056 DEIERMINE RRIIRRRV,
SECDIIDRRV, RIID

m SUDDRDIIIATERIIS
NUMBERS RESERVED
EDRTIIISSIDT

wRITETo 105"

SLOT ENABLE

REGISTER SIT R
SET SD Bfl TD RRELE'EEIENEFWW CDIIEIDDRE PEI . PE]

1054 RDVVER DPSEDT 36 AND ”my 5mg Egégfigifignw
RESERVED FOR THIS SLOT “MEDINA.“ Rus

ACCESS RuIIDERs
1055 PCI BUS 0" VIRITE BASE

EMBED? ABDRESS REGISTERS
III THE RCI

CONFIGURATION SPACE

HEADER 1952

TERRIER
VIRTTE TD RIII REGISTER "3"“
IHTERRUPTREGUSTER 1068
300 TO CLEAR

 IITIERRDIT 1066 DDES Y {IREHEEFRW
“1513"“ VIITH APPROPRIATE

1972 5 IRO NUMBER
LDRD DEVICE ?
DRIVER EDR N

CARD 3C. 1074 Emfiucsans
REGISTERISI 1070

FIG. 48

Toshiba_Apricorn 1010-0069
|PR2018—01067

Toshiba_Apricorn 1010-0070
IPR2018-01067

US. Patent Aug.24,1999 Sheet 69 0I'127 5,943,482

BYTE DOUBLE‘I'IDRD
3 2 1 0 NUHEIER

120 STATUSl REGISTER : 1 : _—. 1202 01
REVISION

3335!! ”SSW “2
HEADER UITEIICY“'57 "MEI m “3

BRSE ADDRESS 0 D4

1218 BASE ADDRESS 1 1220 05
__ _

SEEDNDARY SDBORDINATE SEEDNDAR'I' PRIMARY 1 222
LATENCY BUS BUS B115 06
TIMER NUMBER HDHBER NUMBER

SECONDARY I D 1208SII'ITUS “RISE "7
MEMORY MEMORY ‘ 1210

1214 LlMIT BASE DB
'REEEIEHABLE ' ‘ l ' MERIDRIIIDII MEMORY BE ‘2” “9

PREPEIIHAPIERISE m
(UPPER 32 BITS)

PREFEICHABLEBRSE n
ILUWERBIBIISI

I D LIMIT 1 D BASE 2
(UPPER 16 BITS) IIDwER II arm I

RESERVED 13

EXPANSION RUM BASE 14

RIDGE IIIIERRUPI IIITERRUPT
IDIIIRDI PIII LINE 15

1252 1204 1206

PEI - PEI BRIDGE (UHFIGURAIION REGISTERS

FIG. 49

Toshiba_Apricorn 1010-0070
|PR2018—01067

Toshiba_Apricorn 1010-0071
IPR2018-01067

5,943,482Sheet 70 of 127Aug. 24, 1999US. Patent

E:55.::8.m:new_
E:

dogmas...
qS:E:2

E:moan:

.2E22
48a:

3::E2::E
55::

m_w_32$252.5..ma—2fl_S:U.—Edzam:35“we:22$55$555..-EE-E$538
SE

ama5..

EEE\
was”;5::

2:—.33SN_

Toshiba_Apricorn 1010-0071
|PR2018—01067

Toshiba_Apricorn 1010-0072
IPR2018-01067

5,943,482Sheet 71 of 127Aug. 24, 1999US. Patent

Em

$58:
anEms—EE583

Ed:
:E“:2;Es...ass:E.362:5.2asha2:22aaEE:

S

Toshiba_Apricorn 1010-0072
|PR2018—01067

Toshiba_Apricorn 1010-0073
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 72 01'127 5,943,482

PRIMARY SECONDARY ADDRESS

ADDRESS BITS AD [31 ::1 61

AD [15:11]

00000 0000 0000 0000 0001

00001 0000 0000 0000 0010

0000 0000 0000 0100

m 0000 0000 0000 1000
0000 0000 0001 0000

0000 0000 0010 0000

m 0000 0000 0100 0000
mi- 0000 0000 10000000

0000 0001 0000 0000

mm- 0000 00100000 0000
m 0000 0100 0000 0000

0000 1000 0000 0000

mm- 0001 0000 0000 0000

0010 0000 0000 0000

0100 0000 0000 0000

1000 0000 0000 0000

m 0000 0000 0000 0000

FIG. 52

Toshiba_Apricorn 1010-0073
|PR2018—01067

Toshiba_Apricorn 1010-0074
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 73 nl'127 5,943,482

UPSIREAM_(H!P 275

"’5“ nra_crc_cvc_us
(FGCMD

ADBRBH

UPSTREAM__CHIP
51_BL_IDSEL 278
(FBCMD TYPB_CFG_CY(_DS

ADDRBB

MSTILAETWE

230

cream

mono] m1_crs_cvcfius

upsmmumr

282
(mean

mm m1_ch_cvc_ns

manual?

wn_crs_orc_us

lN_RANGE

PASSJYPI _DS

SEE_BUS__MATCH

SE(_BUS_MAT[H
286

PCI_ADDR [I 5:] I]

2 00100 238

290TYPI [FB_EYC_DS

mfiuci
sumcu PASS_TYPI_US
wn_

FIG. 53A

Toshiba_Apricorn 1010-0074
|PR2018—01067

Toshiba_Apricorn 1010-0075
IPR2018-01067

5,943,482Sheet 74 of 127Aug. 24, 1999US. Patent

En
25.2.2.6

$33.33
a
a
u

Eu...

mmm.w:
2:12le25-24%m::33

521253

554.5

a

223.2:

HEWEAE
3“

35.24%
3“

32.1242
 n:we“acSpatula553215aSIEuas;as255:.55..3:am:5at25:55:

1IIonSE:2.as2::.59:.94:23's.:
magnet

Toshiba_Apricorn 1010-0075
|PR2018—01067

Toshiba_Apricorn 1010-0076
IPR2018-01067

5,943,482Sheet 75 of 127Aug. 24, 1999US. Patent

3:53am:

22a
fig8:mé:2

.2

#md:

s:g:E9:58:Emama:.25.53E:S:5:58“dc.533:585.5-mg:22.2329:52I2.2:5IE.:59
52:

“53.5%.; .fin“82

|PR2018—01067
Toshiba_Apricorn 1010-0076

Toshiba_Apricorn 1010-0077
IPR2018-01067

5,943,482Sheet 76 of 127Aug. 24, 1999US. Patent

852EBEIfiEISQ353a:«EA—IS:

2%.o:2:52:15 .3

5E

“3:585
:2

$3.55;

E”.5:53z.”—
22

E2:515:45:
E:

EEaglsglsa

Toshiba_Apricorn 1010-0077
|PR2018—01067

Toshiba_Apricorn 1010-0078
IPR2018-01067

5,943,482Sheet 77 of 127Aug. 24, 1999US. Patent

22

E:=2“...mmd:
S:E

2::

Ex:

SE

was:5..-E

=8_

=2:

Toshiba_Apricorn 1010-0078
|PR2018—01067

Toshiba_Apricorn 1010-0079
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 78 of 127 5,943,482

lEVEl.2

FIG.56(PRIORART)
lEVELl

Toshiba_Apricorn 1010-0079
|PR2018—01067

Toshiba_Apricorn 1010-0080
IPR2018-01067

5,943,482Sheet 79 of 127Aug. 24, 1999US. Patent

 «2SéSAWS;
82“

m.w:_252335;:

 «can

:5:.5453
$35%a:

:551355

Toshiba_Apricorn 1010-0080
|PR2018—01067

Toshiba_Apricorn 1010-0081
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 80 of 127 5,943,482

cum: [3:01 = "31001“

DATA PHASE I. (D nco SELECINEXT_DATA_PHASE ’
2024 2023

(11-040 [2:01="‘”" cu PMWQ SELECT
I. -

2030

o:- (n magma.

{D_CMD [3:0] ="b1000'

IW

/
146

2032

C20_BUFF [2] ATA
DATA PHASE - CD STREAM NEXLD
!C20_NEW_REU

2034

HG. 58

Toshiba_Apricorn 1010-0081
|PR2018—01067

Toshiba_Apricorn 1010-0082
IPR2018-01067

5,943,482Sheet 81 of 127Aug. 24, 1999US. Patent

”.3835:5:9:

xxx:33”ES2
 SEmz

=.=a.§:._

 S.2”.5.5.2.55:

:2:25:53
”sag...mag

‘ H a:
\

llllllll
Hz:wasm:833:a3::made:5;3::“53:5:$2:“ES5%$2:#55:5.“

Toshiba_Apricorn 1010-0082
|PR2018—01067

Toshiba_Apricorn 1010-0083
IPR2018-01067

5,943,482Sheet 82 of 127Aug. 24, 1999US. Patent

2:52:332.. a:$5.23$5

:3.33

SH

 :9J99.

“we“

:Eadaadzsa:2:3.85as;

Eggs2%
ana;3

3“:2312558

E55.33.92ES:33/axm359;...8—..$2.522ego“mac“

:3EEEIEE...

Toshiba_Apricorn 1010-0083
|PR2018—01067

Toshiba_Apricorn 1010-0084
IPR2018-01067

5,943,482Sheet 83 of 127Aug. 24, 1999US. Patent

38/Sa:5%fl55%.rflfirfirflfifflfi :3Ema—Engaging:5£2593.a:H-fl-

Sfimagi—baa“?
SHE«Ex—Elna:

 Eas“

I.. a:£353..
6:95was$3

:E“2.3::aa:2.92a62293.33:as3H2

a”:“2:52.55
as“

sagas$54.33.335255.223.anEagleaisle
ad

 $8

Elma—disalgz
as“

Toshiba_Apricorn 1010-0084
|PR2018—01067

Toshiba_Apricorn 1010-0085
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 34 of 127 5,943,482

HEXT_FULL_LINE_BIT = o

CD_COMPLEI'E& !B

CLO£K_SEEOHD_PHASE
&

WAIJLPOINTER [2:0] = "8993")

l!(C0_BYTE_EH [3:0]
= 1995“»
= A

nm_ruu_uu£_nn = a

“A 8. (VAULPOINTER [2:0] = "3111") & CD_NEXI_DATA) = B

K
2080

FIG. 62

Toshiba_Apricorn 1010-0085
|PR2018—01067

Toshiba_Apricorn 1010-0086
IPR2018-01067

5,943,482Sheet 85 of 127Aug. 24, 1999US. Patent

558:going

Sum3353532;

wmdzmfig“wise.as5..a.:Ea.na:E522;
Toshiba_Apricorn 1010-0086

|PR2018—01067

Toshiba_Apricorn 1010-0087
IPR2018-01067

5,943,482Sheet 86 of 127Aug. 24, 1999US. Patent

35
”ES;593:2:

wea:xxx:35EmaE

a:$5ES#352game 3%.“

lump—=2
2w5.5:5E5

BEE.was

§_c§.ma=alm_._s

:2:35::2:4...

Dummies:8aging?
quEEmIESm

Toshiba_Apricorn 1010-0087

|PR2018—01067

Toshiba_Apricorn 1010-0088
IPR2018-01067

5,943,482Sheet 87 of 127Aug. 24, 1999US. Patent

.3d:

S:

8E2:52;:
.2313.2253.2513a...nS”:23:3::5ona

22:18

2:“

.3."95.33553UmdmaegalmzmaEC522ESwaééwzngasEm:55:28:5a
E:

53.52:,2:63“

2:“

Toshiba_Apricorn 1010-0088
|PR2018—01067

Toshiba_Apricorn 1010-0089
IPR2018-01067

5,943,482Sheet 88 of 127Aug. 24, 1999US. Patent

5:agagas

3.w:fid—EEK”
.3:2:Es2

g

355.
wasm

IlmH..ma:asas__mmemmmmM[mwasw
.552a:

was:_
an...“

$52- 5:.laSEE:EsE“as5523l2.Es

an:13.35.“:§_§-==..s=
Elamagzs

E8”.$282

||||||IIHIHHH%H<mm-u
magE3

$2:“55=3.“$2:“53:55m2:~55:53$2:~55Em:$2:~53:35$2:“55En;$2:“55:3:$2:$35:3;
Hz:“53at3:95:a

Toshiba_Apricorn 1010-0089
|PR2018—01067

Toshiba_Apricorn 1010-0090
IPR2018-01067

5,943,482Sheet 89 of 127Aug. 24, 1999US. Patent

$5.8:Ema—.2g5:

528:=23:32:332..Saa”:532:;.5:

$5.9..54.;use:.5.=2:

 «Eric;Eta.
35:222>SE:—

a:23:3:

.255:25.5..355:2.33:EmmiééEasels:51:35.

E;

Toshiba_Apricorn 1010-0090
|PR2018—01067

Toshiba_Apricorn 1010-0091
IPR2018-01067

5,943,482Sheet 90 of 127Aug. 24, 1999US. Patent

.3:
a”:an.22.5:

3.3=2.5:—ES::2.s...2;
Eu.m:

53:-2:.5...I5'8::2..5..._l
. EN-

.7rand

Va”mam“2259.3SEE...ma2%22m:2“VNas

anas.a: .

 m53

3..:amalgam:
gam

a

53E33:afiazmcgéE35653mm3:B

EE

Toshiba_Apricorn 1010-0091
|PR2018—01067

Toshiba_Apricorn 1010-0092
IPR2018-01067

5,943,482Sheet 91 of 127Aug. 24, 1999US. Patent

593«we
2.:

Ezzslzafién
32

\v
«a:

S.m:$22....2.saleBESale22:82::

3:.“—o:955..

§=_m-.._a.cm==§s-§-.32...
 35::ESgauges:5....25a:3:32

S”:5.>3mama
Edmlcuala

s355.:aa

5255.8a:2515$22543a:9592$2:51;a:25!;5225.3asasa52552.;as$22.3as552...:32E2...3

Toshiba_Apricorn 1010-0092

|PR2018—01067

Toshiba_Apricorn 1010-0093
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 92 of 122 5,943,482

2213 GENERALFLUSH

2332ch 5mm] . nmL
24mm- 39414539]
III-III-

J 23525332303ucnon ClR.All

_3-n3_Ilielsnzi:lls

 =:::IIIIIIIIIII
IIIIIIIIIIIIII
"EEEEEEE

3223931 [2u] ' ' ‘ ' 'r20 FLUSH 2236 !Dtfl_HIT
2226 ‘ "W “E” 3423 .umum or:

2224 2233 31m
usL342333 2222 H
02242 at (02.422322 02P|F_CMD="'81100

‘3223(239: 31113
‘ c202 HIT[?.O] M 2262

{32_4333[43:,210m 23mm 2[4:o:|} 32 343 \
{34_4333 [33:21 331 2023123 424:3]} 2220 . in .2
{014333 [332] 0412 2mm SM01} u ‘43
{a4_3032 [33:21 our 20mm: 4[4:01} -
{23_4333[4321 um 23mm 32431} 343 2322ch 4mm [4321 3'.“
{22;MIDI! [3321 um 20mm 22401} H“
{0LhDDRIfiS: I], OUT FUIHTER H4:0]} 2250411)“
{30233253213421 20mm M4:33 30—344

CYCLEHHHETzfll _

“KOBE“ F|G_ 69A 0(0_PREFH£H__DA[

Toshiba_Apricorn 1010-0093
|PR2018—01067

Toshiba_Apricorn 1010-0094
IPR2018-01067

5,943,482Sheet 93 of 127Aug. 24, 1999US. Patent

a:mac.2“—.55.5.23.5..EEEEISa

«mum

Hz::53cum:

Eaiimzlfiwa322155I ISEE—2.222:39:55.9.:5
van“

--I=9a...55:.a:@525.23ENEN:2

..355.5%:
“mm“I1b82s:5%...2g-

2:913in.
x.

asa:

..95,n2:233mm.2:5..nmSIEE:25.$535.33
$23:28..EEE2.32figsEas23;:.-

SE:a:

_$9353aEN
#383axm

Toshiba_Apricorn 1010-0094
|PR2018—01067

Toshiba_Apricorn 1010-0095
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 94 nl'127 5,943,482

2270 2272

TRANSACTION

ORDER

QUEUE

TRANSACI'ION

RUN

OUEUE
mu nu ma

2276 comm comm comm 2273
LOGIC LOGIC Lofiit

2274 mm RUN mam

muflaun mwmm
DRD VAUD[3:0]

MU RUN D(Q[3:fl]

ncu VALID [3:0]

mwujnuo [3:0]

FIG. 70

Toshiba_Apricorn 1010-0095
|PR2018—01067

Toshiba_Apricorn 1010-0096
IPR2018-01067

US. Patent Aug.24, 1999 Sheet 95 of 127 5,943,482

(YCLE I, PMW

cancuun 2270 2284 2282 TYPE = MR
INPUT

WINTER
I 2 v” o

| VALID CYCLE

a-- 2:22:
. PHTR TYPE

(FGOLIHFRETR’I' I 2230B

51_uarlr_cvc_{omrLErE LOGIC ‘ 1 2286
2294 (Li: I

I

LOGIC [LR

2300 Iu— —--.

|
|
I
|
|
l
|
I
l
I
I
I
|
I
|
I
|
I
I
|

| 1003mm [1:9] I ELK
: [mun [1:01
|

I NEW mu om ‘
|

{ moflmpeo [0] 2293
, 9chan -I
|
|
I
|
|
I
|
I
I
I
|
I
|
|
|
|
I
|
I
|
|
|
I
|
|

2302
“B” we 0"“ TRILI'AUDO [1:01 ”95

TRILSLOI VALID [3] 2303 TRO_CY(TYPEO [a]
IRILSIULVMJD [2]

ITDILEIIIIIBIED

{120, UWPES, TROJWWPEZ, IIIQ_UCIYI’EI , TIIU_CYCWP£0I 23I I]

masmrmun RSIIEII] -

, TRCI PIIIW
2312 CONTROL

IDGIE

0 ma” {YCIYPE t______ 339.6____________

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ma 5m VAlIDIl] , NEWJMILSEI I
ma sun mm [a] 1

I
I
I
I
I

2304 I
I
I
I
I
I
I

Toshiba_Apricorn 1010-0096
|PR2018—01067

Toshiba_Apricorn 1010-0097
IPR2018-01067

5,943,482Sheet 96 of 127Aug. 24, 1999US. Patent

SEE.-.S.o:
s...2......

.3i8:3.3.33.2EWE”...5......a...2......as_as...
a...5...?m.g.....a.8a...a

:32gm.#5295......—QEN_.aim.”.2:m#5....2......3.2.5.....22..g%_IIIIII-9.:na!.22..a?
a:E...._.=....8E_E?.5mar—..22..5...;class..

In=9.25.:man.2232......
:2_lll ..mamllllllllllllllllllllllllll Eu5.$558

was35.28c2

SE525:3.2“5%:
.. .3mmesslzmz3.qua2

mm:Emu

.a
“dcc252

82

mm:—

Toshiba_Apricorn 1010-0097
|PR2018—01067

Toshiba_Apricorn 1010-0098
IPR2018-01067

5,943,482Sheet 97 of 127Aug. 24, 1999US. Patent

SHE—“=66aS”2angle E5.5.:2:

fixd:

E

3232.___”2_.1_=§.§:._.E=.ta:23%:.3

mm3.23.. .:525.3:
6223.89.32

.5

82

3mm

. Aa:23.2:
a:=.§.§.E=

Toshiba_Apricorn 1010-0098
|PR2018—01067

Toshiba_Apricorn 1010-0099
IPR2018-01067

5,943,482Sheet 98 of 127Aug. 24, 1999US. Patent

:2.m:

was832852r

32S:Eula:

“:5:2E:

New“wen“5:18;:
gem“

2mm

3:.—2E Gal—SEE:a2:3:“—ails. u:uE355513—33SE

32

onuE85:93:85E33:3:;S:E

Toshiba_Apricorn 1010-0099
|PR2018—01067

Toshiba_Apricorn 1010-0100
IPR2018-01067

5,943,482Sheet 99 of 127Aug. 24, 1999US. Patent

coma
a”:a:..-==._.5=.§

”an““an“
5235.53.2.3:

mam“

new“.32...:25:2:
coww

a:u5263.2

 a”z3232
3:8“:vxNas;nz:teal:ESE::agnaw

Eggs:2...:n$656.:
mnaaw

3:8“:.3;H3322...a:
5.:=33

um~.w:N8“was55:85:\ENEmaizalfiilcfi Sag22's:2:
examvan“

323123152.;
”Km“

IE5-2:Su5:5512:

S”:anzfilaa

.3uEEsau:
:33:«xa

S”:2:51:

in“

Toshiba_Apricorn 1010-0100
|PR2018—01067

Toshiba_Apricorn 1010-0101
IPR2018-01067

5,943,482Aug.24,1999 Sheet 100 of 127US. Patent

“.535.5.85:/

a:a
$232a...a:a?“Sun==I==ulfiz

Si3:.—zilfifiluzaq

 365......z...“324::EnnismlzaldzE: :26:
$2.5=2.Siluzrmq2:Eggs;3:

.3:1395ES8.

Eats:

35.2

2:“Si.5

$23==m12...8_
a:

.5.a:E:SE

SUSIE—IE:

..II SHE31:12::Sslafi
523:.—..a.5::51Si3:22:52Ia5$232.3.2.22

3.518:Engaging

9.25%..9:253:

Toshiba_Apricorn 1010-0101
|PR2018—01067

Toshiba_Apricorn 1010-0102
IPR2018-01067

5,943,482Sheet 101 0f12?Aug. 24, 1999US. Patent

a:a:noa:x_x—x—x—_=_a_=_=65:56::

8”z.55.;

Ed:

:9223.35.32.3:23153.;.5225.23.25
Nanak

cocaace:ace:casesee:cageca:can:ace.o=_=c_a=_=a=

can:caacone:can:aoefi9a.:o-aa_a==can:cocacasecase

ca:—a=_ac_ao_=a=cocacasesagacocagangace:one:ace:

Toshiba_Apricorn 1010-0102
|PR2018—01067

Toshiba_Apricorn 1010-0103
IPR2018-01067

5,943,482Aug. 24,1999 Sheet 102 0f12?US. Patent

3mm

8;23252mmmadam:was.

55S

2m“
3m“Sm.“

3a2

m.o:
22

:2:@2535£3:245:3.

“2.53..“Emup;

an:~qu
mum—2:8HE;

$3.52mm3mm
2

\la:
83”2:55..Em

3:25E

3.5:
ES:2:as:as“

33

$32...2

:2:33E»:
83

33::E

Toshiba_Apricorn 1010-0103
|PR2018—01067

Toshiba_Apricorn 1010-0104
IPR2018-01067

5,943,482Aug. 24,1999 Sheet 103 of 12?US. Patent

u.95.:25.

4.:d:mgfiglnzswmiapfiiauanE§fi§fi§s§fi§
xd

ad

 Eaauazsmlésrsgagilfiuzlzfifinfiz

Toshiba_Apricorn 1010-0104
|PR2018—01067

Toshiba_Apricorn 1010-0105
IPR2018-01067

US. Patent Aug.24,1999 Sheet 104 of 127 5,943,482

UZPILADDR [31:21

mm 1

P20_AD [31:2]

mm 1

mm [3:0]

P20_5Lm [2:01

02PIF_DATA [3] :0]

LATCH 2

P20_AD [31:0]

2522

Q2PIF__BYTE__EN [3:0]

LATCH 2
P20_[BE [3:0]

Toshiba_Apricorn 1010-0105
|PR2018—01067

Toshiba_Apricorn 1010-0106
IPR2018-01067

US. Patent Aug. 24,1999 Sheet 105 of 127 5,943,482

2528

RESEI& ELSE /

PWM_EMP1Y DULLDCKED

!DEO_LOCKED as.
P2Q_L0(K as.
PMW_EMFIY

!DCO LOCKED 8:8:

onjoclc as.
PMW_EMFTY

FIG. 77

2536
['-

P20_FLUSH

GENERAL HUSH

!D£0_Hfi

02PIF_CHE£K_CYC 2533

2540

FIG. 78

Toshiba_Apricorn 1010-0106
|PR2018—01067

Toshiba_Apricorn 1010-0107
IPR2018-01067

5,943,482Aug. 24,1999 Sheet 106 of 12?US. Patent

===°_.IEgg:3a3m“Ezzalzfifiwlaua
mama8mm

3.m:=2?3:.8.___Ia:asasammmammw
“mm“

:a53:3535:52:33
E:S.uSad—ES

giggle;
3mm5%”Ema

8::gang—lame”.
9.28..ngunman“:

SEBalkans

can

an:5:221:35
@va

‘

mzzlammgaga:__.n21.3.

Toshiba_Apricorn 1010-0107
|PR2018—01067

Toshiba_Apricorn 1010-0108
IPR2018-01067

US. Patent Aug.24,1999 Sheet 107 of 127 5,943,482

2592

!2P0_IRDY

(NT

4K PAGE

BOUNDARY

DISCONNECT

{OUNTER

LDAD_WRITE_CDUNIER

PAGE_COUNT_REG [1 1:2]

DZPIF_ADDR [1112] IBM]

(LK

2596

!2P0_IRDY

LOAD_WRITE_COUNTER

PMW__COUNTER [5:01

{"000", flZP!F_ADDR [412]}

RESET
(1K

FIG. 80

Toshiba_Apricorn 1010-0108
|PR2018—01067

Toshiba_Apricorn 1010-0109
IPR2018-01067

US. Patent Aug.24,1999 Sheet 108 of 127 5,943,482

2570

{PMWQJULLUNE [X], "1 11"}
"0} 1 1“ WRHLCMD [3:0]

”1111'

(F62 MWQMWIl1_ PMWD_CMD [3]

FIG. 81A

2580

!PMWO_‘JALID_LINES [X + I]

(FE20_MW2MWI .PMWOJULLLINE [x1
PMWQ_FULL_LIHE [x+D’

2574

NDN_WRITE_CMD

IPMWOJAUD

wmwaflovearmw

(PMWD_OUT_POINTER [5:3] = "1111'

FIG. BIB

2535 “5“

P20_START_PULSE

EHD_0F_UHE ’
NB'J_WRITE_EMD .2533p .

EARLY_CY(_CDMPLEIE

 HELD_NEW_WRITE_[MB

2590

2584 ELK

FIG. 81(

Toshiba_Apricorn 1010-0109
|PR2018—01067

Toshiba_Apricorn 1010-0110
IPR2018-01067

US. Patent Aug.24,1999 Sheet 109 of 127 5,943,482

INLOUEU E_SELE{.T 2602

STARLOUEULSHEU [I :0]

{OUNLGUEULSELEU [I :0]
INlflAL_0UEUE_SELEU

 (UK

2604

[0UNT_0UEUE_SELEGSTARLQUEULSELECI a (12?! F__Q|JEUE_SELE£T [1 :fl]
INITIALEIUEULSELEU

FIG. 82A

FMWQJ'AUD [I]

PMWO_0VERFI.0W [I]

PMWQJALID [2]

PMWLDVERFLOW [2]

PMWOJ'kLlI} [3]

PMWLDVERFLOW [3]

PMWQJAUD [01

mwu_ovmnow m]

OVERFLOWJEXLGUEUE

02PlF_flUEUE_SELEU [1:0]

FIG. 82B

Toshiba_Apricorn 1010-0110
|PR2018—01067

Toshiba_Apricorn 1010-0111
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 110 01'127 5,943,482

READ ALIGHS
2

RESET 2. [IE / 624
FIG. 848 ms

EEARLLDATAJHASfi

ANLDRUUN as.

P20_ACK

!P2I1_ACK n
263“ {r20 = m 3.1;

1EAR1Y_DATA_PHASE)

P20 ACK !(THROW_

9:117 "31?? m
F20_ACK as. _

(maow_cm= "000") 1P2QJRDY 0R ELSE
P‘zo_Acx

IHHROWJNI = "000") 2625 2622
EARLLDATLPHASE

IP‘ZILTRDY

CBT_STATE = COUNT

 DOWN

[DAD an OUT

[DAD
EN

THRDVLENT [2:0]

DRQJDDR [4:2] RSI

ANLRUNJJRO RESET
mum 2632

mums = mum THROW (“H2101
.. REM] DATAFIG. 84A 2523 'flm'flmr

FIG. 84C

2620

(F529 _READ_ALIBN
ALIGN_READ

DRO_CMD = "1 1 10“

DRILEMD = "1 me"
2613 FIG. 83

Toshiba_Apricorn 1010-0111
|PR2018—01067

Toshiba_Apricorn 1010-0112
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 111 01'127 5,943,482

Toshiba_Apricorn 1010-0112

|PR2018—01067

Toshiba_Apricorn 1010-0113
IPR2018-01067

US. Patent Aug.24,1999 Sheet 112 01'127 5,943,482

Toshiba_Apricorn 1010-0113

|PR2018—01067

Toshiba_Apricorn 1010-0114
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 113 «r 127 5,943,482

Toshiba_Apricorn 1010-0114

|PR2018—01067

Toshiba_Apricorn 1010-0115
IPR2018-01067

Aug. 24, 1999 Sheet 114 MIN 5,943,482US. Patent

3d:
ad

mA.2
«25::3.5.6:33::5.25.2:2...

am«3::
m2:5:8“Egg—E:Ed

waswaswas52.22.Ezawwfiw52.223
3

E:32%32%:23

553:62.52:5:

2:

*:55.
55552533...

a_

SE:52.28%2=5

mi:5:8:E232Ba

:5

ama2

:2.“2:*#2.

an.$9.52..92:25;.a,

*233.:8:2:s:
JlJlJI3..”Ed“on5.5“an5.3

Toshiba_Apricorn 1010-0115
|PR2018—01067

Toshiba_Apricorn 1010-0116
IPR2018-01067

Aug.24,1999 Sheet 115 01'127 5,943,482US. Patent

3.2”.__
._.

2:.___.Hz:9a;.
5:5:

3:$2.55
2.5:...

239:2.:—

vaa;E

5:258£2.55.

8:

53:2.55:$2.52

53m:55:IEEm-m—E

as:_U__3m=_E=_=_E_253;.
asa“2...lb-

3=32

«2‘w“558:.-mzzw32.Hz:x«:2
T

EasEEas:535::

Toshiba_Apricorn 1010-0116
|PR2018—01067

Toshiba_Apricorn 1010-0117
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 116 «f 127 5,943,482

SLOLIOSEL [5:0]

ENABLE [5:0]

AD_IDSEL[5:O]

1728

“O" = I20 SUBORDINATE
"1" = HOSE CPU M SUBORDINATE

IZO SUBORDINATE REGISTER

FIG. 91

1730

120 5101 REGISTER

"1" =120 PROCESSOR
"O" = NOT AN IZO PROCESSOR

FIG. 92

Toshiba_Apricorn 1010-0117
|PR2018—01067

Toshiba_Apricorn 1010-0118
IPR2018-01067

US. Patent Aug. 24, 1999 Sheet 117 «r 127 5,943,482

1729

 120 sunonnmm
REGISTER

"o- = 120 sunonnmm
FIG. 93 "1" = 11051 CPU 14 sunonnmm

HOST (01111591111101:

ENABLE BIT

"I" = CPU l4 MAY CONFIGURE 0" PCI 005 32

"0' = I20 PROCESSOR I700 IS CONFIGURING
I20 SUBORDINATE DEVIEIES ON 005 32

FIG. 94

Toshiba_Apricorn 1010-0118
|PR2018—01067

Toshiba_Apricorn 1010-0119
IPR2018-01067

5,943,482Sheet 118 91'127Aug. 24, 1999US. Patent

«mo5:

 33::*mam—z.*Enz—85z.55x3.52
3"Ed:2:a,.3:3mEd:2:*$2.3n5%:2:a3:.3m5?.:9:w:2.3m5.;29:*E:5Ed:9:am5.:

mad:

Toshiba_Apricorn 1010-0119
|PR2018—01067

Toshiba_Apricorn 1010-0120
IPR2018-01067

5,943,482Sheet 119 0f 127Aug. 24, 1999US. Patent

:3d:

 %23E:*2525::*madam—z.
.._._._.._...._.%.m.—m5u——’¢.—=_-........._=.E.E.2.fl.£.fi_fi_FE.._

*2.35.

__ummmmmm2.22.: ...-...u......

*2E:

Toshiba_Apricorn 1010-0120
|PR2018—01067

Toshiba_Apricorn 1010-0121
IPR2018-01067

US. Patent Aug.24,1999 Sheet 120 of 127 5,943,482

1743

ssmrc #

54mm as

1741 ""

"1' "mm 233%:
seam” ,.

1
55mm

sum” 33mg:
""5”” 53mm

52mm

51mm

Ill“

sucau [2:01

1745

IIIISYNC #

1742

sum 9

55mm #

9W cm
mum 52mm #

sum 9

If].

sauna # 1744

54mm #

“1'

sum :99

55mm #

nrrsm "1'

53mm #

/' 52mm #

MULTIPLEXING

(IRCUHRY

FIG. 96

Toshiba_Apricorn 1010-0121
|PR2018—01067

Toshiba_Apricorn 1010-0122
IPR2018-01067

US. Patent Aug.24,1999 Sheet 121 of 127 5,943,482

/INTERRUPT IiIECEIVING BLOCK
R81

1752

 G CNTII {730] 3 X 8 I750

DECDDER

CLK

"54

G CNTRU] I : IIITSYNC#

I755

G CIII'RIO] INISYNCCABLW

INTSYIICIIO #

SID_CMPI. #

SI INTR #

Toshiba_Apricorn 1010-0122
|PR2018—01067

Toshiba_Apricorn 1010-0123
IPR2018-01067

US. Patent Aug. 24, 1999

I758

 HOSUB[5]

HUSUBI4]

HOSUB[3]

H05UBI2]

HOSUB[1]

H05UB[U]

"0"

 MASK_A

SL1 [2:0]

I760

 HOSUB[5]

HOSUB[4]

HOSUB[3]

"U

HDSUB[I]

HDSUBIOI

I0.

HOSUBIZ]

MASK 8

 SL1 [2:0]

Sheet 122 0f12?

1762

HOSUB[4]

HOSUB[3]

“0F

HOSUBESI

HOSUB[O]

.0"

HOSUBI2]

HOSUB[I]

SL1[ZO]

I764

HOSUB[3]

WT

HOSUB[5]

HOSUB[4]

1T

HOSUB[2]

H05UB[I]

SLIIZfl]

FIG. 973

5,943,482

132

Toshiba_Apricorn 1010-0123
|PR2018—01067

Toshiba_Apricorn 1010-0124
IPR2018-01067

US. Patent Aug.24,1999 Sheet 123 0f127 5,943,482

IIOSLOT [3]

non

IIOSLOT [5]

IIOSLDT [4]

“0..

llOSLUT [2]

IIOSLOT [1]

IIOSLOT [0]

 1768

SH [2:0]

f132
 IIOSLOT [4]

IlOSlDT [3]

 lIOSLOT [5]

nosmm] "0T“

 |IOSLDT [2]

Imsmm] 1770

HG. 97C

Toshiba_Apricorn 1010-0124
|PR2018—01067

Toshiba_Apricorn 1010-0125
IPR2018-01067

284,3.495a.;

a:m.H9.2...,ma:Ea:ma:.a-.:2...m.3%....Has:
:2...

ma:m,.Ha:mE:2:Aa:d.

t

mSaws.
3

P.8.:N:\S.E
U

a;d:..as:t
3:_

43355—!B. E:EcluE#5qu3:52SE:0.Eu
E..EEpzula

32

Ei=3E:535E54.
2:—

3:

«a:

a:-.
2:

E:-
«R—

5E54,;535aims:5.2:3.9.:m:2:5.22*«am—EE55.;*$8355”

Toshiba_Apricorn 1010-0125
|PR2018—01067

Toshiba_Apricorn 1010-0126
IPR2018-01067

US. Patent Aug. 24,1999 Sheet 125 of 12? 5,943,482

RSI
RST

II'ITSIJU‘BLEaiE INTSDEPU #
LHTSYNCCABLE # IHTSYNECPU #

1322

(PUINTA #

G__£NTR2 [2:0] 3an
EOUHTER

[{[ERRUP

IHISYNE #
ELK

 1320 EC(_ERR UP
L B40

CPUIHTB #

(NINTH

INTSDEABLE #

flfl-Mo
Wmmflmwmm
P

 LOAD ENABLES (LR

1326

("TILE [2:0] i}
GCNIRZ U] lHTERRUFL

50ml? [6] GUN-R2 [4] SUITE! [2] GENTRE [0] OUTPUT

FIG 98 BLOCK H4

Toshiba_Apricorn 1010-0126
|PR2018—01067

Toshiba_Apricorn 1010-0127
IPR2018-01067

US. Patent Aug.24,1999 Sheet 126 of 12? 5,943,482

nu:suce "mm unsnw - “mm
“-—
rum

IHTSDCa?

1 ._ mm—
m—-
II-_——_
-——__

s # s

swam” Lemma — 191mm
901mm — sum uncae SL015. mum

-— swmmw $101 5. mm 5101mm:1

sum = sun SEA FIG. 99
SLOT 2 = sun 353

sum = SLUT sat

sun 4 = sun 3m

5101 5 = sun 355

SL016 = SL0136F

(INTERN?!
UHES UH EXPANSION BUS 3|] lllTERRUI’T SOURCES
PG BUS 24

BLIUTR # SLUT 1. SLOT 2. SUN 3. SLOT 4. SLOT 5. SLUT 6.
INTD# “NW ”“35? ”III“? IUID# IUTH‘

mm mm mm mm mm

munum” mm mm mmE um mm

---s . suns. sm .um mm an” I

FIG. 100

Toshiba_Apricorn 1010-0127
|PR2018—01067

Toshiba_Apricorn 1010-0128
IPR2018-01067

5,943,482Sheet 127 0f12?Aug. 24, 1999US. Patent

mm95E

z:.2”.

c2:52:

an_E225.3.

32EEEE
E:3:

=2::52?

can_E52::a:

can_E“sands.

E52513.

E53:33.
:8.

.332...s:a.a”:23:2

Toshiba_Apricorn 1010-0128
|PR2018—01067

Toshiba_Apricorn 1010-0129
IPR2018-01067

5 343,482
1

EXPANSION CARD INSERTION AND
REMDVAL

BACKGROUND

The invention relates to inserting and removing expansion
earth.

Computer systems typically have expansion card slots for
receiving and electrically coupling expansion cards to an
expansion bus of the computer system. The exparsion bus
may be one of several types, such as an Industry Standard
Architecture {ISA} bus, an Extended Industry Standard
Architecture (EISA) bus or a Peripheral Component Interm
connect (PCI) bus.

SUMMARY

In general, in one aspect, the invention features a system
having a connector for a circuit card and a clamp configured
to selectively prevent removal of the circuit card from the
Connector when the clamp is engaged. The system has
circuitry connected to ntonitor the engagement status of the
clamp and to regulate delivery of power to the connector
based on the engagement state of the clamp.

Implementations of the invention may include one or
more of the following features. The system may include a
communication link, and the circuitry may be further con—
nected to regulate coupling of a communication link to the
connector based on the engagement ot'thc clamp. The circuit
may include a switch actuated by the clamp furnishing an
indication of the position of the switch and a circuit con-
nected to update the engagement status when the indication
indicates the same position for a predetermined duration.

In general, in another aspect, the invention features a
method for use in a computer system having a central
processing unit, a connector for a circuit card and a clamp _~
configured to selectively prevent removal of the circuit card
from the connector when Ihe clamp is engaged. The method
includes monitoring the engagement status of the clamp and
providing an indication of the engagement status to the
central processing unit.

Implementations of the invention may include one or
more of the following. The invention may include providing
an interrupt request to the central processing unit to indicate
when the engagement status changes. The method may
include storing the engagement status in a memory acces—
sible by the central processing unit. The method may include
monitoring a power status signal of the connector and
providing an indication of the power status signal to the
central processing unit. The method may include providing
power to the connector when the clamp is engaged and
removing power from the connector when the clamp is not
engaged. The method may include determining if the central
processing unit has enabled the connector to receive power
and wherein the providing step only provides powur if the
central processing unit has enabled the connector to receive
power. The method may include coupling a bus to the
connector when the clamp is engaged and electrically iso~
lating the bus from the connector when the clamp is not
engaged. The isolating ol' the bus may include disconnecting
a clock line and other lines of the bus, the other lines of the
bus being disconnected before the clock line is disconnected
and the power is removed. The electrically coupling may
include connecting a clock line and other lines of the bus, the
other lines of the bus being connected after the power is
removed and the clock line is disconnected.

In general, in another aspect, the invention features a
computer system having a central processing unit, a con-

It)

15

2|)

30

40

$5

50

55

fit]

as

2

nector for a circuit card, and a clamp configured to selec-
tively prevent removal ot‘the circuit card from the connector
when the clamp is engaged. The computer system also has
a circuit connected to monitor the engagement statue; of the
lever and to provide an indication of the engagement status
to the central processing unit.

Implementations of the invention may include one or
more of the following. The circuit may be configured to
provide an interrupt request to the central processing unit to
indicate when the engagement status changes. The circuit
may include a buffer, accessible by the central processing
unit, connected to store the indication of the engagement
status. The central processing unit may selectively enable
the connector to receive power or a bus (e.g., a PCI bus) to
receive power. and the computer system may further include
a bulfer connected to indicate if the central processing unit
has enabled the connector or enabled the bus to receive

power. The circuit connected to furnish power may only
provide power if the central processing unit has enabled the
connector to receive power and may only couple the bus if
the central processing unit has enabler] the connector to be
coupled to the bus.

to general, in another aspect, the invention features a
computer system having a bus, a connector for a circuit card
coupled to the bus, and a clamp configured to selectively
prevent removal of the circuit card from the connector when
the clamp is engaged. The computer system has circuitry
connected to monitor the engagement status of the clamp
and to regulate delivery of power to the connector based on
the engagement state of the clamp.

Among the advantages of the invention are one or more
ol‘ the Following. Expansion cards may be inserted and
removed while the computer system remains powered up.
The expansion card is powered down before the card can be
removed from the slot. Software may selectively power up
or power down expansion cards. Ifpossible movement of the
lever that secures the expansion card is detected, the move—
ment of the lever is verified which minimizes unnecessary
powering down of the expansion card. The control circuit
has control of the expansion bus during critical phases of the
power up and power down sequences, which promotes bus
integrity.

Other advantages and features will become apparent from
the following description and from the claims.

DESCRIPTION

FIG. 1 is a block diagram of a computer system.
FIG. 2 is a block diagram of an expansion box of the

computer system of l-‘IG. 1.
FIG. 3 is a block diagram of the bridge chips in the

computer system.

FIG. 4 is a block diagram of a queue block in each of the
bridge chips.

FIG. 5 is a block diagram of the clock routing scheme in
the bridge chips.

FIG. 6 is a block diagram of a clock generator in each of
the bridge chips.

FIG. 7 is a block diagram of a master cable interface in
each of the bridge chips for transmitting data over a cable
connecting the bridge chips.

FIG. 8 is a timing diagram of signals in the master cable
interface.

FIG. 9 is a block diagram ofa slave cable interface in each
of the bridge chips for receiving data transmitted over the
cable.

Toshiba_Apricorn 1010-0129
|PR2018—01067

Toshiba_Apricorn 1010-0130
IPR2018-01067

5 343,482
3

FIG. II) is a block diagram of logic generating input and
output pointers for the receiving logic in the slave cable
interface.

FIG. 11 is a timing diagram of signals in the slave cable
interface.

FIG. 12 is a liming diagram of the input and output
pointers and their relation to the received cable data.

FIG. 13 is a block diagram of the placement of flip flops
and input and output pads in each of the bridge chips.

FIG. 14 is a table oftbe information carried by the cable.
FIG. 15A is a [able showing the type of information

carried by the cable signals associated with single address
cycle transactions.

FIG. [SB is a table showing the type of information
carried by the cable signals associated with dual-address
cycle transactions.

FIG. 16 is a tabIe of parameters associated with the cable.
FIG. l'i' is a logic diagram of an error detection and

correction circuit.

FIG. 18 is a parity-check matrix for generating check bits
in the error detection and correction circuit.

FIG. 19 is a syndrome table for generating fix bits in the
error detection and correction circuit.

FIG. 20A is a state diagram showing a round-robin
arbitration scheme.

FIG. 20B is a state diagram showing a two-level arbitra-
tion scheme.

FIG. 21 is a logic diagram of an arbiter in each of the
bridge chips.

FIG. 22 is a state diagram of a grant state machine in an
arbiter.

FIG. 23 is a state diagram of a level one arbitration state 3machine in tbe arbiter.

FIG. 24 is a table showing generation of new grant signals
based on the current master.

FIG. 25 is a block diagram of logic for generating mask
bits and mu [ti-threaded master indication bits.

FIG. 26A is a logic diagram of circuiLs for generating the
masked bits.

FIG. 263 is a block diagram of a computer system with
multiple layers of buses.

FIG. 27A is a side View of an expansion card inscrled into
a slot.

FIG. 27B—{T are schematic diagrams of [ever circuitry.
FIGS. 28—31 are schematic diagrams of circuitry of the

expansion box.
FIG. 32A is a state diagram from the circuitry of the

expansion box.
FIG. 328 are waveforms from the circuitry ofthe expan-

sion box.

FIG. 33A is a schematic diagram of circuitry of the
expansion box.

FIG. 33B are waveforms from the circuitry of the expan-
sion box.

FIGS. 33C—l-I are a state diagram from the circuitry of the
expansion box.

FIG. 34 is a schematic diagram of circuitry of the expan-
sion box.

FIG. 35A is a state diagram from the circuitry of the
expansion box.

FIG. 358 are waveforms from the circuitry of the expan-
sion box.

It)

15

2|)

30

40

$5

50

55

fit]

as

4

FIG. 36 is a schematic diagram of circuitry of the expan-
sion box.

FIG. 37 is a flow diagram of a non—maskable interrupt
handler invoked in response to detection of a bus hang
condition in the computer system.

FIG. 38 is a flow diagram of a BIOS routine that is
invoked by a computer system lockwup event.

FIG. 39 is a flow diagram of a BIOS isolate routine
invoked in response to a bus-hang condition or the computer
lock-up event.

FIG. 40 is a block diagram of a bus watcher in each of the
bridge chips.

FIG. 41 is a state diagram of logic in the bits watcher for
returning the bus to an idle state.

FIG. 42 is a logic diagram of status signals in the buswatcher.

FIG. 43 is a logic diagram of bus history FIFOs and bus
state vector I’IFOs in the fault isolation circuit.

FIG. 44 is a logic diagram of circuitry for generating
ready signals for indicating when the bus history and state
vector information are available.

FIG. 45 is a flow diagram of a routine for assigning a bus
number to a powered down or empty slot.

FIG. 46 is a flow diagram of a routine for allocating
memory space [or the computer system.

FIG. 47 is a flow diagram of a routine for allocating NO
space for the computer system.

FIG. 48 is a flow diagram of a routine for handling a
recently powered up card.

FIG. 49 is a block diagram of configuration space for a
PCl—PCI bridge circuit.

FIG. 50A is a block diagram of a computer system.
FIG. 5013 is a bus number assignment tree.
FIG. 51 is a block diagram showing type 0 and type 1

configuration transactions.
FIG. 52 is a table showing mapping of address from a

primary bus to a secondary bus.
FIGS. 53A and 53B are a logic diagram of circuitry for

handling type 0 and type 1 configuration cycles.
FIG. 54A is a block diagram of circuitry for storing

information to allow calculation of bus performance param~
elers.

FIG. 54B is a block diagram of pre fetch counters.
FIG. 55 is a block diagram of a computer system.
FIG. 56 is a block diagram of a l’CI arbitration scheme.
FIG. 57 is a schematic diagram of a buffer [lush logicblock.

FIG. 58 is a schematic diagram of a cable decoder.
FIGS. 59—62 are schematic diagrams of a posted memory

write queue, including control logic.
FIGS. 63-65 are schematic diagrams of a delayed request

queue. including control logic.
FIGS. 66—69b are schematic diagrams of a delayed

completion queue, including control logic.
FIGS. 70-74 are schematic diagrams and a table of a

master cycle arbiter.
FIGS. 75-87 are schematic and state transition diagrams

of a queue-block-to-PCI-bus interface.
FIG. 88 is a schematic block diagram showing bus

devices connected to an expansion bus.
FIG. 89 is a schematic block diagram showing circuitry to

route interrupt requests.

Toshiba_Apricorn 1010-0130
|PR2018—01067

Toshiba_Apricorn 1010-0131
IPR2018-01067

5 ,943 .482
5

FIG. 90 is a schematic diagram of device select logic.
FIGS. 91—94 are schematic block diagrams of registers.
FIG. 95 is a graph showing waveforms for the computer

system.
FIG. 96 is a schematic diagram of the multiplexing

circuitry.
l-‘IGS. 97A—1) are schematic diagrams of the interrupt

receiving block.
FIG. 98 is a schematic diagram of the interrupt output

block.

FIG. 99 is a chart showing the time multiplexing of
interrupt request signals.

FIG. 100 is a chart showing interrUpl request mapping.
FIG. 101 is a schematic block diagram showing bus

devices connected to an expansion bus.

OVERVIEW

[n the ensuing description, all signal mnemonics followed
or preceded by a "if“, " “, or "!" signil'y invened logicstates.

As shown in FIG. 1. a computer system 10 includes a
primary PCI bus 24 that is coupled to a bridge chip 26a and
a bridge chip 26b. both of common design 26. The bridge

10

15

2|)

chip 266' is coupled to a bridge chip 48!: through a cable 31. v
and the bridge chip 26b is coupled to the bridge chip 48b
through a cable 28. The bridge chips 48:? and 486 are of
common design 48. which is common to design 26 except
that design 26 is in an upstream mode and design 48 is in a
downstream mode.

The PCI bus 24 is interfaced to a local bus 22 through a
system controlleri‘host bridge circuit 18. The system
conlrollcrrhosl bridge circuit .18 also controLs access to a
system memory 20 which is also coupled to the local bus 22 3
along with the CPU 14 and a level two (La) cache 16.

A PCI—Extendcd Industry Standard Architecture (EISA)
bridge 15 interfaces the l’Cl bus 24 to an EISA bus 17. Both
a keyboard controller 21 and a Read Only Memory (ROM)
23 are coupled to the EISA bus 17. A non—volatile random
access memory (NORM) 70 connected to the EISA bus 17
stores information which should survive the computer sys-
tem shutting off. An automatic server recovery timer 72
monitors the computer system for inactivity. [f the system
locks up, the AIR timer 72 will expire after about 1!]
minutes. A keyboard 19 is monitored by the keyboard
controller 21 for detection of depressed keys.

Referring to FIG. 2. the bridge chip 48a furnishes an
interface to a PCI bus 32a, and the bridge chip 48b furnishes
an interface to a PC] has 32b. The PCI buses 32:? and 321)

are located on two expansion hoxas .301: and 301‘), of com-
mon design 30. and each expansion box 30 has six hot—plug
slots 36 (36:14] which are capable of receiving conven-
tional expansion cards 80'! (FIG. 27A). One slot 34 on the
expansion box receives a card 46 which has the bridge chip
26. Each hot-plug slot 36 has associated switch circuitry 41
for connecting and disumnecting the slot 36 to and from the
PCI bus 32. Six mechanical levers 802 are used to selec-

tively secure {when closed or latched) the cards 807 to
corresponding slots. as further described in US. Pat. appli—
cation Ser. No. 08E658.385, entitled "Securing a Card in an
Electronic Device." filed on the same date as this application
and incorporated by reference. Each expansion box 30
includes registers 52 and 82 for monitoring the levers 802
and status signals of the expansion box 30 and a register 80
for controlling connection and disconnection of slots 36 to
the PCI bus 32.

30

40

4:1

50

55

(it!

{15

6

Referring to FIG. 3, the bridge chip is designed to be used
in pairs 26 and 48 to form a I’CI—PCI bridge between the
primary PCI bus 24 and the secondary PCI bus 32. The
programming model is. that of two hierarchical bridges. To
the system software. the cable 28 appears as a PCI bus which
contains exactly one device, the downstream bridge chip 48.
This greatly simplifies the configuration of the 2-chip I-‘CI—
PCI bridge joining the primary and secondary buses. The
bridge chip 26, which is closer to the CPU 14, joins the
primary PCI bus 24 to the cable 28. The second l’Cl—PCI
bridge 48 resides in the expansion box 30 and joins the cable
28 to the secondary PCI bus 32. A mode pin UPS’I‘REAM__
CHIP determines whether the bridge chip operates in the
upstream mode or the downstream mode. Some non-bridge
functions such as a bus monitor 106 and hot plug logic in an
SID 50 are used only in the expansion box 30. and are
non~functional in the upstream mode chip 26.

A clock generator 102 in the bridge chip 26 generates
clocks based on the clock PCICLKI on the primary PCI bus
24, with one of the generated clocks being provided through
the cable 28 to a clock generator 122 in the downstream
bridge chip 48. The clock generator 122 generates and drives
the PCI clocks in the expansion box 30 at the same fre—
quency of the primary PCI bus 24. which resuiLs in both
bridge chips 26 and 48 being run at the same frequency. The
downstream bridge chip 48 lags the upstream bridge chip 26
in phase by the delay of the cable 28. An asynchronous
boundary in the upstream bridge chip 26 at the point where
data is taken off of the cable 28 allows the phase delay to be
any value [and therefore the cable to be of any length}. with
the only requirement only being that the frequency of the
two bridge chips be the same.

The core logic of each bridge chip is the bridge logic
block (100 or 120), which includes a PCI master [101 or
123) for acting as a master on the respective l’Cl bus, a PCI
target or slave {103 or 121) for acting as a slave device on
the respective PCI bus, configuration registers (105 or 125}
which contain the configuration information of the corre-
sponding bridge chip. and a queue block (107 or 127}
containing several queues in which data associated with
transactions between the primary PCI bus and the secondary
PCI bus 32 are queued and managed. The data transferred
between the upstream bridge chip 26 and the downstream
bridge chip 48 are buffered by cable interfaces 104 and 130
in the bridge chips 26 and 48, respectively.

Interrupt routing logic is also included in each bridge
chip. There are 8 interrupLs, 6 from the secondary bus slots,
1 from an SIO circuit 50. and 1 from the downstream bridge
chip 48. In the downstream chip 48. the interrupts are
received by an interrupt receiving block 132 and sent up the
cable 28 as a serial stream in sequential time slices. In the
upstream bridge chip 26. the interrupts are received by an
interrupt output block 114, which routes the interrupts to an
interrupt controller.

The 810 circuit 50 furnishes control signals for lighting
LEDs, for controlling reset, and for selectively connecting
the slots 36 to the bus 32. It also includes logic for reading
the engagement status of the levers 802, and the status of the
cards 80':' in each slot 36.

The bridge circuit 26 also includes support for interrupts
in the expansion box 30, and, when installed in a slot in the
host system with a proprietary interface to a multichannel
interrupt controller, it sends the states of each interrupt in a
serial stream. The bridge circuit 26 also can be configured to
drive standard PC! INTA, INTB, lN'I‘C. and IN'I‘D signals if
it is installed in a standard slot in the host system

Toshiba_Apricorn 1010-0131
|PR2018—01067

Toshiba_Apricorn 1010-0132
IPR2018-01067

5 ,943 ,482

7
Each bridge chip also includes a PCI arbiter (116 or 124)

for controlling access to up to seven bus masters. As the
upstream bridge 26 is installed in a slot, the PC] arbiter 116
in the upstream bridge chip 26 is disabled. Each bridge chip
also includes an 12C controller (108 or 126) for communi—
cation with devices such as LiEPROMs, temperature sensors,
and so forth, a J'I‘AG master (110 or 128) for performing test
cycles. a bus monitor (106 or 127) for measuring bus
utilization and efficiency and the efficiency of the bridge
chip‘s prefetch algorithm, and a bus watcher (119 or 129) for
storing bus history and state vector information and for
notifying the CPU 14 of a bus hang condition. Certain
blocks are disabled in each bridge chip as they are not used.
in the upstream bridge chip 26, the bus watcher 119, the $10
118, the PC] arbiter 116, and tlte bus monitor 106 are
disabled. In addition, the interrupt receiving block 112 in the
upstream chip 26 and the interrupt output block 13-1- in the
downstream chip 48 are disabled.

Queue Block Overview

Referring to FIG. 4, the queue blocks 11.11Ir and 12'? manage
transactions [lowing between the primary PCI bus 24 (in the
upstream chip) or the secondary PC] bus 32 (in the down-
stream chip) and the cable interface 130. {From here on, the
downstream bridge chip will be re ferred to with the assump— "
tion that upstream chip works identically, unless otherwise
noted). The queue block 127 includes a cable decoder 146
that receives from the cable interface 131! transactions to be

completed on the secondary PCI bus 32. After decoding a
transaction, the decoder 146 places the transaction, along
with all information included in the transaction, into one of
three queues 140, 142, and 144. Liach queue contains several
transaction buffers, each of which stores a single transaction
and therefore is able to handle several transactions simul—

taneously.

’Ihe first queue, a posted memory write queue (PMWQ)
140. stores posted memory write cycles issued by the CPU
on the primary bus along with all information required to
execute each cycle on the secondary bus 32. The PMWQ
140 has four transaction buffers, each of which holds one
posted memory write transaction containing up to eight
cache lines (256 bytes) of data. Under some circumstances,
a posted memory write transaction having more than eight
cache lines of data may overflow into one or more subse-
quent bulfers, as described below.

'Ihe second queue, a delayed request queue (DRQ) 142,
stores delayed request transactions (i.e., delayed read
requests (DRR), such as memory read (MR), memory read
line (MRI.), and memory read multiple (MRM) requcsLs;
and, in the downstream chip, inputt’output (HO) readt’writes
and configuration (config) readlwrites) issued by the CPU on
the primary bus along with all information required to
execute each transaction on the secondary bus 32. The DRQ
142 has three transaction buffers, each of which is capable
of holding one double-word, or “dword”, of data for delayedwrites.

The third queue, a delayed completion queue (DCQ) 144,
stores delayed completion information provided by the
upstream chip in response to delayed request transactions
generated on the secondary bus 32 For a delayed read
request, the corresponding completion information contains
the read data requested by the initiating device and the read
status (i.e., an indication of whether a parity error on target
abort occurred). The delayed completion information
returned for a delayed write transaction is the same as that
returner] for a delayed read request, except that no data is

It)

15

2t)

3t)

40

4:1

50

55

{til

{15

8
returned for delayed writes. Since 1K} and contig readx'writes
occur only on the downstream bus. only the upstream DCQ
will contain delayed completion information corresponding
to one of these transactions. The DCO 144 has eight
completion bu Efers, each of which can hold up to eight cache
lines of completion information for a single delayed request.
In addition to the completion information. each completion
bulfer also contains a copy of the delayed request that
generated the information. For delayed read transactions, a
data "wstream" can be established between the primary bus
24 and the secondary bus 32 if the requesting device begins
retrieving the requested data before the target device stops
providing it to the DCQ 144. Under some circumstances, the
DCO 144 automatically will retrieve, or "prcfetch," addi—
tional data when a requesting device retrieves all of the
requested data from the corresponding butler in the DCQ
144. Both streaming and automatic prefelching are dis-cussed in more detail below.

A queue-to-PCI interface (OPIF) 148 manages transac-
tions flowing front the queues 140, 142, and 144 to the PCI
bus 32, and from the PCI bus 32 to the DCQ 144 and to the
upstream chip through the cable interface 130. The QPIF
148 enters a " master” mode to run posted memory write and
delayed request transactions from the PMWO 140 and the
DRO 142 on the secondary bus. For both posted memory
write and delayed read transactions, the QPIF 148 can
"promote" a transaction that may involve less than a cache
line of data (i.e., a memory write (MW) or a memory read
(MR) transaction) to one that requires one or more cache
lines (i.e., a memory write and invalidate (MWI) transaction
or a memory read line (MRI..) or memory read multiple
(MRM) transaction) if certain conditions are met. The QPlli
148 also may convert a read transaction involving a single
cache line of data (i.e., a MRI. transaction) into one involv—
ing several cache lines of data (Le, a MRM transaction). The
QI’IF 148 aLso may "correct" a MRL or MRM transaction
that begins in the middle of a cache line by reading the entire
cache line and then throwing away the unrequested portion
of the data Transaction promotion and read correction, both
ofwhich are described in more detail below, improve system
efficiency by reducing the time required to retrieve data from
a memory device.

The QPIF I43 enters a "slave" mode to provide data from
the DCQ 144 to a requesting PCI device or to send trans-
actions from the l’Cl bus 32 to the 0(1) 144 and to the
upstream chip through the cable. When the QPlF 148
receives a posted write transaction from the bus 32, it
forwards the transaction to the upstream chip if a corre-
sponding one ofa group of transaction counters 159 indicate
that the PMWO in the other bridge chip is not full, as
discussed below. When the Ql’lF 148 receives a delayed
request, it first forwards the request to the DCQ 144 to
determine whether the transaction already has been placed in
the DCO and, if so, whether the corresponding delayed
completion information has been returned to the DCQ 144.
If the delayed completion information is in the DUI), the
information is provided to the requesting device and the
transaction is terminated. if the request already is enqueued
but the delay completion information has not been returned,
the requesting device is retried and the transaction is termi-
nated on the PCI bus 32. If the transaction is not yet
enqueued. the DCQ 144 reserves a completion buffer for the
transaction and the QPIF 148 forwards the transaction to the
upstream chip through the cable interface 131], as long as the
corresponding transaction counter 159 indicates that the
other bridge chip is not full.

If the DCQ 144 determines that one of its buffers contains
data intended for a requesting device but ditferent than the

Toshiba_Apricorn 1010-0132
|PR2018—01067

Toshiba_Apricorn 1010-0133
IPR2018-01067

5 ,943 ,482
9

data requested in the current transac1ion, the bulfer may be
flushed to prevent the requesting master from receiving stale
data. The buffer is flushed when it contains prefctch data
(i.e., data left in the butler after the requesting device has
retrieved some of the data, or data that was not specifically
requested by the device), but is not flushed when it contains
completion data (i.e., specifically requested by a device that
has not yet returned to retrieve it). If the bulIer contains
completion data and the requesting device has issued a
request that does not "hit" the buffer, the DCQ 144 tags the
device as a "multi-threaded" device (i.e., one that is capable
of maintaining more than one transaction at once) and
allocates another completion buffer for the new request. The
butfer flushing and multiple bull'er allocation schemes are
described in more detail below.

Arnaster cycle arbiter (MCA) 151] in the queue block 127
maintains standard ordering constraints between posted
memory write, delayed request, and delayed completion
transactions, as set forth in the PCI Bridge Architecture
Specification. Version 2.1. These constraints require that has
cycles maintain strong write ordering and that deadlocks. do
not occur. Therefore, the MCA 150 determines the order in
which posted memory write transactions in the PMWQ 140
and delayed request transactions in the DRQ 142 are run on
the PC! has 32. The MCA 150 aLso controls the availability -
of delayed completion information stored in the DCQ 144.
To ensure compliance with these rules, the downstream
MCA 150 gives each posted memory write cycle an oppor-
tunity to bypass earlier-issued delayed request cycles, while
both the downstream and the upstream MCAs 151] do not
allow delayed request and delayed completion cycles to
bypass earlier-issued posted memory write cycles. ‘l‘ransac-
tion ordering by the MCA 150 is described in more detail
below.

The transaction counters 159 in the downstream queue :
block 12'?I maintain a count of the number of transactions
enqueued it! the upstream bridge chip. A posted memory
write (PMW) counter 160 indicates the number of l’MW
transactions held in the upstream posted memory write
queue. The PMW counter 1611 is incremented each time a
I’MW transaction is sent to the cable interface 130. The
counter 160 is decrementcd each time the QPIF 148 receives
a signal from the cable decoder 146 indicating that a PMW
cycle has been completed on the upstream PCI bus 24. When
the upstream PMWQ has enqueued the maximum number
(four) of PMW transactions, the PMW counter 160 asserts a
PMW full signal (tc pmw full) that tells the Ql’lF 148 to
retry additional PMW cycles from the PCI bus 32. Likewise.
a delayed request (DR) counter 161 counts the number of
DR transactions held in the upstream delayed request queue.
When the [)RQ is holding the maximum number (three) of
DR transactions, the DR counter 161 asserts a DR full signal
(tc _dr_ full) indicating that the OPlF 148 must retry all
subsequent DR transactions from the PCI bus 32. Adelayed
completion (DC) counter 162 counts the number of delayed
completions that are enqueued in the upstream master cycle
arbiter. When the MCA is holding the maximum number
(four) of delayed completions, the DC counter 162 asserts a
DC full signal (tc dc full) that prevents the downstream
QPIF 148 from running delayed request bus 32 on the
secondary PCI bus 32. As soon as the full condition
disappears, delayed completion information may be sent to
downstream DCQ.

A PCI interface block 152 resides between the PCI bus 32

and the queue block 127. The PCI interface 152 includes a
master block 123 and a slave (target) block 121. The slave
block 121 allows PCI devices on the bus 32 to access the

It)

15

2|)

30

411

4:1

50

55

fit]

as

10
bridge chip’s internal registers (e.g., target memory range
registers 155 and configuration registers), to claim comple—
tion information stored in the DCQ 144, and to initiate
transactions that are passed through the QPtF 148 and the
cable interface 130 to the primary bus. The slave block 121
controls the availability of the PC] bus 32 to the PC] devices
on the bus 32 by recognizing when each device asserts its
REQ# line and forwarding the REQttf signals to the PCI
arbiter 124. When the PCI arbiter 124 selects a requesting
device to receive control of the bus, the slave block 121
grants the bus to the device by asserting the device ‘s GNTtt
line. As soon as the bus 32 is granted to the requesting device
and the device asserts its FRAMEtt signal indicating the
beginning of a transaction. the slave block 121 latches the
transaction information (e.g., address. command, data, byte
enables, parity. etc.) into a slave latching register 156. The
queue block 127 then is able to retrieve the transaction
information from the latching register 156 and provide it to
the DCQ 144 andror the cable interface 131}.

’I‘ransactions supported by the PCI slave block 121 are
shown in the following table.

PCI Interface Slave Transactions

'l‘mnsaction 'l‘ype Primary Interface Secondary Interface

Interrupt Acknowledge Not supported Not supported
Special Cycle Delayed Delayed
[.-'0 Read Delayed Delayed
{it} Write Delayed Delayed
Memory Read Delayed Delayed
Memory Write Posted Posted
Configuration Read Immediate Not supported
(type 0!
Configuration Write Immediate Not supported
(type 0!
Configuration Read Delaytxl Not supported
(type ll
Configuration Write Delayed Not supported
(type 1]
Memory Read Multiple Delayed (Streaming) Delayed (Streaming)
Dual Address [ycle Not Supported Immediate
Memory Read Linc Delayed Delayed
Memory Write and Posted Posted
tnvaltdate

The master block 123 of the PCI interface 152 runs only
cycles initiated by the queue block 127 (i.e.. transactions
held in the PMWO 140 and DRQ 142). The queue block 127
requests the PCI bus by sending a request signal (q2p._
REQ) to the [’0 master 123, which then determines whether
to assert a corresponding request signal (b1are_) to the PCI
arbiter 124. The master block 123 asserts blreqI3 if the queue
block 127 is not running a locked cycle and the PCI bus 32
is not locked by another PCI device. When the PCI arbiter
124 selects the queue block 127, the master block 123 sends
an acknowledge signal {p2q__ ack) to let the queue block 12?
know it has control of the bus 32. If the PCI arbiter 124 has
no outstanding requests from other devices on the bus 32,
the master block 123 automatically sends the p2q_ack grant
signal to queue block 12?. even if the queue block 127 has
not asserted the q2p req signal. As soon as the queue block
12'? wins arbitration (i.e., the arbiter 124 asserts the blunt
signal) and asserts iLs q2p_frame signal to indicate the
beginning of a transaction, the PCI master 123 latches
outgoing transaction information (i.e., address. command,
data, bytc enables. parity, etc.) into a master latching register
[58 in the PCI interface 152. The transaction information

then is used to complete the transaction on the PCI bus 32.
Transactions supported by the master block 123 are

shown in the following table.

Toshiba_Apricorn 1010-0133
|PR2018—01067

Toshiba_Apricorn 1010-0134
IPR2018-01067

5 ,943 ,482
11

PE] Interface Master 'l'ransactions

'l‘mnsaction 'l'ype Primary Interface Secondary Interface

Interrupt Acknowledge Not supported Not supported
Special Cycle Supported Supported
[10 Read Supported Supported
I10 Write Supported Supported
Mammy Read Supported Supported
Memory Write Supported Supported
Contigumtion Road Not Supputed Supported
Configuration wrilc Not Supported Supported
Memory Read Multiple Supported Supported
Dual Address Cycle Supported Not Supported
Memory Read Line Supported Supported
Memory Write and Supported Supportedlnvalidrttc

In general. the master block 123 operates as a standard
PCI master. However, unlike standard PCI bridges, the
master block will not terminate a MR1.. MRM. or MWl
transaction until a cachc line boundary is reached, even after
the master latency timer (MIT) expires. Also, the master
block 123 does not assert "initiator ready” (1RDY) wait
states. The master block 123 runs a locked cycle on the PC]
bus 32if the queue block 127 asserts its "lock" signal
(q2p_lock) and releases its lock on the bus 32 when the
qucuc block 12? asserts its “unlock" signal (q2p_urtlock).

Referring also to FIG. 57, the PC] interface 152 contains
bull'er [lashing logic 154 that determines when one or all of
the DCQ completion buffers should be flushed by the queue
block 127. The PCl slave 121 generates two signals that are
used by the queue block 127 to flush the completion bu tiers:
a flush signal (p2q_llush) that indicates when a butler
should be flushed. and a slot selection signal (qu slot
[2:0]) that indicates which PCI device (i.c., which slot on the _~
PCI bus) should have data flushed. The following table
shows the relationship between p2q slot [2:0] and the PC]
slot number.

Creation 01‘ 1 .slo 2:E|

p2q_slol|2:0| slot number
001)
[101
L111]
011
I110
101
1111
ll]

3

HGU‘L'nI-Jw‘
When qu flush is asserted, the queue block 127 will

flush either all of the completion buffers in thc DCQ 144 if
p2q_slol [2:0] is equal to "(Kit)" or the corresponding one of
the eight completion buffers if p2q slot [2:0] has any other
value. The queue block 12'? keeps track of which completion
buliers, ifany, correspond to each PCI slot at any given time.

The p3q flush signal is asserted at the rising edge of the
first PC] clock (CLK) cycle after a config writc (wr cfg)
cycle occurs or after an I10 write (iowr) cycle occurs or a
memory write (memwr) cycle hits a downstream target
(hit_ _tmern) during a command check state (cmd chk __st).
Gatcs 2014. 2016. 2018, and 2020, and [lip—flop 2022 arc
arranged to produce p2q_ flush in this way.

In the upstream bridge chip {i.c.. when the upstream,3
chip _i signal is asserted}, p2q_ slot [2:0] always has a value
of "lltll" since the CPU is the only master on the primary

It)

15

2|)

30

411

4:1

50

55

{11]

{15

12

PCI bus. [n the downstream chip, the value of p2q __slot
depends upon whether the cycle leading to a [lush condition
is a cycle front the secondary bus 32 to the queue block 127
(i.t:., if p2q___qcyc is asserted). If lhc p2.q__qcyc signal is
asserted, p2q_slol [2:0] takes on the value of tho rcq_slot
[2:0] signal produced by the PCI slavc 121. The req slot
[2:0] signal indicates which of the seven devices on the
secondary PCI bus 32 has been granted control of the bus 32.
The PCI slave 121 generates the req .slot [2:0] signal by
latching the value of the GNTtr line for each of the seven
slots on the bus 32 to form a seven bit latched grant signal
[latched _gnt__[7:1]; the eighth grant line, which belongs to
the queue block, is ignored) and encoding latched__gnl [7:1]
according to look—up table 2006, as follows.

Creation of IQ slot 2:0

Iatchcd_gnr_[?:l] req_slor|2:t)]
lllli‘ll tlllll
1111110 001
llllllli 0111
lJlllJIl 011
111011} 11.11}
110111] 101
1011.11! 110
0111111 111

[l' the cycle leading to the flush is not a secondary-13(71-
to-qucuc-block cycle. it must be an 110 read or oonfig mad
to the target mcmot‘y rangc of out: of the slots on the
secondary bus 32. When the cycle is an 110 read or conlig
read (i.c., liowr AN D lwr_cfg}, p2q__slot [2:0] takes on the
value of the PCI slot whose memory range has been hit
[mrange slot [2:0]) Otherwise. the cycle is an 110 write or
a config write, and p2q slot [2:0] is set equal to "(Kit)" so
that all completion bu Il'ers are flushed. Gates 2/008 and 2010
and multiplexers 2002 and 2004 are arranged to generate
p2q_ flush [2:0] in this way.

Cablc Decode I‘

Referring to FIG. 58, the cable decoder 146 receives
transactions from the cable interface and selects the appro-
priate queue to receive each transaction. When the cable
decoder is in the data phase (i.c., when dala_phaso or
next data phase, an asynchronous signal that sets the value
of data phase at the next CLK cycle, is asserted}. the cable
decoder 146 looks at the command code (ctl_cmd [3:11]]
sent across the cable to determine which queue should
receive the transaction. As shown in the table below, when
cd_cmd [3:0] has a value of "100]". the transaction is a
delayed completion. so the cable decoder asserts a od_dcq__
select signal that telLs the DCQ to claim the transaction.
When the lhrcc 13B of thc command code signal (Cd_r:md
[2:0]) are "111". the transaction is a posted memory write,
so the cable decoder generates a cd ”pqu__sclcct signal to
alert the PMWQ of the incoming transaction. When the
transaction is neither a posted memory write nor a delayed
completion and the command code does not represent a
streaming signal, the cable decoder asserts a cd_drq_selt:ct
signal that tells the DRQ to claim the transaction. Gates
2024, 2026, 2023. and 2030 are configured to generate the
cd_dcq__sclcc1, cd__pqu__sclccl, and cd _dt‘q___sclcct sig—
nals in this way.

The following table shows the four hit command codes
associated with each type of transaction.

Toshiba_Apricorn 1010-0134
|PR2018—01067

Toshiba_Apricorn 1010-0135
IPR2018-01067

5 ,943 ,482
13

'l‘ransaetion Command Codes

'l'ransaction 'l'ype Command Code
{1'0 Read UlllU
U0 Write 0011
Confrg read 1010
[Tonfig write ttttl
Memory mart tt‘tln
MRI. lttt}
MRM lift-(J
Memory write 0] llMWI 11]]
Delayed completion 1001Stream established ltltttl

When the downstream bridge chip has established a data
stream between the primary bus and a secondary bus master,
the upstream cable decoder receives a command code of
"1000". This code represents a streaming signal generated
by the downstream chip to inform the upstream chip that a
stream has been established When the cable decoder

receives this command code, it asserts a ed stream signal
that tells the QPIF in the upstream device to continue the
transaction. The cable decoder also generates a cd_ stream _
nexl__dala Signal that instrucLs the upstream chip to provide
another piece of data to the secondary bus, The ed. stream
next data signal is asserted when cd stream signal is
asserted, the transaction is in the data phase (i.e., data_
phase is asserted), and a nexti3 data signal has been received
from the downstream chip through the cable interface (the
next _ data signal appears on one of the lines of the c2q__ buff
[3:0] signal, which, when no stream is occurring, tells the
queue block which downstream DCQ bulfer is associated
with the current transaction). The cd_strcam__next_data -
signal is dcasscrtcd when either the cd __strearn signal is
deasserted or when a new request is received from the cable
interface (i.e.. c2q_ncw,3 rec; is asserted). Gates 2032 and
2034 are configured to generate the cd_strcam and
cd stream next data signals in this way.

Posted Memory Write Queue

Referring to FIG. 59, the posted memory write queue
(PMWQ) 140 is a storage element that contains all of the
command information needed to execute posted write trans-
actions on the target bus. The PMWO includes a lag memory
portion 2036 that holds information identifying each
transaction. a data RAM 2038 that holds the write data
associated with each transaction in the PMWQ, and various
control blocks to manage the flow of transactions into and
out of the PMWQ. For each transaction in the FMWQ. the
tag memory 2036 maintains information such as the address
to be written to, the PCI command code (MW or MWI), an
address parity hit, and "locked cycle" and "dual address
cycle“ indication hits, as shown in the following table. The
tag memory 2036 also stores a pointer to the data RAM
location of the data corresponding to each of the transactions
in the PMWO.

Contents of 1’ng

l-‘ield Bits Comments

Address 6-1- Upstream Trnnsactions support Dual
Address {ycles

PCI Command 1 Memory Write 011!

It)

15

2|)

30

40

4:1

50

55

fit]

as

14
-continued

Cattle rite of I’MWQ

t-‘ield Btu: Comments

Memory Write and [nvalidale 11]]
(only necessary to store cbe[3]t

Byte Enables 0 Store BEs on every valid transfer
clock in the data RAM.

l‘arity tr'nddress Must stone PAR with each transfer
along with 32-bit nddn‘data.

[1 Most more data parity bits on everyvalid data transfer in data RAM.
Data [t Stored in data RAM up to 8 cache linesLock
DAC Indication I Indicates whether address is 32 or [14

hits

Because the PC! Spec 2.1 requires posted memory write
transactions to be executed in the order in which they are
received, the tag memory 2036 is a circular FIFO device.
The PMWQ, and therefore the tag memory 2036, can handle
up to four posted memory write transactions simultaneously.

The data RAM 2038 includes four data buffers 2042,
2044, 2046, and 2048, one for each transaction in the
I’MWQ. Each butler can store up to eight cache lines, or 256
bytes, of data (eight words per cache line). For each cache
line in a bufibr, the bu [fer stores eight data parity hits 2040
(one per dword) and thirty-two enable hits 2050 (one per
byte).

A cable interface block 2060 receives each transaction

and the mrreSponding data from the cable decoder and
places the transaction in the tag memory 2036. A queue
interface block 2053 receives the data from the cable inter-

face block 2060 and places it in the appropriate location in
the data RAM 2038. The queue interface 2053 also retrieves
data from the data RAM 2038 and provides it to the Ql’lF
when the OPIF is running the corresponding transaction on
the PCI bus. An input pointer logic block 2054 generates
four input pointers, one for each buti'er, that tell the queue
interface 2053 where to place the next word of data. Avalid
(output) pointer block 2056 generates four output pointers,
one for each bufl'er, that indicate the position of the next
word to be taken.

Referring also to FIG. 60, a valid flag logic block 2052
maintains an eight bit valid line register 2062 for each of the
four butt‘crs in the data RAM 2038. The valid line register
2062 indicates which of the eight cache lines in each bulfer
contain valid data. When the last word in a cache line has

been Iillcd with data (he, valid_pointcr [2:0] equals "1 11"
and cd next data is asserted, indicating that the word has
been tilled), the corresponding bit in an eight bit cable valid
signal (i.c., q0_cable_va1id [7:0]. qt_cable_va]id [710],
etc.) is set. The bit to be set is determined by the three most
significant bits ot‘ the valid pointer (valid pointer [5:15]),
which indicate the cache line being filled. The eormsponding
bit in the cable valid signal also is set when a slot validation
signal (validate_slot) is received from the cable decoder at
the end of a transaction. The cable valid signal is latched into
the valid line register 2062 corresponding to the selected
data buffer at the rising edge of the first I’CI clock cycle
[Cl..K) after the last word is filled or the validate_slot signal
is received. Otherwise, the valid line register maintains its
current value. The bits in the valid line registers 2062 are
cleared when the corresponding bits of an eight bit invali—
date signal (i.c., th_ invalid [7:0], ql invalid [7:0], etc.) isasserted.

The valid [lag logic block 2052 generates a pqu_ __valid
[3:0] signal that indicates which, if any, of the four data

Toshiba_Apricorn 1010-0135
|PR2018—01067

Toshiba_Apricorn 1010-0136
IPR2018-01067

5 ,943 ,482
15

hull‘ers contains at least one valid line of data. The valid

block 2052 also generates a meq___va|id__ lines [7:0] signal
that indicates which of the eight cache lines of a selected
data butler are valid. A queue select signal from the QPIF
(q2pif. .queue select [1:0]) is used to select which data
bulfer’s valid line register 2062 is used to generate the
pqu_valid_1ines [7:0] signal, When the queue block
gains control of the bus to run a posted memory write cycle
from a selected data buffer, the queue block transfers all data
in each line whose corresponding bit is set in the pqu .
valid lines [7:0] signal Gates 2064, 2066, 2068, 2070, and
2072, and llip—llop 2074 are arranged to set the values in the
valid line register 2062 for the first data buffer (qu valid
[7:0]). Similar circuitry determines the contents of the valid
registers for the other three data bull'ers. Multiplexer 2076
selects the value of the pqu_valid_lines [7:0] signal.

Referring now to FIG. 61, a full line logic block 2058
maintains an eight bit full line register 2078 for each of the
four data buffers. The contents ofeach full line register 2078
indicate which of the eight cache lines in the corresponding
data buffer are full. The bits in each full line register 2078
are set by an asynchronous next_._full13 line__bit signal
generated by full line state machine 2080, described below.
When a queue selection signal from the QPIF (seleet_next_
queue [310]) selects one of the data buffers and the next
full line bit signal is asserted, the bit in the full line
register 2078 corresponding to the cache line indicated by
the three most significant bits of the valid pointer (valid_
pointer [513]) is set. A 3x8 decoder 2082 converts the three
bit valid pointer into an eight bit signal that determines
which bit to set. An eight bit full line signal (q0_full_line)
is generated for each data bu lfer from the contents of the
corresponding full line register 2078. The full lint: signal
indicates which lines in the corresponding data butler are
full. The full line logic block 2058 also generates a pqu
fu||_|ine [7:0] signal that indicates which cache lines of a
selected data butler are full. Multiplexer 2084 and the
q2pif queue select [1:0] signal are used to generate the
pqu_full_line [7:0] signal.

Referring also to FIG. 62, the full line state machine 2080
is placed in an IDLE state 2086 at reset. In the IDLE state
2086, the next_l‘1.tll_line_bit is set to here. When a trans-
action is placed in the PMWQ, the transaction occurs in two
phases, an address phase and a data phase. When the data
phase begins (i.e., a clock_seeond__pl1ase signal is asserted)
and the valid pointer points to the first word in a cache line
(valid pointer [2:0] =“UO(J"). the state machine 2080 tran-
sitions to 3 DATA state 2088. In the data state. the next_
full line hit signal is asserted only if the valid pointer
points to the last word in the cache line (valid pointer [2:0]
-“111"), the cd_next_data signal is asserted by the cable
decoder (indicating that the last word was filled with data).
and the byte enable signal from the cable decoder (ed _
byte__en [3:0]) equals “0000“. The state machine also tran-
sitions back to the IDLE state 2086 when these conditions
occur. If these conditions do not occur before the transaction

terminates (i.e., cd_eornplete is asserted), the next_|'ull_
line hit signal remains deasserted and the state machine
2080 transitions back to the IDLE state 2086. The state
machine 2080 also transitions to the IDLE state 2086

without asserting the next_ful|_line_bit signal when the
cd_ byte en [3:0] signal takes on a value other than “0000".

Referring again to FIG. 59 and also to FIG. 63, the
PMWO normally must terminate a transaction from the
cable decoder when the data buffer receiving the corre-
sponding data is full. However, when the cable decoder
continues to send data after the buffer is full, an overflow

It)

15

2|)

3t)

40

4:1

50

55

fit]

as

16
logic block 2090 allows the data to overflow into the next
empty butler. The overflow logic block 2090 maintains an
overflow register 2092 that indicates which, if any, of the
[our data bullbrs are being used as overflow bulTers. The
contents of the overflow register 2092 are used to produce a
four bit overflow signal (pqu overflow [3:0]). When the
transaction is in the data phase (i.e., data_phase is asserted),
the valid pointer reaches the last word of a data buffer (i.e.,
valid. pointer [5:0] =" I. ll 1 II"), the cable decoder indicates
that more data is coming (i.e.. ed next data is asserted),
and the cable decoder has not indicated that the transaction

is complete (i.e., cd_complete is not asserted). the select__
next___qneue [3:0] signal, which points to the recently filled
data buffer. is used to set the overflow register bit corre—
sponding to the next data bufler. If the conditions are not
met, the overflow bit is cleared. Gates 2094 and 2095 are
used in conjunction with the select_next_queue [3:0] signal
to set and clear the appropriate overflow register bits when
these conditions are met.

A single transaction may continue to overflow into addi-
tional buffers until the last unused bulfer is full. ll'more than

one butler is used as an overflow buffer. multiple overflow
register bits will be set. Consecutive set bits in the overllow
register indicate that a single transaction has overllowed into
more than one butler. The overflow bits are either set or

cleared when the posted write transaction is placed into the
PMWQ. Also. if the QPIF begins to run the PMW transac-
tion on the target bus and empty the original buffer while the
data is still entering the PMWQ, the original bull‘er may be
reused to continue the overflow transaction. The overflow
can continue until all of the available bulIers are full.

Delayed Request Queue

Referring to FIG. 64. the DRQ 142 stores all of the
information needed incomplete delayed read request (DRR)
and delayed write request (DWR) transactions on the target
bus. The DRQ includes a queue memory 2100 that holds
information such as the address to be read from or written to,
the PC! command code, byte enables, address and data
parity bits, "locked cycle” and "dual address cycle" indica-
tion bits, and the buffer number of the delayed completion
bulfer reserved in the initiating bridge chip for the comple-
tion information. The queue memory 2100 aLso holds up to
thirty-two bits (one word) of data to be written to the target
bus in a delayed write cycle. Because delayed write cycles
ochr involve more than one word of data, no data RAM is
needed in the DRQ. The DRQ, and therefore the queue
memory 2100. is capable of holding up request delayed
request transactions at once. A cable interface block 2102
claims delayed request transactions from the cable decoder
and places them into the queue memory 2100. The following
table shows the information maintained in the DRO queue
memory.

Contents of DRQ

Field Bits (‘om me ms

Address 64 Upslrenm "transactions support [)ual
Address Cycles
00 Read
00 Write
(‘0an Read
Config Write
Memory Read
Memory Read Line
Memory Read Multiple

PCI Command 4

Toshiba_Apricorn 1010-0136
|PR2018—01067

Toshiba_Apricorn 1010-0137
IPR2018-01067

5 ,943 ,482
17

-continued

Contents of DRQ

Field Bits Comments

Byte Enables 4 Byte Enables not necessary on MRL
MRM

Parity faddrcss
It’data transfer Send dam par with delayed writetransactions

Data 32 Data queued on delayed write
Imam-titans.

Lock 1
DAC 1 Indicates whether address is 32 or
Indication 64 bits
Butt Num 3 lnditztles IJCQ hufi‘er allocated for

completion data

Referring also to FIG. 65, a valid liag logic block 2104
determines when the DRQ has received all of the informa-
tion necessary to run the transactions in the queue memory
2100. When one of the DRO slots is selected by a corre-
sponding .slot select signal (i.e., select__zero for the first slot,
selecl_one for the second slot, and select_two for the third
slot) and the slot is validated by a validate .slot signal.
indicating that the cable decoder has finished delivering the
transaction to the DRQ. a valid signal corresponding to the -
slot (i.e., q0_valid, q l_valid, or q3_valid) is asserted at the
rising edge of the next PCI clock (CLK) cycle. Ila slot is not
selected and validated by the vaiidatc_siot signal, the slol’s
valid signal is deasscrted if the QPIF has selected the slot by
asserting a DRQ select signal (q2pif_drq_seiect) and iden-
tifying the slot (q2pil'_queue_select%lot number) but has
aborted the transaction by asserting a cycle abort signal
(q2pit' abort cycle). The valid signal also is deasscrted it'
the DRQ ends the transaction by asserting a cycle complete
signal {e.g., qt) __cycle __con1plete) while the QPll“ is waiting 3
for more data [i.e., qlpif__rtext_data is asserted). However,
the cycle complete signal is ignored if the QPIF is currently
streaming data to the other bridge chip (i.e., q2pif.
streaming is asserted). Otherwise, if the slot's valid signal is
not specifically asserted or deassertcd on a clock cycle, it
retains its cu rrent value. The valid flag logic block 2104 also
generates a DRQ valid signal (drq_valid [3:0]) that indi-
cates which, if any, of the three DRO slots contains a valid
transaction. by combining the valid signals for each indi-
vidual slot (i.e., drq___valid-{(J, q2_valid, qt__valid,
q0_.vaiid}). Gates 2106, 2108, 2110, 2112, and 21.14, mul-
tiplexers 2116 and 2118, and flip-flop 2120 are arranged to
generate the slot valid signals and the DRQ valid signals in
this manner.

The DRQ also includes pointer logic blocks that maintain
pointers to the memory locations from which data is to he
read during a delayed read request transactions. When the
address at which the delayed read transaction will begin is
loaded into the queue memory 2100. a valid pointer logic
block 2122 generates a six hit valid pointer that indicates
where the transaction will end. it the transaction involves a

single word (e.g., a memory read), the valid pointer logic
2122 sets the valid pointer equal to the address loaded into
the queue memory 2100. For a memory read line
transaction. the valid pointer logic 212 gives the valid
pointer a value (11"000111", which indicates that the last
valid piece of data is eight dwords (i.e., one cache line)
beyond the starting point. For a memory read multiple
transaction. the valid pointer is set to "llltll", which
indicates that the inst valid piece of data is sixty-four dwords
(to, eight cache lines) beyond the starting point. The valid
pointer logic 2122 maintains one valid pointer for each slot

10

15

2|)

30

411

4:1

50

55

fit]

as

18

in the DRQ (valid __pointer___0 [5:0], valid pointer 1 [5:0],
and valid_pointer_2 [5:11]). The location 01' the valid
pointer is ignored by the DRQ when it receives a streaming
signal from the QPlF (q2pii‘_streaming), as described inmore detail below.

An output pointer logic block2124 maintains three output
pointers (output_pointer_0 {5:0}, output_pointcr_l [5:0],
and output. pointer .2 [511]), one for each slot in the DRQ,
that indicate the next word of data to be read from memory
and delivered to the other bridge chip. The pointer is
incremented when the QPll’ indicates that it is ready to read
the next piece of data (i.c., it asserts the q2pit‘_next_data
signal), once for every word read. EXoept in streaming
situations, a transaction is terminated (completed) when the
output pointer reaches the valid pointer. If a transaction
terminates before all of the data is read (i.e., before the
output pointer reaches the input pointer), the QPIF will pick
up at the location indicated by the output pointer when the
transaction resumes. 11' the output pointer is incremented but
the output pointer logic 2124 receives a stepback signal
(quil‘__stcp_hack), indicating that the transaction was ter-
minated on the l’Cl bus before the QPIl-' was able to read the
last piece of data, the output pointer logic 2124 decrements
the counter once so that the last unread piece of data can he
read when the transaction resumes. A queue interface block
2126 provides transaction inlon'nation and the valid and
output pointers to the Qi’lF.

Delayed Completion Queue

Referring to FIG. 66, the DCQ 144 stores delayed
completion messages containing the msponsc of the target
bus to each delayed request issued on the initiating bus.
Delayed completion messages corresponding to delayed
read requests include the requested data, while delayed
completion messages corresponding to delayed write
requests include no data. Acable interface block 2130 claims
delayed completion messages from the cable decoder and
provides the delayed completion information to a tag
memory 2132. The DCQ, and therefore the tag memory
2132, is capable of storing up to eight delayed completion
messages at once. The tag memory 2132 stores information
such as the PC] command and the address contained in the

original request leading to the delayed completion message.
byte enable bits, address and data parity bits, and "locked
cycle" and "dual address cycle" bits. For delayed write
transactions, which always involve only in a single word of
data, the tag memory 2132 stores a copy of the written data.
Each of the eight slots in the tag memory 2132 includes an
implied pointer to one of eight corresponding data bufi‘ers in
a DCO data RAM 2134. For delayed read transactions, the
returned data is stored in a corresponding data butIer
2135134: in the data RAM 2134. The Following table shows
the information stored in the tag memory 2132 for each
transaction held in the DCQ.

(“0111;an ot‘ I} 9

Field Bits (.‘onimean

Address 64 Upstream Transactions support Dual
Address CyclesIIO Read
[IO Write
Conl'tg Read
(.‘ortfig Write
Memory Read

l’C'l Command 4

Toshiba_Apricorn 1010-0137
|PR2018—01067

Toshiba_Apricorn 1010-0138
IPR2018-01067

5 ,943 ,482
19

-continued

Contents of DCQ

Field Bits Comments

Memory Read Line
Memory Read Multiple

Byte Enables 4 Byte Enables not necessary on MRL,MRM
ParityI Ifdala transfer Send data par with delayed writetransactions

Data 33 than queued on delayed writetransactions.
lock 1
DAC‘ 1 lndiutlcs whclhcr address is 32 or
Indication 64 hits

Each ofthe eight data bullers in the DCO data RAM 2134
may store up to eight cache lines (256 bytes) of delayed
completion data. Therefore, the buffers are large enough to
store all completion data for even the largest delayed request
transactions (rnemor)l read multiple transactions). However.
the capacity of each data huller may be reduced to four
cache lines by setting a configuration bit (cngq _ eight
line__} in the bridge chip‘s configuration registers. Each data
bulIcr may he tilled by data provided in a single delayed
completion transaction. or if not all requested data is v
returned in a single delayed completion transaction, by
multiple delayed completion transactions. However. each
data bullet may contain data corresponding to only one
original delayed rcqucst. regardless of how many dclaycd
completion transactions it takes to provirlc the requested
data.

A queue interface block 2136 controls the flow of comple-
tion data from the DCQ cable interl‘acc 2130 into the data
RAM 2134 and out of the data RAM 2134- to the OPIF.
Three logic blocks generate pointers that govern the input 3
and output of data stored in the eight data buffers. The lirsl
block. an input pointer logic block 2138. maintains a six bit
input pointer for each of the eight data buffers (in
l’ointer_0 [5:0], in_pointer_l [5:0], etc). Each input
pointer points to the location in the corresponding data
bu [for to place the next word of data. The second block. an
output pointcr logic block 2140. maintains a six bit output
pointer for each of the eight bu Hers (out_pointer_0 [5:0].
out pointer 1 [5:0], etc.). Each output pointer points to the
location of the word ofdala immediately following the word
last removed by the QPll-Z The output pointer for a selected
data buffer is incremented when the QPIF indicates that it is
ready for the next piece oldata (Le, when q2pil'_next_data
is asserted). lithe output pointer is incremented but the last
piece of data docs not reach the requesting device because
the transaction was terminated by a device other than the
0P] F, the OPll’ asserts a stepback signal (q2pil'_step__back)
that causes the output pointer logic block 2140 to decrement
the output pointer by one word.

The third pointer block, a valid pointer logic block 2142.
maintains for each of the eight data bulfers a six bit valid
pointer [valid __pointcr_ 0 [5:0]. valid _pointcr _1 [5:0].
etc.) that indicates the next word of data in the correspond-
ing data bulfer that is available to thc QPlI". Because the PC]
Spec 2.1 requires that read completion data not be returned
before an earlier—initiated posted memory write transaction.
delayed completion data placer] into the DCQ while a posted
memory write is pending in the PMWQ cannot be made
available to the requesting device until the posted memory
write is completed on the PCI bus and rcmovcd from the
PMWQ. "therefore, as long as any carlicr—cnqucucd posted
memory write transactions remain in the PMWQ, the valid

5

It)

15

2|)

31

40

4:1

50

55

(it!

{15

20

pointer must remain at its current position. Then. when all
carlicr-cnqucucd posted memory writes have been removed
from the PMWQ, the valid pointer may be moved to the
same position as the in pointer. When the PMWQ is empty,
all delayed completion data is valid (i.c., available to the
requesting device) as soon as it is stored in the DCQ.

Referring also to FIGS. 67A and 67B, the valid pointer
logic block 2142 must ask the master cyclc arbiter (MCA)
to validate all delayed completion transactions that enter the
delayed completion queue while a posted memory write is
pending in thc PMWQ. But because the MCA can cnqucue
no more than [our delayed completion transactions at once,
as discussed below, the valid pointer logic block 2142 may
request validation of no more than four delayed completion
data bull‘ers at once. The valid pointer logic block 2142 also
must keep track of which [our delaycd completions trans-
actions arc enqucued in the MCA at any given time. To do
so, the valid pointer logic block 2142 maintains two four-
slot registers: a DCQ bufier number register 2144 and a
validation request register 2146. The buffer number register
2144 maintains the three~bit DCO buffer number. as deter-

mined by the DCQ bull’cr nu mbcr signal (cd .dcq bull‘
oum [2:0]) provided by the cable decoder, of each delayed
completion transaction enqueuerl in the MCA. The valida-
tion rcqucst register 2146 maintains one transaction valida-
tion request hit for each of thc DCQ butters whose numbcrs
are stored in the four slots 214Sn—d of the bulfer number

register 2144. The request bit in each slot 21500—d of the
validation request register 2146 is asserted if a correspond—
ing delayed completion transaction is enqueued in the MCA.
The values of the bits in the four validation request slots
2150a—d are provided together to the MCA as a l'our hit
validation request signal (dcq valid [310]).

When a delayed completion transaction is to he enqucucd
in the MCA, its corresponding DCO buficr number is loaded
into one ol‘the butler number slots 21480—0' hy the cd dcq
butf num [2:0] signal. The slot 2148rr—d to be loaded is
selected by a two bit selection signal (next_valid_sclcct
[1:0]). The value of the selection signal depends upon the
value of the dcq__valid [3:0] signal generatcd by the vali—
dation request rcgjstcr 2146 and look—up table 2152. the
contents of which are shown in the table below. The slot is

loaded when it is selected by next_valid_selcct [l :0], when
the cable decoder has selected the DCQ and has completed
the transaction (i.e., cd dcq select and cd complete are
asserted), and when at least one posted memory \vritc
transaction is pending in the PMWQ {i.e., pran_no_pmw
is not asserted}. Gates 2154, 2156. 2158,2160, and 2162 and
2x4 decoder 2164 are arranged to load the bufl‘er nu mbcr
register 2144 in this manner. Likewise, the corresponding bit
in the validation request register 2146 is set by the output of
gates 2154, 2156, 2158. 2160, and 2162 and 2x4 decoder
2164.

Buffer number twister slot selection

dcq _ valid[3:t]] next _ valid. selecq I :EI] slot at
xxx!) 00 t)
XXII] ll] 1
st] ll 10 2
till] ll '4:

In response to the dcq_va1id [3:0] signal, the MCA
outputs a four bit DCQ run signal (mca run dcq [3:01) that
indicates which of the DCQ huiTcrs pointed to by the buffer
number register may have its valid pointer updated. The

Toshiba_Apricorn 1010-0138
|PR2018—01067

Toshiba_Apricorn 1010-0139
IPR2018-01067

5 ,943 ,482
21

mca run dcq [3:0] signal is provided to a valid pointer
update logic block 2166, along with the meq_no_pmw
signal and the in pointers for each of the eight data buffers.
if a posted memory write transaction remains in the PMWO
after the MCA asserts one of the mca _.run .dcq [3:0] bits
(which will happen when a posted memory write transaction
was enqueucd alter the delayed Completion transaction was
enqueued but before the MCA asserted the corresponding
mca run deq bit), the corresponding valid pointer is
updated as long as no other delayed completion transactions
corresponding to the same DCQ bufi‘er are still enqueuecl in
the MCA. If a delayed completion transaction [or the same
DCQ buffer is still enqueucd in the MCA, the valid pointer
may be updated only when the rnca_ run _dcq bit corre-
sponding this transaction is asserted. 0n the other hand, as
soon as the pran_no_pmw signal is deassertcd. all valid
pointers are updated to match the corresponding in pointers
regardless of whether delayed completions are still
enqueued in the MCA. When a mca_run_dcq bit is
asserted, the corresponding bit in the validation request
register 2146 is cleared. Gates 2168, 2170, 2172, 2174. and
2176 are arranged to clear the validation request register bits
in this ntanner.

Referring again to FIG. 66, a hit logic block 2180 deter-
mines when a delayed request transaction from a requesting -
device on the PCI bus has "hit" atone of the delayed
completion messages in the DCO. According to the PC]
Spec 2.1. the following attributes must be identical for a
delayed completion to be matched with a request: address,
l’CI command, byte enables, address and data parity, data (if
a write request), RE064# (if a 64-bit data transaction), and
LOCKtt‘ (ifsupported). When a request is latched by the PC!
slave. the QPIF retrieves the request information, sends it to
the DCQ. and asserts a check cycle signal (q2pif_check_
cyc) that instructs the DCQ hit logic 2180 to compare the 3
request information to the delayed completion messages
stored in the DCO lag memory 2132. The hit logic 2180
receives the sixty-four bit address signal (q2pif .addr
[632]), the four bit PCl command signal (q2pif_cmd [3:0]),
the four enable bits (q2pif_byte_en [3:0]). the dual address
cycle bit (q2pif dae) (which corresponds to the PC!
RE064# signal), the lock bit (q2pif_lock) from the Ql’lF,
and, if the request is a write request, the data to be written
(q2pif data [31:0]). Though not required by the l’CI Spec
2.1, the QPlF also provides. the slot number [q2pif_slol
[2:0]) of the requesting device to enhance the queue block‘s
bu [fer flushing routine, described below. The hit logic 2180
then compares each of these signals to the delayed comple—
Iion information stored in the eight DCO buffers. Ifall ofthc
signals match the information of any of the delayed comple-
tion messages, the hit logic 2180 identities the bufl’er con-
taining the matching completion message by asserting a
corresponding bit in an eight bit hit signal (dcq hit [7:11]).
When a hit occurs, the QI’IF retrieves the completion
message and provides it to the requesting device and, if the
request is a read request, begins removing the returned data
from the corresponding data buffer in the data RAM 2134.
If the request information does not match the completion
information of any of the delayed completion messages in
the DCO. the request has "missed" the DCO and is stored in
the next available DCQ butler and forwarded through the
cable to the other bridge chip by the Ql’lF. A PCI device
which initiates a request that misses the DCQ may have its
REQ# line masked until its completion message is returned.
as described in more detail below.

The hit logic 2180 also interfaces with a multi-threaded
master detection block 2182 to detect which PCI slots, if

It)

15

2|)

30

:10

4:1

50

55

fit]

as

22

any, contain multi-threaded devices. Matti-threaded devices
are capable of maintaining more than one delayed transac—
tion at once and therefore must be treated specially. When a
multi-threaded master is detected, a corresponding bit in the
configuration registers is set to indicate that the device is
able to sustain multiple outstanding delayed transactions and
therefore that its REQ# line should not be masked. Multi-
threadcd master detection is discussed in more detail below.

Another function of the DCQ is to determine when an
opponunity to create a stream of read data between the
primary and secondary PCI buses existsfistreaming oppor-
tunity exists when delayed completion data is being placed
into the DCQ by the cable decoder while it is still being
placed onto the target has by the target device. 11‘ the PCI
device that initiated the transaction resubmits its request
while the target device is still placing data on the PC! bus,
a read stream is established. Because read streaming is an
efficient way to transfer data between the primary and
secondary l-‘CI buses, the PCI bridge chip not only gives
higher priority in the bus arbitration process to a device
whose completion data is arriving, it also will attempt to
terminate a non-streaming transaction to improve the pos-
sibility that a stream will be established. However, while in
theory streaming can occur during any read cycle, in practice
it is likely to occur only during transactions that involve a
large amount of data (i.e., memory read multiple
transactions). Therefore, the queue block will attempt to
terminate transactions in favor of potential streaming oppor—
tunities only when the potential streaming transaction is a
memory read multiple transaction.

Referring also to FIG. 68, a stream logic block 2184 in the
DCQ determines whether a streaming opportunity exists
and. if so, generates the signals required to support the
stream. The stream logic block 2184 generates the signals
required to disconnect a current transaction in favor of a
potential stream. When the cable decoder is placing a
delayed completion transaction in the DCQ. the stream logic
2184 uses the DCQ buffer number signal provided by the
cable decoder (cr|_dcq_bu1f_num) to retrieve the PCI
command code stored in the corresponding DCQ buffer
(q0_crnd [3:0], ql_crnd [3:1], etc.). If the command oodc
represents a memory read multiple request (Le, "1100"), the
stream logic 2184 asserts a disconnect-for—stream signal
[dcq_disconnect_for_stream) that instrucLs the QPIF and
the PCI interface to terminate the current transaction due to

a potential streaming opportunity. Multiplexer 2186 and
comparator 2188 are arranged to generate the dcq_
disconnect for stream signal. Then, as long as the cable
decoder continues to provide the completion data to the
DCQ (i.e., the cd_dcq_selecl signal remains asserted) and
no posted memory writes appear in the PMWQ (i.e.,
pqu_no_pmw remains asserted), the stream logic 2184
provides a streaming request signal (q23_strearn) directly to
the PC] arbiter. The stream logic 2184 also provides the slot
number of the potential streaming device (q2a_stream_
master [2:0]) Io Ihe PCI arbiter by using the cd_dcq_buiT_
num [2:0] signal to select the PCI slot number stored in the
selected DCQ hulIer (qtl master [2:0] for DCQ buffer hero
2135a, ql_master [2:0] for DCO butler one 2135!), etc.).
The PC] arbiter then elevates the bus arbitration priority of
the potential streaming device, as discussed in more detail
below. If the potential streaming master is not granted the
bus before the streaming opportunity disappears, its priority
is returned to normal. Because the upstream bus has only
one master device {the CPU), this feature is disabled in the
upstream chip. Gate 2190 and multiplexer 2192 are arranged
to generate the q2a stream and q2a stream master sig-
nals.

Toshiba_Apricorn 1010-0139
|PR2018-01067

Toshiba_Apricorn 1010-0140
IPR2018-01067

5 ,943 ,482
23

When a requesting device hits a delayed completion
message stored in the DCQ, the corresponding bit of an eight
bit hit signal (hit [7:0]) is asserted. The hit [7:0] signal
indicates which of the eight DCQ boilers was hit by the
current request. When this happens, if the corresponding
DCQ butler contains data (i.e., dcq_no_data is not
asserted), the stream logic 2180 latches the value of the hit
signal for the duration of the transaction (i.e.. as long as
q2pi1i__cyc__cornplclc is asserted). The latched version of
the hit signal forms a "delayed" hit signal (dly. hit [7:0]).
When either the hit signal or the delayed hit signal indicates
that a DCQ buffer has been hit, a three bit DCQ .stream
buffer signal {dcq stream but]. [2:0]) provides the bulfer
number of the hit DCQ buffer. Then, if the cable decoder
places delayed completion data into the buffer while the
cycle that hit the butler is in progress (i.e., cd_dcq_selecl
is asserted and cd____dcq___but.t‘____nurn [2:0] equals dcq_
stream_bufl' [211]), the stream logic block 2180 asserts a
stream connect signal [dcq_ stream. connect) that tells the
QPlF that a stream has been established. The QPIF then
informs the bridge chip on the target has that a stream has
been established. If certain conditions are met, the target
QPlF will continue to stream until it is told to stop by the
initiating OPll". as discussed in more detail below. Gates
2194 and 2196, multiplexers 2198 and 2200, and flip-llop
2202 are arranged to generate the delayed hit signal. Gates
2204. 2206, and 2203 and encoder 2210 are arranged as
shown to generate the dcq__.stream__ connect and dcq
stream__buiT [2:0] signals.

Referring again to FIG. 66, the DCQ will, under certain
circumstances, automatically prefetch data from the target
bus on behalf of a PCI master in anticipation that the master
will corne back and request the data. A prefetch logic block
2212 in the DCQ prefetches data when the reading master
consumes all of the data in its DCQ bulfer and the prefetch _~
logic 2212 anticipates that the requesting device will return
with a sequential read request tie, a request that picks up
with data located at the next sequential location in memory).
Because some devices, such as multi-threadcd masters,
routinely read all of the data requested in one transaction and
then return with a different, non-sequential request, the
prefetch logic 2212 includes prediction circuitry that dis—
ables the prefetch capabilities for each device on the [’CI bus
until the device has shown a tendency to issue sequential
read requests. As soon as a device that has been receiving
prefetched data returns with a non-sequential read request,
the prediction circuitry will disable the prefetching function
for that master.

Referring also to FIGS. 69A and 693, the prefetch logic
block 2212 includes a prefetch prediction register 2214, the
output of which is an eight bit prefetch enable signal
(prefetch_set [7:0]) that governs whether the prefetch func-
tion is available for each of the devices on the PC] bus. All

bits in the prefetch enable signal are cleared at reset (EST)
and when the QPIF orders a general flush of all of the DCQ
registers (i.c., general_flush is asserted and q2pif_slot [2:0]
equals "000”). The general_flush signal is discussed in
more detail below. Gates 2216 and 2218 generate the signal
that resets the prefetch set bits.

An individual bit in the prefetch enable signal is set when
the corresponding PCI slot is selectth by the qlpif .slot
signal and the following conditions occur: the requesting
device hits a delayed completion bufl'er in the IJCQ (i.e., one
of the bits in the cyc]e_hil [7:0] signal is asserted), the
current transaction is a memory read line or memory read
multiple cycle (i.e., qlpit'_ cmd [3:0] equals "1100" or
"Ill 10“), the OP”: has indicated that the cycle is complete

It)

15

2t)

3t)

40

4:1

50

55

fit]

as

24

(i.e., q2pit' _cyc complete is asserted), and the last word of
data was taken from the DCO bufl‘er (i.e., last_word is
asserted). Gates 2220, 2222, 2224 and 2228rr—Jr and decoder
2226 are arranged to set the prediction bin; in this manner.
The last_word signal is asserted by the prefetch logic 2212
when the requesting device tries to read past the end of the
DCQ buli'er. This occurs when the out pointer and in pointer
are equal, indicating that the end ofthe DCO bulfer has been
reached (i.e., for a four cache line buffer, out pointer 3:
[4:0] equals valid pointer _x [4:0] or, for an eight cache
line buffer, out._pointer_x [5:0] equals valid_pointer_x
[5:0]) and when the requesting device tries to read another
piece of data {i.e., q2pif_ncxt_data is asserted). Gates
2230, 2232, and 2234 are arranged to generate the last__
word signal

An individual bit in the prefetch enable signal is cleared
when the corresponding I’Cl slot is selected and either a PCI
flush condition occurs (p2q_flush is asserted), the QPIF
tells the DUO to step back the bulfer's valid pointer (q2p
step back is asserted), or the requesting device initiates a
transaction that misses all of the DCQ buflem (q2pil'_
check_ eye is asserted and dcq__hit is deasserterl). Gates
2236, 2238, and 2240rt—It and decoder 2226 are arranged to
clear the prediction cnablc bits in this manner.

When the prefetching function is enabled for a device on
the PCI bus, the prefetch logic 212 can generate two types
of prefetch signals for the device: a prefetch line signal
(dcq_prefetch_line) and a prefetch multiple signal (dcq_
prefetch _ mul). The prefetch line signal is generated when
the current PC] command from the requesting device is a
memory read line signal, and the prefetch multiple signal is
generated when the current PCI command is a memory read
multiple signal. In either case, the corresponding prefetch
signal is generated when the following conditions occur: the
prefetch set bit for the requesting PC] slot is set; a corre-
sponding prefetch enable bit in the configuration registers is
.set (cfg2q_auto_prefetch_enable); the DRQ in the
upstream chip is not full (ltc __dc_ full); the DCQ buffer has
room for the corresponding amount of prefetch data (ldeq_
no__prefetch__room}: the current cycle ltit the DCQ bulfer;
and the requesting master has tried to read past the end of the
DCQ buffer {Iast_word and q2pif_cyc_comPlete). Gates
2242, 2244, 2246, 2248, 2250, and 2252, decoder 254, and
multiplexers 2256 and 2253 are arranged to generate the
prefetch signals in this manner.

When the prefetch logic 2212 generates a prefetch signal,
it generates a corresponding prefetch address signal (dcq_
prefetch _addr [632]) by concatenating the upper lit‘ty-
seven hits of the address stored in the corresponding DCQ
butler (qt). .addr [63:7] for bu tier zero, ql _arldr [63:7] for
better one, etc.) with the lower five bits of the bulfer’s output
pointer {out_poirlter_0 [4:0], etc.) A dual address cycle
signal {dcq prefetch (lac) indicates whether the prefetch
transaction is a dual or single address cycle. The dcq_
prefetch_cycle signal takes on the value of the dual address
bit stored in the DCQ butler (qO dac, q1_ dac, etc.) For
both the prefetch address and dual address cycle signals, the
appropriate value is output from a multiplexer 2260 or 2262
and selected by the three bit DCQ butler number signal
indicating which DCO bulIer was hit by the current request.

Referring again to FIG. 66, each DCQ data buffer has
several possible states, each of which is determined by a
buffer state logic block 2264 in the DCQ. The following are
the possible bufl’cr states.

1. Empty. Available for allocation. Abuficr is Empty after
power up and after it is flushed.

Toshiba_Apricorn 1010-0140
|PR2018—01067

Toshiba_Apricorn 1010-0141
IPR2018-01067

5 ,943 ,482
25

. Complete. The bu tier contains completion information
for a delayed completion from a real delayed request
from a device on the PC] bus (i.e., not a prefetch
request). The PCI device has not yet reconnected and
taken data from the butler. The delayed completion
transaction is complete.

3. I’ret'etch. The butter contains completion data for a
prefetch request or requested data that was left in the
buffer after the requesting master disconnected from
the bu Eer. All of the completion data has arrived from
the target.

4. PartComplete. The buffer is reserved for and may
contain completion information for a real delayed
request (i.e., not a prefetch request}. The master has not
yet reconnected and taken data from the bulfer, and not
all of the completion information has arrived from the
target.

5. PartPrefetch. The bufier is reserved for or contains

completion information for a prefetch request. or the
bulfer contains requested data that was left in the butfer
after the requesting master disconnected from the
butler. Not all of the completion information has
arrived from the target.

a. Discard. The buffer was flushed while in the Part-

Prefeteh state, but the last completion data has not yet
arrived from the target. The buffer is placed in the
Discard state to prevent it from being used until the
transaction completes on the target bus and the last data
arrives.

When the Qt-‘IF requests a DCQ bufler for a delayed
request transaction, the butter state logic 2264 allocates the
bquers in the following order. if no hulfer is in the Empty
state or Prefetch state, the requesting master must be retried.

I\J

”(.9 Bufl‘er Allocation

Butter Number Be t't'er State

on Empty
Q] If mpt y
02 Empty
03 Empty
()4 Empty
(.25 Empty
06 Empty
Q7 Empty
Qt] Prc fetch
0] Flu I'ctch
03 Pre fetch
03 PI: [etch
Q-Ii Prc I'etch
Q5 [’re fetch
Qti Prc [etch
07 Pre fetch

When a device on the PCI bus initiates a delayed read
request and a DCO completion butter is set aside, the butler
state logic 2264 changes the bu Eer‘s state to PartComplete.
If the DCQ initiates a prefetch read, the buffer state is
changed to PartPrefetch. When the last piece of completion
data arrives, the bulfer‘sslate is changed from PartComplete
or PartPrefetch to Complete or Prefetch. respectively. When
the requesting device resubmits a retried read request and
hits the bulfer, any valid completion data is given to the
master it' the butter is in the Complete, Pret'etch,
PartComplete, or PartPrefetch state. If the master does not
take all 01‘ the data before disconnecting, the bull'er’s state is
changed to Pret'etch or PartPrefetch to indicate that the
unclaimed data is considered to be prefetch data.]f the

It)

15

2|]

30

40

4:1

50

55

fit]

as

26

master takes the last piece of data when the butter is in the
Complete or Prefeteh state, the butl‘er's state is changed to
Empty.

[fa [lush signal is received while a butter is in the Prefetch
state, the prefetch data in the buffer is discarded and the
buffer state is changed to Empty. If a flush event occurs
while the buffer is in the l’artl’refetch state and completion
data is still arriving. the bu [fer is changed to the Discard state
until all ofthe prefetch data arrives. When the transaction is
complete, the preletch data is discarded and the buffer state
is changed to Empty. If the butter is in the Complete or
l’artComplete state when a flush signal is received, the
completion data is left in the butter and the butter state
remains unchanged. ll the flush signal occurs because the
corresponding PCI device has issued a new request (i.e., a
request that is not currently enqueued and that “misses" all
of the completion buffers). as discussed below. the DCQ
allocates a new bulfer for the transaction, as discussed
above. Therefore, a PC] device may have more than one
completion butler allocated. Multiple butters may he allo-
cated to a PC] device when the device has a butfer contain-

ing or awaiting completion data (i.e., the buffer is in the
Complete or PartComplete state) and the device issues a new
request. Because multi-threaded devices are the only devices
that can maintain multiple transactions at once, only multi—
threaded devices can have multiple completion bullets
reserved simultaneously.

Master Cycle Arbiter

The Master Cycle Arbiter (MCA) determines the execu-
tion order of poster] memory write and delayed request
transactions while maintaining the ordering constraints
between posted memory write, delayed request, and delayed
completion cycles set forth in the PC] Spec 2.1. According
to the PC] Spec 2.1, the MCA must guarantee that executed
cycles maintain strong write ordering and that no deadlocks
occur. To ensure that no deadlocks will occur. posted
memory write cycles must be allowed to pass earlier
enqueued delayed request cycles, and to maintain the
required ordering constraints, delayed request cycles and
delayer] completion cycles must never be allowed to pass
earlier—enqueued posted memory write cycles.

Referring to FIG. 70, the MCA uses two transaction
queues. a transaction run queue (TRQ) (or transaction
execution queue) 2270 and a transaction order queue (T00)
2272, to manage cycles enqueued in the PMWQ, DRQ, and
DCQ. An MCA control block 2274 receives transactions
from the PMWO, DRQ. and DCQ in the form of [our bit
validation request signals (pqu valid [3:0], drq valid
[3:0], and dcq valid [3:0]) and outputs run commands in the
form of four bit run signals (nrca_rt1n_pqu [3:0], mca_
run_drq [3:0], and mca_run_dcq [3:0]}. The transactions
are moved into and out of the TRQ 2270 and TDD 2272 by
a TRQ control block 2276 and a TOQ control block 2278,
respectively.

Referring aLso to HG. 71, the TRQ 2270 is the queue from
which the MCA determines the transaction execution order.

Transactions in the TM) 2270 can be executed in any order
without violating the transaction ordering rules, but once a
posted memory write cycle is placed in the TRQ 2270., no
other cycle can be placed in the TRO 2270 until the posted
memory write is removed. Transactions in the TRQ 270 are
tried in circular order and generally are completed in the
order they were received. However, if a transaction in the
TRQ 2270 is retried on the PCI bus, the MCA may select the
next transaction in the TRQ 2270 to he tried on the PC] has.
Because delayed completion transactions are slave cycles

Toshiba_Apricorn 1010-0141
|PR2018—01067

Toshiba_Apricorn 1010-0142
IPR2018-01067

5 ,943 ,482
27

rather than master cycles, they are never placed in the 't'RO
2270. Furthermore, because delayed completion information
may be made available to the requesting device as soon as
it enters the DCQ if on posted memory write cycles are
pending in the PMWQ, delayed completion transactions are
placed in the TOQ 2272 only when a posted memory write
cycle is pending in the TM) 2270. as discussed in more
detail below.

The TRQ 2270 is a circular queue that holds up to four
transactions at once. Because the MCA must always be able
to run at least one posted memory write transaction to
preserve the required ordering constraian, the TRO 2270
can never hold more than three delayed request transactions
at once. Furthermore the 'l‘RQ can hold only one posted
write transaction at a time because posted writes cannot be
passed by any later-initiated transaction, including other
posted writes. Each slot 28004 in the TRQ 2270 contains
three bits ofinitirmatittn: a one bit cycle type indicator 2282
(which equals "1" for posted memory write transactions and
"0" for delayed request transactions), and a two bit valid
pointer 2284, the four possible values of which identify
which of the buffers in the PMWQ or the DRQ the enqueued
transactions occupy. The 'I‘RQ 2270 also includes an inputt
output enable block 2286 that determines when a transaction
may be moved into or out of the TM) 2270, an input logic
block 2288 that controls the placement of a transaction into
the TRQ 2271}, and an output logic block 2291} that controls
removal of a transaction from the ‘I'RQ 2270. These logic
blocks contain standard queue management circuitry.

A circular input pointer 2292 selects the next available
slot for placement of an incoming transaction. The input
pointer is circular to maintain, as much as possible, histori-
cal ordcr of the incoming transactions.

A circular output pointer 2294 arbitrates between the
transactions in the ‘l'RQ 2270 and determines their order of :
execution. The output pointer 2294 always begins with the
top slot 228611 in the TRQ 2270 at startup and progresses
circularly through the TM) 2270. The output pointer 2294
may be configured to operate in either infinite retry or zero
retry mode by setting or clearing. respectively, an infinite
retry bit in the configuration registers (cfg2q infretry). In
inllnite retry mode, the output pointer 2294 remains on a
transaction until the transaction is run successfully on the
PCI bus. In zero retry mode, the output pointer 2294 is
incremented each time a transaction is tried on the bus (i.c.,
q3pif__.cyc_ complete was asserted on the previous PCl
clock cycle), regardless of whether the transaction com-
pletes successfully or is retried. Because the PCI Spec 2.1
mandates that posted memory write transactions he allowed
to bypass delayed request transactions, the output pointer
2294 in at least one of the bridge chips must be configured
to operate in zero retry mode. Here, the downstream chip
always is configured to operate in zero retry mode.
Alternatively, the output pointer may be configured to oper—
ate in finite retry mode, in which each transaction may be
attempted on the PCI bus a predetermined number (e.g.,
three) of times before the output pointcr incremean. Both
the upstream and downstream chips can he configured to
operate in finite retry mode with violating the ordering
constraints of the PCI Spec 2.]. In any case. the output
pointer tries to maintain the historical order of transactions
stored in the TRQ 2270, incrcmenting only when a trans-
action cannot be completed successfully on the target PCl
bus.

When a posted memory write or delayed request cycle is
popped out of the T00 2272 (new __toq ___cycle is asserted),
as discussed below, or when the T00 2272 is not enabled

It)

15

2|)

30

40

4:1

50

55

{ill

{15

28

(ltoq enabled) and a new cycle is received by the MCA
[new_valid_ set), the cycle type bit and valid hits for the
new cycle are loaded into the next empty slot in the TKO. [1‘
the cycle is coming from the T00 2272, the valid bits and
cycle type bit are provided by ‘I’OQ valid and cycle type
signals {toq_valid [1:0] and toq_cyctypc [0]), respectively.
Otherwise, the new cycle information is provided by MCA
valid and cycle type signals (d__valido [l :0] and d_cyctype
[0]). Gates 2296 and 2298 and multiplexers 2300 and 2302
are arranged to control the selection of cycles to be loaded
into the TRQ 2270. When a cycle is successfully ntn on the
PCI bus, the cycle is removed from the transaction order
queue and its cycle type bit and valid bits are provided to the
MCA control block 2274 as TRQ cycle type and valid
signals (trq cyctype [II] and trq valido [1:0]), respectively.

The ‘l‘RQ control block 2276 generates a trq_.pmw signal
that indicates when a posted memory write transaction is
enqueucd in the TRQ 2270. When this signal is asserted,
subsequently issued delayed request and delayed completion
transactions must be enqueued in the 'I‘OQ 2272, as dis-
cussed below. The trq_pmw signal is asserted when the
MCA control block 2274 has instructed the TED 2270 lo

enqueue a new posted memory write cycle (trq slot
valid_sel does not equal "0000" and d_trq_cyctype equals
"1"), or. alternatively, when any of the 'I'RQ slots 22800—d
contains a cycle (trq__stot __ valid [3:0] does not equal
“(1)110"), at least one of the cycles is a posted memory write
cycle (trq. .cyctype equals "1"), and the posted memory
write cycle has not been cleared from the corresponding slot
2281ta—d (ltrq_slot_valid_rst [3:01). Gates 2304, 2306,
2308, 2310, and 2312 are arranged to generate the trq pmw
signal in this manner.

Referring now to FIG. 72, the 100 2272 is a Iirst—in—
lirst~out (FIFO) queue that retains the historical order of
transactions received by the bridge after a posted memory
write transaction is placed in the TRQ 2270. Because all
transactions must wait for earlier-issued posted memory
writes to run, all transactions including posted memory
write, delayed request, and delayed completion transactions,
are placed in the 'l'OQ 2270 when a posted memory write is
enqueued in the ‘I‘RQ 2270. Transactions in the TOO 2272
must remain in the T00 2272 until the posted memory writc
transaction is removed from the ’l‘RQ 2270.

The 1'00 2270. which has eight slots 23140—13, can hold
up to three posted memory write transactions {the fourth will
be stored in the Tilt) 2270), three delayed request
transactions, and four delayed completion transactions. Each
of the slots 231404: in the TOO 2272 contains two cycle
type hits 2316 that identify the corresponding transaction
("01" is a posted memory write, "00" is a delayed request,
and "1x" is a delayed completion) and two valid hits 2318
that identify which of the buffers in the PMWO, DRO, and
[)C0 the corresponding transaction occupies. The 100
2272 also includes standard input and output logic blocks
2320 and 2322, which control the movement of transactions
into and out of the 'I‘UQ 2272.

The positions at which transactions are placed into and
removed from the Too 2272 are determined by a three bit
input counter 2326 {inputr [210]) and a three bit output
counter 2324 (outputr [2:0]). respectively. Both counters
begin at the first slot 2314a in the T00 2272 and increment
through the queue as transactions are entered into and
removed from the queue. The input counter 2326 increments
on the rising edge of every PCI clock cycle at which the
TOO 2272 is enabler] (toq enabled is asserted) and the
MCA control block 2274 provides a new cycle to the 100
2272 (new_valid_set is asserted). ‘I'he valid bits and cycle

Toshiba_Apricorn 1010-0142
|PR2018—01067

Toshiba_Apricorn 1010-0143
IPR2018-01067

5 ,943 ,482
29

type hits for each new cycle are provided by the MCA valid
and cycle type signals (d____valido [1:0] and d_ _cyctype
[1:01). The output counter 2324 increments on the rising
edge of each PC] clock cycle at which the MCA control
block 2274 instructs the TOO 2272 to move to the next cycle
(next_toq_cycle is asserted) and the T00 2272 is not
empty (i.e.. inputr[2:0] does not equal outputr [2:0]}. Cycles
exiting the T00 2272 are represented by ’lUQ valid and
cycletype signals (toq_valido [1:0] and toq_cyctypeo
[1:0]). Gales 2328 and 2330 and comparator 2332 are
arranged to properly clock the input pointer 2326 and output
pointer 2324.

When a delayed request transaction or posted memory
write transaction is popped out of the TOQ 2272, the
transaction is placed in the Tilt) 2270 to await arbitration.
But because delayed completion transactions are target
transactions and not master transactions, delayed comple-
tions are not placed in the TRQ 221m. InsteadI delayed
completions are simply popped out of the 'I'OQ 2272 and
used to validate the corresponding data in the DCQ data
bullets. However. as long as a posted memory write trans~
action is enqueued in the TRO 2270, all delayed completions
must be placed in the T00 2272. even when two or more
delayed completions correspond to the same delayed request
and therefore the same delayed completion buffer, as
described above.

Referring to FIGS. 73A through 73D, the M(..‘A control
block 2274 controls the {low of transactions through the
MCA. As discussed above. the I’MWO, URL), and DCO
request validation of transactions held in the queues by
providing four bit validation signals pqu_ valid [3:0].
drq__valid [3:0], and dcq__valit] [3:0]. respectively, to the
MCA. Among these signals. only one hit can change during
each clock pulse since only a single new transaction can he
placed into the queue block on each clock pulse. Therefore. _~
the MCA control block identities new validation requesLs by
watching for the changing bits in the pqu valid. drq
valid, and dcq valid signals. To do so, the MCA control
block latches and inverts each signal at the rising edge of
every PCl clock to create a delayed, inverted signal and
compares the delayed. inverted signal to the current signal
(i.e., the signal at the next clock pulse). Since only a newly
changed hit will have the same value as its delayed and
invened counterpart, the MCA control block is able to detect
which hit changed. Using [lip—flops 2340, 2342, and 2344
and gates 2346, 2348, and 2350. the MCA controller gen-
erates new pqu valid [3:0]. new drq valid [3:0]. and
new_dcq_valid [3:0] signals which, at each clock pulse,
together identify whether the PMWQ, DRQ, or DCQ, if any.
submitted a new transaction for validation and which buchr
in the corresponding queue contains the new transaction.
Referring also to FIG. 74, the MCA control block uses a
look-up table 2352 to convert the twelve bits of the new_
pqu_va|id, new_drq_valid, and new_doq_valid sig-
nals into the two bit d valid [1:0] and d cyctype [1:0]
signals provided to the TRQ and T00, as discussed above.

The MCA controller enables the T00 by latching the
log enabled signal to a value of "I" when either the
trq pmw is asserted, indicating that a posted memory write
cycle is enqueued in the TRO. or when the toq_enahle
signal already is asserted and the T00 is not empty (ltoq_
empty). Gates 2354 and 2356 and llip-tlop 2358 are arranged
to generate toq_cnabled in this manner.

The MCA control block asserts the new_toq_cycle
signal. which instructs the 1110 to enqueue the cycle being
popped out of the TOO. when there was not a posted
memory write cycle in the TRQ during the previous clock

10

15

2|)

30

40

4:1

50

55

(it!

{15

30
cycle (tsl_ trq pmw), when the 'l‘OQ is not empty (!toq_
empty}. and when the cycle being popped out of the TOO is
not a delayed completion transaction (!{toq_.cyctypeo [1]:
"DC")). The MC'A controller uses gate 2360 to generate the
new_toq_cycle signal.

The next_toq_cycle signal. which is used to increment
the T00 output counter to the next cycle in the TOO. is
asserted when the TOO is not empty (!toq empty) and
either when no posted memory write cycles currently are
enqueued in the TRO (!qu pmw) and the next cycle in the
T00 is a delayed completion (toq _cyctype [l]-“DC‘"} or
when the next T00 cycle is a posted memory write or
delayed request transaction (Ettoq_...cyctype [I]="DC")) and
there were no posted memory write transactions during the
previous clock cycle (lsl_qu_me}. The control block
uses gates 2362. 2364, 2366. and 2368 to generate the
next_toq_cycle signal.

The MCA controller generates the mca_run_dcq [3:0]
signal to indicate that a delayed completion transaction has
been popped out of the T00. When the TM) contains no
posted memory write cycles (ltrq__pn1w), the T00 is not
empty {ltoq__empty}, and the T00 cycle is a delayed
completion (toq .cyctype [l]="DC“), the mca ..run dcq
[3:0] signal takes on the value of the decoded toq_valido
[1:0] signal, discussed above. Otherwise. the mca .run dcq
[3:0] signal equals “0000". Gate 23?0, decoder 2372, and
multiplexer 2374 are arranged to generate mca_run_dcq
[3:0] in this manner.

The MCA control block generates new_mca_run_.dr
[3:0]and new mca _run____pmw [3:0] signals to indicate that
it has a new delayed request transaction and a posted
memory write transaction, respectively, to be enqueued. The
new ntca run dr [3:0] signal takes on the value of the
3x4 decoded d_valido [1:0] signal. discussed above, when
the new cycle is a delayed request cycle (d cyclype [0]=
"DR“). Otherwise, all bits of the new mca run dr signal
are set to zero. Likewise, the new_mca_rttn_pmw [3:0]
signal takes on the value of the 2x4 decoded d_valido [1:0]
signal when the new cycle is a posted memory write
transaction and is set to "0000" otherwise. Decoders 2376

and 2380 and multiplexers 2378 and 2382 are arranged to
generate the new_rnca_run_dr and new_ntca_run_pmw
signals in this manner.

The MCA controller generates loq_mca_run_dr [3:0]
and tor; mca run pmw [3:0] signals to indicate when a
new delayed request transaction or posted memory write
transaction, respectively. has popped out of the T00. ‘l'he
toq__mca__run_dr [3:0] signal takes on the value of the 2x4
decoded toq_valido [1:0] signal when a delayed request
cycle is popped out of the T00 and a value 01. "000i"
otherwise. Likewise, the too mca run pmw [3:0] signal
takes on the value of the 2x4 decoded toq_valido [1:0]
signal when a posted memory write cycle pops out of the
TOO and a value of "0000" otherwise. Decoders 2384 and
2388 and multiplexers 2386 and 2390 are used to generate
the toq_mca run_dr and toq_mca_run_pmw signals in
this manner.

The MCA controller generates trq__mca._ run. .dr [3:0]
and trq_l‘rtca_run_pmw [3:0] signals to indicate when a
new delayed request transaction or posted memory write
transaction, respectively, has won the arbitration in the TRQ
and is ready to be run on the PCI bus. The trq_mca_run_dr
[3:0] signal takes on the value of the 2x4 decoded trq_
valido [1:0] signal when a delayed request cycle has won the
arbitration and the TRQ is not empty. The trq____mca mn_ dr
[3:0] takes on a value of "th“ otherwise. Likewise. the

Toshiba_Apricorn 1010-0143
|PR2018-01067

Toshiba_Apricorn 1010-0144
IPR2018-01067

5 ,943 ,482
31

1rq__ mca _run pmw [3:0] signal takes on the value of the
2x4 dccodcd qu_valido [1:0] signal when a posted memory
write cycle has won the arbitration and the 'l‘RO is not
empty. The trq_rnca_t‘un_pmw [3:0] signal is set to a value
of "0000” otherwise. Gates 2392 and 2398, dccodcrs 2394
and 2400. and multiplexers 2396 and 2402 are used to
gencratc the trq_nica_run_dr and trq_mca_run_pmw
signals in this manner.

When the TM) is empty, the MCA may issue a request to
run the next transaction in the TOO while the transaction is
being placed in thc TRQ. When both the TRQ and the T00
are empty, transactions may begin to run cvcn before they
have been cnqueued into 1110. Therefore, the MCA control
block includes logic that dctcrrrlincs when the ncw_mca_
run or loq_mca_run signals may he used a synchronously
to indicate that a transaction may be tricd on the PCI bus. By
converting the ncw_mca_run and toq_mca_mn signals
into asynchronous run signals, the MCA controller saves a
PC] clock wait state. When the new _valid __sel signal is
asserted by lhc MCA control block and the T00 is not
cnablcd (ltoq _enabled), the async _ mca. run dr [3:0] and
async_ mca_ run pmw [3:0] signals take on the values of
the ncw_rnca_run_dr [3:0] and new_rnca_run_pmw
[3:0] signals. respectively. Otherwise. the asynchronous run
signalstakconthcvalucsol'thctoq mca run dr[3:0]and w
toq_mca_run_pmw [3:0] signals. 'l'hc MCA controller
uses gate 2404 and multiplexers 2406 and 2400 to generate
thc asynchronous run signals.

thn a PC] bus mastcr has cornplctcd a transaction
(s1_q2pif_cyc_complete is asserted), the TRO is not
empty (!tnq_ empty) and is contigured for operation in the
zcro rctry mode [lcl‘g2q_infrctry), and either a new trans-
action has popped out of the TOO (new_toq__.cycle) or the
’I‘OQ is not enabled (ltoq enabled) and the MCA has
received a new cycle to ht: validated (new _valid_sct), the 3‘
MCA cannot select a cycle to run on the PCI bus, so both the
mca run dr [3:0] and mca. run .pmw [3:0] signals are set
to “0000“. Otherwise, if lhc TRQ is empty (trq_cmpty) and
either a new transaction has popped out of the 100 [new_
toq cyclc) or the T00 is not enabled (ltoq_ cnablcd) and
thc MCA has received a new cycle to be validated (ncw_
valid_.set), then the nrca_run_..dr [3:0] and mca__run_pmw
[3:0] signals take on the value of the asynchronous run
signals, async_mca_n1n_dr [3:0] and async_mca_run__
pmw [3:0], respectively. Othcnvise. thc mca run dr [3:0]
signal takes on the value of thc trq _mca run dr [3:0]
signal and the mca_run_pmw [3:0] signal takes on the
value of the trq run pmw [3:0] signal ANDed with vali-
dation rcqucst signal from tho PMWQ (pqu valid [3:0]).
Gates 2410. 2412, 2414. 2416, and 2418 and multiplcxcrs
2420, 2422, 2424, and 2426 are arranged to generate the
MCA run signals in this manner.

The Queuc-Block-to-PCl-Interface (QPll’)

Referring again to F104 and to FIG. 75, the QPIF 148
governs the flow of transactions between the queue block
127 and the PCI bus 32. The Ql’lF 148 also delivers
transactions initiated on the PCI bus 32 to the cable interface

130. The QPIF 148 operates in two modes: master mode and
slave modc. In the master modc, the QI’IF 148 has control
of the PCI bus and therefore oxccutcs transactions intended

for target devices on the bus. A master state machine 2500
in the QPlF 148 rctricvcs transactions from thc I’MWQ and
DRO and executes them on the PCI bus when the OPIF is
in thc mastcr mode. In tho slavc modc, thc QPIF 148
rcccivcs transactions initiated by a device on tho I’CI bus and
either provides the requested information to the initiating

Ill

15

2|)

30

411

4:1

50

55

{ill

{15

32
dcvice (it tho information is availablc) or rctrics thc initiat-
ing dcvicc (if the transaction is a delayed request) and
forwards the transaction to the upstream chip. The transac-
tion also is rctricd if the corresponding onc ol‘ the transaction
counters 159 indicates that the other bridge chip is full, as
discussed above. A slavc statc machinc 2502 rcceivcs an

incoming transaction from the PCI bus and then checks the
DCQ for a corresponding completion message andtor for-
wards the transaction to a cable message generator 2504,
which in turn forwards the transaction through the cable to
the upstream bridge chip.

Referring also to FIGS. 76A and 7613. the OPIF includes
address and data latching logic 2506 that latches the incom-
ing addrcss phase and data phase information associated
with each transaction initiated by a device on the PCI bus.
The CPU: slave state machine 2502 controls operation ofthe
addrcss and data latching logic 2506. When a new transac~
tion initiated on the PCI bus is intended for the ONE the
slave state machine 2502 asserts an address phase latching
signal (reg_latch_first_rcquest) indicating that the addrcss
phase lnlhfl'l'lallflt'l should he latched from the PC] bus. At
the next falling edge of the PCI clock signal, the assertion of
the reg latch _tirst rcqucst signal causcs a delayed addrcss
phase latching signal (dly_rcg_latch_lirst_rcquest) to be
asserted. When both the original and the delayed address
phasc latching signals are asscrtcd, the latching logic 2506
gcncratcs a first latching signal (latchl). Flip—flop 2508 and
gate 2510 are arranged to generate the first latching signal in
this manner.

The latching logic 2506 loads the address phase informa-
tion from the PC] bus (via the PC] interface) into three
address phase registers when the first latching signal is
asserted. Tho [irsl register is a thirty—bit addrcss rcgistcr
2512 that indicates the starting address of the current trans—
action. thn the first latching signal is asserted. the address
signal from the PC] interface (p2q_ad [3112]) is loader] into
the address register 2512. The address register 2512 outputs
the address signal uscd by the 01’! F {q2pil' _addr[31:2])1hc
socond register is a four bit command rcgistcr 2514 that
receives the PC] command code from the PCI bus (p2q_
cmd [3:0]) and outputs the QPIF command signal (q2pif__
crrtd [3:0]). Thc third register is a thrcc bit slot sclcction
register 2516 that receives the 1321] .slot [2:0] signal indi-
cating which l’Cl device is the current bus master and
outputs the OPIF slot selection signal (q2pif_slot [210]).

When the address phase of the PCI transaction ends, the
slave state machine 2502 asserts a data phase latching signal
(rcg_latch_sccond_rcqucst) indicating that the data phase
information should be latched from the PCI bus. At the next

falling edge of the PU clock signal. the asserted reg latch
first_rcqucst signal causes a dclaycd data phase latching
signal (dly_reg__latch_second_ request) to be asserted.
When both the original and thc delaycd data phase latching
signals are asscrtcd, thc latching logic 2506 generates a
second latching signal (latch2). l-‘lip-llop 2518 and gate 2520
are arranged to generate the second latching signal in thismanner.

The latching logic 2506 then loads the data phase infor-
mation from the PCI bus (via the PC] interface) into three
data phasc rcgistcrs when the second latching signal is
asserted. The first data phase register is a thirty—two bit data
register 2522 that receives the data associated with the
current transaction on the PC] addrcsstdata lines (p2q_ad
[31:0]) and outputs the OPlF data signal (q2pif_data
[31:0]). Thc second data phase registcr is a four bit cnablc
rcgistcr 2524 that receives unable bits from the PCI bus
(p2q_cbe [3:0]) and outputs the OP": byte enable signal

Toshiba_Apricorn 1010-0144
|PR2018—01067

Toshiba_Apricorn 1010-0145
IPR2018-01067

5 ,943 ,482
33

(q2pif byte _en [3:0]). The third register is a three bit lock
register 2526 that receives the PCI lock signal [p2q__lock)
indicating that the current transaction should be run as a
locked transaction and outputs the QPIF lock signal (qlpif_
lock).

Referring again to FIG. 75 and also to FIG. 77, the QPll“
includes a "lock" logic block 2528 that controls the "kick"
state of the QPIF. The OPIF has three lock states: an
unlocked state 2530 (lock_stale [I ill—"00") that indicates
that no locked transactions are pending in the DCQ; a locked
state 2532 (lock state [l:0]-“[ll) indicating that a locked
transaction has been received in the DCQ or is completing
on the PCI bus; and an unlocked-but-retry state 2534 (lock
state [l:0]-"ltl"} that indicates that the lock has been
removed but that a posted memory write transaction pending
in the other bridge chip must be run before the next
transaction can be accepted.

At powur-up and reset. the lock logic 2528 enters the
unlocked state 2530 and waits for a locked transaction to

enter the DCQ (indicated by the assertion of the den locked
signal). At the first clock pulse after the dcq___locked signal
is asserted, the lock logic enters the locked state 2532, which
forces the QPlF slave state machine 2502 to retry all
transaction requests from the PCI bus. The PC] interface
also asserts a lock signal (p'lq lock) that indicates it has
locked the PCI bus for the transaction. After the locked -
transaction has completed and the requesting device has
retrieved the locked completion data from the DCQ, the
dcq_locked signal is deasserted. At the lirst clock pulse after
the dcq locked is dcasserted, while the p2q_ lock signal is
still asserted, if no posted memory writes are pending in the
other bridge chip (i.e., the pmw _.empty signal is asserted by
the cable decoder), the lock logic 2528 returns to the
unlocked state 2530 and the slave state machine 2502 again
is able to accept transaction requests. However, if the
pwm empty signal is not asserted at the first clock pulse _~
alter the dcq_|ock signal is deasserted, the lock logic 2528
enters the unlocked-bul-relry state 2534. which forces the
slave state machine 2502 to retry all transactions until the
posted memory write cycle is completed on the other PCI
bus. After the posted memory write cycle is complete, the
pwm__empty signal is asserted, and the lock logic 2528
returns to the unlocked state 2530.

Referring again [01:10.75 and also to FIG. 78, the CPU"
includes buder flush logic 2536 that determines when the
DCQ should llLL‘ih data from one or all of its data bull‘crs. As
discussed above, the PCI interface in the downstream chip
generates a p2q. flush signal when the upstream chip issues
an Ir’O or config write or a memory write that hiLs the target
memory range register (TMRR) of a downstream device.
The Ql’lF buffer flush logic 2536 asserts a Ol’lli flush signal
(general_llush) that tlushes the corresponding data buffer or
all data buffers (depending upon the value of the p2q_slol
signal, as discussed above) when the p2q_ flush signal is
received. Otherwise, the buffer [lush logic 2536 asserLs the
general flush signal only when a device on the secondary bus
issues a delayed request that misses all of the DCQ bulfers
when checked by the DCQ control logic (ic. !deq_l1it and
q2pil' check cyc are asserted}. In either case. the general
[lush signal is used to flush only buffers that are in the
"prefetch" state, as discussed above. Therefore. prefetch
data is held in the DCQ until the PCI interface orders a flush
or until the corresponding PCI device issues a non-
sequential request (i.o., misses the DCQ). Gales 2538 and
2540 are arranged to generate the general .flush signal in
this manner.

When a multi-threaded device has more than one comple-
tion butler allocated, at least one of which contains prefetch

It)

15

2|)

30

40

4:1

50

55

fit]

as

34
data, the prefetch data remains in the corresponding buffer
as long as the device does not issue a request that misses all
of the DCQ bufi‘ers. As soon as the device issues a new
request, all of its prefetch bufl‘crs are flushed. Alternatively,
a prefetch bufier associated with a multi-threaded device
could be flushed as soon as the device issues a request that
hits another DCO bulIer.

Referring again to FIG. 75, the QPIF includes a read
command logic block 2542 that receives read commands
from the PCI interface and prefelch commands from the
DCO and provides an outgoing message command signal
(message cmd) to the cable. ln non~streaming situations, the
outgoing message command may be same as the command
received from the PCI bus or the DCQ, or the read command
logic 2542 may convert the command into one involving a
greater amount of data. Because transactions executed
dword-by-dword take longer to complete on the host bus
than transactions involving an entire cache line of data, and
because single cache line transactions take longer to com-
plete on the host bus than multiple cache line transactions,
the read command logic often promotes “smaller" com-
mands into "larger“ ones to reduce the number of clock
cycles consumed by the transaction ("read promotion”). For
example. when a device on the secondary PCI bus issues a
memory read command and then asks for every dWot'd of
data in a cache Line, the read command logic 2542 is able to
reduce the host latency by promoting the l’Cl command to
a memory read 1ine,which allows the upstream chip to read
the entire cache line of data at once instead of reading each
dword individually.

Referring also to FIG. 79, when the DCO indicates that a
read stream has been established (i.e., dcq stream connect
is asserted}, as discussed above, the read command logic
2542 generates a message command of "1000", which
informs the upstream chip that a stream is occurring. When
no stream has been established, the read command logic
2542 must decide whether to send a memory read, memory
read line, or memory read multiple command. 1f the com-
mand received from the l-‘Cl bus is a memory read {MR}
command (q2p_cmd [2:0] equals "tlllO”) and the corre—
sponding memory-read-to-memory-read-line promotion bit
(cfg2q_mr2mrl) in the configuration registers is set. the
read command logic 2542 generates a memory read line
command ("1110"). On the other hand. if the PC] command
is a memory read command and the corresponding memory—
read-to-memory-read-mu1liple bit (cfg2q_.mr2mrm} is set,
or if the command is a memory read line command (q2pif.
cmd [3:0] equaLs "l 110") from the PCI bus or a prefctch line
command [dcq prefetch line is asserted) from the DCO
and the corresponding memory-read-line-to-memory-read-
multiple bit (cfg2q_mrl?.mrm} is set, or if the command is
a prefetch multiple command (dcq_prefetch_mul} from the
[)(TQ, the read command logic 2542 generates a memory
read multiple command (i.e., message __cmd equals "1 100").
If the command is a prefetch line command and the corre-
sponding memory-rcad-line-to-memory-read-multiple bit is
not set, the read command logic 2542 generates a MRI.
command ("lllfl"). Otherwise, the read command logic
2542 outputs the received PCl command (qlpif cmd [2:0]}
as the message command signal. Gales 2544, 2546, 2548,
2550, 2552. 2554, 2556, and 2558 and multiplexers 2560,
2562. and 2564 are arranged to generate the message __cmd
signal in this manner.

Referring again to FIG. 75, when the QPIF is operating in
the ntastcr mode and has received control of the bus to run

a transaction stored in the PMWQ, a write command logic
block 2566 generates the command code that is executed on

Toshiba_Apricorn 1010-0145
|PR2018—01067

Toshiba_Apricorn 1010-0146
IPR2018-01067

5 ,943 ,482
35

the PC! has. To reduce transaction time as discussed above,
the write command logic can convert memory write {MM
commands, which involve data transfers one dwort] at a time
into memory write and invalidate commands (MWI), which
involve transfers of at least one entire cache line of data. The

write comntand logic block 2566 can convert a command
midstream when, e.g.. the transaction begins as a memory
write in the middle of a cache line and contains data crossing
the next cache line boundary and including at] eight dwords
of data in the next cache line. In this situation, the write
command logic 2566 terminates the memory write transac-
tion when it reaches the first cache line boundary and
initiates a memory write and invalidate transaction to trans-
fer the next full cache line of data. The write command logic
2566 also may terminate a MW] transaction midstream in
favor of a MW transaction if less than a cache line of data

is to be written to the target bus after a cache line boundaryis crossed.

Referring again to FIG. 75 and also to FIG. 80, the slave
state machine 2502 also maintains two counters that indicate

when a posted write transaction initiated on the PC] bus
should be terminated. A 4K page boundary counter 2594
generates a page count signal (page. count reg [ll:2]) that
indicates when data transferred from the PC] has reaches a

4K page boundary. Because a single memory access is not -
allowed to cross a 4K page boundary, the posted write
transaction must be terminated on the initiating bus when a
boundary is reached. The 4K page boundary counter 2594 is
loaded with the third through twelfth bits of the transaction
address {qlpif_atldr [11:2]) when the state machine asmrts
a Ioad_write_.counter signal (the circumstances surround-
ing assertion of this signal are discussed in more detail
below). The counter 2594 then increments by one at the
rising edge of each clock pulse after the load write
counter signal is deasserted. The counter 2594 is not incre- _~
merited on clock pulses during which the initiating device
has inserted an initiator wait state (i.e., p2q irdy asserted).
The output of gate 2592 determines when the counter is
allowed to increment. When all bin; in the page_count_reg
[11:2] signal are high, a 4K page boundary has been reached
and the slave state machine must terminate the posted write
transaction and retry the initiating device.

A dword counter 2598 generates a pmw_counter [5:0]
signal that indicates the number of dwords written from the
initiating bus during a posted write transaction. The pmw_
counter [5:0] signal then is used to indicate when an over-flow has occurred or when the last line of the transaction has
been reached, as discussed below. When the slave state
machine 2503 asserts the load write counter signal, the
third through fifth bits of the address signal (q2pif addr
[4:21) are loaded into the lower three hits of the counter
2598, while the upper three bits are set to zero. This address
offset indicates at which dword in a cache line the posted
write transaction has started. The counter 2598 then incre—

ments by one at the rising edge of each clock pulse after the
load_write_oounter signal is (leasserted. The counter 2598
is not incremented on clock pulses during which the initi~
ating device has inserted an initiator wait state (Le, [12:]
irdy asserted). The output of gate 2596 determines when the
counter is allowed to increment. When all bits in the

pmw_counter [5:0] signal are high, the posted write has
reached the end of the eighth cache line.

Referring to FIGS. 81A through 81C, the write command
logic block 2566 generates a four bit write command signal
(write crnd [310]) indicating the command code of the
posted write transaction to be executed on the PCI bus. If the
command code stored in the PMWQ represents a memory

It)

15

2|)

30

40

4:1

50

55

fit]

as

36
write and invalidate command (pqu cmd [3]-“1"), the
write command logic 2566 generates a write command code
of "1111". If the PMWQ command code represents a
memory write command, the write command logic 2566
looks at the memory-write-to-memory-write-and-invalidate
configuration bit (cfg2q_mw2mwi) corresponding to the
target PCI slot. If the cfg2q_mw2mwi bit is not set, the
write command logic 2566 produces a memory write com-
mand (“0111"). If the configuration bit is set, the write
command logjc 2566 generates a MWI command if the next
line in the PMWQ data buffer is full (13qu full is
asserted) and generates a MW command otherwise. Multi-
plexers 2568 and 2570 are arranged to generate the write_
cmd signal in this manner.

When the QPIF is executing a transaction on the PCI bus
and has reached a cache line boundary, the write command
logic 2566 may assert a new_write_crnd signal indicating
that the current transaction must be terminated in favor of a
new write command. [f the transaction has reached the last

cache line in the PMWQ data buffer (i.e., pqu pointer
[5:3] equals "1 ll"), the new_write command signal is
asserted to indicate that the transaction should be terminated
if the next PMWQ bufler is not an overflow bufler contain-
ing valid data. if the corresponding cfg2q_mw2mwi hit is
not set, or if the littll__lirte bits. Corresponding to the current
cache line and the next cache line are different (i.e., pqu_
full [7] does not equal pqu _next_ full line). If the
transaction has not reached the end of the I’MWQ buffer, the
new_write_cmd signal is asserted either if the next line in
the PMWQ bulfer does not contain valid data (Epqu
valid_lines [x+l]) or if the cfg2q__mw2mwi bit is set and
the full line hits for the current line and the next line are

different [i.e..pqu full [x] does not equal pqu full
[x+1]). Gates 2572, 2574, 2576, 2573, and 2580 and mul-
ti plexer 2582 are arranged to generate the new_writc com-
mand signal in this manner.

After the new_write_cmd signal is asserted, the trans-
action is not terminated until the write command logic block
2566 asserts a synchronous new write command signal
(held new write cmd). The held new__write _cmd sig-
nal is asserted al the first clock pulse after the new_\vrite_
cmd signal is asserted and the end __of__ line signal is
asserted indicating that the end of the cache line has been
reached, as long as the PCI interface has not terminated the
transaction (i.c., p2q start ..pulse is assened). The held
new_write command is deasserted at reset and at the first
clock pulse after the new write cmd. end of line. and
p2q stan pulse signals are deasserted and the QPIF ter-
minates the transaction {i.e., the asynchronous early__cyc_
complete signal is asserted). Otherwise, the held_new__
write__cntd signal retains its current value. Gates 2584 and
2586, inverter 2588, and [lip—Hop 2599 are arranged to
generate the held new .write .cmd signal in this manner.

Referring again to FIG. 75 and also to FIG. 82A, the QI’IF
includes an overflow logic block 2600 that allows the master
state machine 2500 to manage overflow data, if any, when
executing a posted write transaction on the target bus. When
the OPIF receives a transaction run signal [mca .run .pmw
or mca run dr. discussed above) from the MCA, the
overflow logic 2600 generates a two bit initial queue selec-
tion signal (start_queue_select [210]) indicating which of
the bult’ers in the PMWQ or DRQ should be selected to run
the current transaction. The following table shows how the
start_queue_select signal is generated.

Toshiba_Apricorn 1010-0146
|PR2018—01067

Toshiba_Apricorn 1010-0147
IPR2018-01067

5 .943 .482
37

Creation of start gucue select signal

META Run Code
{mca run prnw, mca run. .dt’} start. queue. select

anlflillllJl on
00000010 0]
lJllelll'llXJ] Ll
lllhlfl llllll 11
{Junction til]
[10'] [10000 0|
UJULIUUiNJ .lLl
IENMJUUDI) it

When the QPIF is executing a posted write transaction on
the target bus, a two hit QPIF queue selection signal
(q2pil' queue select [1:0]) is used to select the appropriate
bulIer in the PMWQ. When the transaction is initiated. the
master state machine 2500 asserts a queue selection signal
(initial queue select) that causes the qlpif queue select
signal to take on the value of the initial queue selection
signal (start .queue. select). At the same time, a queue
selection counter 2602 is loaded with the value of the

start__queue_.select signal. After the initia1_queue_.selecl
signal is dcassertcd, lhe qZpil'_queuc__select signal takes on
the value of the count_queue_select signal generated by the '
counter 2602. When the posted memory write transaction
overllows into the next PMWQ buffer, the master state
machine 2500 asserts an increment queue selection signal
(inc__queue__sclecl) that causes the counter 2602 to incre—
ment by one. As a result, the q2pif select signal is incre-
mented and the next buffer in the I’MWQ is selected to
continue the transaction. Multiplexer 2604 determines the
value of the q2pif queue select signal.

Referring also to F10. 828, the overflow logic 2600 assets
an overflow._...next__ queue signal when the master state 3.
machine 2500 should continue pulling information from the
next PMWQ buffer during a posted memory write transac-
tion. Using the qZpil' .queue select [1:0] signal to deter-
mine which PMWQ is currently selected, the overflow logic
2600 asserts the overflow__next_queue signal when the
valid bit (pqu_valid) and the overflow hit (pqu_
overllow} corresmnding to the next PMWO buffer are set.
The pqu__valid and pqu_overflow flags are discussed
above. Gales 2606, 2608, 2610, and 2612 and mulitplexer
2614 are arranged to generate the overflow next queue
signal in this manner.

Referring again to FIG. 75. the QPIF includes a read align
logic block 2616 that allows the OP“: to correct misaligned
memory read line and memory read multiple transactions.
Read line correction occurs when the QPII’, while operating
in the master mode. receives a MRI. or MRM transaction
lhat begins in the middle of a cache line. To reduce trans—
action time, the QI’IF begins the read transaction on the
cache line boundary and ignores the unrequestcd dwords
instead of individually reading only the requested dwords ofdata.

Referring also to FIG. 83, [he read align logic 26I6
activates the read alignment feature by assening an align.

10

15

2|)

30

40

4:1

50

55

38

read signal. This signal is asserted when the command stored
in the corresponding DRO buffer is a memory read line or
memory read multiple command (i.c., drq_cmd [3:0] equals
"1110“ or “1100". respectively). and when the read align-
ment configuration bit (cfg2q_read__align) corresponding
to the target PCl device is set. Gates 2618 and 2620 are
arranged to produce the align_read signal in this manner.

Referring also to FIGS. 84A through 84C, the read align
logic 2616 includes a read alignment down counter 2622
that counts the dwords from the cache line boundary and
indicates when the master state machine 2500 reaches the

first requester] dword. The counter 2622 includes a state
machine 2624 that controls the operation of the counter
2622.

At reset, the counter 2622 enters an IDI..E_CN’1‘ state
2626 in which no counting occurs. When the MCA instructs
the QPIF to run a delayed request transaction on the PCI bus
(i.e., when any bits in the mca__run___dr [3:0] are asserted),
the QPIli asserts a delayed request run signal (any drq
run) indicating that it is attempting to run a delayed request
transaction. While the counter is in the [DLE__.CN'I‘ state
2622, its three bit output signal (throw cut [20]) is loaded
with the dword offset of the transaction address (drq_addr
[4:2]) when the any ..run.._drq signal is asserted and the
QPIF gains control of the PCI bus (i.e.. p2q_ack is
asserted). Gate 2623 generates the load enable signal. Then,
at the rising edge of the next PC] clock cycle. the counter
2622 enters the COUNTsIate 2623. If the transaction begins
at a cache line boundary, the dword olIset equals “000" and
no count is needed. When read alignment is activated, the
master state machine 2500 begins each MR1. and MRM
transaction at the cache line boundary, regardless of the
actual starting address.

While in the COUNT state 2628, the counter 2622 dec-
rements by one on every clock pulse as long as the p2q_ack
signal is asserted, throw out has not reached zero. the
transaction is in the data phase {i.e., the asynchronous signal
eary data is asserted), and the target device has not issued
a target ready wait state (lp2q____trdy}. Gate 2625 determines
when the counter is decremented. If the PCI interface takes

the bus away from the Ql’lF (plq ack is deasserted) or if
the data phase ends (early_data_is deasserted), the counter
2622 stops decrementing and reentcrs the IDLE .CN'I' state
2626. If the throw_cnt signal reaches “000'" while the
9214. .ack signal is still asserted, the counter 2622 stops
counting and enters the DONE state 2630. Otherwise, the
counter remains in the COUNT state 2628.

When the counter reaches"(t(|fl", the read align logic 2616
asserts a read__dala___start signal that instructs the master
state machine 2500 to begin reading data from the target
device. Comparator 2632 generates the read _data__ start
signal. After the read_dala__slat‘t signal is asserted, the
counter 2622 remains in the DONE state 2630 until the data

phase ends (car1y__data_phase is deasserted).
Referring to FIG. 85, the master state machine controls

the operation of the QPll‘ when the QPlli is operating in the
master mode. In the master mode, the QPlF executes posted
write transactions and delayed request transactions on the
PCI bus. The following table shoWs thc ev'cnts causing stale
transitions in the master state machine.

ms'l‘lik Sl‘A‘l‘li MACHINE

(hment
State Event Next Slate

IDLE A—(ariy rumStMeahle _husy&&!p3q master dphase] [DIE
lI [any_run_.dlg IS:& Ic_due__t'ull]

Toshiba_Apricorn 1010-0147
|PR2018—01067

Toshiba_Apricorn 1010-0148
IPR2018-01067

5 343,482
39

-continued
40

MASI‘E R S'IKI'E MACI IINE

Current
State Event Next State

IDLE B: l)2q_ack stifle q‘2p__dac__fiag MASTER._DAC
[DLE C: p3q_aelc && nny_drg_run RDKI'A]
[DIE I): p2q_m:k .3th 1(qu_dac_flagE|any_dnq_run; WIMI'M

MASTER DAG Ii: pzq. ack as any .diq. run teat plq and pulse RDA'I‘AJ
F: pIqJek && p2q_5tart pulse &&lan_v_drq_run WDATA]
G: tpzq nick IDLE

RDA'EM H: lqu ack IDLE
I: quvack 5:83 p2q_stan_pu|se RBURSI‘
J'. p".q melt an Epic] _.slarI-pulse RDATA‘J

RBL‘RS'I' K: [p2q__ack || p2q_retry |E p2q_l:trget_abort I: IDLE
(queuc_.cyc_con1plcl.e&& I(!p2q_!a.st_dphase&&
p".q_mastcr_dphasc 8:8: od__5£rt.'am && slrcsnl_nlatch &&
lefg2q_streant___die1hlcmat !p2q_trdy} ||
(read_pege_disoonnect&& lp2q_trdy}

L: p2q_ack an Ep2q_re|iy deli: tp:q_1arget_aburl && RBURSI‘
(tread page disconnect && p3q lrdyl || (queue. eye
complete 8:8: ((Ip2q_last_dphase sat p2q_master_dphasc
.523: cd stream $252 stream match as terrain. stream disable}
|| p2q_ trdyj] ilpflq _trd_\' Iotherwiscj

WDA’I'AI M: {p2q_ack Ii P2q_retry ii p2q_target_nbort || IDLE
((queuc. cyc....complclc 5: held. new. _wriEe...cmd ||
end_of_|irte this: new_write_emd | p1q__laat_dphase
ll n]_p2q_last_dpha5c]&& [p2q_l.rdy}

N: p2q_ack && !p2q_rctry && Ip2q_tnrgct__aborl WDNI‘A]
&& (queue...eyc. Dotnplete I| held,,,_new_,,write, cntd ||
cnd_of_linc && ncw_wrltc_cmd |p3q_lasl_dphasc '|
51 _p2q_last_dphasc}&& plq_trdy

0: otherwise WDA'I'M
WDKI‘M P: !p2q_qckli[p2q_n:try&&[p2q_trdy]||p2q_target_abotl IDLE

Q: p3q_nck $15: p2q_rc1r)' Still: p2q_1rdy WRETRY
R: qu, ack && Ip2q retry 52$: tplq Large-I. abort && WSHOKI' BURST

(queue_eyc_cnmplete |end_of_line &5z new_write_
(:de && (!p2q.__l.rdy || p2q_sl.atl._pul5c,1

S: otherwise WHM‘AS
Wlilfl‘I-{Y 1‘. Always IDI._E

WSHORT_BURST U: Ip2q_aclt I| p2q_relry I! p2q_largcl_abort IDLE
V: :3qu act: 5.25.: tpl‘q. .retry are Ep2q_.target_ abort WCOMPLEI'E

&&(ovcrfio\v..next. queue 52$: lnew ..Wrilc cmd
&& lp2q_trdy] Ii Ep3q_trdy)

w: otherwise
WCOMPLETE X: p2q_rctry |i p2q_larget_abort || (E(overfiow_next_

WSHORT BURSF
IDLE

queue as !n:w_wrtrc_cmd its: tp3q_last_dphase}&&
‘.p'2q. trdyj

‘1’: l|12q_retnt &&!}a£q_larget_abort 311': (loverflow_ WUA'I'A l
next.___qtlct.tc &t§:lnCW_vn-ite__.cmd && lp2q_.ia.st__dphasej
&&!p‘3q _trd_v]7.: otherwise

Mater state transitions
WCOMI‘LEI‘E

At reset, the master state machine enters an IDLE state
2700 in which the QPIF awaits instructions to run a trans—
action on the PCI bus. When the QPIF receives a run signal
from the MCA (any run is asserted when any bit in the
mca_run_prnw signal or rnca_run_dr signal is asserted),
the cable is not busy delivering a message “cable. busy).
and the PCI interface is not trying to finish the previous
transaction 0qu master__dphase), the master state
machine attempts to run the transaction on the PCI bus. If the
transaction is a delayed request transaction (any_run _drq is
asserted) and the other chip does not have room for a
delayed completion (tc_dc_[ull is asserted) the master state
machine is not able to run the request and steps the MCA to
the next transaction. Otherwise, if the PCI interface has
given the OPIF control of the bus (qu. ack is asserted), the
master state machine begins to execute the transaction on the
PCI bus. In the llJLE state 2700. the master provides the
address phase information, discussed above, to the PC] bus.
If the transaction to be run is a dual address cycle (qlpif
dae___llag is asserted), the master state machine enters a
MASTER_DAC state 2702 in which the second half of the

50

fit]

as

address information is provided. If the transaction is not a
dual address cycle and is a delayed request transaction
[any run drq is asserted). the master state machine then
enters an RDATAI read state 2704. in which the master state
machine begins the data phase of the delayed request
transaction. If the transaction is not a dual address cycle and
is not a delayed request. it is a posted memory write
transaction, so the master state machine enters a WDA’I‘AI
write state 2706. in which the master state machine enters
the data phase of the posted memory write transaction.

In the MAS'I'ER__DAC state 2704a2, the master state
machine provides the second half of the address phase
information. Then. if the qu _ ack signal is still asserted and
the transaction is a delayed request. the master state machine
enters the RDATAI state 2704 when it receives the start

signal (p2q start. pulse) from the PCI interface. 1f the
transaction is not a delayed request. the master state machine
enters the WDATAI state 2706 when it receives the PCI start

pulse. The master state machine also initiates a delayed
completion message on the cable when the PCI start pulse is
received by asserting an asynchronous completion message

Toshiba_Apricorn 1010-0148
|PR2018—01067

Toshiba_Apricorn 1010-0149
IPR2018-01067

5 ,943 ,482
41

signal (early_master send message). If the p2q ack sig-
nal has been deasscrted by the PCI interface, the master state
machine returns to the IDLE state 2700 and waits to retryr thelt‘tiI‘lSaChCIt'l.

The RDATAI state 2704 is the initial state for delayed
read and delayed write requests. In this state, the master state
machine waits for the PCI start pulse before entering an
RBURST burst data phase 2708. When the state machine
first enters the RDATAI state 2704, it initiates a completion
message on the cable (if not already done in the MAS’I‘ER. .
DAC state 2702). Then, if the plq .ack is deasserted by the
PCI interface. the master state machine terminates the
transaction, steps the MCA to the next transaction, and
reenters the IDLE state 2700. Otherwise. when the PCI start
puLse appears, the master state machine prepares to enter the
RBURS’I‘ state 2708. [f the OPlli indicates the end of the
transaction (queuc_ cyc_comptete) or if the transaction has
reached a 4K page boundary [read_pagc_discot‘1nect is
asserted because all bits in the drq_ addr [11:2] signal are
high), the master state machine deasserts the QPlF’s framc_
signal and indicates that the next piece of data is the last
piece (asynchronous signal early last master data is
asserted) betore entering the RBURST state 2708. The
master state machine also asserts an asynchronous early_
master_lastline signal, indicating that the last line of data
has been reached. if the read_Page__disconnect_tastline
signal is aswrtcd or ifthc DRQ last line signal (drq_lastline)
is asserted and the QPll: has not received a streaming signal
from the other bridge chip (cd__stream or stream_match are
not asserted or ch2q_stream_disable is not set). If the PCI
stat1 pulse is not asserted, the master state machine remains
in the RDKI‘AI state 2704 until the QPIF terminates the
transaction or a 4K page boundary is reached, which will
return the state machine to the IDLE state 2700, or until the
I’CI start pulse appears, which forces the state machine to .
enter the RBURST state 2708

In the RBURST state 2708. the master state machine

bursts data to the PCI bus. It‘ a completion message has not
yet been initiated, the master state machine initiates a
completion message upon entering the RBURS’l'state 2708.
Then, it' the p2q_ ack signal is deassened, or if the QPIF
transaction is retried by the PCl interface (p2q_rctry is
asserted), or if the PCI interface aborts the transaction
(p2q_target_abort is asserted), the master state machine
terminates the transaction on the PCI bus, aborts the comple—
tion message on the cable, and returns to the IDLE state.
When the qu ack signal is taken away, the master cycle
arbiter continues to select the current transaction. But when
the transaction is retried or aborted, the master state machine
stops the MCA to the next transaction.

While the p2q_ack signal is still asserted and the OIJIF
transaction is not retried or aborted, the master state machine
nevertheless terminates the transaction and returns to the

IDLE state 2700 if a 4K page boundary is reached and the
PCI interface indicates that the target device has stopped
taking data (p2q_trdy is no longer asserted). If the target
device took the last piece of data, the master state machine
remains in the RBURST state 2708.

[f the Ql-‘ll: asserts the queue_.cyc.....complete signal indi-
cating that the transaction has completed, the master in
general will terminate the transaction and return to the IDLE
state 2700 ifthe p2q trdy signal is deasserted or remain in
the RBURS’I‘ state 2708 until the last dword of data is

transferred if the p3q_trdy signal remains asserted.
However, it' the transaction is in the data phase and is not in
the last data phase (p2q_ master dphasc and Ip2q____|ast _
dphase) and a stream has been established with the other

It)

15

2|)

3t)

40

4:1

50

55

fit]

as

42

bridge chip (ed stream and stream__match and Ict‘ng
stream_disabte), the master state machine will remain in the
RBURST phase indefinitely. When the QPIF is streaming,
the master state machine asserts a streaming signal (qZpif__
streaming) that forces the QI’IF to continue to provide data
to the requesting device on the other PCI bus until that
device terminates the transaction.

If the p2q ack signal remains asserted and neither the
p2q_retry, p2q_larget_ahort, or queue_cyc_complete
signals are asserted, the master state machine looks at the
p2q_ trdy signal. [I the signal is not asserted, indicating that
the target device has taken or provided the last piece of data,
the master state machine asserts its next data signal (early._
next_dala), which indicates that the QPIF is ready to
transfer another piece of data. The next data signal is
asserted only if the transaction is not a corrected read
(atign_read is not asserted) or if the transaction is a cor-
rected read and the read_dala_start signal has been
asserted. [f the qu trdy signal is asserted, indicating that
the target has not performed the last data transfer, the state
machine remains in the RBURS'I‘ state 2708.

In the WDA’I'AI state 2706, the master state machine
begins the data phase of a posted memory write transaction.
If the p2q_ack signal is deasserted or the p2q_retry or
p2t] target abort signals are asserted while the master state
machine is in this state, the transaction is terminated on the
PCI bus and the state machine returns to the IDLE state

2700. When the p2q_ack signal is deasserted, the MCA
remains on the current cycle; otherwise, the master state
machine steps the MCA to the next transaction.

[ftho p2q__ack signal remains asserted and the transaction
is neither retried nor aborted, the master state machine must
determine whether the write involves a single dword or more
than one dword. If in the WDATAI state the queue_cyc_
complete signal is asserted, the held new write command
signal is assened, the end of line and new write cmd
signals are asserted, or the transaction has reached the last
dword of data. the transaction involves a single dword. In
this situation, the transaction terminates and the state
machine returns to the IDLE state 2700 only when the target
tool: the last piece of data (!p2q____trdy). Otherwise, the state
machine remains in the WDA'IZAZ state 2710. If the trans-
action involves more than one dword of data, the master
state machine enters a WDATA2 burst data phase state 2710.
Just before entering the WUA'I'AZ state, the master state
machine inserts a q2p_irdy wait state if the overflow_
next queue signal has been asserted.

[n the WDATA2 state 2710, the master state machine
bursts data to the PCI bus. If the p2q_ack signal is deas—
sorted or the transaction is ahortcd by the PC] interface, the
transaction is terminated in the 09]]: and the master state
machine reenters the IDLE state 2710. If the transaction is

retried by the PCI interface but the PCI interface took the
data provided (tp2q trdy), the master state machine reen-
ters the IDLE state .2700. Otherwise, the state machine
enters a WRE'I'RY stepback state 2712 that steps the PMWO
out pointer back to the previous piece of data by generating
the stepbac}; signal discussed above. From the WRETRY
state 2712, the state machine always reenters the IDLE state
2700.

If the p25. ack signal remains asserted and the transaction
is neither retried nor aborted, the master state machine
determines whether the transaction is complete. If the QPIF
indicates the end of the transaction (queue cyc complete
is asserted} or the end of a cache line is reached and a new
write command is needed (entl_of_line and new_write__

Toshiba_Apricorn 1010-0149
|PR2018—01067

Toshiba_Apricorn 1010-0150
IPR2018-01067

5 343,482
43

command are asserted}, the state machine enters a WS}IOK1'_B[IRS‘I‘sl.ate
2714 when either the last piece ofdata was taken (lp2q_lrdy] or the PET[start
pulse is received. In either case, oniy two dwords of data must be written to
the PCI bus. Otherwise, the state machine remains in the WDKIM state
2710. When the state machine entels the WSHORI'_ BURST state 2714, the
OPIF frame ..signal remains asserted ifthe transaction can overflow into the
next queue and a new writc command is not needed.

in the WSHORT BURST state 2714, the master state
machine prepares to write the final two dwot-ds of data to the
PCI bus. If the p2q ack signal is deassertcd or the cycle is
retried or aborted by the PCI interface, the state machine
terminates the transaction and returns to the ”NE state

2700. When the PCI acknowledge signal disappears or the
cycle is aborted, the master state machine asserLs the step-
back signal to indicate that the PMWQ out pointer should he
stepped back to the previous dword. When the transaction is
retried by the PCI interface, the out pointer is stepped back
only if the target device did not take the last piece of data
(1:2q_trdy is asserted). When the transaction is not tcn'ni-
natod and it can overflow into the next PMWQ buffer
(overliow_ncxt_queue is asserted) and a new write corn—
mand is not needed, the master state machine keeps the
QPIF frame signal asserted and then enters a WCOMPI .ETE
state 2716 if the target device has taken the last piece ofdata
or stays in the WSHORT BURST state 2'? 14 othenvisc. It'
the transaction cannot overflow into the next queue or a new
write command is needed, the state machine (leasscrts the
frame signal to indicate the end of the QPIF transaction and
then enters the WCOMPLE'I‘E state 2716 if the last piece of
data was taken by the target device or remains in the
WSIIORTJURS'I' state 2714 otherwise.

in the WCOMPLETE state 2716, the master state
machine terminates the posted memory write transaction.

2|)

30

44
The state machine enters the IDLE state 2700 if the trans-

action is retried or aborted by the PCI interface. If the
transaction is rclricd, lhc PMWQ out pointer is incremented
only if the target device took the last piece of data. If the
transaction can overflow into the next queue, a new write
command is not needed, and the transaction is not in the last
data phase. the master state machine increments the queue
selection counter and returns to the WDA’i‘A] state 2706 to

continue the transaction from the overflow queue, as long as
the target device took the last piece of data. if the target
device did not take the last piece of data, the master state
machine remains in the WCOM PI..ETE state 2716.

[l' the transaction will not overflow into the next PMWQ
bufi‘cr, the master state machine terminates the transaction
and returns to the IDLE state 2700 if the target took the last
piece or data. Otherwise. the state machine remains in thc
WCOMPLETE state 2716 until one of the terminating
events discussed above occurs.

Referring to FIG. 86, the slave state machine controls the
operation of the QFIF when the QPlF is operating in the
slave mode. In the slave mode, the QPIF receives posted
write transactions and delayed request transactions from
devices on the PCI bus and forwards the transactions to the

target bus through the cable. The following table shows the
events causing state transitions in the slave state machine.

CURRENT
STATE EVENT

SLAVE STATE MACHINE

NEXT STATE

SLAVEJDLE A: p2q_qcyc 5:3: p2q___dac_fing 81$? lp2q__pcn
3‘. p2q_qcyc .RS: lp3q_dnc_fi.ag && pmw_rcqucsl as

SLAVE_DAC
PMWJ

tp2q_. perr karate. .pmw t'ull k6; tdcq locked
8: & :iock_5latc[] I}

(T: p1q_qcyc tint? tp3q_dac_flag &&tpmw_request SIEP_A HFAD
as Equ [Milt &&(mcm read line H racm read mutt
8&3; [dcq_hit &&!dcq_no_data&&!loc.i:_5lme[l I}

D: plq, qcyc &&!p2q _dnc ling .Sctictpmw rchcst SECUNTJ” .CH ECK
8:5: {p2q__perr &&t[mem _read__line i. ntem read mull

E: [p3,q_qc_vc &&ip£q_dac_flag && pntw_mquest til-k
Ep2q_,_pcrr &S:!(!|.c_pmw_i'ull&&!dcq__.lnckcd &&iiock
smtellljj | |p3q _q_vc"plq....dac_fing§zt§zp2q__.perr]
i [Phi-"CF!" &&lp3q ._dac_.flag&&lpmwlrcqucst&&
(p2q_pcrrj ll ((mcm_rcnd_linc il mcm_rcad_rnul]&&
[(deq hit&&ldcq no data&&!lnck. statelllflll otherwise

F: p2q_qcye&&pmw_request&& tp2q_perr Mic
(Etc pmw I'ull &&tdoq locked &&!10ck .slute[l]_t

(i: p2q_qc_\'c &&!pmw_requcsl && [p3q_perr &&
(mem read_linn l| mem._rcnd__rrttllj&& (dcq. hit
as {dcq__no __data 3:5: 3 look __stale[lD

ll: p2q_qcyc&&tpmw_request&& Ep2q_pcrr &&
!(mcm_rcad_linc lmcm_rcad__mul,1

SIAVEJDLE

SI AVE_DA(" [’MW‘J

S'l'El’_.t‘\HEAD

SECOND _(.‘l IECK

I: otherwise SIAVfi_lI}LE
SE(X)ND._CIIECK J: iii) _Wl'ite Slit Econfig write fidt‘. Split .perr Std: WP.._AIIFAI)

(doq_hil 8:8: [dcq_no_dal.a && ilock_stnlc[l'| && dwr_cl't=c1r._okJ_K: otherwise
SLAVE IDLE

STEPJHEAD L: dcq_no_data H";DCQ_FLN'AL
M: otherwise ”IT. [300

Hl'l‘_DUQ N: :p2q_qcyc amounts
0: p2q_qcyc&&(doq_no_dnta&& lp".q_irdy | (pmu'_onuntcr[2] HW_DCQ_FI'NM.

&&pmw .countcr[1]
316': pmw_counter[tl] as: read_disconneet_i'or_stream]P: othc misc

Toshiba_Apricorn 1010-0150
|PR2018—01067

Toshiba_Apricorn 1010-0151
IPR2018-01067

5 ,943 ,482
45

-conlinued

St AVE SI‘A'I'I-‘I MA(TI [[Nli

(Tl) R11 I'LN'I‘
STE-(FE EVEN]

llTT_DOQ_PTNAL O: thq_qcyc '| lp2q_irdy
R: otherwise-
S'. {132:1 qeycT: otherwise

l’MW'l

Slave- stat:- trnnttilitms

46

NEXT S'I‘A'I'E

tit‘t'....l)(.‘Q
SLAVE__[DLE

Itrl‘_I)C‘Q_I-'INAI_
slaw; ll)t.ti

PMW 1

At reset, the slave state machine enters an IDLE state
2720, in which the QPIF waits for a transaction be initiated
by a device on the PCI bus. If a transaction initiated on the
bus does not target the QPII“ (qlp qcyc is not asserted), theslave state machine continues in the IDLE state 2720. When

a transaction on the PCTI bus does target the OPIF, the slave
state machine enters a SLAVE __ DAC dual address cycle
state 2722 it the p2q__dac flag is asserted and an address
parity error has not occurred (p2q__perr__is low). If the
transaction is not a dual address cycle and is a posted
memory write request, and if a parity error has not occurred
in the address phase, the slave state machine loads the write -
counters (i.e.. asserts load write counter) and determines
whether it can accept the transaction. If the PMWQ in the
other bridge chip is full (tc_dc_l'ull is asserted by the DC
transaction counter) or the DCQ is locked {doq locked is
asserted) or the QPIF lock logic is in the unlocked~but—retry
state (lock_state [1] equals "1"), the slave state machine
terminates the transaction by asserting an asynchronous
retry signal (early_retry) that is passed to PCI interface as
q2pil' retry and remains in the IDLE state 2720. ll‘the QPIF
can accept the transaction, the slave state machine initiates _~
the posted memory write message on the cable and enters a
PMW] state 2724. in which the transaction is forwarded up
the cable.

If the transaction is not a dual address cycle or a posted
memory write request, the slave state machine loads the
dword counter (asserts. load write counter) and, if no
parity error has occurred, analyzes the delayed request
transaction. If the transaction is a MRL or a MRM transac-

tion and the QPIIT lock logic is not in the unlocked-but-retry
state, the slave state machine asserts the QPIF check cycle
signal (q2pif_.check_._.cyc), which instructs the DCO to
compare the latched request to the delayed completion
messages in the DCQ buffers. [l the request hits a DCQ
butler that is not empty (dcq hit and ldcq no data). the
slave state machine enters 3 STEP AHEAD state 2226 in

which the QPIF begins delivering the requested information
to the PCI bus. Ifthe MRLor MRM request misses all ofthe
DCQ data buffers (!dcq hit). the DCQ is not full (!doq___
full). the delayed request queue in the other bridge chip is
not full (!tc_.dr_ full), and the DCQ and Ql’lt’ are not locked
(!dcq_locked and !lock_state [1]), the slave state machine
asserLs the q2pil_retry signal. forwards the request down
the cable, and remains in the IDLE state 2720. If the request
misses the DCQ and the request cannot the sent down the
cable, the OPIIT simply retries the requesting device and
remains in the IDLE state 2720.

If the delayed request is not a MRL or MRM transaction,
:1 second clock cycle is needed to check the request because
the data or byte enables must be compared to the contents of
the DCQ butters, so the slave state machine enters a
SECOND CHECK state 2728. If a parity error occurs or if
the lock logic is in the unlocked-but-retry state, the state

15

2|)

30

40

4:1

50

55

fit]

05

machine rctrics the requesting device and remains in the
IDLE state 2720.

In the SLAVE_DAC state 2722, the slave state machine
receives the second hall‘ of the address phase information. If
the requesting device has not targeted the QPIF, the slave
state machine ignores the transaction and remains in the
IDLE state 2720. When the QPIF is the target device, the
state transition events are the same as those in the IDLE state
2720. Specifically, if the transaction is a posted memory
write request and a parity error has not occurred. the slave
state machine loads the write counters and determines

whether it can accept the transaction. If the PMWO in the
other bridge chip is full (tc___pmw_full is asserted). the DCQ
is locked, or the QPIF lock logic is in the unlocked—but—retry
state, the slave state machine retries the requesting device
and returns to the IDLE state 2720. If the QPtlt' can accept
the transaction. the slave state machine initiates the [averted
memory write message on the cable and enters the PMWL
state 2'?24.

[l' the transaction is not a posted memory write request,
the slave state machine loads the dword counter and. it" no
parity error has occurred, analyzes the delayed request
transaction. If the transaction is a MRI. or a MRM transac-

tion and the OPIF lock logic is not in the unlocked-but-retry
state, the slave state machine asserts the CPI F check cycle
signal. If the request hits a UFO butler that is not empty, the
slave state machine enters the S’I‘EP_AIIEAD state 2726. If

the MRL or MRM request misses all of the DCQ data
butters, the DCQ is not full, the delayed request queue in the
other bridge chip is not full {to dr full is not asserted), and
the DCQ and QPIF are not locked, the slave state machine
asserts the q2pif_retry signal, forwards the request down
the cable, and returns to the IDLE state 2720. If the request
misses the DCQ and the request cannot be sent down the
cable, the OPIF simply retries the requesting device and
returns to the lDLl-i state 2720.

If the delayed request is not a MRI. or MRM transaction,
at second clock cycle is needed to check the request because
the data or byte enables must be compared to the contents of
the DCQ buffers, so the slave state machine enters the
SECOND_CI-IECK state 2728. If a parity error occurs or if
the lock logic is in the unlocked-but-retry state, the state
machine retrics the requesting device and returns to the
IDLE state 2720.

In the PMWl state 2724, the slave state machine forwards
a posted memory write transaction through the cable to the
target device. When the state machine first enters the PMWI
state 2724,i1deassertsthe load write countersignal. ll'the
dword counter indicates that the posted memory write
transaction is in the last cache line (pmw_counter [5:3]
equals "I It") and thc PMWQ in the other bridge is full (Ic
ntw full) and the write overflow feature is disabled
(Iclg2q_ write overflow),orif the write Page disconnect
signal is asserted because the transaction has reached a 4K

Toshiba_Apricorn 1010-0151
|PR2018—01067

Toshiba_Apricorn 1010-0152
IPR2018-01067

5 343,482
47

page boundary. or if the DCQ has amerted the doq__ _
disconnect_l'or_stream signal and the write disconnect
feature is not disabled (!ct‘g2q .wrdiscnt disable). the slave
state machine asserts the slave_lastline signal indicating
that the current cache line will be the last to be transferred.
The slave state machine then remains in the PMWI state

2724 until the p2q_qcyc signal is deasserted. indicating that
the transaction has completed on the PCI bus. After leaving
the PMWI state 2724. the slave state machine reenters the
lDLE state 2720.

In the SECOND CHECK state 2728, the slave state
machine has the DCQ compare the second phase of request
information to the delayed completion information in the
DEC) buffers. [I the transaction is not a delayed write request
(lio_ write and Tconfig write} or there is no parity error
(lp2q_perr), and if the DCQ is not locked and the dwr_
check___ok signal is asserted, the slave state machine asserts
the qZpif_check_cyc. The dwr_check_ok signal is
asserted either when the transaction is not a delayed write
request or when it is a delayed write request and a p2q__irdy
wait state has not been inserted. If the request hiLs one of the
DCO bullets and the buffer is not empty, the slave state
machine enters the STEP_ AHEAD state 2726. If the
request misses all ol'the DCO bulTers but the QPIF can send
the message down the cable. the slave state machine retries
the requesting device, forwards the transaction down the ..
cable, and reenters the IDLE state 2720. Otherwise, if the
request missed all of the DCQ huli'ers and the QPIF could
not send the transaction down the cable, or if a parity error
occurred on a delayed write request. the state machine will
retry the requesting device and reenter the IDLE state 2720.

[n the STEP AHEAD state 2'326, the slave state machine
increments the DCQ output pointer to the next dword. This
state is necessary immediately after a DCO boiler is bit
because the PCI interface latches the first dword of data

without asserting the !p2q_trdy signal. From the STEP_ .

It)

15

2|)

3|)

AHEAD state 2726. the state machine enters a "IT DCO "
state 2730, in which data is provided from the appropriate
DCQ bu I‘fer to the requesting device, if the last dword of data
has not been taken. Otherwise, the state machine enters a
I'IIT_DCQ_F1NAL state 2732. in whiCh the requesting
device is retried because the DCQ bull’cr contains no more
data.

40

48

From the HIT DCQ state 2130, when the delayed
request transaction terminates on the PCI bus before it
terminates in the Ql’lF {i.e., p2q_qcyc is deasserted). the
state machine terminates the transaction in the QPIF and
asserts the stepback signal. which indicates that the DCQ out
pointer should be decremented because the last piece ofdala
was not taken by the requesting device. The state machine
then reenters the IDLE state 2720. [f the DCQ bulIer runs
out of data while the requesting device continues to request
it (dcq_no_data and !p2q_ird)'), or ii the pmw_counter
indicates that the last dword has been reached and the

read .disconnect. for stream signal has been asserted, the
slave state machine rctries the requesting device and enters
the HIT__DCQ_FINAI. state 2732. If the transaction ter-
minates to establish a stream, the step back signal is asserted
and the output pointer of the appropriate DCQ buffer is
decremented. In any other situation, the slave state machine
continues to provide data in the l'IIT_DCO state 2730.

[n the HIT __DCQ_ FINAL state 2732. the slave state
machine has one dword of data left to transfer. It'the PCI bus

laminates the transaction before the requesting device takes
the last piece ofdata (i.e., p2q qcyc is dcasserted). the slave
state machine asserts the stepback signaI and returns to the
IDLE state 2720. [1' the plq_qcyc signal remains asserted
and the requesting device has not asserted an initiator wait
state (!p2q_irdy). the requesting device is retried because
the last piece ot'data has been taken. The state machine then
recnters the IDLE state 2720. Otherwise, the slave state
machine remains in the illT_DCQ_FINAI. state 2732.

Referring to FIG. 87, the cable message generator is a
state machine that creates cable messages from transaction
information obtained from the master and slave state
machines. in addition to an IDLE state 2740, the cable
message generator also includes a dual address cycle
(CABLE_DAC) state 2742, a master data phase
(MAS‘l‘liR__DPliASl-Z) state 2744. and a slave data phase
(SLAVE__DPHASE) state 2746. The following table shows
the events causing state transitions in the cable message
generator.

CA HIE MESSAGE GENERATOR

C'LlRRIiN'I‘
SFAT'I‘I EVENT NEXT STATE

(TABLE IDLE A: (send message as q2pit‘ due) _i ((dcq prefeteh mul | CABLE. DAG
dcq_prc[ctch_|ine}&& dcq_prefclch_dacj

B: (sendflssage && tq‘lpiLdae] || ((dcq_prcfetch_ntul |' 5tAVE_DFl-[ASE
deq pretetctt.. .IinetJtR idcq pret‘ctch. duct il (dcq stream.
connect && lddtq_m|id[3:l}]]_t Salli: (dcq_stteam_conncct |
lp2q_acls If doq_prcfctch_|ine !- dcq__prcfctch_mulJ

C: {send_mcssngc .5262 lqlpiLdncJ || ((dcq_prefctcl1 __n1u| | MASTER__DPHASE
dcq_,preFetch__ line; .5261 tdoq__prefetcl| _d.1c'} || (dcq__stream_connect
8dr lildrq_vnlid[.’-:U [IJ && !dcq_strcam__oonncct&&
!(!p2q_aek:§dcq_prefeteh_mul '| dcq_pret‘eteh_]ine]l).- ntherwise CABLE IDLE

CABLE_DAC E: lp2q_sck | dtxl_prcfctch_mul || dcq_prcfetch_line SLAVE_DPHASE
F: otherwise

MASTER._ DPI-IASE

J: othenvise

SIAVF. DPIIASF. K: [‘.(drq stream. connect &&Edrq , validlktflmdrp'lq .qcyc”

(3'. scrtd_messsgc &&q2pil'__dac
li: send_._message 3&8: !q2pif__dac
I: Esend_mcssnge 8:6}(earl);|ast_mn5tcr_dttla&& Ep2s|_lrd)' I|

muster, ahurl cable]

MASTE R .DPI-IASE
CABLE_DAC

SIAVE_ lll‘liASE
CA BLE_lDLE

MAS'I‘IiR_DP[iASIi
CABLE. "31F.

&&[(dly_rc:td_requcsl || dly_singlc_\wilc_requcsl |

Toshiba_Apricorn 1010-0152
|PR2018—01067

Toshiba_Apricorn 1010-0153
IPR2018-01067

5 ,943 ,482
49

-continued

CAB ”-5 M HS SAK i E GE NE liA'l'Oli.

CURRENI'
STATE EVENT

dcq prefetch..... mul || dcq_prefetch__lirtet] |'
L'. ear|y_la.st_slave_data |

50

NEXT STATE

dcq_strea n1__eon nectécs:i(]drq_vn|id[3:Et]t&&p2q_qcyc andotherwise 51 AVE DI’I {ASE
Cable Message Generator Stale Transitions

At reset, the cable message generator enters the [DLE
state 274“, in which it waits for transaction information to
arrive from the master or slave state machines. From the

lDlE state 2740, if the cable message generator receives a
prefetch multiple signal (dcq_prefelch_mul) or a prefetcb
line signal (doq___prefetch_ line), the cable address signal
(early_cad [31:2]) equaLs the prefelch address signal (dcq_
prefetch addr [31:2]). Otherwise the early cad [31:2] sig-
nal takes on the value of the QPIF addmss signal (q2pif_
addr [31:21). When the cable message is initiated by the
master state machine, the message is a delayed completion
message. so the command code [early_ccbe [311]) equals
"1001". When the cable message is initialed by the slave
state machine. [he command code takes on the value of the
message_cmd [3:0] signal. discussed above.

If the send_message signal is asserted, indicating that
either the master state machine or the slave state machine

has initiated a message, and the corresponding transact ion is
not a dual address cycle. or if the cable message generator
receives a prefetch request that is not a dual address cycle.
or if the cable message generator receives a stream connect
signal and no delayed requests from the CPU are pending in
the downstream DRQ, the cable message generator asserts a _~
sent_prnw signal that indicates that a posted memory write
request from the PC] bus will be sent down the cable. The
sent _pmw signal is not asserted il' a stream has been
established by the DCQ. The cable message generator
asserts a sent__dr signal when a read request or delayed write
request is received from the slave state machine or a prel'etch
signal is received and when a stream has not been estab—
lished by the DCQ.

[f the DCQ has established a stream [dcq stream
connect is asserted), the buffer number for the cable signal
(early._cbuft' [20]) takes on the value of the DCQ stream
butfer (dcq stream. buff [2:0]), the cable command code
(early_cebe [3:0]) is set equal to "1000”, and the cable
message generator enters the SI .AVE DPI'lASE state 2746.
Otherwise, if the QPIF is in the slave mode and the cable
message generator receives either a prefetch multiple or a
prefetch line signal, the cable buffer signal takes on the value
of the DCQ butIer number (dcq___buti‘ [220]) and the cable
message generator enters the SI .AVE__DPI-1ASE state 2746.
Otherwise, the QPIF is operating in the master mode and the
cable message generator enters the MAS'I'ER_DI’HASEstate 2744.

When the cable message generator receives the send_
message signal and a transaction that is a dual address cycle,
or when it receives a pret’eteh request that is a dual address
cycle. the message generator enters the CABLE DAC state
2742. For a prct'ctch signal, the cable address signal is set
equal to the upper thirty two bits of [he dcq_prefetch_addr
[63:9] signal; otherwise, the cable address equals the upper
thirty-two bits of [he qfipif addr [63:0] signal. Also, if the
cable message generator receives the transaction from the
slave state machine, the cable bu [fer number equals the DUO

15

2|)

30

40

4:1

50

55

fill

05

buffer number; otherwise, the cable buffer number equals the
DRQ buffer number {no completion messages are generated
for posted memory write transactions) In the CABLE_DAC
state 2742, the cable message decoder generates the second
half of the address phase information. As in the IDLE state
2740, the cable address signal takes on the value of the
prefetch address when [he received transaction is a prel'eteh
line or prefetcb multiple request and takes on the value oftbe
qlpiLaddr [31:2] otherwise. The sent_ pmw signal is
asserted when the message generator receives a posted
memory write transaction from the slave state machine, and
the senl_dr signal is asserted when it receives a prefetch
request or a delayed request from the slave state machine. If
a pmtetch request or a request from the slave state machine
is received, the cable message generator enters the SI.AVE__
DPI-lASli state 2746. Otherwise. the message generator
enters the MAS'I‘ER_DPl-IASE state 2744.

[n the MASTER__ DPHASE state 2744, the cable message
generator attempts to send a delayed completion message
down the cable. llowever, if the PCI interface grants the bus
to a device on the PCI bus before the QPIF gets control of
the bus, the cable message generator must leave the
MASTER _DPHASE state 2744 to send the newly received
message. Therefore, if the send_messagc signal is asserted
while the message generator is in the MAS'I‘ER DPIlASE
state 2744, [he qlc new req signal is asserted to indicate
the start of a new message If the q2pit‘_dac_llag is asserted,
the new transaction is a dual address cycle and the cable
message generator enters the CABLE__DAC state 2742.
Otherwise, message generator enters the SI.AVE__DPIIASE
state 2746.

[f the send___message signal is not asserted, then the cable
message generator is sending a delayed completion message
from the master state machine. When the master state

machine has completed the last data transfer with the PCI
bus and the target device has acknowledged the transfer
(lp2q trdy}, or when the master has aborted the transaction
on the cable, the cable message generator asserts a sent dc
signal indicating that the delayed completion message was
sent down the cable and reenters the llJl.L-' state 2749.

Otherwise. the message generator remains in the
MASTER_DPHASE state 2744 and continues generating
the delayed completion message.

From Ihe SLAVE DPIIASE state 2746. as long as a
stream is established with the upstream chip, no delayed
requests from the CPU are pending in the downstream DRO,
and the requesting device continues to send data to the QPlli
[q2p_qcyc is asserted). the cable message generator
remains in the SLAVE DPHASE state 2746 and contintIes

to forward the transaction from the requesting device.
Otherwise. if the cable message generator receives a delayed
request or a prefctcb request. the cable message generator
forwards the request and, in the case of a delayed write
request, the one dword of data to the upstream device and
then enters the IDLE state 274-0. Otherwise. the cable

Toshiba_Apricorn 1010-0153
|PR2018—01067

Toshiba_Apricorn 1010-0154
IPR2018-01067

5 ,943 ,482
51

message generator has received a posted memory write
request. In this situation, the cable message generator stays
in the SLAVE_DP11ASE state 2746 and continues to for-

ward the posted memory write information down the cable
until the early_|ast_slave_data signal is asserted, indicat—
ing the last piece of data has been sent by the slave state
machine. 'Ihe message generator then terminates the cable
transaction and reenlers the IDLE state 2740.

Cable lnterface

To ensure the valid transfer of data between the two

bridge chips. data sent through the cable 28 must be syn—
chronired properly to the clocks from the clock generators
102 and 122. The downstream clock generator 122 bases its
clocks on an upstream clock (which in turn is based on the
PC] bus clock PCICLKI) transmitted down the cable 28
with the data. As a result, upstream data transmitted down-
stream is synchronimd to the clocks generated in the down—
stream bridge chip 48. llowever. the phase delay associated
with the cable 28 between the main clocks generated in the
upstream chip 26 and the data transferred back upstream
from the downstream chip 48 is unknown The length of the
cable 28 range from 10 to as large as 100 feet (if appropriate
interface technology is used}. The receiving logic in the
upstream cable interface 104 is effectively an asynchronous '
boundary with respect to the upstream clock. Consequently.
the receiving Iogje needs to re-synchroni‘ze the downstream-
to-upstream data to the clock from the upstream clock
generator 102.

Referring to FIG. 5, the clock distribution scheme in the
2—chip PCI—PC] bridge is shown. Transactions which are
forwarded between the bridge chips 26 and 48 are encoded
into multiple time-multiplexed messages. The format of the
messages is similar to the PC] transaction fonnat (except for .
time multiplexing) and includes an address and one or more
data phams and modified handshake signals in addition to
signals which are added to indicate buffer number and
special bridge function commands. liach cable interface 104
or 130 includes a master cable interface (192 or 194) and a
slave cable interface (196 or 198). The master cable inter—
face 192 or 194 transmits messages out onto the cable 28,
and the slave cable interface 3075 196 or 198 receives

messages from the cable 28.
The clock generator 102 or 122 in each bridge chip

includes two on-chip PLLs for clock generation. A PLL 184
in the upstream bridge chip 26 locks on the primary PC] bus
input clock PCICLKI. In the downstream bridge chip 48.
the PLL 180 locks to an incoming clock PClCLK2 from a
clock bu lfer 181.

[n the ensuing description, a "lx clock" refers to a clock
having the same frequency as the clock PCICLKI, while a
“3x clock" refers to a clock having three times the frequency
of the clock PCICLKI. A 13-: clock PCLK generated by the
PLL 184 or 180 (in the bridge chip 26 or 48, respectively)
is used for the corresponding bridge chip‘s PCI bus interface
logic 188 or 190. and the 3x clock PC]..K.3 is used to run the
cable message generation logic in the master cable interface
192 or 194. The other 131.1. 186 or 182 is used to lock to a

cable input clock CABI.E_C'LK1 (from upstream) or
CABLE_CLK2 {front downstream) and to generate a 1x
clock CC1.K and a 3x clock CCIKS to capture incoming
cable data. The clock outputs of the I’ll. 186 or 182 are
routed to the slave cable interface 196 or 198. respectively

'lhe PLLs are arranged in the layout to balance the band
3x clock; as closely as possible to minimize the skew
between them.

It)

15

2|)

30

411

4:1

50

55

(it!

{15

52

The Pu. 184 or 180 generates a phase indicator signal
PCLKPHII, which indicates to the master cable interface
192 or 194 when the first phase of data should be presented
to the cable 28. On the upstream side. the signal PCLKI’HII
is based on the PC] clock PCICLKI; on the downstream

side, the signal PCLKPIlll is based on the PCI clock
PCICLKZ. The I’LL 186 or 182 generates a phase indicator
signal CC].KPII]1. based on the cable clock CABLE_
CLKl or CABLE C[.K2, to indicate to the slave cable

interface 196 or 198 when the first phase of data has come
down the cable 28.

The PC] clock PCICI..K2 for the secondary PCI bus 32 is
generated off a 1x clock BUFCLK of the PLl. 182 in the
downstream bridge chip 48. The clock BUFCIK drives the
clock butler 181 through a driver 179. The bulTer 181
outputs a separate clock signal for each of the six slots on the
secondary PCI bus 32 as well as the clock l’CICLKZ. which
is routed back as the bus input clock to the downstream
bridge chip 48. By basing the clock PC[-K on the clock
PCIC].K2 from the clock buffer 181. the clock schemes of
the upstream and downstream chips are made to appear
more similar since both are based on an external bus clock.

The cable clock CABIE CLKl is a 33% duty cycle
clock. The PLL 182 ftrst converts the 33% duty cycle clock
to a 50% duty cycle clock for output as BUI’CLK.

The PCI Specification, Version 2.1, requires that the PCI
bus clock must meet the following requirements: clock cycle
time greater than or equal to 30 ns; clock high time greater
than 11 ns; clock lowtime greater than or equal to It as; and
clock slew rate between 1 and 4 ns.

when the computer system is powered up, the upstream
chip 26 is powered on last, the upstream PLL 184 sends the
clock CABLE _C1..Kl (through the master interface 192)
down the cable 28, which is then locked to by the down-
stream PLL I82 and PLL 180. The downstream PLL 180

then sends the clock CABLE___CLK2 back upstream to be
locked to by the P] .l, 186.

The system is not completely operational until all four
[’1 Ls have acquired lock.

[f the upstream bridge chip 26 powers up and the down-
stream bridge chip 48 is not yet turned on, the upstream
bridge chip 26 behaves as a PC] -P(Tl bridge with nothing
connected to its downstream bus (the cable 28). As a result,
the upstream bridge chip 26 does not accept any cycles until
the downstream bridge chip 48 is powered on and the
upstream P].l. 186 has acquired "lock" from the cable clock
CABLE. CLKZ.

The upstream bridge chip 26 floats all of its PC] output
buffers and state machines a synchronously with assertion of
the PC] reset signal PCIRSTI _ on the primary bus 24.
During reset, the PLL 184 may be attempting to acquire loci:
on the l’CI bus clock PCICLKl. Since the PCI Specification
guarantees that the signal PCIRST1_ will remain active for
at least 100 ps after the PCI bus clock becomes stable. the
I’LL 184 has about 100 Ius to acquire a lock.

The downstream bridge chip 48 resets all internal state
machines upon detection of the primary bus PCIRSTI
signal. In response, the downstream bridge chip 48 also
asserts a slot-specific reset to each slot on the secondary PCI
bus 32, as well as a secondary PCI bus reset signal
PCIRS'I‘2__ .

Referring to FIG. 6. each PLL includes a voltage-
controlled oscillator (VCO) 2400 generating an output 201
(the 3x clock) between '15 Mhz (for a 25-Mhz PC] bus) and
100 Mhz (for a 33-Mhz PC] bus). The VCO 200 receives a
reference clock 197, which is the PC] bus clock. [Each PLL

Toshiba_Apricorn 1010-0154
|PR2018—01067

Toshiba_Apricorn 1010-0155
IPR2018-01067

5 ,943 ,482

53
has a lock detection circuit 205 which indicates by a lock
indication bit that the Pl]. phase is kicked to its reference
accurately enough to perform its intended function.

The lock indication bits are written to a status register in
the configuration space 105 or 125 of each bridge chip. 011
the downstream side. a power-goodflock status bit is trans-
mitted to the upstream bridge chip 26 to indicate that the
main elements of the downstream bridge chip 48 are stable
(power is stable) and the downstream PH 5 are locked (lock
indication bits of the two Pl .1 .s are active). The lock
indication hit is aLso gated with the EDC status biLs such that
EDC errors are not reported as such until the P115 are
locked. Thus, the bridge chip pair can come up to anerror—free communication state without software intervenm

tion. The lock indication bit also provides some diagnostic
information which can distinguish betwuen a PLL lock
failure and other data errors. The clock generation circuitry
includes a four-state machine 202 to generate a divide-by-3
clock (tx clock) of the VCO output 201. The lx clock is fed
back to the PLL at input 203.

Data is moved down the cable 28 at a 3x clock (PCI.K3)
rate in three lime-multiplexed phases to produce a 1>< clock
message transfer rate. Referring to FIG. 'Jr', the circuitry in
the master cable interface 192 or 194 for disassembling and
transmitting the cable message includes a register 204.
which samples the outgoing message at the local PCLK .
boundary. The llip-tlop 208 provides extra margin for hold
time on the third phase of the transmitted message by
holding this phase for an extra half of a PCLK. Since the
output register 212 is clocked with the 3x clock PCI .K3, this
reduces the need for tight control on the skew between the
Ix and 3x clocks. From the phase indication signal
PCLKPI-lll. a set of three flip-flops 210 generates succes-
sive PHIL PI-IIZ. and P1113 signals, representing phases 1. 2
and 3. respectively. which in turn control a 60:20 multiplexer
206. The three phases of data (LMUXMSG [19:0] _~
l..MUXMSG [39:20], {LMUXMsG [51:40], BBC [7:0]})
are successively multiplexed into the register 212 and driven
through the cable 28. The third phase of data includes error
correction bits EDC [7:0] generated by an ECG generator
206 (FIG. 17} from the register 204 output biLs LMUXMSG
[51:0]. The flip-flop 214, clocked by I’CLKB. receives the
Pill] Signal and clocks it out as the cable clock CABI.E_
CLKI or CABLE .CLK2.

Since the master cable interface 192 or 94 is a Ix-to-3x

communication interface, a one 3x—clock latency is incurred,
resulting in a single 3>< clock phase shift of the transmitted
cable message from the PCI bus clock as shown in FIG. 8.
In period T0, message A is presented to the input of the
register 204 and the first phase clock indicator PCl..KPlI[1
is asserted high. The signal PHIL is asserted high from a
previous cycle. In period 'I‘l, the cable clock CABI.I:‘._
CLKI or CABLE_CLK2 is driven high in response to the
signal PHll being high. The PCLKPHII pulse causes the
signal PI-IIZ to be pulsed high in period Tl. Next, in period
T2, the signal P1113 is pulsed in response to the signal P1112.
In period T3. the signal P11" is pulsed high in response to
the signal P1113 being high. Message A is also loaded into the
register 204 on the rising edge of the clock PCLK in period
TS. Next, in period T4, the signal PHIl causes the multi-
plexer 206 to select the first phase data Al for loading into
the register 212. Next. in period '15, the second phase data
A2 is selected and loaded into the register 212. Then. in
period T6. the third phase data A3 is loaded into the register
212. This process is repeated for messages B, C. D and IS. in
the subsequent clock periods.

As shown in FIG. 8, the cable clock CABLE__ CLK has a
33% duty cycle. Alternatively. the cable clock CABLii_

Ii)

15

2t)

3t)

40

4:1

50

55

(it!

{15

54

CLK can be designed to have an average duty cycle of 50%,
which can be accomplished. for example. by sending out the
cable clock as 33% high-66% low-66% high-33% low.
Having an average 50% duty cycle could result in better pass
characteristics in the cable 28.

Referring to FIG. 9, a slave cable interface lirst—in—
first-out buffer (Flt-‘0) 216 assembles incoming data from
the cable 28 and transmits the assembled data to the queues
and PC] state machines in the receiving bridge chip. The
l-‘ll’O 216 is 4 entries deep, with each entry capable of
holding one complete cable message. The depth of the FIFO
216 allows for the cable data to be synchronived to the local
bridge chip clock without losing any efiective bandwidth in
the cable interface. In addition. on the upstream side, the
F1170 216 is an asynchronous boundary for the cable data
coming from the downstream bridge chip 48. ‘lhe FIFO 216
ensures that the cable data is properly synchronized with
respect to PCLK before it is outputed to the rest of the chip.

The entries of the FIFO 216 are selected by an input
pointer INP'TR [1:0] from an input pointer counter 226,
which is clocked by the signal CCLKS. cleared when a
signal EN__..INCN'1' is low. and enabled by the phase indi-
cator CCLKPl-[lL The negative edge of the 3x clock
CCI.K3 from the PLI. 186 or 182 is used to latch incoming
data from the cable 28, first into a 20bit register 218. and
then into a register 220 if a phase one indication signal
Pt—II1_DLY is asserted, or into a register 222 if a phase two
indication signal P1112_DLY is asserted. The phase 1 data,
phase 2 data and phase 3 data from the registers 220, 222 and
218, respectively, are loaded into the selected entry of the
1"11-‘0 216 on the negative edge of CCLK3 when the phase
3 indication signal l’HIS__DLY is asserted. The four sets of
outputs from the FIFO 216 are received by a 240:60 mul—
tiplexer 228, which is selected by an output pointer OUT—
I’TR [1:0] from an output pointer counter 224 clocked by
PCLK and cleared when a signal EN_OU'I‘CNT is low.

Referring to FIG. 10. the input pointer and output pointer
counters 226 and 224 continuously traverse through the
FIFO 216 titling and emptying data. The counters 226 and
224 are offset in such a way as to guarantee valid data in a
location before it is read out. The initialization of the

pointers is diflerent for an upstream bridge chip 26 than for
a downstream bridge chip 48 due to synchronization Uncer-
tainties.

Flip-flops 236 and 238 synchronize the reset signal
C __ CRESE’I‘, which is asynchronous to the clocks in the
bridge chip, to the CCLK clock boundary. The signal
EN__1NCN"1' is generated by the flip-flop 238. The input
pointer is incremented on the rising edge of the clock
CCLKB if the first phase indication signal CCLKPl-Hl and
the signal EN [NCN'L The output pointer is then started at
a later local PCLK clock boundary PCLK when it can be
guaranteed that the data will be valid in the FIFO 216. The
upstream and downstream bridge chips must handle the
starting of the output pointer difl'erently since the phase
relationship of the cable clock to the local clock is not
known for the upstream bridge chip 26 but is known for the
downstream bridge chip 48.

[n the downstream bridge chip 43, the phase relationship
between the incoming cable clock CABLE CLKI and the
secondary PCI bus clock l’CICLKZ is known since the PCI
clock PCICI..K2 is generated from the cable clock. As a
result, no synchronization penalty exists for the output
pointer ()U'I'PI'R [1:0] in the downstream bridge chip 48,
and the output pointer can track the input pointer INI’I'R
[1:0] as closely as possible. A flip-[lop 230. which is clocked

Toshiba_Apricorn 1010-0155
|PR2018—01067

Toshiba_Apricorn 1010-0156
IPR2018-01067

5 ,943 ,482
55

on the negative edge of the clock [’CI..K, is used to avoid any
clock skew problems between the clock CCLK generated by
the PLL 182 and the clock FCLK generated by the I’LL 180.
Though these two clocks have identical frequencies and
should be in phase with each other, there is an unknown
skew between the two clocks since they are generated from
two different PLls. ()n the downstream side, the signal
EN_0U’I‘CN'1‘ is the signal EN_1NCN'I‘ latched on the
negative edge of the signal PCIK by the flip-[lop 230. A
multiplexer 234 selects the output of the flip-flop 230 since
the signal UPSTREAM CI—IIP is low.

In the upstream bridge chip 26. the cable interface is
treated as completely asynchronous. The phase uncertainty
is due to the unknown phase shift of the cable 28 itself.
Designing for this uncertainty gives complete freedom on
the length of cable 28. What is known is that the clocks in
the upstream and downstream bridge chips have the same
frequency, since they both have their origin in the upstream
PCI bus clock PCICLKL In the upstream bridge chip 26, the
signal EN__0U']‘CN‘I' is the signal EN_INCN'1' latched on
the positive edge of the clock PCLK by a [lip—[lop 232. The
multiplexer 234 selects the output of the flip~flop 232 since
the signal UPSTREAM (Tl-[1P is high. The [lip-[lop 232
guarantees that even for the worst-case lineup of the cable
clock CABLE_CLK2 and the local PCl clock PCLK (one
complete PCI..K period phase shift), there is valid data in the
FIFO 216 before the data is transmitted to the rest or the

chip.
Referring to FIG. [1. the cable data is received by the

slave cable interface 196 or 193 as three phase time-
multiplexed signals A], A2 and A3; BI, [32 and 133; C1, C2
C3; and so forth. A previous transaction is completed in
periods T0, T1 and T2. Beginning in period T3. the first
phase data A1 is presented to the register 218 and the first
phase indicator [‘CLKPl-III is pulsed high. On the falling _~
edge of CCI.K.3 in period T3, the data A1 is loaded into the
register 218, and the local phase 1 indication signal PIII
DLY is puLsed high. In period T4, on the falling edge of
clock, the phase 1 data A1 is loaded into the register 220, the
phase 2 data A2 is loaded into the register 218, and the phase
2 indication signal PI-II2__DLY is pulsed high. [h period T5.
on the falling edge ol‘CCiKfi. the phase 2 data is loaded into
the register 22, the phase 3 data A3 is loaded into the
register 218, and the phase 3 indication signal l’l{13_DLY
is pu Lsed high. In period T6, the contents of the registers 220,
222, and 218 are loaded into the selected entry of the FIFO
216 on the following edge of C(TI.K3. Also in period T6, the
data [31 is presented to the register 218 along with the
indication signal CCLKPl-Ill. Messages 13 and C are loaded
into the FIFO 216 in the same manner as message A in
subsequent periods.

Referring to FIG. 12, the input pointer INPTR [1:0] starts
at the value 0 in period Til on the rising edge of the clock
CCLKIS. Also in period TD, message A is loaded into FIFO
0 on the falling edge ofthe clock CCLK3. In the downstream
bridge chip 48, the output pointer OUTPI‘R [1:0] is incre-
mented to the value I] on the next rising edge of the clock
PCIK in period T3. Also in period T3, the input pointer
lNl’l‘R [1:0] is incremented to the value 1 on the rising edge
of the clock CCLK3, and message B is loaded into FIFO 1
on the falling edge of CCTLK3. Cable data is thus loaded into
FIFOD. HFOI. FIFOZ. and FIF03 in a circular fashion.

On the upstream side. if the input pointer [NP’I'R [1:0] is
0 in period t0, the output pointer OUTPTR [1:0] is incre-
mented to the value It in period T6. two PCLK periods after
the input pointer INI’TR [1:0]. The two FCLK period lag in
the upstream bridge chip 26 allows the phase delayr in the

It)

15

2t)

3t)

40

4:1

50

55

(it!

{15

56
cable 28 to be of any value, which has the advantage that the
cable length need not be of a specific fixed value.

Referring to FIG. 13. the input and output [lip flops on the
cable interface are custom-placed by the manufacturer of the
chips to minimize the skew between the cable data and the
clock passed with it. The amount of wire between each
[lip-[lop and the [£0 are maintained as consistent as possible
between all cable interface signals.

Cable Message

Sixty bits of cable data constitute one message. The 60
hits are multiplexed onto 20 cable lines and are transmitted
each 10 ns over the cable 28. The table in FIG. 14 shows the

bits and the phase each bit is assigned to. The Ilrst three
columns show the upstream-to-downstream data transfer
format, and the last three columns show the downstream-
to-upstreant data transfer format. The following is a descrip-
tion of the signals.

EDC [7:0]: The signals are the eight syndrome bits used
to detect and correct errors encountered in transmitting data
over the cable 28.

CAD [31:0]: The signais are [be 32 address or data bits.
CFRAME_: The signal is used to signal the start and end

of a cable transaction, similar to the PCI FRAME signal.
CUBE [3:0]_: The four hits form byte enables in some

PCI clock phases and either a PCI command or a message
code in other PCl clock phases.

CBUFF [3:11]: In the address phase, the signals indicate a
buffer number for initialiajng the bridge chip delayed
completion queue (DCQ) 148 to tie upstream and down-
stream delayed read completion (DRC) and delayed read
request (DRR) transactions. After the address phase, the
signals contain the parity bit. parity error indication and the
data ready signal.

COMPLE'I‘ION REMOVED: The bit is used to signal
that a delayed completion has been removed from the
transaction ordering queue (TOO) on the other side of the
cable 28.

PMW ACKNOWLEDGE: The bit is used to signal that a
posted memory write (PMW) has been completed on the
other side and has been removed from the transaction run

queue (TRQ).
LOCK___: The bit is transmitted downstream (but not

upstream) to identify locked cycles.
SERR_: The bit is used to transmit an SERR_indication

upstream, but is not transmitted downstream.
[N‘I'SYNC and INTDAI‘A: The bits carry the eight inter-

rupts from downstream to upstream in a serially multiplexed
format. The signal INTSYNC is the synchronization signal
indicating the start fo the interrupt sequence and the signal
IN'I'DAI‘A is the serial data bit. The signals [N'ISYNC and
[NTDATA are routed on separate lines over the cable 28.

RESE'J‘ SECONDARY BUS: The bit is asserted when the

CPU 14 writes to the secondary reset bit in a bridge control
register in the upstream bridge chip 26. It causes the
downstream bridge chip 48 to reset to a power up state. The
reset signals for the slots are also asserted. The signal
RESET secondary bus is routed on a separate line over the
cable 28.

Because the address and data in each [’CI transaction is

multiplexed over the same lines, each PCI transaction
includes an address phase and at least one data phase (more
than one for burst transactions). The PCI specification also
supports single address transactions (32-bit addressing) and
dual-address transactions (64-bit addressing).

Toshiba_Apricorn 1010-0156
|PR2018—01067

Toshiba_Apricorn 1010-0157
IPR2018-01067

5 ,943 ,482
57

Referring to FIG. 15A, 2: table shows what information
appears on each portion of the bus during address and data
phases of the single-address transactions. For a single
address transaction, the first phase is the address phase and
the second and subsequent phases are data phases. In the
address phase of a delayed rcadtwrite request transaction,
the signals CBUFF [3:0] indicate the DCQ hulfer number for
initializing the bridge chip DCO 148 to lie upstream and
downstream DRC and DRR transactions. After the address

phase, the signal (.‘BUFF [0] contains the parity bit. The
signals CUBE [3:0] _conlain the PCI command in the
address phase and the byte enable bits in the data phases.

For posted memory write transactions, the signals CBUFF
[3:0] are "don’t care" in the address phase and contain the
data—ready indication, parity error indication, and parity bit
in the data phases.

In a delayed rcadt'write completion transaction, the signals
CBUFF [3:0] contain the DCQ buffer nuntbers in the address
phase and the end-of-completion indication. data- ready
indication, parity error indication, and parity hit in the data
phases. The signals CCBE [3:0]_oontain a code represent—
ing a DRC transaction in the address phase and the status
bits of the DRC transaction in the data phases. Delayed
completion transactions return the status of the destination
bus for each data phase. The data parity bit is transmitted on '
CCBE [3] . Other status conditions are encoded on the
CUBE [2:0]_bus, with a binary value [300 indicating normal
completion and a binary value 001 indicating a target abort
condition. The addmssr'data hits CAD [31:0] are "don’t care”
in the address phase and contain data during the data phases.

in a stream connect transaction, the signals CBUFF [3:01]
contain a butfer number in the address phase and the signal
CBUFF [2] contains the data-ready indication in the data
phases. The signals CCBE [3:0] contain a code representing .
a stream connect transaction in the address phase and are
"don’t care" in the data phases. The addresstdata bits (SAD
[31:0] are not used during a stream connect transaction.

The table in FIG. 15B shows the encoding of the signals
for dual-address transactions. In delayed readt’write request
transactions, the signals CBUFF [3:0] contain a bufler
number in the first and second address phases and the signal
CBUIJF [0] contains the parity bit in the data phase. The
signals CCBE [3:0_ contain a code representing a dual-
address cycle in the first address phase. the PC] command in
the second address phase, and the byte enable hits in the data
phase. The signals (SAD [31:0] contain the most significant
address bits in the first address phase, the least significant
address bits in the second address phase, and the data bits in
the data phase. In a dualmaddrtass posted memory write
transaction. the signals CBUFF [3:0] are "don’t care" in the
first two address phases, but the signals CBUHT [1:0]
contain the parity error indication bit and the parity bit in the
data phases. The signals CCBE [3:0]_contain a code rep-
resenting a dual-address cycle in the [irst address phase, the
PCI command hits in the second address phase, and the byte
enable bits in the data phases. The signals (TAD [31:0]
contain the most significant address bits in the first address
phase. the remaining address biLs in the seunnd address
phase, and the data bits in the data phases.

There are three possible states for the data transfer:
not-last, last-of—cable-transfer, and last-of— request. The not-
last state is indicated by asserting the bit CBUl—‘F [2] while
FRAME_is active, which indicates that another word of
data is being presented. The last-of-cable- transfer state is
indicated by asserting the bit CBUFF [2] while the signal
Cl"RAME__is inactive. The Iast-of-rcquest state is indicated

It)

15

2t)

3t)

40

4:1

50

55

fit]

as

58
by asserting the bits CBUFF [3] and CBUF F [2] while the
signal CFRAME_i_-; inactive.

The following four [EEE 1149.1 Boundary—Scan (JTAG)
signals are included in the cable 28 to effect a J'I‘AG test
chain: TCK (the test clock), TDI (test data input), 'J'DO (test
data output) and TMS (test mode select}. The optional
'l'RST is not transmitted down the cable, but TRST can be
generated from power-good.

The JTAG signals are routed from the system PCI con—
nector through the upstream bridge chip 26, including JT'AG
ntastcr 110, down the cable 28 to the downstream bridge
chip 48 lo the JTAG master 128. which distributes the JTAG
signals to each of the six PC! slots on the secondary PCI bus
32. The return path is from the .l'I‘AG master 128, up the
cable 28 back to the upstream bridge chip 26 and then to the
PCI slot on the primary PCI bus 24. The signals ‘I'DO, TCK.
and TMS are downstream bound signals. The signal TDI is
an upstream bound signal.

One type of cable 28 that can he used is a cylindrical
50-pair shielded cable designed to support the High Perfor-
mance Parallel Intcrl‘acc (Hll’PI) standard. A second type of
cable is a shielded Sit-pair ribbon cable. The advantages of
the first are standardization, ruggedness and reliable uniform
manufacture. The advantages of the second are greater
mechanical flexibility. automatic termination to the connec—
tor in assembly and possibly lower cost.

The table of FIG. 16 shows some of the HlPP] cable

specifications. The ground shield consists of a braid over
aluminum tape and carries only minimum DC currents due
to the dilferential nature of the bulfers to be used. The

method of signaling is true differential which provides
several advantages, with differential bufiers used to send and
receive signals over the cable 28. First the true differential
method is less expensive than fiber optics for this short
distance and less complex to interface than other serial
methods. [Influential signaling provides significant com-
mon mode noise immunity and common mode operating
range. is available in ASle and is faster than 'l'l‘l.. When
using twisted pair and shielding, it minimiaes electromag-
netic radiation. When using low voltage swings, il mini—
mizes power dissipation.

The signaling levels chosen as a target are described in the
IEEE Draft Standard for low-Vbltage Differential Signals
(LVDS) for Scaleahle Coherent Interface (SCI), Draft [.10
(May 5, 1995).

The cable connector is an AMP metallic shell [00-pin
connector with two rows of pins. The rows are 100 mils
apart and the pins are on Stlwmil centers. The metal shell
provides EMI shielding and the connection of the ground
path from the cable shield to the board connector. The
mating right angJe board connector just fits a PCI bracket.
The connector is to have a bar running between the rows of
pins to divert electrostatic discharges from the signal pins
when the connector is disconnected. Apair of thumb screws
attached to the cable connector will secure the mated con-
nectors.

Error Detection and Correction

A11 error detection and correction (BBC) method is imple—
mented on each bridge chip to protect communication over
the cable 28. Since the data is time-multiplexed into three
20-bit groups to be sent over 20 pairs of wires, each triplet
of "adjacent“ bits (i.e., bits associated with the same wire in
the cable 28) is arranged so as to be transmitted on a single
wire pair. The EDC method can correct single-bit failures
and multi-bit failures occurring in the same bit position in

Toshiba_Apricorn 1010-0157
|PR2018—01067

Toshiba_Apricorn 1010-0158
IPR2018-01067

5 ,943 ,482
59

each of the three time- multiplexed phases. The multi-bit
failures are typically associated with a hardware failure, e.g.,
a broken or defective wire or a faulty pin on bridge chips 26,
48.

'l‘wenty wire pairs of the cable 28 are user] for downstream
communication and 20 more for upstream communication.
For the remaining ten pairs in the 50-pair HII’PI cable 28
(which pass such information as the clock signals CABLE.
(71.10. and CABI..E_C1.K.2, reset signals, and the power
goodr‘l-‘LL-lock signal), error detection and correction is not
implemented.

The following are the underlying assumptions for the
EDC algorithm. Most errors are single bit errors. The
probability of having random multiple-bit errors in the same
transaction is extremely remote because the cable 28 is not
susceptible to interference from internal or external sources.
Errors caused by a defective wire may affect a single bit or
a group of bits transmitted on that wire. When a hardware
failure occurs. the logic state of the corresponding dilIeren-
tial buffer is in a single valid logic state.

Referring to FIG. l'r', the output signals I’IFOOUT [59:0]
from the multiplexer 228 in the slave cable interface 196 or
198 are provided to the input of a check bit generator 350,
which produces cheek bits CHKBI‘I' [11:0]. The check bits
are generated according to the parity-check matrix shown in '
FIG. 18, in which the first row corresponds to CIIKBIT [0],
the second row corresponds to CHKBIT[1], and so forth.
The bits across a row correspond to data bits FIFOOUT
[0:59].

The check bits are generated by an exclusive-0R of all the
data bits FIFOOUT [X] (X is equal to III-59), which have a
"I" value in the parity-check matrix. Thus, the check bit
ClIK]31'1'[0] is an exclusive-0R of data bits l'iIl-‘OOUT [7],
FIFooUT [a]. FIFOOUT [9]. FIFOOUT [12]. FIFOOUT -

It)

15

2|)

3t)

[13], FIFOUT [16]. FIFOOUT [22]. FIFOOUT [23]. ‘
tilt-‘OOU‘I‘ 8 24]}, FIE-‘UOU‘I‘ [26], till-‘OOU’I' [32],
FIFOOUT[33]. FIFDOUT[34]. FIFooUT[35]. FIFOOUT
[38], FIFOOUT [39], FIFOOUT [45], FIFOOUT [46],
t-‘It-‘OOUT [4a], FIFOOUT [49], l—‘Il‘OOU’l‘ [51], and
FIFOOUT [52]. Similarly, the check bit CHKBI’I‘ [l] is an
exclusive-0R of hits 0,1, 4, 5, 9.10, 12,14.15,16, 23, 27,
35, 37, 38, 40, 43, 46, 47, 48, 50, and 53. Check bits
CHKBI'[‘[2:7] are generated in similar fashion aeurrding to
the parity-check matrix of FIG. 18. The parity check matrix
is based upon the 20 sub-channels or wires per time-
rrtultipleXed phase and a probability that multiple errors in
the accumulated data are attributable to a faulty sub—channel
or wire that afiects the same data position in each time-
multiplexed phase.

in the master cable interface 192 or 194, the check bits
C1-IKB1’1‘[7:0] are provided as error detection and correction
bits LEDC [7:0] along with other cable data to allow error
correction logic in the slave cable interface 196 or 198 to
detect and correct data errors.

The check bits CllKBIT [7:0] are provided to a fix bit
generator 352, which generates Iix bits FIXBIT [59:0]
according to the syndrome table shown in FIG. 19. The
check bits CllKBI'l' [7:0] have 2:36 (2") possible values. The
syndrome table in FIG. 19 contains 256 possible positions.
Each of the 256 positions in the syndrome table contains 2
entries, the first entry being the hexadecimal value of the
check bits Cl-[KBlT [7:0], and the second entry indicating
the cable data status associated with that position. Thus, for
example, a hexadecimal value 00 indicates a no-error
condition, a hexadecimal value (It indicates an error in data
bit 52, a hexadecitnal value (12 indicates an error in data bit

411

4:1

50

55

(it!

{15

60
53, a hexadecimal value 03 indicates an uncorrectablc error
(UNCER). and so forth.

The EDC logic is capable of detecting up to .3 erroneous
bits, as long as those data biLs are adjacent, i.e., associated
with the same wire. Thus, for example, if the check bits
CHKBIT [1:0] contain a hexadecimal value 31). then data
bits 3, 23, and 43 are erroneous. The cable 28 carries cable
data CABLE DATA [19:0]. Thus, data bits FIFUOUT [3],
FIFOOUT [23], and HFOOUT [43] are associated with the
fourth position of the cable data, i.e.. CABLE DATA [3].
The EDC‘ method can also correct two-bit errors associated

with the same cable Wire. Thus, for example, a hexadecimal
check bit value of OF indicates errors in data bits l-‘llitJOU’I‘

[4-] and FIFOOUT [24], both associated with (TABI.E_
DATA [4].

The Iix bit generator 352 also produces signals NCERR
(uncorrectable error) and CRERR (correctable error). If no
error is indicated by the check bits, then the signals CRERR
[correctable error) and NCERR [non-correctable error] are
both deasserted low. in those positions in the syndrome table
containing the uncorrectable state UNCER, the signal
NCERR is asserted high and the signal CRERR isdeasserted
low. Otherwise, where a correctable data error is indicated,
the signal NC‘ERR is dcasserted low and the signaLs CRERR
is asserted high.

The lower 52 biLs or the fix bits FIXBIT [51:0] are
provided to one input of 52 exclusive-0R gates 354, whose
other input receives one of each the lower 52 bits of the
FIFO data FIFOOUT [51:0]. The upper 8 FIFO bits
it'll-'(JUUT [59:52], allocated to the error detection and
correction bits EDC [7:0], are used to generate the check bits
and the syndrome bits, but are not subject to error correction.
The exclusive-0R gates 354 perform a bit-wise exclusive-
OR operation of the fix bits F1XRIT[51:0] and the data bits
FIFOOUT [51:0]. [1' the data signals FIFOOUT [51:0]
contain correctable, erroneous data bits, those data bits are
llipped by the exclusive-0R operation. The exclusive-OR
gates 354 provide the corrected data CORRMSG [51:0] to
the 1 input of a multiplexer 360. The (t input of the
t‘nulliplexer360 receives the data biLs FIFOOUT [51:0], and
the multiplexer 360 is selected by a configuration signal
CFG2 C_ENABLE_ECC. The output of the multiplexer
360 produces signals MUXMSGI [51:0]. II‘ the system
software enables error detection and correction by setting
the signal CFGZC ENABLE ECC high, then the multi-
plexer 360 selects the corrected data CORRMSG [51:0] for
output. Otherwise, if error detection and correction is
disabled, the data bits FIFOOUT [51:0] are used.

The non—correctable and correctable error indicators

NCERR and CRERR are provided to inputs of AND gates
356 and 358, respectively. The AND gates 356 and 358 are
enabled by the signal CFGZC_ENABLE_ECC. The out-
puts of the AND gates 356 and 358 produce signals
C NLERR and C CRERR, respectively. The signals
C _NI.ERR and C (TRERR can be asserted only if error
detection and correction is enabled. When an error is

detected, the fix bits are latched and used for diagnostic
purposes.

If a correctable error is indicated {the signal C_CRERR
is high), then an interrupt is generated to the interrupt
receiving block 132, forwarded up to the interrupt output
block 114, and then transmitted to the system interrupt
controller and Ihen to the CPU 14 to invoke an interrupt
handler. Non-correctable errors indicated by the signal
(T NCERR will cause the system error SERR to be
asserted. which in turn causes the system interrupt controller

Toshiba_Apricorn 1010-0158
|PR2018—01067

Toshiba_Apricorn 1010-0159
IPR2018-01067

5 ,943 ,482
61

(not shown) to assert the non-maskable interrupt (NMI) to
the CPU 14. In the downstream bridge chip 48, non-
correctnble errors will also cause the power-goodil’LL lock
indication bit sent up the cable 28 to be negated so that the
upstream bridge chip 26 does not send cycles downstream.

To prevent spurious interrupts during and just after power-
up, error detection and correction on both the upstream and
downstream bridge chips is disabled during power-up until
the upstream PLL 186 and downstream PLL 182 have
locked to the clock CABLE__(..‘LK1 or CABLE _CLK2.

System management software responding to the
correctable~error interrupt determines the cause by reading
the latched lix bits. [fa hardware failure is determined {e.g..
multiple data error bits associated with the same cable wire).
then the system management software can notify the user of
the condition to fix the hardware failure. The system man-
agement software responds to SERR_caused by an uncor-
rectablc error by shutting doWn the system or perl'on‘ning
other functions programmed by the user.

Secondary Bus Arbiter

Referring to FIG. 3, each bridge chip includes a PCI
arbiter 116 or 124-. Since the upstream bridge chip 26 is
normally installed in a slot, the PC] arbiter 116 is disabled.
The PC] arbiter [24 supports 8 masters: 7 generic PC] "
masters (REQ [7:1]. , GNT [7: 1]) including the six PCI
slots and the hot plug controller in the 810 50, and the bridge
chip itself (BI..REO_. BI.GNT_). The signals BI..REQ_
and BLGNT are routed from and to the PCI master block

123. The bridge chip asserts the signal BLREQ_if a trans-
action from the CPU 14 targeted for the secondary PC] bus
32 is received by the upstream and downstream bridge chips
26 and 48. The request and grant lines REQ [l]__and GNT
[1] __for the 510 50 are routed internally in the downstream
bridge chip 48. The PC] arbiter 124 inserts a PCICLK2 delay :‘
between negation of a GNT_signaI for one master and the
assertion of a GNT signal for another master.

[it the downstream bridge chip 48, the PCI arbiter 124 is
enabled or disabled based on the sampled value of REO
[7]__at the rising edge of the signal PCIRST2_. ”the bridge
chip 48 samples REQ [71. . low on l’CIRS’l'Z. . it will
disable the PC! arbiter 124. If the PCI arbiter 124 is disabled.
then an external arbitcr (not shown) is used and the hot plug
request is driven out on the R130 [1]_ pin and hot pluggrant
is input on the ONT [1] pin. The bridge PCI bus request is
driven out on the REO [2]_pin and its grant is input on the
ONT [2] pin. [f the bridge chip 48 samples REG [7] high
on PCIRST2_, it will enable the PCI arbiter 124.

The PC! arbiter 124 negates a master’s GNT_signal
either to service a higher priority initiator. or in response to
the master‘s REQ signal being negated. Once its GNT
signal is negated. the current bus master maintains owner-
ship of the bus until the bus retums to idle.

If no PCI agents are currently using or requesting the bus.
the I’CI arbiter 124 does one of two things depending on the
value of a PARKMSTRSEL configuration register in the
configuration space 125. If the register contains the value 0,
the PCI arbiter 124 uses the last active master to park on the
bus 32; if it contains the value 1. then the bus is parked at
the bridge chip 48.

The PCI arbiter 124 includes a PCI minimum grant timer
304(1316. 21) which controls the minimum active time of all
the GNT_signals. The default value for the timer 304 is the
hexadecimal value 0000 which indicates that there is no

minimum grant time requirement. The timer 304 can be
programmed with a value front 1 to 255, to indicate the

It)

15

2|)

30

40

4:1

50

55

fit]

as

62

number of PCICLKZ clock periods the ONT line is active.
Alternatively, an individual minimum grant timer can be
assigned to each PCl master on the secondary bus 32 to
provide more flexibility. The minimum grant time is appli—
cable only when the current master is asserting its REQ_
signal. Once the RED signal is deasscrted. the GNT
signal can be removed regardless of the minimum grant time
value.

Referring to FIG. 20A, in normal operation, the PCI
arbiter 124 implements a round-robin priority scheme
(second level arbitration scheme). The eight masters in the
round— robin scheme include devices connected to the six

slots of the expansion box 30, the 810 50, and a posted
memory writc (PMW) request from the upstream bridge
chip 26.A.1l masters on the PCI bus 32 in this scheme have
the same priority as the bridge chip 48. After a master has
been granted the secondary PCI bus 32 and the master has
asserted the FRAME_singal, the bus is rc-arbitrated and the
current master is put on the bottom of the round-robin stack.
If the master negates its request or the minimum grant timer
304 expires, the PC] bus 32 is granted to the next highest
priority master. Locked cycles are not treated any differently
by the PCI arbiter 124.

In response to certain events, the arbitration scheme is
modified to optimize system performance. The events
include: 1) an upstream-to-downstream delayed read or
delayed write request is pending, 2) a downstream-to-
upstream delayed read request is pending with no read
completion indication provided, and 3) a streaming possi-
bility exists while the bridge chip 26 is the current master on
the upstream bus 24.

When a delayed request is detected, the bridge chip 48
becomes the next master to be granted the secondary PCI
bus 32. Once the bridge chip 48 is granted the bus 32, it
maintains ownership of the bus 32 until it completes all
outstanding delayed requests or one of its cycles is retried.
If the bridge chip 48 is retried, then a two—level arbitration
scheme is implemented by the arbiter 124. One primary
cause of the bridge chip read cycle being retried is [hat the
target device is a bridge with a posted write buffer that needs
to be flushed. in this case, the optimum operation is to grant
the bus 32 to the retrying target to allow it to empty its
posted write bulfer so it can accept the bridge chip read
request.

Referring to FIG. 208. the two-level arbitration protocol
includes a first level arbitration scheme whiCh is a round—

robin scheme among three possible masters: the delayed
request from the CPU 14, a request from the retrying master,
and a master selected by the second-level arbitration
scheme. Each of the three masters in the lirst-level arbitra-

tion scheme is guaranteed every third arbitration slot. For
memory cycles. the slot associated with the retrying target
can be determined from target memory range configuration
registers in the configuration space 125 of the bridge chip
48, which store the memory range associated with each PCI
device. If the retrying master cannot be determined (as in the
case of an liO read), or if the retrying master is not
requesting the secondary bits 32. then the first level arbitra—
tion scheme would be between the bridge chip 48 and a
level-two master.

The retrying master is not masked from the level—two
arbitration. Thtts, it is possible for it to have two back—to—
back arbitration wins if it is the next master in the level-two
arbitration scheme.

For example. if an upstream-to-downstream read is retried
and Master C (the retrying master) is requesting the bus 32

Toshiba_Apricorn 1010-0159
|PR2018—01067

Toshiba_Apricorn 1010-0160
IPR2018-01067

5 ,943 ,482
63

as well as Master 3 and Master E, the order of the bus grants
would be as follows in descending order: the bridge ehip 48.
the retrying master (Master C), Master C, the bridge chip 48,
the relrying master C, Master E, the bridge chip 48, and so
forth, until the bridge chip 48 is able to complete its
transaction and the PC] arbiter 124 reverts back to its

level-two arbitration scheme for normal operation.
11'. as another example. the bridge chip read is retried and

the only other requesting masters are Master A and Master
D (i.e.. the retrying master is not requesting the bus or it
could not be identified because it is accessing 170 space), the
order of the bus grants is as follows: the bridge chip 43,
Master A, the bridge chip 48, Master D, and so forth.

’l‘ne two-level arbitration scheme gives delayed requests
from the CPU 14 the highest priority. Although this arbitra-
tion method l'avors heavily the CPU 14. every requesting
device on the bus 32 is eventually granted the PCI bus 32.
By so doing. there is less chance that the other secondary bus
masters would be starved when a PCI bridge chip request is
retried.

Referring to FIG. 21, the l’Cl arbiter 124 includes an 12
state machine 302 to implement the level—two round—robin
arbitration scheme. The [2 state machine 302 receives

signals RR MAS'I‘ [2:0]. which indicate the current round-
robin master. The [.2 state machine 302 also receives request
signals RR_REQ [7:0], corresponding to the 8 possible
masters of the secondary PCI bus 32. Based on the current
master and the state of the request signals. the 12 state
machine 302 generates a value representing the next round-
robin master. The output of the 1.2 state machine 302 is
provided to the 0 input of a 6:3 multiplexer 306. whose 1
input receives signals 02A ..S'l'RMAS'I' [2:0]. The select
input of the multiplexer 306 receives a signal STREAM.
R130. which is asserted high by an AND gate 308 when a ,

10

15

2|)

3|)

streaming opportunity exists {02A STREAM is high), the ‘
streaming master on the secondary PCI bus 32 is asserting
its request line (MY_REQ [QZA_S']‘RMAST [2:0]] is
high}. and a delayed request is not pending (BAL_DEL_
RED is low).

The output of the multiplexer 306 drives signals N__RR__
MAST [2:0] which represent the next round—robin master in
the level-two arbitration scheme. The signals N RR
MAS'1‘[2:0] are received by an L1 state machine 300. which
also receives the following signals: a signal RTRYMAST_
R120 {which represents the request of the relrying bus
master); a signal MIN GRANT {which is asserted when the
minimum grant timer 304 times out): the delayed request
signal BAL_DEL_REQ; the stream request signal
STREAM__REQ; a signal CURMAST_REQ (indicating
that the current master is maintaining assertion of its request
signal); a signalANY. SLO'I' REQ (which is asserted high
if any of the request signals REG [7:1] _, but not including
the bridge chip request BI.REO_, is asserted); and signals
LlS'l'A'I'E [1:0] (which represent the current state of the L1
state machine 300). The L1 state machine 300 selects one of
the three possible Ll masters, including the retrying master
(R‘J'RYMAS'J' R120], the delayed request from the bridge
chip 48 (BA! ._DE1._REQ), and the level—two master
(ANY__SI_0T._REO)-

The retrying master request signal RTRYMAST .REQ is
generated by an AND gate 312. which receives the signal
BAL_DEL_REQ, the signal MY_REQ [R'l'RY_MA'1'
[2:0]] {which indicates if the retrying master is asserting its
request). and the output of an OR gate 310. The inputs ofthe
OR gate 310 receive the signals RTRY__ __MAST [2:0]. Thus.
if a retrying master has been identified (R’I'RY_MAS'1'[2:0]

40

4:1

50

55

(it!

{15

64

is non-rem). a delayed request is present (BAI. DEL
REQ is high), and the retrying master has asserted its
request, then the signal R’I'RYMAST_RILQ is asserted.

The L1 state machine 300 generates signals N _ .LlS'I'A'l‘E
[1:0] (representing the next state of the L1 state machine
300), as well as signals N_CURMAST [2:0] (representing
the next master according to the level-two arbitration
scheme). The L1 state machine 300 aLso generates a signal
()PEN_WIND()W, which indicates when a re-arbitration
window exists for a grant state machine 306 to change
masters on the secondary l’Cl bus 32. A signal ADV __RR_
MAST provided by the [.1 state machine 300 indicates to the
grant state machine 306 when to load the value of the signals
N_RR_MAST [210] into the signals RR_MAST [2:0] to
advance the next level—two round—robin master.

The grant state machine 306 outputs grant signals GNT
[7:0] as well as a signal CHANGING GNT to indicate that
ownership of the bus 32 is changing. The grant signals GNT
[7:1]_ are inverted from the GNT [7:1] signals, and the
grant signal BLGNT is inverted front the GNT [0] signal.
The grant state machine 306 also generates signals
LIS'l‘A’l‘li [1:0] and signals RR__MAS‘1‘ [2:0].

The minimum grant timer 304 is clocked by the signal
I’CLK and generates the signal MIN GRANT. The mini-
mum grant timer 304 also receives the signal CHANGING_
GN'I‘ and NEW_FRAM1£ (indicating a new FRAME_
signal has been asserted). The initial value of the minimum
grant timer 304 is loaded as a value {CFGZA__MINGNT
[3:0], 0000}, with the signaLs CliG2A _M1NGN'1‘ [3:0]
being stored configuration bits in the configuration space
125 which define the initial value of the minimum grant
timer 304. The minimum grant timer 304 is re~loadcd after
it has counted down to zero and the signal CHANGING
GN'I‘ is asserted high.Afterthe minimum grant timer304 is
loaded with a new value, it begins decrementing when the
signal NEW FRAME is asserted high and the signal
CHANG]NG_GNT is deasserted low by the grant state
machine 306. which indicates that a new transaction has
started on the PCI bus 32.

Signals MY_REQ [7:1] are generated by a NOR gate
314, whose inputs receive the request signals RED [7:1]_
and mask signals 02AMASKREQ [7:1]. Assertion of the
mask bit QEAMASKREQ [X]. X-lm'r'. masks the request
R130 [X]_ of the corresponding master. which prevents the
[’61 arbiter 124 from responding to the request signal. A
signal MY_REQ [0] is driven by an inverter 316, which
receives the bridge request BLREQ. 1

Referring to FIG. 22 the grant state machine 306 includes
four states: PARK1 GNT, IDLEAGNT, and IDI_E4PARK. On
assertion of a reset signal RESET (generated from the PCI
reset signal PCIRS’12_), the grant state machine 306 enters
state PARK, where it remains while a signal ANY__REQ is
deasserted. The signal ANY_REQ is asserted high if any or
the request lines to the PC! arbiter 124 is asserted. In the
PARK state, the PCl—l’CI bridge 48 is parked as the owner
of the PC] bus 32 when another request is not present.

[1' the signal ANY_REQ is asserted, the grant state
machine 306 transitions from state PARK to state

IDI_E4GNT. and the signal CHANGING_GNT is asserted
high to indicatc that the PCI arbiter 124 is changing masters.
The grant signals GN'I‘ [7:0] are cleared to all zeros, and the
signals CURMAS't' [2:0] are updated with the value of the
next master N_CURMAST [2:0]. In addition, the round-
robin master signals RR MAST [2:0] are updated with the
next round-robin master value N RR___MAST [2.0] if the
signal ADV_RR_MAS'[‘ is asserted by the L1 300. The

Toshiba_Apricorn 1010-0160
|PR2018—01067

Toshiba_Apricorn 1010-0161
IPR2018-01067

5 ,943 ,482
65

signal ADV RR _MAS'1‘ when high indicates that the next
1.] master is one of the 1.2 masters.

From state IDLEIiGNT, the grant state machine 306 next
transitions to the GN'I' state. and the signals UN‘l‘ [7:0] are
set to the state of new grant signals NEWGN’I‘ [7:0] and the
signal CI-lANGING_GNT is negated low. The signals
NEWGN'I' [7:0] are based on tlte state of the current master
signaLs CURMAS'I' [2:0], as shown in FIG. 24.

From state GNT, three transitions are possible. The grant
state machine 306 returns to the PARK state it‘ an arbitration

window is open (OPEN __WINDOW is high), no request is
pending (ANY__REQ is low), the PC! bus 32 is idle (BUS_
IDLE is high), and the next master is the current master (i.e.,
the current master is the parking master). to the transition
back from the GN'I' state to the PARK state, the signals
l..lSTATE [1:0] are updated with the signals N_I.ISTATE
[1:0]. However, if no requests are pending and the bus is
idle, but the current master is not the parking master (i.e., the
signaLs N_CURMAST [2:0] are not equal to the value of the
signals CURMAST [2:0]), an idle state is needed and the
grant state machine 306 transitions from the GNT state to the
lDLE-tl-‘ARK state. The L1 state values LIS'IA‘I‘L' [1:0] are
updated. From the [DLHPARK state, the grant state
machine 306 transitions to the PARK state, setting the grant
signals ONT [7:0] equal to the new grant signals NEWGNT '
[7:0] to grant the l’Cl bus 32 to the new master. The signal
CHANGING_GN'I‘ is also negated low.

[1' the arbitration window opens up (OPEN_WINDOW is
high), and the next master is not the current master (the
signals N _CURMAS'1' [2:0] are not equal to the signals
CURMAST [2:0]), then the grant state machine 306 transi—
tions to the idle state IDLE4GN‘I‘ to change bus master
grants. In the transition, the signal CHANGING GN’I‘ is
asserted high, the signals GNT[7:0] are cleared to all zeros. .
the signals CURMAST [2:0] are updated with the next ‘
master value N CURMAST [2:0], and the L1 state signals
LISI‘A'I‘E [1:0] an: updated with the next state value
N_LIS'IIA’I'I£ [110]. In addition, the round-robin master
signals RR_MAST [2:0] are updated with the next round‘
robin master N._RR__MAST [2:0] it. the signalADV_RR_
MAST is asserted high. ’lhe grant signals GN’I‘ [7:0] are then
assigned to the value NEWGN'I‘ [7:0] in the transition from
the IDIJZAGNT state to the ONT state.

Referring to FIG. 23, the [.1 state machine 300 (FIG. 21)
stans in state RR upon assertion of the RESETsignal, where
the state machine 300 remains while a delayed request signal
BAL_DEL_RL-'Q is negated Iow (indicating there is no
delayed request pending). While in the RR state, the signal
ADV___RR_MAST is asserted high to allow the grant state
machine 306 to update the round—robin master [i.e., setting
signals RR. MAST [2:0] equal to the value N .RR MAS’I'
[2:0]. The RR state is the round-robin state in which the
level-two arbitration scheme is used. While in the RR state.

the next master signals N (‘URMAS'I‘[2:0] are set equal to
the next round-robin master N_ RR MAST [2:0], and the
signal 0PEN_W[ND()W is set high if a stream request
opportunity exists (S'I'REAM_ R130 is high), or the mini-
mum grant timer 304 has expired (MIN___GRANT is high).
or the current master has negated its request {CURMAST_
REQ goes low). When asserted high, the signal OPEN.
WINDOW allows a new arbitration to take place.

If a delayed request is detected (BAL_DEL_REQ goes
high), the Lt state machine 300 transitions From the RR state
to the BAL state, setting the next master state
N __(TURMAS'I' [2:0] as the bridge chip 48 and deasserting
the signal ADV_RR_MAST to disable the level-two

10

15

2|)

3t)

40

4:1

50

55

{ill

{15

66

round-robin arbitration. In the BAL state, the signal OPEN
WINDOW is asserted high if the delayed request is deas‘
serted (BAL_ DEL__REQ goes low) or the delayed request
has been retried (BAL___RETRIED goes high). If the signal
BAI._DEI._REQ is negated low, or if the delayed request
BAL DEL R120 is asserted high but the retrying master
request is negated low (RTRYMAS'I‘_REQ is low) and the
slot request ANY_SI..OT_REO is asserted high. then the
[.1 state machine 300 transitions hack to the RR state. In the

transition, tlte signal ADV RR MAST is asserted high and
the next master signals N_CURMAS'1'[2:0] are set equal to
the next round-robin master N._RR_MAS'I' [2:0]. If the
signal BAI___DEL_REQ is deasmrted, that indicates that
the arbiter 124 should revert back to the level—two round—

robin scheme. If the delayed request signal is asserted but
the retrying master request is negated, then the level-one
arbitration scheme is between the slots on the PCI bus 32

and the bridge chip 48.
If both the delayed request BAL___ DEL__R1£Q and the

retrying master request RTRYMAST_REQ are asserted,
then the L1 state machine 300 transitions from state BA]. to

state REI‘RY MAST, and the retrying master is set as the
next master (N_CURMAST [2:0] is set equal to RTRY_
MAST [2:0]). The signal ADV RR MAST is maintained
low. In the RE'I‘RY MAST state, if none of the PCI slot
masters are asserting a request (ANY__SI.0T_REQ is low),
then the level-one arbitration scheme is between the retrying
master and the bridge chip 48, and the [.1 state machine 300
transitions back to the BA]. state. The bridge chip 48 is set
as the next master (N. CURMAST [2:01] is equal to the
state BALBOA), and the signal ADV_RR_MAS'I‘ is main-
tained low. However, the [.1 state machine 300 transitions
from the RE'FRY MAST state to the RR state if any one of
the slot masters is asserting a request (ANY SLOT REQ
is high). ln the transition, the signal A[)V_RR_MAST is
asserted high, and the next round robin robin master is set as
the next master (N _CURMAST [2:0] is set equal N __RR_
MAST [2:0]).

To take advantage of the streaming capabilities of the
bridge chip, when data for a DRC‘ starts arriving from the
cable 28. the master associated with that DRC becomes the
highest priority device (assuming its REQ__ is asserted).
This allows the master to receive the data stream coming
down the cable 28 while the window of opportunity is there
for streaming. If the bridge chip 48 cannot connect the
master before the DRC queue fills up, then the upstream
bridge chip 24 will disconnect and only a portion of the data
would be passed to the requesting master. necessitating the
master to issue another read request on the upstream bus 24.
The streaming master retains the highest priority as long as
DRC data continues to arrive front the cable 28. [I the master

rcpcau; a different cycler'addrcss, it will be retried, but it will
maintain ownership of the secondary PCI bus 32 until its
request goes away or the opportunity for streaming passes.

Retrying Requests and Multi—Threaded Masters

Since each bridge chip is a delayed transaction device, if
a device on the downstream bus 32 issues a read request
destined for an upstream target, the downstream bridge chip
48 will issue a retry transaction (described in the PCI
specification) on the secondary bus .32 and fort-yard the
request up the cable 28. The retry transaction causes the
requesting master to give up control of the PCI bus 32 and
negate its REO_ line. After negating its REO_ line, the
retried master will re-assert a request for the same cycle at
a later time, which may result in its GN'I' _ being asserted (if
its REQ_ line is not masked) and the bus master being

Toshiba_Apricorn 1010-0161
|PR2018—01067

Toshiba_Apricorn 1010-0162
IPR2018-01067

5 ,943 ,482
67

retried again until the read completion indication is asserted
in the downstream bridge chip 48.

Rel‘erring to FIG. 25, to avoid the unnecessary servicing
of retry requests, the R130_ line of a secondary bus master
which issues a retried delayed read or write request is
masked by asserting the appropriate one of signals 02A_
MASK .REQ [7:1] (requests from the bridge chip 48 which
are retried are not masked) until the delayed completion
returns. In this fashion, other requesting masters are given
priority to get their requests in. As soon as the first infor-
mation associated with the delayed completion is returned,
the REQ_ line of the corresponding master is unmasked and
the retried master is able to enter arbitration again.

However, a special case exists for multi-threaded (or
multi-hcadcd) masters on the downstream bus 32 (FIG.
2613), which are able to assert a first request, get retried, and
come back with a dill'erent request. One such multi-threaded
bus device is a PCl—PCI bridge 323 connecting the sec-
ondary PCI bus 32 and a subordinate PC] bus 325. The bus
325 is connected to network interface cards (Nle) 327A
and 3278 which are connected to two dilferent networks.

Thus, it' the request from the NIC 327A for the primary PC]
bus 32 is retried by the bridge chip 48, the NH." 32713 can
generate a different request. In this case, the REQ_ lines of
the multi—threaded masters are not masked, as indicated by '
the signal CFG2Q MULTI MASTER [X] being set high.

A status register 326 determines if a slot is single-or
multi-threaded. On reset, the register 326 is cleared to
assume that each secondary bus device is single-threaded.
Each slot is then monitored to determine if it requests a
dilferent cycle while another cycle from the same master is
pending. [f mutti-threaded behavior is observed in a master,
then that master is marked as such by setting the corre-
sponding bit CFGZO_MUIII'I_MASTER [X] high.

The input of the status register 326 is connected to the
output of a 14:7 multiplexer 328. whose 0 input is connected
to the output of a 14:7 multiplexer 330 and whose 1 input is
connected to address biLs P20__AD [22:16]. A select signal
CliGWR_.MM selects the 0 and 1 inputs ofthe multiplexer
328. When asserted high, the signal CFUWR__MM causes
a configuration write of the status register 326 from the data
bits P20 _AD [22:16], allowing software control of the bits
in the register 326. The 1 input of the multiplexer 330
receives multi—master signals MUIITI_MASTER [7:1]. the
0 input receives the output of the register 326, and the
multiplexer 330 is selected by a signal MUtIl'l SEL. The
signal MULTl_SEL is generated by an AND gate 338,
whose first input receives a signal 02PlI-'_.CI-llECK_CYC
(asserted high to indicate that the current transaction infor—
mation should be checked with information stored in the

queue block 127 for a match, such as during a delayed
memory read or write request from a bus device on the
secondary PCI bus 32). and the other input receives the
inverted state 01‘ a signal DCQ I-llT (indicating that the
current address information does not match the address

information associated with a pending request of the
requesting master in the DCQ 148). Thus. if a failed com-
parison occurred, the value (Jr—signals CFGZO_MUI.TI_
MASTER [7:1] is updated.

Abit MUITI MASTER [X] is asserted high if master X
has a pending request that has been retried, and master X
subsequently comes back with a ditt‘erent request. 11113; is
checked by comparing the transaction information (e.g.,
address, byte enables, data for a write) of the pending
request with the address 01‘ the new request. A failed
comparison indicates that the master is multi-threaded. Once

S

It)

15

2|)

30

40

4:1

50

55

6t]

{15

68

a multi-master configuration bit CFG2Q MULTt __
MASTER [X] (an—T} is set high, the hit is maintained
high.

The signals MUL’l'I_MAS'I'ER [7:1] are generated by a
decoder 336. The decoder 336 receives signals 02PIl-'_
SLOT [2:0] (slot number for the current delayed request
from a master), 0 [7:0] _MASTER [2:0] { the master
associated with each of the eight bulfers in the DCQ 148),
Q [T:£|]_COMPI.ETE (the completion status of each 01. the
eight queues), and Q [7:0] PART. COMPLETE (the par-
tial completion status of each of the buli'ers in the delayed
completion queue). For example, if the signal
00 MASTER [2:0] contains the value 4, then that indi-
cates DCQ butler 0 stores the transaction information of a
delayed request from the bus device in slot 4. The signal
QY_COMPL1£‘I'E, Y=0—7", if asserted high indicates if
[)CQ butler Y has received at] the data associated with
delayed request transaction. The signal QY_PART_
COMPLETE, Y=0—7, if asserted high indicates that DCQ
bufier Y has been allocated as the DCQ bulfer for a delayed
transaction of one of the masters but all the data associated

with the delayed transaction has not been received.
If the current slot number QZl’ll’. .SLO’l' [2:0] is equal to

the value of any one of the eight queue master indication
signals 0 [7:0] MASTER [2:0], and the corresponding
DCQ bufl'er is in the complete or part complete state, then
the corresponding one of the bits MUIIT]_MASTER [7:1]
is set high if the signal DCQ_llIT is low and the signal
QZPIF CHECK (‘YC is high. Thus, for example, if the
signal QZPIF SLOT [2:0] contains the value 2. indicating
that the device in slot 2 is the current master ofthe delayed
request, and DCQ bulfcr 5 is storing a pending request for
the slot 2 master (Q5_MASTER [2:0] =5), and either of
signals 05 COMPLETE or 05 PART COMPLETE is
high, and if the signal QZPIF CHECK CYC is high and
the signal DCQ_II]T is low, then the hit MUIT[_MU_;_H_
MASTER [2] is set high to indicate that the slot 2 device is
a multi-threaded master.

A mask request generation block 332 produces signals
02A_MASK_REO [X] (X=-t-':‘) in response to signals 0
[7:0] MASTER [2:0]. 0 [7:01 S't‘A'l‘E [3:01) {which indi-
cates the state of delayed completion queues (J—Y), SLOT_
Wl'l‘ll_DA'liA [7:0] (which indicate if delayed completion
Qs U—7 contain valid data). (713620 __MUL‘1‘["MASTER
[x] (x-t—r), CFGZQ _A[.WAYS__MASK, and CFGZQ_
NEVER. MASK.

Referring to FIG. 26A, the mask request generation block
332 includes a 2:1 multiplexer 320 for producing the signal
QZA__MASK_REQ [x] {xx-14). The 1 input or the mul—
tiplexer 320 is connected to the output of an OR gate 322 and
the [I input is tied low. The select input of the multiplexer
320 is dt'iVen by a signal MASK_MUXSEL. One input of
the OR gate 322 is connected to the output of a NOR gate
324, which receives a signal (‘FGZQ_MUL'1‘I_MAS’1'ER
[X] [indicating a mulli-threaded master), and the other input
receives a signal CFG2Q NEVER MASK [a configura-
tion bit indicating that the request line should not be masked
if a mu [ti-threaded master is detected). The other input of the
OR gate 322 receives a signal Ct-‘G2O ALWAYS .MASK,
which is a configuration bit indicating that the corresponding
mask bit 02A .MASK. REO [X] should always be masked
if the signal MUXSEL is asserted high. The signal MASK
MUXSEI. is asserted high if the request from the secondary
hus master is not to data already existing in the queue block
12?, i.e., the request must be transmitted to the primary PCI
bus 24. Thus each time a request is transmitted from a device
on the secondary PCI bus 32 upstream to the primary PCI

Toshiba_Apricorn 1010-0162
|PR2018—01067

Toshiba_Apricorn 1010-0163
IPR2018-01067

5 ,943 ,482
69

bus 24, a check is performed on bits (.‘FGZQ MULTl
MASTER [7:1] to determine if a multi-threaded master has
been detected.

The masking of requests can be overridden by setting the
appropriate bits in the configuration registers 125. The
available modes include: 1) normal mode in which request
masking is enabled except it' multi-threaded master
(CFGZQ NEVER MASK-(l, CFGZQ ALWAYS.
MASK=0), 3) always mask mode in which requests from
retried masters are masked even if multi-threarled (CI’GZO
ALWAYS _MASK-l), and 3) never mask mode in which
the requests are never masked (CFGZQ_NEVER_MASK-
1, CFGZQ._ALWAYS_MASKED =0}.

Expansion Card insertion and Removal Connecting
Expansion Cards

As shown in FIGS. 1 and 2.7A1 the two expansion boxes
30:? and 30b, of common design 30, each have the six
hot-plug slots 36 (36a—f} in which the conventional expan-
sion cards 807 can be inserted and removed (hot—piugged)
while tlte computer system 10 remains powered up. The six
mechanical levers 802 are used to selectively secure (when
closed, or latched} the expansion cards 807 that are inserted
into corresponding hot-plug slots 36. For purposes of
removing or inserting the expansion card 807 into one of the
slots 36. the corresponding lever 802 must be opened. or
unlatched. and as long as the lever 802 is opened, the
corresponding slot 36 remains powered down.

When the [ever 802 that secures the expansion card 807
to its slot 36 is opened, the computer system 10 senses this
occurrence and powers down the card 807 (and correspond-
ing slot 36) before the card 807 can be removed from its slot
36. Slots 36 that are powered down, like other slots 36 not
holding cards 807, remain powered down until software of 3
the computer system [0 selectively powers up the slots 36.

The card 46 inserted into the card slot 34 has the bridge
chip 48 that monitors the securemcnt status (open or closed)
of the levers 802 and powers down any card 807 (and
corresponding slot 36) that is not secured by its lever 802.
Software of the computer system 10 can also selectively
power down any one of the slots 36.

The cards 807 are powered up through a power up
sequence and poWered down through a power down
sequence. In the power up sequence, power is first supplied
to the card 807 being powered up. and thereafter. a PCI clock

SIGNAL
POSITION

[l- I 1
12—15

16
l 7
18
19
20
21
2".-
33.
34
25
26
27
28

It)

15

2|)

30

:10

4:1

70
signal {from the PC! bus 32) is furnished to the card 807
being powered up. Remaining PCI bus signal lines of the
card 807 are then coupled to corresponding lines of the PCI
bus 32. Lastly. the reset signal for the card 80'}r being
powered up is negated which brings the card 807 out ofreset.

The power up sequence allows the circuitry of the card
807 being powered up to become fully functional with the
PCI clock signal before the remaining PC] bus signals are
pmVided. When the clock signal and remaining PC] bus
signals are connected to the card 807 and before the card 807
is reset. the bridge chip 48 has control of the PCI bus 32.
Because the bridge chip 48 has control of the PCI bus 32
during these times. potential glitches on the PCI bus 32 from
the power up sequence do not disturb operations of the cards
807 that are powered up.

[n the power down sequence. the card 80’? being powered
down is first reset. Next. the PCI bus signals, excluding the
PCI clock signal. are removed from the card 807. The bridge
chip 48 subsequently disconnects the PCI clock signal from
the card 80’}I before power from the card 807 is removed.
The power down sequence minimizes the propagation of
false signals from the card 807 being powered down to the
bus 32 because circuitry on the card 807 remains fully
functional until the PCI bus signal lines are removed.

When the PC] clock signal and remaining PC] bus signals
are disconnected, and when the card 807 is reset. the bridge
chip 48 has control of the PC] bus 32. Because the bridge
chip 48 has control of the l’CI bus 32 during these times,
potential glitches on the PCI bus 32 from the power down
sequence do not disturb operations of the cards 807 that are
powered up.

The bridge chip 48 includes the Serial lnputi’Output (810}
circuit 50 which controls the power up and power down
sequences of the slots 36 through twenty—four control signals
I’OU’I‘ [39:16]. The control signals PUUT [39:16] are a
subset of forty output control signals POUT [39:0] generated
by the SIG circuit 50. The control signals POUT [39:16] are
latched versions of slot bus enable signals BUSENIflSfl],
slot power enable signals PWREN [5:0], slot clock enable
signals C1.KEN#[5:0] and slot reset signals RST#[5:0], all
internal signals of the 310 circuit 50, further described
below. The control signals POUT [39:0] and their relation—
ship to the signals BUSEN#[5:0], PWREN [5:0]. C LKENat
[5:0] and RS’l‘#[5:0] are described in the following table:

PARALLEL OlJ'l'l’L'T [TON—1R0]. SIGNALSJPOL‘IIJQflu

ASSOCIATED
CONTROL WHEN SIGNAL

DESCRIPTION SIGNALS [S ACTIVE

Control signals for ”ins 54
General purpose output signals GPOAI 3:0I
Reset signal for slot 3m (RS‘MUB Low
Reset signal for slot 36b (RS'IWI 11] Low
Reset signal for slot 36c (RS‘l'tUI 2}] Low
Reset signal for slot 36d (RS'WI 31] Low
Reset signal [or slot 36:: (RSthI‘l-I] Low
React signal [or slot 361' (RSTHFIJ Low
Clock enable signal for slot 36:: (CLKENIflUIJ iow
Clock enable signal for slot 361: (CLKENflIlIt Low
Clock enable signal for slut 36c (CLKENfllIlll Low
Clock enable signal for slot 36d (CLKENfiI‘IJ Low
Clock enable signal to: slot 36c (CLKI-LMIHIJ Low
(flock enable signal for slot 361' (CLKHNHSJJ tow
Bus enable signal for slot 3-bit (BUSENfliD'IJ Low

Toshiba_Apricorn 1010-0163
|PR2018-01067

Toshiba_Apricorn 1010-0164
IPR2018-01067

5 ,943 ,482

71
-continued

I’ARAIJ El. OUTPUT CONTROL SIGNALS l’UUI 39:0

AS SOCIA'I'E D
SIGNAL CONTROL

POSITION DESCRIPTION SIGNALS

29 Bus enable signal [or slot 360 (BUSENIHJIJ
so Bus enable signal for slot sac (BL'sENtttzlg
31 Bus enable signal for slot 30d (BLISENHJH
32 Bus enable signal for slot .16: (BUSENiflt‘lIJ
3.1 Bus can-h]: signal For slot .Itit‘ (BUSENfifiIJ
34 Power enable signal for slot 36a (I’WRENIUI)
35 Power enable signal for slot Job (I’WRENIIJ)
36 Power enable signal For slot 30c (PWRENIZH
37 Power enable signal For slot 36d (I’WRENISD
38 Power enable signal for slot 36:: (PWRENIH)
39 Power enable signal For slot 361' (PWRENIS'I)

As shown in FIGS. 2 and 28, each hot-plug slot 36 has the
associated switch circuitry 41 for connecting and discon-
necting the slot 36 to and from the PCI bus 32. The switch
circuitry 41 for each slot 36 receives four of the control
signals POU’1'[39: 16]. As an example, for the slot 36h, when
the control signal POUT [28] is asserted, or low, the slot 36:?
is connected to the bus signal lines of the PCI bus 32 by a -
switch circuit 47. When the control signal POUT [28] is
deasserted,or high, the slot 360 is disconnected from the bus
signal lines of the PCI bus 32.

When the control signal POUT [22] is asserted, or low, the
slot 36:? is connected to a PC] clock signal CLK through a
switch circuit 43. When the control signal POUT [22] is
deasserted, or high, the slot 36:: is disconnected from the
clock signal CLK.

When the control signal POUT [34] is asserted, or high,
the slot 36:? is connected to a card voltage supply level V33 3‘
through a switch circuit 45. When the control signal POU'l
[34] is deasserted, or low, the slot 36a is disconnected from
the card voltage supply level V35.

When the control signal POUT [16] is asserted, or low, the
slot 360 is reset and when the control signal POU'I‘ [16] is
deasscrted, or high, the slot 36:? comes out of the reset state.

As seen in FIG. 2, the SIG circuit 50 may selectively
monitor up to one hundred twenty—eight (sixteen bytes) of
latched status signals STATUS [127:0] furnished by the
expansion box 30. The status signals STKI‘US [127:0] form
a "snapshot" of selected conditions of the expansion box 30.
The status signals STA'l'US [127:0] include six status signals
STATUS [127:0] which indicate the securement status
(opened or closed) of each of the levers 802. The 810 circuit
50 monitors the status signals S’I'ATUS [31:0] for changes in
their logical voltage levels. The $10 circuit 50 serially shifts
the status signals STATUS [1:27:32] into the SIG circuit 50
when instructed to do so by the CPU 14.

The 810 circuit 50 serially receives the status signals
STATUS [127:0], least significant signal first, via a serial
data signal NL-‘W_CSI1). The data signal NEW_CSID is
furnished by the serial output of the thirty-two bit, parallel
input shift register 82 located on board the expansion box 30
along with the sian 36.

The register 82, through its parallel inputs. receives
twenty-four parallel status signals PIN [23:0], four associ-
ated with each of the hot-plug slots 36, that are included in
the thirty-two least significant status signals STATUS [31:0].
When the status indicated by one or more of the status
signals STATUS [31:0] changes {the logical voltage level
changes), the bridge chip 48 generates an interrupt request

72

WHEN SIGNAL
IS ACTIVE

2|)

3t)

40

4:1

50

55

fit]

as

Low
Low
Low
Low
Low
High
High
High
High
High
High

to the CPU 14 by asserting, ordriving low, a serial interrupt
request signal SI [N'I'Rt‘t‘ which is received by the interrupt
receiving block 132. The status signals PIN [23:0] include
two PCI card presence signaLs (PI'tSN'I‘lttt and [’RSNTZit)
associated with each slot 36.

Six status signals PIN [5:0], corresponding to their
latched versions, status signals STATUS [5:0], indicate the
securement, or engagement, status (open or closed) of each
the levers 802. Six sliding switches 805 (FIGS. 27A~27C}
are actuated by the movement of their corresponding levers
802 and are used to electrically indicate the sccurcmenl
status of the corresponding [ever 802. Each switch 805 has
a first terminal coupled to ground and a second terminal
furnishing the corresponding one of the status signals PIN
[5:0]. The second terminal is coupled to a supply voltage
level VDD through one of six resistors 801.

If one of the levers 802 opens and the card 807 secured by
the lever 802 becomes unsecured, the corresponding one of
the status signals PIN [5:0] is asserted, or driven high. As an
example, for the slot 360, the status signal MN [0] is
deasscrted, or drchn low, when the corresponding lever 802
is closed, When the lever 802 for the slot 36a is opened. the
status signal PIN [0] is asserted, or driven high.

The register 82 also receives a serial stream of latched
status signals STATUS [127232] that do not cause interrupts
when the logical voltage level of one of the signals S'I'ATUS
[127:32] changes. The status signals STATUS [127:32] are
formed by the sixteen bit shift register 52 located on board
the expansion box 30 with the slots 36. The shift register 52
receives status signals at its parallel inputs and latches the
status signals STATUS [127:32] when instructed to do so by
the SIG circuit 50. The shift register 52 serializes the status
signals S’IM‘US [127:32] and furnishes the signals STATUS
[127:32] to the serial input of the register 82 via a serial data
signal CSID [.

When instructed by the 510 circuit 50. the register 82
latches status signals PIN [23:0], forms the status signals
STATUS [31:0], Eumishes the status signals STATUS [31:0]
and furnishes a byte or more of tlte status signals STKIUS
[127:32] (when requested by the CPU 14), in a least sig—
nificant signal first fashion, to the SiO circuit 50 via the
serial data signal NEW_CSID. The status signals STATUS
[127:0] are described by the following table:

Toshiba_Apricorn 1010-0164
|PR2018—01067

