PCMCIA System Architecture

As shown in figure 11-1, the CIS is read by PC Card client drivers during card
initialization to determine the configuration options supported by the card.
The PC Card client accesses the CIS via card and socket services. Once the
card type and resource requirements have been read from the CIS, the PC
Card client driver programs the HBA and configures the PC Card, again via
card and socket services. No further access is typically made to the CIS after
the card has been initialized. The memory or I/O device can now be accessed
via the host expansion bus, as would any other expansion device. Note that
the CIS is only accessed by programs that are PCMCIA aware. Most applica-
tion programs have no knowledge that they are accessing devices
implemented in PC Card packages.

Configuration and | Hardware I Run-Time
Event Notification | | Software

Software | |

| |

| |

PC Card Enablers T
(PCMCIA Init & Event Processing) -|-| : Host SYStem : Applications -H
- \ I [q : . J
| |
| |
. | z | Operating
Card Services | » I System
g | G |
g I .g;: | -~
L g I oz = =
T E [| Device Drivers
| (Run-Time Code)
Socket Services i PCMCIA | L n

Config Host Bus Adapter l
]

I |

| [

I PC Card PC Card I

| [

| |

Figure 11-1. PCMCIA Software Flow

146

Toshiba_Apricorn 1006-0161
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

The Card Information Structure (CIS)

The CIS is mapped into the attribute memory address space starting at ad-
dress zero as illustrated in figure 11-2. The CIS consists of a linked list of data
blocks, or tuples, that describe the function and characteristics of a PC Card.
Configuration software accesses this data to determine the characteristics and
configuration requirements of a given PC Card. Tuples are identified by a
unique code which in the first byte of each tuple.

Note that CIS data is mapped only to even locations within the attribute ad-
dress space; thus, information is returned only on the lower data path
(D7:D0). This simplifies card designs for accommodating eight-bit host sys-
tems that connect only to the lower data path.

Attribute Memory
Address Space

3FFFFFE
Tuple 4 {123 Code
16 pan >
Tuple 3 € 14 Link Value
12 Code
10 | _Data |
E Data
Tuple2 § ¢ Data
A Link Value
8 Code
6 Data
4 Data
Tuple 1
2 Link Value
0 Code

Figure 11-2. Example CIS Layout Consisting of a Linked List of Four Tuples

147

Toshiba_Apricorn 1006-0162
IPR2018-01067

PCMCIA System Architecture

Tuples

A tuple is defined in Webster's Ninth New Collegiate Dictionary as a "set of
elements." A tuple in PCMCIA terminology refers to a defined set of data
items that characterize some facet of a PC Card. The PCMCIA standard speci-
fies tuples intended to be used by PC Card designers for providing
information about their device. Tuples provide information such as the PC
Card's device speed and size. Tuple information is most often used by con-
figuration software to determine the configuration requirements of the card.
However, other tuples provide information that can be used by utility pro-
grams and applications to ascertain additional capabilities of the card.

Tuple Format

All tuples have a general format defined by PCMCIA (refer to table 11-1). The
first one-byte element (entry 0) of every tuple is a tuple type code that defines
the tuple's function. The second entry (entry 1) of every tuple is a one-byte
link value (in hex) that specifies the number of additional bytes remaining in
the tuple. The number and definition of these remaining bytes depends on the

type of tuple.
Table 11-1. Basic Tuple Format
Byte Standard Tuple Format
0 || TPL_CODE [Tuple type code (XXh). See table 11-7 for tu-

ple codes.

1 TPL_LINK Link to next tuple (number of bytes (in hex)
remaining in tuple).

n TPL_DATA Tuple specific data block (definition, format
and length defined by individual tuples).

The CIS consists of a linked list of tuples. Each tuple specifies a link value that
identifies the start of the next tuple. Processing software can read the CIS en-
tries and interpret the meaning of the tuples that contain configuration
information for the PC Card.

The exact set of tuples incorporated into the CIS depends primarily on the
type of card and its capabilities. For example, the Device Information Tuple

148

Toshiba_Apricorn 1006-0163
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

may contain all the information needed to determine the resources required
by a simple SRAM card, while other card types might require numerous tu-
ples to define the configuration of the card.

A Sample Tuple

Consider the information provided by the Device Information tuple shown in
table 11-2. This tuple defines a 100ns SRAM card containing 1TMB of memory.
The first byte within the tuple contains a value of 01h defining this tuple as a
device information tuple. The second byte (03h) specifies the number of bytes
remaining in the tuple. The device information tuple contains two bytes
within the tuple's data area. One that defines the memory card type, speed,
size, and whether the write-protect switch affects the range of memory being
defined, and one that defines the size of the memory device.

The memory card device type is specified in the tuple as a hexadecimal code
value. In this example, the device code is a 6h. As shown in table 11-3, a de-
vice code of 6h identifies the card as SRAM. Similarly, the SRAM's cycle time
is specified with a speed code of 4h. This indicates a device speed of 100ns as
shown in table 11-4. The size of the device can be determined by reading the
unit size code and multiplying the unit size by the number of units specified.
The unit size code of 5h, specifies memory banks of 512KB (refer to table 11-5)
and the number of units field contains a 1h, indicating two memory units are
implemented for a total size of 1IMB. Finally, the tuple is terminated by FFh.
This tuple includes a termination byte because the data within the tuple can
vary in length (i.e. more than one memory device can be described by the
Device Information tuple). The termination bytes make it easier for parsing
software to recognize the end of variable length tuples. Tuples that do not
vary in length do not define a termination byte.

Table 11-2. Example Device Information Tuple for an SRAM Card

Byte [Value Device Information Tuple
0 01h || Tuple Code (01h)
1 03h Link to next tuple (3h)
2 64h *Device Type=bits 7:4 (6h); WP=bit 3 (0);Speed=bits 2:0(4h)
3 0Dh *Device Size= # of units [bits 7:3 (1)] times unit size [bits 2:0 (5h)]
4 FFh FFh (marks end of device info field)

* Refer to the following tables for an interpretation.

149

Toshiba_Apricorn 1006-0164
IPR2018-01067

PCMCIA System Architecture

Table 11-3. Device Type Codes

Code | Name Meaning
0 DTYPE_NULL No memory device. Generally used to desig-
nate a hole in the address space. If used, speed
field should be set to Oh.
1 DTYPE_ROM Masked ROM
2 DTYPE_OTPROM One-time programmable PROM
3 DTYPE_EPROM UV EPROM
4 DTYPE_EEPROM EEPROM
5 DTYPE_FLASH Flash EPROM
6 DTYPE_SRAM Static RAM (JEIDA has Nonvolatile RAM)
7 DTYPE_DRAM Dynamic RAM (JEIDA has Volatile RAM)
8-Ch Reserved
Dh DTYPE_FUNCSPEC Function-specific memory address range. In-
cludes memory-mapped I/O registers,
dual-ported memory, communication buffers,
etc., which are not intended to be used as gen-
eral-purpose memory.
Eh DTYPE_EXTEND Extended type follows.
Fh Reserved
Table 11-4. Device Speed Codes
Code Name Meaning
Oh DSPEED_NULL Use when device type = null
1h DSPEED_250NS 250 nsec
2h DSPEED_200NS 200 nsec
3h DSPEED_150NS 150 nsec
4h DSPEED_100NS 100 nsec
5h-6h (Reserved)
7h DSPEED_EXT Use extended speed byte.

150

Toshiba_Apricorn 1006-0165

IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

Table 11-5. Unit Size Codes

Code Units

0 512 bytes
1 2K

2 8K

3 32K

4 128 K

5 512K

6 2M

i Reserved

The Configuration Table

I/0O devices require that the CIS contain a configuration table that is not re-
quired by memory cards. This table consists of multiple entries each of which
describes a set of configuration options that the PC Card needs for normal op-
eration. A comparison can be made between each configuration table entry
and each possible switch and jumper setting required when configuring an
ISA card. Each configuration table entry reflects the possible resource combi-
nations that the PC Card can be configured for.

The Configuration Entry Tuple

Figure 11-3 illustrates a CIS that contains a configuration table. Directly pre-
ceding the configuration table is the configuration tuple that specifies which
configuration registers are implemented by the PC Card and where they are
mapped within attribute memory address space. The configuration tuple also
specifies the index number of the last entry within the configuration table. As
illustrated in figure 11-3, the configuration table consists of a series of configu-
ration table entry tuples (CFTABLE_ENTRY). Each entry contains up to seven
data structures that describe operational characteristics of the PC Card. These
structures include:

1. A power description byte — the power parameters specified within this
structure may apply to Vec only, Vee and Vppl and Vpp2 (Vppl=Vpp2),
or separately to Vcc, Vppl, and Vpp2. The specific power parameters de-

151

Toshiba_Apricorn 1006-0166
IPR2018-01067

PCMCIA System Architecture

scribed by the structure are also selectable as defined by the parameter
selection byte within the power description structure.

2. Configuration timing information — this structure defines the maximum
length of time that the PC Card will keep READY deasserted and the
maximum duration of the WAIT# signal.

3. 1/O address space description — defines up to sixteen ranges of 1/0O ad-
dress space required by the PC Card for this configuration. The structure
defines the exact base I/O address and the number of address locations
within the range

4. Interrupt request description — specifies the system interrupt request
line required for this configuration. A single IRQ can be specified or a
group of IRQs can be defined, any of which will satisfy the configuration
requirements. Also included in the description is information that defines
the deliver mode (level or pulse), whether interrupt sharing is supported,
and alternative interrupt signal definitions (i.e. NMI, I/O check, bus error,
vendor specific interrupt).

5. Memory address space description — specifies up to eight ranges of
memory address space required for this configuration. Both the Host
processor address and the PC Card address can be specified. When both
the host and PC Card address are the same, no address translation is re-
quired since the host address is directly mapped into the common
memory address space. If no host address range is specified, then any
range of host address space can be used and mapped by the HBA to the
specified range within common memory address space. A base address
and range value are specified for each block of addresses needed for this
configuration.

6. Miscellaneous information structure — contains information regarding
support for special features required by this configuration. Two bytes are
defined by the PC Card standard. The first byte identifies the PC Card’s
support for power down (for power management software), whether the
SPKR# pin is used, and the number of identical PC Cards that are sup-
ported for the max twins cards option (e.g. support for multiple ATA
drives). The second byte defines support for DMA, including the DMA
transfer size and specifies which pin the PC Card uses for DREQ#.

7. Subtuple information — permits definition of additional information re-
lating to this configuration. Subtuples are included as extensions to the
configuration table entry tuple and may include information such as the
operation system for which the configuration was intended and the physi-
cal device being implemented in this configuration.

152

Toshiba_Apricorn 1006-0167
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

Configuration
Registers

Config Table
Entry 3
Config Table
Entry 3
Config Table
Entry 2

Configuration Table

Config Table
Entry 1

Configuration Tuple Tuple 5

Tuple 4

Other ____Tupl)
CIS
Tuples Tuple 2

Tuple 1

Figure 11-3. The Configuration Table Consists of a Number of Entries, Describing the
Configuration Options Supported by the PC Card.

Table 11-6 shows the format of the configuration table entry tuple. The actual

structures that are implemented within this tuple are specified by the feature
selection byte.

153

Toshiba_Apricorn 1006-0168
IPR2018-01067

PCMCIA System Architecture

Table 11-6. Format of the Configuration Table Entry Tuple

Byte Name Description of Entry

0 | TPL_CODE [Configuration Entry tuple code (CISTPL_CFTABLE_ENTRY, 1Bh)

1 TPL_LINK | Link to next tuple (n-1, {2 minimum})

2 TPCE_INDX| Configuration table index byte — this byte contains the index number of
the entry, specifies whether the interface byte will follow, and specifies
whether this entry is a default entry or not.

TPCE_IF Interface description byte — this field is present only when the interface
bit of the Configuration-table index byte is set

TPCE_FS Feature selection byte indicates the optional structures present

TPCE_PD | Power description structure

TPCE_TD | Configuration timing information structure

TPCE_IO 1/0 address space description structure

TPCE_IR Interrupt request description structure

TPCE_MS | Memory address space description structure

TPCE_MI Miscellaneous information structure

.n || TPCE_ST Additional information about the configuration in subtuple format

Interpreting the Configuration Table

When parsing software (usually a card services client driver) processes an en-
try within the configuration table, it must determine if the resources specified
are available. (Refer to the chapter entitled, “Client Drivers” for a discussion
of resource acquisition.) If all resources that have been requested are available
then the configuration is satisfied and no additional configuration table entries
need be evaluated. If however, one or more of the resources required to sat-
isfy the configuration are not available, then parsing software must evaluate
subsequent entries in an attempt to find alternative system resources that will
satisfy the PC Card’s configuration requirements.

The first entry within the configuration table is typically specified as a default
entry. Default entries indicate that all configuration information specified
within the entry should be retained even in the event that the full configura-
tion was not satisfied. For example consider the configuration table illustrated
in figure 11-4. The first entry is a default entry that specifies a power struc-
ture, a configuration timing structure, an I/O address space structure, an
interrupt request structure and a miscellaneous information structure. As-

154

Toshiba_Apricorn 1006-0169
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

sume that parsing software was able to satisfy all configuration information
specified by this entry except the interrupt request line. Software then pro-
ceeds in the following manner:

1. Since this is a default entry, all resources successfully acquired are re-
tained. This eliminates the need to re-specify all the parameters that apply
globally to the card’s configuration regardless of which I/O address space
and IRQ line is assigned to the card. In this example, since the entire con-
figuration was not satisfied, parsing software proceeds to the next entry,
attempting to find alternative resources that the PC Card can use.

2. Assume that entry 2 is not a default entry and contains only an I/O ad-
dress structure and IRQ structure. Parsing software recognizing a non-
default entry knows it must successfully acquire all configuration options
specified, and if unable to do so must release the partial configuration by
returning the resources previously acquired. Furthermore, since a pair of
resources is being requested, the parsing software recognizes that the I/O
address space acquired when attempting to satisfy the previous default
entry must be released in favor of the new I/O address space and IRQ
lines specified by this entry. If both configuration options are acquired
successfully, then the configuration is completed. If not, the incomplete
configuration is released and parsing software proceeds to the next entry.

3. Assume that entry 3 is not a default entry and contains another set of I/O
addresses and another IRQ line. Once again parsing software attempts to
acquire both resources, and if not successful must release any resource
acquired and proceed to the next entry. As before, if both are acquired the
configuration is complete.

4. Entry 4 is the last configuration entry and contains the final I/O address
space and IRQ options for configuring the PC Card. If these resources
cannot both be acquired, then the parsing software must report to the user
that the card cannot be configured.

155

Toshiba_Apricorn 1006-0170
IPR2018-01067

PCMCIA System Architecture

Entry 4

Entry 3

Entry 2

Entry 1

Configuration
Table

Interrupt Structure

1/O Addr. Structure

Non-default Entry

Interrupt Structure

/O Addr. Structure

Non-default Entry

Interrupt Structure

/O Addr. Structure

Non-default Entry

Misc. Structure

Interrupt Structure

I/O Addr. Structure

Timing Structure

Power Structure

Default Entry

Figure 11-4. Example Configuration Table with One Default and Four Non-Default

Entries

Once parsing software has obtained the configuration resources from the sys-
tem it must configure the HBA and PC Card so that they respond to the
resources. Parsing software uses the index number of the configuration table
entry that specifies the successful configuration when configuring the PC
Card. The index number is written into the PC Card’s configuration option
register, telling the PC Card which set of configuration options were success-

fully acquired.

156

Toshiba_Apricorn 1006-0171

IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

Multiple Function PC Cards

Multi-function PC Cards require a separate CIS and configuration register set
for each function within the card. As illustrated in figure 11-5, a global CIS is
required when implementing a multi-function PC Card. The global CIS con-
tains a long link multi-function tuple (LONGLINK_MEFC) that lists the entry
points of each function’s CIS. The first entry within the target CIS must con-
tain a LINKTARGET tuple to verify the correct start address specified by the
LONGLINK_MEFC tuple. Note that the configuration registers used by each
function are identified by the configuration tuple within each CIS.

Function 3
Config. Regs.

Function 2
Config. Regs.

Function 1
Config. Regs.

CIS Tuples

LINKTARGET

CIS Tuples

LINKTARGET

CIS Tuples

LINKTARGET

CIS Tuples

LONGLINK_MFC

Attribute Memory
Address Space

FFFFFFF

. Function 3

Cis

} Function 2
cis

} Function 1
cis

Global
Cls

0000000

Figure 11-5. Configuration Table Structure Used by a Triple-Function PC Card

157

Toshiba_Apricorn 1006-0172
IPR2018-01067

PCMCIA System Architecture

Devices Commonly Used for the CIS

Both ROM and FLASH are commonly used to implement the CIS. The clear
advantage of FLASH is that the CIS can be easily updated. The CIS is quite
small (usually not larger than 1 KB) and in the case of SRAM cards it can be as

few as six bytes.

CIS Access Timing

Attribute memory (the CIS and configuration registers) must be accessed by
card enabling software to determine the type of card installed and how it
should be configured. Attribute memory is accessed by the HBA based on a
default 300ns cycle time. This ensures that the CIS can be accessed regardless
of the speed of other devices within the card. See the chapter entitled "The
Memory-Only Interface" for details regarding attribute memory accesses.

Summary of Layer 1 Tuples

Table 11-7 lists the tuples that are currently defined by the PCMCIA specifica-
tion for the CIS (layer 1 of the metaformat). Tuples are also defined for layers
2 and 3, but are not discussed here. Refer to the PCMCIA specification for de-

~ tails.

Table 11-7. Tuples defined for Compatibility Layer One (CIS)

Code (h) || CISTPL_NAME Description and Purpose

00 NULL Null Control tuple — Used as a place holder. Ignored by

tuple processing software.

01 DEVICE Device Information for Common Memory — Contains
information about the card’'s common memory devices,

including speed, type, write protect and size.

02-05 Reserved Reserved for future versions of the device information
tuple or for CardBus implementations.

06 LONGLINK_MEFC | Long-Link for Multi-Function Card — Specifies the
number of functions within this PC Card (i.e. sets of

function-specific CIS within the card.

configuration registers) and defines the location of each

07-0F Reserved Reserved for future versions or for CardBus tuples.

158

Toshiba_Apricorn 1006-0173

IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

Table 11-7 Tuples Defined for Compatibility Layer One (Continued)

Code (h)

CISTPL_NAME

Description and Purpose

10

CHECKSUM

Checksum Control — Provides a means for verifying the
contents of the CIS in memory. Multiple checksum con-
trol tuples can be implemented within a single CIS.

11

LONGLINK_A

Long-Link Control to Attribute Memory — Specifies the
continuation of a tuple string to a location in attribute
memory, beyond the limits of the 1 byte link field. The
entry point specified must contain a Link Target tuple.

12

LONGLINK_C

Long-Link Control to Common Memory — Specifies the
continuation of a tuple string to a location in common
memory, beyond the limits of the 1 byte link field. The
entry point specified must contain a Link Target tuple.

13

LINKTARGET

Link Target — Verifies the continuation of a valid tuple
string. The Link Target tuple is the first tuple at the entry
point specified by a Long-Link tuple.

14

NO_LINK

The No Link tuple tells processing software that when
the end of the current tuple chain is reached (i.e. the
Termination Tuple has been detected) that no more tu-
ples exist in the chain to be processed. (See Termination
tuple — code FFh for more information.)

15

VERS_1

Level 1 (also layer 1)Version identifies the PCMCIA
compliance level of the CIS (also called the compatibility
layer or metaformat layer one). Following the Version
information, production information is provided in a
series of ASCII strings each ended by zero (Called AS-
Cliz).

16

ALTSTR

Alternate Language String — Includes additional lan-
guages for ASCII strings used in the product information
tuple (code 15h). Also used for the Level 2 Version /
Product Information tuple (code 40h).

17

DEVICE_A

Device Information to Attribute Memory — Contains
information about the card's attribute memory devices,
including speed, type, write protect and size. (optional)

18

JEDEC_C

Specifies the JEDEC (Joint Electronic Device Engineering
Council) manufacturer and programming algorithm
required by programmable devices listed in the device
information tuple (01h) for common memory. Entries in
the JEDEC identifier tuple have a one-to-one correspon-
dence to the entries in the device information tuple.

159

Toshiba_Apricorn 1006-0174

IPR2018-01067

PCMCIA System Architecture

Table 11-7 Tuples Defined for Compatibility Layer One (Continued)

Code (h) | CISTPL_NAME Description and Purpose

19 JEDEC_A Specifies the JEDEC (Joint Electronic Device Engineering
Council) manufacturer and programming algorithm
required by programmable devices listed in the device
information tuple (17h). Entries in the JEDEC identifier
tuple have a one-to-one correspondence to the entries in
the device information tuple.

1A CONFIG Configuration tuple — Specifies the address of the con-
figuration registers in attribute memory space and
specifies which configuration registers are implemented
in the card. Also identifies the last configuration entry
within the configuration table, and provides a method of
appending subtuples to the basic configuration tuple.

Subtuples define additional information related to the
card’s configuration. Subtuple codes 80h-BFh are re-
servé& for vendor specific items, while COh- FEh are
reserved for future PCMCIA standard definition. Cur-
rently, only the Custom Interface subtuple has been
defined.

1B CFTABLE_ENTRY |[Configuration Table Entry — Provides configuration
options supported by the card. Each configuration table
entry provides additional configuration options. The
entire set of configuration entries within the CIS is called
the configuration table.

e DEVICE_OC Other Conditions Device Information (common mem-
ory) — Specifies the characteristics of devices mapped in
the common memory address space, when operating
under conditions other than the defaults. For example, if
the card is a dual voltage card (operates at both 5 volts
and 3.3 volts) the characteristics of the common memory
devices may be altered depending on which voltage is
applied. There must be a one-to-one correspondence
between the information fields listed in the Device In-
formation tuple and the Other Conditions Device
Information tuple.

160

Toshiba_Apricorn 1006-0175
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

Table 11-7 Tuples Defined for Compatibility Layer One (Continued)

Code (h)

CISTPL_NAME

Description and Purpose

1D

DEVICE_OA

Other Conditions Device Information (attribute mem-
ory).— Specifies the characteristics of devices mapped in
the attribute memory address space, when operating
under conditions other than the defaults. For example, if
the card is a dual voltage card (operates at both 5 volts
and 3.3 volts) the characteristics of the attribute memory
devices may be altered depending on which voltage is
applied. There must be a one-to-one correspondence
between the information fields listed in the Device In-
formation tuple and the Other Conditions Device
Information tuple.

1E

DEVICEGEO

Device Geometry (common memory) — Device geome-
try provides the erase, read, and write characteristics of
programmable devices. This tuple consists of multiple
entries for each device identified in the device informa-
tion tuple.

1F

DEVICEGEO_A

Device Geometry (attribute memory) — Device geome-
try provides the erase, read, and write characteristics of
programmable devices. This tuple consists of multiple
entries for each device identified in the device informa-
tion tuple.

20

MANFID

PCMCIA Manufacturers Identification — Contains the
PCMCIA manufacturer identification code and manufac-
turer card identifier and revision information.

21

FUNCID

Function Identification — Categorizes the card's func-
tional type and specifies whether the card should be
initialized during basic system initialization or when the
operating system loads.

A multi-function device may also be specified, in which
case additional Function Identification tuples for each of
the card's functions will follow.

Code (h)

CISTPL_NAME

Description and Purpose

161

Toshiba_Apricorn 1006-0176

IPR2018-01067

PCMCIA System Architecture

Table 11-7 Tuples Defined for Compatibility Layer One (Continued)

Code (h) | CISTPL_NAME Description and Purpose

22 FUNCE Function Extension — Provides detailed information
about a specific function previously identified by the
function identification tuple. This tuple contains addi-
tional information useful to application programs or
utility programs that are PCMCIA aware. Function ex-
tensions, if applicable, follow each Function
Identification tuple in the tuple chain.

Extensions are useful for defining the capabilities of
various types of devices such as modems and network
interface cards.

FF END Termination tuple — Indicates that this tuple is the last
tuple in the string. However, by default parsing software
will continue processing tuples at location zero in com-
mon memory. This implied jump to common memory
occurs unless this tuple string contains either a
LONGLINK OR NO_LINK tuple. If a no-link tuple has
been encountered, the tuple string ends without further
processing. If a valid long-link tuple has been encoun-
tered, tuple processing continues at the location
specified, contingent on the presence of a LINKTARGET
tuple at the target location. If there is neither a long- link
nor a no-link tuple within the tuple string, tuple process-
ing should continue at location zero in common
memory.

Sample CIS implementations for SRAM, FAX/MODEM, Flash Card and ATA
Hard Drive are discussed in later chapters.

Note that the CIS must start at address location zero in attribute address
space or at the location specified by the LONGLINK_MEFC tuple in multiple
function PC Cards.

162

Toshiba_Apricorn 1006-0177
IPR2018-01067

Chapter 12: Function Configuration Registers

Chapter 12

The Previous Chapter

The previous chapter discussed the CIS and its role in the PC Card configura-
tion process. Tuples were introduced and their format and structure were
described. The basic structure of the CIS’s configuration table required by I/O
cards was also described.

This Chapter

This chapter discusses the configuration registers and provides a complete de-
scription of each register specified by the PC Card standard. Configuration
register implementations for both single and multiple function cards are cov-
ered.

The Next Chapter

The next chapter describes a sample SRAM card implementation, including a
functional block diagram of the SRAM card along with a sample CIS.

Configuration Registers

Each PC Card’s I/O function must implement configuration registers. The PC
Card standard defines the following configuration registers:

Configuration Option Register — mandatory for all I/O functions
Configuration and Status Register — optional

Pin Replacement Register — optional

Socket and Copy Register — optional

Extended Status Register — optional

/O Base Address Register(s) — mandatory for multi-function PC Cards
/0O Limit Register — optional

® @ @ @ o o @

163

Toshiba_Apricorn 1006-0178
IPR2018-01067

PCMCIA System Architecture

The format of each register is listed in table 12-1. These configuration registers
are mapped into the attribute memory space at the location specified within
the CONFIG tuple. Note that each function of a multiple function PC Card
will have a dedicated set of configuration registers.

Table 12-1. Format of the Function Configuration Registers

Offset 7 6 5 4 3 2 1 0
0 Configuration Option Register
SRESET | LevIREQ | Function Configuration Index
2 Configuration and Status Register
Changed | SigChg | 1018 | RFU | Audio | PwrDwn | Intr | IntrAck
4 Pin Replacement Register
CBVDI | CBVD2 | CREADY | CWProt | RBVDI | RBVD2 | RREADY | RWProt
6 Socket and Copy Register
RFU ' Copy Number T Socket Number
8 Extended Status Register
Req
Event3 Event2 Eventl Req Attn | Enable3 | Enable2 Enablel Attn
: Enable
10 1/0 Base 0
12 1/O Base 1
14 1/0 Base 2
16 1/0O Base 3
18 1/0 Limit

Each of these registers have read /write capability and are mapped at even lo-
cations, consistent with the design of attribute memory. The definition of each
configuration register is detailed below.

Configuration Option Register

The configuration option register (COR) configures PC Cards that have pro-
grammable address decoders. Once a card's client driver successfully parses
the CIS and obtains the system resources required by the card, it assigns the
resources to the card via the COR.

As discussed earlier in this chapter, the configuration table within the CIS
specifies the configuration options that a given card supports. Each entry

164

Toshiba_Apricorn 1006-0179
IPR2018-01067

Chapter 12: Function Configuration Registers

within the CIS contains a different combination of resources that satisfies a
card's resource requirements. When the configuration options described by a
particular configuration entry are found to be available, the index number of
that configuration entry is written to the COR (refer to table 12-2). The index
number programs the card to utilize the resources specified within the associ-
ated configuration table entry.

As shown in table 12-2, the COR also specifies whether the card should use
level or pulse mode interrupts and provides a means for software to reset the
card. Note that some memory cards may implement this register to support
software reset as shown in the flash example. (See the chapter entitled, “A

FLASH Card Example.”)
Table 12-2. Configuration Option Register format and Definition
7 6 5 4 3 2 1 0

SRESET || LevlReq Configuration Index

SRESET Software Reset. Setting this bit to one (1) places the card in the
reset state. This is equivalent to assertion of the RESET signal ex-
cept that this bit is not cleared. Returning this bit to zero (0),
leaves the card in the same state that follows a hardware reset.
This bit is set to zero by power up and hardware reset.

LevlReq Level Mode IREQ#. Level Mode Interrupts are selected when this
bit is one (1). Pulse Mode Interrupts are selected when this bit is
zero (0).

Conf Index Configuration Index. This field is written with the index number

of the entry in the card's Configuration Table that corresponds to
the configuration option chosen for the card. When the Configu-
ration Index is 0, the card's I/0O is disabled and will not respond
to any I/O cycles and will use the memory-only interface.
Multi-function Card Index definition. The PC Card standard
specifically defines the use of each bit within the configuration
index.

Bit 0 — Enables/disables specific function. 1=enabled; 0=disabled
Bit 1 — Specifies I/O addressing used. 1=I/0 addresses specified
by the base and limit registers are passed to function; 0=all host
I/O address are passed to the function. (This bit is valid only
when function is enable via bit 0.)

Bit 2 — Enables IREQ# routing. 1=This function will deliver inter-
rupts to the PC Card’s IREQ# line; O=interrupts disabled for this
function. (This bit is valid only when function is enabled.)

Bits 3-5 — vendor specific

165

Toshiba_Apricorn 1006-0180

IPR2018-01067

PCMCIA System Architecture

Card Configuration and Status Register

This register contains a variety of functions used to control the card and re-
port status, as shown in table 12-3. These functions include:

e Status change indication and reporting (bits 6 and 7)
e PCMCIA host expansion bus interface size (bit 5) '
Audio enable (bit 3)

Power down control for power conservation (bit 2)

e Interrupt pending status (bit 1)

Status Change

Prior to being configured, an 1/O card interfaces to the HBA as a memory
only device. While in this state, any status change event must be reported di-
rectly over the appropriate status change pin. However, when the card is
configured, (the COR is written) the card switches to the I/O interface and
status change events are now reported via the pin replacement register (PRR)
and the card configuration and status register (CSR).

The status changed bit (bit 7) and the signal change bit (bit 6) of the CSR de-
termine whether a status change has occurred when the card is configured for
the I/0O interface and whether it should be reported over the I/O interface's
STSCHG# pin. When a status change event occurs, the appropriate bit is set in
the PRR and the status changed bit (Chng) is set in the CSR. When a status
change occurs, the card asserts the STSCHG# pin to notify the HBA of the
event. The Chng bit remains set until the PRR bit is reset indicating that the
status change event has been processed.

The signal change bit (SigChg) is used by the HBA to disable the card from as-
serting the STSCHG# pin again until the current status change event has been
processed. Software must clear this bit when processing a status change inter-
rupt for the card. This permits the next status change event to be reported
once the previous event has been processed.

166

Toshiba_Apricorn 1006-0181
IPR2018-01067

Chapter 12: Function Configuration Registers

' Table 12-3. Card Configuration and Status Register and Definition

7

6 5 4 3 2 1 0

Chng

SigChg || 10is8 Resrv [Audio | PwrDn Intr IntrAck
(0)

Chng

Status Change Detected. This bit indicates that one or more of the Pin
Repldcement Register bits (CBVD1, CBVD2, CRDY, or CWProt) is set to
one, normally causing the STSCHG# signal to be asserted. However, if
the SigChg bit (see below) is 1 and the card is configured for an I/O
interface, the STSCHG# pin is asserted when this bit is set.

SigChg

Signal Change Enable/Disable. This bit is set and reset by the host to
enable and disable a status-change signal from the status register. When
this bit is set and the card is configured for the I/O interface, the Chng
bit controls pin 63 (STSCHG#). If no status change signal is desired, this
bit should be set to zero and the STSCHG# signal will be held deas-
serted when the card is configured for 1/0.

10is8

I/0 Cycles Occur Only as 8-bit Transfers. When the host can provide
I1/0 cycles only using the D7:D0 data path, the PCMCIA software will
set this bit to a 1. The card is guaranteed that accesses to 16-bit registers
will occur as two byte accesses rather than a single 16-bit access. This
information is useful when 16-bit and 8-bit registers overlap.

Resrv

Reserved bits must be 0.

Audio

Audio Enable. This bit enables audio information to be sent to the HBA
via the speaker pin when configured for an I/O interface.

PwrDn

Power Down. This bit is set to one to request that the card enter a
power-down state. PCMCIA software must not place the card into a
power-down state while the card's READY pin is in the low (Busy)
state.

Intr

Interrupt Request Pending. This bit represents the internal state of the
interrupt request. This value is available whether or not interrupts have
been configured. How the Intr bit is cleared is dependent of how the
IntrAck bit is configured.

IntrAck=0 — Intr reflects the function’s interrupt request status. If the
interrupt is cleared within the function, then Intr is reset by the func-
tion.

IntrAck=1 — Infr remains set even though the interrupt condition has
been cleared. It is reset by system software to indicate it is ready to re-
ceive another interrupt (implemented to support interrupt sharing).

167

Toshiba_Apricorn 1006-0182

IPR2018-01067

PCMCIA System Architecture

Table 12-3. Card Configuration and Status Register and Definition(Continued)

¥ 6 5 4 3 2 1 0

Chng [SigChg || IOis8 Resrv || Audio || PwrDn Intr IntrAck
(0)

IntrAck || Interrupt Acknowledge. This bit determines the response of the Intr
bit. The functionality associated with the IntrAck bit permits two or
more functions to share the PC Card’s IREQ## pin.

IntrAck=0 — when IntrAck is reset Intr functions as described above to
support a single interrupt implementation.

IntrAck=1 — This causes the Intr bit to remain set even though the in-
terrupt service routine has already serviced the interrupt. Normally, the
interrupt service routine clears the interrupt pending bit in a function
specific register, causing the Intr also to be cleared. However, to sup-
port interrupt sharing the Intr bit is not cleared until PCMCIA specific
software is ready to handle the next interrupt request. When cleared by
the PCMCIA software, other interrupt requests that are pending can
now be asserted over the PC Card’s IREQ# pin. (Refer to the chapter
entitled, “Multiple Function PC Cards.”

Size of Host Expansion Bus

The 10is8 bit reflects the size of the expansion bus that the HBA connects to.
When this bit is set, I/O cycles will always occurs as individual 8-bit transfers
over the lower data path (D7:D0). When the bit is reset, accesses to 16-bit reg-
isters will occur in a single cycle.

Audio Enable

The Audio bit is set to enable audio information to be sent over the I/O inter-
face's SPKR pin. Whether or not the I/O card has audio capability is specified
within the miscellaneous information structure within the configuration table

entry.

Power Conservation Mode

Some cards support a low power mode that can be used for power conserva-
tion. Power management software can set the power down (PwrDn) bit,
placing the card in a low power state, if supported. Note that this bit should
not be set if the card is in the busy state as indicated by the PRR.

168

Toshiba_Apricorn 1006-0183
IPR2018-01067

Chapter 12: Function Configuration Registers

Interrupt Pending

The Intr bit is set by the card when its interrupt request (IREQ#) pin is as-
serted. If the PC Card implements a single I/O function, the Intr bit remains
set until the interrupt service routine is executed, at which time the Intr bit is
reset.

Pin Replacement Register

Cards using a memory only interface report status change directly to the HBA
via the status change pins. However, when a card uses the I/O interface, the
status change pins are replaced by other 1/O specific interface signals. As a re-
sult, the HBA has no visibility of status change events that may occur on the
I/0O card. The pin replacement register (PRR) replaces the HBA functions that
are normally used to indicate the status of change events for the memory in-
terface.

Refer to table 12-4. The PRR specifies the current state of the status change
events (bits 3:0) and whether a change has occurred for a particular event (bits
7:4). The current state of the events (RWP, RREADY, RBVD2, and RBVD1) can
be read directly from the lower four bits of the PRR register. When a change
occurs for any of these items, its corresponding changed bit is set in the upper
group of bits. In this way, processing software can read the upper four bits to
determine which event(s) has occurred and therefore, the one needing to be
processed. When a given event is processed, the lower portion of the register
can be read to check the new state of the event that signaled the change. When
the event is processed, software should reset the changed bit, thus permitting
another event to be reported.

Table 12-4. Pin Replacement Register

7 6 5 4 3 2 1 0
CBVD1 | CBVD2 | CRdy CWP || RBVD1 || RBVD2 | RREADY || RWP
CBVD1, CBVD2 Changed BVD1 and BVD2. These bits are set to one when

the corresponding bit (RBVD1 and /or RBVD2) changes from
one state to another. These bits may also be cleared by the

host.

CREADY Changed READY. This bit is set to one when the bit
RREADY changes state. This bit may also be cleared by the
host.

169

Toshiba_Apricorn 1006-0184
IPR2018-01067

PCMCIA System Axchitecture

Table 12-4. Pin Replacement Register (Continued)

CWProt Changed Write Protect. This bit is set to one when the bit
RRWProt changes state. This bit may also be cleared by the
host.

RBVD1, RBVD2 Current State of BVD1 and BVD2. These bits represent the
internal state of the Battery Voltage Detect circuits on cards
that contain a battery. They correspond to the values that
would be on pins 63 and 62, BVD1 and BVD2 respectively.
When this bit is set, the corresponding changed bit is also set.
When this bit is cleared, the corresponding changed bit is
unaffected.

RRdy Current State of Ready. This bit represents the internal state

: of the READY signal. This bit reflects the state of READY
(since the READY pin has been reallocated for use as Inter-
rupt Request on IO Cards). When this bit is set, the
corresponding changed bit is also set. When cleared, the cor-
responding changed bit is unaffected.

RWProt Current State of Write-Protect Switch. This bit represents
the current state of the Write-Protect switch. This bit reflects
the state of the Write Protect switch when pin 24 is being
used for I0IS16#. When this bit is set, the corresponding
changed bit is also set. When cleared, the corresponding
changed bit is unaffected.

Socket and Copy Register

Refer to table 12-5. This register is used for I/O cards that can coexist with one
or more identical cards within the system and respond to the same I/O ad-
dress ranges. This capability can be used for ATA (IDE) drives that are
designated as drive 0 and drive 1. Each responds to the same I/O address
space but can be uniquely identified with the socket and copy register. The
first card configured will be assigned as copy zero and each card configured
thereafter receives the next sequential copy number. The socket number iden-
tifies the socket that a given copy occupies.

170

Toshiba_Apricorn 1006-0185
IPR2018-01067

Chapter 12: Function Configuration Registers

Table 12-5. Socket and Copy Register

7 6

5 4 3 2 1 0

Reserved (0)

Copy Number Socket Number

Reserved

This bit is reserved for future standardization. This bit
must be set to zero (0) by software when the register is
written.

Copy Number

Cards that can coexist with other cards (twin cards)
that are configured identically, should have a copy
number identifying this particular copy of the card. (0
to MAX twin cards, MAX = n-1) This field indicates to
the card that it is "nth" copy of the card installed in the
system that is identically configured. The first card in-
stalled receives the value 0. This permits identical
cards designed to do so to share a common set of I/O
ports while remaining uniquely identifiable and con-
secutively ordered.

Socket Number

This field indicates to the card that it is located in the
nth socket. The first socket is numbered 0. This permits
any cards designed to do so to share a common set of
I1/0 ports while remaining uniquely identifiable.

Extended Status Register

This register has been added to the PC Card standard to extend the number of
events that can be reported via the STSCHG# pin and to give software the
ability to detect and clear the event. The extended status register is organized
as an upper nibble (whose bits are set when the corresponding function event
occurs) and a lower nibble (that enables and disables setting the “Changed”
bit in the CSR). When a status change interrupt occurs PC Card software can
read the extended status register to determine if an associated bit has caused

an the interrupt.

171

Toshiba_Apricorn 1006-0186

IPR2018-01067

PCMCIA System Architecture

Table 12-6 illustrates the format of the extended status register. Notice that
only the “Requires Attention” and “Requires Attention Enable” bits are de-

fined.
Table 12-6. Format and definition of the Extended Status Register
D7 Dé D5 D4 D3 D2 D1 Do
Event3 Event2 Eventl Req Attn Enable3 Enable2 Enablel Req Attn
Enable
Field Description
Event3 Reserved for future expansion/definition, must be reset (0)
Event2 Reserved for future expansion/definition, must be reset (0)
Eventl Reserved for future expansion/definition, must be reset (0)

Req Attn This bit is latched within one (1) ms of an event occurring on the PC Card, (such as the start
of each cycle of the ring frequency to indicate the presence of ringing on the phone line in
the case of a modem card). When this bit is set to a one (1), and the Req Attn Enable bit is set
to a one (1), the Changed bit in the Configuration and Status register will also be set to a one
(1), and if the SigChg bit in the Configuration and Status register has also been set by the
host, the STSCHG# pin (63) will be asserted. The host writing a one (1) to this bit will reset
it to zero (0). Writing a zero (0) to this bit will not have any effect.

Enable3 Reserved for future expansion/definition, must be reset (0)

Enable2 Reserved for future expansion/definition, must be reset (0)

Enablel Reserved for future expansion/definition, must be reset (0)

Req Attn En- || Setting this bit to a one (1) enables the setting of the Changed bit in the Configuration and
able Status register when the Req Attn bit is set. When this bit is reset to a zero (0), this feature is
disabled. The state of the Req Attn bit is not affected by the Req Attn Enable bit.
I/O Base Registers
The PC Card standard defines these I/O base registers for use by multiple
function cards, but they can also be used by single function cards. These regis-
ters define the base 1/O address to which the function’s I/O registers will be
mapped into the host processor’s address space. The number of registers used
depends on the address space supported by the host processor. Since Intel
compatible x86 processors have only 64KB of address space, only the first two
registers are needed to specify a base address anywhere within the entire
64KB space.
172

Toshiba_Apricorn 1006-0187
IPR2018-01067

Chapter 12: Function Configuration Registers

I/O Limit Register

This register relates to the I/O base registers by specifying the maximum
range of 1/O addresses that can be mapped beginning at the base address.
This register is bit mapped such that the most significant bit that is set deter-
mines the number of address lines used to decode the address and therefore
the maximum block of address space supported. The most significant bit and
all bits of lesser significance must be set within the register. This results in the
possible number of address lines as listed in table 12-7. Note that the largest
block of I/O address space that can be defined is 256 bytes.

This register is optional and need not be implemented for each function if all
functions within the PC Card use the same number of I/O registers.

Table 12-7. Address Limit Associated with Function Base Address Register

Bit Position Maximum

7 |l 6] 5] a]l3]2]i1]e Number of
of Address Lines Defined by Bit position Address

8 7 6 b 4 3 2 1 Locations
0 0 0 0 0 0 0 0 Not defined
0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 1 1 4
0 0 0 0 0 1 1 1 8
0 0 0 0 1 1 1 1 16
0 0 0 1 1 1 1 1 32
0 0 1 1 1 1 1 1 64
0 1 i 1 1 1 1 1 128
1 1 1 1 1 1 1 1 256

173

Toshiba_Apricorn 1006-0188

IPR2018-01067

Chapter 13: An SRAM Card Example

Chapter 13

The Previous Chapter

The previous chapter discussed the configuration registers and provided a
complete description of each register specified by the PC Card standard. Con-
figuration register implementations for both single and multiple function
cards were covered.

This Chapter

This chapter describes a sample SRAM card implementation, including a
functional block diagram of the SRAM card along with a sample CIS.

The Next Chapter

The next chapter describes a sample flash card implementation, including a
functional block diagram of the card, a sample CIS, and configuration regis-
ters implemented by the card.

An SRAM Card Example

Figure 13-1 illustrates the functional blocks associated with an SRAM memory
card. Note that this is an example implementation of a 2MB SRAM card. The
contents of the CIS are illustrated and discussed in the next section.

175

Toshiba_Apricorn 1006-0189
IPR2018-01067

PCMCIA System Architecture

Address Decode
and
Control Logic

IYSIBLYS

B|qeUs

EGEDE]

(vaH)
leydepy sng 1SOH pied Od

Expansion
(o N

Write Protect
(Switch
Low
Battery
Detection
1 f PC Card

Figure 13-1. Block Diagram of 2MB SRAM PC Card

176

Toshiba_Apricorn 1006-0190
IPR2018-01067

Chapter 13: An SRAM Card Example

The SRAM CIS

The following example illustrates the CIS implemented within a typical SRAM
card. SRAM PC Card design is relatively simple when compared to I/O cards.
As shown in figure 13-2, a typical SRAM CIS may consist of four tuples. The
sections following figure 13-2 describe the purpose and contents of each tuple
in the SRAM example. Refer to appendix A for a detailed listing and analysis
of the tuples contained in this SRAM example.

5C Termination Tuple
f{é Checksum Tuple
4C

Version 1/Product Information
Tuple

© >

Device Information Tuple

Attribute Memory Space

Figure 13-2. Map of Attribute Memory Addresses on Example SRAM Card

177

Toshiba_Apricorn 1006-0191
IPR2018-01067

PCMCIA System Architecture

Device Information Tuple

As described earlier, the Device Information tuple defines all the information
needed to characterize an SRAM memory card. The device information tuple
defines the following operational characteristics:

e Device Type (SRAM in this example).

e Device Speed (250ns is this example).

e Write-Protect switch (WPS) definition. Whether the memory defined
within the tuple is affected by the write-protect switch (WPS is used).

* Size of the memory array (2MB in this example).

Since no configuration table exists, the memory array described is mapped by
default at base address zero within common memory address space.

Level 1 Version / Product Information Tuple

This tuple contains the PCMCIA version of the CIS and ASCII characters de-
scribing the product. The data area within the SRAM level 1
version/production information tuple consists specifically of:

e Major version 4 (relates to JEIDA release 4.0).

* Minor version 1 (relates to PCMCIA release 1.0) A major version number
of 4 and a minor version number of 1 indicates 2.x compliant CIS.

e ASCII string indicating manufacturer and card description.

e ASCII string indicating model number of card.

e ASCII string indicating serial number card.

The ASCII character strings contained within the product information portion
of the tuple are defined by the PC Card manufacturer. The manufacturer and
card description information within this tuple are typically read and dis-
played by PCMCIA configuration software when a card is configured. This
notifies the user that the card has been recognized and identified.

178

Toshiba_Apricorn 1006-0192
IPR2018-01067

Chapter 13: An SRAM Card Example

Checksum Tuple

The checksum tuple provides a way for processing software to verify that the
data read from the CIS is correct. The checksum data block information in-
cludes:

e Offset from checksum tuple to the start address of the range to be
checked.

e Number of locations to be checksummed from the start address.

e Checksum value.

More than one checksum tuple can be used within a CIS. This example con-
tains a single checksum tuple used to check the CIS from location zero to
location 4Ch.

Termination Tuple

The termination tuple consists only of the tuple code FFh. In this example,
when processing software encounters the termination tuple, it will continue
tuple processing by going to location zero in common memory. Common
memory may contain additional tuple information written there by PCMCIA
aware software that formats the SRAM memory for use as a virtual drive.

This capability stems from 1.0 compliant cards that did not require that a CIS
be implemented. When processing software attempts to read the CIS, a value
of FFh will be returned when no CIS is implemented. This is interpreted by
software as a termination tuple. Software then reads from location zero in
common memory where a link-target tuple will be found. The software then
looks for a BIOS Parameter Block (BPB) that characterizes the size of the
SRAM to be used as a virtual drive.

179

Toshiba_Apricorn 1006-0193
IPR2018-01067

Chapter 14: A Flash Card Example

Chapter 14

The Previous Chapter

The previous chapter described a simple SRAM card implementation, includ-
ing a functional block diagram of the SRAM card along with a sample CIS.

This Chapter

This chapter describes a flash card implementation, including a functional
block diagram of the card, a sample CIS, and configuration registers imple-
mented by the card.

The Next Chapter

The next chapter describes an example FAX/Modem implementation, includ-
ing a functional block diagram, a sample CIS, and configuration registers
implemented by the card.

An Example Flash Card Implementation

Figure 14-1 illustrates the functions associated with an Intel series II Flash-
Card. This example is based on a 10MB flash memory array and includes a
CIS contained within the flash control ASIC. This card also incorporates flash
memory that implements a ready/busy (RDY/BSY#) pin and takes advantage
of the memory socket’s READY pin.

181

Toshiba_Apricorn 1006-0194

IPR2018-01067

PCMCIA System Architecture

I
I
QE# '
Flash Card 1
Control WE# Py |
ASIC ;
|
|
|
Address 1
o Biatiers SA19:5A0 :
@ |
(@) |
jub) |
s
o I
<z :
i Data
" we trans- .
p -2 wy) ceivers)
el :
w |
I
= :
& |
& |
e 2 RDY/BSY# (from flash memory) |
1
|
cIs
|
1
I
I
I
|
Write Protect !
/ Switch I
I
I
I
I
I
1 PCCard !
_______________ I

Figure 14-1. 20MB Flash Card Functional Diagram

182

Toshiba_Apricorn 1006-0195
IPR2018-01067

Chapter 14: A Flash Card Example

A Flash Memory CIS Example

Following is an example of a flash memory card's attribute memory address
space. As shown in figure 14-2, this flash card implements both a CIS and
configuration registers. The sections following figure 14-2 describe the pur-
pose and contents of each tuple used by the flash card in this example.
Appendix B contains a detailed listing and explanation of the tuples in this
flash memory card example.

Flash Card CIS Example

4002h Configuration Registers
4000h
D4h Configuration Tuple
C6h
C4h
Version 1/Product Information
Tuple
22h
?%‘1 JEDEC Device ID Tuple
18h
Device Geometry Tuple
OAh
08h Device Information Tuple
00h

Figure 14-2. Example Contents of a Flash Card's Attribute Address Space

183

Toshiba_Apricorn 1006-0196
IPR2018-01067

PCMCIA System Architecture

Device Information Tuple

The device information tuple identifies the basic characteristics of the card.
The device information tuple determines the following parameters:

e Device Type (flash memory).

e Device Speed (150ns).

e Write-Protect switch (WPS) definition. Whether the memory defined
within the tuple is affected by the write-protect switch (WPS used).

¢ Size of the memory array (10MB).

Unlike the previous SRAM example, the contents of the Device Information
tuple does not completely characterize a flash memory array. Flash cards re-
quire an additional Device Geometry tuple to specify the block size for erasing
and writing to the flash memory array.

Since no configuration table exists, the memory array described is not pro-
grammable and responds only to location 0 to 10MB in common memory
address space.

Device Geometry Tuple

Flash memory cards are block oriented devices when writing to or erasing
their memory arrays. As a result, the Memory Technology driver must know
the block size in order to access the device correctly. The Device Geometry
tuple contains the block size that is implemented by the memory array for
erasing, writing and reading the flash card. Information described by the tuple
includes:

¢ Internal bus width (always 2 bytes for release 1.0 - 2.x cards).

e Erase geometry block size.

e Read geometry block size.

e Write geometry block size.

e Partition size (indicates partition size, if the memory array is partitioned).

e Interleave size (describes whether hardware interleaving is incorporated
to enhance read performance, and if so, what the interleaving size is).

184

Toshiba_Apricorn 1006-0197
IPR2018-01067

Chapter 14: A Flash Card Example

JEDEC Device Identifier (ID) Tuple

Many memory devices contain the JEDEC Device ID tuple within their CIS.
As its name suggests, this tuple contains the card manufacturer's JEDEC ID
and incorporates device type information that specifies a corresponding pro-
gramming algorithm. The Joint Electronics Device Engineering Council
(JEDEC) assigns an ID to manufacturers designing programmable memory
devices. All programmable memory devices should have a corresponding
JEDEC identifier.

Note that for each entry in a device information (DEVICE) tuple a correspond-
ing entry must be made in the JEDEC device identifier tuple. If a DEVICE
tuple contains both programmable and non-programmable memory devices,
then the JEDEC tuple entries for the non-programmable device will contain
null values.

Level 1 Version / Product Information Tuple

This tuple contains the PCMCIA compliance level of the CIS (level 1 version)
and ASCII characters describing the product. The data area within the flash
level 1 version/production information tuple consists specifically of:

* Major version 5 (relates to PC Card February, 1995 release).

e Minor version 0 (relates to PC Card February, 1995 release).
Note: A major version number of 5 and a minor version number of 0 indi-
cates compliance with the PC Card 95 release.

e ASCII string indicating manufacturer and card description.

e ASCII string indicating model number of card.

e ASCII string indicating serial number of card.

The ASCII character strings contained within the product information portion
of the tuple are defined by the manufacturer. The manufacturer name and
card description is sometimes read and displayed by PCMCIA utilities when a
card is configured. This tuple is also commonly used by PC Card enablers that
are designed to identify and configure a specific card.

185

Toshiba_Apricorn 1006-0198
IPR2018-01067

PCMCIA System Architecture

Configuration Tuple

The Configuration tuple identifies the type of the configuration register(s)
used by the PC Card, along with their location within attribute memory space.
Data entries within the Configuration tuple contain the following:

* Size of address fields—This entry defines the number of bytes used by this
tuple to identify the location of the configuration registers. Since these
registers can be located anywhere within attribute memory address space
(0 to 64MB), the number of bytes needed to define their location depends
on where they reside in the address space. In this example, the registers
are mapped to location 4000h, therefore only two bytes are needed to
specify their location.

* Size of configuration register mask field— Specifies the number of bytes
needed by the configuration register mask field to identify the configura-
tion registers implemented by this function. PCMCIA currently defines
ten configuration registers of the 128 configuration registers that can be
specified. To specify all 128 registers the configuration register mask field
would require sixteen 8-bit mask registers. This example implementation
uses the first two registers, therefore a single mask register is imple-
mented. Refer to the section entitled, "Flash Card Configuration Registers"
later in this chapter for details.

e Index number of the last entry in the configuration table—Since this ex-
ample flash card has no configuration table this entry is zero.

e Starting (base) address of the configuration registers—In this example, a
two byte field identifies the location of the configuration registers in at-
tribute memory (location 4000h). _

e Configuration register mask — A bit map that corresponds to the configu-
ration register implemented by the PC Card function. The mask value in
this example specifies that only registers corresponding to bit 0 (the Con-
figuration Option Register) and bit 1 (the Status Register) are
implemented.

Termination Tuple

The termination tuple consists only of the tuple code FFh. In this example,
when processing software encounters the termination tuple, it will continue
tuple processing by going to location zero in common memory. Common

186

Toshiba_Apricorn 1006-0199
IPR2018-01067

Chapter 14: A Flash Card Example

memory may contain additional tuple information written there by PCMCIA
aware software that formats the flash memory for use as a virtual drive.

This capability stems from 1.0 compliant cards that did not require that a CIS
be implemented. When processing software attempts to read the CIS, a value
of FFh will be returned since no CIS is implemented. This is interpreted by
software as a termination tuple. Software then reads from location zero in at-
tribute memory where a link-target tuple will be found. The software then
looks for a BIOS Parameter Block (BPB) that characterizes the size of the
memory used as a virtual drive.

Flash Card Configuration Registers

The flash card in this example uses two of the configuration registers that are
defined by the PCMCIA standard. These two registers are the configuration
option register and the configuration status register. As implemented, these
register use only a small portion of the associated functions defined by
PCMCIA.

Configuration Option Register

The flash card in this example uses the configuration option register (bit 7) to
permit software reset capability at the card level. The other functions associ-
ated with the configuration option register are not used.

Configuration Status Register

The flash card in this example also uses the configuration status register (bit 2)

for placing the card into the power down state for power conservation. All
other functions associated with the configuration status register are not used.

187

Toshiba_Apricorn 1006-0200

IPR2018-01067

Chapter 15: A FAX/Modem Example

Chapter 15

The Previous Chapter

The previous chapter described a flash card implementation, including a
functional block diagram of the card, a sample CIS, and configuration regis-
ters implemented by the card.

This Chapter

This chapter describes an example FAX/Modem implementation, including a
functional block diagram, sample CIS, and related configuration registers.

The Next Chapter

The next chapter describes an PC Card ATA drive implementation, including
a functional block diagram, a sample CIS, and configuration registers imple-
mented by the card.

An Example FAX/Modem Card

Figure 15-1 illustrates the functions incorporated into a FAX/Modem PC
Card. The socket interface is configured as a memory-only interface when the
PC Card is first installed and reconfigured as a memory or I/O socket during
the configuration process. Note that all the registers in this PC Card imple-
mentation are 8-bit registers; therefore, this PC Card does not assert the
I0IS16# pin.

The modem consists of the UART (Universal Asynchronous Re-
ceiver/Transmitter), the modem controller, the modem data pump and the
DAA (Data Access Arrangement).

189

Toshiba_Apricorn 1006-0201
IPR2018-01067

PCMCIA System Architecture

— e —— o — S — — e e e e e A e e m e e e e

P1eD Od

dwnd ejeq

ETNER)
-SUBS
Bleq

13]j0u0n
wapopy

#31SI01

PC Card Host Bus Adapter
(HBA)

Figure 15-1. Functional Block Diagram of FAX/Modem PC Card

190

Toshiba_Apricorn 1006-0202

IPR2018-01067

Chapter 15: A FAX/Modem Example

FAX/Modem Resource Requirements

FAX/Modems require 1/O address space and a system IRQ line to allow the
application software to communicate via a standard serial interface. In MS-
DOS and Windows implementations, the serial interface has been mapped to
a standardized range of addresses and associated IRQ lines. These conven-
tional resource locations are needed because communications software
typically accesses FAX/Modem hardware registers directly. Software typi-
cally expects the serial interface to be mapped to the conventional resources
that are frequently referred to by the DOS device names: communications
ports one through four (COM 1, COM 2, COM 3, and COM 4).

The convention location for these communications interface are:

e COM 1=1/0 addresses 3F8h-3FFh and IRQ 4
e COM 2 =1/0 addresses 2F8h-2FFh and IRQ 3
e (COM 3 =1/0 addresses 3E8h-2EFh and IRQ 4
e COM 4 =1/0 addresses 2E8h-3EFh and IRQ 3

Note that some communications software may be able to access the serial in-
terface at other non-conventional address locations and IRQs. Specifically, PC
Card aware application programs can gain access to the PC Card configura-
tion information and determine how the PC Card has been configured by the
enabler. Once the application knows how the PC Card has been configured, it
can gain access to the card via the specified 1/O address locations and IRQ
lines without having to rely upon the conventional configurations specified
above.

A FAX/Modem CIS Example

Figure 15-2 illustrates the contents of attribute memory address space for a
FAX/modem. Notice that the CIS contains a configuration table. A configura-
tion table is used by PC Cards having functions that can be configured using a
variety of different system resources. The configuration table consists of en-
tries that define different resources combinations that can be assigned to the
PC Card. If one of the resource combinations are available for the PC Card’s
use, then it can be successfully configured. If the resource combinations re-
quired by the FAX/Modem are not available for use then the card cannot be
configured.

191

Toshiba_Apricorn 1006-0203
IPR2018-01067

PCMCIA System Architecture

Device Information Tuple

The Device Information tuple identifies the basic characteristics of memory
cards. Since the FAX/Modem is an I/O device, the device information tuple
contains no relevant information. The data portion of this tuple is zero, indi-
cating that this card is not a memory card.

Level 1 Version / Product Information Tuple

This tuple contains the PCMCIA compliance level of the CIS (i.e. the version
of CIS, recall that level 1, or layer 1 of the metaformat defines the CIS) and
ASCII characters describing the product. The data area within the
FAX/Modem level 1 version/production information tuple consists specifi-
cally of:

e Major version 5 (relates to PC Card February, 1995 release).

e Minor version 0 (relates to PC Card February, 1995 release).
Note: A major version number of 4 and a minor version number of 1 indi-
cates 2.x compliant CIS. -

e ASCII string indicating manufacturer and card description.

e ASCII string indicating model number of the card.

e ASCII string indicating serial number of the card.

The ASCII character strings contained within the product information portion
of the tuple are defined by the manufacturer. The manufacturer name and
card description is sometimes read and displayed by PCMCIA utilities when a
card is configured. This tuple is also used by client device drivers that are de-
signed to identify a specific card.

Card Manufacturer Identification (ID) Tuple

As its name suggests, this tuple contains the PCMCIA card manufacturer's ID
number. The PCMCIA organization assigns an ID to the manufacturers de-
signing PCMCIA compliant cards.

192

Toshiba_Apricorn 1006-0204
IPR2018-01067

Chapter 15: A FAX/Modem Example

204h
200h

16Ah
168h

166h
164h

Fah
F2h

E6h
E4h

68h
66h

60h
5Eh

54h
52h

08h
06h
00h

Configuration Registers

Termination Tuple

No-Link Tuple

Configuration Table
(5 configuration table entries)

Configuration Tuple

Extended Function Information
Tuples
(6 extension tuples)

Function Identification Tuple

Card Manufacturer ldentification
Tuple

Version 1/Product Information
Tuple

Device Information Tuple

Figure 15-2. Example of Attribute Memory Address Contents for FAX/Modem

Function ldentification Tuple

The Function Identification tuple determines the type of functional device that
is implemented in the PC Card. Memory cards can be specified through the
Device Information tuple, whereas, I/O devices must use the Function Identi-
fication tuple. This tuple defines the following items:

193

Toshiba_Apricorn 1006-0205
IPR2018-01067

PCMCIA System Architecture

e Function type code — consists of a code representing the type of device
implemented in the PC Card. The function type associated with the
FAX/modem is a serial port.

e Initialization byte — specifies whether this device should be configured
during system initialization (also called Power-On Self Test or POST) and
whether the card has a ROM containing configuration software. This is
used by devices when loading the operating system. Not used by the
FAX/modem.

Function Extension Tuples

Function Extension tuples are defined by PCMCIA for some types of devices,
including modems. Function Extension tuples must immediately follow the
Function Identification tuple to which they apply. This example consists of six
different function extension tuples. Within each tuple is a code identifying it
as a particular type of function extension. These extensions fall into three basic
categories for serial devices:

e Data modem extensions
¢ FAX modem extensions
* Voice modem extensions (not used by the FAX/modem)

Each Function Extension tuple provides information related to the capabilities
of the modem. This information includes items such as communications pro-
tocols, error correction protocols, and other communications parameters. This
information can be used by PCMCIA aware applications to automatically
configure the application based on the card's capabilities.

Configuration Tuple

The Configuration tuple identifies the type of the configuration register(s)
implemented in the PC Card, along with their location within attribute mem-
ory space. This tuple also specifies the index number of the last entry within
the CIS. Data entries within the Configuration tuple contain the following:

* Size of address fields — This entry defines the number of bytes used later
within this tuple to identify the location of the configuration registers.
Since the configuration registers can be located anywhere within attribute
memory address space (0 to 64MB), the number of bytes needed to define

194

Toshiba_Apricorn 1006-0206
IPR2018-01067

Chapter 15: A FAX/Modem Example

their location depends on where they reside in the address space. In this
example, the registers are mapped starting at location 200h; therefore,
only two bytes are needed to specify their location.

» Size of configuration register mask field — Specifies the number of bytes
needed by the configuration register mask field to identify the configura-
tion registers implemented by this function. PCMCIA currently defines
ten configuration registers out of the 128 configuration registers that can
be identified. To specify all 128 registers the configuration register mask
field would require sixteen 8-bit mask registers. This example implemen-
tation uses registers 0, 1, and 2 therefore a single mask register is
implemented. Refer to the section entitled, "FAX/Modem Card Configu-
ration Registers" later in this chapter for details.

e Index number of the last entry in the configuration table — This value in-
dicates to processing software when the last entry within the card's
configuration tuple has been reached.

e Starting (base) address of the configuration registers — In this example, a
two byte field identifies the location of the configuration registers in at-
tribute memory (location 0200h).

» Configuration register mask — Specifies that configuration registers zero
(Configuration Option Register), one (Status Register) and two (Pin Re-
placement Register) are implemented.

Configuration Table

The configuration table contains the configuration option supported by the
FAX/modem card. The card in this particular example contains five entries
within the configuration table, each defining a different combination of system
resources required to support its functions. The serial port used by the mo-
dem requires an eight byte block of contiguous I/O addresses and a system
interrupt line. This device supports standard resources defined by convention
in the DOS environment. The following list shows the 8-byte I/O range and
IRQ line specified by each entry within the configuration table.

e COM 1—I/0O base address 3F8h and IRQ 4 (entry 1)

e COM 2—I/0O base address 2F8h and IRQ 3 (entry 2)

COM 3—I/0 base address 3E8h and IRQ 4 (entry 3)

COM 4—I/0 base address 2E8h and IRQ 3 (entry 4)

e Any 8-byte range of I/O addresses and any one of the IRQs: 2,3,4,5,7, 9,
10, or 15 (entry 5)

195

Toshiba_Apricorn 1006-0207
IPR2018-01067

PCMCIA System Architecture

The first resource combination that can be allocated by the system will be as-
signed to the HBA and PC Card for its use. The index number of the
configuration table entry that satisfied the resource requirements is pro-
grammed into the configuration option register. This configures the PC Card
to respond to the resources specified within the selected configuration table
entry.

No-Link Tuple

The no-link tuple tells processing software to terminate tuple processing when
the termination tuple is reached. This prevents the implied jump to location
zero of common memory.

Termination Tuple

The termination tuple consists only of the tuple code FFh. In this example,
when processing software encounters the termination tuple, it will end tuple
processing since the no-link tuple exists in the tuple listing.

FAX/Modem Configuration Registers

The FAX/Modem card in this example implements three of the ten configura-
tion registers defined by the PCMCIA standard. These registers include the
configuration option register, status register and pin replacement register.
Their use in the fax/modem card is defined in the following sections.

Configuration Option Register

The configuration option register performs several functions related to the
FAX/modem card’s operation:

e Configuration Index — selects the entry within the configuration table
that satisfied the card's resource requirements. This value programs the
/0O address decoders on the card to respond to the correct address range.

* Interrupt Request Level — selects whether level or pulse mode interrupts
should be delivered over the IREQ# pin by the PC Card.

196

Toshiba_Apricorn 1006-0208
IPR2018-01067

Chapter 15: A FAX/Modem Example

e Software Reset — provides the ability for software to reset the PC Card.
Setting this bit has the same affect on the hardware as asserting the RESET

pin.

Configuration Status Register

This register performs the following functions as they relate to the
FAX/modem card:

e Audio Supported — set by software to enable the PC Card to output
audio information to the HBA via the speaker pin.

e Interrupt Pending — set by the PC Card to indicate that an interrupt has
been asserted to the HBA and has not yet been serviced.

e Status Change — set by the PC Card to indicate that a pin replacement
register has been implemented and should be checked to see if a status
change has occurred.

Pin Replacement Register

The pin replacement register is used to report status change events that are
supported by the PC Card. This is done in lieu of socket interface pins that are
not available when the socket is configured as an I/O interface. The
FAX/modem in this example implements the READY status change function
and therefore implements the pin replacement register.

197

Toshiba_Apricorn 1006-0209
IPR2018-01067

Chapter 16: An ATA PC Card Example

Chapter 16

The Previous Chapter

The previous chapter described an example FAX/Modem implementation,
including a functional block diagram, sample CIS, and related configuration
registers.

This Chapter

This chapter describes an example PC Card ATA drive implementation, in-
cluding a functional block diagram, a sample CIS, and configuration registers
implemented by the card.

The Next Chapter

The next chapter describes a multi-function PC Card design, including a func-
tional block diagram, a multi-function CIS, and related configuration registers.

An ATA PC Card Example

Figure 16-1 illustrates the functions contained within an ATA PC Card based
on rotating magnetic media. Other ATA PC Card designs are based on flash
memory technology implemented as virtual disk drives that provide the same
programming interface employed by standard ATA disk drives.

As with any PC Card, the initial socket interface is automatically configured
as a memory-only interface when the PC Card is first installed. After the CIS
is read and the ATA PC Card’s enabler has detected the ATA card’s presence,
the enabler initiates the configuration process. As discussed in the following
section an ATA PC Card can be configured to operate with the memory inter-
face (i.e. the registers are mapped into the processor’s memory address space) .
or with the memory or I/O interface (using standard I/O mapping).

199

Toshiba_Apricorn 1006-0210
IPR2018-01067

PCMCIA System Architecture

INPACK#
101S16#
Address Decode

| OE#
| WE# and .
! Control Logic

REG#

CE1#

CE2#

Drive
Control

Controls

(vaH)
Je)depy sng 1SOH pied Dd

|
|
I
|
I
|
I
I
I
I
I
|
|
|
|
I
I
I
I
I
Motor/Head 1
|
|
|
|
I
|
I
|
I
I
|
|
|
I
I
I
|
I
|
|

Figure 16-1. Functional Block Diagram of an ATA Disk Drive PC Card

200

Toshiba_Apricorn 1006-0211
IPR2018-01067

Chapter 16: An ATA PC Card Example

ATA System Resource Requirements

ATA devices contain two register blocks called the command register block
and control register block. Each of these register blocks must be assessable by
the system. PC Card ATA devices support either I/O or memory-mapping
using one of four addressing modes listed in table 16-1.

Standard mapping in the ISA environment includes the assignment of two
separate I/O address ranges to map ATA drive registers into. If these ranges
are not available, another range of I/O addresses can be used. If neither of the
standard I/O address ranges are available, then a contiguous block of 16 1/0O
locations is requested for mapping the command and control block registers
into.

Alternatively, the registers can be mapped into memory locations. When
memory-mapping is chosen, a contiguous 2KB block of memory locations is
used. The command and control registers are mapped into the first 16 bytes of
the 2KB memory block, while the last 1KB of the block is used as a high speed
buffer to transfer data to and from the PC card.

Table 16-1. ATA Addressing Options Supported by PCMCIA

Address Mode Command Block Control Block

1/O - Primary ATA drive address 1FOh - 1F7h 3F6h - 3F7h

I/0 - Secondary ATA drive address 170h - 177h 376h - 377h

1/0 - Any 16-byte contiguous range XXX0h - XXXFh

Memory - Any 2KB address range Card must respond to locations Oh - Fh and 400h -
7FFh within the 2KB range

In addition to mapping the registers, an interrupt request line must also be
supported for I/O addressing. Normally IRQ 14 is used by ATA drives. When
configured for memory-mapped registers, the socket interface does not define
an interrupt line, therefore software polling must be used.

Supporting Two Drives

It is possible for two ATA drives to be simultaneously installed into PCMCIA
sockets of the same HBA. When accessing these drives, some method must be
used to individually select these drives as either drive 0 or drive 1. This is ac-
complished in a standard ATA environment via the daisy-chained cable with

201

Toshiba_Apricorn 1006-0212
IPR2018-01067

PCMCIA System Architecture

the cable-select signal or by jumpers (switches) on the drive. In the PCMCIA
environment, the Socket and Copy Register, defined as one of the configura-
tion registers, can be used to identify two ATA PC cards mapped to the same
address space. The copy number programmed into the Socket and Copy Reg-
isters is used by the HBA to differentiate between drive 0 from drive 1.

The ATA Card's CIS

When an ATA card is installed, the normal process of calling client drivers
that have registered with card services occurs. These client drivers attempt to
identify the card installed to determine if it should be configured by them.
ATA client drivers typically identify their card by interpreting one or more of
the following CIS tuples:

e The JEDEC ID tuple.
e The Manufacturers ID tuple. ,
e The Function ID and Disk Device Function Extension tuples.

Once a PC Card has been detected as an ATA disk, the CIS can be further
processed to determine the configuration options supported by the card.

The PC Card ATA specification defines Function Identification Extension tu-
ples that are used to identify the disk as an ATA interface and to specify
features supported by the ATA card. The Interface Function Extension tuple
must immediately follow the Function Identification tuple that identifies the
card as a disk device.

Disk Device Function Extensions

This tuple specifies additional information for disk devices. Two function ex-
tension types are currently defined. As shown in table 16-2, the first disk
function extension tuple (type 01h) defines the type of interface used by the
disk. An interface type of 01h indicates an ATA drive interface.

Table 16-2. Disk Function Extension Tuple Format (Type 1)

Offset Disk Function Extension Tuple Format
0 TPL_CODE CISTPL_FUNCE (22H)
1 TPL_LINK Link to next tuple
2 TPL_TYPE Interface type extension (01h)
3 TPLFE_DATA Interface type code (01h = ATA Interface)

202

Toshiba_Apricorn 1006-0213
IPR2018-01067

Chapter 16: An ATA PC Card Example

A second Disk Function Extension defines

shown in table 16-3.

Table 16-3. PC Card ATA Function Extension Tuple

additional ATA Card features as

Offset | CIS Tuple Comments Bit Fields

00h 22h cistpl_funce || ATA Function Extension tuple Tuple Code

02h 03h link This tuple has 3 info bytes Link Length

04h 02h tplfe_type Basic PC Card Extension tuple PC Card ATA Basic Features
06h || xxh | tplfe data | PC Card ATA Features Byte 1 R|[R[R[RJU[s [V
08h xxh || tplfe_data PC Card ATA Features Byte 2 R|I |E|N r

The bit fields illustrated in table 16-3 are defined in table 16-4 for normal operation
and table 16-5 for low power modes.

Table 16-4. Bit Definition for Normal Operation

Name || Description Values
v Vpp Power 0 Not Required
1 Required for Media Modification Accesses
2 Required for all Media Accesses
3 Required Continuously
S Silicon 0 Rotating Device
1 Silicon Device
U Unique Drive Iden- i ¢ Identify Drive Model/Serial Number may not be unique
. 1 Identify Drive Model /Serial Number is guaranteed unique
R Reserved

This field is reserved for future standardization. Must be 0.

203

Toshiba_Apricorn 1006-0214
IPR2018-01067

PCMCIA System Architecture

Table 16-5. Bit Definition for Low Power Operation

P Low Power Modes || Bit3: 0 Low Power Mode Use Required to Minimize Power

(Idle, Standby, Sleep) || Bit 3: 1 Drive Automatically Minimizes Power. No need for host to
actively power manage.

Bit 2: 0 Idle Mode Not Supported

Bit 2: 1 Idle Mode Supported

Bit 1: 0 Standby Mode Not Supported

Bit 1: 1 Standby Mode Supported

Bit 0: 0 Sleep Mode Not Supported

Bit 0: 1 Sleep Mode Supported

N 3F7/377 Register || 0= All Primary and Secondary I/O Addressing Modes include ports

Inhibit Available 3F7 or 377.

1 = Some Primary or Secondary [/0O Addressing Modes exclude 3F7
and /or 377 for floppy interference avoidance.

E Index Emulated 0 = Index Bit is Not Emulated
1 = Index Bit is Supported or Emulated
1 IOIS16# on Twin || 0=IOIS16# use is Unspecified on Twin-Card Configurations
Card 1 = [OIS16# is asserted only for Data Register on Twin-Card
Configurations
R Reserved This field is reserved for future standardization. Must be 0.

IPL from a PCMCIA ATA Drive

To load the operating system from a PCMCIA ATA drive, the drive must be
configured during main system initialization, commonly referred to as POST
(power-on self test). The initialization byte within the Function Identification
table specifies if a PC Card should be configured during POST.

Since in many systems PC Cards are not installed until the operating system
loads, the system designer must provide PCMCIA initialization software. This
software must read the CIS of all cards installed in sockets to determine if
they should be configured before the operating system loads. Many of the
vendors that supply socket services have a solution (i.e. ROM-based PCMCIA
initialization code) that permits PC ATA cards and others requiring early
configuration to be initialized during POST.

204

Toshiba_Apricorn 1006-0215
IPR2018-01067

Chapter 16: An ATA PC Card Example

An Example ATA Card CIS

Figure 16-2 illustrates a memory map of the attribute memory address space
used by a sample ATA card that implements rotating media. This example
CIS supports all the addressing modes specified in table 16-1. Appendix D
contains a detailed listing of this CIS.

206h

200h

Dsh

D6h

D4h
D2h

CCh

CAh
Cah
C2h

40h
3Eh

32h
30h

0Ch
0Ah

00h

Figure 16-2

Configuration Registers

Termination Tuple

No-Link Tuple

Extended Function Information
Tuple

Function Identification Tuple

Configuration Table
(4 configuration table entries)

Configuration Tuple

Version 1/Product Information
Tuple

Device Information Tuple

. Sample ATA CIS and Configuration Register Map

205

Toshiba_Apricorn 1006-0216
IPR2018-01067

PCMCIA System Architecture

Device Information Tuple

Since the ATA card contains a memory-mapped options for it registers, the
Device Information tuple contains a valid memory device entry. The informa-
tion described in this tuple includes:

e Memory type (specified as function specific memory)
* Extended memory speed defined (400ns)
¢ Memory size (2KB)

Level 1 Version / Product Information Tuple

This tuple contains the PCMCIA compliance level of the CIS (level 1 version)
and ASCII characters describing the product. The data area within the ATA
level 1 version/production information tuple consists specifically of:

e Major version 4 (indicates 2.x compliant CIS)
e Minor version 1 (indicates 2.x compliant CIS)
e ASCII string indicating manufacturer

e ASCII string indicating model information

The ASCII character strings contained within the product information portion
of the tuple are left for the manufacturer to define. The manufacturer name
and card description is sometimes read and displayed by PCMCIA utilities
when a card is configured. This tuple is also used by client device drivers that
are designed to identify a specific card.

Configuration Tuple

The Configuration tuple identifies the type of the configuration register(s)
used by the PC Card, along with their location within attribute memory space.
Data entries within the Configuration tuple contain the following:

e Size of address fields — this entry defines the number of bytes used
by this tuple to identify the location of the configuration registers.
Since these registers can be located anywhere within attribute mem-
ory address space (0 - 64MB), the number of bytes needed to define
their location depends on where they reside in the address space. In

206

Toshiba_Apricorn 1006-0217
IPR2018-01067

Chapter 16: An ATA PC Card Example

this example, the registers are mapped to location 200h, therefore only
two bytes are needed to specify their location.

e Size of configuration register mask field — specifies the number and
mix of configuration registers implemented by the PC Card. A bit
map of the configuration register identifies how many registers are
implemented. PCMCIA currently defines four configuration registers,
but provides expandability up to 32 configuration registers (requiring
four 8-bit mask registers). This example implementation uses all four
registers, therefore a signal mask register is implemented.

e Index number of the last entry in the configuration table. Since this
example has four configuration entries, the index number of entry
four is specified.

e Starting (base) address of the configuration registers — In this exam-
ple, a two byte field identifies the location of the configuration
registers in attribute memory (location 200h).

e Configuration register mask — Specifies that configuration registers
zero (Configuration Option Register), one (Status Register) two (Pin
Replacement Register) and three (Socket and Copy Register) are im-
plemented.

Configuration Table

The configuration table contains the configuration option supported by the
ATA card. This card in this particular example contains four entries within the
configuration table, each defining a different combination of system resources
required to support its functions. This card supports all four configuration
options defined by the PCMCIA and ATA standards as listed in table 16-1.

Function Identification Tuple

The Function Identification tuple determines the type of functional device that
is employed by the PC Card. This tuple defines the following items:

e Function type code — consists of a code representing the type of de-
vice employed by the PC Card. The function type associated with the
ATA card is fixed disk.

e Initialization byte — specifies whether this device should be config-
ured during system initialization (also called Power-On Self Test or
POST) and whether the card has a ROM containing configuration

207

Toshiba_Apricorn 1006-0218
IPR2018-01067

PCMCIA System Architecture

software. Since the ATA drive may need to load the operating system,
the POST bit is set. This indicates that the system should configure
this card during POST. Refer to the section entitled, "IPL from a
PCMCIA ATA Drive", discussed earlier in this chapter.

Function Extension Tuples

Two Function Extension tuples are defined by PCMCIA for ATA drives. This
sample CIS includes only the type 1 disk function extension that identifies the
fixed disk interface type as ATA.

No-Link Tuple

This No-Link tuple indicates that when the Termination tuple is reached that
no more tuples exist within the string.

Termination Tuple

The termination tuple consists only of the tuple code FFh. In this example,
when processing software encounters the checksum tuple, it terminates tuple
processing since the No-Link tuple was previously encountered in this tuple
string.

Configuration Registers

The ATA card in this example implements all four configuration registers de-
fined by the PCMCIA standard. These registers include the Configuration
Option Register, Status Register, Pin Replacement Register and Socket and
Copy Register.

208

Toshiba_Apricorn 1006-0219
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

Chapter 17

The Previous Chapter

The previous chapter described an example PC Card ATA drive implementa-
tion, including a functional block diagram, a sample CIS, and configuration
registers implemented by the card.

This Chapter

This chapter discusses the multiple function PC Card strategy and the
mechanisms for achieving it. It also includes a functional block diagram of a
multiple function PC Card, a sample multi-function CIS, related configuration
registers, and multi-function interrupt handling.

The Next Chapter

The next chapter provides an overview of the PCMCIA software environment
and the configuration process.

Overview

Since most systems implement a limited number of PC Card sockets (usually
one or two), it is advantageous to implement cards containing multiple func-
tions. However, prior to release of the PC Card standard PCMCIA did not
offer full support for multiple function PC Cards. Only one CIS structure and
only one set of configuration registers were specified for a PC Card. This
meant that each function had to somehow share the single CIS and configura-
tion registers. Several multiple function cards have been designed, but these
implementations are typically vendor-specific/proprietary solutions and re-
quire vendor-specific client drivers that have been designed with knowledge
of the implementation.

209

Toshiba_Apricorn 1006-0220
IPR2018-01067

PCMCIA System Architecture

The PC Card standard now incorporates a multiple function card strategy that
specifies how multiple functions must be implemented. This permits software
solutions that are aware of the multiple function implementation to recognize
and configure multiple function PC Cards. An important part of this imple-
mentation is the definition of a separate CIS and configuration registers for
each function implemented within the PC Card. This chapter discusses the
multiple function PC Card strategy and the mechanisms for achieving it.

An Example Multiple Function PC Card

Figure 17-1 illustrates a functional block diagram associated with a multiple
function PC Card. Each function has its own CIS mapped into the PC Card'’s
attribute memory address space, along with its own set of configuration regis-
ters. Note in this PC Card example that both functions require use of
interrupts. Since a PC Card memory or I/O socket interface defines only one
IREQ# pin, it is necessary to share the IREQ# pin between functions. The in-
terrupt requests from the functions are labeled IREQO# and IREQI#
respectively, which are inputs to the interrupt routing logic illustrated in fig-
ure 17-1. The interrupt routing logic also includes inputs named INTR0O and
INTR1 from the configuration registers. These inputs represent the state of the
INTR bit in the configuration status register. When the INTR bit is cleared, the
interrupt routing logic knows that the corresponding interrupt request has
been serviced, and that it is free to generate another IREQ# to the HBA. Inter-
rupt sharing is discussed in the section entitled, “Shared Interrupt Handling”
later in this chapter.

An Example CIS

Each function within a multiple function PC Card must have its own CIS.
However, some information specified within a CIS is common to the PC Card
itself (i.e. the information applies to all functions implemented by the PC
Card). For this reason multiple function PC Cards contain a global CIS along
with separate CISs for each function implemented. Since each function has its
own CIS, it can specify the location of the configuration registers needed to
support its function. Figure 17-2 illustrates a multi-function CIS structure that
includes two functions.

210

Toshiba_Apricorn 1006-0221
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

QE#

I WE# Address A

| |oRD# Decode }—CE
' lowns and
T Control
Logic

CE1#
CE2#

10IS16#
INPACK#

Function
0

Config
Regs

inosuel| |

(vaH)
Jaydepy sng 1SOH pieD Dd

Function
1

A Ln+

Config
Regs

Figure 17-1. Functional Diagram of a Multiple Function PC Card

211

Toshiba_Apricorn 1006-0222
IPR2018-01067

PCMCIA System Architecture

Every multiple function PC Card that is compliant with the standard must in-
clude a primary CIS that contains a LongLink_MFC tuple. This tuple specifies
the location within attribute memory of the function-specific CISs that are re-
quired for each function implemented within the PC Card. Each function-
specific CIS must begin with a LINKTARGET tuple to verify the start of the
CIS. The standard specifies the tuples that must be included within the pri-
mary CIS, which ones are optional, and their exact order within the CIS. Table
17-1 lists these tuples in the required order.

Table 17-1. Tuples Defined for the Primary CIS (Listed in the Order)

Tuple Name Required /Optional Description

CISTPL_DEVICE Required Specifies whether memory is implemented within
PC Card’s common memory address space.

If common memory is not used, the type code must

be NULL.

CISTPL_MANFID Optional Only one manufacturer’s ID tuple can be imple-
mented. .

CISTPL_VERS_1 Optional May be used by enabling software to identify the PC
Card.

CISTPL_LONGLINK_MFC Required Specifies the number of functions (i.e. the number of

configuration register sets) within the PC Card, and
the starting address of each function-specific CIS
within attribute memory space.

The standard also specifies the order and combination of tuples required for
each secondary CIS. These tuples are listed in table 17-2.

Table 17-2. Tuples Defined for each Secondary CIS (Listed in the Order)

Tuple Name Required /Optional Description

CISTPL_LINKTARGET Required Used to validate the beginning of a function-specific
CIS.

CISTPL_FUNCID Required Must be used to identify the function.

CISTPL_FUNCE Optional Some functions have extensions that specify additional
information about the function.

CISTPL_CONFIG Required Describes presence and location of Function Configu-
ration Registers for this function.

CISTPL_ENTRY Required Specifies the configuration requirements of this func-
tion.

212

Toshiba_Apricorn 1006-0223
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

FFFFFFF

Function 2
Config. Regs.

Function 1
Config. Regs.

Configuration Table
(Entry Tuples)

CONFIG Tuple Punton s

FUNCID Tuple

LINKTARGET

Configuration Table
(Entry Tuples)

CONFIG Tuple Fung:g)n 1

FUNCID Tuple
LINKTARGET

LONGLINK_MFC

Optional Tuples G(Igtéal

DEVICE Tuple 0000000

Attribute Memory
Address Space

Figure 17-2. An Example CIS Structure Supporting Two Functions.

213

Toshiba_Apricorn 1006-0224
IPR2018-01067

PCMCIA System Architecture

Configuration Registers

Each function contains its own set of configuration registers and may include
the registers illustrated in table 17-3. The exact set of registers employed by
each function depends on the requirements of the particular function being
implemented. Each function that uses the I/O interface must include the Con-
figuration Option Register, the I/O Base and typically the I/O Limit registers
(the I/ O Size register may be eliminated as discussed below in the section en-
titled “I/O Limit Register”), all other registers are optional.

Once the PC Card’s enable has correctly identified the functions within the
card, it must configure the HBA and PC Card. Configuring the PC Card
means writing the appropriate values into the configuration registers that
have been implemented. Refer to the chapter entitled “The Configuration
Registers” for a detailed explanation of each register.

Table 17-3. The Configuration Registers Defined by the PC Card Standard

Offset 7 6 | 5 4 | 3 2 1 0
0 Configuration Option Register
SRESET | LevIREQ | Function Configuration Index
2 Configuration and Status Register
Changed | SigChg | 10IS8 | RFU | Audio | PwrDwn [Intr [IntrAck
4 ' Pin Replacement Register
CBVDI | CBVD2 | CREADY | CWProt | RBVDI | RBVD2 [RREADY | RWProt
6 Socket and Copy Register
RFU | Copy Number | Socket Number
8 Extended Status Register
Req
Event3 Event2 Eventl Req Attn | Enable3 | Enable2 Enablel At
Enable
10 1/0 Base 0
12 I/O Base 1
14 I/O Base 2
16 1/O Base 3
18 T/O Limit

214

Toshiba_Apricorn 1006-0225

IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

Configuration Option Register

The configuration option register (COR) has a specific definition (different
from single function PC Cards) when employed within multiple function PC
Cards. Specifically, the configuration index field is different from the single
function implementation. Recall that in a single function PC Card the configu-
ration index field can be defined in any fashion that the single function card
designer chooses, which specifies a given configuration for the card (ie. a
value corresponding to the index number of the configuration table entry that
specifies the configuration chosen by the enabler). However, the multi-
function PC Card must implement the configuration index field as specifically
defined in table 17-4.

Note that the definition of the SRESET and LevlReq bits are the same as for
single function cards. Each bit is defined in table 17-4.

Table 17-4. Configuration Option Register format and Definition

7 6 5 4 3 2 1 0
SRESET || LevlReq Configuration Index
SRESET Software Reset. Setting this bit to one (1) places the card in the

reset state. This is equivalent to assertion of the RESET signal ex-
cept that this bit is not cleared. Returning this bit to zero (0), leaves
the card in the same state that follows a hardware reset. This bit is
set to zero by power up and hardware reset.

LeviReq Level Mode IREQ#. Level Mode Interrupts are selected when this

bit is one (1). Pulse Mode Interrupts are selected when bit is zero.

Conf Index Multi-function Card Index definition. The PC Card standard

specifically defines use of each bit within the configuration index.
Bit 0 — Enables/disables this function. 1=enabled; O=disabled

Bit 1 — Specifies the number of I/O addresses used. 1=I/0O func-
tion uses the number of address lines specified by the base and
limit registers; O=all host I/O address are passed to the function.
(This bit is valid only when function is enable via bit 0.)

Bit 2 — Enables IREQ# routing. 1=the function will deliver inter-
rupts to the PC Card’s IREQ# line; O=interrupts disabled for this
function. (This bit is valid only when function is enabled.)

Bits 3-5 — vendor specific

215

Toshiba_Apricorn 1006-0226
IPR2018-01067

PCMCIA System Architecture

Card Configuration and Status Register

Portions of the Card Configuration and Status Register (CSR) have also been
redefined to support interrupt sharing on multi-function PC Cards. A new bit
named IntrAck (interrupt acknowledge) specifies how the Intr bit is imple-
mented. Refer to table 17-5

¢ Single function PC Cards with IntrAck reset (0) — the Intr bit remains set
until the interrupt service routine is executed, at which time the Intr bit is
reset.

e Multiple function PC Cards with INTRack set (1) — the Intr bit remains
set even though the interrupt service routine has already serviced the in-
terrupt request. Normally, the interrupt service routine clears an interrupt
pending bit within a function specific register, causing the Intr within the
CSR also to be cleared. However, to support interrupt sharing the Intr bit
is not cleared until card services is ready to handle the next interrupt re-
quest. When cleared by card services, other interrupt requests that are
pending can now be generated via the PC Card’s IREQ# pin.

Table 17-5. Card Configuration and Status Register and Definition

7 6 5 4 3 2 1 0
Chng | SigChg || IOis8 Resrv Audio | PwrDn Intr IntrAck
(0)

Chng Status Change Detected. This bit indicates that one or more of the Pin
Replacement Register bits (CBVD1, CBVD2, CRDY, or CWProt) is set to
one, normally causing the STSCHG# signal to be asserted. However, if
the SigChg bit (see below) is 1 and the card is configured for an 1/O
interface, the STSCHGH# pin is asserted when this bit is set.

SigChg | Signal Change Enable/Disable. This bit is set and reset by the host to
enable and disable a status-change signal from the status register. When
this bit is set and the card is configured for the I/O interface, the Chng
bit controls pin 63 (STSCHG#). If no status change signal is desired, this
bit should be set to zero and the STSCHG# signal will be held deas-
serted when the card is configured for I/O.

10is8 I/O Cycles Occur Only as 8-bit Transfers. When the host can provide
1/0 cycles only using the D7:D0 data path, the PCMCIA software will
set this bit to a 1. The card is guaranteed that accesses to 16-bit registers
will occur as two byte accesses rather than a single 16-bit access. This
information is useful when 16-bit and 8-bit registers overlap.

Resrv Reserved bits must be 0.

216

Toshiba_Apricorn 1006-0227
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

Table 17-5. Card Configuration and Status Register and Definition (Continued)

7

6 5 4 3 2 1 0

Chng

SigChg 10is8 Resrv Audio | PwrDn Intr IntrAck
(0)

Audio

Audio Enable. This bit enables audio information to be sent to the HBA
via the speaker pin when configured for an 1/0 interface.

PwrDn

Power Down. This bit is set to one to request that the card enter a
power-down state. PCMCIA software must not place the card into a
power-down state while the card's READY pin is in the low (Busy)
state.

Intr

Interrupt Request Pending. This bit represents the internal state of the
interrupt request. This value is available whether or not interrupts have
been configured. How the Intr bit is cleared is dependent of how the
IntrAck bit is configured.

IntrAck=0 — Intr reflects the function’s interrupt request status. If the
interrupt is cleared within the function, then Intr is reset by the func-
tion.

IntrAck=1 — Intr remains set even though the interrupt condition has
been cleared. It is reset by system software to indicate it is ready to re-
ceive another interrupt (implemented to support interrupt sharing).

IntrAck

Interrupt Acknowledge. This bit determines the response of the Intr
bit. The functionality associated with the IntrAck bit permits two or
more functions to share the PC Card’s IREQ# pin.

IntrAck=0 — when IntrAck is reset Intr functions as described above to
support a single interrupt implementation.

IntrAck=1 — This causes the Intr bit to remain set even though the in-
terrupt service routine has already serviced the interrupt. The Intr bit is
not cleared until Card Services is ready to handle the next interrupt
request. When the Intr bit is cleared, the PC Card generates another
interrupt request (if another interrupt request is pending from another
function).

I/O Base Registers

The PC Card standard requires use of the I/0O base registers by multiple
function cards, and they can also be used by single function cards. These reg-
isters define the base I/O address at which the function’s I/O registers will be
mapped into the host processor’s address space. The number of registers used
depends on the address space supported by the host processor. Since Intel

217

Toshiba_Apricorn 1006-0228

IPR2018-01067

PCMCIA System Architecture

compatible x86 processors have 64KB of address space only the first two regis-
ters are needed to specify a base address anywhere within the entire 64KB

space.

Note that in a typical single function PC Card the I/O address range is speci-
fied by the configuration index value within the configuration option register.
This value identifies the configuration table entry that specifies the 1/0O ad-
dress range that the PC Card has been configured to use.

I/O Limit Register

This register corresponds to the I/O base registers and specifies the maximum
number of I/O addresses that can be mapped beginning at the base address.
This register is bit mapped such that the most significant bit set within the
register determines the number of address lines used to decode the address
and therefore the maximum block of address space supported. The most sig-
nificant bit and all bits of lesser significance must be set within the register.
This results in the possible number of address lines as listed in table 17-6.
Note that the largest block of I/O address space that can be defined is 256
bytes.

This register is optional and need not be implemented for each function if all
functions within the PC Card use the same number of I/O address lines.

Table 17-6. Address Limit Associated with Function Base Address Register

Bit Position Maximum

7 | 6] 51 4] 3T 27]1] o0 Number of

of Address Lines Defined by Bit position Address
8 7 6 5 4 3 2 1 Locations
0 0 0 0 0 0 0 0 Not defined
0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 1 1 4
0 0 0 0 0 1 1 1 8
0 0 0 0 1 1 1 1 16
0 0 0 1 1 1 1 1 32
0 0 1 1 1 1 1 1 64
0 1 1 1 1 1 1 1 128
1 1 1 1 1 1 1 1 256

218

Toshiba_Apricorn 1006-0229
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

Shared Interrupt Handling

The PC Card standard defines an interrupt sharing mechanism that allows
multiple I/O functions to share the PC Card’s single IREQ# pin. This mecha-
nism requires specific hardware and software support beyond that required
for single function PC Cards. The changes required are:

Multiple Function PC Card — interrupt sharing logic required.

HBA — no changes required.

Socket Services — no changes required.

Card Services — provides ISR registration, must detect IRQ, determine
which PC Card function generated the interrupt, and route the request to
the interrupting function’s enabler.

e PC Card Enabler — must support sharing protocol.

e & @ o

Review of Single Function Interrupt Handling

The following discussion reviews the interrupt handling procedures typically
employed in single function PC Card implementations. This discussion is
based on an x86-based system operating in real mode.

IRQ Initialization

The PC Card’s enabler, after having determined the configuration require-
ments of the PC Card, requests a specific IRQ line from card services by
making the RequestIRQ function call. Card services then verifies that the IRQ
line is available by successfully completing the function call. The enabler now
knows that it has acquired the IRQ that it wanted and must “hook” the inter-
rupt (i.e. place the starting address of its interrupt service routine into the
interrupt table entry that corresponds to the IRQ line that it has been as-
signed) so that interrupt requests are directed to its interrupt service routine
(ISR).

Next, the enabler requests that card services configure the HBA so that it
steers the PC Card’s IREQ# line to the specified IRQ line on the expansion bus
(using the RequestConfiguration function call). Card services in turn makes
the appropriate calls to socket services, directing it to load the appropriate

219

Toshiba_Apricorn 1006-0230
IPR2018-01067

PCMCIA System Architecture

registers within the HBA; thereby, setting it up to steer the PC Card’s inter-
rupt requests over the specified IRQ line.

Handling the Interrupt Request

A summary of the events that take place when a PC Card generates an IREQ#
are detailed in the following paragraphs.

When a PC Card generates an interrupt request, it sets its interrupt pending
bit in the CSR register and asserts the IREQ# line. The HBA steers the PC
Card’s IREQ# to the selected IRQ line and on to the interrupt controller. The
interrupt controller responds by asserting the processor’s interrupt request
input (INTR). This causes the processor to cease normal program execution
and to interrogate the interrupt controller to find out which interrupt has oc-
curred. The interrupt controller responds by sending the interrupt table entry
number corresponding to the IRQ line that generated the interrupt request.
The processor receives the entry number (aka vector) and performs a memory
read to get the starting address of the interrupt service routine from the inter-
rupt table.

The processor temporarily stores the ISRs starting address in a special register
(not named) and saves the current status of the program that was being exe-
cuted when the interrupt occurred (i.e. pushes the flags, CS, and IP registers
to the stack). This is done so the processor can return to the original program
after the interrupt has been serviced. Once the processor saves its place, it
then moves the ISRs starting address into the CS and IP registers, causing it to
begin fetching and executing instructions from the PC Card’s interrupt service
routine.

The ISR reads the Configuration Status Register (CSR) to verify that an inter-
rupt request is pending (i.e. the Intr bit is set). If the Intr bit is set, the ISR
recognizes that an interrupt is pending and clears the Intr bit since the inter-
rupt is now being serviced.

After clearing the interrupt within the PC Card, the ISR continues execution.
Before the ISR completes it must also clear the interrupt at the interrupt con-
troller to prevent the interrupt from being serviced again (i.e. the interrupt
controller will send the same vector to the processor, causing the same ISR to
be executed again). The interrupt is cleared by issuing an End Of Interrupt
(EOI) command to the interrupt controller. After the EOI command has been
issued and the interrupt has been serviced, the ISR executes an Interrupt Re-

220

Toshiba_Apricorn 1006-0231
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

turn instruction (IRET). The IRET causes the processor to restore the flags, CS,
and IP registers previously saved, returning it to normal program flow.

Note: for a more in-depth discussion of x86 interrupt handling refer to the
MindShare book entitled ISA System Architecture, published by Addison-
Wesley.

Multiple Function Interrupt Handling

Each function within a multiple function PC Card has its own enabler that in-
cludes an interrupt service routine designed specifically for that function. The
following sections detail the interrupt handling procedures for multi-function
PC Cards.

IRQ Initialization

Multiple function IRQ initialization must be handled differently than single
PC Card initialization. When a given enabler detects that its function is im-
plemented within a multiple function PC Card it reads the function specific
CIS, determines the configuration requirements of its function and initiates the
configuration of the HBA and PC Card. Since a PC Card has a single IREQ#
pin, all functions within the PC Card must share the same interrupt line.

Interrupt sharing is managed by card services. The interrupt sharing mecha-
nism requires that the ISR for each function be registered with card services.
The following describes the actions that would typically be taken by each
function enabler during IRQ initialization.

Function Zero

When an enabler detects the presence of its function within a multi-function
PC Card and determines that an interrupt is required, it must request an in-
terrupt from card services. The multiple function enabler passes the starting
address of its ISR to card services when it makes the RequestIRQ function call.
It also identifies the location of its function by passing card services the logical
socket number and logical function number (zero in this example) for its
function.

Card services then provides a first level interrupt handler (FLIH) by hooking
the interrupt table entry corresponding to the interrupt requested by the en-

221

Toshiba_Apricorn 1006-0232
IPR2018-01067

PCMCIA System Architecture

abler. Note that multiple function enablers register their ISR with card serv-
ices and do not directly hook the interrupt. When the interrupt is generated
card services FLIH will be executed.

Function One

When function one’s enabler detects its function within the multiple function
PC Card, it must also request an interrupt (via the RequestlO service) from
card services. When making the service call, the enabler passes the starting
address of its interrupt service routine to card services and specifies the logi-
cal socket and function number (one in this example) of the PC Card. After the
HBA and PC Card are configured, an interrupt generated by function one will
cause the FLIH within card services to execute.

Handling the Interrupt Request

A summary of the events that take place when a multiple function PC Card
generates an IREQ# are detailed in the following paragraphs. The example is
based on an ISA platform. Refer to Figure 17-3.

When a single function within a multiple function PC Card generates an inter-
rupt request it sets the Intr bit in its CSR register and signals the PC Card’s
interrupt routing logic. The routing logic in turn asserts the PC Card’s IREQ#
line. The HBA steers the IREQ# signal to the selected IRQ line and on to the
interrupt controller. The interrupt controller responds by asserting the proces-
sor’s interrupt request input. This causes the processor to cease normal
program execution and to interrogate the interrupt controller to find out
which interrupt has occurred. The interrupt controller responds by sending
the processor an 8-bit interrupt table entry number corresponding to the IRQ
line that generated the interrupt request. The processor receives the entry
number (a.k.a. the vector) and performs a memory read to get the starting ad-
dress of the card services FLIH from the interrupt table.

The processor temporarily stores the FLIH's starting address in a special reg-
ister (not named) and saves the current status of the program that was being
executed when the interrupt occurred (i.e. pushes the flags, CS, and IP regis-
ters to the stack). This is done so the processor can return to the original
program after the interrupt has been serviced. Once the processor saves its
place, it then moves the FLIH’s starting address into the CS and IP registers,
causing the processor to begin fetching and executing instructions from card
services FLIH.

222

Toshiba_Apricorn 1006-0233
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

04l 5182 SO

5 Entry Entry
Function 0 Function 1
ISR Enabler Enabler ISR PC Card
| . Enablers
3 Exit Exit 5 w
B o8
. g 2 @
3 3
A h 4
[IR A?dress | [1SR Address_| Card
[Services
| Interrupt Handling L
i Routine i
& - %
o o) o
: 5
o D
5] o
IRQ Steering H BA
Logic
F 3
PC Card .
IREQ# Routing| Multiple
h 3 -
IREQo# IREQ1# Function
| 1
PC Card
Function Function
= 0 1 «

Figure 17-3. Multiple Function IRQ Sharing Procedure.

223

Toshiba_Apricorn 1006-0234
IPR2018-01067

PCMCIA System Architecture

The FLIH reads the function Configuration Status Registers (CSRs) to deter-
mine which function currently has an interrupt request pending (i.e. the
function whose Intr bit is set). If the Intr bit is set for one of the functions, the
FLIH calls the ISR for that function, using the starting address that the enable
passed to card services when the RequestIRQ function was performed.

The function’s ISR does not clear the interrupt at the function’s CSR, nor at the
interrupt controller as single function ISRs do. When the ISR completes exe-
cution, it returns to the FLIH. Before the FLIH completes, it issues an EOI
command to the interrupt controller, preventing it from servicing the same in-
terrupt again. The FLIH also clears the Intr bit within the CSR, indicating that
card services is ready to handle another interrupt request. This prompts the
interrupt routing logic to issue another IREQ#, if another function within the
card has signaled that it has an interrupt request pending. After the EOI
command has been issued, the FLIH executes the IRET instruction, returning
the processor to normal program flow.

Applications Unaware of Multiple Function Protocol

The Problem

Generic enablers for some functions (e.g. modems) request specific resources
that common application program expect the function to use (e.g. many com-
munications programs expect the modem to use the convention I/O address
space and IRQ lines associated with COM1 or COM2). If two or more func-
tions within a single PC Card require specific IRQ lines, then the interrupt
sharing mechanism will not work. However, the PC Card Standard permits
one of the functions within a multiple function card to request a specific IRQ
that it requires to maintain compatibility with application programs. The en-
abler for functions that require a specific IRQ does not participate in the
interrupt sharing protocol. Note however, that all other functions within the
multiple function PC Card must support the interrupt sharing protocol.

An Example Solution

As an example, a generic modem enabler, being unaware that multiple func-
tion support exists, will not register its ISR with card services. Therefore,
when the enabler calls the RequestIRQ function the ISR address field will be

224

Toshiba_Apricorn 1006-0235
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

zero. (Note that card services permits only one enabler per socket to specify
an ISR address field of zero.) Card services assigns the specific IRQn to the
modem enabler to satisfy its configuration. The modem enabler then “hooks”
the interrupt (places the starting address of its ISR into the interrupt table en-
try corresponding to the IRQn line that it has been assigned). Next, card
services “hooks” the same interrupt by reading and saving the starting ad-
dress of the modem’s ISR and replacing it with the starting address of the
FLIH.

Enablers for other functions within the PC Card must register their ISRs with
card services. When any of the functions within a PC Card generate an inter-
rupt request, the FLIH will be executed first (because the processor will obtain
the starting address of the FLIH when it obtains the starting address of the ISR
in the interrupt table). The FLIH checks the interrupt pending bits within each
function to detect which has an interrupt pending,.

If the modem has an interrupt pending, the FLIH jumps to the entry point of
the modem’s ISR (recall that card services previously read and saved the
starting address of the modem’s ISR when it installed the FLIH in the inter-
rupt table). The modem’s ISR executes normally by clearing the PC Card’s
interrupt request (for level interrupts) and performing the EOI command, and
executing IRET.

Changes to Card Services Functions

To support multiple function PC Cards, many of the card services functions
have been modified. For example, when accessing a single function PC Card,
the function could be identified by merely specifying the logical socket num-
ber in which the PC Card resided. However, when a PC Card contains more
than one function each function within the PC Card is identified by an addi-
tional logical function number. Table 17-7 lists of services that have added
support for multiple function implementations.

225

Toshiba_Apricorn 1006-0236
IPR2018-01067

PCMCIA System Architecture

Table 17-7. Card Services Modified for Multiple Function Support

Service Name Code
AccessConfigurationRegister | 36h
GetCardServicesInfo 0Bh
GetConfigurationInfo 04h
GetEventMask 2Eh
GetFirstClient .| OEh
GetFirstTuple 07h
GetNextClient 2Ah
GetNextTuple O0Ah
GetStatus 0Ch
GetTupleData 0Dh
ModifyConfiguration 27h
RegisterMTD 1Ah
ReleaseConfiguration 1Eh
ReleaseExclusive 2Dh
ReleaselO 1Bh
ReleaseIRQ 1Ch
ReleaseSocketMask 2Fh
RequestConfiguration 30h
RequestExclusive 2Ch
RequestIO 1Fh
RequestIRQ 20h
RequestSocketMask 22h
ResetFunction 11h
SetEventMask 31h

226

Toshiba_Apricorn 1006-0237
IPR2018-01067

Part Four

PCMCIA Software

Toshiba_Apricorn 1006-0238
IPR2018-01067

Chapter 18: The Configuration Process

Chapter 18

The Previous Chapter

The previous chapter discussed the multiple function PC Card strategy and
the mechanisms for achieving it. It also included a functional block diagram of
a multiple function PC Card, a sample multi-function CIS, related configura-
tion registers, and multi-function interrupt handling.

This Chapter

This chapter provides an overview of the PCMCIA software environment and
the configuration process. The primary role and interaction between each
piece of software is established. This chapter also introduces the common
software solutions provided along with the most popular suppliers.

The Next Chapter

The next chapter discusses the role of socket services and the initialization
process. It also defines each function and details the calling interface.

Overview of the Configuration Process

Each PC Card must have an enabler that recognizes it, reads the CIS to de-
termine the PC Card’s resource requirements, programs the host bus adapter
(HBA) and configures the card. Figure 18-1 illustrates the most common form
of PC Card enabler known as the client driver. Client drivers interface directly
to Card Services, which services requests from the client drivers. Client driv-
ers call a variety of services within card services to assist it in configuring and
controller accesses to its PC Card. Using card services greatly simplifies the
job of enabling the PC Card, monitoring status change events, and controlling
access to the card.

229

Toshiba_Apricorn 1006-0239
IPR2018-01067

PCMCIA System Architecture

As illustrated in figure 18-1, card services interfaces directly to socket services
to gain access to the HBA and PC Card. Socket services is designed with spe-
cific knowledge of the HBA hardware design and contains software routines
that card services can call to gain access to the registers within the HBA with-
out having to know the low-level details of the hardware interface.

Configuring a PC Card may take place when the system powers up (if the PC
Card is already installed in a socket), or when a PC Card is inserted into a
socket (after the system is powered up and fully operational). In either case,
the PC Card must be detected by an enabler and configured. Without an en-
abler, a PC Card would never be recognized by the system. Once a PC Card is
configured, it then responds like any other device residing on the host bus.

This configuration processor involves interaction between a client driver, card
services, socket services, and the PC Card’s CIS. The Role of each of these
items is reviewed below.

Configuration and Hardware Run-Time
Event Notification Software
Software
PC Card Enablers ioail
(PCMCIA Init &]-Evsn:-‘l?mcz‘:sing}] HOSt SySte m Appiications H
1 1
I L
Operating
Card Services

A

UCHEOINON 1UBAg

Device Drivers
{Run-Time Coda)
Socket Services PCMCIA g -H
Confi Host Bus Adapter
1
PC Card PC Card

| |
| |
| I
| |
| I
| |
| |
| |
| I
| |
| |
| | ystem
| |
| |
| |
| |
| I
; |
Y |
| |
| |
| |
| |
I |

Figure 18-1. PCMCIA Software Flow

230

Toshiba_Apricorn 1006-0240
IPR2018-01067

Chapter 18: The Configuration Process

The Role of the CIS

Each PC Card is required to have a Card Information Structure, or CIS to be
compliant with 2.x or PC Card implementations. The CIS is a data structure
that is stored in non-volatile memory, which provides a method for software
to determine what kind of PC Card is installed, along with its speed, size, sys-
tem resources required by the card, and other pertinent information. The CIS
is mapped within the attribute memory space or alternatively can be located
in common memory address space.

As illustrated in figure 18-1, the CIS is read by PC Card client drivers (via card
and socket services) during card initialization to determine the configuration
options supported by the card. Once the card type and resource requirements
have been read from the CIS, the PC Card client driver programs the HBA
and configures the PC Card, again via card and socket services. No further ac-
cess is typically made to the CIS after the card has been initialized. The PC
Card can now be accessed via the host expansion bus, just like any other ex-
pansion device. Note that the CIS is only accessed by programs that are
PCMCIA aware. Most application programs have no knowledge that they are
accessing devices implemented in PC Card packages.

The Role of the Socket Service Functions

Socket services provides a set of software routines written specifically to ac-
cess the registers within a given HBA. Socket services eliminates the need for
special knowledge of the HBA hardware programming interface. These rou-
tines or functions are comparable to the BIOS routines that are used in the PC
environment. In practice, most client drivers seldom, if ever, directly access
socket service functions, because properly designed enablers access the HBA
via card services. Card services, makes calls to socket services at the HBA re-
quest.

The Role of Card Services

Card services provides a central resource available to all client drivers. Spe-
cifically, card services is a collection of service routines designed for use by
programmers writing enablers for PC Cards. These services provide a soft-
ware interface that permits the programmer to simplify code and helps to

231

Toshiba_Apricorn 1006-0241
IPR2018-01067

PCMCIA System Architecture

reduce conflicts with other client drivers and with allocating system resources
for PC Cards.

A major function of card services is to provide call-back services to notify the
enablers that a particular event has occurred. Each enabler must register with
card services and specify which PC Card events that it wishes to be notified
of. When card services detects a given event (e.g. a card has been inserted or
removed) it then calls each enabler that previously registered to receive notifi-
cation of card insertion or removal.

The Role of the PC Card Enabler

PC Card enablers must recognize that a PC Card has been installed and access
the card’s CIS to determine if it should attempt to configure the card.

Three basic types of enablers exist:

e Dedicated enablers — designed for a particular PC Card.

e Generic (Super) enablers — designed for a wide range of PC Card types.
Point enablers — designed to configure and enable the PC Card without
using card and socket services.

Note that dedicated enablers and generic enablers both interface to card serv-
ices as illustrated in figure 18-1. These enablers all register with card services
when they first install. The registration process permits access to card services
and allows the enabler to specify the events that it wishes to be notified of.
Enablers that use card services are also referred to as client drivers.

Dedicated Enablers

Dedicated enablers are typically supplied by the PC Card manufacturer to in-
crease the probability that the card will install correctly in the absence of a
generic driver. Dedicated enablers identify a specific PC Card and will typi-
cally not recognize and enabler other PC Cards of the same type. These
enablers may also manage functions that are unique to a given PC Card im-
plementation.

232

Toshiba_Apricorn 1006-0242
IPR2018-01067

Chapter 18: The Configuration Process

Generic Enablers

Generic enablers are designed to handle PC Cards of a particular functional
type. For example, the system manufacturer may include generic drivers for
card types such as SRAM, flash ROM, Modems, and ATA drives. These en-
ablers attempt to identify and enable cards based on a generic type without
regard to the manufacturer or special features that may be incorporated into
the PC Card’s design.

Another class of generic enablers are the super I/O enablers. These enablers
are designed to recognize and configure a wide range of 1/O devices such as,
modem, fax/modems, LAN controllers, etc. These enablers reduce the num-
ber of enablers that must be installed to detect the possible PC Cards that
might be installed in a socket. The exact mechanism employed by these super
enablers varies, but all have the same goal of enabling the most common 1/0
cards. Most system manufacturers supply super I/O client solutions as a part
of the PCMCIA software shipped with the PC.

Point Enablers

Point enablers are dedicated enablers that bypass card and socket services.
These enablers are popular in environments such as DOS where limited mem-
ory address space is available for application programs. Card and socket
services take a considerable amount of memory when they install. Added to
this is the space required by the enabler(s) and any TSR (terminate and stay
resident programs) that might be used. As a result, too little memory is left for
many application programs to run. One solution is to eliminate the PCMCIA
specific software, thereby freeing up memory space that is needed to run the
application programs. Point enablers are needed to configure the PC Cards
that the user want to access. In the absence of card and socket services, point
enablers must load the appropriate registers within the HBA to recognize and
configure their PC Card.

For more information regarding enablers refer to the Chapter entitled, “PC
Card Enablers.”

233

Toshiba_Apricorn 1006-0243
IPR2018-01067

PCMCIA System Architecture

PCMCIA Software Solutions

The entire PCMCIA software environment is typically provided by a single
vendor. This software includes generic enablers, card services, a resource de-
tection utility that builds the resource table (used by card services), and socket
services. PC manufacturers license these software solutions for use in their
products. PCMCIA software is available from several different vendors. The
major vendor and the name of their PCMCIA software is listed in table 18-1.

Table 18-1. Major Vendors of PCMCIA Software Solutions

PCMCIA Software Vendor Product Name

American Megatrends (AMI) AMICARDZ

Award CardWare

IBM || PlayAtWill (DOS & OS/2)
Microsoft ; Windows95

Phoenix Technology PCM3+

SystemSoft CardSoft

While most PCMCIA software solutions provide the same basic functionality,
many differences have existed. Some of the differences are inconsequential,
such as, differences in logical drive letter assignments for various types of PC
Cards, the visual and/or audible feedback provided when cards are inserted
or removed, etc. However, some differences have been potentially more criti-

cal, including:

e HBAs supported

* Power management support

e Flash card support (i.e. Flash file systems and MTDs)
L]

Abridged versions of card services (Note that the functionality not in-
cluded in card services is typically integrated directly into the enablers.)
Resource Allocation (PC Cards mapped to different system resources)
Generic enabler support (Types of PC Cards supported)

As the PCMCIA software has matured, the problematic differences between
vendor solutions have diminished. Further, the PC Card 95 release has de-
fined specific support for several areas that were previously the source of
significant differences between vendor solutions.

234

Toshiba_Apricorn 1006-0244
IPR2018-01067

Chapter 19: Socket Services

Chapter 19

The Previous Chapter

The previous chapter provided an overview of the PCMCIA software envi-
ronment and the configuration process. The primary role and interaction be-
tween each piece of software was established. The chapter also introduced the
common software solutions provided along with the most popular suppliers.

This Chapter

This chapter discusses the role of socket services. It also describes the initiali-
zation of socket services and explains the basic purpose of the functions com-
monly supported in the PC environment.

The Next Chapter

The next chapter focuses on the role of card services in the PCMCIA environ-
ment. It reviews each of the functions defined by the PC Card specification
that apply to 16-bit PC Cards, along with related return codes. The call back
mechanism is also described and the event and call back codes are defined.

The Role of Socket Services—Making Life Easier

Before the development of socket services, a PC Card's client driver was re-
sponsible for ensuring that its card satisfied the requirements of the PC Card
plug and play environment. Plug and play means that the PC Card can be
automatically configured after being installed in a system, without requiring
user intervention. In the PC Card environment this responsibility includes:

e Accessing registers within the HBA to open an attribute memory window,
allowing access to the card's CIS.

e Interpreting the CIS to determine the configuration requirements of the
card.

235

Toshiba_Apricorn 1006-0245
IPR2018-01067

PCMCIA System Architecture

@ Determmmg if the resources needed by the card are available (not already
in use by other system devices).
* Loading HBA registers with the specified configuration values that permit
host software to access the PC Card.
e Polling HBA registers to monitor socket status change events (e.g. card

removal).

¢ Releasing system resources by clearing registers in the HBA when a card

removal event occurs.

e Providing the ability to perform these functions regardless of the HBA

design.

These requirements make it clear that developing PC Card client driver prior
to the introduction of socket services required detailed knowledge of the par-
ticular HBA's hardware interface. Furthermore, HBA design changes could

lead to heavy revision and update of the client driver.

As shown in figure 19-1, today's client drivers can configure a PC Card with
relative ease by accessing the PCMCIA configuration software that is com-
prised of card and socket services. This chapter focuses on the role of socket
services, which eliminates the need for client drivers to know the details of the

HBA hardware.

Configuration and
Event Notification

Software

{PCMCIA Init & Event Processing)

PC Card Enablers

L

Card Services

Socket Services

Hardware

Host System

PCMCIA
Host Bus Adapter

PC Card

3 Y513 WSIl sng 1oy

Run-Time
Software

Applications _I'I

Operating
System

Device Drivers
(Run-Time Code)

L

L

PC Card

|
I
I
|
|
|
I
I
|
|
|
|
I
I
|
|
|
|
|
I
I
|
I
I

Figure 19-1. Relationship of Socket Services to the Rest of the System.

236

Toshiba_Apricorn 1006-0246

IPR2018-01067

Chapter 19: Socket Services

Socket services provides a set of functions that can be called by client drivers
(typically card services), eliminating the need for special knowledge of the
HBA hardware programming interface. These functions can be compared to
the BIOS routines that are used in the PC environment. In practice, most client
drivers seldom, if ever, directly access socket service functions, because client
drivers typically access the HBA via card services. Card services, makes calls
to socket services at the client drivers request. In fact, card services blocks ac-
cess attempts to socket services that are made by client drivers.

Installation and Initialization

Socket services can be contained in ROM, can be loaded into system memory
via an installable device driver, or can be .incorporated as extensions to the
operating system. In the PC environment socket services are typically installed
via a device driver and must be loaded into the system before card services
and other client drivers (i.e. any software that requires socket services). With-
out socket services being present card services and PC Card client drivers will
not install.

The method used to install socket services and the protocol used to call the
functions is platform dependent. The PCMCIA standard currently defines the
socket services function call interface only for the Intel x86 platform. Refer to
the section entitled, "Socket Services Calling Convention" later in this chapter.

Socket Services Functions

As discussed in the chapter entitled, "The Host Bus Adapter”, the HBA must
be programmed to allow system access to the PC Card and to manage a vari-
ety of HBA functions including:

e Specifying the socket interface type (memory or I/0).

Programming memory address windows.

Programming I/O address windows.

Steering each PC Card'’s IREQ# signal to the selected system interrupt line.
Steering the HBA's status change interrupt to the selected system inter-
rupt line.

e Controlling socket power switching.

e Enabling power conservation features.

e Controlling EDC generators.

237

Toshiba_Apricorn 1006-0247
IPR2018-01067

PCMCIA System Architecture

Socket services controls these functions through a defined set of function calls,
each related to objects managed by the adapter. Table 19-1 lists the functions
according to the object-based grouping defined below:

Adapter Functions — Those functions that affect all sockets that are con-
trolled by the HBA (i.e., setting Vcc to 3.3 volts for one socket causes all
other sockets to also receive 3.3 volts). Adapter functions also pertain to
items such as the single status change interrupt, which reports status
changes for all sockets.

Socket Functions — Those functions controlled individually at the socket
level (i.e., setting Vce to 3.3 volts for a given socket affects only that
socket).

Window Functions — Those functions that control the memory and I/O
address windows.

Error Detection and Correction (EDC) Functions — Those functions used
to interact with the EDC generators.

Table 19-1. Socket Services Functions

ADAPTER Functions | WINDOW Functions

Acknowledgelnterrupt | GetPage

GetAccessOffsets GetWindow

GetAdapter InquireWindow

GetAdapterCount SetPage

GetSetPriorHandler SetWindow

GetSetSSAddr

GetSSInfo EDC Functions

GetVendorlnfo GetEDC

InquireAdapter InquireEDC

SetAdapter PauseEDC

VendorSpecific ReadEDC
ResumeEDC

SOCKET Functions | SetEDC

GetSocket StartEDC

GetStatus StopEDC

InquireSocket

ResetSocket

SetSocket

238

Toshiba_Apricorn 1006-0248
IPR2018-01067

Chapter 19: Socket Services

Note that three new socket service functions were added to the PC Card 95
Standard. These functions support CardBus bridge implementations and are
not included in this book. For information regarding CardBus, see Mind-
Share’s CardBus System Architecture book, published by Addison-Wesley.

Socket services has also been designed to permit ease of use. Within each
functional group shown in table 19-1, there is are “inquire,” “get,” and “set”
functions, defined below:

e Inquire functions — used to report the capabilities of each object defined.

e Get functions — used to report the current parameter settings associated
with the object.

e Set functions — used to set the parameters associated with the object.

The "get" and "set" functions for a specific item have the same basic data struc-
ture format, allowing easy modification of parameters. For example, if some
parameter within the adapter must be modified, the GetAdapter function can
be called to obtain the current adapter settings. This adapter setting informa-
tion can be written back to the adapter registers using the SetAdapter function
once the specific parameter has been changed. This technique permits easy
read /modify/write operations to modify individual parameters without
having to build the entire data structure that must be passed to socket services
when the function is called.

Socket Services Calling Convention

The method used for calling functions depends on the specific platform. Cur-
rently, the PCMCIA specification details the programming interface or socket
services binding, for Intel x86-compatible systems. The binding specifies use
of software interrupt 1Ah to call socket service functions (real mode). This in-
terrupt is typically used by the real-time clock BIOS functions. Therefore
socket services shares entry 1Ah in the interrupt table with the real-time clock.

When in protected mode the method of calling socket service functions is op-
erating system specific.

When socket services installs it hooks interrupt 1Ah. This is done by reading
and saving the current value of entry 1Ah within the interrupt table (the real
time clock BIOS entry pointer) and replacing it with an entry point for its own
functions. Socket services functions can then be called using the INT 1Ah in-
struction. The function numbers are defined in table 19-2 and the general reg-

239

Toshiba_Apricorn 1006-0249
IPR2018-01067

PCMCIA System Architecture

ister usage is defined as follows. The exact register content defined for each
function can be found in the PCMCIA specification:

Entry: [AH] Function number desired in hex
[AL] HBA number
[BH] Window number
[BL] Page or Socket (depending on function)
[CX] Counts
[DX] Attributes

[DSI:[(E)SI] Reserved in ROM BIOS Int 1Ah interface
[ESI:[(E)DI] Pointer to socket services client buffer

(D1} Offset in 4 KB units
Exit: [CF] Status (carry set = error, reset = success)
[AH] Success or failure return code depending on
Carry Flag value.

If the value in the AH register does not match one of the socket services func-
tions, socket services will pass the call on to the Real Time Clock function,
whose entry point was saved during initialization of socket services.

Note that the last function number within socket services is for card services
(function 0AFh). Card services also installs into entry 1Ah in the interrupt ta-
ble and therefore will be called before socket services. Card service functions
are called using the 0AFh value in the AH register, allowing definition of the
call as a CS function. CS then checks the AL register to identify which CS
function is being called. If, however, a socket services function is called, then
the AH register contains a value other than 0AFh and CS will not pass the
function to socket services. This prevents client drivers from accessing socket
services directly and changing HBA settings without CS being notified. See
the chapter entitled "PC Card Configuration: Card Services and Client Driv-
ers" for additional information.

Upon exit from a socket services routine, a return (or completion) code is
placed in the AH register. The state of the carry flag determines whether the
socket service function incurred an error or executed successfully. Table 19-3
lists the return codes.

240

Toshiba_Apricorn 1006-0250
IPR2018-01067

Chapter 19: Socket Services

Table 19-2. Socket Services Function Code Listing

SS Functions Arranged Alphabetically

SS Functions Arranged Numerically

Function Code Code Function
ACCESS_OFFSETS 0A1h 80h GET_ADP_CNT
ACK_INTERRUPT 9Eh 81h and 82h Reserved
CARD_SERVICES 0AFh 83h GET_SS_INFO
GET_ADAPTER 85h 84h INQ ADAPTER
GET_ADP_CNT 80h 85h GET_ADAPTER
GET_EDC 96h 86h SET_ADAPTER
GET_PAGE - 8Ah 87h INQ WINDOW
GET_SOCKET 8Dh 88h GET_WINDOW
GET_SS_INFO 83h 89h SET_WINDOW
GET_STATUS 8Fh 8Ah GET_PAGE
GET_VENDOR_INFO 9Dh 8Bh SET_PAGE
GET_WINDOW 88h 8Ch INQ SOCKET
INQ_ADAPTER 84h 8Dh GET_SOCKET
INQ EDC 95h 8Eh SET_SOCKET
INQ SOCKET 8Ch 8Fh GET_STATUS
INQ WINDOW 87h 90h RESET_SOCKET
PAUSE_EDC 99h 91h thru 94h Reserved
PRIOR_HANDLER 9Fh 95h INQ EDC
READ_EDC 9Ch 96h GET_EDC
Reserved 81h and 82h 97h SET_EDC
Reserved 91h thru 94h 98h START_EDC
Reserved for expansion A2h thru ADh 99h PAUSE_EDC
RESET_SOCKET 90h 9Ah RESUME_EDC
RESUME_EDC 9Ah 9Bh STOP_EDC
SET_ADAPTER 86h 9Ch READ _EDC
SET_EDC 97h 9Dh GET_VENDOR_INFO
SET_PAGE 8Bh 9Eh ACK_INTERRUPT
SET SOCKET 8Eh 9Fh PRIOR_HANDLER
SET_WINDOW 8%h 0AOh SS_ADDR
SS_ADDR 0AOh 0A1h ACCESS_OFFSETS
START _EDC 98h A2h thru ADh Reserved for expansion
STOP_EDC 9Bh 0AEh VEND_SPECIFIC
VEND_SPECIFIC 0AEh 0AFh CARD_SERVICES

241

Toshiba_Apricorn 1006-0251

IPR2018-01067

PCMCIA System Architecture

Table 19-3. Socket Services Return Codes

Return Codes listed alphabetically

Return Codes listed numerically

Name of Return Code Code
BAD_ADAPTER 01h
BAD_ATTRIBUTE 02h
BAD_BASE 03h
BAD_EDC 04h
BAD_IRQ 06h
BAD_MODE 16h
BAD_OFFSET 07h
BAD_PAGE 08h
BAD_SERVICE 15h
BAD_SIZE 0Ah
BAD_SOCKET 0Bh
BAD_SPEED 17h
BAD_TYPE 0Dh
BAD_VCC 0Eh
BAD_VPP OFh
BAD_WINDOW 11h
BUSY 18h
NO_CARD 14h
READ_FAILURE 0%h
reserved 05h
reserved 0Ch
reserved 10h
reserved 13h
reserved 19h-FFh
Success 00h
WRITE_FAILURE 12h

Code Name of Return Code
00h Success

01h BAD_ADAPTER
02h BAD_ATTRIBUTE
03h BAD_BASE

04h BAD_EDC

05h reserved

06h BAD_IRQ

07h BAD_OFFSET
08h BAD PAGE

0%h READ_FAILURE
0Ah BAD_SIZE

0Bh BAD SOCKET
0Ch reserved

0Dh BAD_TYPE

0Eh BAD_VCC

OFh BAD_VPP

10h reserved

11h BAD_WINDOW
12h WRITE_FAILURE
13h reserved

14h NO_CARD

15h BAD_SERVICE
16h BAD MODE

17h BAD_SPEED

18h BUSY

19h-FFh || reserved

242

Toshiba_Apricorn 1006-0252

IPR2018-01067

Chapter 19: Socket Services

Adapter Functions

The adapter functions can be categorized into four classes:

» Functions used to identify the number of adapters within the system and
to assign socket services to a specific adapter or adapters. Note that in
some cases multiple adapters having different hardware interfaces may be
installed in the system. This would require multiple versions of socket
services be installed to handle the various adapters.

e Functions that control adapter parameters via the inquire, get and set
functions. ¢

e A function used to support status change interrupt processing.

e Low-level access and protected-mode support functions.

Verifying SS is installed (GetAdapterCount)

The Get Adapter Count (GetAdapterCount) function is used by the socket
service client (typically Card Services) to determine if socket services is in-
stalled and to determine the number of HBAs in the system. This function is
typically the first function called and returns the following information to the
client.

e the number of adapters that are detected by socket services
o the ASCII string "SS" that verifies that socket services is installed.

Once the client detects that one or more adapters are installed, socket services
must be assigned to a given adapter or adapters.

Getting Information from Socket Services (GetSSiInfo)

A socket service client calls Get Socket Services Information (GetSSInfo) to de-
termine among other things the number of adapters discovered and controlled
by a given set of socket services. When making the GetSSInfo call, the client
passes a logical HBA number to socket services as an input. This logical num-
ber will be used by the client when it wants to access the HBA in the future.
Socket services must remember the logical HBA number and use it to identify
accesses to an HBA. Socket services will assign the logical HBA number to the
first HBA that it discovers. If socket services discovers more than one HBA, it
will assign the next logical number to the second HBA it discovers, etc. Socket

243

Toshiba_Apricorn 1006-0253
IPR2018-01067

PCMCIA System Architecture

services returns the total number of adapters that it has discovered, telling the
client the number of adapters this particular set of socket services controls,
and therefore the range of logical adapters that it will respond to in the future.

Note that the first adapter detected by the first set of socket services installed
is assigned as adapter "0". The client will continue making GetSSInfo calls
until all HBAs have been located. This means that one GetSSInfo call will be
make by the client for each set of socket services installed. Normally only one
set of socket services will be installed.

The following information is returned by the GetSSInfo function:

e Compliance level of adapter. Returned as BCD (Binary Coded Decimal)
value. (i.e. 0500h = PC Card Standard, February 1995).

e Number of adapters supported or found by this set of socket services. If
socket services recognizes more than one adapter in the system, it returns
the total number that it finds and therefore the number it can control.

e First adapter number supported. Note that the first socket services in-
stalled always controls adapter zero. The adapter numbers are assigned
sequentially starting with zero.

The GetSSInfo function must be run once for each set of socket services in-
stalled, thereby assigning logical adapter numbers to all adapters controlled
by a particular copy of socket services.

When Two or More Socket Services Are Needed
(GetSetPriorHandle)

Some users may want to add more PCMCIA sockets to their system, resulting
in two or more different HBA implementations. For example, consider a note-
book system with two sockets. When the system is installed in a docking sta-
tion, more sockets can be added via an additional HBA inserted in an
expansion card slot. The additional HBA may have a different hardware inter-
face, requiring its own set of socket services.

PCMCIA can accommodate multiple sets of socket services to support a vari-
ety of different HBA implementations. During the initialization process, a
socket services client (the SS initialization routine) detects existing HBAs and
identifies those that it is compatible with, using the GetAdapterCount and
GetSSInfo (as discussed earlier). When installed, additional socket services
will also initialize and attempt to identify HBAs that they are compatible with.

244

Toshiba_Apricorn 1006-0254
IPR2018-01067

Chapter 19: Socket Services

When an additional copy of socket services is installed, the client must de-
termine which adapter numbers have already been assigned by previous cop-
ies of socket services. The new socket services initialization code can then call
the GetSSInfo, to ascertain the first adapter that this new socket services will
control.

When a socket services client (card services) makes a call, it specifies a target
adapter number or a target socket residing within a particular adapter. The
socket services copy receiving the call will be the last installed. If the target
adapter or socket is not controlled by this set of socket services, it must pass
the call to the next socket services in the chain. This means that some method
of linking copies of socket services must be employed. The exact method used
to link all copies of socket services together depends on the implementation
used by a given architecture.

Some architectures may use the socket services function GetSetPriorHandle to
link together multiple copies of socket services. The GetSetPriorHandle func-
tion retrieves the handle (entry point address) at which the previous socket
services resides. In this way, a linked list of entry points can be maintained
such that each socket services passes the call to the next until the target
adapter is located. The socket services chain can also be modified (set), allow-
ing a new socket services to supersede or replace an existing copy.

The Intel X86 architecture uses a software interrupt, 1Ah, to call socket serv-
ices. When the first set of socket services installs, it first reads and saves the
existing value in entry 1Ah of the interrupt table and then replaces it with its
entry point. If another socket services installs, it also uses entry 1A, by reading
and saving the previous pointer (belonging to the current socket services) and
replacing it with its own pointer. In this way, each subsequent socket services
that installs obtains the pointer to the previous socket services, creating a
linked list. Calls to a particular adapter will then be passed from one socket
services to the next until the target adapter is located.

Controlling HBA Parameters (InquireAdapter, GetAdapter,
SetAdapter)

Before configuring the HBA, the programmer must first determine a specific
HBA's capabilities using the InquireAdapter function. Once its capabilities are
determined, the HBA configuration parameters can be set using the Se-
tAdapter function. If necessary, the client can check the current adapter set-
tings using the GetAdapter function.

245

Toshiba_Apricorn 1006-0255
IPR2018-01067

PCMCIA System Architecture

InquireAdapter Function. This function requires the following input parame-
ters be specified: the target adapter number and the location of a memory
buffer. The function returns information to the processor’s registers and to the
specified memory buffer. Parameters returned to the processor’s registers in-
clude:

e Number of sockets
e Number of address windows

¢ Number of EDC generators

Parameters returned in memory buffer provide additional information regard-
ing the capabilities of the adapter. The memory buffer format is defined by the
socket services specification and can be categorized into two separate parts as
shown in table 19-4.

Table 19-4. Adapter Information Structure Definition

Adapter Information Structure

Adapter Characteristics | Indicators —If indicator bit is set, indicators for write protect, battery
status, busy status and XIP (Execute-in-place) status are shared for all
sockets on the adapter. If reset, indicators exist for individual sockets.

Structure

Power Level — If power level bit is set, the adapter applies the same
power level to all sockets. When a SetSocket function is used to set the
power for a specific socket, that setting is reflected at all sockets. If
power level bit is reset, the adapter can apply power to sockets indi-
vidually in response to the SetSocket function.

Data Bus Width — When data bus width bit is set, all adapter address
windows use the same data width. If data bus width bit is reset, data
width can be assigned to individual windows within the adapter.

Status Interrupts (High Level) — Bit map of system interrupts to
which status interrupts can be steered using an active high state.
Status Interrupts (Low Level) — Bit map of system interrupts to
which status interrupts can be steered using an active low state.

Power Entry Structure Number of Power Entries

Power Entries — Each entry specifies a voltage level supported and
the socket pins (Vee, Vppl and Vpp2) to which the voltage level ap-
plies. The voltage level is specified as a DC voltage in tenth of a volt
increments. Flag bits are set to indicate the voltage is valid for the
specified supply.

246

Toshiba_Apricorn 1006-0256
IPR2018-01067

Chapter 19: Socket Services

GetAdapter Function. The GetAdapter function returns the current status of
the HBA settings. When the GetAdapter function is called, the socket services
client must pass the physical adapter number to socket services. Adapter pa-
rameter states returned by this function include:

e Powerdown state — If the bit is set, the adapter is in power conservation
state and the SetAdapter function should be used to restore full power be-
fore using the adapter. If the bit is reset, full power is applied and the
adapter is fully functional.

e Maintain state — If this bit is set, configuration information is retained by
the adapter hardware during power conservation mode. If reset, the client
is responsible for maintaining adapter configuration information during
power conservation.

e Status Change Interrupt Steering — Retumns the system interrupt line, to
which status change interrupts are directed.

e Status Change Interrupt Level — If set, the status change interrupt is ac-
tive high. If reset, the interrupt is active low.

e Status Change Interrupt Enable/Disable State — The status change in-
terrupt is enabled when set and disabled when reset.

SetAdapter Function. HBA parameters can be set using the SetAdapter func-
tion. The exact same parameter mapping is used for the SetAdapter function
as for the GetAdapter function. This allows for easy read-modify-write opera-
tions when a specific parameter must be changed.

For example, to place the adapter into power conservation mode, the Get-
Adapter function can be called and the powerdown bit can be toggled. Next
the SetAdapter call can be made, causing the powerdown bit to be set within
the adapter.

Vendor Functions (GetVendorinfo, VendorSpecific)

The GetVendorInfo function returns information about the vendor that im-
plemented the socket services for a particular adapter in the system. Input pa-
rameters to socket services for this call include:

e HBA number

e Type of vendor information requested — a code type of zero indicates
that the programmer is requesting the vendor information as an ASCIIZ
string (only code currently defined).

247

Toshiba_Apricorn 1006-0257

IPR2018-01067

PCMCIA System Architecture

* Pointer to the buffer where the ASCIIZ string is to be returned. The buffer
format is specified in the socket services standard.

The function returns the ASCIIZ string to the buffer specified, indicating the
version number of this particular release of socket services. The vendor's first
release of socket services must use a version number of 0100h (release 1.00).

The optional VendorSpecific function is left up to the vendor to implement.
The adapter number is specified as an input parameter to socket services
when the call is made. The functions supported and the function identification
numbers are defined by the vendor to support capabilities beyond the scope
of the specification.

Indirect Access to PC Card Memory (GetAccessOffsets)

Some HBAs may access memory cards via I/O registers rather than via mem-
ory-mapped address ranges. This eliminates memory address conflicts that
might otherwise occur when mapping a PC Card into the system memory ad-
dress space. These HBAs define a command set that is used when accessing
the cards. The client driver uses the GetAccessOffsets function to locate the
code that performs these commands. These memory client drivers are HBA
specific.

Determining What Card Caused a Status Change Interrupt
(Acknowledgelnterrupt)

When a status change event occurs at one of the HBAs sockets, an interrupt
request is generated by the HBA. The socket services client (typically card
services) is notified of the event via a system interrupt. When the client re-
ceives the interrupt, it has no knowledge of which socket encountered the
status change event or what the specific event was. The client must determine
which socket has experienced a status change event by calling the Acknowl-
edgelnterrupt function. Once the socket (or sockets) that has experienced a
status change has been determined, then the GetStatus function is called to de-
termine which event caused the interrupt.

The Acknowledgelnterrupt function must be called once for each HBA in the
system. The client supplies the HBA number to socket services when the Ac-
knowledgelnterrupt function is called and socket services returns a bit map of
the sockets within the HBA that have experienced a status change. When ob-

248

Toshiba_Apricorn 1006-0258
IPR2018-01067

Chapter 19: Socket Services

taining status information from the HBA, socket services also prepares the
adapter to generate another status change interrupt when one occurs.

In the interrupt service routine, the sockets that have experienced a status
change are determined using the Acknowledgelnterrupt function. After the in-
terrupt service routine completes, the client then calls the GetStatus function,
specifying the socket that experienced the status change. Most HBAs preserve
the state of the status change so that the status change event that caused the
interrupt can be determined using the GetStatus function. If the HBA does not
preserve this state information, then socket services must.

Note that the Acknowledgelnterrupt function is called by the status change in-
terrupt service routine. Socket services must not re-enable interrupts while
processing a status change interrupt service routine. This could cause nesting
of status change interrupts to itself, a situation that socket services is unpre-
pared to manage.

Socket Functions

Socket functions deal with parameters that can be controlled on a
socket-by-socket basis. These calls require that a particular socket number be
specified, whereas adapter functions require an HBA number. The following
sections discuss each function in the socket group.

Controlling Individual Sockets (InquireSocket, SetSocket,
GetSocket)

Functions used to control a socket are similar to the adapter functions that are
used to control HBA functionality. The adapter functions control parameters
that apply to all sockets supported by a specific HBA, whereas the socket
functions control parameters that apply individually to each of the HBA’s
sockets.

249

Toshiba_Apricorn 1006-0259
IPR2018-01067

PCMCIA System Architecture

InquireSocket. This function requires that a target socket number be specified
along with the address of a memory buffer. This function returns the follow-
ing information:

® Events that can trigger a status change interrupt. These events can be a
combination of the following items:

e PC Card write-protect (WP) signal.

e Asignal (from card interlock logic) indicating the state of a card lock
mechanism.

e A signal (from the card interlock logic) indicating a request to eject a
PC Card from the socket.

e Asignal indicating a request to insert a card into the socket.

e PC Card BVDI1 signal indicating that the card's battery is completely
discharged.
PC Card BVD2 signal indicating the card's battery is weak.

e PC Card READY signal, indicating a change in the card’s ready state.

e PCCard Detect Signals.

® Bit map of status change events that are reported via the GetStatus func-
tion. This bit map includes all the items that can generate a status change
interrupt (listed above), plus other events that do not generate an inter-
rupt but whose status is returned to the socket services client driver by
the GetStatus function.

® Bit map of items for which there is a control or an indicator supported at
the socket level. Indicators are items such as LED indicators that the HBA
provides which shows the status of given events. These items may in-
clude:

Indicator for WP signal.

Indicator for state of card lock mechanism.

Control for motor to eject card from socket.

Control for motor to insert card into socket.

Control to establish a card lock.

Indicator for BVD1 and BVD?2 state.

¢ Indicator showing when card is in use.

e Indicator for execute-in-place (XIP) application is progress.

e @ o & @ @

® The Socket Information Structure is returned to a memory buffer supplied
by the socket services client. The memory buffer format is defined by the
socket services as shown in table 19-5.

250

Toshiba_Apricorn 1006-0260
IPR2018-01067

Chapter 19: Socket Services

Table 19-5. Socket Information Structure Definition

Socket Information Structure

Socket Characteristics || Socket Interface Type—If interface bit is set, the socket is a
Structure memory only interface. If reset, the socket interface is mem-
ory or I/O.

PC Card Interrupts (High Level)—Bit map of system inter-
rupts to which PC Card interrupts can be steered using an
active high state.

PC Card Interrupts (Low Level)—Bit map of system inter-
rupts to which PC Card interrupts can be steered using an
active low state.

GetSocket Function. The GetSocket function returns the current status of the
HBA socket settings. When the GetSocket function is called, the socket serv-
ices client must pass the adapter and socket number to socket services. The
parameter's returned by this function are:

e Status Change Mask — Returns the current setting of the events that
cause a status change interrupt from the socket.

e Vcc Level — Returns the current supply voltage applied to the socket on
the Vee pin.

e Vpp Levels — Returns the current supply voltage applied to the socket on
the Vpp pins. Separate values are returned for Vpp1 and Vpp2.

¢ State Change. Returns the latched values of the status change events that
have occurred at the socket.

e Socket Controls and Indicators — Returns a bit map of socket controls
and indicators that are in use. Bits that are set indicate the control or indi-
cator is activated.

¢ IREQ Routing — Returns the system interrupt line to which the card's
IREQ# signal is directed. Optionally, an additional bit can specify whether
the IREQ# signal should be inverted or not, and another optional bit can
enable or disable interrupt routing.

¢ Interface Type — Returns the interface setting. Only one of the following
selections can be set; a “Memory-Only” interface and a “Memory or I/0”
interface

SetSocket Function. Socket parameters are set using the SetSocket function.
The exact same parameter mapping is used for the SetSocket function as for
the GetSocket function. That is, the data structure format for the SetSocket

251

Toshiba_Apricorn 1006-0261
IPR2018-01067

PCMCIA System Architecture

function mirrors the definition of the GetSocket function’s data structure for-
mat listed earlier. This simplifies read-modify-write operations when a spe-
cific parameter must be changed.

Determining the Current Staius of the Socket and PC Card
(GetStatus)

This function is intended to be called by the socket services client to determine
what event(s) have caused a status change interrupt. This call should not be
made during hardware interrupt processing of the status change interrupt,
but rather after the interrupt has been processed and the socket(s) experienc-
ing a status change event has been identified. The socket services client can
then call the GetStatus function to determine which event caused the status
change interrupt.

The information returned reflects the current state of the parameters set
within the HBA:

e Returns the current state of the events that can cause a status change in-
terrupt (as defined by the InquireSocket function) and the current state of
the socket control and indicators (also defined in the InquireSocket func-
tion).

¢ Returns the current bit map of parameters or events that cause a status
change interrupt. These events are defined in the GetSocket function’s
status change mask.

e Returns a bit map of Socket control and indicator bits supported by HBA.

* Returns the current settings of the IREQ Routing parameters.

e Returns the current Interface Type setting.

Resetting the Socket Under Software Control (ResetSocket)

This function provides a software reset to the PC Card and resets the socket
hardware interface to its power-on default condition as follows:

* Socket interface is reset to memory only.

¢ IREQ routing is disabled.

e All socket supplies (Vecc, Vppl, and Vpp2) are set to 5vdc.
¢ All address windows are disabled.

¢ All EDC Generators are disabled.

252

Toshiba_Apricorn 1006-0262
IPR2018-01067

Chapter 19: Socket Services

Window Functions

Window functions, like the adapter and socket functions, include the inquire,
get, and set functions, as well as page functions that allow memory windows
to be divided into multiple pages. Memory locations within a window can be
segmented into 16KB pages.

Controlling Windows (InquireWindow, GetWindow and Set-
Window)

The window functions are designed for flexibility, such that they can be used
for common memory, attribute memory, or I/O. Despite this flexibility pro-
vided by socket services, a given hardware implementation of the HBA may
be more restrictive. The capabilities for each window is obtained when the
socket services client calls the InquireWindow function for each window de-
tected by the InquireAdapter function.

The characteristics of a given window extend far beyond whether they can be
used for memory, I/O or both. Many other parameters such as the base ad-
dress, window size, fastest and slowest devices supported, etc., must be char-
acterized for each window. Once the characteristics of the window is
determined then it can be programmed by the socket services client at the re-
quest of the PC Card's driver.

InquireWindow Function. When the InquireWindow function is called, the
HBA number and window number are passed to socket services, along with a
pointer to a memory buffer supplied by the socket services client. Information
is returned to the processor's registers and to the specified memory buffer.
The total set of information returned to the socket services client includes the
following;:

® Window Type — Returns the characteristics of the window selected with
the HBA and window parameters. A single window may be designed to
provide support for any or all of the following:

A window can be used as a common memory window.

A window can be used as an attribute memory window.

A window can be used as an I/O window.

A window can specify that the WAIT# signal from the PC Card to is
used to generate additional wait states during a socket data transfer.

e o o

253

Toshiba_Apricorn 1006-0263
IPR2018-01067

PCMCIA System Architecture

® Note that even though socket services allows a window to be used as both
an I/0 window and a memory window, this usually is not the case. More
typically, hardware designs restrict a given window to either I/O ad-
dresses or memory addresses, but not both.

® Socket Assignment — Returns a bit map of sockets that a window can be
assigned to. Bit zero refers to socket zero and bit N refers to the maximum
socket number. The size of this bit map restricts the number of sockets
that can be supported by a given HBA. In the x86 environment, socket
services has a 16-bit field, permitting a maximum of 16 sockets per HBA.

® Window Characteristics Structure — Returns a variety of windows pa-
rameters to a memory buffer supplied by the socket services client. Two
types of window characteristics structures are defined: one for memory
windows and one for I/O windows. As mentioned earlier, a given
adapter may be designed to permit a given window to support memory
addresses only, I/O addresses only, or both memory or I/O. A window
characteristics structure is returned for each window type supported by
the target address window.

Table 19-6 lists the parameters defined within a memory window characteris-
tics structure, and table 19-7 lists parameters defined within a I/O window
structure. The parameter definition for many of the entries within both struc-
tures are identical; however, some important differences exist. Parameters
that differ are highlighted in tables 19-6 and 19-7.

254

Toshiba_Apricorn 1006-0264
IPR2018-01067

Chapter 19: Socket Services

Table 19-6. Memory Window Characteristics Structure Definition

Memory Characteristics Structure

Mem Window Capabilities Consists of flag bits that specify any of the parameters listed below.

Base Address Determines if the base address is programmable (bit is set) or is
fixed (bit is reset) in the host's address space. If programmable, the
base address must be within the range specified by the FirstByte and
LastByte entries, and if fixed, the base address location is specified
by the value of the FirstByte entry and the LastByte entry has no
meaning.

Window Size Determines if the memory window size is programmable (bit is set)
or is fixed (bit is reset). If programmable, the size can be any value
within the range specified by the Minimum Size and Maximum Size
entries. If fixed, the window size is determined by the value of the
Minimum Size entry and the Maximum Size entry should be set to
the same value and the Minimum Size.

Window Enable || Determines if the HBA will preserve window state information
when the window is disabled (bit is set), or whether software must
be responsible for preserving the state information (bit is reset). This
means that when the window is re-enabled, it must be repro-
grammed by the client if the HBA does not preserve the informa-
tion.

8-Bit Data Width | Determines whether the memory window supports 8-bit data trans-
fers to the socket required (8-bit hosts). If set, 8-bit transfers are
supported and if reset, they are not supported.

16-Bit Data Width || Determines whether the memory window supports 16-bit data
transfers to the socket required (16-bit hosts). If set, 16-bit transfers
are supported and if reset, they are not supported.

Base Address If set, the base address must be programmed to start at an address
Alignment aligned on the size of the window. If reset, the base address can be

programmed to start anywhere within the window's address range,

consistent with the "Base Address Alignment" value (defined later).

Window Size In- | Determines if windows supporting a programmable size must be
crements sized in "powers of two" increments consistent with the "Window
Size Granularity" value defined later (bit is set). If the granularity is
4KB, then the window size can be 4KB, 8KB, 16KB, 32KB, up to
the maximum size of the window. If bit is reset, window sizes can
be any multiple of the "Window Size Granularity" value -- 4KB,
8KB, 12KB, 16KB, 20KB up to the maximum window size.
Window Page Specifies whether offsets specified to Set Page must be on bounda-
Boundaries. ries equal to the size of the window (bit is set), or if page offset can
be set without relation to the window size (bit is reset).

255

Toshiba_Apricorn 1006-0265
IPR2018-01067

PCMCIA System Architecture

Table 19-6. Memory Window Characteristics Structure Definition(Continued)

Memory Characteristics Structure

Mem Window Capabilities Consists of flag bits that specify any of the parameters listed below,

Window Page Determines if window hardware supports dividing a window into

Support multiple pages (bit set), or does not support window paging (bit is
reset).

Page Sharing If set, the window paging hardware is shared with another window

and care must be taken to ensure that no conflicts arise due to re-
source sharing. If reset, paging hardware is dedicated to the win-
dow.

Page Enable. If set, the HBA preserves the paging characteristics when the page
is disabled. If reset, the software must preserve the settings and re-
program the paging hardware when the page is enabled again.
Write-Protect. Determines if the window can be write-protected (bit is set) or not
(bit is reset).

FirstByte The first byte in the host system's addressable memory space that
can be programmed for the window's base address. Note that if the
base address register is not programmable, the value is the fixed
address for the window's base address.

LastByte The last byte in the host system'’s memory address space that the
window can be programmed to.

Minimum Window Size Defines minimum size that the window can be programmed to.

Maximum Window Size Maximum size that window can be programmed to.

Window Size Granularity Window size granularity determines the minimum size that a win-

dow can be programmed to based on the hardware implementation.
For example, if lower address lines A11:A0 go directly to the PC
Card socket, then the window size that can be programmed is based
on 4KB intervals.

Base Address Alignment Specifies the base address alignment value for the window.

Window Offset Alignment || Specifies the alignment boundaries that the window offset can be
programmed to for remapping the system address to PCMCIA
memory.

Selected Access Speed Specifies the slowest access speed supported for devices accessed
through this window.

Fastest Access Speed Specifies the fastest access speed supported for devices accessed
through this window.

256

Toshiba_Apricorn 1006-0266
IPR2018-01067

Chapter 19: Socket Services

Table 19-7. I/O Window Information Structure Definition

I/0O Window Information Structure

I/O Window Capabilities

Consists of flag bits that specify any combination of the parameters below.,

Base Address

Determines if the base address is programmable (bit is set) or is fixed
(bit is reset) in the host's address space. If programmable, the base
address must be within the range specified by the FirstByte and Last-
Byte entries, and if fixed, the base address location is specified by the
value of the FirstByte entry and the LastByte entry has no meaning.

Window Size

Determines if the I/O window size is programmable (bit is set) or is
fixed (bit is reset). If programmable, the size can be any value within
the range specified by the Minimum Size and Maximum Size entries.
If fixed, the window size is determined by the value of the Minimum
Size entry and the Maximum Size entry should be set to the same
value and the Minimum Size.

Window Enable

Determines if the HBA will preserve window state information when
the window is disabled (bit is set), or whether the client must be re-
sponsible for preserving the state information (bit is reset). This means
that the window must be reprogrammed by the client when re-
enabled if the HBA does not preserve the information.

8-Bit Data Width

Determines whether the I/O window supports 8-bit data transfers to
the socket required by 8-bit hosts. If set, 8-bit transfers are supported
and if reset, they are not supported.

16-Bit Data Width

Determines whether the I/O window supports 16-bit data transfers to
the socket (16-bit hosts). If set, 16-bit transfers are supported and if
reset, they are not supported (8-bit hosts).

Base Address

If set, the base address must be programmed to start at address loca-

Alignment tions equal to the size of the window. If reset, the base address can be
programmed to start anywhere within the window's address range,
consistent with the "Base Address Alignment" value defined later.

Window Size Determines if windows supporting a programmable size must sized in

Increments

"powers of two" increments consistent with the "Window Size Granu-
larity", or if the windows size can be any multiple of the "Window Size
Granularity" value.

INPACK Signal

Specifies whether the adapter supports the Input Port Acknowledge

Support (INPACK) signal or not. The INPACK signal permits an I/O window

to overlap address space mapped elsewhere in the system.
EISA Slot Spe- | Indicates support for EISA compatible addressing. In this case, the
cific /O Address || HBA in this case should respond to I/O addresses consistent with the
Support slot specific addressing protocol required by EISA systems. See the

MindShare publication, "EISA System Architecture” for details.

257

Toshiba_Apricorn 1006-0267
IPR2018-01067

PCMCIA System Architecture

Table 19-7. I/O Window Information Structure Definition (Continued)

I/0 Window Information Structure.

1/0 Window Capabilities Consists of flag bits that specify any combination of the parameters below.

Ignore EISA- Determines whether accesses to ISA address alias ranges should be
Defined alias || jgnored or not when slot-specific EISA 1/O addressing is used.
(ISA) I/O Ac-
cesses.
FirstByte The first byte in the host system's addressable I/O space that can be

programmed for the window's base address. Note that if the base ad-
dress register is not programmable the value is the fixed address for
the window's base address.

LastByte The last byte in the host system's I/O address space that the window
can be programmed to. '

Minimum Window Size Defines minimum size that window can be programmed to.

Maximum Window Size Maximum size that window can be programmed to.

Window Size Granularity | Describes the size interval that the window can be programmed to.

Base Address Alignment Specifies the base address alignment value.

Number of Address Lines || Specifies the number of address lines decoded by the window.
Decoded

EISA Slot Addressing Specifies the upper nibble (A15:A12) of an x86 I1/O address when
EISA addressing is supported. '

Fastest Access Speed Specifies the fastest access speed supported for devices accessed
through this window.

GetWindow Function. The Get Window function returns the current setting
of the window specified by the programmer. The programmer passes the
HBA and window numbers to the function. The function returns the following
information:

Socket to which window is assigned.
Window size.

Current State of window hardware—Returns the current setting of other
window parameters. The value can be a combination of the following:

* Memory or I/O mapped. This bit specifies whether the window is
mapped into the host system's memory address space or I/O address
space.

» Enabled or disabled. Specifies whether the window is currently en-
abled or disabled.

258

Toshiba_Apricorn 1006-0268
IPR2018-01067

Chapter 19: Socket Services

* Window data width. Specifies whether the window is programmed
for 16-bit data width or 8-bit data width.

¢ Memory window pages used (memory windows only). This parame-
ter indicates if memory window pages are in use, indicating that this
window is subdivided into multiple 16KB pages and that the GetPage
and SetPage functions can be used for accessing individual pages
within the window.

* EISA 1/O Mapping used.

¢ Card access permitted during EISA 1/O accesses. If this bit is set and
EISA mapping is used, accesses to standard ISA addresses result in
PC Card accesses. If reset, accesses to ISA addresses are ignored.

® Access Speed. Indicates the current access speed programmed into the
memory window.

® Window's Base Address.

SetWindow Function. This function uses the same mapping as the GetWin-
dow function. The definition of the parameters are the same, allowing the
GetWindow function to be called to obtain the current window settings. Pa-
rameters requiring modification can then be changed from the current settings
and the SetWindow function called to update the window's settings.

EDC Functions

Error Detection/Correction Generators are optional for PCMCIA HBAs.
These functions are designed to enable and control EDC generators imple-
mented by HBAs. However, card services provides no support for EDC func-
tions. Furthermore, to the author’s knowledge no current HBA designs
employ EDC generators. Based on these issues discussion of the socket serv-
ices EDC functions has been omitted from this book.

Maximum Number of Sockets Per HBA

The maximum number of sockets that a single adapter can support under con-
trol of socket services is limited by the InquireWindow function. A bit-map of
assignable sockets is returned by this function. The size of this bit-mapped
socket selection field defines the maximum number of sockets supported by
each adapter. The field size is not defined by PCMCIA and depends on the

259

Toshiba_Apricorn 1006-0269
IPR2018-01067

PCMCIA System Architecture

socket services implementation. The Intel x86 socket services definition de-
fines a 16-bit socket selection field, permitting 16 sockets per HBA.

Maximum Number of HBAs Supported by Socket
Services

The maximum number of adapters supported by socket services depends on
several factors, including:

¢ Limitations associated with the implementation of socket services for a
given platform. For example, the field size used to specify a target adapter
can vary with a particular implementation. Note that the x86 implementa-
tion uses an 8-bit field, permitting 256 adapters to be specified (clearly not
a meaningful limitation).

* Constraints related to available space when implementing socket services
in ROM.

» Constraints related to available memory space required by multiple sets of
socket services required to support numerous adapters.

260

Toshiba_Apricorn 1006-0270
IPR2018-01067

Chapter 20: Card Services

Chapter 20

The Previous Chapter

The previous chapter discussed the role of socket services. It also described
the initialization of socket services and explained the basic purpose of the
functions commonly supported in the PC environment.

This Chapter

This chapter focuses on the role of card services in the PCMCIA environment.
It also reviews each of the functions defined by the PC Card specification that
apply to 16-bit PC Cards, along with related return codes. The call-back
mechanism is also described and the event and call-back codes are defined.

The Next Chapter

The next chapter discusses the three basic types of enablers: point enablers,
device specific enablers, and super enablers. The chapter also discusses the
specific jobs performed by several different device specific enablers including
SRAM enablers, FLASH enablers, I/0 device enablers, and ATA enablers.

Overview

Each PC Card must have a client driver that recognizes it, reads the CIS to de-
termine its resource requirements, programs the host bus adapter (HBA) and
configures the PC Card. As illustrated in figure 20-1, PC Card client drivers
interface directly to Card Services. Card services simplifies the job of configur-
ing a PC Card and monitoring status change events.

261

Toshiba_Apricorn 1006-0271
IPR2018-01067

PCMCIA System Architecture

Configuration and | Hardware I Run-Time
Event Notification I | Software
Software I I
| |
| |
PC Card Enablers icati
(PCMCIA Init & Event Processing) n t Host System : Applications -H
L L
T . l [L)
| |
I | :
| I | Operating
Card Services i 4 @ | ystem
g | 2 |
: | |
L[5 : | Device Drivers
| (Run-Time Codea)
Socket Services i PCMCIA | L H
Contig Host Bus Adapter '
]
| |
| |
] PC Card PC Card I
| |
| |

Figure 20-1. PCMCIA Software Flow

Configuring a PC Card may take place when the system powers up (if the PC
Card is already installed in a socket), or when a PC Card is inserted into a
socket (after the system is powered up and fully operational). In either case,
the PC Card must be detected and configured by an enabler. Without an en-
abler, a PC Card would never be recognized by the system. However, once a
PC Card is recognized and configured by the enabler, it then responds like
any other device residing on the host bus.

Enablers that use card services are called card services client drivers. The term
client driver is used because card services and the enablers perform their
functions based on the client/server model. Card services exists to serve the
needs of its clients (i.e. the enablers) as they attempt to configure and access
their PC Cards. Two basic types of client drivers exist:

¢ Dedicated client drivers — designed for a particular PC Card.
* Generic or super client drivers — designed for a wide range of PC Cards.

262

Toshiba_Apricorn 1006-0272
IPR2018-01067

Chapter 20: Card Services

Dedicated client drivers are typically supplied by the PC Card manufacturer
to increase the probability that its card will be recognized and configured cor-
rectly in the absence of a generic driver. Dedicated client drivers may also
manage functions that are unique to a given manufacturer's implementation.

Generic client drivers are frequently designed to handle PC Cards of a par-
ticular functional type. For example, the system manufacturer may include
generic drivers for card types such as SRAM, flash ROM, Modems, and ATA
drives. Ideally, a single super client driver could detect and configure all PC
Cards regardless of type.

Enabling PC Cards Before Card Services

Prior to the release of card services, the enabler was burdened with recogniz-
ing when a card was inserted into a socket, reading its CIS, programming the
HBA and configuring the PC Card so that it responded to a given system ad-
dress range. The PC Card's enabler also had to continually monitor the socket
to detect if the PC Card was removed. If removed, the enabler would deallo-
cate the system resources the card was using by clearing registers in the HBA.
In this way, the HBA would no longer respond to addresses previously as-
signed to the PC Card.

To configure a card, an enabler also had to determine what address ranges
were available within the system (not in use by other devices) for allocation to
its card. This was an almost impossible job for enablers since they had no
knowledge of the other devices incorporated into the system or of other in-
stalled PC Cards. Assumptions had to be made by the programmer based on
what resources were likely available so that contention with other devices was
(hopefully) avoided.

It is also possible that other software applications or utility programs written
by other programmers may want to share access to a given PC Card. These
various programs will not be aware of each other and, as a result, conflicts
may occur.

In summary, PC Card enablers that are compliant with PCMCIA releases
prior to 2.0 each act independently, unaware of the existence of each other.
Furthermore, they have no knowledge of the resources available within the
system that could safely be allocated to their associated PC Card.

263

Toshiba_Apricorn 1006-0273
IPR2018-01067

PCMCIA System Architecture

The Role of Card Services

Card services provides a central resource available to all client drivers. Spe-
cifically, card services is a collection of functions designed for use by
programmers writing client drivers for PC Cards. These functions provide a
software interface that permits the programmer to simplify code and helps to
reduce conflicts with other client drivers and system resources. Card services
is divided into five functional groupings by the PCMCIA specification:

* Client Services—Provides a registration facility that permits client drivers
to register and be notified by card services when specific socket events oc-
cur (such as card insertion or removal).

* Resource Management—Allows client drivers to request the use of sys-
tem resources required by the PC Card they are enabling. If the resources
are granted, addition resource management functions can be used to as-
sign these resources by programming the HBA (via socket services) and
configuring the PC Card (by writing to the PC Card's configuration regis-
ters).

e Client Utilities—Provides a set of functions that allow the client driver to
perform common jobs with ease. For example, the functions include ac-
cessing the PC Card's CIS, thereby simplifying tuple processing code.

* Bulk Memory Services—Provides block memory functions to read, write,
copy and erase blocks of data within memory cards (without knowledge
of the specific memory technology). These functions are passed to the ap-
propriate Memory Technology Driver (MTD) that understands the
hardware protocol necessary to erase or write to devices such as flash
memory. (See the next chapter “PC Card Enablers” for details regarding
memory technology drivers.)

* Advanced Client Services—Provides specialized functions that may be
needed by some client drivers.

Only one copy of card services is required (and permitted), since it controls
access to all sockets (whether associated with a single adapter or multiple
adapters). Once a PC Card has been configured, it responds like any other
host bus device. As a result, application programs designed to access a par-
ticular function need not even be aware of the existence of card and socket
services. Card services and socket services are employed by enablers during:

e PC Card initialization and configuration (client driver makes calls).
e PC Card event notification (interrupt driven calls).

264

Toshiba_Apricorn 1006-0274
IPR2018-01067

Chapter 20: Card Services

e Block transfers to/from memory card (memory client driver makes calls
during run-time).

During other times, card and socket services remain in memory, but are not
used. The following sections discuss typical uses of the card services func-
tions. The information included in this chapter is not intended for reference
purposes. The function descriptions provide only a basic description of the
function's purpose. Refer to the PCMCIA Card Services standard for the exact
calling parameters, format, field sizes, etc., of each function.

Initialization of Card Services

Card Services is designed as an operating system dependent extension that
provides client services for the PC Card environment. Card services may
come with the operation system as a built-in extension (e.g. OS/2 and Win-
dows 95). In the MS-DOS environment, card services is typically implemented
as an installable device driver.

In the DOS environment card services are called using an INT 1A instruction,
requiring that card services “hook” entry 1Ah within the interrupt table. Also
card services hooks the hardware interrupt used by the HBA to report status
change events. This allows card services to be notified when a status change
event occurs at the socket level.

Verifying the Presence of Socket Services

Since card services utilizes socket services to fulfill client driver requests, it
must install after socket services installs. Socket services may reside in ROM
on the system, or may be installed as a loadable device driver when the oper-
ating system loads. If socket services installs as a device driver, card services
must be placed in the config.sys so that it installs after socket services.

Before card services installs it must verify that socket services are resident.
This is done by calling the GetAdapterCount function within socket services.
This function returns the total number of HBAs detected in the system and
which returns the ASCII string “SS” verifying that socket services is present. If
“SS” is detected, then card services proceeds with its installation.

265

Toshiba_Apricorn 1006-0275
IPR2018-01067

PCMCIA System Architecture

After card services installs, it blocks access to socket services. If a client driver
attempts to call socket services directly, card services will not pass the call on
to socket services, but will return failure to the client driver. This prevents a
client driver from using socket services to access the adapter hardware di-
rectly and perhaps allocating resources or modifying the HBA's programming
without the knowledge of card services. Since this would result in card serv-
ices becoming desynchronized with regard to the actual adapter hardware,
attempts to access socket services without going through card services are
prevented. -

Note that card services does include a function (ReturnSSEntry) that can be
called by a client driver that returns the entry point of socket services. This
allows a client driver to gain direct access to socket services, but it must not
perform any socket service function that causes card services to become de-
synchronized with the HBA.

Verifying that Card Services Installed

Initialization code used to install card services also includes code that actually
calls card services to validate that the installation of card services was success-
ful. This is accomplished by calling the GetCSInfo service, which returns
information about this version of card services and the ASCII values “CS” to
verify that card services are present. If card services installed correctly, the
initialization code can make additional service call to prepare card services for
access by a PC Card client driver.

Determining Availability of System Resources

One of the major functions performed by card services is to allocate available
system resources to PC Cards. Resource management services are called by a
PC Card’s client driver in an attempt to acquire the resources (i.e. the I/O ad-
dress space, memory address space, IRQ line, and DMA channels) that will
satisfy the card’s configuration requirements. Card services must check the
available system resources to verify that the requested resources are not al-
ready used by the system.

Since card services is an extension to the operation system, in many operating
environments it will have no specific knowledge of the resources that are al-
ready being used by other devices installed into the system. As a result, some

266

Toshiba_Apricorn 1006-0276
IPR2018-01067

Chapter 20: Card Services

method must be employed by card services (or by other platform specific
software) that can detect free resources that can be allocated and assigned to
PC Cards. The exact method used is operating system and hardware platform
specific.

In x86 DOS compatible systems, a utility program is typically used to scan the
host system in an attempt to detect the presence of devices that use system re-
sources. The utility program builds a table of system resources that are not in
use and passes the table to card services. Card services then manages the re-
sources table as resources are requested and released by the client drivers as
PC Cards are inserted and removed from sockets. This program is either em-
bedded within card services initialization code or is implemented as a
separate installable device driver that executes immediately after card services
has installed (e.g. listed in the config.sys file immediately following the card
services device driver) and before the PC Card enablers.

Power Management Support

Power management support was added to the PC Card standard (95 release).
Card service defines power management (PM) support via power manage-
ment call-back events. Card services can be designed to detect the presence of
a power management facility within the PC platform and register to receive
notification of power management events. When card services receives the
power management notification, it calls-back all client drivers that registered
to receive the PM events.

Card Services Calling Conventions

When a client calls card services, the binding used in a given environment will
differ. The PC Card specification specifies a card services programming inter-
face (binding) for x86 real mode (DOS), Intel 80286 Protected Mode
(Windows), Intel 80286 Protected Mode (OS/2), and Intel 80386 Flat Address
Model (Windows VxD Clients). Each binding specifies the register usage for
calling card services functions and the register usage employed when the call-
back handler is invoked. An example of the binding specified for the Intel X86
Real Mode environment follows. Refer to the card services specification for
additional information.

267

Toshiba_Apricorn 1006-0277
IPR2018-01067

PCMCIA System Architecture

Input:
[AH] AFh (specifies card services function)
[AL] Service Desired (service code number)
[DX] Handle
[DII:[SI] Pointer argument
[DI]=16-bit segment, [SI]=16-bit offset
[CX] Argument Length (total length of argument packet)
[ESI:[BX] Pointer to argument packet (used when additional address space
is required to pass parameters and data)
[ES]=16-bit segment, [BX]=16-bit offset
Output:
[AX] Return Code
[CF] Success when clear, failure when set

Specifying the Service

The AH register must contain a value of AFh to specify that this card is meant
for card services. The AL register then specifies the service code number of
the service being requested.

Table 20-1 lists all of the services (listed in alphabetical order) defined by the
PC Card Standard along with their associated service number. Table 20-2 lists
the services and their service number in ascending numerical order. Note that
the services in shaded boxes were added by the PC Card 95 release.

The value placed in the AH register permits card services to block access to
socket services functions made by enablers. Note that AFh is the last function
number within socket services (function 0AFh) and is defined for use by card
services.

When card services initializes, it hooks entry 1Ah in the interrupt table. Card
services saves the current value of entry 1Ah (pointing to socket services) be-
fore installing its own. As a result, card services knows the entry point for
socket services. INT 1Ah calls now access card services, which verifies that the
call is a card services call by checking for the value AFh in the AH register. If
verified, the card services function call specified in the AL register is then
processed.

If card services finds a value other than 0AFh, it then checks to determine if
the value represents a valid socket services function. If it is a valid socket

268

Toshiba_Apricorn 1006-0278
IPR2018-01067

Chapter 20: Card Services

services function, card services blocks access and returns failure to the calling
program. This prevents client drivers from accessing socket services directly
and changing HBA settings without card services being notified.

If the value in the AH register is for neither card services nor socket services,
then card services passes the call to socket services, knowing it will not rec-
ognize the call. Socket services then passes the call to the previous interrupt
service routine in the chain. Interrupt table entry 1Ah is used by the real-time
clock functions in DOS compatible machines, therefore, card and socket serv-
ices shares INT 1Ah with the real-time clock functions.

The Handle

A handle may specify the client making the service call or a particular re-
source that is being targeted by the function. The client handle is returned to
the client during the registration process. This handle is used by the client
when requesting many services. For example, a memory client may choose to
Open a region of memory within a memory card for use with other memory
services (i.e. read, write, or erase services). The client must specify its client
handle in the DX register as an input and card services returns a memory
handle (to identify the region of memory) to the DX register. The client later
uses memory handle as an input when calling the read, write, or erase mem-
ory services.

269

Toshiba_Apricorn 1006-0279
IPR2018-01067

PCMCIA System Architecture

Table 20-1. Card Services Listed in Alphabetical Order

Function Code
AccessConfigReg 36h
AddSocketServices 32h
AdjustResourcelnfo 35h
CheckEraseQueue 26h
CloseMemory 00h
CopyMemory 01h
DeregisterClient 02h
DeregisterEraseQueue 25h
GetCardServicesInfo 0Bh
GetClientInfo 03h
GetConfigurationInfo 04h
GetEvenMask 2Eh
GetFirstClient 0OEh
GetFirstPartition 05h
GetFirstRegion 06h
GetFirstTuple 07h
GetFirstWindow 37h
GetMemPage 3%h
GetNextClient 2Ah
GetNextPartition 08h
GetNextRegion 0%h
GetNextTuple 0Ah
GetNextWindow 38h
GetStatus 0Ch
GetTupleData 0Dh
MapLogSocket 12h
MapLogWindow 13h
MapMemPage 14h
MapPhySocket 15h
MapPhyWindow 16h

Function Code
ModifyConfiguration 27h
ModifyWindow 17h
OpenMemory 18h
ReadMemory 1%h
RegisterClient 10h
RegisterEraseQueue 0Fh
RegisterMTD 1Ah
RegisterTimer 28h
ReleaseConfiguration 1Eh
ReleaseDMA 3Bh
ReleaseExclusive 2Dh
ReleaselO 1Bh
ReleaselRQ 1Ch
ReleaseSocketMask 2Fh
ReleaseWindow 1Dh
ReplaceSocket Services 33h
RequestConfiguration 30h
RequestDMA 3Ah
RequestExclusive 2Ch
RequestIO 1Fh
RequestIRQ 20h
RequestSocketMask 22h
RequestWindow 21h
ResetCard 11h
ReturnSSEntry 23h
SetEvenMask 31h
SetRegion 29h
ValidateCIS 2Bh
VendorSpecific 34h
WriteMemory 24h

270

Toshiba_Apricorn 1006-0280

IPR2018-01067

Chapter 20: Card Services

Table 20-2. Card Services Function Codes Listed in Numerical Order

Code Function

00h CloseMemory
01h CopyMemory
02h DeregisterClient
03h GetClientInfo
04h GetConfigurationInfo
05h GetFirstPartition
06h GetFirstRegion
07h GetFirstTuple
08h GetNextPartition
0%h GetNextRegion
0Ah GetNextTuple
0Bh GetCardServicesInfo
0Ch GetStatus

0Dh GetTupleData
0Eh GetFirstClient
0Fh RegisterEraseQueue
10h RegisterClient
11h ResetFunction
12h MapLogSocket
13h MapLogWindow
14h MapMemPage
15h MapPhySocket
16h MapPhyWindow
17h ModifyWindow
18h OpenMemory
19h ReadMemory
1Ah RegisterMTD
1Bh ReleaselO

1Ch ReleaselRQ

1Dh ReleaseWindow

Code Function

1Eh ReleaseConfiguration
1Fh RequestIO

20h RequestIRQ

21h RequestWindow

22h RequestSocketMask
23h ReturnSSEntry

24h WriteMemory

25h DeregisterEraseQueue
26h CheckEraseQueue
27h ModifyConfiguration
28h RegisterTimer

2%h SetRegion

2Ah GetNextClient

2Bh ValidateCIS

2Ch RequestExclusive
2Dh ReleaseExclusive

2Eh GetEvenMask

2Fh ReleaseSocketMask
30h RequestConfiguration
31h SetEvenMask

32h AddSocketServices
33h ReplaceSocket Services
34h VendorSpecific

35h AdjustResourcelnfo
36h AccessConfigReg

37h GetFirstWindow

38h GetNextWindow

3%h GetMemPage

3Ah RequestDMA

3Bh ReleaseDMA

271

Toshiba_Apricorn 1006-0281

IPR2018-01067

PCMCIA System Architecture

The Argument Packet

Some services require that the client provide a memory buffer to pass parame-
ters. Functions requiring a large data area for passing parameters use an
argument packet. The pointer to the argument packet specifies the start mem-
ory location of the buffer, while the argument length specifies the size of the
buffer (i.e. length of argument packet). The size and format of the argument
packet is typically depends of the individual function.

Not all of the generic arguments just defined are used when calling a given
service. Many functions require only a function code, handle and the pointer
argument to pass all of the required parameters. Some service require the
pointer argument, while other require use of the argument packet.

Return Codes

A variety of codes may be returned by card services into the processor’'s AX
register. The return codes specify the results of the service. Table 20-3 lists and
defines each of the return codes in alphabetical order. Table 20-4 lists the re-
turn codes in numerical order.

The Pointer Argument

Some services require a read/write buffer to pass input and output informa-
tion between the client and card services. The pointer argument value placed
in the DI and SI registers specifies the location of the memory buffer. These
same buffer is used by card services to return data to the client. DI:SI are also
used to specify the memory location the call-back buffer.

272

Toshiba_Apricorn 1006-0282
IPR2018-01067

Chapter 20: Card Services

Table 20-3. Card Services Return Codes Listed in Alphabetical Order

Return Code Value Description

BAD_ADAPTER 01h Specified adapter is invalid

BAD ARG_LENGTH 1Bh ArgLength argument is invalid

BAD_ARGS 1Ch Values in Argument Packet are invalid
BAD_ATTRIBUTE 02h Value specified for attributes field is invalid
BAD_BASE 03h Specified base system memory address is invalid
BAD_EDC 04h Specified EDC generator is invalid
BAD_HANDLE 21h ClientHandle is invalid

BAD_IRQ 06h Specified IRQ level is invalid

BAD_OFFSET 07h Specified PC Card memory array offset is invalid
BAD_PAGE 08h Specified page is invalid

BAD_SIZE 0Ah Specified size is invalid

BAD_SOCKET 0Bh Specified socket is invalid (logical or physical)
BAD_SPEED _ 17h Specified speed is unavailable

BAD_TYPE 0Dh Window or interface type specified is invalid
BAD_VCC OEh Specified Vce power level index is invalid
BAD_VERSION 22h Client version is unsupported

BAD_VPP OFh Specified VPP1 or VPP2 power level index is invalid
BAD_WINDOW 11h Specified window is invalid

BUSY 18h Unable to process request at this time - retry later
CONFIGURATION _LOCKED 1Dh A configuration has already been locked
GENERAL_FAILURE 19h An undefined error has occurred

IN_USE 1Eh Requested resource is being used by a client
NO_CARD 14h No PC Card in socket

NO_MORE_ITEMS 1Fh There are no more of the requested item
OUT_OF_RESOURCE . 20h Card Services has exhausted resource
READ_FAILURE 09h Unable to complete read request

Reserved 05,0C, 10, 13h || Reserved for historical purposes

SUCCESS 00h The request succeeded

UNSUPPORTED_MODE 16h Processor mode is not supported
UNSUPPORTED_SERVICE 15h Implementation does not support service
WRITE_FAILURE 12h Unable to complete write request
WRITE_PROTECTED 1Ah Media is write-protected

273

Toshiba_Apricorn 1006-0283
IPR2018-01067

PCMCIA System Architecture

Table 20-4. Card Services Return Codes Listed in Numerical Order

Value Return Code Description
00h SUCCESS The request succeeded
01h BAD_ADAPTER Specified adapter is invalid
02h BAD_ATTRIBUTE Value specified for attributes field is invalid
03h BAD_BASE Specified base system memory address is invalid
04h BAD EDC Specified EDC generator is invalid
05h Reserved Reserved for historical purposes
06h BAD_IRQ Specified IRQ level is invalid
07h BAD_OFFSET Specified PC Card memory array offset is invalid
08h BAD_PAGE Specified page is invalid
09h READ_FAILURE Unable to complete read request
0Ah BAD _SIZE Specified size is invalid
0Bh BAD_SOCKET Specified socket is invalid (logical or physical)
0Ch Reserved Reserved for historical purposes
0Dh BAD_TYPE Window or interface type specified is invalid
OEh BAD_VCC Specified Vce power level index is invalid
OFh BAD_VPP Specified VPP1 or VPP2 power level index is invalid
10h Reserved Reserved for historical purposes
11h BAD_WINDOW Specified window is invalid
12h WRITE_FAILURE Unable to complete write request
13h Reserved Reserved for historical purposes
14h NO_CARD No PC Card in socket !
15h UNSUPPORTED_SERVICE Implementation does not support service
16h UNSUPPORTED_MODE Processor mode is not supported
17h BAD_SPEED Specified speed is unavailable
18h BUSY Unable to process request at this time - retry later
19h GENERAL_FAILURE An undefined error has occurred
1Ah WRITE_PROTECTED Media is write-protected
1Bh BAD_ARG_LENGTH ArgLength argument is invalid
1Ch BAD_ARGS Values in Argument Packet are invalid
1Dh CONFIGURATION_LOCKED A configuration has already been locked
1Eh IN_USE Requested resource is being used by a client
1Fh NO_MORE_ITEMS There are no more of the requested item
20h OUT_OF _RESOURCE Card Services has exhausted resource
21h BAD_HANDLE ClientHandle is invalid
22h BAD_VERSION Client version is unsupported

274

Toshiba_Apricorn 1006-0284
IPR2018-01067

Chapter 20: Card Services

Client Services (Client Registration and Support)

The category of card services defined as "client services functions" are those
typically used when a card services client driver performs device initializa-
tion. Other services within this category provide basic card support. Table
20-5 lists the card services functions typically used during the registration
process. The sections following the table discuss the registration process and
discuss the use of each function listed.

Table 20-5. Client Services Functions

Client Services Functions

Tuple Name

Description

GetCardServicesInfo

Determines if a valid copy of card services is installed and reports informa-
tion regarding this copy of card services, including its revision and
compliance level.

RegisterClient

Used by the client to register with card services as either a memory, MTD or
1/0 client. The client driver also specifies which card status events (such as
card removal) it wishes to be notified of by card services. The client can also
request that card services generate artificial card insertion events for all PC
Cards that are currently installed, allowing the client to configure PC Cards it
wishes to use.

DeregisterClient

Allows the client to notify card services that it no longer requires notification
of status change events.

GetStatus

Returns the current status of the PC Card and its socket. It returns the same
information obtained with the socket services GetStatus function.

ResetCard

This function resets the PC Card specified in the input argument, providing
that all other clients that are using the same PC Card agree. Since more that
one client may use a card, the ResetCard function will not be satisfied until all
other clients agree to the reset. Card services generates Reset Request call-
back events to all registered clients. Once all client drivers have responded to
the call-back, card services calls the client that initiated the request via a Reset
Complete call-back to inform the client whether the reset succeeded or failed.

SetEventMask

Used by the client to indicate the events it wishes to receive call-backs for.
During registration, a client driver can specify which PC Card events that it
wants to be notified of. This function can be used after registration to change
the global event mask, originally set during RegisterClient. This function can
also be used to change the SocketEvent mask originally set during Request-
SocketMask (see table 20-8), but only if the RequestSocketMask function has
been previously called by the client.

GetEventMask

Allows the client to obtain the current values of either the global or socket
event mask.

275

Toshiba_Apricorn 1006-0285

IPR2018-01067

PCMCIA System Architecture

Determining If Card Services Is Installed
(GetCardServicesinfo)

The registration process begins with the card services client verifying that a
valid copy of card services is installed and determining the compliance level
of this particular version of card services. The GetCardServicesInfo function
performs this task. When the card services client calls the GetCardServicesInfo
function, it specifies a buffer size and pointer to the buffer where card services
data is to be returned. Information returned by the GetCardServicesInfo func-
tion:

e Length of data returned by card services.

e Card services signature—Two consecutive bytes containing the ASCII
characters "CS" verify the validity of the returned data.

* Number of sockets—Returns the number of sockets in the system.

e Card services revision—Indicates the vendor's revision level.

e Card services compliance level—Indicates the PCMCIA compliance level
of card services. The compliance level is the PCMCIA release number
upon which this socket services was based.

¢ Location of vendor string—Optional information can be provided by the
card services vendor. This field specifies the start location within the
buffer where the vendor information can be found. See "Vendor String”
below.

* Vendor string length—Specifies the length of the vendor string.

* Vendor string—A vendor-defined string comprised of ASCIIZ characters.

Signing Up with Card Services (RegisterClient)

Once the card services client determines that an appropriate copy of card
services exists, it then can register with card services using the RegisterClient
function. A card services client driver registers with card services for notifica-
tion of selected events generated by PC Cards. This function can also be used
by the card services client to request that card services notify it of all PC
Cards currently installed. This gives the card services client driver an oppor-
tunity to identify and configure the PC Cards that it requires access to.

276

Toshiba_Apricorn 1006-0286
IPR2018-01067

Chapter 20: Card Services

In summary, the card services client registers with card services for the fol-
lowing reasons: '

e To receive notification of specified PC Card status change events.

e To specify the type of client (memory, I/O or MTD) that is registering.

* To receive notification of PC Cards already installed in sockets (artificial
card insertion events).

Note that card services returns a handle to the client upon return from the
RegisterClient function. The client driver uses this handle to identify itself
when calling other card services functions. Note that card services returns to
the client drivers without having fully completed the registration process.
Card services attempts to complete the registration process in the background
and notifies the client driver that registration has been completed via the
RegistrationComplete call-back.

Receiving Notification of Status Change Events

To receive notification of status change events occurring at the PC Card, the
client driver must specify the events that it wishes to be notified of. This is ac-
complished by the card services calling a routine within the client when a card
status change event occurs. This routine is referred to as the client's call-back
routine. The card services client driver must specify the entry point of its call-
back routine and the start address of a data buffer to deposit the change event
into. Note that an event mask is passed to card services when the RegisterCli-
ent function is called, indicating to card services the events for which the
client wants to be notified. Events that can be specified include the following
(Refer to the section later in this chapter entitled “The Call-Back Process” for
additional information):

Write Protect change.

Card Lock change (from HBAs that support a card interlock mechanism).
Card Ejection request (HBAs supporting a card interlock mechanism).
Card Insertion request (HBAs supporting a card interlock mechanism).
Battery Dead.

Ready Change.

Card Detect Change.

Power Management Change.

PC Card reset request by another client.

Socket Services Updated.

® ® @ ® o ° 9 ° 0 0

277

Toshiba_Apricorn 1006-0287
IPR2018-01067

PCMCIA System Architecture

A given client determines which of the events it wants to be notified of during
the registration process. For example, if the client driver so specifies, it can
register with card services to receive card insertion events. This allows the cli-
ent driver to be notified when a PC Card is inserted, permitting it to then
check the PC Card to determine if it should configure the card.

The card insertion callback is triggered when a PC Card is inserted. Card
services is notified via a status change interrupt generated by the HBA. Card
services then interrogates the HBA to determine the cause of interrupt and
calls back all client drivers that have registered to be notified of the card in-
sertion event. When called-back each client driver then reads the card's CIS to
determine if it should configure the card.

When call-backs occur, card services passes event information to the clients
call-back buffer. The information passed typically includes an event code,
logical socket number and information specific to the event. The exact infor-
mation returned to the client depends on the specific event. Refer to the
PCMCIA Card Services standard for details.

Note that the GetEventMask function can be used by the client driver to read
the current setting of its event mask. The client passes its card services handle
to identify itself, and card services returns the event mask indicating which
status change events the client is currently registered to receive. Similarly, a
client driver can call the card service's SetEventMask function to change the
events for which it wants to be notified.

Determining the Order of Call-Backs: Client Driver Type

When a client driver registers with card services, it must also specify its driver
type. For example, if a PC Card contains SRAM, flash memory, and 1/0 regis-
ters, the client driver that configures the card must contain a separate client
driver for each group, and must register with card services three separate
times as defined below:

e /0O client driver.
e Memory technology client driver (MTD) for Flash memory.
e Memory client driver.

The client driver type determines the order in which clients are called-back
when a status change event occurs. I/O clients are called first on a Last In
First Out (LIFO) basis; that is, the last I/O client registered is the first to be
called. This is done on the premise that the last I/O client installed likely su-

278

Toshiba_Apricorn 1006-0288
IPR2018-01067

Chapter 20: Card Services

persedes client drivers installed previously. MTD drivers are called next on a
FIFO basis (the first to register is the first to be called). Finally, the memory
client drivers receive the call-back last, also in a FIFO order.

Artificial Card Insertion Events

A client driver may also register with card services to have artificial card in-
sertion events generated during the registration process. Card services can
create a call-back to the client driver for each card currently installed in the
system. In this way, the client driver's call-back routine can determine which
of the cards already installed it should attempt to configure.

A client driver determines whether it should configure a card based on read-
ing the CIS to determine if it recognizes the card. For example, a client driver
may be designed to recognize a specific card (usually a client driver written
by a manufacturer for only its card), or it may recognize any card within a
given group (usually a client driver written for example to recognize all mo-
dem cards). When recognizing a card that it has been designed to configure
and monitor, it then attempts to configure the card when an card insertion
event occurs, providing that the card has not already been configured.

When artificial insertion notifications have been made for all PC Cards in-
stalled in sockets, card services generates a RegistrationComplete event. This
event informs the client driver that the call-back process is complete. Note
that when card services returns from the initial RegisterClient service, the
registration process is not complete. Card services attempts to complete the
registration process in the background; and therefore, the client is not fully
registered until the RegistrationComplete call-back is received.

When processing the artificial card insertion events, the client driver may or
may not recognize any PC Cards currently installed that it can configure. The
client driver having registered with card services to receive card insertion
events, will remain in memory and be called-back when a another PC Card is
inserted sometime later. The client driver then checks to see if it can the con-
figure this card.

279

Toshiba_Apricorn 1006-0289
IPR2018-01067

PCMCIA System Architecture

Telling Card Services You're Leaving
(DeregisterClient)

If a client driver will no longer be available at the call-back entry point (for ex-
ample a driver that is transient), it must deregister with card services by
passing its card services handle to card services and calling the DeregisterCli-
ent function. This tells card services that the client driver will no longer
require call-backs.

Client Utility Services (Detecting a PC Card)

During the configuration process, the client driver must determine if it wishes
to enable the PC Card, and if so, should attempt to configure it for operation.
Once the client driver establishes that it will attempt to configure the PC Card,
it may also be necessary to read additional information from the card to de-
termine the specific resources it requires.

The GetConfigurationInfo function may be sufficient for many client drivers
to determine if they should configure the PC Card. Other client drivers may
need to further process the CIS to determine if it should attempt to configure
the card. Card services assists with this by providing a group of utility func-
tions that the client driver can use to obtain additional configuration
information from the PC Card's CIS. These functions are listed in table 20-6.

Table 20-6. Client Utility Functions Used by the Client Driver to Access PC Card
Information

Client Utility Functions

Function Name Description

AccessConfigRegisters || Used to access a PC Card configuration registers.

GetConfigurationInfo Provides the client with information about a specified socket and the PC Card
installed. This information can be used to determine the configuration re-
quirements of the PC Card installed.

GetFirstTuple Permits the client to specify a given tuple code and find the first occurrence of
that tuple within the PC Card's CIS.
GetNextTuple Requests that card services find the next occurrence of the tuple code that was
previously specified for the GetFirstTuple function.
GetTupleData Requests the contents of the specified tuple, once it has been located using
GetFirst/NextTuple.
280

Toshiba_Apricorn 1006-0290
IPR2018-01067

Chapter 20: Card Services

Table 20-6. Client Utility Functions Used by the Client Driver to Access
PC Card Information (Continued)

Client Utility Functions

Function Name Description

GetFirstRegion Used by memory technology client drivers (MTDs) to get device information
for devices defined for the first region within the PC Card (as defined in the
card's CIS). Information received by the client includes: location of region
within the card, size of region, speed of devices within region, memory type
(attribute or common), erase/write capabilities, etc.

GetNextRegion Finds the device information for the next region within the card.

GetFirstPartition Similar to the GetFirstRegion function, this function returns information for
the first partition on the card based on information contained in the PC Card’s
CIS. If a PC Card has no partition information defined in its CIS, then card
services may be able to determine partition information based on a given file
system structure (such as the BIOS parameter block (BPB)/FAT structure used
by DOS).

GetNextPartition Finds device information for the next partition.

Client drivers can use these utility functions to obtain information regarding
the configuration of the PC Card in a given socket, or to scan the CIS itself to
determine the exact configuration requirements of the PC Card. If the client
driver is a memory drive, the job of determining the configuration require-
ments can be quite simple, since it is likely that the first tuple (Device
Information Tuple) within the CIS will provide the client driver with much (if
not all) of the information it needs to configure the card. Tuple processing for
1/0 devices can be considerably more challenging due to the resource combi-
nations that may be required.

Evaluating the PC Card and Socket
(GetConfigurationinfo)

The GetConfigurationInfo service provides the enabler with information about
the specified socket and card. An enabler may call this function to determine if
the card installed into the socket has already been configured. If not config-
ured the information returned to the enabler provides a general view of the
card installed in the socket. Refer to table 20-7 for a list of the information re-
turned by the GetConfigurationInfo service.

The GetConfigurationInfo service returns information from the PC Card’s CIS
including the device ID, function ID, and manufacturing ID. This information
provides a way for the enabler to quickly determine whether or not it should
attempt to configure the card.

281

Toshiba_Apricorn 1006-0291
IPR2018-01067

PCMCIA System Architecture

Table 20-7. Information Returned by the GetConfigurationlnfo Service

Information Returned

Description

Logical socket/function number

This field contains the logical socket and function number specified.

Attribute Bits

Indicates whether the PC Card has been previously configured and
if exclusively owned. Also provides miscellaneous information
regarding the configuration of the card.

Ve setting

Vppl setting

Vpp2 setting

Interface type

Config. register base address

The values returned in these fields are those that the
configuring client driver passed to card services during
RequestConfiguration call. If the card /function has not
been configured, these values are invalid.

Status register settings

Pin replacement register settings

Socket and copy register settings

Config. option register settings

The values returned in these fields are the values that
were written to the configuration registers by the enabler
when it called the RequestConfiguration service. These
values are invalid if the card/function is not configured.

Config. Registers implemented

This values is obtained from the information passed to card services
during the RequestConfiguration call.

First device type

This value is taken from the DEVICE tuple.

Function code

System initialization byte

These values are taken from the Function ID tuple.

Manufacturers code

Manufacturers Information

These values are taken from the Manufacturers ID tuple.

Card values

This field is a bit map that indicates which configuration register
were written with valid values.

Assigned IRQ These fields contain the values specified when the

IRQ attributes RequestIRQ service was called for this function/card.

Base ports 1 These fields are derived from the information specified

Number of ports when the RequestlO function was called. If the Request-

Attributes 1 IO function has not been called the number of ports

Base ports 2 fields will contain 00h.

Number of ports

Attributes 2

1/0 address lines

Extended Status Contains the value written to the extended status register when the
RequestConfiguration call was made.

DMA Attributes Defines the DREQ# pin assignments and DMA width.

Assigned Channel Specifies the DMA channel requested during configuration.

Number of I/O windows

Specifies the number of 1/O windows in use for this socket and
function.

Number of memory windows

Specifies the number of memory windows in use for this socket and
function.

282

Toshiba_Apricorn 1006-0292
IPR2018-01067

Chapter 20: Card Services

Additionally, the GetConfigurationInfo function provides specific configura-
tion information about a socket and card that has already been configured. If
the card has been previously configured, then card services returns the client
handle (in handle argument, DX register) of the enabler that has already con-
figured the card, along with the primary configuration settings. If the card has
not been configured then the client handle and configuration settings returned
by the service are invalid.

Note that support for multiple function cards has been added. An enabler can
specify the logical socket and a function within the PC Card that it wishes to
get information about.

Scanning the CIS (GetFirstTuple, GetNextTuple, Get-
Tuple Data)

When the client driver must determine the specific configuration requirements
of the PC Card, it reads the configuration table within the PC Card's CIS. The
client driver can use the GetFirstTuple function to specifically request the tu-
ple containing the information it needs. For example, if a client driver wishes
to find the first Configuration Table Entry within the CIS, it passes the socket
number and the desired tuple code (1Bh for the configuration table entry tu-
ple) to card services and calls the GetFirstTuple function. Card services will
scan the card's CIS looking for the first instance of the tuple code that was
specified in the call.

The GetTupleData function can be called next to obtain the data within the
tuple. When the data is returned, the client driver interprets the data to de-
termine the system resources required by the PC Card. The client then
attempts to obtain these resources from card services and, if successful, no
further tuple processing is necessary. However, if the system resources speci-
fied in the first configuration table entry are not available, then the client must
continue processing the CIS by calling the GetNextTuple function, which finds
the next occurrence within the CIS of the indicated tuple type. This process
continues until the resources specified by a Configuration Table Entry are de-
termined to be available. If no more tuples of the type specified exist within
the CIS when the GetNextTuple is called, card services returns a code indicat-
ing that no more items are available.

Note that the GetFirstTuple, GetNextTuple, and GetTupleData functions use
the same argument packet format. This simplifies calling these utility func-

283

Toshiba_Apricorn 1006-0293
IPR2018-01067

PCMCIA System Architecture

tions (since the argument packet returned by one function can be used when
calling the other).

Simplifying CIS Processing for Memory and MTD
Clients (GetFirstPartition, GetNextPartition,
GetFirstRegion, GetNextRegion)

Some client drivers may need to obtain information describing partitions and
regions within memory cards. Since obtaining the necessary information re-
quires reading multiple tuples, the GetFirst/NextRegion and
GetFirst/NextPartition functions can be used by clients to-get the required in-
formation without having to process the tuples individually.

Resource Management Services (Assigning Resources)

Card Services maintains a database of resources available within the system.
Client drivers can call card services to verify availability of resources needed
by their PC Card. Configuring a PC Card and programming the HBA is a two
step process.

1. The client driver must acquire each resource from the resource table one
at a time. If any of the resources required are not all available, this particu-
lar combination of resources cannot be satisfied and another group must
tried.

2. Once all resources required by the PC Card have been successfully allo-
cated, the actual configuration (allocation of these resources to the HBA
and PC Card) occurs.

The resource management functions allow the client driver to verify the avail-
ability of and to allocate resources required by the PC Card. These functions
are listed in table 20-8. The services in the shaded boxes were added by the PC
Card 95 standard. Refer to the card services specification for details related to
these functions.

284

Toshiba_Apricorn 1006-0294
IPR2018-01067

Chapter 20: Card Services

Table 20-8. Resource Management Functions

Resource Management Functions

Function Name Description

RequestIO Used to request I/O address ranges for the PC Card. This function can be
called only once per socket, and a maximum of two I/O address ranges can be
specified per card. Input parameters request the starting or base address for
each range and the number of I/O address locations requested for each range,
and whether a given address range is to be shared with other devices within
the system. This function, if successful, assigns the specified I/O address
ranges to the client and adjusts the card services resource table to indicate
that the assigned ranges are no longer available.

RequestIRQ Used to obtain a system interrupt line for the calling client. The client speci-
fies which interrupt line or lines will satisfy its interrupt needs. Input
parameters request that an interrupt be either exclusive (not shared), time-
multiplexed shared (client coordinates with other clients sharing this line,
using the ModifyConfiguration function to enable and disable its connection
to the interrupt line) or shared dynamically through an interrupt sharing
protocol supported by the system. An input parameter also specifies whether
the interrupt sent from the PC Card should be pulse or level mode. This func-
tion, if successful, assigns the specified IRQ line to the client and adjusts the
card services resource table to indicate that the assigned IRQ is no longer
available.

RequestWindow Allows the client to request ownership of a block of system memory ad-
dresses. The client passes the starting (base) address and the size of the
memory window along with a variety of other parameter to card services.
Other parameters include: type of memory window (attribute or common),
window enabled or disabled, whether window can be shared with other cli-
ents (only time-multiplexed sharing is permitted), whether paging of window
is enabled, and speed of the memory devices. This function assigns the ad-
dress ranges (if available) to the client and adjusts the resource table to
indicate that they are no longer available. Note that this same block of ad-
dresses can be assigned to another client if the shared parameter is set. This
function can be called multiple times per socket, up to the maximum number
of memory windows supported by the HBA. Card services passes a window
handle back to the client to be used when calling other functions pertaining to

o : s used for DREQ#, a th channel s
ReleaselO Adjusts the resource table by releasing the [/O address range(s) acquired by a 1
client with the RequestIO service.
ReleaselRQ Adjusts the resource table by releasing the IRQ acquired by a client with the
RequestIRQ service.)
ReleaseWindow Adjusts the resource table by releasing the block of memory address locations

acquired by a client with the Request Window function. The window handle
is passed to card services to specify the window to be released.

285

Toshiba_Apricorn 1006-0295
IPR2018-01067

PCMCIA System Architecture

Table 20-8. Resource Management Functions (Continued)

Resource Management Functions

Modznymdow A]lows parameters assxgned toa gwen block of memory addresws acqmred
with the RequestWindow function to be modified. These parameters include
memory device speed, window type (attribute or memory) and window en-
abled or disabled. The window handle is passed to card services to specify the
window to be modified.

MapMemPage Selects a 16KB memory block within the PC Card to be mapped into a 16KB
page within system memory. The 16KB memory block within the PC Card is
identified by the client with an absolute offset value from the beginning of the
PC Card's memory array.

RequestSocketMask Selects the status change events that the client wishes the PC Card to generate.
The client specifies which status change events it wants to be generated at the
socket. A bit-map of the events masks each status change event that should
not be reported by the HBA from the specified card. Note that during the
RegisterClient function, the client driver indicates which status change events
it wishes to be notified of, setting a global event mask.

ReleaseSocketMask Releases the status change events mask, so that no status change events are
_ reported by the PC Card residing in this specified socket.
ModifyConfiguration Allows the configuration established by the Request Configuration function to

be modified. Note that IRQ routing and the 1/O address range assigned can-
not be modified with this function. These parameters can only be changed by
first releasing the configuration and then performing the requests for those
resources again.

RequestConfiguration Used to establish the configuration for an 1/O interface. The I/O address
ranges and system interrupt previously acquired are established at the hard-
ware level (HBA and PC Card). Other configurable items are also specified
based on the values indicated by the selected Configuration Table Entry, in-
cluding: Vec, Vppl, Vpp2, interface type (memory only or memory/IO) and
setting for the configuration registers, if present.

ReleaseConfiguration This function releases the configuration information set previously using the
RequestConfiguration function, This function returns the interface to a mem-
ory-only interface and power is removed from the socket (if no memory client
indicates its use of the PC Card). The IRQ and I/O resources must be released
separately to adjust the resource table.

286

Toshiba_Apricorn 1006-0296
IPR2018-01067

Chapter 20: Card Services

Requesting a Resource

A client driver may use three types of request functions to determine if the re-
sources that its PC Card requires is available. These functions include:

RequestlO—used to request a range of 1/O address locations
RequestIRQ—used to request a system interrupt line
RequestWindow—used to request a range of memory address locations
RequestDMA—used to request a DMA channel.

A client driver whose PC Card requires one or more of these system resources
calls card services to determine their availability. The client passes its handle
to card services along with a pointer to the memory buffer containing the in-
put argument packet. The argument packet passed to card services specifies
parameters identifying the resource being requested. Card services checks the
allocation table to determine if the requested resource is available. If available,
card services updates its resource table, indicating that the resource is no
longer available and returns "success" along with the argument packet, verify-
ing that the resource parameters that have been granted.

Once all of the resources required by a PC Card have been acquired with the
request functions, the actual task of programming the HBA and configuring
the card can then occur. See the chapter entitled, "Client Drivers".

Card services has no way of knowing what resources are available for a PC
Card to use. As a result, platform-specific utility programs have been written
to probe the system and build a data base of available resources. This data
base is passed to card services to manage.

Requesting Resource Combinations

Consider the example of a serial port that typically requires a range of 1/O
addresses and an IRQ. In a PC-DOS environment, a serial port is typically
configured either as COM1 (I/O locations 3F8h-3FFh & IRQ4), COM2 (2F8h-
2FFh & IRQ3), COM3 (3E8h-3EFh & IRQ4) or COM4 (2E8h-2EFh & IRQ3). The
client driver for a serial port must ensure that both the RequestIO and the Re-
questIRQ functions return success before configuring the PC Card and HBA.

Assume that the client attempts to configure the serial port as COM1. If the
RequestIO function returns "success", then I/O locations 3F8h-3FFh are allo-

287

Toshiba_Apricorn 1006-0297
IPR2018-01067

PCMCIA System Architecture

cated to the client driver and the resource table is updated to indicate these
I/0 addresses are no longer available. Next, the client driver calls RequestIRQ
to obtain IRQ4, but card services returns BAD_IRQ to the client, indicating
that IRQ4 is not available. If the client simply moved to the next configuration
option (COM2), the I/O address range 3F8h-3FFh would remain allocated and
other clients requesting an address within that range will not be successful,
even though the addresses are not being used.

To avoid this problem, the client must release resources that have been
granted but will not be used. The ReleaselO function would be used in this in-
stance before moving on to the next configuration option. Similarly, the
ReleaseIRQ and ReleaseWindow are used to release interrupts and memory
address ranges, respectively.

Configuring the HBA and PC Card
(RequestConfiguration)

When the client driver has obtained from card services all of the resources
needed by the card, then the actual configuration can take place. Prior to this
time the resources have been granted to the client driver for assignment to its
PC Card, but neither the HBA nor the PC Card have yet been configured to
use these resources.

The card services client uses the RequestConfiguration function to complete
the configuration process. When the RequestConfiguration function is called,
card services makes the appropriate calls to socket services to set the specified
values into the window registers and IRQ steering registers. Also, the index
number of the Configuration Table Entry whose configuration options were
successfully allocated is written to the card's Configuration Option Register,
located in attribute memory.

The client must ensure that it is ready to perform all of the functions associ-
ated with a fully-operational card before calling the RequestConfiguration
function. Once the function call completes, the PC Card and HBA are config-
ured and the PC Card is now "on line". For example, in an x86 environment, if
interrupts are used by a given PC Card, the client driver must ensure that the
pointer to the device's interrupt service routine has been installed in the inter-
rupt table prior to configuring the card. It will then be prepared to handle the
card's interrupt requests.

288

Toshiba_Apricorn 1006-0298
IPR2018-01067

Chapter 20: Card Services

Bulk Memory Services

Bulk memory services primarily relate to memory clients, utility programs,
execute-in-place (XIP) managers, and other clients requiring access to memory
cards. These clients can use bulk memory functions to access memory devices
without knowing the details of the various memory technologies used by PC
Cards. The functions within the bulk memory services group support RAM
devices, but not devices such as flash memory.

Table 20-9. Bulk Memory Functions

Bulk Memory Services Functions

OpenMemory This function opens an area of common memory within a PC Card that
is to be accessed some time in the future (i.e. read, write, copy or erase
operation). A memory handle is returned that identifies this memory
range when performing one of the operations mentioned above.

ReadMemory This functions reads data from an area of common memory specified by
a given memory handle (obtained from the OpenMemory function). The
calling MTD passes a pointer during the call specifying a system mem-
ory buffer to which data is to be returned.

WriteMemory This function writes data to a common memory area identified with a
memory handle obtained via the OpenMemory function. The calling
MTD passes a pointer to a system memory buffer that contains the data
to be written.

CopyMemory This function reads data from a source location and writes it to a desti-
nation within the same common memory region that is identified by a
memory handle obtained via the OpenMemory function.

CloseMemory This function closes an area of common memory that was previously
opened with the OpenMemory function. The calling MTD passes the
memory handle of the memory area to be closed along with the call.

RegisterEraseQueue Establishes an erase queue where erase entries can be made.

CheckEraseQueue Notifies card services that one or more erase request entries have been
sent to the erase queue.

DeregisterEraseQueue | Eliminates an erase queue previously registered using the RegisterE-
raseQueue function. This function fails if erase entries within the queue
are still pending completion.

Since flash memory devices require particular erase and write algorithms,
PCMCIA chose not to attempt embedding the code necessary to support all
potential variations into card services. Instead, a memory device that requires
a specific algorithm must supply a memory technology driver (MTD) that is
designed to handle access to the card. When a client such as a memory client
attempts to access memory within a flash card, card services passes the re-

289

Toshiba_Apricorn 1006-0299
IPR2018-01067

PCMCIA System Architecture

quest to the flash MTD, which makes the low-level access to the memory de-
vice. Table 20-9 lists the bulk memory functions and provides a brief
description of each.

Advanced Client Functions

Advanced client functions include miscellaneous functions that satisfy the
special needs of some client drivers. Table 20-10 lists the advanced client
functions and provides a brief description of each. Refer to the PCMCIA card
services specification for details.

Table 20-10. Advanced Card Services Functions

Advanced Card Services Functions

ReturnSSEntry Provides a means of gaining access directly to socket services. Normally,
access to socket services is denied by card services to ensure that it main-
tains synchronization with the state of the HBA. If client drivers are
allowed access to socket services, the HBA setting can be modified without
card services knowledge. If absolutely required, a client driver can request
access to socket services via the ReturnSSEntry call. The programmer must
be certain that nothing is changed at the HBA level that will affect the op-
eration of card services.

MapLogSocket Determines the physical adapter and socket that is assigned to a logical

socket number.

MapPhySocket Identifies the logical socket number assigned to a physical adapter and
socket.

MapLogWindow Identifies the physical adapter and window that are mapped to a given
logical window handle.

MapPhyWindow Identifies the logical window handle assigned to a given physical adapter
and window.

RegisterMTD Assigns an MTD to a region of memory. When access to the assigned region
occurs, the MTD is called to handle the memory operation.

RegisterTimer Allows a client driver to register for-callback at specified time intervals. A

client may register multiple times to get notification at various time inter-
vals. Timing is based on 1ms interval. The client specifies the call-back
interval based on the number of 1ms ticks specified during registration. A
timer handle is returned during registration and passed to the client when
the call-back occurs. This permits the client to identify the specific timer
that has expired when the call-back occurs.

SetRegion Allows a client driver of a card that does not have a CIS to specify the char-
acteristics of a given region within the card.
ValidateCIS Scans the CIS by reading the tuple chain contained on the PC Card. The

function returns the number of valid tuples found within the chain.

290

Toshiba_Apricorn 1006-0300
IPR2018-01067

Chapter 20: Card Services

Table 20-10. Advanced Card Services Functions (Continued)

Advanced Card Services Functions

RequestExclusive Permits a client driver to request exclusive access to a given PC Card. Card

services ensures that no other client is currently using the card before
granting exclusive access to this client driver. If another client driver is
currently using the card and is unwilling to release control, then function

will fail.
ReleaseExclusive Releases exclusive access to a card that was previously granted via the
RequestExclusive function.
GetFirstClient Returns the client handle of the first client to register with card services.
GetNextClient Returns the client handle of the next client to register with card services.
GetClientInfo Provides client driver information for the client handle specified.
AddSocketServices Allows another socket services handler to be installed to support an addi-
tional HBA.
ReplaceSocketServices || Replaces the current version of socket services with a new version.
VendorSpecific Defined by the vendor of card services to extend functionality.
AdjustResourcelnfo Adjusts the resource database maintained by card services. This data base

contains the system resources that are available for use by PC Cards. This
function allows system resources to either be added or removed from the
database.

The Call-Back Process

Card service makes call-backs to clients that are triggered by a wide variety of
events. The type of call-back events can be categorized as:

e @ o @

Card insertion/removal events
Registration complete event
Status Change events

Card insertion/ejection request events
Exclusive request/compete events
Reset request/complete events
Client Information request event
Erase Complete event

MTD Request event

Timer event '

New socket services event

When making call-backs card services uses the call-back entry point specified
by each client during registration. The specific events supported by card
services are listed in figure 20-11.

291

Toshiba_Apricorn 1006-0301
IPR2018-01067

PCMCIA System Architecture

Some events must be supported by all clients. During registration, the client
driver specifies the individual events that it wishes to be notified of. The
events that must be supported include:

e Client_Info — a client may request information about another client when
calling the GetClientInfo service. Card services calls-back the specified cli-
ent using the Client_Info call-back.

e Exclusive_Request — an client that has previously configured a PC Card
may receive a RequestExclusive call-back, indicating that another client
wishes to gain exclusive access to the PC Card. For example, a generic cli-
ent driver may have enabled a modem, but a device-specific client driver
may want to gain exclusive access to the same PC Card.

e Reset_Request — request by a client to reset a socket/PC Card must be
granted by other clients using the same socket/PC Card. This call-back
notifies a client that a ResetRequest has been made.

Identifying a Status Change Event

When a status change event occurs at one of the PCMCIA sockets, an inter-
rupt is generated by the HBA. Card services is notified of the event via a
system interrupt (called a status change or management interrupt). When the
card services receives the interrupt, it must determine which socket encoun-
tered the status change event. Card services accomplishes this by calling the
socket services Acknowledgelnterrupt function which returns the socket(s)
that experienced the status change event. Once the socket or sockets that have
experienced a status change have been identified, then card services calls the
GetStatus function to determine which event caused the interrupt.

The Acknowledgelnterrupt function must be called once for each HBA in the
system. The client supplies the HBA number to socket services when the Ac-
knowledgelnterrupt function is called, and socket services returns a bit map of
the sockets within the adapter that have experienced a status change. When
obtaining status information from the HBA, socket services also prepares the
HBA to generate another status change interrupt if another should occur.

The Acknowledgelnterrupt function only identifies the sockets that have ex-
perienced a status change. After the Acknowledgelnterrupt routine completes,
card services then calls the socket services GetStatus function, HBAs typically
preserve the state of the status change so that the exact status change event
that caused the interrupt can be determined using the GetStatus function. If
the HBA does not preserve this state information, then socket services must.

292

Toshiba_Apricorn 1006-0302
IPR2018-01067

