US005943482A

United States Patent i (11] Patent Number: 5,943,482
Culley et al.

(451 Date of Patent: Aug. 24,1999

[54]

[75]

(73]

[21]
[22]
[51]
[52]
[58]

[56]

EXPANSION CARD INSERTION AND 5,555,510 9/1996 Versepul et al. 395/282
REMOVAL 5,581,712 12/1996 395/283
5,625,238 4/1997 307/147
Inventors: Paul R. Culley, Cypress; Alan L. 5.629.836 5/1997 - 361/755
GU’IJCIII‘UI‘II, 'I‘omhal]; RH)‘II!UI’I(' Y.L FOREIGN PATENT DOCUMENTS
Chow, Cypress; Barry S. Basile,
Houston, all of Tex. 0241 905 10/1987 European Pat. Off. .
0 254 456 1/1988 European Pat. Off. .
Assignee: Compagq Computer Corporation, 2850 440 5/1979 Germany .
Houston. Tex 3400021 9/1985 Germany .
i ' ' WO 93/15459 §/1993 WIPO .
Appl. No.: 08/658,602 OTHER PUBLICATIONS
Filed: Jun. 5, 1996 IBM Technical Disclosure Bulletin, vol. 34 No. 6, Nov.
—-— " 1991, pp. 363-364, “Hot Plug Receptacle Actuated
Int. CI. GO6F 13/00 Mechanical Latch.”
US. Cl e 395/283; 395/750.01; 361/798 Maintenance & Service Guide, COMPAQ Deskpro XL
Field of Searchccoviieininn. 395/283, 750, Series of Personal Computers; pp. 3-18, 5-34; COMPAQ
395/281, 282, 750.01, 750.02, 750.07; 439/73, Computer Corp., Houston, TX.; Dec. 15, 1995.
803, 832, 863, 864; 361/726, 732, 740, Don Anderson, PCMCIA System Architecture, PC System
759, 798 Architecture Series, Second Edition, pp. 21-83, 113141,
145-162, 229-309, 321-332, Copyright © 1995 by Mind-
References Cited Share, Inc., Richardson, TX.
T . e Don Anderson/Tom Shanley, CardBus System Architecture
U.S. PATENT DOCUMENTS 1
PC System Architecture Series, pp. 17-29, 39-58, 227-236,
3.767.974 10/1973 Donovan, Jr. et al. e 3177101 321-361, Copyright © 1996 by MindShare, Inc., Richard-
3,.853379 12/1974 Goodman et al. .. . 339715 son, TX.
j:x;’?z lgl::gg‘: LﬂG'CCO ctal. . %Qfl'fﬁ?ﬂ CompactPCI™ Specification, PCI Industrial Computers,
628,41 f SpPeraw ..o 361/415 ried
4835737 5/1989 Herrig et al. ... " aeamny. Revision 10, Now. 1, 1995, g, 14, 36, and 5.
4,875,867 10/1989 Hoo ..ccovueres . 439/157 Primary Examiner—Glenn A. Auve
4,999,787 3/1991 McNally et al. . 364514 Agrorney, Agent, or Firm—Williams, Morgan & Amerson,
5.003,431 3/1991 Imsdahl 361/415 PC .
5,010,426 4/1991 Krenz 360/97.01 o
5191970 3/1993 Brockway et al. 200/335 IS?] ABSTRACT
5,247,619 9/1993 Mutoh et al. . 395/325
5310998 5/1994 Okuno 235/380 A computer system has a bus, a connector for a circuit card,
?__3[?,482 .f!l‘]‘ht Buj‘IaS i . 361/798 and a clamp configured to selectively prevent removal of the
5317483 5/1994 S\'\'mdlcr i - 361/801 circuit card from the connector when the clamp is engaged.
::gi;igf; (U :gﬁ: E‘h“: ? ‘:L o -::?ff;z; The computer sysiem has circuitry connected to monitor the
3,428, /1995 Chatel et al. ... — L1 ¥ A 5 . . AL 1 L
51454080 9/1995 Fasig el al. ... T 305283 Lnba‘y,rncn{‘ s‘latus of the clamp aan ‘ln rcg.:ul.tic delivery c;{'
5473499 12/1995 Weir 361/58 power to the connector based on the engagement state of the
5.504.656 4/1996 Joist ... clamp.
5,513,329 4/1996 Pecone + 393
5,530,302 6/1996 Hamre et al. . 307/147 26 Claims, 127 Drawing Sheets
[LEVERS BOZ NOT SHOWN)
s M M
79 4 & =
LED CONTROL SIGNALS
POUT[11:0]
POWERUP / POWER DOWN
SEQUENCE (ONTROL
SIGNALS
PARALLEL OUTPUT
POUT[39:0]
PIN[5:0]
802
SUTUSSIGNAIS 4
30
EXPANSION BOX
PARALLEL INPUT
STATIS SGHALS)
MISCELLANEQUS STATUS SIGHALS % SHIFT REGISTER SiL_n_

Toshiba_Apricorn 1010-0001
IPR2018-01067

5,943,482

Sheet 1 of 127

Aug. 24,1999

U.S. Patent

01

e
HITIONIND)
/1_Gavogi3y
120 3
AN 1 SNg VS |
dIt) a ez [D | /| wmoumo
1 3908 0M8 | 390148 NG i
97— 092 | ysD =<
k i
: : ‘ sl 6
0 ;
< SNE DA RYWING AT
7 1m0 i
| R -
WISk
- WAISAS l
4 .
7 Snd M0l : i
gL plA)

Toshiba_Apricorn 1010-0002

IPR2018-01067

5,943,482

Sheet 2 of 127

Aug. 24, 1999

U.S. Patent

e $1S193Y LIHS STYNIIS SNLVIS SNOINVTIISIW

STVNIIS SNIVLS
1NdNI TATIVAVd

LY swymals snavis

el ﬂ_w@m i*lln..‘!l .Idd J’
[0°6£11004 ‘E‘w\“-rg ar I.w.wﬂ@..rlﬂﬁm.wvﬁlw’.

208 Y371
: Eﬁﬁﬂ (05T NId
SN TOHIND) . —— =] e e
f— l\
Ind0 HANA = s}
SIVNOIS %505)
—

NMO |

¢ 914

[0:1111n0d
SIVNOIS 1041N0) 031

(NMOHS LON 208 S¥3A31)

IPR2018-01067

Toshiba_Apricorn 1010-0003

U.S. Patent Aug. 24, 1999 Sheet 3 of 127 5,943,482
2
19 ”,a ”,6 Primary PCl Bus L
o "L S f ’
[Tc P(I‘ Pl y BtlS
[BUS P01,
warcher [1310) | (areimeR [master| | suave | 0% *lmoNiror
i L —= // ,.._._J
[@G 1101 103 102 | 106
il QUEGE 100 108
N2 lour slock [~V TG foe
I & : o
UPSTREAM_CHIP 1 CABLEI/F e
T 104 26
/(/«28
UPSTREAM_CHIP
! i / / 130 %
: o
128 o CBLEVF oo
- .
<l JTAG 1201 .
127~ | QUEUE
126 \J BLock il s
N 134~ [INTTINT] |~
T 6 1~ 125 IN |oUT
REGS i TF
1277 122 121 129
N =
BUS | [oas L[Pd PC| Pdl T BUS
MONITOR[* | MASTER| | SLAVE | [*] ARBITER O [*=| WATCHER
7 i x T \
) 124 |) %0
Secondary PCl Bus e
32
FIG. 3

Toshiba_Apricorn 1010-0004
IPR2018-01067

U.S. Patent

Aug. 24,1999 Sheet 4 of 127 5,943,482
To
155 /
= Gble | /130
Target féiemory THRA I/F 197
Ronge Register TMRR) | “Y——7 _“—~ __ .
ge Reg :____] I
l i | Cable |
______________ Decoder l
[
. |14 |
PMWQ !
- :
|
|
|
B DRQ :
12 :
159 }
bt |
— Transaction }
DCQ Counters |
144 |
— PMW] [DR] [DC] |
ek
160 161 162 ||
|
|
QPIF
MCA@ 148 =
|
Master Latching Req. ||~ 158
]24\ PCl Slave Latching Req. ||| 156
Arb.
123 | Master Buffer
Flush _|~T154
FIG. 4 1211 Slave logic | | _+i5p 32
PCl Bus

Toshiba_Apricorn 1010-0005

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 5 of 127 5,943,482
i‘(l A PCLK 33Mhz
PCLK3 100 Mhz
[___ﬁl__ /(.,/ W . ZX
#l Queueinﬂ and PCl state
machine logic
184
AR 196 [(K 33Mhz 186
. (CLK3 100 Mhz
T ' PLL
132 Master Cable 1/F | [Slave Cable I/F | CCLKPHIL | 2
G , 3

b [y

)
(33Mhz) 2(33Mhz

CABLE_CLK2
- DATA a
(ABLE_CLK1 ™
182 CCLKPAT_| 198
CCLK \~ PLL Slave Cable I/F L/ Master Cable 1/F 1194
e #Qfl——#thzl I 11 CLKPHII
| P
(K3 3&}&1(1:
) PCLK3 180
100Mhz —L=~
179 Queﬂein and PCl state 33Mhz ;I;‘Ill
machine logic - PCLK —
\VARL) /
/
48
PCI CLK
CLOCK BUFFER
181 Y?VVVV
FIG. 5 PCI CLK 2

Toshiba_Apricorn 1010-0006

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 6 of 127 5,943,482
LOCK INDICATION
V(0 3X (LOCK=
100 Mhz 205
] 91\ DIV3
1X CLOCK
External CLK REFCLK :-l‘?[(lK Siate .
Machine
203\ Yo ouT -
T pos. 202
FBC 201
FIG. 6

Toshiba_Apricorn 1010-0007

IPR2018-01067

5,943,482

Sheet 7 of 127

Aug. 24, 1999

U.S. Patent

L 94
IHdND
= l
A1) 2|qm) ...II& SH LIHd
bl =k BN
EIHd i
(IHd| goz ote ¥1d
__=._A :15] 9SWXNWT
o ﬁmllmm_y L0v-15195 < afinssayy
Djn(3|qn) : B h M
a l
Al 907 \ 93y
[0Z:6€] 9SWSNIN -
[0:61] mz_,;__gh _% B b0z
(7AD; M
907

Toshiba_Apricorn 1010-0008

IPR2018-01067

U.S. Patent

Aug. 24,1999

Sheet 8 of 127

5,943,482

/

§

e
S

\

\

[N

\

[\

\

\

[\

\

/A

ol X a2 o3)CEXEXE)GDGZ)@)C)C

FIG. 8

A

[\

M OT T WM Te T T TTOT NI T4 T15

—————

Pk i/ 1\

MSG to Cable I/F)(

K

—

(ABLE_C
Cable Da

P~

Toshiba_Apricorn 1010-0009
IPR2018-01067

U.S. Patent Aug. 24, 1999

Sheet 9 of 127 5,943,482
PHI3_DLY
218 PHIT_DIY -
1| Phase 1 =
(able Dato p @ a1 FFO (216
e > [\ =
(K3 ——
PAI2 DIV —
PHI2_D i
PHI2_DLY L | Phase 2 41
1 3 [Data]
> MNam]
| Phosed] FLFOOUT [59:0]
Data
Y
A
?
INPTR [1:0]
Output
t
926~ {};';gm Pointer OUTPTR [1:0]
CCLKPHIT — EN
as—> gy PCLK (IR
EN_INCNT EN_OUTCNT
FIG. 9

Toshiba_Apricorn 1010-0010
IPR2018-01067

5,943,482

Sheet 10 of 127

Aug. 24, 1999

U.S. Patent

0l 91
dIH)WY3Y1SdN
d
bt 2O I B fiupunog uogozwoipuks
_
1)) =
10100 N3 - N)
s3juiod yndjno —| L 4 4]})
... ; mﬂ\ \ mm\
< i £X)
i
sajuiod jndut — NN N

Toshiba_Apricorn 1010-0011

IPR2018-01067

5,943,482

Sheet 11 of 127

Aug. 24,1999

U.S. Patent

1191

L

e
-
—_

Ty |
p—
-
—
o
f—

SLL bLL ELL TUL UL OLL 6l

"
"
"
"

]
.
' '
.]
" " [[]
v
'] "
' . '
" " ' " "
" " y
i . ' " " " ' " i "
[' ' ' ' . ' ' ' " " "
" ' ["
" v ' ' ' ' W . i ' "
" " . v ' ' "]] i . '
' " . " ' i " [" ' i .
' ' ' . ' ' . ' ' ' 0 .
" ' '] . ' ' ' v "
" ' " . ' ' ' ' 0 ' . " "
. . ' " ' . " . " . . ' '
L i i 1 L L " 1 L 1) M 4 i
] [L] '] [o] [
] . . ' . " ' '
] . " ' ' " . ' '
'] " ' ' ' . ' '
' " " " ' [. '
"] . ' " " " . 1 H " 1 ' "]
. v . ' " "] '] ' " ' " ’ ’ [
» ' ' '
i ' ' ' " '
' ' ' " - i .] . . " " '
' . . '] ' ' ' " . ' . '
]]] . ' . ' . 1 ' . '
H " » ' ' I ' " ' '
' ' . ' ' ' . " .
' ' ' ' ' ' ' . ' . " "
' ' ' . ' [' ' " "]
" ' ' '] ' " . ' " '
" ' " " " v " . " "
" [l " ' o " " "
v
.
]
¥ " " i H H H
. " . ' " ' ' "] "]
' ' " " . . '

AR TR

LIHdN1D)
N0 €IHd
N0 ZIHd

(UMD
DjnQ 3|q0)
M 318
viva 044
N1d
EX1)

Toshiba_Apricorn 1010-0012

IPR2018-01067

5,943,482

Sheet 12 of 127

Aug. 24,1999

U.S. Patent

1l

biL €

IRAV

¢l 91

1L oLl 6L 8l

bl

1 A

1oL

IR BN SN S R
TR TR SN S I N
D IO I A B
S T O O
NN O N O O N
— O)

4141N0 WYIYLSdN
41d1n0 WYIYISNMOQ
414Nl

€ 04
¢ 0414

L 04

0044
L
| o)

Toshiba_Apricorn 1010-0013

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 13 of 127 5,943,482

A
g
2

CICI]
R
X

e

3X (LK

3X (LK

FIG. 13

Toshiba_Apricorn 1010-0014
IPR2018-01067

5,943,482

Sheet 14 of 127

Aug. 24,1999

U.S. Patent

bl 9
00 | 10av 14vdS 000 | 100V) 14vdS L
1@ | zoav) 73vdS DA | z0av J4YdS l
$)03 | £00Y) J4vdS $)a3 | £0QY) 14VdS 3
£)0 | v0av) JVdS £)03 | ¥0av) J4vdS 4
P | $00V) VS p)a3 | S0av) J4VdS S
$Ja | 90av) J4VdS $)0 | 90av) J4vdS 9
903 | £0av) J4VdS 90 | £04v) J4vdS L
a3 | 80av) bay MaN DA | 80av) bay May 8
12av) | 600Y) L EN 120¥) | 600Y) X01 b
Z10V) | 01QY) | panowsy uoyadwoy || £ZAY) | 01QV) | parowsy uoyepdwo) | 01
£2av) | L1OY) PV MWd £2av) | LIOV) PY MWd !
pzay) | 21ay) 0448 p7aV) | Z1OV) 044n9) ll
G7av) | £10V) 14 §2av) | €10V 14408 £l
92aY) | ¥1OV) 144n8) 970v) | ¥10¥) 144n8) bl
£20Y) | S1aV) £44n8) £30Y) | S1aY) £44n8) 51
87av) | 910v) 034)) 82ay) | 9LAY) 039)) 9
62ay) | ZLOY) 138)) 620Y) | £10Y) 138)) 1
0EaY) | 810V) (18)) 0EaY) | 810V) [£10))]
1£0Y) | 610V) £38)) LEQY) | 610V) £19)) bl
WYY | 020V) 00av) Iwvyd) | 02av) 000aY) 0C
muma_._._ wom—:_m —amu__n_ mmma_._._ Noma_.r_ _.omE_n_ i

woayysd()-0j-woaljsumoq

WD3J{Sumo(-0j-woajsdp)

Toshiba_Apricorn 1010-0015

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 15 of 127 5,943,482
Ein?le Address 15t phase 2nd phase subsequent
ycle phases
o chuff <3> |butt# X NA
Read/Write chuff <2> |buff# X NA
Request chuff<1> |butf# X NA
cbuff<0> |buff# parity3 NA
ccbe<3:0> |PCl emd BE<> | NA
cod<> addr 3 NA
chuff <3> |X X X
5?32& Memory[" buff <25 IX data ready data ready
chuff<l> X parity error parity error
chuff<0> |X parity parity
cche<3:0> |PCl emd BE<> BE<>
cad<> oddr data data
Delaved chuff <3> |buff# end of completion| end of completion
Read/Write | cbuff <2> |buff# dota ready data ready
Completion uff<l> |buff# parity error parify error
chuff<0> _[buff# parity parity
cche<3:0> |DRC status status
cad<> X doto dota
Stream Connedt chuff <3> _lhotf# s X
chuff <2> [buff# doto ready data ready
chuff<1> |buff# X X
chuff<0> _ {buff# X X
cche<3:0> [strmconn | X X
cad<> X X X
FIG. 15A

Toshiba_Apricorn 1010-0016
IPR2018-01067

5,943,482

Sheet 16 of 127

Aug. 24, 1999

U.S. Patent

51 9l
Djop Djop 1ppo jpposuw [<>pm
<74 ﬂAva pund 1) umﬁ_ Mwmm“%u _
Kjund JuD X .
10170 Aind | 10133 Kjund X X >y __| Mowsay pasod
X X X X <P
X X X X <EHNP
VN b[op 1ppo S| Ippo sw <>pm
N <> pun)4 VA |<0-E>H"P
N Aynd #11nq FIN | <> isanbay
dz x % =_5 % : _5 < _.V_:En_u c—_] 3\ uoz
i X AN | AP [<o 5
N X #3#M #I0q | <€
sasnyd (sso)) aph
juanbasqns | asoyd pig | asoyd puz | esoydis| Ssa1ppo [N

Toshiba_Apricorn 1010-0017

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 17 of 127 5,943,482

Parameter Value
Impedance (Differential) 108 +/- 5 Ohms
Impedance (Single-ended) 67 +/- 5 Ohms
Propagation Delay 1.54 ns/ft min, 1.58 ns/ft max
Delay Skew 0.025 ns/ft max
Attenuation (Differential) 0.08 db/ft max @ 50 MHz
Length 12'
DC Resistance 0.070 Ohms/ft max
FIG. 16

Toshiba_Apricorn 1010-0018
IPR2018-01067

5,943,482

Sheet 18 of 127

Aug. 24,1999

U.S. Patent

I L19HH BSE e
)1 718YNT 299) P
W) -
RELD
[0°15] 1n0O4H 95¢ |.)
[0:15] 19SWXNW . NI 319VNT D299)
0% DN) Lo
YIDN
[0:16]inooj:§
[0:65] inoojy
NELD) zhm_m ————
wpy| TOENE | o | 00
XI4 QNY
[0:15] 9SW¥¥0) Al r.w m
bSE [0:65] Hgxy INOYANAS
/
IS¢

IPR2018-01067

Toshiba_Apricorn 1010-0019

5,943,482

Sheet 19 of 127

Aug. 24, 1999

U.S. Patent

8l I
1000 | 00000000 | 0001 0000 | 00010000 | LLL0 100L | LLOL £10O | LELOOLOL | OLOLIOLO | £ /
0100 | 00000000 | 100L 0000 | 0000 0LL0 | LLOL 0LOO | 0000 LOLL | L0OL LOOL | 0000OLLL | 9
0010 | 00000000 | 0100 LLOO | 00OL L0OL | OLOL0OLO | 0010 LLLO | LLLO LOOO | L1L00000 | S
0001 | 0000 LLLL | 0000 0OLL | 00000000 | 0100 0LLO | OLLLOLLO | L0000LOO | 1000 LLOL | b
0000 | 1000 1000 | 1010 LLLL | LLLLLLOO | LLLOOOLO | 0OOL 00OL | 0000 LOOO | 0001 0000 | €
0000 | 01000110 | 0001 0LLO | LOLO LOLL | OOLL LOOL | 0OLO00OL { 00000010 | OLIOLLOO | &
0000 | 00100101 | 1100 LOOL | OLLO L0OO | 0000 1000 | L00000OL | LLOLOLLO | OOLLOOLL | I
0000 | 0001 LOLL | 01100000 | LLOO LELL | 00000L0L | LL0O0OOL | 00LLOOLL | 10000000 | O
6819 SVEZ 1068 [9SKEZIO 68/9SVEL 1068 [9Sh ET1068/9 SPET 1068 L3S ETLO &
G655 SSSSSSvb bhbb bbb EEEEEEEE E€ELZ T2 LT LLLL LLLLLL

[65:011N0 0414
sig oing »

[1118)H)

Toshiba_Apricorn 1010-0020

IPR2018-01067

U.S. Patent

Aug. 24, 1999 Sheet 20 of 127 5,943,482
00 No Error {20 DB57 40 DB58
01DB 52 {21 UNCER 4] DB44,24
02DB53 [22 UNCER (42 DB52,12
03 UNCER |23 DB 46 43 DB12
04DB54 (24 DB 52,32 {44 UNCER
05UNCER__|250832 [45DB33
06 UNCER {26 DBO5 46 UNCER
07DB0Y |27 DBS5,35 |47 DB53,33
08DBSS [28DB41,21 {48 DB40,00
09 UNCER |29 UNCER 49 DB34
0A UNCER [2A DB43 4A DB47
0B DB38 [2B UNCER 48 DB58,38
OCUNCER [2CDB42 4C UNCER
0DDB39 [2D UNCER (4D DB54,34
0E DB37 2E DB57,37 |4E DB44,04
OF DB24,04 |2F DB35 4FDB16_
10DB56 [30 UNCER {50 DB57,17
11 UNCER |31 DBO7 51 DB26
12 DB49,09 (32 UNCER 52 DBOO
13DB48 [33 UNCER _ [53 UNCER
14 UNCER |34 DB21 54 DBO2
15DB49 |35 UNCER 55 UNCER
16 DB50 |36 UNCER 56 UNCER
17 DB23,03 |37 UNCER |57 UNCER
18 UNCER |38 DB25 58 UNCER
19 DB5SI1 J9UNCER 59 UNCER
1ADB40 |3A UNCER 5A UNCER
1B UNCER |3B UNCER 58 UNCER
TCDBAT _ [3CUNCER___ [SCUNCER
TD UNCER [3D DB43,23,0315D UNCER

1EDB25,05 [3EUNCER |SE DB57,37,17
TFUNCER [3F UNCER 5F DB56,16
FIG. T9A

Toshiba_Apricorn 1010-0021
IPR2018-01067

U.S. Patent

5,943,482

Toshiba_Apricorn 1010-0022
IPR2018-01067

Aug. 24, 1999 Sheet 21 of 127
60 DB59,19 180 DB59 AODB 31,11 [CO UNCER |EODBI19
61 UNCER 81 UNCER [A1 DB13 {C1 DBO8 E1_UNCER
62 UNCER [82DB40,20 |A2 DBI4 (2DBOT [E2 UNCER
63 UNCER 83 DB23 A3DB53,13 [C3 UNCER |E3 UNCER
64 DB28 84 DB50,10 (A4 DBOG (4 DB44 E4 DB33,13
65 UNCER 185 DB24 ASDB28,08 [C5DB22,02 |E5 UNCER
66 DB32,12 |86 DB27 A6 DB54,14 |C6 UNCER E6 DB53,33,13
67DB52,32,12(87 DB46,06 [A7 UNCER |7 UNCER |E7 DB36,16
68 DB11 88 UNCER (A8 DB36 (8 DB31 E8 UNCER
69 DB30,10 |89 DB45 A9DB4323 |9 UNCER [E9 DB42,22 02
6ADB30,10 [8A DB04 AA UNCER _ [CADB20,00 |EADB41,21,0
6B UNCER 88 DB29.09 |AB UNCER {CB DB44,24,04|EB DB34,14
6C UNCER 8C DB29 AC UNCER [CCDB47,27 |EC UNCER
6D DB59,39,198D DB59,39 |AD UNCER (D UNCER _ |ED DB39,19
6E UNCER 8E UNCER _ |AE UNCER |CE UNCER EE DB50,30
|6F UNCER 8F UNCER |AFDB45,05 |CF UNCER EF DB54,34,14
70 DB17 90 UNCER [BODB18 D0 DB40,20,00{FO DB 58,18
71 DB51,11 |91 DB22 B1DB4525 [D1DB51,31 [F1 UNCER
72DB46,26 |92 DB10 B2 UNCER |D2 48,08 F2 DB15
73UNCGER |93 UNCER (B3 UNCER D3 UNCER |F3 UNCER
74 UNCER 94 DBO3 B4 UNCER D4 UNCER [F4 UNCER
75 UNCER 95 UNCER [BS UNCER (D5 DB55,35,1 5/ F5 DB26,06
76 UNCER 96 UNCER |B6 DB48,28,08(D6 DB46,26,06|F6 DB21,01
77 DB48,28 (97 DB45,25,05(87 DB27,07 D7 UNCER [F7 DB56,36,16
78 DB42,02 98 DB20 B8 DB56,36 [D8 UNCER {F8 DB30
79 UNCER 99DB49,29 [B9 DB51,31,11D9 UNCER |F9 UNCER
7A UNCER 9A UNCER _ [BA UNCER [DA UNCER |FA DB55,15
78 DB47,07 {98 UNCER |BB DB38,18 [DB UNCER |FB DB58,38,18
7CDB50,30,10(9C UNCER [BC UNCER |DC UNCER |FC UNCER
JDUNCER [9D UNCER [BD DB42,22 PD DB35,15 |FD DB47,27,0
7EDB37,17__[9E DB49,29,09BE DB43,03 [DEDBAT,OT |FE UNCER
7F UNCER OF UNCER [BF UNCER [DF UNCER [FF UNCER

FIG. 198

U.S. Patent Aug. 24, 1999 Sheet 22 of 127 5,943,482

Master B

FiG. 20A

Toshiba_Apricorn 1010-0023
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 23 of 127 5,943,482

(PU
Delayed
Reques

FIG 208

Toshiba_Apricorn 1010-0024
IPR2018-01067

5,943,482

Sheet 24 of 127

Aug. 24, 1999

U.S. Patent

80¢ o . bog
DNHOE 12 "9 " i
030 WYINLS [L0Z] VWS VZD 038 AW) INVI9 | 1o SNioNHD
WY3ULS V2D INVY9 NIW<——1_ NI L 16000 ‘To:€] INONIW VZ92D}

[0:£1 034 ¥Y

[[0:Z) LSYW ™ ANLY] DIY AW B 20€
N UL DI WYRNIS _ e
U1 AW pima iUy ([[OEHSTRHS YEO oo
AL 0le 0
90¢
[0:Z] ISYW ¥4 N
90¢ 00
9e _ame .mﬂ“mz*_w__w MOONIM N340 =
AN9 ININVHD] INIHOVW | - 4 INIHD YW
g o wis (124 _.m¢hz=_.._.u N 308 e—
(0103 AW) IN9 ISV ¥Y AQY e
(103 [1:2] DIINSYW ¥ZD (011 VLS 1T N
R [1:7 o [0:1]3Is11

O To7] Isvw w

DI 1015 ANV
D3Y_1SYWAM)
0 WIS
03 130 Ve
INV¥O NIW
DY ISYWAYLY

Toshiba_Apricorn 1010-0025

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 25 of 127 5,943,482

RESET

GNT[7:0]=
NEWGNT [7:0]

CHANGING_GNT =0

/CHANGING_GNT =1
GNT [7:0] = NOGNT
CURMAST [2:0] =

N_ CURMAST [2:0]
UPDATE RR_MAST [2:0]

GNT [7:0] =
NEWGNT [7:0]
CHANGING_GNT

IANY REQ & BUS IDLE & (N_CURMAST! = CURMAST) / CHANGING_GNT = |

(E) OPEN_WINDOW & IAKY _ i i s e
CURMAST [2:0] = N_CURMAST [2:0]

RR_MAST [2:0]

=N_RR_MAST [2:0]

LISTATE [1:0] =

N_LISTATE [1:0]

OPEN_WINDOW & IANY_REQ & BUS_IDLE & (N_CURMAST = CURMAST)
JUISTATE [1:0] = N_LISTATE {1:0]

(D) OPEN_WINDOW & (N_CURMAST! = CURMAST) / CHANGING_GNT =
GNT 7:01 = NOGNT
CURMAST [2:0] = N_CURMAST [2:0]
UPDATE RR_MAST [2:0]
LISTATE [1:0] = N_LISTATE [1:0]

Toshiba_Apricorn 1010-0026
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 26 of 127 5,943,482

IBAL_DEL_REQ / ADV_RR_MAST = 1

N_CURMAST [2:0] = N_RR_MAST [2:0]

OPEN_WINDOW = STREAM_REQ +
RESET yIN_GRANT + ICURMAST_REQ

ANY_SLOT_REQ /
ADV_RR_MAST = 1
N_CURMAST = N_RR_MAST

BAL_DEL_REQ / N_CURMAST [2:0] = BALBOA

ADV_RR_MAST =0

®

IANY_SLOT_REQ /
N_CURMAST [2:0] = BALBOA, ADV_RR_MAST = 0

OPEN_WINDOW =
IBAL_DEL_REQ + BAL_RETRIE!

BAL_DEL_REQ & RTRYMAST_REQ /
N_CURMAST [2:0] = RTRY_MAST [2:0]
ADV_RR_MAST =0

(R) 'BAL_DEL_REQ +
BAL_DEL_REQ & IRTRYMAST_REQ
ANY_SLOT_REQ / ADV_RR_MAST = |
N_CURMAST [2:0] = N_RR_MAST [2:0]

FIG. 23

Toshiba_Apricorn 1010-0027
IPR2018-01067

U.S. Patent Aug. 24, 1999

Sheet 27 of 127

5,943,482

CURMAST [2:0]

NEWGNT [7:0]

00000001

00000010

00000100

00001000

00010000

00100000

01000000

NS |lo~ | v & | N

10000000

FIG. 24

Toshiba_Apricorn 1010-0028

IPR2018-01067

5,943,482

Sheet 28 of 127

Aug. 24,1999

U.S. Patent

Bge 00 A

7S 10w I NI 41470

[0:2] ¥3LSYW 1LINW

L YSYW ¥IAN D299
L NSYW KMV 0299
(A1 ¥3ISVW LW 0294

DO L 10:/] viva_HUM 1015

[3314W0) 1uvd L0:£10
3131dW0) [0:210
[0:z] ¥31syw [0:210

410030

[0:2]1015 41420

.

9€€

JEASE

=y | OO —[oelawis (o210
X0 YSYW V2D | yoyw [021 HALSYW (0:210
—J
et 926

N

_ MDd ww M

[1:£] Y31SYW IINW 294D

Vf [1:£) ¥3LSVWLI0W

Toshiba_Apricorn 1010-0029

IPR2018-01067

5,943,482

Sheet 29 of 127

Aug. 24,1999

U.S. Patent

L-1=X

[X1DI4 NSYW VZD

0z€

v¥9¢ 914

TISXNW NSYW

(443

NSYW ™ SAYMIV DZ94)

743

NSYW ¥IAIN 0299

[XT¥3LSVW 1LINW DZ94)

Toshiba_Apricorn 1010-0030

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 30 of 127 5,943,482

14
_
il
18
ceupa |
BRIDGE 2%
| PRIMARY PCI BUS —
|
PCI-PC 2%
BRIDGE |-

CHIP

Mza
PCI-PC 48
oge |- 2
CHIP
SECONDARY PCIBUS —
|

323
ard

SRIDGE 395 SUBORDINATE
| " PCIBUS
1 |

NIC NIC

o 7
327A 3278

FIG. 268

Toshiba_Apricorn 1010-0031
IPR2018-01067

5,943,482

Sheet 31 of 127

Aug. 24, 1999

U.S. Patent

(J1An

— gy

28882288828

\
o)39 4429
AN T

608 (ENIDD] 08

09¢ 1015 404 A@\ D9¢ 1015 404

208 Y331 208 YA

L= [01NId W/ 0. = [0INId
108 108
=a> ==>

Toshiba_Apricorn 1010-0032

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 32 of 127

f SECONDARY PCl BUS

5,943,482

f?'bu

/\ ~ POUT[39:16]
PC
5 3 T O Bls
3 j47 : LWES
| POUT (28] _| SWITCH <f>
{ ey CRCUIT 1
| POUT[16] |
| 430 o
| T RESH
| POUT[22] | SWITCH | SIGNAL
: N "| CIRCUIT :(m
- L
E a— ESIGNAL
| 4 |
i PouT 341 _| ST J ':
’ i Y
|
| = | VOLTAGE
| | SyppLY
———————————————— g]
41
FIG. 28

Toshiba_Apricorn 1010-0033

IPR2018-01067

5,943,482

Sheet 33 of 127

Aug. 24, 1999

U.S. Patent

fuan 663 “
ZAR T T NS "_m_w_a__,mmm__aﬂ
) g ¥315193Y 318YN3 1015 0 o5 1
___uﬁnm_ﬁ w v ST ¥3151934 V1VQ V143
0 005 wms | ¥31S1934 1041ND) 0 5 L
s S A
V8 _“ W_e_ _m ¥315193 LEN
o pig s
. __
___,__m_ ﬂ ,*__W_uw____m)\ ¥31S1934 NSV z______a____ __ﬁ _“ -
: = HxL_ m_ ~_
To:s 1 n2umd 018 EI_FJ\ :
1¥Q4dn 05 0 £
aﬁ m .) o8
21901 = j2 =gy
0 i o7 = 001N | ais) maN
028 =
; Josamy [vOB, N
7 0§
Lgog LINHD 015

Toshiba_Apricorn 1010-0034

IPR2018-01067

5,943,482

Sheet 34 of 127

Aug. 24,1999

U.S. Patent

-

T OIS MaN

0€ 913
s_w___wﬁ 019
m ——
E%/ i 0115
= |
v #QV01/ LIHS
1nd1N0 sug IndNI _
IS £ VIS a1
|| || [[
o | S99 L8 fetvisionflwaeev | o6z oE L€
[8L:€2] Nid
VLT
[9:11] Nid
[0:] NId

Toshiba_Apricorn 1010-0035

IPR2018-01067

5,943,482

Sheet 35 of 127

Aug. 24, 1999

U.S. Patent

#YDIAT O .
— 0 JT16W LiIHS ia V1€
< “.ﬂ_w _ SS24908d NI NVDS 748 e
v
INIHDYW WIINNOD
11A8 9NIL9 L1b] o -
08| WS o oon n A8/ 18 [TO1ETINDY 18
t m&\ i N Nvds [ozlug
YTZAIG
9¢8 XD Lv8
B8 : =
Lu [STAS S| ° _
[0:S19H) MS 1)) 0IS) MaN
iG] 98 [0:STTavNI 18
Ef\) T18VN3 LIHS
[0:610YI" 31vadn [9:1€] s_uﬁé_s, TIBELCRTN s“_are_. 43
_
008 I T I 008
T R L __swrhon (€103 W sig [
S q) 13

NI NVX
[0STHILIMST
[0:STHOLIMST @

08 [9:1€1 03 ¥INI @

[0:5103Y AINI @

5v8

[TER2
[9:1€1MS NON1
[9:1E1MS NON I @

Toshiba_Apricorn 1010-0036

IPR2018-01067

5,943,482

Sheet 36 of 127

Aug. 24, 1999

U.S. Patent

]))

H0 010K

o

m !

—
588

B
154

v88

€88

g1€ 94

(3101 NI NVDS

1N0IwIL ¥4

141€ "I

aN3 NVDS

68 A1
) 4

§S34904d NI NVSi

n V

0

b 1))
968 hm__L

928

L2kt SR MIGETTTENT
5 XvW " [S19H) MS
€8 — [T TyITavNT L
IE8
5 _,_mné ” [b] %-;m
| T | 168 [10V 18
BEDES
_um_ﬂz g | LA Lg
_ AEDEE
| B8] o [T 1
. T MS

Toshiba_Apricorn 1010-0037

IPR2018-01067

5,943,482

Sheet 37 of 127

Aug. 24, 1999

U.S. Patent

wecH

KINO H

NIMS NI

Z41€ 9
Em 598 ,_Hu
390 N RS 088 &
— \
D FUINC 15 |0
am [Dhnoaia 1))
] =
G ISy
V_Hu [58 Gs8
v (05T HOLINS ¥D)
: L_lp ¢
oSTHomS 154 T0STN 10751
58 _w__ 658

188

158

6¥8

[0:STHLIMST @

[0:1€] D¥I 9NIONId

Toshiba_Apricorn 1010-0038

IPR2018-01067

5,943,482

Sheet 38 of 127

Aug. 24,1999

U.S. Patent

[9:1E19H) MSN

1NnogI
098

L€ 9
bl6
A _:s_m IHS
198) J1A8 9NILIZ9
/ _ 7
(_[3:1E1MS NONT
N9 1ETMS NONT @ S16
1)) _usﬂ 18
{
vV
¥100)30
[o:1viva 150 gx¢
\ﬂ in
tl6 B -
1Y £l6
m 198
1N0IWIL 80
/h\ v_wu 898
Vi 5534904d NI NV)Si ¥ _
a s . [9:1619H) MSN
1NdNI NO J9NVH)D Y
ﬂ_ =3 z_uli—
oy T .sUL__ aNT NS

Toshiba_Apricorn 1010-0039

IPR2018-01067

5,943,482

Sheet 39 of 127

Aug. 24, 1999

U.S. Patent

08

[9:1€1MS NON1

148

1S4

NI NYDS

[9:1E1MS NONT @

[9:LETMSN NVDS

aLe 94 QH, ,
N NYDS

a
m

J+—

206

p— O

[STHLIMST [SIMS NS

006 158 [STHoumsT @

[9:1E1 SN NS

506

906

KINO HOLIMS DI

e D

J31414¢Y.

£06

[9:1€718vM3 119
806

Toshiba_Apricorn 1010-0040

IPR2018-01067

5,943,482

Sheet 40 of 127

Aug. 24, 1999

U.S. Patent

6€8

[0:1€10UId 135 -
(Ls”_a DYl 3Lvadn

m

[0:1€1 D¥I 9NION3

<

i

6.6

o
1Y

LE8

186

1€ 91

~

ﬁ [0:1€1 93 ¥INI

“T0°1€7 934 ¥INI @

[0-1€1 0¥ 3ivadn
1L6

GE8

[O-1ETNSYW INIi

516

[0:161934 MINI WM
[0-1€1 041 INIONId

[0:LET NSYW HLNIi
[0:1€1 DI INIONIdi
(N3 NV)S

JH44443Y. 7€

bES
[[0:1€7 930 YN UM
[0:LE10¥Id 13Si
[0:1€1 DY 9NIONId
[0:1€1D¥Id 135
[0-1€1 041 ONIONIdi
198

Toshiba_Apricorn 1010-0041

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 41 of 127 5,943,482

FLSE BT esic_0 = 1GETING_BYTE
OR IHOLD_ OFF
STOP_SCAN Lot -
C1R_BUSY_STATUS = 0"
SCAN_DONE ="0"
GETTING_BYTE
OR IHOLD_OFF
GIC0="1"
GIL0="0"

CLR_BUSY_STATUS ="0"

(SIC_0 ="0"
GIL0="1"
CLR_BUSY_STATUS = "0"

(SIC_0 = 1CSI1C_0
GsIL0="1"
(LR_BUSY_STATUS
~GETTING_BYTE
SCAN_DONE = STOP_SCAN

STOP SCAN = (BYTE_PTR_EQUAL_CNT & GETTING_BYTE) OR ((BYTE [11&
BIT [0] & CHECK_SWITCH_ONLY) OR (BYTE [4] & BIT [0]
& ICHECK_SWITCH_ONLY)) & !GETTING_BYTE

FIG. 32A

Toshiba_Apricorn 1010-0042
IPR2018-01067

5,943,482

Sheet 42 of 127

Aug. 24, 1999

U.S. Patent

(LK

ar,
T |
|
|

|_li_|!_|l_li_'| FLELE S
P
L
L
o
| |
L
L
1 l

— — — — — — =

STATUS [0] < STATUS [1] X STATUS [2] X

FIG. 328

IPR2018-01067

Toshiba_Apricorn 1010-0043

U.S. Patent

820

Aug. 24, 1999 Sheet 43 of 127 5,943,482
(LK
—
RST SWITCH I V SO_UPDATE R
SIOT_EN[5:01 | ON/OFF (SOLC_0 .
. STATE
SLOT_RST[5:01 MACHINE
SO_UPDATE_DONE _ 998
CONTROL SIGNALS A
: PWREN [5:0] .
: WRE‘;; S T T
e EOG!C BUSEN#[5:0]
RST #[5:0] .
999
FIG. 33A

Toshiba_Apricorn 1010-0044
IPR2018-01067

5,943,482

Sheet 44 of 127

Aug. 24, 1999

U.S. Patent

gee 9

b 1 —1 (0141
- H ! — L0:51# Nasne
R !
| N m
I m rI:_:;_,_sa
I . 1 [0:5] N3IMd
I L — — #INOWD
be 1 m— ———T })
I N A A R
1< et —] [8z:€c1 1n0d
|- 1 ! —] [zl 100d
4 1| [ve6el 1n0d
: P! -— |i._l|\ l‘.
SAa 901 YL
N S y (J\\\t\
1ONINDIS NMOQ 43MO4 1N3ND3S dN 43M0d

Toshiba_Apricorn 1010-0045

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 45 of 127 5,943,482

ELSE

RST\ . :

(soLc_o="1"
B SO_UPDATE=AORBORC

FIG. 336
A = SW_PWRON OR HW_PWRON

%

. 3¢ SO_UPDATE ="0"
soLc 0="1"

1SO_UPDATE_DONE

SO_UPDATE_DONE
CAYREQ #="0"
OFF_ARBI SO_UPDATE = "0"
A= SW PWRUN (soLc_0="

Hw Pwanu
. CAYGNT #="1"
B=IAR
[W_ """“”" (SOLC_0 = ICAYGNT #
Pwaur " PENDING]
(=m&m CAYGNT #="0"
{;0 UPDATE GOLC 0=
$0_UPDATE="1"
CATREQ #="1"
W_PWRON = ANY_SLOT_OPEN
i AND |p0|(PWRUP ISO_UPDATE_DONE
SW_PWRON = (GO_UPDATE OR @ (S0LC_0="1"
$0_GO_BWY OR $0_UPDATE = 0"

(DO_RESET AND IFIRST_TIME)
AND ANY_SLOT1_TO @

FIG. 33C

Toshiba_Apricorn 1010-0046
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 46 of 127 5,943,482

1S0_UPDATE_DONE

soLc_0="1"

$0_UPDATE_DONE

CAYREQ # ="0"
SO_UPDATE = "0"
soc_0="1"

OFF_ARB2

CAYGNT # = "0"

CAYGNT # ="1"

(SOLC_O = ICAYGNT #

(S0LC_0="1"
$0_UPDATE = 1"
CATREQ #="1"

150_UPDATE_DONE

soc_o="7"
SO_UPDATE = "0"

FIG. 33D

Toshiba_Apricorn 1010-0047
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 47 of 127 5,943,482

150_UPDATE_DONE .
$0_UPDATE = 0"
(S0LC_0="1"
$0_UPDATE_DONE
CAYREQ #="0"
OFF_ARB3 $0_UPDATE ="0"
(S0LC 0 ="1"

® CAVGNT #="1"
(SOLC_0 = ICAYGNT #
CAYGNT #="0"
@ (S0LC_0="1"
$0_UPDATE ="1"
CAYREQ # ="1"

S0_UPDATE_DONE
UPDATE 150_UPDATE_DONE

fom)=~{rr).
(soLc_o="1"

soLc_0="1"
CAYREQ #="1"

FIG. 33E

Toshiba_Apricorn 1010-0048
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 48 of 127 5,943,482

150_UPDATE_DONE .@

IMER_TIMEOUT .@
TINER _TIMEOUT
ON_ARB!

CYGNT#="1" .w
CYGNT #= 0

FIG. 33F @

FIG. 33F

soc_o="1"
SO_UPDATE=AORBORC

$0_UPDATE = "0"
(SOLC_0 = 1SO_UPDATE_DONE

(SOLC_0 ="0"
$0_UPDATE="1"

$0_UPDATE = 0"
(S0LC_0="1"

SO_UPDATE = "0"
soc="1"
CAYREQ # = "0"

$0_UPDATE = "0"
(SOLC_0 = CAYGNT #

soLc_o="1
CAYREQ #="1"

(SOLC_0="1"
$0_UPDATE ="1"

Toshiba_Apricorn 1010-0049
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 49 of 127 5,943,482

CAYREQ #="1" SO_UPDATE ="1"

@ (S0LC_0="T" (S0LC_0 ="0"

ITIMER_TIMEOUT

CAYGNT #="0" (3 $0_UPDATE = "0"
(SOLC_0="1"
S0_UPDATE = "0" TIMER_TIMEOUT
(SOLC_0 = CAYGNT #
‘ $0_UPDATE = "0"

ON_ARB2 (soLc_0="1"

CAYREQ # ="0"
CAYGNT # ="1"
CAYGNT #="1"

.’ $0_UPDATE ="0"

(SOLC_0 = CAYGNT #

CAYGNT # ="0"

S0_UPDATE_DONE gg;:ﬁii ,]].
S0_UPDATE = "0"
(s0LC_0="1"
CAYREQ #="0" (S0LC_0="1"
$0_UPDATE = "0"
150_UPDATE_DONE (O

FIG. 336

Toshiba_Apricorn 1010-0050
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 50 of 127 5,943,482

SO_UPDATE = "0"

1S0_UPDATE_DONE
(S0LC_0="1"

$0_UPDATE_DONE

CAYREQ # = "0"
SO_UPDATE = "0"
(SoLc_0="1"

(S0LC_0="1"
$0_UPDATE ="1"

Toshiba_Apricorn 1010-0051
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 51 of 127 5,943,482

RST

suiFr (R | 925
BT_ONR(S01| ouTPUT .
BIT
OUNTR ~ |~921
923 922 K

L bﬂ $0-UPDATE_DONE
= me), g

OUTPUT INC_CNTR
SO_UPDATE SHIFT (NTR
{ X L0AD_

920 ~ MACHINE (S0SC_0

(LK

PWREN [5:0] \

BUSEN #[5:0] ?.:9";34
CLKEN #[5:0] 3- V28
RST#[501 Dzrgzz | G500

GPOA [3:0] Dg)-Dyg '

.

SO0, | o5

D”/'Df}/l 924

FIG. 34

Toshiba_Apricorn 1010-0052
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 52 of 127 5,943,482

150_UPDATE (S0SC_0="1"
LOAD_CNTR = SO_UPDATE

INC (NTR="0"

50_UPDATE

(505C_0="0"
LOAD_CNTR = "0"
INC_CNTR = "0"

(S0SC_0="0"
LOAD_CNTR ="0"
INC_CNTR ="0"

(50SC_0="1"
LOAD_(NTR ="0"
INC_CNTR = "0°

IMAX_CNT

LOAD_(NTR = b
INC_CNTR = IMAXCNT
(SOSC_0 = IMAXCNT

FIG. 35A

Toshiba_Apricorn 1010-0053
IPR2018-01067

5,943,482

Sheet 53 of 127

Aug. 24, 1999

U.S. Patent

45¢ 9
u— {.}
Xkl X o X @ XX {IXXKXAXX
S B R R R
| | | | | | | | | | 0 005
Jd [[[[_ _ gy | _ [
[m I SIVNOIS T04INO) MIN NI LHIHS _: w ,v _
I | | | |] | | | |
: “ : : | SIVNOIS [0°6€] 1n0d AN D1 | L
_ | _ _ _ | | _ _ - 0.0109
u~ | - -
|
|_ J b=
| | | | | ! | | i
A T A .
TR N S U OO S S M
U DL HU o Do o b

IPR2018-01067

Toshiba_Apricorn 1010-0054

5,943,482

Sheet 54 of 127

Aug. 24, 1999

U.S. Patent

IPR2018-01067

Toshiba_Apricorn 1010-0055

9¢ 914
3505)
0 109
N4 ONVH ————{¥D ¥ HIHS /# 100 "
Sf\L —
0)2 izl | 218t [ez | 62 06| SE 6¢
- [0:1111n0d 4 1 1 4
[Zl:2111n0d
) \ [81:62] 1n0d
AR T
[bZ°62] 1004
[0€-SE1 1n0d

U.S. Patent Aug. 24, 1999

NMI
HANDLER

400

BUS HANG

Sheet 55 of 127

5,943,482

?

401

.

402
3 f’/

CALL
BIDS
ISOLATE
HANDLER

CALL
OTHER
PROCEDURES

[DONE |

FIG. 37

Toshiba_Apricorn 1010-0056
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 56 of 127 5,943,482

BIOS DETECTS
ASR BOOT

444

ISOLATION

IN PROGRESS

EV SET
?

BUS
RE-ENABLE HANG
ALL SLOTS PENDING
EXCEPTONES | 448 ?
ENABLED 447
PRIOR T0 ASR ~
450 CALL
y —— BIOS
LOG FAILURE ISOLATE
CLEAR EV HANDLER

BUS HANG

PENDING
?

(_ DONE)

RESET BUS
HANG PENDING | 454

BIT

<> FIG. 38

Toshiba_Apricorn 1010-0057
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 57 of 127 5,943,482

410
-2
SET ISOLATION IN
FIG. 39 |FIG. 39AIFIG. 398 PROGRESS V.
"| RESET BUS
PENDING BIT
T
LOG ADDRESS / RE-ENABLE ONE SLOT,
s ot e READ / WRITE FROM IT'S|+—
ISOLATE STATE VECTORS j PCI CONFIG SPACE
— a2
408
439 414
437
~ e LG FAILURE
Ne+ o UPDATE EV SETFAILURE ——
l_, FLAG
I=N \
:92 431 o
REENABLE sl
READ /WRITE [+—*— |~
SL0T1 =
N 43
{.../
150 I-
B4
b s
LOG INABILITY TO CLEAR ISOLATION IN (-
™ ISOLATE FAILURE PROGRESS EV
FIG. 39A

Toshiba_Apricorn 1010-0058
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 58 of 127 5,943,482

41§~

DISABLE SLOT

v

UPDATE ISOLATION IN
PROGRESSEV, |_—420
PROCEED TO NEXT
POPULATED SLOT

NO—
430
DIRBLE SLOTS
— UPDATE ISOLATION gty
IN PROGRESS EV '

DISABLE SLOT(S), LOG
2 FAILURE 440

RE-ENABLE NON-FAILED |,
] SLOTS

FIG. 398

Toshiba_Apricorn 1010-0059
IPR2018-01067

5,943,482

Sheet 59 of 127

Aug. 24, 1999

U.S. Patent

[0:02] VAV D3N Sn8

———

AO¥ DA

(0161934 D3A Sng
[0:1€1 €934 1SIH_Snq_ |
[0:1€1 294 ISIW Sng™~
[0:1€] 1934 ISIH ™ SN

le——————

0% 914

ooy | SIS Dd
3L
30DIA
sng
10 INIL
mm—
09
104493111 dV)
STYNOIS Dd
Q§_D3A_Sna
LY 1S1H S8
L dv) NI L4M
a0 N
AQY DIA
S04l AQY 1514
BIOUR 1 fovevva_DICSne
[0:51] 1YLVG_1SIH_Sng
] [0:1€] 2viva_ISIH_Sng
- [0:1€] EVIV ™ ISIH™SN8

A 0018 [STYN9IS D4
LY
AHOLSIH
Wc j LYIVa_1SIH_Sna e
0:LE] VAV ISIH_SNE, — P
[0:1€] EYIVO™ ISIH SN — 1n0 3nil
85
MDY ¥A0N SIVNOIS 1)d
1408y 1 ¥4 mow
1yogy W ¥8 ey | IO OhvH
R B N0 3WIL
B N34 INVH
\!1\
9%k
s.ﬂ_ﬁ_-m_:._.,_s YU INAS
N3 HAODY ONVH | d¥) NI LIM
10" INIL IWIL
a0 N1 | 90QH)IYM
N3 INVH
[0:£111n0 YNL OM STYNSIS 14
\
(47

Toshiba_Apricorn 1010-0060

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 60 of 127 5,943,482

ISET_HANG_PEND

BR_M_ABORT =0
BR_T ABORT = 0
RCOVR_ACTIVE =0

IWRT_EN_CAP_] WRT_EN_CAP_]

SET_HANG_PEND
/ DEVSEL_0 = IDEVSEL_

PCI_IDLE /
BR_M_ABORT = |
SERR_EN =1

FRAME_/
BR_T_ABORT =1
SERR EN =1

DEVSEL_0 =
DEV_SEL_WAS

TIME_OUT 15 & IPCI_IDLE
/STOP 0=1

IFRAME_
/STOP 0 =1
HANG_PEND
TIME_OUT 15
457 ~
4-BIT
PCLK COUNTER
——rt
FIG. 41

Toshiba_Apricorn 1010-0061
IPR2018-01067

5,943,482

Sheet 61 of 127

Aug. 24, 1999

U.S. Patent

- Viv 94 .
v_s_ml%,_ INAS [0:£111n0 ¥WL QM 3
g B me Cowamm
10¥d 93111 135 0¥ Ak
104d 93111 dV) b ¢ =
AQYL
~hayl
100" 3WiL
[0:£1]
_ | 0D ino wwsam i
100" IWIL —
\ws__ <G—d
vib $3INNOD
[0:£171n0” WL OM
\
1414
gvod | vevod | ZF 9

99

Toshiba_Apricorn 1010-0062

IPR2018-01067

5,943,482

Sheet 62 of 127

Aug. 24, 1999

U.S. Patent

NONIMOd INAS TA A E
135 <4—Nnd
06F— dY) NI WD
4 - NO¥IMOd INAS
| dv) NI LiM |
) N 0 a m <X
By~ a0 N LM
N0 IWiL
1IN0 INIL M
NOUIMOd INAS 8Ly 9y
i
m o G Md
I dV) NI DM o
arl NI ONVH L3S
_ NI HAODY ONYH
N34 9NVH

1n0 niL
88y

Toshiba_Apricorn 1010-0063

IPR2018-01067

5,943,482

Sheet 63 of 127

Aug. 24,1999

U.S. Patent

ey "9]

AQY D3A|

e o — — s A — i —— —

va QNvA

0ls tls TH0aV W

1no i

(A1

AQY 1SIH

Toshiba_Apricorn 1010-0064

IPR2018-01067

5,943,482

Sheet 64 of 127

Aug. 24, 1999

U.S. Patent

1
|
|

|
|
|
|
I
|
1
[
|
|
|
1
|
|
|
|

I
|
I
|
I
I
|
|
|
|
I
|
|
I
|
|
I
|

—_

0:11¥00Y Q¥ 044 DA

[0:52] €041 DIA SN8

M [0:52 20414 DIA SNA
[0:1€1934 DIA Sng |_Lo#2] _e_ﬁcgw_ﬂs
0 p) _
P & 1 YONIMOd INAS
. H_Nm s 1) 1)) ¥) -
siond DIV goay 10313 204 £041 o
A_ no NI [|tno NIf |[{In0 NI [|LNO NI—[0:bZ1VIva D3A snd
€939 ISIH sng L0 M N N3 L M
0SS s | 9vs [biS
_ | - - N3 A8
7934 151H sng L0 s
s L d0v ool M
- :)
G SR m__% YO¥IMOd INAS vsm;m“_ INAS
IS (4]
025 ¥ '3 m J4—Nud o
Yl OvS (011 VO IS SNS g
_ #044 1044 [0:1€] ZvAVQ_LSIH_Sng
(08160414 ISIH Snd mno N [0: 11044 1SIHSN8 0 Nil=—C[0:1€1 EVIVO ISIH SN4
: :
NI Ha 81s

1044 93111 4D

AQY D3A

b OH |

|
|
|
|
|

%

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1044 9 A_.a"
|
|
|

||||||||| =4

Toshiba_Apricorn 1010-0065

IPR2018-01067

U.S. Patent

SET SECONDARY
BUS NUMBER OF

EQUALTO ZERO

Aug. 24, 1999

BUS_ASSIGN

SET PC1_BUS
EQUALTO
CURRENT_PCl_BUS;
INITIALIZE DEV
AND FCN

1000
Ive

PC1_BUS
EQUALTO

Sheet 65 of 127

1026
L~

SET SUBORDINATE
BUS NUMBER OF

1024 N\

BRIDGE CIRCUIT 18

1002

1004

FIND NEXT PCl - PCI BRIDGE

OR SLOT 36 THAT IS
POWERED DOWN OR
EMPTY ON PCI_BUS;
UPDATE DEV AND FCN

1014~

(RETURN)

SET PRIMARY BUS
NUMBER OF PCi - PCI

10127 BRIDGE EQUALTO

CURRENT_PC1_BUS

PCl - PCI BRIDGE
EQUALTO
CURRENT_PCI_BUS

RESTORE
PCl_BUS, DEV
AND FCN

CALL
BUS_ASSIGN

2

1022

1010
=

INCREMENT

CURRENT_PCI_BUS

1020
/_J

PRESERVE
PCl_BUS, DEV
AND FCN

I

SET SUBORDINATE
BUS NUMBER OF

PCi - PCI BRIDGE
EQUAL TO MAXIMUM
NUMBER OF PCl BUSES

FIG. 45

g
J 1018

T [
INCREMENT
PCl - PCI BRIDGE
CURRENT_PCI_BUS

Toshiba_Apricorn 1010-0066
IPR2018-01067

5,943,482

U.S. Patent

Aug. 24, 1999

Sheet 66 of 127 5,943,482

(MEM_ALLOC)

INITIALIZE
SEARCH
PARAMETERS

_—1028

FWD NEXT
PCl FUNCTION,
EMPTY SLOT

OR POWERED DOWN SLOT

1030

1034

SUCCESSFUL
?

1032

C RE;URN)

ALLOCATE DEFAULT
MEMORY SIZE
AND ALIGNMENT FOR

EMPTY OR
POWERED DOWN SLOT

1038 ~—

ALLOCATE MEMORY
RESOURCES AS
SPECIFIED BY THE
PCI FUNCTION

FIG. 46

Toshiba_Apricorn 1010-0067

IPR2018-01067

U.S. Patent

Aug. 24, 1999

(|/ 0_ALLOC >

A

Sheet 67 of 127

5,943,482

INITIALIZE

SEARCH _—1040

PARAMETERS
PCLEUNCTION
EMPTY SLOT OR 1042
POWERED DOWN SLOT

1044
SUCCESSFUL N

1048 ™

1050

ALLOCATE| /0
RESOURCES AS
SPECIFIED BY THE
PCI FUNCTION

«<=»

ALLOCATE DEFAULT

1 /0SIZE

AND ALIGNMENT FOR
EMPTY OR

POWERED DOWN SLOT

FIG. 47

Toshiba_Apricorn 1010-0068

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 68 of 127 5,943,482

1053

RERD TNTERRUP
REGISTER 800

TO FIND NEWLY 2
INSERTED CARD ES?
DETERMINE PRIMARY,
SECONDARY, AND
SUBORDINATE BUS
NUMBERS RESERVED
I FOR THIS SLOT
WRITETO 1060 Y
RUSTR 817 & - s
—— SETSO BITTO H%%?}'E"ﬁpl?%n" CONFIGURE P! - PCI
POWER UP SLOT 36 AND MEMORY SPACES BRIDGE'S PRIMARY,
RESERVED FOR THIS SLOT gﬁg%';%?mggs
ACCESS | NUMBERS
1055~ PCIBUSON — | WRITE BASE
CARD 807 ADDRESS REGISTERS
IN THE PCI
CONFIGURATION SPACE
HEADER 1062
NTERRUPT
WRITETO PNREGISTER |~ 1064
e >
INTERRUPT 1066 WEEHEEFEI;UPT
1
WITH APPROPRIATE
; 1072 IRQ NUMBER
LOAD DEVICE
DRIVER FOR Nf— |
CARD 36 1074 Eg m r%ms
‘ REGISTER(S) L
C RAURN) |
FIG. 48

Toshiba_Apricorn 1010-0069
IPR2018-01067

U.S. Patent

Aug. 24, 1999 Sheet 69 of 127 5,943,482
BYTE DOUBLEWORD
3 1 L0 NUMBER
DEVICE ID VENDOR ID 1200 00
1201 STATUS COMMAND !
REGISTER REGISTER 1202 01
i REVISION
HEADER CLASS CODE H 02
BLOCK BIST I HEADER LATENCY | CACHE LINE 03
TYPE TIMER SIZE
BASE ADDRESS 0 04
1218 1220
o BASE ADDRESS 1 - 05
SECONDARY | SUBORDINATE | SECONDARY ' [PRIMARY | ,ono
LATENCY BUS BUS BUS |/ 06
TIMER NUMBER NUMBER NUMBER 1
SECONDARY 170 170 f‘ 208
STATUS LM+~ BASE
MEMORY MEMORY
1214~ LINIT BASE -i] 21 8
PREFETCHABLE PREFETCHABLE
MEMORY LIMIT MEMORY BASE 1212 09
PREFETCHABLE BASE 0
(UPPER 32 BITS)
PREFETCHABLE BASE n
(LOWER 32 BITS)
170 LMIT 770 BASE i
(UPPER 16 BITS) (LOWER 16 BITS)
RESERVED 13
EXPANSION ROM BASE 14
BRIDGE INTERRUPT | INTERRUPT s
CONTROL PIN LINE
o2 P 7~
1252 1204 1206
PCl - PCI BRIDGE CONFIGURATION REGISTERS
FIG. 49

Toshiba_Apricorn 1010-0070
IPR2018-01067

5,943,482

Sheet 70 of 127

Aug. 24, 1999

U.S. Patent

@ WYIALSNMOQ \
/. Wyau1sdn

(14V 4OI¥d)
40¢ 91

<

§) WY3HISNMOO
/

0zl
3l
TDIHAVIIIH

(14V 4014d) - 321
v0S "9H4 < o
zsnend { [esnand
LmEn LMD
S~ 3908 190148
Al Dd-Dd - Dd S1ZL
f’ [[
psnand } , \#\ Lsnand }
71— Lnwn e LN
390148 GlzI~| 39018 WALSAS
V/IZL Dd-Dd d - Dd ¥IUNdW0)
~— 4) g0zl
= 05na Dd } \
[121 10D
190148
L1Z1 ISOH
~’ !
sng V01 s
[0ll—] 0

Toshiba_Apricorn 1010-0071

IPR2018-01067

5,943,482

Sheet 71 of 127

Aug. 24, 1999

U.S. Patent

1§ 91
| 340
b1 952 867 092
/l/ KJ ,j /\J
WONON [WEWON | W3GWON BN
UO] Tyasion | NoDNnd| DING Sg (3ng353
011 I8 Ol Ll 5191 & 1 It
052 A4 034AL
— Sy
FONIN | H3GWNN
010 “yasiom | NolDNR Gl
011 I8 Ol G

Toshiba_Apricorn 1010-0072

IPR2018-01067

5,943,482

U.S. Patent Aug. 24, 1999 Sheet 72 of 127
PRIMARY SECONDARY ADDRESS
ADDRESS BITS AD [31::16]

AD [15::11]
00000 0000 0000 0000 0001
00001 0000 0000 0000 0010
00010 0000 0000 0000 0100
00011 0000 0000 0000 1000
00100 0000 0000 0001 0000
00101 0000 0000 0010 0000
00110 0000 0000 0100 0000
00111 0000 0000 1000 0000
01000 0000 0001 0000 0000
01001 0000 0010 0000 0000
01010 0000 0100 0000 0000
01011 0000 1000 0000 0000
01100 0001 0000 0000 0000
01101 0010 0000 0000 0000
01110 0100 0000 0000 0000
01111 1000 0000 0000 0000
1XXXX 0000 0000 0000 0000
FIG. 52

Toshiba_Apricorn 1010-0073

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 73 of 127 5,943,482

UPSTREAM_CHIP . 276

IDSEL—————™N " 1vpg_cr6_cvC_US
CFGCMD

ADDR@@
UPSTREAM_CHIP

—d 278

§1_BL IDSEL_—__
CFGCMD— |\ TYPB_CFG_CYC_DS
IVDL{] —

MSTR_ACTIVE _____
280
CFGMD |
s TYP1_CF6_CYC_US
UPSTREAM_CHIP
282

CFGMD ——
ADDRG j TYP1_CFG_CYC_DS
UPSTREAM_CHIP _4

TVP1_CFG_CYC_US

IN_RANGE ™\ pass_TYP1_DS
SEC_BUS_MATCH):

SEC_BUS_MATCH 284

286
PCI_ADDR [15:11]——
- 00100

288
TYP1_CFG_CYC_DS 290
IN_RANGE
T PASS_TYP1_US
WR_
FIG. 53A

Toshiba_Apricorn 1010-0074
IPR2018-01067

5,943,482

Sheet 74 of 127

Aug. 24, 1999

U.S. Patent

19501 1014
414
mw.: ¥
)
0L <
INI 0L LdALD 0 .

g€s I

gINI 01 dAD
AINI 0L 1dAL
[S11av 4z

1A

351Nd LAVIS 420

W W)

0SIS ¢
l

——f

| f—— BINI OL LdAL

J0dS 0L LdAL
892

B3 0L 1AL
997

BINI 0L 1dAL
9

L ——

(0] 39 420

HIYW dS

H)IYW Snd)3S
aw 9

T

HIYW dS
dIH) Wy3u1sdn

HIVW Sng J3S
aw 99

|

dIH) WY3NISdn

L

—", 1))

QH

[0:Z1WNNSNE WINd dz99)

—

4/4 LYW Sng Wiid

Toshiba_Apricorn 1010-0075

IPR2018-01067

5,943,482

Sheet 75 of 127

Aug. 24,1999

U.S. Patent

91EL
__

SYILSI9N

vOEL nd

ot

vbs 914
CIEL 8OEL
s o
SYILSI9N SYILSI9Y

N EIMBEL ==

SHIND) G350
VIVa DA 3y pIEL

SEINI VIO D)~ WAINNOD DN - VO

1V OLEL 1
(21 1N9

9-v 90€1

S¥ILNNO) ASNE - SNE

b ovaeel
[1:2IN9

-
-

THdXT HINIL 19

4INIL
ao¥id
8019

o0l |

Toshiba_Apricorn 1010-0076

IPR2018-01067

5,943,482

Sheet 76 of 127

Aug. 24, 1999

U.S. Patent

[0:021 [X] Q2SN YIVO 0)Q +—

[0:02) [XTVIVA D)0 ~—

avs 94
:_E_.wz__la
¥
d—ymd
BINN0)
- [XT NIVL VIva 000
—7
blEL
m_u_Eu.m_s__is
¥
d—yd
BINN0)
M TTaanmn viva 0o
yo

01EL

Toshiba_Apricorn 1010-0077

IPR2018-01067

5,943,482

Sheet 77 of 127

Aug. 24, 1999

U.S. Patent

(14V 4OI¥d) S "9H

DING 1IN
~— sngnd
9001
& i~ ol 0d-Dd
DING 1IN
_
= sna 1d
v001 uwn__ﬂ
-0 8001
8\\
WIN 0d)
= =
200l 0001

Toshiba_Apricorn 1010-0078

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 78 of 127 5,943,482

LEVEL 2

FIG. 56 (PRIOR ART)

LEVEL

Toshiba_Apricorn 1010-0079
IPR2018-01067

5,943,482

Sheet 79 of 127

Aug. 24, 1999

U.S. Patent

[1:211N9 QDN

LS w_u_ 9007
[AAITA m 8107 o)
—]) T19VLdNN001 “
x — [0:11015 0 ~
1S NH) OW)
dST 02a || D :
]
1S¥

WIWL LIH
MWW

9102
102

bSl

[0:Z] 1075 0Zd

2002

Toshiba_Apricorn 1010-0080

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 80 of 127 5,943,482

2026
0]=" 1"j
ot o -CHD [3:01="8100 © 00 SELEC
Nm_nm_PHASEE s
2024 2028

I

(D_CMD [2:0] ="111" j (D_PMWQ_SELECT

A ere)

CD_CMD [3:01 = "b1000"

)

2030
(D_DRQ_SELECT

(D_STREAM

Il]ll

2032 r__
(20_BUFF [2] NEXT DATA
DATA PHASE J). e B
IC2Q_NEW_REQ

2034

FIG. 58

Toshiba_Apricorn 1010-0081
IPR2018-01067

5,943,482

Sheet 81 of 127

Aug. 24, 1999

U.S. Patent

6S 914 onl
XXX LI¥D) 41420 0L _ \m.mﬁ Y
DWYIINI
ININ0
WoWIN | Ve IS dided
90L—"1 "ol | yyg D ez
[0:£] SINTTGIVA DMWd w - 901 - hs
¥3INIOd
- — 1 1ndino c
: l
“ 1907 i) £ TLA
HELO DN v [0°6] MOTINIAD DMWd_ |
] o L = -
i VIYIINI _ ol |
090z | T {fo:2] D3NS 30D 42D e -
4300330 31901 swﬁﬁ 0602 L oz
719 WOY4 w_____H T
w502 vz T)
ENEICE n ON 35Ng —
[0:Z13N TINd OMWd . ﬂ =

NI
JHIV) ¥3d
SQY0Ma 8

SINI
1Y)
JURIE!
SINI
1Y)
11313
SINI
V)
JURIE
SININ
I
14913

Toshiba_Apricorn 1010-0082

IPR2018-01067

5,943,482

Sheet 82 of 127

Aug. 24,1999

U.S. Patent

! o o0
[wTam o
t[waam

G20 €

[0:£1SINI QYA OMWd

9107

[0:11DIVS ININD 41420

902 ¥L02
J/;

[0) QriVA ORI N [o:Z] anvA 80

09 91

[0:£) anvA 318v) 0D

9902

Fl

(41114

h

[0:21 H_:s..u.g

290¢
“~

a

a|a

a1

aja|a|a

¥31S193Y NI QIVA

(KA

£

blS|9]!¢

[|

0£02

0

{0

l

y

rd

1015 31VQIVA

L0t

00

[}

00

VIV AN 0)

{1 =10:Z1 ¥3INI0d QYA

000}

N

8902

$100)30

gX¢ | TESTHIINIOd QITVA

[0:£] QIYANI 0D

Toshiba_Apricorn 1010-0083

IPR2018-01067

5,943,482

Sheet 83 of 127

Aug. 24,1999

U.S. Patent

msw/ 19 94 [0:€13n3N0 LAN DS
[TesTHINd v
0w
£
¥10030
m 8x¢ ——180C
0¥z :
o ==
N ﬁnﬁj HJ_UA
s avon]ovon vor vor [gror v v oo ALl
D= g 8 ¥ 154
_ [T T [1

c,_

_
T

3

),

/

)
/

[0:11 DI1IS 3nIN0 41420 |

[0:Z13NN TINd DMWd

¥802

o N —

[0:213NN T4 0D

[0:213N0 TInd_ LD

[0:23N_TIn4_20

[0:213NN TId €D

JAAUAD)
[]] P

[0:£13NI TIN4 00

A4
viva baN @ | WS
JVHG_ONODIS 00D | 31 [T8I g D
[OZTHINIOd OIVA L
f
(0] N3 31N) 0802

131dW0) O

Toshiba_Apricorn 1010-0084

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 84 of 127 5,943,482

NEXT_FULL_LINE_BIT =0
(D_COMPLETE 1B

CLOCK_SECOND_PHASE

(1(CO_BYTE_EN [3:0]
= "B606"))
=A

&
(VALID_POINTER [2:0] = "B68")

NEXT_FULL_LINE_BIT =8

(A & (VALID_POINTER [2:0] = "B111") & (D_NEXT_DATA) = B

2080

FIG. 62

Toshiba_Apricorn 1010-0085
IPR2018-01067

5,943,482

Sheet 85 of 127

Aug. 24, 1999

U.S. Patent

€9 9

0602

3
| JSVHdVIVa

11314W0) i
VIV L3N 0)_
s LLLLELE. = [0:S1 ¥3INIOd QITvA
[£13MND AN DINS i
[0]3n3ND LXIN DINIS
(1130300 AN DINS
[Z13nIND DAN DS
¥ | s | an | B3s | an | 3S | ¥ | BS
e suig [
WISI93Y Y — il gy
MOT¥IA0—"| H
0 _ ¢ ¢ 1607
* —

[0:¢] MOTIYIN0 DMWd

Toshiba_Apricorn 1010-0086

IPR2018-01067

5,943,482

Sheet 86 of 127

Aug. 24, 1999

U.S. Patent

4300)30
118Y) WOdd

b9 9l XXX LINDYD 41420 0L vl
VYN
N3N0
TR TA ﬂ_u
0012 on ¥IVG AN IdZ0 _
1901 :
voLz aned)
= i indno | A
P o .
(oglanva oda | oy <
_ anvA) AL
HVANIINI
wig—"] W [0:Z] DTS ININD_ 1420
31901 :
_ _ ¥aINIOd Lu5]
DITS 040 O aive [¥3LNIOd ONVA
oy v R
INIWVANLS J1dZ0i ﬂ —
41

Toshiba_Apricorn 1010-0087

IPR2018-01067

5,943,482

Sheet 87 of 127

Aug. 24, 1999

U.S. Patent

0LlZ

69 94

9012

56, = DIBS ININ0" 414D
DINS DA 142D

L 104y 41420

=

ONIWYIULS 31d20i

viva LN 41420

g;_/l

J1314W0) IDA 0D

QNVANI 00

{aNVA8D ‘ONVAT 1D ‘OrVA 20 83 =[0€1 aIVA DY | 7z

m

Je—

0Z1e

anvA 00

bLLE

{ 1075 VQNYA

0437 DINS

9LLL

8LLe

o1z

Toshiba_Apricorn 1010-0088

IPR2018-01067

5,943,482

Sheet 88 of 127

Aug. 24, 1999

U.S. Patent

99 914 il PELZ— _
~ L HSEL
XXX LIN¥D) 41420 0L
_ 9 9%E1t
gl VNN
(A4 YA 3INN0 ¢ N34
ALA = ___ 2s|=
e AOWIW ¥ve 4iIS 41420 =S|z
31901 w“z VIV DAN w_,_s_ m = m b SE1T
13434 3901 Sl
Tano—2|Z|= ¢ 0ER
cmﬁ ot |/ 18|l Wiz
] WV3NLS iz’ t ol : ST
DVININI o 1)) __mwu_m_.mh
bl _ s — (gl anvA Dal anva _
¥300)30 S 431408 aSElL
1190 [0:51 14 83 _ 73& TR
Wou 21901 | 1901 ¥INIOd i
" oL EING 14N (|
[0:1€] VIYQ 41420 I @AYINHL \ A —8E17 =
[0:Z11015_d1dZ0 081z [-inow | _zg17 |1 TREEE
61200 1) VSELZ
[0°€] N3 31AQ J1dZD

[Z:£9] 400y 314 20

) DI 11420

y
XXX 934 91HNOD 0L

[0:€10)0 NNY WVOW

1030 viva

SINIT
1Y)
1913

SINIT
1Y)
14313

SINN
IHY)
1913

SINI
JHV)
1191

SINI
JHY)
1H9A

SINI
JHV)
[LRIE

SINI
W)
1H913

SINI
V)
11913

N

JHIV) ¥3d
SQI0Ma 8

Toshiba_Apricorn 1010-0089

IPR2018-01067

5,943,482

Sheet 89 of 127

Aug. 24, 1999

U.S. Patent

$31S1934 JIEWNN ¥33408

VIO iz [TOTTDIES 0nvA LGN
Z s
" A e e
512 3300030
5 a8 : Mw X1
avo1 01 ol avo1 =
0 it J 59 86 T e
$119 404 0T18YN3 QYO
S8 Je—)D
0101 1101 Zz101 €101
WIt—"| Vepiz | vz | JeRi | 8vIe
0oF | z¢ s91 [86 T
[01ZIWNN 4408 D)0 @
9917
N o], St
MWd ON DMWA | OvA SHIINIOd QYA WD) O
(A LA A1t
_ -\/ TV |, _
[0:€1 D3NS OnvA Lxaw (4N -X00T| [o:e1anvA 0)a

Toshiba_Apricorn 1010-0090

IPR2018-01067

5,943,482

Sheet 90 of 127

Aug. 24, 1999

U.S. Patent

49 94
[Z10)0 NNY YW [0:L7DINS QYA LN |
B e o B
Y i [¥ i
< g 9L12 ¥300030

ETOG NN/ T [t hUl W_I.AW F_HV\ AT
(11000 NNY YW 912 8\
[01D)0 NN¥ YW 0L12 lmul.m @w_ q 1z

| oot logie—" |8s1e—
am as[yn as|En Bs|En s

WUSI9N B
S10dNI 00T

& isinon
M—= \owvava sug ONVES

21015 L1015 ¥ Zl015 €101

9v1Z—"] vosIz | 90512 | J0S1Z | GOSIT
0 l A 3

[0:E]anvA 0da ——
MWNd ON DMWdi

131N

|

DS D O

12114

IPR2018-01067

Toshiba_Apricorn 1010-0091

5,943,482

Sheet 91 of 127

Aug. 24, 1999

U.S. Patent

[0:ZTWAN 3ng D)0 O]

_ 89 914
DI 00 0 I e
v 1010 00
ML Y0 o o S < I s o
vals WM YO DI || g SHanD
: g T e 0812 M [0:€] GW)_bD
(o1 08 WVANS D)0 = (02T WAN ng 00) U I TR
{144 & (061 QW) 90
— T (6] 0 0
DANRO) WYAdS 030 ~ [f 8022
DIRs 00 0
902 TS| €8GO 2
(G130 WS 030 ITEDY ST
-]t/ — -

v81z YIRS [OZIWAN 4ng 00 O

p I314N0) I 41420 9612 V612

Vs 0

[0:£1 W

[0:Z] ¥31SYW 00

[0:2] 431SVW_LD
[0:2] HISVH 20

0
-
GO AT |0 yp | S I
8612

[A1144 ||__ 0022
154

—

[0 43LSYW WYNLIS V2D

1612

D WO O = O

Jk

[0:2] WISV €D
[0:2) J3ISYW_bD
[0:2] ISV SO

[0:Z] YILSYW 90

[0:Z] ¥IISYW LD

Toshiba_Apricorn 1010-0092

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 92 of 127 5,943,482

2218 GENERAL_FLUSH

Q2PIF_
SLOT[2:0]
- boor

PREFETCH SET[7:0]
71 6] s| 4 3] 2] {1 [o
1 [T T 1 1]

s~ PREFETCH PRODUCTION (LR_ALL

I REGISTER 4
2214 [SET CLR]SET CLRISET CLR]SET CLR]SET CLRISET CLRISET CLR|SET CLR 26
2228 A-H e e e e e = B
— ol oo oo ol oo
Z
5
IX8 4
nzcunzng
:, I’_ 2240 A-H
SEL
S gg a0 oo G

LAST_DWORD 2222
"Q2PIF_CYC_COMPLETE

Q2PIF_CMD = o
ﬁrlf (MD ="B1110"

—q__fwﬂl Mf 2262
{Q7_ADDR [63:7], OUT_POINTER _ 7[4:0T Q7 DAC

2226 Q2PIF_STEP_BACK QZPIF_CHECK_OYC
2224 9938 Mm

™ X
{Q6_ADDR [637], OUT_POINTER 6 (4:01 2220 ‘Q‘{,—_nﬂr__h
{05 ADDR [637], OUT_POINTER_5 (408 | DA |8
{04_ADDR (637, OUT_POINTER (40D |3 |ncq pRerercH ADDR [6321 TADRC |
{03_ADDR [637], OUT_POINTER_3 (400 | , — T mo |t h
{02_ADDR [63:7], OUT_POINTER 2 (401 | o]
{Q1ADDR [63:7], OUT_POINTER_T (408 |, |_—g9¢0 TDAC |2
{Q0_ADDR [63:7, OUT_POINTER_0 (401} | ; 00 DAC “]
OVCLE_HIT(7:0] [8X3 al

DECODER FIG. 69A DCQ_PREFETCH_DAC—

Toshiba_Apricorn 1010-0093
IPR2018-01067

5,943,482

Sheet 93 of 127

Aug. 24,1999

U.S. Patent

(4144

(

INIT 1H9B 029D

VIV LXIN 41420

_umwuu

469 914

. [S1¥3INI0d QNVA

[ST¥3INIOd 1O

Q40Ma 1SV1

{144

MW K434 0Oa

958t

[0:1 ¥3INIOd_ QYA = [0:%] ¥3INIOd 1nO

0.

)

TN

[A144
.

01119 = OW) 41d2d

9t

bbil

[A7AA

m 0L, = aW) 414Zd
00118, = QW) 41420

TI9YNI HDI3434d 01NV DZ9D
TInd 40 i

WOOY H)13434d ON 0Ci

3131dN0) D 11420

(11744

L0118, = AW 31420

g
WaW

[0:1135 HD13334d 2

bSet—"

aoma s,/ "
it (IITED
[[0:211015" 41420
S 8vil
00230
gXe

Toshiba_Apricorn 1010-0094

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 94 of 127 5,943,482
2270 2272
/./
TRANSACTION TRANSACTION
RUN ORDER
QUEUE QUEUE
TRQ MCA 100
2276 ~— CONTROL (ONTROL CoNTROL | 2278
LOGIC L0GIC LOGIC
2274 MCA_RUN_DR[3:0] _
T MCA_RUN_PMW [3:0] _
DCQ_VALID [3:0] MC_RUN_DAEX
PMWQ_VALID [3:0]
FIG. 70

Toshiba_Apricorn 1010-0095
IPR2018-01067

{TRQ, CYCTYPE3, TRQ_CYCTYPEZ, TRQ_CYCTYPET, TRQ_CYCTYPEO}

ITRQ_SLOT_VALID_RST (3:0]

20 |

TRQ_SLOT_VALID_SET [3:0]

U.S. Patent Aug. 24, 1999 Sheet 95 of 127 5,943,482
PP ————— n CYCLE - 1, PMW
: CIRCULAR e 2270 2284 2282 TPE = 7 0,DR
L INT e 2 ¢ 0
B B N T OCE | 99g04
: A | |_PNTR TWPE |7
s L L PR | e 22808

|
VALID QL

E : PNTR TYPE ~2280(
| CFOQLINFRETRY gy 1L YALD 2290] CHCLE | 9ngop
S1_02PF_C1C_CONMETE tgg:{ff\ : I%pu'f OUTPUT|IN / OUT|__99g,
: ‘“_229_'4 o1 LOGIC | L0GIC_|ERABLE
| 2300 K | —4—
| B, T O O
: 100_VAUIDO [1:0) L S
: D_VALID [1:0] :
| - NEW_T0Q_CYCLE |
{ NEW_T0Q_CYCLE :
| |
: T0Q_CYCTYPEO [0] | 2298 :
| D_CYCTYPE[0) |

e | I
| |

2302

| B T00_orE mo_vaort], 2296 | 1|
I TRQ_SLOT VALID (3] 2308 | o_cvaveeo (0] :
| TRQ_SLOT VALID [2] ‘ - !
, TRQ_SLOT VALID[1] NEW_VALID_SET| | |
} TRQ_SLOT_VALID [0] IT0Q_ENABLED | |
: |
| |
| |
| |
| |
I |
| |
[|
| |
| |
| |
| |
|
|

Toshiba_Apricorn 1010-0096
IPR2018-01067

5,943,482

Sheet 96 of 127

Aug. 24, 1999

U.S. Patent

[0:1134ADA) @ TARLIE!
[0:1] QIvA @ b 31901
n— + —~ Deee 104IN0)
[0:1] 03dADA) DOL 21907 J1901 100 0oL

[0:1]00rvA DOL Hs&% 5,____\/ 040 o 0

2267 | JdML| dINd IO, P T e e

- ETTIETTY
WIEL™ 9 90 | amvi

~———1 1dAL| ¥INd
W™ ™ 0 | anvk [TozTaman

S TR
WL v 00 | ovh | | ————- D

e T
WIEL™ € o | anwa

—~—1 3du| g
WL 7 0 | i

S ETTIETTI)
1L) 0 | ok

1 3u| und
W™ 01955 | g

J4Y) LNOG. = X ONL0T o J| me

a0 [0 (oler gige
MWd 10 UL

[0:Z] ¥IndLNO

[0Z1¥IndNI

M o 8CET
a0y | B

=

Vv

9267/

. 1 e

IPR2018-01067

Toshiba_Apricorn 1010-0097

5,943,482

Sheet 97 of 127

Aug. 24,1999

U.S. Patent

__im pSEL
Y \LdWT 0L
0 0 @318YN3 DOL
0318vYNd __m%r - TR
~ 9562 0562
85€2 I
[0:€] QIvA_DMWd M3N
bIEL
/!
1562
o ovel
RO L -
an-yo01 | ToETanvA D0 MaN \ _
fo:t1anvA @
9vEL

VEL I

(061 GNVA D¥Q MIN

m

vvmm.ﬁ

m

o

[0'€] QNVA DMWd

m

J—

[0:€1anvA D0

[0:€] aNvA DYQ

Toshiba_Apricorn 1010-0098

IPR2018-01067

5,943,482

Sheet 98 of 127

Aug. 24,1999

U.S. Patent

€L 91

31907 104IN0) VOW

\

0’0’0}

[0:€] Snl__:zlﬁg

ML doL LAN
19¢et

IO DOL MIN

09€2

0LET

_ MWd DUl

ALdW3 DAl

30 = 034ADA) DOl

LLET
v
4300330 -
pXZ | [0:t]oanva DoL

D0 =[11034ADA DOL)i
MNd D¥L 1Si

30 =[11034ADL DAL

992 MWd DAl
(0 =[1103dADA DOL)i
ALIW3 DOL
MNd DUL LSi

Toshiba_Apricorn 1010-0099

IPR2018-01067

5,943,482

Sheet 99 of 127

Aug. 24, 1999

U.S. Patent

["Mwd = [013dADD bOL

)L 9 -

1907 1041NO) VOW

ALIWI DAL
¥0 = 034ADR D¥L

[0:11 0arvA DAL

[o:17 0anva ool

0662 oo .\
0
ST B ¥300330 _ 0000
[OEIMWd NN¥ YOW DOL E vX (oo oL
e/ (€140 NOY VDN DAL .“ B
MWd = [0]34ADL @ ww/_ A bXT
0 40 = 34ADA) DOL
TR TR B 3300230
[O'EIMNd NNY YON E__E AR {0000
0
N [0£190 NNy VoW 0oL | B
B6€2 0gee s
__ 98E7 ¥BEL
it WL 4G= (01300 0
MWd = 03dADA) DAL
100 {0’00’} _\ {0'0'0'0}
0 0
. 5 ¥300)30 SITRTTE N 4300230
[O€1MNd NNY VDN DL E e T _ ! et
Sz\ 8.E7 22\

[o:L1anvA @

Toshiba_Apricorn 1010-0100

IPR2018-01067

5,943,482

Aug. 24,1999 Sheet 100 of 127

U.S. Patent

21901 T04INOD VOW

.

0L 9H -

s_j,ﬁw
0

(318YN3 DOLi

[0ETMWd NN¥ YO JNASY _/_

[OE] M NY YOW DOL 135 QnvA MaN

Vi 90¥2

0 N
[0°E130 NS VOW JNASY _/_ _H”M__ ”__”__ “___ﬂ_nlw” Hh

[O:ETMWA NNY YOW AN

135 QIVA MIN

718YN3 DOL

14174

D0 DOL MIN

¥k

:z;f\r
0

[0:€1MWd NDY YW _/_

(1]174 JE3YINI 029D A1/
J3UN0) DD 11420 1S
ALdWI DL
{0'0'0'0}

[0:€] QITVA_DMWd
[0:c1mwd NN YOW D¥L

awvwﬂ_\ﬂ; E:.“_icu_.— 8Lve
0
L

[0'C] MW NY VDWW INASY

[0:€140 NNY YOW DAL

0zb2 Lo
0

[0:140 NNY VOW Fl:m.@l

vux/:ﬂ
U

[0:€THG NNY YOW DNASY

Toshiba_Apricorn 1010-0101

IPR2018-01067

5,943,482

Sheet 101 of 127

Aug. 24,1999

U.S. Patent

bl 94
00 1l 0000 0000 000l
00 0l 0000 0000 0010
00 10 0000 0000 0100
00 00 0000 0000 1000
Xl 1 0000 (0001 0000
Xl 0l 0000 0010 0000
X1 10 000 0100 0000
Xl 00 0000 1000 0000
10 { 0001 0000 0000
10 0l 0010 0000 0000
10 10 0100 0000 0000
10 00 (000 0000 0000
[0:113O0 0 | [0:11QIvA @ {0'€] QYA MINA MIN TO:€] QIIVA™0)G MIN TO:E] QIVA DO MIN}

wmmml\

Toshiba_Apricorn 1010-0102

IPR2018-01067

5,943,482

Sheet 102 of 127

Aug. 24,1999

U.S. Patent

L9
D40L
9057 8hl
\)I90] 2
00 0L ~———] NI VIV
RS
0052
Smw../ Vst
TNV 31VIS INHOVI 31315
IS MLV
1901)I90]
)I901 21901
HSIH ONVIVHO)
oL D01 o NIV V3
—~ e ¢ ~
vcﬁ 9EST LIATA 14414 9192
NOLYHINID 1901
samnn ANVIHO)
. S
pe
_ v _ C 0 '
718V) 01 01 0L SN0 65 bésT - sIEND s

MO1I43A0

JI901

=
0092

\j

sann0
01

Toshiba_Apricorn 1010-0103

IPR2018-01067

5,943,482

Aug. 24,1999 Sheet 103 of 127

U.S. Patent

A

LN

0258

0152

V9L I

_.I m

8LST—"]

153003 ANOIS WDIVT 934 KIa

V

805¢

153N03Y 1S4 WOV 934 K1a

153N03Y AN0JIS HILVT 934

1S3N03Y IS¥H HI 93

Toshiba_Apricorn 1010-0104

IPR2018-01067

Sheet 104 of 127

U.S. Patent Aug. 24, 1999
— l Q2PIF_ADDR[31:2]
LATCHI—— EN[31 | o © i
| [125]2
P20_AD [31:2]
]] Q2PIF_CMD [3:0]
IATCHT1— EN| 3 | 2 0
] | 12514
P20_(BE[3:0]
LATCH1— EN | 2 0
| | 125]6
P2Q_SLOT [2:0]
ATGH2— EN [31 | 0 © 21110 1
| ™ T] 2522
P2Q_AD [31:0]
l] Q2PIF_BYTE_EN [3:0]
TCH2— EN | 3 110
3 |] 12524
P2Q_(BE[3:0]
l Q2PIF_LOCK
LATCH2— EN |]
] 1252(5
P2Q_LOCK
FIG. 768

5,943,482

Toshiba_Apricorn 1010-0105

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 105 of 127 5,943,482

2528
RESET & ELSE e

PWM_EMPTY DCQ_LOCKED

IDCQ_LOCKED &&
P20_TOCK &&
PMW_EMPTY

1DCQ_LOCKED &&

P20 _LOCK 8&
PMW_EMPTY
FIG. 77
2536
/'-
P2Q_FLUSH
GENERAL FLUSH
IDCQ_HIT ——
Q2PIF_CHECK_(YC — 2538
2540
FIG. 78

Toshiba_Apricorn 1010-0106
IPR2018-01067

5,943,482

Aug. 24,1999 Sheet 106 of 127

U.S. Patent

— N

W) 39VSSIW

0001,

95T
DINND) WYIHIS 00

958

6/ I

0952

OL Phsz

#&f__|| [0:211075 41420
C [0:9] AWZIW DZ99)

(.0LL0. = QW) H1420)

00Ul
[0°€1 QW) 31420

8552

TIW HD13434d D)0

becy 1015 41420

/ [0:9] WYWZ¥W 0Z94)

9552

[A314

(L0110, = GW) 41420)
[0:211015 4120
0552 ' _
/ (091 WIWZIIW DT

214

INT HD1343Nd 00
(0111 = OW) 41420

Toshiba_Apricorn 1010-0107

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 107 of 127 5,943,482

2592
12PQ_IRDY
25%
=
T
L0AD_WRITE_COUNTER ——{ 10AD
g
- NT_REG [11:2
e PAGE_COUNT_REG [11:2]
Q2PIF_ADDR [11:2] —— LOAD
A
s
2596
12PQ_IRDY __4§
2598
/
o
L0AD_WRITE_COUNTER ——{ L0AD
EN
DWORD .
000", Q2PIF_ADDR [4:23 ——{ LOAD i
/\
) RESET
FIG. 80

Toshiba_Apricorn 1010-0108
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 108 of 127 5,943,482

2510

{PMWQ_FULL_LINE[X], "1117} _ﬁ—@ﬁﬂ
0

011" — WRITE_CMD [3:0]

0
anr—l

(FG20_MW2MWI
A PMWQ_CMD [3]

FIG. 81A

2580

{PMWQ_VALID_LINES[X + 1]

CF620_MW2MWI
PMWQ_FULL_LINEX]

PMWQ FULL LINE[X +1
- [+2]574 7582

PMWQ_FULL_LINE[7]
PMWQ_NEXT_FULL_LINE

NEW_WRITE_CMD
CFG20_MW2MWI
IPMWQ_VALID ‘
IPMWQ_OVERFLOW
(PMWQ_OUT_POINTER [5:3] = "1111"
FIG. 81B
2586 =l
P20_START_PULSE o
END_OF_LINE J Q HELD_NEW_WRITE_CMD
NEW_WRITE_CMD 7588
EARLY_CYC_COMPLETE K =~ L_—12590
2584 cu(_]
FIG. 81C

Toshiba_Apricorn 1010-0109
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 109 of 127 5,943,482

INC_QUEUE_SELECT — 2602

CNT
START_QUEUE_SELECT [1:0] —— LOAD

OUT — COUNT_QUEUE_SELECT [1:0]
INITIAL_QUEUE_SELECT —— L0AD

EN A
K —

2604

COUNT_QUEUE_SELECT ——0

START_QUEUE_SELECT Q2PIF_QUEUE_SELECT[1:0]

—t

INITIAL_QUEUE_SELECT

FIG. 82A
2606\
mwu_vnunm——? 00
PMWQ_OVERFLOW [1]———/2608 ——2614
PAWO_VALID [21——j‘4_ 0l
PMWQ_OVERFLOW [2]——_/2610

VERFLOW_NEXT_QUEUE
PMWQ_VALID [3] — d - T

PMWQ_OVERFLOW [3]—

PMWQ_VALID [0] ——
PMWQ_OVERFLOW [0]——

Q2PIF_QUEUE_SELECT [1:0] J

FIG. 828

~
o~
—
o]
—
o

i

Toshiba_Apricorn 1010-0110
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 110 of 127 5,943,482

READ ALIGNS

2624
RESET & ELSE /

FIG. 848

IEARLY_DATA_PHASE

ANY_DRQ_RUN 8&
P20_ACK

1P20_ACK I
2630 (P20= ACK &&
IEARLY DATA_PHASE)

P20_ACK !(THROW_

E‘A‘}l—‘:! DATh PHASE

P20_ACK && &

P2O_ACK |
\(THROW_CNT ="000") __| 2605 i
EARLY_DATA_PHASE | r_,
IP20_TRDY | =
CBT_STATE = COUNT __| j—wm N OUT F—THROW_CNT [2:0]
ko morps2i— [0 KT
ANY_RUN_DRQ RESET
“e0 Ak] w— 2632
P2O_ACK | B
CNT_STATE = IDLE_CNT _| TR T
= " | = |—READ_DATA
FIG. 84A 2623 000" — START
FIG. 84C
2620
(FG20 _READ_ALIGN —

ALIGN_READ
DRQ_CMD = “1110°
DRQ_CMD = "1100"

2618 FIG. 83

Toshiba_Apricorn 1010-0111
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 111 of 127 5,943,482

Toshiba_Apricorn 1010-0112
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 112 of 127 5,943,482

Toshiba_Apricorn 1010-0113
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 113 of 127 5,943,482

DPHASE

Toshiba_Apricorn 1010-0114
IPR2018-01067

5,943,482

Sheet 114 of 127

Aug. 24, 1999

U.S. Patent

88 94
U_Mu
N \E_
ZEL D0 ONADY e *_u H_H_H_Mw____
) ALLINDAD TR
14NYNIINI OL *FHOSIN ORI FINASINI
#VASINI .
~— SN
SINIT 1SINDIY LNYYILNI 1015 boosnon 4 @:m_sﬁﬂ_____s;:sm -
5 X ~ # 08N g
LANYAINI | 2 N
L 3 3 I 3 \ *u._.z_
\\ r \ 3 \\4 \\ _—. \ Y i A J
DING NINa DIAG
DIAG DIAG
AVNIH0S E._sw_“.ﬁw mzz_ﬁ__ww“ﬂw Ezs_w_w____w E__ssé smmum_u_ﬁ." E___EE_Q
0¢l 0¢l
me_ _s__ §= 2__2:{ /
i1 80lL Jé\.k vl 2001 OLZ1 60LL
¥9€ 1075 89¢ 1015 39€ 1015 09€ 1015 19¢ 1015 19¢ __sm

IPR2018-01067

Toshiba_Apricorn 1010-0115

5,943,482

Aug. 24,1999 Sheet 115 of 127

U.S. Patent

68 914

EEA LN

SN |

gLl
s
INN# QIN ii,aj
INN#IINI x o0 | gl
60L1 #0IDNASINI ONIAIDDIY
#OIGSINI L4NYELNI
gnamnsIN—"| [#TIENGIN
1018
Pl 1ndino
L4NYNIINI
NN #UN—T)
b2 SN 14 40 SINIT _A__E_E_\IA | Pl mneam
~ ININ #VINI
b2 508 Dd _
YITIONING) [
0061 | naaIN
_11;__._;_

bz Snd Dd 10
SINIT LANYYIINI

Toshiba_Apricorn 1010-0116

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 116 of 127 5,943,482

SOTIDSELESO] ™ gp_ioseL [5:0]

ENABLE [5:0]

1711 <1710
FIG. 90

5 4 3 2 1 0 f 1728
"0" = 1,0 SUBORDINATE

"1" = HOST CPU 14 SUBORDINATE

-

1,0 SUBORDINATE REGISTER

FIG. 91

1730
(1,0 SLOT REGISTER

1" =150 PROCESSOR
"0" = NOT AN I,0 PROCESSOR

FIG. 92

Toshiba_Apricorn 1010-0117
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 117 of 127 5,943,482

54321of1729

1,0 SUBORDINATE
0 EGISTRR

'0" = 1,0 SUBORDINATE
FIG. 93 *1" = HOST CPU 14 SUBORDINATE

1726

HOST CONFIGURATION
ENABLE BIT

"1" = CPU 14 MAY CONFIGURE ON PCI BUS 32

"0°=1,0 PROCESSOR 1700 IS CONFIGURING
190 SUBORDINATE DEVICES ON BUS 32

FIG. 94

Toshiba_Apricorn 1010-0118
IPR2018-01067

5,943,482

Aug. 24,1999 Sheet 118 of 127

U.S. Patent

V6 I

P SN RN

EEIREE AR R R R i
.|\“|../._..__.._.._.....,,._.
”“”””“__““__.““_______“__“255_
SR S L O (|

TNE AN TN 0 R d & T AN LH_.J““

e T T f v s a i mhd Y ow oW s FVOSIN
__..“_..““___ R (¥4 1)|

BELEEF FINEEL TV, RS RET .=
SRR R
......../_...............

P e L L O9EL0TS WO # VINI

CoE e T b W 4 s v owoa s v o JIEIIISROH VN
””_““””__““/.””“”””__””“.. 456 914 .
L v e e e e e e e e e DYE 0TS WY # ALNI . mo Q_u_
N T IR S Y56 914
““__“““__““”““__“__““__“3232235_
Lo L v . DIE101S WOXd # VINI

/" T 98 1015 WO¥A # QINI

IPR2018-01067

Toshiba_Apricorn 1010-0119

Aug. 24, 1999 Sheet 119 of 127 5,943,482

U.S. Patent

456 914

QININD
#)J1NINd)
AININd)
YININd)

NdIASINI
NdINASINI

119V)QSINI

J1VDINASINI

OIQSINI

OIDNASINI

Ol L SEPLEL s L OL L 9L SLRL L O
N N Al
”““_\T/.F”_“”__\Tz““.cmm_.l\“l/””_
WL DL L0 L SLoPL 'EL i~ 1L OL; 21,9151 b1 ELi 1L, 0L, Do
5 1] .h§ -vhg -gh_rl_‘h_ _vhky -lm- LI]
SREEEEE IR EREEE - R
“”_“__../..|“”_“““_|/..|_.._._\u|/”_
fé(E&E?E?ZZS%%R#%%&E&é“__
“”"\T/““__“_|”_|/__“_“”“_\T/_”
REESEFPRRERY SRR R, A

QOSINI

Toshiba_Apricorn 1010-0120

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 120 of 127 5,943,482

1743
SSINTC #
% SAINTC #
1741 4 T —
e NTSDC#| 4 e
Z SGINTA # g T
SSINTA # -
5 SaINA # 1-———§§:mgﬁ
INTSDA # 4W 0| 4NIL#
g_samm#
T SN #
e |
\0\ su)c&mtz:ol
1745
(380 e
COUNTER
DAL S
1742 N
SINTB #
Z SSINTB #
 Csims_ s
INTSOB # | 4 —eome—
% STINTB #
-
o [z 1744
>/ SAINTD #
A
6 ™ S6INTD #
g SSINTD #
INTSDD# 4 [T
) [_SaNm#
/' | [z #
1712 0__SUND#
MULTIPLEXING
CIRCUITRY

FIG. 96

Toshiba_Apricorn 1010-0121
IPR2018-01067

U.S. Patent

Aug. 24,1999

5,943,482

Sheet 121 of 127

-

INTERRUPT %I:E%IVING BLOCK

RST

1752
/

6(NR{7:0]

(LR

3 BIT

SL1 [2:0
S0 o 1730

3X8
DECODER

/\

6_CNTR[7]

G_CNTR [0]

SID_CMPL# |
S| INTR #
2 CINT#

|

(LK

1754
INTSYNC#

—_—

1755

INTSYNCCABLE #
INTSYNCIIO #

CAY INT#

B
‘J[lm

FIG. 97A

Toshiba_Apricorn 1010-0122
IPR2018-01067

U.S. Patent Aug. 24, 1999

1758

- \<
10SUB [5]

flosus 4] |8
T10SUB (3] i
0SUB (2] |
2
]
0

~

MASK_A

II0SUB [1]
10SUB [0]
|r0ll

SL1[2:0]

el
|
o~
[—]

110SUB [5]
110SUB [4]
110SUB [3]
0"
110SUB (1]
110SUB [0]
Iol
110SUB [2]

SL1 [2:0]

Sheet 122 of 127 5,943,482

110SUB [4]
—Tosus 31 |/
___“b___- b

110SUB [5]
110SUB [0]
I‘Pol'
110SUB [2]
110SUB (1]

SL1 [2:0]

1OSUB [3] \<
___—T——— 7

~T0SUB 5] |
11OSUB [4]
0"
110SUB [2]
110SUB [1]
110SUB [0]

SL1 [2:0]

FIG. 978

Toshiba_Apricorn 1010-0123
IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 123 of 127 5,943,482

110SLOT [3]
ﬂoll
10SLOT [5]
10SLOT [4]
0
110SLOT [2]
[10SLOT [1]
110SLOT (0]

u::—amm.umay

SL1 [2:0]

f 132
110SLOT [4]

10SLOT [3]

110SLOT (5]
110SLOT [0]

110SLOT [2]
10SLOT [1]

c:—-mm.n.mmy

SL1 [2:0]

FIG. 97C

Toshiba_Apricorn 1010-0124
IPR2018-01067

5,943,482

Sheet 124 of 127

Aug. 24,1999

U.S. Patent

a6 94

96.1

—(_ o (™
boLl # QOSINI

86/1

JASINI

#90SINI
474
VISTH
) #YOSIN]
b 06/1
\V4
e a O onas
0081 35
] 281 =4
]

[91741N) 9
(€174 9

8Ll

[STIHIN) 9
[ZITHIND 9 wnlm_ﬁ
i 981 8LLI
=
AV
#T1GVICSINI | b
—2—
q_ 911
p081
P14 9 bLLI
(114N 9
[1741N) 9 tLL
[01 T4IN) 9

2081

T
INI YD

-

0_SLo
(]

QQSINI

9 Sioll
DSYH
#0II

40SINI

VISVW
#YOSINI

(01 THIN) 9
NMoay¥N

Toshiba_Apricorn 1010-0125

IPR2018-01067

U.S. Patent Aug. 24, 1999 Sheet 125 of 127 5,943,482

RST
RST [
| SET
SE INTSDUABLE# | o LLINTSDCpU #
INTSYNCCABLE # | o | INTSYNCCPU # —
1824~
1822 /T\ T
(LK
(LK o 1836
_INT A L CPUINTA #
G_CNTR2 [2:0] 3BIT INT_A2
COUNTER ECCERRUP
INTSYNC # e
(K —> K EN< o
7 INTSDGPU# |
6_CNTR2[0] a
({4 . 1834 _IIIT__ﬂ_ CPUINTB #
I D1 | 1848 INT_B2
INT_D2 — (PUND# e
I6_CNTR2[0] |
1846 —__—!CM .
Wa 1844
— INT_C2 CPUINTC #
ll'7 “'6 5 "4 L 3 1?2 ll] 1!0 1332
i__n2]|m_cz]m_azllm_mlm_m INT_C1{INT_BI|INT_Al
= . RST
(K—p BiTS LOAD ENABL& (IR
_—1826
,,_/“ A)) — A GCNTR2 [2:0] \
i e,
GCNTR2[7] / GCNTR2[S ﬂcmz (3] ﬂcmz 0] / T
GCNTR2[6] GCNTR2{4] GCNTR2[2] GCNTR2 [0] OUTPUT
FIG 98 BLOCK 114

Toshiba_Apricorn 1010-0126
IPR2018-01067

U.S. Patent

Aug. 24,1999

Sheet 126 of 127

5,943,482

TIME
SLICE

INTSDA #

INTSDD #

INTSDC #

INTSDB #

A#

SLOT 2. INTD #

SLOT 3. INTC#

| SLOT 3. INTB #

SLOT 2. INTA #

SLOT 3. INTA #

SLOT 3. INTD #

SLOT 1. INTB #

SLOT 1. INTC#

SLOT 4. INTA #

SLOT 5. INTD #

SLOT 2. INTB #

SLOT 6. INTC #

SLOT 5. INTA #

SLOT 6. INTD #

SLOT 4. INTB #

SLOT 6. INTA #

SLOT 4. INTC #

SLOT 5. INTB # |

SLOT 4. INTD #

SLOT 5. INTC#

SLOT 6. INTB #

FIG. 99

SLOT 1 = SLOT 36A
SLOT 2 = SLOT 368
SLOT 3 = SLOT 36C
SLOT 4 = SLOT 36D
SLOT 5 = SLOT 36E
SLOT 6 = SLOT 36F

(INTEIR[II‘T

LINES ON
PCI BUS 24

EXPANSION BUS 30 INTERRUPT SOURCES

SLOT 4.
INTA #

SLOT 5.
INTA #
SLOT 6.
INTA #
SI_

INTR #

BR_INTR # |SLOT 1.

INTD #

SLOT 2.
INTD #

SLOT 3.
INTD #

I1‘

SLOT 2.
INTC#

SLOT 3.
INTC#

Il]n

SLOT 3.
INTB #

I‘I

SLOT 5.
INTD #

SLOT 6.
INTD #

I]‘

SLOT 6.
INTC #

!]I

INTA #

SLOT 4.
INTB #
SLOT 5.
INTB #
SLOT 6.
INTB #

SLOT 1.
INTA #
SLOT 2.
INTA #
SLoT 3.
INTA #

INTB #

SLoT 1.
INTB #
SLOT 2.
INTB #

SLOT 4.
INTC#
SLOT 5.
INTC#

INTC#

SLOT 4.
INTD #

SLOT 1.

kil INTC £

FIG. 100

Toshiba_Apricorn 1010-0127
IPR2018-01067

5,943,482

Sheet 127 of 127

Aug. 24,1999

U.S. Patent

e Sna nd

—

-

0981
fo1318vN3 4ol

0981 0981

[v) VN3 dol

1sal

asal

sl
yosspowd [~-00LL

~
101

80L1

101 91
0981 0981
[z} avN3 dol [e171avN3 dOI
13501 asal asal
= 7 =
90L1 vOLI 0.1

04
-

[0:51318YNT 4O

[S1318YN3 40

Toshiba_Apricorn 1010-0128

IPR2018-01067

5,943,482

1

EXPANSION CARD INSERTION AND
REMOVAL

BACKGROUND

The invention relates to inserting and removing expansion
cards.

Computer systems typically have expansion card slots for
receiving and electrically coupling expansion cards to an
expansion bus of the computer system. The expansion bus
may be one of several types, such as an Industry Standard
Architecture (ISA) bus, an Extended Industry Standard
Architecture (EISA) bus or a Peripheral Component Inter-
connect (PCI) bus,

SUMMARY

In general, in one aspect, the invention features a system
having a connector for a circuit card and a clamp configured
to selectively prevent removal of the circuit card from the
connector when the clamp is engaged. The system has
circuitry connected to monitor the engagement status of the
clamp and to regulate delivery of power to the connector
based on the engagement state of the clamp.

Implementations of the invention may include one or
more of the following features, The system may include a
communication link, and the circuitry may be further con-
nected to regulate coupling of a communication link to the
connector based on the engagement of the clamp. The circuit
may include a switch actuated by the clamp furnishing an

indication of the position of the switch and a circuit con-

nected to update the engagement status when the indication
indicates the same position for a predetermined duration.

In general, in another aspect, the invention features a
method for use in a computer system having a central
processing unil, a connector for a circuit card and a clamp
configured to selectively prevent removal of the circuit card
from the connector when the clamp is engaged. The method
includes monitoring the engagement status of the clamp and
providing an indication of the engagement status to the
central processing unit.

Implementations of the invention may include one or
more of the following. The invention may include providing
an interrupt request to the central processing unit to indicate
when the engagement status changes. The method may
include storing the engagement status in a memory acces-
sible by the central processing unit. The method may include
monitoring a power status signal of the connector and
providing an indication of the power status signal to the
central processing unit, The method may include providing
power to the connector when the clamp is engaged and
removing power from the connector when the clamp is not
engaged. The method may include determining if the central
processing unit has enabled the connector to receive power
and wherein the providing step only provides power if the
central processing unit has enabled the connector to receive
power. The method may include coupling a bus to the
connector when the clamp is engaged and electrically iso-
lating the bus from the connector when the clamp is not
engaged. The isolating of the bus may include disconnecting
a clock line and other lines of the bus, the other lines of the
bus being disconnected before the clock line is disconnected
and the power is removed. The electrically coupling may
include connecting a clock line and other lines of the bus, the
other lines of the bus being connected after the power is
removed and the clock line is disconnected.

In general, in another aspect, the invention features a
computer system having a central processing unit, a con-

20

40

65

2
nector for a circuit card, and a clamp configured to selec-
tively prevent removal of the circuit card from the connector
when the clamp is engaged. The computer system also has
a circuit connected to monitor the engagement status of the
lever and to provide an indication of the engagement status
to the central processing unit.

Implementations of the invention may include one or
more of the following. The circuit may be configured to
provide an interrupt request to the central processing unit to
indicate when the engagement status changes. The circuit
may include a buffer, accessible by the central processing
unit, connected to store the indication of the engagement
status. The central processing unit may selectively enable
the connector 1o receive power or a bus (e.g., a PCI bus) 1o
receive power, and the computer system may further include
a buffer connected to indicate if the central processing unit
has enabled the connector or enabled the bus to receive
power. The circuit connected to furnish power may only
provide power if the central processing unit has enabled the
connector 1o receive power and may only couple the bus if
the central processing unit has enabled the connector to be
coupled to the bus.

In general, in another aspect, the invention features a
computer sysiem having a bus, a connector for a circuit card
coupled to the bus, and a clamp configured to selectively
prevent removal of the circuit card from the connector when
the clamp is engaged. The computer system has circuitry
connected to monitor the engagement status of the clamp
and to regulate delivery of power to the connector based on
the engagement state of the clamp.

Among the advantages of the invention are one or more
of the following. Expansion cards may be inserted and
removed while the computer system remains powered up.
The expansion card is powered down before the card can be
removed from the slot. Software may selectively power up
or power down expansion cards. If possible movement of the
lever that secures the expansion card is detected, the move-
ment of the lever is verified which minimizes unnecessary
powering down of the expansion card. The control circuit
has control of the expansion bus during critical phases of the
power up and power down sequences, which promotes bus
integrity.

Other advantages and [eatures will become apparent from
the following description and from the claims.

DESCRIPTION

FIG. 1 is a block diagram of a computer system.

FIG. 2 is a block diagram of an expansion box of the
computer system of FIG, 1.

FIG. 3 is a block diagram of the bridge chips in the
compuler system.

FIG. 4 is a block diagram of a queue block in cach of the
bridge chips.

FIG. 5 is a block diagram of the clock routing scheme in
the bridge chips.

FIG. 6 is a block diagram of a clock generator in cach of
the bridge chips.

FIG. 7 is a block diagram of a master cable interface in
cach of the bridge chips for transmitting data over a cable
connecting the bridge chips.

FIG. 8 is a timing diagram of signals in the master cable
interface.

FIG. 9 is a block diagram of a slave cable interface in cach
of the bridge chips for receiving data transmitted over the
cable.

Toshiba_Apricorn 1010-0129
IPR2018-01067

5,943,482

3

FIG. 10 is a block diagram of logic generating input and
output pointers for the receiving logic in the slave cable
interface.

FIG. 11 is a timing diagram of signals in the slave cable
interface.

FIG. 12 is a timing diagram of the input and output
pointers and their relation to the received cable data.

FIG. 13 is a block diagram of the placement of flip flops
and input and output pads in each of the bridge chips.

FIG. 14 is a table of the information carried by the cable.

FIG. 15A is a table showing the type of information
carried by the cable signals associated with single address
cycle transactions.

FIG. 15B is a table showing the type of information
carried by the cable signals associated with dual-address
cycle transactions.

FIG. 16 is a table of parameters associated with the cable.

FIG. 17 is a logic diagram of an error detection and
correction circuit.

FIG. 18 is a parity-check matrix for generating check bits
in the error detection and correction circuit.

FIG. 19 is a syndrome table for generating fix bits in the
error detection and correction circuit.

FIG. 20A is a stale diagram showing a round-robin
arbitration scheme.

FIG. 208 is a state diagram showing a two-level arbitra-
tion scheme.

FIG. 21 is a logic diagram of an arbiter in each of the
bridge chips.

FIG. 22 is a state diagram of a grant state machine in an
arbiter.

FIG. 23 is a state diagram of a level one arbitration state

machine in the arbiter.

FIG. 24 is a table showing generation of new grant signals
based on the current master.

FIG. 25 is a block diagram of logic for generating mask
bits and multi-threaded master indication bits.

FIG. 26A is a logic diagram of circuits for generating the
masked bits.

FIG. 268 is a block diagram of a computer system with
multiple layers of buses.

FIG. 27A is a side view of an expansion card inserted into
a slot.

FIG. 27B-C are schematic diagrams of lever circuitry.

FIGS. 28-31 are schematic diagrams of circuitry of the
expansion box.

FIG. 32A is a state diagram from the circuitry of the
expansion box.

FIG. 32B are waveforms from the circuitry of the expan-
sion box.

FIG. 33A is a schematic diagram of circuitry of the
expansion box.

FIG. 338 are waveforms from the circuitry of the expan-
sion box.

FIGS. 33C-H are a state diagram from the circuitry of the
expansion box.

FIG. 34 is a schematic diagram of circuitry of the expan-
sion box.

FIG. 35A is a state diagram from the circuitry of the
expansion box.

FIG. 358 are waveforms from the circuitry of the expan-
sion box.

30

40

50

65

4

FIG. 36 is a schematic diagram of circuitry of the expan-
sion box.

FIG. 37 is a flow diagram of a non-maskable interrupt
handler invoked in response lo detection of a bus hang
condition in the computer system.

FIG. 38 is a flow diagram of a BIOS routine that is
invoked by a computer system lock-up event.

FIG. 39 is a flow diagram of a BIOS isolate routine
invoked in response to a bus-hang condition or the computer
lock-up event.

FIG. 40 is a block diagram of a bus watcher in each of the
bridge chips.

FIG. 41 is a state diagram of logic in the bus watcher for
returning the bus to an idle state.

FIG. 42 is a logic diagram of status signals in the bus
walcher.

FIG. 43 is a logic diagram of bus history FIFOs and bus
state vector FIFOs in the fault isolation circuil.

FIG. 44 is a logic diagram of circuitry for generating
ready signals for indicating when the bus history and state
vector information are available.

FIG. 45 is a flow diagram of a routine for assigning a bus
number to a powered down or empty slot.

FIG. 46 is a flow diagram of a routine for allocating
memory space for the computer system.

FIG. 47 is a flow diagram of a routine for allocating 1/O
space for the computer system.

FIG. 48 is a flow diagram of a routine for handling a
recently powered up card.

FIG. 49 is a block diagram of configuration space for a
PCI—PCI bridge circuit.

FIG. 50A is a block diagram of a computer system.

FIG. 508 is a bus number assignment tree.

FIG. 51 is a block diagram showing type 0 and type 1
configuration transactions.

FIG. 52 is a table showing mapping of address from a
primary bus 1o a secondary bus.

FIGS. 53A and 53B are a logic diagram of circuitry for
handling type 0 and type 1 configuration cycles.

FIG. 54A is a block diagram of circuitry for storing
information to allow calculation of bus performance param-
elers.

FIG. 548 is a block diagram of pre fetch counters.

FIG. 55 is a block diagram of a computer system.

FIG. 56 is a block diagram of a PCI arbitration scheme.

FIG. 57 is a schematic diagram of a buffer flush logic
block.

FIG. 58 is a schematic diagram of a cable decoder.

FIGS, 59-62 are schematic diagrams of a posted memory
write queue, including control logic.

FIGS. 63-65 are schematic diagrams of a delayed request
queue, including control logic.

FIGS. 66-69b are schematic diagrams of a delayed
completion queue, including control logic.

FIGS. 70-74 are schematic diagrams and a table of a
masler cycle arbiter.

FIGS. 75-87 are schematic and state transition diagrams
of a queue-block-t0-PCI-bus interface.

FIG. 88 is a schematic block diagram showing bus
devices connected 1o an expansion bus.

FIG. 89 is a schematic block diagram showing circuitry to
route interrupt requests.

Toshiba_Apricorn 1010-0130
IPR2018-01067

5,943,482

5

FIG. 90 is a schematic diagram of device select logic.

FIGS. 91-94 are schematic block diagrams of registers.

FIG. 95 is a graph showing wavelorms for the computer
system.

FIG. 96 is a schematic diagram of the multiplexing
circuitry.

FIGS. 97A-D are schematic diagrams of the interrupt
receiving block.

FIG. 98 is a schematic diagram of the interrupt output
block.

FIG. 99 is a chart showing the time multiplexing of
interrupl request signals,

FIG. 100 is a chart showing interrupl request mapping.

FIG. 101 is a schematic block diagram showing bus
devices connected to an expansion bus,

OVERVIEW

In the ensuing description, all signal mnemonics followed
or preceded by a “#7, *_ ", or *!” signify inverted logic
slales.

As shown in FIG. 1, a computer system 10 includes a
primary PCI bus 24 that is coupled to a bridge chip 26a and
a bridge chip 265, both of common design 26. The bridge
chip 26a is coupled to a bridge chip 48a through a cable 31,
and the bridge chip 26b is coupled to the bridge chip 48b
through a cable 28. The bridge chips 48a and 48b arc of
common design 48, which is common to design 26 except
that design 26 is in an upstream mode and design 48 isin a
downstream mode.

The PCI bus 24 is interfaced to a local bus 22 through a
system controller/host bridge circuit 18. The system
controller/host bridge circuit 18 also controls access lo a

system memory 20 which is also coupled to the local bus 22

along with the CPU 14 and a level two (La) cache 16.

A PCI-Extended Industry Standard Architecture (EISA)
bridge 15 interfaces the PCI bus 24 to an EISA bus 17. Both
a keyboard controller 21 and a Read Only Memory (ROM)
23 are coupled to the EISA bus 17. A non-volatile random
access memory (NORM) 70 connected to the EISA bus 17
stores information which should survive the computer sys-
tem shutting off. An automatic server recovery timer 72
monitors the computer system for inactivity. If the system
locks up, the AIR timer 72 will expire after about 10
minutes. A keyboard 19 is monitored by the keyboard
controller 21 for detection of depressed keys.

Referring to FIG. 2, the bridge chip 48a furnishes an
interface to a PCI bus 32a, and the bridge chip 48b furnishes
an interface to a PCI bus 32b. The PCI buses 32a and 32b
are located on two expansion boxes 30a and 30b, of com-
mon design 30, and each expansion box 30 has six hot-plug
slots 36 (36a—f) which are capable of receiving conven-
tional expansion cards 807 (FIG. 27A). One slot 34 on the
expansion box receives a card 46 which has the bridge chip
26. Each hot-plug slot 36 has associated switch circuitry 41
for connecting and disconnecting the slot 36 1o and from the
PCI bus 32. Six mechanical levers 802 are used to selec-
tively secure (when closed or latched) the cards 807 to
corresponding slots, as further described in U.S. Pat. appli-
cation Ser. No. 08/658,385, entitled “Securing a Card in an
Electronic Device,” filed on the same date as this application
and incorporated by reference. Each expansion box 30
includes registers 52 and 82 for monitoring the levers 802
and status signals of the expansion box 30 and a register 80
for controlling connection and disconnection of slots 36 1o
the PCI bus 32.

20

40

6

Referring to FIG. 3, the bridge chip is designed to be used
in pairs 26 and 48 1o form a PCI—PCI bridge between the
primary PCI bus 24 and the secondary PCI bus 32. The
programming model is that of two hierarchical bridges. To
the system software, the cable 28 appears as a PCI bus which
contains exactly one device, the downstream bridge chip 48.
This greatly simplifies the configuration of the 2-chip PCI—
PCT bridge joining the primary and secondary buses. The
bridge chip 26, which is closer to the CPU 14, joins the
primary PCI bus 24 to the cable 28. The second PCI—PCI
bridge 48 resides in the expansion box 30 and joins the cable
28 1o the secondary PCI bus 32. A mode pin UPSTREAM
CHIP determines whether the bridge chip operates in the
upstream mode or the downstream mode. Some non-bridge
functions such as a bus monitor 106 and hot plug logic in an
SIO 50 are used only in the expansion box 30, and arc
non-functional in the upstream mode chip 26.

A clock generator 102 in the bridge chip 26 generates
clocks based on the clock PCICLK1 on the primary PCI bus
24, with one of the generated clocks being provided through
the cable 28 to a clock generator 122 in the downstream
bridge chip 48. The clock generator 122 generates and drives
the PCI clocks in the expansion box 30 at the same fre-
quency of the primary PCI bus 24, which results in both
bridge chips 26 and 48 being run at the same frequency. The
downstream bridge chip 48 lags the upstream bridge chip 26
in phase by the delay of the cable 28. An asynchronous
boundary in the upsircam bridge chip 26 at the point where
data is taken off of the cable 28 allows the phase delay to be
any value (and therefore the cable to be of any length), with
the only requirement only being that the frequency of the
two bridge chips be the same.

The core logic of each bridge chip is the bridge logic
block (100 or 120), which includes a PCI master (101 or
123) for acting as a master on the respective PCI bus, a PCI
target or slave (103 or 121) for acting as a slave device on
the respective PCI bus, configuration registers (105 or 125)
which contain the configuration information of the corre-
sponding bridge chip, and a queue block (107 or 127)
containing several queues in which data associated with
transactions between the primary PCI bus and the secondary
PCI bus 32 are queued and managed. The data transferred
between the upstream bridge chip 26 and the downstream
bridge chip 48 are buffered by cable interfaces 104 and 130
in the bridge chips 26 and 48, respectively.

Interrupt routing logic is also included in each bridge
chip. There are 8 interrupts, 6 from the secondary bus slots,
1 from an SIO circuit 50, and 1 from the downstream bridge
chip 48. In the downstream chip 48, the interrupts are
received by an interrupt receiving block 132 and sent up the
cable 28 as a serial stream in sequential time slices. In the
upstream bridge chip 26, the interrupts are received by an
interrupt output block 114, which routes the interrupts to an
interrupt controller.

The SIO circuit 50 furnishes control signals for lighting
LEDs, for controlling reset, and for selectively connecting
the slots 36 to the bus 32. It also includes logic for reading
the engagement status of the levers 802, and the status of the
cards 807 in cach slot 36.

The bridge circuit 26 also includes support for interrupts
in the expansion box 30, and, when installed in a slot in the
host system with a proprictary interface to a multichannel
interrupt controller, it sends the states of each interrupt in a
serial stream. The bridge circuit 26 also can be configured to
drive standard PCIINTA, INTB, INTC, and INTD signals if
it is installed in a standard slot in the host system

Toshiba_Apricorn 1010-0131
IPR2018-01067

5,943,482

7

Each bridge chip also includes a PCI arbiter (116 or 124)
for controlling access o up 1o seven bus masters. As the
upstream bridge 26 is installed in a slot, the PCI arbiter 116
in the upstream bridge chip 26 is disabled. Each bridge chip
also includes an I°C controller (108 or 126) for communi-
cation with devices such as EEPROMs, temperature sensors,
and so forth, a JTAG master (110 or 128) for performing test
cycles, a bus monitor (106 or 127) for measuring bus
utilization and efficiency and the efficiency of the bridge
chip’s prefetch algorithm, and a bus watcher (119 or 129) for
storing bus history and state vector information and for
notifying the CPU 14 of a bus hang condition. Certain
blocks are disabled in each bridge chip as they are not used.
In the upstream bridge chip 26, the bus watcher 119, the SIO
118, the PCI arbiter 116, and the bus monitor 106 are
disabled. In addition, the interrupt receiving block 112 in the
upstream chip 26 and the interrupt output block 134 in the
downstream chip 48 are disabled.

Queue Block Overview

Referring to FIG. 4, the queue blocks 107 and 127 manage
transactions [lowing between the primary PCI bus 24 (in the
upstream chip) or the secondary PCI bus 32 (in the down-
stream chip) and the cable interface 130. (From here on, the
downstream bridge chip will be referred to with the assump-
tion that upstream chip works identically, unless otherwise
noted). The queue block 127 includes a cable decoder 146
that receives from the cable interface 130 transactions to be
completed on the secondary PCI bus 32. After decoding a
transaction, the decoder 146 places the transaction, along
with all information included in the transaction, into one of
three queues 140, 142, and 144. Each queue contains several
transaction buffers, cach of which stores a single transaction
and therefore is able to handle several transactions simul-
tancously.

The first queue, a posted memory write queue (PMWQ)
140, stores posted memory write cycles issued by the CPU
on the primary bus along with all information required to
execute cach cycle on the secondary bus 32. The PMWQ
140 has four transaction buffers, cach of which holds one
posted memory write transaction containing up lo eight
cache lines (256 bytes) of data. Under some circumstances,
a posted memory write transaction having more than ecight
cache lines of data may overflow into one or more subse-
quent buffers, as described below.

The second queue, a delayed request queue (DRQ) 142,
stores delayed request transactions (i.e., delayed read
requests (DRR), such as memory read (MR), memory read
line (MRL), and memory read multiple (MRM) requests;
and, in the downstream chip, input/output (I/0) read/writes
and configuration (config) read/writes) issued by the CPU on
the primary bus along with all information required to
execute each transaction on the secondary bus 32. The DRQ
142 has three transaction buffers, cach of which is capable
of holding one double-word, or “dword”, of data for delayed
wriles.

The third queue, a delayed completion queue (DCQ) 144,
stores delayed completion information provided by the
upstream chip in response to delaved request transactions
generated on the secondary bus 32 For a delayed read
request, the corresponding completion information contains
the read data requested by the initiating device and the read
status (i.e., an indication of whether a parity error on target
abort occurred). The delayed completion information
returned for a delayed write transaction is the same as that
returned for a delayed read request, except that no data is

20

30

i
wn

40

=1

e

@n

8

returned for delayed writes. Since 1/0 and config read/writes
oceur only on the downstream bus, only the upstream DCQ
will contain delayed completion information corresponding
1o one of these transactions. The DCQ 144 has eight
completion buffers, each of which can hold up to eight cache
lines of completion information for a single delayed request.
In addition to the completion information, each completion
buffer also contains a copy of the delayed request that
generated the information. For delayed read transactions, a
data “wstream” can be established between the primary bus
24 and the secondary bus 32 if the requesting device begins
retrieving the requested data before the target device stops
providing it to the DCQ 144. Under some circumstances, the
DCOQ 144 automatically will retrieve, or “prefetch,” addi-
tional data when a requesting device retrieves all of the
requested data from the corresponding buffer in the DCQ
144. Both streaming and automatic prefetching are dis-
cussed in more detail below.

A queue-to-PCI interface (QPIF) 148 manages transac-
tions flowing from the queues 140, 142, and 144 to the PCI
bus 32, and from the PCI bus 32 to the DCQ 144 and to the
upstream chip through the cable interface 130. The QPIF
148 enters a “master” mode to run posted memory write and
delayed request transactions from the PMWQ 140 and the
DRQ 142 on the secondary bus. For both posted memory
write and delayed read transactions, the QPIF 148 can
“promote” a transaction that may involve less than a cache
line of data (i.c., a memory write (MW) or a memory read
(MR) transaction) to one that requires one or more cache
lines (i.c., a memory write and invalidate (MWI) transaction
or a memory read line (MRL) or memory read multiple
(MRM) transaction) if certain conditions are met. The QPIF
148 also may convert a read transaction involving a single
cache line of data (i.c., a MRL transaction) into one involv-
ing several cache lines of data (i.e., a MRM transaction). The
QPIF 148 also may “correct” a MRL or MRM transaction
that begins in the middle of a cache line by reading the entire
cache line and then throwing away the unrequested portion
of the data Transaction promotion and read correction, both
of which are deseribed in more detail below, improve system
efficiency by reducing the time required to retrieve data from
a memory device,

The QPIF 148 enters a “slave™ mode to provide data from
the DCQ 144 to a requesting PCI device or to send trans-
actions from the PCI bus 32 to the DCQ 144 and to the
upstream chip through the cable. When the QPIF 148
receives a posted write transaction from the bus 32, it
forwards the transaction to the upstream chip if a corre-
sponding one of a group of transaction counters 159 indicate
that the PMWQ in the other bridge chip is not full, as
discussed below. When the QPIF 148 receives a delayed
request, it first forwards the request to the DCQ 144 10
determine whether the transaction already has been placed in
the DCQ and, if so, whether the corresponding delayed
completion information has been returned to the DCQ 144.
If the delayed completion information is in the DCQ, the
information is provided to the requesting device and the
transaction is terminated. If the request already is enqueuned
but the delay completion information has not been returned,
the requesting device is retried and the transaction is termi-
nated on the PCI bus 32. If the transaction is not yet
enqueued, the DCQ 144 reserves a completion buffer for the
transaction and the QPIF 148 forwards the transaction to the
upstream chip through the cable interface 130, as long as the
corresponding transaction counter 159 indicates that the
other bridge chip is not full.

If the DCQ 144 determines that one of its buffers contains
data intended for a requesting device but different than the

Toshiba_Apricorn 1010-0132
IPR2018-01067

5,943,482

9

data requested in the current transaction, the buffer may be
flushed to prevent the requesting master from receiving stale
data. The buffer is flushed when it contains prefetch data
(i.c., data left in the buffer after the requesting device has
retrieved some of the data, or data that was not specifically
requested by the device), but is not flushed when it contains
completion data (i.e., specifically requested by a device that
has not yet returned to retrieve it). If the buffer contains
completion data and the requesting device has issued a
request that does not “hit” the buffer, the DCQ 144 tags the
device as a “multi-threaded” device (i.¢., one that is capable
of maintaining more than one transaction at once) and
allocates another completion buffer for the new request. The
buffer flushing and multiple buffer allocation schemes are
described in more detail below.

A master cycle arbiter (MCA) 150 in the queue block 127
maintains standard ordering constraints between posted
memory write, delayed request, and delayed completion
transactions, as set forth in the PCI Bridge Architecture
Specification, Version 2.1. These constraints require that bus
cycles maintain strong write ordering and that deadlocks do
not occur. Therefore, the MCA 150 determines the order in
which posted memory write transactions in the PMWQ 140
and delayed request transactions in the DRQ 142 are run on

the PCI bus 32. The MCA 150 also controls the availability -

of delayed completion information stored in the DCQ 144.
To ensure compliance with these rules, the downstream
MCA 150 gives each posted memory write cycle an oppor-
tunity to bypass carlier-issued delayed request cycles, while

both the downstream and the upstream MCAs 150 do not 5

allow delayed request and delaved completion cycles to
bypass earlier-issued posted memory write cycles. Transac-
tion ordering by the MCA 150 is described in more detail
below.

The transaction counters 159 in the downstream queue 3

block 127 maintain a count of the number of transactions
enquened in the upstream bridge chip. A posted memory
write (PMW) counter 160 indicates the number of PMW
transactions held in the upstream posted memory write
queuve. The PMW counter 160 is incremented each time a
PMW transaction is sent to the cable interface 130. The
counter 160 is decremented each time the QPIF 148 receives
a signal from the cable decoder 146 indicating that a PMW
cyele has been completed on the upstream PCI bus 24, When
the upstream PMWQ has enqueued the maximum number
(four) of PMW transactions, the PMW counter 160 asserts a
PMW full signal (tc_pmw__full) that tells the QPIF 148 to
retry additional PMW cycles from the PCI bus 32. Likewise,
a delayed request (DR) counter 161 counts the number of
DR transactions held in the upstream delayed request queue.
When the DRQ is holding the maximum number (three) of
DR transactions, the DR counter 161 asserts a DR full signal
(tc_dr_full) indicating that the QPIF 148 must retry all
subsequent DR transactions [rom the PCI bus 32. A delayed
completion (DC) counter 162 counts the number of delayed
completions that are enqueued in the upstream master cycle
arbiter. When the MCA is holding the maximum number
(four) of delayed completions, the DC counter 162 asserts a
DC full signal (tc_dc_full) that prevents the downstream
QPIF 148 from running delayed request bus 32 on the
secondary PCl bus 32. As soon as the [ull condition
disappears, delayed completion information may be sent to
downstream DCQ.

A PCI interface block 152 resides between the PCI bus 32
and the queue block 127. The PCI interface 152 includes a
master block 123 and a slave (target) block 121. The slave
block 121 allows PCI devices on the bus 32 to access the

20

3
wn

40

e

@n

10

bridge chip’s internal registers (e.g., largel memory range
registers 155 and configuration registers), to claim comple-
tion information stored in the DCQ 144, and to initiate
transactions that are passed through the QPIF 148 and the
cable interface 130 to the primary bus. The slave block 121
controls the availability of the PCI bus 32 to the PCI devices
on the bus 32 by recognizing when each device asserts its
REQ# line and forwarding the REQ# signals to the PCI
arbiter 124, When the PCI arbiter 124 selects a requesting
device to receive control of the bus, the slave block 121
grants the bus to the device by asserting the device's GNT#
line. As soon as the bus 32 is granted to the requesting device
and the device asserts its FRAME# signal indicating the
beginning of a transaction, the slave block 121 latches the
transaction information (e.g., address, command, data, byte
enables, parity, etc.) into a slave latching register 156. The
queue block 127 then is able to retrieve the transaction
information from the latching register 156 and provide it to
the DCQ 144 and/or the cable interface 130.

Transactions supported by the PCI slave block 121 are
shown in the following table.

PCI Interface Slave Transactions

Transaction Type Primary Interface Secondary Interface

Interrupt Acknowledge Not supported Not supported
Special Cycele Delayed Delayed

1/O Read Delayed Delayed

/O Write Delayed Delayed
Memory Read Delayed Delayed
Memory Write Posted Posted
Configuration Read Immediate Not supported
(type 0)

Configuration Write Immediate Not supported
(type 0)

Configuration Read Delayed Not supported
(type 1)

Configuration Write Delayed Not supported
(type 1)

Memory Read Multiple Delayed (Streaming) — Delayed (Streaming)
Dual Address Cycle Not Supported Immediate
Memory Read Line Delayed Delayed
Memory Write and Posted Posted

Invalidate

The master block 123 of the PCI interface 152 runs only
cyeles initiated by the queue block 127 (i.e., transactions
held in the PMWQ 140 and DRQ 142). The queue block 127
requests the PCI bus by sending a request signal (q2p_
REQ) to the PCI master 123, which then determines whether
1o asserl a corresponding request signal (blare_) to the PCI
arbiter 124, The master block 123 asserts blreq if the queue
block 127 is not running a locked cycle and the PCI bus 32
is not locked by another PCI device. When the PCT arbiter
124 selects the queue block 127, the master block 123 sends
an acknowledge signal (p2q__ack) to let the queue block 127
know it has control of the bus 32. If the PCI arbiter 124 has
no outstanding requests from other devices on the bus 32,
the master block 123 automatically sends the p2q_ack grant
signal to queue block 127, even if the queue block 127 has
not asserted the q2p_ req signal. As soon as the queue block
127 wins arbitration (i.c., the arbiter 124 asserls the blunt
signal) and asserts its q2p_frame signal to indicate the
beginning of a transaction, the PCI master 123 latches
outgoing transaction information (i.c., address, command,
data, byle enables, parity, elc.) into a master laiching register
158 in the PCI interface 152. The transaction information
then is used to complete the transaction on the PCI bus 32.

Transactions supported by the master block 123 are
shown in the following table.

Toshiba_Apricorn 1010-0133
IPR2018-01067

5,943,482

11

PCI Interface Master Transactions

Transaction Type Primary Interface Secondary Interface

Interrupt Acknowledge Not supported Not supported

Special Cycle Supported Supported

/O Read Supported Supported

/O Write Supported Supported
Memory Read Supported Supported
Memory Write Supported Supported
Configuration Read Not Supported Supported
Configuration write Not Supported Supported
Memory Read Multiple Supported Supported
Dual Address Cycle Supported Not Supported
Memory Read Line Supported Supported
Memory Write and Supported Supported
Invalidate

In general, the master block 123 operates as a standard

PCI master. However, unlike standard PCI bridges, the
master block will not terminate a MRL, MRM, or MWI
transaction until a cache line boundary is reached, even after
the master latency timer (MLT) expires. Also, the master
block 123 does not assert “initiator ready” (IRDY) wait
states. The master block 123 runs a locked cycle on the PCI

bus 32if the queue block 127 asserts its “lock™ signal ,

(q2p__lock) and releases its lock on the bus 32 when the
quene block 127 asserts its “unlock™ signal (q2p_ unlock).

Reflerring also to FIG. 57, the PCI interface 152 contains
bufler flushing logic 154 that determines when one or all of

the DCQ completion buffers should be flushed by the queue 5

block 127. The PCI slave 121 generales two signals that are
used by the queue block 127 to flush the completion buffers:
a flush signal (p2q_flush) that indicates when a buffer
should be flushed, and a slot selection signal (p2q_slot

[2:0]) that indicates which PCI device (i.c., which slot on the 5

PCI bus) should have data flushed. The following table
shows the relationship between p2q_slot [2:0] and the PCI
slot number.

Creation of p2g_slof2:0

p2q_slot[2:0] slot number

000
001
010
01
100
101
1o
111

]

R P

When p2q_flush is asserted, the queue block 127 will
flush either all of the completion buffers in the DCQ 144 if
p2q_slot [2:0] is equal to “000” or the corresponding one of
the eight completion buffers if p2q_ slot [2:0] has any other
value. The queue block 127 keeps track of which completion
buffers, if any, correspond to each PCI slot at any given time.

The p2q_ flush signal is asserted at the rising edge of the
first PCI clock (CLK) cycle after a config write (wr__cfg)
cycle occurs or after an /O write (iowr) cycle oceurs or a
memory write (memwr) cycle hits a downstream target
(hit__tmem) during a command check state (emd__chk_st).
Gates 2014, 2016, 2018, and 2020, and flip-flop 2022 are
arranged to produce p2q_ flush in this way.

In the upstream bridge chip (i.c., when the upstream, 5
chip_isignal is asserted), p2q_slot [2:0] always has a value
of “001" since the CPU is the only master on the primary

40

50

12

PCI bus. In the downstream chip, the value of p2q_slot
depends upon whether the eycle leading to a flush condition
is a cycle from the secondary bus 32 to the queue block 127
(i.e., if p2q_gqeyce is asserted). If the p2q_qeye signal is
asserted, p2q_slot [2:0] takes on the value of the req_slot
[2:0] signal produced by the PCI slave 121. The req_slot
[2:0] signal indicates which of the seven devices on the
secondary PCI bus 32 has been granted control of the bus 32.
The PCI slave 121 generates the req_slot [2:0] signal by
latching the value of the GNT# line for each of the seven
slots on the bus 32 to form a seven bit latched grant signal
(latched _gni_[7:1]; the eighth grant line, which belongs 1o
the queue block, is ignored) and encoding latched _gnt[7:1]
according to look-up table 2006, as follows.

Creation of req_slotf2:0

latched __gnt_[7:1] req_slot[2:0]
1111111 000
1111110 001
1111101 010
1111011 011
1110111 100
1101 101
1011111 110
0111111 111

If the cycle leading to the flush is not a secondary-PCI-
to-guene-block cycle, it must be an 1/O read or config read
to the target memory range of one of the slots on the
secondary bus 32. When the cycle is an 1/O read or config
read (i.c., liowr AND !wr_ cfg), p2q_ slot [2:0] takes on the
value of the PCI slot whose memory range has been hit
(mrange__slot [2:0]) Otherwise, the cycle is an [/O write or
a config write, and p2q_slot [2:0] is set equal to “000” so
that all completion buffers are Hushed. Gates 2008 and 2010
and multiplexers 2002 and 2004 are arranged to generale
p2q_ flush [2:0] in this way.

Cable Decoder

Referring to FIG. 58, the cable decoder 146 receives
transactions from the cable interface and selects the appro-
priate queue lo receive each transaction. When the cable
decoder is in the data phase (i.c., when data_ phase or
next data phase, an asynchronous signal that sets the value
of data__phase at the next CLK cycle, is asserted), the cable
decoder 146 looks at the command code (cd__cmd [3:0])
senl across the cable to determine which queue should
receive the transaction. As shown in the table below, when
cd_cmd [3:0] has a value of “1001", the transaction is a
delayed completion, so the cable decoder asserts a cd__deq_
select signal that tells the DCQ to claim the transaction.
When the three LSB of the command code signal (cd__cmd
[2:0]) are “1117, the transaction is a posted memory write,
so the cable decoder generates a cd | spmwq_ select signal 1o
alert the PMWQ of the incoming transaction. When the
transaction is neither a posted memory write nor a delayed
completion and the command code does not represent a
streaming signal, the cable decoder asserts a ed__drq_ select
signal that tells the DRQ to claim the transaction. Gates
2024, 2026, 2028, and 2030 are configured 1o generate the
cd deq select,ed _pmwq_ select, and cd__drq_ select sig-
nals in this way.

The following table shows the four bit command codes
associated with each type of transaction.

Toshiba_Apricorn 1010-0134
IPR2018-01067

5,943,482

13

14

-continued

Transaction Command Codes

Contents of PMWQ

Transaction Type Command Code z Field Bits Comments
/O Read 0010 ’ Memory Write and [nvalidate 1111
1O Write 0011 (only necessary to store cbe[3])
Config read 1010 Byte Enables o Store BEs on every valid transfer
Config write 1011 clock in the data RAM.
Memaory read 0110 Parity 1/address Must store PAR with each transfer
MRL 1110 10 along with 32-bit addr/data.
MRM 1100 0 Must store data parity bits on every
Memory write 0111 valid data transfer in data RAM.
MWI 1111 Data 1] Stored in data RAM up to 8 cache lines
Delayed completion 1001 Lock 1
Stream established 1000 DAC Indication 1 Indicates whether address is 32 or 64
15 bits
Witk the downslrc'a - bridg—c ehiphas uslabhshe_d 4 ‘_1‘““ Because the PCI Spec 2.1 requires posted memory write
stream between the primary bus and a secondary bus master, : b uted s theordersnahiehii
the upstream cable decoder receives a command code of lransactions 1o be executed in the order 1n which they are
bie popcar e received, the tag memory 2036 is a circular FIFO device.
1000°. This code represents 2 streanting signal g?ncra{cd 20 The PMWQ, and therefore the tag memory 2036, can handle
by the downstream chip to inform the upsiream chip that a up to four posted memory wrile transactions simultancously.
stream has been established When the cable decoder The data RAM 2038 includes four data buffers 2042
receives this command code, it asserts a cd_stream signal 2044, 2046, and 2048, one for each transaction in Iha‘
that tells the QPIF in the upstream device to continue the PMWQ. Each buffer can store up to eight cache lines, or 256
lransaction, '1 he cable f]"'COdCT also generates a ‘\—d stream__ 55 bytes, of data (eight words per cache line). For each cache
next_data signal that instructs the upstream chip o provide line in a buffer, the buffer stores eight data parity bits 2040
another piece of data to the secondary bus. The cd_ stream (one per dword) and thirty-two enable bits 2050 (one per
next data signal is asserted when cd stream signal is byte).
asserted, the transaction is in the data phase (ie., dalta_ A cable interface block 2060 receives cach transaction
phase is asserted), and a next, 5 data signal has been received 3p and the corresponding data from the cable decoder and
from the downstream chip through the cable interface (the places the transaction in the tag memory 2036. A queue
next_ data signal appears on onc of the lines of the ¢2q_bull interface block 2053 receives the data from the cable inter-
[3:0] signal, Whl_Ch, when no stream is oceurring, lﬁl}§ the face block 2060 and places it in the appropriate location in
queue block which downstream DCQ buffer is associated the data RAM 2038. The queue interface 2053 also retrieves
with the current transaction). The ed_stream_next_data 55 data from the data RAM 2038 and provides it to the QPIF
signal is deasserted when cither the cdstream signal is when the QPIF is running the corresponding transaction on
deasserted or when a new request is received from the cable the PCI bus. An input pointer logic block 2054 generates
interface (i.e., €2q_new, req is asserted). Gales 2032 and four input pointers, one for cach buffer, that tell the queue
2034 are configured (o generale the cd_stream and interface 2053 where to place the next word of data. A valid
cd_stream__next_ data signals in this way. 40 (output) pointer block 2056 generates four output pointers,
one for each buffer, that indicate the position of the next
Posted Memory Write Queue word to be taken.
G g) : Referring also to FIG. 60, a valid flag logic block 2052
P&i{:fmnlgzﬂt'o. FIG. 59, lhﬁl posted hnler}lory_ wmﬁ q;lc:e maintains an eight bit valid line register 2062 for each of the
(PMWQ) 140 is a storage element that contains all of the o g buffers in the data RAM 2038. The valid line register
command information needed to execute posted write trans- 2062 indicates which of the eight cache lines in each buffer
amiqn“m the target hus‘Thc. PMWO ' ndu.d £54 142 alony contain valid data. When the last word in a cache line has
portion 2036 that holds information ldcnllfylng each been filled with data (i.c., valid _pointer [2:0] equals “111”
lrflﬂbfl.cll(:jl'l. _ahdata‘thi\M 2‘.138 .lh;: hﬁrliswgc w:'xl:? c'latg and cd__next_ data is asserted, indicating that the word has
AsSocialec Wit oacT ransachonan o o SO NATOUS:. o heen filled), the corresponding bit in an eight bit cable valid
control blocks 1o manage the flow of transactions into and signal (i.c., q0_cable_valid [7:0], q1_cable_valid [7:0]
ou‘I of the Pgdg? h." C?Ch.t?mw[}on {n l}l]u: FI:'W(% Ih‘c elc.) is sel. The bit to be set is determined by the three most
lag,brf]empry hma[;g‘tlalpsm orrcrllallcérz SR:W“"’I bf(s\/'] ress significant bits of the valid pointer (valid _pointer [5:3]),
to be writen lo, the PC command code (MW or MWD, an which indicate the cache line being filled. The corresponding
4 rL,“,’S_ pa_nly_ ll'_‘m nCied. cyele g «aual 4 “‘% 55 bit in the cable valid signal also is set when a slot validation
cycle” indication bits, as shown in I!u: following table. The signal (validate_slot) is received from the cable decoder at
lag n_]cmofy 2036 also Smrcs,a paler lo, the data R,AM the end of a transaction. The cable valid signal is latched into
location of the data corresponding to each of the transactions the valid Tine register 2062 corresponding to the selected
in the PMWQ. data buffer at the rising edge of the first PCI clock cycle
a0 (CLK) after the last word is filled or the validate_slot signal
Contents of PMW! is received. Otherwise, the valid line register maintains its
current value. The bits in the valid line registers 2062 are
Field Bits Comments cleared when the corresponding bits of an eight bit invali-
Addres o e S — date S{gnal (i.e., g0_invalid [7:0], g1 invalid [7:0], etc.) is
Address Cycles o5 asserted. .
PCI Command 1 Memory Write 0111 The valid flag logic block 2052 generates a pmwg_ valid

[3:0] signal that indicates which, if any, of the four data

Toshiba_Apricorn 1010-0135
IPR2018-01067

5,943,482

15

buffers contains at least one valid line of data. The valid
block 2052 also generates a pmwq_ valid__lines [7:0] signal
that indicates which of the cight cache lines of a selected
data buffer are valid. A queue select signal from the QPIF
(g2pif_queue select [1:0]) is used to select which data
buffer’s valid line register 2062 is used to generate the
pmwgq_ valid_lines [7:0] signal. When the queue block
gains control of the bus to run a posted memory write cycle
from a selected data bufler, the queue block transfers all data
in each line whose corresponding bit is set in the pmwq
valid lines [7:0] signal Gates 2064, 2066, 2068, 2070, and
2072, and flip-flop 2074 are arranged to set the values in the
valid line register 2062 for the first data bulfer (q0_ valid
[7:0]). Similar circuitry determines the contents of the valid
registers for the other three data buffers. Multiplexer 2076
selects the value of the pmwq_ valid_lines [7:0] signal.
Referring now to FIG. 61, a full line logic block 2058
maintains an eight bit full line register 2078 for cach of the
four data buffers. The contents of each [ull line register 2078
indicate which of the eight cache lines in the corresponding
data buffer are [ull. The bits in cach full line register 2078
are sel by an asynchronous next full,; line bit signal
generated by full line state machine 2080, described below.
When a queue selection signal from the QPIF (select_next
queue [3:0]) selects one of the data buffers and the next
full line bit signal is asserted, the bit in the full line
register 2078 corresponding to the cache line indicated by
the three most significant bits of the valid pointer (valid__
pointer [5:3]) is set. A 3x8 decoder 2082 converts the three

bit valid pointer into an eight bit signal that determines -

which bit to set. An eight bit full line signal (q0__full line)
is generated for each data buffer from the contents of the
corresponding full line register 2078. The full line signal
indicates which lines in the corresponding data buffer are
full. The full line logic block 2058 also generates a pmwq

20

full_line [7:0] signal that indicates which cache lines of a l

selected data buffer are full. Multiplexer 2084 and the
q2pif _queue select [1:0] signal are used to generate the
pmwq_ full line [7:0] signal.

Referring also to FIG. 62, the full line state machine 2080
is placed in an IDLE state 2086 at reset. In the IDLE state
2086, the next_ full line_ bit is set to zero. When a trans-
action is placed in the PMWQ, the transaction occurs in two
phases, an address phase and a data phase. When the data
phase begins (i.c., a clock _second_phase signal is asserted)
and the valid pointer points to the first word in a cache line
(valid pointer [2:0] =*000"), the state machine 2080 tran-
sitions to a DATA state 2088. In the data state, the next__
full line_bit signal is asserted only if the valid pointer
points to the last word in the cache line (valid _pointer [2:0]
="111"), the cd__next_data signal is asserted by the cable
decoder (indicating that the last word was filled with data),
and the byte enable signal from the cable decoder (cd
byte__en [3:0]) equals “0000". The state machine also tran-
sitions back to the IDLE state 2086 when these conditions
occur. If these conditions do not occur before the transaction
terminates (i.c., cd_complete is asserted), the next full
line__bit signal remains deasserted and the state machine
2080 transitions back to the IDLE state 2086. The state
machine 2080 also transitions to the IDLE state 2086
without asserting the next_full line bit signal when the
cd_byte_en[3:0]signal takes on a value other than “00007.

Referring again to FIG. 59 and also to FIG. 63, the
PMWQ normally must terminate a transaction from the
cable decoder when the data buffer receiving the corre-
sponding data is full. However, when the cable decoder
continues to send data after the buffer is full, an overflow

40

@n

16

logic block 2090 allows the data to overflow into the next
empty buffer. The overflow logic block 2090 maintains an
overflow register 2092 that indicates which, if any, of the
four data buffers are being used as overflow buffers. The
contents of the overflow register 2092 are used to produce a
four bit overflow signal (pmwq_ overflow [3:0]). When the
transaction is in the data phase (i.c., data__phase is asserted),
the valid pointer reaches the last word of a data buffer (i.c.,
valid__pointer [5:0] =*1111117), the cable decoder indicates
that more data is coming (i.c., ed_next_data is asserted),
and the cable decoder has not indicated that the transaction
is complete (i.e., cd__complete is not asserted), the select
next_queue [3:0] signal, which points to the recently filled
data buffer, is used 10 set the overflow register bit corre-
sponding to the next data buffer. If the conditions are not
met, the overflow bit is cleared. Gates 2094 and 2095 arc
used in conjunction with the select__next__queue [3:0] signal
1o set and clear the appropriate overflow register bits when
these conditions are met.

A single transaction may continue to overflow into addi-
tional buffers until the last unused buffer is full. If more than
one buffer is used as an overflow buffer, multiple overflow
register bits will be set. Consecutive set bits in the overflow
register indicate that a single transaction has overflowed into
more than one buffer. The overflow bits are either set or
cleared when the posted write transaction is placed into the
PMWQ. Also, if the QPIF begins to run the PMW transac-
tion on the target bus and empty the original buffer while the
data is still entering the PMWQ, the original buffer may be
reused to continue the overflow transaction. The overflow
can continue until all of the available buffers are full.

Delayed Request Queue

Referring to FIG. 64, the DRQ 142 stores all of the
information needed to complete delayed read request (DRR)
and delayed write request (DWR) transactions on the target
bus. The DRQ includes a quene memory 2100 that holds
information such as the address to be read from or written to,
the PCI command code, byte enables, address and data
parity bits, “locked cycle” and “dual address cycle™ indica-
tion bits, and the buffer number of the delayed completion
buffer reserved in the initiating bridge chip for the comple-
tion information. The queue memory 2100 also holds up to
thirty-two bits {(one word) of data to be written to the target
bus in a delayed write cycle. Because delayed write cycles
never involve more than one word of data, no data RAM is
needed in the DRQ. The DRQ, and therefore the queue
memory 2100, is capable of holding up request delayed
request transactions al once. A cable interface block 2102
claims delayed request transactions from the cable decoder
and places them into the queue memory 2100. The following
table shows the information maintained in the DRQ queue
memory.

Contents of DRQ

Field Bits Comments

Address 64 Upstream Transactions support Dual
Address Cycles

/O Read

/O Write

Config Read

Config Write

Memory Read

Memory Read Line

Memory Read Multiple

PCI Command 4

Toshiba_Apricorn 1010-0136
IPR2018-01067

5,943,482

17

-continued

Contents of DRQ

Field Bits Comments

Byte Enables 4 Byte Enables not necessary on MRL,
MRM

Parity faddress

1/data transfer Send data par with delayed write

transactions

Data 32 Data queued on delayed wrile
transactions.

Lock

DAC 1 Indicates whether address is 32 or

Indication 64 bils

Buff Num 3 Indicates DCQ buffer allocated for

completion data

Referring also to FIG. 65, a valid flag logic block 2104
determines when the DRQ has received all of the informa-
tion necessary to run the transactions in the queue memory
2100. When one of the DRQ slots is selected by a corre-
sponding slot select signal (i.c., select_zero for the first slot,
select__one for the second slot, and select__two for the third
slot) and the slot is validated by a validate _slol signal,
indicating that the cable decoder has finished delivering the

transaction to the DRQ, a valid signal corresponding to the 2

slot (i.e., q0_valid, q1_valid, orq2_ valid) is asserted at the
rising edge of the next PCI clock (CLK) eycele. If a slot is not
selected and validated by the validate slot signal, the slot’s
valid signal is deasserted if the QPIF has selected the slot by

asserting a DRQ select signal (q2pif_drq_select) and iden- :

tifying the slot (q2pif_queue_select=slot number) but has
aborted the transaction by asserting a cycle abort signal
(g2pif_abort_cycle). The valid signal also is deasserted if
the DRQ ends the transaction by asserling a cycle complete

signal (e.g., q0__cycle__complete) while the QPIF is wailing 35

for more data (i.c., g2pil_next data is asserted). However,
the cycle complete signal is ignored if the QPIF is currently
streaming data to the other bridge chip (i.e., g2pif

streaming is asserted). Otherwise, if the slot’s valid signal is

not specifically asserted or deasserted on a clock cycle, it

retains its current value. The valid flag logic block 2104 also
generates a DRQ valid signal (drg_valid [3:0]) that indi-
cates which, if any, of the three DRQ slots contains a valid
transaction, by combining the valid signals for each indi-
vidual slot (i.e., drq___validz{(], q2_valid, ql_ valid,
q0_valid}). Gates 2106, 2108, 2110, 2112, and 2114, mul-
tiplexers 2116 and 2118, and fip-fop 2120 are arranged to
generale the slot valid signals and the DRQ valid signals in
this manner.

The DRQ also includes pointer logic blocks that maintain
pointers to the memory locations from which data is to be
read during a delayed read request transactions. When the
address at which the delayed read transaction will begin is
loaded into the queue memory 2100, a valid pointer logic

block 2122 generates a six bit valid pointer that indicates ss

where the transaction will end. If the transaction involves a
single word (e.g., a memory read), the valid pointer logic
2122 sets the valid pointer equal to the address loaded into
the queue memory 2100. For a memory read line
transaction, the valid pointer logic 2122 gives the valid
pointer a value of “0001117, which indicates that the last
valid piece of data is eight dwords (i.c., one cache line)
beyond the starting point. For a memory read multiple
transaction, the valid pointer is set to “1111117, which
indicates that the last valid piece of data is sixty-four dwords
(i.c., eight cache lines) beyond the starting point. The valid
pointer logic 2122 maintains one valid pointer for each slot

13

=1

18
in the DRQ (valid__pointer 0 [5:0], valid__pointer_1[5:0],
and valid_pointer_2 [5:0]). The location of the valid
pointer is ignored by the DRQ when it receives a streaming
signal from the QPIF (q2pil_streaming), as described in
more detail below.

An output pointer logic block 2124 maintains three output
pointers (outpul__pointer__0 [5:0], output__pointer_1 [5:0],
and output__pointer_ 2 [5:0]), one for each slot in the DRQ,
that indicate the next word of data to be read from memory
and delivered to the other bridge chip. The pointer is
incremented when the QPIF indicates that it is ready to read
the next piece of data (i.c., it asserts the q2pif _next_data
signal), once for every word read. Except in streaming
situations, a transaction is terminated (completed) when the
output pointer reaches the valid pointer. If a transaction
terminates before all of the data is read (ie., before the
outpul pointer reaches the input pointer), the QPIF will pick
up at the location indicated by the output pointer when the
transaction resumes. If the output pointer is incremented but
the output pointer logic 2124 receives a stepback signal
(q2pif _step _back), indicating that the transaction was ter-
minated on the PCI bus before the QPIF was able to read the
last piece of data, the output pointer logic 2124 decrements
the counter once so that the last unread piece of data can be
read when the transaction resumes. A queue interface block
2126 provides transaction information and the valid and
output pointers to the QPIF.

Delayed Completion Queue

Referring to FIG. 66, the DCQ 144 stores delayed
completion messages containing the response of the target
bus to each delayed request issued on the initiating bus.
Delayed completion messages corresponding to delayed
read requests include the requested data, while delayed
completion messages corresponding to delayed write
requests include no data. A cable interface block 2130 claims
delayed completion messages from the cable decoder and
provides the delayed completion information to a tag
memory 2132, The DCQ, and therefore the tag memory
2132, is capable of storing up to eight delayed completion
messages at once. The tag memory 2132 stores information
such as the PCI command and the address contained in the
original request leading to the delayed completion message,
byte enable bits, address and data parity bits, and “locked
cycle” and “dual address cycle” bits. For delayed write
transactions, which always involve only in a single word of
data, the tag memory 2132 stores a copy of the written data.
Each of the eight slots in the tag memory 2132 includes an
implied pointer to one of eight corresponding data buffers in
a DCQ data RAM 2134. For delayed read transactions, the
returned data is stored in a corresponding data buffer
2135a-h in the data RAM 2134. The following table shows
the information stored in the tag memory 2132 for each
transaction held in the DCQ.

Contents of DCQ

Field Bits Comments

Address 64 Upstream Transactions support Dual
Address Cycles

/O Read

1/O Write

Config Read

Config Write

Memory Read

PCI Command 4

Toshiba_Apricorn 1010-0137
IPR2018-01067

5,943,482

19

-continued

Contents of DCQ

Field Bits Comments
Memory Read Line
Memory Read Multiple

Byte Enables 4 Byte Enables not necessary on MRL,
MRM

Parity 1/data transfer Send data par with delayed write
transactions

Data 3z Data queued on delayed write
transactions.

Lock 1

DAC 1 Indicates whether address is 32 or

Indication 64 bits

Each of the eight data buffers in the DCQ data RAM 2134
may store up to eight cache lines (256 bytes) of delayed
completion data. Therefore, the buffers are large enough to
store all completion data for even the largest delayed request
transactions (memory read multiple transactions). However,
the capacity of cach data buffer may be reduced to four
cache lines by setting a configuration bit (cfg2q_ eight
line_) in the bridge chip’s configuration registers. Each data
buffer may be filled by data provided in a single delayed
completion transaction, or if not all requested data is
returned in a single delayed completion transaction, by
multiple delayed completion transactions. However, cach
data buffer may contain data corresponding to only one
original delayed request, regardless of how many delayed
completion transactions it takes to provide the requested
data.

Aqueue interface block 2136 controls the flow of comple-
tion data from the DCQ cable interface 2130 into the data
RAM 2134 and out of the data RAM 2134 1o the QPIF.
Three logic blocks generate pointers that govern the input
and output of data stored in the eight data buflers. The first
block, an input pointer logic block 2138, maintains a six bit
input pointer for each of the eight data buffers (in
Pointer_0 [5:0], in_pointer_1 [5:0], ctc.). Each input
pointer points to the location in the corresponding data
buffer to place the next word of data. The second block, an
output pointer logic block 2140, maintains a six bit output
pointer for each of the eight buffers (out__pointer_0 [5:0],
oul_pointer _1[5:0], etc.). Each output pointer points to the
location of the word of data immediately following the word
last removed by the QPIFE. The output pointer for a selected
data buffer is incremented when the QPIF indicates that it is
ready for the next piece of data (i.e, when 2pif_next_data
is asserted). If the output pointer is incremented but the last
piece of data does not reach the requesting device because
the transaction was terminated by a device other than the
QPIF, the QPIF asserts a stepback signal (q2pif_step__back)
that causes the output pointer logic block 2140 to decrement
the output pointer by one word.

The third pointer block, a valid pointer logic block 2142,
maintains for each of the eight data buffers a six bit valid
pointer (valid _pointer 0 [5:0], valid pointer 1 [5:0],
elc.) that indicates the next word of data in the correspond-
ing data buffer that is available to the QPIF. Because the PCI
Spee 2.1 requires that read completion data not be returned
before an earlier-initiated posted memory write transaction,
delayed completion data placed into the DCQ while a posted
memory write is pending in the PMWQ cannot be made
available to the requesting device until the posted memory
wrile is completed on the PCI bus and removed from the
PMWQ. Therefore, as long as any earlier-enqueued posted
memory write transactions remain in the PMWQ, the valid

wn

0

5

20

25

30

()
wn

40

45

50

65

20
pointer must remain at its current position. Then, when all
carlier-enqueued posted memory writes have been removed
from the PMWQ, the valid pointer may be moved to the
same position as the in pointer. When the PMWQ is emply,
all delayed completion data is valid (i.e., available to the
requesting device) as soon as it is stored in the DCQ.

Referring also to FIGS. 67A and 678, the valid pointer
logic block 2142 must ask the master cycle arbiter (MCA)
1o validate all delayed completion transactions that enter the
delayed completion queue while a posted memory wrile is
pending in the PMWQ. But because the MCA can enqueue
no more than four delayed completion transactions at once,
as discussed below, the valid pointer logic block 2142 may
request validation of no more than four delayed completion
data buffers at once. The valid pointer logic block 2142 also
must keep track of which four delayed completions trans-
actions are enqueued in the MCA at any given time. To do
so, the valid pointer logic block 2142 maintains two four-
slot registers: a DCQ buffer number register 2144 and a
validation request register 2146. The buffer number register
2144 maintains the three-bit DCQ buffer number, as deter-
mined by the DCQ buffer number signal (cd_deq buff
num [2:0]) provided by the cable decoder, of each delayed
completion transaction enqueued in the MCA. The valida-
tion request register 2146 maintains one transaction valida-
tion request bit for cach of the DCQ buffers whose numbers
are stored in the four slots 2148a—d of the buffer number
register 2144. The request bit in each slot 2150a—d of the
validation request register 2146 is asserted il a correspond-
ing delayed completion transaction is enqueued in the MCA.
The values of the bits in the four validation request slots
2150a—d are provided together to the MCA as a four bit
validation request signal (deq_ valid [3:0]).

When a delayed completion transaction is to be enqueued
in the MCA, its corresponding DCQ buffer number is loaded
into one of the buffer number slots 2148a—d by the cd__dcg
buff _num [2:0] signal. The slot 2148a—d to be loaded is
selected by a two bit selection signal (next_valid_select
[1:0]). The value of the selection signal depends upon the
value of the deq valid [3:0] signal generated by the vali-
dation request register 2146 and look-up table 2152, the
contents of which are shown in the table below. The slot is
loaded when it is selected by next_valid_select [1:0], when
the cable decoder has selected the DCQ and has completed
the transaction (i.e., cd__deq_select and cd__complete are
asserted), and when at least one posted memory write
transaction is pending in the PMWQ (i.e., pmwq_no__pmw
is not asserted). Gates 2154, 2156, 2158, 2160, and 2162 and
2x4 decoder 2164 are arranged to load the bufler number
register 2144 in this manner. Likewise, the corresponding bit
in the validation request register 2146 is set by the output of
gates 2154, 2156, 2158, 2160, and 2162 and 2x4 decoder
2164.

Buffer number register slot selection

deq_valid[3:0] next_valid_select[1:0] slot #
xxxi) 00 0
xx(1 o1 1
x011 10 2
0111 11 3

In response to the deq valid [3:0] signal, the MCA
outputs a four bit DCQ run signal (mca__run_ deq [3:0]) that
indicates which of the DCQ buffers pointed to by the buffer
number register may have its valid pointer updated. The

Toshiba_Apricorn 1010-0138
IPR2018-01067

5,943,482

21

mea_run_deq [3:0] signal is provided to a valid pointer
update logic block 2166, along with the pmwq_no__pmw
signal and the in pointers for each of the eight data buffers.
If a posted memory wrile transaction remains in the PMWQ
after the MCA asserts one of the mca__run__deq [3:0] bits
(which will happen when a posted memory write transaction
was enqueued after the delayed completion transaction was
enqueued but before the MCA asserted the corresponding
mea_run_deq bit), the corresponding valid pointer is
updated as long as no other delayed completion transactions
corresponding to the same DCQ buffer are still enqueued in
the MCA. If a delayed completion transaction for the same
DCQ buffer is still enqueued in the MCA, the valid pointer
may be updated only when the mca_run_deq bit corre-
sponding this transaction is asserted. On the other hand, as
soon as the pmwg_no_pmw signal is deasserted, all valid
pointers are updated to match the corresponding in pointers
regardless of whether delayed completions are still
enqueued in the MCA. When a mca_run_deq bit is
asserted, the corresponding bit in the validation request
register 2146 is cleared. Gates 2168, 2170, 2172, 2174, and
2176 are arranged to clear the validation request register bits
in this manner.

Referring again to FIG. 66, a hit logic block 2180 deter-

mines when a delayed request transaction from a requesting 2

device on the PCI bus has “hit” mone of the delayed
completion messages in the DCQ. According to the PCI
Spec 2.1, the following attributes must be identical for a
delayed completion to be matched with a request: address,

PCI command, byte enables, address and data parity, data (i’

a wrile request), REQO644# (if a 64-bit data transaction), and
LOCK# (if supported). When a request is latched by the PCI
slave, the QPIF retrieves the request information, sends it to
the DCQ, and asserts a check cycle signal (q2pif _check

cye) that instructs the DCQ hit logic 2180 to compare the 3

request information to the delayed completion messages
stored in the DCQ tag memory 2132. The hit logic 2180
receives the sixty-four bit address signal (q2pif addr
[63:2]), the four bit PCI command signal (q2pif _cmd [3:0]),
the four enable bits (q2pif _byte__en [3:0]), the dual address
cycle bit (q2pif _dac) (which corresponds to the PCI
REQ64# signal), the lock bit (g2pif_lock) from the QPIF,
and, if the request is a write request, the data to be written
(q2pif _data [31:0]). Though not required by the PCI Spec
2.1, the QPIF also provides the slot number (g2pif _slot
[2:0]) of the requesting device to enhance the queve block’s
buffer flushing routine, described below. The hit logic 2180
then compares each of these signals to the delayed comple-
tion information stored in the eight DCQ buffers. If all of the
signals match the information of any of the delayed comple-
tion messages, the hit logic 2180 identifies the buffer con-
taining the matching completion message by asserting a
corresponding bit in an eight bit hit signal (deg_ hit [7:0]).
When a hit occurs, the QPIF retrieves the completion
message and provides it to the requesting device and, if the
request is a read request, begins removing the returned data
from the corresponding data buffer in the data RAM 2134.
If the request information does not match the completion
information of any of the delayed completion messages in
the DCQ, the request has “missed” the DCQ and is stored in
the next available DCQ buffer and forwarded through the
cable 1o the other bridge chip by the QPIF. A PCI device
which initiates a request that misses the DCQ may have its
REQ# line masked until its completion message is returned,
as described in more detail below.

The hit logic 2180 also interfaces with a multi-threaded
master detection block 2182 to detect which PCI slots, if

20

40

=1

e

65

22

any, contain multi-threaded devices. Multi-threaded devices
are capable of maintaining more than one delayed transac-
tion at once and therefore must be treated specially. When a
multi-threaded master is detected, a corresponding bit in the
configuration registers is set to indicate that the device is
able to sustain multiple outstanding delayed transactions and
therefore that its REQ# line should not be masked. Multi-
threaded master detection is discussed in more detail below.

Another function of the DCQ is to determine when an
opportunity to create a stream of read data between the
primary and secondary PCI buses exists. A streaming oppor-
tunity exists when delayed completion data is being placed
into the DCQ by the cable decoder while it is still being
placed onto the target bus by the target device. If the PCI
device that initiated the transaction resubmits ils request
while the target device is still placing data on the PCI bus,
a read stream is established. Because read streaming is an
efficient way to transfer data between the primary and
secondary PCI buses, the PCI bridge chip not only gives
higher priority in the bus arbitration process to a device
whose completion data is arriving, it also will attempt to
lerminate a non-streaming transaction to improve the pos-
sibility that a stream will be established. However, while in
theory streaming can occur during any read cycle, in practice
it is likely to occur only during transactions that involve a
large amount of data (i.e., memory read multiple
transactions). Therefore, the queue block will attempt to
terminate transactions in favor of potential streaming oppor-
tunities only when the potential streaming transaction is a
memory read multiple transaction.

Referring also to FIG. 68, a stream logic block 2184 in the
DCQ determines whether a streaming opportunity exists
and, if so, generates the signals required to support the
stream. The stream logic block 2184 generates the signals
required to disconnect a current transaction in favor of a
potential stream. When the cable decoder is placing a
delayed completion transaction in the DCQ, the stream logic
2184 uses the DCQ buffer number signal provided by the
cable decoder (cd_deq buff _pum) to retrieve the PCI
command code stored in the corresponding DCQ buffer
(q0_cmd [3:0], g1__cmd [3:1], ete.). If the command code
represents a memory read multiple request (i.e., “11007), the
stream logic 2184 asserts a disconnect-for-stream signal
(deq_disconnect_for _stream) that instructs the QPIF and
the PCI interface to terminate the current transaction due to
a polential streaming opportunity. Multiplexer 2186 and
comparator 2188 are arranged to generate the deq
disconnect_for_stream signal. Then, as long as the cable
decoder continues to provide the completion data to the
DCQ (i.e., the ed _deq_select signal remains asserted) and
no posted memory writes appear in the PMWQ (ie.,
pmwq_no__pmw remains asserted), the stream logic 2184
provides a streaming request signal (q2a_ stream) directly to
the PCI arbiter. The stream logic 2184 also provides the slot
number of the potential streaming device (q2a_stream__
master [2:07]) to the PCI arbiter by using the ed__deq_buff
num [2:0] signal to select the PCI slot number stored in the
selected DCQ buffer (g0__master [2:0] for DCQ bulfer zero
2135a, q1__master [2:0] for DCQ buffer one 21355, elc.).
The PCI arbiter then elevates the bus arbitration priority of
the potential streaming device, as discussed in more detail
below. If the potential streaming master is not granted the
bus before the streaming opportunity disappears, its priority
is returned to normal. Because the upstream bus has only
one master device (the CPU), this feature is disabled in the
upstream chip. Gate 2190 and multiplexer 2192 arc arranged
1o generate the q2a_stream and q2a_ stream_ master sig-
nals.

Toshiba_Apricorn 1010-0139
IPR2018-01067

5,943,482

23

When a requesting device hits a delayed completion
message stored in the DCQ, the corresponding bit of an eight
bit hit signal (hit [7:0]) is asserted. The hit [7:0] signal
indicates which of the eight DCQ buffers was hit by the
current request. When this happens, if the corresponding
DCQ buffer contains data (i.c., deq_no_data is not
asserted), the stream logic 2180 latches the value of the hit
signal for the duration of the transaction (i.c., as long as
q2pif_cyc_complete is asserted). The laiched version of
the hit signal forms a “delayed” hit signal (dly _hit [7:0]).
When either the hit signal or the delayed hit signal indicates
that a DCQ buffer has been hit, a three bit DCQ stream
buffer signal (deq_stream__buff [2:0]) provides the buffer
number of the hit DCQ buffer. Then, if the cable decoder
places delayed completion data into the buffer while the
cycle that hit the buffer is in progress (i.e., cd_deq_ select
is asserted and cd_deq buff _num [2:0] equals deq
stream__bufl [2:0]), the stream logic block 2180 asserts a
stream connect signal (deq stream connect) that tells the
QPIF that a stream has been established. The QPIF then
informs the bridge chip on the target bus that a stream has
been established. If certain conditions are met, the target
QPIF will continue to stream until it is told to stop by the
initiating QPIF, as discussed in more detail below. Gates

2194 and 2196, multiplexers 2198 and 2200, and flip-flop ,

2202 are arranged to generate the delayed hit signal. Gates
2204, 2206, and 2208 and encoder 2210 arc arranged as
shown to generate the deq stream connect and deq
stream__buff [2:0] signals.

Referring again to FIG. 66, the DCQ will, under certain -

circumstances, automatically prefetch data from the target
bus on behalf of a PCI master in anticipation that the master
will come back and request the data. A prefetch logic block
2212 in the DCQ prefetches data when the reading master

consumes all of the data in its DCQ buffer and the prefetch ;

logic 2212 anticipates that the requesting device will return
with a sequential read request (i.e., a request that picks up
with data located at the next sequential location in memory).
Because some devices, such as multi-threaded masters,
routinely read all of the data requested in one transaction and
then return with a different, non-sequential request, the
prefetch logic 2212 includes prediction circuitry that dis-
ables the prefetch capabilities for each device on the PCI bus
until the device has shown a tendency to issue sequential
read requests. As soon as a device that has been receiving
prefetched data returns with a non-sequential read request,
the prediction circuitry will disable the prefetching function
for that master.

Referring also to FIGS. 69A and 69B, the prefetch logic
block 2212 includes a prefetch prediction register 2214, the
output of which is an eight bit prefetch enable signal
(prefetch_set [7:0]) that governs whether the prefetch func-
tion is available for each of the devices on the PCI bus. All
bits in the prefetch enable signal are cleared at reset (RST)
and when the QPIF orders a general flush of all of the DCQ
registers (i.e., general flush is asserted and g2pif_slot [2:0]
equals “0007). The general flush signal is discussed in
more detail below. Gates 2216 and 2218 generate the signal
that resets the prefetch set bits.

An individual bit in the prefetch enable signal is set when
the corresponding PCI slot is selected by the g2pif slot
signal and the following conditions occur: the requesting
device hits a delayed completion buffer in the DCQ (i.c., one
of the bits in the cycle hit [7:0] signal is asserted), the
current transaction is a memory read line or memory read
multiple cycle (ie., q2pil _cmd [3:0] equals “1100” or
“111107), the QPIF has indicated that the cycle is complete

40

24

(i.c., q2pif_cyc complete is asserted), and the last word of
dala was taken [rom the DCQ buffer (ie., last word is
asserted). Gates 2220, 2222, 2224 and 2228a—h and decoder
2226 are arranged to set the prediction bits in this manner.
The last_word signal is asserted by the prefetch logic 2212
when the requesting device tries to read past the end of the
DCQ buffer. This occurs when the out pointer and in pointer
are equal, indicating that the end of the DCQ buffer has been
reached (i.e., for a four cache line buffer, out_ pointer x
[4:0] equals valid _pointer_x [4:0] or, for an eight cache
line buffer, out_pointer_x [5:0] equals valid_pointer_x
[5:0]) and when the requesting device Iries to read another
picce of data (iLe., q2pil next data is asseried). Gates
2230, 2232, and 2234 are arranged to generate the last
word signal

An individual bit in the prefetch enable signal is cleared
when the corresponding PCI slot is selected and either a PCI
flush condition occurs (p2q_flush is asserted), the QPIF
tells the DCQ to step back the buffer’s valid pointer (q2p
step__back is asserted), or the requesting device initiates a
transaction that misses all of the DCQ buffers (q2pif
check cyc is asserted and deq hit is deasserted). Gates
2236, 2238, and 2240a-/ and decoder 2226 are arranged to
clear the prediction enable bits in this manner.

When the prefetching function is enabled for a device on
the PCI bus, the prefetch logic 212 can generate two types
of prefetch signals for the device: a prefetch line signal
(deq_prefetch__line) and a prefetch multiple signal (deq
prefetch _mul). The prefetch line signal is generated when
the current PCT command from the requesting device is a
memory read line signal, and the prefetch multiple signal is
generated when the current PCI command is a memory read
multiple signal. In either case, the corresponding prefetch
signal is generated when the following conditions occur: the
prefetch set bit for the requesting PCI slot is set; a corre-
sponding prefetch enable bit in the configuration registers is
sel (cfg2q auto_prefetch enable); the DRQ in the
upstream chip is not full (te_dc_full); the DCQ bufler has
room for the corresponding amount of prefetch data (1deq_
no__prefetch _room); the current cycle hit the DCQ buffer;
and the requesting master has tried to read past the end of the
DCQ buffer (last_word and g2pif _cyc complete). Gates
2242,2244, 2246, 2248, 2250, and 2252, decoder 2254, and
multiplexers 2256 and 2258 arc arranged to generate the
prefetch signals in this manner.

When the prefetch logic 2212 generates a prefetch signal,
it generates a corresponding prefetch address signal (deg
prefetch__addr [63:2]) by concatenating the upper fifty-
seven bits of the address stored in the corresponding DCQ
bufter (g0 _ addr [63:7] for buffer zero, gl addr [63:7] for
butfer one, ete.) with the lower five bits of the buffer’s output
pointer (out__pointer_0 [4:0], etc.). A dual address cycle
signal (deq_ prefetch dac) indicates whether the prefetch
transaction is a dual or single address cycle. The deq
prefetch__cycle signal takes on the value of the dual address
bit stored in the DCQ buffer (q0_dac, gl _dac, etc.). For
both the prefetch address and dual address cycle signals, the
appropriate value is output from a multiplexer 2260 or 2262
and selected by the three bit DCQ buffer number signal
indicating which DCQ buffer was hit by the current request.

Referring again to FIG. 66, cach DCQ data buffer has
several possible states, each of which is determined by a
buffer state logic block 2264 in the DCQ. The following are
the possible buffer states.

1. Empty. Available for allocation. A buffer is Empty after

power up and after it is flushed.

Toshiba_Apricorn 1010-0140
IPR2018-01067

5,943,482

25

. Complete. The buffer contains completion information
for a delayed completion from a real delayed request
from a device on the PCI bus (i.c., not a prefetch
request). The PCI device has not yet reconnected and
taken data from the buffer. The delayed completion
transaction is complete.

Prefetch. The buffer contains completion data for a

prefetch request or requested data that was left in the

buffer after the requesting master disconnected from
the buffer. All of the completion data has arrived from
the target.

4. PartComplete. The buffer is reserved for and may
contain completion information for a real delayed
request (i.e., not a prefetch request). The master has not
yet reconnected and taken data from the buffer, and not
all of the completion information has arrived from the
target.

5. PartPrefetch. The buffer is reserved for or contains
completion information for a prefetch request, or the
buffer contains requested data that was left in the buffer
after the requesting master disconnected from the
buffer. Not all of the completion information has
arrived from the target.

]

ol

6. Discard. The buffer was fushed while in the Part-

Prefetch state, but the last completion data has not yet
arrived from the target. The buffer is placed in the
Discard state to prevent it from being used until the
transaction completes on the target bus and the last data
arrives.

When the QPIF requests a DCQ buffer for a delayed
request transaction, the buffer state logic 2264 allocates the
buffers in the following order. If no buffer is in the Empty
state or Prefetch state, the requesting master must be retried.

DCOQ Buffer Allocation

Buffer Number Buifer State
Qo Empty
Q1 Empty
Q2 Empty
Q3 Empty
Q4 Empty
Qs Empty
Qs Empty
Q7 Empty
Qo Prefetch
(o3} Prefetch
Q2 Prefetch
Q3 Prefetch
Q4 Prefetch
Q5 Prefetch
Q6 Prefetch
Q7 Prefetch

When a device on the PCI bus initiates a delayed read
request and a DCQ completion buffer is set aside, the buffer
state logic 2264 changes the buffer’s state to PartComplete.
If the DCQ initiates a prefetch read, the buffer state is
changed to PartPrefetch. When the last piece of completion
data arrives, the buffer’s state is changed from PartComplete
or PartPrefetch to Complete or Prefeich, respectively. When
the requesting device resubmits a retried read request and
hits the buffer, any valid completion data is given to the
master if the buffer is in the Complete, Prefetch,
PartComplete, or PartPrefetch state. IT the master does not
take all of the data before disconnecting, the buffer’s state is
changed 1o Prefetch or PartPrefetch to indicate that the
unclaimed data is considered to be prefetch data. If the

20

30

i
wn

40

=1

50

e

@n

26

master lakes the last piece of data when the buffer is in the
Complete or Prefetch state, the buffer’s state is changed to
Empty.

If a flush signal is received while a buffer is in the Prefetch
state, the prefeich data in the buffer is discarded and the
buffer state is changed to Empty. If a flush event occurs
while the buffer is in the PartPrefetch state and completion
data is still arriving, the buffer is changed to the Discard state
until all of the prefetch data arrives. When the transaction is
complete, the prefetch data is discarded and the buffer state
is changed to Empty. If the buffer is in the Complete or
PartComplete state when a fush signal is received, the
completion data is left in the buffer and the buffer state
remains unchanged. If the flush signal occurs because the
corresponding PCI device has issued a new request (i.e., a
request that is not currently enqueued and that “misses”™ all
of the completion buffers), as discussed below, the DCQ
allocates a new buffer for the transaction, as discussed
above. Therefore, a PCI device may have more than one
completion buffer allocated. Multiple buffers may be allo-
cated to a PCI device when the device has a buffer contain-
ing or awaiting completion data (i.e., the buffer is in the
Complete or PartComplete state) and the device issues a new
request. Because multi-threaded devices are the only devices
that can maintain multiple transactions at once, only multi-
threaded devices can have multiple completion buffers
reserved simultancously.

Master Cycle Arbiter

The Master Cycle Arbiter (MCA) determines the execu-
tion order of posted memory write and delayed request
transactions while maintaining the ordering constraints
between posted memory write, delayed request, and delayed
completion cycles set forth in the PCI Spec 2.1. According
to the PCI Spec 2.1, the MCA must guarantee that executed
cycles maintain strong write ordering and that no deadlocks
occur. To ensure that no deadlocks will occur, posted
memory wrile cycles must be allowed to pass carlier
enqueued delayed request cycles, and to maintain the
required ordering constraints, delayed request cycles and
delayed completion cycles must never be allowed to pass
carlicr-enqueued posied memory write cycles.

Referring to FIG. 70, the MCA uses two transaction
queues, a transaction run queue (TRQ) (or transaction
execution queue) 2270 and a transaction order queue (TOQ)
2272, to manage cycles enqueued in the PMWQ, DRQ, and
DCQ. An MCA control block 2274 receives transactions
from the PMWQ, DRQ, and DCQ in the form of four bit
validation request signals (pmwq_ valid [3:0], drq_valid
[3:0], and deq_ valid [3:0]) and outputs run commands in the
form of four bit run signals (mea__run__pmwq [3:0], mca__
run_drq [3:0], and meca_run_deq [3:0]). The transactions
are moved into and out of the TRQ 2270 and TOQ 2272 by
a TRQ control block 2276 and a TOQ control block 2278,

s respectively.

Referring also to FIG. 71, the TRQ 2270 is the queue from
which the MCA determines the transaction execution order.
Transactions in the TRQ 2270 can be executed in any order
without violating the transaction ordering rules, but once a
posted memory write cycle is placed in the TRQ 2270, no
other cycle can be placed in the TRQ 2270 until the posted
memory write is removed. Transactions in the TRQ 270 are
tried in circular order and generally are completed in the
order they were received. However, il a transaction in the
TRQ 2270 is retried on the PCI bus, the MCA may select the
next transaction in the TRQ 2270 to be tried on the PCI bus.
Because delayed completion transactions are slave cycles

Toshiba_Apricorn 1010-0141
IPR2018-01067

5,943,482

27

rather than master cycles, they are never placed in the TRQ
2270. Furthermore, because delayed completion information
may be made available to the requesting device as soon as
it enters the DCQ il no posted memory write cycles are
pending in the PMWQ, delayed completion transactions are
placed in the TOQ 2272 only when a posted memory write
cycle is pending in the TRQ 2270, as discussed in more
detail below.

The TRQ 2270 is a circular queue that holds up to four
transactions at once. Because the MCA must always be able
to run at least one posted memory write transaction to
preserve the required ordering constraints, the TRQ 2270
can never hold more than three delayed request transactions
at once. Furthermore the TRQ can hold only one posted
wrile transaction at a time because posted writes cannot be
passed by any later-initiated transaction, including other
posted writes. Each slot 280a—d in the TRQ 2270 contains
three bits of information: a one bit eycle type indicator 2282
(which equals “1" for posted memory write transactions and
“0" for delayed request transactions), and a two bit valid
pointer 2284, the four possible values of which identify
which of the buffers in the PMWQ or the DRQ the enqueued
transactions occupy. The TRQ 2270 also includes an input/
output enable block 2286 that determines when a transaction

may be moved into or out of the TRQ 2270, an input logic ,

block 2288 that controls the placement of a transaction into
the TRQ 2270, and an output logic block 2290 that controls
removal of a transaction from the TRQ 2270. These logic
blocks contain standard queue management circuitry.

A circular input pointer 2292 selects the next available 5

slot for placement of an incoming transaction. The input
pointer is circular to maintain, as much as possible, histori-
cal order of the incoming transactions.

A circular output pointer 2294 arbitrates between the

transactions in the TRQ 2270 and determines their order of 3

execution. The output pointer 2294 always begins with the
top slot 22864 in the TRQ 2270 at startup and progresses
circularly through the TRQ 2270. The output pointer 2294
may be configured to operate in cither infinite retry or zero
reiry mode by setting or clearing, respectively, an infinite
retry bit in the configuration registers (cfg2q infretry). In
infinite retry mode, the output pointer 2294 remains on a
transaction until the transaction is run successfully on the
PCI bus. In zero retry mode, the output pointer 2294 is
incremented each time a transaction is tried on the bus (i.c.,
q2pif cyc complete was asserted on the previous PCI
clock cycle), regardless of whether the transaction com-
pletes successfully or is retried. Because the PCI Spec 2.1
mandates that posted memory write transactions be allowed
to bypass delayed request transactions, the output pointer
2294 in at least one of the bridge chips must be configured
to operate in zero retry mode. Here, the downstream chip
always is configured to operate in zero retry mode.
Alternatively, the output pointer may be configured to oper-
ate in finite retry mode, in which each transaction may be
attempted on the PCI bus a predetermined number (e.g.,
three) of times before the output pointer increments. Both
the upstream and downstream chips can be configured to
operate in finite retry mode with violating the ordering
constraints of the PCI Spec 2.1. In any case, the output
pointer tries to maintain the historical order of transactions
stored in the TRQ 2270, incrementing only when a trans-
action cannot be completed successfully on the target PCI
bus.

When a posted memory write or delayed request cycle is
popped out of the TOQ 2272 (new __tog_ cycle is asserted),
as discussed below, or when the TOQ 2272 is not enabled

20

40

=1

@n

28
('togq__enabled) and a new cycle is received by the MCA
(new__valid_set), the cycle type bit and valid bits for the
new cycle are loaded into the next empty slot in the TRQ. If
the cycle is coming from the TOQ 2272, the valid bits and
cycle type bit are provided by TOQ valid and cycle type
signals (tog_ valid [1:0] and togq__cyctype [0]), respectively.
Otherwise, the new cycle information is provided by MCA
valid and cycle type signals (d__valido [1:0] and d__cyctype
[0]). Gates 2296 and 2298 and multiplexers 2300 and 2302
are arranged to control the selection of cycles to be loaded
into the TRQ 2270. When a cycle is successfully run on the
PCI bus, the cycle is removed from the transaction order
queue and its cycle type bit and valid bits are provided to the
MCA control block 2274 as TRQ cycle type and wvalid
signals (trq__cyetype [0] and trq_ valido [1:0]), respectively.

The TRQ control block 2276 generates a trq__pmw signal
that indicates when a posted memory wrile transaction is
enqueued in the TRQ 2270. When this signal is asserted,
subsequently issued delayed request and delayed completion
transactions must be enqueued in the TOQ 2272, as dis-
cussed below. The trq_pmw signal is asserted when the
MCA control block 2274 has instructed the TRQ 2270 1o
enqueuc a new posted memory write cycle (trq_slot
valid__set does not equal “0000” and d__trq__cyctype equals
“1™), or, alternatively, when any of the TRQ slots 2280a—d
contains a cycle (trq_slot valid [3:0] does nol equal
“0000™), at least one of the cycles is a posted memory write
cycle (trq_cyctype equals “17), and the posted memory
wrile cycle has not been cleared from the corresponding slot
2280a—d ('trq_slot_valid_rst [3:0]). Gates 2304, 2306,
2308, 2310, and 2312 arc arranged to generate the trq__pmw
signal in this manner.

Referring now to FIG. 72, the TOQ 2272 is a first-in-
first-out (FIFO) queue that retains the historical order of
transactions received by the bridge after a posted memory
wrile transaction is placed in the TRQ 2270. Because all
transactions must wait for earlier-issued posted memory
wriles to run, all transactions including posted memory
wrile, delayed request, and delayed completion transactions,
are placed in the TOQ 2270 when a posted memory write is
enqueued in the TRQ 2270. Transactions in the TOQ 2272
musi remain in the TOQ 2272 until the posted memory write
transaction is removed from the TRQ 2270.

The TOQ 2270, which has eight slots 2314a—/, can hold
up to three posted memory write transactions (the fourth will
be stored in the TRQ 2270), three delayed request
transactions, and four delayed completion transactions. Each
of the slots 2314a-/i in the TOQ 2272 contains two cycle
type bits 2316 that identify the corresponding transaction
(*017 is a posted memory write, 00" is a delayed request,
and “1x" is a delayed completion) and two valid bits 2318
that identify which of the buffers in the PMWQ, DRQ, and
DCQ the corresponding transaction occupies. The TOQ
2272 also includes standard input and output logic blocks
2320 and 2322, which control the movement of transactions
into and out of the TOQ 2272.

The positions at which transactions are placed into and
removed from the TOQ 2272 are determined by a three bit
input counter 2326 (inputr [2:0]) and a three bit output
counter 2324 (outputr [2:0]), respectively. Both counters
begin at the first slot 2314 in the TOQ 2272 and increment
through the queue as transactions are entered into and
removed from the queue. The input counter 2326 increments
on the rising edge of every PCI clock cycle at which the
TOQ 2272 is enabled (tog_enabled is asserted) and the
MCA control block 2274 provides a new cycle 1o the TOQ
2272 (new__valid_ set is asserted). The valid bits and cycle

Toshiba_Apricorn 1010-0142
IPR2018-01067

5,943,482

29

type bits for each new cycle are provided by the MCA valid
and cycle type signals (d_valido [1:0] and d_cyctype
[1:0]). The output counter 2324 increments on the rising
cdge of each PCI clock cycle at which the MCA control
block 2274 instructs the TOQ 2272 to move to the next cycle
(next_toq_cyele is asserted) and the TOQ 2272 is not
empty (i.e., inputr [2:0] does not equal outputr [2:0]). Cycles
exiting the TOQ 2272 are represented by TOQ valid and
cycletype signals (tog_valido [1:0] and log_cyctypeo
[1:0]). Gates 2328 and 2330 and comparator 2332 are
arranged 1o properly clock the input pointer 2326 and output
pointer 2324,

When a delayed request transaction or posted memory
wrile transaction is popped out of the TOQ 2272, the
transaction is placed in the TRQ 2270 to await arbitration.
But because delayed completion transactions are target
transactions and nol master transactions, delayed comple-
tions are not placed in the TRQ 2270. Instead, delayed
completions are simply popped out of the TOQ 2272 and
used to validate the corresponding data in the DCQ data
buffers. However, as long as a posted memory wrile trans-
action is enqueued in the TRQ 2270, all delayed completions
must be placed in the TOQ 2272, even when two or more
delayed completions correspond to the same delayed request

and therefore the same delayed completion buffer, as ,

described above.

Referring to FIGS. 73A through 73D, the MCA control
block 2274 controls the flow of transactions through the
MCA. As discussed above, the PMWQ, DRQ, and DCQ

request validation of transactions held in the queues by -

providing four bit validation signals pmwq_ valid [3:0],
drq_ valid [3:0], and deq_ valid [3:0], respectively, to the
MCA. Among these signals, only one bit can change during
cach clock pulse since only a single new transaction can be

placed into the queue block on each clock pulse. Therefore, 5

the MCA control block identifies new validation requests by
watching for the changing bits in the pmwq_ valid, drq

valid, and deq_ valid signals. To do so, the MCA control
block latches and inverts each signal at the rising edge of
every PCI clock to create a delayed, inverted signal and
compares the delayed, inverted signal to the current signal
(i.c., the signal at the next clock pulse). Since only a newly
changed bit will have the same value as its delayed and
inverted counterpart, the MCA control block is able to detect
which bit changed. Using flip-flops 2340, 2342, and 2344
and gates 2346, 2348, and 2350, the MCA controller gen-
crates new__pmwq_ valid [3:0], new _drg_ valid [3:0], and
new__dcq_valid [3:0] signals which, at each clock pulse,
together identify whether the PMWQ, DRQ, or DCQ, if any,
submitted a new transaction for validation and which buffer
in the corresponding queue contains the new transaction.
Referring also to FIG. 74, the MCA control block uses a
look-up table 2352 to convert the twelve bits of the new
pmwgq_ valid, new_drq_valid, and new__dcq_wvalid sig-
nals into the two bit d_valid [1:0] and d_ cyctype [1:0]
signals provided to the TRQ and TOQ, as discussed above.

The MCA controller enables the TOQ by laiching the
togq_enabled signal to a value of “1" when either the
trq__pmw is asserted, indicating that a posted memory write
cycle is enqueued in the TRQ, or when the tog_enable
signal already is asserted and the TOQ is not empty (tog__
empty). Gates 2354 and 2356 and flip-flop 2358 are arranged
to generate tog_enabled in this manner.

The MCA control block asserts the new__tog_cycle
signal, which instructs the TRQ to enqueue the cycle being
popped out of the TOQ, when there was not a posted
memory write cycle in the TRQ during the previous clock

40

@n

30
cyele (!sl_trq_pmw), when the TOQ is not empty (!tog
empty), and when the cycle being popped out of the TOQ is
not a delayed completion transaction (!(log_cyetypeo [1]=
“DC™)). The MCA controller uses gate 2360 to generate the
new__tog_cycle signal.

The next__toq_cyele signal, which is used 1o increment
the TOQ output counter to the next cycle in the TOQ, is
asserted when the TOQ is not empty (!toq empty) and
either when no posted memory write cycles currently are
enquened in the TRQ (!trq__pmw) and the next cycle in the
TOQ is a delayed completion (tog__cyctype [1]="DC") or
when the next TOQ cycle is a posted memory write or
delayed request transaction (!(tog_ cyctype [1]=*DC™)) and
there were no posted memory write transactions during the
previous clock cycle (!sl_trq pmw). The control block
uses gates 2362, 2364, 2366, and 2368 to gencrate the
next_toq_cycle signal.

The MCA controller generates the mea_run__deq [3:0]
signal to indicate that a delayed completion transaction has
been popped out of the TOQ. When the TRQ contains no
posted memory write cycles (trq pmw), the TOQ is not
empty (!togq_empty), and the TOQ cycle is a delayed
completion (tog_cyetype [1]="DC”), the mca_run_deq
[3:0] signal takes on the value of the decoded tog valido
[1:0] signal, discussed above. Otherwise, the mea__run_deg
[3:0] signal equals “0000”. Gate 2370, decoder 2372, and
multiplexer 2374 are arranged to generate mea_run_deq
[3:0] in this manner.

The MCA control block generates new mca_run_dr
[3:0] and new_mca_run_pmw [3:0] signals to indicate that
it has a new delayed request transaction and a posted
memory write transaction, respectively, to be enqueued. The
new_mca_run_dr [3:0] signal takes on the value of the
2x4 decoded d_valido [1:0] signal, discussed above, when
the new cycle is a delayed request eyele (d_cyetype [0]=
“DR"). Otherwise, all bits of the new _meca run_ dr signal
are set o zero. Likewise, the new_mea_run_pmw [3:0]
signal takes on the value of the 2x4 decoded d_valido [1:0]
signal when the new cycle is a posted memory wrile
transaction and is set to “0000” otherwise. Decoders 2376
and 2380 and multiplexers 2378 and 2382 are arranged to
gencrate the new__mca_run_ dr and new__mca_ run_ pmw
signals in this manner.

The MCA controller generates toq_mea_run_dr [3:0]
and tog__mca_run__pmw [3:0] signals to indicate when a
new delayed request transaction or posted memory write
transaction, respectively, has popped out of the TOQ. The
toq_mea_run_ dr [3:0] signal takes on the value of the 2x4
decoded tog_valido [1:0] signal when a delayed request
cyele is popped out of the TOQ and a value of *0000”
otherwise. Likewise, the tog_mca run_pmw [3:0] signal
takes on the value of the 2x4 decoded toq_ valido [1:0]
signal when a posted memory write cycle pops out of the
TOQ and a value of “0000” otherwise. Decoders 2384 and
2388 and multiplexers 2386 and 2390 arc used to generate
the tog_mca run_dr and toq_mca_run__pmw signals in
this manner.

The MCA controller generates trq mca_run_dr [3:0]
and trq_mca_run_pmw [3:0] signals to indicate when a
new delayed request transaction or posted memory write
transaction, respectively, has won the arbitration in the TRQ
and is ready to be run on the PCI bus. The trq__mca_run_ dr
[3:0] signal takes on the value of the 2x4 decoded trq__
valido [1:0] signal when a delayed request cycle has won the
arbitration and the TRQ is not empty. The trq_mca run_dr
[3:0] takes on a value of “0000" otherwise. Likewise, the

Toshiba_Apricorn 1010-0143
IPR2018-01067

5,943,482

3

trq_mca_ run_pmw [3:0] signal takes on the value of the
2x4 decoded trq_ valido [1:0] signal when a posted memory
write cycle has won the arbitration and the TRQ is not
emply. The trq__mea__run__pmw [3:0] signal is set to a value
of “0000" otherwise. Gates 2392 and 2398, decoders 2394
and 2400, and multiplexers 2396 and 2402 are used to
generate the trqg__mca_run_dr and (rq_mea_run_pmw
signals in this manner.

When the TRQ is empty, the MCA may issue a request to
run the next transaction in the TOQ while the transaction is
being placed in the TRQ. When both the TRQ and the TOQ
are emply, transactions may begin 1o run even before they
have been enqueued into TRQ. Therefore, the MCA control
block includes logic that determines when the new__mea__
run or tog__mca_ run signals may be used a synchronously
to indicate that a transaction may be tried on the PCI bus. By
converting the new__mca_run and toq_mca_run signals
into asynchronous run signals, the MCA controller saves a
PCI clock wait state. When the new valid _set signal is
asserted by the MCA control block and the TOQ is not
enabled ('toq_enabled), the async _mca_run_ dr [3:0] and
async_mca_run__pmw [3:0] signals take on the values of
the new_mca_run_dr [3:0] and new_mca_run_pmw
[3:0] signals, respectively. Otherwise, the asynchronous run

signals take on the values of the toq_mca__run_ dr[3:0]and 2

tog_mca_run_pmw [3:0] signals. The MCA controller
uses gate 2404 and multiplexers 2406 and 2408 to generate
the asychronous run signals.

When a PCI bus master has completed a transaction

(s1_q2pif_cve complete is asserted), the TRQ is not -

emplty (trq__empty) and is configured for operation in the
zero retry mode (lefg2q_infretry), and either a new trans-
action has popped out of the TOQ (new_togq_ cycle) or the
TOQ is not enabled (!toq enabled) and the MCA has

received a new cycle to be validated (new__valid_set), the -

MCA cannot select a cycle to run on the PCI bus, so both the
mea_run_dr[3:0] and mea__run__pmw [3:0] signals are set
to *0000". Otherwise, if the TRQ is empty (irq__empty) and
cither a new transaction has popped out of the TOQ (new__
tog_cycle) or the TOQ is not enabled (tog_enabled) and
the MCA has received a new cycle 1o be validated (new
valid__set), then the mea__run__ dr [3:0] and mca__run__pmw
[3:0] signals take on the value of the asynchronous run
signals, async_mca_run_dr [3:0] and async_mca_run__
pmw [3:0], respectively. Otherwise, the mea_run_dr [3:0]
signal takes on the value of the trq _mca run_dr [3:0]
signal and the mca_run_pmw [3:0] signal takes on the
value of the trq_run__pmw [3:0] signal ANDed with vali-
dation request signal from the PMWQ (pmwq_ valid [3:0]).
Gales 2410, 2412, 2414, 2416, and 2418 and multiplexers
2420, 2422, 2424, and 2426 are arranged to generale the
MCA run signals in this manner.
The Queue-Block-to-PCI-Interface (QPIF)

Reflerring again to FIG. 4 and to FIG. 75, the QPIF 148
governs the flow of transactions between the queue block
127 and the PCI bus 32. The QPIF 148 also delivers
transactions initiated on the PCI bus 32 to the cable interface
130. The QPIF 148 operates in two modes: master mode and
slave mode. In the master mode, the QPIF 148 has control
of the PCI bus and therefore executes transactions intended
for target devices on the bus. A master state machine 2500
in the QPIF 148 retrieves transactions from the PMWQ and
DRQ and executes them on the PCI bus when the QPIF is
in the master mode. In the slave mode, the QPIF 148
receives transactions initiated by a device on the PCI bus and
either provides the requested information to the initiating

20

40

=1

32

device (if the information is available) or retries the initiat-
ing device (if the transaction is a delayed request) and
forwards the transaction to the upstream chip. The transac-
tion also is retried if the corresponding one of the transaction
counters 159 indicates that the other bridge chip is full, as
discussed above. A slave state machine 2502 receives an
incoming transaction from the PCI bus and then checks the
DCQ for a corresponding completion message and/or for-
wards the trapsaction to a cable message generator 2504,
which in turn forwards the transaction through the cable to
the upstream bridge chip.

Referring also to FIGS. 76A and 76B, the QPIF includes
address and data latching logic 2506 that latches the incom-
ing address phase and data phase information associated
with each transaction initiated by a device on the PCI bus.
The QPIF slave state machine 2502 controls operation of the
address and data latching logic 2506. When a new transac-
tion initiated on the PCI bus is intended for the QPIF, the
slave state machine 2502 asserts an address phase latching
signal (reg_ latch_ first_request) indicating that the address
phase information should be latched from the PCI bus. At
the next falling edge of the PCI clock signal, the assertion of
the reg latch_ first _request signal causes a delayed address
phase latching signal (dly__reg latch_first__request) to be
asserted. When both the original and the delayed address
phase latching signals are asserted, the latching logic 2506
generates a first latching signal (latchl). Flip-flop 2508 and
gale 2510 are arranged to generale the first latching signal in
this manner.

The latching logic 2506 loads the address phase informa-
tion from the PCI bus (via the PCI interface) into three
address phase registers when the first latching signal is
asserted. The first register is a thirty-bit address register
2512 that indicates the starting address of the current trans-
action. When the first latching signal is asserted, the address
signal from the PCl interface (p2q__ad [31:2]) is loaded into
the address register 2512. The address register 2512 outputs
the address signal used by the QPIF (g2pif_addr [31:2]) The
second register is a four bit command register 2514 that
receives the PCI command code from the PCI bus (p2q
cmd [3:0]) and outputs the QPIF command signal (q2pif
cmd [3:0]). The third register is a three bit slot selection
register 2516 that receives the p2q_ slot [2:0] signal indi-
cating which PCI device is the current bus master and
outputs the QPIF slot selection signal (q2pif_slot [2:0]).

When the address phase of the PCI transaction ends, the
slave state machine 2502 asserts a data phase latching signal
(reg latch_second request) indicating that the data phase
information should be latched from the PCI bus. At the next
falling edge of the PCI clock signal, the asserted reg_latch
first_request signal causes a delayed data phase latching
signal (dly_reg latch_second request) to be asserted.
When both the original and the delayed data phase latching
signals are asserted, the latching logic 2506 generates a
second latching signal (latch2). Flip-flop 2518 and gate 2520
are arranged to generate the second latching signal in this
manner.

The latching logic 2506 then loads the data phase infor-
mation from the PCI bus (via the PCI interface) into three
data phase registers when the second latching signal is
asseried. The first data phase register is a thirty-two bit data
register 2522 that reccives the data associated with the
current transaction on the PCI address/data lines (p2q_ad
[31:0]) and outputs the QPIF data signal (q2pif_data
[31:0]). The sccond data phase register is a four bit enable
register 2524 that receives enable bits from the PCI bus
(p2q__cbe [3:0]) and outputs the QPIF byte enable signal

Toshiba_Apricorn 1010-0144
IPR2018-01067

5,943,482

33
(q2pif byte_en [3:0]). The third register is a three bit lock
register 2526 that receives the PCI lock signal (p2q_lock)
indicating that the current transaction should be run as a
locked transaction and outputs the QPIF lock signal (q2pif__
lock).

Referring again to FIG. 75 and also to FIG. 77, the QPIF
includes a “lock™ logic block 2528 that controls the “lock™
state of the QPIF. The QPIF has three lock states: an
unlocked state 2530 (lock_state [1:0]="007) that indicates
that no locked transactions are pending in the DCQ; a locked
state 2532 (lock state [1:0]="01) indicating that a locked
transaction has been received in the DCQ or is completing
on the PCI bus; and an unlocked-but-retry state 2534 (lock
state [1:0]="10") that indicates that the lock has been
removed but that a posted memory write transaction pending
in the other bridge chip must be run before the next
transaction can be accepted.

At power-up and reset, the lock logic 2528 cnters the
unlocked state 2530 and waits for a locked transaction to
enter the DCQ (indicated by the assertion of the deq_ locked
signal). At the first clock pulse after the deq_locked signal
is asserted, the lock logic enters the locked state 2532, which
forces the QPIF slave stale machine 2502 to retry all
transaction requests from the PCI bus, The PCI interface
also asserts a lock signal (p2q_ lock) that indicates it has

locked the PCI bus for the transaction. After the locked 2

transaction has completed and the requesting device has
retrieved the locked completion data from the DCQ, the
deq_ locked signal is deasserted. At the first clock pulse after
the deq_locked is deasserted, while the p2q lock signal is

still asserted, if no posted memory writes are pending in the 5

other bridge chip (i.e., the pmw __empty signal is asserted by
the cable decoder), the lock logic 2528 returns to the
unlocked state 2530 and the slave state machine 2502 again
is able to accept transaction requesis. However, il ihe

pwm__empty signal is not asserted at the first clock pulse ;

after the deq_ lock signal is deasserted, the lock logic 2528
enters the unlocked-but-retry state 2534, which forces the
slave state machine 2502 1o retry all transactions until the
posted memory write cycle is completed on the other PCI
bus. After the posted memory write cycle is complete, the
pwm_ empty signal is asserted, and the lock logic 2528
returns Lo the unlocked state 2530,

Referring again to FIG. 75 and also to FIG. 78, the QPIF
includes buffer flush logic 2536 that determines when the
DCO should flush data from one or all of its data buffers. As
discussed above, the PCI interface in the downstream chip
generates a p2q_ Hush signal when the upstream chip issues
an /O or config write or a memory write that hits the target
memory range register (TMRR) of a downstream device.
The QPIF buffer flush logic 2536 asserts a QPIF flush signal
(general _flush) that flushes the corresponding data buffer or
all data buffers (depending upon the value of the p2q_ slot
signal, as discussed above) when the p2q_ flush signal is
received. Otherwise, the buffer flush logic 2536 asserts the
general flush signal only when a device on the secondary bus
issues a delayed request that misses all of the DCQ buffers
when checked by the DCQ control logic (i.e., !deg_ hit and
q2pif _check cyc are asserted). In either case, the general
flush signal is used to flush only buffers that are in the
“prefetch™ state, as discussed above. Therefore, prefetch
data is held in the DCQ until the PCI interface orders a flush
or until the corresponding PCl device issues a non-
sequential request (i.c., misses the DCQ). Gates 2538 and
2540 are arranged to generate the general flush signal in
this manner.

When a multi-threaded device has more than one comple-
tion buffer allocated, at least one of which contains prefetch

20

3
wn

i
wn

40

=1

e

65

34

data, the prefetch data remains in the corresponding buffer
as long as the device does not issue a request that misses all
of the DCQ buffers. As soon as the device issues a new
request, all of its prefetch buflers are flushed. Alternatively,
a prefetch buffer associated with a multi-threaded device
could be flushed as soon as the device issucs a request that
hits another DCQ buffer.

Referring again to FIG. 75, the QPIF includes a read
command logic block 2542 that receives read commands
from the PCI interface and prefetch commands from the
DCQ and provides an outgoing message command signal
(message emd) to the cable. In non-streaming situations, the
oulgoing message command may be same as the command
received from the PCI bus or the DCQ, or the read command
logic 2542 may convert the command into one involving a
greater amount of data. Because transactions executed
dword-by-dword take longer 1o complete on the host bus
than transactions involving an entire cache line of data, and
because single cache line transactions take longer to com-
plete on the host bus than multiple cache line transactions,
the read command logic often promotes “smaller” com-
mands into “larger” ones to reduce the number of clock
cycles consumed by the transaction (“read promotion™). For
example, when a device on the secondary PCI bus issues a
memory read command and then asks for every dword of
data in a cache line, the read command logic 2542 is able to
reduce the host latency by promoting the PCI command to
a memory read line, which allows the upstream chip to read
the entire cache line of data at once instead of reading cach
dword individually.

Referring also to FIG. 79, when the DCQ indicates that a
read stream has been established (i.e., deq_stream__connect
is asserted), as discussed above, the read command logic
2542 generates a message command of “10007, which
informs the upstream chip that a stream is occurring. When
no stream has been established, the read command logic
2542 must decide whether to send a memory read, memory
read line, or memory read multiple command. If the com-
mand received from the PCI bus is a memory read (MR)
command (q2p_emd [2:0] equals “01107) and the corre-
sponding memory-read-to-memory-read-line promotion bit
(cfg2qg_mr2mrl) in the configuration registers is set, the
read command logic 2542 generates a memory read line
command (“1110"). On the other hand, if the PCI command
is a memory read command and the corresponding memory-
read-to-memory-read-multiple bit (cfg2q mr2mrm) is set,
or if the command is a memory read line command (q2pif
cmd [3:0] equals “1110”) from the PCI bus or a prefetch line
command (dcq_ prefetch line is asserted) from the DCQ
and the corresponding memory-read-line-to-memory-read-
multiple bit (cfg2q_mrl2mrm) is set, or if’ the command is
a prefetch multiple command (deq__prefetch_mul) from the
DCQ, the read command logic 2542 generales a memory
read multiple command (i.¢., message cmd equals “11007).
If the command is a prefetch line command and the corre-
sponding memory-read-line-to-memory-read-multiple bit is
not set, the read command logic 2542 generates a MRL
command (*11107). Otherwise, the read command logic
2542 outputs the received PCI command (q2pif _cmd [2:0])
as the message command signal. Gates 2544, 2546, 2548,
2550, 2552, 2554, 2556, and 2558 and multiplexers 2560,
2562, and 2564 are arranged 1o generate the message cmd
signal in this manner.

Referring again to FIG. 75, when the QPIF is operating in
the master mode and has received control of the bus to run
a transaction stored in the PMWQ, a write command logic
block 2566 generates the command code that is executed on

Toshiba_Apricorn 1010-0145
IPR2018-01067

5,943,482

35

the PCI bus. To reduce transaction time as discussed above,
the write command logic can convert memory write (MW)
commands, which involve data transfers one dword at a time
into memory wrile and invalidate commands (MWI), which
involve transfers of at least one entire cache line of data. The
write command logic block 2566 can convert a command
midstream when, e.g., the transaction begins as a memory
write in the middle of a cache line and contains data crossing
the next cache line boundary and including all cight dwords
of data in the next cache line. In this situation, the write
command logic 2566 terminates the memory wrile transac-
tion when it reaches the first cache line boundary and
initiates a memory write and invalidate transaction 1o Irans-
fer the next full cache line of data. The write command logic
2566 also may terminate a MWI transaction midstream in
favor of a MW transaction if less than a cache line of data
is 1o be written to the target bus after a cache line boundary
is crossed.

Reflerring again to FIG. 75 and also to FIG. 80, the slave
state machine 2502 also maintains two counters that indicate
when a posted write transaction initiated on the PCI bus
should be terminated. A 4K page boundary counter 2594
generates a page count signal (page count__reg [11:2]) that
indicates when data transferred from the PCI bus reaches a

4K page boundary. Because a single memory access is not 5

allowed 1o cross a 4K page boundary, the posted write
transaction must be terminated on the initiating bus when a
boundary is reached. The 4K page boundary counter 2594 is
loaded with the third through twelfth bits of the transaction

address (q2pif_addr [11:2]) when the state machine asserts

a load write counter signal (the circumstances surround-
ing assertion of this signal are discussed in more detail
below). The counter 2594 then increments by one at the
rising edge of each clock pulse after the load write

counter signal is deasserted. The counter 2594 is not incre- 5

mented on clock pulses during which the initiating device
has inserted an initiator wait state (i.e., p2q__irdy asserted).
The output of gate 2592 determines when the counter is
allowed to increment. When all bits in the page_ count_ reg
[11:2] signal are high, a 4K page boundary has been reached
and the slave state machine must terminate the posted write
transaction and retry the initiating device.

A dword counter 2598 generates a pmw__counter [5:0]
signal that indicates the number of dwords written from the
initiating bus during a posted write transaction. The pmw__
counter [5:0] signal then is used to indicate when an over-
flow has occurred or when the last line of the transaction has
been reached, as discussed below. When the slave state
machine 2503 asserts the load write counter signal, the
third through fifth bits of the address signal (q2pif_addr
[4:2]) are loaded into the lower three bits of the counter
2598, while the upper three bits are set to zero. This address
offset indicates at which dword in a cache line the posted
wrile transaction has started. The counter 2598 then incre-
ments by one at the rising edge of each clock pulse after the
load write_counter signal is deasserted. The counter 2598
is not incremented on clock pulses during which the initi-
ating device has inserted an initiator wait state (i.c., p2q
irdy asserted). The output of gate 2596 determines when the
counter is allowed to increment. When all bits in the
pmw__counter [5:0] signal are high, the posted write has
reached the end of the eighth cache line.

Referring to FIGS. 81A through 81C, the write command
logic block 2566 generates a four bit write command signal
(write_cmd [3:0]) indicating the command code of the
posted write transaction to be executed on the PCI bus. If the
command code stored in the PMWQ represents a memory

20

=
=

40

e

36

wrile and invalidate command (pmwq_cmd [3]=%1"), the
wrile command logic 2566 generates a write command code
of “1111”. If the PMWQ command code represents a
memory write command, the write command logic 2566
looks at the memory-write-to-memory-write-and-invalidate
configuration bit (cfg2q_mw2mwi) corresponding to the
target PCI slot. If the cfg2q mw2mwi bit is not set, the
write command logic 2566 produces a memory write com-
mand (*01117). If the configuration bil is set, the write
command logic 2566 generates a MWI command if the next
line in the PMWQ data buffer is full (pmwq_full is
asserted) and generates a MW command otherwise. Mullti-
plexers 2568 and 2570 are arranged to generate the write_
emd signal in this manner.

When the QPIF is executing a transaction on the PCI bus
and has reached a cache line boundary, the write command
logic 2566 may assert a new__wrile__cmd signal indicating
that the current transaction must be terminated in favor of a
new write command. If the transaction has reached the last
cache line in the PMWQ data buffer (i.c., pmwq_ pointer
[5:3] equals “111™), the new_write command signal is
asserted to indicate that the transaction should be terminated
if the next PMWQ buffer is not an overflow buffer contain-
ing valid data, if the corresponding cfg2q mw2mwi bit is
not set, or if the full_line bits corresponding to the current
cache line and the next cache line are different (i.e., pmwq__
full [7] does not equal pmwq next full line). If the
transaction has not reached the end of the PMWQ buffer, the
new__write__cmd signal is asserted either if the next line in
the PMWQ buffer does not contain valid data (!pmwq
valid _lines [x+1]) or if the efg2q mw2mwi bit is set and
the full line bits for the current line and the next line are
different (i.e., pmwq__full _[x] does not equal pmwq__full
[x+1]). Gates 2572, 2574, 2576, 2578, and 2580 and mul-
tiplexer 2582 are arranged to generate the new_write com-
mand signal in this manner.

After the new_write__cmd signal is asserted, the trans-
action is not terminated until the write command logic block
2566 asscrts a synchronous new write command signal
(held _new write_cmd). The held new write_cmd sig-
nal is asserted at the first clock pulse after the new _write
cmd signal is asserted and the end of line signal is
asserted indicating that the end of the cache line has been
reached, as long as the PCI interface has not terminated the
transaction (i.e., p2q_start_pulse is asscrted). The held
new_ write command is deasserted at reset and at the first
clock pulse after the new write__cmd, end _of _line, and
p2q_start__pulse signals are deasserted and the QPIF ter-
minates the transaction (i.c., the asynchronous early_cyc
complete signal is asserted). Otherwise, the held new
write__cmd signal retains its current value. Gates 2584 and
2586, inverter 2588, and flip-flop 2590 are arranged 1o
generate the held _new_ write _cmd signal in this manner.

Referring again to FIG. 75 and also to FIG. 82A, the QPIF
includes an overflow logic block 2600 that allows the master
state machine 2500 to manage overflow data, if any, when
executing a posted wrile transaction on the target bus. When
the QPIF receives a transaction run signal (mca__run__pmw
or mca_run_dr, discussed above) from the MCA, the
overflow logic 2600 generates a two bit initial queue selec-
tion signal (start__queue_select [2:0]) indicating which of
the buffers in the PMWQ or DRQ should be selected to run
the current transaction. The following table shows how the
slart__queue select signal is generated.

Toshiba_Apricorn 1010-0146
IPR2018-01067

5,943,482

37

Creation of start _guene select signal

MCA Run Code

{mea_run_pmw, meca_run_dr} start_queue_select

00000001 00
00000010 01
00000100 10
OO0 1000 11
00010000 a0
00100000 01
01000000 10
10000000 11

When the QPIF is executing a posted wrile transaction on
the target bus, a two bit QPIF queue selection signal
(q2pif__queue_select [1:0]) is used to select the appropriate
buffer in the PMWQ. When the transaction is initiated, the
masler state machine 2500 asserts a queue selection signal
(initial _queue select) that causes the q2pif queue select
signal to take on the value of the initial queue selection
signal (start_queue select). At the same time, a queue
selection counter 2602 is loaded with the value of the
start__queue_select signal. After the initial queue select
signal is deasserted, the q2pif_queue select signal takes on
the value of the count__queue_select signal generated by the
counter 2602. When the posted memory write transaction
overflows into the next PMWQ buffer, the master state
machine 2500 asserts an increment queue selection signal
(inc__queue select) that causes the counter 2602 1o incre-

ment by one. As a result, the q2pif_sclect_signal is incre- 3

mented and the next buffer in the PMWOQ is selected to
continue the transaction. Multiplexer 2604 determines the
value of the q2pif _queue select signal.

Referring also to FIG. 82B, the overflow logic 2600 asscts

an overflow__next _queue signal when the masler state 33

machine 2500 should continue pulling information from the
next PMWQ bulffer during a posted memory wrile transac-
tion. Using the q2pif queue select [1:0] signal to deter-
mine which PMWQ is currently selected, the overflow logic
2600 asserts the overflow next queue signal when the
valid bit (pmwq_valid) and the overflow bit (pmwq
overflow) corresponding to the next PMWQ buffer are sel.
The pmwq_ valid and pmwq_ overflow Hags are discussed
above. Gates 2606, 2608, 2610, and 2612 and mulitplexer
2614 are arranged to generate the overflow next queue
signal in this manner.

Referring again to FIG. 75, the QPIF includes a read align
logic block 2616 that allows the QPIF to correct misaligned
memory read line and memory read multiple transactions.
Read line correction occurs when the QPIF, while operating
in the master mode, receives a MRL or MRM transaction
that begins in the middle of a cache line. To reduce trans-
action time, the QPIF begins the read transaction on the
cache line boundary and ignores the unrequested dwords
instead of individually reading only the requested dwords of
data.

Referring also 1o FIG. 83, the read align logic 2616
activates the read alignment feature by asserting an align

20

40

=1

38

read signal. This signal is asserted when the command stored
in the corresponding DRQ buffer is a memory read line or
memory read multiple command (i.e., drq__cmd [3:0] equals
“11107 or *11007, respectively), and when the read align-
ment configuration bit (cfg2q_read align) corresponding
to the target PCI device is set. Gates 2618 and 2620 are
arranged to produce the align read signal in this manner.

Referring also to FIGS. 84A through 84C, the read align
logic 2616 includes a read alignment down counter 2622
that counts the dwords from the cache line boundary and
indicates when the master state machine 2500 reaches the
first requested dword. The counter 2622 includes a state
machine 2624 that controls the operation of the counter
2622.

Al reset, the counter 2622 enters an IDLE_CNT state
2626 in which no counting occurs. When the MCA instructs
the QPIF to run a delayed request transaction on the PCI bus
(i.c., when any bits in the meca_run_ dr [3:0] are asserted),
the QPIF asserts a delayed request run signal (any_ drq
run) indicating that it is attemplting to run a delayed request
transaction. While the counter is in the IDLE CNT state
2622, its three bit output signal (throw __cnt [2:0]) is loaded
with the dword offset of the transaction address (drq_addr
[4:2]) when the any run_drq signal is asserted and the
QPIF gains control of the PCI bus (ie., p2q_ack is
asserted). Gate 2623 generates the load enable signal. Then,
at the rising edge of the next PCI clock cycle, the counter
2622 enters the COUNT state 2628. If the transaction begins
al a cache line boundary, the dword offset equals *000™ and
no count is needed. When read alignment is activated, the
master state machine 2500 begins each MRL and MRM
transaction at the cache line boundary, regardless of the
actual starting address.

While in the COUNT state 2628, the counter 2622 dec-
rements by one on every clock pulse as long as the p2q__ack
signal is asserted, throw_cnt has not reached zero, the
transaction is in the data phase (i.c., the asynchronous signal
eary_data__is asserted), and the target device has not issued
a larget ready wait state (1p2q_trdy). Gate 2625 determines
when the counter is decremented. If the PCI interface takes
the bus away from the QPIF (p2q_ ack is deasserted) or if
the data phase ends (early data_is deasserted), the counter
2622 stops decrementing and reenters the IDLE CNT state
2626. If the throw_cnt signal reaches “000” while the
p2q_ack signal is still asserted, the counter 2622 stops
counting and enters the DONE state 2630. Otherwise, the
counter remains in the COUNT state 2628.

When the counter reaches “0007, the read align logic 2616
asserts a read data_ start signal that instructs the master
state machine 2500 to begin reading data from the target
device. Comparator 2632 generates the read data_ start
signal. After the read data start signal is asseried, the
counter 2622 remains in the DONE state 2630 until the data
phase ends (carly data_ phase is deasserted).

Referring to FIG. 85, the master state machine controls
the operation of the QPIF when the QPIF is operating in the
master mode. In the master mode, the QPIF executes posted
write transactions and delayed request transactions on the
PCT bus. The following table shows the events causing slate
transitions in the master state machine.

MASTER STATE MACHINE

Current
State Event Next State
IDLE A=(any__run&&!cable busy&&!p2q master_dphase) IDLE

| (any_run_ drg && te_de_ full)

Toshiba_Apricorn 1010-0147
IPR2018-01067

5,943,482
39

-continued

MASTER STATE MACHINE

40

Current
State Event Next State
IDLE B: p2q_ack && q2p_dac_flag MASTER_DAC
IDLE C: p2q_ack && any_drg_run RDATAI
IDLE D: p2q_ack && Y(gq2p_dac_flag || any_drg_run) WDATAI
MASTER_DAC E: p2q_ack && any_drg_mun && p2q_start_pulse RDATA1
F: p2q_ack && p2q_start pulse &&!any_drgq_run WDATAI
Gt Ip2q_ack IDLE
RDATA1L H: Ip2q_ack IDLE
I: p2g-ack && p2q_start_pulse RBURST
I: p2q_ack && !p2q_start-pulse RDATA1
RBURST K: !p2q_ack || p2q__retry | p2q__target_abort || IDLE
(queue_cyc_complete&& !(1p2q_last_dphase&&
p2q_master_dphase && od__stream && stream_match &&
lefglq stream disable)&& !p2q_trdy) ||
(read _page_disconnect&& !p2q_trdy)
L: p2q_ack && !p2q_retry && !p2q_target _abon && RBURST
((read__page_ disconnect && p2q__trdy) || (queue_cye
complete && ((!p2q_last_dphase && p2q_master_dphase
&& od_stream && stream_match && lefs2q_stream__disable)
|| p2g__trdy)) || !p2g__trdy || otherwise)
WDATA1 M: !p2q_ack || p2q_retry || p2q_target_abort || IDLE
({queve_cyc_complete || held__new_write_cmd ||
end_of line && new_write_cmd || p2q_last_dphase
[la1_p2q last_dphase)&& !p2q_trdy)
N: p2q_ack && !p2q_retry && !p2q_target_abort WDATAI
&& (queue_cyc_complete || held__new__write_cmd ||
end_of line && new_write_cmd || p2q_last_dphase ||
s1_p2q_last_dphase)&& p2q_trdy
O: otherwise WDATA2
WDATA2 P: !p2q_qckl(p2q_retry& &!p2q_trdy)|p2q_target_abort IDLE
Q: p2q_ack && p2q_retry && p2q_trdy WRETRY
R: p2q_ack && Ip2q_retry && !p2q_target_abort && WSHORT__BURST
(queue__cyc_complete || end_of line && new__write__
emd) && (Ip2q_trdy || p2q_start_pulse)
S: otherwise WDATAZ
WRETRY T: Always IDLE
WSHORT_BURST U: !p2q_ack || p2q_retry || p2q_target__abort IDLE
V: p2q_ack && !p2q_retry && !p2q_target_abort WCOMPLETE

&&(overflow_next_queue && !new_write_cmd
&& !p2q_trdy) || p2g_trdy)
W: otherwise

WCOMPLETE X: p2q_retry || p2q_target_abort || (!{overflow__next__

WSHORT_BURST
IDLE

gueue && Inew_wrile_cmd && !p2q_last_dphase)&&

1p2q_trdy)
Y: Ip2q_retru &&!p2q_target abort && ((overflow__

WDATAIL

next__queue &&new__write_cmd && !p2q_last__dphase)

&&lp2q trdy)
Z: otherwise
Mster state transitions

WCOMPLETE

Al resel, the master state machine enters an IDLE state
2700 in which the QPIF awaits instructions 1o run a trans-
action on the PCI bus. When the QPIF receives a run signal
from the MCA (any_run is asserted when any bit in the
mea_run__pmw signal or mea__run_ dr signal is asserted),
the cable is not busy delivering a message (!cable busy),
and the PCI interface is not trying to finish the previous
transaction (!p2q master dphase), the master state

machine attempts to run the transaction on the PCI bus. If the 3

transaction is a delaved request transaction (any__run__drg is
asserted) and the other chip does not have room for a
delayed completion (tc__dc_ full is asserted) the master state
machine is not able to run the request and steps the MCA to

the next transaction. Otherwise, il the PCI interlace has o

given the QPIF conirol of the bus (p2q_ ack is asserted), the
master state machine begins to execute the transaction on the
PCI bus. In the IDLE state 2700, the master provides the
address phase information, discussed above, to the PCI bus.
If the transaction to be run is a dual address cycle (q2pif

dac_flag is asserted), the master state machine enters a
MASTER __DAC state 2702 in which the second half of the

n

address information is provided. If the transaction is not a
dual address cycle and is a delayed request transaction
(any__run_ drq is asserted), the master state machine then
enters an RDATAL read state 2704, in which the master state
machine begins the data phase of the delayed request
transaction. If the transaction is not a dual address cycle and
is not a delayed request, it is a posted memory write
transaction, so the master state machine enters a WDATA1L
wrile state 2706, in which the master state machine enters
the data phase of the posted memory write transaction.

In the MASTER_DAC state 2704=2, the masier state
machine provides the second half of the address phase
information. Then, if the p2q_ ack signal is still asserted and
the transaction is a delayed request, the master state machine
enters the RDATAL state 2704 when it receives the start
signal (p2q_start_pulse) from the PCI interface. If the
transaction is not a delayed request, the master state machine
enters the WDATAL state 2706 when it receives the PCI start
pulse. The master stale machine also initiates a delayed
completion message on the cable when the PCI start pulse is
received by asserting an asynchronous completion message

Toshiba_Apricorn 1010-0148
IPR2018-01067

5,943,482

41
signal (early master send _message). If the p2q ack sig-
nal has been deasserted by the PCI interface, the master state
machine returns to the IDLE state 2700 and waits to retry the
lransaclion.

The RDATAL state 2704 is the initial state for delayed
read and delayed write requests, In this state, the master state
machine wails for the PCI start pulse before entering an
RBURST burst data phase 2708. When the state machine
first enters the RDATAL state 2704, it initiates a completion
message on the cable (if not already done in the MASTER
DAC state 2702). Then, if the p2q_ ack is deasserted by the
PCI interface, the master state machine terminales the
transaction, steps the MCA to the next transaction, and
reenters the IDLE state 2700. Otherwise, when the PCI start
pulse appears, the master stale machine prepares to enter the
RBURST state 2708. If the QPIF indicates the end of the
transaction (queue_cye complete) or if the transaction has
reached a 4K page boundary (read page disconnect is
asserted because all bits in the drq addr [11:2] signal are
high), the master state machine deasserts the QPIF's frame
signal and indicates that the next piece of data is the last
piece (asynchronous signal early last master data is
asseried) before entering the RBURST state 2708. The
master state machine also asserts an asynchronous early

master _lastline signal, indicating that the last line of data ,

has been reached, if the read Page disconnect lastline
signal is asserted or if the DRQ last line signal (drg_ lastline)
is asserted and the QPIF has not received a streaming signal
from the other bridge chip (cd__stream or stream__match are
not asserted or cfq2q_stream__disable is not set). If the PCI
start pulse is not asserted, the master state machine remains
in the RDATA1L state 2704 until the QPIF terminates the
transaction or a 4K page boundary is reached, which will
return the state machine to the IDLE state 2700, or until the

PCI start pulse appears, which forces the state machine to

enter the RBURST state 2708

In the RBURST state 2708, the master state machine
bursts data to the PCI bus. If a completion message has not
vet been initiated, the master state machine initiates a
completion message upon entering the RBURST state 2708,
Then, if the p2q_ack signal is deasserted, or if the QPIF
trapsaction is retried by the PCI interface (p2q_retry is
asserted), or if the PCI interface aborls the transaction
(p2q__target_abort is asserted), the master state machine
terminates the transaction on the PCI bus, aborts the comple-
tion message on the cable, and returns to the IDLE state.
When the p2q ack signal is taken away, the master cycle
arbiter continues to select the current transaction. But when
the transaction is retried or aborted, the master state machine
steps the MCA to the next transaction.

While the p2q_ack signal is still asserted and the QPIF
transaction is not retried or aborted, the master state machine
nevertheless terminates the transaction and returns 1o the
IDLE state 2700 if a 4K page boundary is reached and the
PCI interface indicates that the target device has stopped
taking data (p2q_trdy is no longer asserted). If the target
device took the last piece of data, the master state machine
remains in the RBURST state 2708.

If the QPIF asserts the queue__cyc complete signal indi-
cating that the transaction has completed, the master in
general will terminate the transaction and return to the IDLE
state 2700 if the p2q_ trdy signal is deasserted or remain in
the RBURST state 2708 until the last dword of data is
transferred if the p2q_trdy signal remains asserted.
However, if the transaction is in the data phase and is not in
the last data phase (p2q._master dphase and !p2q last
dphase) and a stream has been established with the other

40

50

e

@n

42

bridge chip (ed stream and stream_match and !cfg2q
stream__disable), the master state machine will remain in the
RBURST phase indefinitely. When the QPIF is streaming,
the master stale machine asserls a streaming signal (q2pif
streaming) that forces the QPIF to continue to provide data
to the requesting device on the other PCI bus until that
device terminates the transaction.

If the p2q ack signal remains asserted and neither the
p2q_retry, p2q__target_abort, or queue_cyc_ complete
signals are asserted, the master state machine looks at the
p2q_ trdy signal. If the signal is not asserted, indicating that
the target device has taken or provided the last piece of data,
the master state machine asserts its next data signal (early_
next_data), which indicates that the QPIF is ready to
transfer another piece of data. The next data signal is
asserted only if the transaction is not a corrected read
(align_read is not asserted) or if the transaction is a cor-
rected read and the read data_start signal has been
asserted, If the p2q_ trdy signal is asserted, indicating that
the target has not performed the last data transfer, the state
machine remains in the RBURST state 2708.

In the WDATAL state 2706, the master state machine
begins the data phase of a posted memory write transaction.
If the p2q_ack signal is deasserted or the p2q_relry or
p2q_target abort signals are asserted while the master state
machine is in this state, the transaction is terminated on the
PCI bus and the state machine returns to the IDLE state
2700. When the p2q_ack signal is deasserted, the MCA
remains on the current cycle; otherwise, the master state
machine steps the MCA to the next transaction.

If the p2q__ack signal remains asserted and the transaction
is neither retried nor aborted, the master state machine must
determine whether the write involves a single dword or more
than one dword. If in the WDATAL state the queue_cyc
complete signal is asserted, the held new write command
signal is asserted, the end _of line and new_ write _cmd
signals are asserted, or the transaction has reached the last
dword of data, the transaction involves a single dword. In
this situation, the transaction terminates and the state
machine returns to the IDLE state 2700 only when the target
took the last piece of data (!p2q__trdy). Otherwise, the state
machine remains in the WDATA2 state 2710. If the trans-
action involves more than one dword of data, the master
state machine enters a WDATAZ burst data phase state 2710.
Just before entering the WDATA2 state, the master state
machine inserts a g2p_irdy wail state if the overflow
next_queue signal has been asserted.

In the WDATA2 state 2710, the master state machine
bursts data to the PCI bus. If the p2q_ ack signal is deas-
serfed or the transaction is aborted by the PCI interface, the
transaction is terminated in the QPIF and the master state
machine reenters the IDLE state 2710. If the transaction is
retried by the PCI interface but the PCI interface took the
data provided (!p2q_ trdy), the master state machine reen-
ters the IDLE state 2700. Otherwise, the state machine
enters a WRETRY stepback state 2712 that steps the PMWQ
out pointer back to the previous piece of data by generating
the stepback signal discussed above. From the WRETRY
state 2712, the state machine always reenters the IDLE state
2700.

If the p2q_ack signal remains asserted and the transaction
is neither retried nor aborted, the master state machine
determines whether the transaction is complete. If the QPIF
indicates the end of the transaction (queue cye complete
is asserted) or the end of a cache line is reached and a new
write command is needed (end_of line and new write

Toshiba_Apricorn 1010-0149
IPR2018-01067

5,943,482

43

d), the state hine enters a WSHORT _BURST state
2714 when either the last piece of data was taken (1p2q_trdy) or the PCl start

4

are

pulse is received. In either case, only two dwords of data must be written to
the PCI bus. Otherwise, the state machine remains in the WDATA2 state
2710. When the state machine enters the WSHORT __BURST state 2714, the
QPIF frame_signal remains asserted if the transaction can overflow into the
next queue and a new write command is not needed.

In the WSHORT BURST state 2714, the master state
machine prepares 1o write the final two dwords of data to the
PCI bus. If the p2q_ ack signal is deasserted or the cycle is
retried or aborted by the PCI interface, the state machine
terminates the transaction and returns to the IDLE state
2700. When the PCI acknowledge signal disappears or the
cyele is aborted, the master state machine asserts the step-
back signal to indicate that the PMWQ out pointer should be
stepped back to the previous dword. When the transaction is
retried by the PCI interface, the out pointer is stepped back
only if the target device did not take the last piece of data
(p2q__trdy is asserted). When the transaction is not termi-
nated and it can overflow into the next PMWQ buffer
(overflow__next_queue is asserted) and a new write com-
mand is not needed, the master state machine keeps the
QPIF frame signal asserted and then enters a WCOMPLETE
state 2716 if the target device has taken the last piece of data
or stays in the WSHORT __BURST state 2714 otherwise. If
the transaction cannot overflow into the next queue or a new
write command is needed, the state machine deasserts the
frame signal to indicate the end of the QPIF transaction and
then enters the WCOMPLETE state 2716 if the last piece of
data was taken by the target device or remains in the
WSHORT BURST state 2714 otherwise.

In the WCOMPLETE state 2716, the master state
machine terminates the posted memory wrile lransaction.

20

30

44

The state machine enters the IDLE state 2700 if the trans-
action is retried or aborted by the PCI interface. If the
transaction is retried, the PMWQ out pointer is incremented
only if the target device took the last piece of data. If the
transaction can overflow into the next queue, a new write
command is not needed, and the transaction is not in the last
data phase, the master state machine increments the queue
selection counter and returns to the WDATAL state 2706 1o
continue the transaction from the overflow queue, as long as
the target device took the last piece of data. If the target
device did not take the last piece of data, the master state
machine remains in the WCOMPLETE state 2716.

If the transaction will not overflow into the next PMWQ
buffer, the master state machine terminates the transaction
and returns to the IDLE state 2700 if the target took the last
picce of data. Otherwise, the state machine remains in the
WCOMPLETE state 2716 until one of the terminating
events discussed above occurs.

Referring to FIG. 86, the slave state machine controls the
operation of the QPIF when the QPIF is operating in the
slave mode. In the slave mode, the QPIF receives posted
wrile transactions and delayed request transactions from
devices on the PCI bus and forwards the transactions to the
target bus through the cable. The following table shows the
events causing state transitions in the slave state machine.

CURRENT

STATE EVENT

SLAVE STATE MACHINE

NEXT STATE

SLAVE_IDLE

tp2

A: p2q_qeye && p2qdac_flag && !p2q_pen
B: p2q_gqcye && !p2q_dac_flag && pmw_request &&
perr &&e(e_pmw_full && ldeq_locked
&& !ock_state[1])
C: p2q_qgeye && 1p2q_dac_flag &&!pmw_request

SLAVE_DAC
PMW1

STEP_AHEAD

&& !p2q_perr &&(mem__read_line | mem__read__mul)
&& (deg__hit &&!deq no_data& &llock _state[1])

D: p2q_qgeye &&!p2q _dac_flag & &!pmw_request

SECOND_CHECK

&& 1p2q_perr &&!(mem__read line | mem__read mul)

E: [p2q_qeye &&!p2q_dac_flag && pmw_request &&

SLAVE_IDLE

tp2q_perr &&!{Me_pmw_full&&deq locked &&!lock
state[11)] || [p29_qye**p2q_dac_fag&&p2q_perr]

[{p2q_qeve &&p2q dac_ faghk &!pmw!irequestd &
(p2q_perr) | ((mem__read line || mem__read__mul)&&
Hdeg_hitd&!deg__no__datad & Hock_state[1])]

|| otherwise
SLAVE_DAC

F: plq_geye&&pmw_request&& Iplg_perr &&

PMWI

(Mte_pmw__full &&!deg locked &&!lock state[1])

G: p2q_qeye &&!pmw_request && !p2g_perr & &

STEP_AHEAD

(mem__read_line || mem_read _mul)&& (deg__hit
&& !deq_no_data && ! lock state[1])

H: p2q_qeye&d!pmw_request&& !p2q_perr &&

SECOND_CHECK

t{mem__read_line | mem__read _mul)

I: otherwise SLAVE _IDLE
SECOND_CHECK J: tio__write && !conﬁg write && 1p2g_perr && STEP_AHEAD
(deg__hit && !deg_no_data && !lock _state[1] && dwr_check_ok)__
K: otherwise
SLAVE_IDLE
STEP_AHEAD L:dcg _no_data HIT_DCQ__FINAL
M: otherwise HIT_DCQ
HIT_DCQ N: Ip2q_qeve SLAVE_IDLE

O: p2g_geye&&(deq_no_data& & !p2q_irdy || (pmw_counter|2]
&&pmw__counter[1]
&& pmw_counter] 0] && read_disconnect__for_stream)

P: otherwise

Toshiba_Apricorn 1010-0150
IPR2018-01067

HIT_DCQ__FINAL

5,943,482

45 46
-continued
SLAVE STATE MACHINE
CURRENT
STATE EVENT NEXT STATE
HIT_DCQ
HIT_DCQ_FINAL Q: !p2q_qcye || 1p2q_irdy SLAVE_IDLE
R: otherwise HIT_DCQ_FINAL
PMW1 S: 1p2q_qeye SLAVE_IDLE
T: otherwise PMWI

Slave state transitions

At resel, the slave state machine enters an IDLE state
2720, in which the QPIF waits for a transaction be initiated
by a device on the PCI bus. If a transaction initiated on the
bus does not target the QPIF (q2p qceye is not asserted), the
slave state machine continues in the IDLE state 2720. When
a transaction on the PCI bus does target the QPIF, the slave
state machine enters a SLAVE _DAC dual address cvcle
state 2722 if the p2q_dac llag is asserted and an address
parity error has not occurred (p2q_perr_is low). If the
transaction is not a dual address cycle and is a posted
memory write request, and if a parity error has not occurred

in the address phase, the slave state machine loads the write 5

counters (1.¢., asserts load _write _counter) and determines
whether it can accept the transaction. If the PMWQ in the
other bridge chip is full (tc_dc_full is asserted by the DC
transaction counter) or the DCQ is locked (deq locked is

asserted) or the QPIF lock logic is in the unlocked-but-retry -

state (lock state [1] equals “17), the slave state machine
terminates the transaction by asserting an asynchronous
retry signal (early retry) that is passed to PCI interface as
q2pif _retry and remains in the IDLE state 2720. If the QPIF

can accept the transaction, the slave state machine initiates 5

the posted memory wrile message on the cable and enters a
PMW]1 state 2724, in which the transaction is forwarded up
the cable.

If the transaction is not a dual address cycle or a posted
memory write request, the slave state machine loads the
dword counter (asserts load write counter) and, if no
parity error has occurred, analyzes the delayed request
transaction. If the transaction is a MRL or a MRM transac-
tion and the QPITF lock logic is not in the unlocked-but-retry
state, the slave stale machine asserts the QPIF check cycle
signal (q2pif check cyc), which instructs the DCQ to
compare the latched request to the delayed completion
messages in the DCQ buffers. If the request hits a DCQ
buffer that is not empty (deq hit and !deq no_ data), the
slave state machine enters a STEP AHEAD state 2726 in
which the QPIF begins delivering the requested information
to the PCI bus, If the MRL or MRM request misses all of the
DCQ data buffers (!deq_hit), the DCQ is not full (!deq
full), the delayed request queue in the other bridge chip is
not full (tc_dr_ full), and the DCQ and QPIF are not locked
(!deq_locked and !Nock _state [1]), the slave state machine
asserts the q2pif_retry signal, forwards the request down
the cable, and remains in the IDLE state 2720. If the request
misses the DCQ and the request cannot the sent down the
cable, the QPIF simply retries the requesting device and
remains in the IDLE state 2720.

If the delayed request is not a MRL or MRM transaction,
a second clock eycele is needed to check the request because
the data or byte enables must be compared to the contents of
the DCQ buffers, so the slave stale machine enters a
SECOND_ CHECK state 2728. If a parity error occurs or if
the lock logic is in the unlocked-but-retry state, the state

20

40

=1

e

machine retries the requesting device and remains in the
IDLE state 2720.

In the SLAVE _DAC state 2722, the slave state machine
receives the second half of the address phase information. If
the requesting device has not targeted the QPIF, the slave
slate machine ignores the transaction and remains in the
IDLE state 2720. When the QPIF is the target device, the
stlale transition events are the same as those in the IDLE state
2720. Specifically, if the transaction is a posted memory
wrile requesl and a parity error has not occurred, the slave
state machine loads the write counters and determines
whether it can accepl the transaction. If the PMWQ in the
other bridge chip is full (tc__pmw__full is asserted), the DCQ
is locked, or the QPIF lock logic is in the unlocked-but-retry
state, the slave state machine retries the requesting device
and returns to the IDLE state 2720. If the QPIF can accept
the transaction, the slave state machine initiates the posted
memory write message on the cable and enters the PMWL
state 2724.

If the transaction is not a posted memory wrile request,
the slave state machine loads the dword counter and, if no
parity error has occurred, analyzes the delayed request
transaction. If the transaction is a MRI. or a MRM transac-
tion and the QPIF lock logic is not in the unlocked-but-retry
slate, the slave state machine asserts the QPIF check cycle
signal. If the request hits a DCQ buffer that is not empty, the
slave state machine enters the STEP_ AHEAD state 2726. [f
the MRL or MRM request misses all of the DCQ data
buffers, the DCQ is not full, the delayed request queue in the
other bridge chip is not full (tc__dr_ full is not asserted), and
the DCQ and QPIF are not locked, the slave state machine
asserts the q2pil_retry signal, forwards the request down
the cable, and returns to the IDLE state 2720. If the request
misses the DCQ and the request cannot be sent down the
cable, the QPIF simply retries the requesting device and
returns to the IDLE state 2720.

If the delayed request is not a MRL or MRM transaction,
a second clock eyele is needed to check the request because
the data or byte enables must be compared to the contents of
the DCQ buffers, so the slave state machine enters the
SECOND__ CHECK state 2728. If a parity error oceurs or if
the lock logic is in the unlocked-but-retry state, the state
machine retries the requesting device and returns to the
IDLE state 2720.

In the PMW1 state 2724, the slave state machine forwards
a posted memory write transaction through the cable to the
target device. When the state machine first enters the PMW1
state 2724, it deasserts the load write__counter signal. If the
dword counter indicates that the posted memory write
transaction is in the last cache line (pmw__counter [5:3]
equals “1117) and the PMWQ in the other bridge is full (lc
mw__full) and the write overflow feature is disabled
(!cfg2q write overflow), or if the write Page disconnect
signal is asserted because the transaction has reached a 4K

Toshiba_Apricorn 1010-0151
IPR2018-01067

5,943,482

47

page boundary, or if the DCQ has asserted the deq
disconnect_for_stream signal and the write disconnect
feature is not disabled (!cfg2q wrdiscnt disable), the slave
state machine asserts the slave_lastline signal indicating
that the current cache line will be the last to be transferred.
The slave state machine then remains in the PMWI1 state
2724 until the p2q__qeye signal is deasserted, indicating that
the transaction has completed on the PCI bus. After leaving
the PMW1 state 2724, the slave slate machine reenters the
IDLE state 2720.

In the SECOND CHECK state 2728, the slave state
machine has the DCQ compare the second phase of request
information to the delayed completion information in the
DCQ buffers. If the transaction is not a delayed write request
(tio_ write and !config write) or there is no parity error
('p2q__perr), and if the DCQ is not locked and the dwr__
check ok signal is asserted, the slave state machine asserts
the q2pif_check cyec. The dwr_check ok signal is
asserted either when the transaction is not a delayed write
request or when it is a delayed write request and a p2q__irdy
wait state has not been inserted. If the request hits one of the
DCQ buffers and the buffer is not empty, the slave state
machine enters the STEP _AHEAD state 2726. If the
request misses all of the DCQ buffers but the QPIF can send
the message down the cable, the slave state machine retries

the requesting device, forwards the transaction down the »

cable, and reenters the IDLE state 2720. Otherwise, if the
request missed all of the DCQ buffers and the QPIF could
nol send the transaction down the cable, or if a parity error
occurred on a delayed write request, the state machine will
retry the requesting device and reenter the IDLE state 2720.

In the STEP _ AHEAD state 2726, the slave state machine
increments the DCQ output pointer to the next dword. This
slate is necessary immediately after a DCQ buffer is hit
because the PCI interface latches the first dword of data
without asserting the !'p2q_ trdy signal. From the STEP__

20

»
=

AHEAD state 2726, the state machine enters a HIT _DCQ ~

state 2730, in which data is provided from the appropriate
DCQ buffer to the requesting device, if the last dword of data
has not been taken. Otherwise, the state machine enters a
HIT _DCQ_FINAL state 2732, in which the requesting

i ; . : 40
device is retried because the DCQ buffer contains no more

data.

48

From the HIT DCQ state 2730, when the delayed
request transaction terminates on the PCI bus before it
terminates in the QPIF (i.e., p2q_geye is deasserted), the
state machine terminates the transaction in the QPIF and
asserts the stepback signal, which indicates that the DCQ out
pointer should be decremented because the last picce of data
was not taken by the requesting device. The state machine
then reenters the IDLE state 2720. If the DCQ buffer runs
out of data while the requesting device continues to request
it (deq_no__data and !'p2q_irdy), or if the pmw__counter
indicates that the last dword has been reached and the
read disconnect for stream signal has been asserted, the
slave state machine retries the requesting device and enters
the HIT DCQ FINAL state 2732. If the transaction ter-
minates to establish a stream, the step back signal is asserted
and the output pointer of the appropriate DCQ buffer is
decremented. In any other situation, the slave state machine
continues to provide data in the HIT_DCQ state 2730.

In the HIT DCQ FINAL state 2732, the slave state
machine has one dword of data left to transfer. If the PCI bus
terminates the transaction before the requesting device takes
the last piece of data (i.e., p2q__qgeyce is deasserted), the slave
state machine asserts the stepback signal and returns to the
IDLE state 2720. If the p2q_ qeye signal remains asseried
and the requesting device has not asserted an initiator wait
state (!p2q_irdy), the requesting device is retried because
the last picce of data has been taken. The state machine then
reenters the IDLE state 2720. Otherwise, the slave state
machine remains in the HIT_DCQ_FINAL state 2732,

Referring to FIG. 87, the cable message generator is a
state machine that creates cable messages from transaction
information obtained from the master and slave state
machines. In addition to an IDLE state 2740, the cable
message generalor also includes a dual address cycle
(CABLE_DAC) state 2742, a master data phase
(MASTER DPHASE) state 2744, and a slave data phase
(SLLAVE _DPHASE) state 2746. The following table shows
the events causing slate transitions in the cable message
generator.

CABLE MESSAGE GENERATOR

CURRENT
STATE EVENT NEXT STATE
CABLE_IDLE A: (send_message && q2pif_dac) || ((deq_prefetch_mul | CABLE_DAC
deq__prefetch_line)& & deq_prefetch_dac)
B: (send__message && 1q2pif_dac) || ((deq_prefetch _mul | SLAVE_DPHASE
deq__prefetch__line)&& !deq_prefetch_dac) | (deg_stream
connect && !(|drq_valid[3:0])) && (deq_stream__connect ||
!p2q_ack || deq_prefetch_line || deq_prefetch_mul)
C: (send_message && 1q2pif_dac) || ((deq_prefetch_mul | MASTER_DPHASE
deq_prefetch line) && !deg _prefetch_dac) || (deg_stream__connect
&& (jdrq_valid[3:0])) && !deq_stream__connectd &
!{!p2q_ackldeq_prefetch_mul || deg_ prefetch_line)
D: otherwise CABLE_IDLE
CABLE__DAC E: !p2q_ack || deq_prefetch_mul || deq_prefetch_line SLAVE_DPHASE

F: otherwise

MASTER _DPHASE

I: otherwise

SLAVE_DPHASE K: [!(drq_stream_connect &&!drg_valid[3:0]i&&p2g_qgeve)]

G: send_message &&q2pif_dac

H: send__message && !q2pif_dac

I: !send _message &&(carly_last_master_data&& !p2q_tedy ||
master__abort__cable)

MASTER _DPHASE
CABLE_DAC
SLAVE DPHASE
CABLE_IDLE

MASTER_DPHASE
CABLE_IDLE

&&[(dly__read__request || dly__single_write__request ||

Toshiba_Apricorn 1010-0152
IPR2018-01067

5,943,482

-continued
CABLE MESSAGE GENERATOR
CURRENT
STATE EVENT NEXT STATE

deg_prefetch__mul || deg_prefetch_line)] ||
L: carly__last_slave_data ||

deg_stream_connect& &!(Jdrg_ valid[3:0])&&p2q_geve and

otherwise

SLAVE__DPHASE

Cable Message Generator State Transitions

Al reset, the cable message generator enters the IDLE
state 2740, in which it waits for transaction information to
arrive from the master or slave state machines. From the
IDLE state 2740, if the cable message generator receives a
prefetch multiple signal (deq_ prefetch__mul) or a prefetch
line signal (deq_ prefetch line), the cable address signal
(carly _cad [31:2]) equals the prefetch address signal (deq_
prefetch__addr [31:2]). Otherwise the early _cad [31:2] sig-
nal takes on the value of the QPIF address signal (g2pif.
addr [31:2]). When the cable message is initiated by the
master stale machine, the message is a delayed completion
message, so the command code (early__ccbe [3:0]) equals

“10017". When the cable message is initiated by the slave ,

state machine, the command code takes on the value of the
message emd [3:0] signal, discussed above.

If the send message signal is asserted, indicating that
cither the master state machine or the slave stale machine

has initiated a message, and the corresponding transaction is

not a dual address cycle, or if the cable message generator
receives a prefetch request that is not a dual address cycle,
or if the cable message generator receives a stream connect
signal and no delayed requests from the CPU are pending in

the downstream DRQ, the cable message generator asserts a5

sent__pmw signal that indicates that a posted memory write
request from the PCI bus will be sent down the cable. The
senl__pmw signal is not asserted if a stream has been
established by the DCQ. The cable message generator
asserts a sent_dr signal when a read request or delayed write
request is received from the slave state machine or a prefetch
signal is received and when a stream has not been estab-
lished by the DCQ.

If the DCQ has established a stream (dcq_ stream
connecl is asserted), the buffer number for the cable signal
(early__cbuff [2:0]) takes on the value of the DCQ stream
buffer (deq stream_ buff [2:0]), the cable command code
(early_ccbe [3:0]) is set equal to “10007, and the cable
message generator enters the SLAVE DPHASE state 2746.
Otherwise, if the QPIF is in the slave mode and the cable
message generator receives cither a prefetch multiple or a
prefetch line signal, the cable buffer signal takes on the value
of the DCQ buffer number (deq_bufl [2:0]) and the cable
message generator enlers the SLAVE DPHASE state 2746.
Otherwise, the QPIF is operating in the master mode and the
cable message generator enters the MASTER DPHASE
slate 2744,

When the cable message generator receives the send
message signal and a transaction that is a dual address cycle,
or when it receives a prefetch request that is a dual address
cycle, the message generator enters the CABLE DAC state
2742. For a prefetch signal, the cable address signal is set
cqual to the upper thirty two bits of the deq__prefetch_addr
[63:0] signal; otherwise, the cable address equals the upper
thirty-two bits of the q2pif _addr [63:0] signal. Also, if the
cable message generator receives the transaction from the
slave state machine, the cable buffer number equals the DCQ

20

40

=1

e

@n

butfer number; otherwise, the cable buffer number equals the
DRQ buffer number (no completion messages are generated
for posted memory write transactions) In the CABLE__DAC
slate 2742, the cable message decoder generates the second
half of the address phase information. As in the IDLE state
2740, the cable address signal takes on the value of the
prefetch address when the received transaction is a prefetch
line or prefetch multiple request and takes on the value of the
q2pif _addr [31:2] otherwise. The sent _pmw signal is
asserted when the message generator receives a posted
memory write transaction from the slave state machine, and
the sent_ dr signal is asserted when it receives a prefetch
request or a delayed request from the slave state machine. If
a prefetch request or a request from the slave state machine
is received, the cable message generator enters the SLAVE
DPHASE state 2746. Otherwise, the message generator
enters the MASTER DPHASE state 2744.

Inthe MASTER _DPHASE state 2744, the cable message
generator attempts to send a delayed completion message
down the cable. However, if the PCI interface grants the bus
to a device on the PCI bus before the QPIF gets control of
the bus, the cable message generator must leave the
MASTER _DPHASE state 2744 to send the newly received
message. Therefore, if the send _message signal is asserted
while the message generator is in the MASTER _DPHASE
state 2744, the q2¢__new req signal is asserted to indicate
the start of a new message If the q2pif _dac_ flag is asserted,
the new transaction is a dual address cycle and the cable
message generator enters the CABLE DAC state 2742,
Otherwise, message generator enters the SLAVE DPHASE
state 2746.

If the send _message signal is not asserted, then the cable
message generator is sending a delayed completion message
from the master state machine. When the master state
machine has completed the last data transfer with the PCI
bus and the target device has acknowledged the transfer
('p2q__trdy), or when the master has aborted the transaction
on the cable, the cable message generator asserts a sent__dc
signal indicating that the delayed completion message was
sent down the cable and reenters the IDLE state 2740.
Otherwise, the message generalor remains in the
MASTER _DPHASE state 2744 and continues generating
the delayed completion message.

From the SLAVE DPHASE state 2746, as long as a
stream is established with the upstream chip, no delayed
requests from the CPU are pending in the downstream DRQ,
and the requesting device continues to send data to the QPIF
(q2p_qeye is asserted), the cable message generator
remains in the SLAVE DPHASE state 2746 and continues
to forward the transaction from the requesting device.
Otherwise, if the cable message generator receives a delayed
request or a prefetch request, the cable message generator
forwards the request and, in the case of a delayed write
request, the one dword of data to the upstream device and
then enters the IDLE state 2740. Otherwise, the cable

Toshiba_Apricorn 1010-0153
IPR2018-01067

5,943,482

51

message generator has received a posted memory write
request. In this situation, the cable message generator stays
in the SLAVE DPHASE state 2746 and continues to for-
ward the posted memory write information down the cable
until the early last_slave dala signal is asserted, indicat-
ing the last piece of data has been sent by the slave state
machine. The message generator then terminates the cable
transaction and reenters the IDLE state 2740.

Cable Interface

To ensure the valid transfer of data between the two
bridge chips, data sent through the cable 28 must be syn-
chronized properly to the clocks from the clock generators
102 and 122. The downstream clock generator 122 bases its
clocks on an upstream clock (which in turn is based on the
PCI bus clock PCICLK1) transmitted down the cable 28
with the data. As a result, upstream data transmitted down-
stream is synchronized to the clocks generated in the down-
stream bridge chip 48. However, the phase delay associated
with the cable 28 between the main clocks generated in the
upstream chip 26 and the data transferred back upstream
from the downstream chip 48 is unknown The length of the
cable 28 range from 10 to as large as 100 feet (if appropriate
interface technology is used). The receiving logic in the
upstream cable interface 104 is effectively an asynchronous
boundary with respect to the upstream clock. Consequently,
the receiving logic needs 1o re-synchronize the downstream-
to-upstream data to the clock from the upstream clock
generator 102,

Referring to FIG. 5, the clock distribution scheme in the
2-chip PCI-PCI bridge is shown. Transactions which are
forwarded between the bridge chips 26 and 48 are encoded
into multiple time-multiplexed messages. The format of the
messages is similar to the PCI transaction format (except for

20

30

i
wn

time multiplexing) and includes an address and one or more ~

data phases and modified handshake signals in addition to
signals which are added to indicate buffer number and
special bridge function commands. Each cable interface 104
or 130 includes a master cable interface (192 or 194) and a
slave cable interface (196 or 198). The master cable inter-
face 192 or 194 transmits messages out onto the cable 28,
and the slave cable interface 3075 196 or 198 receives
messages from the cable 28.

The clock generator 102 or 122 in each bridge chip
includes two on-chip PLLs for clock generation. A PLL 184
in the upstream bridge chip 26 locks on the primary PCI bus
input clock PCICLKL. In the downstream bridge chip 48,
the PLL 180 locks to an incoming clock PCICLK2 from a
clock buffer 181.

In the ensuing description, a *1x clock™ refers 1o a clock
having the same frequency as the clock PCICLKI, while a
“3x clock” refers to a clock having three times the frequency
of the clock PCICLKI. A 1x clock PCLK generated by the
PLL 184 or 180 (in the bridge chip 26 or 48, respectively)
is used for the corresponding bridge chip’s PCI bus interface
logic 188 or 190, and the 3x clock PCLKJ is used to run the
cable message generation logic in the master cable interface
192 or 194. The other PLL 186 or 182 is used to lock to a
cable input clock CABLE_CLK1 (from upstream) or
CABLE_CLK2 (from downstream) and to generate a 1x
clock CCLK and a 3x clock CCLK3 to capture incoming
cable data. The clock outputs of the PLL 186 or 182 are
routed to the slave cable interface 196 or 198, respectively

The PLLs are arranged in the layout to balance the 1xand
3x clocks as closely as possible to minimize the skew
between them.

40

50

@n

52

The PLL 184 or 180 generates a phase indicator signal
PCLEKPHIL, which indicates to the master cable interface
192 or 194 when the first phase of data should be presented
to the cable 28. On the upstream side, the signal PCLKPHI1
is based on the PCI clock PCICLKIL; on the downstream
side, the signal PCLKPHI1 is based on the PCI clock
PCICLK2. The PLL 186 or 182 generates a phase indicator
signal CCLKPHIL, based on the cable clock CABLE _
CLK1 or CABLE CLK2, to indicate to the slave cable
interface 196 or 198 when the first phase of data has come
down the cable 28.

The PCI clock PCICLK2 for the secondary PCI bus 32 is
generated off a 1x clock BUFCLK of the PLL 182 in the
downstream bridge chip 48. The clock BUFCLK drives the
clock buffer 181 through a driver 179. The buffer 181
outputs a separate clock signal for each of the six slots on the
secondary PCI bus 32 as well as the clock PCICLK2, which
is routed back as the bus input clock to the downstream
bridge chip 48. By basing the clock PCLK on the clock
PCICLE2 from the clock buffer 181, the clock schemes of
the upstream and downstream chips are made to appear
more similar since both are based on an external bus clock.

The cable clock CABLE CLKI1 is a 33% duty cycle
clock. The PLL 182 first converts the 33% duty cycle clock
10 a 50% duty cycle clock for output as BUFCLK.

The PCI Specification, Version 2.1, requires that the PCI
bus clock must meet the following requirements: clock cycle
time greater than or equal to 30 ns; clock high time greater
than 11 ns; clock low time greater than or equal to 11 ns; and
clock slew rate between 1 and 4 ns.

When the computer system is powered up, the upstream
chip 26 is powered on last, the upstream PLL 184 sends the
clock CABLE _CLKI1 (through the master interface 192)
down the cable 28, which is then locked to by the down-
stream PLL 182 and PLL 180. The downstream PLL 180
then sends the clock CABLE. CILLK2 back upstream to be
locked to by the PLL 186.

The system is not completely operational until all four
PLLs have acquired lock.

If the upstream bridge chip 26 powers up and the down-
stream bridge chip 48 is not vet turned on, the upstream
bridge chip 26 behaves as a PCI-PCI bridge with nothing
connected to its downstream bus (the cable 28). As a result,
the upstream bridge chip 26 does not accept any cycles until
the downstream bridge chip 48 is powered on and the
upstream PLL 186 has acquired “lock” from the cable clock
CABLE_CLK2.

The upstream bridge chip 26 floats all of its PCI output
buffers and state machines a synchronously with assertion of
the PCT reset signal PCIRST1 _ on the primary bus 24.
During reset, the PLL 184 may be attempting to acquire lock
on the PCI bus clock PCICLKI. Since the PCI Specification
guarantees that the signal PCIRST1__ will remain active for
at least 100 us after the PCI bus clock becomes stable, the
PLL 184 has about 100 s to acquire a lock.

The downstream bridge chip 48 resets all internal state
machines upon detection of the primary bus PCIRSTI
signal. In response, the downstream bridge chip 48 also
asserts a slot-specific reset to each slot on the secondary PCI
bus 32, as well as a secondary PCI bus reset signal
PCIRST2_ .

Referring to FIG. 6, cach PLL includes a voltage-
controlled oscillator (VCO) 200 generating an output 201
(the 3x clock) between 75 Mhz (for a 25-Mhz PCI bus) and
100 Mhz (for a 33-Mhz PCI bus). The VCO 200 receives a
reference clock 197, which is the PCI bus clock. Each PLL

Toshiba_Apricorn 1010-0154
IPR2018-01067

5,943,482

53
has a lock detection circuit 205 which indicates by a lock
indication bit that the PLL phase is locked to its reference
accurately enough to perform its intended function.

The lock indication bits are written to a status register in
the configuration space 105 or 125 of each bridge chip. On
the downstream side, a power-good/lock status bit is trans-
mitted to the upstream bridge chip 26 to indicate that the
main elements of the downstream bridge chip 48 are stable
(power is stable) and the downstream PLLs are locked (lock
indication bits of the two PLLs are active). The lock
indication bit is also gated with the EDC status bits such that
EDC errors are not reported as such until the PLLs are
locked. Thus, the bridge chip pair can come up to an
crror-free communication state without software interven-
tion. The lock indication bit also provides some diagnostic
information which can distinguish between a PLL lock
failure and other data errors. The clock generation circuitry
includes a four-state machine 202 to generate a divide-by-3
clock (1x clock) of the VCO output 201. The 1x clock is fed
back to the PLL at input 203,

Data is moved down the cable 28 at a 3x clock (PCLEK3)
rate in three time-multiplexed phases to produce a 1x clock
message transfer rate. Referring to FIG. 7, the circuitry in
the master cable interface 192 or 194 for disassembling and
transmitting the cable message includes a register 204,

which samples the out-going message at the local PCLK 2

boundary. The flip-flop 208 provides extra margin for hold
time on the third phase of the transmitted message by
holding this phase for an extra half of a PCLK. Since the
output register 212 is clocked with the 3x clock PCLK3, this

reduces the need for tight control on the skew between the

1x and 3x clocks. From the phase indication signal
PCLKPHIL, a set of three flip-flops 210 generates succes-
sive PHI1, PHI2, and PHI3 signals, representing phases 1, 2
and 3, respectively, which in turn conirol a 60:20 multiplexer

206. The three phases of data (LMUXMSG [19:0] ;

LMUXMSG [39:20]. {LMUXMsG [51:40], EDC [7:0]})
are successively multiplexed into the register 212 and driven
through the cable 28. The third phase of data includes error
correction bits EDC [7:0] generated by an ECC generator
206 (FIG. 17) from the register 204 output bits LMUXMSG
[51:0]. The flip-flop 214, clocked by PCLK3, receives the
PHI1 signal and clocks it out as the cable clock CABLE
CLK1 or CABLE _CLK2.

Since the master cable interface 192 or 94 is a 1x-to-3x
communication interface, a one 3x-clock latency is incurred,
resulting in a single 3x clock phase shift of the transmitted
cable message from the PCI bus clock as shown in FIG. 8.
In period TO, message A is presented to the input of the
register 204 and the first phase clock indicator PCLKPHI1
is asserted high. The signal PHIL is asserted high from a
previous cycle. In period T1, the cable clock CABLE
CLK1 or CABLE_CLEK2 is driven high in response 1o the
signal PHI1 being high. The PCLKPHI1 pulse causes the
signal PHI2 to be pulsed high in period T1. Next, in period
T2, the signal PHI3 is pulsed in response to the signal PHI2.
In period T3, the signal PHIL is pulsed high in response to
the signal PHI3 being high. Message A is also loaded into the
register 204 on the rising edge of the clock PCLK in period
T3. Next, in period T4, the signal PHI1 causes the multi-
plexer 206 to select the first phase data Al for loading into
the register 212. Next, in period T5, the second phase data
A2 is selected and loaded into the register 212. Then, in
period T6, the third phase data A3 is loaded into the register
212. This process is repeated for messages B, C, D and E in
the subsequent clock periods.

As shown in FIG. 8, the cable clock CABLE CLK has a
33% duty cycle. Alternatively, the cable clock CABLE

20

40

=1

65

54
CLK can be designed to have an average duty cycle of 50%,
which can be accomplished, for example, by sending out the
cable clock as 33% high-66% low-66% high-33% low.
Having an average 50% duty cycle could result in better pass
characleristics in the cable 28.

Referring to FIG. 9, a slave cable interface first-in-
first-out buffer (FIFO) 216 assembles incoming data from
the cable 28 and transmits the assembled data to the queues
and PCI state machines in the receiving bridge chip. The
FIFO 216 is 4 entries deep, with each entry capable of
holding one complete cable message. The depth of the FIFO
216 allows for the cable data to be synchronized to the local
bridge chip clock without losing any effective bandwidth in
the cable interface. In addition, on the upstream side, the
FIFO 216 is an asynchronous boundary for the cable data
coming from the downstream bridge chip 48. The FIFO 216
ensures that the cable data is properly synchronized with
respect to PCLK before it is outputed to the rest of the chip.

The entries of the FIFO 216 are selected by an input
pointer INPTR [1:0] from an input pointer counter 226,
which is clocked by the signal CCLK3, cleared when a
signal EN_INCNT is low, and enabled by the phase indi-
cator CCLKPHIL. The negative edge of the 3x clock
CCLK3 from the PLL 186 or 182 is used to latch incoming
data from the cable 28, first into a 20-bit register 218, and
then into a register 220 if a phase one indication signal
PHI1_DLY is asserted, or into a register 222 if a phase two
indication signal PHI2__DLY is asserted. The phase 1 data,
phase 2 data and phase 3 data from the registers 220, 222 and
218, respectively, are loaded into the selected entry of the
FIFO 216 on the negative edge of CCLK3 when the phase
3 indication signal PHI3__DLY is asserted. The four sets of
outpuis from the FIFO 216 are received by a 240:60 mul-
tiplexer 228, which is selected by an output pointer OUT-
PTR [1:0] from an output pointer counter 224 clocked by
PCLK and cleared when a signal EN_OUTCNT is low.

Referring to FIG. 10, the input pointer and output pointer
counters 226 and 224 continuously traverse through the
FIFO 216 filling and emptying data. The counters 226 and
224 arc offset in such a way as to guarantee valid data in a
location before it is read out. The initialization of the
pointers is different for an upstream bridge chip 26 than for
a downstream bridge chip 48 due to synchronization uncer-
tainties.

Flip-flops 236 and 238 synchronize the resel signal
C_CRESET, which is asynchronous to the clocks in the
bridge chip, to the CCLK clock boundary. The signal
EN__INCNT is generated by the flip-flop 238. The input
pointer is incremented on the rising edge of the clock
CCLKS3 if the first phase indication signal CCLLKPHIT and
the signal EN__INCNT. The output pointer is then started at
a later local PCLK clock boundary PCLK when it can be
guaranteed that the data will be valid in the FIFO 216. The
upstream and downstream bridge chips must handle the
starting of the output pointer differently since the phase
relationship of the cable clock to the local clock is not
known for the upstream bridge chip 26 but is known for the
downstream bridge chip 48.

In the downstream bridge chip 48, the phase relationship
between the incoming cable clock CABLE CLK1 and the
secondary PCI bus clock PCICLK2 is known since the PCI
clock PCICLK2 is generated from the cable clock. As a
result, no synchronization penalty exists for the output
pointer OUTPTR [1:0] in the downstream bridge chip 48,
and the output pointer can track the input pointer INPTR
[1:0] as closely as possible. A flip-flop 230, which is clocked

Toshiba_Apricorn 1010-0155
IPR2018-01067

5,943,482

55

on the negative edge of the clock PCLK, is used to avoid any
clock skew problems between the clock CCLK generated by
the PLL 182 and the clock PCLK generated by the PLL 180.
Though these two clocks have identical frequencies and
should be in phase with each other, there is an unknown
skew between the two clocks since they are gencrated from
two different PLLs. On the downstream side, the signal
EN_OUTCNT is the signal EN_INCNT latched on the
negative edge of the signal PCLK by the flip-flop 230. A
multiplexer 234 selects the output of the flip-Hop 230 since
the signal UPSTREAM _CHIP is low.

In the upstream bridge chip 26, the cable interface is
treated as completely asynchronous. The phase uncertainty
is due to the unknown phase shift of the cable 28 itself.
Designing for this uncertainty gives complete freedom on
the length of cable 28. What is known is thal the clocks in
the upstream and downstream bridge chips have the same
frequency, since they both have their origin in the upstream
PCI bus clock PCICLKL. In the upstream bridge chip 26, the
signal EN_OUTCNT is the signal EN_INCNT latched on
the positive edge of the clock PCLK by a flip-flop 232. The
multiplexer 234 selects the output of the flip-flop 232 since
the signal UPSTREAM _CHIP is high. The flip-flop 232
guarantees that even for the worst-case lineup of the cable

clock CABLE__CLK2 and the local PCI clock PCLK (one ,

complete PCLK period phase shift), there is valid data in the
FIFO 216 before the data is transmitted to the rest of the
chip.

Referring to FIG. 11, the cable data is received by the

slave cable interface 196 or 198 as three phase time- ;

multiplexed signals Al, A2 and A3; B1, B2 and B3; C1, C2
C3; and so forth. A previous transaction is completed in
periods TO, T1 and T2. Beginning in period T3, the first
phase data Al is presented to the register 218 and the first

phase indicator CCLKPHIN is pulsed high. On the falling ;

edge of CCLK3 in period T3, the data Al is loaded into the
register 218, and the local phase 1 indication signal PHI
DLY is pulsed high. In period T4, on the falling edge of
clock, the phase 1 data Al is loaded into the register 220, the
phase 2 data A2 is loaded into the register 218, and the phase
2 indication signal PHI2 DLY is pulsed high. In period T5,
on the falling edge of CCLK3, the phase 2 data is loaded into
the register 222, the phase 3 data A3 is loaded into the
register 218, and the phase 3 indication signal PHI3 _DLY
is pulsed high. In period T6, the contents of the registers 220,
222, and 218 are loaded into the selected entry of the FIFO
216 on the following edge of CCLK3. Also in period T6, the
data Bl is presented to the register 218 along with the
indication signal CCLKPHIL. Messages B and C are loaded
into the FIFO 216 in the same manner as message A in
subsequent periods.

Referring to FIG. 12, the input pointer INPTR [1:0] starts
at the value 0 in period TO on the rising edge of the clock
CCLK3. Also in period T0, message A is loaded into FIFO
0 on the falling edge of the clock CCLK3. In the downstream
bridge chip 48, the output pointer OUTPTR [1:0] is incre-
mented to the value 0 on the next rising edge of the clock
PCLK in period T3. Also in period T3, the input pointer
INPTR [1:0] is incremented to the value 1 on the rising edge
of the clock CCLK3, and message B is loaded into FIFO 1
on the falling edge of CCLK3. Cable data is thus loaded into
FIFOO0, FIFO1, FIFO2, and FIFO3 in a circular fashion.

On the upstream side, if the input pointer INPTR [1:0] is
0 in period 10, the output pointer OUTPTR [1:0] is incre-
mented to the value 0 in period T6, two PCLK periods after
the input pointer INPTR [1:0]. The two PCLK period lag in
the upstream bridge chip 26 allows the phase delay in the

20

40

@n

56

cable 28 to be of any value, which has the advantage that the
cable length need not be of a specific fixed value.

Referring to FIG. 13, the input and output flip flops on the
cable interface are custom-placed by the manufacturer of the
chips to minimize the skew between the cable data and the
clock passed with it. The amount of wire between each
flip-flop and the 1/0 are maintained as consistent as possible
between all cable interface signals.

Cable Message

Sixty bits of cable data constitute one message. The 60
bits are multiplexed onto 20 cable lines and are transmitted
each 10 ns over the cable 28. The table in FIG. 14 shows the
bits and the phase cach bit is assigned to. The first three
columns show the upstream-to-downstream data transfer
format, and the last three columns show the downstream-
to-upstream data transfer format. The following is a descrip-
tion of the signals.

EDC [7:0]: The signals are the eight syndrome bits used
1o detect and correct errors encountered in transmitling data
over the cable 28.

CAD [31:0]: The signals are the 32 address or data bits.

CFRAME__: The signal is used to signal the start and end
of a cable transaction, similar to the PCI FRAME _signal.

CCBE [3:0]_: The four bits form byte enables in some
PCI clock phases and either a PCI command or a message
code in other PCI clock phases.

CBUFF [3:0]: In the address phase, the signals indicate a
buffer number for initializing the bridge chip delayed
completion queue (DCQ) 148 to tic upstream and down-
stream delayed read completion (DRC) and delayed read
request (DRR) transactions. After the address phase, the
signals contain the parity bit, parity error indication and the
data ready signal.

COMPLETION REMOVED: The bit is used to signal
that a delayed completion has been removed from the
transaction ordering queue (TOQ) on the other side of the
cable 28.

PMW ACKNOWLEDGE: The bit is used to signal that a
posted memory write (PMW) has been completed on the
other side and has been removed from the transaction run
queue (TRQ).

LOCK_: The bit is transmitted downstream (but not
upstream) to identify locked cyeles.

SERR__: The bit is used to transmit an SERR__indication
upstream, but is not transmitted downstream.

INTSYNC and INTDATA: The bits carry the eight inter-
rupts from downstream to upstream in a serially multiplexed
format. The signal INTSYNC is the synchronization signal
indicating the start fo the interrupt sequence and the signal
INTDATA is the serial data bit. The signals INTSYNC and
INTDATA are routed on separate lines over the cable 28.

RESET SECONDARY BUS: The bit is asserted when the
CPU 14 writes to the secondary reset bit in a bridee control
register in the upstream bridge chip 26. It causes the
downstream bridge chip 48 to reset to a power up state. The
resel signals for the slots are also asserted. The signal
RESET secondary bus is routed on a separate line over the
cable 28.

Because the address and data in each PCI transaction is
multiplexed over the same lines, each PCI transaction
includes an address phase and at least one data phase (more
than one for burst transactions). The PCI specification also
supports single address transactions (32-bit addressing) and
dual-address transactions (64-bit addressing).

Toshiba_Apricorn 1010-0156
IPR2018-01067

5,943,482

57

Referring to FIG. 15A, a table shows what information
appears on each portion of the bus during address and data
phases of the single-address transactions. For a single
address transaction, the first phase is the address phase and
the second and subsequent phases are data phases. In the
address phase of a delayed read/write request transaction,
the signals CBUFF [3:0] indicate the DCQ buffer number for
initializing the bridge chip DCQ 148 1o tie upstream and
downstream DRC and DRR transactions. After the address
phase, the signal CBUFF [0] contains the parity bit. The
signals CCBE [3:0] _contain the PCI command in the
address phase and the byte enable bits in the data phases.

For posted memory write transactions, the signals CBUFF
[3:0] are “don’t care” in the address phase and contain the
data-ready indication, parity error indication, and parity bit
in the data phases.

In a delayed read/write completion transaction, the signals
CBUFF [3:0] contain the DCQ buffer numbers in the address
phase and the end-of-completion indication, data- ready
indication, parity error indication, and parity bit in the data
phases. The signals CCBE [3:0]__contain a code represent-
ing a DRC transaction in the address phase and the status
bits of the DRC transaction in the data phases, Delayed
completion transactions return the status of the destination
bus for each data phase. The data parity bit is transmitted on
CCBE [3] . Other status conditions are encoded on the
CCBE [2:0]_bus, with a binary value 000 indicating normal
completion and a binary value 001 indicating a target abort
condition. The address/data bits CAD [31:0] are “don’t care™
in the address phase and contain data during the data phases.

In a stream connect transaction, the signals CBUFF [3:01]
contain a buffer number in the address phase and the signal
CBUFF [2] contains the data-ready indication in the data
phases. The signals CCBE [3:0] contain a code representing
a stream connect transaction in the address phase and are
“don’t care” in the data phases. The address/data bits CAD
[31:0] are not used during a stream connect lransaction.

The table in FIG. 15B shows the encoding of the signals
for dual-address transactions. In delayed read/write request
transactions, the signals CBUFF [3:0] contain a buffer
number in the first and second address phases and the signal
CBUFF [0] contains the parity bit in the data phase. The
signals CCBE [3:0__ contain a code representing a dual-
address cycle in the first address phase, the PCI command in
the second address phase, and the byte enable bits in the data
phase. The signals CAD [31:0] contain the most significant
address bits in the first address phase, the least significant
address bits in the second address phase, and the data bits in
the data phase. In a dual-address posted memory write
transaction, the signals CBUFF [3:0] are “don’t care™ in the
first two address phases, but the signals CBUFF [1:0]
contain the parity error indication bit and the parity bit in the
data phases. The signals CCBE [3:0]_contain a code rep-
resenting a dual-address cycle in the first address phase, the
PCI command bits in the second address phase, and the byte
enable bits in the data phases. The signals CAD [31:0]
contain the most significant address bits in the first address
phase, the remaining address bits in the second address
phase, and the data bits in the data phases.

There are three possible states for the data transfer:
not-last, last-of-cable-transfer, and last-of- request. The not-
last state is indicated by asserting the bit CBUFF [2] while
FRAME is active, which indicates that another word of
data is being presented. The last-of-cable- transfer state is
indicated by asserting the bit CBUFF [2] while the signal
CFRAME _is inactive. The last-of-request slate is indicated

20

30

i
wn

40

6

@n

58
by asserting the bits CBUFF [3] and CBUFF [2] while the
signal CFRAME __is inactive.

The following four IEEE 1149.1 Boundary-Scan (JTAG)
signals are included in the cable 28 to effect a JTAG test
chain: TCK (the test clock), TDI (test data input), TDO (test
data output) and TMS (test mode select). The optional
TRST _is not transmitted down the cable, but TRST _can be
generated from power-good.

The JTAG signals are routed from the system PCI con-
nector through the upstream bridge chip 26, including JTAG
master 110, down the cable 28 to the downstream bridge
chip 48 to the JTAG master 128, which distributes the JTAG
signals to each of the six PCI slots on the secondary PCI bus
32. The return path is from the JTAG master 128, up the
cable 28 back to the upstream bridge chip 26 and then to the
PCI slot on the primary PCI bus 24, The signals TDO, TCK,
and TMS are downstream bound signals. The signal TDI is
an upstream bound signal.

One type of cable 28 that can be used is a cylindrical
50-pair shielded cable designed to support the High Perfor-
mance Parallel Interface (HIPPI) standard. A second type of
cable is a shielded 50-pair ribbon cable. The advantages of
the first are standardization, ruggedness and reliable uniform
manufacture. The advantages of the second are greater
mechanical flexibility, automatic termination to the connec-
tor in assembly and possibly lower cost.

The table of FIG. 16 shows some of the HIPPI cable
specifications. The ground shield consists of a braid over
aluminum tape and carries only minimum DC currents due
to the differential nature of the buffers to be used. The
method of signaling is true differential which provides
several advantages, with differential buffers used to send and
receive signals over the cable 28. First the true differential
method is less expensive than fiber optics for this short
distance and less complex to interface than other serial
methods. Differential signaling provides significant com-
mon mode noise immunity and common mode operating
range, is available in ASICs and is faster than TTL. When
using twisted pair and shielding, it minimizes electromag-
netic radiation. When using low voltage swings, it mini-
mizes power dissipation.

The signaling levels chosen as a target are described in the
IEEE Draft Standard for Low-Voltage Differential Signals
(LVDS) for Scaleable Coherent Interface (SCI), Draft 1.10
(May 5, 1995).

The cable connector is an AMP metallic shell 100-pin
connector with two rows of pins. The rows are 100 mils
apart and the pins are on 50-mil centers. The metal shell
provides EMI shielding and the connection of the ground
path from the cable shield to the board connector. The
mating right angle board connector just fits a PCI bracket.
The connector is to have a bar running between the rows of
pins to divert electrostatic discharges from the signal pins
when the connector is disconnected. A pair of thumb screws
attached to the cable connector will secure the mated con-
neclors.

Error Detection and Correction

An error detection and correction (EDC) method is imple-
mented on each bridge chip to protect communication over
the cable 28. Since the data is time-multiplexed into three
20-bit groups to be sent over 20 pairs of wires, each triplet
of “adjacent” bits (i.e., bits associated with the same wire in
the cable 28) is arranged so as to be transmitted on a single
wire pair. The EDC method can correct single-bit failures
and multi-bit failures occurring in the same bit position in

Toshiba_Apricorn 1010-0157
IPR2018-01067

5,943,482

59
cach of the three time- multiplexed phases. The multi-bit
failures are typically associated with a hardware failure, ¢.g.,
a broken or defective wire or a faulty pin on bridge chips 26,
48.

Twenty wire pairs of the cable 28 are used for downstream
communication and 20 more for upstream communication.
For the remaining ten pairs in the 50-pair HIPPI cable 28
(which pass such information as the clock signals CABLE
CLK1 and CABLE__CLK2, resel signals, and the power
good/PLL-lock signal), error detection and correction is not
implemented.

The following are the underlying assumptions for the
EDC algorithm. Most errors are single bit errors. The
probability of having random multiple-bit errors in the same
transaction is extremely remote because the cable 28 is not
susceptible to interference from internal or external sources.
Errors caused by a defective wire may affect a single bit or
a group of bits transmitted on that wire. When a hardware
failure occurs, the logic state of the corresponding differen-
tial buffer is in a single valid logic state.

Referring to FIG. 17, the output signals FIFOOUT [59:0]
from the multiplexer 228 in the slave cable interface 196 or
198 are provided to the input of a check bit generator 350,
which produces check bits CHKBIT [7:0]. The check bits
are generated according to the parity-check matrix shown in
FIG. 18, in which the first row corresponds to CHKBIT [0],
the second row corresponds to CHKBIT [1], and so forth.
The bits across a row correspond to data bits FIFOOUT
[0:59].

The check bits are generated by an exclusive-OR of all the
data bits FIFOOUT [X] (X is equal to 0-59), which have a
“1" value in the parity-check matrix. Thus, the check bit
CHEKBIT [0] is an exclusive-OR of data bits FIFOOUT [7],
FIFOOUT [8], FIFOOUT [9], FIFOOUT [12], FIFOOUT

20

30

[13], FIFOUT [16], FIFOOUT [22], FIFOOUT [23],

FIFOOUT 8 24]), FIFOOUT [26], FIFOOUT [32],
FIFOOUT [33], FIFOOUT [34], FIFOOUT [35], FIFOOUT
[38], FIFOOUT [39], FIFOOUT [45], FIFOOUT [46],
FIFOOUT [48], FIFOOUT [49], FIFOOUT [51], and
FIFOOUT [52]. Similarly, the check bit CHKBIT [1] is an
exclusive-OR of bits 0, 1, 4, 5, 9, 10, 12, 14, 15, 16, 23, 27,
35, 37, 38, 40, 43, 46, 47, 48, 50, and 53. Check bits
CHKBIT [2:7] are generated in similar fashion according to
the parity-check maltrix of FIG. 18. The parity check matrix
is based upon the 20 sub-channels or wires per time-
multiplexed phase and a probability that multiple errors in
the accumulated data are attributable to a Faulty sub-channel
or wire that affects the same data position in each time-
multiplexed phase.

In the master cable interface 192 or 194, the check bits
CHEKBIT[7:0] are provided as error detection and correction
bits EDC [7:0] along with other cable data to allow error
correction logic in the slave cable interface 196 or 198 to
detect and correct data errors.

The check bits CHKBIT [7:0] are provided to a fix bit
generator 352, which generates fix bits FIXBIT [59:0]
according to the syndrome table shown in FIG. 19, The
check bits CHKBIT[7:0] have 256 (2%) possible values. The
syndrome table in FIG. 19 contains 256 possible positions.
Each of the 256 positions in the syndrome table contains 2
entries, the first entry being the hexadecimal value of the
check bits CHKBIT [7:0], and the second entry indicating
the cable data status associated with that position. Thus, for
example, a hexadecimal value 00 indicates a no-crror
condition, a hexadecimal value 01 indicates an error in data
bit 52, a hexadecimal value 02 indicates an error in data bit

50

o
0

@n

60
53, a hexadecimal value 03 indicates an uncorrectable error
(UNCER), and so forth.

The EDC logic is capable of detecting up to 3 erroneous
bits, as long as those data bits are adjacent, i.c., associated
with the same wire. Thus, for example, if the check bits
CHKBIT [7:0] contain a hexadecimal value 3D, then data
bits 3, 23, and 43 are erroncous. The cable 28 carries cable
data CABLE _DATA [19:0]. Thus, data bits FIFOOUT [3],
FIFOOUT [23], and FIFOOUT [43] are associated with the
fourth position of the cable data, ie., CABLE DATA [3].
The EDC method can also correct two-bit errors associated
with the same cable wire. Thus, for example, a hexadecimal
check bit value of OF indicates errors in data bits FIFOOUT
[4] and FIFOOUT [24], both associated with CABLE
DATA [4].

The fix bit generator 352 also produces signals NCERR
(uncorrectable error) and CRERR (correctable error). If no
error is indicated by the check bits, then the signals CRERR
(correctable error) and NCERR (non-correctable error) are
both deasserted low. In those positions in the syndrome table
containing the uncorrectable state UNCER, the signal
NCERR is asserted high and the signal CRERR is deasserted
low. Otherwise, where a correctable data error is indicated,
the signal NCERR is deasserted low and the signals CRERR
is asserted high.

The lower 52 bits of the fix bits FIXBIT [51:0] are
provided to one input of 52 exclusive-OR gates 354, whose
other input receives one of each the lower 52 bits of the
FIFO data FIFOOUT [51:0]. The upper 8 FIFO bits
FIFOOUT [59:52], allocated to the error detection and
correction bits EDC[7:0], are used to generate the check bits
and the syndrome bits, but are not subject to error correction.
The exclusive-OR gates 354 perform a bit-wise exclusive-
OR operation of the fix bits FIXBIT [51:0] and the data bits
FIFOOUT [51:0]. If the data signals FIFOOUT [51:0]
conlain correctable, erroncous data bits, those data bits are
flipped by the exclusive-OR operation. The exclusive-OR
gates 354 provide the corrected data CORRMSG [51:0] 1o
the 1 input of a multiplexer 360. The O input of the
multiplexer 360 receives the data bits FIFOOUT [51:0], and
the multiplexer 360 is sclected by a configuration signal
CFG2 C_ENABLE _ECC. The output of the multiplexer
360 produces signals MUXMSGI [51:0]. If the system
soltware enables error detection and correction by setting
the signal CFG2C_ENABLE _ECC high, then the multi-
plexer 360 selects the corrected data CORRMSG [51:0] for
output. Otherwise, if error detection and correction is
disabled, the data bits FIFOOUT [51:0] are used.

The non-correctable and correctable error indicators
NCERR and CRERR are provided to inputs of AND gates
356 and 358, respectively. The AND gates 356 and 358 are
enabled by the signal CFG2C_ENABLE__ECC. The out-
puts of the AND gates 356 and 358 produce signals
C_NLERR and C_CRERR, respectively. The signals
C_NLERR and C_CRERR can be asserted only if error
detection and correction is enabled. When an error is
detected, the fix bits are latched and used for diagnostic
purposes.

Il a correctable error is indicated (the signal C_ CRERR
is high), then an interrupt is generated to the interrupt
receiving block 132, forwarded up to the interrupt output
block 114, and then transmitted to the system interrupt
controller and then to the CPU 14 1o invoke an interrupt
handler. Non-correctable errors indicated by the signal
C_NCERR will cause the system error SERR 1o be
asserted, which in turn causes the system interrupt controller

Toshiba_Apricorn 1010-0158
IPR2018-01067

5,943,482

61

(not shown) to assert the non-maskable interrupt (NMI) to
the CPU 14. In the downstream bridge chip 48, non-
correctable errors will also cause the power-good/PLL lock
indication bit sent up the cable 28 to be negated so that the
upstream bridge chip 26 does not send cycles downstream.
To prevent spurious interrupts during and just after power-
up, error detection and correction on both the upstream and
downstream bridge chips is disabled during power-up until
the upstream PLL 186 and downstream PLL 182 have
locked to the clock CABLE CLK1 or CABLE CLK2.

System management software responding to the
correctable-error interrupt determines the cause by reading
the latched fix bits. Il a hardware failure is determined (e.g.,
multiple data error bits associated with the same cable wire),
then the system management software can notify the user of
the condition to fix the hardware failure. The system man-
agement software responds to SERR _caused by an uncor-
rectable error by shutting down the system or performing
other functions programmed by the user.

Secondary Bus Arbiter

Referring to FIG. 3, each bridge chip includes a PCI
arbiter 116 or 124. Since the upstream bridge chip 26 is
normally installed in a slot, the PCI arbiter 116 is disabled.
The PCI arbiter 124 supports 8 masters: 7 generic PCI
masters (REQ [7:1] , GNT [7:1]) including the six PCI
slots and the hot plug controller in the SIO 50, and the bridge
chip itself (BLREQ_, BLGNT_). The signals BLREQ__
and BLGNT _are routed from and to the PCI master block
123. The bridge chip asserts the signal BLREQ__if a trans-
action from the CPU 14 targeted for the secondary PCI bus
32 is received by the upstream and downstream bridge chips
26 and 48. The request and grant lines REQ [1] _and GNT
[1] for the SIO 50 are routed internally in the downstream

bridge chip 48. The PCI arbiter 124 inserts a PCICLK2 delay ™

between negation of a GNT _signal for one master and the
assertion of a GNT _signal for another master.

In the downstream bridge chip 48, the PCI arbiter 124 is
enabled or disabled based on the sampled value of REQ
[7]__at the rising edge of the signal PCIRST2 . If the bridge
chip 48 samples REQ [7] low on PCIRST2 , it will
disable the PCI arbiter 124. If the PCI arbiter 124 is disabled,
then an external arbiter (not shown) is used and the hot plug
request is driven out on the REQ [1]_pin and hot plug grant
is input on the GNT [1]_ pin. The bridge PCI bus request is
driven out on the REQ [2] pin and its grant is input on the
GNT[2] _pin. If the bridge chip 48 samples REQ [7] _high
on PCIRST2_, it will enable the PCI arbiter 124.

The PCI arbiter 124 negates a master’s GNT_signal
either to service a higher priority initiator, or in response to
the master's REQ_ signal being negated. Once its GNT
signal is negated, the current bus master maintains owner-
ship of the bus until the bus returns to idle.

If no PCI agents are currently using or requesting the bus,
the PCI arbiter 124 does one of two things depending on the
value of a PARKMSTRSEL configuration register in the
configuration space 125. If the register contains the value 0,
the PCI arbiter 124 uses the last active master to park on the
bus 32; if it contains the value 1, then the bus is parked at
the bridge chip 48.

The PCI arbiter 124 includes a PCI minimum grant timer
304 (FIG. 21) which controls the minimum active time of all
the GNT__signals. The default value for the timer 304 is the
hexadecimal value 0000 which indicates that there is no
minimum grant time requirement. The timer 304 can be
programmed with a value from 1 to 255, to indicate the

20

30

40

62

number of PCICLK2 clock periods the GNT _line is active.
Alternatively, an individual minimum grant timer can be
assigned 1o each PCI master on the secondary bus 32 to
provide more flexibility. The minimum grant time is appli-
cable only when the current master is asserting its REQ
signal. Once the REQ signal is deasserted, the GNT
signal can be removed regardless of the minimum grant time
value.

Referring to FIG. 20A, in normal operation, the PCI
arbiter 124 implements a round-robin priority scheme
(sccond level arbitration scheme). The eight masters in the
round- robin scheme include devices connected to the six
slots of the expansion box 30, the SIO 50, and a posted
memory write (PMW) request from the upstream bridge
chip 26. All masters on the PCI bus 32 in this scheme have
the same priority as the bridge chip 48. After a master has
been granted the secondary PCI bus 32 and the master has
asserted the FRAME _signal, the bus is re-arbitrated and the
current master is put on the bottom of the round-robin stack.
If the master negates its request or the minimum grant limer
304 expires, the PCI bus 32 is granted 1o the next highest
priority master. Locked cycles are not treated any differently
by the PCI arbiter 124.

In response 1o certain evenis, the arbitration scheme is
modified to optimize system performance. The events
include: 1) an upstream-to-downstream delayed read or
delayed write request is pending, 2) a downstream-to-
upstream delayed read request is pending with no read
completion indication provided, and 3) a streaming possi-
bility exists while the bridge chip 26 is the current master on
the upstream bus 24.

When a delayed request is detected, the bridge chip 48
becomes the next master to be granted the secondary PCI
bus 32, Once the bridge chip 48 is granted the bus 32, it
maintains ownership of the bus 32 until it completes all
outstanding delayed requests or one of its cycles is retried.
If the bridge chip 48 is retried, then a two-level arbitration
scheme is implemented by the arbiter 124. One primary
cause of the bridge chip read cycle being retried is that the
target device is a bridge with a posted write buffer that needs
to be flushed. In this case, the optimum operation is to grant
the bus 32 to the retrying target to allow it to empty its
posted write buffer so it can accept the bridge chip read
request.

Referring to FIG. 20B, the two-level arbitration protocol
includes a first level arbitration scheme which is a round-
robin scheme among three possible masters: the delayed
request from the CPU 14, a request from the retrying master,
and a master selected by the second-level arbitration
scheme. Each of the three masters in the first-level arbitra-
tion scheme is guaranteed every third arbitration slot. For
memory cycles, the slot associated with the retrying target
can be determined from targel memory range configuration
registers in the configuration space 125 of the bridge chip
48, which store the memory range associated with cach PCI
device. If the retrying master cannot be determined (as in the
case of an I/O read), or if the retrying master is not
requesting the secondary bus 32, then the first level arbitra-
tion scheme would be between the bridge chip 48 and a
level-two master.

The retrying master is not masked from the level-two
arbitration. Thus, it is possible for it 1o have two back-to-
back arbitration wins if it is the next master in the level-two
arbitration scheme.

For example, if an upstream-to-downstream read is retried
and Master C (the retrying master) is requesting the bus 32

Toshiba_Apricorn 1010-0159
IPR2018-01067

5,943,482

63

as well as Master B and Master E, the order of the bus grants
would be as follows in descending order: the bridge chip 48,
the retrying master (Master C), Master C, the bridge chip 48,
the retrying master C, Master E, the bridge chip 48, and so
forth, until the bridge chip 48 is able to complete its
transaction and the PCI arbiter 124 reverts back to its
level-two arbitration scheme for normal operation.

If, as another example, the bridge chip read is retried and
the only other requesting masters are Master A and Master
D (i.e., the retrying master is not requesting the bus or it
could not be identified because it is accessing 1/0 space), the
order of the bus grants is as follows: the bridge chip 48,
Master A, the bridge chip 48, Master D, and so forth.

The two-level arbitration scheme gives delayed requests
from the CPU 14 the highest priority. Although this arbitra-
tion method favors heavily the CPU 14, every requesting
device on the bus 32 is eventually granted the PCI bus 32.
By so doing, there is less chance that the other secondary bus
masters would be starved when a PCI bridge chip request is
retried.

Referring to FIG. 21, the PCI arbiter 124 includes an .2
state machine 302 to implement the level-two round-robin
arbitration scheme. The L2 stale machine 302 receives
signals RR_ MAST [2:0], which indicate the current round-
robin master. The 1.2 state machine 302 also receives request
signals RR_REQ [7:0], corresponding 1o the 8 possible
masters of the secondary PCI bus 32. Based on the current
master and the state of the request signals, the 12 state
machine 302 generales a value representing the next round-
robin master. The output of the 1.2 state machine 302 is
provided to the 0 input of a 6:3 multiplexer 306, whose 1
input receives signals Q2A STRMAST [2:0]. The select
input of the multiplexer 306 receives a signal STREAM
REQ, which is asserted high by an AND gate 308 when a

20

30

streaming opportunity exists (Q2A_STREAM is high), the

streaming master on the secondary PCI bus 32 is asserting
its request line (MY REQ [QZA_STRMAST [2:0]] is
high), and a delayed request is not pending (BAL DEL
REQ is low).

The output of the multiplexer 306 drives signals N RR
MAST [2:0] which represent the next round-robin master in
the level-two arbitration scheme. The signals N_RR
MAST [2:0] are received by an L1 state machine 300, which
also receives the following signals: a signal RTRYMAST
REQ (which represents the request of the retrying bus
master); a signal MIN _ GRANT (which is asserted when the
minimum grant timer 304 times out); the delayed request
signal BAL_DEL_REQ; the stream request signal
STREAM__REQ; a signal CURMAST _REQ (indicating
that the current master is maintaining assertion of its request
signal); a signal ANY SLOT _REQ (which is asserted high
if any of the request signals REQ [7:1] _, but not including
the bridge chip request BLREQ_, is asserted); and signals
state machine 300). The L1 state machine 300 selects one of
the three possible 1.1 masters, including the retrying master
(RTRYMAST _REQ), the delayed request from the bridge
chip 48 (BAL_DEL_REQ), and the level-two master
(ANY_ SLOT REQ).

The retrying master request signal RTRYMAST _REQ is
generated by an AND gate 312, which receives the signal
BAL_DEL_REQ, the signal MY_REQ [RTRY_MAT
[2:0]] (which indicates if the retrying master is asserting its
request), and the output of an OR gate 310. The inputs of the
OR gate 310 receive the signals RTRY _MAST [2:0]. Thus,
if a retrying master has been identified (RTRY _MAST [2:0]

6

5

64
is non-zero), a delayed request is present (BAL DEL.
REQ is high), and the retrying master has asserted its
request, then the signal RTRYMAST REQ is asserted.

The L1 state machine 300 generates signals N__LISTATE
[1:0] (representing the next state of the L1 state machine
300), as well as signals N_CURMAST [2:0] (representing
the next master according to the level-two arbitration
scheme). The L1 state machine 300 also generates a signal
OPEN_ WINDOW, which indicates when a re-arbitration
window exists for a grant state machine 306 to change
masters on the secondary PCI bus 32. A signal ADV_RR.
MAST provided by the L1 state machine 300 indicates 1o the
grant state machine 306 when to load the value of the signals
N_RR__MAST [2:0] into the signals RR__MAST [2:0] 10
advance the next level-two round-robin master.

The grant state machine 306 outputs grant signals GNT
[7:0] as well as a signal CHANGING _GNT to indicate that
ownership of the bus 32 is changing. The grant signals GNT
[7:1] _ are inverted from the GNT [7:1] signals, and the
grant signal BLGNT _ is inverted from the GNT [0] signal.
The grant state machine 306 also generales signals
LISTATE [1:0] and signals RR_ MAST [2:0].

The minimum grant timer 304 is clocked by the signal
PCLK and generates the signal MIN _GRANT. The mini-
mum grant timer 304 also receives the signal CHANGING _
GNT and NEW_FRAME (indicating a new FRAME
signal has been asserted). The initial value of the minimum
grant timer 304 is loaded as a value {CFG2A__MINGNT
[3:0], 0000}, with the signals CFG2ZA_MINGNT [3:0]
being stored configuration bits in the configuration space
125 which define the initial value of the minimum grant
timer 304. The minimum grant timer 304 is re-loaded after
it has counted down to zero and the signal CHANGING
GNT is asserted high. Aflter the minimum grant timer 304 is
loaded with a new value, it begins decrementing when the
signal NEW_FRAME is asserted high and the signal
CHANGING__GNT is deasserted low by the grant state
machine 306, which indicates that a new transaction has
started on the PCI bus 32.

Signals MY_REQ [7:1] are generated by a NOR gate
314, whose inputs receive the request signals REQ [7:1]
and mask signals Q2AMASKREQ [7:1]. Assertion of the
mask bit Q2AMASKREQ [X], X=1-7, masks the request
REQ [X]_ of the corresponding master, which prevents the
PCI arbiter 124 from responding to the request signal. A
signal MY __REQ [0] is driven by an inverter 316, which
receives the bridge request BLREQ .

Referring to FIG. 22 the grant state machine 306 includes
four states: PARK, GNT, IDLE4GNT, and IDLE4PARK. On
assertion of a reset signal RESET (generated from the PCI
reset signal PCIRST2), the grant state machine 306 enters
state PARK, where it remains while a signal ANY __REQ is
deasserted. The signal ANY__REQ is asserted high if any of
the request lines to the PCI arbiter 124 is asserted. In the
PARK state, the PCI—PCI bridge 48 is parked as the owner
of the PCI bus 32 when another request is not present.

If the signal ANY REQ is asserted, the grant state
machine 306 transitions from state PARK to state
IDLE4GNT, and the signal CHANGING__GNT is asserted
high to indicate that the PCI arbiter 124 is changing masters.
The grant signals GNT [7:0] are cleared to all zeros, and the
signals CURMAST [2:0] are updated with the value of the
next master N_CURMAST [2:0]. In addition, the round-
robin master signals RR_ MAST [2:0] are updated with the
next round-robin master value N_RR__MAST [2:0] if the
signal ADV_RR__MAST is asserted by the 1.1 300. The

Toshiba_Apricorn 1010-0160
IPR2018-01067

5,943,482

65
signal ADV_RR__MAST when high indicates that the next
L1 master is one of the [2 masters.

From state IDLE4GNT, the grant state machine 306 next
transitions to the GN'T state, and the signals GNT [7:0] are
set to the state of new grant signals NEWGNT [7:0] and the
signal CHANGING_GNT is negated low. The signals
NEWGNT [7:0] are based on the state of the current master
signals CURMAST [2:0], as shown in FIG. 24.

From state GNT, three transitions are possible. The grant
state machine 306 returns to the PARK state if an arbitration
window is open (OPEN_WINDOW is high), no request is
pending (ANY__REQ is low), the PCI bus 32 is idle (BUS
IDLE is high), and the next master is the current master (i.c.,
the current master is the parking master). In the transition
back from the GNT state to the PARK state, the signals
LISTATE [1:0] are updated with the signals N_L1STATE
[1:0]. However, if no requests are pending and the bus is
idle, but the current master is not the parking master (i.c., the
signals N_CURMAST [2:0] are not equal to the value of the
signals CURMAST [2:0]), an idle state is needed and the
grant state machine 306 transitions from the GNT state to the
IDLE4PARK state. The L1 state values LISTATE [1:0] are
updated. From the IDLE4PARK state, the grant state
machine 306 iransitions to the PARK state, setting the grant

signals GNT [7:0] equal to the new grant signals NEWGNT -

[7:0] 1o grant the PCI bus 32 to the new master. The signal
CHANGING__GNT is also negated low.

If the arbitration window opens up (OPEN_ WINDOW is

high), and the next master is not the current master (the

signals N CURMAST [2:0] are not equal to the signals
CURMAST [2:0]), then the grant state machine 306 transi-
tions to the idle state IDLE4GNT to change bus master
grants. In the transition, the signal CHANGING GNT is
asserted high, the signals GNT [7:0] are cleared to all zeros,

20

the signals CURMAST [2:0] are updated with the next

master value N CURMAST [2:0], and the L1 state signals
LISTATE [1:0] are updated with the next state value
N_LISTATE [1:0]. In addition, the round-robin master
signals RR__MAST [2:0] are updated with the next round-
robin master N_RR_MAST [2:0] if the signal ADV_RR__
MAST is asserted high. The grant signals GNT[7:0] are then
assigned to the value NEWGNT [7:0] in the transition from
the IDLE4GNT state to the GNT state.

Referring to FIG. 23, the .1 state machine 300 (FIG. 21)
starts in state RR upon assertion of the RESET signal, where
the state machine 300 remains while a delayed request signal
BAL_DEL_REQ is negated low (indicating there is no
delayed request pending). While in the RR state, the signal
ADV_RR _MAST is asserted high to allow the grant state
machine 306 to update the round-robin master (i.e., setting
signals RR_ MAST [2:0] equal to the value N RR_ MAST
[2:0]. The RR state is the round-robin state in which the
level-two arbitration scheme is used. While in the RR state,
the next master signals N CURMAST [2:0] are set equal to
the next round-robin master N_RR__MAST [2:0], and the
signal OPEN_ WINDOW is set high if a stream request
opportunity exists (STREAM __REQ is high), or the mini-
mum grant timer 304 has expired (MIN_GRANT is high),
or the current master has negated its request (CURMAST
REQ goes low). When asserted high, the signal OPEN
WINDOW allows a new arbitration to take place.

If a delayed request is detected (BAL_DEL__REQ goes
high), the L1 state machine 300 transitions from the RR state
to the BAL state, setting the next master state
N_CURMAST [2:0] as the bridge chip 48 and deasserting
the signal ADV_RR_MAST to disable the level-two

40

=1

66

round-robin arbitration. In the BAL state, the signal OPEN
WINDOW is asserted high if the delayed request is deas-
serted (BAL__DEL__REQ goes low) or the delayed request
has been retried (BAL__RETRIED goes high). If the signal
BAL_DEL_REQ is negated low, or if the delayed request
BAL_ DEL_REQ is asserted high but the retrying master
request is negated low (RTRYMAST _REQ is low) and the
slot request ANY SLOT_REQ is asserted high, then the
L1 state machine 300 transitions back to the RR state. In the
transition, the signal ADV__RR_ MAST is asserted high and
the next master signals N_CURMAST [2:0] are set equal to
the next round-robin master N_RR__MAST [2:0]. If the
signal BALL_DEL_REQ is deasserted, that indicates that
the arbiter 124 should revert back to the level-two round-
robin scheme. If the delayed request signal is asserted but
the retrying master request is negated, then the level-one
arbitration scheme is between the slots on the PCI bus 32
and the bridge chip 48.

If both the delayed request BAL__DEL__REQ and the
retrying master request RTRYMAST REQ are asserted,
then the L1 state machine 300 transitions from state BAL to
state RETRY MAST, and the retrying master is set as the
next master (N_CURMAST [2:0] is set equal to RTRY
MAST [2:0]). The signal ADV_RR_MAST is maintained
low. In the RETRY _MAST state, if none of the PCI slot
maslers are asserting a request (ANY_SLOT_REQ is low),
then the level-one arbitration scheme is between the retrying
master and the bridge chip 48, and the L1 state machine 300
transitions back to the BAL state. The bridge chip 48 is set
as the next master (N CURMAST [2:01] is equal to the
state BALBOA), and the signal ADV_RR__MAST is main-
tained low. However, the L1 state machine 300 transitions
from the RETRY MAST state to the RR state if any one of
the slot masters is asserting a request (ANY _SLOT REQ
is high). In the transition, the signal ADV_RR__MAST is
asserted high, and the next round robin robin master is set as
the next master (N__CURMAST [2:0] is set equal N_RR_
MAST [2:0]).

To take advantage of the streaming capabilities of the
bridge chip, when data for a DRC starts arriving from the
cable 28, the master associated with that DRC becomes the
highest priority device (assuming its REQ __ is asserted).
This allows the master to receive the data stream coming
down the cable 28 while the window of opportunity is there
for streaming. If the bridge chip 48 cannot connect the
master before the DRC queue fills up, then the upstream
bridge chip 24 will disconnect and only a portion of the data
would be passed to the requesting master, necessitating the
master 1o issue another read request on the upstream bus 24,
The streaming master retains the highest priority as long as
DRC data continues to arrive from the cable 28. If the master
repeats a different eyele/address, it will be retried, but it will
maintain ownership of the secondary PCI bus 32 until its
request goes away or the opportunity for streaming passes.

Retrying Requests and Multi-Threaded Masters

Since each bridge chip is a delayed transaction device, if
a device on the downstream bus 32 issues a read request
destined for an upstream target, the downstream bridge chip
48 will issue a retry transaction (described in the PCI
specification) on the secondary bus 32 and forward the
request up the cable 28. The retry transaction causes the
requesting master to give up control of the PCI bus 32 and
negate its REQ__ line. After negating its REQ__ line, the
retricd master will re-assert a request for the same cycle at
a later time, which may result in its GNT _ being asserted (if
its REQ__ line is not masked) and the bus master being

Toshiba_Apricorn 1010-0161
IPR2018-01067

5,943,482

67
retried again until the read completion indication is asserted
in the downstream bridge chip 48.

Referring to FIG. 25, 1o avoid the unnecessary servicing
of retry requests, the REQ__ line of a secondary bus master
which issues a retried delayed read or write request is
masked by asserting the appropriate one of signals Q2A
MASK__REQ [7:1] (requests from the bridge chip 48 which
are retried are not masked) until the delayed completion
returns. In this fashion, other requesting masters are given
priority to get their requests in. As soon as the first infor-
mation associated with the delayed completion is returned,
the REQ__ line of the corresponding master is unmasked and
the retried master is able to enter arbitration again.

However, a special case exists for multi-threaded (or
multi-headed) masters on the downstream bus 32 (FIG.
26B), which are able to assert a first request, get retried, and
come back with a different request. One such multi-threaded
bus device is a PCI—PCI bridge 323 connecting the sec-
ondary PCI bus 32 and a subordinate PCI bus 325. The bus
325 is connected to network interface cards (NICs) 327A
and 327B which are connected 1o two different networks.
Thus, if the request from the NIC 327A for the primary PCI
bus 32 is retried by the bridge chip 48, the NIC 327B can
generale a different request. In this case, the REQ__ lines of
the multi-threaded masters are not masked, as indicated by
the signal CFG2Q _MULTI_ MASTER [X] being set high.

A status register 326 determines if a slot is single-or
multi-threaded. On reset, the register 326 is cleared 1o
assume thal each secondary bus device is single-threaded.
Each slot is then monitored to determine if it requests a
different cycle while another eycle from the same master is
pending. If multi-threaded behavior is observed in a master,
then that master is marked as such by setting the corre-
sponding bit CFG2Q_MULTI_MASTER [X] high.

The input of the status register 326 is connected to the
output of a 14:7 multiplexer 328, whose 0 input is connected
to the output of a 14:7 multiplexer 330 and whose 1 input is
connecled to address bits P2Q_AD [22:16]. A select signal
CFGWR__MM selects the 0 and 1 inputs of the multiplexer
328. When asserted high, the signal CFGWR__MM causes
a configuration write of the status register 326 from the data
bits P2Q__AD [22:16], allowing software control of the bits
in the register 326. The 1 input of the multiplexer 330
receives multi-master signals MULTI_MASTER [7:1], the
0 input receives the output of the register 326, and the
multiplexer 330 is selected by a signal MULTI_SEL. The
signal MULTI_SEL is generated by an AND gate 338,
whose first input receives a signal Q2PIF_CHECK _CYC
(asserted high to indicate that the current transaction infor-
mation should be checked with information stored in the
queue block 127 for a match, such as during a delayed
memory read or write request from a bus device on the
secondary PCI bus 32), and the other inpul receives the
inverted state of a signal DCQ__HIT (indicating that the
current address information does not match the address
information associated with a pending request of the
requesting master in the DCQ 148). Thus, if a failed com-
parison occurred, the value of-signals CFG2Q_ MULTI
MASTER [7:1] is updated.

Abit MULTI MASTER [X] is asserted high if master X
has a pending request that has been retried, and master X
subsequently comes back with a different request. This is
checked by comparing the transaction information (e.g.,
address, byte enables, data for a write) of the pending
request with the address of the new request. A failed
comparison indicates that the master is multi-threaded. Once

40

=1

6

68
a multi-master configuration bit CFG2Q_ MULTI
MASTER [X] (X=1-7) is set high, the bit is maintained
high.

The signals MULTI_ MASTER [7:1] are gencrated by a
decoder 336. The decoder 336 receives signals Q2PIF
SLOT [2:0] (slot number for the current delayed request
from a master), Q [7:0] _MASTER [2:0] (the master
associated with each of the eight buffers in the DCQ 148),
Q[7:0] COMPLETE (the completion status of each of the
eight queues), and Q [7:0] PART COMPLETE (the par-
tial completion status of each of the buffers in the delayed
completion queue). For example, if the signal
QO_MASTER [2:0] contains the value 4, then that indi-
cates DCQ buffer 0 stores the transaction information of a
delayed request from the bus device in slot 4. The signal
QY _COMPLETE, Y=0-7, if asserted high indicates if
DCQ buffer Y has received all the data associated with
delayed request transaction. The signal QY PART
COMPLETE, Y=0-7, if asserted high indicates that DCQ
buffer Y has been allocated as the DCQ buffer for a delayed
transaction of one of the masters but all the data associated
with the delayed transaction has not been received.

If the current slot number Q2PIF SLOT [2:0] is equal to
the value of any one of the eight queue master indication
signals Q [7:0] MASTER [2:0], and the corresponding
DCQ buffer is in the complete or part complete state, then
the corresponding one of the bits MULTI_MASTER [7:1]
is set high if the signal DCQ_HIT is low and the signal
Q2PIF_CHECK_CYC is high. Thus, for example, if the
signal Q2PIF _SLOT [2:0] contains the value 2, indicating
that the device in slot 2 is the current master of the delayed
request, and DCQ buffer 5 is storing a pending request for
the slot 2 master (Q5_ MASTER [2:0] =5), and ecither of
signals Q5 COMPLETE or Q5 _PART COMPLETE is
high, and if the signal Q2PIF_CHECK_CYC is high and
the signal DCQ_HIT is low, then the bit MULTIT 77
MASTER [2] is set high to indicate that the slot 2 device is
a multi-threaded master.

A mask request generation block 332 produces signals
Q2A_MASK_REQ [X] (X=1-7) in response 1o signals Q
[7:0] _MASTER [2:0], Q [7:0] _STATE [3:0]) (which indi-
cates the state of delayed completion queues 0-7), SLOT
WITH_DATA [7:0] (which indicate if delayed completion
Qs 0-7 contain valid data), CFG2Q_MULTI_MASTER
[X] (X=1-T7), CFG2Q__ALWAYS_ MASK, and CFG2Q__
NEVER MASK.

Referring to FIG. 26A, the mask request generation block
332 includes a 2:1 multiplexer 320 for producing the signal
Q2A MASK_REQ [X] (X=1-7). The 1 input of the mul-
tiplexer 320 is connected to the output of an OR gate 322 and
the 0 input is tied low. The select input of the multiplexer
320 is driven by a signal MASK_ MUXSEL. One input of
the OR gate 322 is connected 1o the output of a NOR gate
324, which receives a signal CFG2Q_MULTI_MASTER
[X] (indicating a multi-threaded master), and the other input
receives a signal CFG20Q_NEVER _MASK (a configura-
tion bit indicating that the request line should not be masked
if a multi-threaded master is detected). The other input of the
OR gate 322 receives a signal CFG2Q_ ALWAYS__MASK,
which is a configuration bit indicating that the corresponding
mask bit Q2A_ MASK_REQ [X] should always be masked
if the signal MUXSEL is asserted high. The signal MASK
MUXSEL is asserted high if the request from the secondary
bus master is not to data already existing in the queue block
127, i.c., the request must be transmitted 1o the primary PCI
bus 24. Thus each time a request is transmitted from a device
on the secondary PCI bus 32 upstream to the primary PCI

Toshiba_Apricorn 1010-0162
IPR2018-01067

5,943,482

69
bus 24, a check is performed on bits CFG2Q_ MULTI
MASTER [7:1] to determine if a multi-threaded master has
been detected.

The masking of requests can be overridden by setting the
appropriate bits in the configuration registers 125. The
available modes include: 1) normal mode in which request
masking is enabled except if multi-threaded master
(CFG2Q_NEVER_MASK=0, CFG2Q_ALWAYS.
MASK=0), 2) always mask mode in which requests from
retried masters are masked even if multi-threaded (CFG2Q
ALWAYS_MASK=1), and 3) never mask mode in which
the requests are never masked (CFG2Q__NEVER _ MASK=
1, CFG2Q_ ALWAYS MASKED =0).

Expansion Card Insertion and Removal Connecting
Expansion Cards

As shown in FIGS. 1 and 27A, the two expansion boxes
30a and 30b, of common design 30, each have the six

hot-plug slots 36 (36a—f) in which the conventional expan-

sion cards 807 can be inserted and removed (hot-plugged)
while the computer system 10 remains powered up. The six
mechanical levers 802 are used to selectively secure (when
closed, or latched) the expansion cards 807 that are inserted

into corresponding hot-plug slots 36. For purposes of ,

removing or inserting the expansion card 807 into one of the
slots 36, the corresponding lever 802 must be opened, or
unlatched, and as long as the lever 802 is opened, the
corresponding slot 36 remains powered down.

When the lever 802 that secures the expansion card 807 3

to its slot 36 is opened, the computer system 10 senses this
occurrence and powers down the card 807 (and correspond-
ing slot 36) before the card 807 can be removed from its slot
36. Slots 36 that are powered down, like other slots 36 not

holding cards 807, remain powered down until software of 3

the computer system 10 selectively powers up the slots 36.

The card 46 inserted into the card slot 34 has the bridge
chip 48 that monitors the securement status (open or closed)
of the levers 802 and powers down any card 807 (and
corresponding slot 36) that is not secured by its lever 802.
Software of the computer system 10 can also selectively
power down any one of the slots 36.

The cards 807 are powered up through a power up
sequence and powered down through a power down
sequence. In the power up sequence, power is first supplied
to the card 807 being powered up, and thereafier, a PCI clock

0

40

=1

70
signal (from the PCI bus 32) is furnished to the card 807
being powered up. Remaining PCI bus signal lines of the
card 807 are then coupled to corresponding lines of the PCI
bus 32. Lastly, the reset signal for the card 807 being
powered up is negated which brings the card 807 out of
resel.

The power up sequence allows the circuitry of the card
807 being powered up to become fully functional with the
PCT clock signal before the remaining PCI bus signals are
provided. When the clock signal and remaining PCI bus
signals are connected to the card 807 and before the card 807
is reset, the bridge chip 48 has control of the PCI bus 32.
Because the bridge chip 48 has control of the PCI bus 32
during these times, potential glitches on the PCI bus 32 from
the power up sequence do not disturb operations of the cards
807 that are powered up.

In the power down sequence, the card 807 being powered
down is first reset. Next, the PCI bus signals, excluding the
PCI clock signal, are removed from the card 807. The bridge
chip 48 subsequently disconnects the PCI clock signal from
the card 807 before power from the card 807 is removed.
The power down sequence minimizes the propagation of
false signals from the card 807 being powered down 1o the
bus 32 because circuitry on the card 807 remains fully
functional until the PCI bus signal lines are removed.

When the PCI clock signal and remaining PCI bus signals
are disconnected, and when the card 807 is reset, the bridge
chip 48 has control of the PCI bus 32. Because the bridge
chip 48 has control of the PCI bus 32 during these times,
potential glitches on the PCI bus 32 from the power down
sequence do not disturb operations of the cards 807 that are
powered up.

The bridge chip 48 includes the Serial Input/Output (510)
circuit 50 which controls the power up and power down
sequences of the slots 36 through twenty-four control signals
POUT [39:16]. The control signals POUT [39:16] arc a
subset of forty output control signals POUT [39:0] generated
by the SIO circuit 50. The control signals POUT [39:16] are
latched versions of slot bus enable signals BUSEN#{5:0],
slot power enable signals PWREN [5:0], slot clock enable
signals CLKEN#{5:0] and slot reset signals RST#[5:0], all
internal signals of the SIO circuit 50, further described
below. The control signals POUT [39:0] and their relation-

* ship to the signals BUSEN#{5:0], PWREN [5:0], CLKEN#

[5:0] and RST#[5:0] are described in the following table:

PARALLEL OUTPUT CONTROL SIGNALS (POUT]39:0[)

ASSOCIATED

SIGNAL CONTROL WHEN SIGNAL
POSITION DESCRIPTION SIGNALS IS ACTIVE

0-11 Control signals for LEDs 54

12-15 General purpose oulput signals GPOA|3:0]

16 Reset signal for slot 36a (RST¥[O]) Low

17 Reset signal for slot 36b (RSTH#1]) Low

18 Reset signal for slot 36¢ (RSTH2]) Low

19 Resel signal for slot 36d (RST#[3]) Low

20 Reset signal for slot 36e (RSTH#4]) Low

21 Reset signal for slot 36f (RST#{5]) Low

22 Clock enable signal for slot 36a (CLKEN#O]) Low

23 Clock enable signal for slot 36b (CLEEN#{1]) Low

24 Clock enable signal for slot 36¢ (CLKEN#[2]) Low

25 Clock enable signal for slot 36d (CLKEN#{3]) Low

26 Clock enable signal for slot 36 (CLKEN#[4]) Low

27 Clock enable signal for slot 36f (CLKEN#{5]) Low

28 Bus enable signal for slot 36a (BUSEN#[0]) Low

Toshiba_Apricorn 1010-0163
IPR2018-01067

5,943,482

71

-continued

72

PARALLEL OUTPUT CONTROL SIGNALS (POUT]39:0])

ASSOCIATED

SIGNAL CONTROL WHEN SIGNAL
POSITION DESCRIPTION SIGNALS IS ACTIVE
29 Bus enable signal for slot 36b (BUSEN#1]) Low
30 Bus enable signal for slot 36¢ (BUSEN#[2]) Low
31 Bus enable signal for slot 36d (BUSEN#[3]) Low
32 Bus enable signal for slot 36e (BUSEN#4]) Low
33 Bus enable signal for slot 36 (BUSEN#[S]) Low
34 Power enable signal for slot 36a (PWREN[O]) High
35 Power enable signal for slot 36b (PWREN[1]) High
36 Power enable signal for slot 36c (PWREN[2]) High
37 Power enable signal for slot 36d (PWREN[3]) High
38 Power enable signal for slot 36e (PWREN[4]) High
39 Power cnable signal for slot 36f (PWREN[5]) High

As shown in FIGS. 2 and 28, each hot-plug slot 36 has the
associated switch circuitry 41 for connecting and discon-
necting the slot 36 to and from the PCI bus 32. The switch
circuitry 41 for each slot 36 receives four of the control
signals POUT[39:16]. As an example, for the slot 36a, when
the control signal POUT [28] is asserted, or low, the slot 36a

is connected 1o the bus signal lines of the PCI bus 32 by a ,

switch circuit 47. When the control signal POUT [28] is
deasserted, or high, the slot 36a is disconnected from the bus
signal lines of the PCI bus 32.

When the control signal POUT [22] is asserted, or low, the

slot 36a is connected to a PCI clock signal CLK through a 3

switch circuit 43. When the control signal POUT [22] is
deasserted, or high, the slot 36a is disconnected from the
clock signal CLK.

When the control signal POUT [34] is asserted, or high,

the slot 36a is connected to a card voltage supply level Vg 53

through a switch circuit 45. When the control signal POUT
[34] is deasserted, or low, the slot 36a is disconnected from
the card voltage supply level V.

When the control signal POUT[16] is asserted, or low, the
slot 36a is reset and when the control signal POUT [16] is
deasserted, or high, the slot 36a comes out of the reset state.

As seen in FIG. 2, the SIO circuit 50 may selectively
monitor up to one hundred twenty-eight (sixteen bytes) of
latched status signals STATUS [127:0] furnished by the
expansion box 30. The status signals STATUS [127:0] form
a “snapshot” of selected conditions of the expansion box 30.
The status signals STATUS [127:0] include six slatus signals
STATUS [127:0] which indicate the sccurcment status
(opened or closed) of each of the levers 802. The SIO circuit
50 monitors the status signals STATUS [31:0] for changes in
their logical voltage levels. The SIO circuit 50 serially shifts
the status signals STATUS [127:32] into the SIO circuit 50
when instructed to do so by the CPU 14.

The SIO circuit 50 serially reccives the status signals
STATUS [127:0], least significant signal first, via a serial
data signal NEW __CSID. The data signal NEW__CSID is
furnished by the serial output of the thirty-two bit, parallel
input shift register 82 located on board the expansion box 30
along with the slots 36.

The register 82, through its parallel inputs, receives
twenty-four parallel status signals PIN [23:0], four associ-
ated with each of the hot-plug slots 36, that are included in
the thirty-two least significant status signals STATUS [31:0].
When the status indicated by one or more of the status
signals STATUS [31:0] changes (the logical voltage level
changes), the bridge chip 48 generates an interrupl request

40

6

@n

to the CPU 14 by asserting, or driving low, a serial interrupt
request signal SI__INTR# which is received by the interrupt
receiving block 132. The status signals PIN [23:0] include
two PCI card presence signals (PRSNT1# and PRSNT2#)
associated with each slot 36.

Six status signals PIN [5:0], corresponding to their
latched versions, status signals STATUS [5:0], indicate the
sccurement, or engagement, status (open or closed) of each
the levers 802. Six sliding switches 805 (FIGS. 27A-27C)
are actuated by the movement of their corresponding levers
802 and are used to electrically indicate the securement
status of the corresponding lever 802, Each switch 805 has
a first terminal coupled 1o ground and a second terminal
furnishing the corresponding one of the status signals PIN
[5:0]. The second terminal is coupled to a supply voltage
level VDD through one of six resistors 801.

If one of the levers 802 opens and the card 807 secured by
the lever 802 becomes unsecured, the corresponding one of
the status signals PIN [5:0] is asserted, or driven high. As an
example, for the slot 36a, the status signal PIN [0] is
deasserted, or driven low, when the corresponding lever 802
is closed. When the lever 802 for the slot 36a is opened, the
status signal PIN [0] is asserted, or driven high.

The register 82 also receives a serial stream of latched
status signals STATUS [127:32] that do not cause interrupts
when the logical voltage level of one of the signals STATUS
[127:32] changes. The status signals STATUS [127:32] are
formed by the sixteen bit shift register 52 located on board
the expansion box 30 with the slots 36. The shift register 52
receives status signals at its parallel inputs and latches the
status signals STATUS [127:32] when instructed to do so by
the SIO circuit 50. The shift register 52 serializes the status
signals STATUS [127:32] and furnishes the signals STATUS
[127:32] to the serial input of the register 82 via a serial data
signal CSID__ .

When instructed by the SIO circuit 50, the register 82
latches status signals PIN [23:0], forms the status signals
STATUS [31:0], furnishes the status signals STATUS [31:0]
and furnishes a byte or more of the status signals STATUS
[127:32] (when requested by the CPU 14), in a least sig-
nificant signal first fashion, to the SIO circuit 50 via the
serial data signal NEW _CSID. The status signals STATUS
[127:0] are described by the following table:

Toshiba_Apricorn 1010-0164
IPR2018-01067

