
Toshiba_Apricorn 1006-0161
IPR2018-01067

PCMCIA System Architecture

As shown in figure 11—], the C18 is read by PC Card client drivers during card

initialization to determine the configuration options supported by the card.
The PC Card client accesses the CIS via card and socket services. Once the

card type and resource requirements have been read from the CIS, the PC

Card client driver programs the HBA and configures the PC Card, again via

card and socket services. No further access is typically made to the CIS after

the card has been initialized. The memory or 1/0 device can now be accessed

via the host expansion bus, as would any other expansion device. Note that

the C15 is only accessed by programs that are PCMCIA aware. Most applica-

tion programs have no knowledge that they are accessing devices

implemented in PC Card packages.

Run-Time
Software

HardwareConfiguration and
Event Notification

Software

PC Card Enablers

(PCMCIA Int! 5; Event Ptocessing} II

 Host System

 Applications II

Operating
System

Device Drivers

(Run-Time Code} I

 Card Services

 hisrig-:3"v'S'IisagmaH
\l.uoueozmorvwane

 PCMCIA

Host Bus Adapter

Socket Services

Figure 11-1. PCMCIA Software Plow

146

Toshiba_Apricorn 1006-0161
|PR2018—01067

Toshiba_Apricorn 1006-0162
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

The Card Information Structure (CIS)

The C15 is mapped into the attribute memory address space starting at ad-

dress zero as illustrated in figure 1142. The CIS consists of a linked list of data

blocks, or tuples, that describe the function and characteristics of a PC Card.

Configuration software accesses this data to determine the characteristics and

configuration requirements of a given PC Card. Tuples are identified by a

unique code which in the first byte of each tuple.

Note that CIS data is mapped only to even locations within the attribute ad-

dress space; thus, information is returned only on the lower data path

(D7:DO). This simplifies card designs for accommodating eight-bit host sys-
tems that connect only to the lower data path.

Attribute Memory
Address Space

SFFFFFE_
—

. —
: —
i _

Tuple4 {1h
16

TUple3 14
—

22

_
1D .5135.—

E ms—

Tuplee c

A
_

8

—

5 -E_

Tupuei 4 —
2

—
0

Figure 11-2. Example CIS Layout Consisting ofa Linked List of Four Tupies

147

Toshiba_Apricorn 1006-0162
|PR2018—01067

Toshiba_Apricorn 1006-0163
IPR2018-01067

PCMCIA System Architecture

Tuples

A tuple is defined in Webster's Ninth New Collegiate Dictionary as a "set of

elements." A tuple in PCMCIA terminology refers to a defined set of data

items that characterize some facet of a PC Card. The PCMCIA standard speci-

fies tuples intended to be used by PC Card designers for providing

information about their device. Tuples provide information such as the PC

Card's device speed and size. Tuple information is most often used by con—

figuration software to determine the configuration requirements of the card.

However, other tuples provide information that can be used by utility pro-
grams and applications to ascertain additional capabilities of the card.

Tuple Format

All tuples have a general format defined by PCMCIA (refer to table 11-1). The

first one-byte element (entry 0) of every tuple is a tuple type code that defines

the tuple's function. The second entry (entry 1) of every tuple is a one—byte

link value (in hex) that specifies the number of additional bytes remaining in

the tuple. The number and definition of these remaining bytes depends on the

type of tuple.

Table 11-1. Basic Tuple Format

Standard Tuple Format

TPLTCODE Tuple type code 0001). See table 11—7 for tu-

ple codes.

L_LINK Link to next tuple (number of bytes (in hex)

remaining in tuple)

T_PLDATA Tuple specific data block (definition format

and length defined by individual tuples).

The CIS consists of a linked list of tuples. Each tuple specifies a link value that

identifies the start of the next tuple. Processing software can read the CIS en-

tries and interpret the meaning of the tuples that contain configuration
information for the PC Card.

The exact set of tuples incorporated into the CIS depends primarily on the

type of card and its capabilities. For example, the Device Information Tuple

' 148

Toshiba_Apricorn 1006-0163
|PR2018—01067

Toshiba_Apricorn 1006-0164
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

may contain all the information needed to determine the resources required

by a simple SRAM card, while other card types might require numerous tu-
ples to define the configuration of the card.

A Sample Tuple

Consider the information provided by the Device Information tuple shown in

table 11-2. This tuple defines a 100ns SRAM card containing 1MB of memory.

The first byte within the tuple contains a value of 01h defining this tuple as a

device information tuple. The second byte (03h) specifies the number of bytes

remaining in the tuple. The device information tuple contains two bytes

within the tuple's data area. One that defines the memory card type, speed,

size, and whether the write-protect switch affects the range of memory being

defined, and one that defines the size of the memory device.

The memory card device type is specified in the tuple as a hexadecimal code

value. In this example, the device code is a 6h. As shown in table 11-3, a de-

vice code of 6h identifies the card as SRAM. Similarly, the SRAM'S cycle time

is specified with a speed code of 4h. This indicates a device speed of 100ns as

shown in table 11-4. The size of the device can be determined by reading the

unit size code and multiplying the unit size by the number of units specified.

The unit size code of 5h, specifies memory banks of 512KB (refer to table 11-5)

and the number of units field contains a 1h, indicating two memory units are

implemented for a total size of 1MB. Finally, the tuple is terminated by FFh.

This tuple includes a termination byte because the data within the tuple can

vary in length (is. more than one memory device can be described by the

Device Information tuple). The termination bytes make it easier for parsing

software to recognize the end of variable length tuples. Tuples that do not

vary in length do not define a termination byte.

Table 11-2. Example Device Information Tuple for an SRAM Card

 Device Information Tuple

Tuple Code (01h)

Link to next tuple (3h)

“‘Device Type=bits 7:4 (6h) ; WP=bit 3 (0);Speed=bits 2:0(4h)

*Device Size: # of units [bits 7:3 (1)] times unit size [bits 2:0 (5h)]

FFh (marks end of device into field)

* Refer to the following tables for an interpretation.

149

Toshiba_Apricorn 1006-0164
|PR2018—01067

Toshiba_Apricorn 1006-0165
IPR2018-01067

PCMCIA System Architecture

Table 116. Device Type Codes

-——
DTYPE NULL No memory device. Generally used to desig-

nate a hole in the address space. If used, speed
field should be set to 011.

Name

DTYPE ROM Masked ROM

—
— mm mm

m mom

I-
_
_
—
—

DTYPE FLASH Flash EPROM

DTYPE SRAM Static RAM UEIDA has Nonvolatile RAM)

DTYPE DRAM Dynamic RAM GEIDA has Volatile RAM)

8 ch —

etc, which are not intended to be used as genw

DTYPE_FUNCSPEC

eral-purpose memory.

——

 DTYPE_EEPROM EEPROM

 Function-specific memory address range. In-
cludes memory-mapped l/O registers,
dual-ported memory, communication buffers,

DSPEED_NULL

DSPEED_250NS

DSPEED ZODNS

DSPEED 1 50NS

DSPEED_100NS
150

Toshiba_Apricorn 1006-0165
|PR2018—01067

Toshiba_Apricorn 1006-0166
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

Table 116. Unit Size Codes

512 bytes

2 K

8 K

32 K

128 K

512 K

2 M

Reserved

The Configuration Table

I/O devices require that the CIS contain a configuration table that is not re-

quired by memory cards. This table consists of multiple entries each of which

describes a set of configuration options that the PC Card needs for normal op-

eration. A comparison can be made between each configuration table entry

and each possible switch and jumper setting required when configuring an

ISA card. Each configuration table entry reflects the possible resource combi-

nations that the PC Card can be configured for.

The Configuration Entry Tuple

Figure 11-3 illustrates a C15 that c0ntains a configuration table. Directly pre—

ceding the configuration table is the configuration tuple that specifies which

configuration registers are implemented by the PC Card and where they are

mapped within attribute memory address space. The configuration tuple also

specifies the index number of the last entry within the configuration table. As

illustrated in figure “ll-3, the configuration table consists of a series of configu-

ration table entry tuples (CFI‘ABLEgENTRY). Each entry contains up to seven

data structures that describe operational characteristics of the PC Card. These
structures include:

1. A power description byte — the power parameters specified within this

structure may apply to Vcc only, Vcc and Vppl and Vpp2 (Vppl =Vpp2),

or separately to Vcc, Vppl, and Vpp2. The specific power parameters de-

151

Toshiba_Apricorn 1006-0166
|PR2018—01067

Toshiba_Apricorn 1006-0167
IPR2018-01067

PCMCIA System Architecture

scribed by the structure are also selectable as defined by the parameter

selection byte within the power description structure.

2. Configuration timing informatiori ~— this structure defines the maximum

length of time that the PC Card will keep READY deasserted and the

maximum duration of the WAIT# signal.

3. IIO address space description — defines up to sixteen ranges of I/O ad-
dress space required by the PC Card for this configuration. The structure
defines the exact base 1/ 0 address and the number of address locations

within the range

4. Interrupt request description — specifies the system interrupt request

line required for this configuration. A single IRQ can be specified or a
group of LRQs can be defined, any of which will satisfy the configuration

requirements. Also included in the description is information that defines

the deliver mode (level or pulse), whether interrupt sharing is supported,

and alternative interrupt signal definitions (i.e. NMI, I/0 check, bus error,

vendor specific interrupt).

5. Memory address space description — specifies up to eight ranges of

memory address space required for this configuration. Both the Host

processor address and the PC Card address can be specified. When both
the host and PC Card address are the same, no address translation is re-

quired since the host address is directly mapped into the common

memory address space. If no host address range is specified, then any

range of host address space can be used and mapped by the HBA to the
specified range within common memory address space. A base address

and range value are specified for each block of addresses needed for this

configuration.

6. Miscellaneous information structure — contains information regarding

support for special features required by this configuration. Two bytes are

defined by the PC Card standard. The first byte identifies the PC Cards

support for power down (for power management software), whether the

SPKR# pin is used, and the number of identical PC Cards that are sup-

ported for the max twins cards option (e.g. support for multiple ATA

drives). The second byte defines support for DMA, including the DMA
transfer size and specifies which pin the PC Card uses for DREQ#.

7. Subtuple information — permits definition of additional information re—

lating to this configuration. Subtuples are included as extensions to the

configuration table entry tuple and may include information such as the

operation system for which the c0nfiguration was intended and the physi—

cal device being implemented in this configuration.

152

Toshiba_Apricorn 1006-0167
|PR2018—01067

Toshiba_Apricorn 1006-0168
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

Configuration
Registers

Config Table
Entr 3

Contig Table
. . Entr 3

Configuration Table Config Table
Entr 2

Contig Table
Entryr 1

Configuration Tuple Tuple 5

Tuple 4

Other
CIS

Tuples

TuIeS
Tule2

Tools 1

Figure 11-3. The Configuration Table Consists ofo Number of Entries, Describing the

Configuration Options Supported by the PC Card.

Table 11-6 shows the format of the configuration table entry tuple. The actual

structures that are implemented within this tuple are specified by the feature

selection byte.

153

Toshiba_Apricorn 1006-0168
lPR2018—01067

Toshiba_Apricorn 1006-0169
IPR2018-01067

PCMCIA System Architecture

Table 11—6. Format of the Configuration Table Entry Tuple

 Description of Entry

T'PL_CODE Configuration Entry tuple code (CISTPLgCFTABLE_ENTRY, lBh)

TPL_LINK Link to next tuple (n-1, {2 minimum!)

the entry, specifies whether the interface byte will follow, and specifies

whether this entry is a default entry or not.

Interface description byte — this field is present only when the interface

bit of the Configuration-table index byte is set

Feature selection byte indicates the optional structures present

Power description structure

Configuration timing information structure

I/0 address space description structure

Interrupt request description structure

Memory address space description structure

Miscellaneous information structure .

Additional information about the configuration in subtuple format

Interpreting the Configuration Table

When parsing software (usually a card services client driver) processes an en-
try within the configuration table, it must determine if the resources specified

are available. (Refer to the chapter entitled, “Client Drivers” for a discussion
of resource acquisition.) If all resources that have been requested are available

then the configuration is satisfied and no additional configuration table entries

need be evaluated. If however, one or more of the resources required to sat-

isfy the configuration are not available, then parsing software must evaluate

subsequent entries in an attempt to find alternative system resources that will

satisfy the PC Card’s configuration requirements.

The first entry within the configuration table is typically specified as a default

entry. Default entries indicate that all configuration information specified

within the entry should be retained even in the event that the full configura—

tion was not satisfied. For example consider the configuration table illustrated

in figure 11-4. The first entry is a default entry that specifies a power struc-

ture, a configuration timing structure, an I/O address space structure, an

interrupt request structure and a miscellaneous information structure. As-

154

Toshiba_Apricorn 1006-0169
|PR2018—01067

Toshiba_Apricorn 1006-0170
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

sume that parsing software was able to satisfy all configuration information

specified by this entry except the interrupt request line. Software then pro-

ceeds in the following manner:

1. Since this is a default entry, all resources successfully acquired are re—

tained. This eliminates the need to re-specify all the parameters that apply

globally to the card’s configuration regardless of which I/O address space
and [KO line is assigned to the card. In this example, since the entire con-

figuration was not satisfied, parsing software proceeds to the next entry,

attempting to find alternative resources that the PC Card can use.

2. Assume that entry 2 is not a default entry and contains only an I/O ad-

dress structure and IRQ structure. Parsing software recognizing a non-

default entry knows it must successfully acquire all configuration options

specified, and if unable to do so must release the partial configuration by

returning the resources previously acquired. Furthermore, since a pair of

resources is being requested, the parsing software recognizes that the [/0

address space acquired when attempting to satisfy the previous default

entry must be released in favor of the new I/O address space and IRQ

lines specified by this entry. If both configuration options are acquired
successfully, then the configuration is completed. If not, the incomplete

configuration is released and parsing software proceeds to the next entry.

3. Assume that entry 3 is not a default entry and contains another set of I/O

addresses and another IRQ line. Once again parsing software attempts to

acquire both resources, and if not successful must release any resource

acquired and proceed to the next entry. As before, if both are acquired the

configuration is cornplete.

4. Entry 4 is the last configuration entry and contains the final I /0 address

space and IRQ options for configuring the PC Card. If these resources

cannot both be acquired, then the parsing software must report to the user

that the card cannot be configured.

155

Toshiba_Apricorn 1006-0170
|PR2018—01067

Toshiba_Apricorn 1006-0171
IPR2018-01067

PCMCIA System Architecture

Configuration
Table

Interrupt Structure

Entry 4 MD Add r. Structure

Non-default Entryr

Interrupt Structure

Entry 3 HO Addr. Structure

Non-detault Entry

Interrupt Structure

Entry 2 a0 Addr. Structure

Non-deiault Entry

Misc. Structure

Interrupt Structure

Ir‘O Addr. Structure

Emwt
Timing Structure

Power Structure

Detault Entry

Figure 11-4. Example Configuration Table with One Default and Four Non-Default

Entries

Once parsing software has obtained the configuration resources from the sys-

tem it must configure the HBA and PC Card so that they respond to the

resources. Parsing software uses the index number of the configuration table

entry that specifies the successful configuration when configuring the PC

Card. The index number is written into the PC Card’s configuration option
register, telling the PC Card which set of configuration options were success-

fully acquired.

156

Toshiba_Apricorn 1006-0171
|PR2018—01067

Toshiba_Apricorn 1006-0172
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

Multiple Function PC Cards

Mum-function PC Cards require a separate CIS and configuration register set

for each function within the card. As illustrated in figure 11~5, a global C15 is

required when implementing a multi-function PC Card. The global CIS con-

tains a long link multi-function tuple (LONGLINK_MFC) that lists the entry

points of each function’s C15. The first entry Within the target CIS must con-

tain a LINKTARGET tuple to verify the correct start address specified by the

LONGLINK‘MFC tuple. Note that the configuration registers used by each

function are identified by the configuration tuple within each CIS.

FFFFFFF

Function 3
Contig‘ Regs.

Function 2
Config. Regs.

Function 1
Contfg. Regs.

CIS TUNES Function 3CIS

LiNICI'AFIGEI'

0'5 “‘9'“ Function 2CIS

LINKTAHGET

CIS Tuples Function 1GIS

LINKTAFIGET

CIS Tuples GlohaiCls

LONGLINK_MFC 0000000
Attribute Memory
Address Space

Figure 11-5. Configuration Table Structure Used by a Triple-Function PC Card

157

Toshiba_Apricorn 1006-0172
|PR2018—01067

Toshiba_Apricorn 1006-0173
IPR2018-01067

PCMCIA System Architecture

Devices Commonly Used for the CIS

Both ROM and FLASH are commonly used to implement the CIS. The clear

advantage of FLASH is that the CIS can be easily updated. The C15 is quite

small (usually not larger than 1 KB) and in the case of SRAM cards it can be as

few as six bytes.

CIS Access Timing

Attribute memory (the CIS and configuration registers) must be accessed by

card enabling software to determine the type of card installed and how it

should be configured. Attribute memory is accessed by the HBA based on a

default 300ns cycle time. This ensures that the CIS can be accessed regardless

of the speed of other devices within the card. See the chapter entitled "The

Memory-Only Interface“ for details regarding attribute memory accesses.

Summary of Layer 1 Tuples

Table 11-7 lists the tuples that are currently defined by the PCMCIA specifica-

tion for the CIS (layer 1 of the metaformat). Tuples are also defined for layers

2 and 3, but are not discussed here. Refer to the PCMCIA specification for de»
. tails.

Table 11-7. Triples defined for Compatibility Layer One (CIS)

CISTPL_NAME

NULL Null Control tuple — Used as a place holder. Ignored by

tuple processing software.

DEVICE Device Information for Common Memory — Contains

information about the card's common memory devices,

including speed, type, write protect and size.

Reserved Reserved for future versions of the device information

tuple or for CardBus implementations.

LONGLINK_MFC Long-Link for Multi-Function Card — Specifies the
number of functions within this PC Card (Le. sets of

configuration registers} and defines the location of each

function~specific CIS within the card.

Description and Purpose

 Reserved for future versions or for CardBus tuples.

158

Toshiba_Apricorn 1006-0173
|PR2018—01067

Toshiba_Apricorn 1006-0174
IPR2018-01067

Chapter 11: The Card Information Structure (CIS)

Table 11—7 Tuples Defined for Compatibility Layer One (Continued)

Code (h) _ISTPL_NAM— Description and Purpose

10 CHECKSUM Checksum Control — Provides a means for verifying the

contents of the C18 in memory. Multiple checksum con-

trol tuples can be implemented within a single C15.

11 Long-Link Control to Attribute Memory — Specifies the

 continuation of a tuple string to a location in attribute

memory, beyond the limits of the 1 byte link field. The

entry point specified must contain a Link Target tupte.

LONGLINK_A

LONGLINK_C

LINKTARGET

NO—LINK

VERSJ

Long-Link Control to Common Memory — Specifies the

continuation of a tuple string to a location in common

memory, beyond the limits of the 1 byte link field. The

entry point specified must contain a Link Target tuple.

 Link Target — Verifies the continuation of a valid tuple

string. The Link Target tuple is the first tuple at the entry

point specified by a Long-Link tuple.

The No Link tuple tellslprocessing software that when
the end of the current tuple chain is reached (i.e. the
Termination Tuple has been detected) that no more tu-

ples exist in the chain to be processed. (See Termination

tuple -- code FFh for more information.)

Level 1 (also layer 1)Version identifies the PCMCIA

compliance level of the CIS (also called the compatibility

layer or metaformat layer one}. Following the Version

information, production information is provided in a

series of ASCII strings each ended by zero (Called AS-
CIIZ).

Alternate Language String — includes additional lan-

guages for ASCII strings used in the product information

tuple (code 15h). Also used for the Level 2 Version /

Product Information tuple (code 40h}.

Device Information to Attribute Memory — Contains

information about the card's attribute memory devices,

including speed, type, write protect and size. (optional)

Specifies the JEDEC (Joint Electronic Device Engineering

Council) manufacturer and programming algorithm

required by programmable devices listed in the device

information tuple (01h) for common memory. Entries in

the JEDEC identifier tuple have a one-to—one correspon-

dence to the entries in the device information tuple.

ALTSTR

 DEVICEflA

 JEDEC_C

159

Toshiba_Apricorn 1006-0174
|PR2018—01067

Toshiba_Apricorn 1006-0175
IPR2018-01067

PCMCIA System Architecture

Table 11—? Topics Defined for Compatibiiity Layer One (Continued)

CISTPL_NAME Description and Purpose

IEDECHA Specifies the IEDEC (Joint Electronic Device Engineering

Council) manufacturer and programming algorithm

required by programmable devices listed in the device

information tuple (17h). Entries in the IEDEC identifier

tuple have a one-to—one correspondence to the entries in

the device information tuple.

CONFIG Configuration tuple —- Specifies the address of the con-

figuration registers in attribute memory space and

specifies which configuration registers are implemented

in the card. Also identifies the last configuration entry

within the configuration table, and provides a method of

appending subtuples to the basic configuration tuple.

Subtuples define additional information related to the

card's configuration. Subtupie codes SDh-BFh are re-

served for vendor specific items, while COh- FEh are
reserved for future PCMCIA standard definition. Cur-

rently, only the Custom Interface subtuple has been
defined.

CFTABLE_ENTRY Configuration Table Entry — Provides configuration

options supported by the card. Each configuration table

entry provides additional configuration options. The

entire set of configuration entries within the C18 is called

the configuration table.

DEVICE_OC Other Conditions Device Information (common mem-

ory) — Specifies the characteristics of devices mapped in

the common memory address space, when operating

under conditions other than the defaults. For example, if

the card is a dual voltage card (operates at both 5 volts

and 3.3 volts) the characteristics of the common memory

devices may be altered depending on which voltage is

applied. There must be a one~to-one correspondence
between the information fields listed in the Device In-

formation tuple and the Other Conditions Device

Information tuple.

Toshiba_Apricorn 1006-0175
|PR2018—01067

160

Toshiba_Apricorn 1006-0176
IPR2018-01067

Chapter 11: The Card Information Structure (CI-S)

20

CISTPL_NAME Description and Purpose

Tobie 11-7 Triples Defined for Compatibility Layer One (Continued)

 Other Conditions Device Information (attribute mem-

ory).— Specifies the characteristics of devices mapped in

the attribute memory address space, when operating

under conditions other than the defaults. For example, if

the card is a dual voltage card (operates at both 5 volts

and 3.3 volts) the characteristics of the attribute memory

devices may be altered depending on which voltage is

applied. There must be a one-to-one correspondence
between the information fields listed in the Device In-

formation tuple and the Other Conditions Device

Information tuple.

DEVICE_OA

 DEVICEGEO

DEVICEGEO_A

FUNCID

Device Geometry (common memory) — Device geome—

try provides the erasa, read, and write characteristics of

programmable devices. This tuple consists of multiple
entries for each device identified in the device informa-

tion tuple.

Device Geometry {attribute memory) — Device geome-

try provides the erase, read, and write characteristics of

programmable devices. This tuple consists of multiple
entries for each device identified in the device informa-

tion tuple.

PCMCIA Manufacturers Identification ~— Contains the

PCMCLA manufacturer identification code and manufac-

turer card identifier and revision information.

 Function Identification — Categorizes the card's func-

tional type and specifies whether the card should be

initialized during basic system initialization or when the

operating system loads.

A multi-function device may also be specified, in which

case additional Function Identification tuples for each of
the cards functions will follow.

CISTPL_NAME Description and Purpose

161

Toshiba_Apricorn 1006-0176
|PR2018—01067

Toshiba_Apricorn 1006-0177
IPR2018-01067

PCMCIA System Architecture

Table 11-7 Triples Defined for Compatibility Layer One (Continued)

CISTPLJJAME Description and Purpose

Function Extension —— Provides detailed information

about a specific function previously identified by the

function identification tuple. This tuple contains addi-

tional information useful to application programs or

utility programs that are PCMCIA aware. Function ex—

tensions, if applicable, follow each Function

Identification tuple in the tuple chain.

Extensions are useful for defining the capabilities of

various types of devices such as modems and network
interface cards.

Termination tuple - Indicates that this tuple is the last

tuple in the string. However, by default parsing software

will continue processing tuples at location zero in com-

mon memory. This implied jump to common memory

occurs unless this tuple string contains either a

LONGLINK OR NO_LINI< tuple. if a no-link tuple has

been encountered, the tuple string ends without further

processing. If a valid long-link tuple has been encoun-

tered, tuple processing continues at the location

specified, contingent on the presence of a LINKTARGET

tuple at the target location. If there is neither a long- link

nor a no-link tuple within the tuple string, tuple process-

ing should continue at location zero in common

memory.

Sample CIS implementations for SRAM, FAX/MODEM, Flash Card and ATA

Hard Drive are discussed in later chapters.

Note that the CIS must start at address location zero in attribute address

space or at the location Specified by the LONGLINK_MFC tuple in multiple
function PC Cards.

162

Toshiba_Apricorn 1006-0177
|PR2018—01067

Toshiba_Apricorn 1006-0178
IPR2018-01067

Chapter 12: Function Configuration Registers

Chapter 12

The Previous Chapter

The previous chapter discussed the CIS and its role in the PC Card configura-

tion process. Tuples were introduced and their format and structure were

described. The basic structure of the ClS’s configuration table required by l/0
cards was also described.

This Chapter

This chapter discusses the configuration registers and provides a complete de-

scription of each register specified by the PC Card standard. Configuration

register implementations for both single and multiple function cards are cov-
ered.

The Next Chapter

The next chapter describes a sample SRAM card implementation, including a

functional block diagram of the SRAM card along with a sample CIS.

Configuration Registers

Each PC Card’s [/0 function must implement configuration registers. The PC
Card standard defines the following configuration registers:

Configuration Option Register -— mandatory for all I/O functions

Configuration and Status Register — optional

Pin Replacement Register —— optional

Socket and Copy Register # optional

Extended Status Register —— optional

[/0 Base Address Register(s) — mandatory for multi-function PC Cards

1 [0 Limit Register —— optional

.00....
163

Toshiba_Apricorn 1006-0178
|PR2018—01067

Toshiba_Apricorn 1006-0179
IPR2018-01067

PCMCIA System Architecture

The format of each register is listed in table 12-]. These configuration registers

are mapped into the attribute memory space at the location specified within

the CONFIG tuple. Note that each function of a multiple function PC Card

will have a dedicated set of configuration registers.

Table 12-1. Format of the Function Configuration Registers

Configuration Option Register

SRESET LeleEQ Function Configuration Index

Configuration and Status Register_

Pin Replacement Register

Socket and Copy Register

Copy Number Socket Number

Extended Status Register

l/O Base 0

1/0 Base 1

1/0 Base 2

I/O Base 3

1/0 Limit

Each of these registers have read/write capability and are mapped at even 10-

cations, consistent with the design of attribute memory. The definition of each

configuration register is detailed below.

Configuration Option Register

The configuration option register (COR) configures PC Cards that have pro»

grammable address decoders. Once a card's client driver successfully parses
the CIS and obtains the system resources required by the card, it assigns the
resources to the card via the COR.

As discussed earlier in this chapter, the configuration table within the CIS

specifies the configuration options that a given card supports. Each entry

164

Toshiba_Apricorn 1006-0179
|PR2018—01067

Toshiba_Apricorn 1006-0180
IPR2018-01067

Chapter 12: Function Configuration Registers

within the CIS contains a different combination of resources that satisfies a

card's resource requirements. When the configuration options described by a

particular configuration entry are found to be available, the index number of

that configuration entry is written to the COR (refer to table 12-2). The index

number programs the card to utilize the resources specified within the associ-
ated configuration table entry.

As shown in table 12-2, the COR also specifies whether the card should use

level or pulse mode interrupts and provides a means for software to reset the

card. Note that some memory cards may implement this register to support

software reset as shown in the flash example. (See the chapter entitled, “A

FLASH Card Example”)

Tobie 12-2. Configuration Option Register format and Definition

—--——-I-n

SRESET Software Reset. Setting this bit to one (1) places the card in the

reset state. This is equivalent to assertion of the RESET signal ex-

cept that this bit is not cleared. Returning this hit to zero (0),
leaves the card in the same state that follows a hardware reset.

This bit is set to zero by power up and hardware reset.

Level Mode IREQ#. Level Mode Interrupts are selected when this

bit is one (1). Pulse Mode Interrupts are selected when this bit is
zero (0).

Configuration Index. This field is written with the index number

of the entry in the card's Configuration Table that corresponds to

the configuration option chosen for the card. When the Configu-
ration Index is 0. the card's 1/0 is disabled and will not resp0nd

to any I/0 cycles and will use the memory-only interface.
Multi-function Card Index definition; The PC Card standard

specifically defines the use of each bit within the configuration
index.

Bit 0 — Enables/disables specific function. 1=enabled; 0=disabled

Bit 1 — Specifies I/O addressing used. 1:1 /0 addresses specified

by the base and limit registers are passed to function; Uzall host

I/O address are passed to the function. (This bit is vatid only
when function is enable via bit 0.)

Bit 2 —~ Enables IREQ# routing. 1=This function will deliver inter-

rupts to the PC Cards IREQtt line; U=interrupts disabled for this

function. (This bit is valid only when function is enabled.)

Bits 3-5 - vendor specific

 Conf Index

165

Toshiba_Apricorn 1006-0180
|PR2018—01067

Toshiba_Apricorn 1006-0181
IPR2018-01067

PCMCIA System Architecture

Card Configuration and Status Register

This register contains a variety of functions used to control the card and re-

port status, as shown in table 12-3. These functions include:

0 Status change indication and reporting (bits 6 and 7}

0 PCMCIA host expansion bus interface size (bit 5) I
Audio enable (bit 3)

Power down control for power conservation (bit 2)

- Interrupt pending status (bit 1)

Status Change

Prior to being configured, an I/O card interfaces to the HBA as a memory

only device. While in this state, any status change event must be reported di-

rectly over the appropriate status Change pin. However, when the card is

configured, (the COR is written) the card switches to the 1/0 interface and

status change events are now reported via the pin replacement register (PRR)

and the card configuration and status register (CSR).

The status changed bit (bit 7) and the signal change bit (bit 6) of the CSR de-

termine whether a status change has occurred when the card is configured for

the I/O interface and whether it should be reported over the 1/0 interface's

STSCI-IG# pin. When a status change event occurs, the appropriate bit is set in

the PRR and the status changed bit (Chng) is set in the CSR. When a status

change occurs, the card asserts the STSCI-IG# pin to notify the I-IBA of the

event. The Chng bit remains set until the PRR bit is reset indicating that the

status change event has been processed.

The signal change bit (SigChg) is used by the HBA to disable the card from as-

serting the STSCHG# pin again until the current status change event has been

processed. Software must clear this bit when processing a status change inter“

rupt for the card. This permits the next status change event to be reported

once the previous event has been processed.

166

Toshiba_Apricorn 1006-0181
|PR2018—01067

Toshiba_Apricorn 1006-0182
IPR2018-01067

Chapter 12: Function Configuration Registers

I Table 12-3. Card Configuration and Status Register and Definition

3

Audio

2

Pern

 Status Change Detected. This bit indicates that one or more of the Pin

Replacement Register bits (CBVDl, CBVDZ, CRDY, or CWProt) is Set to

one, normally causing the STSCHG# signal to be asserted. However, if

the SigChg bit (see below) is 1 and the card is configured for an I/O

interface, the STSCHG# pin is asserted when this bit is set.

Signal Change EnableiDisable. This bit is set and reset by the host to

enable and disable a status-change signal from the status register. When
this bit is set and the card is configured for the I/O interface, the Chng

bit controls pin 63 (STSCHG#). If no status change signal is desired, this

bit should be set to zero and the STSCHGit signal will be held deas-

serted when the card is configured for I/O.

IiO Cycles Occur Only as 8-bit Transfers. When the host can provide

I/O cycles only using the D7:D0 data path, the PCMCIA software will

set this bit to a 1. The card is guaranteed that accesses to 16-bit registers

will occur as two byte accesses rather than a single 16-bit access. This
information is useful when 16-bit and 8-bit registers overlap.
Reserved bits must be 0.

Audio Enable. This bit enables audio information to be sent to the HBA

via the speaker pin when configured for an I/0 interface.

Power Down. This bit is set to one to request that the card enter a

power-down state. PCMCIA software must not place the card into a

power-down state While the card's READY pin is in the low (Busy)
state.

 Interrupt Request Pending. This bit represents the internal state of the

interrupt request. This value is available whether or not interrupts have

been configured. How the Intr bit is cleared is dependent of how the

lntrAck bit is configured.

IntrAck=0 — Intr reflects the function’s interrupt request status. If the

interrupt is cleared within the function, then lntr is reset by the func-
tion.

IntrAck=1 — Intr remains set even though the interrupt condition has

been cleared. It is reset by system software to indicate it is ready to re-

ceive another interrupt (implemented to support interrupt sharing).

167

Toshiba_Apricorn 1006-0182
|PR2018—01067

Toshiba_Apricorn 1006-0183
IPR2018-01067

PCMCIA System Architecture

Table 12-3. Card Configuration and Status Register and Definitiom’Continued)

IntrAck

Interrupt AcknOWIedge. This bit determines the response of the Intr

bit. The functionality associated with the IntrAck bit permits two or

more functions to share the PC Card’s IREQ# pin.
IntrAck=0 -—~ when IntrAck is reset Intr functions as described above to

support a single interrupt implementation.

IntrAck=1 —« This causes the Intr bit to remain set even though the in-

terrupt service routine has already serviced the interrupt. Normally, the

interrupt service routine clears the interrupt pending bit in a function

specific register, causing the Intr also to be cleared. However, to sup»
port interrupt sharing the Intr bit is not cleared until PCMCIA specific

software is ready to handle the next interrupt request. When cleared by

the PCMCIA software, other interrupt requests that are pending can
n0w be asserted over the PC Card’s IREQit pin. (Refer to the chapter

entitled, ”Multiple Function PC Cards."

Size of Host Expansion Bus

The IOisS bit reflects the size of the expansion bus that the HBA connects to.

When this bit is set, I/O cycles will always occurs as individual 8—bit transfers

over the lower data path (D7130). When the bit is reset, accesses to 16-bit reg-

isters will occur in a single cycle.

Audio Enable

The Audio bit is set to enable audio information to be sent over the I/O inter-

face's SPKR pin. Whether or not the 1/0 card has audio capability is specified

within the miscellaneous information structure within the configuration table

entry.

Power Conservation Mode

Some cards support a low power mode that can be used for power conserva-

tion. Power management software can set the power down (Pern) bit,
placing the card in a low power state, if supported. Note that this bit should

not be set if the card is in the busy state as indicated by the PR.

168

Toshiba_Apricorn 1006-0183
|PR2018—01067

Toshiba_Apricorn 1006-0184
IPR2018-01067

Chapter 12: Function Configuration Registers

Interrupt Pending

The Intr bit is set by the card when its interrupt request (IREQ#) pin is as-

serted. If the PC Card implements a single I/O function, the Intr bit remains

set until the interrupt serviCe routine is executed, at which time the Intr bit is
reset.

Pin Replacement Register

Cards using a memory only interface report status change directly to the HBA

via the status change pins. However, when a card uses the I/O interface, the

status change pins are replaced by other I/0 specific interface signals. As a re-
sult, the HBA has no visibility of status change events that may occur on the

I/O card. The pin replacement register (PRR) replaces the HBA functions that

are normally used to indicate the status of change events for the memory in-
terface.

Refer to table 12-4. The PRR specifies the current state of the status change

events (bits 3:0) and whether a change has occurred for a particular event (bits
7:4). The current state of the events (RWP, RREADY, RBVDZ, and RBVDI) can

be read directly from the lower four bits of the PRR register. When a change

occurs for any of these items, its corresponding changed bit is set in the upper

grOup of bits. In this way, processing software can read the upper four bits to

determine which event(s) has occurred and therefore, the one needing to be

processed. When a given event is processed, the lower portion of the register

can be read to check the new state of the event that signaled the change. When

the event is processed, software should reset the changed bit, thus permitting

another event to be reported.

Table 12-4. Pin Replacement Register

I‘-
CRdy RBVDI RBVDZ RREADY

Changed BVDI and BVDZ. These bits are set to one when

the corresponding bit (RBVDI and/ or RBVDZ) changes from

one state to another. These bits may also be cleared by the
host.

Changed READY. This bit is set to one when the bit

RREADY changes state. This bit may also be cleared by the
hast.

169

Toshiba_Apricorn 1006-0184
|PR2018—01067

Toshiba_Apricorn 1006-0185
IPR2018-01067

17D

Table 12—4. Pin Replacement Register (Continued)

CWProt Changed Write Protect. This bit is set to one when the bit

RRWProt changes state. This bit may also be cleared by the
host.

RBVDI, RBVD2 Current State of BVDI and BVDZ. These bits represent the
internal state of the Battery Voltage Detect circuits on cards

that contain a battery. They correspond to the values that
would be on pins 63 and 62, BVDl and BVDZ respectively.

When this bit is set, the corresponding changed bit is also set.

When this bit is cleared, the corresponding changed bit is
unaffected.

Current State of Ready. This bit represents the internal state

of the READY signal. This bit reflects the state of READY

(since the READY pin has been reallocated for use as Inter-

rupt Request on ID Cards). When this bit is set, the

corresponding changed bit is also set. When cleared, the cor-

responding changed bit is unaffected.

RWProt Current State of Write—Protect Switch. This bit represents
the current state of the Write-Protect switch. This bit reflects

the state of the Write Protect switch when pin 24 is being

used for lOlSlEH‘i. When this bit is set, the corresponding

changed bit is also set. When cleared, the corresponding

changed bit is unaffected.

Socket and Copy Register

Refer to table 12-5. This register is used for 1/0 cards that can coexist with one

or more identical cards within the system and respond to the same 1/0 ad-

dress ranges. This capability can be used for ATA (IDE) drives that are

designated as drive 0 and drive 1. Each re5ponds to the same [/0 address

space but can be uniquely identified with the socket and copy register. The

first card configured will be assigned as com; zero and each card configured

thereafter receives the next sequential copy number. The socket number iden-

tifies the socket that a given copy occupies.

Toshiba_Apricorn 1006-0185
|PR2018—01067

Toshiba_Apricorn 1006-0186
IPR2018-01067

Chapter 12: Function Configuration Registers

Table 12—5. Socket and Copy Register

71515 l4l:3jl__—2

 Reserved (0) ji— Copy Number I] Socket Number
Reserved This bit is reserved for future standardization. This bit

must be set to zero (0) by software when the register is
written.

Copy Number Cards that can coexist with other cards (twin cards)

that are configured identically, should have a copy

number identifying this particular copy of the card. (0
to MAX twin cards, MAX : n—l) This field indicates to

the card that it is "nth" copy of the card installed in the

system that is identically configured. The first card in-

stalled receives the value 0. This permits identical

cards designed to do so to share a common set of I/O

ports while remaining uniquely identifiable and con-

secutively ordered.Socket Number i This field indicates to the card that it is located in the
nth socket. The first socket is numbered 0. This permits

any cards designed to do so to share a common set of

I/0 ports while remaining uniquely identifiable.

Extended Status Register

This register has been added to the PC Card standard to extend the number of

events that can be reported via the STSCI-IG# pin and to give software the

ability to detect and clear the event. The extended status register is organized

as an upper nibble (whose bits are set when the corresponding function event

occurs) and a lower nibble (that enables and disables setting the “Changed”

bit in the CSR). When a status change interrupt occurs PC Card software can

read the extended status register to determine if an associated bit has caused

an the interrupt.

171

Toshiba_Apricorn 1006-0186
|PR2018—01067

Toshiba_Apricorn 1006-0187
IPR2018-01067

PCMCIA System Architecture

Table 12-6 illustrates the format of the extended status register. Notice that

only the ”Requires Attention" and "Requires Attention Enable" bits are de-
fined.

Tabfe 12-6. Format and definition of the Extended Status Register

Reserved for future expanslon/ definition, must be reset (0}

This bit is latched within one (1) ms of an event occurring on the PC Card, (such as the start
of each cycle of the ring frequency to indicate the presence of ringing on the phone line in
the case of a modem card). When this bit is set to a one (I), and the Rear; Ami Enable bit is set
to a one (‘1), the Changed bit in the Configuration and Status register will also be set to a one
(i), and if the SigChg bit in the Configuration and Status register has also been set by the
host, the STSCHG# pin (63} will be asserted. The host writing a one (1) to this bit will reset
it to zero (0). Writing a zero (0) to this bit will not have any effect.

Reserved for future expansion/definition, must be reset (0)

Reserved for future expansion/definition, must be reset (0)

Enable] Reserved for future expansion/definition, must be reset (0)

Req Attn En— Setting this bit to a one {1) enables the setting of the Changed bit in the Configuration and
able

Status register when the Req Attn bit is set. When this bit is reset to a zero (0), this feature is
disabled. The state of the Rec; Attn bit is not affected by the R81; Attn Enable bit.

l/O Base Registers

The PC Card standard defines these I/O base registers for use by multiple
function cards, but they can also be used by single function cards. These regis~
ters define the base I/O address to which the function's I /O registers will be

mapped into the host processor’s address space. The number of registers used

depends on the address space supported by the host processor. Since Intel

compatible x86 processors have only 64KB of address space, only the first two

registers are needed to specify a base address anywhere within the entire

64KB space.

172

Toshiba_Apricorn 1006-0187
|PR2018—01067

Toshiba_Apricorn 1006-0188
IPR2018-01067

Chapter 12: Function Configuration Registers

l/O Limit Register

This register relates to the I/O base registers by specifying the maximum

range of I/0 addresses that can be mapped beginning at the base address.

This register is bit mapped such that the most significant bit that is set deter-
mines the number of address lines used to decode the address and therefore

the maximum block of address space supported. The most significant bit and

all bits of lesser significance must be set within the register. This results in the

possible number of address lines as listed in table 12-7. Note that the largest

block of 1/0 address space that can be defined is 256 bytes.

This register is optional and need not be implemented for each function if all

functions within the PC Card use the same number of I/O registers.

Table 12—7. Address Limit Associated with Function Base Address Register

 Bit Position Maximum

"mun“

Number of

Address

Locations

Not defined

173

Toshiba_Apricorn 1006-0188
|PR2018—01067

Toshiba_Apricorn 1006-0189
IPR2018-01067

Chapter 13: An SRAM Card Example

Chapter 13

The Previous Chapter

The previous chapter discussed the configuration registers and provided a

complete description of each register specified by the PC Card standard. Con-

figuration register implementations for both single and multiple function
cards were covered.

This Chapter

This chapter describes a sample SRAM card implementation, including a

functional block diagram of the SRAM card along with a sample C18.

The Next Chapter

The next chapter describes a sample flash card implementation, including a
functional block diagram of the card, a sample CIS, and configuration regis-

ters implemented by the card.

An SRAM Card Example

Figure 13-1 illustrates the functional blocks associated with an SRAM memory

card. Note that this is an example implementation of a 2MB SRAM card. The
contents of the CIS are illustrated and discussed in the next section.

175

Toshiba_Apricorn 1006-0189
|PR2018—01067

Toshiba_Apricorn 1006-0190
IPR2018-01067

PCMCIA System Architecture

(vaH) J91dBpVSHE]ISOHDJEO0dExpansionBus

WlilQ PIDIOCI
Switch

Detection

Address Decode
and

Control Logic

Attribute
Memow

Even

Byte

LOW

PC Card

Figure 13-1. Block Diagram of 2MB SRAM PC Card

176

Toshiba_Apricorn 1006-0190
|PR2018—01067

Toshiba_Apricorn 1006-0191
IPR2018-01067

Chapter 13: An SRAM Card Example

The SRAM CIS

The following example illustrates the CIS implemented within a typical SRAM

card. SRAM PC Card design is relatively simple when compared to I/O cards.

As shown in figure 13-2, a typical SRAM CIS may consist of four tuples. The

sections following figure 13-2 describe the purpose and contents of each tuple

in the SRAM example. Refer to appendix A for a detailed listing and analysis

of the tuples contained in this SRAM example.

—
Termination Tu Ie

Checksum Tu Ie

 Version 1/Product Information

Tuple

 00>
Device Information Tuple

Attribute Memory Space

Figure 13-2. Map of Attribute Memory Addresses on Example SRAM Card

177

Toshiba_Apricorn 1006-0191
|PR2018—01067

Toshiba_Apricorn 1006-0192
IPR2018-01067

PCMCIA System Architecture

Device Information Tuple

As described earlier, the Device Information tuple defines all the information

needed to characterize an SRAM memory card. The device information tuple

defines the following operational characteristics:

0 Device Type (SRAM in this example).

- Device Speed (250ns is this example).

0 Write-Protect switch (WPS) definition. Whether the memory defined

within the tupie is affected by the write-protect switch (WPS is used).

0 Size of the memory array (2MB in this example).

Since no configuration table exists, the memory array described is mapped by

default at base address zero within common memory address space.

Level 1 Version I Product Information Tuple

This tuple contains the PCMCIA version of the CIS and ASCII characters de-

scribing the product. The data area within the SRAM level 1

version /production information tuple consists specifically of:

0 Major version 4 (relates to IEIDA release 4.0).

I Minor version 1 (relates to PCMCIA release 1.0) A major version number

of 4 and a minor version number of 1 indicates 2.x compliant CIS.

- ASCII string indicating manufacturer and card description.

0 ASCII string indicating model number of card.

0 ASCII string indicating serial number card.

The ASCII character strings contained within the product information portion

of the tuple are defined by the PC Card manufacturer. The manufacturer and

card description information within this tuple are typically read and dis-

played by PCMCIA configuration software when a card is configured. This

notifies the user that the card has been recognized and identified.

178

Toshiba_Apricorn 1006-0192
|PR2018—01067

Toshiba_Apricorn 1006-0193
IPR2018-01067

Chapter 13: An SRAM Card Example

Checksum Tuple

The checksum tuple provides a way for processing software to verify that the

data read from the C15 is correct. The checksum data block information in-
eludes:

. Offset from checksum tuple to the start address of the range to be
checked.

- Number of locations to be checksummed from the start address.
- Checksum value.

More than one checksum tuple can be used within a C18. This example con-

tains a single checksum tuple used to check the CIS from location zero to
location 4Ch.

Termination Tuple

The termination tuple consists only of the tuple code FFh. In this example,

when processing software encounters the termination tuple, it will continue

tuple processing by going to location zero in common memory. Common

memory may contain additional tuple information written there by PCMCIA
aware software that formats the SRAM memory for use as a virtual drive.

This capability stems from 1.0 compliant cards that did not require that a C13

be implemented. When processing software attempts to read the CIS, a value

of FFh will be returned when no C18 is implemented. This is interpreted by

software as a termination tuple. Software then reads from location zero in

common memory where a link-target tuple will be found. The software then
looks for a BIOS Parameter Block (BPB) that characterizes the size of the

SRAM to be used as a virtual drive.

179

Toshiba_Apricorn 1006-0193
|PR2018—01067

Toshiba_Apricorn 1006-0194
IPR2018-01067

Chapter 14: A Flash Card Example

Chapter 14

The Previous Chapter

The previous chapter described a simple SRAM card implementation, includ-

ing a functional block diagram of the SRAM card along with a sample CIS.

This Chapter

This chapter describes a flash card implementation, including a functional

block diagram of the card, a sample CIS, and configuration registers imple-

mented by the card.

The Next Chapter

The next chapter describes an example FAX/Modern implementation, includ-

ing a functional block diagram, a sample CIS, and configuration registers

implemented by the card.

An Example Flash Card Implementation

Figure 14-1 illustrates the functions associated with an Intel series II Flash-
Card. This example is based on a 10MB flash memory array and includes a

C15 contained Within the flash control ASIC. This card also incorporates flash

memory that implements a ready/busy (RDY/BSY#) pin and takes advantage

of the memory socket’s READY pin.

181

Toshiba_Apricorn 1006-0194
|PR2018—01067

Toshiba_Apricorn 1006-0195
IPR2018-01067

PCMCIA System Architecture

Flash Card
Control

Expansion
Bus (VEIH)JeldepvsnglsOH[31300d

Write Protect
Swltch

PC Card

Figure 14—]. 20MB Flash Card Functional Diagram

182

Toshiba_Apricorn 1006-0195
|PR2018—01067

Toshiba_Apricorn 1006-0196
IPR2018-01067

Chapter 14: A Flash Card Example

A Flash Memory CIS Example

Following is an example of a flash memory card's attribute memory address

space. As shown in figure 14-2, this flash card implements both a CIS and

configuration registers. The sections following figure 14-2 de5cribe the pur-

pose and contents of each tuple used by the flash card in this example.

Appendix B contains a detailed listing and explanation of the tuples in this

flash memory card example.

Flash Card CIS Example

_

_onfigurationRegisters

4002h

4000h_

06h

04h
 Version “Product Information

Tuple
an

 18h

Device Geometry Tuple

OAh

08h
Device Information Tuple

00h

Figure MHZ. Example Contents ofa Flash Card ’9 Attribute Address Space

183

Toshiba_Apricorn 1006-0196
|PR2018—01067

Toshiba_Apricorn 1006-0197
IPR2018-01067

PCMCIA System Architecture

Device Information Tuple

The device information tuple identifies the basic characteristics of the card.

The device information tuple determines the following parameters:

0 Device Type (flash memory).

o Device Speed (150ns).

- Write-Protect switch (WPS) definition. Whether the memory defined

within the tuple is affected by the write-protect switch (WPS used).

' Size of the memory array (10MB).

Unlike the previous SRAM example, the contents of the Device Information

tuple does not completely characterize a flash memory array. Flash cards re-
quire an additional Device Geometry tuple to specify the block size for erasing

and writing to the flash memory array.

Since no configuration table exists, the memory array described is not pro»

grammabie and responds only to location 0 to 10MB in common memory

address space.

Device Geometry Tuple

Flash memory cards are block oriented devices when writing to or erasing

their memory arrays. As a result, the Memory Technology driver must know

the block size in order to access the device correctly. The Device Geometry

tuple contains the block size that is implemented by the memory array for

erasing, writing and reading the flash card. Information described by the tuple
includes:

I Internal bus width (always 2 bytes for release 1.0 - 2.x cards).

' Erase geometry block size.

II Read geometry block size.

0 Write geometry block size.

0 Partition size (indicates partition size, if the memory array is partitioned).

o Interleave size (describes whether hardware interleaving is incorporated

to enhance read performance, and if so, what the interleaving size is).

184

Toshiba_Apricorn 1006-0197
|PR2018—01067

Toshiba_Apricorn 1006-0198
IPR2018-01067

Chapter 14: A Flash Card Example

JEDEC Device Identifier (ID) Tuple

Many memory devices contain the JEDEC Device ID tuple within their CIS.

As its name suggests, this tuple contains the card manufacturer's JEDEC ID

and incorporates device type information that specifies a corresponding pro-

gramming algorithm. The Joint Electronics Device Engineering Council

(IEDEC) assigns an ID to manufacturers designing programmable memory

devices. All programmable memory devices should have a corresponding
JEDEC identifier.

Note that for each entry in a device information (DEVICE) tuple a correspond-

ing entry must be made in the JEDEC device identifier tuple. If a DEVICE

tuple contains both programmable and non-programmable memory devices,

then the JEDEC tuple entries for the non-programmable device will contain
null values.

Level 1 Version 1 Product Information Tuple

This tuple contains the PCMCIA compliance level of the CIS (level 1 version)

and ASCII characters describing the product. The data area within the flash

level 1 version/production information tuple consists specifically of: '

0 Major version 5 (relates to PC Card February, 1995 release).

0 Minor version 0 (relates to PC Card February, 1995 release).

Note: A major version number of 5 and a minor version number of 0 indi-

cates compliance with the PC Card 95 release.

a ASCII string indicating manufacturer and card description.

- ASCII string indicating model number of card.

- ASCII string indicating serial number of card.

The ASCII character strings contained within the product information portion

of the tuple are defined by the manufacturer. The manufacturer name and

card description is sometimes read and displayed by PCMCIA utilities when a

card is configured. This tuple is also commonly used by PC Card enablers that

are designed to identify and configure a specific card.

185

Toshiba_Apricorn 1006-0198
|PR2018—01067

Toshiba_Apricorn 1006-0199
IPR2018-01067

PCMCIA System Architecture

Configuration Tuple

The Configuration tuple identifies the type of the configuration register(s)

used by the PC Card, along with their location within attribute memory space.

Data entries within the Configuration tuple contain the following:

0 Size of address fields—This entry defines the number of bytes used by this

tuple to identify the location of the configuration registers. Since these

registers can be located anywhere within attribute memory address space

(0 to 64MB), the number of bytes needed to define their location depends

on where they reside in the address space. In this example, the registers
are mapped to location 4000b, therefore only two bytes are needed to

Specify their location.

0 Size of configuration register mask field# Specifies the number of bytes

needed by the configuration register mask field to" identify the configura—

tion registers implemented by this function. PCMCIA currently defines
ten configuration registers of the 128 configuration registers that can be

specified. To specify all 128 registers the configuration register mask field

would require sixteen 8~bit mask registers. This example implementation

uses the first two registers, therefore a single mask register is imple-

mented. Refer to the section entitled, "Flash Card Configuration Registers"

later in this chapter for details.

I Index number of the last entry in the configuration table—Since this ex-

ample flash card has no configuration table this entry is zero.

- Starting (base) address of the configuration registers—In this example, a

two byte field identifies the location of the configuration registers in at-

tribute memory (location 4000h). _

0 Configuration register mask — A bit map that corresponds to the configu»

ration register implemented by the PC Card function. The mask value in

this example specifies that only registers corresponding to bit 0 (the Con-

figuration Option Register) and bit 1 (the Status Register) are

implemented.

Termination Tuple

The termination tupIe consists only of the tuple code FFh. In this example,

when processing software encounters the termination tuple, it will continue

tupie processing by going to location zero in common memory. Common

186

Toshiba_Apricorn 1006-0199
|PR2018—01067

Toshiba_Apricorn 1006-0200
IPR2018-01067

Chapter 14: A Flash Card Example

memory may contain additional tuple information written there by PCMCIA

aware software that formats the flash memory for use as a virtual drive.

This capability stems from 1.0 compliant cards that did not require that a C13

be implemented. When processing software attempts to read the CIS, a value

of FFh will be returned since no C18 is implemented. This is interpreted by

software as a termination tuple. Software then reads from location zero in at-

tribute memory where a link-target tuple will be found. The software then
looks for a BIOS Parameter Block (BPB) that characterizes the size of the

memory used as a virtual drive.

Flash Card Configuration Registers

The flash card in this example uses two of the configuration registers that are

defined by the PCMCIA standard. These two registers are the configuration

option register and the configuration status register. As implemented, these

register use only a small portion of the associated functions defined by
PCMCIA.

Configuration Option Register

The flash card in this example uses the configuration option register (bit 7) to

permit software reset capability at the card level. The other functions associ-

ated with the configuration option register are not used.

Configuration Status Register

The flash card in this example also uses the configuration status register (bit 2)

for placing the card into the power down state for power conservation. All

other functions associated with the configuration status register are not used.

187

Toshiba_Apricorn 1006-0200
|PR2018—01067

Toshiba_Apricorn 1006-0201
IPR2018-01067

Chapter 15: A FAX/Modem Example

Chapter 15

The Previous Chapter

The previous chapter described a flash card implementation, including a

functional block diagram of the card, a sample CIS, and configuration regis-

ters implemented by the card.

This Chapter

This chapter describes an example FAX/Modem implementation, including a

functional block diagram, sample CIS, and related configuration registers.

The Next Chapter

The next chapter describes an PC Card ATA drive implementation, including

a functional block diagram, a sample CIS, and configuration registers imple-

mented by the card.

An Example FAX/Modem Card

Figure 15-1 illustrates the functions incorporated into a FAX/Modem PC

Card. The socket interface is configured as a memory-only interface when the

PC Card is first installed and reconfigured as a memory or I /0 socket during

the configuration process. Note that all the registers in this PC Card imple-
mentation are 8-bit registers; therefore,'this PC Card does not assert the

101516# pin.

The modem consists of the UART (Universal Asynchronous Re-

ceiver/Transmitter), the modem controller, the modem data pump and the

DAA [Data Access Arrangement).

189

Toshiba_Apricorn 1006-0201
|PR2018—01067

Toshiba_Apricorn 1006-0202
IPR2018-01067

PCMCIA System Architecture

egozcooEmacs.

96sz.95:9mm.

953.350new$0qu$934

$55.._$90.12._ammo_Emu_wow—m_$2.9amIO.
_

PC Card Host Bus Adapter

(HBA)

 Figure 15-1. Functional Block Diagram of FAX/Modem PC Card

190

Toshiba_Apricorn 1006-0202
|PR2018—01067

Toshiba_Apricorn 1006-0203
IPR2018-01067

Chapter 15: A FAX/Modem Example

FAX/Modem Resource Requirements

FAX/Modems require I /0 address space and a system IRQ line to allow the

application software to communicate via a standard serial interface. In MS-

DOS and Windows implementations, the serial interface has been mapped to

a standardized range of addresses and associated IRQ lines. These conven-
tional resource locations are needed because communications software

typically accesses FAX/Modem hardware registers directly. Software typi-
cally expects the serial interface to be mapped to the conventional resources

that are frequently referred to by the DOS device names: communications

ports one through four (COM 1, COM 2, COM 3, and COM 4).

The convention location for these communications interface are:

0 COM 1 = I/O addresses 3F8h-3FFh and IRQ 4

0 COM 2 = 1/0 addresses 2F8h-2FFh and IRQ 3

0 COM 3 = 1/0 addresses 3E8h-2EFh and IRQ 4

0 COM 4 = I/O addresses 2E8h-3EFh and IRQ 3

Note that some communications software may be able to access the serial in-

terface at other non-conventional address locations and IRQs. Specifically, PC

Card aware application programs can gain access to the PC Card configura-

tion information and determine how the PC Card has been configured by the

enabler. Once the application knows how the PC Card has been configured, it
can gain access to the card via the specified I /0 address locations and IRQ

lines without having to rely upon the conventional configurations specified
above.

A FAX/Modem CIS Example

Figure 15-2 illustrates the contents of attribute memory address space for a

FAX/modem. Notice that the C15 contains a configuration table. A configura-

tion table is used by PC Cards having functions that can be configured using a

variety of different system resources. The configuration table consists of en-

tries that define different resources combinations that can be assigned to the
PC Card. If one of the resource combinations are available for the PC Card’s

use, then it can be successfully configured. If the resource combinations re-
quired by the FAX/Modem are not available for use then the card cannot be

configured.

191

Toshiba_Apricorn 1006-0203
|PR2018—01067

Toshiba_Apricorn 1006-0204
IPR2018-01067

PCMCIA System Architecture

Device Information Tuple

The Device Information tuple identifies the basic characteristics of memory
cards. Since the FAX/Modern is an I/O device, the device information tuple

contains no relevant informatiort. The data portion of this tuple is zero, indi-

cating that this card is not a memory card.

LeVel 1 Version / Product Information Tuple

This tuple contains the PCMCIA compliance level of the CIS (i.e. the version

of CIS, recall that level 1, or layer 1 of the metaformat defines the CIS) and

ASCII characters describing the product. The data area within the

FAX/Modem level 1 version/production information tuple consists specifi—

cally of:

a Major version 5 (relates to PC Card February, 1995 release).

a Minor version 0 (relates to PC Card February, 1995 release).

Note: A major version number of 4 and a minor version number of 1 indi-

cates 2.x compliant CIS.

I ASCII string indicating manufacturer and card description.

- ASCII string indicating model number of the card.

I ASCH string indicating serial number of the card.

The ASCII character strings contained within the product information portion

of the tuple are defined by the manufacturer. The manufacturer name and

card description is sometimes read and displayed by PCMCIA utilities when a

card is configured. This tuple is also used by client device drivers that are de-

signed to identify a specific card.

Card Manufacturer Identification (ID) Tuple

As its name suggests, this tuple contains the PCMCIA card manufacturer's ID

number. The PCMCIA organization assigns an ID to the manufacturers de-
signing PCMCIA compliant cards.

192

Toshiba_Apricorn 1006-0204
|PR2018—01067

Toshiba_Apricorn 1006-0205
IPR2018-01067

Chapter 15: A FAX/Modem Example

204h

(5 configuration table entries)

F4h

F2h

E6h

E4h

Configuration Tupie

Extended Function Information

Tuples

(6 extension tupies)
68h

66“ Function Identification Tuple
60h

55" Card Manufacturer Identification

54h Tuple
52h

Version 1I’Product Information

can Tuple

06“ Device Information Tuple
00h

C—onfigurationRegisters200h

16pm T—erminationTuple
16811

No-Link Tuple
16611

164” Configuration Table

Figure 15-2. Example of Attribute Memory Address Contents for FAX/Modem

Function Identification Tuple

The Function Identification tuple determines the type of functional device that

is implemented in the PC Card. Memory cards can be specified through the

Device Information tuple, Whereas, I/0 devices must use the Function Identi—

fication tuple. This tuple defines the following items:

193

Toshiba_Apricorn 1006-0205
|PR2018—01067

Toshiba_Apricorn 1006-0206
IPR2018-01067

PCMCIA System Architecture

- Function type code ~— consists of a code representing the type of device

implemented in the PC Card. The function type associated with the

FAX/modem is a serial port.

0 Initialization byte — Specifies whether this device should be cOnfigured

during system initialization (also called Power-On Self Test or POST) and

whether the card has a ROM containing configuration software. This is

used by devices when loading the operating system. Not used by the
FAX/ modem.

Function Extension Tuples

Function Extension tuples are defined by PCMCIA for some types of devices,

including modems. Function Extension tuples must immediately follow the

Function Identification tuple to which they apply. This example consists of six

different function extension tuples. Within each tuple is a code identifying it

as a particular type of function extension. These extensions fall into three basic

categories for serial devices:

0 Data modem extensions

. FAX modem extensions

. Voice modem extensions (not used by the FAX/modem)

Each Function Extension tuple provides information related to the capabilities

of the modem. This information includes items such as communications pro«

tocols, error correction protocols, and other communications parameters. This

information can be used by PCMCIA aware applications to automatically

configure the application based on the card's capabilities.

Configuration Tuple

The Configuration tuple identifies the type of the configuration registerfs)

implemented in the PC Card, along with their location within attribute mem-

ory space. This tuple also specifies the index number of the last entry within
the CIS. Data entries within the Configuration tuple contain the following:

. Size of address fields — This entry defines the number of bytes used later

within this tuple to identify the location of the configuration registers.

Since the configuration registers can be located anywhere within attribute

memory address space (0 to 64MB), the number of bytes needed to define

194

Toshiba_Apricorn 1006-0206
|PR2018—01067

Toshiba_Apricorn 1006-0207
IPR2018-01067

Chapter 15: A FAX/Modem Example

their location depends on where they reside in the address space. In this
example, the registers are mapped starting at location 200h; therefore,

only two bytes are needed to specify their location.

0 Size of configuration register mask field — Specifies the number of bytes
needed by the configuration register mask field to identify the configura-

tion registers implemented by this function. PCMCIA currently defines

ten configuration registers Out of the 128 configuration registers that can

be identified. To specify all 128 registers the configuration register mask

field would require sixteen 8-bit mask registers. This example implemen»
tation uses registers 0, 1, and 2 therefore a single mask register is

implemented. Refer to the section entitled, "FAX/Modem Card Configu-

ration Registers” later in this chapter for details.

0 Index number of the last entry in the configuration table — This value in—

dicates to processing software when the last entry within the card's

configuration tuple has been reached.

0 Starting (base) address of the configuration registers — In this example, a

two byte field identifies the location of the configuration registers in at-

tribute memory (location 0200h).

- Configuration register mask — Specifies that configuration registers zero

(Configuration Option Register), one (Status Register) and two (Pin Re-
placement Register) are implemented.

Configuration Table

The configuration table contains the configuration option supported by the

FAX/modern card. The card in this particular example contains five entries

within the configuration table, each defining a different combination of system

resources required to support its functions. The serial port used by the mo-

dem requires an eight byte block of contiguous I/O addresses and a system

interrupt line. This device supports standard resources defined by convention

in the DOS environment. The following list shows the 8-byte I/O range and

IRQ line specified by each entry within the configuration table.

COM 1—I/O base address 3F8h‘ and IRQ 4 (entry 1)

COM 2—1/0 base address 21-7811 and IRQ 3 (entry 2)

COM 3—1/0 base address 3E8h and IRQ 4 (entry 3)

COM 4—1/0 base address 2E8h and IRQ 3 (entry 4)

Any 8-byte range of I/O addresses and any one of the IRQs: 2, 3, 4, 5, 7, 9,

10, or 15 (entry 5)

195

Toshiba_Apricorn 1006-0207
|PR2018—01067

Toshiba_Apricorn 1006-0208
IPR2018-01067

PCMCIA System Architecture

The first resource combination that can be allocated by the system will be as~

signed to the HBA and PC Card for its use. The index number of the

configuration table entry that satisfied the resource requirements is pro-

grammed into the configuration option register. This configures the PC Card

to respond to the resources specified within the selected configuration table
entry.

No—Link Tuple

The no-link tuple tells processing software to terminate tuple processing when

the terminatiou tuple is reached. This prevents the implied jump to location

zero of common memory.

Termination Tuple

The termination tuple consists only of the tuple‘ code FFh. In this example,

when processing software encounters the termination tuple, it will end tuple

processing since the no-link tuple exists in the tuple listing.

FAXIModem Configuration Registers

The FAX/Modem card in this example implements three of the ten configura—

tion registers defined by the PCMCIA standard. These registers include the

configuration option register, status register and pin replacement register.
Their use in the fax/modem card is defined in the following sections.

Configuration Option Register

The configuration option register performs several functions related to the

FAX/modem card’s operation:

- Configuration Index — selects the entry within the configuration table

that satisfied the card's resource requirements. This value programs the

I/0 address decoders on the card to respond to the correct address range.

0 Interrupt Request Level w— selects whether level or pulse mode interrupts

should be delivered over the IREQ# pin by the PC Card.

196

Toshiba_Apricorn 1006-0208
|PR2018—01067

Toshiba_Apricorn 1006-0209
IPR2018-01067

Chapter 15: A FAX/Modem Example

0 Software Reset —- provides the ability for software to reset the PC Card.

Setting this bit has the same affect on the hardware as aSSerting the RESET
pin.

Configuration Status Register

This register performs the following functions as they relate to the
FAX/modem card:

0 Audio Supported —— set by software to enable the PC Card to output

audio information to the HBA via the speaker pin.

0 Interrupt Pending — set by the PC Card to indicate that an interrupt has

been asserted to the HBA and has not yet been serviced.

0 Status Change — set by the PC Card to indicate that a pin replacement

register has been implemented and should be checked to see if a status

change has occurred.

Pin Replacement Register

The pin replacement register is used to report status change events that are

supported by the PC Card. This is done in lieu of socket interface pins that are

not available when the socket is configured as an I/O interface. The

FAX/modem in this example implements the READY status change function

and therefore implements the pin replacement register.

197

Toshiba_Apricorn 1006-0209
|PR2018—01067

Toshiba_Apricorn 1006-0210
IPR2018-01067

Chapter 16: An ATA PC Card Example

Chapter 16

The Previous Chapter

The previous chapter described an example FAX/Modem implementation,

including a functional block diagram, sample CIS, and related configuration

registers.

This Chapter

This chapter describes an example PC Card ATA drive implementation, in-

cluding a functional block diagram, a sample CIS, and configuration registers

implemented by the card.

The Next Chapter

The next chapter describes a multi-function PC Card design, including a func-

tional block diagram, a multi-function CIS, and related configuration registers.

An ATA PC Card Example

Figure 16-1 iilustrates the functions contained within an ATA PC Card based

on rotating magnetic media. Other ATA PC Card designs are based on flash

memory technology impiemented as virtual disk drives that provide the same

programming interface employed by standard ATA disk drives.

As with any PC Card, the initial socket interface is automatically configured

as a memory-only interface when the PC Card is first installed. After the C18

is read and the ATA PC Card’s enabler has detected the ATA card’s presence,

the enabler initiates the configuration process. As discussed in the following

section an ATA PC Card can be configured to operate with the memory inter-

face (i.e. the registers are mapped into the processor’s memory address space) .

or with the memory or I/0 interface (using standard [/0 mapping).

199

Toshiba_Apricorn 1006-0210
|PR2018—01067

Toshiba_Apricorn 1006-0211
IPR2018-01067

PCMCIA System Architecture

|NPACK#

'—
Address DewdeI OE}:

I WE# ElI'Id -
Control LOQIC

(VEIH)131(31prsng180|—|p1900d

__...._.__—._._.H.—.—-—‘—————————————

Figure 16-1. Functional Block Diagram afar: ATA Disk Drive PC Card

200

Toshiba_Apricorn 1006-021 1
|PR2018—01067

Toshiba_Apricorn 1006-0212
IPR2018-01067

Chapter 16: An ATA PC Card Example

ATA System Resource Requirements

ATA devices contain two register blocks called the command register block

and control register block. Each of these register blocks must be assessable by

the system. PC Card ATA devices support either 1/0 or memory-mapping

using one of four addressing modes listed in table 164.

Standard mapping in the ISA environment includes the assignment of two

separate I/O address ranges to map ATA drive registers into. If these ranges
are not available, another range of I/0 addresses can be used. If neither of the

standard I/O address ranges are available, then a contiguous block of 16 {/0

locations is requested for mapping the command and control block registers
into.

Alternatively, the registers can be mapped into memory locations. When

memory—mapping is chosen, a contiguous 2K8 block of memory locations is

used. The command and control registers are mapped into the first 16 bytes of

the 2K3 memory block, while the last lKB of the block is used as a high speed
buffer to transfer data to and from the PC card.

Table 16-1. ATA Addressing Options Supported by PCMCIA

Address Mode Command Block Control Block

l/O - Primary ATA drive address 1F0h - 1F7h 3F6h - 3F7h

lXO — Secondary ATA drive address l70h - l77h 37611 — 377h

l/O - Any 16-byte contiguous range XXXOh - XXXFh

Memory - Any 11KB address range Card must respond to locations 011 - F11 and 4DDh -
7FFh within the 2K8 range

In addition to mapping the registers, an interrupt request line must also be

supported for I/O addressing. Normally IRQ 14 is used by ATA drives. When

configured for memory-mapped registers, the socket interface does not define

an interrupt line, therefore software polling must be used.

Supporting Two Drives

It is possible for two ATA drives to be simultaneously installed into PCMCIA

sockets of the same HBA. When accessing these drives, some method must be

used to individually select these drives as either drive 0 or drive 1. This is ac-

complished in a standard ATA environment via the daisy-chained cable with

201

Toshiba_Apricorn 1006-0212
|PR2018—01067

Toshiba_Apricorn 1006-0213
IPR2018-01067

PCMCIA System Architecture

the cable~select signal or by jumpers (switches) on the drive. In the PCMCIA

environment, the Socket and Copy Register, defined as one of the configura-

tion registers, can be used to identify two ATA PC cards mapped to the same

address space. The copy number programmed into the Socket and Copy Regr

isters is used by the HBA to differentiate between drive 0 from drive I.

The ATA Card's CIS

When an ATA card is installed, the normal process of calling client drivers
that have registered with card services occurs. These client drivers attempt to

identify the card installed to determine if it should be configured by them.

ATA client drivers typically identify their card by interpreting one or more of

the following CIS tuples:

- The JEDEC ID tuple.

- The Manufacturers ID tuple.

t The Function ID and Disk Device Function Extension tuples.

Once a PC Card has been detected as an ATA disk, the CIS can be further

processed to determine the configuration options supported by the card.

The PC Card ATA specification defines Function Identification Extension tu-

ples that are used to identify the disk as an ATA interface and to specify

features supported by the ATA card. The Interface Function Extension tuple

must immediately follow the Function Identification tuple that identifies the
card as a disk device.

Disk Device Function Extensions

This tuple specifies additional information for disk devices. Two function ex»

tension types are currently defined. As shown in table 1&2, the first disk

function extension tuple (type 01h) defines the type of interface used by the

disk. An interface type of 0111 indicates an ATA drive interface.

Table 16-2. Disk Function Extension Tupte Format (Type 1)

Disk Function Extension Tuple Formal
TPL_CODE CISTPL_FUNCE (22H)

TPL_LINI< Link to next tuple
TPL_'I'YPE Interface t ‘-e extension (01h)

3 TPLFE_DATA Interface type code [01h = ATA Interface)

202

Toshiba_Apricorn 1006-0213
|PR2018—01067

Toshiba_Apricorn 1006-0214
IPR2018-01067

Chapter 16: An ATA PC Card Example

A second Disk Function Extension defines additional ATA Card features as

shown in table 16-3. '

Table 16-3. PC Card ATA Function Extension Tuple

m-_—_

-_—---I:Inn
-—_---—n

The bit fields illustrated in table 16-3 are defined in table 16-4 for normal operation
and table 16-5 for low power modes.

Table 16-4. Bit Definition for Normal Operation

Vpp Power

Unique Drive Iden-
tifier

 0 Not Required

1 Required for Media Modification Accesses

2 Required for all Media Accesses

3 Required Continuously

0 Rotating Device

0 Identify Drive Model]Serial Number may not be unique

‘1 Identify Drive Model/Serial Number is guaranteed unique
This field is reserved for future standardization. Must be (I.

203

Toshiba_Apricorn 1006-0214
|PR2018—01067

Toshiba_Apricorn 1006-0215
IPR2018-01067

PCMCIA System Architecture

Table 16-5. Bit Definition for Low Power Operation

 1’ Bit 3: 0 Low Power Mode Use Required to Minimize Power

Bit 3: 1 Drive Automatically Minimizes Power. No need for host to

Low Power Modes

(Idle, Standby, Sleep]
 actively power manage.

Bit 2: 0 Idle Mode Not Supported

Bit 2: 1 Idle Mode Supported

Bit 1: 0 Standby Mode Not Supported

Bit 1: 1 Standby Mode Supported

Bit 0: 0 Sleep Mode Not Supported

Bit 0: 'I Sleep Mode Supported

0 = All Primary and Secondary [/0 Addressing Modes include ports
SP? or 377.

1 = Some Primary or Secondary I/O Addressing Modes exclude 3F?

N 3F7/377 Register
Inhibit Available

and/or 377 for floppy interference avoidance.

0 = Index Bit is Not Emulated

1 = Index Bit is Supported or Emulated

0 = 1015'] 6# use is Unspecified on Twin—Card Configurations

1 = 10151“ is asserted only for Data Register on Twin-Card

Configurations

This field is reserved for future standardization. Must be 0.

IPL from a PCMCIA ATA Drive

Index Emulated

IOISléit on Twin

Card

Reserved

To load the operating system from a PCMCIA ATA drive, the drive must be

configured during main system initialization, commonly referred to as POST

(power-on self test). The initialization byte within the Function Identification

table specifies if a PC Card should be configured during POST.

Since in many systems PC Cards are not installed until the operating system

loads, the system designer must provide PCMCIA initialization software. This
software must read the CIS of all cards installed in sockets to determine if

they should be configured before the operating system loads. Many of the

vendors that supply socket services have a solution (i.e. ROM-based PCMCIA

initialization code) that permits PC ATA cards and others requiring early

configuration to be initialized during POST.

204

Toshiba_Apricorn 1006-0215
|PR2018—01067

Toshiba_Apricorn 1006-0216
IPR2018-01067

Chapter 16: An ATA PC Card Example

An Example ATA Card CIS

Figure 16-2 illustrates a memory map of the attribute memory address space

used by a sample ATA card that implements rotating media. This example

CIS supports all the addressing modes specified in table 16-1. Appendix D

contains a detailed listing of this CIS.

206h

Configuration Registers

200h

DBh Termination Tuple

D6h

04h
02h

00h

CAh

C4h

02h

 No-Link Tuple
 Extended Function Information

Tuple

Function Identification Tuple

Configuration Table

(4 configuration table entries)

 40h

3Eh

Configuration Tuple

32h

30h

Version 1fProd uct Information

Tuple

Device intormation Tuple

Fr'gur316-2. Sample ATA CIS and Configuration Register Map

 OCh

OAh
00h

205

Toshiba_Apricorn 1006-0216
|PR2018—01067

Toshiba_Apricorn 1006-0217
IPR2018-01067

PCMCIA System Architecture

Device Information Tuple

Since the ATA card contains a memory-mapped options for it registers, the

Device Information tuple contains a valid memory device entry. The informa-

tion described in this tuple includes:

0 Memory type (specified as function specific memory)

0 Extended memory speed defined (400m)

0 Memory size (2K8)

Level 1 Version / Product Information Tuple

This tuple contains the PCMCIA compliance level of the C18 (level 1 version)

and ASCII characters describing the product. The data area within the ATA

level 1 version/production information tuple consists specifically of:

o Major version 4 (indicates 2.x compliant CIS)

a Minor version 1 (indicates 2.x compliant C18)

0 ASCII string indicating manufacturer

1: ASCII string indicating model information

The ASCII character strings contained within the product information portion

of the tuple are left for the manufacturer to define. The manufacturer name

and card description is sometimes read and displayed by PCMCIA utilities

when a card is configured. This tuple is also used by client device drivers that

are designed to identify a specific card.

Configuration Tuple

The Configuration tuple identifies the type of the configuration register(s)

used by the PC Card, along with their location within attribute memory space.

Data entries within the Configuration tuple contain the f0110wing:

0 Size of address fields — this entry defines the number of bytes used

by this tuple to identify the location of the configuration registers.

Since these registers can be located anywhere within attribute mem-

ory address space (0 - 64MB), the number of bytes needed to define

their location depends on where they reside in the address space. In

206

Toshiba_Apricorn 1006-0217
|PR2018—01067

Toshiba_Apricorn 1006-0218
IPR2018-01067

Chapter 16: An ATA PC Card Example

this example, the registers are mapped to location 20011, therefore only

two bytes are needed to specify their location.

0 Size of configuration register mask field — specifies the number and

mix of configuration registers implemented by the PC Card. A bit

map of the configuration register identifies how many registers are

implemented. PCMCIA currently defines four configuration registers,

but provides expandability up to 32 configuration registers (requiring

four 8-bit mask registers). This example implementation uses all four

registers, therefore a signal mask register is implemented.

0 Index number of the last entry in the configuration table. Since this

example has four configuration entries, the index number of entry

four is specified.

0 Starting (base) address of the configuration registers ~— In this exa m-

ple, a two byte field identifies the location of the configuration

registers in attribute memory (location 200h).

0 Configuration register mask — Specifies that configuration registers

zero (Configuration Option Register), one (Status Register) two (Pin

Replacement Register) and three (Socket and Copy Register) are im-

plemented.

Configuration Table

The configuration table contains the configuration option supported by the

ATA card. This card in this particular example contains four entries within the

configuration table, each defining a different combination of system resources

required to support its functions. This card supports all four configuration

options defined by the PCMCIA and ATA standards as listed in table 16-1.

Function Identification Tuple

The Function Identification tuple determines the type of functional device that

is employed by the PC Card. This tuple defines the following items:

- Function type code — consists of a code representing the type of de-

vice employed by the PC Card. The function type associated with the
ATA card is fixed disk.

- Initialization byte — specifies whether this device should be config-

ured during system initialization (also called Power~0n Self Test or

POST) and whether the card has a ROM containing configuration

207

Toshiba_Apricorn 1006-0218
|PR2018—01067

Toshiba_Apricorn 1006-0219
IPR2018-01067

PCMCIA System Architecture

software. Since the ATA drive may need to load the operating system,

the POST bit is set. This indicates that the system should configure

this card during POST. Refer to the section entitled, "IPL from a

PCMCIA ATA Drive", discussed earlier in this chapter.

Function Extension Tuples

Two Function Extension tuples are defined by PCMCIA for ATA drives. This

sample CIS includes only the type 1 disk function extension that identifies the

fixed disk interface type as ATA.

No-Link Tuple

This No-Link tuple indicates that when the Termination tuple is reached that

no more tuples exist within the string.

Termination Tuple

The termination tuple consists only of the tuple code FFh. In this example,

when processing software encounters the checksum tuple, it terminates tuple

processing since the No-Link tuple was previously encountered in this tuple

string.

Configuration Registers

The ATA card in this example implements all four configuration registers de

fined by the PCMCIA standard. These registers include the Configuration

Option Register, Status Register, Pin Replacement Register and Socket and

Copy Register.

208

Toshiba_Apricorn 1006-0219
|PR2018—01067

Toshiba_Apricorn 1006-0220
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

Chapter 17

The Previous Chapter

The previous chapter described an example PC Card ATA drive implementa-

tion, including a functional block diagram, a sample CIS, and configuration

registers implemented by the card.

This Chapter

This chapter discusses the multiple function PC Card strategy and the

mechanisms for achieving it. It also includes a functional block diagram of a

multiple function PC Card, a sample mum-function CIS, related configuration

registers, and multi-function interrupt handling.

The Next Chapter

The next chapter provides an overview of the PCMCIA software environment

and the configuration process.

Overview

Since most systems implement a limited number of PC Card sockets (usually
one or two), it is advantageous to implement cards containing multiple func-

tions. However, prior to release of the PC Card standard PCMCIA did not

offer full support for multiple function PC Cards. Only one CIS structure and

only one set of configuration registers were specified for a PC Card. This

meant that each function had to somehow share the single CIS and configura-

tion registers. Several multiple function cards have been designed, but these
implementations are typically vendor-specific/proprietary solutions and re-

quire vendor—specific client drivers that have been designed with knowledge

of the implementation.

209

Toshiba_Apricorn 1006-0220
|PR2018—01067

Toshiba_Apricorn 1006-0221
IPR2018-01067

PCMCIA System Architecture

The PC Card standard now incorporates a multiple function card strategy that

specifies how multiple functions must be implemented. This permits software

solutions that are aware of the multiple function implementation to recognize

and configure multiple function PC Cards. An important part of this imple-

mentation is the definition of a separate CIS and configuration registers for

each function implemented within the PC Card. This chapter discusses the

multiple function PC Card strategy and the mechanisms for achieving it.

An Example Multiple Function PC Card

Figure 17-] illustrates a functional block diagram associated with a multiple

function PC Card. Each function has its own CIS mapped into the PC Card’s

attribute memory address space, along with its own set of configuration regis-

ters. Note in this PC Card example that both functions require use of

interrupts. Since a PC Card memory or 1/0 socket interface defines only one

IREQ# pin, it is necessary to share the IREQ# pin between functions. The in-

terrupt requests from the functions are labeled IREQO# and IREQ]#

respectively, which are inputs to the interrupt routing logic illustrated in fig-

ure 17-1. The interrupt routing logic also includes inputs named INTR0 and

INTR‘l from the configuration registers. TheSe inputs represent the state of the

INTR bit in the configuration status register. When the INTR bit is cleared, the

interrupt routing logic knows that the corresponding interrupt request has

been serviced, and that it is free to generate another IREQ# to the HBA. Inter»

rupt sharing is discussed in the section entitled, “Shared Interrupt Handling”

later in this chapter.

An Example CIS

Each function within a multiple function PC Card must have its own CIS.

However, some information specified Within a C15 is common to the PC Card

itself (i.e. the information applies to all functions implemented by the PC
Card). For this reason multiple function PC Cards contain a global CIS along

with separate CISs for each function implemented. Since each function has its

own CIS, it can specify the location of the configuration registers needed to

support its function. Figure 17-2 illustrates a multi-function CIS structure that
includes two functions.

210

Toshiba_Apricorn 1006-0221
|PR2018—01067

Toshiba_Apricorn 1006-0222
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

 Address
Decode

and
Control

(VEIH) JeldBpVsna1SOHpJeo0d

Routing
Logic

Figure 17-1. Functional Diagram ofa Multiple Function PC Card

211

Toshiba_Apricorn 1006-0222
|PR2018—01067

Toshiba_Apricorn 1006-0223
IPR2018-01067

PCMCIA System Architecture

Every multiple function PC Card that is compliant with the standard must in~

clude a primary CIS that contains a LongLink_MFC tuple. This tuple specifies

the location within attribute memory of the functionspecific CISs that are re—

quired for each function implemented within the PC Card. Each function—

specific CIS must begin with a LINKTARGET tuple to verify the start of the

C15. The standard specifies the tuples that must be included within the pri-

mary CIS, which ones are optional, and their exact order within the CIS. Table
17-1 lists these tuples in the required order.

Table 17-1. Taptes Defined for the Primary CIS (Listed in the Order)

Tuple Name Required/Optional

CISTPL—DEVICE

CISTPL—LONGUNK—MFC

The standard also specifies the order and combination of tuples required for

each secondary (218. These tuples are listed in table 17-2.

Description

Specifies whether memory is implemented within
PC Card’s common memory address space.

if common memory is not used, the type code must
be NULL.

Only one manufacturer’s I'D tuple can be imple-
mented.

May be used by enabling software to identify the PC
Card.

Specifies the number of functions (i.e. the number of
configuration register sets) within the PC Card, and
the starting address of each function-specific CIS
within attribute memory space.

Table 17-2. Tuples Defined for each Secondary CIS (Listed in the Order)

Tuple Name Required/Optional Description

CISTPL_LINKTARGET Used to validate the beginning of a function-specific
CIS.

CISTPL_FUNCID Must be used to identity the function.

CISTPL_FUNCE Optional Some functions have extensions that specify additional
information about the function.

CISTPL_CONFIG Required Describes presence and location of Function Configu—
ration Registers for this function.

CISTPL_ENTRY Specifies the configuration requirements of this func-
tion.

212

Toshiba_Apricorn 1006-0223
|PR2018—01067

Toshiba_Apricorn 1006-0224
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

FFFFFFF

Function 2

Config. Regs.

Function 1

Config. Regs.

 Configuration Table

(Entry Tuples)

Function 2

FUNCID Tuple

LINKTARGET

Configuration Table
(Entry Tuples)

Function 1

CONFIG Tuple CIS

FU NCID Tuple

LIN KTARGET LONGLINKJVIFC

Global

Optional Tuples CIS

DEVICE Tupie ooooooo

Attribute Memory
Address Space

Figure 17-2. An Example CIS Structure Supporting Two Functions.

213

Toshiba_Apricorn 1006-0224
|PR2018—01067

Toshiba_Apricorn 1006-0225
IPR2018-01067

PCMCIA System Architecture

Configuration Registers

Each function contains its own set of configuration registers and may include

the registers illustrated in table 17-3. The exact set of registers employed by

each function depends on the requirements of the particular function being

implemented. Each function that uses the I/O interface must include the Con-

figuration Option Register, the 1/0 Base and typically the I/O Limit registers

(the I/0 Size register may be eliminated as discussed below in the section en-

titled ”I/O Limit Register”), all other registers are optional.

Once the PC Card’s enable has correctly identified the functions within the

card, it must configure the HBA and PC Card. Configuring the PC Card

means Writing the appropriate values into the configuration registers that

have been implemented. Refer to the chapter entitled “The Configuration

Registers" for a detailed explanation of each register.

Table 17—3. The Configuration Registers Defined by the PC Card Standard

=_-——-—_
Configuration Option Register—m meConfigmuonmdex

Configuration and Status Register—
———————— mum

Pin Replacement Register.-
———_——_ mm anor

Socket and Copy Register

-—-— Copywumber SockemumberExtended Status Register

Enable

_2 110 Base 0HO Base 1

U0 Base 2

1x0 Base 3

n no Limit

214

Toshiba_Apricorn 1006-0225
|PR2018—01067

Toshiba_Apricorn 1006-0226
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

Configuration Option Register

The configuration option register (COR) has a specific definition (different

from single function PC Cards) when employed within multiple function PC
Cards. Specifically, the configuration index field is different from the single
function implementation. Recall that in a single function PC Card the configu»
ration index field can be defined in any fashion that the single function card

designer chooses, which specifies a given configuration for the card (Le. a

value corresponding to the index number of the configuration table entry that

specifies the configuration chosen by the enabler). However, the multi-

function PC Card must implement the configuration index field as specifically
defined in table 17-4.

Note that the definition of the SRESET and Leleeq bits are the same as for

single function cards. Each bit is defined in table 174.

Table17—4. Configuration Option Register format and Definition

"ml-n

SRESET Software Reset. Setting this bit to one (1) places the card in the

reset state. This is equivalent to assertion of the RESET signal ex-

cept that this bit is not cleared. Returning this bit to zero (0), leaves
the card in the same state that follows a hardware reset. This bit is

set to zero by power up and hardware reset.

“11‘

bit is one (1). Pulse Mode Interrupts are selected when bit is zero.

Conf Index Multi-function Card Index definition. The PC Card standard

specifically defines use of each bit within the configuration index.

Bit 0 —~ Enables/disables this functiou. 1=enabled; 0=disabled

Bit 1 — Specifies the number of [/0 addresses used. 1=I/O func-

tion uSes the number of address lines specified by the base and

limit registers; 0=a11 host l/O address are passed to the function.

(This bit is valid only when function is enable via bit 0.)

Bit 2 — Enables IREQ# routing. I==the function will deliver inter-

rupts to the PC Card's IREQ# line; 0=interrupts disabled for this

function. (This bit is valid only when function is enabled.)

Bits 3-5 -— vendor specific

215

Toshiba_Apricorn 1006-0226
|PR2018—01067

Toshiba_Apricorn 1006-0227
IPR2018-01067

PCMCIA System Architecture

Card Configuration and Status Register

Portions of the Card Configuration and Status Register (CSR) have also been

redefined to support interrupt sharing on multi—function PC Cards. A new bit

named IntrAck (interrupt acknowledge) specifies how the Intr bit is imple-
mented. Refer to table 17-5

It Single function PC Cards with IntrAck reset (0) — the Intr bit remains set

until the interrupt service routine is executed, at which time the Intr bit is
reset.

0 Multiple function PC Cards with INTRack set (1) — the Intr bit remains

set even though the interrupt service routine has already serviced the in-

terrupt request. Normally, the interrupt service routine clears an interrupt

pending bit within a function specific register, causing the Intr within the

CSR also to be Cleared. However, to support interrupt sharing the Intr bit

is not cleared until card services is ready to handle the next interrupt re-

quest. When cleared by card services, other interrupt requests that are
pending can now be generated via the PC Card’s IREQ# pin.

Table 17-5. Card Configuration and Status Register and Definition

I. 5 ll 4 1 3 ll 2 I 1

-|:s Resrv |’Audio‘|[Pern 1” Intr(0)

Status Change Detected. This bit indicates that one or more of the Pin

Replacement Register bits (CBVDI, CBVDZ, CRDY, or CWProt) is set to
one, normally causing the STSCHG# signal to be asserted. However, if

the SigChg bit (see below) is 1 and the card is configured for an I/O

interface, the STSCHG# pin is asserted when this bit is set.

Signal Change EnablefDisable. This bit is set and reset by the host to

enable and disable a status-change signal from the status register. When

this bit is set and the card is configured for the 1/0 interface, the Chng

bit controls pin 63 (STSCHG#}. If no status change signal is desired, this

bit should be set to zero and the STSCHG# signal will be held deas—

serted when the card is configured for I/O.

IntrAck

U0 Cycles Occur Only as B-bit Transfers. When the host can provide

I/O cycles only using the D7:D0 data path, the PCMCIA software will

set this bit to a 1. The card is guaranteed that accesses to 16-bit registers

will occur as two byte accesses rather than a single 16-bit access. This
information is useful when 16»bit and 8-bit registers overlap.
Reserved bits must be 0.

216

Toshiba_Apricorn 1006-0227
|PR2018—01067

Toshiba_Apricorn 1006-0228
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

Table 17-5. Card Configuration and Status Register and Definition (Continued)

7 "—1- 3 2 1 o

Chng SigChg AudioJ I’ern lntr lntrAck(0)

Audio Audio Enable. This bit enables audio information to be sent to the HBA

via the speaker pin when configured for an I/0 interface.

Pern Power Down. This bit is set to one to request that the card enter a

power-down state. PCMCIA software must not place the card into a

poWer-down state while the card's READY pin is in the low (Busy)
state.
Interrupt Request Pending. This bit represents the internal state of the

interrupt request. This value is available whether or not interrupts have

been configured. How the lntr bit is cleared is dependent of how the
IntrAck bit is configured.

IntrAck=0 — Intr reflects the function’s interrupt request status. If the

interrupt is cleared within the function, then lntr is reset by the func-
tion.

IntrAck=1 — lntr remains set even though the interrupt condition has

been cleared. It is reset by system software to indicate it is ready to re-

ceive another interrupt {implemented to support interrupt sharing).

Interrupt Acknowledge. This bit determines the response of the lntr

bit. The functionality associated with the IntrAck bit permits two or

more functions to share the PC Card’s lREQit pin.
IntrAckzfl —-- when IntrAck is reset lntr functions as described above to

support a single interrupt implementation.

IntrAck=1 — This causes the lntr bit to remain set even though the in»

terrupt service routine has already serviced the interrupt. The lntr bit is

not cleared until Card Services is ready to handle the next interrupt

request. When the lntr bit is cleared, the PC Card generates another

interrupt request (if another interrupt request is pending from another
function).

IIO Base Registers

The PC Card standard requires use of the [/0 base registers by multiple

function cards, and they can also be used by single function cards. These reg-

isters define the base I/0 address at which the function's I/O registers will be

mapped into the host processor’s address space. The number of registers used

depends on the address space supported by the host processor. Since Intel

217

Toshiba_Apricorn 1006-0228
|PR2018—01067

Toshiba_Apricorn 1006-0229
IPR2018-01067

PCMCIA System Architecture

compatible x86 processors have 64KB of address space only the first two regis-

ters are needed to specify a base address anywhere within the entire 64KB
space.

Note that in a typical single function PC Card the I/O address range is specie

fied by the configuration index value within the configuration option register.

This value identifies the configuration table entry that specifies the I/O ad-

dress range that the PC Card has been configured to use.

IIO Limit Register

This register corresponds to the I/O base registers and specifies the maximum
number of I/O addresses that can be mapped beginning at the base address.

This register is bit mapped such that the most significant bit set within the
register determines the number of address lines used to decode the address

and therefore the maximum block of address space supported. The most sig-

nificant bit and all bits of lesser significance must be set within the register.
This results in the possible number of address lines as listed in table 17-6.

Note that the largest block of I/O address space that can be defined is 256

bytes.

This register is optional and need not be implemented for each function if all
functions within the PC Card use the same number of I/0 address lines.

Table 17-6. Address Limit Associated with Function Base Address Register

Maximum

Number of

Address

Locations

Not defined

218

Toshiba_Apricorn 1006-0229
|PR2018—01067

Toshiba_Apricorn 1006-0230
IPR2018-01067

Chapter 1'7: A Multiple Function PC Card Example

Shared Interrupt Handling

The PC Card standard defines an interrupt sharing mechanism that allows

multiple I/O functions to share the PC Cards single IREQ# pin. This mecha-

nism requires specific hardware and software support beyond that required

for single function PC Cards. The changes required are:

Multiple Function PC Card — interrupt sharing logic required.

HBA —- no changes required. _

Socket Services — no changes required.

Card Services — provides ISR registration, must detect IRQ, determine

which PC Card function generated the interrupt, and route the request to

the interrupting function’s enabler.

0 PC Card Enabler — must Support sharing protocol.

0...

Review of Single Function Interrupt Handling

The following discussion reviews the interrupt handling procedures typically

employed in single function PC Card implementations. This discussion is
based on an x86-based system operating in real mode.

IFlQ Initialization

The PC Card’s enabler, after having determined the configuration require-

ments of the PC Card, requests a specific IRQ line from card services by

making the RequestIRQ function call. Card services then verifies that the IRQ

line is available by successfully completing the function call. The enabler now

knows that it has acquired the IRQ that it wanted and must “hook” the inter»

rupt (is. place the starting address of its interrupt service routine into the

interrupt table entry that corresponds to the IRQ line that it has been as-

signed) so that interrupt requests are directed to its interrupt service routine
(15R) .

Next, the enabler requests that card services configure the HBA so that it

steers the PC Card’s IREQ# line to the specified IRQ line on the expansion bus

(using the RequestConfiguration function call). Card services in turn makes

the appropriate calls to socket services, directing it to load the appropriate

219

Toshiba_Apricorn 1006-0230
|PR2018—01067

Toshiba_Apricorn 1006-0231
IPR2018-01067

PCMCIA System Architecture

registers within the HBA; thereby, setting it up to steer the PC Card’s inter-

rupt requests over the specified IRQ line.

Handling the Interrupt Request

A summary of the events that take place when a PC Card generates an IREQ#

are detailed in the following paragraphs.

When a PC Card generates an interrupt request, it sets its interrupt pending

bit in the CSR register and asserts the IREQ# line. The HBA steers the PC

Cards IREQ# to the selected IRQ line and on to the interrupt controller. The

interrupt controller responds by asserting the processor’s interrupt request

input (INTR). This causes the processor to cease normal programexecution

and to interrogate the interrupt controller to find out which interrupt has oc—

curred. The interrupt controller responds by sending the interrupt table entry

number corresponding to the IRQ line that generated the interrupt request.

The processor receives the entry number (aka vector) and performs a memory

read to get the starting address of the interrupt service routine from the inter-

rupt table.

The processor temporarily stores the ISRs starting address in a special register

(not named) and saves the current status of the program that was being exe-

cuted when the interrupt occurred (i.e. pushes the flags, CS, and IP registers

to the stack). This is done so the processor can return to the original program

after the interrupt has been serviced. Once the processor saves its place, it

then moves the ISRs starting address into the CS and IP registers, causing it to

begin fetching and executing instructions from the PC Card’s interrupt service
routine.

The ISR reads the Configuratiou Status Register (CSR) to verify that an inter-

rupt request is pending (i.e. the Intr bit is set). If the Intr bit is set, the ISR

recognizes that an interrupt is pending and clears the Intr bit since the inter-

rupt is now being serviced.

After clearing the interrupt within the PC Card, the ISR continues execution.

Before the ISR completes it must also clear the interrupt at the interrupt con»

troller to prevent the interrupt from being serviced again (i.e. the interrupt

controller will send the same vector to the processor, causing the same ISR to

be executed again). The interrupt is cleared by issuing an End Of Interrupt
(E01) command to the interrupt controller. After the E01 command has been

issued and the interrupt has been serviced, the ISR executes an Interrupt Re-

220

Toshiba_Apricorn 1006-0231
|PR2018—01067

Toshiba_Apricorn 1006-0232
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

turn instruction (IRET). The IRET causes the processor to restore the flags, CS,

and IP registers previously saved, returning it to normal program flow.

Note: for a more in—depth discussion of x86 interrupt handling refer to the

MindShare book entitled ISA System Architecture, published by Addison-

Wesley.

Multiple Function lnterrupt Handling

Each function within a multiple function PC Card has its own enabler that in-

cludes an interrupt service routine designed specifically for that function. The

following sections detail the interrupt handling procedures for multi-function
PC Cards.

IRQ Initialization

Multiple function IRQ initialization must be handled differently than single
PC Card initialization. When a given enabler detects that its function is im-

plemented within a multiple function PC Card it reads the function specific

CIS, determines the configuration requirements of its function and initiates the

configuration of the HBA and PC Card. Since a PC Card has a single IREQ#

pin, all functions within the PC Card must share the same interrupt line.

Interrupt sharing is managed by card services. The interrupt sharing mecha»

nism requires that the ISR for each function be registered with card services.

The following describes the actions that would typically be taken by each

function enabler during IRQ initialization.

Function Zero

When an enabler detects the presence of its function within a multi-function

PC Card and determines that an interrupt is required, it must request an in-

terrupt from card services. The multiple function enabler passes the starting

address of its ISR to card services when it makes the RequestIRQ function call.

It also identifies the location of its function by passing card services the logical

socket number and logical function number (zero in this example) for its
function.

Card services then provides a first level interrupt handler (FLII—I) by hooking

the interrupt table entry corresponding to the interrupt requested by the en-

221

Toshiba_Apricorn 1006-0232
lPR2018—01067

Toshiba_Apricorn 1006-0233
IPR2018-01067

PCMCIA System Architecture

abler. Note that multiple function enablers register their ISR with card serv—
ices and do not directly hook the interrupt. When the interrupt is generated
card services FLIH will be executed.

Function One

When function one’s enabler detects its function within the multiple function

PC Card, it must also request an interrupt (via the RequestIO service) from

card services. When making the service call, the enabler passes the starting

address of its interrupt service routine to card services and specifies the logi-

cal socket and function number (one in this example) of the PC Card. After the

I-IBA and PC Card are configured, an interrupt generated by function one will
cause the FLIH within card services to execute.

Handling the Interrupt Request

A summary of the events that take place when a multiple function PC Card

generates an IREQ# are detailed in the following paragraphs. The example is
based on an ISA platform. Refer to Figure 17-3.

When a single function within a multiple function PC Card generates an inter-

rupt request it sets the Intr bit in its CSR register and signals the PC Cards
interrupt routing logic. The routing logic in turn asserts the PC Card’s IREQ#
line. The HBA steers the IREQ# signal to the selected lRQ line and on to the

interrupt controller. The interrupt controller responds by asserting the proces—

sor’s interrupt request input. This causes the processor to cease normal

program execution and to interrogate the interrupt controller to find out

which interrupt has occurred. The interrupt controller responds by sending

the processor an 8~bit interrupt table entry number corresponding to the IRQ

line that generated the interrupt request. The processor receives the entry
number (aka. the vector) and performs a memory read to get the starting ad-

dress of the card services FLIH from the interrupt table.

The processor temporarily stores the FLIH’s starting address in a special reg-

ister (not named) and saves the current status of the program that was being

executed when the interrupt occurred (i.e. pushes the flags, CS, and IP regis-

ters to the stack). This is done so the processor can return to the original

program after the interrupt has been serviced. Once the processor saves its

place, it then moves the FLIH’s starting address into the CS and IP registers,

causing the processor to begin fetching and executing instructions from card
services FLIH.

222

Toshiba_Apricorn 1006-0233
|PR2018—01067

Toshiba_Apricorn 1006-0234
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

Ent

2:221:20 2:222:91 .SR PC Card
0 Enablers

5 Exit 5 tn

3 m 3 :3

Card

I Services
.—Routine
__

8 _ a
9 ”9’ Q

E 93”

“BA
Logic

PCC d .

Mumple

a Function
PC Card

Function
1

Figure 17-3. Multiple Function IRQ Sharing Procedure.

223

Toshiba_Apricorn 1006-0234
|PR2018—01067

Toshiba_Apricorn 1006-0235
IPR2018-01067

PCMCIA System Architecture

The FLII-l reads the function Configuration Status Registers (CSRs) to deter-

mine which function currently has an interrupt request pending tie. the
function whose Intr bit is set). If the Intr bit is set for one of the functions, the

FLIH calls the ISR for that function, using the starting address that the enable

passed to card services when the RequestIRQ function was performed.

The function‘s ISR does not clear the interrupt at the function’s CSR, nor at the

interrupt controller as single function ISRs do. When the ISR completes exe-
cution, it returns to the FLIH. Before the FLIH completes, it issues an EOI

command to the interrupt controller, preventing it from servicing the same in~

terrupt again. The FLIH also clears the Intr bit within the CSR, indicating that

card services is ready to handle another interrupt request. This prompts the

interrupt routing logic to issue another IREQ#, if another function within the

card has signaled that it has an interrupt request pending. After the E01

command has been issued, the FLIH executes the IRET instruction, returning

the processor to normal program flow.

Applications Unaware of Multiple Function Protocol

The Problem

Generic enablers for some functions (e.g. modems) request specific resources

that common application program expect the function to use (e.g. many com-

munications programs expect the modem to use the convention I/O address

space and IRQ lines associated with COM] or COMZ). If two or more func-

tions within a single PC Card require specific IRQ lines, then the interrupt

sharing mechanism will not work. However, the PC Card Standard permits

one of the functions within a multiple function card to request a specific IRQ

that it requires to maintain compatibility with application programs. The en-

abler for functions that require a specific IRQ does not participate in the

interrupt sharing protocol. Note however, that all other functions within the

multiple function PC Card must support the interrupt sharing protocol.

An Example Solution

As an example, a generic modem enabler, being unaware that multiple func-

tion support exists, will not register its 15R with card services. Therefore,

when the enabler calls the RequestIRQ function the ISR address field will be

224

Toshiba_Apricorn 1006-0235
|PR2018—01067

Toshiba_Apricorn 1006-0236
IPR2018-01067

Chapter 17: A Multiple Function PC Card Example

zero. (Note that card services permits only one enabler per socket to specify

an [SR address field of zero.) Card services assigns the specific IRQn to the

modem enabler to satisfy its configuration. The modem enabler then "hooks”

the interrupt (places the starting address of its ISR into the interrupt table en-

try corresponding to the IRQn line that it has been assigned). Next, card
services ”hooks” the same interrupt by reading and saving the starting ad-

dress of the modem’s ISR and replacing it with the starting address of the
FLIH.

Enablers for other functions within the PC Card must register their ISRs with

card services. When any of the functions within a PC Card generate an inter

rupt request, the FLII-I will be executed first (because the processor will obtain
the starting address of the FLII-I when it obtains the starting address of the ISR

in the interrupt table). The FLIH checks the interrupt pending bits within each

function to detect which has an interrupt pending.

If the modem has an interrupt pending, the FLIH jumps to the entry point of
the modem’s [SR (recall that card services previously read and saved the

starting address of the modem’s ISR when it installed the FLII-I in the inter-

rupt table). The modem’s ISR executes normally by clearing the PC Card’s

interrupt request (for level interrupts) and performing the E01 command, and

executing IRET.

Changes to Card Services Functions

To support multiple function PC Cards, many of the card services functions
have been modified. For example, when accessing a single function PC Card,

the function could be identified by merely specifying the logical socket num-
ber in which the PC Card resided. However, when a PC Card contains more

than one function each function within the PC Card is identified by an addi-

tional logical function number. Table 17—7 lists of services that have added

support for multiple function implementations.

225

Toshiba_Apricorn 1006-0236
|PR2018—01067

Toshiba_Apricorn 1006-0237
IPR2018-01067

PCMCIA System Architecture

226

Table 17-7. Card Services Modified for Multiple Function Support

 AccessConfigurahonReglster

Code

GetCardServicesInfo

GetConflguratioanfo

agogaaag§§;:‘I§'D‘:—5‘
:3fl'3'

GetTupleData c:U

HI
h

Mod1fyC0nf1guratlon

ReglsterMTD

ReleaseConfiguratmn

E5‘

”El52:-Release-Excluswe

H 055"

Release-IO

Ml—KHE

 8:-

El"

:MgF-‘M3.195319
03 ._‘ 5"

Toshiba_Apricorn 1006-0237
|PR2018—01067

Toshiba_Apricorn 1006-0238
IPR2018-01067

Part Four

PCMCIA Software

Toshiba_Apricorn 1006-0238
|PR2018—01067

Toshiba_Apricorn 1006-0239
IPR2018-01067

Chapter 18: The Configuration Process

Chapter 18

The Previous Chapter

The previous chapter discussed the multiple function PC Card strategy and

the mechanisms for achieving it. It also included a functional block diagram of

a multiple function PC Card, a sample multi-function CIS, related configura-

tion registers, and rnuiti-function interrupt handling.

This Chapter

This chapter provides an overview of the PCMCIA software environment and

the configuration process. The primary role and interaction between each

piece of software is established. This chapter also introduces the common

software solutions provided along with the most popular suppliers.

The Next Chapter

The next chapter discusses the role of socket services and the initialization

process. It also defines each function and details the calling interface.

Overview of the Configuration Process

Each PC Card must have an enabler that recognizes it, reads the CIS to de

termine the PC Card’s resource requirements, programs the host bus adapter

(HBA) and corwfigures the card. Figure 18-1 illustrates the most common form

of PC Card enabler known as the client driver. Client drivers interface directly

to Card Services, which services requests from the client drivers. Client driv-

ers call a variety of services within card services to assist it in configuring and

controller accesses to its PC Card. Using card services greatly simplifies the

job of enabling the PC Card, monitoring status change events, and controlling
access to the card.

229

Toshiba_Apricorn 1006-0239
|PR2018—01067

Toshiba_Apricorn 1006-0240
IPR2018-01067

PCMCIA System Architecture

As illustrated in figure 18-1, card services interfaces directly to socket services

to gain access to the HBA and PC Card. Socket services is designed with spe-

cific knowledge of the HBA hardware design and contains software routines

that card services can call to gain access to the registers within the I-IBA with-

out having to know the low-level details of the hardware interface.

Configuring a PC Card may take place when the system powers up (if the PC
Card is already installed in a socket), or when a PC Card is inserted into a

socket (after the system is powered up and fully operational). In either case,

the PC Card must be detected by an enabler and configured. Without an en-

abler, a PC Card would never be recognized by the system. Once a PC Card is

configured, it then responds like any other device residing on the host bus.

This COnfiguration processor involves interaction between a client driver, card
services, socket services, and the PC Card’s C15. The Role of each of these

items is reviewed below.

Run-Time

Software

HardwareConfiguration and
Event Notification

Software

PC Card Enablers I(PCMCIA lnil 8i Event Processing} I

Socket Services !

 Applications II

 0 erating

ysiem

uouesuaonwens

Device Drivers

(Rm-Time Code} II——PCMCIA

Host Bus Adapter

rum::::

Figure 18—1. PCMCIA Software How

230

Toshiba_Apricorn 1006-0240
|PR2018—01067

Toshiba_Apricorn 1006-0241
IPR2018-01067

Chapter 18: The Configuration Process

The Role of the CIS

Each PC Card is required to have a Card Information Structure, or CIS to be

compliant with 2.x or PC Card implementations. The CIS is a data structure
that is stored in non-volatile memory, which provides a method for software

to determine what kind of PC Card is installed, along with its speed, size, sys-

tem resources required by the card, and other pertinent information. The CIS

is mapped within the attribute memory space or alternatively can be located

in common memory address space.

As illustrated in figure 18—1, the CIS is read by PC Card client drivers (via card

and socket services) during card initialization to determine the configuration

options supported by the card. Once the card type and resource requirements
have been read from the CIS, the PC Card client driver programs the HBA

and configures the PC Card, again via card and socket services. N0 further ac-

cess is typically made to the CIS after the card has been initialized. The PC

Card can now be accessed via the host expansion bus, just like any other ex—

pansion device. Note that the CIS is only accessed by programs that are

PCMCIA aware. Most application programs have no knowledge that they are

accessing devices implemented in PC Card packages.

The Role of the Socket Service Functions

Socket services provides a set of software routines written specifically to ac-

cess the registers within a given HBA. Socket services eliminates the need for

special knowledge of the I-IBA hardware programming interface. These rou-
tines or functions are comparable to the BIOS routines that are used in the PC

environment. In practice, most client drivers seldom, if ever, directly access

socket service functions, because properly designed enablers access the HBA
via card services. Card services, makes calls to socket services at the HBA re-

quest.

The Role of Card Services

Card services provides a central resource available to all client drivers. Spe-
cifically, card services is a collection of service routines designed for use by

programmers writing enablers for PC Cards. These Services provide a soft-

ware interface that permits the programmer to simplify code and helps to

231

Toshiba_Apricorn 1006-0241
|PR2018—01067

Toshiba_Apricorn 1006-0242
IPR2018-01067

PCMCIA System Architecture

reduce conflicts with other client drivers and with allocating system resources
for PC Cards.

A major function of card services is to provide call-back services to notify the

enablers that a particular event has occurred. Each enabler must register with

card services and specify which PC Card events that it wishes to be notified

of. When card services detects a given event (e.g. a card has been inserted or

removed) it then calls each enabler that previously registered to receive notifi-
cation of card insertion or removal.

The Role of the PC Card Enabler

PC Card enablers must recognize that a PC Card has been installed and access

the card’s CIS to determine if it should attempt to configure the card.

Three basic types of enablers exist:

I Dedicated enablers — designed for a particular PC Card.

0 Generic (Super) enablers — designed for a wide range of PC Card types.

a Point enablers —- designed to configure and enable the PC Card without

using card and socket services.

Note that dedicated enablers and generic enablers both interface to card serv-

ices as illustrated in figure 18-1. These enablers all register with card services

when they first install. The registration process permits access to card services

and allows the enabler to specify the events that it wishes to be notified of.
Enablers that use card services are also referred to as client drivers.

Dedicated Enablers

Dedicated enablers are typically supplied by the PC Card manufacturer to in-

crease the probability that the card will install correctly in the absence of a

generic driver. Dedicated enablers identify a specific PC Card and will typi-

cally not recognize and enabler other PC Cards of the same type. These

enablers may also manage functions that are unique to a given PC Card im-

plementation.

232

Toshiba_Apricorn 1006-0242
|PR2018—01067

Toshiba_Apricorn 1006-0243
IPR2018-01067

Chapter 18: The Configuration Process

Generic Enablers

Generic enablers are designed to handle PC Cards of a particular functional

type. For example, the system manufacturer may include generic drivers for

card types such as SRAM, flash ROM, Modems, and ATA drives. These en»

ablers attempt to identify and enable cards based on a generic type without

regard to' the manufacturer or special features that may be incorporated into

the PC Card’s design.

Another class of generic enablers are the super I /O enablers. These enablers

are designed to recognize and configure a wide range of I/O devices such as,
modern, fax/ modems, LAN controllers, etc. These enablers reduce the num-

ber of enablers that must be installed to detect the possible PC Cards that

might be installed in a socket. The exact mechanism employed by these super

enablers varies, but all have the same goal of enabling the most common I/O

cards. Most system manufacturers supply super 1/0 client solutions as a part
of the PCMCIA software shipped with the PC.

Point Enablers

Point enablers are dedicated enablers that bypass card and socket services.

These enablers are popular in environments such as DOS where limited mem- '
ory address space is available for application programs. Card and socket
services take a considerable amount of memory when they install. Added to

this is the space required by the enabler(s) and any TSR (terminate and stay

resident programs) that might be used. As a result, too little memory is left for

many application programs to run. One solution is to eliminate the PCMCIA

specific software, thereby freeing up memory space that is needed to run the

application programs. Point enablers are needed to configure the PC Cards

that the user want to access. In the absence of card and socket services, point

enablers must load the appropriate registers within the HBA to recognize and

configure their PC Card.

For more information regarding enablers refer to the Chapter entitled, ”PC
Card Enablers.”

233

Toshiba_Apricorn 1006-0243
|PR2018—01067

Toshiba_Apricorn 1006-0244
IPR2018-01067

PCMCIA System Architecture

PCMCIA Software Solutions

The entire PCMCIA software environment is typically provided by a single

vendor. This software includes generic enablers, card services, a resource de-

tection utility that builds the resowce table (used by card services), and socket
services. PC manufacturers license these software solutions for use in their

products. PCMCIA software is available from several different vendors. The

major vendor and the name of their PCMCIA software is listed in table 18-1.

Table 184. Major Vendors of PCMCIA Software Solutions

PCMcIA softwarevendm

American Megatrends (AMI) AMICARDZ

Wywmomm

While most PCMCIA software solutions provide the same basic functionality,

many differences have existed. Some of the differences are inconsequential,

such as, differences in logical drive letter assignments for various types of PC
Cards, the visual and/or audible feedback provided when cards are inserted

or removed, etc. However, some differences have been potentially more criti-

cal, including:

- HBAs supported

0 Power management support

0 Flash card support (Le. Flash file systems and MTDs)
O

Abridged versions of card services (Note that the functionality not in-

cluded in card services is typically integrated directly into the enablers.)

o Resource Allocation (PC Cards mapped to different system resources)

- Generic enabler support (Types of PC Cards supported)

As the PCMCIA software has matured, the problematic differences between

vendor solutions have diminished. Further, the PC Card 95 release has de-

fined specific support for several areas that were previously the source of

significant differences between vendor solutions.

2.34

Toshiba_Apricorn 1006-0244
|PR2018—01067

Toshiba_Apricorn 1006-0245
IPR2018-01067

Chapter 19: Socket Services

Chapter 19

The Previous Chapter

The previous chapter provided an overview of the PCMCIA software envi-

ronment and the configuration process. The primary role and interaction be-

tween each piece of software was established. The chapter also introduced the

common software solutions provided along with the most popular suppliers.

This Chapter

This chapter discusses the role of socket services. It also describes the initiali-
zation of socket services and explains the basic purpose of the functions com-

monly supported in the PC environment.

The Next Chapter

The next chapter focuses on the role of card services in the PCMCIA environ—

ment. It reviews each of the functions defined by the PC Card specification

that apply to 16-bit PC Cards, along with related return codes. The call back
mechanism is also described and the event and call back codes are defined.

The Role of Socket Services—Making Life Easier

Before the deve10pment of socket services, a PC Card '5 client driver was re-

sponsible for ensuring that its card satisfied the requirements of the PC Card

plug and play environment. Plug and play means that the PC Card can be

automatically configured after being installed in a system, without requiring

user intervention. In the PC Card environment this responsibility includes:

0 Accessing registers within the HBA to Open an attribute memory window,

allowing access to the card's CIS.

v Interpreting the CIS to determine the configuration requirements of the
card.

235

Toshiba_Apricorn 1006-0245
|PR2018—01067

Toshiba_Apricorn 1006-0246
IPR2018-01067

PCMCIA System Architecture

236

0 Determining if the resources needed by the card are available (not already

in use by other system devices). ‘

0 Loading I-IBA registers with the specified configuration values that permit
host software to access the PC Ca rd.

- Polling HBA registers to monitor socket status change events (e.g. card
removal).

0 Releasing system resources by clearing registers in the I-IBA when a card
removal event occurs.

0 Providing the ability to perform these functions regardless of the I-IBA

design.

These requirements make it clear that developing PC Card client driver prior

to the introduction of socket services required detailed knowledge of the par-
ticular HBA's hardware interface. Furthermore, HBA design changes could

lead to heavy revision and update of the client driver.

As shown in figure 19-1, today's client drivers can configure a PC Card with
relative ease by accessing the PCMCIA configuration software that is com-

prised of card and socket services. This chapter focuses on the role of socket
services, which eliminates the need for client drivers to know the details of the
HBA hardware.

Run-Tlme
Software

HardwareConfiguration and
Event Notification

Software

 PC Card Enablers

{PCMCIA Int! 8: Event Processing] II

Socket Services !

Host System Applications II

 Operating
System

 _"g'SflEi'llg-H.294
:r!-_'I

U°!I90!l!l°Nwait-l ':I'.=i'3."—

Device Drivers

:Fiun-‘fime Code] IPCMCIA |
Host Bus Adapter I

Figure 19-1. Relationship of Socket Services to the Rest of the System.

I
l
|
|
|

Toshiba_Apricorn 1006-0246
|PR2018—01067

Toshiba_Apricorn 1006-0247
IPR2018-01067

Chapter 19: Socket Services

Socket services provides a set of functions that can be called by client drivers

(typically card services), eliminating the need for special knowledge of the
HBA hardware programming interface. These functions can be compared to

the BIOS routines that are used in the PC environment. In practice, most client

drivers seldom, if ever, directly access socket service functions, because client

drivers typically access the HBA via card services. Card services, makes calls

to socket services at the client drivers request. In fact, card services blocks ac-

cess attempts to socket services that are made by client drivers.

Installation and Initialization

Socket services can be contained in ROM, can be loaded into system memory

via an installable device driver, or can be incorporated as extensions to the

operating system. In the PC environment socket services are typically installed
via a device driver and must be loaded into the system before card services

and other client drivers (i.e. any software that requires socket services). With-

out socket services being present card services and PC Card client drivers will
not install.

The method used to install socket services and the protocol used to call the

functions is platform dependent. The PCMCIA standard currently defines the
socket services function call interface only for the Intel x86 platform. Refer to

the section entitled, "Socket Services Calling Convention“ later in this chapter.

Socket Services Functions

As discussed in the chapter entitled, "The Host Bus Adapter", the HBA must

be programmed to allow system access to the PC Card and to manage a vari—
ety of.HBA functions including:

- Specifying the socket interface type (memory or I/O).

Programming memory address windows.

Programming I/O address windows.

Steering each PC Card's IREQ# signal to the selected system interrupt line.

Steering the HBA's status change interrupt to the selected system inter-
rupt line.

. Controlling socket power switching.

I Enabling power conservation features.

0 Controlling EDC generators.

237

Toshiba_Apricorn 1006-0247
|PR2018—01067

Toshiba_Apricorn 1006-0248
IPR2018-01067

PCMCIA System Architecture

238

Socket services coutrols these functions through a defined set of function calls,

each related to objects managed by the adapter. Table 19-1 lists the functions

according to the object-based grouping defined below:

a Adapter Functions -—~ Those functions that affect all sockets that are con-

trolled by the I-IBA (i.e., setting Vcc to 3.3 volts for one socket causes all

other sockets to also receive 3.3 volts). Adapter functions also pertain to

items such as the single status change interrupt, which reports status

changes for all sockets.

- Socket Functions — Those functions controlled individually at the socket
level (i.e., setting Vcc to 3.3 volts for a given socket affects only that
socket).

a Window Functions — Those functions that control the memory and I/O
address windows.

0 Error Detection and Correction (ED C) Functions # Those functions used

to interact with the EDC generators.

Table 19-1. Socket Services Functions

AB TERFunchons

Acknowledgelnterrupt GetPage
GetAccessOffsets GetWindow

GetAdapter InquireWindow

GetAdapterCount SetPage
GetSetPriorHandler SetWindow

GetSetSSAddr

GetSSInfo gii'liz'C-“Fiinctioiis " -' :
GetVendorlnfo GetEDC

InquireAdapter InquireEDC
SetAdapter PauseEDC

VendorSpeCifiC ReadEDC

ResumeEDC

seekersanc'fiohé' SetEDC
GetSocket StartEDC

GetStatus StOpEDC

InquireSocket
ResetSocket

SetSocket

Toshiba_Apricorn 1006-0248
|PR2018—01067

Toshiba_Apricorn 1006-0249
IPR2018-01067

Chapter 19: Socket Services

Note that three new socket service functions were added to the PC Card 95

Standard. These functions support CardBus bridge implementations and are

not included in this book. For information regarding CardBus, see Mind-

Share’s CardBus System Architecture book, published by Addison-Wesley.

Socket services has also been designed to permit ease of use. Within each

functional group shown in table 19-1, there is are “inquire,” "get,” and "set”

functions, defined below:

0 Inquire functions — used to report the capabilities of each object defined.

0 Get functions — used to report the current parameter settings associated

with the object.

0 Set functions — used to set the parameters associated with the object.

The "get" and "set" functions for a specific item have the same basic data Struc-

ture format, allowing easy modification of parameters. For example, if some

parameter within the adapter must be modified, the GetAdapter function can

be called to obtain the current adapter settings. This adapter setting informa-

tion can be written back to the adapter registers using the SetAdapter function
once the specific parameter has been changed. This technique permits easy

read/modify/write operations to modify individual parameters Without

having to build the entire data structure that must be passed to socket services
when the function is called.

Socket Services Calling Convention

The method used for calling functions depends on the specific platform. Cur~

rently, the PCMCIA specification details the programming interface or socket

services binding, for Intel x86-compatible systems. The binding specifies use

of software interrupt 1Ah to call socket service functions (real mode). This in-

terrupt is typically used by the real-time clock BIOS functions. Therefore

socket services shares entry lAh in the interrupt table with the real-time clock.

When in protected mode the method of calling socket service functions is op-

era ting system specific.

When socket services installs it hooks interrupt IAh. This is done by reading

and saving the current value of entry 1Ah within the interrupt table (the real

time clock BIOS entry pointer) and replacing it with an entry point for its own

functions. Socket Services functions can then be called using the INT lAh in-

struction. The function numbers are defined in table 19-2 and the general reg-

239

Toshiba_Apricorn 1006-0249
|PR2018—01067

Toshiba_Apricorn 1006-0250
IPR2018-01067

PCMCIA System Architecture

ister usage is defined as follows. The exact register content defined for each
function can be found in the PCMCIA specification:

Entry: [AI—I] Function number desired in hex
[AL] HBA number

[BI-I] Window number

[BL] Page or Socket (depending on function)
[CX] Counts

[DX] Attributes

[DS]:[(E)SI] Reserved in ROM BIOS Int lAh interface

[ES]:[(E)DI] Pointer to socket services client buffer

[DI] Offset in 4 KB units

Exit: [CF] Status (carry set 2 error, reset = success)

[AH] Success or failure return code depending on

Carry Flag value.

If the value in the AH register does not match one of the socket services func-

tions, socket services will pass the call on to the Real Time Clock function,

whose entry point was saved during initialization of socket services.

Note that the last function number within socket services is for card services

(function OAFh). Card services also instails into entry lAh in the interrupt ta-
ble and therefore will be called before socket services. Card service functions

are called using the OAFh value in the AH register, allowing definition of the

call as a CS function. CS then checks the AL register to identify which CS
function is being called. If, however, a socket services function is called, then

the AH register contains a value other than OAFh and CS will not pass the

function to socket services. This prevents client drivers from accessing socket

services directly and changing I-IBA settings without CS being notified. See

the chapter entitled ”PC Card Configuration: Card Services and Client Driv-
ers” for additional information.

Upon exit from a socket services routine, a return {or completion) code is

placed in the AH register. The state of the carry flag determines whether the

socket service function incurred an error or executed successfully. Table 19-3
lists the return codes.

240

Toshiba_Apricorn 1006-0250
|PR2018—01067

Toshiba_Apricorn 1006-0251
IPR2018-01067

Chapter 19: Socket Services

Table 19—2. Socket Services Function Code Listing

SS Functions Arranged Alphabetically

——
_—
—_
——

_ 9

_ 8
8

9

GET SS INFO

GET SOCKET

GET STATUS

GET WLNDOW

Eh

AFh

85h

80h

_-

9

0

8

8

8

8

8

9

9

8

9

8

8

55 Functions Arranged Numerically

241

Toshiba_Apricorn 1006-0251
|PR2018—01067

Toshiba_Apricorn 1006-0252
IPR2018-01067

PCMCIA System Architecture

Table 19-3. Socket Services Return Codes

I Return Codes listed alphabetically
Name of Return Code

BAD_ADAPTER -01h

BAD_ATTRIBUTE 02h

BAD_BASE 03h

BAD_IRQ 06h

BAD_MODE 16h

h

BAD_SERVICE

nah

BAD_SPEED

BAD_TYPE

BAD_VCC

BAD_VPP

BAD_WINDOW

susv

NO_CARD 14h

reserved 05h

reserved

reserved

reserved

Success

WRITE_FAILURE

242

Return Codes listed numerically

Code

00h

01h

02h

Name of Return Code

Success

BAD_A DAPTER

BAD_ATTRIBUTE

03h BADWBASE

04h BAD_EDC

05h reserved

06h BAD_IRQ

7h BAD_OFFSET

08h BAD_PAGE

09h READ_FAILURE

OAh BAD_SIZE

03h BAD_SOCKET

OCh reserved

ODh BAD_TYPE

{JEh BAD_VCC

OFh BAD_VPP

10h reserved

11h BAD_WINDOW

12h WRITE_FAILURE

13h reserved

14h NO_CARD

15h BAD_SERVICE

16h BAD_MODE

BAD_SPEED

18h BUSY

reserved3‘ \O 7-."

Toshiba_Apricorn 1006-0252

|PR2018—01067

Toshiba_Apricorn 1006-0253
IPR2018-01067

Chapter 19: Socket Services

Adapter Functions

The adapter functions can be categorized into four classes:

0 Functions used to identify the number of adapters within the system and

to assign socket services to a specific adapter or adapters. Note that in

some cases multiple adapters having different hardware interfaces may be

installed in the system. This would require multiple versions of socket

services be installed to handle the various adapters.

0 Functions that control adapter parameters via the inquire, get and set
functions. '—

o A function used to support status change interrupt processing.

0 Low-level access and protected-mode support functions.

Verifying SS is installed (GetAdapterCount)

The Get Adapter Count (GetAdapterCount) function is used by the socket

service client (typically Card Services) to determine if socket services is in-

stalled and to determine the number of HBAs in the system. This function is

typically the first function called and returns the following information to the
client.

0 the number of adapters that are detected by socket services

I the ASCII string "SS" that verifies that socket services is installed.

Once the client detects that one or more adapters are installed, socket services

must be assigned to a given adapter or adapters.

Getting Information from Socket Services (GetSSlnfo)

A socket service client calls Get Socket Services Information (GetSSInfo) to de-

termine among other things the number of adapters discovered and controlled

by a given set of socket services. When making the GetSSlnfo call, the client

passes a logical HBA number to socket services as an input. This logical num-

ber will be used by the client when it wants to access the HBA in the future.

Socket services must remember the logical HBA number and use it to identify

accesses to an HBA. Socket services will assign the logical HBA number to the
first HBA that it discovers. If socket services discovers more than one HBA, it

will assign the next logical number to the second HBA it discovers, etc. Socket

243

Toshiba_Apricorn 1006-0253
|PR2018—01067

Toshiba_Apricorn 1006-0254
IPR2018-01067

PCMCIA System Architecture

services returns the total number of adapters that it has discovered, telling the

client the number of adapters this particular set of socket services controls,

and therefore the range of logical adapters that it will respond to in the future.

Note that the first adapter detected by the first set of socket services installed

is assigned as adapter "0". The client will continue making GetSSInfo calls
until all I-IBAs have been located. This means that one GetSSInfo call will be

make by the client for each set of socket services installed. Normally only one
set of socket services will be installed.

The following information is returned by the GetSSInfo function:

0 Compliance level of adapter. Returned as BCD (Binary Coded Decimal)

value. (i.e. 0500h = PC Card Standard, February 1995}.

- Number of adapters supported or fOund by this set of socket services. If

socket services recognizes more than one adapter in the system, it returns
the total number that it finds and therefore the number it can control.

0 First adapter number supported. Note that the first socket services in-

stalled always controls adapter zero. The adapter numbers are assigned

sequentially starting with zero.

The GetSSInfo function must be run once for each set of socket services in-

stalled, thereby assigning logical adapter numbers to all adapters controlled

by a particular copy of socket services.

When Two or More Socket Services Are Needed

(GetSetPriorHandle)

Some users may want to add more PCMCIA sockets to their system, resulting

in two or more different HBA implementations. For example, consider a note»

book system with two sockets. When the system is installed in a docking sta-

tion, more sockets can be added via an additional HBA inserted in an

expansion card slot. The additional HBA may have a different hardware inter

face, requiring its own set of socket services.

PCMCIA can accommodate multiple sets of socket services to support a vari-

ety of different HBA implementations. During the initialization process, a

socket services client (the SS initialization routine) detects existing HBAs and

identifies those that it is compatible with, using the GetAdapterCount and
GetSSInfo (as discussed earlier). When installed, additional socket services

will also initialize and attempt to identify HBAs that they are compatible with.

244

Toshiba_Apricorn 1006-0254
|PR2018—01067

Toshiba_Apricorn 1006-0255
IPR2018-01067

Chapter 19: Socket Services

When an additional copy of socket services is installed, the client must de-

termine which adapter numbers have already been assigned by previous cop-
ies of socket services. The new socket services initialization code can then call

the GetSSInfo, to ascertain the first adapter that this new socket services will
control.

When a socket services client (card services) makes a call, it specifies a target

adapter number or a target socket residing within a particular adapter. The

socket services copy receiving the call will be the last installed. If the target

adapter or socket is not controlled by this set of socket services, it must pass
the call to the next socket services in the chain. This means that some method

of linking copies of socket services must be employed. The exact method used

to link all copies of socket services together depends on the implementation

used by a given architecture.

Some architectures may use the socket services function GetSetPriorI-Iandle to

link together multiple copies of socket services. The GetSetPriorHandle func-

tion retrieves the handle (entry point address) at which the previous socket

services resides. In this way, a linked list of entry points can be maintained

such that each socket services passes the call to the next until the target

adapter is located. The socket services chain can also be modified (set), allow-

ing a new socket services to supersede or replace an existing copy.

The Intel X86 architecture uses a software interrupt, IAh, to call socket serv-
ices. When the first set of socket services installs, it first reads and saves the

existing value in entry 1Ah of the interrupt table and then replaces it with its

entry point. If another socket services installs, it also uses entry 1A, by reading

and saving the previous pointer (belonging to the current socket services) and

replacing it with its own pointer. In this way, each subsequent socket services

that installs obtains the pointer to the previous socket services, creating a

linked list. Calls to a particular adapter will then be passed from one socket

services to the next until the target adapter is located.

Controlling HBA Parameters (lnquireAdapter, GetAdapter,

SetAdapter)

Before configuring the HBA, the programmer must first determine a specific

HBA's capabilities using the InquireAdapter function. Once its capabilities are

determined, the HBA configuration parameters can be set using the Se—

tAdapter function. If necessary, the client can check the current adapter set-

tings using the GetAdapter function.

245

Toshiba_Apricorn 1006-0255
|PR2018—01067

Toshiba_Apricorn 1006-0256
IPR2018-01067

PCMCIA System Architecture

InquireAdapter Function. This function requires the following input parame-

ters be specified: the target adapter number and the location of a memory

buffer. The function returns information to the processor’s registers and to the

specified memory buffer. Parameters returned to the processor‘5 registers in-
elude:

. Number of sockets

- Number of address windows

a Number of BBC generators

Parameters returned in memory buffer provide additional information regard-

ing the capabilities of the adapter. The memory buffer format is defined by the

socket services Specification and can be categorized into two separate parts as
shown in table 19-4.

Table 19-4. Adapter Information Structure Definition

Adapter Information Structure

Adapter Characteristics Indicators — If indicator bit is set, indicators for write protect, battery
Structure status, busy status and XIP (Execute-in-place) status are shared for all

sockets on the adapter. If reset, indicators exist for individual sockets.

Power Level — if power level bit is set, the adapter applies the same
power level to all sockets. When a SetSocket function is used to set the
power for a specific socket, that setting is reflected at all sockets. If

power level bit is reset, the adapter can apply power to sockets indi~
vidually in response to the SetSocket function.

Data Bus Width — When data bus width bit is set, ail adapter address
windows use the same data width. If data bus width bit is reset, data

width can be assigned to individual windows within the adapter.

Status Interrupts {High Level) — Bit map of system interrupts to
which status interrupts can be steered using an active high state.

Status Interrupts (10w Level) — Bit map of system interrupts to
which status interrupts can be steered using an active low state.

Number of Power Entries

Power Entries — Each entry specifies a voltage level supported and
the socket pins (Vcc, Vppi and Vpp2] to which the voltage level ap—
plies. The voltage level is specified as a DC voltage in tenth of a volt
increments. Flag bits are set to indicate the voltage is valid for the
specified supply.

 Power Entry Structure

246

Toshiba_Apricorn 1006-0256
|PR2018—01067

Toshiba_Apricorn 1006-0257
IPR2018-01067

Chapter 19: Socket Services

GetAdapter Function. The GetAdapter function returns the current status of

the HBA settings. When the GetAdapter function is called, the socket services

client must pass the physical adapter number to socket services. Adapter pa-

rameter states returned by this function include:

o Powerdown state —— If the bit is set, the adapter is in power conservatiOn

state and the SetAdapter function should be used to restore full power be-

fore using the adapter. If the bit is reset, full power is applied and the

adapter is fully functional.

0 Maintain state — If this bit is set, configuration information is retained by

the adapter hardware during power conservation mode. If reset, the client

is responsible for maintaining adapter configuration information during

power conservation.

0 Status Change Interrupt Steering _ Returns the system interrupt line, to

which status change interrupts are directed.

0 Status Change Interrupt Level — If set, the status change interrupt is ac-

tive high. If reset, the interrupt is active low.

0 Status Change Interrupt EnablelDisable State — The status change in-

terrupt is enabled when set and disabled when reset.

SetAdapter Function. HBA parameters can be set using the SetAdapter func-

tion. The exact same parameter mapping is used for the SetAdapter function

as for the GetAdapter function. This allows for easy read-modify—write opera-

tio ns when a specific parameter must be changed.

For example, to place the adapter into power conservation mode, the Get-

Adapter function can be called and the powerdown bit can be toggled. Next

the SetAdapter call can be made, causing the powerdown bit to be Set within

the adapter.

Vendor Functions (GetVendorlnfo, VendorSpecific)

The GetVendorlnfo function returns information about the vendor that im-

plemented the socket Services for a particular adapter in the system. Input pa-
ra meters to socket services for this call include:

- HBA number

a Type of vendor information requested ~— a code type of zero indicates

that the programmer is requesting the vendor information as an ASCIIZ

string (only code currently defined).

247

Toshiba_Apricorn 1006-0257
|PR2018—01067

Toshiba_Apricorn 1006-0258
IPR2018-01067

PCMCIA System Architecture

- Pointer to the buffer where the ASCIIZ string is to be returned. The buffer

format is specified in the socket services standard.

The function returns the ASCIIZ string to the buffer specified, indicating the

version number of this particular release of socket services. The vendor's first
release of socket services must use a version number of 01 00h (release 1.00).

The optional VendorSpecific function is left up to the vendor to implement.

The adapter number is specified as an input parameter to socket services

when the call is made. The functions supported and the function identification

numbers are defined by the vendor to support capabilities beyond the scope

of the specification.

Indirect Access to PC Card Memory (GetAccessOffsets)

Some I-IBAs may access memory cards via I/O registers rather than via mem-

ory-mapped address ranges. This eliminates memory address conflicts that
might otherwise occur when mapping a PC Card into the system memory ad-

dress space. These HBAs define a command set that is used when accessing
the cards. The client driver uses the GetAccessOffsets function to locate the

code that performs these commands. These memory client drivers are HBA

specific.

Determining What Card Caused a Status Change Interrupt

(Acknowledgelnterrupt)

When a status change event occm's at one of the HBAs sockets, an interrupt

request is generated by the HBA. The socket services client (typically card

services) is notified of the event via a system interrupt. When the client re-

ceives the interrupt, it has no knowledge of which socket encountered the

status change event or what the specific event was. The client must determine

which socket has experienced a status change event by calling the Acknowl-

edgeInterrupt function. Once the socket (or sockets) that has experienced a

status change has been determined, then the GetStatus function is called to de-

termine which event caused the interrupt.

The Acknowledgelnterrupt function must be called once for each HBA in the

system. The client supplies the HBA number to socket services when the Ac-

knowledgelnterrupt function is called and socket services returns a bit map of

the sockets within the HBA that have experienced a status change. When ob-

248

Toshiba_Apricorn 1006-0258
|PR2018—01067

Toshiba_Apricorn 1006-0259
IPR2018-01067

Chapter 19: Socket Services

taining status information from the HBA, socket services also prepares the

adapter to generate another status change interrupt when one occurs.

In the interrupt service routine, the sockets that have experienced a status

change are determined using the Acknowledgelnterrupt function. After the in-

terrupt service routine completes, the client then calls the GetStatus function,

specifying the socket that experienced the status change. Most HBAs preserve

the state .of the status change so that the status change event that caused the

interrupt can be determined using the GetStatus function. If the HBA does not

preserve this state information, then socket services must.

Note that the Acknowledgelnterrupt function is called by the status change in-

terrupt service routine. Socket services must not re-enable interrupts while

processing a status change interrupt service routine. This could cause nesting

of status change interrupts to itself, a situation that socket services is unpre-

pared to manage.

Socket Functions

Socket functions deal with parameters that can be controlled on a

socket-by-socket basis. These calls require that a particular socket number be

specified, whereas adapter functions require an HBA number. The following
sections discuss each function in the socket group.

Controlling Individual Sockets (lnquireSocket, SetSocket,

GetSocket)

Functions used to control a socket are similar to the adapter functions that are

used to control HBA functionality. The adapter functions control parameters

that apply to all sockets supported by a specific HBA, whereas the socket

functions control parameters that apply individually to each of the HBA’s
sockets.

249

Toshiba_Apricorn 1006-0259
|PR2018—01067

Toshiba_Apricorn 1006-0260
IPR2018-01067

PCMCIA System Architecture

InquireSocket. This function requires that a target socket number be specified

along with the address of a memory buffer. This function returns the follow-

ing information:

0 Events that can trigger a status change interrupt. These events can be a
combination of the following items:

I PC Card write—protect (WP) signal.

I A signal (from card interlock logic) indicating the state of a card lock
mechanism.

I A signal (from the card interlock logic) indicating a request to eject a
PC Card from the socket.

I A signal indicating a request to insert a card into the socket.

I PC Card BVDI signal indicating that the cards battery is completely

discharged.

I PC Card BVD2 signal indicating the card‘s battery is weak. .

I PC Card READY signal, indicating a change in the card’s ready state.

I PC Card Detect Signals.

0 Bit map of status change events that are reported via the GetStatus func-

tion. This bit map includes all the items that can generate a status Change

interrupt (listed above), plus other events that do not generate an inter-

rupt but whose status is returned to the socket services client driver by
the GetStatus function.

0 Bit map of items for which there is a control or an indicator supported at
the socket level. Indicators are items such as LED indicators that the I-IBA

provides which shows the status of given events. These items may in—
clude:

Indicator for WP signal.
Indicator for state of card lock mechanism.

Control for motor to eject card from socket.
Control for motor to insert card into socket.

Control to establish a card lock. .

Indicator for BVDI and BVDZ state.

I Indicator showing when card is in use.

I Indicator for execute-in-place (XIP) application is progress.

0 The Socket Information Structure is returned to a memory buffer supplied

by the socket services client. The memory buffer format is defined by the
socket services as shown in table 19-5.

250

Toshiba_Apricorn 1006-0260
|PR2018—01067

Toshiba_Apricorn 1006-0261
IPR2018-01067

Chapter 19: Socket Services

Table 19-5. Socket Information Structure Definition

Socket Information Structure

Socket Characteristics Socket Interface Type—1f interface bit is set, the socket is a

Structure memory only interface. If reset, the socket interface is mem-
ory or 1/0.

 PC Card Interrupts (High Level)——Bit map of system inter-

rupts to which PC Card interrupts can be steered using an

active high state.

PC Card Interrupts (Low LevelJ—Bit map of system inter-

rupts to which PC Card interrupts can be steered using an
active low state.

GetSocket Function. The GetSocket function returns the current status of the

HBA socket settings. When the GetSocket function is called, the socket serv-

ices client must pass the adapter and socket number to socket services. The

parameter's returned by this function are:

0 Status Change Mask — Returns the current setting of the events that

cause a status change interrupt from the socket.

o Vcc Level — Returns the current supply voltage applied to the socket on

the Vcc pin.

- Vpp Levels — Returns the current supply voltage applied to the socket on

the Vpp pins. Separate values are returned for Vppl and Vpp2.

- State Change. Returns the latched values of the status change events that
have occurred at the socket.

- Socket Controls and Indicators — Returns a bit map of socket controls
and indicators that are in use. Bits that are set indicate the control or indi-

cator is activated.

a IREQ Routing — Returns the system interrupt line to which the card's

IREQ# signal is directed. Optionally, an additional bit can specify whether

the IREQ# signal should be inverted or not, and another optional bit can

enable or disable interrupt routing.

:- Interface Type m Returns the interface setting. Only one of the following

selections can be set; a ”Memory-Only” interface and a “Memory or I/O”
interface

SetSocket Function. Socket parameters are set using the SetSocket function.

The exact same parameter mapping is used for the SetSocket function as for
the GetSocket function. That is, the data structure format for the SetSocket

251

Toshiba_Apricorn 1006-0261
|PR2018—01067

Toshiba_Apricorn 1006-0262
IPR2018-01067

PCMCIA System Architecture

function mirrors the definition of the GetSocket function’s data structure for-

mat listed earlier. This simplifies read-modify-write operations when a spe-

cific parameter must be changed.

Determining the Current Status of the Socket and PC Card
(GetStatus)

This function is intended to be called by the socket services client to determine

what event(s) have caused a status change interrupt. This call should not be

made during hardware interrupt processing of the status change interrupt,

but rather after the interrupt has been processed and the socket(s) experienc-

ing a status change event has been identified. The socket services client can
then call the GetStatus function to determine which event caused the status

change interrupt.

The information returned reflects the Current state of the parameters set
within the HBA:

0 Returns the current state of the events that can cause a status change in-

terrupt (as defined by the InquireSocket function) and the current state of

the socket control and indicators (also defined in the InquireSocket func~
tion).

I Returns the current bit map of parameters or events that cause a status

change interrupt. These events are defined in the GetSocket function’s

status change mask.

. Returns a bit map of Socket control and indicator bits supported by HBA.

- Returns the current settings of the IREQ Routing parameters.

0 Returns the current Interface Type setting.

Resetting the Socket Under Software Control (ResetSocket)

This function provides a software reset to the PC Card and reSets the socket

hardware interface to its power-on default condition as follows:

0 Socket interface is reset to memory only.

0 IREQ routing is disabled.

0 All socket supplies (Vcc, Vpp], and Vpp2) are set to 5vdc.
0 All address windows are disabled.

0 All EDC Generators are disabled.

252

Toshiba_Apricorn 1006-0262
|PR2018—01067

Toshiba_Apricorn 1006-0263
IPR2018-01067

Chapter 19: Socket Services

Window Functions

Window functions, like the adapter and socket functions, include the inquire,

get, and set functions, as well as page functions that allow memory windows

to be divided into multiple pages. Memory locations within a window can be

segmented into 16KB pages.

Controlling Windows (Inquire-Window, GetWindow and Set—

Window)

The window functions are designed for flexibility, such that they can be used

for common memory, attribute memory, or I/O. Despite this flexibility pro-

vided by socket services, a given hardware implementation of the HBA may

be more restrictive. The capabilities for each window is obtained when the

socket services client calls the InquireWindow function for each window de-

tected by the InquireAdapter function.

The characteristics of a given window extend far beyond whether they can be

used for memory, I/O or both. Many other parameters such as the base ad-

dress, window size, fastest and slowest devices supported, etc., must be char-
acterized for each window. Once the characteristics of the window is

determined then it can be programmed by the socket services client at the re-

quest of the PC Card's driver.

InquireWindow Function. When the InquireWindow function is called, the

HBA number and window number are passed to socket services, along with a

pointer to a memory buffer supplied by the socket services client. Information

is returned to the processor's registers and to the specified memory buffer.
The total set of information returned to the socket services client includes the

following:

0 Window Type — Returns the Characteristics of the window selected with

the HBA and window parameters. A single window may be designed to

provide support for any or all of the following:

A window can be used as a common memory window.

A window can be used as an attribute memory window.
A window can be used as an I/O window.

A window can specify that the WAIT# signal from the PC Card to is

used to generate additional wait states during a socket data transfer.

0...

253

Toshiba_Apricorn 1006-0263
|PR2018—01067

Toshiba_Apricorn 1006-0264
IPR2018-01067

PCMCIA System Architecture

254

0 Note that even though socket services aliows a window to be used as both

an [/0 window and a memory window, this usually is not the case. More

typically, hardware designs restrict a given window to either I/0 ad-

dresses or memory addresses, but not both.

0 Socket Assignment —— Returns a bit map of sockets that a window can be

assigned to. Bit zero refers to socket zero and bit N refers to the maximum

socket number. The size of this bit map restricts the number of sockets

that can be supported by a given I-IBA. In the x86 environment, socket

services has a 16-bit field, permitting a maximum of 16 sockets per HBA.

0 Window Characteristics Structure — Returns a variety of windows pa-

rameters to a memory buffer supplied by the socket services client. Two

types of window characteristics structures are defined: one for memory

windows and one for [/0 windows. As mentioned earlier, a given

adapter may be designed to permit a given window to support memory

addresses only, 1/0 addresses only, or both memory or 1/0. A window

characteristics structure is returned for each window type supported by

the target address window.

Table 19-6 lists the parameters defined within a memory window characteris—

tics structure, and table 19-7 lists parameters defined within a 1/0 window

structure. The parameter definition for many of the entries within both struc-

tures are identical; however, some important differences exist. Parameters

that differ are highlighted in tables 19-6 and 19-7.

Toshiba_Apricorn 1006-0264
|PR2018—01067

Toshiba_Apricorn 1006-0265
IPR2018-01067

Chapter 19: Socket Services

Table 19-6. Memory Window Characteristics Structure Definition

Memory Characteristics Structure

Mem Window Capabilities Consists of flog bits that specify any of the parameters Ilsted below. Base Address Determines if the base address is programmable (bit is set) or is

fixed (bit is reset) in the host's address space. If programmable, the

base address must be within the range specified by the FirstByte and

LastByte entries, and it fixed, the base address location is specified

by the value of the FirstByte entry and the LastByte entry has no
meaning.

Window Size Determines if the memory window size is programmable (bit is set)
or is fixed (bit is reset}. If programmable, the size can be any value

within the range specified by the Minimum Size and Maximum Size

entries. If fixed, the window size is determined by the value of the

Minimum Size entry and the Maximum Size entry should be set to
the same value and the Minimum Size.

Determines if the HBA will preserve window state information
when the window is disabled (bit is set); or whether software must

be responsible for preserving the state information (bit is reset). This

means that when the window 'is re—enabled, it must be repro-

grammed by the client if the HBA does not preserve the informa-
tion.

Window Enable

B-Bit Data Width Determines whether the memory window supports 8-bit data trans-

fers to the socket required (8-bit hosts). if set, 8-bit transfers are
supported and if reset, they are not supported.

Determines whether the memory window supports 16-bit data

transfers to the socket required (16-bit hosts). if set, 16-bit transfers

are supported and if reset, they are not supported.

If set, the base address must be programmed to start at an address

aligned on the size of the window. If reset, the base address can be

programmed to start anywhere within the window's address range,

consistent with the "Base Address Alignment" value (defined later).

Window Size In- Determines if windows supporting a programmable size must be

crememfi sized in "powers of two" increments consistent with the "Window

Size Granularity" value defined later (bit is set). If the granularity is

4K3, then the window size can be 4K3, 8K3, 16KB, 32KB, up to
the maximum size of the window. If bit is reset, window sizes can

be any multiple of the "Window Size Granularity" value -- 4K3,

8K3, 12KB, 16KB, 20KB up to the maximum window size.

Specifies whether offsets specified to Set Page must be on bounda-

ries equal to the size of the window (bit is set), or if page offset can
be set without relation to the window size (bit is reset).

16-Bit Data Width

Base Address

Alignment

Window Page
Boundaries.

255

Toshiba_Apricorn 1006-0265
|PR2018—01067

Toshiba_Apricorn 1006-0266
IPR2018-01067

PCMCIA System Architecture

Table 19-6. Memory Window Characteristics Structure Definition(Continued)

Memory Characteristics Structure

Mem Window Capabilities Consists of flog bits that specify any of the parameters listed below.

Window Page Determines if window'hardware supports dividing a window into
3111313011 multiple pages (bit set), or does not support window paging (bit is

reset).

Page Sharing If set, the window paging hardware is shared with another window

source sharing. If reset, paging hardware is dedicated to the win-

and care must be taken to ensure that no conflicts arise due to re-

dow.

If set, the HBA preserves the paging characteristics when the page

is disabled. If reset, the software must preserve the settings and re-

program the paging hardware when the page is enabled again.

Write-Protect. Determines 1f the window can be wnteprotected (bit is set) or not
(bit is reset).

The first byte in the host system's addressable memory space that

can be programmed for the window's base address. Note that if the

Page Enable.

FirstByte

base address register is not programmable, the value is the fixed
address for the window's base address.

LastByte The last byte in the host system's memory address space that the

window can be programmed to.

Minimum Window Size Defines minimum size that the window can be programmed to.

Maximum Window Size Maximum size that window can be programmed to.

Window Size Granularity Window size granularity determines the minimum size that a win-

dow can be programmed to based on the hardware implementation.
For example, if lower address lines A11:A0 go directly to the PC

Card socket, then the window size that can be programmed is based
on 4K3 intervals.

Specifies the base address alignment value for the window.

Window Offset Alignment Specifies the alignment boundaries that the window offset can be

programmed to for remapping the system address to PCMCIA
memory.

Selected Access Speed Specifies the slowest access speed supported for devices accessed
through this window.

Fastest Access Speed Specifies the fastest access speed supported for devices accessed
through this window.

256

Toshiba_Apricorn 1006-0266
|PR2018—01067

Toshiba_Apricorn 1006-0267
IPR2018-01067

Chapter 19: Socket Services

Tobie 19—7. I/O Window Information Structure Definition

[/0 Window Information Structure

Censists of flag bits that specify any combination of the parameters be10w.

[to Window Capabilities

Base Address Determines if the base address is programmable (bit is set) or is fixed

(bit is reset) in the host's address space. If programmable, the base

address must be within the range specified by the FirstByte and Last-

Byte entries, and if fixed, the base address location is specified by the

value of the FirstByte entry and the LastByte entry has no meaning.

Window Size Determines if the [/0 window size is programmable (bit is set) or is

fixed (bit is reset). lf programmable, the size can be any value within

the range specified by the Minimum Size and Maximum Size entries.

If fixed, the window size is determined by the value of the Minimum

Size entry and the Maximum Size entry should be set to the same
value and the Minimum Size.

Window Enable Determines if the HBA will preserve window state information when
the window is disabled (bit is set), or whether the client must be re-

sponsible for preserving the state information {bit is reset). This means

that the window must be reprogrammed by the client when re-

enabled if the HBA does not preserve the information.

s-Bit Data Width Determines whether the [/0 window supports 8-bit data transfers to

the socket required by 8-bit hosts. If set, 8-bit transfers are supported
and if reset, they are not supported.

‘16—Bit Data Width Determines whether the I/0 window supports 16-bit data transfers to
the socket (16-bit hosts). If set, 16-bit transfers are supported and if

reset, they are not supported (8-bit hosts).

Base Address If set, the base address must be programmed to start at address loca-

Aligmnent tions equal to the size of the window. If reset, the base address can be

programmed to start anywhere within the window's address range,
consistent with the "Base Address Alignment" value defined later.

Window Size Determines if windows supporting a programmable size must sized in

IRCIEments "powers of two" increments consistent with the "Window Size Granu-

larity", or if the windows size can be any multiple of the "Window Size

Granularity" value.

INPACK Signal Specifies whether the adapter supports the Input Port Acknowledge

511F130?t (INPACK) signal or not. The INPACK signal permits an I/0 window
to overlap address space mapped elsewhere in the system.

EISA Slot Spe- Indicates support for EISA compatible addressing. in this case, the

Cific 1’0 Address HBA in this case should respond to I/O addresses consistent with the
3MP?"rt slot specific addressing protocol required by EISA systems. See the

MindShare publication, "BISA System Architecture" for details.

257

Toshiba_Apricorn 1006-0267
|PR2018—01067

Toshiba_Apricorn 1006-0268
IPR2018-01067

PCMCIA System Architecture

Table 19—7. 170 Window Information Structure Definition (Continued)

110 Window Information Structure -

1/0 Window Capabilities Consists of flag bits that specify any combination of the parameters below.

Determines whether accesses to ISA address alias ranges should beIgnore EISA—

DEfined alias ignored or not when slot-specific EISA 1/0 addressing is used.

{ISA} HO Ac,

(365585.

FirstByte The first byte in the host system's addressable I/0 space that can be

programmed for the window's base address. Note that if the base ad-

dress register is not programmable the value is the fixed address for
the window's base address.

LastByh’. The last byte in the host system‘s I/O address space that the window

can be programmed to. '

Defines minimum size that window can be programmed to.

Maximum Window Size Maximum size that window can be programmed to.

Window SIZE Granulanty Describes the size interval that the window can be programmed to.

Base Address Alignment Specifies the base address alignment value.

Number of Address Lines Specifies the number of address lines decoded by the window.
Decoded

EISA Slot Addressing Specifies the upper nibble (A15:A12) of an x86 I/O address when

EISA addressing is supported. '

Fastest Access Speed Specifies the fastest access speed supported for devices accessed

through this window.

GetWindow Function. The Get Window function returns the current setting

of the window specified by the programmer. The programmer passes the

HBA and window numbers to the function. The function returns the following
information:

0 Socket to which window is assigned.

0 Window size.

0 Current State of window hardware—Returns the current setting of other

window parameters. The value can be a combination of the following:

I Memory or NO mapped. This bit specifies Whether the window is

mapped into the host system's memory address space or I/O address
space.

0 Enabled or disabled. Specifies whether the window is currently en-
abled or disabled.

258

Toshiba_Apricorn 1006-0268
|PR2018—01067

Toshiba_Apricorn 1006-0269
IPR2018-01067

Chapter 19: Socket Services

0 Window data width. Specifies whether the window is programmed
for 16-bit data width or 8-bit data width.

0 Memory window pages used (memory windows only). This parame-

ter indicates if memory window pages are in use, indicating that this

window is subdivided into multiple 16KB pages and that the GetPage

and SetPage functions can be used for accessing individual pages
within the window.

0 EISA HO Mapping used.

0 Card access permitted during EISA L’O accesses. If this bit is set and

EISA mapping is used, accesses to standard ISA addresses result in

PC Card accesses. lf reset, accesses to ISA addresses are ignored.

0 Access Speed. Indicates the current access speed programmed into the

memory window.

0 Window's Base Address.

SetWindow Function. This function uses the same mapping as the GetWin-

dow function. The definition of the parameters are the same, allowing the

GetWindow function to be called to obtain the current window settings. Pa-

rameters requiring modification can then be changed from the current settings

and the SetWindow function called to update the window's settings.

EDC Functions

Error Detection/Correction Generators are optional for PCMCIA HBAs.

These functions are designed to enable and control EDC generators imple-

mented by HBAs. However, ca rd services provides no support for EDC func-

tions. Furthermore, to the author’s knowledge no current I-IBA designs

employ EDC generators. Based on these issues discussion of the socket serv-
ices EDC functions has been omitted from this book.

Maximum Number of Sockets Per HBA

The maximum number of sockets that a single adapter can support under con-

trol of socket services is limited by the InquireWindow function. A bit-map of

assignable sockets is returned by this function. The size of this bit-mapped

socket selection field defines the maximum number of sockets supported by

each adapter. The field size is not defined by PCMCIA and depends on the

259

Toshiba_Apricorn 1006-0269
|PR2018—01067

Toshiba_Apricorn 1006-0270
IPR2018-01067

PCMCIA System Architecture

socket services implementation. The Intel x86 socket services definition de-

fines a 16bit socket selection field, permitting 16 sockets per l-IBA.

Maximum Number of HBAs Supported by Socket

Services

The maximum number of adapters supported by socket services depends on

several factors, including:

0 Limitations associated with the implementation of socket services for a

given platform. For example, the field size used to specify a target adapter

cdn vary with a particular implementation. Note that the x86 implementa-

tion uses an 8-bit field, permitting 256 adapters to be specified (clearly not

a meaningful limitation).

o Constraints related to available space when implementing socket services
in ROM.

0 Constraints related to available memory space required by multiple sets of

socket services required to support numerous adapters.

260

Toshiba_Apricorn 1006-0270
|PR2018—01067

Toshiba_Apricorn 1006-0271
IPR2018-01067

Chapter 20: Card Services

Chapter 20

The Previous Chapter

The previous chapter discussed the role of SOCket services. It also described

the initialization of socket services and explained the basic purpose of the

functions commonly supported in the PC environment.

This Chapter

This chapter focuses on the role of card services in the PCMCIA environment.

It also reviews each of the functions defined by the PC Card specification that

apply to 16-bit PC Cards, along with related return codes. The call-back
mechanism is also described and the event and call-back codes are defined.

The Next Chapter

The next chapter discusses the three basic types of enablers: point enablers,

device specific enablers, and super enablers. The chapter also discusses the

specific jobs performed by several different device specific enablers including
SRAM enablers, FLASH enablers, I/0 device enablers, and ATA enablers.

Overview

Each PC Card must have a client driver that recognizes it, reads the CIS to de-

termine its resource requirements, programs the host bus adapter (HBA) and

configures the PC Card. As illustrated in figure 20-1, PC Card client drivers

interface directly to Card Services. Card services simplifies the job of configur-

ing a PC Card and monitoring status change events.

261

Toshiba_Apricorn 1006-0271
|PR2018—01067

Toshiba_Apricorn 1006-0272
IPR2018-01067

PCMCIA System Architecture

Run-Time
Software

Configuration and Hardware
Event Notification

Software

PC Card Enablers I(PCMCIA lnil 8. Event Processing) I

Socket Services !

Host System

Applications II

0 erating
ystem

Device Drivers

{Huanima Code} ll

 I333‘r‘Ens"t’S‘Il571EI~5'3'H
\”OllmllflONluaAEl

|

|

l

l

I

l

I

I

I

I

I

I

I

I
|

I

I
PCMCIA

Host Bus Adapter
Figure 20-1. PCMCIA Software How

Configuring a PC Card may take place when the system powers up (if the PC

Card is already installed in a socket), or when a PC Card is inserted into a

socket (after the system is powered up and fully operational). In either case,

the PC Card must be detected and configured by an enablerr Without an en-

abler, a PC Card would never be recognized by the system. However, once a

PC Card is recognized and configured by the enabler, it then responds like

any other device residing on the host bus.

Enablers that use card services are called card services client drivers. The term

client driver is used because card services and the enablers perform their
functions based on the client/ server model. Card services exists to serve the

needs of its clients (i.e. the enablers) as they attempt to configure and access

their PC Cards. Two basic types of client drivers exist:

0 Dedicated client drivers — designed for a particular PC Card.

0 Generic or Super client drivers — designed for a wide range of PC Cards.

262

Toshiba_Apricorn 1006-0272
|PR2018—01067

Toshiba_Apricorn 1006-0273
IPR2018-01067

Chapter 20: Card Services

Dedicated client drivers are typically supplied by the PC Card manufacturer

to increase the probability that its card will be recognized and configured cor-
rectly in the absence of a generic driver. Dedicated client drivers may also

manage functions that are unique to a given manufacturer's implementation.

Generic client drivers are frequently designed to handle PC Cards of a par-

ticular functional type. For example, the system manufacturer may include

generic drivers for card types such as SRAM, flash ROM, Modems, and ATA
drives. Ideally, a single super client driver could detect and configure all PC

Cards regardless of type.

Enabling PC Cards Before Card Services

Prior to the release of card services, the enabler was burdened with recogniz-

ing when a card was inserted into a socket, reading its CIS, programming the

I-IBA and configuring the PC Card so that it responded to a given system ad-

dress range. The PC Card's enabler also had to continually monitor the socket
to detect if the PC Card was removed. If removed, the enabler would deallo»

cate the system resources the card was using by clearing registers in the HBA.

In this way, the I-IBA would no longer respond to addresses previously as-

signed to the PC Card.

To configure a card, an enabler also had to determine what address ranges
were available within the system (not in use by other devices) for allocation to

its card. This was an almost impossible job for enablers since they had no

knowledge of the other devices incorporated into the system or of other in-

stalled PC Cards. Assumptions had to be made by the programmer based on

what resources were likely available so that contention with other devices was

(hopefully) avoided.

It is also possible that other software applications or utility programs written

by other programmers may want to share access to a given PC Card. These
various programs will not be aware of each other and, as a result, conflicts
may occur.

In summary, PC Card enablers that are compliant with PCMCIA releases

prior to 2.0 each act independently, unaware of the existence of each other.
Furthermore, they have no knowledge of the resources available within the

system that could safely be allocated to their associated PC Card.

263

Toshiba_Apricorn 1006-0273
|PR2018—01067

Toshiba_Apricorn 1006-0274
IPR2018-01067

PCMCIA System Architecture

The Role of Card Services

Card services provides a central resource available to all client drivers. Spe-

cifically, card services is a collection of functions designed for use by

programmers writing client drivers for PC Cards. These functions provide a

software interface that permits the programmer to simplify code and helps to

reduce conflicts with other client drivers and system resources. Card services

is divided into five functional groupings by the PCMCIA specification:

0 Client Services—Provides a registration facility that permits client drivers

to register and be notified by card services when specific socket events oc-
cur (such as card insertion or removal).

- Resource Management—Allows client drivers to request the use of sys

tem resources required by the PC Card they are enabling. If the resources

are granted, addition resource management functions can be used to as-

sign these resources by programming the HBA (via socket services) and

configuring the PC Card (by writing to the PC Card's configuration regis-
ters).

- Client Utilities—Provides a set of functions that allow the client driver to

perform common jobs with ease. For example, the functions include ac-

cessing the PC Card's CIS, thereby simplifying tuple processing code.

. Bulk Memory Services—Provides block memory functions to read, write,

copy and erase blocks of data within memory cards (without knowledge

of the specific memory technology). These functions are passed to the ap-

propriate Memory Technology Driver (MTD) that understands the

hardware protocol necessary to erase or write to devices such as flash

memory. (See the next chapter “PC Card Enablers” for details regarding

memory technology drivers.)

0 Advanced Client Services—Provides specialized functions that may be

needed by some client drivers.

Only one copy of card services is required (and permitted), since it controls

access to all sockets (whether associated with a single adapter or multiple

adapters). Once a PC Card has been configured, it responds like any other

host bus device. As a result, application programs designed to access a par-
ticular function need not even be aware of the existence of card and socket

services. Card services and socket services are employed by enablers during:

- PC Card initialization and configuration (client driver makes calls).

0 PC Card event notification (interrupt driven calls).

264

Toshiba_Apricorn 1006-0274
|PR2018—01067

Toshiba_Apricorn 1006-0275
IPR2018-01067

Chapter 20: Card Services

a Block transfers to / from memory card {memory client driver makes calls

during run-time}.

During other times, card and socket services remain in memory, but are not

used. The following sections discuss typical uses of the card services func-
tions. The infonnation included in this chapter is not intended for reference

purposes. The function descriptions provide only a basic description of the

function's purpose. Refer to the PCMCIA Card Services standard for the exact

calling parameters, format, field sizes, etc., of each function.

initialization of Card Services

Card Services is designed as an operating system dependent extension that

provides client services for the PC Card environment. Card services may

come with the operation system as a built—in extension (e.g. OS/ 2 and Win-
dows 95). In the MS-DOS environment, card services is typically implemented
as an installable device driver.

In the DOS environment card services are called using an [NT 1A instruction,

requiring that card services “hook” entry 1Ah Within the interrupt table. Also

card services hooks the hardware interrupt used by the HBA to report status

change events. This allows card services to be notified when a status change
event occurs at the socket level.

Verifying the Presence of Socket Services

Since card services utilizes socket services to fulfill client driver requests, it

must install after socket services installs. Socket services may reside in ROM

on the system, or may be installed as a loadable device driver when the oper-

ating system loads. If socket services installs as a device driver, card services

must be placed in the configsys so that it installs after socket services.

Before card services installs it must verify that socket services are resident.

This is done by calling the GetAdapterCount function within socket services.
This function returns the total number of HBAs detected in the system and

which returns the ASCII string ”58" verifying that socket services is present. If

“SS” is detected, then card services proceeds with its installation.

265

Toshiba_Apricorn 1006-0275
|PR2018—01067

Toshiba_Apricorn 1006-0276
IPR2018-01067

PCMCIA System Architecture

After card services installs, it blocks access to socket services. If a client driver

attempts to call socket services directly, card services will not pass the call on

to socket services, but will return failure to the client driver. This prevents a

client driver from using socket services to access the adapter hardware di—

rectly and perhaps allocating resources or modifying the HBA's programming

without the knowledge of card services. Since this would result in card serv-

ices becoming desynchronized with regard to the actual adapter hardware,

attempts to access socket services without going through card services are

prevented. -

Note that card services does include a function (ReturnSSEntry) that can be

called by a client driver that returns the entry point of 50cket services. This

allows a client driver to gain direct access to socket services, but it must not

perform any socket service function that causes card services to become de-

synchronized with the HBA.

Verifying that Card Services Installed

Initialization code used to install card services also includes code that actually
calls card services to validate that the installation of card services was success-

ful. This is accomplished by calling the GetCSlnfo service, which returns
information about this version of card services and the ASCII values “C5” to

verify that card services are present. If card services installed correctly, the

initialization code can make additional service call to prepare card services for

access by a PC Card client driver.

Determining Availability of System Resources

One of the major functions performed by card services is to allocate available

system resources to PC Cards. Resource management services are called by a

PC Card’s client driver in an attempt to acquire the resources (i.e. the I/0 ad-

dress space, memory address space, IRQ line, and DMA channels) that will

satisfy the card’s configuration requirements. Card services must check the

available system resources to verify that the requested resources are not al-

ready used by the system.

Since card services is an extension to the operation system, in many operating

environments it will have no specific knowledge of the resources that are al-

ready being used by other devices installed into the system. As a result, some

266

Toshiba_Apricorn 1006-0276
|PR2018—01067

Toshiba_Apricorn 1006-0277
IPR2018-01067

Chapter 20: Card Services

method must be employed by card serviCes (or by other platform specific

software) that can detect free resources that can be allocated and assigned to
PC Cards. The exact method used is operating system and hardware platform

specific.

In x86 DOS compatible systems, a utility program is typically used to scan the

host system in an attempt to detect the presence of devices that use system re-

sources. The utility program builds a table of system resources that are not in

use and passes the table to card services. Card services then manages the re-

sources table as resources are requested and released by the client drivers as

PC Cards are inserted and removed from sockets. This program is either emu

bedded within card services initialization Code or is implemented as a

separate installable device driver that executes immediately after card services

has installed (eg. listed in the configsys file immediately following the card
services device driver) and before the PC Card enablers.

Power Management Support

Power management support was added to the PC Card standard (95 release).

Card service defines power management (PM) support via power manage-
ment callback events. Card services can be designed to detect the presence of

a power management facility within the PC platform and register to receive

notification of power management events. When card services receives the

power management notification, it caIlSHback all client drivers that registered
to receive the PM events.

Card Services Calling Conventions

When a client calls card services, the binding used in a given environment will

differ. The PC Card specification specifies a card services programming inter-
face (binding) for x86 real mode (DOS), Intel 80286 Protected Mode

(Windows), Intel 80286 Protected Mode (08/2), and Intel 80386 Flat Address

Model (Windows VxD Clients). Each binding specifies the register usage for

calling card services functions and the register usage employed when the call-

back handler is invoked. An example of the binding specified for the Intel X86

Real Mode environment follows. Refer to the card services specification for
additional information.

267

Toshiba_Apricorn 1006-0277
|PR2018—01067

Toshiba_Apricorn 1006-0278
IPR2018-01067

PCMCIA System Architecture

Input:

[AH] AFh (specifies card services function)
IAL] Service Desired (service code number)

[DX] Handle

[DI]:[SI] Pointer argument

[DIlzlétbit segment, [SI]=16-bit offset

[CX] Argument Length (total length of argument packet)

IES]:[BX] Pointer to argument packet (used when additional address space

is required to pass parameters and data}

[ES]=16~bit segment, [BX]=161bit offset

Output:

[AX] Return Code

[CF] Success when clear, failure when set

Specifying the Service

The AH register must contain a value of AFh to specify that this card is meant

for card services. The AL register then specifies the service code number of

the service being requested.

Table 20-] lists all of the services (listed in alphabetical order) defined by the

PC Card Standard along with their associated service number. Table 20-2 lists

the services and their service number in ascending numerical order. Note that

the services in shaded boxes were added by the PC Card 95 release.

The value placed in the AH register permits card services to block access to

socket services functions made by enablers. Note that AFh is the last function

number Within socket services (function UAFh) and is defined for use by card
services.

When card services initializes, it hooks entry lAh in the interrupt table. Card

services saves the current value of entry lAh (pointing to socket services) be-

fore installing its own. As a result, card services knows the entry point for
socket services. INT lAh calls now access card services, which verifies that the

call is a card services call by checking for the value AFh in the AH register. If

verified, the card services function call specified in the AL register is then

processed.

If card services finds a value other than UAFh, it then checks to determine if

the value represents a valid socket services function. If it is a valid socket

268

Toshiba_Apricorn 1006-0278
|PR2018—01067

Toshiba_Apricorn 1006-0279
IPR2018-01067

Chapter 20: Card Services

services function, card services blocks access and returns failure to the calling

program. This prevents client drivers from accessing socket services directly

and changing HBA settings without card services being notified.

If the value in the AH register is for neither card services nor socket services,

then card services passes the call to socket services, knowing it will not rec-

ognize the call. Socket services then passes the call to the previous interrupt

service routine in the chain. Interrupt table entry lAh is used by the real-time

clock functions in DOS compatible machines, therefore, card and socket serv-
ices shares INT lAh with the real—time clock functions.

The Handle

A handle may specify the client making the service call or a particular re-

source that is being targeted by the function. The client handle is returned to

the client during the registration process. This handle is used by the client

when requesting many services. For example, a memory client may choose to

Open a region of memory within a memory card for use with other memory

services (i.e. read, write, or erase services). The client must specify its client

handle in the DX register as an input and card services returns a memory

handle {to identify the region of memory) to the DX register. The client later

uses memory handle as an input when calling the read, write, or erase mem—
ory services.

269

Toshiba_Apricorn 1006-0279
|PR2018—01067

Toshiba_Apricorn 1006-0280
IPR2018-01067

PCMCIA System Architecture

270

Table 20-1. Card Services Listed in Alphabetical Order

AcoessConfigReg
AddSocketSe-rvices

AdjustResoux-cehfio

CheckEraseQueue

CloseMemory

CopyMemory

DeregisterClient

DeregisterEraseQueue
GetCardServiceshlfo

GetClientInfo

GetConfigurat-ioninfo
GetEvenMask

GetFirstClient

GetFirstPartition

GetFirstRegion

GetFirstTuple
GetFirstWindow

GetMemPage
GetNextClient

GetNextPartition

GetNextRegion

GetNextTuple
GetNextWindow

GetStatus

GetTuple-Data

MapLogSocket

MapLogWindow

MapMemPage

MapPhySocket

MapPhyWindow

OD

23“:

DEIDD

m,I?
D 23"

05h

-
:I"

Function

ModifyConfiguration

Modinyindow

OpenMemox-y

ReadMemory

RegisterClient

RegisterEraseQueue

RegisterMTD

RegisterTimer

ReleaseConfiguration
ReleaseDMA

ReleaseExclusive

ReleaseIO

ReleaseIRQ

ReleaseSocketMask

ReleaseWindow

ReplaceSocket Services

RequestConfiguxation

RequestDMA

RequestExclusive

 RequestIO

RequestIRQ

RequestSocketMask

RequestWindow
ResetCar-d

Retm‘nSSEntry
SetEvenMask

SetRegion
ValidateCIS

VendorSpecific

WriteMemory

Toshiba_Apricorn 1006-0280
|PR2018—01067

Toshiba_Apricorn 1006-0281
IPR2018-01067

 Chapter 20: Card Services

Table 20-2. Card Services Function Codes Listed 1‘ n Numerical Order

Function

Function

ReleaseConfiguration

RequestIO

RequestIRQ

RequestWindow

RequestSocketMask

ReturnSSEntry

WriteMemory

DeregisterEraseQueue

CheckEraseQueue

ModifyConfiguration

RegisterTimer

SetRegion
GetNextClie-nt

ValidateCIS

RequestExclusive
ReleaseExclusive

GetEvenMask

ReleaseSocketMask

RequestConfigurat—ion
SetEvenMask

AddSocketSen-ices

ReplaceSOCket Services

VendorSpecifie

AdjustResourceInfo

AcoessConfigReg
GetFirstWindow

GeiNextWindow

GetMemPage

RequestDMA
ReleaseDMA

Ei

Toshiba_Apricorn 1006-0281
|PR2018—01067

Toshiba_Apricorn 1006-0282
IPR2018-01067

PCMCIA System Architecture

The Argument Packet

Some services require that the client provide a memory buffer to pass parame—

ters. Functions requiring a large data area for passing parameters use an

argument packet. The pointer to the argument packet specifies the start mem-

ory location of the buffer, while the argument length specifies the size of the

buffer (i.e. length of argument packet). The size and format of the argument

packet is typically depends of the individual function.

Not all of the generic arguments just defined are used when calling a given
service. Many functions require only a function code, handle and the pointer

argument to pass all of the required parameters. Some service require the

pointer argument, while other require use of the argument packet.

Return Codes

A variety of codes may be returned by card services into the processor’s AX

register. The return codes specify the results of the service. Table 203 lists and

defines each of the return codes in alphabetical order. Table 204 lists the re-
turn codes in numerical order.

The Pointer Argument

Some services require a read/write buffer to pass input and output informa—

tion between the client and card services. The pointer argument value placed
in the DI and SI registers specifies the location of the memory buffer. These

same buffer is used by card services to return data to the client. DI:SI are also

used to specify the memory location the call-back buffer.

272

Toshiba_Apricorn 1006-0282
|PR2018—01067

Toshiba_Apricorn 1006-0283
IPR2018-01067

Chapter 20: Card Services

Table 20-3. Card Services Return Codes Listed in Alphabetical Order

BAD_ADAPI'ER

BADfiARG_LENGTI-I

BAD_ARGS

Window or interface type specified is invalid

ecified Vcc power level index is invalid

BAD‘VERSION

BAD_VPP

BAD_WINDOW
CONFIGURATION_LOCKED

273

Toshiba_Apricorn 1006-0283
|PR2018—01067

Toshiba_Apricorn 1006-0284
IPR2018-01067

PCMCIA System Architecture

Table 20-4. Card Services Return Codes Listed in Numerical Order

Value

Return Code Deseription

on

04h

05h

06h

07h BAD_OFFSET Specified PC Card memory array offset is invalid

0%

mm mm

DBh Specified socket is invalid (logical or physical)
0s

BAD_VPP Specified VPP] or VPPZ power level index is invalid

Reserved for historical purposes

nh BADWDOW

12h wmmwm

Reserved

 NO_CARD

Reserved for historical purposes
No PC Card in socket

Implementation does not support service15h UNSUPPORTED_SERVICE

16h Processor mode 15 not supported
1?h

18h

19h

lAh

lBh

lCh

Media is writeprotected

UNSUPPORTEDuMODE

CONFIGURATION LOCKED

lEh IN_USE Requested resource 15 being used by a client

1 Fh NOWMOREHITEMS There are no more of the requested item
OUT OF_RESOURCE

BAD_HANDLE

BAD_VERSION

Card Serwces has exhausted resource

ClientI-Iandle 15 invalld

Client version is unsupported

274

Toshiba_Apricorn 1006-0284
|PR2018—01067

Toshiba_Apricorn 1006-0285
IPR2018-01067

Chapter 20: Card Services

Client Services (Client Registration and Support)

The category of card services defined as "client services functions" are those
typically used when a card services client driver performs device initializa~

tion. Other services within this category provide basic card support. Table

20-5 lists the card services functions typically used during the registration

process. The sections foliowing the table discuss the registration process and
discuss the use of each function listed.

Table 20-5. Client Services Functions

Client Services Functions

Tupiewame

GetCardServicesInfo Determines if a valid copy of card services is installed and reports informa-
tion regarding this copy of card services, including its revision and

RegisterClient

compliance level.

Used by the client to register with card services as either a memory, MTD or

DeregisterClient

[/0 client. The client driver also specifies which card status events (such as
card removal) it wishes to be notified of by card services. The client can also

SetEventMask

 request that card services generate artificial card insertion events for all PC
Cards that are currently installed, allowing the client to configure PC Cards it
wishes to use.

Allows the client to notify card services that it no longer requires notification
of status change events.
Returns the current status of the PC Card and its socket. It returns the same
information obtained with the socket services GetStatus function.

This function resets the PC Card specified in the input argument, providing
that all other clients that are using the same PC Card agree. Since more that
one client may use a card, the ResetCard function will not be satisfied until all

other clients agree to the reset. Card services generates Reset Request call-
back events to all registered clients. Once all client drivers have reSponded to

the call-back, card services calls the client that initiated the request via a Reset
Complete call-back to inform the client whether the reset succeeded or failed.

Used by the client to indicate the events it wishes to receive call-backs for.
During registration, a client driver can specify which PC Card events that it
wants to be notified of. This function can be used after registration to change
the global event mask, originally set during RegisterClient. This function can
also be used to change the SocketEvent mask originally set during Request-
SocketMask (see table 20-8), but only if the RequesiSocketMask function has

been previously called by the client. '

Allows the client to obtain the current values of either the global or socket
event mask.

 GetEventMask

275

Toshiba_Apricorn 1006-0285
|PR2018—01067

Toshiba_Apricorn 1006-0286
IPR2018-01067

PCMCIA System Architecture

Determining If Card Services Is Installed

(GetCardServiceslnfo)

The registration process begins with the card services client verifying that a
valid copy of card services is installed and determining the compiiance level
of this particular version of card services. The GetCardServiceslnfo function

performs this task. When the card services Client calls the GetCardServicesInfo

function, it specifies a buffer size and pointer to the buffer where card services

data is to be returned. Information returned by the GetCardServicesInfo func-
tion:

. Length of data returned by card services.

'- Card services signature—Two consecutive bytes containing the ASCII

characters "CS“ verify the validity of the returned data.

I Number of sockets—Returns the number of sockets in the system.
a Card services revision—Indicates the vendor's revision level.

0 Card services compliance level—~Indicates the PCMCIA compliance level

of card services. The compliance level is the PCMCIA release number

upon which this socket services was based.

0 Location of vendor stringw—Optional information can be provided by the

card services vendor. This field specifies the start location within the

buffer where the vendor information can be found. See "Vendor String”
below.

a Vendor string length—-Specifies the length of the vendor string.

a Vendor string—A vendor-defined string comprised of ASCIIZ characters.

Signing Up with Card Services (RegisterClient)

Once the card services client determines that an appropriate copy of card

services exists, it then can register with card services using the RegisterClient

function. A card services client driver registers with card services for notifica-

tion of selected events generated by PC Cards. This function can also be used

by the card services client to request that card services notify it of all PC

Cards currently installed. This gives the card services client driver an oppor-
tunity to identify and configure the PC Cards that it requires access to.

276

Toshiba_Apricorn 1006-0286
|PR2018—01067

Toshiba_Apricorn 1006-0287
IPR2018-01067

Chapter 20: Card Services

In summary, the card services client registers with card services for the fol-

lowing reasons: '

0 To receive notification of specified PC Card status change events.

0 To specify the type of client (memory, 1/0 or MTD) that is registering.

a To receive notification of PC Cards already installed in sockets (artificial
card insertion events).

Note that card services returns a handle to the client upon return from the

RegisterClient function. The client driver uses this handle to identify itself

when calling other card services functions. Note that card services returns to

the client drivers without having fully completed the registration process.

Card services attempts to complete the registration process in the background

and notifies the client driver that registration has been completed via the

RegistrationComplete call-back.

Receiving Notification of Status Change Events

To receive notification of status change events occurring at the PC Card, the

client driver must specify the events that it wishes to be notified of. This is ac-

complished by the card services calling a routine within the client when a card

status change event occurs. This routine is referred to as the client's call-back

routine. The card services client driver must specify the entry point of its call-

back routine and the start address of a data buffer to deposit the change event

into. Note that an event mask is passed to card services when the RegisterCli-

ent function is called, indicating to card services the events for which the

client wants to be notified. Events that can be specified include the following

(Refer to the section later in this chapter entitled “The Call-Back Process" for
additional information):

Write Protect change.

Card Lock change (from HBAs that support a card interlock mechanism).

Card Ejection request (I-lBAs supporting a card interlock mechanism).

Card Insertion request (HBAs supporting a card interlock mechanism).

Battery Dead.

Ready Change.

Card Detect Change.

Power Management Change.

PC Card reset request by another client.

Socket Services Updated.

277

Toshiba_Apricorn 1006-0287
|PR2018—01067

Toshiba_Apricorn 1006-0288
IPR2018-01067

PCMCIA System Architecture

A given client determines which of the events it wants to be notified of during

the registration process. For example, if the client driver so specifies, it can

register with card services to receive card insertion events. This allows the cli-

ent driver to be notified when a PC Card is inserted, permitting it to then

check the PC Card to determine if it should configure the card.

The card insertion callback is triggered when a PC Card is inserted. Card

services is notified Via a status change interrupt generated by the HBA. Card

services then interrogates the HBA to determine the cause of interrupt and
calls back all client drivers that have registered to be notified of the card in-
sertion event. When called-back each client driver then reads the card's CIS to

determine if it should configure the card.

When call-backs occur, card services passes event information to the clients

call-back buffer. The information passed typically includes an event code,

logical socket number and information specific to the event. The exact infor—

mation returned to the client depends on the specific event. Refer to the
PCMCIA Card Services standard for details.

Note that the GetEventMask function can be used by the client driver to read

the current setting of its event mask. The client passes its card services handle

to identify itself, and card services returns the event mask indicating which

status change events the client is currently registered to receive. Similarly, a

client driver can call the card service's SetEventMask function to change the
events for which it wants to be notified.

Determining the Order of Call-Backs: Client Driver Type

When a client driver registers with card services, it must also specify its driver

type. For example, if a PC Card contains SRAM, flash memory, and I/O regis-

ters, the client driver that configures the card must contain a separate client

driver for each group, and must register with card services three separate
times as defined below:

I 0 I/O client driver.

0 Memory technology client driver (MTD) for Fiash memory.

0 Memory client driver.

The client driver type determines the order in which clients are calledwback

when a status change event occurs. I/O clients are called first on a Last In

First Out (LIFO) basis; that is, the last I/O client registered is the first to be

called. This is done on the premise that the last I/O client installed likely su-

278

Toshiba_Apricorn 1006-0288
|PR2018—01067

Toshiba_Apricorn 1006-0289
IPR2018-01067

Chapter 20: Card Services

persedes Client drivers installed previously. MTD drivers are called next on a

FIFO basis (the first to register is the first to be called). Finally, the memory

client drivers receive the call-back last, also in a FIFO order.

Artificial Card Insertion Events

A client driver may also register with card services to have artificial card in- '

sertion events generated during the registration process. Card services can

create a call-back to the client driver for each card currently installed in the

system. In this way, the client driver's ca11~bacl< routine can determine which

of the cards already installed it should attempt to configure.

A client driver determines whether it should configure a card based on read-

ing the CIS to determine if it recognizes the card. For example, a client driver

may be designed to recognize a specific card (usually a client driver written

by a manufacturer for only its card), or it may recognize any card within a

given group (usually a client driver written for example to recognize all mo-

dem cards). When recognizing a card that it has been designed to configure

and monitor, it then attempts to configure the card when an card insertion

event occurs, providing that the card has not already been configured.

When artificial insertion notifications have been made for all PC Cards in-

stalled in sockets, card services generates a RegistrationComplete event. This

event informs the client driver that the call-back process is complete. Note

that when card services returns from the initial RegisterClient service, the

registration process is not complete. Card services attempts to complete the

registration process in the background; and therefore, the client is not fully

registered until the RegistrationComplete call—back is received.

When processing the artificial card insertion events, the client driver may or

may not recognize any PC Cards currently installed that it can configure. The

client driver having registered with card services to receive card insertion

events, will remain in memory and be called-back when a another PC Card is
inserted sometime later. The client driver then checks to see if it can the con-

figure this card.

279

Toshiba_Apricorn 1006-0289
|PR2018—01067

Toshiba_Apricorn 1006-0290
IPR2018-01067

PCMCIA System Architecture

Telling Card Services You're Leaving

(DeregisterClient)

If a client driver will no longer be available at the call-back entry point (for ex—

ample a driver that is transient), it must deregister with card services by

passing its card services handle to card services and calling the DeregisterCli-
ent function. This tells card services that the client driver will no longer

require call-backs.

Client Utility Services (Detecting a PC Card)

During the configuration process, the client driver must determine if it wishes

to enable the PC Card, and if so, should attempt to configure it for operation.

Once the client driver establishes that it will attempt to configure the PC Card,

it may also be necessary to read additional information from the card to de—

termine the specific resources it requires.

The GetConfigurationlnfo function may be sufficient for many client drivers

to determine if they should configure the PC Card. Other client drivers may

need to further process the CIS to determine if it should attempt to configure

the card. Card services assists with this by providing a group of utility func-

tions that the client driver can use to obtain additional configuration
information from the PC Card's CIS. These functions are listed in table 20-6.

Table 2206. Client Utility Functions Used by the Client Driver to Access PC Card

Information

Client Utility Functions

AccessConfigRegisters Used to access a PC Card configuration registers.

GetConfigurationInfo Provides the client with information about a specified socket and the PC Card
installed. This information can be used to determine the configuration re-

quirements of the PC Card installed.

GetFirstTuple Permits the client to specify a given tupie code and find the first occurrence of
that tuple within the PC Card's CIS.

GetNextTuple Requests that card services find the next occurrence of the tuple code that was
previously specified for the GetFirstTuple function.

GetTupleData Requests the contents of the specified tuple, once it has been located using
GetFirst/ NextTuple.

280

Toshiba_Apricorn 1006-0290
|PR2018—01067

Toshiba_Apricorn 1006-0291
IPR2018-01067

Chapter 20: Card Services

Table 20-6. Client Utility Functions Used by the Client Driver to Access

PC Card Information (Continued)

Client Utility Functions
Function Name

Used by memory technology client drivers (MTDs) to get device information
for devices defined for the first region within the PC Card (as defined in the
card's CIS). Information received by the client includes: location of region
within the card, size of region, speed of devices within region, memory type
(attribute or common), erase/write capabilities, etc.

Finds the device information for the next region within the card.

Similar to the GetFirstRegion function, this function returns information for
the first partition on the card based on information contained in the PC Card's
CIS. If a PC Card has no partition information defined in its CIS, then card
services may be able to determine partition information based on a given file
system structure (such as the BIOS parameter block (BPBM FAT structure used
by DOS).

Finds device information for the next partition.

Client drivers can use these utility functions to obtain information regarding

the configuration of the PC Card in a given socket, or to scan the CIS itself to

determine the exact configuration requirements of the PC Card. If the client

driver is a memory drive, the job of determining the configuration require-

ments can be quite simple, since it is likely that the first tuple (Device

Information Tuple) within the CIS will provide the client driver with much (if
not all) of the information it needs to configure the card. Tuple processing for

I/O devices can be considerably more challenging due to the resource combi-

nations that may be required.

GetFirstRegion

GetNextRegion
GetFirstPartition

Evaluating the PC Card and Socket

(GetConfigurationlnfo)

The GetConfigurationInfo service provides the enabler with information about

the specified socket and card. An enabler may call this function to determine if
the card installed into the socket has already been configured. If not config-
ured the information returned to the enabler provides a general view of the
card installed in the socket. Refer to table 20-7 for a list of the information re

turned by the GetConfigurationInfo service.

The GetConfigurationInfo service returns information from the PC Card’s CIS

including the device ID, function ID, and manufacturing ID. This information

provides a way for the enabler to quickly determine whether or not it should

attempt to configure the card.

281

Toshiba_Apricorn 1006-0291
|PFt2018—01067

Toshiba_Apricorn 1006-0292
IPR2018-01067

PCMCIA System Architecture

Table 20-7. Information Returned by the GetCanfignrntionInfs Service

Information Returned

Logical socket/function number This field contains the logical socket and function number specified.
Attribute Bits

Indicates whether the PC Card has been previously configured and
if exclusively owned. Also provides miscellaneous information

regarding the configuration of the card.
The values returned in these fields are those that the

configuring client driver passed to card services during

RequestConfiguration call. If the card/function has not

been configured, these values are invalid.

 The values returned in these fields are the values that

were written to the configuration registers by the enabler

when it called the RequestConfiguration service. These

values are invalid if the card/function is not configured.

This values is obtained from the information passed to card services
during the RequestConfiguration call.

This value is taken from the DEVICE tuple

These values are taken from the Function ID tuple.

These values are taken from the Manufacturers ID tuple.

This field is a bit map that indicates which configuration register
were written with valid values.

These fields contain the values specified when the

RequesthQ service was called for this function/card.

These fields are derived from the information specified

when the RequestIO function was called. If the Request-

10 function has not been called the number of ports
fields will contain 00h.

 Socket and copy register settings

Config. option register settings

Conflg Registers implemented

Pin replacement register settlngs

Extended Status

. DMA Attributes
Assigned Channel
Number of 1/0 windows

Number of memory windows

 RequestConfigui-ation call was made.

Specifies the number of I/O Windows in use for this socket and
function.

Specifies the number of memory wlndows in use for thls socket and
function.

282

Toshiba_Apricorn 1006-0292
|PR2018—01067

Toshiba_Apricorn 1006-0293
IPR2018-01067

Chapter 20: Card Services

Additionally, the GetConfigurationInfo function provides specific configura—

tion information about a socket and card that has already been configured. If

the card has been previously configured, then card services returns the client

handle (in handle argument, DX register) of the enabler that has already con-

figured the card, along with the primary configuration settings. If the card has

not been configured then the client handle and configuration settings returned

by the service are invalid.

Note that support for multiple function cards has been added. An enabler can

specify the logical socket and a function within the PC Card that it wishes to

get information about.

Scanning the CIS (GetFirstTuple, GetNextTuple, Get-

Tuple Data)

When the client driver must determine the specific configuration requirements

of the PC Card, it reads the configuration table within the PC Card's CIS. The

client driver can use the GetFirstTuple function to specifically request the tu-

ple containing the information it needs. For example, if a Client driver wishes

to find the first Configuration Table Entry within the CIS, it passes the socket

number and the desired tuple code (18h for the configuration table entry tu-

ple) to card services and calls the GetFirstTuple function. Card services will

scan the card's CIS looking for the first instance of the tuple code that was

specified in the call.

The GetTupleData function can be called next to obtain the data within the

tuple. When the data is returned, the client driver interprets the data to de-

termine the system resources required by the PC Card. The client then

attempts to obtain these resources from card services and, if successful, no

further tuple processing is necessary. However, if the system resources speci—

fied in the first configuration table entry are not available, then the client must

continue processing the CIS by calling the GetNextTuple function, which finds

the next occurrence within the CIS of the indicated tuple type. This process

continues until the resources specified by a Configuration Table Entry are de-

termined to be available. If no more tuples of the type specified exist within

the CIS when the GetNextTuple is called, card services returns a code indicat-

ing that no more items are available.

Note that the GetFirstTuple, GetNextTuple, and GetTupleData functions use

the same argument packet format. This simplifies calling these utility func~

283

Toshiba_Apricorn 1006-0293
|PR2018—01067

Toshiba_Apricorn 1006-0294
IPR2018-01067

PCMCIA System Architecture

tions (since the argument packet returned by one function can be used when

calling the other).

Simplifying CIS Processing for Memory and MTD

Clients (GetFirstPartition, GetNextPartition,

GetFirstRegion, GetNextRegion)

Some client drivers may need to obtain information describing partitions and

regions within memory cards. Since obtaining the necessary information re-

quires reading multiple tuples, the GetFirst/NextRegion and

GetFirst/NextPartition functions can be used by clients to get the required in-

formation without having to process the tuples individually.

Resource Management Services (Assigning Resources)

Card Services maintains a database of resources available within the system.

Client drivers can call card services to verify availability of resources needed

by their PC Card. Configuring a PC Card and programming the HBA is a two

step process.

1. The client driver must acquire each resource from the resource table one

at a time. If any of the resources required are not all available, this particu-

lar combination of resources cannot be satisfied and another group must
tried.

2. Once all resources required by the PC Card have been successfully allo-

cated, the actual configuration (allocation of these resources to the HBA
and PC Card) occurs.

The resource management functions allow the client driver to verify the avail-

ability of and to allocate resources required by the PC Card. These functions

are listed in table 20~8. The services in the shaded boxes were added by the PC

Card 95 standard. Refer to the card services specification for details related to
these functions.

284

Toshiba_Apricorn 1006-0294
|PR2018—01067

Toshiba_Apricorn 1006-0295
IPR2018-01067

Chapter 20: Card Services

Table 20-8. Resource Management Functions

Resource Management Functions

RequestIO Used to request I/O address ranges for the PC Card. This function can be

called only once per socket, and a maximum of two I/0 address ranges can be
specified per card. Input parameters request the starting or base address for
each range and the number of I/O address locations requested for each range,
and whether a given address range is to be shared with other devices within

the system. This function, if successful, assigns the specified [/0 address
ranges to the client and adjusts the card services resource table to indicate
that the aSsigned ranges are no longer available.

RequestIRQ Used to obtain a system interrupt line for the calling client. The client speci-
fies which interrupt line or lines will satisfy its interrupt needs. Input
parameters request that an interrupt be either exclusive (not shared), time-

multiplexed shared {client coordinates with other clients sharing this line,
using the ModifyConfiguration function to enable and disable its connection
to the interrupt line) or shared dynamically through an interrupt sharing

protocol supported by the system. An input parameter also specifies whether
the interrupt sent from the PC Card should be pulse or level mode. This func-
tion, if successful, assigns the specified IRQ line to the client and adjusts the
card services resource table to indicate that the assigned IRQ is no longer
available.

RequestWindow Allows the client to request ownership of a block of system memory ad-
dresses. The client passes the starting (base) address and the size of the

memory window along with a variety of other parameter to card services.
Other parameters include: type of memory window (attribute or common),
window enabled or disabled, whether window can be shared with other cli-

ents (only time-multiplexed sharing is permitted), whether-paging of window
is enabled, and speed of the memory devices. This function assigns the ad-
dress ranges {if available) to the client and adjusts the resource table to
indicate that they are no longer available. Note that this same block of ad-

dresses can be assigned to another client if the shared parameter is set. This
function can be called multiple times per socket, up to the maximum number
of memory windows supported by the HBA. Card services passes a window
handle back to the client to be used when calling other functions pertaining to
this window.

Adjusts the resource"table by releasing the [/0 address range(sl acquired by a
client with the RequestIO service.

Adjusts the resource table by releasing the [KO acquired by a client with the
RequesthQ service.

Release-Window Adjusts the resource table by releasing the block of memory address locations
acquired by a client with the Request Window function. The window handle
is passed to card services to specify the window to be released.

285

Toshiba_Apricorn 1006-0295
|PR2018—01067

Toshiba_Apricorn 1006-0296
IPR2018-01067

PCMCIA System Architecture

Table 20-8. Resoarce Management Functions (Continued)

Resource Management Functions

-'- .. "w 222:2" "s 3 '. . 93 =--

ters assigned t cqmred
with the RequestWindow function to be modified. These parameters include
memory device speed, window type (attribute or memory) and window en-
abled or disabled. The window handle is passed to card services to specify the
window to be modified.

MapMemPage Selects a 16KB memory block within the PC Card to be mapped into a 16KB
page within system memory. The 16KB memory block within the PC Card is
identified by the client with an absolute offset value from the beginning of the
PC Card's memory array.

RequestSocketMask Selects the status change events that the client wishes the PC Card to generate.
The client specifies which status change events it wants to be generated at the
socket. A bit-map of the events masks each status change event that should
not be reported by the HBA from the specified card. Note that during the
Register-Client function, the client driver indicates which status change events
it wishes to be notified of, setting a global event mask.

ReleaseSocketMask Releases the status change events mask, so that no status change events are
_ reported by the PC Card residing in this specified socket.

ModifyConfigut-ation Allows the configuration established by the Request Configuration function to
be modified. Note that IRQ routing and the 1/0 address range assigned can-
not be modified with this function. These parameters can only be changed by
first releasing the configuration and then performing the requests for those
resources again.

RequestConfiguration Used to establish the configuration for an I/O interface. The 1/0 address
ranges and system interrupt previously acquired are established at the hard-
ware level (HBA and PC Card}. Other configurable items are also specified
based on the values indicated by the selected Configuration Table Entry, in-
cluding: Vcc, Vpp], Vpp2, interface type {memory only or memory/IO) and
setting for the configuration registers, if present.

ReleaseConfiguration This function releases the configuration information set previously using the
RequestConfiguration function. This function returns the interface to a mem-

ory-only interface and power is removed from the socket {if no memory client
indicates its use of the PC Card). The IRQ and [/0 resources must be released

separately to adjust the resource table.

286

Toshiba_Apricorn 1006-0296
|PR2018—01067

Toshiba_Apricorn 1006-0297
IPR2018-01067

Chapter 20: Card Seririces

Requesting a Resource

A client driver may use three types of request functions to determine if the re-

sources that its PC Card requires is available. These functions include:

RequestIO—used to request a range of I/O address locations

RequestIRQ—used to request a system interrupt line

RequestWindow—used to request a range of memory address locations

RequestDMA—used to request a DMA channel.

A client driver whose PC Card requires one or more of these system resources

calls card services to determine their availability. The client passes its handle

to card services along with a pointer to the memory buffer containing the in-

put argument packet. The argument packet passed to card services specifies

parameters identifying the resource being requested. Card services checks the

allocation table to determine if the requested resource is available. If available,

card services updates its resource table, indicating that the resource is no

longer available and returns "success" along with the argument packet, verify—
ing that the resource parameters that have been granted.

Once all of the resources required by a PC Card have been acquired with the

request functions, the actual task of programming the HBA and configuring

the card can then occur. See the chapter entitled, "Client Drivers".

Card services has no way of knowing what resources are available for a PC

Card to use. As a result, platform-specific utility programs have been written

to probe the system and build a data base of available resources. This data

base is passed to card services to manage.

Requesting Resource Combinations

Consider the example of a serial port that typically requires a range of 1/0

addresses and an IRQ. In a PC-DOS environment, a serial port is typically

configured either as COMI (I/O locations 3F8h-3FFh «S: IRQ4), COM2 (2F8h-
ZFFh (S: IRQ3), COM3 (3E8h-3EFh 8: IRQ4) or COM4 (2E8h—2EFh 8: IRQS). The

client driver for a serial port must ensure that both the RequestIO and the Re-

questIRQ functions return success before configuring the PC Card and HBA.

Assume that the client attempts to configure the serial port as COMl. If the

RequestIO function returns "success", then I /0 locations 3F8h—3FFh are allo-

287

Toshiba_Apricorn 1006-0297
|PR2018—01067

Toshiba_Apricorn 1006-0298
IPR2018-01067

PCMCIA System Architecture

cated to the client driver and the resource table is updated to indicate these

I/0 addresses are no longer available. Next, the client driver calls RequestIRQ

to obtain IRQ4, but card services returns BADJRQ to the client, indicating

that IRQ4 is not available. If the client simply moved to the next configuration

option (COM2), the I/0 address range 3F8h~3FFh would remain allocated and

other clients requesting an address within that range will not be successful,

even though the addresses are not being used.

To avoid this problem, the client must release resources that have been

granted but will not be used. The ReleaseIO function would be used in this in-

stance before moving on to the next configuration option. Similarly, the

ReleaseIRQ and ReleaseWindow are used to release interrupts and memory

address ranges, respectively.

Configuring the HBA and PC Card

(RequestConfiguration)

When the client driver has obtained from card services all of the resources

needed by the card, then the actual configuration can take place. Prior to this

time the rescurces have been granted to the client driver for assignment to its

PC Card, but neither the HBA nor the PC Card have yet been configured to
use these resources.

The card services client uses the RequestConfiguIation function to complete

the configuration process. When the RequestConf-iguration function is called,

card services makes the appropriate calls to socket services to set the specified

values into the window registers and IRQ steering registers. Also, the index

number of the Configuration Table Entry whose configuration options were

successfully allocated is written to the card's Configuration Option Register,

located in attribute memory.

The client must ensure that it is ready to perform all of the functions associ»

ated with a fully-operational card before calling the RequestConfiguration

function. Once the function call completes, the PC Card and HBA are config-

ured and the PC Card is now "on line". For example, in an x86 environment, if

interrupts are used by a given PC Card, the client driver must ensure that the

pointer to the device's interrupt service routine has been installed in the inter-

rupt table prior to configuring the card. It will then be prepared to handle the

cards interrupt requests.

288

Toshiba_Apricorn 1006-0298
|PR2018—01067

Toshiba_Apricorn 1006-0299
IPR2018-01067

Chapter 20: Card Services

Bulk Memory Services

Bulk memory services primarily relate to memory clients, utility programs,

execute-in-place (XIP) managers, and other clients requiring access to memory

cards. These clients can use bulk memory functions to access memory devices

without knowing the details of the various memory technologies used by PC
Cards. The functions within the bulk memory services group support RAM

devices, but not devices such as flash memory.

Table 20-9. Bulk Memory Functions

Bulk Memory Services Functions

OpenMemory This function opens an area of common memory within a PC Card that
is to be accessed some time in the future {i.e. read, write, copy or erase
operation). A memory handle is returned that identifies this memory
range when performing one of the operations mentioned above.

 ReadMemory This functions reads data from an area of common memory specified by
a given memory handle (obtained from the OpenMemory function}. The
calling MTD passes a pointer during the call specifying a system mem—
ory buffer to which data is to be returned.

This function writes data to a common memory area identified with a

memory handle obtained via the OpenMemory function. The calling
MTD passes a pointer to a system memory buffer that contains the data
to be written.

 WriteMemory

This function reads data from a source location and writes it to a desti-

nation within the same common memory region that is identified by a
memory handle obtained via the OpenMemory function.

This function closes an area of common memory that was previously
opened with the OpenMemory function. The calling MTD passes the
memory handle of the memory area to be closed along with the call.

CopyMemory

 CloseMemory

RegisterEraseQueue Establishes an erase queue where erase entries can be made.

CheckEraseQueue Notifies card services that one or more erase request entries have been
sent to the erase queue.

DeregisterEraseQueue Eliminates an erase queue previously registered using the RegisterE-
raseQueue function. This function fails if erase entries within the queue
are still pending completion.

Since flash memory devices require particular erase and Write algorithms,

PCMCIA chose not to attempt embedding the code necessary to support all

potential variations into card Services. Instead, a memory device that requires

a specific algorithm must supply a memory technology driver (MTD) that is

designed to handle access to the card. When a client such as a memory client

attempts to access memory within a flash card, card services passes the re-

289

Toshiba_Apricorn 1006-0299
|PR2018—01067

Toshiba_Apricorn 1006-0300
IPR2018-01067

PCMCIA System Architecture

quest to the flash MTD, which makes the low-level access to the memory de~
vice. Table 20-9 lists the bulk memory functions and provides a brief

description of each.

Advanced Client Functions

Advanced client functions include miscellaneous functions that satisfy the

special needs of some client drivers. Table 20-10 lists the advanced client

functions and provides a brief description of each. Refer to the PCMCIA card

services specification for details.

Table 20-10. Advanced Card Services Functions

Advanced Card Services Functions

 ReturnSSEnl-ry Provides a means of gaining access directly to socket services. Normally,
access to socket services is denied by card services to ensure that it main-
tains synchronization with the state of the I-IBA. If client drivers are
allowed access to socket services, the HBA setting can be modified without
card services knowledge. If absolutely required, a client driver can request
access to socket services via the ReturnSSEntry call. The programmer must
be certain that nothing is changed at the REA level that will affect the op—
eration of card services.

Determines the physical adapter and socket that is assigned to a logical
socket number.

Identifies the logical socket number assigned to a physical adapter and
socket.

Identifies the physical adapter and window that are mapped to a given
logical window handle.

and window.

Assigns an MTD to a region of memory. When access to the assigned region
occurs, the MTD is called to handle the memory operation.

RegisterTimer

 Allows a client driver to register for'callback at specified time intervals. A

client may register multiple times to get notification at various time inter-
vals. Timing is based on lms interval. The client specifies the call-back
interval based on the number of lms ticks specified during registratiOn. A
timer handle is returned during registration and passed to the client when
the call-back occurs. This permits the client to identify the specific timer
that has expired when the call-back occurs.

Allows a client driver of a card that does not have a C13 to specify the char-
acteristics of a given region within the card.

Scans the CIS by reading the tuple chain contained on the PC Card. The
function returns the number of valid tuples found within the chain.

SetRegion

ValidateCIS

290

Toshiba_Apricorn 1006-0300
|PR2018—01067

Toshiba_Apricorn 1006-0301
IPR2018-01067

Chapter 20: Card Services

Table 20-10. Advanced Card Services Functions (Continued)

Advanced Card Services Functions

RequestExclusive Permits a client driver to request exclusive access to a given PC Card. Card
services ensures that no other client is currently using the card before
granting exclusive access to this client driver. If another client driver is
currently using the card and is unwilling to release control, then function
will fail.

ReleaseExclusive Releases exclusive access to a card that was previously granted via the
RequestExclusive function.

GetFirstClient Returns the client handle of the first client to register with card services.

GetNextClient Returns the client handle of the next client to register with card services.

GetClientinfo Provides client driver information for the client handle specified.

AddSocketServices Allows another socket serVices handler to be installed to support an addi-
tional HBA.

ReplaceSocketServices Replaces the current version of socket services with a new version. I

VendorSpecific Defined by the vendor of card services to extend functionality.

AdjustResourceInfo Adjusts the resource database maintained by card services. This data base
contains the system resources that are available for use by PC Cards. This
function allows system resources to either be added or removed from the
database.

The Call-Back Process .

Card service makes call-backs to clients that are triggered by a wide variety of

events. The type of call-back events can be categorized as:

0 Card insertion/removal events

0 Registration complete event

Status Change events

Card insertion/ejection request events

Exclusive request/compete events

Reset request/complete events

Client Information request event

Erase Complete event

MTD Request event
Timer event '

New socket services event
COII
When making call-backs card services uses the call-back entry point specified

by each client during registration. The specific events supported by card

services are listed in figure 20—1 1.

291

Toshiba_Apricorn 1006-0301
|PR2018—01067

Toshiba_Apricorn 1006-0302
IPR2018-01067

PCMCIA System Architecture

Some events must be supported by all clients. During registration, the client
driver specifies the individual events that it wishes to be notified of. The

events that must be supported include:

0 Client_Info — a client may request information about another client when

calling the GetClientInfo service. Card services calls-back the specified cli-

ent using the Clientglnfo call-back.

o Exclusive_Request — an client that has previously configured a PC Card

may receive a RequestExclusive call-back, indicating that another client

wishes to gain exclusive access to the PC Card. For example, a generic cli-

ent driver may have enabled a modern, but a device-specific client driver

may want to gain exclusive access to the same PC Card.

- Reset_Request — request by a client to reset a socket/PC Card must be

granted by other clients using the same socket/PC Card. This call-back

notifies a client that a ResetRequest has been made.

Identifying a Status Change Event

When a status change event occurs at one of the PCMCIA sockets, an inter-

rupt is generated by the HBA. Card services is notified of the event via a

system interrupt (called a status change or management interrupt). When the

card services receives the interrupt, it must determine which socket encoun-

tered the status change event. Card services accomplishes this by calling the

socket services Acknowledgelnterrupt function which returns the socket(s)

that experienced the status change event. Once the socket or sockets that have

experienced a status change have been identified, then card services calls the

GetStatus function to determine which event caused the interrupt.

The Acknowledgeinterrupt function must be called once for each HBA in the

system. The client supplies the HBA number to socket services when the Ac—

knowledgelnterrupt function is called, and socket services returns a bit map of

the sockets within the adapter that have experienced a status change. When

obtaining status information from the I-IBA, socket services also prepares the

HBA to generate another status change interrupt if another should occur.

The Acknowledgelnterrupt function only identifies the sockets that have ex-

perienced a status change. After the Acknowledgelnterrupt routine completes,

card services then calls the socket services GetStatus function, HBAs typically

preserve the state of the status change so that the exact status change event

that caused the interrupt can be determined using the GetStatus function. If

the HBA does not preserve this state information, then socket services must.

292

Toshiba_Apricorn 1006-0302
|PR2018—01067

