
Toshiba_Apricorn 1006-0303
IPR2018-01067

Chapter 20: Card Services

Note that the AcknowledgeInterrupt function is called by the status change in-

terrupt service routine. Interrupts must not be re-enabled while processing a

status change interrupt. This could cause nesting of status change interrupts

while processing the socket service's Acknowledgelnterrupt, a situation that

socket services is unprepared to manage (because the routine is non-
reentrant).

The Client Call-Back

Numerous events can occur that require a call-back to client drivers. These
events are listed in table 20-11. The events in the shaded boxes were added

with the PC Card 95 release.

Table 20-11. Call-Back Events Defined by Card Services

Event Code Source Client(s} Registered By

BATTERY_DEAD 01 h Hardware

BATTERY_LOW 02h Hardware Socket

CARDJNSERTION 40h

CARD_]NSERTION [A1 40h DeregisterMTD 'I'Ds

CARD_INSERTION [Al RegisterClient Requester
CARDJNSER’I‘ION [A] 4011

:38’ _.a
7r9-

Z

gs. C) 3"

WeleaseExclusive

RequestSock ask

RequestSoc ask

EXCLUSIVE_COMPLETE

EXCLUSWE_REQUEST

R

RequestExcluswe

Socket RequestSocketMask8D r9 mm?HeEM:339
Q.t:E.

__91‘:
RequestExclusive

D [TI 5"

—
—_
——

cmmsmow w

mewsmomm 40h

camm em

mama

mmmm 05h

mamas 1m

mama/aw 0511 A“

meme

cmmocx 06h

ammo

EJECTIONWCOMPLETE 07h Hardware

EJECTIONJEQUEST

ERASE_COMPLETE 81h Queued Erase -

INSERTION_COMPLETE RequestSocketMask

INSERTIONuREQUEST OAh RequestSocketMask

MTD_REQUEST Card Services RegisterChent ' CardSemces RequestSockewask

293

Toshiba_Apricorn 1006-0303
|PR2018—01067

Toshiba_Apricorn 1006-0304
IPR2018-01067

PCMCIA System Architecture

Table 20-11. Cali-Back Events Defined by Card Services

RegisterClient
Configuring PC Cards During POST

The previous discussions of PC Card configuration have presumed that the

cards will be installed when the operating system loads or when the PC Card

is inserted sometime after the operating system has loaded and the system is

running. If however, the need to load the operating system from the PC Card

exists, the previously discussed approaches for configuring the cards don't
work.

To perform initial program load (IPL) from a PC Card, ROM-based PCMCIA

initialization code must be included with the system. This code must be able

to program the HBA and parse the CIS to determine if a given card should be

configured during POST (Power-On Self Test). Once the HBA has been pro—

grammed, memory cards containing a boot sector can be recognized as

bootable since they will contain a BIOS Parameter Block (BPB) that permits the

booting from the PC Card in the same fashion as a floppy drive.

Similarly, ATA drives can be recognized by ROM code by reading the initiali—

zation byte within the Function Identification tuple. The initialization byte

specifies that the device should be configured during POST. Once the ATA

drive is configured, IPL can occur from the PCMCIA ATA drive like any other
ATA drive.

Note that this initialization process occurs prior to card services being in-

stalled. As a result, the a client driver will not have registered to receive status

change events from the PC Card. When the operating system boots, a driver

for the PC Card that is performing IPL can register with card services.

294

Toshiba_Apricorn 1006-0304
|PR2018—01067

Toshiba_Apricorn 1006-0305
IPR2018-01067

Chapter 21: Client Drivers

Chapter 21

The Previous Chapter

The previous chapter focused on the role of card services in the PCMCIA en-

vironment. It also reviewed each of the functions defined by the PC Card

specification that apply to 16-bit PC Cards, and defined the related return
codes. The call back mechanism was also described and the event and call

back codes were defined.

This Chapter

This chapter discusses the three basic types of enablers: point enablers, device-

specific enablers, and super enablers. The chapter also discusses the jobs per-

formed by generic memory enablers (and MTDs) and [/0 device enablers.

The Next Chapter

The next chapter discusses the problems associated with loading the operating

system from a PC Card. It also defines mechanisms used to determine

whether a given PC Card is a bootable device, and the firmware support re-

quired to support PC Card booting.

Overview

This chapter discusses PC Card enablers. The chapter focuses primarily on cli-

ent driver enablers, but also includes a brief discussion of point enablers at the

end of the chapter. Note that the terms PC Card enabler, client, client driver,

and device driver are all used to describe the software that is responsible for

configuring a PC Card. This chapter uses the terms enabler and client driver.

295

Toshiba_Apricorn 1006-0305
|PR2018—01067

Toshiba_Apricorn 1006-0306
IPR2018-01067

PCMCIA System Architecture

Specific types of client drivers (enablers) discussed in this chapter include:

I» SRAM client drivers

I Flash client drivers and Memory Technology Drivers (MTUs)
0 Generic I/0 client drivers

In order to configure a PC Card, enablers must first register with card serv—

ices. The primary tunction of an enabler is to detect and configure PC Cards

that it supports. As such, the enabler must be prepared to configure its card

no matter when it is installed. In order to configure cards installed after power

up, the enabler registers with card services to receive a call back (i.e., a card
insertion call-back) each time card services detects that a PC Cards has been

installed. During registration, the enabler can also request that card services

generate a call-back for each PC Card already installed, thereby calling the en»

abler’s configuration routine.

The Card Insertion Call-Back

When card services makes a card insertion call-back it Specifies the type of

call-back initiated, along with the logical socket that the card was inserted

into. The call-back routine then attempts to configure the card. Figure 21-1 il-
lustrates the typical process used by an enabler to configure a card. The CIS

may have to be accessed several times to obtain a combination of card-

required resources that can be successfully allocated to the card (i.e., resources

that are not already assigned to other devices).

The configuration process begins when card services makes the card insertion
call—back to the enabler. The enabler detects which event caused the call-back

and obtains information supplied by card services (e.g., which logical socket
the card was inserted into).

The method of configuring a card varies depending of the type of card to be

configured. The next section discusses generic memory enablers, and the fol-

lowing section describes the operation of a generic I/O enabler.

As discussed in the previous chapter, a variety of services are available for the
PC Card enablers (i.e., card services client drivers) to configure a PC Card.

296

Toshiba_Apricorn 1006-0306
|PR2018—01067

Toshiba_Apricorn 1006-0307
IPR2018-01067

Chapter 21: Client Drivers

Start Configuration

Card configured
or does not belongto enabler

Cali

GetConfiglnfo
 End

(card not configured)

Card not configured
and beloan to

enabler

Process

C IS

Not available.
try next options

 Request
allocation

of resources

Not available.
no more otions End

{card not configured)

Flesources

granted toenabler

Call

RequestConfig

End
(card configured)

Figure 21-1. A Sample Configuration Process Used By a Card Services Client

Memory Drivers and Memory Technology Drivers

Memory client drivers provide virual disk drive support. In short, these driv-

ers are responsible for storing and retrieving files within the memory card.

The method required to access the memory card varies depending 0n the type

of memory devices (i.e., memory technology] implemented in the card. Since

memory devices (such as flash) require various programming algorithms,

each memory type must have an associated memory technology driver
(MTD).

E

Toshiba_Apricorn 1006-0307
lPR2018—01067

Toshiba_Apricorn 1006-0308
IPR2018-01067

PCMCIA System Architecture

Figure 21-2 illustrates the overall software architecture specified for accessing

memory cards as virtual disk drives. Notice that memory client drivers re—

ceive file access requests from the file system and must access the memory

card to fullfill each request. The file system might be the standard file system

used by the opertating system (e.g., the DOS FAT system) or an installable

system required when accessing flash memory. Card services provides bulk

memory services that simplifies the memory client driver’s job of accessing a

specific block of memory within the memory card.

SRAM memory client drivers typically interface directly to the operating sys

tem’s file manager, since there are no restrictions related to writing and

reading data to or from SRAM. These client drivers are designed to access

memory via the bulk memory services provided by card services. Since ac-

cessing SRAM is uniform and quite simple (byte read/write capability), the

memory technology driver is incorporated into card services.

Flash memory client drivers interface directly to a flash file system. A special

file system is required for flash devices due to the special requirements asso-

ciated with writing to flash memory. Two major factors are:

O Write operations require first erasing a specified block of memory fol-

lowed by the block write, and may take several seconds to complete.

I Flash memory also has a limited write~cycle life. That is, repetitive era-

sures and writes to the same memory block destroys the chips ability to
retain data within that block. The maximum number of erasures and

writes are specified by the manufacturer (e.g., a flash device may specify
as life of as few as 10,000 writes).

Knowing the restrictions associated with accessing flash memory, the flash file

system is designed specifically to provide compatible access to flash memory.

For example, the flash file system distributes writes to flash memory to

minimize the effects of repetitive write ware and accomodates the slow erase
time.

Memory enablers (client drivers) have a formidable task to perform since a

wide variety of memory card implementations exist. The enabler must also

acquire a drive letter from the operating system to allocate to each card slots

that a memory card might be inserted into. The following sections describe the

jobs performed by SRAM and flash client drivers.

298

Toshiba_Apricorn 1006-0308
|PR2018—01067

Toshiba_Apricorn 1006-0309
IPR2018-01067

Chapter 21: Client Drivers

Applications

 Operating
System

Installabls
File System

Flash
Flle System

Flash
Client Driver

_
Bulk Memory Services—"
MTD

 SHAM
Client Dr'rve

Card Services

Socket Services

Figure 21-2. Memory Client Driver Software Environment

SRAM Client Drivers

SRAM client drivers typically load as installable device drivers via the con-

figsys file or equivalent mechanism. One of the tasks performed by the device

driver is to detect the presence of card services by calling the GetCSlnfo serv-
ice. If the call returns the ASCII string ”CS,” then SRAM client driver

recognizes that card services are installed. Note that if card services is not in-

stalled, the SRAM driver typically reports the error condition and terminates

299

Toshiba_Apricorn 1006-0309
|PR2018—01067

Toshiba_Apricorn 1006-0310
IPR2018-01067

PCMCIA System Architecture

without remaining resident in memory. When card services is detected, the

driver then registers with card services.

The driver must also obtain logical drive letters needed to perform the disk

emulation. Note that the drive letter is acquired when the device driver in-

stalls even though a memory card may not be installed in the system. In this

case, an attempt to access files associated with the drive letter assigned to the

socket will result in a drive not ready error.

SRAM Client Driver Registers with Card Services

The client driver performs the registration process by calling the RegisterCli-

ent service. The SRAM client identifies itself as a memory client, registers to

receive relevant call-back events, and passes a pointer to its call-back routine.

The client may also request that card services generate a card insertion call-

back for each PC Card already installed in the system. The memory client re-
ceives a handle value from card services when it returns from the call. Once

registered, the memory client awaits call—backs from card servcies, notifying it
when a PC card is inserted or removed.

The SRAM Client Driver Call-Back

When card services generates the card insertion call-back, it also passes the

logical socket number that the PC Card was inserted into. The memory client

then attempts to configure the PC Card.

The memory client must first determine if it should attempt to configure the

PC Card by determining the card type. Memory clients can use the bulk

memory services to access a specific region within the PC card. To access

memory, the client first calls the OpenMemory service by specifying an offset

Within the card’s attribute or common memory address space. Card services

then returns a memory handle to the client that it can use when accessing

memory relative to the offset specified in the OpenMemory service. Note that

if card services does not support bulk memory services, the memory client

must use the RequestWindow service to specify the host system address space

that it wishes to use to access PC Card memory.

Reading from or writing to PC Card memory is accomplished by calling the

ReadMemory or WriteMemory services. The memory client passes the mem-

ory handle it received from the OpenMemory service and specifies the

memory offset and range of addresses it wishes to access. The call will likely

300

Toshiba_Apricorn 1006-0310
|PR2018—01067

Toshiba_Apricorn 1006-0311
IPR2018-01067

Chapter 21: Client Drivers

Specify location zero within the attribute memory address space. When the

data is returned to the memory client it evaluates the DEVICE tuple to de-
termine if the card contains SRAM.

Note that determining the card type can be a complicated process for memory

clients. Some memory cards implement the CIS in attribute memory (required
by the PC Card standard), some implement the C18 in common memory,

while others do not implement a C15 at all. To complicate matters, some CIS

implementations are invalid, requiring the enabler to attempt interpretation of

the faulty CIS. If the card does not contain a C18, the enabler attempts to de-

tect the presence of the BPB (BIOS parameter block), which contains
information that specifies the logical size of the disk. The BPB if present

should reside at either location 0 or 512 in common memory.

If an SRAM card is detected, the call-back routine return to card services, in-

dicating that the card was successfully configured. If the PC Card was not an

SRAM card, the client returns to card services, indicating the card was not

configured by the SRAM enabler.

Flash Client Drivers

Figure 21-3 illustrates the flash client driver software environment. Three

types of flash client drivers are illustrated in figure 21-3. Two of the client

drivers are shown interfacing to a flash file system and the other via a file

translation layer. (Each file system is discussed later in this chapter.)

The flash client drivers typically load as installable device drivers via the con-

figsys file or equivalent mechanism. The first task performed by the device

driver is to detect the presence of card services. If card services are not in-

stalled, the flash driver typically reports the error condition and terminates

without remaining resident in memory. When card services is detected, the

driver then registers with card services.

Flash client drivers differ from SRAM drivers in two important ways:

0 Flash client drivers interface to the flash file system

0 MTD client drivers must be installed to handle calls made to bulk memory
services

The MTD must register prior to the flash client driver. This is necessary be-
cause the flash client driver uses the MTD to access the flash card.

301

Toshiba_Apricorn 1006-031 1
|PR2018—01067

Toshiba_Apricorn 1006-0312
IPR2018-01067

PCMCIA System Architecture

302

Applications

 Operating lnstallable Standard
System File System File System

Flash
Translation

Flash

File System La er

Flash Flash Flash
Client Driver Client Driver Client Driver

_

Bulk Memory Services

 Memory

Technolog
Card Services Driver

Socket Services

Figure 21-3. Software Environment Required for Flash Card Support

Toshiba_Apricorn 1006-0312
|PR2018—01067

Toshiba_Apricorn 1006-0313
IPR2018-01067

Chapter 21: Client Drivers

Like SRAM client drivers, flash client drivers must also obtain logical drive

letters needed to perform the disk emulation. The drive letter is acquired

when the device driver installs even thOugh a memory card may not be in-

stalled in the system. In this case, an attempt to access files associated with the

drive letter assigned to the socket will result in a drive not ready error.

The Flash File System

Two primary types of flash file system solution are provided by software

vendors today. These systems are generally referred to as the flash file system

(FPS) and flash translation layer (FTL) as illustrated in figure 21-3. The FPS
provides file management based on variable size data blocks, while the FTL

interfaces directly to the DOS file system which allocates data based on stan-

dard block sizes. The FTL system is compatible with disk utility programs

such as Norton and PC Tools, whereas, the FFS—based systems are not.

MTD Registers with Card Services

The MTD registers with card services by calling the Register-Client service.

When registering the MTD specifies that it is a MTD client during , specifies

relevant call-back events it want to be notified of, and passes a pointer to its

call-back routine. The MTD client may also request that card services generate

a card insertion call-back for each PC Card already installed in the system.
The MTD client receives a handle value from card services when it returns

from the call. Once registered, the MTD awaits call-backs from card servcies,

notifying it when a PC card is inserted or removed.

The MTD Call-Back

When card services generates the card insertion call-back, it also passes the

logical socket number that the PC Card was inserted into. The MTD client

then determines if the PC Card contains any flash memory that it is designed

to access. This can be accomplished by calling the GetFirstRegion and Get-

NextRegion services. These services return information (obtained from the

CIS) about the card type, size, location, access time, and block erase details of

the regions. If the MTD recognizes a regions of memory that it knows how to

access, it then registers with card services to control access to that specific re-

gion of memory.

303

Toshiba_Apricorn 1006-0313
|PR2018—01067

Toshiba_Apricorn 1006-0314
IPR2018-01067

PCMCIA System Architecture

MTD Registers Memory Regions

To register a memory region with card services the MTD calls the Regis-

terMTD service. This notifies card services that the MTD has agreed to handle

access to the memory regions specified. When a flash client driver requests

access to this region via bulk memory services, card services will make an

MTDRequest call-back to the MTD. The information specified in the call-back

packet specifies the operation be requested.

Flash Client Driver Registers with Card Services

The client driver performs the registration process by calling the RegisterCli—

ent service. The flash client identifies itself as a memory client, during

registration and specifies which callback events it wishes to be notified of,

and passes a pointer to its cali-back routine. The client may also request that

card services generate a card insertion call-back for each PC Card already in-

stalled in the system. The memory client receives a handle value from card

services when it returns from the call. Once registered, the memory client

awaits call—backs from card services, notifying it when a PC card is inserted or
removed.

The Flash Client Driver Call-Back

When card services generates the card insertion call-back, it also passes the

logical socket number that the PC Card was inserted into. The memory client

then attempts to configure the PC Card.

The memory client must first determine if the card is the type that it is de-

signed to enable. Memory clients can use the bulk memory services to access a

specific region within the PC card. To access memory, the client first calls the

OpenMemory service by specifying an offset within the card’s attribute or

common memory address space. Card services then returns a memory handle

to the client for use when accessing memory starting at the offset specified in

the OpenMemory service. Also when the OpenMernory service is called, card

services recognized the region being opened is registered by the MTD. Note

that if card services does not support bulk memory services, the memory cli-

ent must use the RequestWindow service to specify the host system address

space that it wishes to use to access PC Card memory.

304

Toshiba_Apricorn 1006-0314
|PR2018—01067

Toshiba_Apricorn 1006-0315
IPR2018-01067

Chapter 21: Client Drivers

Reading from or writing to PC Card memory is accomplished by calling the

ReadMemory or WriteMemory services. In this instance, the memory client

passes the memory handle it received from the OpenMemory service and

specifies the memory offset and range of addresses it wishes to access. The

call will likely specify location zero within the attribute memory address

space. When the data is returned to the memory client it evaluates the DE-

VICE tuple to determine if the card contains flash memory.

If a flash card is detected the call-back routine returns to card services, indicat-

ing that the card was successfully configured. If the PC Card was not a flash

card, the client returns to card services, indicating the card was not enabled

by the flash Client driver.

Accessing Flash Memory

Once the flash card has been enabled, access made to the flash card virtual

drive will be fulfilled. The flash client driver receives the request from the

flash file system and calls the appropriate bulk memory service. Card services

recognizes that the call is to a region controlled by an MTD that previously

register to access the specified memory region. Card services responds by

making MTD call~bacl<s to specify the operation being requested.

I/O Card Client Drivers

Two basic types of [/0 client drivers are popular.

0 Device-specific client drivers — drivers designed to detect and configure

a specific PC Card. The client drivers are typically shipped by the manu»

facturer of a PC Card and are designed to configure this specific PC Card.

0 Generic (Super) client drivers — drivers designed to detect and configure

a wide range of I/O cards based on generic types, regardless of manufac-
turer.

Each type of [/0 client driver instail as device drivers when the configsys file

is executed during the system boot process. Figure 21-4 illustrates the primary

actions taken by an generic I /0 client driver when it initializes, registers with

card services and attempts to configure PC Cards.

305

Toshiba_Apricorn 1006-0315
|PR2018—01067

Toshiba_Apricorn 1006-0316
IPR2018-01067

Terminate
Initialization

PCMCIA System Architecture

Start

Cal] GeICSInIo

Call
FiequasllOi'
RequestiHOi'
Flequelen
risque - IDMA

Release
Flesouoes

For lncnmplale

 YES

Re mercilenl

Hesouces
For Incomplete

EntlyI
DuplicaleFlesouces

(if any]

Enabter Waits
for Call-bad: from

Card Services

 GetFilstTupla

{Conllg Table Enty}

- Cine-s a"
' ggmzliaatgm Fiequ estconilgI Call-back

‘ S [E On
am aleCall- ok

Call
GetNexlTupie

(nex‘l ouan
entry]

Figure 21—4. 1/0 Enabler Registration and PC Card Configuration Process

IIO Client Driver Registers with Card Services

The registration process begins after the client driver detects that card services

has initialized. This is accomplished with the GetCardServicesInfo cal]. Card

services returns information about card services and verifies its presence by

also returning the ASCII string ”CS.” If card services is not initialized, the I/O

client driver reports the error condition and terminates without remaining

resident in memory. If card services are present the client driver calls the

RegisterClient service. When the I /0 client driver makes the call it:

0 identifies itself as an I/O client,

0 specifies which events it wants to be notified of,

0 requests a card insertion cali~back for each PC Card currently installed in
sockets, and

0 passes the entry point of it call-back routine when making the call.

306

Toshiba_Apricorn 1006-0316
|PR2018—01067

Toshiba_Apricorn 1006-0317
IPR2018-01067

Chapter 21: Client Drivers

Card services returns a client handle to the [/0 client driver upon return from

the RegisterClient service. The client driver then awaits card insertion cali-

backs. Card services generates a CardInsertion call-back for each PC Card al-

ready installed in a card socket (as requested by the client driver during

registration). If all sockets are empty, card services generates a Configura-

tionComplete call-back to signal the end of the configuration process. This

example presumes that an 1/0 PC Card was installed when the system was

powered on.

The IIO Client Driver Call-Back

Card services generates a Cardlnsertion call-back to the I/O client driver. The

driver detects the call-back and evaluates the call-back packet to determine
the socket into which the PC Card was inserted.

Identifying the PC Card

Next the GetConfigurationlnfo service is called to determine if the PC Card

has already been configured by another enabler. If already configured, the cli-

ent driver returns to card services without configuring the PC Card. If the PC

Card has not been configured, the client driver evaluates other data returned

by the GetConfigurationInfo service to determine the type of function that is

associated with the PC Card. If the function is one that the generic I/O enabler

is designed to handle, the configuration process continues.

Determining Resources Requirements

Next, the client driver checks the first entry within the configuration table to

determine the resources required by the card. This can be accomplished by

and calling the GetFirstTuple service and specifying a tuple code of 1311 (the

configuration table entry tuple code). Card services scans the CIS until if finds

the first instance of tuple lBh and returns to the client driver. The [/0 driver
checks the completion status and detects that card services has located the

first configuration table entry. Next, the client driver calls GetTupleData and

card services returns the contents of the first configuration table entry. The

tuple data is evaluated to determine the resources required by the PC Card.

307

Toshiba_Apricorn 1006-0317
|PR2018—01067

Toshiba_Apricorn 1006-0318
IPR2018-01067

PCMCIA System Architecture

Requesting the Resources

As the client driver detects a configurable resource within the configuration

table entry (e.g., a range of I /0 address locations), it checks with card services
to determine if the resource is available for the I/O card to use. The client re-

quests a resource by calling the respective resource request service (e.g.,

RequestIO). When RequestIO is called Card services receives the base I/O

address and range of address locations requested. It uses these values to per-

forms a look-up within the resource management table to determine if the
resource is available. Card services indicates whether or not the resource was

available in the return code.

The client driver rnakes requests for all resources listed within the configura-

tion table entry and determines their availability. The configurable resources

that can be acquired from the system include:

Memory address locations — via the RequestWindow service

I /0 address locations — via the RequestIO service

Interrupt request lines — via the RequestIRQ service

DMA channels - via the RequestDMA service
I...
The specific actions taken when a resource is not available depends of whether

the entry is a default entry of not, as discussed in the following paragraph.

If the client driver detects that the entry is tagged as'a default entry, it knoWs

that it should attempt to acquire all resources that are specified within this en-

try. It should retain all resource acquired from card services even if one or

more of the resources requested are not available. If the entry is not a default

entry, the client driver knows that the entire set of resources specified within
entry must be obtained to satisfy the configuration. If any one resource is not

available, then the client driver should release any individual resources that

were acquired from card services by calling the respective release resource

service {e.g., ReleaseIO).

If a given entry fails to satisfy the PC Card’s configuration, the client driver
then proceeds to the next entry by calling the GetNextTuple service. Card

services finds the next configuration table entry (tuple 13) and the client

driver calls GetTupleData and starts the resource acquisition process again.

308

Toshiba_Apricorn 1006-0318
|PR2018—01067

Toshiba_Apricorn 1006-0319
IPR2018-01067

Chapter 21: Client Drivers

Configuring the PC Card

When all resources needed for the PC Cards configuration have been ac-

quired from the system, the client driver configures the HBA and PC Card by

calling the RequestConfiguration service. In response, card services configures
the I-IBA and PC Card. The HBA is configured by loading the appropriate

HBA registers (via socket services) that satisfy the configuration being re-

quested. This includes reconfiguring the socket interface to memory or 1/0,

programming the 1/0 window registers, and programming the IREQ# steer—

ing logic to direct the IRQ to the appropriate system IRQ line. The PC Card is

configured by writing the index number of the configuration table entry (the

entry that satisfied the configuration) into the configuration option register
(COR) within the card’s attribute memory address space.

Point Enablers

Point enablers are dedicated enablers that bypass card and socket services.

These enablers are popular in environments such as DOS where limited mem-

ory address space is available for application programs. Card and socket

services take a considerable amount of memory when they install. Added to

this is the space required by the enabler(s) and any TSR (terminate and stay
resident programs) that might be used. As a result, too little memory is left for

many application programs to run.

One solution used to relieve this memory shortage, is to remove card and

socket services from the system, thereby freeing up memory that is needed to

run the application program. Eliminating the card and socket services pre-

vents PC Card client drivers from performing their functions, thus ._PC Card

are never enabled and cannot be used. In order to use PC Cards point enablers

are needed to configure the PC Cards.

In the absence of card and socket services, point enablers must communicate

directly with the HBA to load the appropriate registers necessary to gain ac-

cess to the PC Card. The card’s CIS must be read and interpreted to identify

the PC Card. If the point enabler recognizes the PC Card, it attempts to con-

figure the card by loading the appropriate registers within the HBA to satisfy

the configuration, and by writing to the configuration registers to configure
the PC Card. Note that the resources used to configure the PC Card must be

specified manually by the user (typically via software switches).

309

Toshiba_Apricorn 1006-0319
|PR2018—01067

Toshiba_Apricorn 1006-0320
IPR2018-01067

Chapter 22: Booting from PC Cards

Chapter 22

The Previous Chapter

The previous chapter discussed the three basic types of enablers: point en—

ablers, device-specific enablers, and generic (super) enablers. The chapter also

discussed the jobs performed by generic memory enablers (and MTDs) and
[/0 device enablers.

This Chapter

This chapter discusses the problems associated with loading the operating

system from a PC Card. It also defines mechanisms used to determine

whether a given PC Card is a bootable device, and the firmware support re-

quired to support PC Card booting.

The Next Chapter

The next chapter introduces execute-in—place (XIP) support defined by the PC

Card standard. The major components of an XIP environments are specified
and the XI? mechanism is described.

Configuring PC Cards During POST

The previous discussions of PC Card configuration have presumed that PC
Cards will be initialized either as the operating system loads or when the PC

Card is inserted into a socket sometime after the Operating system has loaded

and the system is running. If however, the need to load the operating system

from a PC Card exists, the previously discussed approaches for configuring
the cards don't work.

311

Toshiba_Apricorn 1006-0320
|PR2018—01067

Toshiba_Apricorn 1006-0321
IPR2018-01067

PCMCIA System Architecture

The Problem

The normal method used in the PC environment to configure and initialize

bootable devices (i.e., hard drive, video controller, and LAN adapters that

support remote boot from the network) requires that the bootable device con-
tain initialization code in a device-specific ROM. The system initialization

code contained within system ROM scans the region of memory address space

from location COOOOh-DFFFFh to detect the presence of a device ROMS (i.e., a

bootable devices). If a device ROM is detected, the system calls the initializa-

tion routine within the device ROM which is responsible for configuring the

device. In this way, the bootable device is configured and can participate in

loading the operating system.

To perform initial program load (IPL) from a PC Card, it too must be config—
ured prior to beginning the boot operation. The standard method of

configuring PC Cards requires the use of socket services, card services, and

the PC Cards client driver. This software doesn’t initialize until the operating

system loads, making it unavailable for configuring a PC Card that must be

used to load the operation system. Even if the PC Card contains a device

ROM it cannot be detected by the system firmware during the ROM scan

(because a memory window must first be programmed within the HBA to

gain access to PC Card memory).

The Solution

ROM-based PCMCIA initialization code must be included with the system to

support IPL from PC Cards. This firmware code must be able to program the

HBA to open an attribute memory window to permit access to the CIS. Then
the CIS can be evaluated to determine if the PC card is bootable, and there-

fore, should be configured during the POST (Power—On Self Test) sequence.

Bootable Memory Cards

The PCMCIA initialization firmware detects the presence of memory cards

and configure them by opening a common memory window to provide access

to the PC Cards memory array (i.e., virtual drive). The boot code being PC

Card aware attempts to load the operating system from the memory card. If

the memory card has been formatted and the system files reside within the

312

Toshiba_Apricorn 1006-0321
|PR2018—01067

Toshiba_Apricorn 1006-0322
IPR2018-01067

Chapter 22: Booting from PC Cards

memory card, the firmware will recognize the boot sector and load the operat-

ing system from the memory card.

Note that once the operating system loads, the memory cards will no longer
be accessible unless the memory card contains a configsys file that lists all of
the PCMCIA relevant drivers. In this case, the socket services, card services,

and the associated client drivers are loaded, thereby, providing access to the

PC Cards after the operating system has loaded.

Bootable ATA Devices

PCMCIA initialization firmware recognizes ATA PC Cards by evaluating the

function identification tuple within the CIS (table 22-1). The function identifi-

cation tuple indicates the device type as shown in table 22-2. The shaded area

identifies the value used by the ATA PC Card.

Table 22-1. Format of the Function Identification Tuple

_

Note that function extensiOn tuple will follow the function identification tuple

that identify specific features associated with the ATA card (Refer to the chap-

ter entitled, ”An ATA PC Card Example”). The functiOn identification tuple

also includes an initialization byte that specifies whether the device should be

configured during POST and whether the ATA card contains a device ROM.
(See table 22-3.) '

If the initialization byte indicates that the ATA card should be configured

during POST but that it does not contain a device ROM, then the firmware is

responsible for configuring the ATA card. Once the ATA card is configured,

the operating system can boot directly from the drive.

313

Toshiba_Apricorn 1006-0322
|PR2018—01067

Toshiba_Apricorn 1006-0323
IPR2018-01067

PCMCIA System Architecture

Tnine 22-2. Contents of the Function Identification Byte

Meaning

Multi-Function PC Card has multiple functions. Examine the fol-

lowing function identification tuples that follow for
individual functions.

Memory Memory Card (RAM, ROM, EPROM, flash, etc.).

Serial Port Serial I/0 port, includes modem cards.

Parallel Port Parallel printer port, may be bidirectional.

Fixed Disk Fixed drive, may be silicon may be removable.

(type and resolutions supported).

Network LAN Local Area Network adapter.
Adapter

AIMS Auto-Incrementing Mass Storage card.

8..FFh Reserved Unused in this release. Reserved by PCMCIA for
future use. -

Video Adapter Video interface, extension tuples

Table 22—3. Contents of the Initialization Byte

—nnll s 2 t 1 0
Reserved for future use, must be set to zero (0} _

If the ATA drive also contains a device ROM, then firmware can map the
ROM into the ROM scan region (COOOOh-DFFFFh) and the standard initializa-

tion process will detect the device ROM. The ATA device ROM containing the

ATA enabler and driver will be called by PCMCIA firmware. The ATA’s de-

vice ROM performs the configuration process and returns to the system

firmware. Once the drive is configured, IPL can occur from the PCMCIA

ATA drive like any other ATA drive.

314

Toshiba_Apricorn 1006-0323
|PR2018—01067

Toshiba_Apricorn 1006-0324
IPR2018-01067

Chapter 23: Execute In Place (XIP)

Chapter 23

The Previous Chapter

The last chapter discussed the problems associated with loading the operating

system from a PC Card. It also defined mechanisms used to determine

whether a given PC Card is a bootable device, and the firmware support re-

quired to support booting from PC Cards.

This Chapter

This chapter discusses the Execute-ln-Place mechanism defined by PCMCIA

that allows code to be executed directly from the card rather than copying

files to and executing from system memory.

The Next Chapter

The next chapter introduces the ExCA (QuickSwap) specification that defines

a required set of hardware and software support that is intended to improve

PC Card interoperability across platforms based on the Intel X86 architecture.

The XIP Goals

Execute-InvPlace (XIP) provides a mechanism for application programs to exe-

cute directly from PC Card memory. This eliminates the need to copy code

from the PC Card into host memory before being executed, reducing the

amount of system memory address space needed to load and execute a large

application program. This is a particular concern in the DOS operating envi-

ronment where memory address space is at a premium. Application programs

written to support XIP could be supplied on a ROM—based PC Card or could

be loaded from disk to a memory card (such as flash) and be executed directly
from the PC Card.

315

Toshiba_Apricorn 1006-0324
|PR2018—01067

Toshiba_Apricorn 1006-0325
IPR2018-01067

PCMCIA System Architecture

Similar techniques, including the popular expanded memory specification

(EMS), allow an application to reside in memory outside the memory address

range that is addressable by DOS. Small portions (16KB pages) of these remote

memory ranges are mapped into areas addressable by DOS, permitting them

to be accessed. The EMS protocol defined in the Lotus / Intel/Microsoft (LIM)

specification is supported by XIP and is called LXIP. Additionally, XIP defines

support for applications designed to use extended memory (address space be—

yond 1MB) using Intel 80386 compatible addressing modes. This form of XIP

is termed EXIP. A new type of XIP called SXIP (Simple XIP) is defined for sys-

tems with very limited paging mechanisms and small address space. The

execution and read-only data images require no more than 64KB of address
space.

The XIP Software Hierarchy

The functions performed by XIP software includes:

0 Setting up XIP partitions in PC Card memory.

0 Establishing directories within PC Card memory.

0 Copying XIP applications into the XIP partitions.

- Mapping the applicatiori within the processor's addressable space.

0 Starting the XIP application execution.

- Providing services for the XIP application so that it can manage program
execution.

XIP File Management

- XIP applications do not use the normal DOS File Allocation Table (FAT) or

Flash File System (FFS). Instead, XIP applications use a dedicated software in-
terface consisting of XIP utilities, XIP management software and socket

services to map the PC Card memory into an XIP partition. The XIP software

can only execute an XIP application from an XIP partition. An XIP partition

can be set up in PC Card memory by utility programs. The PCMCIA specifi-

cation details the organization and data structures required for partitions and

directory entries.

316

Toshiba_Apricorn 1006-0325
|PR2018—01067

Toshiba_Apricorn 1006-0326
IPR2018-01067

Chapter 23: Execute In Place (XIP)

The XIP Loader

Once the dedicated XIP partition exists then an XIP application can be loaded

into the PC Cards common memory address space within an XIP partition.

The XIP directory also contained within PC Card memory is then updated to

reflect the application’s presence. An XIP application from the user perspec-

tive begins execution in the same way that a DOS application does (by typing
the name of the executable file). In this case, however, an XIP loader is in-

voked when an executable XIP file is called. The XIP loader's task is to find the

XIP application that resides within an XIP partition in PC Card memory. The

loader searches for the application within the XIP directory, maps the appli-

cation into system address space and starts the application.

The XIP Device Drivers (API and Hardware Manipula-

tion)

Once started, the application manages program execution by making the nec-

essary calls to the XIP driver. The PCMCIA specification defines all of the

functions needed by the application. The XIP device-driver functionality is

split between a high-level driver (XIPSYS) and a low-level driver

(PCMCIA-SYS). The high-level driver is implemented as an installable device

driver and provides all the services needed by the XIP application. This pro-

vides the XIP application's API. The low—level driver provide services for the

high-level driver when it needs to access the memory-mapping hardware
within the HBA. It can be installed as an installable device driver or included

in the system's BIOS routines.

The intent of the split driver approach is to remove the details of the hardware

interface from the high-level driver, making it easy to implement a generic XIP

driver that can be used with any XIP-capable system. The system manufac—

turer then need only concentrate on developing the low-level driver used to

manipulate the hardware (the same as the related socket service functions).

317

Toshiba_Apricorn 1006-0326
|PR2018—01067

Toshiba_Apricorn 1006-0327
IPR2018-01067

PCMCIA System Architecture

LXIP

LXIP is compatible with the LIM 4.0 specification. This protocol requires that

four separate 16KB blocks of contiguous memory address space, called page

frames, be mapped into the processor's memory address space. Each of these

four page frames must permit access within the PC Card's XIP application,

which is also organized into 16KB blocks, called pages. An LXIP application is

aware of this organization and interacts with the LXIP manager to access PC

Card memory via the page frames.

A PCMCIA host bus adapter designed to support the LXIP capability must

have the ability to map these four 16KB address ranges independently. The

LXIP manager accepts requests from the XIP application and sets up access to

PC Card memory via the socket services interface and the REA.

EXIP

EXIP specifies the ability of applications to execute directly from PC Card
memory when the memory card is mapped into the processor's extended ad-

dress space (above 1MB). The EXIP manager determines where PC Card

memory will be allocated in extended memory and programs the HBA to map
the card into extended memory.

SXIP

SXIP applications are quite small and cannot exceed more than 64KB of ad—
dress space. In this respect they are similar to .com programs that execute in a

single x86 memory segment. The entire program image is directly mapped
into the processor’s address space and no remapping or paging is performed.

318

Toshiba_Apricorn 1006-0327
|PR2018—01067

Toshiba_Apricorn 1006-0328
IPR2018-01067

Part Five

ExCA(QuickSwap)

Toshiba_Apricorn 1006-0328
|PR2018—01067

Toshiba_Apricorn 1006-0329
IPR2018-01067

Chapter 24: ExCA (QuickSwap)

Chapter 24

The Previous Chapter

The previous chapter described the Execute-ImPlace (XIP) functionality pro—

vided by PCMCIA that allows code to be executed directly from files stored

on PC Cards. Three types of XIP were defined: one for small applications

(SXIP), one based on expanded memory concepts (LXIP) and the other for

applications using extended memory (EXIP).

This Chapter

This chapter introduces the ExCA (QuickSwap) specification that defines a re-

quired set of hardware and software support, intended to improve PC Card

interoperability across platforms based on Intel x86 architecture.

The Next Chapter

The next chapter provides a sample PCMCIA host bus adapter. The adapter

documented is the Cirrus Logic PD6722 designed for use in x86 PC-based sys-
tems.

The ExCA Goal

The Intel ExCA (Exchangeable Card Architecture) specification provides spe-

cific HBA, PC Card, and software requirements for systems implementing

DOS-based Intel x86 compatible systems. By defining minimum hardware and

software requirements for these systems, Intel hopes to ensure PC Card com—

patibility across x86 systems implementing the ExCA standard.

The need for such a standard stems from the flexibility incorporated into the

PCMCIA specification. The standard was designed to provide latitude for de-

signers who are developing PCMCIA solutions over a wide range of PC and

321

Toshiba_Apricorn 1006-0329
|PR2018—01067

Toshiba_Apricorn 1006-0330
IPR2018-01067

PCMCIA System Architecture

non-PC platforms. However, this latitude, while achieving its goal, also cre-

ates a greater possibility of. compatibility problems.

ExCA Scope

In most respects, the EXCA specification defines a subset of the features within '

the PCMCIA standards, narrowing down the implementation possibilities and

reducing the risk of PC Cards and systems being developed that are incom-

patible with one another. Additionally, ExCA defines some system

characteristics not specified in the PCMCIA standard. The ExCA specification

describes the minimum capabilities of the following items:

The ExCA Host Bus Adapter
Socket Services

Card Services

PC Cards (both memory-only and memory and I/O)
I...
EXCA also encompasses a three phase compliance test, including socket

hardware functional testing, system software functional testing and system in-

tegration testing.

This chapter highlights the EXCA specification's features. Refer to the EXCA

specification for complete details.

ExCA Host Bus Adapter Requirements

Host bus adapter requirements fall into the following categories:

Address Mapping (memory and I/O)

Interrupt Support

System Power
PC Card Insertion and Removal

Event WakeUp (i.e. ring indicate when system is in sleep mode)

II...
Address Mapping (memory and l/O)

Specific requirements exist for EXCA compliant host bus adapters to ensure

that address windowing capability provides the features needed in DOS«

based operating environments. Address mapping features are described for

322

Toshiba_Apricorn 1006-0330
|PR2018—01067

Toshiba_Apricorn 1006-0331
IPR2018-01067

Chapter 24: EXCA (QuickSwap)

ExCA compliant sockets for both memory sockets and Memory or 1/0 sock-
ets.

Memory Address Mapping

Each socket must include a minimum of four memory windows that can be

acquired and used by a socket. This requirement provides support for ex-

panded memory (L—XIP) in which four. separate 16KB address ranges must be

acquired from system memory and mapped to the PC Card. Support must

also exist for each socket to provide a fifth window, thereby allowing access to

attribute memory when necessary.

Each memory window must support system address capabilities for both real

mode (within the first 1MB of memory address space) and protected mode

(above 1MB of memory address space) operation. Furthermore each ExCA

memory address window must have the following capabilities and character-
istics:

windows are mappable anywhere between 256KB to 16MB (in host space)
minimum window size of 4K3

maximum window size of 256KB (real mode)

maximum window size of 8MB (protected mode)

window size can be any 4KB increment (4, 8, 12, 16, 20 KB) or may be

a power of two size (4, 8, 16, 32, 64 KB)

Consistent with the PCMCIA specification, memory windows are not allowed

to overlap in system address space, unless use of the address range is time

multiplexed.

IIO Address Mapping

ExCA requires that at least two I/O windows be implemented per socket.
Characteristics of ExCA I/0 windows include:

0 minimum window size of 1 byte

O maximum windows size of 256 bytes

0 window size must be power of two (1, 2, 4, 8, 16, 32 bytes)

Note that no remapping of the system I/O address is required. Addresses are

directly mapped from system address locations to the same locations on the
PC Card.

323

Toshiba_Apricorn 1006-0331
|PR2018—01067

Toshiba_Apricorn 1006-0332
IPR2018-01067

PCMCIA System Architecture

ExCA does not support overlapping I /0 windows without time multiplexing

them, as is required for overlapping memory windows. This means that no

support need exist for the INPACK# signal on ExCA compliant adapters.

Interrupt Support

ExCA adapters generate a status change interrupt for all card status change
events defined in the PCMCIA specification and they redirect or steer PC

Card interrupts to system IRQ lines as required.

Status Change Interrupt

ExCA adapters generate a single status change interrupt for card events from

all adapter sockets. Software must have the ability to globally select which

type of card events generate a status change interrupt. Additionally, individ-

ual events can be masked at the socket, providing selection of specific events

that generate a status change interrupt on a per socket basis. Support must

also exist for enabling and disabling the status change interrupt under soft-
ware control.

The adapter captures all status change events reported by each socket so that

software can determine which socket encountered the status change event.

The actual state of the status change signals from each socket can also be read

directly from the adapter.

Status change events from I/O cards are reported when an I/O card asserts

its status change pin. Status change information must be read directly from

the I/O card's configuration register (pin replacement register).

PC Card Interrupts

A PC Card interrupt must be steerable to any available system interrupt.

Availability depends on the host system implementation as listed in table 24-1.

EXCA compliant systems must ensure that at least one interrupt is available
for standard communications and local area networks (LANS). In other

words, the system must supply at least one interrupt request line from each
bullet list that follows.

324

Toshiba_Apricorn 1006-0332
|PR2018—01067

Toshiba_Apricorn 1006-0333
IPR2018-01067

Chapter 24: ExCA (QuickSwap)

Table 24-1. Interrupts Potentially Available For Use By PC Cards

Systems with One Inter— Systems with Two Interrupt Controllers
rupt Controller

mum

Standard Communications Interrupts (Serial Port)

- ' IRQ 3

- IRQ 4

Standard LAN Interrupts

I IRQ 5

0 IRQ 7

0 IRQ 10

. IRQ 11

O IRQ 15

Note that EXCA recommends that all interrupts listed in table 24-1 be sup-

ported by the adapter. However, a given implementation may choose to use
only a subset since the system design likely uses some of the interrupts.

Interrupt sharing support is system dependent. Systems based on ISA host
buses do not support interrupt sharing, while systems based on Micro Chan-

nel and EISA can share interrupts. Micro Channel and EISA devices use level

sensitive interrupt triggering to support sharing, thus cards that support only

the PCMCIA specified pulse—mode interrupts will not behave according to the

level sensitive triggering protocol. ExCA compliant adapters must support

level—mode interrupts from the PC Card, while pulse-mode support is op-
tional.

325

Toshiba_Apricorn 1006-0333
|PR2018—01067

Toshiba_Apricorn 1006-0334
IPR2018-01067

PCMCIA System Architecture

System Power Requirements

EXCA systems must supply minimum power requirements as indicated in the

EXCA specification. PCMCIA compliant PC Cards requiring more power than

specified by the ExCA specification may not operate correctly when installed
in sockets that are ExCA compliant. Additionally, ExCA compliant systems

need not provide separate programmable voltages for Vppl and Vpp2. Refer

to the ExCA specification for actual power requirements. The voltage supply

combinations that must be provided at the socket include those listed in table
24-2.

Table 24-2. ExCA Voltage Requirements

PC Card Insertion/Removal

The EXCA specification defines the sequence of events, interface signal status,

Vcc and Vpp levels and critical timing delays for PC Card insertion and re-
moval. The ExCA specification supports both cold socket insertion
(recommended) and warm insertion (not recommended). l-Iot socket insertion

of PC Cards is not supported by the EXCA. Table 24-3 defines the difference
between cold, warm and hot PCMCIA sockets.

Cold Socket

Table 24-3. State of Socket When PC Card is Inserted

Address State

at Signal
Contact

High 2 or 0v

High Z or 0v

Control Signal

State at Signal
Contact

High Z or 0v

High Z or 0v

High Z or 0v

High Z or 0v

326

Toshiba_Apricorn 1006-0334
|PR2018—01067

Toshiba_Apricorn 1006-0335
IPR2018-01067

Chapter 24: ExCA (QuickSwap)

Card Insertion

The ExCA specification defines the sequence of events and minimum time du—

ration for these events when a card is inserted into a socket. The sequence of
events is listed below.

Card inserted into socket (both CD1# and CD2# asserted)

Adapter applies Vcc

Adapter asserts reset to PC Card

Adapter removes reset and PC Card begins initialization

Initialization completes within 20 ms or else deasserts READY

Client driver polls READY to detect when PC Card is ready to be ac-
cessed.

QWFWPH
Card Removal

The ExCA specification also defines the sequence of events that are recom—
mended when the PC Card is removed from the socket as listed below. Note

that when a PC Card is removed from the system, the socket interface may be
active.

1. Adapter detects card removal (CD1# and/or CD2# deasserted)

2. Adapter ceases to drive active signals to the interface (address, data and

control signals go to high impedance state or (iv)

3. Vcc removed from the socket (not required if warm socket insertion is

supported)

Note that the adapter detects that a card is being removed before any of the

other interface or power pins lose contact with the socket (because the Card

Detect pins are shortest). Next, the adapter releases the interface by tri-stating
the address, data and control lines, (which are the intermediate length signal

pins), and finally removes power to the Vcc pins (which are the longest pins).
As the PC Card is removed it is still in COntact with the signals pins and

power pins long after they are disabled by the adapter.

EXCA Socket Services

The ExCA specification defines a minimum subset of socket services functions

that are required for ExCA compliance. Table 24—4 lists the socket services

functions and notes those that are required versus optional.

327

Toshiba_Apricorn 1006-0335
|PR2018—01067

Toshiba_Apricorn 1006-0336
IPR2018-01067

PCMCIA System Architecture

Table 244. Socket Services Functions Required/Optional

for ExCA Compliant Systems

w—

SET__ADA PTER Yes

SET_PAGE Yes

mews

mansocm

INQ_EDC

GET_EDC

SET_EDC

START_EDC

PAUSE_EDC

RESUME_EDC

STOP_EDC

READ_EDC

GET_VENDOR_INFO

ACKJNTERRUPT

PRIORWHANDLER .

SS_ADDR

ACCESS_OFFSETS

VEND_SPECIFIC

CARD_SERVICES

es

No

— 0

0

O

GOO

O

OO

—

No

No

Note that the EDC and vendor specific functions are optional for ExCA

compliant socket services. The implementation and definition of the required

socket services functions are compliant with the PCMCIA socket services
standard.

328

Toshiba_Apricorn 1006-0336
|PR2018—01067

Toshiba_Apricorn 1006-0337
IPR2018-01067

Chapter 24: EXCA (QuickSwap)

ExCA Card Services

EXCA compliant systems must support card services; but, like socket services

not every card services function is required. Table 24-5 lists the card sci-vices
functions that are required.

Table 24—5. Card Services Functions Required/Optional For ExCA Compliance

Function Required ?
Client Services Functions

Partial

Yes

DeregisterClient Yes
GetStatus Yes

GetCardServicesInfo

RegisterClient

ResetCard

SetEvenMask

GetEvenMask Yes

Resource Management Functions
"C m

RequestIO e
ReleaseIO Yes

RequestIRQ Yes

ReieaseIRQ

RequestWindow
ReleaseWindow Yes

Modinyindow

MapMemPage es

RequestSocketMask Yes
ReleaseSocketMask

RequestConfiguration

GetConfigui-ationlnfo

ModifyConfiguration

ReleaseConfiguration Yes
85

,.<ll85

ES

Ii

-<-<-<r<85

..<

Bulk Memory Services Functions
2o

OpenMernory
Zo

ReadMemory

WriteMernory
Z0

CopyMemory

RegisterEraseQueue
CheckEraseQueue

Z0

0

Zo

Function Required ’?

 DeregisterEraseQueue No

CloseMemory No
Client Utilities Functions

GetFirstTuple Yes

GetNextTuple

GetTupleData

GetFirstRegion

GetNextRe-gion

RehirnSSEntry Yes

MapLogSocket Yes

MapPhySocket Yes

MapLogWindow Yes

MapPhyWindow Yes

RegisterMTD

RegisterTimer Yes

SetRegion
ValidateCIS Yes

RequestExclusive Yes
ReleaseExciusive Yes

GetFirstClient Ye

GetNextClient Yes

GetClientInfo Yes

AddSocketServices

Zo

IE

0

II

Z0

IIHIIReplaceSocket Services No

VendorSpecific

AdjustResom-celnfo Yes
2o

AccessConfigurationRegister

329

Toshiba_Apricorn 1006-0337
|PR2018—01067

Toshiba_Apricorn 1006-0338
IPR2018-01067

PCMCIA System Architecture

ExCA PC Cards

ExCA recommends which tuples an ExCA compliant PC Card should imple—

ment. Table 24-6 below lists the recommended tuples for memory and I/0 PC

Cards. The lower portion of the table lists three tuples that might contain in—

formation needed by system initialization code or peripheral installation

software for determining if a PC Card should be installed and configured

during POST (Power-On Self Test) prior to loading the operating system. This

capability is needed primarily for those devices that must be used to load and
install the operating system.

Table 24—6. Tuples Recommended by the ExCA Spearfication

Tuples Recommended by EXCA Memory Cards ? 1/0 Cards ?

Yes

Device Geometry Information (flash) Yes
Recommended for bootable PC Cards

eardManufacmrm

PC Card Event WakeUp

Systems implementing power conservation modes, such as suspend or sleep,

may want to Wake the system up if some critical event occurs at the PC Card.

Events, such as a call to a modem, could be used to wake the system up and

return to normal full power operation so that the event can be processed. Cur-

rently the PCMCIA specification (release 2.1) does not define an event wakeup

procedure, and in its absence, ExCA defines the following optional definition

for event wakeup.

Two events can cause event wakeup in an ExCA compliant system:

I Ring Indication from a modem or fax

0 remote power up from a LAN card

330

Toshiba_Apricorn 1006-0338
|PR2018—01067

Toshiba_Apricorn 1006-0339
IPR2018-01067

Chapter 24: EXCA (QuickSwap)

ExCA compliant I-IBAs and PC Cards use socket pin 63 (Status Change) for

event wakeup, replacing either the READY, Write Protect or Battery Voltage

Change status change indication on the PC Card. The PC Card indicates its

support of event wakeup via the C15.

The Configuration Table Entry tuple identifies the card's capability for using

event wakeup via pin 63. The configuration entry tuple contains a miscellane-

ous features field that can be used to specify which status change indicators

are supported by the card and is used to indicated which status change event

that the event wakeup mechanism uses. The host bus adapter is programmed

to direct the status change indication to the power management interrupt,

which requests that the system return to full power operation.

331

Toshiba_Apricorn 1006-0339
|PR2018—01067

Toshiba_Apricorn 1006-0340
IPR2018-01067

PCMCIA System Architecture

332

Toshiba_Apricorn 1006-0340
|PR2018—01067

Toshiba_Apricorn 1006-0341
IPR2018-01067

Part Six

An Example HBA

Toshiba_Apricorn 1006-0341
|PR2018—01067

Toshiba_Apricorn 1006-0342
IPR2018-01067

Chapter 25: An Example HBA -—The CL-PD6722

Chapter 25

The Previous Chapter

The previous chapter introduces the EXCA {QuickSwap} specification that de-

fines a required set of hardware and software support, intended to improve

PC Card interoperability across platforms based on Intel x86 architecture.

This Chapter

This chapter provides an overview of a sample PCMCIA host bus adapter
(The Cirrus Logic CL—PD6722) used in Intel x86 implementations for either an

original PC or ISA compatible host bus.

Introduction to the CL-PD6722

This chapter is intended as a brief look at an actual PCMCIA host bus adapter.

The Cirrus Logic CL-PD6722 was chosen as the example adapter for several

reasons. First, the Intel 82365 PCMCIA adapter chip is currently implemented

in more systems that any other, and the CL—PD6722 is register compatible

with the Intel chip, with a few minor exceptions. The second reason is that it

includes considerably more functionality than the Intel chip.

The CL—P06722 controls two PCMCIA sockets via a single 208-pin PQFP. Fea-

tures of the CL-PD6722 include the following:

PCMCIA 2.1 and JEIDA 4.1 Compliant

Intel 8236SSL (Step A) compatible register set, EXCA compliant
ISA host bus interface

Dual socket interface

Automatic Low-Power Dynamic Mode

Programmable Suspend Mode for power conservation

Five programmable memory windows per socket

Two programmable I/0 windows per socket
8-bit or 16—bit host bus interface

OOIIOOIOI
335

Toshiba_Apricorn 1006-0342
|PR2018—01067

Toshiba_Apricorn 1006-0343
IPR2018-01067

PCMCIA System Architecture

0 ATA disk interface support for small form-factor drives

0 DMA support

- Mixed-Voltage operation (3.3V or 5v) operation

Socket Power Control

The CL-PD6722 uses the PowerGoOd signal from the system‘s power supply
as its reset. When PowerGood transitions from low to high the CL-PD6722

leaves the reset state and begins operation. Power to the socket is controlled

by chip outputs that go to power switching devices. As shown in figure 25-1,

the CL—PC6722 has four output signals per socket that control power to the
socket as follows:

' Vcc_5 - when asserted 5v is applied to socket Vcc

0 Vcc_3 - when asserted 3.3V is applied to socket Vcc

- Vpp_Vcc when asserted Vcc is applied to socket Vpp].

o Vpp_PGM when asserted the programming voltage (12v) is applied to

socket Vppl.

Internal registers determine which 'of these signals will be asserted and when.

”8+
+
01
<
CL
0

Power SOCKGI VCC

Switching

 Socket Vpp

Figure 25-1. CL—PD6722 Socket Power Control Signals

336

Toshiba_Apricorn 1006-0343
|PR2018—01067

Toshiba_Apricorn 1006-0344
IPR2018-01067

Chapter 25: An Example HBA —-The CL-PD6722

Vcc Control

In PCMCIA 2.1 compliant systems, Vcc to the socket must always be 5v, but

can be switched to 3.3V if the PC Card indicates the ability to operate at 3.3v

via the (:19. If 3.3V operation is supported, software will write to Miscellane-

ous Control 1 register, specifying that Vcc should be switched to 3.3v. (Note

that the CL—PD6722 provides limited support for Vcc sensing and can be used

in new designs that incorporate the low voltage connectors. Contact Cirrus

Logic for details.)

The CL—PD6722 supports two methods of applying Vcc to the socket:

I Vcc control via the client driver, card service and socket services software
chain when a card is detected.

- Autornatic Vcc control via the CL—PD6722 controller

When a card is inserted into the socket, the -CD pins are asserted and the

adapter detects the card‘s presence. When autopower mode is not selected,

the adapter waits to be commanded by the software before applying Vcc to

the socket. Software must set bit four in the Power Control register (Refer to

figure 25-2) to enable power to the socket. The adapter responds by asserting

the Vcc_5 signal.

If bit five is set during system initialization, the adapter automatically supplies

Vcc to the adapter (asserts Vccfl5) when it detects the presence of a card. Vcc

is automatically removed from the card when the card is removed. Note that

power is removed based on timing parameters specified in the ExCA specifi-
cation.

7 6 5 4 3 2 1 0

Card Auto Vcc . Vpp1 Vpp1
Enabl RGSV Pwr Pwr Fiesv Resv Cntrl Cntri

EN EN bit 1 bit 0

Figure 252. The Power Control Register

337

Toshiba_Apricorn 1006-0344
|PR2018—01067

Toshiba_Apricorn 1006-0345
IPR2018-01067

PCMCIA System Architecture

Vpp1 Control

Bits zero and one of the Power Control register determine whether Vcc (5v or

3.3 v), 12v, or zero volts is applied to the Vpp1 pin. (Refer to table 25-1)

Table 254. Socket Vpp Control

| VPP_PGM I VPP_VCE__J| Socket Vpp1

Deasserted zero volts

PC Card Data Transfers

The adapter monitors ISA host bus activity to see if the bus cycle is intended

for it or a PC Card installed in one of its sockets. Figure 25-3 shows the signals

and functional blocks involved in transferring bus cycles to the target PC

Card. Note that figure 25-3 shows a single socket interface to simplify the il-

lustration. In reality, the socket signals shown are duplicated for the second
socket.

The adapter must decode the address when an ISA bus cycle is run to deter-

mine if either a local access is being made to one of its registers or whether the
access is to a PC Card. PC Card accesses are determined via the window ad-

dress registers. If an ISA access is made to an address location that falls within

the address window programmed for a the PC Card, then the adapter knows

that the PC Card is being accessed and starts a data transfer either to or from

the card depending on the state of the ISA read/write command lines. In es-

sence, the HBA decodes addresses like other ISA adapters. The HBA performs

the decode to determine if the transaction is for it (an HBA register} or one of
its sockets.

The CL-PD6722 uses a First In First Out serial memory (FIFO) to store up to

four write operations. When a write occurs from the host ISA bus, the

CL-PD6722 stores the write in the FIFO and completes the operation in zero

ISA wait states. The adapter then runs the socket access to the target PC Card

to complete the write transfer. In this way, write operations to PC Cards al-

338

Toshiba_Apricorn 1006-0345
|PR2018—01067

Toshiba_Apricorn 1006-0346
IPR2018-01067

Chapter 25: An Example HBA —The CL—PD6722

ways complete at zero waits states until the FIFO fills up. Note that the FIFO

is bypassed on read transfers.

_

Addr I
SA11:SAO \ Buffer CA11:CAO

I AddmssBuflerEnamer

LA23:LA17 \ L_\
BALE _ CA2&CA12

_ Mapping I.
‘31: Logic I new9'?

=13

-N e g
SA1&SA1 §- §

Adapter ‘” 5?

Address 8 3 Re peter
Decoder 0 ‘S£m

g.Q

SEIHEIIl
SAD

['83: l CEw
“153$: ISA l PCMCIA 0E2“
BN£# Host : Socket igfifi
5%; Inten‘ace Interface $555:

REFRESH COI‘I‘IfOI :Controi1018? IOISIE-fl
M16# " INPACKfl

CHRDY WAW#
NOWS#

Datato g 9

AcIHapter "lg

,Ik/
SD15:SDB' Write

FIFO

|__ __
Da‘a ems-.0

X]CVF{ DB
_—-

‘ Data co—7‘c'o'
xcvs. ' 0

 (bypassed
on reads)

Figure 25—3. Basic Functional Biocks Used During Data Transfers

339

Toshiba_Apricorn 1006-0346
|PR2018—01067

Toshiba_Apricorn 1006-0347
IPR2018-01067

PCMCIA System Architecture

The CL—PD6722 contains two timing register sets each consisting of three reg-

isters that control transfer timing:

0 Setup Timing register

0 Command Timing register

0 Recovery Timing register

These registers provide very flexible transaction timing when accessing PC

Cards. Refer to the CL-PD6722 data book for details regarding these registers.

Address Window Mapping

The CL-PD6722 has seven window address registers for each socket: Five

memory window registers and two I/O window register. Associated with

each register is the transfer Speed of the devices that respond within the win~
dow.

Memory Interface

The memory window register is comprised of six 8-bit registers centaining the

following information (refer to figure 25-4):

0 Lower byte of window start address (LA19zLAl7; SA16:SA]2). Note that

address line 12 is the smallest address used to define a memory address

window. This supports the ExCA's requirement that windows start on

4K3 boundaries. The lower 12~bits of the address (SAll:SAO) go directly
to the socket via a buffer.

- Upper portion of window start address (LA23:LA20). The window start

address reflects the maximum address capability of the ISA host bus
(16MB).

- Lower byte of window stop (end) address {LA19:LA17; SA16:SA12).

Note that memory windows must also end on even 4K3 boundaries,

making the smallest memory window 4K3.

I Upper portion of window stop (end) address (LAZBLAZU)

0 Lower byte of window offset (CA191CA12). Note that the offset is com-

prised of the Card Address value that is added to the ISA address,

permitting the card address to appear anywhere within the PC Cards

64MB of address space.

I! Upper portion of window offset (CA25:CA20).

340

Toshiba_Apricorn 1006-0347
|PR2018—01067

Toshiba_Apricorn 1006-0348
IPR2018-01067

Chapter 25: An Examlale HBA —The CL-PD6722

The address register also contains bits that determine characteristics about the

specified range of addresses. These characteristics include:

0 Data Size » Specifies whether access should be made to devices based on

8-bit or 1 6-bit addressing mode (depends on host bus size). -

0 Access Time (Timer Select) - The CL—PD6722 incorporates two timing

register sets that determine the cycle time of the devices that are mapped
into the address window.

0 Type of Window (-REG) - Determines whether the window is used to ac-

cess attribute memory or common memory.

0 Write Protect (WP) - specifies whether the memory within the window

address range should be write protected. Writes to address within the
window are inhibited if WP is set.

Address 19 - 12 '

7 6 4 3 0

Addresses - 20 l
Window Start

Address 19 - 12

7 6 5 4 3 0

O O Selects Timer Set 00 1 Selects Timer Set 1
1 0 Selects Timer Set 1
1 1 Seieets Timer Set 1

Window Stop

Address 19 - 12

‘4 m U" D

WP Address 25 - 20

Window Offset

Figure 25-4. Registers Comprising a Single Memory Address Window

341

Toshiba_Apricorn 1006-0348
|PR2018—01067

Toshiba_Apricorn 1006-0349
IPR2018-01067

PCMCIA System Architecture

l/0 Interface

I/O devices are mapped through the I/O window address registers. Each

socket contains two I/O window registers each comprised of seven one byte

registers as follows (refer to figure 25-5):

Upper byte of window start address (SA15:SA8)

Lower byte of window start address (5A7:SAO)

Upper byte of window stop {end} address (SA15:SA8)

Lower byte of window start address (SA7:SAO)

Upper byte of window offset register (CA15:CA8)

Lower byte of window offset register (CA7:CA1)
Control bits for both IIO windows

Note that the 1/0 start address can begin and end on any byte boundary and

can be any length. ExCA specifies constraints regarding 1/0 address window

size and start addresses that compliant software should observe. Since the ISA

host bus supports a maximum of 64KB of I /0 address space, only 15 address

bit are used. The offset capability allows software to map two devices at the

same system address space and offset or remap the system addresses to sepa—

rate locations with the PC Cards I/0 address Space.

Note that the characteristics of both I/O windows is controlled via the I/O

window control register. The characteristics include:

0 Data Size (data size and 401816) - An 1/0 device can be either an 8-bit or

16-bit device. The size can be programmed via the data size bit or can be

dynamically determined by the PC Card via the —IOI816 signal.

0 Cycle Timing (Timing Select) - the access timing of the devices responding

within the window is determined by the value of a timing register set. The

timing select bit determines which timer set should be used.

342

Toshiba_Apricorn 1006-0349
|PR2018—01067

Toshiba_Apricorn 1006-0350
IPR2018-01067

Chapter 25: An Example HBA —The CL-PD6722

Window Start (Address 15 - 8) I

Window Start (Address 7 - O)

Window Stop (Address 15 - 8)

Window Stop (Address 7 — 0)

Window Offset (Address 15 - 8)

Window Offset (Address 7 - 1)

7 6 5 4 3 2 1 0

Timing
Flag
Select

i01816
Srce

Data
Size

Data
Size Res"

”0 Window 1 IIO Window 0

l/O Control Register

Figure 25—5. Register Comprising a Single 170 Address Window

343

Toshiba_Apricorn 1006-0350
|PR2018—01067

Toshiba_Apricorn 1006-0351
IPR2018-01067

PCMCIA System Architecture

Status Change Reporting

Status change interrupts are typically reported via a system interrupt when-

ever a status change event occurs. A single status change interrupt is used to

report status changes for all sockets. Status change events that can result in a

status change interrupt include:

For Memory Cards:

- Battery Dead Detection

- Battery Low Warning

0 Change in Ready/Busy status

a Card Detect Change

For 1/0 Cards:

0 Status Change Pin is asserted - The 1/0 card's configuration registers

must be read to determine which of the previously mentioned status

changes have occurred.

The CL—PD6722 reports a status change (also called management) interrupt

over the one of the system IRQ lines specified in the Management Interrupt

Configuration register (refer to figure 25—6). The upper four bits of the register

determine which IRQ line the status change should be reported over, while

the lower four bits determine which of the status change events should result

in an interrupt being reported. These lower four bits act as a global mask to

eliminate one or more of the status change'events from being reported by the

adapter.

Bait Bat!
IRQ IRQ IRQ IRQ card Ready Warn Dead

as;

System software having been notified of a status change must determine

Figure 25-6. Management Interrupt Configuration Register

which status change caused the interrupt. The Card Status Change register

indicates the source of the status change. (Refer to figure 25-7.)

344

Toshiba_Apricorn 1006-0351
|PR2018—01067

Toshiba_Apricorn 1006-0352
IPR2018-01067

Chapter 25: An Example HBA -—-The CL-PD6722

7 6 5 4 3 2 1 O
m

Card Batt Batt
Resrv Resrv Resrv Resrv Detect Ready Warn Dead

Chnge Chnge Chnge Chnge

Figure 25-7. Card Status Change Register

The actual state of the socket interface pins can also be observed by software

on a socket by socket basis when a memory interface is used. The interface

status register provides the capability as shown in figure 25-8. When an I/O

interface is defined, the PC Card must be interrogated directly to determine

the state of status change indictors.

7 6 5 4 3 2 1 0 '
m

a. III-IIII
Figure 25—8. Interface Status Register

Interrupt Steering

When a card interrupt occurs, the adapter generates an IRQ to the system. The

IRQ line to which the card interrupt is directed is controlled via the interrupt
and general control register. (Refer to figure 25-9.) The lower four hits deter-

mine which IRQ line the interrupt is steered to. Note that this register is also

used to enable management interrupt generation via bit four, and if the card

uses interrupts the card type bit (five) will indicate an I/O card type.

Bit six of the register is set and reset to control reset to the PC Card. Bit seven
is used when the I/O device is either a FAX, Modem, or network interface

card (NIC). This pin is set when the status change pin from the PC Card is

used to wake the system up due to external activity that requires system at-

tention. The bit is defined as Ring Indicate (RI) since it is commonly used by

FAX or modem cards to notify the system of an incoming call.

345

Toshiba_Apricorn 1006-0352
|PR2018—01067

Toshiba_Apricorn 1006-0353
IPR2018-01067

PCMCIA System Architecture

Figure 25—9. Interrupt and General Control Register

Refer to the CL—PD6722 data book for additional details regarding which in-

terrupt pins are supported and how interrupts are reported.

The ATA Socket Interface

Figure 25-10 illustrates the socket interface when configured for ATA. Many

of the signals used by the memory and I/O interfaces are no connections (NC)

when the socket is configured for ATA. This interface is intended for manu-

facturers that want to use a PCMCIA socket to support their internal IDE

drives. When used as an imbedded connector, the CL—PD6722 can be pro-

grammed to operate in the ATA mode, making the socket compatible with the

ATA interface. This interface also provides a slight increase in performance

when compared to the standard I/O interface approach described in chapter
nine.

ATA Registers

The PCMCIA host bus adapter accesses ATA devices using two register

groups. The groups are defined as:

0 Command Block Registers - used to send commands to the drive, transfer
data between the host and drive and return drive status to the host.

a Control Block Registers - used for drive control and returning alternate
status information to the host.

The ATA host bus adapter accesses registers within each group by asserting

the -CSO and «C81 signals. These signals identify which register block is being

accessed, while address lines A2, A1 and A0 select the target register within

the block. The binary value of A22A0 should not be thought of as consecutive

byte accesses, but rather as a binary code allowing selection of either 8-bit or

16-bit registers. For example, when C80 is asserted the command register

block is selected and address lines A2:A0 determine which of the eight regis-

ter is being accessed. Register zero is the 16-bit data register selected with a

346

Toshiba_Apricorn 1006-0353
|PR2018—01067

Toshiba_Apricorn 1006-0354
IPR2018-01067

Chapter 25: An Example HBA —The CL-PD6722

binary code of zero. The next register is the Sabit error/feature register. (Refer

to table 25-2). It is beyond the scope of this book to discuss the definition and

use of the ATA registers. Refer to the ANSI ATA specification and the ATA

standard within the PCMCIA specification for details regarding register defi-
nition and commands.

Ground 1 Ground

CD1 # 2 Data 3

Data 11 3 Data 4

Data 12 4 Data 5

Data 13 5 Data 6

Data 14 6 - Data 7

Data 15 7 080

C81 ' 8 NC

WSWE 9 OE# (Logic zero)
IORD# 10 NC

IOWFMt 11 CS1

NC 12 NC

NC 13 NC
NC 14 NC

NC 15 NC

NC 16 |REQ#

V00 17 V00

NC 18 NC

NC 19 NC

NC 20 NC
NC 21 NC

NC 22 NC

V32# 23 NC

RESET 24 NC

-WAIT 25 NC

INPACK# 26 NC

REG# 27 Address 2

SPKR# 28 Address 1

STSCHG# 29 Address 0

Data 8 30 Data 0

Data 9 31 Data 1

Data 10 32 Data 2

CD2# 33 101816#
Ground 34 Ground

Figure 25-10. ATA Socket Interface

347

Toshiba_Apricorn 1006-0354
|PR2018—01067

Toshiba_Apricorn 1006-0355
IPR2018-01067

PCMCIA System Architecture

Table 25-2. Example Addressing Scheme Used by ATA Cards

ATA Command Register Block («C51 asserted}

Read Function

(-IORD asserted)

Data Register {16 bit register)

Register #
(A2:A0)

Write Funchon

(-IOWR asserted}

Data Register (16-bit register)
Features (8 bits)

Sector Count (8 bits)

Sector Number (8 bits)

Cylinder Low (8 bits)

Cylinder High (4 bits}
Head Number (3 bits)

Command Register (8 bits)

 Error Register (8 bits)

Status Information (8 bits)

DMA Support

348

The CL—PD6722 also supports DMA transfers between an [/0 Card and

memory. This capability is achieved through a special DMA—type PCMCIA in-

terface cycle. This cycle is defined such that conflicts with standard PCMCIA

memory or I/0 cycles is avoided. These cycles are distinguished from normal

I /0 cycles by the -REG signal being high during an 1/0 cycle. This is an un-

defined c0ndition in the PCMCIA 2.1 specification.

A register within the adapter controls the DMA function. The signal used by
the PC Card to request a DMA transfer is programmable. When the controller

sees the DMA request from the PC Card, it then requests a DMA transfer

from the ISA bus‘s DMA controller by asserting a DMA request on the ISA

bus. The CL—PD6722 uses the IRQ 9 and 10 lines to report a DMA request. If

configured for DMA these IRQ lines cannot be used. Refer to the CL—PD6722
data book for details.

Toshiba_Apricorn 1006-0355
|PR2018—01067

Toshiba_Apricorn 1006-0356
IPR2018-01067

Appendices

Toshiba_Apricorn 1006-0356
|PR2018—01067

Toshiba_Apricorn 1006-0357
IPR2018-01067

Appendix A:SRAM CIS Example

Appendix A:
SRAM CIS

Example
The following example is the attribute memory address map showing
the CIS tuples implemented within a typical SRAM card. This listing

includes page number where the tuple description can be found.

Offset/Adr Data Description and interpretation
(hex) (hex)

Device Info Tu-le

2/4 61 Deuce type 6 (SRAM) Dev1ce Speed 1
(250m)

3/6 7C Unit Size=128K Number of Units=16

Total Size = 2MB

4/8 Termination B te

’75_

are ASCII codes)

_—_u

—
42 E—

351

Toshiba_Apricorn 1006-0357
|PR2018—01067

Toshiba_Apricorn 1006-0358
IPR2018-01067

PCMCIA System Architecture

(hex) (hex)

W22 —
12/24 —
13/26 —
W28 n

m-

53

52

41

15/2A

16/2c

17/2E 52

18/30 30

19/32 30

1A/34 30

30

31

53

52

30

30

0

Offset /Adr Description and interpretation PageI('D H1

356

LIJ 01 ON

DJ 01 ON

m01 Ch

VI0‘nd Card Descrition Information

DJ(J!Ln 3\0‘mON
356

356

356

356

356

356

356

356

1C/38

ID/SA

lE/

1F/3E

20/40

21/42 IIIIIIIII
22/44 3

23/46 30

24/48 32

25/4A

26/4C

27/4E

28/50

29/52

nd Model Information I

-
_
-
_

1B/36 -
_
m
_
-
_

El
356

||||||‘|||||llillllgilllllllll||||||||||||
()1 Ch

nd Model Information 2

Termination B te

Checksum To e 1e

Link to next tu ale

Offset fm Checksum tuple (2711) to checksum

start address. D9h (low byte); FFh (high

byteJ=FFD9h + 0027h (tuple address)=0000h

w56

IO

05

L1.)01

NJChCh

2A/54 7

23/56 Number of (318 locations to be checksummed

from start address : 27h (low byte);

00h (hih b tei=0027h
Checksurn Value=DEh

Termination Tu nle

2C/58

2D/5A

2E/5C

357

357

357

 H

352

Toshiba_Apricorn 1006-0358
|PR2018—01067

Toshiba_Apricorn 1006-0359
IPR2018-01067

Appendix A:SRAM CIS Example

Device Information Tuple

Table -1 shows the format of the device information tuple. Shaded

areas Show portions of the tuple definition used by the SRAM card in

the example.

The SRAM CIS listing includes a link value of 03h, indicating only two

bytes are used for device info, followed by the termination byte.

Table A -1. Device In ormation To 18 Format

Device Information Tuple Format

The SRAM's device information tuple contains information for a single

block of memory, therefore, only one device info block (Device Info 1) is
defined. Device info 1 is comprised of two bytes in this example:

0 Device Type and Speed Byte

0 Device Size Byte

Device Type and Speed Byte

Refer to table «2. The first byte describes the device speed, whether the

write protect switch affects this address range, and the device type.

Note that the device type code is only used to describe devices that use

a fixed memory address range, and not for dynamically relocatable

devices. Relocatable devices use the configuration entry tuples to

describe the memory address ranges supported.

The device type and speed byte contains a 61h value, equating to the

values shown below. Note that extended speed information can be used

in lieu of the standard speed definitions. This capability permits speed

definitions that might be supported by host bus adapters capable of

supporting a wide range of programmable transfer rates.

353

Toshiba_Apricorn 1006-0359
|PR2018—01067

Toshiba_Apricorn 1006-0360
IPR2018-01067

PCMCIA System Architecture

354

 Table A -2. Memo Device T Ice and S eed In rma {ion

1
_
—

m

'7

DSPEED_NULL

DSPEED_250NS

l DSPEEDMISUNS I
DSPEEDJOONS

No device. Generally used to designate a hole
in the address space. If used, speed field should
be set to OH

Function—specific memory address range.
Includes memory-mapped I/O registers, dual-
ported memory, communication buffers, etc,

not intended to be used as general-purpose
memory.

Extended type follows.

Toshiba_Apricorn 1006-0360
|PR2018—01067

Toshiba_Apricorn 1006-0361
IPR2018-01067

Appendix A:SRAM CIS Example

Device Size Byte

The SRAM's device size byte entry contains 7Ch. This represents a three
bit "unit size code" of 411, and the number of address units value of OFh.

One is added to the number of address units value to obtain the actual

number of units. Refer to table -5 for byte format.

Table A -5. Device Size De 'nitfon

-_l-_____

(16 units x i28KB unit size = 2MB)

Level 1 Version I Product Information Tuple

Table -6 shows the format and contents of the Level 1 Version/Product

Information tuple. This tuple pmvides the PCMCIA compliance level

supported by the PC Card and includes manufacturer defined product

information. The tuple includes three fields:

a The major version byte indicating PCMCIA version information.

O The minor version byte indicating compliance with a given PCMCIA
release.

0 A variable length field comprised of one or more strings of ASCII

characters specified by the manufacturer. A value of 00h demarks

each ASCII string.

355

Toshiba_Apricorn 1006-0361
|PR2018—01067

Toshiba_Apricorn 1006-0362
IPR2018-01067

PCMCIA System Architecture

Table A -6. Level 1 Version] Product In armation Tule Format

Level 1 Versioanrocluct Information Tuple Format

TPL_CODE CISTPL_VERS_1 (15h).

TPL_LINK Link to next tuple (20h).

TPLLVLMAJOR Major version number (04h).

TPLLVLMINOR Minor version number (01h) for Release 2.0 and
2.01

Product information string: name of the

manufacturer, terminated by 00h.

Additional product information, in text;

terminated by 00H. Suggested use: lot number.

Additional product information, in text;

terminated by 00h. Suggested use: define special

programming conditions.

FFh: termination byte (marks end of list).

Checksum Tuple

 TPLLV1_INFO

The Checksum tuple is included with this particular SRAM card for

additional reliability. In this example, the CIS checksum region is

defined as offset 0 (beginning of CIS) and the number of bytes included

in the checksum is 27 (byte 0 to 26). Refer to table -7 for the tuple

format. Note that this tuple contains three fields:

0 Relative start address of the memory block within the CIS to be

checked. The relative address is specified as an offset value (contents

of this field} added to the offset of the checksum tuple code (the

address/2). In this example the beginning of the CIS. (FFD9h + 0027
= OOOOh)

- Length of the block to be checked. The length is specified as an offset

value. The checksum is performed by summing the even bytes in the

address range. The last location in the range can be expressed as

"target address + 2 at length - 1".
I Checksum value to be tested.

356

Toshiba_Apricorn 1006-0362
|PR2018—01067

Toshiba_Apricorn 1006-0363
IPR2018-01067

Appendix A:SRAM CIS Example

Table A —7. Checksum Tu ls Format

CheckSum Tuple Format |
TPL_CODE CISTPL_VERS_1 (15h).

TPL_LINI< Link to next to o le (05h).

TPLCKS_ADDR Offset to region to be checked ,LSB first.
(FFD9h)

 TPLCKS_LEN Length of region to be checked, LSB first.
(0027M

TPLCKS_CS Checksum value of the re _ion

Termination Tuple

The Termination tuple identifies the end of the current tuple list. The

termination tuple consists only of the tuple code FFh. This tuple should

be the last tuple in a linked list, but does not necessarily indicate the end

of the entire string of tuples within the PC Card. Whether processing

software stops or continues processing tuples upon encountering the

termination tuple depends on the absence or presence of other link-

specific tuples in the string as stated below:

0 If a no-Iink tuple is contained in the tuple list, then this is the only

tuple list and tuple processing ends.

a If a long-link tuple is contained in the tuple list, then process the

secondary tuple list beginning at the address specified by the long-

link tuple.

- When processing a secondary tuple list, if no long-link tuple is

contained in the tuple list, then no more tuples exist.

0 If there is no link—specific tuple contained in the primary CIS tuple

list, then tuple processing should continue at location zero in

common memory. In other words, a long-link tuple to common

memory is implied when there is no link tuple in the primary CIS.

In this example, link-specific tuples were not included, causing parsing

software to continue tuple processing at location zero within common

memory address space.

357

Toshiba_Apricorn 1006-0363
|PR2018—01067

Toshiba_Apricorn 1006-0364
IPR2018-01067

Appendix B: Flash Memory CIS Example

Appendix B:

Flash Memory

CIS Example
The following is an example of a flash memory tuple chain. The

reference page number indicates where the tuple description can be
found.

Description and InterpretationOffset/Adr Data

(HEX) (HEX)

_0—Device Info Tuple
2/4

ea?bar—11.... Link to next tuple

Device type: 5 (FLASH); Device Speed: 3
(150ns)

Unit Size: 2MB Number of Units: 5
Total size— 10MB

Tuple Termination Byte

3/6
364

Device Geometry Tuple
{.1} ON U1

Link to next tuple

Internal bus width of card: 2 bytes (release 10
and 2.0 cards)

Erase geometry block size (2‘111))= 2‘”h1) —205):
64K

Read geometry block size (20‘1})-2(111‘3 = 2“”:

Write geometry block size (201U): 201‘1) = szl

Partition size(2(F*”)—- 2‘3h1) = 2(2)—_

Interleave size(2(‘11)) : 2011—1): 2W4= 1

8/10

A/l4

3/16

(3/18

Ln UN O\

inO‘0\

L1.) 0‘m

HIM"H.

01

359

Toshiba_Apricorn 1006-0364
|PR2018—01067

Toshiba_Apricorn 1006-0365
IPR2018-01067

PCMCIA System Architecture

Offset/Adr Data Description and Interpretation Page
(HEX) (HEX)

JEDEC Identifier tupie 367

B/ 1C 02 Link to next tuple

F/1E 93 Flash Designs IEDEC-ID

46F006 JEDEC-ID

11/22 15 Level 1 Version/Product Information Tuple

Link to next tupIe

—n 4
Minor Version number = 1 (Release 2.0 or 2.1) _

_“F (ASCII string "FLASH DESIGNS")
L

17/2E

13/30

19/32

1A/34

13/36

1C/38

1D/3A

1E/3C

1F/3E

20/40

21/42

22/44

23/46

24/48

25/4A

26/4C

27/4E

28/50

29/52

10/20 ww0:yaONChC\mmx:‘4_h
§

0-: <(DEO:3 :3EU"mH I] m0‘m

L9(J)0‘Ch anO?
mmm

53

48

20

(.0 ON m

{J} Ch mPACE

0} ON m

45

53 (JJO\ U3

4

47

\0

common momma oomoom
53

U)s

<end manufacturer name>

31 1 (ASCII string ”10MB FLASH")
30

WW ONE mm

WWW O\O‘\G\ (303-0342

29 space

mm mm mm4C

I
mon

360

Toshiba_Apricorn 1006-0365
|PR2018—01067

Toshiba_Apricorn 1006-0366
IPR2018-01067

Appe

Offset/Adr

(HEX)

452E/5C

3C/ 78

5

5

4

2

3

3

F

1A

2

3

9

4B

0

0

2

01

03

FF

FF

2C/58 43 1—1

ndix B: Flash Memory CIS Example

Description and Interpretation

mum-W6‘mecomm,“

(.0 G\ on
V (ASCII string "VERSION 02")

0) ON m

mu O‘G\ com
9)0‘m

03O\ m

LOO-I Q5“ moo
space

mDJ(h

368

<end version information)

Tuple termination byte mum U“O“U\ cameo
Configuration Tuple

9.) Ch \0

2

OJ ON \9
Link to next tuple

Size of fields

Index of last configuration entry within

configuration table

Attribute memory address where configuration

registers are mapped (location 4000h)

Configuration register presence mask

(configuration option .5: status registers)

Tuple termination byte

Termination Tuple (End of tupie string)

361

Toshiba_Apricorn 1006-0366
|PR2018—01067

Toshiba_Apricorn 1006-0367
IPR2018-01067

PCMCIA System Architecture

Device Information Tuple

362

Table 8-1 shows the fewest of the Device lnfomation tupte. Shaded areas show
portions of the tupte definition used by the flash card in the example.

The flash CIS listing includes a link value of 03h, indicating only two

bytes are used for device info, followed by the termination byte.

Table 8-1. Device In ormation Tu Ie Format

Device Information Tu . le Format

TPL_CODE CISTPL_DEVICE (01h)

TPL_LINK Link to nexttule

Device Info 1 (2 or more b tes)

Device Info 2 (2 or more b tes)

Device Info n (2 or more b tes)

FFh termination byte (marks end of dev1ce info
in 0 1e)

The Flash's device information tuple contains information for a single

block of memory, therefore only one deviCe info block (Device Info 1) is

defined. Device info 1 is comprised of two bytes in this example:

0 Device Type and Speed Byte (53h)

- Device Size Byte (2611)

Device Type and Speed Byte

Refer to table 13-2. The first byte describes the device speed, whether the

write protect switch affects this address range, and the device type.

Note that the device type code is only used to describe devices that use

a fixed memory address range, and not for dynamically relocatable

devices. Relocatable devices use the configuration entry tuples to

describethe memory address ranges supported.

The device type and speed byte contains a 53h, equating to the values

shown in table B-2. Note that extended speed information can be used

in lieu of the standard speed definitions. This capability permits speed

Toshiba_Apricorn 1006-0367
|PR2018—01067

Toshiba_Apricorn 1006-0368
IPR2018-01067

Appendix B: Flash Memory CIS Example

definitions that might be supported by host bus adapters capable of

supporting a wide range of programmable transfer rates.

The device speed information contained in the tuple is specified as a
code. Refer to table 8-3

Table B-2. Device Information Entry

Device Type Code = 5 I WPS=0 Device Speed Codes = 3
Extended Device S eed (if Device S eed Code eguals 7h, otherwise omitted}

Additional Extended Device 5 ed (onl if bit 7 of Extended Device Speed=ll
' ' ‘ e Code e uals Eh, otherwise omitted)

DSPEEDflNULL
DSPEED_25{INS

Use extended speed byte.

Table 3—4. Device T 8 Codes

No device. Generally used to designate a hole
in the address space. If used, speed field should
be set to Oh.

Static RAM (JEIDA has Nonvolatile RAM)
'c RAM UEIDA has Volatile RAM)

Reserved

Function-specific memory address range.
Includes memory-mapped 1/0 registers, dual-
ported memory, communication buffers, etc,
that are not intended to be used as general-
. urEose memory.

DTYPE_EXTEND Extended type follows.

363

Toshiba_Apricorn 1006-0368
|PR2018—01067

Toshiba_Apricorn 1006-0369
IPR2018-01067

PCMCIA System Architecture

Device Size Byte

The flash's device size byte entry contains 26h. This represents a three
bit "unit size code" of oh, and the number of address units value of 0411.

One is added to the number of address units value to obtain the actual

number of units. This equates to a unit size of 2MB times 5 unit, or
10MB. Refer to table B-S.

Tobie B-5. Device In ormation Size B te Format

—Ii-I__-=n-Ii-—-_r_
(5 units x 2MB unit size = 10MB)

 Table 3-6. Unit Size Codes

Device Geometry Tuple

The device geometry tuple provides the erase, read, and write

characteristics of the flash device. This tuple consists of multiple entries

for each device identified in the device information tuple. Refer to table

B-7. In this example, a single device (a 150ns, 10MB flash card) was

defined in the device information tuple. Therefore, a single device

geometry field is defined within the device geometry tuple (as indicated

by the shaded area in the table).

Note that for multiple device cards (i.e. SRAM/Flash card), multiple
device information entries are continued within the device information

tuple. The device geometry tuple must contain a device information

364

Toshiba_Apricorn 1006-0369
|PR2018—01067

Toshiba_Apricorn 1006-0370
IPR2018-01067

Appendix B: Flash Memory CIS Example

entry corresponding to each device information entry in the device

information tuple. Device geometry entries must exist even if the device

geometry information is not relevant (as in the case of SRAM).

TabteB-Z Device Geometry Tupie Format

Device Geome_try [gale Format

TPL_CODE CISTPL_DEVICEGEO (IEH)

TPL_LINK Link to next tu ale (6H)

Device eome for first device info en (6 b tes)

Device eometr for second device info entr (6 b tes)

Device_ge_omeflfor remain device info entries (6 b tes)

Device Geometry Information

The device geometry information consists of six fields that define the

characteristics of the memory array or arrays within the memory card.
These entries include:

Internal data bus width within the card.

Minimum erase block size.

Minimum read block size.

Minimum write block size

Hardware interleaving factor used by the card.
IOII
Table B-8 defines how each of these values are expressed in each of the

one byte fields. Table 3-9 shows the resultant characteristics of the

example flash card. Note that the erase, read and write block size must

be multiplied by the bus size value and interleave factor to obtain the

overall geometric characteristics of the card.

365

Toshiba_Apricorn 1006-0370
|PR2018—01067

Toshiba_Apricorn 1006-0371
IPR2018-01067

PCMCIA System Architecture

366

Table B-8. Device Geomet . In ormation Fieids D 'nition

Device Geome Fields Definition

DGTPL_BUS

DGTPL_EBS

DGTPL_RBS

DGTPLHWBS

DGTPLflPART

DGTPL_I-IWIL

Internal card data bus width. This entry = n,

where the bus width is 2‘“) bytes. n=2 for release
1.0 8: 2.0 cards.

Minimum Erase Block Size of memory arrays.

This entry=n, where the minimum BBS is 2‘“)
address increments for bus-width accesses.

Minimum Read Block Size of memory arrays or

segments. This entry=n, where the minimum R38
is 2111-1) address increments for bus-width accesses.

Minimum Write Block Size of memory array

segments. This entry=n, where the minimum WBS
is 20“” address increments for bus-width accesses.

Minimum size or granularity into which memory

array segments can be partitioned. This entryzp,
where the minimum partition granularity is 2“” }
erase blocks. P=1 Where array partitioning on

erase block boundaries is allowed.

Value = q, where card architectures employ a

multiple of 2“?” times interleaving of the entire
memory array or subsystems with the above
characteristics. Non-interleaved cards have values

of -=1. The value . = 0011 is not allowed.

Table B~9. Interpretation of the Device Geometry Information Fields for Se mpie

Bus Width

Flash Card

Hardware

Interleave

Read Geometry

Write Geomet

Toshiba_Apricorn 1006-0371
|PR2018—01067

Toshiba_Apricorn 1006-0372
IPR2018-01067

Appendix B: Flash Memory CIS Example

JEDEC Identifier Tuple

The JEDEC Identifier tuple is an optional tuple used by programmable

devices. This tuple must have a JEDEC identifier entry for each device

specified in the device information tuple, whether or not a given device

is programmable. In this way, a one-to-one correspondence is

maintained between the device information tuples and the JEDEC

identifier entries. If a given device is not programmable, then the

corresponding JEDEC identifier entry for that device will contain 00h.

The basic structure of the JEDEC Identifier tuple is shown in table B-10.

Only the shaded fields are used for the flash card example. Refer to
table 3-11 for a description of the contents of each JEDEC identifier.

Table 3-10. EDEC Identi 'er Tu ie Format

 JEDEC identifier for second device info entr (2 b tes)

EDEC identifier for remainin; device info entries (2 b tes)

Device manufacturer ID assi_ned b2 JEDEC (odd uarit)
Manufacturer-specific data specifying device type, programming
info, etc.

Level 1 Version [Product Information Tuple

Table 3-12 illustrates the format and contents of the level 1

version/product information tuple. This tuple provides the PCMCIA
compliance level supported by the PC Card and includes manufacturer

defined product information. The tuple includes three data fields:

. The major version byte indicating PCMCIA version information.

- The minor version byte indicating compliance with a given PCMCIA
release.

367

Toshiba_Apricorn 1006-0372
|PR2018—01067

Toshiba_Apricorn 1006-0373
IPR2018-01067

PCMCIA System Architecture

- A variable length field comprised of one or more strings of ASCII

characters specified by the manufacturer. A value of 00h demarks

each ASCII string. The tuple is terminated by FFh.

Table 3-12. Level I Version/Product Infirmation Tuie Format
Level 1 Versioanroduct Information Tu ole Format

TPL_CODE CISTPL_VERSr1 (15H)

TPL_LI.NK Link to next tu-le

TPLLVLMAJOR Ma'or version number (04H)

TPLLVLMINOR Minor version number (01 h) for Release 2.0 and
2.01

4 TPLLVLINFO Product information string: name of the

manufacturer, terminated by 00h. Additional

product information, in text; terminated by

00h. Suggested use: lot number. Additional

product information, in text; terminated by

00h. Su ested use: nrorammin_ conditions.

FFH: termination b te (marks end of list).

u:

(Jami—t

m

Configuration Tuple

The configuration tuple identifies the number of configuration registers

implemented and their location in attribute memory. The configuration

tuple consists of six data entries. Table 3-13 shows the actual format of

the configuration tuple. Note that the entries used in the flash example
are shaded.

I Size of fields—specifies the number of bytes in the "configuration

registers base address" field, in the ”configuration presence mask"
field, and in the ”reserved field."

0 Index number of the last entry in the configuration table.

O Configuration registers base address in attribute memory.

0 Configuration presence mask—identifies the configuration registers

that are implemented.
0 Reserved Field.

0 Subtuple informationn-containing additional card configuration
informatiOn.

368

Toshiba_Apricorn 1006-0373
|PR2018—01067

Toshiba_Apricorn 1006-0374
IPR2018-01067

Appendix B: Flash Memory CIS Example

Table 8-13. Con ’

Confi_ uration Tu u 1e Format

TPL_CODE Confi; ration tu -le code (CISTPLJZONFIG, IAH)

TPL_LINI(Link to next to nle (n—l; minimum 1)

TPCC_SZ Size of Fields B te

TI’CCLLAST Index Number of the last entry in the Card

Confi; ration Table

TPCC_RADR Configuration Registers Base Address in attribute

memory Space. 1 2,3, or 4 bytes depending upon
the size field in TPCC_LAST

TPCC_RMSK Configuration Registers Presence Mask. 1 to 16
b tes as indicated b the count in TPCC_SZ.

TPCC_RSVD Reserved area 0 - 3 bytes. Must be 0 bytes until
defined.

q+1. .r TI’CC_SBTPL The rest of the tuple is reserved for subtuples
containing optional information related to the card
'5 confio oration.

:umtion Tu le Format

Size of fields

The size of fields entry describes the number of bytes used in the
TPCC_RADR, TPCC_RMSI(and TPCC_RFSZ fields as shown in table

B—14. In the flash card example, the size of fields entry has a value of

01h, indicating the following values:

0 TPCC_RASZ — a one must be added to the hex value in this field to

determine the number of bytes in TPCC_RADR used to specify the

configuration registers base address. In this example. the

TPCC_RADR entry consists of two bytes. -

o TPCC_RMSZ - a one must be added to the hex value in this field

to determine the number of bytes in TPCC_RMSK used to indicate

which of the option registers have been implemented. In this

example, the TPCCJEMSK entry consists of one byte.

- TPCC_RFSZ — the number of bytes reserved for future use (either

0,1,2 or 3). Must be zero for release 2.0 compliance.

369

Toshiba_Apricorn 1006-0374
|PR2018—01067

Toshiba_Apricorn 1006-0375
IPR2018-01067

PCMCIA System Architecture '

Table 5-14. Size 0 Fields B te

 TPCC_RFSZ TPCC_RMSZ TPCC_RASZ

(RESR Size=0) (Size of TPCC_RMSI<=0) (Size of TPCC_RADR=1)

Index Number of Last Configuration Entry

This entry contains the index number of the last configuration entry of

the card's configuration table and a reserved field as shown in table

13-15. Since no configuration table is used in this example, the "last
index" value is zero- Bits six and seven are reserved future use and must

be set to zero.

Table 8-15. last Configuration Index

Field

Definition

Reserved for

future use

(Resr bits=0)

The index number of the final entry in the Card

Configuration Table when scanning the CIS from
address zero (Last Index =,O)

Configuration Registers Base Address Entry

The entry consists of either 1,2,3 or 4 bytes as specified by the

"TPCC_RASZ" field of the "Size of Fields" entry. In this example, the

"TPCC#RASZ” field indicates this entry consists of two bytes as shown

in the shaded area of table 3-16. The resulting address is attribute

memory location 4000h (or 32,768d).

Table 8-16. Configuration Register Base Address Eat

m Confiuration Re ; ister Base Address En a
Field Base Address Bits 7:0 (00H)

Definition Base Address Bits 15:8 (40H)

 Base Address Bits 23:16

Base Address Bits 25:24

370

Toshiba_Apricorn 1006-0375
|PR2018—01067

Toshiba_Apricorn 1006-0376
IPR2018-01067

Appendix B: Flash Memory CIS Example

Configuration Presence Mask

The presence mask entry consists of a variable number of fields as

determined by the TPCC_RMSZ field within the size of fields tupie

entry. The presence mask is a bit map of configuration registers that can

be implemented. The presence mask entry can contain a maximum of

sixteen one byte fields (TPCC_RMSZ = 4 bits), and the eight bits in each

field represents a configuration register; therefore, 128 configuration

registers can be identified. The format of the presence mask fields is

shown in figure 3-17. In this example, the presence mask entry consists

of a single byte (indicated by shading).

Currently, only four registers are specified by the PCMCIA standard.

Each of these registers is numbered as follows:

Register 0 : Configuration Option Register

Register 1 2 Card Configuration and Status Register

Register 2 = Pin Replacement Register

Register 3 = Socket and Copy Register

The value 03h specified in the flash card example indicates that the

"configuration option register" and "card configuration and status

register" have been implemented in this card. Refer to Table 3-17.

._ r . _ . :

Confi_ ration Re isters 39:32

Confi_ ration Reisters 47:40

Confi ration Re‘isters 55:48

Confi_ ration Re_isters 127:120

371

Toshiba_Apricorn 1006-0376
|PR2018—01067

Toshiba_Apricorn 1006-0377
IPR2018-01067

PCMCIA System Architecture

Termination Tuple

The termination tuple consists only of the tuple code FFh. This tuple

should be the last tuple in the linked list. The action taken when

encountering an end of list tuple depends on which form of link tuple, if

any, was previously encountered in the tuple:

If a no-link tuple is contained in the tuple list, then this is the only

tuple list.

If a long-link tuple is contained in the tuple list, then process the

secondary tuple list beginning at the address specified by the long-
link.

when processing a secondary tuple list, If no long-link tuple is

contained in the tuple list, then no more tuples exist.

If no link-specific tuples are contained in the primary CIS tuple list,

then tuple processing should continue at location zero in common

memory. In other words, a long-link tuple to common memory is

implied when there is no link-specific tuple in the primary CIS. Tuple

processing continues only if the link—target tuple is found at location

zero in common memory.

372

Toshiba_Apricorn 1006-0377
|PR2018—01067

Toshiba_Apricorn 1006-0378
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

Appendix C:
FAX/Modem

Tuple Example

I.I‘D ._..\
Offset/Addr Description and interpretation

(hex)

Device Info Tuple
Link = 2h

Not a memory device

Termination byte
._|

Level 1 Version/Product Information Tuple
Link = 24h

Major Version number = 4

Minor Version number = 1 (Release 2.0 or 2.1)

X (The remaining entries within the tuple are ASCII
codes) ‘

_-<End manufacturers name)

M

N

(.1) ,p.

Mm

DJN\O'Tl

0.) Ch

3'73

Toshiba_Apricorn 1006-0378
|PR2018—01067

Toshiba_Apricorn 1006-0379
IPR2018-01067

PCMCIA System Architecture

Offset/Addr Description and interpretation Page
(hex) Ref

_—
—-
_—
——

—_

380

380

380

380

1D/3A 4

1E/3C 4

M—

-—-
——
_m M

—
-
m

380

22/44 <End product nan-19>

23/ 46

24/48

(End lot number> 380

41

54

41

2F

46

41

58

D

F

44

45

30

3D

31

14

GD <End version information>

380

380

380

380

381

Termination byte (End tuple}

Manufacturer Identification Tuple
Link to next tuple

Manufacturer AAh {10w byte); [)0 {high byte} = AAGOh

Product code = 96h

Revision Information = 0

 381

381

38

DJ 0‘.)

some 21

—_
Tuple function extension type = 0

2

mm mm MM

374

Toshiba_Apricorn 1006-0379
|PR2018—01067

Toshiba_Apricorn 1006-0380
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

Offset/Addr Description and interpretation
(hex)

37/6E UART type = 1 (16450 UART)

38/70 UART capabilities = even, odd parity; mark, space, 1

39/72 stop and 7 bit Characters

3A / 74 22 Modem function extension tupie

3B/76 09 Link to next tupie

3C/78 05 Tuple function extension type = 5

3D/ 7A 1F Flow control methods : 31 Trans, RTS/CTS,
XON/XOFF

3F DCE command buffer size = 63

DCE‘. to DTE buffer size = 000300h (768d)

3E/7C

3F/7E

40/30

41/82

42/84

43/86

44/33

45/8A

46/8C

47/3E

48/90 Flow control methods = 31 Trans, RTE/CTS,
XON/XOFF

(.IJ

DTE to DCE buffer size = DODGUOh 068d}

22 Modem function extension tuple

Link to next tuple

Tuple function extension type = 6

49/92 DCE command buffer size = 63

4A/94 DCE to DTE buffer size = ODG4DDh (1 6384d)

4B /96

—m-

—n
—“

50/ At} Modern function extension tuple

51 /A2 a Link to next tuple
52/A4 Tuple function extension type = 2

53/ A6 Max DTE to UART BPS (v 75) , 256

am mu
3F Modulation Standards = 003Fh (VIZZBIS, V22,

381121 2A, V23,

375

Toshiba_Apricorn 1006-0380
|PR2018—01067

Toshiba_Apricorn 1006-0381
IPR2018-01067

PCMCIA System Architecture

Offset/Addr Desa'iption and interpretation
(hex)

56/AC “ V21 and Be11103)

57/AE - Error Correction Detection protocols = 03h (v.42 MNP)
58/130 Data compression protocols = 0311 (MNPS, V.4ZBIS)

59/ 32 Command protocols : th (V.25BIS, MNP AT, AT 3-1)

m_
saws_
m

5w_
5w:

Page

 'E
385

385

385

385

(4.} CI: 01

33

385

385

385

U!

60/C0

62/01

63/C6 “
OJH
noon U1(SS/CA “Data encryption 0

U}0:U}66/CC

67/CE

—

Ir-
m ——

m
u

FAX feature seiectlon 0

Link to next tuple

5F/BE _ Modem function extension tuple

64/C8 _ Modulations Standards supported V 29 V 27ter, v.21

03

03

1F

07

01 .

22

13 :

01 Max. DTE to UARTBPS [v/ 75) = 256

07 = . , .

B5

22

23

1 :

07 = . ,. .

A

5

1 . .

-

same_

em ——
6mm_
same_
acme ' Max. ore to HART BPS M75) 256 335

era/DA Ir-
—_
—_
—“ FAX feature selechon 0 385
—m
__

24 Index number of last configuration table entry = 24h

376

Toshiba_Apricorn 1006-0381
|PR2018—01067

Toshiba_Apricorn 1006-0382
IPR2018-01067

Appendix C: FAX/Modern Tuple Example

Offset/Addr Description and interpretation
(hex)

77/ BE 00 base address of configuration registers = 0200h

 Configuration mask = Config Option, Status and Pin
Replacement

7A/F4 lB

7B/F6 1]

Configuration Table Entry Tuple

IIIII
Link to next tuple

Config Index = EOh (Interface byte used, default entry,
Index = 20h)

7D/FA 41 Interface description byte = Mem/IO interface, READY
active, BVD inactive, WP inactive, MWait inactive.

713/PC 9D Feature selection byte = (Power, timing, [/0, INTR,
Misc. defined)

7F/ FE 78 Power description byte (Istatic, Iavg, Ipeak, Ipwrdn)

OJ \D (.aJ

395

mm

84/108 E7 Timing description byte [READY scaling factor=10d, no
wait timing, and no reserved speed) U) \Don

85/1 DA 5F 5.0(rnantissa) * lflms (exponent) ‘ 10 (scaling factor) =
500 ms max READY Delay DJ‘0 \CI

0
86/ 10C AA l/O description byte (10 address lines, 8-bit device,

includes range)

87/ 10E 60 Length size descriptor = I address and 1 length

88/ l 10 Start address — 03F8h

89/ 112

{SA/114 Length of address block = 0-7 {8 bytes)

Interrupt descriptor byte = IRQ4, level mode

F8

03

07

24

28

B

88/ 1 '1 6

Misc. descriptlon byte = Audio Feedback presentSC/ '1 I 8

SD/l IA 1 Configuration Table Entry

SE/ 'llC Link to next tuple

8F/11E 21 Configuration Index = 2111, no interface description
byte

90/ I ‘l 0 18 Feature selection byte

377

Toshiba_Apricorn 1006-0382
|PR2018—01067

Toshiba_Apricorn 1006-0383
IPR2018-01067

PCMCIA System Architecture

Offset/ Addr Description and interpretation
(hex)

91 /‘122 1/0 description byte (10 address lines 8 bit devlce,
includes range)

92/124 Length Size de5cr1ptor ., 1 address and 1 lengthn

_“__
-

-

PageIm

 4

¢1504

94/ 128

95 /1 2A Length of address block = 0~7 (8 bytes)

96/ 12C Interrupt description byte = IRQB, level mode

97/12E - Configuration Table Entry
93/130 “ Link to next tuple

99/ 132 Configuration Index 22h no interface description
byte

9A/1 34 Feature selection byte

9B /136 I/0 description byte (10 address lines, 8 bit device,
includes range)

_“Length size descriptor = '1 address and 1 length

—

Interrupt description byte = IRQ4, level mode

__

AA

02

07

23

1 B

22

AA

3.1:-

A3/ 146 Configuration Index = 23h, no interface description
byte

A4/148 Feature selection byte

A5/14A 1/0 description byte {10 address lines, 8 bit device,

Aé/ 14C

includes range)

Length size descrlptor — 1 address and 1 length

A7/ 14E

A8/ 150
aStart address=02E8h

06

a; D.3;
404

404

404

404

AA/ 154 Interrupt description byte IRQ3 level mode

AB / 156 Configuration Table Entry

AC/ 158 Link to next tuple
 404

378

Toshiba_Apricorn 1006-0383
|PR2018—01067

Toshiba_Apricorn 1006-0384
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

Offset /Addr Data Description and interpretation
(hex)

AD/lSA Configuration Index = 24h, no interface description
byte

AE/ 15C Feature selection byte8

AF/ 15E I/O description byte (3 address lines, no range)

30/160 Interrupt description byte (use IRQ mask}

4

Page
Ref

 404

404

404

404

El /162 Permissible lRQ lines = IRQZ, 3, 4, 5, 7, 9r 10 or ‘15Ir:
82/164 m

-

404

404

404

No Link Tuple same

It.B4/168

B5/16A

Link to next tuple

FF Tennination Tuple (end of tuple list)

Device Information Tuple

The device information tuple must be the first tuple of any release 2.0

compliant system and must be located at attribute memory address lo-

cation zero. Device information provided in this tuple applies only to
memory devices. When an I/0 only card is used, the device information

field will be only one byte long and contain a zero. Table C-1 shows the

format of the device information tuple. Shaded area show portions of

the tuple definition used by the FAX/modem card in this example.

The FAX/modem CIS listing includes a link value of 02h, indicating
only one byte for device information, followed by the termination byte.

Table (3-1. Device In Urination Title Format

m Device Information Tu . 1e Format

“ TPL_CODE CISTPL_DEVICE(01h)
.- TPL_LINI(Link to nexttule (02h)
-— Device Info 1 (00h = null — not a memo device)
-—
—_
I.—

Device Info 2 (2 or more b tes)

Device Info n [2 or more b es)

FFh termination b te (marks end of device info field)

379

Toshiba_Apricorn 1006-0384
|PR2018—01067

Toshiba_Apricorn 1006-0385
IPR2018-01067

PCMCIA System Architecture

Level 1 Version I Product Information Tuple

Table (2-2 shows the format and contents of the level 1 versiOn/product

information tuple. This tuple provides the PCMCIA compliance level

supported by the PC Card and includes manufacturer defined product

information. The tuple includes three fields:

a The major versiOn byte indicating PCMCIA version information.

a The minor version byte indicating compliance with a given
PCMCIA release.

0 A variable length field comprised of one or more strings of ASCII

characters specified by the manufacturer. A value of 0011 demarks

each ASCII string.

Table (3-2. Level I Version/Product In emotion Tut's Format
Level 1 Versionfl’roduct Information Tu 12 Format

Link to next :11 ule (24h).

TPI.I.V]_MA]OR Ma'or version number (04h).

TPLLVLMINOR Minor version number (01h) for Release 2.0 and 2.01

 TPLLVlJN'FO

nated by (Hill.

this example:
' Product name
0 Lot number
0 Version

— FFh termination in te (marks end of list).

Product information string: name of the manufacturer, termi-

Additionai product information, in text; terminated by 90h. In

Manufacturer Identification Tuple

380

This tuple provides information about the PC Card manufacturer and
consists of two fields:

0 Manufacturer ID

0 Manufacturer specific card ID information

The format of the Manufacturer Identification tuple is shown in Table
C-3.

Toshiba_Apricorn 1006-0385
|PR2018—01067

Toshiba_Apricorn 1006-0386
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

Table C—3. Mann acturer Identi cation Tu 18

Manufacturer Identification Tu . lo

TPL_CC}DE CISTPL_MANFID (20h)
TPL_L1NI(Link to next hi 0 le (04h)
TPLMID_MANF PCMCIA PC Card manufacturer code

TPLMID_CARD Manufacturer information (Card Number and/0r
Revision)

Manufacturer ID Field (TPLMIDWMANF)

The value stored in this two—byte field is assigned by PCMCIA with ID

codes starting at 0100h and ending at FFFFh. The first 256 codes, 000011

to OOFFh, are reserved for manufacturers that already have an eight-bit

JEDEC ID code from the Electronics Industry Association (EIA). This

eight-bit ID code may be used as part of the PCMCIA ID. In this case,

the JEDEC ID is used as the least-significant eight bits of the PCMCIA .

code, with the most significant eight bits all zeros.

Manufacturer Card ID Field (TPLMIC_CARD)

This two-byte field is designated for manufacturer information regard-

ing the PC Card. The first byte is typically used to identify the card and

the second byte for card revision information. The FAX/modern listing

defines the first byte as a product code (2811) and the second as revision
information (00h).

Function Identification Tuple

This tuple identifies individual functions within the PC Card and speci-

fies whether the function should be automatically configured during

system initialization. The tuple contains two fields:

. Function Code byte

t System Initialization Bit Mask

If a PC Card contains multiple functions, this tuple must be repeated for

each function. In this case, an initial function identification tuple must

be used to specify the PC Card as a multifunction card, followed by a

381

Toshiba_Apricorn 1006-0386
|PR2018—01067

Toshiba_Apricorn 1006-0387
IPR2018-01067

PCMCIA System Architecture

separate function identification tuple for each function. For a given

function, if additional function-specific information is available, func-

tion extension triples will follow the function identification tuple for that

function. Refer to table C-4 for the tuple's basic format.

Table 04. Function Identi cation Tu 12 Format

“I Function Identification Tu . le Format

_TPL_CODE
TPL_LINI< Link to next tule (02h)

TPLFID_FUNCTION PC Card function code (02h)

'I'PLFID_SYSINIT S stem initialization bit mask (00h)

Function Code Byte (TPLFID_FUNCTION)

This field contains a code that identifies the basic function of the PC

Card. In this example, the FAX/modern is a serial device (code 02h).

Table C~5 lists the functions supported by PCMCIA.

Table C-S. PC Card Function Codes

Meanin

PC card has multiple functions. Function

identification tuples for each individual func-
tion must follow this tu 1e.

Memory card (RAM, ROM, EPROM, flash,
etc).

' Parallel Port Parallel am ort (ma bebi-directional).
Fixed Disk .Fixed drive (ma be silicon or removable)

Video Video interface extension tuples (type and
resolutions).

Au to—Incrementin ; Mass Stora ; e card.

Unused in release 2 x Reserved by PCMCIA
for future use.

Reserved

382

Toshiba_Apricorn 1006-0387
|PR2018—01067

Toshiba_Apricorn 1006-0388
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

System Initialization Byte (TPLFIDWSYSINIT)

This field contains two bits that permits a PC Card to perform initial

program load (IPL):

- POST bit — specifies whether a given function should be configured
during system initialization

- ROM bit — indicates whether the PC Card contains an eXpansion
ROM

The format of the system initialization byte is shown in table C-6. Note

that for the FAX/modem both bits are zero, indicating no requirement

for configuration during system initialization and no expansion ROM is
included on the card.

Table C-6. Initialization B is Format

Inn-mm-
—_-||

Function Extension Tuple

Not all classes of devices have function extension tuples defined.

Working groups within PCMCIA that are concerned with specific PC
card functions define function extensions. Relevant to the FAX/modem

example, the function extensions for the serial port have been defined

by PCMCIA. These extensions include support for the serial port itself
(UART), data modems, facsimile modems, and voice modems.

The extension tuples for modern support include the features normally

seen in application software. The extension tuples provide information

for use by application software and play no role in the PC Card's con-

figuration. The types of information included in the extensions include

the various features supported by the modem such as: communication

protocols, error correction, command support, and data compression

support.

Table C-7 shows the common format of the function extension tuples.

Each function extension tuple has the same tuple code (22h), a link field

and two function-specific fields:

383

Toshiba_Apricorn 1006-0388
|PR2018—01067

Toshiba_Apricorn 1006-0389
IPR2018-01067

PCMCIA System Architecture

384

a Function ExtensiOn Type Code Field — this field identifies the spe-

cific function extension defined by this tuple.

- Function-specific information ~—- this field contains data that is spe-

cific to a given extension type.

Table (3-7. Function Extension Ta 18 Format

Function Extension Tu . 1e Format

TPL_CODE CISTPL_FUNCE (22H)

TPL_LINK Link to next tu cle

TPL_TYPE Function Extension Type Code (see ta-
ble C-B)

TPLFE_DATA Function-s ecific information

Function Extension Type Code (TPL_TYPE)

A separate function extension tuple is used for each type of extension
defined. The particular type of function extension is defined in the
function extension type code entry (TPL_TYPE). TPL_TYPE consists of
two fields:

- Subfunction ID ~—~ this is the function extension type ID code

- Subfunction Descriptor ~ this identifies the EIA/TIA modem serv-
ice class

Table C-8 lists the modern extensions and their associated function

codes. This example includes serial port, data modem and facsimile

modem extensions (those used in the example are shown in the shaded
areas). The subfunction descriptor specifies a numeric value related to

the EIA/TIA class of service supported by the modern. The

FAX/modem in this example specifies a subfunct-ion descriptor for the

facsimile modem for class 1 and class 2 support.

Toshiba_Apricorn 1006-0389
|PR2018—01067

Toshiba_Apricorn 1006-0390
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

Table C-8. Modem Function Extensions

7n54|3210
SubfunctiOn Descri : tor Subfunction ID

'IDescribes-theEIA/TIAservice'CIaSS - Z. . erialgport'interface._'_
ecufredmthe'htiariériéValiiE titre? - -- __ ART) '_ - .' .-

_ C0613: . :- .. ' . . .-. -

0 The extension descriptor is used in conjunc- 1 Describes capabilities of the modem
tion with the FAX modem services function interface common to all modern

(code 3h]. _
0 In addition to the FAX modem services, the

descriptor code adds the following:
13h = class 1 fax command support

23h = class 2 fax command support

Note: The sequence of function extension tuples
in the FAX/Modern example is as follows:

Code 0 - Modem Interface Description. (Default
for Data 8: FAX, 8 8: 9 not used) modern interface.

Code 5, 6 - Data a FAX modem inter-face capa- Describes serial port interface for dat
bilities. modem services.

8

Code 2, 3, 3 - Data Modem Services 3: FAX Mo— -—dem Services (class I 8: class 2) facsimile modem services.

voice modem services.

set to zero.

Function-Specific Data (TPLFE_DATA)

Definition of the functiomspecific data depends on the subfunction ID

or mode extension type. The structure of these data fields are detailed in

the PCMCIA Specification and are not repeated here. A review of the

tuple list gives a good idea of the information specified in each type of

function extension triples.

Configuration Tuple

The Configuration tuple identifies the number of configuration registers

implemented and their location in attribute memory. The configuration

tuple consists of six data entries. Table (3—9 shows the actual format of

385

Toshiba_Apricorn 1006-0390
|PR2018—01067

Toshiba_Apricorn 1006-0391
IPR2018-01067

PCMCIA System Architecture

the configuration tuple. Note that the data entries used in the

FAX/Modem example are shaded.

0 Size of fields—specifies the number of bytes in the configuration

registers base address field, in the configuration presence mask
field, and in the reserved field.

0 Index number of the last entry in the configuration table.

0 Configuration registers base address in attribute memory.

I Configuration presence mask—identifies the configuration registers

implemented.
0 Reserved Field.

- Subtuple information—econtaining additional card configuration'1n-
formation.

Table C—9. Con ' mutton Tu 12 Format

Reservedarea 0—3bytes. Must be 0 bytes until de-
fined.

TPCC_SBTPL The rest of the tuple is reserved for subtuples con-

taining standardized optional additional informa-
tion related to the Card Confi_ ration.

Size of fields

The size of fields entry describes the number of bytes used in the
TPCC_RADR, TPCC_RMSK and TPCC_RFSZ fields as shown in table

C-lO. In the Flash card example, the size of fields entry has a value of

01h, resulting in the following values:

386

Toshiba_Apricorn 1006-0391
|PR2018—01067

Toshiba_Apricorn 1006-0392
IPR2018-01067

tion

“-I-
Data Value _I_

Field Deflni- TPCC_RFSZ
(RESR 512920)

Appendix C: FAX/Modem Tuple Example

TPCCHRASZ — a one must be added to the hex value in this field to

determine the number of bytes in TPCC_RADR used to specify the

configuration registers base address. In this example, the

TPCC_RADR entry consists of two bytes.

TPCC_RMSZ — a one must be added to the hex value in this field

to determine the number of bytes in TPCC_RMSK used to indicate

which of the Option registers have been implemented. In this ex-

ample, the TPCC_RMSK entry consists of one byte.

TPCC_RFSZ — the number of bytes reserved for future see (either

0,1,2 or 3). Must be zero for release 2.0 compliance.

Table C-IO. Size 0 Fields B . is

TPCC_RMSZ
(Size of TPCC_RMSK=0)

TPCC_RASZ

Index Number of Last Configuration Entry

This entry contains the index number of the last configuration entry of
the card's configuration table and a reserved field as shown in table

C-ll. The value contained in the "last index" field in this example is 24h.
Bits six and seven are reserved future use and must be set to zero.

 tion

Data Value

Table (2-11. Last Con '_ umtion Index

—n“nun“
“m-”mun-u

Field Defini- Reserved for fu- The index number of the final entry in the Card Configuration
ture use Table when scanning the CIS from address zero

(Resr bits=0) (Last Index = 24h}

Configuration Registers Base Address Entry

This entry consists of either 1,2,3 or 4 bytes as specified by the
"TPCC__RASZ" field of the "Size of Fields" entry. In this example, the

"TPCC_RASZ" field indicates this entry consists of two bytes as shown

387

Toshiba_Apricorn 1006-0392
|PR2018—01067

(Size of TPCC_RADR=1)

Toshiba_Apricorn 1006-0393
IPR2018-01067

PCMCIA System Architecture

in the shaded area of table C-11. The resulting address is attribute

memory location 0200b (or 512d).

Table C-IZ. Con 'umtion Re'ister Base Address

B eszits ____E-E-E-l_
' Idalias d Bi?

Definition 13 . ._ _. _ w, w Base Address Bits 23:15
Base Address Bits 25:24

Configuration Presence Mask

The "presence mask" entry consists of a variable number of fields as de-

termined by the TPCC_RMSZ field within the "size of fields" tuple en-

try. The presence mask is a bit map of configuration registers that can be

implemented. The presence mask entry can contain a maximum of six-

teen one byte fields (TPCC_RMSZ = 4 bits), and the eight bits in each

field represents a configuration register; therefore, 128 configuration

registers can be identified. The format of the presence mask fields is

shown in table C-13. In this example, the presence mask entry consists

of a single byte (indicated by shading).

Currently, only four registers are specified by the PCMCIA standard.
Each of these registers is numbered as follows:

Register 0 = Configuration Option Register

Register 1 = Card Configuration and Status Register

Register 2 = Pin Replacement Register

Register 3 = Socket and Copy Register

The value 17h specified in the FAX/Modem card example means that

the configuration option register, card configuration, and status register,

pin replacement register and a manufacturer specific register 4 have

been implemented in this card.

388

Toshiba_Apricorn 1006-0393
|PR2018—01067

Toshiba_Apricorn 1006-0394
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

Table 013. Con ' umtion Re ister Mask

nun—Inm-
_Conf' tion Re 'sters 7:0 (17H)

Confi ; ation Re_ister5 127:120

 Field

Definition

Configuration Table Entry Tuple

Configuration table entry tuples comprise the configuration table within

the CIS. This table provides the configuration options available for the

PC Card, with each configuration table entry containing a different

combination of options. These configuration table entries are scanned in

sequence by PC Card enabling software in an attempt to find a configu-
' ration that can be satisfied with available system resources.

Enabling software reads the configuration table entries one at a time to

determine the configurable resources that the card requires. After each

configuration table entry is read, the enabling software checks available

system resources to see if the resources requested are available. If avail-
able, enabling software configures the host bus adapter and PC Card. If,

however, the configuration cannot be satisfied, enabling software pro-

ceeds to the next configuration table entry to obtain alternate configura-

tion options. This process continues until the PC Card's configuration is

satisfied. If the configuration cannot be satisfied will available resources,

the card cannot be enabled by the enabling software.

Typically, the first configuration entry tuple within the configuration

table is specified as the default. This tuple details the desired configura-

tion for the PC Card. Since this tuple is the default, any configuration

parameters that are successfully acquired from card services will be re—

tained. Subsequent configuration entries include other permissible con-

figuration combinations.

Refer to table C-l4 for the following discussion. The configuration table

entry tuple contains up to twelve entries. The number of entries de-

pends on the number of configuration parameters that must be specified

'389

Toshiba_Apricorn 1006-0394
|PR2018—01067

Toshiba_Apricorn 1006-0395
IPR2018-01067

PCMCIA System Architecture

for the additional PC Card options the designer needs to specify. The

shaded areas of table C-14 show the entries used by the FAX/Modem in

the first configuration table entry tuple. Note that in this example, the
link value is 11h. The other entries are detailed below.

Configuration Table Index Byte

Refer to table C-15. The index byte consists of three fields:

. Configuration Index
0 Default bit

0 Interface bit

Table 015. Configuration Index Entfy
5 4

Confi ration Entr Number (Index)

7 6

Interface Default

Configuration Index

Each configuration table entry contains a unique index number for

identification purposes. The index number of the configuration table en-

try tuple that satisfies the configuration tells the PC Card which con-

390

Toshiba_Apricorn 1006-0395
|PR2018—01067

Toshiba_Apricorn 1006-0396
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

figuration options were selected during the configuration process. To

enable the configuration described in the tuple, the index number is

written to the configuration option register .

Default Bit

This bit specifies whether or not this particular configuration table entry

provides default values. In the FAX/Modern example, the first entry is a

default entry. If the enabler is able to acquire all configuration parame-

ters specified by a default entry (i.e. obtain the resources required by the

card) then the card is configured with the based on the system resources

specified within the entry. In the event that some, but not all resources

were successfully acquired from the system, the enabler retains those

that were granted. The enabler then proceeds to the next entry and at-

tempts to complete the configuration based on alternative parameters

specified in the next entry.

When the default bit of the entry is not set, the default conditions are

those specified by the last entry encountered that had its default bit set.

If one or more of the resources specified by a non-default entry, then the

enabler must release all resources specified by the non-default entry.

Note that all entries in the FAX/Modern example are non-default en-

tries, except the first entry.

Interface Bit

The interface bit is set in the first entry of this example, specifying that

an interface configuration byte follows this byte. If this bit is a zero, then

the interface configuration byte is not present within the tuple. (All sub-

sequent entries have the interface bit cleared.) When no interface byte
exists, the interface is presumed to be a standard memory only inter-

face, with no requirement to support the wait signal.

Interface Description Byte

This byte describes the type of interface the card requires and specifies
some associated features. Refer to table (3-16. The fields within the Inter-

face—definition byte are:

391

Toshiba_Apricorn 1006-0396
|PR2018—01067

Toshiba_Apricorn 1006-0397
IPR2018-01067

PCMCIA System Architecture

392

' Function M Wait
not Re

a ‘d

The interface type field

The card status reporting fields, consisting of:

- Battery Voltage Detection Active field
- Write Protect Active field

- Ready/Busy Active field

Memory Cycle Wait signal required field

Table C-16. Ent Inter ce Descri tion Field

m—m“
"WI-

RdyBsy WP BVDS Interface Type
Active Inactive Inactive

The Interface Type Field

The four-bit interface type field defines the PC Card's interface type.

Notice that the FAX/Modern has an interface type field value of 111. The

16 possible values and their associated meanings are:

0h

1h

2h-3h

4h-7h

8h-Fh

Memory Only Interface - The status reporting bit fields

are not valid for this interface type.
Memory or 1/0 Interface ~— All other bits within this en-

try are meaningless when this interface is selected.
Reserved for future standardization.

Custom Interfaces (0-3) corresponding to the definition of
the CCSTPL_CIF subtuples in the Configuration Tuple.

The custom interface number is the relative position of the

CCSTPL_CIF subtuple used by this configuration in the

set of CCSTPL_CIF subtuples within the Configuration

Tuple for this card.
Reserved for future standardization.

The Card Status Reporting Fields

When an 1/0 device such as the FAX/Modem is used the status report-
ing signals, which are part of the memory interftce pinout, are not

available when the memory or IXO interface is used. These status sig-
nals are:

Toshiba_Apricorn 1006-0397
|PR2018—01067

Toshiba_Apricorn 1006-0398
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

0 Battery Voltage Detection

- Write-Protect switch position

0 Ready/Busy status

Since the FAX/Modem reports ready/busy status, the 1/0 device must

report status via the Pin Replacement Register within the C18 in lieu of

the signal pins. The Rdy/Bsy Active bit is set to indicate that the Pin

Replacement Register is used to report ready/busy status.

Memory Cycle Wait Signal Required Field

This single bit field specifies that the PC Card requires wait support for
the memory device accesses.

Feature-selection field

This byte indicates which additional fields are present within the tuple.

The FAX/Modem has a value of 9Dh in the feature selection byte as

shown in table C-i7. Definition of each of the feature selection byte's

fields is detailed in table (3-18. Note the definition used by the

FAX/Modem is indicated by shading.

Table (3-17. Feature Selection B is

393

Toshiba_Apricorn 1006-0398
|PR2018—01067

Toshiba_Apricorn 1006-0399
IPR2018-01067

PCMCIA System Architecture

 Table C—18.Peature Selection 3 re Field De 'nition

The power supply requirements and load Characteristics for

this configuration are indicated. There may be 0,1,2, or 3

fields following representing Vcc, Vpp, or both Vppl and

V a 2 in that order. The codin- is as follows:

Vce and Vpp (Vpp1=Vpp2) power-description-E;
structures.

Vcc, V . .1 and V :2 ower—descri ntion—structures.

When the default bit is set in this tuple, or no con-

figuration entry tuple has been scanned with its de-

fault bit set, then no timing is specified. RDY/BSY

may indicate busy indefinitely. WAIT will be active

from 0 to 12 truer sec d

When the default bit'IS set in the tuple, or no configu-
ration-entry tuple has been scanned with its default

bit set, then no I/O space is used.

Otherwise, the I/O space requirement is specified by

the most-recently scanned configuration entry tuple
with its default bet set.

10 Space

 When the default bit 15 set in this tupIe, or no con—

figuration-entry tuple has been scanned with its de-

fault bit set, then no Interrupt is used.

Otherwise, the Interrupt request requirement is

specified by the most recent scanned configuration
entr tu le with its default bit set.

394

Toshiba_Apricorn 1006-0399
|PR2018—01067

Toshiba_Apricorn 1006-0400
IPR2018-01067

Appendix C: FAX/Modern Tuple Example-

Table 018. Feature Selection Byte Field Definition (Continued)

MemSpace Memory address space mapping requirements for this con—

figuration. There may be 0,2,4, or n bytes of information fol-

lowin the interrut re uest structure. The codin ; follows:

Code Description

0 When the default bit is set in this tuple, or no con-

figuration entry tuple has been scanned with its de-

fault bit set, then no configuration dependent,

memory address space is used.

Otherwise, the memory address space requirement is

specified by the most recently scanned configuration

flry tuple with its default bit set.:1 Sin-1e flyte le_ngth specified.
Len_th {2 b tes) and card address (2 b tes) s oecified.

A memory space selection byte followed by table

memory space descriptors (length determined by se-

lection byte)

When the default bit is set in this tuple, or no Con-

figuration-Entry tuple has been scanned with its de-
fault bit set, then the miscellaneous fields are

interpreted to be all zero.

Otherwise, the miscellaneous fields are specified by

the most-recently scanned configuration entry tuple
with its default bit set.

WMH

Misc 0

Power-Description Structure

The feature selection byte determines which power structure(s) will be

defined within the configuration table entry tuple (only a Vcc power de—

scription structure in this example). Additionally, each power-

description structure defines a variable number of power parameters

that will be specified. The power description structure consists of:

o A Power Parameter Selection byte

0 Power Parameter Definition byte(s}

395

Toshiba_Apricorn 1006-0400
|PR2018—01067

Toshiba_Apricorn 1006-0401
IPR2018-01067

PCMCIA System Architecture

Power Parameter Selection byte

The power parameter selection byte specifies which parameters are to

be described within the power-description structure. Table C-19 lists

the power parameters specified by the FAX/Modem (7811). Note that

current parameters but no voltage parameters are defined. Definition of

the parameter selection fields is stated in Table C-20._

Table C—I9. Power Descrition Structure Parameter Selection B te

mm

m

Power Parameter Definition Bytes

Values for each of the power parameters is determined by codes placed

in the mantissa and exponent fields of the power parameter definition

byte. Table C-21 shows each of the definition bytes along with the corre-

sponding values for each of the four parameters specified by the power
parameter selection byte. The actual values are calculated by multiply-
ing the mantissa and exponent together. The Values for the mantissa are

given in table C-22 and values for the exponent are given in table (3—23.

396

Toshiba_Apricorn 1006-0401
|PR2018—01067

Toshiba_Apricorn 1006-0402
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

Note that bit seven in each of the parameter definition bytes indicates

whether power parameter extension bytes will follow each of the defi-

nition bytes. The FAX/Modem card does not implement power exten~

sions. However, for reference purposes table C-24 shows the values and

definition provided by the extensions.

Table 3-21. Power Parameter De 'nition or FAX/Modem

"—1-

II“—

n- 1
Ex onent = 5h (1011151)

1 -

1 n 1
Ex . orient : 5h (10min)

" The extension bytes may be continued indefinitely until the first byte which

contains a D or 7, which is the final byte of the extension

Table C-22. Mantissa Values for Power Definition

’* These values are not permitted when the EXT bit is set.

397

Toshiba_Apricorn 1006-0402
|PR2018—01067

Toshiba_Apricorn 1006-0403
IPR2018-01067

PCMCIA System Architecture

Table (2-23. Exonerrt Values or Power De inition

The Exponent of the Current and Voltage Values are
iven below:

Volta-e Scale

Table (3-24. Power Descrirtor Extension B .153

Extension Extension Values and Definition
(Bit 7) (Bits 6:0)

Binary value for the next two decimal digits to the right of the
current value.
Reserved

No connection (i.e. high impedance) permitted during sleep or

power-down on_ly (Must be last extension byte).
Zero value re- uired (must be onl extension b te).

No connection (Le. high impedance) is required (must be only

extension byte).

Extension bytes may be concatenated indefiniteiy. The final extension byte
contains a (J in hit 7.

Timing Description Structure

The Timing Description structure allows the card designer to specify:

a maximum time interval the wait signal will be asserted

I maximum time interval that the card will remain in the busy state
0 reserved-time definition

The timing description structure defines up to four bytes used to

define the timing parameters. Refer to table 025. The first byte

(byte 0), called the timing scale factor byte, has two purposes: to

determine which of the timing parameters are to be defined and if

so, what scaling factor is to be applied to the timing descriptor for

that parameter. The three bytes that follow the timing scale factor

byte are the actual timing descriptors for the three parameters.

Only the Ready/Busy timing parameter is implemented by

FAX/Modem (the bytes used are shaded).

398

Toshiba_Apricorn 1006-0403
|PR2018—01067

Toshiba_Apricorn 1006-0404
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

-Wai_t_ Scale-z3h
-:(11o-wait.used)-

Timing Scale Factor Byte

Each field within the timing scale factor byte defines how the

timing parameter values that follow are to be interpreted. Refer to
table (3-26.

Table 026. Timing Scale Factors

This field is the power of 10 scaling factor to be applied to the MAX WAIT timing
parameter byte which follows. The value 3 indicates that the WAIT signal is not
used and the MAX WAIT S - ed is not resent followin this in te.

This field is the power of 10 scaling factor to be applied to the MAX time the card
will be in the Busy State. A value of 7 indicates that Ready/Busy is not used and no
maximum time is uresent.

This field is the power 10 scaling factor which is to be applied to a reserved~time
definition. A value of 7 indicates that no reserved-s eed b tes follows.

Readleusy Timing Description Byte

The FAX/Modem has a value of 5Fh in the ready/busy timing descrip-

tion byte. The format of the timing description byte is shown in table C-

27. The mantissa and exponent values are speed codes, referring to the

values in table (3-28. The ready/busy timing parameter is calculated as
follows:

5.0 (mantissa) * 10ms (exponent) "“ 10 (scaling factor) = 500 ms

Table C-27. Timin Descrition B be

 mm.

399

Toshiba_Apricorn 1006-0404
|PR2018—01067

Toshiba_Apricorn 1006-0405
IPR2018-01067

PCMCIA System Architecture

400

Table C—28‘ Extended Device S eed Codes

Mantissa Ex I onent

—

—

—

—
—

 Code

011 Reserved 0h

2h 2h

3 3h

4h

5h

6h

\000
is

eePJPJb-‘PHHHH CRDUTOWOUTUJMO

Ch

Dh ”-
Eh 7.0

Fh s 0

IlO-Description Structure

The I/O-description structure consists of the following entries as shown
in table C-29:

I/0 Address Decode Requirements byte

I/0 Address Range Descriptor Byte (defines the number of address

ranges included Within the structure, and characterizes the number

of bytes used to define each of the I/0 address ranges that follow)

Address Range Descriptions (up to 16 entries, each defining a range
of I/0 addresses that the card uses)

Toshiba_Apricorn 1006-0405
|PR2018—01067

Toshiba_Apricorn 1006-0406
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

r a". 4 a 2 1

011. . _

_ r: . .' n Lem-u lhuxI-rHAP1mm... u;— ‘—
1' .E 13.411.1-": Rssér DEM-urea 31'
2 h Adder-tn. Rang-r- uhfltfrlhtm misfit!!! on! thin: aqtndm‘ En fl '1 3 .LL-Esm

' rfihrfiaInn—hint»: 3143:"

l/O Address Decode Requirements Byte

This byte contains four fields as shown in table 030. The table also

provides a definition for each field. The FAX/Modem contains a value

of AAh in this field, representing the following:

0 Ten I/O Address lines are used by the card's address decoder.
o The card is an 8-bit device.

0 One I/O address range (followed by one I/0 address descriptor).

IIO Address Range Descriptor Byte

This byte determines the number of address ranges that the card re-

quires and determines the number of bytes used in each address range

description that follows. Three fields specify this information:

0 Number of I/O Address Ranges field - specifies the number of I/O

address blocks that the card requires. For each range specified, an

address range description entry follows.

0 Address Size field - specifies the number of bytes used in the I/O

address descriptions to specify the starting address range.

0 Length Size field - specifies the number of bytes used in the I/0 ad—

dress descriptions to specify the length of the address range.

The FAX/Modem contains a value of 60h in this field, telling software

responsible for reading the card's I/O address requirements how to in—

terpret the address range descriptions. Refer to table C-31. The number

of I /0 address ranges is one, so only one I/O address range description

follows this byte. Within this 1/0 address description, the starting ad~

dress is specified by two bytes, while a single byte specifies the length of

the range.

401

Toshiba_Apricorn 1006-0406
|PR2018—01067

Toshiba_Apricorn 1006-0407
IPR2018-01067

PCMCIA System Architecture

Table 030. 1/0 Address Decode Descri r tion

I/O Address Lines = 10

I/0 Address Lines Field

{Total number of address lines usedby card decoder)

When the I/OAddress Lines field is zero, the card will respond to all addresses pre-
sented to it. The system is entirely responsible for when the card is selected, and at
what addresses the card is selected. The system must assign to the card a portion of the

address space which is at least as large as the number of bytes indicated in the length
field of the following range entry. The Base Address for the I/O space (assigned to the
card by the system) must begin on a 2*n address boundary such that 2*n is greater than
the number of o ’

When IOAderines is non-zero, the card performs address decoding to determine
when it is selected. In this case, the card and the system share the determination of
when a card is actually selected. The card must indicate in IOAderines the highest
address line (plus 1) which it decodes to determine when it has been selected. The card
provides a list of ranges of addresses for which it is selected within the I/0 space that
it decodes.

The system and the card then share the task of determining when the card is selected.
The system controls when the CE# pins are asserted during [/0 cycles, and the card
determines to which addresses it will respond when it is enabled by those CE# signals.
The card returns the INPACK# signal to the system whenever the card can recognizes
the 1/0 address on the bus.

Descri - tion

16-bit registers accessible over data lines D15:D0 only
[no 8~bit accesses to 16-bit registers are supported)
8-bit card registers accessible to odd bytes may take place over {315:D8 or
D7:DO.

If this bit'‘15 a "zero”the card responds to all addresses anduses all [/0 address lines
to distinguish among its [/0 ports In this case, the amount of address space which
should be allocated to the card is indicated by the number of address lines decoded by
the card (e.g. 4 lines means 16 addresses). No [/0 address range descriptor byte fol-
lows.

402

Toshiba_Apricorn 1006-0407
|PR2018—01067

Toshiba_Apricorn 1006-0408
IPR2018-01067

Appendix C: FAX/Modem Tuple Example

Table C-3I. I/O Address Reuirements

Length Size Address Size Number of [/0 Address Ranges

{1 b te) (2 b tes] (value +1: 1 address rane]

Address Range Description

The actual I/O addresses specified by the FAX/Modem for the first

configuration table entry are 3F8—3FFh as indicated in table C-32.

Table (3-32. 170 Address Rene Descritz'on

Start 0f [/0 Address (3F8h) _— This field is 0, 1, 2 or 4 bytes long (2 bytes in this example). Address
bits in b es which are not nresent are zeros

Emu—M“

“___-“n“
"WI-__-

Length of [/0 Address (field value + l} — This field is l, 2 or 4 bytes long (1 byte in this example) '

 Len - th bits in b tes which are not uresent are zeros

”nu—_m-

___-nun“—

lnterrupt Request Description Structure

The interrupt request description consists of either a single byte or three

bytes depending on the value of bit 4 (mask) in the first byte. In the

FAX/Modem example, the mask bit is a zero, meaning that the mask

registers (bytes 1 6: 2) will not be used. Refer to table 033. The shaded

area shows the values used in this example.

Table C-33. Interru it Re uest Descri tion Structure

 inc! 5.(.

4B3

Toshiba_Apricorn 1006-0408
|PR2018—01067

Toshiba_Apricorn 1006-0409
IPR2018-01067

PCMCIA System Architecture

Miscellaneous Information Structure

The miscellaneous information structure defines additional features that

a given PC Card might support. These features are defined in table
(3-34.

Table (3-34. Miscellaneous Features Field

This field indicates that cards which support installation of identical cards in the
system be differentiated from each other in a sequential manner. For example,
first twin is card 0, second is card 1, and so on. This allows the cards to share [/0

ports and interrupts in a manner consistent with some peripherals commonly
used in PC computers, such as ATA drives.
The max-twins field specifies the maximum number of other identical cards
which can be configured identically to this card. This permits more than one card

to be installed in host which responds to the identical [/0 addresses. The host
allows the cards to distinguish among themselves by writing their "Copy" num-
bers {eg 0, for the first card 1 for the second etc.) into the copy field of the Socket

Max Twins

 This bit indicates that the card allows the BVD2 signal to be used as Audio Wave-

form for the speaker This operation is controlled by the Audio Enable Bitin the
Card Control and Status Confi oration Re ister.

This bit indicates that the card contains a datavstorage medium which is read-only
for this configuration. There may be other configurations for which the storage
medium is read/write.

This bit indicates that the card supports a power-down mode controlled by the
tower-down bit in the Control and Status Re ister.

These bits are reserved for future definition and must be 0.

An extension follows this byte. A series of extension bytes, which will be defined
by PCMCIA, is terminated when an extension byte is encountered which does not
have the EXT bit set.

 Read Only

The remaining tuple entries provide options for the I/O range and IRQ

lines. If these resources requested in the first configuration table entry

are not available, then the next configuration table entry is checked. This
continues until a resource combination is satisfied. Note that the last

configuration table entry requests any 8-byte range of [/0 addresses

and a large variety of possible IRQ lines, thereby increasing the chances

that the card can be configured.

404

Toshiba_Apricorn 1006-0409
|PR2018—01067

Toshiba_Apricorn 1006-0410
IPR2018-01067

Appendix D: ATA Disk CIS Example

Appendix D:
ATA Disk CIS

Example
The following section includes a sample CIS for an ATA PC Card. This

sample C18 is from the Maxtor MobileMax 105 MB ATA Drive. Notice

that the CIS includes four configuration table entry tuples to support all

four addressing modes.

Offset/ Add’ Data Description and Interpretation(hex) (hex)

(ll

Device Info Tuple

Link to next tuple

Device type = D (Function Specific Memory Device) Device Speed=7 (ext)

Mantissa = 9 (4.0) Exponent = 2 (100m) — Speed = 400m
Unit Size=2KB Number of Units=1 - Total size : 2KB

Level 1 Version/Product Information Tuple

Link to next tuple

Major Version number=4

Minor Version number=l (Release 2.0 or 2.1)

 M [The remaining entries within the tuple are ASCII codes)

end of manufacturer name string

405

Toshiba_Apricorn 1006-0410
|PR2018—01067

Toshiba_Apricorn 1006-0411
IPR2018-01067

PCMCIA System Architecture

Description and Interpretation(hex) (hex)

_“

5

Co

 l

78

C

31

so

as - -

w

A

Lmk to next tuple
m

as

_

13/26 4

14 /28

00 End Model Informanon Stung

Tuple end byte
H

lD/SA Configuration Registers base address = 00 (L813) 02 (M53)
lE/3C 0 base address = 20%

iF/BE 0

2

F

13

co

co

A

7F

55

o

20

1B Configuration Table Entry tuple
12

Configuration Table Entry Tuple

Link to next triple

Config entry 2 0; interface byte follows, default set

configuratlon registers at location 200, 202, 204, and 206

5

5

9

6

6

E

Interface = memory, wait 8:: rdy/bsy active, bvd 8r. wp inactive

Feature Selection = Power, Timing, Memory address range, misc entries

avg i = 4001116

4

F no extended wait, no rdy/bsy, or reserved defined

max v = 5 25v

1 —
2

2

6

5

F

ZKB memory address range starting at address 0

406

Toshiba_Apricorn 1006-041 1
|PR2018—01067

Toshiba_Apricorn 1006-0412
IPR2018-01067

Appendix D: ATA Disk CIS Example

Offset/Adm Data Description and Interpretation(hex) (hex)

_-C 1

35/6A 41

36/6C 9D Feature Selection = power, timing, 1/ O addr range, IRQ and misc. entries

37/ 6E Power descrip = norn v, min v, max v, static i, avg i, peak i, 6:: pwrdn i

D

 Configuration entry = 1; interface described; default set

interface = 1X0; rdy/bsy active; wait; wp and bvd not active

max V: 5.25v

static i = 400ma

26 avg i = 400m
6E

54

 peak i 2 700m

 pwrdwn i = 5111a

no extended wait, no rdy/bsy; or reserved defined

I /O addr range = 16 contiguous bytes, 8 or 16~bit mode

20

B

0C

2

41

8

A

1

8

1

E

6

IRQ shared, pulse or level mode supported

Support for powerdown bit in configuration status register

Configuration Table Entry tuple

48/90 Configuration entry = 2; interface described; default not set

49/92 Interface = I/O,‘ rdy/bsy active; wait, wp and bvd not active

43/ 96 10 addr lines decoded, 8 or 16 bit mode; subranges follow

4C/98 1 2 address ranges; 2 byte addresses; lbyte length

m .

we

Second address range F6 (153), 03 (M53) = 03F6h

51 m

Length of second address range = 2 bytes

-

54/ A3 Configuration Table Entry tuple

Link to next tuple55/AA

Configuration entry = 2 interface described; default not set

All lRQs supported - IRQIS: iRQf)

Link to next tuple

4A/94 Feature selection ‘ I/O address range and IRQ entries

4D/9A FD first address range = F0 {1.53), 01 (M83) = 01F0h

Length of first address range = 8 bytes
=

53/A6 IRQ shared, pulse or level, IRQ 14

56/AC ; '

407

Toshiba_Apricorn 1006-0412
|PR2018—01067

Toshiba_Apricorn 1006-0413
IPR2018-01067

PCMCIA System Architecture

Offset/Addr Data

(hex) (hex)

S7/AE -Interface = 1/0; rdy /bsy active; wait, wp and bvd not active
58/ BO -Feature selection = 1/0 address range and IRQ entries

 Description and Interpretation

 59/32 10 addr lines decoded, s or 16 bit mode, subranges follow

5A/B4 -2 address ranges; 2 byte addresses; lbyie length
53/35 -first address range = 70 (L53), 01 (M58) = 017%
was —
5D/BA -Length of first address range = 3 bytes
SE/BC -Second address range : 76 (L58), 03 (M58) = (B76h
5F/BE -
6D/C0 Length of second address range = 2 bytes

0

'7

0

62 [C4 2 Function ID Tuple

. 63/C6 Link to next tuple
0

0

2

0
64/C8 Device type 4: Fixed Disk Drive

65/CA
-
_Initialization byte = attempt configuration at Power-On Self Test (POST)

66/CC -Disk Drive Function Extension Tuple
was -
es/oo -
69/DZ ATA interface

6A/D4 “No-link tuple
63/ D6 link to next tuple

6C/D8 End of Tuple String

Link to next tuple

41

1 8

A

61

70

1

D7

6

3

l

E

1

2

4

1

2

2

1 Disk device interface

1

51 [C2 IRQ shared, pulse or level, IRQ 14

-

0

Device Information Tuple

The device information tuple must be the first tuple of any release 2.0

compliant system and must be located at attribute memory address

location zero. Device information provided in this tupie applies only to

memory devices. Normally when an I/O only card is used, the device

information field will be only One byte long and contain a zero. In this

case, however, the PC Card supports memory~mapped I /0. Table D-l

shows the format of the device information tuple. Shaded area show

portions of the tuple definition used by the ATA card in this example.

408

Toshiba_Apricorn 1006-0413
|PR2018—01067

Toshiba_Apricorn 1006-0414
IPR2018-01067

Appendix D: ATA Disk CIS Example

The CIS listing includes a link value of 04h, indicating that the extended

speed byte is used.

Table D—I. Denice Information Tuple Format

Device Information Tuple Format

-Device info 1 (00h = no valid device information)
—
—
_

The ATA card's Device Information tuple contains information for a

single block of memory, therefore, Only one device info block (Device

Info 1) is defined. Device info I is comprised of three bytes in this

example:

0 Device Type and Speed Byte

0 Extended Speed Byte

0 Device Size Byte

Device Type and Speed Byte

Refer to table D—Z. The first byte describes the device speed, whether the

write protect switch affects this address range, and the device type.

Note that the device type code is only used to describe devices that use

a fixed memory address range, and not for dynamically relocatable

devices. Relocatable devices use the configuration entry tuples to

describe the memory address ranges supported.

The device type and speed byte contains a DFh value equating to the
values shown below. Note that extended speed information is used in

lieu of the standard speed definitions (refer to table D—3), since the
devices being accessed within the memory address range are registers.

The extended speed byte contains a codes for a mantissa and exponent
value. The ATA card's C15 in this example contains a value of 4Ah,

equating to a mantissa of 4.0 and an exponent of 100ns or a device

speed of 400ns.

409

Toshiba_Apricorn 1006-0414
|PR2018—01067

Toshiba_Apricorn 1006-0415
IPR2018-01067

PCMCIA System Architecture

410

'1

Table D-2. Memory Device Type and Speed Information

nun n-n
Device Type Code = D Device Speed Codes = 7

Extended Dewce Speed (1f Devme Speed Code equals 7h othemrise omitted)

2 .. m-l Additional Extended Device Speed (if bit '7 of Extended Device Speed is 1,
otherwise omitted)

Extended Device Type (if Devlce Type Code equals Eh othemlse orrutted}

Table D~3. Device Speed Codes

DSPEED_200NS

DSPEED_150NS I
DSPEED_1 GUNS I

No device. Generally used to designate a hole
in the address space. If used, speed field should
be set to OH

Masked ROM

One-time programmable PROM
UV EPROM

D'FYPE NULL

DTYPE_ROM

DTYPE_OTPROM

—

DTYPE_FUNCSPEC‘

EEPROM

Function-specific memory address range.
Includes memory-mapped I/O registers, dual-
ported memory, communication butters, etc,
which are not intended to be used as general-
purpose memory.

Extended type follows.

 DTYPEHEXTEND

Toshiba_Apricorn 1006-0415
|PR2018—01067

Toshiba_Apricorn 1006-0416
IPR2018-01067

Appendix D: ATA Disk CIS Example

Device Size Byte

The ATA device size byte entry contains 01 h. This represents a three bit
”unit size code" of 4h, and the number of address units value of UFh.

One is added to the number of address units value to obtain the actual

number of units. Refer to table D—5 for byte format.

Table 136. Device Size Definition

Level 1 Version] Product Information Tuple

Table D6 shows the format and contents of the level 1 version/product

information tuple. This tuple provides the PCMCIA compliance level

Supported by the PC Card and includes manufacturer defined product
information. The tuple includes three fields:

- The major version byte indicating PCMCIA version information.

I The minor version byte indicating compliance with a given
PCMCIA release.

I A variable length field comprised of one or more strings of ASCII
characters specified by the manufacturer. A value of 00h demarks

each ASCII string.

411

Toshiba_Apricorn 1006-0416
|PR2018—01067

Toshiba_Apricorn 1006-0417
IPR2018-01067

PCMCIA System Architecture

Table 13-6. Level I Version/Product Information Tupie Format

Level 1 Versionfl’roduct Information Tuple Format

TPL_CODE CISTPL_VERS_1 (15h).
TPL_LINI(Link to next l'uple (24h).

TPLLVLMAIOR Major version number (04h).

ill
TPLLVLMINOR

TPLLV]_]NFO

Minor version number (01h) for ReleaSe 2.0 and 201

 Product information string: name of the manufacturer,
terminated by 00h.

Additional product information, in text; terminated by 00h. In
this example:
0 Product name

' Model Information

Configuration Tuple

412

The Configuration tuple identifies the number of configurationregisters

implemented and their location in attribute memory. The configuration

tuple consists of six data entries as follows. Table 13-7 shows the actual

format of the configuration tuple. Note that the tuples used in the ATA

disk example are shaded.

- Size of fields—specifies the number of bytes in the ”configuration

registers base address" field, in the "configuration presence mask"

field, and in the "reserved field"

0 Index number of the last entry in the configuration table

0 Configuration registers base address in attribute memory

- Configuration presence mask—identifies the configuration registers

implemented
I Reserved Field

- Subtuple information—containing additional card configuration

information

FFh: marks end of list.

Toshiba_Apricorn 1006-0417
|PR2018—01067

Toshiba_Apricorn 1006-0418
IPR2018-01067

Appendix D: ATA Disk CIS Example

Table D—7. Configuration Tuple Format

TPL_CODE Configuration tuple code (CISTPL_CONFIG, lAI-I)

TPL_LINK Link to next tuple (n-l; minimum 1)

TPCC_SZ Size of Fields Byte

TPCC_LAST Index Number of the last entry in the Card

Configuration Table

TPCC_RADR Configuration Registers Base Address in Reg

Space. 1,2,3, or 4 bytes depending upon the size
field in TPCCfiLAST

TPCC_RMSI< Configuration Registers Present Mask. 1 to 16

bytes as indicated by the count in TPCC_SZ.

TPCC_RSVD Reserved area 06 bytes. Must be 0 bytes until
defined.

TPCC_SBTPL The rest of the tuple is reserved for subtuples

containing standardized optional additional
information related to the Card Configuration.

Size of fields

The size of fields entry describes the number of bytes used in the
TPCC_RADR, TPCC_RMSK and TPCC_RFSZ fields as shown in tabie

D-8. In the Flash card example, the size of fields entry has a value of

01h, resulting in the following values:

I TPCC_RASZ — a one must be added to the hex value in this field to

determine the number of bytes in TPCC_RADR used to specify the

configuration registers base address. In this example, the

TPCC_RADR entry consists of two bytes.

. TPCC_RMSZ — a one must be added to the hex value in this field

to determine the number of bytes in 'I‘PCC_RMSI< used to indicate

which of the option registers have been implemented. In this

example, the TPCC_RMSI< entry consists of one byte.

0 TPCC_RFSZ — the number of bytes reserved for future use (either

0,1,2 or 3). Must be zero for release 2.0 compliance.

413

Toshiba_Apricorn 1006-0418
|PR2018—01067

Toshiba_Apricorn 1006-0419
IPR2018-01067

PCMCIA System Architecture

Table 13-8. Size of Fields Byte

“mu-
________—

Field TPCC_RFSZ mom/152 rpccgmsz

Definition mesa Size=0) {Size of TPCCfiRMSKzO) (Size of TPCC_RADR=1 J

Index Number of Last Configuration Entry

This entry contains the index number of the East configuration entry of

the card's configuration table and a reserved fieid as shown in table D—9.

The value contained in the "last index" field in this example is 03h. Bits
six and seven are reserved future use and must be set to zero.

Table D-Q. Last Configuration Index

—-n“nun—n

Field Reserved for future The index number of the final entry in the Card Configuration
Definition use Table when scanning the C13 from address zero

(Resr bitszfl) (Last Index = (13d)

Configuration Registers Base Address Entry

This entry consists of either 1,2,3 or 4 bytes as specified by the

"TPCC_RAS " field of the "Size of Fields" entry. In this example, the

"TPCCflRASZ" field indicates this entry consists of two bytes as shown

in the shaded area of table D-10. The resulting address is 020% or

attribute memory location 512d.

Table D-IO. Configuration Register Base Address

“mu

—Base Address Bits 25:24

414

Toshiba_Apricorn 1006-0419
|PR2018—01067

Toshiba_Apricorn 1006-0420
IPR2018-01067

Appendix D: ATA Disk CIS Example

Configuration Presence Mask

The "presence mask" entry consists of a variable number of fields as

determined by the TPCC_RMSZ field within the "size of fields" tuple

entry. The presence mask is a bit map of Configuration registers that can

be implemented. The presence mask entry can contain a maximum of

eight one byte fields (TPCC_RMSZ = 3 bits), and the eight bits in each

field represents a configuration register; therefore, 64 configuration

registers can be identified. The format of the presence mask fields is

shown in figure 13-11. In this example, the presence mask entry consists

of a single byte (indicated by shading).

Currently, only four registers are specified by the PCMCIA standard.

Each of these registers is numbered as follows:

Register 0 = Configuration Option Register

Register 1 = Card Configuration and Status Register

Register 2 : Pin Replacement Register

Register 3 = Socket and Copy Register

The value OFh specified in the ATA CIS means that the "configuration

option register", "card configuration and status register", "pin

replacement register" and "Socket and Copy register" have been

implemented in this card.

Table 13-1]. Configuration Register Mask

“Human!-

415

Toshiba_Apricorn 1006-0420
|PR2018—01067

Toshiba_Apricorn 1006-0421
IPR2018-01067

PCMCIA System Architecture

Configuration Table

The configuration table contains four entries each of which describes a

different combination of resource options required by the ATA card.

Function Identification Tuple

This tuple identifies a PC card's function and specifies whether the

function should be automatically configured during system

initialization. The tuple contains two fields:

0 Function Code byte.

0 System Initialization Bit Mask.

Refer to table D-12 for the tuple's basic format.

Table [3-12. Function Identification Tuple Format

WI—_

_

Function Code Byte (TPLFID_FUNCTION)

This field contains a code that identifies the basic function 'of the PC

card. In this example, the ATA card is a Fixed Disk (code 0411). Table

[3-13 lists the functions supported by PCMCIA.

416

Toshiba_Apricorn 1006-0421
|PR2018—01067

Toshiba_Apricorn 1006-0422
IPR2018-01067

Appendix D: ATA Disk CIS Example

Table D~I3. PC Card Function Codes

Multi-Function PC Card has multiple functions. Examine the following
function identification tupies that follow for individual
functions.

-_ernory Memory Card (RAM, ROM, EPROM, flash, etc).
Serial 1/0 port, includes modern cards.

2- Parallel Port Parallel printer port, may be bi-directional.
5- Fixed Disk Fixed drive, may be silicon may be removable.

Video Adapter Video interface, extension tuples (type and resolutions).

Network LAN Local Area Network adapter.
Adapter

AIMS Auto—Incrementing Mass Storage card.

8..FFh Unused in this release. Reserved by PCMCIA for future
use.

System initialization Byte (TPLF|D_SYSINIT)

This field contains two bits that permit a PC card to perform initial

program load (IPL):

- POST bit — specifies whether a given function should be configured

during system initialization.

- ROM bit — indicates whether the PC card contains an expansion
ROM.

The format of the System Initialization byte is shown in table D-14. Note

that for an ATA card, the POST bit is usually set to one, indicating the

card should be configured during system initialization. A designer may

or may not choose to incorporate an expansion ROM on the card.

Table 19—14. Initialization Byte

”nu—Ill
—J-

.-

417

Toshiba_Apricorn 1006-0422
|PR2018—01067

Toshiba_Apricorn 1006-0423
IPR2018-01067

PCMCIA System Architecture

418

Function Extension Tuple

Two extension tuples have been defined for ATA drives. One identifies

the interface type and another specifies additional PC Card ATA
features. Table 0-15 shows the common format of the Function

Extension tuples. Each Function Extension tuple has the same tuple

code (22h), a link field and two function-specific fields:

a Function Extension Type Code field — this field identifies the

specific function extensiOn defined by this tuple.

o Function—specific information — this field contains data that is

specific to a given extension type.

Table D-15. Function Extension Tuple Format

Function Extension Tuple Format

TPLLCODE CISTPL_FUNCE (22H)

TPL_LINK Link to next tuple

TPL__TYPE Function Extension Type Code

TPLFE DATA thction-specific information

Toshiba_Apricorn 1006-0423
|PR2018—01067

Toshiba_Apricorn 1006-0424
IPR2018-01067

Appendix E: Metaformat Layers 2, 3, and 4

Appendix E:
Metaformat

Layers 2, 3, and 4

The following table lists and describes the tuples defined for the Layer

2: Data Recording Format, of the PC Card Metaformat.

Description

Software interleaving — This tuple allows software
interleaving of data within a partition on the card.

This tuple indicates the software interleaving factor.

 CISTPL_SWIL

 ClSTPL_VERS_2 Level-2 version tuple — This tuple indicates the

compliance of the level 2 tuples within the card and

provides information regarding the general
organization of the PC Card.

 ClSTPL_FORMAT Data recording format for Common Memory — This

tuple provides information about how the card is

organized and accessed for use as a virtual disk

drive. This tuple includes information defining:

 0 Whether access is memory-like (byte accessible}
or disk-like (accessed in blocks of address

space).
 - The error correction method employed and

length.
 . Byte address of first data byte in this partition

Number of data bytes in this partition.
 ClSTPL_GEOMETRY Partition gEOmetry — This tuple is for use by cards

that have diskwlike partitions. Provides instructions
to the file mana- ement s stern that re uires data be

419

Toshiba_Apricorn 1006-0424
|PR2018—01067

Toshiba_Apricorn 1006-0425
IPR2018-01067

PCMCIA System Architecture

-_located based on cylinders, tracks, and sectors.
43h CISTPLfiBYTEORDER Byte ordering for disk-like partitions — This tuple is

intended for PC Cards that have a memory—like
organization. That is, cards that can be read from

and written to one byte at a time. This tuple specifies

the order for multi-byte data, and the order in which

bytes map into words (even two byte block) for 16-
bit cards.

44h CISTPL_DATE Card Initilization date -— This tuple indicates the
date and time that the PC Card was last formatted.

45h CISTPL_BA'ITERY Battery replacement date — This tuple is intended
for PC Cards having battery-backed storage. It

indicates the date of the last battery replacement,

and the date that replacement is likely to be required

again.

 CISTPL_FORMAT_A Data recording format for Attribute Memory —- This
tuple provides information about how the card is

organized and accessed for use as a virtual disk

drive. This tuple includes information defining:

 1» Whether access is memory-like (byte acceSSible)

or disk-fike (accessed in blocks of address

space).
 - The error correction method employed and

length.

- Byte address of first data byte in this partition

 Number of data bytes in this partition.

420

Toshiba_Apricorn 1006-0425
|PR2018—01067

Toshiba_Apricorn 1006-0426
IPR2018-01067

Appendix E: Metaformat Layers 2, 3, and 4

The following table describes the tuple defined for metaformat Layer 3: Data

Organization Tuples.

CISTPL_ORG Partition organization -— This tuple contains information abo

the organization of a partition within a PC Card. The tup
describes whether:

- the partition contains a file system and specifies type ar
version.

I the partition contains applications-specific information at
specifies name and version.

a the partition contains executable code images and specifii
name and version of the organization scheme.

0 the partition uses a vendor-specific organization.

The table below describes the tuple defined for metaformat Layer 4: System-

Specific Standard Tuples.

CISTPL_SPCL Special Purpose — These tuple has meaning for DOS fi

systems and are used to define an interchange format for car:

formatted with the DOS-FAT-based file system.

Also provides a standard for executing code directly from a P
Card, called execute-in-place or XIP.

80h- SFh Vendor unique tuples

 Code

421

Toshiba_Apricorn 1006-0426
|PR2018—01067

Toshiba_Apricorn 1006-0427
IPR2018-01067

Appendix F: References

Appendix F:
References

Additional references on PCMCIA:

Dipert, Brian and Levy, Markus Designing with Flash Memory,
Annabooks, 1993.

Mori, Michael T. And Welder, W. Dean, The PCMCIA Developer’s Guide,

Second Edition, Sycard Technology, 1994-95.

PCMCIA/JEIDA, PC Card Standard, Volumes 1-12, February 1995

2635 North First Street, Suite 209, San Jose, CA 95131, USA, phone: (408)
433-2273.

423

Toshiba_Apricorn 1006-0427
|PR2018—01067

Toshiba_Apricorn 1006-0428
IPR2018-01067

Glossary

Glossary
Access speed. The time required for a given memory or 1/0 device to accept or supply

data when it is selected by a given bus master.

Address offset. The value (typically measured in bytes) that specifies an address loca-

tion relative to a given base (or, start) address.

Address translation. The process of converting one form of address to another. Typi-

cally performed by a bridge device when passing a transactions between buses that

implement different addressing protocols.

Address window speed. The cycle time associated with accessing a memory or U0

device. PCMCIA Specifies the same cycle time for all devices that are mapped within

the same host bus adapter address window.

Advanced client services. A category of services within card services that perform

advanced functions not typically used by standard client drivers (or, enablers).

AIMS interface. Auto-Indexing Mass Storage (or, AIMS) is an extension to the

PCMCIA specification that provides a simple PC Card interface used typically for

storing large images.

AT. An acronym for advanced technology used by IBM when naming their 80286-

based PCs (i.e. IBM PC—AT). Note that AT and ISA (Industry Standard Architecture)

are commonly used terms to designate compatibility with the IBM PC—AT.

ATA. An acronym for AT attachment. An ANSI standard that defines a disk drive

interface between an AT compatible bus and IDE (integrated drive electronics) disk
' drives.

ATA PC Card. A PC Card that conforms to the ATA standard (in most respects),

providing a standard programming interface which is supported by virtually all of to-

day’s PCs.

ATA flash card. An PC Card that employs flash memory and uses an ATA interface
to emulate a disk drive.

Attribute memory. PC Card address space used to store configuration information.

The card’s CIS and configuration registers are mapped into attribute memory address

space. Only even address locations within attribute memory contain valid information.

425

Toshiba_Apricorn 1006-0428
|PR2018—01067

Toshiba_Apricorn 1006-0429
IPR2018-01067

PCMCIA System Architecture

Battery warning. Memory cards used to emulate disk drives must provide a battery to

retain information, if they use volatile memory. These cards have two signals pins

(BVDl and BVD2 — battery voltage detect 1 and 2) that can be used to report a low

battery warning or a dead battery indication to the system.

Bulk memory services. A category of card services used by memory client drivers to

gain access and manage block memory transfers.

BVDI and BVDZ. Memory cards used to emulate disk drives must provide a battery

to retain information, if they use volatile memory. These cards have two signals pins

(BVDl and BVD2 — battery voltage detect 1 and 2) that can be used to report a low

battery warning or a dead battery indication to the system.

Call-back. The process used by card services to notify clients of events that they

should respond to. The callwback calls a routine within the client driver used to handle
the event notification.

Card detection. The process of recognizing that a PC Card has been inserted into a

socket and notifying enabling software responsible for configuring the card.

Card information structure. Also called the CIS, this data structure is incorporated

into PC Cards to characterize the function(s) contained within the card. The CIS con-

sists of individual elements called tuples, each of which describes a given

characteristic of the card. The C13 is typically mapped into attribute memory address

space, but is sometimes implemented in common memory address Space.

Card services. A collection of software functions based on the client server model

that permits unified control to all PC Card sockets and related hardware. PC Card cli-

ent drivers register with card services to obtain access to PC Cards and sockets.

Resource Management Services. A category of card services that used by a client

driver to acquire system resources needed for configuring their card. When a client

driver requests resource for their card, card services checks to verify that the requested

resource is not being used by some other device within the system. Card services per-

forms look—aps within its resource management table that contains the resources that
are available for allocation to PC Cards.

Card Types. PCMCIA are defines three card types (types 1, 2, and 3). These cards

have the same electrical interface and different only in height.

CD1# and CD2#. The CardDetect (CD) pins signal that a card is fully inserted into a

PC Card socket. When the HBA detects these pins asserted it notifies card services via

an interrupts.

426

Toshiba_Apricorn 1006-0429
|PR2018—01067

Toshiba_Apricorn 1006-0430
IPR2018-01067

Glossary

CE1# and CE2#. The card enable (CE) pins specify that a PC Card is being accessed

and whether one or two bytes are being requested.

CIS. See Card information structure.

Client driver. A client driver, also called an enabler, is responsible for configuring

and enabling a PC Card when it is first inserted into a card socket. The client registers

with and makes calls to card services provides the services necessary to fulfill the cli-

ents requests.

Client utility services. A category of card services used by client drivers to request

that card services perform complex tasks that would otherwise require many low-level

requests be made by the client driver.

Common memory. Address space within a PC Card used as the working memory,
where files are typically stored.

Configuration process. The process involving reading and interpreting a PC Cards

CIS entries to determine the type of function implemented by the PC Card and it con-

figuration requirements.

Configuration registers. Configuration registers within a PC Card provide the ability

to program it for a given configuration and obtain status information about the card.

DACK. DMA acknowledge (or, DACK) is a PC Card input for PC Card U0 func—

tions that support DMA transfers. This signal is returned to the IIO card from the host

system‘s DMA controller in response to a DMA request by the card. DACK signals

the beginning of the DMA transfer between memory and the U0 function.

Dedicated enabler. A PC Card enabler that is designed to configure and enable a

specific PC Card. Dedicated enablers are usually supplied by the PC Card manufac-

turer. Also called Device-specific enabler.

Device-specific enabler. See Dedicated enabler

Digital Audio.Waveform. The audio information output over a PC Card’s

SPEAKBR# (S PKR#) pin to the host system’s, used to drive the host system’s speaker.

DMA. Direct memory access (or, DMA) in the PC environment is the a transfer be-

tween the host system’s main memory and an U0 device. The transfer is controlled by
the host-resident DMA controller.

DMA Acknowledge. DMA acknowledge (or, DACK) is a PC Card input for PC Card

U0 functions that support DMA transfers. This signal is returned to the U0 card from

427

Toshiba_Apricorn 1006-0430
|PR2018—01067

Toshiba_Apricorn 1006-0431
IPR2018-01067

PCMCIA System Architecture

the host system’s DMA controller in response to a DMA request by the card. DACK

signals the beginning of the DMA transfer between memory and the U0 function.

DMA Bus Cycle. A bus cycle performed by the host system DMA controller

DMA clock. The clock u5ed to run the Host DMA controller. 4MI-Iz in a PC Com-

patible system.

DMA Request. DMA request (or, DREQ#) is a PC Card signal used by NO cards that

support DMA. The U0 card asserts DREQ# to notify the host DMA controller that it

is ready to transfer data between itself and memory.

DREQ#. See DMA Request.

Dual-voltage cards. PC Cards that can operation at either Svdc or 3.3vdc.

EMS. Expanded Memory Specification (or, EMS) defines a memory management

procedure that allows additional memory to be added to a DOS-based PC that typically

supports only 1MB of usable address space. EMS was defined by Lotus, Intel, and Mi-

crosoft and is also referred to as the (LIM specification). Only applications written to

support EMS can access the additional system memory.

Enabler. The software responsible for detecting, configuring, and enabling a PC

Card. Enablers are also called client drivers, because they interface to the PC Card

environment via card services. Compare Point Enabler.

Event call-back. The mechanism used by card services to notify its clients (PC Card

enablers) of specific events that have occurred at the PC Card and socket. The en-

ablers are responsible for processing the events.

Event notification. Another term for a card services call-back. See Event call-back.

Event wakeup. An event that is external to the PC that stimulates a PC Card to per-

form some type of action (eg. a remote call to a modem), when the system is in a

power conservation state. The external event is used to “wake” the system so that it

can respond.

EXCA. Exchangeable Card Architecture (or, EXCA) is a specification defined by Intel

to promote interoperability of PC Cards between x86-based PCs. Note that ExCA has

been renamed QuickSwap.

Execute-in-place. Execute—in—place (or, XIP) refers to the ability of a PC memory

card that emulates a disk drive to execute code directly from memory, rather than

428

Toshiba_Apricorn 1006-0431
|PR2018—01067

Toshiba_Apricorn 1006-0432
IPR2018-01067

Glossary

having to copy and execute the file from host memory. Only applications written to

support XIP can execute directly from PC Card memory.

EXIP. A type of XIP, called Extended XIP, that requires a 386 or later x86 compati-

ble processor. PC Card memory in this case is mapped into host system address space
above 1MB.

Expanded Memory Specification. Espanded Memory Specification (or, EMS) de—

fines a memory management procedure that allows additional memory to be added to

a DOS-based PC that typically supports only 1MB of usable address space. EMS was

defined by Lotus, Intel, and Microsoft and is also referred to as the (LIM specifica-

tion). Only applications written to support EMS can access the additional system
memory.

FFS. See Flash file system.

Flash file system. A file system designed to manage access to PC Card flash memory

that emulates a disk drive. A specific file system is required for flash memory to sup-

port the special write characteristics of flash memory. Also called FFS.

Flash translation layer. A form of flash file system that interfaces to the DOS file

system, rather than implementing a specific installable file system that replaces DOS

when accessing virtual flash drives. Also called FTL.

F’I‘L. See Flash translation layer.

Generic enabler. A PC Card enabler designed to recognize and configure a wide va-

riety of card types. Compare Dedicated enabler.

HBA. Host Bus Adapter (or, HBA) is the hardware interface between the host espan-

sion bus and PC Card sockets. The HBA bridges, or translates transactions between

the PC Card sockets and the expansion bus.

HLDA. Hold Acknowledge (or, HLDA) is an output from an x86 processor and an in-

put to the DMA controller. HLDA is aSSerted by the processor when it detects its

HOLD signal has been asserted by the DMA controller in response to DREQ# being

asserted by the PC Card U0 device.

HOLD. Hold request (or, HOLD) is an input to an x86 processor that directs it to re»

linquish control of the system bus. This signal is asserted by the host DMA controller

to request use of the system buses so that it can perform a DMA transfer. See also
HLDA.

429

Toshiba_Apricorn 1006-0432
|PR2018—01067

Toshiba_Apricorn 1006-0433
IPR2018-01067

_ PCMCIA System Architecture

Host bus adapter. Host Bus Adapter (or. HE A) is the hardware interface between the

host expansion bus and PC Card sockets. The HBA bridges, or translates transactions

between the PC Card sockets and the expansion bus.

Hot insertion. The term used to describe the ability of PC Cards to be inserted and

removed from the system after it has already been powered on.

U0 address window. A range of U0 address location programmed into the HBA that

corresponds to the address locations used by an L’O card to access its internal regis-

ters. The HBA recognizes when software attempts an access to a location within the

specified range and forwards the transactiort to the target L’O card and socket.

[IO Read Command. A command that is asserted by the host system to indicate that

an U0 read operation is being performed. A card socket signal (IORD#) is asserted

when an U0 read targets a PC Card register.

U0 size is 16-bits. A socket interface signal (IOISlé#) output from an HO card, tell-

ing the HBA the size of the register being accessed (either 8- or 16-bits).

HO Status Change. A socket interface signal (STSCHG#) asserted by an U0 card to

notify the HBA and the enabler that a status change has occurred within the PC Card

U0 Write Command. A command that is asserted by the host system to indicate that

an HO write operation is being performed. A PC Card signal (IOWR#) is asserted by

the HBA when it recognizes that an HO write operation is targeting a PC Card regis-
ter.

IDE. Integrated drive electronics (or, IDE) is a type of hard drive that incorporates

must of the hard drive controller logic within the drive itself. The interface between an

ISA compatible bus and the IDE drive is called the ATA interface.

INPACK#. See Input port acknowledge.

Input port acknowledge. Input port acknowledge (or, INPACK#) is an output signal

from an U0 card during an HO read that accesses a PC Card register. This signal no-

tifies the REA that the access belongs to the PC Card.

Interrupt request. A request to the system that indicates that the IIO card needs

servicing. The interrupt request ultimately calls the PC Card’s interrupt service rou-

tine (or, ISR). The interrupt request is signaled via the card’s IREQ# pin.

10181“. MO is 16 bits (or, IOlSl6#) is a socket interface signal output from an HO

card. telling the HBA the size of the register being accessed (either 8- or 16-bits).

430

Toshiba_Apricorn 1006-0433
|PR2018—01067

Toshiba_Apricorn 1006-0434
IPR2018-01067

Glossary

IORD#. The U0 read command (or, IORD#) is a signal asserted by the host system to

indicate that an L’O read operation is being performed from the U0 card.

IOWR#. A command that is asserted by the host system to indicate that an [/0 write

operation is being performed. The PC Card signal (IOWR#) is asserted by the HBA

when it recognizes that an U0 write operation is targeting a PC Card register.

IPL. Initial Program Load refers to the process of loading the operating system during
the power-up sequence. Sometimes also referred to as the boot process.

IREQ# Also called IREQ#, this PC Card

JEDEC. Acronym for Joint Electronics Device Engineering Council.

JEIDA. Acronym for Japanese Electronics Industry Development Association.

Level mode interrupts. A method of signaling interrupts to the host system. A PC

Card using level mode interrupts causes an interrupt to be registered, or triggered, by

asserting the IREQ# pin and keeping it low until the internth is cleared by the ISR.

LIM 4.0. See Expanded Memory Specification.

Low voltage socket. A PC Card socket that can apply either 5vdc or 33de as the

initial Vcc power to the socket. The HBA that supports a low voltage socket monitors

the voltage sense pins (VSl# and VSZ#) to detect the initial voltage required by the
PC Card.

LXIP. A form of XI? referred to as Expanded XIP that employs an expanded memory

approach to map the PC Card memory.

Management interrupts. Interrupts generated by the HBA to notify card services that

a status change has occurred within the PC Card environment.

Memory address windows. A range of memory address location pregrammed into

the HBA that corresponds to the address locations used by a memory card to access its

internal memory array. The HBA recognizes when software attempts an access to a

location within the specified range and forwards the transaction to the memory card
and socket.

Memory enabler. PC Card software designed to recognize, configure, and enable

memory cards. Also called memory client driver.

431

Toshiba_Apricorn 1006-0434
|PR2018—01067

Toshiba_Apricorn 1006-0435
IPR2018-01067

PCMCIA System Architecture

Memory-only interface. The PC Card socket interface that supports only memory

cards. The socket is always configured as a memory—only socket when a PC Card is

first inserted. The socket can be changed to a memory or U0 interface if the enabler
detects that the PC Card contains an UO function.

Memory or U0 interface. The PC Card socket interface that supports both memory

and U0 functions. The socket is changed from a memory-only to a memory-only

socket when the ERA and PC Card are configured.

Memory technology driver. A client driver employed to handle low-level access to

flash memory that requires special programming algorithms. Card services calls the

memory technology driver when a flash memory enabler calls the buik memory serv-
ices. Also referred to as an MTD.

Metaformat. A formatting standard defined by the PC Card standard that describes

low-level formatting information.

MTD. See Memory technology driver.

0E#. Output enabler (or, 0E#) is a socket interface signal that indicated that a mem-

ory read command is being performed from PC Card memory.

Offset. The value (typically measured'in bytes) that specifies an address location rela-

tive to a given base (or, start) address

PCMCIA. Acronym for Personal Computer Memory Card International Association.

Point enablers. A PC Card enabler that rec0gnizes and configures a PC Card by ac-

cessing the HBA and PC Card directly without the support of card and socket services.

Power Management. A hardware and software solution employed to conserve power.

Pulse mode interrupts. A form of interrupt triggering used to support interrupt shar-

ing in the ISA environment. The interrupt is triggered on the trailing edge of the PC

Card’s negative pulse.

READY. An output pin from a memory card that indicates that it is ready for the next

transaction. If deasserted. indicates that the memory card is busy performing a c0m-

mand and is not ready to receive the next transaction.

432

Toshiba_Apricorn 1006-0435
|PR2018—01067

Toshiba_Apricorn 1006-0436
IPR2018-01067

Glossary

REG#. The register (REG#) pin is a socket interface pin asserted by the HBA to indi—

cate an attribute memory access (when 0E# or WE# is asserted) or an U0 access

(when l0RD# or IOWR# is asserted).

Registration. The process used by enablers to obtain the services of card services.

Reset. A socket interface pin used to reset the PC Card.

Resource allocation. The process employed by a PC Card enabler and card services to

determine if system resources are available to be assigned to the PC Card.

Socket interface. The electrical and mechanical interface for PC Cards.

Socket services. PCMCIA specific software that pmvides low-level routines needed to

access a given implementation of HBA. Socket services consists of a collection of

functions that are typically called by card services to access HBA registers.

SPKR#. The speaker signal defined by the memory or L’O socket interface. Used to

carry digital audio information from the PC Card to the host speaker.

Status change events. PC card and socket events that reflect some change in the

status of the PC Card. When a status change event occurs. the HBA generates an in—

terrupt to signal card services of the event.

STSCHG#. Status change is an output signal from an Lr’O card to signal that a status

change has occurred.

SXIP. A type of XIP, called simple XIP, that maps PC Card memory into an address

range no larger than 64KB in size.

TC. An output signal from the DMA controller indicating that the transfer is com-

plete (i.e. the DMA controller has reached the Terminal Count). This signal is an

input to PC Cards that support DMA transfer.

Tuples. The name given to the elements within the CIS that describe characteristics of
the PC Card.

Type 1 card. A PC Card with a maximum thickness of 3.3mm.

Type II card. A PC Card with a maximum thickness of 3.3mm.

Type III card. A PC Card with a maximum thickness of 3.3mm.

Virtual disk. A memory card that is used to emulate a hard drive.

Vppl and VppZ. Programming voltage pins defined for the socket interface.

433

Toshiba_Apricorn 1006-0436
|PR2018—01067

Toshiba_Apricorn 1006-0437
IPR2018-01067

PCMCIA System Architecture

VSl# and VSZ#. Voltage sense pins defined for the low~voltage socket interface.

These pins determine the initial Vcc level to apply to the socket.

WAIT#. A socket interface pin used by a PC Card to force wait states into a transac-
tion.

WP. See Write-protect.

Write-protect. Write-protect (or, WP) is a output pin from a PC memory card indicat~

ing whether the user has chosen to write-protect memory (i.e. files).

XIP. See Execute-in-place.

XIP-expanded memory. A form of XIP referred to as Expanded XIP that employs an

expanded memory approach to map the PC Card memory.

XIP-extended. A type of XIP, called Extended XIP, that requires a 386 or later x86

compatible processor. PC_Card memory in this case is mapped into host system ad

dress Space above 1MB.

XIP-Simple. A type of XIP. called simple XIP, that maps PC Card memory into an

address range no larger than 64KB in size.

434

Toshiba_Apricorn 1006-0437
|PR2018—01067

Toshiba_Apricorn 1006-0438
IPR2018-01067

Index

8

823? DMA controller, 90

——A—

Access speed, 22
Access timing, 134

AccessConfigRegisters, 280

AcknowledgeInterrupt, 292
Address offset, 127

Address translation, 121

Address window speed, 132

AddSocketServices, 291

AdjustResourcelnfo, 291

Advanced client services functions defined,

264

AIMS interface, 107

Artificial card insertion events, 229
ATA

Sample C15, 205

Support for two drives, 106

ATA CIS example, 202

ATA configuration options, 106, 201

ATA contiguous 110 address mapping, 105

ATA flash card designs, 103
ATA Function Extensions, 202

ATA interface, 101

ATA memory-mapped, 106

ATA PC Cards, 103

ATA primary address, 105

ATA registers, 346

ATA resource requirements, 105, 201

ATA secondary address, 105

ATA support for two drives, 201

ATA vs ATA PC Card, 105

Attribute memory, 48, 65

Attribute memory address, 57

Attribute memory read timing, 66

Attribute memory transfer speed, 65

Attribute memory write timing, 6?

——B—-

Battery location, 36

Battery warning, 63

Booting from ATA cards, 313

Booting from memory cards, 312

Booting from PC Cards, 294, 3]]

Bulk Memory functions, 289

Bulk memory services, 289

Bulk memory services functions defined,
264

BVDl and BVD2, 60, 63

c

Call-back, 292, 293

Call-backs, 278

Card detection, 11?

Card information structure, 24

Card insertion call-back, 296, 300, 303,
304

Card keying, 40

Card lock, 141

Card lock mechanisms, 14]

Card power, 50
Card services, 22, 28, 264

Advanced C—lient functions, 290, 291

Card Services Specification 18

Card services, power management, 267

Card servicesResource Management func—

tions:, 285, 286

Card Types, 35
CardInsertion call-back, 307

435

Toshiba_Apricorn 1006-0438
|PR2018-01067

Toshiba_Apricorn 1006-0439
IPR2018-01067

PCMCIA System Architecture

CD1# and CD2#, 60, 117

CE1# and CE2#, 55, 71, 134

CheckEraseQueue, 289

C18, 24, 29, 145, 14'?

Access timing, 158

Configuration Table, 195

FAXr'rnodem example, 191

Flash example, 183

SRAM example, 1??

Client driver, 24

Client driver call—backs, 228

Client services functions defined, 264

Client services funtions, 275

Client utility functions, 280

Client Utility functions defined, 264

CloseMemory, 289

CL—PD6722, 335

Address windows, 340

ATA registers, 346

ATA socket interface, 346

DMA support, 348

Features, 335

HO window registers, 342

Interface Status register, 345

Interrupt and General Control register, 345

Interrupt steering, 345

Management interrupt configuration regis—

ter, 344

Memory window registers, 340
Power control, 336

Status Change register, 344

Status change reporting, 344

Timing register set, 340

Vcc control, 337

Vppl control, 338

Common memory, 48, 65

16-bit address mode, 68

Common memory cycle time, 69

Common memory, 8-bit address mode, 70

Configuration process, 229, 296

Configuration registers, 163, 196, 214

110 base registers, 217r

436

HO limit register, 218

Configuration table entry, 288

Configuraton registers

Configuration Option Register, 164, 196
Configuration Status Register, 166, 197,

216

Pin Replacement Register, 169, 197

Socket and Copy Register, 170

CopyMemory, 289

Cycle time, common memory, 69

_])..__

DACKJ'REGit, 93

DACK2#, 89

Data Transfers, 59

Dedicated enablers, 232

DeregisterClient, 280

DeregisterEraseQueue, 289

Device size, 135

Digital Audio Waveform, TS

Dimensions of PC Cards, 36

Direct mapping, 121

DMA Acknowledge, 89

DMA Bus Cycle, 94

DMA channels, 90

DMA clock, 95

DMA Compressed Timing, 96

DMA Extended Write option, 9'?

DMA readfwrite definition, 8?

DMA request, 89

DMA start memory address, 8?

DMA Transfer Count, 8?

DMA transfer count exhausted, 90

DMA, BOP (End-oprrocess), 90

DMA, TC (Terminal Count reached), 90

DMAC states, 95

DREQ#, 92

DREQZ, s9

Dual—voltage cards, 40

Toshiba_Apricorn 1006-0439
|PR2018-01067

Toshiba_Apricorn 1006-0440
IPR2018-01067

—-—E—

EDC support, 141

Electrical Specification, 18
EMS, 3 16

Enabler, 22, 28

EOP (End-of—Process), 90

Event call-back, 291

Event notification, 291

ExCA, 321

ExCA, Card insertiom’removal require-

ments, 326

ExCA, Card services requirements, 329

ExCA, Event wakeup, 330

ExCA, HBA requirements, 322

ExCA, Lr'O address windows, 323

EXCA, Interrupt requirements, 324

ExCA, Memory address windows, 323

ExCA, PC Card Interrupt requirements,
324

EXCA, Socket services requirements, 327

ExCA, Status Change Interrupi require—

ments, 324

ExCA, System Power requirements, 326

Execute-in-place, 315

EXIP, 316, 318

Expanded Memory Specification, 316

—F—

FFS, 303

First level interrupt handler, 224

Flash file system, 298, 303

Flash memory client drivers, 298

Flash memory enablers, 298

flash translation layer, 303
FLIH, 222, 224

PTL, 303

—G—

Generic enabler, 24

Generic enablers, 233

GetCardServicesInfo, 276

GetClientInfo, 291

GetConfigurationInfo, 280, 282, 283

GetFirstClient, 291

GetFirstPartition, 281, 284

GetFirstRegion, 281, 284

GetFirstTuple, 280, 283

GetFirstWindow, 286

GetMemPage, 286

GetNextClient, 291

GetNextPartition, 281, 284

GetNextRegion, 281, 284

GetNextTuple, 280, 283
GetNextWindow, 286

GetTupleData, 280, 283

HH—

HBA, 22, 26,113,115

Functions, 115

HBA, EDC, 141

HE A, maximum number supported, 116

HBA, maximum socketsfl-IBA, 11'?

HBA, Power management, 141

HLDA, 89

HOLD, 89

Host bus adapter, 22. see HBA

Hot insertion, 22

1

U0 address window overlapping, 130

HO address windows, 130

HO address windows, direct mapped, 130

HO addressing, 8-bit mode, 80
I110 data transfers, 79

HO Read Command, 75

U0 size is lG-bits, 75

U0 Status Change, 75

110 status change events, 78

U0 transfer timing, 81
U0 transfers

16-bit access to 8-bit register, 82

437

Toshiba_Apricorn 1006-0440
|PR2018-01067

Toshiba_Apricorn 1006-0441
IPR2018-01067

PCMCIA System Architecture

U0 transfers with 16—bit registers, 82

U0 Write Command, 7S

IDE Drive, 104

Initial program load, 312

Initialization, 265

Initialization byte, 313

INPACK#, 75, 7'8, 130

Input Port Acknowledge, 75

Interrupt Request, 1’5

Interrupts, 13S

IOISl6#, '15, '17, 78, 80, 83

IORD#, ”ES

IORD# and IOWR#, 7'?

IOWR#, 75

IPL, 312

IPL from ATA cards, 204

IPL from PC Cards, 294, 311

IREQ#, 75, 78

J

JEIDA, 14

JEIDA battery status, 63

JEIDA Extensions, 19

—L—

Level interrupts, 13'?

Level mode interrupts, 136
LIM 4.0, 318

Low voltage socket, 41, 51

Low-voltage socket, 53

LXIP, 316, 318

—M—

Management interrupts, I39

MapLogSocket, 290

MapLogWindow, 290

MapMemPage, 286

MapPhySocket, 290

MapPhyWindow, 290

Media Storage Formats Specification, 19

438

Memory Address mapping, 121

Memory addmss windows, 126

Overlapping, 12?

Memory client drivers, 29'?

Memory data transfers, 65

Memory enablers, 297

Memory interface, 48

Memory or U0 interface, 74, 133

Memory read timing, Attribute memory,
66

Memory technology driver, 305

Memory technology drivers, 29?

Memory transfer speed, 65

Memory transfer using WAIT#, 71

Memory-only interface, 133

Metaformat, 29

Layers, 31

Metaformat Specification, 18

ModifyConfiguration, 286

Modinyindow, 286

MTD, 290, 297, 303, 305

Multiple function card, 209, 210

Multiple function interrupts, 219, 221

0

OE#, 59

OpenMemory, 289, 300, 304

Overlapping U0 Windows, 130

Overlapping memory windOWS, 127

p

PC Card Address, 55

PC Card ATA specification, 19

PC Card Data, 59

PC Card detection, 11?

PC Card device size, 135

PC Card dimensions, 36

PC Card Interrupts, 135

PC Card socket, 22

PC Cards, 14

PCMCIA, 14

Toshiba_Apricorn 1006-0441
|PR2018-01067

Toshiba_Apricorn 1006-0442
IPR2018-01067

PCMCIA Evolution, 17

PCMCIA Extensions, 19

PCMCIASYS, 31'?

Physical Specification, 18

Pin definition, memory interface, 48

Pin length, 42

Pin replacement register, 79

Point enablers, 233, 309

POST, 3 13

Power Control register, 33?

Power Management, 141, 267

Power switching, 119

Pulse interrupts, 138

Pulse mode interrupts, 136

—R——

Read transfers, common memory, 68

ReadMemory, 289, 305

READY, 60. 62

READY Status, 62

REG#, 59, 77

RegisterClient, 276, 300, 303, 304

RegisterEraseQueue, 289

RegisterMTD, 290

RegisterTimer, 290

Registration, 2?5

RegistrationComplete, 227, 279

ReleaseConfiguration, 286

ReleaseDMA, 286

ReleaseExclusive, 291

ReleaselO, 285

ReleaseIRQ, 285

ReleaseSocketMask, 286

ReleaseWindow, 285

ReplaceSocketServices, 291

RequestConfiguration, 286, 288

RequestDMA, 285

RequestExclusive, 29 1

Requesting resources, 28'?

RequestIO, 285

RequesthQ, 285

RequestSocketMask, 236

RequestWindow, 285
Reset, 64

Resource allocation, 284

Resource management functions defined,
264

ReturnSSEntry, 290

Ring Indicate, 330

—S—

SetRegion, 290
Socket

2.1: compliant socket, 40

Access timing, 134

Keying, 2.); socket, 40

Keying, low voltage socket, 40

Low voltage, 52

Socket Address, 16-bit mode, 56

Socket Address, 8-bit mode, 5?

Socket and Copy Register, 106, 202
Socket functions, 249

Socket interface, 116

Address lines, 55

Data lines, 59

Vppl and Vpp2, S4
Socket interface control, 133

Socket interface selection, 133

Socket keying, 40

Socket power, 50, 119
Socket service

Installation, 237

Socket services, 22, 27, 235

Acknowledgelntermpt, 248

Adapter functions, 243

Adapter functions defined, 238

BBC functions defined, 239

Function summary, 23'?

functions, 239

GehAccessOffsets, 248

GetAdapter, 245

GetAdapterCount, 243

GetSetPriorl-Iandle, 244

GetSetSSAddr, 248

439

Toshiba_Apricorn 1006-0442
|PR2018-01067

Toshiba_Apricorn 1006-0443
IPR2018-01067

PCMCIA System Architecture

GetSocket, 249

GetSSInfo, 243

GetStatus, 252

GetVendorInfo, 247

GetWindow, 253

InquireAdapter, 245

InquireSocket, 249

InquireWindow, 253

ResetSocket, 252

SetAdapter, 245
SetSocket, 249

SetWindow, 253

Socket functions defined, 238

VendorSpecific, 24'?
Window functiOns, 253

Window functions defined, 238

x86 function codes, 241

Socket Services Specification, 18

Socket Status Change, 119

Socket transfer timing control, 133

Socket, low voltage, 41

Sockets, 22

SPKR#, 75, 79

SRAM client drivers, 298, 299, 301

SRAM enablers, 298

Standard socket, 52

Status change events, 60, 277

Status signals, 60

STSCHG#, 75, 79

SXIP, 316, 318

—T—

TC (DMA Terminal Count), 90

TC, to PC Card, 93

Tuples, 148, 330
Definition, 148

Summary listing, 158

Tuple format, 148

Type 1 card, 36

Type I card, Extended, 39

Type II card, 37

440

Type II card, Extended, 39

Type II] card, 38

Types of PC Card, 36

—V—

ValidateClS, 290

Vcc, 119

Vcc, 2.x socket, 50

Vcc, low voltage socket, 51

VendorSpecific, 291

Virtual disk, 22

Voltage Sense, 51, 120

Voltage sense pins, 50

Vppl and Vpp2, 54, 120

VS1# and VS2#, 50, 51, 120

w

WAIT#, 64, 71, 79, 134

Wait# timing, 71

Word vs byte access, 134

WP, 60, 62

write protect switch location, 36

Write timing, attribute memory, 67

WriteMemory, 289, 305

Write-Protect, 62

—X—

x86 function codes, 271

XIP, 3 15

XIP application, 318
XIP device driver, 317

XIP file management, 316

XIP loader, 317

XIP manager, 318

XIP Specification, 19
XIP.SYS, 317 ‘

XIP-expanded memory, 318
XIPwextended, 318

XIP-Simple, 318

Toshiba_Apricorn 1006-0443
|PR2018-01067

Toshiba_Apricorn 1006-0444
IPR2018-01067

YOUR GUIDE TO IT REFERENCE

Articles.
 Kern mu! wig“ mm thousands nl Ineq- .lH-er. =1»

(11::th {HIMIQL Intervirm. and I!Tr "flan-"(r ’rw'lmwr-

{1.1mm - all «Mien by run-In mu Mama mu! Hm»!

Online Books

Answers m an iniT-ml fromI”mm mm mm.

In“: amt-able on L'M lino-Uh. has a Handed Emu), 30.: {Ah saufi
get your fin! u drn II...

Review online mmn‘ir chasm”, .Iufl'nr bungmnhwa

and {usinmm tantalum» n-wl {mow Macaw 3hr ugh! :mi

[mm .I “lain-on 0! Om" 5.0-!» t-flh

..

II I

| rl- ,1

Toshiba_Apricorn 1006-0444
|PR2018—01067

Toshiba_Apricorn 1006-0445
IPR2018-01067

atW.awprofessional.com/register

mu may be eligible to receive:

' Advance notice of forthcoming editions of the book

" Related book recommendations

' Chapter excerpts and supplements of forthcoming titles

“ Information about special contests and promotions

throughout the year

" Notices and reminders about author appearances,

tradeshows, and online ch!“ I'm!wgunk

ll." ou are interested in writing a bookor'm
manuscripts prior to publication, please‘I '* '3 U I“

Editorial Department I V I.
Addison—Wesley Professional

75 Arlington Street, Suite 300 nfiwfiBoston,MA 02116 USA I
Email: AWPro@aw.com ey

Visit us on the Web: http://www.awprofe's'w"'null ‘ “"1

Toshiba_Apricorn 1006-0445
|PR2018—01067

Toshiba_Apricorn 1006-0446
IPR2018-01067

PC Program”ring/Hardware
cc;

The realization of full co npatibility and interoperability with PC card technology is
built on a thorough understanding of PC card architecture. PCMCM System Architecture
explains this architecture with a systematic approach that is clear and concise.”

PCMCIA System Architecture: Iii-Bit PC Cards,

Second Edition describes PC card hardware and

software interfaces and their relationships to over—
all system design. Developed by the Personal

Computer Memory Card International

Association (PCMCIA) and the Japan Electronics

Industry Development Association (J EIDA), the
PC Card Standard defines a standard hardware

and software interface for small removable 16—bit

cards. The PC Card Standard also defines a new

32—bit PC Card called CardBus. For more infor-

mation on this standard see CurdBus System
Architecture (Addison—Wesley, 1995). PCMCIA

expert Don Anderson provides a comprehensive

treatment of the interface including:

' socket interface

' card information structure

' host adapter requirements
' card electrical interface

° bus cycle control
' address translation

' low voltage support

‘ translation of card interrupts
' card event notification

' DMA socket interface

' enabling and configuring PC cards
' card and socket services

This book also examines an adapter implementa-

tion using Cirrus Logic CL—PD6722.

WADDISON—WESLEY

Pearson Education

“Michael J I-Iomic

Engineering Manager, Peripheral Systems Development

Dell Computer Corporation

If you design or test hardware or software that

involves 16—bit PC cards, PCMCIA System

Architecture is an essential, time—saving tool.

The PC System Architecture Series is a crisply writ—

ten and comprehensive set of guides to the most

important PC hardware standards. Each title

explains from a programmer’s perspective the

architecture, features, and operations of systems

built using one particular type of chip or hardware
specification.

MindShare, Inc., is one of the leading technical

training companies in the hardware industry, pro-

Viding innovative courses for dozens of companies,

including Intel, IBM, and Compaq.

Don Anderson passes on his wealth of experience

in digital electronics and computer design by

training engineers, programmers, and technicians
for MindShare.

Cover design by Barbara T. Atkinson
Cover photograph by Tatsuhiko Shimada/Photonica

 llllllllllIll l umwmm1409918

ISBN 0—201 -40991-7

$39.99 US
$62.99 CANADA

Toshiba_Apricorn 1006-0446
|PR2018—01067

