
"The 'must-have' PC architecture reference set."

-PC Magazine's "Read Only" column

PCMC

SYSTEM

ARCHITECTURE
16-BIT PC CARDS

SECOND EDI TION

MINDSHARE, INC.
Don Anderson

PC SYSTEM

ARCHITECTURE

S E R I E S

0
1 KINGSTON 1006

PCMCIA System
Architecture
16-Bit PC Cards

Second Edition

MINDSHARE, INC.

DON ANDERSON

TT

ADDISON-WESLEY

Boston • San Francisco • New York • Toronto • Montreal

London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

i

2

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial capital letters or all capital letters.

The author and publisher have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors
or. omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

Library of Congress Cataloging-in-Publication Data

Anderson, Don, 1953-
PCMCIA system architecture : 16-bit cards/ MindShare, Inc., Don

Anderson.
p. cm.

Includes index.
ISBN 0-201-40991-7 (alk. paper)
1. PCMCIA cards (Microcomputers) 2. Computer architecture.

I. MindShare, Inc. II. Title.
TK7895.P38A63 1995
004.6'4-dc20 95-44074

CIP

Copyright© 1995 by MindShare, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Sponsoring Editor: Keith Wollman
Production Coordinator: Deborah McKenna
Cover design: Barbara T. Atkinson
Set in 10 point Palatino by MindShare, Inc.

Text printed on recycled and acid-free paper.

ISBN 0201409917

7 8 9 101112 MA 06 05 04 03

7th Printing May 2003

The publisher offers discounts on this book when ordered in quantity for special sales. For more infor

mation, please contact Pearson Education Corporate Sales Division, One Lake Street, Upper Saddle

River, NJ 07458, (800) 382-3419, corpsales@pearsontechgroup.com

ii

3

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

For Doris and Darrel Anderson, my mother and father.

iii

4

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

The PC System Architecture Series
MindShare, Inc.
Please see our web site (http://www.awprofessional.com/series/mindshare) for more information on these titles.

AGP System Architecture: Second Edition
0-201-70069-7

CardBus System Architecture
0-201-40997-6

Fire Wire® System Architecture: Second Edition
0-201-48535-4

InfiniBand System Architecture
0-321-11765-4

ISA System Architecture: Third Edition
0-201-40996-8

PCI System Architecture: Fourth Edition
0-201-30974-2

PCI-X System Architecture
0-201-72682-3

PCM CIA System Architecture: Second Edition
0-201-40991-7

Pentium® Pro and Pentium® II System Architecture: Second Edition
0-201-30973-4

Pentium® Processor System Architecture: Second Edition
0-201-40992-5

Plug and Play System Architecture
0-201.:41013-3

Protected Mode Software Architecture
0-201-55447-X

Universal Serial Bus System Architecture: Second Edition
0-201-30975-0

HyperTransportTM System Architecture
0-321-16845-3

iv

5

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Contents

About This Book

The Mind Share Architecture Series .. 1
Organization of This Book ... 2

Part One: Introduction to PCMCIA .. 2
Part Two: Socket and Host Bus Adapter Design ... 2
Part Three: PC Card Design .. 3
Part Four: PCMCIA Software ... ; 4
Part Five: ExCA (QuickSwap) ... 5
Part Six: An Example HBA .. 5
Appendices ... 6

Who Should Read This Book ... 6
Prerequisite Knowledge'. ... 6
Documentation Conventions ... · ... 6

Hex Notation .. 6
Binary Notation .. 7
Decimal Notation ... 7
Signal Name Representation ... 7
Identification of Bit Fields (logical groups of bits or signals) 7

CarBus , .. · 8
We Want Your Feedback ... 8
E-Mail/Phone/FAX : ... 8
Mailing Address ... 8

Part One

Introduction to PCMCIA

Chapter 1 : The Problem

The Mobile Computing Environment ... 11
Small Form-Factor 1/0 Expansion Devices .. .-.... 12

Chapter 2: The PCMCIA Solution

The Virtual Floppy Drive Subsystem ... 13
The Lack of a Standard Memory Card Design ... 14
Emergence of PCMCIA ... 14

V

6

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Support for 1/0-based PC Cards Added ... 15
The PC Card Standard ... 15
Summary of PCMCIA Releases ... 17

Chapter 3: Tying the Pieces Together

Overview ... 21
The PC Card .. 22
Interoperability: PCMCIA Sockets and The PCMCIA Host Bus Adapter 25
Initializing the Host Bus Adapter: Socket Services .. 27
Configuring the Card: Card Services & Enablers .. 28
Accessing PC Cards After Configuration ... 29
The Metaformat .. 29
Card Types and Dimensions .. 35

Part Two

Socket and Host Bus Adapter Design

Chapter 4: The Physical Specifications

Card Types I, II, and III ... 36
Extended Card Types I and II ... 39

The Card and Socket Connectors ... 40
Card and Socket Keying .. 40
Pin Length ... 42

Environmental Characteristics ... 43
Connector Environmental Standards ... 43
PC Card Environmental Standards 44

Overview ... 47

Chapter 5: The Memory-Only Socket Interface

The Memory Interface ... 48
Card Power .. , 50

Release 2.x Socket : ... 50
Low-Voltage Socket. .. 51

Voltage Sense Pins (not used in 2.x systems) .. 51

The Power-Up Sequence ... 53
Vppl and Vpp2 .. 54

Address Signals .. 55
Data Lines ... 59

vi

7

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Contents

PC Memory Card Transaction Definition .. 59
PC Memory Card Status Signals ... 60

Card Detection ... 61
Ready Status .. 62
Write-Protect Status .. 62
Low Battery Detection .. 63

Bus Cycle Control ... 64
Card Reset ... 64

PC Card Memory Transfers .. 65
Attribute Memory Read Transfers .. 65
Attribute Memory Write Transfers ... 67
Common Memory Read/Write Transfers .. 68

Common Memory Read or Write Transfer (16-Bit Hosts) 68
Common Memory Read or Write Transfer (8-Bit Hosts) 70
Common Memory Read/Write Timing with Wait.. ... 71

Chapter 6: The Memory or 1/0 Interface
Overview ... 7 4
The 1/0 Socket Interface ... 7 4

PC Memory or I/ 0 Card Transaction Definition .. 77
The I0IS16# Pin .. 78
The IREQ# Pin ,. .. 78
The INP ACK# Pin .. 78
The STSCHG# Pin .. 78
The· SPKR# Pin .. 79

1/0 Transfers ... 79
Single Byte Access to/from 8-Bit I/0 Devices .. 80
Word Access to/ from 8-Bit I/ 0 Devices ... 82
Byte Accesses to/from 16-~it Register ... 82
Word Accesses to/from 16-Bit I/0 Registers .. 83

Chapter 7: The DMA Interface
Background ... 86
Review of PC Compatible DMA Transfers .. 86

A DMA Example .. 87
DMA Channels Supported by ISA .. 90

The DMA Socket Interface ... 91
The DREQ#.Pin ... 92
The DACK/REG# Pin ~ ... 93
The TC Pin · .. 93

vii

8

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

OMA with PC Card ... 93
OMA Transfer Timing (PC Compatible) .. 94

DMA Bus Cycle .. 94
Changes to Socket Services .. 98
Changes to Card Services .. 99

Chapter 8: The ATA Interface
The AT A Inter£ ace ... 101

The ATA Interface ... 103
Differences Between Standard ATA and PCMCIA ATA 105
ATA System Resource Requirements .. 105
Supporting Two Drives ... 106

Chapter 9: The AIMS Interface
The AIMS Inter£ ace ... 107
The AIMS Register Set .. 109
The Block Transfer · ... 109
The AIMS Commands ... 110
Accessing the AIMS Registers ... 112

Chapter 10: The PC Card Host Bus Adapter
Introduction .. 113
Host Bus Adapter Functions ... 115

The Socket Inter£ ace ... 116
Maximum Number of HBAs ... 116
Maximum Number of Socket Per HBA .. 117

Data Buffers/ Transceivers ... 117
· Card Detection .. 117
Power Switching · ... 119

V cc Power Controls .. 119
V cc and 2.1 Compliant HBAs ... 119
V cc and Low Voltage Sockets ... 120

Vppl and Vpp2 Control .. 120
Address Translation .. 121

Memory Address Mapping ... 121
Direct Mapping .. 121
Remapping the Host Address to PC Cards with Fixed Addresses 122
System Address Space Smaller Than Socket Address Space 124
System Address Space Larger Than Socket Address Space 125

viii

9

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Contents

Memory Address Windows ... 126
Overlapping Memory Windows .. 127

I/0 Address Mapping ... 130
Direct Mapped I/0 Addresses .. 130
Overlapping I/ 0 Windows .. 130
Other Information Associated with Address Windows 132

Socket Transfer Timing and Control.. ... 133
Interface Control .. 133
Socket Access Timing ... 134
Stretching Socket Access Timing .. 134
Word or Byte Access .. 134
PC Card I/0 Device Size (I0IS16#) .. 135

Card Interrupt Steering and Handling .. 135
Level Mode Interrupts ... 137
Pulse Mode Interrupts / .. 138

Card Event Notification (The Status Change Interrupt) ... 139
OMA Support ... 139
Power Conservation Modes .. 141
Card Lock Mechanism ... 141
Error Detection and Correction (EDC) .. 141

Part Three
PC Card Design

Chapter 11: The Card Information Structure (CIS)
Overview ... 145
The Card Information Structure (CIS) .. 147

Tuples .. 148
Tuple Format ... 148
A Sample Tuple ... 149

The Configuration Table .. 151
The Configuration Entry Tuple .. 151
Interpreting the Configuration Table ... 154
Multiple Function PC Cards ... 157

Devices Commonly Used for the CIS ... 158
CIS Access Timing .. 158

Summary of Layer 1 Tuples : · 158

ix

10

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Chapter 12: Function Configuration Registers
Configuration Registers .. 163

Configuration Option Register .. · 164
Card Configuration and Status Register .. 166

Status Change .. 166
Size of Host Expansion Bus .. 168
Audio Enable ... 168
Power Conservation Mode ... 168
Interrupt Pending .. 169

Pin Replacement Register .. 169
Socket and Copy Register .. 170
Extended Status Register ... 171
I/ 0 Base Registers .. 172
1/0 Limit Register .. 173

Chapter 13: An SRAM Card Example
An SRAM Card Example .. 175
The SRAM CIS ... 177

Device Information Tuple .. 178
Level 1 Version/ Product Information Tuple ... 178
Checksum Tuple ... 179
Termination Tuple .. 179

Chapter 14: A Flash Card Example
An Example Flash Card Implementation .. 181
A Flash Memory CIS Example ... 183

Device Information Tuple .. 184
Device Geometry Tuple ... 184
JED EC Device Identifier (ID) Tuple .. 185
Level 1 Version / Product Information Tuple ... 185
Configuration Tuple ... 186
Termination Tuple .. 186
Flash Card Configuration Registers .. 187

. Configuration Option Register ... 187
Configuration Status Register .. 187

X

11

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Contents

Chapter 15: A FAX/Modem Example
An Example FAX/Modem Card .. 189
FAX/Modem Resource Requirements ... 191
A FAX/Modem CIS Example .. 191

Device Information Tuple .. 192
Level 1 Version / Product Information Tuple ... 192
Card Manufacturer Identification (ID) Tuple .. 192
Function Identification Tuple .. 193
Function Extension Tuples .. 194
Configuration Tuple ... 194
Configuration Table ... 195
No-Link Tuple .. 196
Termination Tuple .. 196
FAX/Modem Configuration Registers ... 196

Configuration Option Register···························:··· 196
Configuration Status Register .. 197
Pin Replacement Register ... 197

Chapter 16: An ATA PC Card Example
An ATA PC Card Example .. 199
AT A System Resource Requirements ... 201
Supporting. Two Drives ... 201
The ATA Card's CIS .. 202

Disk Device Function Extensions ... 202
IPL from a PCMCIA ATA Drive ... 204

An Example ATA Card CIS .. 205
Device Information Tuple .. 206
Level 1 Version / Product Information Tuple ... 206
Configuration Tuple ... 206
Configuration Table ... 207
Function Identification Tuple .. 207

Function Extension Tuples .. /, ... :·· 208
No-Link Tuple .. 208
Termination Tuple .. 208
Configuration Registers ... 208

xi

12

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Chapter 17: A Multiple Function PC Card Example
Overview ... 209
An Example Multiple Function PC Card .. 210
An Example CIS ... 210
Configuration Registers .. 214

Configuration Option Register .. 215
Card Configuration and Stat~s Register .. 216
I/0 Base Registers .. 217
I/0 Limit Register .. 218

Shared Interrupt Handling ... 219
Review of Single Function Interrupt Handling .. 219

IRQ Initialization ~ .. 219
Handling the Interrupt Request ... 220

Multiple Function Interrupt Handling ... 221
IRQ Initialization ... 221

Function Zero .. 221
Function One ... 222

Handling the Interrupt Request ... 222
Applications Unaware of Multiple Function Protocol .. 224

The Problem ... 224
An Example Solution .. 224
Changes to Card Services Functions .. 225

Part Four
PCMCIA Software

Chapter 18: The Configuration Process
Overview of the Configuration Process .. 229

The Role of the CIS ... 231
The Role of the Socket Service Functions ... 231
The Role of Card Services .. 231
The Role of the PC Card Enabler .. 232

Dedicated Enablers ... 232
Generic Enablers .. 233
Point Enablers .. 233

PCM CIA Software Solutions .. 234

xii

13

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Contents

Chapter 19: Socket Services
The Role of Socket Services-Making Life Easier .. 235
Installation and Initialization .. 237
Socket Services Functions ... 237

Socket Services Calling Convention .. 239
Adapter Functions .. 243

Verifying SS is installed (GetAdapterCount) .. 243
Getting Information from Socket Services (GetSSinfo) 243
When Two or More Socket Services Are Needed (GetSetPriorHandle) 244
Controlling HBA Parameters ... 245
Vendor Functions (GetVendorinfo, VendorSpecific) 247
Indirect Access to PC Card Memory (GetAccessOffsets) 248
Determining What Card Caused a Status Change Interrupt
(Acknowledgeinterrupt) ... 248

Socket Functions ... 249
Controlling Individual Sockets (InquireSocket, SetSocket, GetSocket) 249
Determining the Current Status of the Socket and PC Card (GetStatus) 252
Resetting the Socket Under Software Control (ResetSocket) 252

Window Functions ... 253
Controlling Windows (InquireWindow, GetWindow and SetWindow) 253

EDC Functions .. 259
Maximum Number of Sockets Per HBA .. 259
Maximum Number of HBAs Supported by Socket Services 260

Chapter 20: Card Services
Overview ... 261
Enabling PC Cards Before Card Services .. 263
The Role of Card Services ... 264
Initialization of Card Services .. 265

Verifying the Presence of Socket Services , ... 265
Verifying that Card Services Installed .. 266
Determining Availability of System Resources ... 266
Power Management Support .. 267

Card Services Calling Conventions ... 267
Specifying the Service .. 268
The Handle ... 269
The Argument Packet .. 272
Return Codes .. 272

The Pointer Argument-'!·· 272

xiii

14

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Client Services (Client Registration and Support) .. 275
Determining If Card Services Is Installed (GetCardServicesinfo) 276
Signing Up with Card Services (RegisterClient) .. 276

Receiving Notification of Status Change Events ... 277
Determining the Order of Call-Backs: Client Driver Type 278
Artificial Card Insertion Events ... 279

Telling Card Services You're Leaving (DeregisterClient) 280
Client Utility Services (Detecting a PC Card) .. 280

Evaluating the PC Card and Socket (GetConfigurationinfo) 281
Scanning the CIS (GetFirstTuple, GetNextTuple, GetTuple Data) 283
Simplifying CIS Processing for Memory and MTD Clients 284

Resource Management Services (Assigning Resources) ... 284
Requesting a Resource , .. 287
Requesting Resource Combinations ... 287
Configuring the HBA and PC Card (RequestConfiguration) 288

Bulk Memory Services ... 289
Advanced Client Functions .. 290
The Call-Back Process ... 291

Identifying a Status Change Event.. ... 292
The Client Call-Back .. 293

Configuring PC Cards During POST .. 294

Chapter 21 : Client Drivers
Overview ... 295
The Card Insertion Call-Back ... 296
Memory Drivers and Memory Technology Drivers .. 297

SRAM Client Drivers ... 299
SRAM Client Driver Registers with Card Services .. 300
The SRAM Client Driver Call-Back ... 300

Flash Client Drivers ... 301
The Flash File System .. 303
MTD Registers with Card Services .. 303
The MTD Call-Back ... 303
MTD Registers Memory Regions ... 304
Flash Client Driver Registers with Card Services ... 304
The Flash Client Driver Call-Back. ... 304
Accessing Flash Memory .. 305

1/0 Card Client Drivers ... 305
I/ 0 Client Driver Registers with Card Services ... 306
The 1/0 Client Driver Call-Back ... : 307

xiv

15

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Contents

Identifying the PC Card ... 307
Determining Resources Requirements .. 307
Requesting the Resources .. 308
Configuring the PC Card ... 309

Point Enablers .. 309

Chapter 22: Booting from PC Cards
Configuring PC Cards During POST .. 311

The Problem .. 312
The Solution .. 312

Bootable Memory Cards ... 312
Bootable ATA Devices .. 313

Chapter 23: Execute In Place (XIP)
The XIP Goals ... 315
The XIP Software Hierarchy ... 316

XIP File Management ... 316
The XIP Loader ... 317
The XIP Device Drivers (API and Hardware Manipulation) 317

LXIP ... 318
EXIP ... 318
SXIP ... 318

Part Five
ExCA (QuickSwap)

Chapter 24: ExCA (QuickSwap)
The ExCA Goal ... 321
ExCA Scope ... 322
ExCA Host Bus Adapter Requirements .. 322

Address Mapping (memory and I/0) .. 322
Memory Address Mapping .. 323
I/0 Address Mapping .. 323

Interrupt Support ... 324
Status Change Interrupt .. 324
PC Card Interrupts .. 324

System Power Requirements.-.. 326
PC Card Insertion/Removal ... 326

xv

16

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Card Insertion .. 327
Card Removal .. 327

ExCA Socket Services ... 327
ExCA Card Services ... 329
ExCA PC Cards ... 330
PC Card Event Wake Up .. 330

Part Six
An Example HBA

)

Chapter 25: An Example HBA-The CL-PD6722
Introduction to the CL-PD6722 ... 335
Socket Power Control .. 336

Vee Control ... 337
Vppl Control .. 338

PC Card Data Transfers ... 338
Address Window Mapping .. 340

Memory Interface ... 340
I/ 0 Interface ... 342

Status Change Reporting .. · .. 344
Interrupt Steering ... 345
The AT A Socket Inter£ ace ... 346

ATA Registers .. 346
OMA Support · ... 348

Appendices
Appendix A: SRAM CIS Example ... 351
Appendix B: Flash Memory CIS Example .. 359
Appendix C: FAX/Modem Tuple Example ... 373
Appendix D: ATA Disk CIS Example ... 405
Appendix E: Metaformat Layers 2, 3, and 4419
Appendix F: References .. 423
Glossary ... 425
Index .. 435

xvi

17

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Figures

Figure 3-1. Relationship of PCMCIA Software and Hardware 23
Figure 3-2. The Card Information Structure Contains Configuration Options for the PC

Card ... 25
Figure 3-3. PCM CIA Sockets Can Be Incorporated in a Wide Variety of Systems 26
Figure 3-4. Configuration and Status Reporting Software Flow Versus Run Time

Software Flow .. 30
Figure 4-1. The Interconnect Area is the Same Thickness for all PC Cards 36
Figure 4-2. Type I Card with Battery and Write Protect Switch 37
Figure 4-3. Type II Card with External I/ 0 Connector ... 38
Figure 4-4. Type III Card Outline .. 38
Figure 4-5. Type I and II Extended Cards ... 39
Figure 4-6. Card and Socket Keying-Standard Interface .. .40
Figure 4-7. Low-Voltage Cards Cannot Be Inserted into Standard Sockets40
Figure 4-8. Keying Used with Low Voltage Socket41
Figure 5-1. PCM CIA Memory Socket Interface to Host Bus Adapter49
Figure 5-2; Voltage Switching Performed by HBA .. 51
Figure 5-3. The Socket Power-up Sequence .. 54
Figure 5-4. Addressing Mode Used by Memory Card with 16-Bit Host 56
Figure 5-5. Addressing Mode Used by Memory Card with 8-Bit Host.. 57
Figure 5-6. Only Even Locations Are Accessed from Attribute Memory over the Lower

Data Path .. 58
Figure 6-1. PCMCIA Memory or I/0 Socket .. 76
Figure 7-1. Example DMA Transfer Mechanism ~: 88
Figure 7-2. DMA Signal Interface .. 91
Figure 7-3. Block Diagram of PC Card implementing DMA Transfers 94
Figure 8-1. Typical ATA Interface to IDE Drive ... 102
Figure 8-2. PC Card AT A Disk and Memory Devices ... 103
Figure 8-3. Minimum Signals Required for ATA Socket Interface 104
Figure 9-1. AIMS Socket Interface Signals .. 108
Figure 10-1. The PCMCIA Environment.. ... 115
Figure 10-2. Host Bus Adapter Functional Block with Two Sockets 118
Figure 10-3. PC Card with Memory That Can Be Direct Mapped into the System Ad-

dress Space.·············~··············· ... 122
Figure 10-4. Example of Address Translation Logic Remapping the System Address to

the Bottom of the Common Memory Address Space ... 123
Figure 10-5. Example of Small System Address Range Being Remapped to a Larger

PCM CIA Memory Device ... 125
Figure 10-6. Example of System Address Exceeding PCM CIA Address Range 126
Figure 10-7. Registers Define the Size of the Memory Window and the Size of the Off-

set for Remapping the System Address ... 128
Figure 10-8. Example of Overlapping Memory Windows Causing Contention 129

xvii

18

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMIA System Architecture

Figure 10-9. PC Card I/0 Addresses Mapped Directly to System I/0 Addresses 131
Figure 10-10. Example of I/0 Window Overlapping Addresses of Other I/0 Devices

in the System .. 132
Figure 10-11. HBA Interrupt Steering in an ISA System .. 136
Figure 10-12. ISA Interrupt Sharing Not Permitted with Level Mode IREQ# 137
Figure 10-13. Pulse Mode Interrupts Permit Interrupt Sharing in an ISA System 138
Figure 10-14. HBA Functions Required to Support PC Card DMA 140
Figure 11-1. PCM CIA Software Flow .. 146
Figure 11-2. Example CIS Layout Consisting of a Linked List of Four Tuples 147
Figure 11-3. The Configuration Table Consists of a Number of Entries, Describing the

Configuration Options Supported by the PC Card .. 153
Figure 11-4. Example Configuration Table with One Default and Four Non-Default

Entries ... 156
Figure 11-5. Configuration Table Structure Used by a Triple-Function PC Card 157
Figure 13-1. Block Diagram of 2MB SRAM PC Card ... 176
Figure 13-2. Map of Attribute Memory Addresses on Example SRAM Card 177
Figure 14-1. 20MB Flash Card Functional Diagram ... 182
Figure 14-2. Example Contents of a Flash Card's Attribute Address Space 183
Figure 15-1. Functional Block Diagram of FAX/Modem PC Card 190
Figure 15-2. Example of Attribute Memory Address Contents for FAX/Modem 193
Figure 16-1. Functional Block Diagram of an ATA Disk Drive PC Card 200
Figure 17-1. Functional Diagram of a Multiple Function PC Card 211
Figure 17-2. An Example CIS Structure Supporting Two Functions 213
Figure 17-3. Multiple Function IRQ Sharing Procedure .. 223
Figure 18-1. PCMCIA Software Flow .. 230
Figure 19-1. Relationship of Socket Services to the Rest of the System 236
Figure 20-1. PCM CIA Software Flow .. 262
Figure 21-1. A Sample Configuration Process Used By a Card Services Client 297
Figure 21-2. Memory Client Driver Software Environment .. 299
Figure 21-3. Software Environment Required for Flash Card Support 302
Figure 21-4. I/0 Enabler Registration and PC Card Configuration Process 306
Figure 25-1. CL-PD6722 Socket Power Control Signals ... 336
Figure 25-2. The Power Control Register .. 337
Figure 25-3. Basic Functional Blocks Used During Data Transfers 339
Figure 25-4. Registers Comprising a Single Memory Address Window 341
Figure 25-5. Register Comprising a Single I/ 0 Address Window 343
Figure 25-6. Management Interrupt Configuration Register ... 344
Figure 25-7. Card Status Change Register .. 345
Figure 25-8. Interface Status Register .. 345
Figure 25-9. Interrupt and General Control Register ... 346
Figure 25-10. AT A Socket Interface ... 347

XVlll

19

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Tables

Table 2-1. PCMCIA Feature Summary .. 16
Table 2-2. Evolution of the PCMCIA Specification ... 17
Table 2-3. List of Individual Volumes Included in the PC Card Standard 18
Table 3-1. PCMCIA Card Metaformat .. 31
Table 4-1. Interpretation of Voltage Sense Signals .. .42
Table 4-2. Selected Connector Reliability Specifications .. 43
Table 4-3. Selected PC Card Environmental Specifications .. .45
Table 5-1. Card Voltage Pins .. 50
Table 5-2. Definition of Voltage Sense Pins ... 52
Table 5-3. Interpretation of Voltage Sense Signals by a Low Voltage Socket.. 53
Table 5-4. PCM CIA Address Lines-Memory Interface ... 55
Table 5-5. Addressing Even and Odd Bytes ... 56
Table 5-6. Data Bus .. 59
Table 5-7. PC Card Command Lines for Memory Interface .. 60
Table 5-8. PCM CIA Memory Transaction Types ... 60
Table 5-9. Card and Socket Status Signals .. 61
Table 5-10. Interpretation of the Card Detect Signals .. 62
Table 5-11. Interpretation of Battery Voltage Detection Signals 63
Table 6-1. Pins Added/Removed When Converting from Memory-Only to Memory or

I/0 Interface .. 75
Table 6-2. PCMCIA Transaction Definition .. 77
Table 7-1. Definition of the Miscellaneous Features Field that Defines DMA support. 92
Table 7-2. Interpretation of DMA Request Assignment Bits ... 92
Table 7-3. Typical DMA Clock Speeds in the PC Environment 95
Table 7-4. Socket Service Functions Modified to Support DMA 98
Table 7-5. Modifications Made to Card Services to Support DMA 99
Table 8-1. Signals Defined by ATA But Not Used By PCMCIA 105
Table 8-2. ATA Addressing Options Supported by PCMCIA : 106
Table 9-1. Commands Supported by AIMS Cards ... 111
Table 9-2. AIMS Registers .. 112
Table 10-1. Interpretation of Voltage Sense Lines ... 120
Table 10-2. Address Sent to Socket .. 135
Table 11-1. Basic Tuple Format .. 148
Table 11-2. Example Device Information Tuple for an SRAM Card 149
Table 11-3. Device Type Codes .. 150
Table 11-4. Device Speed Codes .. 150
Table 11-5. Unit Size Codes .. 151_
Table 11-6. Format of the Configuration Table Entry Tuple .. 154
Table 11-7. Tuples defined for Compatibility Layer One (CIS) 158
Table 12-1. Format of the Function Configuration Registers ... 164
Table 12-3. Card Configuration and Status Register and Definition 167

xix

20

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMIA System Architecture

Table 12-4. Pin Replacement Register .. 169
Table 12-5. Socket and Copy Register ... 171
Table 12-6. Format and definition of the Extended Status Register 172
Table 12-7. Address Limit Associated with Function Base Address Register 173
Table 17-1. Tuples Defined for the Primary CIS (Listed in the Order) 212
Table 17-2. Tuples Defined for each Secondary CIS (Listed in the Order) 212
Table 17-4. Configuration Option Register format and Definition 215
Table 17-5. Card Configuration and Status Register and Definition 216
Table 17-6. Address Limit Associated with Function Base Address Register 218
Table 17-7. Card Services Modified for Multiple Function Support.. 226
Table 18-1. Major Vendors of PCMCIA Software Solutions .. 234
Table 19-1. Socket Services Functions ... 238
Table 19-2. Socket Services Function Code Listing .. 241
Table 19-3. Socket Services Return Codes ... 242
Table 19-4. Adapter Information Structure Definition ... 246
Table 19-S__Socket Information Structure Definition .. 251
Table 19-6. Memory Window Characteristics Structure Definition 255
Table 19-7.1/0 Window Information Structure Definition .. 257
Table 19-7. 1/0 Window Information Structure Definition (Continued) 258
Table 20-1. Card Services Listed in Alphabetical Order ... 270
Table 20-2. Card Services Function Codes Listed in Numerical Order 271
Table 20-3. Card Services Return Codes Listed in Alphabetical Order 273
Table 20-4. Card Services Return Codes Listed in Numerical Order 274
Table 20-5. Client Services Functions .. 275
Table 20-6. Client Utility Functions Used by the Client Driver to Access PC Card In-

formation .. 280
Table 20-7. Information Returned by the GetConfigurationlnfo Service 282
Table 20-8. Resource Management Functions ... 285
Table 20-8. Resource Management Functions (Continued) ... 286
Table 20-9. Bulk Memory Functions .. 289
Table 20-10. Advanced Card Services Functions ... 290
Table 20-10. Advanced Card Services Functions (Continued) 291
Table 20-11. Call-Back Events Defined by Card Services .. 293
Table 20-11. Call-Back Events Defined by Card Services .. 294
Table 22-1. Format of the Function Identification Tuple .. 313
Table 22-2. Contents of the Function Identification Byte ... 314
Table 22-3. Contents of the Initialization Byte .. 314
Table 24-1. Interrupts Potentially Available For Use By PC Cards 325
Table 24-2. ExCA Voltage Requirements .. 326
Table 24-3. State of Socket When PC Card is Inserted ... 326

xx

21

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Tables

Table 24-4. Socket Services Functions Required/ Optional for ExCA Compliant Sys-
tems .. 328

Table 24-5. Card Services Functions Required/Optional For ExCA Compliance 329
Table 24-6. Tuples Recommended by the ExCA Specification 330
Table 25-1. Socket Vpp Control.. .. 338
Table 25-2. Example Addressing Scheme Used by ATA Cards 348

xxi

22

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

xxii

Special Recognition

Special thanks to Tom Shanley, my best friend, business partner and hiking
companion, who keeps me on the right path.

Acknowledgments

I extend my appreciation and gratitude to the developers at IBM and Intel
who provided valuable information and insight during the development of
this book and training course. Special thanks to those at the IBM Toronto site
who struggled with me during the early stages. Thanks also to those at Cirrus
Logic who answered many questions and provided valuable information. Fi
nally, I would like to thank Maxtor for providing information on their ATA
drive.

Thanks to those at Norand in Cedar Rapids for their efforts in catching many
errors in the manuscript and suggesting improvements to both text and illus
trations.

23

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

About This Book

The MindShare Architecture Series

The series of books by MindShare on system architecture includes; ISA System
Architecture, EISA System Architecture, 80486 System Architecture, PCI System
Architecture, Pentium™ Processor System Architecture, PCMCIA System Architec
ture, PowerPC™ System Architecture, Plug and Play System Architecture, and
CardBus System Architecture, all published by Addison-Wesley.

Rather than duplicating common information in each book, the series uses a
building-block approach. ISA System Architecture is the core book upon which
the others build. The figure below illustrates the relationship of the books to
each other.

(/)
)>

'"O
0
~
m
:II
'"O
()

-0
()

Platform
lflcif3pf3r1c:ff31'lt

()
ll> a.
OJ
C
rn

'"O
r
C
G)

Architecture Series Organization

1

24

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Organization of This Book

2

PCMCIA System Architecture is organized into six parts consisting of twenty
five chapters. A brief description of each chapter follows:

Part One - Introduction to PCMCIA

Chapter 1: The Problem. This chapter focuses on the industry needs that led
to the emergence of PCMCIA and the development of PC Card Standard.

Chapter 2: The PCMCIA Solution. This chapter discusses the emergence of
PCMCIA, traces its evolution and introduces terminology and key concepts
behind PCMCIA. Key features of the latest release of the 16-bit PCMCIA stan
dard (called the PC Card Standard) are also introduced.

Chapter 3: Tying the Pieces Together. This chapter explains the relation
ships between the various hardware and software elements employed in a
typical PC Card environment. The elements discussed include: the PCMCIA
Host Bus Adapter (HBA); the PC Card socket; the PC Card; socket services;
card services; and enablers.

Part Two - Socket and Host Bus Adapter Design

Chapter 4: The Physical Specifications. This chapter focuses on the various
physical packages defined by PCMCIA for PC Cards and the related envi
ronmental specifications. The chapter also describes the standard socket and
low-voltage socket types.

Chapter 5: The Memory-Only Socket Interface. This chapter details the
memory-only electrical interface between the PC Card and socket. Each pin is
defined and it relationship to the PC Card and the HBA is discussed. The
memory-only interface is the interface initially seen by 16-bit PC Cards when
they are first inserted into a socket. This permits the memory-mapped CIS to
be accessed to determine the PC Card type and interface requirements. If the
card is designed for an interface type other than memory-only, then the HBA
and PC Card are configured to communicate via one of the other interfaces
defined by the PC Card Standard (discussed in the following chapters). Also

25

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

About This Book

discusses the timing of socket accesses to PC Cards of differing speeds, includ
ing transfers with attribute memory and common memory.

Chapter 6: The Memory or 1/0 Interface. This chapter details the memory
or I/ 0 socket interface. The memory-only interface is converted into a mem
ory or I/0 interface by software after it detects that an I/0 PC Card has been
installed into the socket interface. Pins that are added or redefined by the
memory or I/ 0 interface are discussed along with their relationship to the
I/0 card function. Some of the memory-only pins are replaced with I/0 spe
cific pins when the interface is redefined for I/0. This chapter describes how
the functions associated with the replaced memory-only pins are handled.

Chapter 7: The OMA Interface. This chapter defines the DMA compliant
electrical interface, permitting I/0 Cards to use PC compatible DMA trans
fers. The DMA interface allows I/ 0 devices that use DMA to take advantage
of existing compatible software when performing data transfers.

Chapter 8: The AT A Interface. This chapter discusses the PC Card AT A in
terface. An PC Card ATA interface provides a PC compatible hardware and
programming interface that simplifies the job of implemented hard drive so
lutions in the PCMCIA environment. This chapter defines the various ways
that a PC Card ATA can be mapped in the system along with the electrical in
terfaces that are used. Differences between the PC compatible ATA
implementation versus the PC Card AT A interface are also discussed.

Chapter 9: The AIMS Interface. This chapter focuses on the optional Auto
Indexing Mass Storage (AIMS) interface. The transfer mechanism is described,
along with the registers that must be programmed to initiate the transfer.

Chapter 10: The PC Card Host Bus Adapter. This chapter discusses the role
of the PCMCIA Host Bus Adapter. Individual Host Bus Adapter functions are
discussed. A functional block diagram of an HBA adapter is provided along
with detailed explanations of each function.

Part Three - PC Card Design

Chapter 11: The Card Information Structure (CIS). This chapter discusses
layer one of the metaformat, commonly referred to as the card information
structure, or CIS. The chapter details the role of the CIS in the PC Card con
figuration process. Tuples are also introduced and their format and structure

3

26

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

4

are described. The basic structure of the CIS' s configuration table required by
I/0 cards is also described.

Chapter 12: Function Configuration Registers. This chapter discusses the
configuration registers and provides a complete description of each register
specified by the PC Card standard. Configuration register implementations
for both single and multiple function cards are covered.

Chapter 13: An SRAM Card Example. This chapter describes a sample
SRAM card implementation, including a functional block diagram of the
SRAM card along with a sample CIS.

Chapter 14: A Flash Card Example. This chapter describes a flash card im
plementation, including a functional block diagram of the card, a sample CIS,
and configuration registers implemented by the card.

Chapter 15: A FAX/Modem Example. This chapter describes an example
FAX/Modem implementation, including a functional block diagram, sample
CIS, and related configuration registers.

Chapter 16: An ATA PC Card Example. This chapter describes an example
PC Card ATA drive implementation, including a functional block diagram, a
sample CIS, and configuration registers implemented by the card.

Chapter 17: A Multiple Function PC Card Example. This chapter discusses
the multiple function PC Card strategy and the mechanisms for achieving it. It
also includes a functional block diagram of a multiple function PC Card, a
sample multi-function CIS, related configuration registers, and multi-function
interrupt handling.

Part Four - PCMCIA Software

Chapter 18: The Configuration Process. This chapter provides an overview
of the PCMCIA software environment and the configuration process. The
primary role and interaction between each piece of software is established.
This chapter also introduces the common software solutions provided along
with the most popular suppliers.

Chapter 19: Socket Services. This chapter discusses the role of socket serv
ices. It also describes the initialization of socket services and explains the basic
purpose of the functions commonly supported in the PC environment.

27

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

About This Book

Chapter 20: Card Services. This chapter focuses on the role of card services
in the PCMCIA environment. This chapter review each of the functions de
fined by the PC Card specification that apply to 16-bit PC Cards, along with
related return codes. The call back mechanism is also described and the event
and call back codes are defined.

Chapter 21: Client Drivers This chapter discusses the three basic types of en
ablers: point enablers, device-specific enablers, and super enablers. The
chapter also discusses the jobs performed by generic memory enablers (and
MTDs) and I/0 device enablers.

Chapter 22: Booting from PC Cards. This chapter discusses the problems as
sociated with loading the operating system from a PC Card. It also defines
mechanisms used to determine whether a given PC Card is a bootable device,
and the firmware support required to support PC Card booting.

Chapter 23: Execute In Place (XIP). This chapter discusses the Execute-In
Place mechanism defined by PCMCIA that allows code to be executed directly
from the card rather than copying files to and executing from system memory.

Part Five - ExCA (QuickSwap)

Chapter 24: ExCA (QuickSwap). This chapter introduces the ExCA
(QuickSwap) specification that defines a required set of hardware and soft
ware support, intended to improve PC Card interoperability across platforms
based on Intel x86 architecture.

Part Six - An Example HBA

Chapter 25: An Example HBA-The CL-PD6722. This chapter provides an
overview of a sample PCMCIA host bus adapter (The Cirrus Logic CL
PD6722) used in Intel x86 implementations for either an original PC or ISA
compatible host bus.

5

28

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Appendices

SRAM CIS Example

Flash CIS Example

FAX/Modem CIS Example

ATA Disk CIS Example

Metaformat Layers 2, 3, and 4

References

Who Should Read This Book

This book is intended for use by hardware and software designers and sup
port personnel. Due to the clear and concise explanatory methods used to
describe each subject, personnel outside of the design field may also find the
text useful.

Prerequisite Knowledge

We highly recommend that you have a thorough knowledge of PCs, including
hardware and software interaction prior to reading this book. Several Mind
Share publications provide all of the background necessary for a complete
understanding of the subject matter covered in this book. Much of the back
ground information can be obtained from the ISA System Architecture book.

Documentation Conventions

This section defines the typographical conventions used throughout this book.

6

29

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

About This Book

Hex Notation

All hex numbers are followed by an "h". Examples:

9A4Eh

0100h

Binary Notation

All binary numbers are followed by a "b". Examples:

0001 0101b

Olb

Decimal Notation

When required for clarity, decimal numbers are followed by a "d". Examples:

256d

128d

Signal Name Representation

Each signal that assumes the logic low state when asserted is followed by a
pound sign(#). As an example, a PC Card modem asserts the IREQ# signal to
a logic low state when signaling an interrupt request to the system.

Signals that are not followed by a pound sign are asserted when they assume
the logic high state. As an example, a PCMCIA Card asserts READY to logic
high state, indicating that it is ready to be accessed.

Identification of Bit Fields (logical groups of bits or
signals)

7

30

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

All bit fields are designated as follows:

[X:Y],

where "X" is the most-significant bit and "Y" is the least-significant bit of the
field. As an example, the PCMCIA socket supports address lines A[25:0],
where A25 is the most-significant and AO the least-significant bit of the ad
dress.

CardBus

An enhanced version of PCMCIA is also defined by the PC Card standard.
The new high-speed CardBus cards incorporate 32-bit data transfers and bus
mastering capability. See MindShare's CardBus System Architecture book pub
lished by Addison-Wesley for details regarding the CardBus implementation.

We Want Your Feedback

8

MindShare values your comments and suggestions. You can contact us via
mail, phone, fax, or internet email.

E-Mail/Phone/FAX

Email: mindshar@interserv.com

Phone: (214) 231-2216

Fax: (214) 783-4715

Mailing Address

Our mailing address is:

MindShare, Inc.

2202 Buttercup Drive

Richardson, Texas 75082

31

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Part One

Introduction to
PCMCIA

32

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 1: The Problem

Chapter 1
This Chapter

This chapter focuses on the industry needs that led to the emergence of
PCMCIA and the development of PC Card Standard.

The Next Chapter

The next chapter introduces the PCMCIA solution and reviews the evolution
of the PCMCIA Standard.

The Mobile Computing Environment

The growth of the microcomputer industry in the 1980s and the popularity of
the PC led to the proliferation of laptop, notebook and sub-notebook comput
ers. Manufacturers strived to deliver desktop performance in smaller and
lighter portable systems, powered by batteries. This fueled the need for
lighter, smaller, and less power hungry peripheral devices. A major focus of
this effort revolved around the relatively large, heavy, power hungry floppy
drive subsystem.

In addition to being small, lighter, and more power efficient, the alternative
system had to provide many of the same characteristics of the floppy disk; it
had to include removable media that was transportable to other systems, and
had to be immediately accessible when installed into the system for reading
and writing files. Early interest revolved primarily around the use of battery
backed memory cards implemented as a virtual floppy drive subsystem.
Memory cards were physically small, could store large amounts of data, and
consumed relatively little system power when compared to the floppy drive.
Furthermore, the emergence of Flash memory promised to provide an eco
nomical memory card solution that required no battery back-up.

11

33

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Small Form-Factor 1/0 Expansion Devices

12

The mobile computer environment also had a need for small and power effi
cient I/ 0 expansion devices. The small PCM CIA form-factor drew attention
as a possible solution for 1/0 expansion devices. The initial PCMCIA designs
supported only memory cards however, the need to expand PCMCIA to in
clude 1/0 device support was clear.

34

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 2: The PCMCIA Solution

Chapter 2
The Previous Chapter

The previous chapter focused on the industry needs that led to the emergence
of PCMCIA and the development of PC Card Standard.

This Chapter

This chapter discusses the emergence of PCMCIA, traces its evolution and in
troduces terminology and key concepts behind PCMCIA. Key features of the
latest release of the 16-bit PCMCIA standard (called the PC Card Standard)
are also introduced.

The Next Chapter

The next chapter explains the relationships between the various hardware and
software elements employed in a typical PC Card environment. The elements
discussed include: the PCMCIA Host Bus Adapter (HBA); the PC Card
socket; the PC Card; socket services; card services; and client drivers.

The Virtual Floppy Drive Subsystem

Solid state memory cards can provide an alternative to the mechanical floppy
and floppy drive. In other words, memory cards can be implemented as a vir
tual floppy drive subsystem. Such a solution must permit standard PC
software to access the memory cards as if they were floppy disks. This neces
sitates translation of PC compatible software calls used to access an ordinary
floppy disk into commands that access files stored within the memory card.
To ensure compatibility with existing PC software a standardized software
protocol was required to ensure compatible operation of the memory cards.

Memory cards implemented as virtual floppy disks must also have the ability
to be inserted and removed from the system at any time as is done with

13

35

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

floppy disks. When a card is installed, software must be able to access the files
stored on the memory card or write new files to it. How was this to be done?
Several key questions come to mind: How would the insertion of a memory
card be detected? Were memory cards to be accessed via an I/ O port as done
with the floppy drive interface, or mapped into the processor's memory ad
dress space? What system resources would be required? What software
would be responsible for the various aspects of recognizing, configuring, and
accessing the memory cards? These questions and others clearly pointed to
the need for hardware and software standards that could be implemented by
system manufacturers to ensure interoperability of memory cards between
IBM compatible systems.

The Lack of a Standard Memory Card Design

Numerous memory card manufacturers produced cards with differing physi
cal and electrical properties, making compatibility a major obstacle in fulfilling
industry needs. A standard physical package, electrical interface and connec
tor were needed to ensure compatibility of memory cards.

Emergence of PCMCIA

14

Several manufacturers met in the summer of 1988 to investigate the possibility
of forming a standards organization to deal with memory card standards and
interoperability issues. A year later the Personal Computer Memory Card In
ternational Association (PCMCIA) was founded, and the first PCMCIA
Standard (Release 1.0) was introduced in September 1990. This standard
specified the design of memory cards (commonly called PC Cards) and a
socket interface to be implemented as virtual disk drives.

PCMCIA was formed to promote the standardization and interchangeability
of PC Cards. Initially, its primary focus was defining PC Card standards for
IBM PC-compatible (DOS-based) systems. The long-term goal is to allow a
variety of computer types and non-computer products to freely interchange
PC cards. With these goals in mind the PCMCIA defined standards for PC
Cards. ·

The Japanese Electronics Industry Development Association (JEIDA) began
working on memory card standardization issues in 1985. In 1989 PCMCIA
adopted JEIDA's 68-pin connector as its socket interface. To serve the goals of

36

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 2: The PCMCIA Solution

compatibility and interoperability JEIDA and PCMCIA began working jointly
to ensure compatibility between their standards. In 1990 PCMCIA announced
its first standard (release 1.0) and JEIDA released its fourth standard (release
4.0). As newer versions of the standards are released, JEIDA and PCMCIA
continue to work closely to support each other's standards.

Support for 1/0-based PC Cards Added

The mobile computing environment also needed standardized small form
factor I/ 0 devices that could be added to mobile systems as expansion de
vices. PCMCIA's release 2.0 added support for I/0 devices that could be
inserted into a PCMCIA socket. Like memory cards, these devices are de
signed to be automatically detected by the system when installed and
automatically configured. This gives PC Cards the ability to be inserted into a
PCMCIA socket after the system has already been powered up and is opera
tional.

The PC Card Standard

The PCMCIA standard defines the following major items:

• Physical design of the PC Card
• Physical design of the connector (socket)
• Electrical interface to PC Cards
• Software architecture

The PC Card standard has been designed with flexibility in mind, allowing PC
Card socket implementations to be adapted for a wide variety of systems.
Major features of today's PCMCIA standard include items listed in table 2-1.

PC Cards come in a wide range of memory and I/0 devices. Memory devices
include RAM, FLASH memory and various types of ROM. I/0 devices in
clude voice, data and FAX modems; network interface cards; wireless
communications (such as, Global Positioning Systems (GPS), pagers and net
works); AT Attachment (ATA) Hard Drives (also called IDE drives); small
computer system interface (SCSI) adapters; and many others.

Three sizes of PC Cards are specified by the physical standard. Each type of
card has the same electrical interface and planar dimensions, but the thickness

15

37

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

varies to accommodate designs that require more physical space. Generally,
type I cards (3.3mm thick) are used for memory devices of various kinds, type
II cards (5.0mm thick) for modems, LANs, etc., and type III cards (10.5mm
thick) for devices such as AT A hard drives.

Table 2-1. PCMCIA Feature Summary

Feature Description

Small Form-Factor: Three PCMCIA cards have a standard length and width of
Physical Device Types De- 85.6mm (3.370") X 54.0mm (2.126"). The card type deter-
fined mines the card's thickness - Type 1 = 3.3mm (0.130");

Type 2 = 5.0mm (0.197"); Type 3 = 10.5mm (0.413").

Host Bus Independence PCMCIA sockets can be connected to a wide variety of host
buses. Sockets are connected to the host systems via host
bus adapters designed for a particular bus interface.

Three Address Spaces PCMCIA supports common memory address space
(standard memory addresses), attribute memory space (for
automatic configuration) and I/ 0 address space.

64 MB of Address Space Twenty-six address lines provide address space up to 64
MB for each address space.

16-bit Data Path* Sixteen data lines permit word transfers to/ from PC Cards.

I/ 0 Device Support I/0 ,devices as well as memory devices can be imple-
mented in the credit card form-factor.

Direct Memory Access The PC Card standard incorporated DMA support so that
(DMA) Support standard PC expansion devices that use DMA can be sup-

ported in PC Card implementations and take advantage of
the existing software.

Multifunction PC Cards The PC Card standard directly supports PC Cards that in-
Support elude multiple memory or I/0 functions or both.

Automatic Configuration When installed, PC Cards are configured automatically
without the need for user intervention.

Software Transparency Software written for standard host bus devices can be used
when accessing the same device that is implemented in a
PC Card. Once the PC Card is installed and configured it
typically behaves like any other host device.

Easy to Implement Configu- PCMCIA provides a standard software interface, simplify-
ration Software ing the design and implementation of device-drivers

required to configuration PC Cards.

Low Voltage Support The PC Card standard supports 5 volt, 3.3 volt and what
PCMCIA refers to as X.X voltage (an arbitrary low voltage
to be specified sometime in the future).

16

38

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 2: The PCMCIA Solution

Table 2-1 PCMCIA Feature Summary (continued)

Feature Description

Support for Several Differ- PC Cards provide a means for specifying support for a
ent File Systems on a Single variety of different data-recording formats and data or-
Card ganizations.

Execution of Code Directly PCMCIA memory cards, typically implemented as virtual
from Memory Card disks, can be accessed directly for code, without copying it

to main memory. This support requires a software protocol
called XIP (execute-in-place).

* The PC Card standard also defines a 32-bit PC Card and socket interface
called CardBus.

Summary of PCMCIA Releases

Since the first PCMCIA standard was released, many revisions and enhance
ments have been made. Table 2-2 highlights the chronology of releases,
providing a perspective of the pace of change that has occurred in a relatively
short period of time. The most recent release (February 1995) is called the PC
Card standard, consisting of a 12 volume set listed in table 2-3.

Table 2-2. Evolution of the PCMCIA Specification

Specification Version Release Dates

Card Standard 1.0 November, 1990
1.01 September, 1991
2.0 November, 1992
2.1 July, 1993

Socket Services A.O June, 1991
1.00 August, 1991
1.01 September, 1991
2.0 November, 1992
2.1 July, 1993

Card Services 1.0 (draft) December, 1991
2.0 November, 1992
2.1 July, 1993

ATA Interface 1.0 J~ly, 1992
1.01 November, 1992

17

39

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Table 2-2. Evolution of the PCMCIA Specification (continued)

Specification Version Release Dates

Auto-Indexing Mass 1.0 July, 1992
Storage (AIMS)

1.01 November, 1992

Card Extensions 1.0 November, 1992

Table 2-3. List of Individual Volumes Included in the PC Card Standard

Volume Name Description of Contents

Overview and Glossary This volume introduces each volume and provides
a glossary of terms.

Electrical Specification The electrical specification provides definition of
the socket interface pins, signaling environment,
and transfer timing and control.

Physical Specification The physical specification describes the card and
socket dimensions, mechanical specifications, and
environmental storage and operational parameters
that must be met.

Metaformat Specification This specification describes a four layer model that
encompasses the basic compatibility layer that all
PC Cards must implement. The compatibility layer
describes a variety of PC Card characteristics and
capabilities needed to configure the card. The sub-
sequent layers define a memory card's method of
recording data and describe its organization. This
information provides software with the informa-
tion it needs to manage access to a variety of PC
memory cards in a compatible fashion.

Card Services Specification This specification defines function calls used by a
PC Card's client driver to configure and control
access to it's PC Card.

Socket Services Specification This specification defines function calls used prin-
cipally by Card Services to access a particular
HBA. These functions are comparable to BIOS
functions provided in IBM compatible PCs.

18

40

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 2: The PCMCIA Solution
Table 2-3. List of Individual Volumes Included in the PC Card Standard (continued)

Volume Name Description of Contents

Media Storage Formats This specification describes how data is formatted
Specification on many PC Cards that are used as virtual disks.

This information can be used to help provide ex-
changeability of PC memory cards between
different host systems.

PC Card AT A Specification The AT A specification describes the electrical and
programming interface required by PC Cards im-
plemented as ATA devices.

XIP Specification XIP describes the programming interface required
by applications that support execution directly
from the PC Card file, rather than having to copy
the executable file to system memory and execut-
ing from there.

Guidelines This volume provides guidelines for the imple-
mentation of a variety of PC Card types.

PCMCIA Extensions The PCMCIA extensions document features that
are not supported by JEIDA, but which are offered
as optional capabilities by PCMCIA.

JEIDA Extensions The JEIDA extension document features that are
not supported by PCMCIA, but which are offered
as optional capabilities by JEIDA.

19

41

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 3: Tying the Pieces Together

Chapter 3
The Previous Chapter

The previous chapter discussed the emergence of PCMCIA, traced its evolu
tion and introduced terminology and the key concepts behind PCMCIA.

This Chapter

This chapter explains the relationships between the various hardware and
software elements employed in a typical PC Card environment. The elements
discussed include: the PCMCIA Host Bus Adapter (HBA); the PC Card
socket; the PC Card; socket services; card services; and enablers.

The Next Chapter

The next chapter focuses o;n the various physical packages defined by
PCMCIA for PC Cards and the related environmental specifications. The
chapter also defines the socket interface types.

Overview

This section introduces key PCMCIA terms and discusses the relationship of
the major hardware and software elements typically implemented in PCMCIA
host system and PC Card designs. Later chapters detail each of these major
elements and discuss specific implementations. The PCMCIA solution typi
cally consists of:

Hardware

• The 16-Bit PC Card
• PCMCIA Socket
• The PCMCIA Host Bus Adapter (HBA)

21

42

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Software

• Socket Services
• Card Services
• PC Card Enablers

The PCMCIA hardware consists of the PC Card, card socket and the host bus
adapter (HBA). The HBA bridges the host expansion bus (e.g. ISA, EISA, Mi
cro Channel, or PCI) to the PC Card socket or sockets.

The PCMCIA software architecture consists primarily of a PC Card's enablers,
card services and socket services. These software layers exist to support
PCMCIA's automatic configuration and "" capability. The term hot insertion
is frequently used to refer to the ability of PC Cards to be inserted into a
socket when power is applied to the PC. The system automatically detects and
configures the PC Card allowing the system to treat it as a floppy disk. That is,
once a PC memory card is inserted into a socket, the user can read files or
write files just as if a floppy disk had been inserted into a floppy drive. From
the user's perspective, the ability to format the memory card (virtual disk),
perform chkdsk commands and read and write files is the same as with a
floppy drive. The only perceptible difference is the lightning speed at which
these operations occur when compared to the speed of the same operations
performed with a floppy drive. This is due to the much faster access to solid
state media.

Figure 3-1 illustrates the relationships between each of the hardware and
software elements that comprise a PCMCIA solution, and identifies the typical
supplier of each element. The definition and need for each element is de
scribed in the following sections.

The PC Card

22

A wide variety of hardware applications can be implemented using PC Cards.
Many PC Cards consist of memory devices used to emulate floppy or hard
drives. These virtual drives provide very fast access and provide a data trans
fer medium much less susceptible to harsh environmental conditions when
compared to magnetic media (such as diskettes and magnetic tape). If these
devices are to be used as replaceable media, the system must be able to rec
ognize when a card is inserted or removed and provide the ability to access
the card as if it were a floppy disk.

43

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 3: Tying the Pieces Together

,,_ _ _., Configuration software,
called PC Card Client
Drivers, read the PC Card's
CIS, determine the config

.___-.;., requirements and configure

l
the HBA and PC Card.

(

Client Drivers can be)
generic or provided by
the PC Card Vendor

,,_ _ _, Provides a high level software
interface for configuration
software and a method for
allocating system resources

.___-.;., to the PC Cards.

l
{

Card Services are tied to a)
specific operating system

,.__~ provides a standard
software interface for
programmers so details
of the HBA need not

.___-.;., be known.

{ Socket Services are tied to a)
tpecific adapter implementation

•

Host System

PCMCIA
Host Bus Adapter

{
HBA's supplied by numerous vendors)

no hardware standard specified
byPCMCIA

PC Card PC Card

Figure 3-1. Relationship of PCMCIA Software and Hardware

PCMCIA also supports I/0 devices such as modems, IDE (ATA) hard drives
and LAN controllers. New support has also been added for multifunction
devices.

Regardless of the type of PC Card implemented (memory, I/0, or multifunc
tion), PCMCIA systems are designed to permit their automatic detection and
configuration. The PCMCIA automatic configuration capability is in some
ways similar to that employed by the Micro Channel and EISA system de
signs, but eliminates the user intervention required with these systems and
permits insertion and configuration while power is applied to the system.

In Micro Channel and EISA designs, the manufacturer of an adapter board
must supply a configuration file that describes the possible configuration op
tions for the board. The system manufacturer also supplies a configuration file

23

44

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

24

describing the resources used by the basic system, along with a variety of
configuration options. A configuration utility program must be run by the
user to merge all the configuration information together (system and installed
boards). The configuration software then determines an overall conflict-free
configuration that satisfies the requirements of the system and all expansion
boards.

PC Cards incorporate configuration option information in non-volatile mem
ory within the card itself, rather than requiring a companion diskette that
contains the configuration option information. This configuration data is kept
in an area within the card known as the (CIS). The CIS is mapped into the PC
Card's attribute memory space. Refer to figure 3-2. PC Card enabler software
installs each time the system is powered up. This software checks for the pres
ence of PC Cards that are installed. If a PC Card is detected, the software
reads the contents of its CIS to determine the type of device it is, the system
resources that it requires, and the configuration options that are possible. The
enabler is then responsible for configuring the PC Card so it can be accessed.

PC cards, unlike the Micro Channel and EISA boards, can be inserted either
before or after the system is powered up. As a result, enablers must remain
available for PC Cards in the event a card is installed following system power
up. Hardware notifies the software when a new card is installed, so that it can
be properly configured into the system. When a card is removed, again hard
ware detects the card's removal and notifies software that the device is no
longer installed.

The PCMCIA configuration software consists of one or more PC Card en
ablers that recognize, enable, and configure the PC Card. This software
sometimes comes with a particular PC Card (typically as part of a device
driver) that the card manufacturer provides when the PC Card is purchased.
This type of PC Card enabler is usually responsible for installing only the PC
Card for which it was designed. Other PC Card enablers, sometimes called
generic or super-enablers, are typically supplied by the system manufacturer.

Generic enablers evaluate the configuration requirements of a card by scan
ning and evaluating (parsing) the CIS. If the generic enabler recognizes the
card type, it will then attempt to configure the card itself or dynamically load
the appropriate enabler from a library residing on disk. Ideally, a single PC
Card super-enabler would be used to detect and configure all PC Cards. For a
variety of reasons (to be discussed later), a single generic or super-enabler is
not always possible today. In short, PCMCIA configuration software may

45

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 3: Tying the Pieces Together

consist of one or more PC Card enablers designed to identify and configure
PC Cards.

PC Card

PC Card
Function
(Memory/10)

Figure 3-2. The Card Information Structure Contains Configuration Options for the
PC Card

Interoperability: PCMCIA Sockets and The PCMCIA Host
Bus Adapter

PCMCIA sockets can be designed into a wide variety of PC bus architectures
as well as non-PC designs, permitting interoperability of PC Cards. This con
nection between a given host bus and a PCMCIA socket is provided through a

25

46

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

26

PCMCIA host bus adapter (HBA). The adapter acts as a bridge, passing host
bus transactions to PC Cards installed in PCMCIA sockets. Refer to figure 3-3.
Host bus adapters must be programmed by the system in order to gain access
to PC Cards. The manner in which the host bus adapter is programmed is de
termined by the requirements of the particular PC Card installed in the
sockets it controls.

Each PCMCIA socket has its own dedicated signal interface provided by the
HBA. That is, signals are not bussed between sockets as in most expansion· bus
architectures. This of course means that the host bus adapter must have a
separate interface to each socket along with a single interface to the host sys
tem. Access to each socket therefore is controlled through separate sets of
socket interface circuitry, each of which must be initialized in order to gain ac
cess to.a PC Card installed in a given socket.

PCMCIA
Socket Interface

PC Card
(Memory, 1/0,

or Multifunction)

Figure 3-3. PCMCIA Sockets Can Be Incorporated in a Wide Variety of Systems.

47

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 3: Tying the Pieces Together

Initializing the Host Bus Adapter: Socket Services

Since host bus adapters (HBAs) must have a dual personality - an interface
to both the PCMCIA sockets and to the host system - the details of imple
menting an HBA has been left to the hardware developer and is not included
within the PCMCIA specification. This means that a wide variety of HBA de
signs can (and do) exist for a given type of host interface.

Several chip manufacturers provide PCMCIA host bus adapter chips that sys
tem manufacturers can incorporate into their designs. For example,
manufacturers of ISA to PCMCIA host bus adapters include: Cirrus Logic,
DataBook, Intel, Texas Instruments, Vadem, VLSI Technology, and others.
Each of these designs to some extent implement different registers and ini
tialization algorithms. Differences between some HBAs are slight while
differences between others are major.

Software must initialize the HBA so that it can pass host expansion transac
tions to the PC card when it detects an address that resides within the range
of addresses used by the PC Card. Since a variety of different HBAs can be
used, programmers would have to write their software to interface to each
type of host bus adapter in order to ensure proper operation in all system
platforms. However, the PC Card specification provides a common software
interface called socket services which hides the details of the hardware inter
face from the programmer. Socket services provides a low-level software
interface that gives programmers access to a common set of functions that will
permit initialization of any HBA. In IBM PC terminology, these functions can
be thought of as merely extensions to the BIOS routines.

Several software vendors have developed socket services for each of the major
PCMCIA host adapters. These vendors include: American Megatrends,
Award Software, Phoenix Technology, SystemSoft, Ventura Micro Inc., and
others. Today most system designers license socket services from a software
vendor, making it easier to implement PCMCIA solutions.

27

48

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Configuring the Card: Card Services & Enablers

28

PC Cards require configuration software (enablers) that detect their presence,
determine their configuration requirements and program them for operation
within the system. This is true whether a card is installed when system power
is applied or installed after the system is powered up and fully operational.

Configuration software for early PC Cards, built before the introduction of
socket services, had to program the host bus adapter to permit access to the
card's memory address space. This required that the programmer of the con
figuration software know the details of the hardware interface and the
protocol required to access and program the host bus adapter. Furthermore,
these programmers had to poll status registers on the host bus adapter to de
tect when cards were inserted and removed, or when other status changes
occurred at the socket (i.e. low battery detection, write protect switch position,
or ready /busy indications). Since different host bus adapters have different
hardware interfaces, programmers were required to provide a separate ver
sion of their software for each host bus adapter type. The introduction of
socket services removed the burden of having to write card enablers to inter
face directly to the hardware.

In addition, programmers must determine the system resources required by
their PC Card and allocate them to the card. The resources that it assigns to its
PC Card must not be already allocated to another device in the system. In the
past, the programmer had to somehow determine what system resources
were available to be allocated, or make an educated guess, hoping that the re
sources it was about to allocate were not already in use. These issues and
others placed a heavy burden on the programmer to ensure that their cards
worked in a given system. Fortunately, PCMCIA introduced another software
layer called card services that lifts these burdens from the programmer.

Thanks to card services, the job of writing PC Card enablers is a much simpler
task today, and far more reliable than was possible with early revisions of the
specification. Card services provides a software layer consisting of high-level
functions that programmers can call to gain access to a card, determine its
configuration requirements, and request the system resources it requires.

One of the primary functions that card services fulfills for enablers is system
resource allocation. Card services maintains a data base of system resources
that are available for assignment to PC Cards. Once the enabler determines
the configuration requirements of the card by reading the card's CIS, it re-

49

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 3: Tying the Pieces Together

quests that these resources be allocated to its card. If the resource is available,
card services returns "success" to the enabler and the resource is then as
signed. If the resource has already been used, then card services returns
"failure" and another configuration option must be read from the CIS and
tried. This process continues until one of the card's configuration options sat
isfies the request or until all options are exhausted, in which case the card
cannot be configured.

Card services also notifies enablers of card insertion and removal and other
status change events. This eliminates the need for enablers to continually poll
to determine if some status change has occurred.

Accessing PC Cards After Configuration

Once a PC Card has been detected and configured, it behaves like any other
device that exists on the expansion (PCMCIA host) bus. This allows applica
tions to access PC Cards directly through the normal methods used in a given
operating environment. This access can be done without using the PCMCIA
software interface (i.e. card and socket services). Figure 3-4 illustrates the ba
sic software flow during configuration and status reporting, versus run-time
access (accesses made to a PC Card by application software once it has been
configured). Each of the software components shown in figure 3-4 are dis
cussed in detail in later chapters and the relationships between them are
further defined.

The Metaformat

PCMCIA has defined a comprehensive software structure called the metafor
mat that defines the software support that can be provided with the card. The
metaformat is a four layer software model that encompasses the CIS discussed
in the previous example. Refer to table 3-1. The only software layer required
by all cards is the CIS (layer one), which contains the information necessary to
configure the card within the system.

The other layers are intended for memory cards that are used as virtual disk
drives. PC Card memory is accessed as a logical disk drive via the operating
system's file management system and in conjunction with device drivers that
have knowledge of how the PC Card's memory arrays are organized. The
additional layers provide information that can be used by file management

29

50

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

software, utilities and other software requiring knowledge of a card's memory
array characteristics.

Configuration and
Event Notification

Software

Hardware Run-Time
Software

PC Card Enablers
(PCMCIA lnit & Event Processing) Host System Applications

30

Card Services

Socket Services
Conf1g

PCMCIA
Host Bus Adapter

PC Card PC Card

Operating
System

Device Drivers
(Run-Time Code)

Figure 3-4. Configuration and Status Reporting Software Flow Versus
Run Time Software Flow

Few PC·· Cards today contain information for metaformat layers two through
four. In many instances the enablers for memory cards or flash file systems
contain information regarding the organization of common devices. The chap
ter entitled, "The Card Information Structure (CIS)", contains detailed
examples of the CIS (layer one of the metaformat) used by typical cards. Refer
to Appendix E for a list and description of the tuples defined for layers two
through four.

51

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 3: Tying the Pieces Together

Table 3-1. PCMCIA Card Metaformat

Metaformat Layers

Layer 1 - Compatibility Layer

Layer 2 - Data Recording
Format Layer

Layer 3 - Data Organization
Layer

Layer 4 - System Specific
Layer

Description

The compatibility layer includes informa
tion necessary for a card to be recognized
and configured. This portion of the card
standard is commonly referred to as the
Card Information Structure (CIS). All 2.0
compliant PC Cards must contain a CIS.
The CIS information must be accessible
from attribute memory starting at location
zero.

This information specifies how data is re
corded in the PC Card's memory arrays,
and specifies what error checking capabili
ties are used, if any. Two basic types of
data recording are specified: disk-like re
cording (blocks of data) or memory-like
(sequential byte addressable data).

Defines the logical organization of data
within a partition in a memory card. Data
within a partition may be organized to
support an OS file system, a flash file sys
tem, a vendor-specific organization, or an
application specific organization.

Specifies application specific information
pertaining to a given operating environ
ment. Items currently defined include DOS
environment capabilities including:
• An interchange format to ensure that

PC Cards formatted with a DOS file
system can be interchanged with sys
tems implementing all versions of DOS.

• Execute in Place (XIP) to support direct
execution of application programs from
the card.

• Ability to configure older cards format
ted without a CIS.

31

52

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Part Two

Socket and Host Bus
Adapter Design

53

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 4: The Physical Specifications

Chapter 4
The Previous Chapter

The previous chapter introduced the major concepts of PCMCIA and ex
plained the relationships between the various hardware and software
elements employed in a typical PC Card environment.

This Chapter

This chapter focuses on the various physical packages defined by PCMCIA for
PC Cards and the related environmental specifications. The chapter also de
scribes the standard socket and low-voltage socket types.

The Next Chapter

The next chapter introduces and defines the memory-only socket interface,
including definition of each pin. It also explains and illustrates memory trans
actions performed to/ from PC Card memory functions.

Card Types and Dimensions

Three basic types of physical dimensions are described in the specification for
PC Cards. In addition, extensions to type I and type II cards are defined. The
card types are:

• Type I

• Type II

• Type III

• Type I extended

• Type II extended

35

54

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

36

Card Types I, II, and Ill

Refer to figure 4-1. Type I, II, and III cards all have the same planar or outline
dimensions (54.00mm x 85.60mm). Card thickness is also the same within the
interconnect area of each card. Only the substrate area of the cards is different.
The thickness of each card type in the substrate area is:

• Type I cards = 3.3 mm
• Type II cards= 5.0 mm
• Type III cards = 10.5 mm

Substrate
Area

Figure 4-1. The Interconnect Area is the Same Thickness for all PC Cards.

Memory cards typically have a write-protect switch. Some memory cards con
taining volatile RAM devices also include a battery to prevent loss of data
when the card is removed from the socket. The PCMCIA specification defines
recommended locations for both the battery and write protect switch as
shown in figure 4-2.

55

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 4: The Physical Specifications

Figure 4-2. Type I Card with Battery and Write Protect Switch

Refer to figure 4-3. Type II cards are most commonly used for I/0 devices.
The type II package is popular with I/0 cards since many of them require
more physical space than memory devices due to the state of miniaturization
for many of the devices required for I/ 0 designs. These I/ 0 cards typically
have an external connector at the end of the card. Previous versions of the
PCMCIA standards did not specify the design or location of the external I/0
connector. The PC Card standard however, has defined the physical charac
teristics (i.e. location, pin definition, electrical and mechanical specs) for what
the specification calls "open system" LAN and Modem I/ 0 connections. The
open system connectors are defined in the PC Card Standard within the
PCMCIA Extensions volume. The PC Card standard does not require that
manufacturers implement the open system connectors, but these connectors
have the advantage of a uniform interface, promoting availability of these
connectors from multiple sources.

Note that the card's thickness does not permit some connectors, such as the
RJ-11 and RJ-45, to be built into a type II card. As a result, pigtail extension
cables are typically used for larger connectors. Other connectors allow phone
jack connections without the pigtail cable, such as the Megahertz, XJack im
plementation.

37

56

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

38

Figure 4-3. Type II Card with External I/0 Connector

PCMCIA includes a design to accommodate thicker PC Card devices (such as
hard drives). The outline of type III devices is shown in figure 4-4. Most sys
tems that have two type II socket stacked on top of one another can accept a
type III card. The type III card plugs into the lower socket, but the body of the
type III PC Card requires the space of both sockets.

Figure 4-4. Type III Card Outline

57

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 4: The Physical Specifications

Extended Card Types I and II

To accommodate large external connectors and to permit designers to encase
their electrical and magnetic isolation devices within the shielded PC Card
enclosure, PCMCIA defined extended card types I and IL Figure 4-5 shows
the outline of the type I and II extended cards. Since the main body of the card
is the same as the non-extended designs, these cards will fit into a typical card
socket. The extension must be 10mm beyond the standard card length of
85.6mm (i.e. 95.6mm) before the height of the extension can be increased.

Figure 4-5. Type I and II Extended Cards

39

58

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

The Card and Socket Connectors

40

Card and Socket Keying

As shown in figure 4-6 PCMCIA cards and sockets are keyed to prevent the
card from being inserted upside down. Keying is accomplished at the edges of
the PC Card and the socket connector.

Pin
Receptors

#68

Standard Card
(end view of connector)

Keying
matches

Pins

Standard Socket
(front view)

Figure 4-6. Card and Socket Keying-Standard Interface

PCMCIA release 2.0 and 2.1 cards can be designed as dual-voltage cards.
These cards always power up at +5 V cc but can switch to +3.3 V cc for low
power operation. A new generation of low-voltage cards is now possible us
ing the new low-voltage specificatipn. These newer low-voltage cards need
not implement the dual-voltage solution described above. Instead, they can be
designed for +3.3 Vee operation only. This means that these cards will not
function correctly in systems based on the 2.0 or 2.1 specification, which al
ways apply +5 V cc to the socket when a PC Card is first installed. Keying is
employed on the newer low-voltage cards, preventing them from being in
serted into standard dual-voltage sockets as shown in figure 4-7.

Keying does
Pin
Receptors

#68 #35

Low Voltage Card
(end view of connector)

not match
Pins

Standard Socket
(front view)

Figure 4-7. Low-Voltage Cards Cannot Be Inserted into Standard Sockets

59

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 4: The Physical Specifications

To accommodate low voltage cards, a new low voltage socket has been de
signed. This socket, which might be better named the "universal socket,"
accepts 5 volt only cards, dual voltage cards, and 3.3vdc cards. This is possi
ble since systems employing the low voltage socket have the ability to apply
initial voltages of either +3.3 Vee or +5.0 Vee depending on the PC Card's re
quirements. Two newly defined Voltage Sense (VS) signals determine the
initial voltage to be applied to the socket when a PC Card is installed. The
Voltage Sense pins are set by the PC Card to indicate the initial voltage that
they require.

Low voltage socket keying is shown in figure 4-8.

~ -:: · ~ Socket keying
Standard Card ~ permits both card

(end view of connector) ~ types to install t .:::: ::::::: ::::::::: ::::: :::: ...
Low Voltage Card

(end view of connector)

Low Voltage Socket
(front view)

Figure 4-8. Keying Used with Low Voltage Socket

The two voltage sense pins (VS1# and VS2#) provide a means for the host sys
tem to detect the voltage level that a given PC Card must initially power up
at. Refer to table 4-1. PCMCIA release 2.0 or 2.1 (2.x) compliant systems re
quire that PC Cards always operate at 5 volts when power is first applied, and
can later switch to 3.3 volts if configuration software detects that the card
supports 3.3 volt operation. These PC Cards are termed dual-voltage cards.
The standard PCMCIA socket designed for release 2.x systems have no volt
age sense capability since all cards initially power to 5 Vee.

PCMCIA also supports PC Cards that operate only at 3.3 volts, without ini
tially having to power-up at 5 volts. The specification also supports cards that
operate at a future non-specified low voltage, referred to as X.X volts. To ac
complish 3.3 and X.X volt only operation, PCMCIA has defined a new socket
that can supply the initial voltage required by new low voltage PC Cards. This
socket is keyed to accept the newer low-voltage cards, 5 volt-only cards and
dual-voltage cards. This is possible since the voltage sense pins determine the
initial voltage that should be applied to the socket.

41

60

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Table 4-1 shows the possible combinations of PC Cards that can be installed
into a low-voltage socket. The first column specifies the initial voltage that the
PC Card required when power is initially applied to the socket. The second
column specifies the keying implemented by the card (i.e. whether the card is
keyed to fit into a standard socket or a low voltage socket). Columns three
and four specify the state of the voltage sense pins, and column five indicates
the initial power that will be applied by the HBA. Note that X.X voltage des
ignates a low level V cc to be defined in the future.

Table 4-1. Interpretation of Voltage Sense Signals

Initial Power Required Keying VS1# VS2# V cc at power up and CIS read

5 volts standard* 1 1 5 volts applied if available, else

no Vee applied.

3.3 volts . low-voltage 0 1 3.3 volts applied if available, else

no Vee applied

3.3/5 volts standard* -3.3 volts applied if available, else

no V cc applied.

X.X volts low-voltage 1 0 X.X volts applied if available, else

no Vee applied.

X.X/3.3 volts low-voltage 0 0 X.X volts applied if available, else

3.3 volts applied if available, else

no Vee applied.

X.X/3.3/5 volts standard* X.X volts applied if available, else

3.3 volts applied if available, else

no Vee applied.

* Standard keying refers to PC Cards keyed to fit into a 2.x compliant socket. These
cards also fit into the low voltage sockets.

Pin·Length

The PCMCIA Host Bus Adapter connector has three differentpin lengths:

• Power pins (Ground & Vee)-· .098" (2.5 mm)
• General interface pins (address, data and control) - .084" (2.1 mm)
• Card detect pins - .059" (1.5 mm)

42

61

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 4: The Physical Specifications

When a card is inserted into the host adapter's PCMCIA socket, the power
pins make contact first, following by the general interface pins and then the
card detect pins. Whether power will be applied to the power pins when a
card is inserted depends on the system design. Many implementations apply
power to the pins only after the shorter card detect pins make contact, indicat
ing that the card is fully inserted into the HBA socket.

Environmental Characteristics

PCMCIA specifies a very thorough set of environmental tests and operating
conditions under which PCMCIA cards and sockets should operate. Refer to
the PCMCIA Card Standard for detailed information.

The PC Card standard specifies the following electrical and mechanical speci
fications for the socket connector and for PC Cards. The following tables list
the primary specifications. For a complete list of mechanical and electrical
specification and more information regarding the testing criteria and methods
see the PC Card Standard's Physical Specification.

Connector Environmental Standards

Table 4-2 is a partial list of specifications defined by the PC Card Standard for
connector reliability. All tests and measurements are specified to be made at
the foHowing ranges unless otherwise specified:

• temperature - 15QC to 35QC

• air pressure-86 to 106 kPa

• relative humidity - 25% to 85%

Table 4-2. Selected Connector Reliability Specifications

Parameter Standard/ Specification Testing Criteria

Operating Environment Operating temp-20Q to +60QC
Relative humidity, 95%

Storage Environment Storage temp -40Q to + 70QC
Relative humidity, 95%

Number of insertions and 10,000 Office Environment
ejections (see EIA-364-B Class 1.1)

43

62

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture
Table 4-2. Selected Connector Reliability Specifications

Parameter Standard/ Specification Testing Criteria

Number of insertions and 5,000 Harsh Environment
ejections · (see EIA-364-B Class 1.1)

Total insertion force 39.2 N maximum Insert at 25mm/ minute

Total pulling force 6.67N min. / 39.2 N max. Extract at 25mm/minute

Single pin pulling force Pin shall remain in insulator Pull at 25mm/ minute
when .098 N of pulling force
is applied.

Single pin holding force Pin shall remain in insulator Push at 25mm/minute
when 9 .8 N of pushing force
is applied.

Single socket holding force Socket shall not be dislodged Push socket on axis at
or damaged when 4.9 N force 25mm/minute.
is applied.

Vibration and Frequency No mechanical damage & no MIL-STD-202F
current interruption > 100ns. Test@ 147m/s2 ,10 - 2000Hz

Shock No mechanical damage & no MIL-STD-202F
current interruption > 1 OOns. Test @409m/s2 acceleration

Contact Resistance (low level) 40mQ max (initial value) MILSTD-1344A
20mQ max change (after test) Open voltage 20m V,

Test current lmA

Withstanding voltage No shorting or damage when MIL-STD-202F
500Vrms AC is applied for 1
minute, current leakage of
lmAmax.

Insulation resistance lOOOMQ min (initial value) MIL-STD-202F
lOOMQ min (after test) Apply 500vdc

Current capacity 0.5 A per contact Based on 30QC rise above
ambient temperature

Insulation Material UL 94 V-0 UL Standard 94

Ground Return Inductance 18.0 nH max @ 1MHz ANSI/EIA-364-69

PC Card Environmental Standards

44

Table 4-3 lists selected environmental specifications for the PC Card. All tests
and measurements are specified to be made at the following ranges unless
otherwise indicated:

63

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 4: The Physical Specifications

• tem.perature-15QC to 35QC

• air pressure - 86 to 106 kPa

• relative humidity - 25% to 85%

Table 4-3. Selected PC Card Environmental Specifications

Parameter Standard/ Specification Testing Criteria

Operating Environment Operating temp OQ to +55QC 96 hours minimum
Max. relative humidity, 95%

Storage Environment Storage temp -20Q to +65QC 96 hours minimum
Max relative humidity, 95%

Thermal Shock Data to be retained by all MIL-STD-202F
non-volatile memory after Method 107G
test Test 1 @ -20QC for 30 min.

Test 2 @ 25QC for <05 min.
Test 3 @ 65QC for 30 min.
Test 4 @ 25QC for <05 min.

Repeat all 4 test for 100 cycles

Moisture Resistance PC Card must function as MIL-STD-202F
specified after test and must Method 106E
retain data stored in non- Test 1 @ 20 to 65QC for 2.5 hrs.
volatile memory prior to test. Test 2 @ 65QC for 3 hrs.

Test 3 @ 65 to 25QC for 2.5 hrs.
Test 4 @25 to-lOQC for 2.5 hrs.
Test 5@ -lOQC for 3 hrs
Test 6 @-10 to 25QC for 2.5 hrs

Repeat all 6 tests for 10 cycles

Electrostatic Discharge PC Card must retain data ISO 7816-1
stored in non-volatile mem- See Mechanical Specification
ory prior to test.

X-ray Exposure PC Card must function as ISO 7816-1
specified after test and must Wavelength 254 nm
retain data stored in non- Intensity 15000 µW /cm 2

volatile memory prior to test. 'Exposure time 20 min

EMI PC Card must function as ISO 7816-1
specified after test and must Uniform magnetic field of
retain data stored in non- 1000 Oersted Exposure
volatile memory prior to test. time= 10 seconds

100 Oersted Exposure time-
Exposure time= 10 seconds for
rotating media cards.

45

64

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture
Table 4-3. Selected PC Card Environmental Specifications (continued)

Parameter Standard/ Specification Testing Criteria

Card Inverse Insertion No electrical contact between See Mechanical Specification
card and connector except
V cc and ground pins.

Vibration and High Fre- PC Card must function as MIL-STD-202F
quency specified after test and must Method 204D

retain data stored in non- Test B: 147 m/s2 peak, 10 to
volatile memory prior to test. 2,000 Hz, 12 cycles per axis,

36 cycles for 3 axes (12hrs).

Battery installed, no V cc.

Shock PC Card must function as MIL-STD-202F
specified after test and must Method213B
retain data stored in non- Test Condition A: 490 m/s2

volatile memory prior to test. Standard holding time 11 ms
Semi-sine wave

Bend Test PC Card must function as See Mechanical Specification.
specified after test and must
retain data stored in non-
volatile memory prior to test.

Dimensions must conform to
use requirements after test.

Drop Test PC Card must function as See Mechanical Specification.
specified after test and must
retain data stored in non-
volatile memory prior to test.

Dimensions must conform to
use requirements after test.

PC Card Warpage PC Card must function as See Mechanical Specification.
specified after test and must
retain data stored in non-
volatile memory prior to test.

Dimensions must conform to
use requirements after test.

46

65

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

Chapter 5
The Previous Chapter

The previous chapter focused on the various physical packages defined by
PCMCIA for PC Cards and the related environmental specifications. The
chapter also described the standard and low-voltage socket connector types.

This Chapter

This chapter details the memory-only electrical interface between the PC Card
and socket. Each pin is defined and its relationship to the PC Card and the
HBA is discussed. The memory-only interface is the interface initially seen by
16-bit PC Cards when they are first inserted into a socket. This permits the
memory-mapped CIS to be accessed to determine the PC Card type and inter
face requirements. If the card is designed for an interface type other than
memory-only, then the HBA and PC Card are configured to communicate via
one of the other interfaces defined by the PC Card Standard (discussed in the
following chapters). Also discusses the timing of socket accesses to PC Cards
of differing speeds, including transfers with attribute memory and common
memory.

The Next Chapter ,

The next chapter discusses the electrical interface called the memory or I/0
PC Card and Socket interface. This interface is used by standard I/ 0-based
PC Cards.

Overview

The original PCMCIA standard (release 1.0) defined the socket interface for
memory cards only. Later releases added additional socket interfaces. The PC
Card Standard defines the following socket interfaces:

47

66

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

• Memory only
• Memory or I/ 0
• ATA (AT attachment for IDE drives)
• DMA (Direct Memory Access)
• AIMS (Auto-Indexing Mass Storage)
• CardBus (32-bit PC Card interface)

Each of these interfaces employs the PCMCIA 68 pins connector. However pin
definition changes with each interface type. Most HBAs can be configured to
support a variety of socket interfaces. This chapter discusses the memory-only
interface. Subsequent chapters discuss the other socket interfaces included in
the bulleted list above.

This chapter discusses the PCMCIA memory interface, detailing the electrical
interface used PC Cards that employ only a memory function. However, all
16-bit PC Cards must initially operate as memory-only devices. This is neces
sary since the HBA has no way of knowing whether a PC Card installed
required a specific interface other than memory. Therefore, HBAs always pre
sent a memory-only interface when a PC Card is initially installed, and all 16-
bit PC Cards must operate as memory-only devices when they are inserted
into a PC Card socket. A card's client driver is then responsible for reading
from the PC Card's CIS (accessible via the memory-only interface) to deter
mine the card type and the socket interface that it requires. The HBA and PC
Card can then be dynamically reconfigured under software control to use the
specified socket interface. Note however that not all HBAs are designed to
support all socket interface types.

The Memory Interface

48

Two types of memory address space exist within a PC Card: common mem
ory and attribute memory. Common memory is the working address space used
to map the memory arrays that typically store data and executable files. At
tribute memory is used for configuration information. The attribute memory
address space contains the CIS (Card Information Structure) and configura
tion registers. Figure 5-1 illustrates the signals that comprise the memory
interface which provide access to both common and attribute memory. The
signals defined for the memory interface are grouped functionally and de
scribed in the following sections.

67

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

Ground 35 1 Ground
CD1#1 +-- 36 2 Data 33

Data 11 3 ~ 37 3 Data 43
Data 123

~ 38 4 Data 53

Data 133
~ 39 5 Data 63

Data 143 40 6 Data 73

Data 153 41 7 CE1#4
CE2# 4 42 8 Address 103

VS1 #2/Refresh* +-- 43 9 OE#4

Reserved 44 10 Address 113
Reserved 45 11 Address 93
Address 173 46 12 Address 83
Address 183. 47 13 Address 133
Address 193 48 14 Address 143
Address 203 49 15 WE#4

Address 213 50 16 READY6
Vee 51 17 Vee
Vpp2 52 18 Vpp1
Address 223 53 19 Address 163

Address 233 54 20 Address 153
Address 243 55 21 Address 123
Address 253 ~ 56 22 Address 73
VS2#2/Reserved*+-- 57 23 Address 63
RESETS 58 24 Address 53
WAIT#6 59 25 Ad,dress 43
Reserved 60 26 Address 3 3

REG#4 61 27 Address 23
BVD27 +-- 62 28 Address 13
BVD1 +-- 63 29 Address 0 3

Data 8 3 ~ 64 30 Data Q3
Data 93 65 31 Data 13

Data 103
~ 66 32 Data 23

CD2#1 +-- 67 33 WP6
Ground ~ 68 34 Ground

1. Pulled-up to Vee by HBA (R210KQ). 5. Pulled-up to Vee by PC Card (R2100KQ).
2. Pulled-up to Vee by HBA (R=10KQ-100KQ). 6. Pulled-up to Vee by HBA (R21 OKQ).
3. Pulled-down by PC Card (R2100KQ). 7. Pulled-up to Vee by HBA.
4. Pulled-up to Vee by PC Card (R21 OKQ).

Figure 5-1. PCMCIA Memory Socket Interface to Host Bus Adapter

49

68

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Card Power

PC Card memory sockets provide the standard logic supply voltage (V cc) and
programming voltages (Vpp) typically used by EEPROM and Flash devices.
Table 5-1 lists the power pins defined by the memory socket.

Table 5-1. Card Voltage Pins

Signal Function

Vee & Ground Card Voltage. Two V cc pins and four ground pins are used with
each socket. Vee will always be 5 volts when the card is first ac-
cessed if the socket is based on the 2.x standard. In these system, if
the PC Card supports dual operating voltages (5 volts and 3.3 volts)
the operating voltage will be reduced to 3.3vdc during card initiali-
zation. The PC Card standard specifies that each V cc pin supply a
maximum of 500mA (1A total per socket). The actual amount of cur-
rent that can be supplied by the HBA is design specific.

Systems that support low voltage sockets determine the initial V cc
that is applied to the socket by sampling VS1 # and VS2#.

Vppl &Vpp2 Programming Voltage. These pins are used for special programming

50

voltages that may be required by programmable memory devices.
The card's CIS must specify the required programming voltage. Each
Vpp pin must be able to supply 30mA of current.

Two types of sockets are defined by PCMCIA: the standard 2.x compliant
socket and a new low voltage (universal) socket. The initial V cc voltage that a
socket can apply to a PC Card depends on the socket type and the HBA de
sign. Figure 5-2 illustrates the voltage switching that PCMCIA HBAs
implement if they support the VS1 # and VS2# signals.

Release 2.x Socket

The card power pins are listed in table 5-1. For systems that are 2.x compliant,
5 volts is always applied to the V cc pin when a PC Card is first installed into a
socket. Vee can later be switched to 3.3 volts if the PC Card has dual voltage
capability. Support for 3.3vdc operations is detected by a PC Card's client
driver when the CIS is interrogated. It should be apparent that any card in
serted into a 2.x compliant socket must be able to operate at 5 volts.

69

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

+ +
01 w
< w
C. <

/ / 0 C.
0

/ /

Vcc_5
HBA Logic Vcc_3 Power Socket Vee

.... Switching ...

FETs
Vpp_Vcc

Socket Vpp
..... ,.... ,....

Vpp_PGM ,,..
II

' '
/ + H. ,, _.,

I\)

<
C.
0

VS1#

VS2#

Figure 5-2. Voltage Switching Performed by HBA

Low-Voltage Socket

In systems that implement low-voltage sockets, the initial V cc applied to the
PC Card can be either X.X, 3.3 or 5 volts. The initial voltage is determined by
the state of voltage sense pins that have been defined for the low voltage
socket. Refer to the chapter entitled "PC Card and Socket Physical Design" for
details on the low voltage socket.

Voltage Sense Pins {not used in 2.x systems)

Two Voltage Sense pins (VS1 # and VS2#) provide a means for the host system
to detect the voltage level that a given PC Card must initially power up at. Re
fer to table 5-2. PCMCIA release 2.0 or 2.1 (2.x) compliant systems always
apply 5 volts when power is first applied, and can later switch to 3.3 volts if
configuration software detects that the card supports 3.3 volt operation (via
the CIS). These PC Cards are termed dual-voltage cards. The standard

51

70

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

PCMCIA socket designed for release 2.x systems has no voltage sense capabil
ity since all cards initially power to 5 V cc.

Table 5-2. Definition of Voltage Sense Pins

VSl # /Refresh Voltage Sense 1 or Refresh. The values of VSl# and VS2# determine the
initial Vee voltage that is applied to the socket when a PC Card is installed.
Both VS pins are pulled to 5 volts by the host system. When a low voltage
card is installed, it pulls one or both of the VS pins low to indicate the initial
V cc it requires.

When a standard 2.x compliant PC Card is inserted into a low-voltage
socket, both VSl# and VS2# will remain asserted (because 2.x cards do not
implement the VS pins). A 2.x compliant socket defines the VSl # pin as the
refresh signal, originally intended to be used with pseudo-static RAM. Its
functionality has not been defined and is not used.

VS2# /Reserved Voltage Sense 2 or Reserved. This pin is defined as VS2# for low-voltage

52

sockets and cards and is pulled to 5 volts by the host system. See the de-
scription for VSl # above.
This pin is reserved in a 2.x compliant socket.

PCMCIA also supports PC Cards that operate only at 3.3 volts (i.e. they do
not initially power-up at 5 volts). The PC Card standard also supports cards
that operate at a future non-specified low voltage, referred to as X.X volts. To
accomplish 3.3 and X.X volt only operation, PCMCIA defines a PC Card
socket that can supply the initial voltage required by 3.3vdc only PC Cards.
This socket is keyed to accept the newer low-voltage cards, as well as, 5 volt
only cards and dual-voltage cards. This is possible because the HBA samples
the voltage sense pins to determine the initial voltage required by the PC
Card.

Keying on the low-voltage cards prevent them from being inserted into stan
dard 5 volt sockets, thus avoiding the circuit damage that could result if a
3.3vdc card was installed in a 2.x compliant system, which always supplies
5vdc initially to the socket. In summary two types of sockets are specified by
PCMCIA.

• Standard Socket - keyed to accept cards that can power up at 5 volts.
These sockets accept 5 volt-only cards and cards that can be switched to
3.3 volt operation.

• Low Voltage Sockets - keyed to accept either 3.3 volt, X.X volt or 5 volt
cards. Cards designed for 3.3 volt-only operation are keyed to fit only into

71

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

this socket, thus preventing possible damage. Note that systems imple
menting the low-power socket monitor the voltage sense lines; therefore,
they can accept PC Cards operating at any of the specified voltages.

Table 5-3 shows the possible combinations of PC Cards that can be installed
into a low voltage socket and the resulting V cc that will be initially applied to
the card based on the state of VSl # and VS2#. The X.X voltage designates a
V cc level to be defined in the future.

Table 5-3. Interpretation of Voltage Sense Signals by a Low Voltage Socket

Initial Power Required Keying VS1# VS2# Socket Vee at power up

5 volts standard1 1 1 5 volts applied if available, else

no V cc applied.

3.3 volts low-voltage 0 1 3.3 volts applied if available,
else no V cc applied

3.3/5 volts standard1 PD2 1 3.3 volts applied if available,
else no Vee applied.

X.X volts low-voltage 1 0 X.X volts applied if available,
else no V cc applied.

X.X/3.3 volts low-voltage 0 0 X.X volts applied if available,
else 3.3 volts applied if avail-
able, else no V cc applied.

X.X/3.3/5 volts standard1 PD2 0 X.X volts applied if available,
else 3.3 volts applied if avail-
able, else no V cc applied.

1. Standard keying refers to PC Cards keyed to fit into a 2.x compliant socket.
These cards also fit into the low voltage sockets.

2. PD indicates that the card connects VSl # to ground via a lKQ ±10% pull
down resistor.

The Power-Up Sequence

When the HBA recognizes that a PC Card has been inserted into a socket (has
detected CD1 # and CD2# asserted) it must ensure that the card is powered
and the interface signals are enabled in the correct sequence. The PC Card
standard specifies the timing and power sequences required. Figure 5-3 illus
trates the power-up sequence and the primary timing parameters. Note that
RESET is asserted no sooner than lms after Vee has stabilized. Once RESET is
deasserted a PC Card has 20ms to perform its initialization before the system

53

72

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

54

begins accessing the card. If the card needs longer than 20ms before being ac
cessed, it must deassert READY until it is ready to be accessed.

Note that during intial power-up the PC Card is not permitted to draw more
than 70mA at 3.3vdc or lOOmA at 5.0vdc. This limit must be maintained even
if the PC Card requires additional current during normal operation.

>1ms >20ms
~ .. .

CD1# & CO2# \ ____,.. ________________________ _

Vee

RESET

READY

Card Interface
Signals

Vpp1 and Vpp2

I

/ :
I
I
I

t i-----,.-....-----------------,
I

Figure 5-3. The Socket Power-up Sequence

Vppl and Vppl (Programming or Peripheral voltages) provide the program
ming voltage needed by devices such as EEPROM (Electrically-Erasable
Programmable ROM) or Flash ROM during write operations. The PC Card
standard permits separate voltages to be applied via the Vppl and Vpp2 pins;
however, this ability may not be supported by given HBA implementations.

When the socket is first powered, Vppl and Vpp2 are connected to Vee. After
the CIS is read, an alternative Vpp can be applied to the socket under software
control. Twelve volts is recommended as a an alternative Vpp voltage that can
be supplied by the HBAs; however, other voltages may also be applied de
pending on the card's requirements specified in the CIS and the capabilities of
theHBA.

73

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

Address Signals

Refer to table 5-4. The card address signals consist of the address bus proper
(A25:AO) and the card enable signals (CEl# and CE2#). When a transaction to
a PC Card begins, the address lines along with CEl# and CE2# are asserted.
When both CEl# and CE2# are deasserted, the card is in standby mode
(waiting to be accessed). PCMCIA supports 16-bit PC Cards in both 8-bit hosts
(e.g. Intel 8088-based systems) and 16-bit host (e.g. ISA expansion buses). The
card enable signals addressing modes compatible with both 8- and 16-bit host
systems.

Signal
A25:AO

CEl#

CE2#

Table 5-4. PCMCIA Address Lines-Memory Interface

Function
Address Lines 0-25. Twenty-six address lines permit a total address
space of 64 MB for PCMCIA cards. This 64 MB address space is valid
for both common memory and attribute memory.
Card Enable 1. The CEl # signal is an active low signal that specifies
access to address locations which are transferred over the lower data
path (D7:DO). During accesses by 16-bit hosts, CEl# specifies even lo
cation access only. During accesses by 8-bit hosts CEl # specifies access
to either an even or odd location, with AO determining whether an
even or odd location is being addressed.
Card Enable 2. The CE2# signal is an active low signal that specifies
access to an odd address location during access by 16-bit hosts. When
CE2# is asserted, valid data is always transferred over the upper data
path (D15:D8). During access by an 8-bit host, CE2# is always deas
serted. When CEl# is deasserted and CE2# is asserted, an odd byte is
being accessed by a 16-bit host, and when both CEl # and CE2# are
asserted, two bytes are accessed from the card by a 16-bit host.

Table 5-5 identifies the combination of AO, CEl# and CE2# used to access even
and odd address locations from PC Cards and shows which data path is used.
This addressing scheme permits access to PC Cards by both 8-bit and 16-bit
host systems. For example, note that there are two ways to access an odd byte
from a PC Card, depending on whether the host system is an 8-bit system
(uses only D7:DO) or a 16-bit system (uses D15:D8 and D7:DO).

55

74

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Table 5-5. Addressing Even and Odd Bytes

Addressing Mode CEl# CE2# AO* D15:D8 D7:DO
No access (standby mode) 1 1 X High-Z High-Z
8/16-bit Mode (even byte) 0 1 0 High-Z Even Byte
8-bit Mode (odd byte) 0 1 1 High-Z Odd Byte
16-bit Mode (odd byte only) 1 0 X Odd Byte High-Z
16-bit Mode (even & odd byte) 0 0 X Odd Byte Even Byte

56

* "X" indicates a don't care condition.
When a PC Card is accessed in 16-bit mode (by 16-bit hosts), CEl# indicates
access to an even address location, while CE2# indicates access to an odd ad
dress location (Refer to figure 5-4). Even locations are transferred over data
path D7:DO, and odd locations over path D15:D8 ..

Address

HBA

D15:D8

16-Bit Host

07:00 D7:DO

Address
Control
Logic

PC Card

Memory
Array

Odd
Byte

Memory
Array

Even
Byte

Figure 5-4. Addressing Mode Used by Memory Card with 16-Bit Host

75

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

When a PC Card is accessed in 8-bit mode (by an 8-bit host), both even and
odd locations must be transferred to or from the PC Card over path D7:DO
(Refer to figure 5-5). In this case, CE2#, CEl# and AO control data bus steering
within the PC Card, ensuring that both even and odd locations are transferred
over data path D7:DO.

r-

Address

HBA
015:08

8-Bit Host

07:00 07:DO

Address
Control
Logic

PC Card

Memory
Array

Odd
Byte

Memory
Array

Even
Byte

Figure 5-5. Addressing Mode Used by Memory Card with 8-Bit Host

Note that attribute memory devices (i.e. the CIS) only contain valid data at
even address locations (Refer to figure 5-6). This simplifies the design of at
tribute memory when accessed by 8-bit hosts (expansion buses). That is, no
data bus steering logic need be implemented, since even address locations are
only accessed over D7:DO.

57

76

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

58

Address

HBA

D15:D8

16-Bit Host

D7:DO

--------------'

D7:DO

Address
Control
Logic

PC Card

Memory
Array

Odd
Byte

Memory
Array

Even
Byte

Attribute
Memory

Even
Byte

L-------------
Figure 5-6. Only Even Locations Are Accessed from Attribute Memory

over the Lower Data Path

77

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Signal
D7:DO

D15:D8

Chapter 5: The Memory-Only Socket Inter£ ace

Data Lines

The data lines consist of two 8-bit paths; the lower path, data lines D7:DO and
the upper path, data lines D15: D8 (See Table 5-6.) The data path(s) carrying
valid data during a data transfer are defined by the host data bus size and
whether an even byte, odd byte or word is being transferred. Note that
PCMCIA supports PC memory cards containing only 16-bit devices.

Table 5-6. Data Bus

Function

Data lines 7:0 (Lower data path). Transfers data to and from even
locations when the host system has a 16-bit data path; transfers data
to and from both even and odd locations when host system has a
single 8-bit data path.

Data lines 15:8 (Upper data path). Transfers data to and from odd
locations when the host system has a 16-bit data path; not used when
the host system has a single 8-bit data path.

PC Memory Card Transaction DefiniUon

Four types of transactions can be performed when accessing a PC Card mem
ory locations:

• Common Memory Read
• Common Memory Write
• Attribute Memory Read

• Attribute Memory Write

The Output Enable signal (OE#), Write Enable or Program signal
(WE#) and Register (REG#) signals define the transaction type. Table 5-7 de
fines each type of PC Card memory command. Table 5-8 shows the possible
command signal combinations for common and attribute memory.

59

78

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

60

Table 5-7. PC Card Command Lines for Memory Interface

Signal Function

OE# Output Enable. This signal is active low and is asserted dur-
ing memory read transfers from PCMCIA cards.

WE# Write Enable/Program. This signal is active low and is as-
serted during memory write transfers to PCMCIA cards.
When the PC memory device requires a special programming
voltage to perform a write operation, this signal is defined as
the "program" command signal.

REG# Register Select. This signal when asserted specifies access to
attribute memory.

Table 5-8. PCM CIA Memory Transaction Types

Transaction Type OE# WE# REG#

Common Memory Read 0 1 1

Common Memory Write 1 0 1

Attribute Memory Read 0 1 0

Attribute Memory Write 1 0 0

PC Memory Card Status Signals

PCMCIA supports status reporting for a number of card conditions or events
including:

• Card Detection (CDl# and CD2#)
• Ready /busy (READY)
• Write-Protect (WP)
• Low Battery Detection (BVDl and BVD2)

As described in table 5-9, the memory interface has dedicated signals used for
reporting status back to the HBA. Additional information on each of the status
conditions is provided in the ~ollowing section.

79

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

Table 5-9. Card and Socket Status Signals

Signal -Function
CDl#

CD2#

READY

WP

BVD1

BVD2

Card Detect 1. This signal is asserted while a PC Card is installed in a
socket, indicating that one end of the card is making electrical contact within
the socket. This pin should be pulled up to 5 volts by the host system.

Card Detect 2. This signal is asserted while a PC Card is installed in a
socket, indicating that the opposite end of the card is making electrical con-
tact within the socket. This pin should be pulled to 5 volts by the host
system.

READY. Used by the card to inform the system that the card is ready to be
accessed. When READY is deasserted the card is processing a command or
performing initialization and no access should be attempted to the card
until READY is asserted again.

Write-Protect. This signal reports the status of the card's write protect
switch (if present). If no write protect switch is used the WP pin should be
pulled up to Vee (read only) or pulled low (writeable) based on its
read/write capabilities.

Battery Voltage Detect 1. In conjunction with BVD2, indicates the status of
the PC Card's battery, if present.

Battery Voltage Detect 2. In conjunction with BVD1, indicates the status of
the PC Card's battery. JEDEC compliant cards use only BVD1 to report bat-
tery status. The host system should pull BVD2 to V cc on the card to
maintain compatibility with JEDEC cards. Otherwise, a JEDEC compliant
system will detect a low battery condition which none exists.

* Note that systems based on Release 2.0 or 2.1 of the PC Card Standard do
not include the voltage sense capability. These systems always supply Svdc
to a PC Card when it is initially inserted into a socket.

Card Detection

The card detection signals, CD1 # and CD2# provide a method of notifying the
host system when a PC Card has either been inserted or removed. The host
system generates an interrupt when a change in the card detection signals oc
curs. Host software must take the appropriate action to either configure the
PC Card that has been inserted, or to deallocate system resources that were
previously assigned to a PC Card that has been removed.

Table 5-10 defines how the card detect signals should be interpreted.

61

80

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

62

Table 5-10. Interpretation of the Card Detect Signals

CO2# CD1# CD Status
1 1 No card inserted

1 0 Card partially inserted

0 1 Card partially inserted

0 0 Card fully inserted

Ready Status

READY is a status signal that indicates when the card is ready to be accessed.
When this signal is asserted low, the card is busy and should not be accessed.
When the signal is asserted high, the card is ready for access.

The busy condition typically occurs during system initialization if the PC Card
requires more than 20 ms to initialize after the reset signal is deasserted. When
reset is deasserted, software can normally access a PC Card after a 20ms de
lay; however, if the initialization is not yet completed by the PC Card, then the
busy signal is asserted to prevent premature access to the card. Upon comple
tion of initialization, the READY signal transitions to the ready state.

Busy should also be indicated during normal operation if the PC Card is proc
essing a command or performing some lengthy operation, during which the
card cannot be accessed.

Changes in the READY status should generate a system interrupt to notify
software that a given PC Card is busy and should not be accessed, or that the
PC Card was previously busy and is now ready for access. Software should
hook the status interrupt to gain notification of READY status changes. If the
interrupt is not hooked by software, then it should periodically poll the
READY status.

Write-Protect Status

Some memory cards have write-protect capability. Normally a manual switch
is incorporated on the end of the card that selects whether the memory is to be
write-protected or not, as reflected by the card's WP signal. When a change in
the write-protect status occurs the WP signal is asserted. The HBA senses WP
asserted and may (depending on the software defined interrupt mask bit) ini
tiate a status change interrupt to notify software of the change.

81

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

The PC Card designer can define which address ranges it wishes to allow the
user to write protect and which ranges are always writable. This definition is
included in the Card's CIS. Configuration software reads the CIS to determine
which ranges of the PC Card's address space can be write protected and pro
grams the HBA so that it will block writes to the specified address ranges
when the WP pin is asserted. The state of the WP pin has no effect on writes to
address ranges that the CIS defines as always writable.

Low Battery Detection

Two signals (BVDl and BVD2) report status of PC Card batteries. Batteries
are typically implemented on PC Cards that contain volatile memory devices,
such as SRAM cards. The PC Card should pull-up both BVDl and BVD2 to
Vee, indicating a fully operational battery. To indicate a low battery warning
or a dead battery the PC Card deasserts these signals as shown in table 5-11.

The JEIDA memory card specification supports low battery detection using
only the BVDl signal. When a JEIDA compliant card is inserted in a socket, it
will not pull BVD2 to V cc, allowing BVD2 to float. If the HBA interprets the
BVD2 signal as a logic low, then a PCMCIA compliant system would report a
low battery warning when in fact no such condition exists. To alleviate this
potential problem, systems designed to support JEIDA memory cards should
pull-up BVD2 to Vee in the HBA.

Table 5-11. Interpretation of Battery Voltage Detection Signals

BVD2 BVDl Battery Status

1 1 Battery in good condition

1 0 Battery cannot maintain data integrity

0 1 Battery replacement warning-data integrity maintained

0 0 Battery cannot maintain data integrity

63

82

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

64

Bus Cycle Control

Cards use the WAIT# signal to extend normal access timing to the card. That
is, a data transfer between the host bus and a PC Card can be stretched out by
the PC Card when it asserts the WAIT# signal.

Normally, when accessing a PC Card, the speed of the transaction is defined
by the device speed specified within the card's CIS. Configuration software
reads the PC Card's speed and configures the HBA to run transactions to the
PC Card based on the programmed value. When the host system accesses the
PC Card, the HBA initiates a card transaction and accesses the PC Card at its
specified speed.

A PC Card that asserts the WAIT# signal can extend the transfer, if it is unable
to complete the transfer within the normal timing. The maximum value that
wait can extend the cycle timing can be specified within the CIS in the con
figuration entry tuple (tuple code lBh). The maximum WAIT# duration
allowed by the specification is 12µs.

Card Reset

The RESET signal forces the PC Card to reset internal devices and clear its
configuration registers. (Note that many memory-only PC Cards do not im
plement configuration registers.) Reset is typically derived from the system's
master reset signal, but can also be asserted under software control via an
HBA register or the RESET bit in card's configuration register, if imple
mented.

The host system. holds RESET in a high-impedance state during PC Card
power-up. This occurs during system power-up if the card is installed when
the host system is turned on, or when the card is installed with power already
applied to the system.. RESET must remain in high impedance for at least 1 ms
after V cc becomes valid. When RESET is asserted it should remain active for
lOµs as specified by the PCMCIA standard.

83

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

PC Card Memory Transfers

The PC Card standard specifies standard cycle timing for accessing attribute
memory and common memory devices residing within PC cards. These cycle
times indicate that a PC card can be accessed at intervals equal to the speed
rating specified by the card's CIS. Cycle time includes the setup, command
and recovery time required to access a PC Card.

This section focuses on the relationships and functions of the signals used to
control access to PC cards, and does not attempt to define all timing parame
ters and minimum and maximum values. This is the province of the PCMCIA
specification.

Table 5-12 lists the specified cycle times for attribute and common memory.
Note that attribute memory timing is 300ns, while cycle time for common
memory devices range from lOOns to 250ns. A special 600ns cycle time is in
cluded for 3.3vdc memory cards requiring slower cycle time.

Table 5-12. Standard Cycle Times for PC Card Memory Devices

Memory Type / Speed 600ns 300ns 250ns 200ns 150ns lOOns

Attribute Memory X

Common Memory (5V) X X X X

Common Memory (3.3V) X X X X X

Attribute Memory Read Transfers

The first access made to a PC card is a memory read from the Card Informa
tion Structure (CIS), which is mapped into attribute memory address space.
Address' zero is the first location read from, followed by the next even loca
tion. Only even locations are accessible within attribute memory space,
making it easier to accommodate 8-bit host accesses. This means that only the
lower data path (D7:DO) contains valid data when reading from and writing
to attribute memory locations. Table 5-13 highlights the only supported ad
dressing mode for attribute memory accesses.

65

84

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

66

Table 5-13. Addressing Mode Supported by Attribute Transfers

Addressing Mode CEl# CE2# AO 015:08 07:00

No access (standby mode) 1 1 X High-Z High-Z
8/16-bit Mode (even byte) 0 1 0 High-Z Even Byte
8-bit Mode (odd byte) 0 1 1 High-Z Odd Byte
16-bit Mode (odd byte 1 0 X Odd High-Z
only) Byte
16-bit Mode (even & odd 0 0 X Odd Even Byte
byte) Byte

Since attribute memory contains the CIS, it must be read to determine the
card's access timing requirements. However, the speed of the memory device
containing the CIS must be known prior to reading it. For this reason, a de
fault access time of 300ns is used for reading attribute memory within all PC
cards.

Figure 5-7 shows the typical relationships between signals asserted during at
tribute memory reads (refer to the PCMCIA standard for minimum and
maximum timing values). The HBA starts an access to a given socket when it
recognizes an address residing within the PC card. The HBA outputs the tar
get address to the socket at the beginning of the read transfer, along with the
REG# signal. The card enable signal, CEl#, is asserted while CE2# remains
deasserted, consistent with even byte-only accesses that are permitted to at
tribute memory. Once the setup time has been satisfied, the read command,
OE# (output enable), is asserted, indicating that this is a read from attribute
memory. The memory card then returns valid data to the HBA. The HBA
keeps the address asserted to the socket to satisfy the recovery (hold) time of
the memory device. The PC memory card is now ready for another data trans
fer.

85

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

I
pl(

Cycle Time

Addr -< A25:AO
_______)-

I

~
1 __ _ ___________ _.....__t REG#

I I

CE1# \
I

l -------------------1

CE2# [
I

I

I
I

OE# ~ l
-------------· I

WE#[
I

Data
I

---+---------~D7:DO (even byt:e))-
1

...
I •• I
• Setup •

..
Command

•'lllf ••
I I

1Hold1

Figure 5-7. Attribute Memory Read Transfer

Attribute Memory Write Transfers

Attribute memory write transfer timing defaults to 250ns cycle timing
(consistent with the timing parameters defined for 250ns common memory
writes). The only difference between attribute memory write transfers and
common memory write transfers is that the REG# signal is asserted during at
tribute memory writes to distinguish them from common memory writes.
Note that the CIS may specify attribute memory write timing, in which case
write transfer timing will be determined by the CIS timing entry and not the
250ns default mentioned earlier.

67

86

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

68

Common Memory Read/Write Transfers

PC Memory cards may be installed in 8-bit host systems or 16-bit host sys
tems. Memory cards respond to two separate address modes, permitting
access by either 8-bit or 16-bit host bus systems. The following sections de
scribe accesses by each type of host.

Common Memory Read or Write Transfer (16-Bit Hosts)

The addressing mode used by 16-bit hosts is shaded in table 5-14. Note that
16-bit address mode permits even byte only transfers (over D7:DO), odd byte
only transfers (over D15:D8) and word transfers (over D15:DO). Address lines
A25:Al determine the target word location, while the state of CEl#, CE2# and
AO determines the specific byte or bytes requested within the target word.

Table 5-14. Addressing Mode Supported by PC Memory Card When Connected to 16-
Bit Host Systems.

Addressing Mode CEl CE2 AO D15:D8 D7:DO

No access (standby mode) 1 1 X High-Z High-Z

8/16-bit Mode (even byte) 0 1 0 High-Z Even Byte

8-bit Mode (odd byte) 0 1 1 High-Z Odd Byte

16-bit Mode (odd byte only) 1 0 X Odd Byte II High-Z

16-bit Mode (even & odd 0 0 X Odd Byte Even Byte
byte)

Figure 5-8 illustrates a two byte read from a 16-bit host. Note that REG# is
deasserted, indicating an access to common memory. This access results when
the host system requests a word from the PC card. The PC card, recognizing
that both CEl # and CE2# are asserted, returns an even and an odd byte to the
host system. Other combinations of CEl#, CE2# and AO permit single byte ac
cess.

87

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

Figure 5-9 shows an example memory write with a 16-bit host system. In this
example, an odd byte only is being written.

Cycle Time

-< > Addr
A25:A1

REG#[
I

[i
I

AO t
I

CE1# [} l
I

I I

CE2# \ j
I

l OE# ~ I

WE# [
I
I

:> (015:00 (word) I
Data I I I

'• I •'• •' •, ..
I I I

1 Setup I Command 1Hold1

Figure 5-8. Common Memory Read Cycle - Word Transfer

69

88

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

70

Cycle Time

-< > Addr
A25:A1

I

REG#[

AO [I

CE1# [I
I I
I I

CE2# \ t
OE#

I I

WE# [\ ;:
I
I I

I

D15:D8 (o~d byte) :
I

Data ~ >.
'• -.' .. .,, .. .,,
I I I I

1 Setup 1 Command 1Hold1

Figure 5-9. Common Memory Write Cycle

Common Memory Read or Write Transfer (8-Bit Hosts)

PC cards must be able to respond to reads and writes from 8-bit hosts that
have a single data path (D7:DO). The 8-bit addressing mode permits both even
and odd byte accesses over the lower data path, consistent with the needs of
the 8-bit expansion bus. As indicated in table 5-15, when the 8-bit addressing
mode is used CE2# remains deasserted during all transfers, while CEl# re
mains asserted. Address AO specifies whether the access is to the even or odd
byte. Note that transfer timing is not affected by the addressing mode used.

89

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 5: The Memory-Only Socket Inter£ ace

Table 5-15. Addressing Mode Supported by PC Memory Card When Connected to
8-Bit Host Systems.

Addressing Mode CEl# CE2# AO D15:D8 D7:DO
No access (standby mode) 1 1 X High-Z High-Z
8/16-bit Mode (even byte) 0 1 0 High-Z Even Byte
8-bit Mode.(odd byte) 0 1 1 High-Z Odd Byte
16-bit fy!ode (odd byte 1 0 X Odd Byte High-Z
only)
16-bit Mode (even & odd 0 0 X Odd Byte Even Byte
byte)

Common Memory Read/Write Timing with Wait

The WAIT# signal, under PC card control, extends standard cycle time. The
maximum duration of WAIT# is 12µs. When WAIT# is asserted by the PC
card, command time is extended by the duration of the WAIT# signal. In the
event that WAIT# does not extend beyond the standard command time, stan
dard timing will be met. In this instance, timing is not impacted by the
assertion of WAIT#.

Figure 5-10 illustrates a memory read transfer with WAIT# asserted. This ex
ample illustrates a memory read using 8-bit addressing mode. Note that CE2#
is deasserted and CEl# is asserted, while AO (a logic "1") indicates access to an
odd location. Since CE2# is deasserted, the odd location's contents must be
transferred via data path D7:DO. The PC card also asserts WAIT#, telling the
HBA to extend the cycle time. The cycle completes when WAIT# is deas
serted. Refer to the PCMCIA specification for detailed timing information.

71

90

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

72

Cycle Time

Addr -<)
A25:A1 --------------- >----

1

REG#[

AO [

CE1# 1-------------l.
CE2# [I

I

-....--~---------~ OE#

WE# [

WAIT# \ ____ /1

Data --------
1
------:(07:DO (odd byte))-------

1 I

I I I r« .. ,... ..,
Setup ~ Command Hold

Figure 5-10. Common Memory Read Cycle With Wait Asserted

91

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 6: The Memory or 1/0 Inter£ ace

Chapter 6
The Previous Chapter

The previous chapter detailed the memory-only socket interface. Each pin was
defined and its relationship to the PC Card and the HBA was discussed. The
memory-only interface is the interface initially seen by 16-bit PC Cards when
they are first insertedinto a socket. This permits the memory-mapped CIS to
be accessed to determine the PC Card type and interface requirements. If the
card is designed for an interface type other than memory-only, then the HBA
and PC Card are configured to communicate via one of the other interface de
fined by the PC Card Standard.

This Chapter

This chapter details the memory or I/ 0 socket interface. The memory-only in
terface is converted into a memory or I/0 interface by software after it detects
that an I/0 PC Card has been installed into the socket interface. Pins that are
added or redefined by the memory or I/0 interface are discussed along with
their relationship to the I/ 0 card function. Some of the memory-only pins are
replaced with I/ 0 specific pins when the interface is redefined for I/ 0. This
chapter describes how the functions associated with the replaced memory
only pins are handled.

The Next Chapter

The next chapter defines the electrical interface that permits I/ 0 Cards to use
PC compatible DMA transfers. The DMA interface provides a way for stan
dardized I/0 cards that use DMA, to take advantage of exis~ing software that
is designed to use DMA data transfers.

73

92

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Overview

The memory-only socket and the Memory or I/ 0 socket have identical pin
definitions when a PC Card is initially powered up. That is, when an I/ 0 de
vice is installed in a memory or I/ 0 socket, the pin definition is initially
defined as a memory-only configuration, allowing access to the Card Infor
mation Structure (CIS), which is mapped in attribute memory address space.
Software then reads the CIS, determines the card requires an 1/0 interface
and programs the Host Bus Adapter (HBA) and the I/ 0 card to reconfigure
the socket interface to the I/0 pin definition.

The memory or 1/0 interface permits operation of either memory cards, I/0
cards or multifunction cards containing combinations of both memory and
I/ 0 devices. When a socket contains a memory card, it is defined as a mem
ory-only socket. When an I/ 0 device is installed in the socket, some of the
signal definitions change making the socket compatible with both memory
and I/ 0 cards.

Since the memory signals are covered in the previous section, this discussion
focuses only on the signals that differ from the memory socket implementa
tion.

The 1/0 Socket Interface

74

The following discussion describes the dynamic changes made to a memory
or I/0 socket when a PC Card containing I/0 devices is installed. Note that
the memory or I/ 0 socket is configured as a memory socket when a PC Card
is initially installed, allowing the Card Information Structure (CIS) to be read
from attribute memory address space. If configuration software detects that
the PC Card contains 1/0 devices, it then programs the PCMCIA HBA to re
configure the socket for I/ 0 device support.

The signals added to the socket when an I/ 0 device is installed in a memory
or I/0 socket are listed in table 6-1. Some of these new signals replace pins
that are reserved in the memory-only socket (those signals shown in the gray
boxes in figure 6-1), while others replace selected status pins used in the
memory-only interface (signals shown in the black boxes).

93

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 6: The Memory or 1/0 Interface

Table 6-1. Pins Added/Removed When Converting from Memory-Only to Memory or
I/0 Interface

Memory Pin I/0 Replacement Description

Reserved INPACK# Input Port Acknowledge. This signal is as-
serted during I/0 read transfers from a PC
Card when it recognizes the address. The signal
enables the socket's data path transceiver so

, that the addressed PC Card can deliver valid
data to the system. This signal is necessary if
addresses within an I/0 address window
overlap with other devices. (Refer to the chapter
entitled "The HBA" for a description of I/ 0
address windows.)

Reserved IORD# 1/0 Read Command. This signal is asserted
during I/ 0 read transfers from PCM CIA cards.

Reserved IOWR# 1/0 Write Command. This signal is asserted
during I/0 write transfers to PC Cards.

READY IREQ# Interrupt Request. This signal is asserted to
inform the system that the PC Card has an in-
terrupt that needs servicing.

WP IOIS16# 1/0 size is 16-bits. This signal is asserted dur-
ing I/0 read transfers from PC Cards, if the
device size is 16 bits.

BVD2 SPKR# Digital Audio Waveform. lJsed to send audio
information to the system speaker.

BVDl STSCHG# 1/0 Status Change. Used to report a card status
change.

75

94

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Ground
CD1#
Data 11
Data 12
Data 13
Data 14
Data 15
CE2#
VS 1 #/Refresh

Address 17
Address 18
Address 19
Address 20
Address 21
Vee
Vpp2
Address 22
Address 23
Address 24
Address 25
VS2#/Rsrvd*
RESET
WAIT#

REG#

STSCHG#
Data 8
Data 9
Data 10
CO2#
Ground

~ 35
. 36 ...
() 37
.. 38
() 39
.. 40
() 41 .. 42 .
+-- 43

. 44 .

. 45 ,

) 46
... 47 .
. 48 ,

) 49
~ 50

. 51 ,

.. 52 r

.. 53 .

. 54 .

. 55 r

.. 56 .
+-- 57

. 58 ,

. 59 ...

+-- 60
. 61 ,

. 62 ...
63 ...

() 64
() 65
() 66
. 67 ~

. 68 r

1. Pulled-up to Vee by PC Card (R~1 OKQ).

1 ,.
.....

2 ,.

3
, .
"

4
,.
.....

5
, ...

6 , .
"'

7 ,. ...

8 ,

9 , .
.....

10 ,

11

12 ,.

13 ,

14 , .
"

15 ,.

16
17 ..

"

18 , .
"

19 ,

20
21 , .

"

22 , .
"

23

24 .
"

25 , . ,...

26 ,. ...

27 . ,..

28 , .
"

29 I# ...

30

31 ,.
,..-

32 ,. , ...

33
34 , .

"

. .

.
- ..
. ,

-.
.

--,,

. .

.
7

. ..

. .

.
-,

Ground
Data 3
Data4
Data5
Data 6
Data 7
CE1#
Address 10
OE#
Address 11
Address 9
Address 8
Address 13
Address 14
WE#

11;J:c•t[I
Vee
Vpp1
Address 16
Address 15
Address 12
Address 7
Address 6
Address 5
Address 4
Address 3
Address 2
Address 1
Address O
Data O
Data 1
Data2
it•)§mti
Ground

2. Pulled-up to Vee by HBA (R2:1 OKQ).

Figure 6-1. PCMCIA Memory or I/0 Socket

76

95

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 6: The Memory or 1/0 Inter£ ace

PC Memory or 1/0 Card Transaction Definition

Six types of transactions can be performed when accessing a PC Card contain
ing I/0 devices:

• I/ORead
• I/0 Write
• Common Memory Read
• Common Memory Write
• Attribute Memory Read
• Attribute Memory Write

Note that multifunction devices containing both common memory and I/ 0
devices support all the transaction commands.

The Output Enable signal (OE#), Write Enable or Program signal (WE#), I/0
Read (IORD#), I/0 Write (~OWR#), and Register (REG#) signals define the
transaction type. Table 6-2 lists each of the PC Card transaction definition sig
nals and indicates the command signal combinations for common memory,
attribute memory and I/0 accesses. Note that REG# specifies access to either
attribute memory address locations or I/ 0 address locations. The memory
and I/ 0 command lines determine which address space is being accessed.

Table 6-2. PCMCIA Transaction Definition

Transaction Type IORD# IOWR# OE# WE# REG#

I/0 Read 0 1 1 1 0
I/0 Write 1 0 1 1 0
Attribute Memory Read 1 1 0 1 0
Attribute Memory Write 1 1 1 0 0
Common Memory Read 1 1 0 1 1

Common Memory Write 1 1 1 0 1

I/ 0 registers incorporated into PC Cards can be either 8-bits or 16-bits wide.
I/0 cards that contain 16-bit registers assert the IOIS16# signal when a 16-bit
register is addressed. The HBA can determine the size of the register being ac
cessed by monitoring the IOIS16# signal and match the bus size to the device
size. For example, if a 16-bit access is being made to an 8-bit register, the host
system (either the HBA or expansion bus controller) will divide the 16-bit ac
cess into two 8-bit accesses required by the I/ 0 device.

77

96

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

78

The IOIS16# Pin

This pin is asserted by an I/0 card when it recognizes that the location being
accessed is contained within a 16-bit I/0 device. When IOIS16# is asserted the
HBA will perform a 16-bit transfer if possible. If the HBA is performed a 16-
bit transfer but the IOIS16# pin is deasserted, then the HBA will perform two
8-bit transfers to/ from target register.

The IREQ# Pin

The interrupt request pin can be driven either as a level or pulse triggered
signal. The interrupt trigger used is a function of the interrupt triggering
mechanism used by the host expansion bus. When an interrupt is asserted by
the PC Card it is routed (steered) by the HBA to the target interrupt request
line on the expansion bus. For details regarding the implementation of the,
IREQ# trigger selection and interrupt steering refer to the chapter entitled,
"The Host Bus Adapter."

The INPACK# Pin

The INPACK# pin is asserted by PC Card I/0 functions during reads from
registers within the card. This pin is used by the HBA to enable data buffers
between the PC Card socket and the expansion bus. If an I/ 0 transfer is sent
to a PC Card that does not access an internal register, then the data buffers
remain disabled leaving the expansion bus electrically isolated from the PC
Card socket interface. This is done in case the I/0 access that does not belong
to the PC Card is for another device somewhere within the system. Keeping
the PC Card isolated from the bus eliminats possible bus loading or data bus
contention problems.

The STSCHG# Pin

Many PC Cards that incorporate only an I/ 0 function do not implement
memory-mapped devices, require no battery backup, implement no write
protect switch, nor do they have a READY state. Therefore, the status signals
(READY, WP, BVD1, and BVD2) which are not defined for the memory or
I/0 interface are not needed. However, some PC Card's may require one or

97

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 6: The Memory or 1/0 Inter£ ace

more of these status signals (e.g. multifunction PC Cards containing both
memory and I/0 functions).

Since status signals (READY, WP, BVD1, and BVD2) used to report status in
formation are not defined for the memory or I/ 0 interface, PCM CIA defines
an alternative method for reporting these status changes in lieu of the status
pins. A configuration register (called the Pin Replacement Register) located
within the attribute memory address space is used by PC Cards that must re
port status for one or more of the status pins that have been removed from the
memory or I/ 0 interface.

To notify the HBA that a status change has occurred, the Status Change
(STSCHG#) signal is asserted. When the HBA detects the STSCHG# signal as
serted it generates a status change interrupt just as if one of the status pins
had been asserted on the memory-only interface. Software must then read the
pin replacement register contained within the PC Card's attribute memory
address space to determine the source of the status change interrupt.

The SPKR# Pin

The speaker pin is used by l/0-based PC Cards to deliver audio information
back to the host system's speaker. The signal is implemented as a binary audio
signal with a single amplitude, and is simply ORed with other signals that
drive the host speaker. If the .I/0 card does not require a speaker, the SPKR#
pin will be driven high by the PC Card.

PC Card functions using the SPKR# pin must also implement an en
able/ disable bit (called audio enable) in their Configuration and Status
register.

1/0 Transfers

Cycle times for I/ 0 devices consist of a single timing standard. The default
I/ 0 cycle time requires a minimum of 255ns to complete. A device requiring
additional cycle time must assert the WAIT# signal to extend the cycle.

Like PC memory cards, PC I/0 cards must also respond to 8-bit and 16-bit
host addressing modes. These addressing modes are the same as those dis
cussed for memory cards, and are not repeated here.

79

98

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

80

Unlike PC memory cards, however, I/0 devices within PC cards can be de
signed with either 8-bit or 16-bit registers, or a combination of both. When
access is made to an I/0 location within the PC card, the HBA may not know
whether the I/0 transfer is to or from an 8-bit or 16-bit device. In such cases,
the HBA samples the IOIS16# signal to determine the size of I/0 device ac
cessed. When the host system accesses a PC card's I/0 address space, several
situations can result that require action:

• Single byte access by the host system to/ from 8-bit register
• Word access by the host system to/ from 8-bit register
• Odd byte access by the host system to/from 16-bit register

• Word access by the host system to/ from 16-bit register

Single Byte Access to/from 8-Bit 1/0 Devices

Single byte accesses by the host system must be handled so that the data is
transferred over the correct data path. Accesses to and from even locations
present no problems since both 8-bit and 16-bit hosts expect even address lo
cation transfers to occur over the lower data path (D7:DO). Similarly, accesses
to and from odd locations present no problems for 8-bit hosts since they ex
pect both even and odd bytes to be transferred over the lower data path.
However, 16-bit host systems expect odd location transfers to occur over the
upper data path (D15:D8). Since 8-bit I/0 devices transfer both even and odd
locations over the lower data path, either the host bus system or the PCMCIA
HBA must steer the data to the correct path when accessing odd locations.

When an I/0 transfer begins, the HBA does not know whether the access is to
an 8-bit or 16-bit device, but defaults to the 8-bit addressing mode. This means
CEl # is asserted and CE2# is deasserted, while AO determines whether an
even or odd byte location is to be accessed.

Figure 6-2 illustrates a standard I/0 read transfer from an odd location. The
location being accessed is from an 8-bit I/0 register, indicated by I0IS16#
being deasserted. Note also that the cycle time is the standard 255ns.

Data from the odd address location is transferred over the lower data path
from the 8-bit I/0 register. With most PC-based bus architectures, such as
ISA, the host system's bus implements device size lines that control data bus
steering when accessing odd locations from 8-bit devices. The HBA notifies
the host bus controller of the register size being accessed and the bus control
ler steers the contents of the odd location to the upper data path. If the host

99

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 6: The Memory or 1/0 Interface

bus does not include a steering mechanism, then the HBA must perform the
steering and supply data to the data path expected by the host bus requester.

Cycle Time (255ns)

______)-Addr ~ A25:A1

REG# \ ______ J

AO [:
CE1# \

I
I

------------------· 1

CE2# [I

I

IORD# ~ I -----~------· I

IOWR#[

IOIS16#[

Data ------------<<D7:DO (odd byte) >-: -
I I ~-- .,

I
Setup

I I
Command Recovery

Figure 6-2. Default PC Card I/0 Read Cycle.

81

100

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

82

Word Access to/from 8-Bit 1/0 Devices

When the host system performs a 16-bit data transfer with 8-bit registers on
the PC card, the host's request to transfer an entire word (two bytes) requires
two accesses to the PC card. The host system is responsible for converting the
word access into two separate byte accesses to the PC card. Depending on the
host bus architecture, either the host bus control logic or the PCMCIA HBA
must automatically initiate the additional 8-bit access.

Systems based on most PC bus architectures (such as ISA, EISA, and the Mi
cro Channel) employ signal lines and logic designed to manage accesses to
and from devices of different sizes. In these instances, the HBA can utilize the
host system's resources to run an additional cycle to the 8-bit PC card. When
the HBA samples the PC card's IOIS16# line deasserted, it can use the host bus
size lines to inform the host that the access is to an 8-bit device. The HBA
completes the first byte transfer (even byte) and waits for the second transfer
(odd byte) to be initiated by the host. The host, knowing that the odd byte is
from an 8-bit device and that the data will be returned on the lower data path
(D7:DO), steers the content of the lower data path to the upper path (D15:D8).

Some host systems may not employ device size translation logic for HBAs to
use. In these instances, the HBA must run the additional transfer to the PC
card and return the entire word requested by the host system in what appears
to be a single cycle to the host.

Byte Accesses to/from 16-Bit Register

When the host transfers a single byte (whether with an even or odd location),
the transfer can complete in a single cycle when a 16-bit I/ 0 device is ac
cessed. As in the examples discussed earlier, the HBA, not knowing whether
the device is 8-bit or 16-bit, starts the transfer by using 8-bit addressing mode.
Since even location accesses are identical for both 8-bit and 16-bit addressing
mode, no adjustment need be made by the HBA or the PC card and the trans
fer completes normally regardless of the state of the IOIS16# signal. Transfers
to and from odd byte locations when accessing 16-bit devices either require:

• adjustment of the address mode to ensure that data is transferred to and
from the PC card over the correct data path, or

• data steering the between upper and lower data paths if 8-bit mode ad
dressing is used.

101

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 6: The Memory or 1/0 Inter£ ace

Word Accesses to/from 16-Bit 1/0 Registers

Word transfers to and from 16-bit I/ 0 registers can complete in a single cycle.
Refer to figure 6-3. Typically, when an I/0 transfer begins the address mode
defaults to 8-bit addressing mode, in expectation that an 8-bit register may be
accessed. However, when the IOIS16# signal is asserted by the 16-bit target
device, the HBA can also assert CE2#, causing the PC card to respond to the
word transfer.

Cycle Time (255ns)

Addr -< > A25:A1
I

I I

REG#[\ J
I I

AO [i I

t
CE1# \ l

I I

CE2#[

I

\ j
I

l IORD# ~ I

IOWR#[I ,
I

IOIS16#[~
I

t
I

WAIT#[I

< D15:DO (word) > I Data I I I
I I I I 1• .. , ,
I

Setup
I , I

Command Recovery

Figure 6-3. I/0 Read Cycl~ without WAIT#- Word Transfer

83

102

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 7: The DMA Interface

Chapter 7
The Previous Chapter

The previous chapter detailed the memory or I/0 interface between the PC
Card and socket. Configuration software reconfigures the memory-only inter
face into a memory or I/0 interface after it detects that an I/0 PC Card has
been installed into the socket interface. Pins that are added or redefined by the
memory or I/ 0 interface are discussed along with their relationship to the
I/0 card function. Some of the memory-only pins are replaced with I/0 spe
cific pins when the interface is redefined for I/0. The previous chapter
described how the functions associated with the replaced memory-only pins
are handled.

This Chapter

This chapter defines the DMA compliant electrical interface, permitting I/ 0
Cards to use PC compatible DMA transfers. The DMA interface allows I/0
devices that use DMA to take advantage of existing compatible software when
performing data transfers.

The Next Chapter

The next chapter discusses the PC Card AT A interface. A PC Card ATA inter
face provides a PC compatible hardware and programming interface that
simplifies the job of implemented hard drive solutions in the PCMCIA envi
ronment. This chapter defines the various ways that a PC Card ATA can be
mapped in the system along with the electrical interfaces that are used. Differ
ences between the PC compatible ATA implementation versus the PC Card
ATA interface are also discussed.

85

103

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Background

Release 2.x systems do not support DMA transfers. As a result, standard PC
hardware and software solutions that use DMA will not work with 2.x com.
pliant systems. This makes the job of implementing devices such as floppy
drives and Sound Blaster in the PC Card environment extremely difficult.
These devices use the IBM PC compatible DMA subsystem to transfer data be
tween them.selves and main system memory. Standard software supporting
these type devices are designed to program the DMA subsystem in order to
transfer data to/ from these devices.

Previous implementations of PC Cards that use DMA required definition of
additional hardware and software that extends beyond the Release 2.x specifi
cation. Some HBA manufacturers included DMA support and some system.
vendors implemented solutions using these HBAs. These solutions however,
did not enjoy industry-wide support because the PCMCIA Standard did not
define a standard implementation.

Review of PC Compatible DMA Transfers

86

PC compatible DMA employs a DMA controller (DMAC) that is program.med
to orchestrate a transfer between an I/0 device and main system m.em.ory.
Once programmed, the DMAC handles a block transfer and its termination.
The DMAC used in ISA compatible PCs performs a "fly-by" transfer; that is, it
is able to transfer data between memory and an l/0 device (read and write) in
a single DMA cycle without latching the data internally, a job that would
normally require two separate bus cycles (a read followed by a write) by the
processor.

Upon completion of the overall data transfer, the I/0 device interrupts the
microprocessor to indicate completion. In response, the microprocessor tem
porarily suspends its current task and performs an I/ 0 read from. the I/ 0
device to check the completion status of the transfer. If the I/ 0 device indi
cates no errors were encountered, the microprocessor may continue
processing.

104

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 7: The DMA Interface

A DMA Example

This example describes a DMA transfer between the floppy drive controller
and system memory. The example defines the signal involved in the transfer
and describes the sequence of events that occur to initiate, perform, and ter
minate a DMA transfer.

Four distinct steps must occur to initiate and complete a DMA transfer:

• Set-up the DMA channel for the transfer.
• Command the 1/0 device to initiate the block data transfer.
• Grant the system buses to the DMA controller so it can run the bus cycle.
• Notify the microprocessor that the transfer is complete.

Each DMA Channel within the DMA controller has its own set of I/ 0 regis
ters that the programmer uses to set up the data transfer. The set of I/0
registers associated with each DMA Channel allows the programmer to spec
ify:

• The Transfer Count (number of bytes to be transferred).
• The start memory address (start address in memory where data will be

read from or written to).
• The direction of transfer with reference to (type of trans£ er).

After the DMA Channel has been set up by the programmer, the I/0 device
must be programmed to initiate the overall block data transfer. As an exam
ple, the programmer would issue the proper series of I/ 0 write commands to
a floppy disk controller to initiate a disk read operation.

Having set up the respective DMA channel and issued the proper commands
to the I/0 d~vice (in this case, the floppy disk controller and DMA channel
two), the microprocessor can then go on to another task. The entire data trans
fer and its termination will be handled by the I/ 0 device and its respective
DMA Channel.

Each I/0 device designed to use the DMA transfers employs three dedicated
DMA signals defined by the ISA bus:

• DREQ (DMA Request) - output by the I/0 device to request a DMAC
transfer be performed.

87

105

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

88

• DACK# (DMA acknowledge) - input to the I/0 device notifying it that
the transfer has started.

• TC (Terminal Count) - input to the I/0 device notifying it that the block
transfer has been completed.

When performing a floppy disk transfer, the programmer may only perform
data transfers in multiples of the sector size. When running MS-DOS, a sector
on a floppy disk contains 512 bytes of information. This would be the smallest
data transfer possible when transferring information between a disk drive and
memory.

Refer to figure 7-1 for a block diagram of the components involved.

DREQn
Floppy DAKn# DMA
Drive 14-_1o_Rc_#_-otController

Controller 1owc#
TC

IRQ6

Interrupt
ontroller

HOLD

HLDA

INTR

Figure 7-1. Example DMA Transfer Mechanism

CPU

106

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 7: The DMA Interface

1. The programmer issues a series of l/0 writes to DMA channel two's reg
isters to set up the start memory address, transfer count and the direction
of the transfer with reference to memory. In the disk read example, as
sume that the start memory address is 1000h, the transfer count is 512
bytes (one sector) and that this is a write transfer (with reference to mem
ory).

2. The floppy controller must be programmed with the disk read command,
the cylinder number, the head (or surface) number, the start sector num
ber and the number of sectors to be read. In this example, we will assume
a one sector (512 bytes) read from cylinder three, head one, sector five.

3. Upon receiving the parameters and the disk read command, the disk con
troller initiates a seek operation to position the read/write head
mechanism over cylinder three. It must then wait for the disk to spin until
the start of sector five is detected under the read head on surface one. As
the disk is a mechanical device, this will take some time.

4. In the example of a read operation from a floppy disk controller, some
time will elapse before the disk controller has read the first byte from disk.

5. When the first byte has been transferred from the disk to the disk control
ler, the floppy disk controller must then request that its associated DMA
Channel transfer the data. The floppy disk controller asserts DMA request
line two (DREQ2) that goes to the DMAC.

6. The DMAC responds by asserting HOLD to seize the buses (address,
data, and control buses) from the microprocessor. The HOLD line goes di
rectly to the microprocessor's hold request input.

7. When the microprocessor completes the current bus cycle, it will tri-state
all of its bus output drivers, thereby floating the buses. The microproces
sor also asserts HLDA to tell the requesting device (the DMAC in this
case) that it is now the bus master.

8. The DMAC then responds to DREQ2 from the disk controller by activat
ing DMA Acknowledge (DACI<2#) and the l/0 read command line
(IORC#). These two lines go to the disk controller.

9. The disk controller drops DREQ2 and begins the access to the data regis
ter to place data onto the data bus.

10. The DMAC activates the Memory Write Command line (MWTC#) and
places the address from channel two's start address register onto the ad
dress bus~

11. The data on the data bus is written into memory at the address currently
on the address bus.

12. The DMAC then increments channel two's memory address register by
one to point to the address in the RAM where it will store the next byte it
receives from the disk controller.

89

107

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

90

13. The DMAC also decrements the byte transfer count. If the transfer count
is not exhausted, the data transfer is not complete and the DMAC must
wait for another DMA Request (DREQ2) from the floppy drive controller,
indicating that it has another byte to transfer. The DMAC also deasserts
HOLD to give control of the buses back to the processor and awaits the
next DREQ2 assertion from the floppy disk controller. The microprocessor
reattaches itself to the buses (exits the tri-state condition) and deasserts
the Hold Acknowledge line (HLDA) to tell the DMAC it has resumed con
trol of the buses. The microprocessor is now bus master again. (step 6).

14. When the transfer count is exhausted, the data transfer is complete. The
DMAC will once again deassert the hold request line (HOLD) to tell the
microprocessor that it no longer needs the buses.

15. The DMAC also generates EOP (End-of-Process). This supplies the signal
TC (Terminal Count reached) to the disk controller. The disk controller
will then generate a device-specific interrupt request to the 8259 Interrupt
Controller which in turn generates INTR (Interrupt Request) to the micro
processor to inform it that the transfer operation is complete.

The DMA controller supports a variety of transfer modes. This example de
scribes a transfer in which the DMAC surrenders control of the buses after
each transfer, called Single Transfer Mode. This transfer mode keeps the proc
essor and other bus masters (e.g. the refresh logic) from be starved for control
of the system bus. Other transfer modes are supported by the DMAC includ
ing Block Transfer Mode and Demand Transfer Mode.

DMA Channels Supported by ISA

The DMAC used in ISA machines is the Intel 8237, providing four separate
DMA channels. Two 8237s are used in a master/slave configuration, provid
ing a total of seven DMA channels. Each DMA channel employs its respective
DREQn and DACKn# signals (where n= 0, 1, 2, 3, 5, 6, 7), corresponding to the
DMA channel number. Each DMA channel is used by a separate I/0 device to
handle block data transfers with memory.

ISA compatible machines support both 8- and 16-bit DMA channels, specify
ing the width of the data path used during the transfer. DMA channels 0-3 are
8-bit only DMA channels and DMA channels 5-7 are 16-bit only DMA chan
nels. An I/ 0 device wishing to use DMA transfers must select one of the
DMA channels corresponding to the width of transfer it supports.

108

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 7: The DMA Inter£ ace

For more detailed information regarding DMA refer to the MindShare book
entitled, uISA System Architecture," published by Addison-Wesley.

The DMA Socket Interface

The DMA interface defines three OMA signals (DREQ#, DACK, and TC) re
quired by an I/ 0 device in order for it to use the OMA transfer mechanism.
Figure 7-2 illustrates the memory or I/0 interface signals that can be reass
igned to the respective OMA related signals.

Ground ~ 35 1 Ground
CD1# ~ 36 2 Data 3
Data 11 ~ 37 3 Data4
Data 12 38 4 Data 5
Data 13 39 5 Data6
Data 14 40 6 Data 7
Data 15 41 7 CE1#
CE2# 42 8 Address 10
VS1 #/Refresh 43 9 OE#
IORD# 44 10 Address 11
IOWR# 45 11 Address 9
Address 17 46 12 Address 8
Address 18 47 13 Address 13
Address 19 48 14 Address 14
Address 20 49 15 --~ WE# 11:,1€,~~D
Address 21 50 16 IREQ#
Vee 51 17 Vee
Vpp2 52 18 Vpp1
Address 22 53 19 Address 16
Address 23 54 20 Address 15
Address 24 55 21 Address 12
Address 25 56 22 Address 7
VS2#/Rsrvd ~ 57 23 Address 6
RESET ~ 58 24 Address 5
WAIT# ~ 59 25 Address 4

llltlllllll/lNPACK#~ 60 26 Address 3
181!111/REG# 61 27 Address 2
llltltl'II/SPKR# 62 28 Address 1
STSCHG# 63 29 Address O
Data 8 64 30 Data O
Data 9 65 31 Data 1
Data 10 66 32 Data 2
CO2# ~ 67 33 IIIISIII/IOIS16#
Ground ~ 68 34 Ground

Figure 7-2. DMA Signal Interface

91

109

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

92

7

The DREQ# Pin

DREQ# can be assigned to any one of three memory or I/ 0 interface pins,
thereby replacing the standard I/ 0 signals as follows:

• Pin 33 (replaces IOIS16#)
• Pin 60 (replaces INP ACK#)
• Pin 62 (replaces SPKR#)

The pin assigned to fulfill the DREQ# signaling function is specified by the PC
Card's CIS. This DREQ# pin assignment information is contained within the
miscellaneous features field of the Configuration Table Entry tuple (tuple code
lBh). The miscellaneous features field definition is illustrated in table 7-1.

Table 7-1. Definition of the Miscellaneous Features Field that Defines DMA support

6 5 4 3 2 II 1 II 0

EXT RFU (0) PwrDn Read Only Audio Max Twin Cards

EXT RFU (0) RFU (0) DMAwidth DMA Request Signal II RFU (0) II RFU (0)

The first byte within the miscellaneous features field was defined for 2.x
compliant systems and contains no definition for DMA. The newer PC Card
Standard defines an extension that includes the DMA related information. Bit
7 of the first miscellaneous features extension byte- is set to indicate that the
second byte is present. Bits 2 and 3 of the second byte specifies which interface
pin the PC Card uses for DREQ#. A PC Card that uses DMA forfeits the func
tionality of the signal replaced by DREQ#. The binary values in bits 2 and 3
are interpreted as shown below:

Table 7-2. Interpretation of DMA Request Assignment Bits

Bit 3 Bit 2 Definition

0 0 DMA not supported
0 1 DREQ# uses SPKR#
1 0 DREQ# uses IOJS16#
1 1 DREQ# uses INP ACK#

Note that the data width of the DMA transfer is also specified by bit 4 of the
second miscellaneous features byte. A value of "O" indicates an 8-bit DMA

110

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 7: The DMA Inter£ ace

data transfer is supported and a value of "1" indicates support for 16-bit
DMA transfers. Configuration software is responsible for checking the DMA
data width and selecting the corresponding DMA channel that supports the
data width indicated by the PC Card.

The DACK/REG# Pin

The DACK is shared with the REG# pin to differentiate normal I/0 transfers
from OMA transfers. When an I/ 0 register access begins the HBA asserts ei
ther IORD# or IOWR#, signaling the start of the transfer. It further specifies
the type of 1/0 access using the DACK/REG# pin. The access is treated as a
normal I/ 0 transfer when REG# asserted (in which case the PC Card decodes
the address to select the target register) and when DACK is asserted the trans
fer is recognized as acknowledgment of a DMA transfer (in which case the
DMA data register is selected directly and the address is ignored).

The TC Pin

When TC is asserted by the DMA controller, it is indicating that the block
transfer has completed. Note that only one TC pin is defined by the ISA ex
pansion bus, therefore the DMA controller also asserts the respective
DACKn# signal to identify the I/0 device that TC is intended for. The PC
Card upqn recognizing TC belongs to it, asserts its IREQ# pin, thereby signal
ing the system that its DMA transfer has ended.

TC is assigned to pin 9 (replacing OE#) to specify completion of a DMA write
transfer and pin 15 (replacing WE#) to specify completion of a DMA read
transfer.

DMA with PC Card

Figure 7-3 illustrates a PC Card using DMA transfers. Notice that the HBA
must invert the DREQ# and DACK signals to/ from the ISA bus, since it de
fines these signal active in the opposite logic state. OMA transfers complete
just as they do to/from any I/0 device supporting the OMA transfer mecha
nism. Additionally the HBA must implement DMA channel steering logic so
that the PC Card's DREQ# and DACK signals connect to the selected ISA
DREQn and DACKn# signals. ·

93

111

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture .

DMA transfer width may be either 8-bit or 16-bit as specified in the miscella
neous features field of the Configuration Table Entry tuple (table 7-1). The
HBA determines the DMA transfer size (8- or 16-bit) via the SAO and SBHE#
signals on the ISA bus and in turn asserts either CEl# (8-bit transfer) or CEl#
and CE2# (16-bit transfer). Refer to the chapter entitled, The "Host Bus
Adapter" for additional information regarding the DMA implementation.

PC Card
with DMA Support IORD#

IOWR#

TC
CEl# & CE2#

IREQ#

PCMCIA
HBA

DREQn

DRAM
Memory

DACKn# DMA
............ 1o ___ Rc __ 1_-1Controller

HOLD

HLDA
IOWC# •-------1
TC
SAO & BHE#

IRQn

Interrupt
Controller

INTR

Figure 7-3. Block Diagram of PC Card implementing DMA Transfers

CPU

DMA Transfer Timing {PC Compatible)

94

DMA Bus Cycle

In the PC environment, DMA transactions are performed by an Intel com
patible 8237 DMA controller (DMAC). The DMAC transactions consist of four
states, each with a duration of one DMA clock period. When the DMAC has

112

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 7: The DMA Inter£ ace

gained ownership of the system buses, it uses its own clock when executing
bus cycles. This clock is referred to as the DMA clock and is 1/2 the expansion
bus clock frequency. Depending on the PC and the selected processor speed,
this will yield a DMA clock of either 3MHz (6MHz AT), 4MHz (8MHz ISA
compatible machine), or 4.165MHz (8.33MHz ISA-compatible machine).

Table 7-3 lists the clock period for the three possible processor speed settings:

Table 7-3. Typical DMA Clock Speeds in the PC Environment

Speed Setting OMA Clock Frequency OMA Clock Period

6MHz 3MHz 333.3ns

8MHz 4MHz 250ns

8.33MHz 4.165MHz 240ns

Prior to receiving a DMA Request, the DMAC is in the idle state, Si. When a
DRQ is sensed, the DMAC enters a state where it asserts HOLD (Hold Re
quest) to the microprocessor and awaits the HLDA (Hold Acknowledge). This
state is called So. The DMAC remains in the So state until HLDA is sensed
active.

The DMAC can then proceed with the DMA transfer. Sl, S2, S3 and S4 are the
states used to execute a transfer (of a byte or word) between the requesting
I/0 device and system memory. In addition, when accessing a device that is
slow to respond, a DMA transfer cycle can be stretched by deasserting the
DMAC's READY input until the device is ready to complete the transfer. This
will cause the DMAC to insert wait states, Sw, in the bus cycle until READY
goes active again.

The following actions take place during states Sl-S4. See figure 7-4 for the ac
tual timing of a single transfer:

95

113

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

State

Sl

S2

S3

S4

96

Actions Taken

During singl~ transfer mode, Sl is used to output the middle byte of the
memory address, A8:A15 during each transfer. The middle byte of the mem-
ory address is output onto data bus pins DO:D7. The DMAC also pulses its
Address Strobe (ADSTB) output during Sl and on the falling edge of ADSTB
the new middle byte of the address to be latched into the external DMA ad-
dress latch. Address lines A8:A15 receive the middle portion of the address
during S2.

During Block and Demand transfers, the middle byte of the memory address
only changes once every 256th transfer. For this reason, when in these modes
the DMAC only enters the Sl state every 256th transfer to update the middle
byte of the address.

During S2, the lower byte (AO:A7) of the memory address is output directly
onto the address bus, AO:A7. The DMAC's AEN output is set active causing
the external DMA address latch to output the middle portion of the address
and to act as an enable for the DMA Page Register addressing. In addition,
DACKn# is asserted to tell the I/0 device that the transfer is in progress.
When DACK# is asserted, the HBA starts the PC Card data register access.

S3 will only occur in a bus cycle if Compressed Timing hasn't been selected
for this DMA channel. See text below for a discussion of Compressed Timing.
During S3, the MRDC# or the IORC# line is set active. If the DMA channel is
programmed for extended writes, the MWTC# or IOWC# line is also set ac-
tive during S3.

If the DMA channel was not programmed for extended write, the MWTC# or
IOWC# is set active at the start of S4. If extended write had been selected, the
write command line was already set active at the start of S3. The actual
read/write takes place at the trailing edge of S4 when both the Read and
Write command lines are de-asserted by the DMAC. This completes the
transfer of a byte or word between memory and the requesting I/ 0 device.

When Compressed Timing is selected, S3 is eliminated from the DMA transfer
cycle. The only real purpose of S3 is to allow the Read command line to be as
serted for twice the duration it is when Compressed Timing is active. Not all
memory and I/ 0 devices will tolerate this abbreviated Read command line, so
it must be used cautiously.

114

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 7: The DMA Inter£ ace

When Extended Write is selected, it causes the Write command line to be set
active during S3 rather than S4, effectively doubling the duration of the Write
command line's active period.

It should be obvious that Extended Write and Compressed Timing are mu
tually exclusive because S3 is essential for Extended Write and is eliminated
when Compressed Timing is selected.

SI so so

DREQ (n) -------
HOLD

HLDA

DO:D7

ADSTB

_r
_____ ,J ~ _ :_ i

S1 S2 S3 S4 SI SI

___ r

AO:A7 -------: 'J ------(_~ __ Ai_dd_ress_: val_ld ___)--

AEN
:~

DACK# (n):

WRITE# ._ ____) ___,

Figure 7-4. Single Transfer Mode Timing

97

115

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

The HBA must satisfy the timing requirements of the DMA controller imple
mented in the host system. Note that the duration of the PC Card access is
during the assertion of the DACK# from the ISA bus (DMA clocks S2, S3 and
S4).

Changes to Socket Services

98

Several socket service functions have been modified to support DMA. These
functions are listed in table 7-4 and the DMA change is described.

Table 7-4. Socket Service Functions Modified to Support DMA

Socket Service Function Code Description of Change

GetSocket 8Dh P-rovides status information regarding
the current setting of the specified HBA
socket interface. Includes two bits that
specify whether the DREQ# signal is
currently assigned to the socket
(OOb=DREQ# not assigned to socket),
and if so, which socket interface pin is
used to signal DREQ#. (01 b=SPKR#;
10b=IOIS16; llb=INPACK)

InquireSocket 8Ch Defines attribute bits indicating whether
the socket supports DMA transfers. If
supported, also defines a bit-map of
DMA channels supported.

SetSocket 8Eh Changes the current settings of the HBA
socket interface. Includes the same
definition used by Get socket

GetStatus 8Fh Provide status regarding the HBA
socket interface and PC Card configura
tion. This information incorporates the
changes made to GetSocket.

116

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 7: The DMA Interface

Changes to Card Services

Several of the card services have also been modified to support DMA. The
services affected are listed in table 7-5 along with a description of the changes
made. The services shown in shaded boxes were added with the PC Card 95
release.

Table 7-5. Modifications Made to Card Services to Support DMA

Service Name Code

AdjustResoucelnfo 35h

GetConfigurationlnfo 04h

ModifyConfiguration 27h

RequestConfiguration 30h

Description of Change

Obtains status of or makes changes to the
system resource table managed by card
services. If DMA is supported, DMA
channel resources will be included in the
resources table, and the ability to modify
DMA resource information within the
table will be defined for this service.

Provides the current configuration of the
PC Card and socket. This service in
cludes DMA configuration information.

Modifies the current configuration of the
socket configuration. Adds support for
enabling or disabling the DMA channel.

Requests that card services perform the
configuration that has been specified.
This service adds the ability to enable or
disable the DMA routing, if a Request
DMA service was called for this PC Card.

99

117

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 8: The AT A Inter£ ace

Chapter 8
The Previous Chapter

The previous chapter defined the DMA compliant electrical interface, permit
ting I/ 0 Cards to use PC compatible DMA transfers. The DMA interface
allows PC Cards using DMA ·to take advantage of existing compatible soft
ware when performing data transfers.

This Chapter

This chapter discusses the PC Card ATA interface. A PC Card ATA interface
provides a PC compatible hardware and programming interface that simpli
fies the job of implemented hard drive solutions in the PCMCIA environment.
This chapter defines the various ways that a PC Card ATA can be mapped in
the system along with the electrical interfaces that are used. Differences be
tween the PC compatible ATA implementation versus the PC Card ATA
interface are also discussed.

The Next Chapter

The next chapter focuses on the optional Auto-Indexing Mass Storage (AIMS)
interface. The chapter describes the programming interface and the transfer
mechanism used by AIMS cards.

The AT A Interface

IDE Disk drives use the ATA (AT Attachment) interface common in many
ISA-compatible PCs. The ATA interface is a 40 pin interface that connects IDE
drives to an ATA host bus adapter (HBA) interface (refer to figure 8-1). The
interface includes register select signals, three address lines, 16 data lines and
control signals. Functions performed by the ATA host adapter include ad
dress decode and data buffering.

101

118

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Devices implemented as ATA drives in the PCMCIA environment include ac
tual small form-factor disk drives (i.e. 1.8 inch disks) and Flash cards that use
the ATA interface and emulate a disk drive. The ATA interface is attractive
because the software interface used by AT A devices is standardized and quite
common. Standard BIOS routines are built into virtually every PC to support
the AT A interface, eliminating the need for specialized device driver code to
access the ATA card.

ATA Interface
(40 Pin)

ATA
Host

Drive
Electronics

Host Bus Bus
IDE
Disk

Controller

I
I
I
I
I
I

Adapter

102

I Integrated Drive Element (IDE) I
L-----------

IDE
Disk

Controller

Drive
Electronics

Integrated Drive Element (IDE)
L _________ _

Figure 8-1. Typical AT A Interface to IDE Drive

119

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 8: The AT A Inter£ ace

The ATA Interface

PCMCIA does not require that the HBA include the ATA host adapter func
tionality. In the PCMCIA environment, the ATA host adapter functions
(address decode and data buffering) are incorporated into the ATA PC Card
proper as shown in figure 8-2. As a result, PC Card AT A devices can interface
via the standard I/0 socket interface.

Drive

IDE Electronics
ATA
Host Disk

Adapter Controller

"U
()

s:
()

)>

I
0

Host Bus (/)
r-1-

CD
C
(/)

)>
0.
Q)

'U --(0 -.
ATA IDE Flash
Host Disk Memory

Adapter Controller Array

Figure 8-2. PC Card ATA Disk and Memory Devices

The PCMCIA specification includes an interface definition, which lists the
minimum signals required to communicate with an ATA PC Card. However,
virtually all PCMCIA host bus adapters support the standard memory or I/0
interface, which contains all the signals required to support the ATA interface.
Figure 8-3 illustrates the minimal interface required to support ATA Cards.
Notice that all of the signals defined are included in the standard memory or
I/0 socket interface.

103

120

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

104

It should be noted that some PCM CIA host bus adapters provide an AT A in
terface (defines the standard 40 pin interface required by IDE drives) at the PC
Card socket. This interface is not specified nor supported by PCMCIA. These
designs integrate the ATA host bus adapter into the PCMCIA HBA. This in
terface permits system manufacturers to connect a 40 pin standard small form
factor IDE drive via the PC Card socket. One advantage of the small form fac
tor ATA drive interface is that it can provide performance advantages over
the standard 1/0 interface that requires the ATA host bus adapter be inte
grated into the PC Card itself. This performance gain results from the
elimination of address setup time (required by standard PC Cards) when
transferring data to and from the ATA drive. See the chapter entitled, "An Ex
ample Adapter- CL-PD6722."

Ground 35 1 Ground
CD1# - 36 2 Data 3
Data 11 37 3 Data 4
Data 12 38 4 Data 5
Data 13 39

/
5 Data 6

Data 14 40 6 Data 7
Data 15 41 7 CE1#
CE2# 42 8 >Address JO ..
VS1# 43

"-~:'.'"·,:,':,//·:··,"',· ,:,. •,

9 OE#
IORD# 44 10 .)\ijaf~ss11···
IOWR# 45 11 Address 9
Acidress,17 - 46 12 Address 8
Aa&~ss 1s. 47 13 ·, Address.13

.··• Addt~ssj 9 - 48 14 Adl'.lfesst4

. Ad9n~ss.20 - 49 15 WE#
· Adcfress·21 50 16 IREQ#
Vee 51 17 Vee
Vpp2 or NC 52 18 Vpp1 or NC
Aadress22. ·. 53 19 ,Addressl6

··Aqdr~ss.23· 54 20 Address 15
··Addr~~s,?4 55 21 Address·1,2
Address25 56 22 Address 7
VS2# 57 23 Address 6
RESET 58 24 Address 5
WAIT# - 59 25 Address 4
INPACK# - 60 26 Address 3
REG# 61 27 Address 2
SPKR# 62 28 Address 1
.STSCHG# - 63 29 Address O
Data 8 - 64 30 Data O
Data 9 65 31 Data 1
Data 10 - 66 32 Data 2
CD2# - 67 33 IOIS16#
Ground 68 34 Ground

Figure 8-3. Minimum Signals Required for ATA Socket Interface

121

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 8: The AT A Inter£ ace

Differences Between Standard ATA and PCMCIA
ATA

Note that the ATA interface consists of signals and functionality not com
pletely supported by the PCMCIA ATA interface. Note for example, that the
normal AT A interface supports daisy chaining another drive via a ribbon ca
ble connector. Since PC Card ATA drives have the ATA adapter integrated
into the PC Card, the daisy chain approach is not supported with the
PCMCIA solution. Table 8-1 lists the ATA signals not defined by PCMCIA's
ATA interface and identifies the functionality that may be impacted or lost.

Table 8-1. Signals Defined by AT A But Not Used By PCM CIA

ATA Signals Not Supported Related Functionality

PDIAG (Passed Diagnostics) Asserted by drive 1 to inform drive O that it has completed
diagnostics. This pin allows drive O to report diagnostic status
for drive 1. The diagnostic command must be run for each
socket containing an AT A PC Card.

DASP (Drive Active/Second Drive This is a multiplexed signal indicating that a drive is active.
Present) During initialization, this signal is asserted by drive 1, indicat-

ing its presence. This functionality is provided by PCMCIA
using,the Socket and Copy Registers.

CSEL (Cable Select) Used by the ATA host adapter to select drive O or drive 1.
PCMCIA Drives use the Socket and Copy Registers to differen-
tiate between drive O and 1. Each are accessed at a separate
socket based on the copy number.

DMARQ and -DMACK (DMA These signals permit ATA drives to use DMA transfers when
Request and DMA Acknowledge) transferring data to and from the 16-bit data register. This ca-

pability is not supported by PCMCIA.

ATA System Resource Requirements

AT A devices contain two register blocks called the command register block
and control register block. Each of these register blocks must be assessible by
the system. PC Card ATA devices support either I/0 or memory-mapping
these registers using one of four addressing modes listed in table 8-2.

Standard mapping in the ISA environment includes the assignment of two
separate I/0 address ranges to map ATA drive registers into. If these ranges
are not available, another range of I/0 addresses can be used. If neither of the
standard I/0 address ranges are available, then a contiguous block of 16 I/0

105

122

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

locations is acquired for mapping the command and control block registers
into.

Alternatively, the registers can be mapped into memory locations. When
memory-mapping is chosen, a contiguous 2KB block of memory locations are
used. The command and control registers are mapped into the first 16 bytes of
the 2KB memory block, while the last 1KB of the block is used as a high speed
buffer to transfer data to and from the PC card. The address modes listed in
table 8-2 (except for the memory-mapped option) are mandatory for compli
ance with the PCMCIA ATA specification.

Table 8-2. AT A Addressing Options Supported by PCM CIA

Address Mode Command Block Control Block

I/ 0 - Primary AT A drive address 1FOh-1F7h 3F6h-3F7h

I/ 0 - Secondary AT A drive address 170h-177h 376h-377h

1/0-Any 16-byte contiguous range :XXXOh - X:XXFh

Memory - Any aligned 2KB address range Card must respond to locations XXXOh - XXXFh and

106

X400h - X7FFh within the 2KB range

In addition to mapping the registers, an interrupt request line must also be
supported for 1/0 addressing. Normally IRQ 14 is used by ATA drives. When
configured for memory-mapped registers, the socket interface does not define
an interrupt line, therefore software polling must be used.

Supporting Two Drives

It is possible for two ATA drives to be simultaneously installed into PCMCIA
sockets of the same HBA. When accessing these drives, some method must be
used to individually select these drives as either drive O or drive 1. This is ac
complished in a standard ATA environment via the daisy-chained cable with
the cable-select signal or by jumpers (switches) on the drive. In the PCMCIA
environment, a configuration register, called the Socket and Copy Register,
can be used to identify two ATA PC cards mapped to the same address space.
The copy number programmed into the Socket and Copy Registers is used by
the HBA to differentiate drive O from drive 1.

123

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 9: The AIMS Interface

Chapter 9
The Previous Chapter

The previous chapter discussed the PC Card ATA interface. A PC Card ATA
interface provides a PC compatible hardware and programming interface that
simplifies the job of implemented hard drive solutions in the PCMCIA envi
ronment. The chapter defined the various ways that a PC Card ATA can be
mapped in the system along with the electrical interfaces that can be used.
Differences between the PC compatible AT A implementation versus the PC
Card AT A interface were also discussed.

This Chapter

This chapter focuses on the optional Auto-Indexing Mass Storage (AIMS) in
terface. The transfer mechanism is described, along with the registers that
must be programmed to initiate the transfer.

The Next Chapter

Next, host bus adapter design is discussed, including the functionality that
must be implemented, along with the optional features.

The AIMS Interface

The AIMS (Auto-Indexing Mass Storage) interface is designed to support
cards that store large data structures to support functions such as imaging
and multimedia. This interface creates a standard PC card interface for elec
tronic cameras and other portable equipment requiring large amounts of data
storage.

I

The interface uses a block transfer mechanism. Memory accesses occur
through the card's registers. The specification describes the signal interface
and the register set required by an AIMS card. The registers can be mapped

107

124

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

into either memory or I/ 0 address space. See figure 9-1 for the AIMS interface
pin definition.

Note that the AIMS interface specifies only an 8-bit data bus and seven ad-
dress lines. The interface can be mapped into the host system's memory or
I/ 0 address space. The actual interface provided by the HBA will be a mem-
ory-only interface or the memory or I/0 interface; however, the AIMS card
only uses the pins illustrated in figure 9-1.

Ground 35 1 Ground
CD1# - 36 2 Data 3
NC 37 3 Data 4
NC 38 4 Data 5
NC 39 5 Data 6
NC 40 6 Data 7
NC 41 7 CE1#
NC 42 8 NC
NC - 43 9 OE#
IORD# 44 10 NC
IOWR# 45 11 NC
NC 46 12 NC
NC - 47 13 NC
NC 48 14 NC
NC - 49 15 WE#
NC - 50 16 READY or IREQ#
NC 51 17 Vee
NC 52 18 Vpp1
NC 53 19 NC
NC - 54 20 NC
NC 55 21 NC
NC 56 22 Address 7
NC 57 23 Address 6
RESET - 58 24 Address 5
WAIT# - 59 25 Address 4
INPACK# - 60 26 Address 3
REG# 61 27 Address 2
NC 62 28 Address 1
STSCHG# - 63 29 NC
NC 64 30 Data 0
NC 65 31 Data 1
NC ~ 66 32 Data 2
CD2# - 67 33 NC
Ground 68 34 Ground

Figure 9-1. AIMS Socket Interface Signals

108

125

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 9: The AIMS Inter£ ace

The AIMS Register Set

The memory array incorporated into an AIMS PC Card is accessed via a regis
ter set that includes:

• Address register (32-bit) - specifies the target memory address within
the AIMS card that is being accessed.

• Data register (8-bits) - contains read or write data.
• Command register (8-bits) - contains the commands written by the AIMS

device driver that specifies the operation to be performed.
• Mode register (8-bits) - provides status information regarding the card

functions and controls the operation of the interrupts.
• Block count register (16-bits) - specifies the number of blocks to be

erased when the erase command is issued to the command register.

Since AIMS cards can also support the memory or I/ 0 interface, two addi
tional registers are required:

• Configuration Option Register
• Pin Replacement Register

These registers are located in attribute memory address space at the location
specified by the Configuration tuple within the CIS.

The Block Transfer

Transfers to or from an AIMS PC Card is controlled by a specific device driver
that is aware of the AIMS transfer mechanism. This driver must program the
AIMS card to perform the desired block transfer. The AIMS design is based
on the expectation that flash memory will be employed as the memory array,
and therefore, the block size is related to the flash block size for reading,
writing, and erasing memory locations.

The following list describes the block transfer process initiated by the AIMS
device driver:

1. Transfers are initiated by loading the address register with the starting
block address to be transferred to or from the AIMS card. This requires
four 8-bit writes to load the entire 32-bit address register.

109

126

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

2. Once the start address has been specified, then a command is issued to the
command register. (Note that the mode register should be read to ensure
the card is READY before writing to the command register.)

3. The AIMS card executes the command by either reading data from its
memory array and placing it into the data register, or accepting write data
into the data register and writing it to the memory array.

4. If no errors occur during the transfer, the address register auto
increments. The read or write transfer continues with the address being
automatically incremented by the AIMS card each time another byte is
successfully transferred.

5. The block transfer terminates when the device driver issues either an End
of Read (EORD) or an End of Write (EOWR) command to the AIMS card.

6. When the AIMS card has stopped the transfer, sets any error conditions in
the mode register and notifies the host system that the transfer has ended
(by asserting READY for memory-mapped implementations or by assert
ing IREQ# for I/0-mapped implementations). The device driver then
checks transfer status to determine the results of the transfer.

If a write operation is specified, the device driver would have issued an erase
command prior to issuing the write command.

The AIMS Commands

110

A variety of commands are defined by the AIMS specification. Two basic
types of commands are defined: type C and type D. Type C commands have a
defined end state (e.g. an "end of write" command), whereas, the type D
commands execute the specified command repetitively (e.g. a "write blocks"
command). The AIMS commands are listed in table 9-1.

127

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 9: The AIMS Interface

Table 9-1. Commands Supported by AIMS Cards

Name Code Type Registers Used Description

Write Blocks 38h D Address Initiates block write operation. Ad-
Command dress auto-increments until the write
Status operation terminates when the "end
Data of write" command is issued.

End of Write 4Fh C Command Terminates a write block transfer.
Status The AIMS card either generates an

IREQ# or asserts READY upon com-
pletion of the transfer.

Read Blocks 40h D Address Initiates block read operation. Ad-
Command dress auto-increments until the read
Status operation terminates when the "end
Data of read" command is issued.

End of Read 3Fh C Command Terminates a read block transfer. The
Status AIMS card either generates an IREQ#

or asserts READY upon completion
of the transfer.

Erase Blocks COh C Address Initiates a block erase operation. The
Block Count operation continues until the speci-
Command fied number of blocks (contained the
Status block count register) have been

erased.

Execute Diag- 90h C Command Initiates PC Card diagnostics. When
nasties Status the diagnostic completes the card

reports any error conditions and no-
tifies the system via READY or
IREQ#.

Enter Diagnostic 88h C Command Places the card into the diagnostic
Mode Status mode. Note that the effects of access-

ing the AIMS registers is vendor
specific when in diagnostic mode.

Return Internal 9Ah C Command Provides access to error codes by
Error Code Status reading the data register.

Data

Write Verify 3Ch D Address Initiates a write block transfer, like
Blocks (optional) Command the write block command, except the

Status card verifies the data just written
Data prior to incrementing the address

and accepting the next write data.

111

128

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Accessing the AIMS Registers

112

The AIMS registers are identified by the PC Card address (A7:Al) and by in
dicating either a read or write transfer. These registers are mapped in either
the host system's memory address space or I/ 0 address space.

• When memory-mapped the registers are accessed with REG#=l and the
OE# and WE# commands are used to specify either read or write.

• When l/0-mapped the registers are accessed with REG#=O and the
IORD# and IOWR# command lines specify either a read or write opera
tion.

Table 9-2 lists the registers and the address locations used to access each
AIMS register. Note that the address offset applies to both memory- and l/0-
mappings.

Table 9-2. AIMS Registers

Register Name Read/Write Address Offset

Address Register 0 Read/Write OOh

Address Register 1 Read/Write 02h

Address Register 2 Read/Write 04h

Address Register 3 Read/Write 06h

Block Count Register (low byte) Write 08h

Block Count Register (high byte) Write OAh

Command Register Write OCh

Mode Register Read/Write OEh

Data Register Read/Write 10h

Vendor Unique Register undefined 12h

Vendor Unique Register undefined 14h

Vendor Unique Register undefined 16h

Reserved undefined 18h-1Eh

129

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 10: The PC Card Host Bus Adapter

Chapter 10
The Previous Chapter

This chapter focuses on the optional Auto-Indexing Mass Storage (AIMS) in
terface. The transfer mechanism is described, along with the registers that
must be programmed to initiate the transfer.

This Chapter

This chapter discusses the role of the PCMCIA Host Bus Adapter. Individual
Host Bus Adapter functions are discussed. A functional block diagram of an
HBA adapter is provided along with detailed explanations of each function.

The Next Chapter

The next chapter discusses the CIS and its role in the PC Card configuration
process. The basic structure of the CIS configuration table required by I/ 0
cards is described, along with the method used by configuration software to
interpret the configuration table entries.

Introduction

As illustrated in figure 10-1, the PCMCIA Host Bus Adapter (HBA) resides
physically between the PCMCIA host bus (usually an expansion bus such as
ISA, EISA, Micro Channel or PCI) and the PCMCIA sockets. Since PCMCIA is
host bus independent, this chapter focuses on the specific HBA requirements
without detailing the exact nature of the expansion bus interface. Refer to the
following MindShare books for information on other expansion buses: ISA
System Architecture; EISA System Architecture; and PCI System Architecture, all
published by Addison-Wesley.

113

130

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

114

Figure 10-1 also illustrates the software flow to and from the HBA. Two dis
tinct software paths are illustrated:

• configuration and event notification path (PCMCIA specific)
• run-time path (normal program flow and execution)

Note that client drivers are shown in both software paths. These client drivers
typically contain both PCMCIA specific code and standard run-time code (i.e.
during execution of application program). The PCMCIA code within a client
driver interacts directly with card services. The client driver is responsible for
configuring the PC Card and programming the HBA so it can bridge the ap
propriate transactions from the host expansion bus to the PCMCIA sockets
and cards. The client drivers are also responsible for processing PC Card
status change events.

As illustrated in figure 10-1, client drivers do not access the HBA directly, but
rather call card services, which in turn call socket services which access the
HBA directly. Socket services provide a standard calling interface for card
services to use. In this way, card services can call socket services functions to
request that specific HBA functions be programmed as specified by the client
driver.

Once the PC Cards have been configured, the PCMCIA-specific software has
done its initial job and becomes dormant in memory. Application programs
can now access the PC Card just as they do any other device that resides on
the host's expansion bus. During PC Card configuration, the HBA is pro
grammed to recognize addresses that reside on the PC Card. When the HBA
recognizes an address pelonging to a PC Card, it bridges the expansion bus
cycle to the PC Card's socket.

PCMCIA software only runs again if the client driver needs to reprogram the
HBA or if a PC Card status change event occurs. When the HBA detects a
card event change it generates an interrupt that "wakes up" card services
which calls socket services to determine the source and type of the status

· change event. Card services then calls the client driver, notifying it of the
event. The client driver then processes the event as required.

131

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 10: The PC Card Host Bus Adapter

Configuration and
Event Notification

Software

PC Card Enablers
(PCMCIA lnit & Event Processing)

Card Services

Socket Services I

Config

Hardware

Host System

PCMCIA
Host Bus Adapter

PC Card PC Card

Figure 10-1. The PCMCIA Environment

Run-Time
Software

Applications

Operating
System

Device Drivers
(Run-Time Code)

In summary, the HBA is initially accessed by PCMCIA software that pro
grams it to recognize accesses made to the PC Card. Once programmed, the
HBA recognizes target addresses within the PC Card and passes the bus
transaction to the card socket. The HBA also monitors status change events
and generates an interrupt to inform card services of these events.

Host Bus Adapter Functions

The host bus adapter (HBA) provides the interface between the host bus and
the PC Card sockets. This interface must be able to translate host bus accesses
to PC Card socket accesses. Specific functions that must be supported by the
HBA, include:

• Power switching
• Card detection
• Address translation

115

132

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

116

• Socket data buffering and control
• Socket data transfer timing and control
• Host bus transfer control
• PC Card interrupt steering
• DMA channel steering
• Socket status reporting
• Status change interrupt generation and steering
• Power Conservation (Power Management)

Note that a given HBA may support other interfaces including AT A (AT At
tachment), AIMS (Auto-Indexing Mass Storage) and other custom interfaces.
This chapter focuses on the memory and 1/0 interfaces and their related
functions.

Figure 10-2 illustrates the primary functions associated with an HBA designed
with two socket interfaces. HBAs are typically designed using an HBA chip
supplied by one of several vendors. The functions in figure 10-2 incorporated
into a specific chip can vary from vendor to vendor.

The Socket Interface

Since the PCMCIA socket interfaces are not bussed together, but rather are
specified as independent socket interfaces, separate signal lines are required
for each socket. This means that 68 pins must be included for each socket sup
ported by an HBA. As a result, typical HBA implementations contain either
one or two socket interfaces due to the number of pins required for the socket
interface. (Some HBA designs may share some of the interface pins between
sockets, reducing the total number of pins required for each socket.)

Maximum Number of HBAs

Some system implementations may require that four or more sockets be im
plemented. This means that more than one physical HBA chip is likely to be
implemented (based on typical chip designs - two sockets/ chip). Similarly,
an additional HBA may be added in systems that have expansion slots. The
theoretical maximum number of HBAs that a single system can support de
pends on the socket services software interface. With the Intel x86 binding
(software function calling protocol) the maximum number is 256 adapters.

133

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 10: The PC Card Host Bus Adapter

Other factors may also limit the number of HBAs that can be supported, such
as the amount of space available in ROM or main DRAM.

Maximum Number of Socket Per HBA

The maximum number of sockets per HBA may also be determined by the
socket services interface. The maximum number of sockets possible with the
Intel x86 binding is 16 per adapter, governed by field width of the socket se
lection parameter within the Inquire, Get, and SetWindow functions.

Data Buffers / Transceivers

Each socket must be isolated from the expansion bus so that PC Cards can be
inserted and removed when system power is applied. These buffers (usually
transceivers) prevent transients from being introduced on the expansion bus
signal lines when a PC Card is inserted or removed from the socket. Some
HBA chips integrate the isolation buffers while others chips require external
buffers.

Card Detection

The Card Detect pins (CDl # and CD2#) provide a way for the adapter to de
tect the presence of PC Cards when they are inserted into a PCMCIA socket.
When power is applied to the system, the HBA can check the Card Detect pins
to determine if power should be applied to the socket. The CD pins also pro
vide notification that a PC Card has b~en either inserted or removed from a
socket.

The HBA ties the CDl# and CD2# pins to Vee through a lOK (or larger)
pull-up resistor. Since these pins are tied to ground inside of each PC Card,
when the card is fully inserted both pins will be pulled low, indicating that a
card is installed in the socket.

117

134

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

118

System Power

Host Address

Host
Bus Cycle

Control

System
Interrupt

Lines

System

c~~~els C

Power
Switching

Address
Translation

&
Card Access

Control

Adapter
Address
Decoder ~~i,-iiiiiiit> Register

"" Select

PCMCIA
Data Transfer

Timing and
Control Logic

rn () ()

~ ::, "' "' "' a a c,-
w ~ I\)

CJ CJ

* * Data
u u

XCVR

Status Change
Detection and

Interrupt Steering

Interrupt
Steering

~

Socket 1 Power

Socket 2 Power

Card 1 Address

Card 2 Address

:

PC Card 1
Bus Cycle

Control

PC Card 2
Bus Cycle

Control

Socket 1 Data

Socket 2 Data

Card 1 Status

Card 2 Status

IREQ# Card 1

IREQ# Card 2

DREQ# Card 1
DACK Card 1

DREQ# Card 2
DACK Card 2

Host Socket
Figure 10-2. Host Bus Adapter Functional Block with Two Sockets

135

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 10: The PC Card Host Bus Adapter

The HBA should be designed to generate a "socket status change" interrupt
when a change is detected at the CD1 # and CD2# pins. This interrupt, some
times called the HBA, or management interrupt, notifies system software that
some card event has taken place. Note that a status change interrupt can be
caused by a number of card events (in addition to card insertion and re
moval). See the section entitled, "Card Event Notification" later in this chapter
for information on other events that generate a status change interrupt, and
for the steps taken by software when such an interrupt occurs. Ultimately, if
card insertion or removal is detected, software will either configure the card
or release resources that have been previously assigned to the PC Card.

Power Switching

The HBA must have the ability to switch different supply voltages to V cc,
Vppl and Vpp2 as required by the PC Card. The HBA must also be able to
completely enable or disable Vee, Vppl and Vpp2.

Vee Power Controls

The initial V cc that is applied to the PC Card socket depends on the version of
specification that it supports. The following sections define the 2.1 HBA
mechanism for applying V cc followed by the new low voltage socket defined
by the PC Card standard.

Vee and 2.1 Compliant HBAs

The PCMCIA 2.x compliant HBA must be able to supply a V cc of Svdc and
3.3vdc to support dual-voltage cards. When a card is installed in release 2.x
compliant systems, Svdc is initially supplied to the card. Software then reads
the CIS (the DEVICE_OC tuple specifies 3.3vdc support) to determine if the
card has dual-voltage capability (operates at 3.3 vdc). If so, software must be
able to direct the HBA to switch 3.3vdc to the card's Vee pins.

In order to change V cc, configuration software must remove power from the
socket, select the new V cc, and repower the socket. The PC Card will not re
tain any information from the previous power-up sequence. When V cc is re
applied the entire initialization and configuration process must occur anew.

119

136

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

Vee and Low Voltage Sockets

Systems based on the PC Card Standard must monitor the voltage sense pins
(VSl# and VS2#) to determine the voltage that should initially be supplied to
the Vee pins (see table 10-1). The initial Vee voltage applied depends on the
voltages that the system and HBA is capable of delivering to the card's Vee
pin. Voltages supported are likely to include 3.3 vdc and 5 vdc. The X.X vdc
referred to in table 10-1 is defined by PCMCIA as a low voltage supply to be
defined in the future.

Table 10-1. Interpretation of Voltage Sense Lines.

Initial Power Required Keying VS1# VS2# V cc at power up and CIS read

5 volts standard* 1 1 5 volts applied if available, else

no V cc applied.

3.3 volts low-voltage 0 1 3.3 volts applied if available, else

no Vee applied
3.3/5 volts standard* 3.3 volts applied if available, else

no V cc applied.

X.Xvolts low-voltage 1 0 X.X volts applied if available, else

no Vee applied.

X.X/3.3 volts low-voltage 0 0 X.X volts applied if available, else

3.3 volts applied if available, else
no V cc applied.

X.X/3.3/5 volts standard* X.X volts applied if available, else

3.3 volts applied if available, else

no V cc applied.

* Standard keying refers to PC Cards keyed to fit into a 2.x compliant socket. These
cards also fit into the low voltage sockets.

120

Vpp1 and Vpp2 Control

Socket pins Vppl and Vpp2 supply programming voltages for memory de
vices that require a special programming voltage. These pins can also be used
to provide additional voltages for peripheral cards. Initially, these pins supply
the same voltage as V cc until the card's CIS is read to determine what special
programming or peripheral voltages are required. PCMCIA recommends that
Vppl and Vpp2 be tied to Vee initially and then switched (as required by the
card). PCMCIA also recommends that + 12 vdc be available as an alternate
supply for Vppl and Vpp2.

137

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 10: The PC Card Host Bus Adapter

Some cards require the same supply voltage on Vppl and Vpp2, while others
may require separate voltages be applied to Vppl and Vpp2. Whether the
HBA can supply separate supplies to each Vpp pin is design dependent.

Address Translation

Translation of the address from the host bus to the PCMCIA socket may be
required due to:

• The form of address used by the host expansion bus may need to be con
verted to the form expected by PC Cards. The nature of the translation
depends on the nature of the host bus address.

• The maximum address space supported by the host system differs from
the maximum address space supported by PC Card sockets.

• The PC Card responds to a fixed address range already allocated to an-

other device in the system.

In short, the HBA must, if necessary, translate the host address to the form
recognized by PC Cards, and remap the address presented on the host bus to
the appropriate address within the PC ~ard.

Memory Address Mapping

The host address may need to be remapped to a different location within the
PCMCIA address space for a variety of reasons including:

• The host and socket address space are not the same size.
• System software may constrain the addresses that a card can be mapped

to within system address space.

• PC Card address decoder may not be programmable.

Direct Mapping

System addresses can be mapped directly to the same locations within the PC
Card's memory address space. In this case, no re-mapping is required by the
HBA. For example, assume that a 10MB flash memory card is installed in a
host system whose expansion bus supports 16MB of address space. The 10MB
flash memory card could be directly mapped within the system's address

121

138

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

122

space (as shown in figure 10-3). This example also assumes that the flash
card's address decoder can be programmed to the range of addresses speci
fied. If the flash card's address decoder can not be programmed, then the
range of addresses that it responds to is fixed and the same fixed address
range within system memory address space would have to be allocated in or
der for the PC Card to direct-map the card.

3FFFFFF

FFFFFFh OFFFFFFh

I
0

AFFFFFh - - - - CJ> ------ OAFFFFFh ,-+

OJ
C
CJ>
)> Flash
0. Memory Pl

"O
,-+

CD
"""'I

100000h - - - - i-- - - - - - 0000000

System Address PCMCIA Socket
Space Address Space

Figure 10-3. PC Card with Memory That Can Be Direct Mapped into the System
Address Space.

Remapping the Host Address to PC Cards
with Fixed Addresses

The previous example illustrates mapping a flash card with a programmable
address decoder directly into the system address space. Next, consider a
10MB flash card whose address decoder is not programmable and whose ad-

139

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 10: The PC Card Host Bus Adapter

dresses reside in the PC Card's common memory from address O to 10MB. In
order to directly map the flash card into system memory address space, it
must be mapped within the same system address space (0-lOMB). Since much
of the first megabyte of memory address space is reserved for other system
devices and functions, this creates a problem in PC environments. Mapping
the flash card in this space would cause data bus contention if an address
within the range assigned to two memory devices was accessed.

3FFFFFF

Stop Window Register
(DFFFFFh)

FFFFFFh OFFFFFFh

- - - - i' DFFFFFh
I
0
CJ)
OJ 09FFFFFh
C
CJ)

)> Flash a.
!l) Memory

400000h - - - - "'C (10 MB) i'
('I)
'"""

100000h 0000000

System Address Start Window Register PCMCIA Socket
Space (400000h) Address Space

Figure 10-4. Example of Address Translation Logic Remapping the System Address to
the Bottom of the Common Memory Address Space.

Successfully mapping the 10MB flash card requires that the address be
mapped within system address space to a location that doesn't conflict with
standard memory devices installed in the system. For example, consider a sys
tem containing system DRAM memory that is mapped up to 4MB. Refer to
figure 10-4. The flash card could be mapped within system memory starting at

123

140

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

124

address location 400000h to DFFFFh. Since the flash card resides in common
memory from address location 000000h to 9FFFFFh, the system address must
be remapped to this address space in order to access the flash card. Conse
quently, the HBA must provide a means of remapping system addresses to
the appropriate address space in the PC Card's address space.

System Address Space Smaller Than Socket Address Space

If the host system is incapable of addressing the entire 64MB of PC Card ad
dress space, then the HBA must have the ability to remap system address
space such that all PC Card locations are accessible. Assume for example, that
a 20MB flash card is installed in a socket whose HBA connects to an ISA host
bus. Since the maximum memory address space supported by the ISA bus is
16MB, the system cannot possibly address all the locations within the 20MB
flash card in a direct fashion. Therefore, remapping must be employed to
permit access to all flash memory address locations.

This concept is shown in figure 10-5. To accomplish this remapping, system
address space must be mapped twice: once to access the first 10MB address
range and once to access the second 10MB address range. Using this tech
nique, the HBA can be dynamically programmed to redirect, or remap
accesses within the system address space (via an offset value) to different re
gions within the PC Card's memory array, permitting access to the entire 64
MB of address space.

Note that the technique described above is common in 8088-based systems
that employ a maximum of 1 MB of memory address space, much of which is
not available for mapping PC Cards. The host address space typically used by
PC memory cards is within the address range from DOOOOh to DFFFFh.

141

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

Chapter 10: The PC Card Host Bus Adapter

FFFFFFh

1----~~----.-----------------
DFFFFFh

400000h I------_______________ _

100000h

System Address
Space

I
0 en
,-+

OJ
C:
en
)>
0.

. Q.)
-a
,-+

CD .,

~--~3FFFFFFh

13FFFFFh

OFFFFFFh

/ Flash

',,
............

-,- Memory __
(20 MB) 09FFFFFh

'',,,'~--~ 0000000h

PCMCIA Socket
Address Space

Figure 10-5. Example of Small System Address Range Being Remapped to a Larger
PCM CIA Memory Device.

System Address Space Larger Than Socket Address Space

Accesses can also be made to PC Cards from system addresses beyond the
64MB maximum address range supported by the PC Card socket. Once again
the system addresses are remapped to locations within the PC Card's address
space. Refer to figure 10-6.

125

142

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

PCMCIA System Architecture

126

~~~~~---------------~~~ 
FFFFFFFFh 

FFCOOOOOh 1------~~~--+---------------

003FFFFFh 

0000000h ~~~~ 

System Address 
Space 

I 
0 en 
,-+ 

OJ 
C 
en 
)> 
0. 
!l) 

'"C 
,-+ 

CD ., 

' ' ' ' ' ' ' 

Flash 
Memory 

3FFFFFFh 

03FFFFFh 

_.__(~4~M~B~)____.oooooooh 

PCMCIA Socket 
Address Space 

Figure 10-6. Example of System Address Exceeding PCMCIA Address Range. 

Memory Address Windows 

Address windows are used by HBAs to determine the range of host system 
memory addresses to which a particular card responds and to remap the sys
tem memory address to a location within the PC Card's memory address 
space. The HBA address windows are typically implemented with program
mable window address registers, permitting software to program the range of 
memory addresses to which the PC Card in a given socket can respond, and 

143

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 10: The PC Card Host Bus Adapter 

what PC Card memory address it should be remapped to. Note that a given 
PC Card may have several different blocks of addresses that it must respond 
to, each requiring a separate address window. HBAs typically have several 
address windows that can be programmed for both memory and I/ 0 devices. 

Each address window consists of a: 

• Start window address register 
• Stop window address register 
• Window offset address register (mapping register) 

When the host system accesses some device within the system, the HBA must 
determine if the address on the host bus is within any of the programmed ad
dress windows. If so, the host access is to a location within the PC Card 
installed in a socket, and the HBA initiates a transfer to or from the socket. 
Otherwise, the host access is ignored. In short, the HBA acts as the PC Card's 
address decoder by passing only those transactions to the PC Card that are in
tended for it. 

In addition to determining if the host address targets a socket, the HBA also 
remaps the address if necessary. Remapping is typically accomplished via an 
offset register. This register is programmed with a value that, when added to 
the host address, redirects (remaps) it to the desired location within the PC 
Card's memory address space. Refer to figure 10-7. 

When the host address must be mapped to a lower address, the offset value 
equals the number of address locations that must be subtracted from the host 
address. Since the HBA always adds the contents of the offset register to the 
host address, the programmer uses the two's complement of the offset value, 
resulting in a negative offset (as shown in figure 10-7). 

Overlapping Memory Windows 

When two PC Cards are installed, each is mapped into it's own socket address 
space. Normally, each will be accessed within separate host address ranges. 
This prevents contention between the two devices. If, however, the host has 
insufficient address space to map both devices into separate ranges, then the 
address windows of the two sockets may overlap, creating the potential for 
contention (as shown in figure 10-8). 

127 

144

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

FFFFFh 

DFFFFh 
DOOOOh 

00000h 

Stop Window Register 
(DFFFFh) 

!----~-----+----------------
>-----------+---------------- I 

Start Window Register 0 
(DOOOOh) CJ) 

...+ 

OJ 
C 
CJ) 

)> 
Q. 
m 
-0 
...+ 
CD ., 

System Address 
Space 

\ 
\ 
\ 
\ - \ \ 

\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
I I 

'. \ 

3FFFFFFh 

OOFFFFFh 

Window Offset Register 
(3F30000h) 

\ I 
I \ 
I I 
I \ 
I I 
\ \ 
\ \ 
\ \ 
I I 
\ I 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ I 
\ \ 
\ \ 

SRAM 
Memory 
(512 KB) 

\ '- ---·----- OOOFFFFh 
_.___ ___ ___,OOOOOOOh 

PCMCIA Socket 
Address Space 

Figure 10-7. Registers Define the Size of the Memory Window and the Size of the Off
set for Remapping the System Address. 

128 

145

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 10: The PC Card Host Bus Adapter 

Windows in both 
socket interfaces 

programmed to same 
host address 

Host 
Address Space 

.. 
I 
0 en -OJ 
C en 

is: 
Sl> 

"O -CD .., 

Socket 2 
Address Space 

.. 

Socket2 
Address Space 

Figure 10-8. Example of Overlapping Memory Windows Causing Contention 

When memory windows overlap, only one window can be enabled at a time, 
thereby preventing contention. This highlights the requirement that memory 
windows, once programmed, support the ability to be enabled and disabled 
under software control. 

129 

146

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

130 

1/0 Address Mapping 

PC Cards containing I/0 registers must be mapped into the system's 1/0 ad
dress space. If the system has only memory address space, then the HBA must 
map memory addresses into the PC Card's I/0 address space. The following 
discussion assumes that the system has I/0 addresses. 

Direct Mapped 1/0 Addresses 

Figure 10-9 illustrates PC Card registers being mapped directly to the corre
sponding system I/ 0 addresses. The HBA in this example, would bridge the 
expansion bus cycle to the PC Card when an I/ 0 address is detected within 
the ranges of the addresses used by the PC Card. In this example, two 1/0 
windows must be used to specify the address ranges required by the card. 

Overlapping 1/0 Windows 

Sometimes I/0 windows must be programmed to overlap with addresses of 
I/0 devices residing elsewhere in the system. Consider the example in figure 
10-10. Assume that the HBA has two 1/0 address windows for a given socket, 
and that the PC Card requires three I/0 address ranges that are spread 
widely across the system 1/0 address space. Since only two address registers 
exist, one must be programmed to encompass two of the three address ranges. 
This large window may encompass address locations used by another PC 
Card in a different socket or locations used by some other device residing 
elsewhere in the host system. 

When an I/ 0 read access occurs from a location within the large address 
window, the HBA responds by starting a data read transfer from the socket. 
The PC Card decodes the socket address to determine if the address is to one 
of its registers. If so, the INP ACK# (Input Acknowledge Port) signal is as
serted by the PC Card and the transfer completes from the PC Card. The 
INP ACK# signal enables the data transceiver so that data from the socket is 
returned over the host data bus. 

147

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



FFFFh 

03F7h 

03F6h 

01F7h 

01FOh 

Chapter 10: The PC Card Host Bus Adapter 

System 1/0 
Address Space 

1/0 Window 2 

PC Card 1/0 
Address Space 

--~~~~~-------------1--~~~~~-
1/0 Window 1 

Figure 10-9. PC Card I/0 Addresses Mapped Directly to System I/0 Addresses 

If the address decoded by the PC Card is not recognized, the INP ACK# signal 
is not asserted. Since INP ACK# is not asserted, the HBA also ignores the host 
access and the socket's data bus transceivers remain disabled. 

131 

148

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

132 

FFFFh 

0000h 

PC Card 

System 1/0 
Address Space 

st';i R~ster :C 
Window2 O 

Cl) 
,-+ 

{l] 
Stop Register C: 

Window 1 Cl) - -

Start Register 
Window1 

6: 
n> 
"9. 
CD 
~ 

Window2 

Window 1 

3FFFFFF 

OOOFFFFh 

PC Card 1/0 
Address Space 

Figure 10-10. Example of I/0 Window Overlapping Addresses of Other I/0 Devices 
in the System. 

It may be necessary to program 1/0 address windows that overlap between 
two sockets (as illustrated in figure 10-10). When 1/0 windows overlap, 
PCMCIA permits simultaneous reads from both sockets, relying on the PC 
Card decode and the INP ACK# signal to prevent contention. 

Other Information Associated with Address Windows 

When the HBA detects that a host address is within the range of an address 
window, it initiates a data transfer to or from the PC Card. Since PC Cards 
can contain devices of varying speeds, it is also necessary to program the ac
cess time of the device residing within the targeted address window. 

149

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 10: The PC Card Host Bus Adapter 

Additionally, PC Card device size information must also be associated with 
I/0 address windows. This is necessary since 1/0 registers within PC Cards 
can be either 8-bit or 16-bit; therefore, the data path(s) used to transfer data to 
and from the PC Card can vary. The HBA must be able to detect 1/0 device 
size to determine which data path or paths the 1/0 device uses. 

When client drivers read the CIS, they determine PC device speed and size 
and program this information into the HBA window(s) allocated for the card. 
In this way, the HBA knows the exact nature of the transfer it must run to the 
device being accessed. (For more information refer to the section entitled "PC 
Card Device Size" later in this chapter.) 

Socket Transfer Timing and Control 

The socket transfer timing and control logic has multiple interfaces: a host bus 
interface and one or more socket interfaces. When a read or write transfer is 
detected on the host bus, the address translation logic determines if the ad
dress is intended for one of the PC Cards, while the timing and control logic 
determines whether the access is a read or write to memory or I/0. When an 
address falls within one of the address windows, the address translation logic 
notifies the timing and control logic, triggering the appropriate socket access. 

Access must be made to the socket to either read or write data based on the 
type of host cycle being run. 

Interface Control 

The HBA configures each socket at power up as a memory-only interface. 
However, once the card's client driver determines its configuration require
ments, an alternative socket interface may be required. For example, the client 
driver must reconfigure the HBA from a memory-only to a memory or I/ 0 
interface when it detects an I/ 0 card. Since some signal definitions change 
when a socket is configured for memory or I/0, the HBA must multiplex se
lected lines to alternative functions. A given HBA may also support other 
interface types such as DMA or AIMS, requiring additional socket interface 
redefinition. 

133 

150

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

134 

Socket Access Timing 

PCMCIA specifies standard cycle timing for common memory, attribute 
memory and I/0 registers. (Refer to the Chapters entitled, "The Memory In
terface" and "The Memory or I/ 0 Interface" for details regarding cycle timing 
for the respective card types.) The timing and control logic accesses memory 
cards based on the timing specified in the CIS. The cycle timing of a PC Card's 
memory is specified within its CIS during card initialization. Each bank of 
memory with different cycle timing must be listed separately within the CIS. 
Each memory bank can be accessed via a separate address window that 
specifies the cycle timing required by the target bank. Cycle timing informa
tion is loaded into a card's memory or I/ 0 window registers during card 
configuration. The PC Card standard requires that access timing information 
be programmed as part of the address window definition for each 
socket/ device. 

Stretching Socket Access Timing 

PCM CIA also incorporates a WAIT# signal that is used for stretching the ac
cess timing. This capability is optional but typically supported for devices that 
may not always be able to respond to a socket read or write within the pro
grammed timing. 

Word or Byte Access 

Host systems may have the ability to access single byte locations (from either 
even or odd locations) or entire words in a single bus cycle. When the HBA 
detects that an address being accessed by the host system resides in a given 
socket, it translates the address, if necessary, and starts a socket transfer. The 
address specifies the start location being accessed within the PC Card, but 
does not specify whether a single byte is being accessed or an entire word. The 
HBA must be able to detect the size of the host transaction and assert CE1 # 
and/or CE2#, commanding the PC Card to transfer one or two bytes of data. 
For example, an ISA system uses SAO and SBHE# to indicate the number of , 
bytes being transferred. The HBA must translate these signals to the form un
derstood by the PC Card (AO, CE1# and CE2#). 

151

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 10: The PC Card Host Bus Adapter 

The actual combinations of CEl# and CE2# asserted by the HBA depends on 
the size of the host bus (as shown in table 10-2). 

Table 10-2. Address Sent to Socket 

Host Location(s) Socket Signals Asserted 
Transfer Size Accessed AO CEl# CE2# 

8-Bit Even Byte 0 0 1 

8-Bit Odd Byte 1 0 1 

16-Bit Even Byte 0 0 1 

16-Bit Odd Byte 1 1 0 

16-Bit Word 0 0 0 

PC Card 1/0 Device Size (IOIS16#) 

PC Card memory devices are always implemented as 16-bit devices. How
ever, 1/0 PC Card can implement either 8-bit registers, 16-bit registers, or 
both. Device size is read from the card's CIS and programmed into the 1/0 
address window, or alternatively, the I0IS16# signal can be sampled by the 
HBA to distinguish between accesses to 8-bit or 16-bit registers. 

Some host expansion buses include device size lines that are asserted by the 
addressed target, informing the host system of the size of the device being ac
cessed. The data path over which the data is expected and the bus cycle 
timing varies depending on the device size reported. For this reason, the size 
information reported by a PC Card may need to be transferred to the host sys
tem so that transfer timing and data path steering can be adjusted by the host 
system (e.g. the ISA bus controller) A given HBA will be designed to control 
both the socket access and the host access, ensuring that the transfer appears 
correctly to both. 

Card Interrupt Steering and Handling . 

During initialization, a system interrupt request line is assigned to each PC 
Card that uses interrupts. The HBA is programmed to steer the PC Card in
terrupt (IREQ#) to the system interrupt request line allocated to the card 

135 

152

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

136 

during the configuration process. Figure 10-11 illustrates ISA interrupt stee:r
ing for a dual socket HBA. The number of ISA interrupts that an HBA 
supports is implementation specific. 

IRQ3 
IRQ4 
IRQ5 
IRQ7 
IRQ9 
IRQ 10 
IRQ 11 
IRQ 12 
IRQ 14 
IRQ 15 

~ .... 
J .... 
~ -
~ -
~ 

~ 

-.... 
~ --.... 
~ .... 
J .... 

Interrupt 
Steering 

Logic ~ .... IREQ# 

Socketl 

-

Interrupt 
Steering 

Logic -~ IREQ# 

Socket2 

Figure 10-11. HBA Interrupt Steering in an ISA System 

The IREQ# signal sent from a PC Card may be signaled by one of the follow
ing methods: 

• Levelmode 

• Pulsemode 

PC Cards must be designed to support level mode interrupts, whereas, pulse 
mode interrupts are optional. 

153

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 10: The PC Card Host Bus Adapter 

Level Mode Interrupts 

Normally, a PC Card is programmed for level interrupt mode. When in level 
mode, the IREQ# pin is pulled up to Vee on the PC Card and asserted low to 
signal an interrupt. The interrupt is kept asserted until the interrupt service 
routine reads the PC Card's status register, thereby resetting the interrupt in
dication and causing IREQ# to be deasserted. 

As illustrated in figure 10-12, when level mode interrupts are used the HBA 
must invert the IREQ# signal from the PC Card to generate a positive-edge 
triggered interrupt required by ISA systems. While the IREQ# signal is as
serted by the PC Card using level mode, no other device can trigger a 
positive-edge interrupt (the interrupt line is driven high by the HBA from the 
time of trigger until the interrupt is serviced). Similarly, when no interrupt is 
being asserted by the PC Card the HBA continually drives the IRQn line low 
also preventing other ISA devices from generating a positive-edge trigger. 
Another device attempting to trigger a positive-edge will be unsuccessful and, 
more importantly, hardware damage can result. 

PC Card 
Using 

Level IREQ# 
IREQ# 

PCMCIA 
HBA 

IRQn 

Vee 

Interrupt 
Controller CPU 

INTR 

Figure 10-12. ISA Interrupt Sharing Not Permitted with Level Mode IREQ# 

Level mode interrupt signaling can be used in ISA systems, where no sharing 
is supported, or in host environments permitting interrupt sharing via low 
level interrupt triggering, such as PCI and EISA systems. 

137 

154

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

138 

Pulse Mode Interrupts 

Since the level interrupt mode defeats the capability of interrupt sharing in an 
ISA system, pulse mode interrupts were implemented to allow sharing. Pulse 
mode interrupts allow a PC Card to share the same IRQn line with another 
device. On the trailing-edge of the negative pulse, a positive edge trigger will 
be recognized by the ISA interrupt controller. Note that the pulse must be 
equal to or greater than 0.5 microseconds in width. The HBA must use an 
open collector driver to permit other devices to drive the same IRQn line. 

When an interrupt is not being triggered by the PC Card the IRQn line is 
pulled to V cc. This permits another ISA device to trigger an interrupt by 
driving the IRQn line low and then cease driving it, thereby, causing a nega
tive pulse whose trailing edge creates the positive-edge trigger. ISA devices 
designed to share interrupts also use an open collector driver for their IRQn 
line. 

Only during the negati~e transition of the pulse are other devices prevented 
from triggering an interrupt. As a result using pulse mode interrupts to per
mit interrupt sharing in ISA hosts may still result in conflicts when two 
simultaneous interrupts are triggered by the devices sharing the interrupt line. 
Additionally, two interrupt pulses that do not overlap but that occur in close 
proximity to each other may also cause an interrupt trigger to be missed. 

LT 
ISA 

LT Device 

~-

PCMCIA Interrupt CPU HBA Vee Controller 
PC Card \ f~ Using IREQ# 

~ IRQn INTR 
~ 

Pulse IREQ# - - - - - .. ,.. 

Figure 10-13. Pulse Mode Interrupts Permit Interrupt Sharing in an ISA System. 

155

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 10: The PC Card Host Bus Adapter 

Card Event Notification (The Status Change Interrupt) 

PC Cards can report PCMCIA status events such as low battery warnings, 
write-protect switch position change, READY indications, and card detection. 
When the socket signals a status change, the HBA must be able to generate an 
interrupt, notifying PCMCIA software (card and socket services) that a status 
change event has taken place. The PCMCIA status change interrupt 
(sometimes called management interrupt) must be steered to the appropriate 
system interrupt line under software control. The HBA should also have the 
ability to mask out specific status change events under software control so 
that they do not generate an interrupt. 

The HBA must also implement status registers indicating which socket(s) ex
perienced a status change event, which status event has occurred and the 
current state of each status indicator. During the interrupt service routine, 
socket services will read these status registers within the HBA to determine 
which socket or sockets have encountered a status change. When socket serv
ices has been notified that a status change has occurred at a given socket, it 
then reads another status register within the HBA to determine the actual 
event causing the interrupt. 

DMA Support 

DMA support is an optional feature for a PC Card compliant system. As illus
trated in figure 10-14, HBAs supporting DMA transfers must contain logic to: 

• select the PC Card's DREQ# signal from one of three pins: SPKR#, IN
PACK#, or IOIS16#. 

• deliver the DACK signal from the ISA bus to the PC Card's REG# pin. 
• deliver the TC signal from the ISA bus to the PC Card's OE# pin upon 

completion of a DMA write transfer. 
• deliver the TC signal from the ISA bus to the PC Card's WE# pin upon 

completion of a DMA read transfer. 
• steer DREQ# from the PC Card to any of the seven ISA DREQ lines. 
• steer any of the seven DACK# signals from the ISA bus to the PC Card's 

DACK pin. 

139 

156

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

140 

16-Bit 
DREQ7 -~ 

DMA DREQ6 -.... 
Channels DREQ5 - -

~ DREQ# IOIS16# 

DREQ3 
8-Bit 

DREQ2 DMA 

- -<1- - Socket 1 ~ INP,M~l<<I 
~ 

- - !';Pl<R<I .... 
Channels DREQ1 - -

~ -
DREQO -~ 

-
,--

DREQ# - IOIS16# 

-<1- - C::n~~ot? -~ INPAr.1<<1 --!';PKRII 
--

16-Bit 
DACK#? , 

DMA DACK#6 
. 
' 

Channels DACK#5 
. 
' DACK 

DACK#3 
8-Bit 

DACK#2 DMA 

. -I>- Socket 1 • -. 
Channels DACK#1 

. 
, 

DACK#O , 

~ . 
' . 

DACK ' . -I>- Socket2 ~ 
, , 
~ , 
~ , 
~ , 

Figure 10-14. HBA Functions Required to Support PC Card DMA 

The HBA also determines the width of the DMA transfer by monitoring the 
Expansion bus and asserting the card enable pins to reflect the transfer size 
(either 8- or 16-bits). Refer to the Chapter entitled "The DMA Interface" for 
additional information. 

157

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 10: The PC Card Host Bus Adapter 

Power Conservation Modes 

Most PCMCIA HBAs support some form of power conservation. For example, 
when no PC Card activity has occurred within a specified time period, as 
many functions as possible are powered down to conserve power. Only the 
logic necessary to detect card insertion and removal and system bus activity 
must remain active. Depending on.the HBA design, it may also support addi
tional power saving modes (where even more of the adapter functionality is 
powered off). 

Card Lock Mechanism 

PCMCIA includes optional support for card interlock mechanisms. A PC Card 
interlock has two major advantages over systems without an interlock. 

1. Prevents the user from removing a PC Card while the card is in use. Such 
implementations may employ motor driven mechanisms used to insert 
and eject PC Cards. If the user requests that the card be ejected, software 
can remind the user that an applications currently using the card should 
be closed before removing the card. 

2. Prevents PC Cards from being removed from a system by unauthorized 
personnel. Security mechanisms may employ a simple mechanical lock 
that prevents a card from being ejected from the socket. A key may be re
quired to release the lock. These mechanisms may also be motor driven 
and require that a password be entered before software will start the mo
tor to eject the card. 

One major obstacle to the more complex solutions is the additional weight, 
size, and power required, making them less attractive in the mobile comput
ing environment. The card lock functionality is optional and currently is not in 
widespread use. 

Error Detection and Correction (EDC) 

Support exists within socket services to support EDC, thereby providing a 
method to enhance reliability of HBA designs. The author is unaware of any 
current HBA solutions that implement error detection and correction genera
tion. Since EDC generators are not typically used, the design and 
implementation of EDC generators is not covered in this book. 

141 

158

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Part Three 

PC Card Design 

159

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 11: The Card Information Structure (CIS) 

Chapter 11 
The Previous Chapter 

The previous chapter discussed the role of the PCMCIA Host Bus Adapter. 
Individual Host Bus Adapter functions are discussed. 

This Chapter 

This chapter discusses layer one of the metaformat, commonly referred to as 
the card information structure, or CIS. The chapter details the role of the CIS 
in the PC Card configuration process. Tuples are also introduced and their 
format and structure are described. The basic structure of the CIS's configura
tion table required by I/ 0 cards is also described. 

The Next Chapter 

Configuration registers are discussed in the next chapter, providing a com
plete description of each register specified by the PC Card standard. 
Configuration register implementations for both single and multiple function 
cards are covered. 

Overview 

PC Cards include a data structure called the Card Information Structure (CIS) 
that is stored in non-volatile memory. The CIS provides a method for software 
to determine what kind of PC Card is installed, along with its speed, size, and 
the system resources required by the card. Having determined this informa
tion, the PCMCIA Host Bus Adapter (HBA) can be programmed to allow 
access to the PC Card, and the card itself can be configured by writing to its 
configuration registers. Configuration registers are required by 1/0 cards but 
are optional for memory cards. Both the CIS and configuration registers are 
mapped in the attribute memory space. 

145 

160

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

As shown in figure 11-1, the CIS is read by PC Card client drivers during card 
initialization to determine the configuration options supported by the card. 
The PC Card client accesses the CIS via card and socket services. Once the 
card type and resource requirements have been read from the CIS, the PC 
Card client driver programs the HBA and configures the PC Card, again via 
card and socket services. No further access is typically made to the CIS after 
the card has been initialized. The memory or I/ 0 device can now be accessed 
via the host expansion bus, as would any other expansion device. Note that 
the CIS is only accessed by programs that are PCMCIA aware. Most applica
tion programs have no knowledge that they are accessing devices 
implemented in PC Card packages. 

Configuration and 
Event Notification 

Software 

Hardware Run-Time 
Software 

PC Card Enablers 
(PCMCIA lnit & Event Processing) 

Card Services 

Socket Services 

146 

Conf1g 

Host System 

PCMCIA 
Host Bus Adapter 

PC Card PC Card 

Figure 11-1. PCMCIA Software Flow 

Applications 

Operating 
System 

Device Drivers 
(Run-Time Code) 

161

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 11: The Card Information Structure (CIS) 

The Card Information Structure (CIS) 

The CIS is mapped into the attribute memory address space starting at ad
dress zero as illustrated in figure 11-2. The CIS consists of a linked list of data 
blocks, or tuples, that describe the function and characteristics of a PC Card. 
Configuration software accesses this data to determine the characteristics and 
configuration requirements of a given PC Card. Tuples are identified by a 
unique code which in the first byte of each tuple. 

Note that CIS data is mapped only to even locations within the attribute ad
dress space; thus, information is returned only on the lower data path 
(D7:DO). This simplifies card designs for accommodating eight-bit host sys-
tems that connect only to the lower data path. · 

Attribute Memory 
Address Space 

3FFFFFE 

Tuple 4 {1a 

Tuple 3 

Code -
) Data 

Link Value 

Code 

\ Data 

E Data I 

Tuple 2 C 

A 
) Data 

Link Value 

8 Code 

6 Data 

4 Data 
Tuple 1 

2 Link Value 

0 Code 

Figure 11-2. Example CIS Layout Consisting of a Linked List of Four Tuples 

147 

162

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

'148 

Tuples 

A tuple is defined in Webster's Ninth New Collegiate Dictionary as a "set of 
elements." A tuple in PCMCIA terminology refers to a defined set of data 
items that characterize some facet of a PC Card. The PCMCIA standard speci
fies tuples intended to be used by PC Card designers for providing 
information about their device. Tuples provide information such as the PC 
Card's device speed and size. Tuple information is most often used by con
figuration software to determine the configuration requirements of the card. 
However, other tuples provide information that can be used by utility pro
grams and applications to ascertain additional capabilities of the card. 

Tuple Format 

All tuples have a general format defined by PCMCIA (refer to table 11-1). The 
first one-byte element (entry 0) of every tuple is a tuple type code that defines 
the tuple's function. The second entry (entry 1) of every tuple is a one-byte 
link value (in hex) that specifies the number of additional bytes remaining in 
the tuple. The number and definition of these remaining bytes depends on the 
type of tuple. 

Table 11-1. Basic Tuple Format 

Byte Standard Tuple Format I 

0 TPL_CODE Tuple type code (XXh). See table 11-7 for tu-
ple codes. 

1 TPL_LINK Link to next tuple (number of bytes (in hex) 
remaining in tuple). 

n TPL_DATA Tuple specific data block (definition, format 
and length defined by individual tuples). 

The CIS consists of a linked list of tuples. Each tuple specifies a link value that 
identifies the start of the next tuple. Processing software can read the CIS en
tries and interpret the meaning of the tuples that contain configuration 
information for the PC Card. 

The exact set of tuples incorporated into the CIS depends primarily on the 
type of card and its capabilities. For example, the Device Information Tuple 

163

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 11: The Card Information Structure (CIS) 

may contain all the information needed to determine the resources required 
by a simple SRAM card, while other card types might require numerous tu
ples to define the configuration of the card. 

A Sample Tuple 

Consider the information provided by the Device Information tuple shown in 
table 11-2. This tuple defines a lOOns SRAM card containing 1MB of memory. 
The first byte within the tuple contains a value of Olh defining this tuple as a 
device information tuple. The second byte (03h) specifies the number of bytes 
remaining in the tuple. The device information tuple contains two bytes 
within the tuple's data area. One that defines the memory card type, speed, 
size, and whether the write-protect switch affects the range of memory being 
defined, and one that defines the size of the memory device. 

The memory card device type is specified in the tuple as a hexadecimal code 
value. In this example, the device code is a 6h. As shown in table 11-3, a de
vice code of 6h identifies the card as SRAM. Similarly, the SRAM's cycle time 
is specified with a speed code of 4h. This indicates a device speed of lOOns as 
shown in table 11-4. The size of the device can be determined by reading the 
unit size code and multiplying the unit size by the number of units specified. 
The unit size code of Sh, specifies memory banks of 512KB (refer to table 11-5) 
and the number of units field contains a lh, indicating two memory units are 
implemented for a total size of 1MB. Finally, the tuple is terminated by FFh. 
This tuple includes a termination byte because the data within the tuple can 
vary in length (i.e. more than one memory device can be described by the 
Device Information tuple). The termination bytes make it easier for parsing 
software to recognize the end of variable length tuples. Tuples that do not 
vary in length do not define a termination byte. 

Table 11-2. Example Device Information Tuple for an SRAM Card 

Byte Value Device Information Tuple 
0 Olh Tuple Code (Olh) 

1 03h Link to next tuple (3h) 

2 64h *Device Type=bits 7:4 (6h); WP=bit 3 (O);Speed=bits 2:0(4h) 

3 ODh *Device Size=# of units [bits 7:3 (1)] times unit size [bits 2:0 (Sh)] 

4 FFh FFh (marks end of device info field) 

* Refer to the following tables for an interpretation. 

149 

164

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table 11-3. Device Type Codes 

Code Name Meaning 
0 DTYPE_NULL No memory device. Generally used to desig-

nate a hole in the address space. If used, speed 
field should be set to Oh. 

1 DTYPE_ROM Masked ROM 

2 DTYPE_OTPROM One-time programmable PROM 

3 DTYPE_EPROM UVEPROM 

4 DTYPE_EEPROM EEPROM 

5 DTYPE_FLASH FlashEPROM 

6 DTYPE_SRAM Static RAM (JEIDA has Nonvolatile RAM) 

7 DTYPE_DRAM Dynamic RAM (JEIDA has Volatile RAM) 

8-Ch Reserved 

Dh DTYPE_FUNCSPEC Function-specific memory address range. In-
eludes memory-mapped I/0 registers, 
dual-ported memory, communication buffers, 
etc., which are not intended to be used as gen-
eral-purpose memory. 

Eh DTYPE_EXTEND Extended type follows. 

Fh Reserved 

Table 11-4. Device Speed Codes 

Code Name Meaning 

Oh I DSPEED _NULL I Use when device type = null 

lh I DSPEED _250NS I 250 nsec 

2h I DSPEED _200NS I 200 nsec 

3h DSPEED _150NS 150 nsec 

4h DSPEED _lOONS 100 nsec 

5h-6h (Reserved) 

7h DSPEED_EXT Use extended speed byte. 

150 

165

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 11: The Card Information Structure (CIS) 

Table 11-5. Unit Size Codes 

Code Units 

0 512 bytes 

1 2K 

2 BK 

3 32K 

4 128K 

5 512K 

6 2M 

7 Reserved 

The Configuration Table 

1/0 devices require that the CIS contain a configuration table that is not re
quired by memory cards. This table consists of multiple entries each of which 
describes a set of configuration options that the PC Card needs for normal op
eration. A comparison can be made between each configuration table entry 
and each possible switch and jumper setting required when configuring an 
ISA card. Each configuration table entry reflects the possible resource combi
nations that the PC Card can be configured for. 

The Configuration Entry Tuple 

Figure 11-3 illustrates a CIS that contains a configuration table. Directly pre
ceding the configuration table is the configuration tuple that specifies which 
configuration registers are implemented by the PC Card and where they are 
mapped within attribute memory address space. The configuration tuple also 
specifies the index number of the last entry within.the configuration table. As 
illustrated in figure 11-3, the configuration table consists of a series of configu
ration table entry tuples (CFTABLE_ENTRY). Each entry contains up to seven 
data structures that describe operational characteristics of the PC Card. These 
structures include: 

1. A power description byte - the power parameters specified within this 
structure may apply to Vee only, Vee and Vppl and Vpp2 (Vpp1=Vpp2), 
or separately to Vee, Vppl, and Vpp2. The specific power parameters de-

151 

166

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

152 

scribed by the structure are also selectable as defined by the parameter 
selection byte within the power description structure. 

2. Configuration timing information - this structure defines the maximum 
length of time that the PC Card will keep READY deasserted and the 
maximum duration of the WAIT# signal. 

3. 1/0 address space description - defines up to sixteen ranges of I/0 ad
dress space required by the PC Card for this configuration. The structure 
defines the exact base I/0 address and the number of address locations 
within the range 

4. Interrupt request description - specifies the system interrupt request 
line required for this configuration. A single IRQ can be specified or a 
group of IRQs can be defined, any of which will satisfy the configuration 
requirements. Also included in the description is information that defines 
the deliver mode (level or pulse), whether interrupt sharing is supported, 
and alternative interrupt signal definitions (i.e. NMI, I/0 check, bus error, 
vendor specific interrupt). 

5. Memory address space description - specifies up to eight ranges of 
memory address space required for this configuration. Both the Host 
processor address and the PC Card address can be specified. When both 
the host and PC Card address are the same, no address translation is re
quired since the host address is directly mapped into the common 
memory address space. If no host address range is specified, then any 
range of host address space can be used and mapped by the HBA to the 
specified range within common memory address space. A base address 
and range value are specified for each block of addresses needed for this 
configuration. 

6. Miscellaneous information structure - contains information regarding 
support for special features required by this configuration. Two bytes are 
defined by the PC Card standard. The first byte identifies the PC Card's 
support for power down (for power management software), whether the 
SPKR# pin is used, and the number of identical PC Cards that are sup
ported for the max twins cards option (e.g. support for multiple ATA 
drives). The second byte defines support for DMA, including the DMA 
transfer size and specifies which pin the PC Card uses for DREQ#. 

7. Subtuple information - permits definition of additional information re
lating to this configuration. Subtuples are included as extensions to the 
configuration table entry tuple and may include information such as the 
operation system for which the configuration was intended and the physi
cal device being implemented in this configuration. 

167

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 11: The Card Information Structure (CIS) 

Configuration { -----
Registers 

Configuration Table 

Configuration Tuple 

Other 
CIS 

Tuples 

Config Table 
Entr 3 

Config Table 
Entr 3 

Config Table 
Entr 2 

Config Table 
Entry 1 

Tuple 5 

Tuple 4 

Tuple 1 

Figure 11-3. The Configuration Table Consists of a Number of Entries, Describing the 
Configuration Options Supported by the PC Card. 

Table 11-6 shows the format of the configuration table entry tuple. The actual 
structures that are implemented within this tuple are specified by the feature 
selection byte. 

153 

168

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Byte 

0 

1 

2 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 
.. n 

154 

Table 11-6. Format of the Configuration Table Entry Tuple 

Name Description of Entry 

TPL_CODE Configuration Entry tuple code (CISTPL_CFTABLE_ENTRY, lBh) 

TPL_LINK Link to next tuple (n-1, {2 minimum}) 

TPCE_INDX Configuration table index byte - this byte contains the index number of 
the entry, specifies whether the interface byte will follow, and specifies 
whether this entry is a default entry or not. 

TPCE_IF Interface description byte - this field is present only when the interface 
bit of the Configuration-table index byte is set 

TPCE_FS Feature selection byte indicates the optional structures present 

TPCE_PD Power description structure 

TPCE_TD Configuration timing information structure 

TPCE_IO I/0 address space description structure 

TPCE_IR Interrupt request description structure 

TPCE_MS Memory address space description structure 

TPCE_MI Miscellaneous information structure 

TPCE_ST Additional information about the configuration in subtuple format 

Interpreting the Configuration Table 

When parsing software (usually a card services client driver) processes an en
try within the configuration table, it must determine if the resources specified 
are available. (Refer to the chapter entitled, "Client Drivers" for a discussion 
of resource acquisition.) If all resources that have been requested are available 
then the configuration is satisfied and no additional configuration table entries 
need be evaluated. If however, one or more of the resources required to sat
isfy the configuration are not available, then parsing software must evaluate 
subsequent entries in an attempt to find alternative system resources that will 
satisfy the PC Card's configuration requirements. 

The first entry within the configuration table is typically specified as a default 
entry. Default entries indicate that all configuration information specified 
within the entry should be retained even in the event that the full configura
tion was not satisfied. For example consider the configuration table illustrated 
in figure 11-4. The first entry is a default entry that specifies a power struc
ture, a configuration timing structure, an I/0 address space structure, an 
interrupt request structure and a miscellaneous information structure. As-

169

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 11: The Card Information Structure (CIS) 

sume that parsing software was able to satisfy all configuration information 
specified by this entry except the interrupt request line. Software then pro
ceeds in the following manner: 

1. Since this is a default entry, all resources successfully acquired are re
tained. This eliminates the need to re-specify all the parameters that apply 
globally to the card's configuration regardless of which I/ 0 address space 
and IRQ line is assigned to the card. In this example, since the entire con
figuration was not satisfied, parsing software proceeds to the next entry, 
attempting to find alternative resources that the PC Card can use. 

2. Assume that entry 2 is not a default entry and contains only an 1/0 ad
dress structure and IRQ structure. Parsing software recognizing a non
default entry knows it must successfully acquire all configuration options 
specified, and if unable to do so must release the partial configuration by 
returning the resources previously acquired. Furthermore, since a pair of 
resources is being requested, the parsing software recognizes that the I/ 0 
address space acquired when attempting to satisfy the previous default 
entry must be released in favor of the new 1/0 address space and IRQ 
lines specified by this entry. If both configuration options are acquired 
successfully, then the configuration is completed. If not, the incomplete 
configuration is released and parsing software proceeds to the next entry. 

3. Assume that entry 3 is not a default entry and contains another set of 1/0 
addresses and another IRQ line. Once again parsing software attempts to 
acquire both resources, and if not successful must release any resource 
acquired and proceed to the next entry. As before, if both are acquired the 
configuration is complete. 

4. Entry 4 is the last configuration entry and contains the final 1/0 address 
space and IRQ options for configuring the PC Card. If these resources 
cannot both be acquired, then the parsing software must report to the user 
that the card cannot be configured. 

155 

170

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

156 

Entry 4 

Entry 3 

Entry 2 

Entry 1 

Configuration 
Table 

Interrupt Structure 

1/0 Addr. Structure 

Non-default Entry 

Interrupt Structure 

1/0 Addr. Structure 

Non-default Entry 

Interrupt Structure 

1/0 Addr. Structure 

Non-default Entry 

Misc. Structure 

Interrupt Structure 

1/0 Addr. Structure 

Timing Structure 

Power Structure 

Default Entry 

Figure 11-4. Example Configuration Table with One Default and Four Non-Default 
Entries 

Once parsing software has obtained the configuration resources from the sys
tem it must configure the HBA and PC Card so that they respond to the 
resources. Parsing software uses the index number of the configuration table 
entry that specifies the successful configuration when configuring the PC 
Card. The index number is written into the PC Card's configuration option 
register, telling the PC Card which set of configuration options were success
fully acquired. 

171

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 11: The Card Information Structure (CIS) 

Multiple Function PC Cards 

Multi-function PC Cards require a separate CIS and configuration register set 
for each function within the card. As illustrated in figure 11-5, a global CIS is 
required when implementing a multi-function PC Card. The global CIS con
tains a long link multi-function tuple (LONGLINK_MFC) that lists the entry 
points of each function's CIS. The first entry within the target CIS must con
tain a LINKTARGET tuple to verify the correct start address specified by the 
LONGLINK_MFC tuple. Note that the configuration registers used by each 
function are identified by the configuration tuple within each CIS. 

Function 3 
Config. Regs. 

Function 2 
Config. Regs. 

Function 1 
Config. Regs. 

CISTuples 

LINKTARGET 

CIS Tuples 

LINKTARGET 

CIS Tuples 

LINKTARGET 

CIS Tuples 

LONGLINK_MFC 

Attribute Memory 
Address Space 

FFFFFFF 

Function 3 
CIS 

Function 2 
CIS 

Function 1 
CIS 

Global 
CIS 

0000000 

Figure 11-5. Configuration Table Structure Used by a Triple-Function PC Card 

157 

172

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Devices Commonly Used for the CIS 

Both ROM and FLASH are commonly used to implement the CIS. The clear 
advantage of FLASH is that the CIS can be easily updated. The CIS is quite 
small (usually not larger than 1 KB) and in the case of SRAM cards it can be as 
few as six bytes. 

CIS Access Timing 

Attribute memory (the CIS and configuration registers) must be accessed by 
card enabling software to determine the type of card installed and how it 
should be configured. Attribute memory is accessed by the HBA based on a 
default 300ns cycle time. This ensures that the CIS can be accessed regardless 
of the speed of other devices within the card. See the chapter entitled "The 
Memory-Only Interface" for details regarding attribute memory accesses. 

Summary of Layer 1 Tuples 

Code (h) 

00 

01 

02-05 

06 

07-0F 

158 

Table 11-7 lists the tuples that are currently defined by the PCMCIA specifica
tion for the CIS (layer 1 of the metaformat). Tuples are also defined for layers 
2 and 3, but are not discussed here. Refer to the PCMCIA specification for de
tails. 

Table 11-7. Tuples defined for Compatibility Layer One (CIS) 

CISTPL_NAME Description and Purpose 

NULL Null Control tuple - Used as a place holder. Ignored by 
tuple processing software. 

DEVICE Device Information for Common Memory - Contains 
information about the card's common memory devices, 
including speed, type, write protect and size. 

Reserved Reserved for future versions of the device information 
tuple or for CardBus implementations. 

LONGLINK_MFC Long-Link for Multi-Function Card-Specifies the 
number of functions within this PC Card (i.e. sets of 
configuration registers) and defines the location of each 
function-specific CIS within the card. 

Reserved Reserved for future versions or for CardBus tuples. 

173

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 11: The Card Information Structure (CIS) 
Table 11-7 Tuples Defined for Compatibility Layer One (Continued) 

Code (h) CISTPL_NAME Description and Purpose 

10 CHECKSUM Checksum Control - Provides a means for verifying the 
contents of the CIS in memory. Multiple checksum con-
trol tuples can be implemented within a single CIS. 

11 LONGLINK_A Long-Link Control to Attribute Memory- Specifies the 
continuation of a tuple string to a location in attribute 
memory, beyond the limits of the 1 byte link field. The 
entry point specified must contain a Link Target tuple. 

12 LONGLINK_C Long-Link Control to Common Memory - Specifies the 
continuation of a tuple string to a location in common 
memory, beyond the limits of the 1 byte link field. The 
entry point specified must contain a Link Target tuple. 

13 LINKTARGET Link Target - Verifies the continuation of a valid tuple 
string. The Link Target tuple is the first tuple at the entry 
point specified by a Long-Link tuple. 

14 NO_LINK The No Link tuple tell~ processing software that when 
the end of the current (~ple chain is reached (i.e. the 
Termination Tuple has been detected) that no more tu-
ples exist in the chain to be processed. (See Termination 
tuple - code FFh for more information.) 

15 VERS_l Level 1 (also layer l)Version identifies the PCMCIA 
compliance level of the CIS (also called the compatibility 
layer or metaformat layer one). Following the Version 
information, production information is provided in a 
series of ASCII strings each ended by zero (Called AS-
CIIZ). 

16 ALTSTR Alternate Language String - Includes additional Ian-
guages for ASCII strings used in the product information 
tuple (code 15h). Also used for the Level 2 Version/ 
Product Information tuple (code 40h). 

17 DEVICE_A Device Information to Attribute Memory - Contains 
information about the card's attribute memory devices, 
including speed, type, write protect and size. (optional) 

18 JEDEC_C Specifies the JEDEC (Joint Electronic Device Engineering 
Council) manufacturer and programming algorithm 
required by programmable devices listed in the device 
information tuple (01h) for common memory. Entries in 
the JEDEC identifier tuple have a one-to-one correspon-
dence to the entries in the device information tuple. 

159 

174

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 
Table 11-7 Tuples Defined for Compatibility Layer One (Continued) 

Code (h) CISTPL_NAME Description and Purpose 

19 JEDEC_A Specifies the JED EC (Joint Electronic Device Engineering 
Council) manufacturer and programming algorithm 
required by programmable devices listed in the device 
information tuple (17h). Entries in the JEDEC identifier 
tuple have a one-to-one correspondence to the entries in 
the device information tuple. 

lA CONFIG Configuration tuple - Specifies the address of the con-
figuration registers in attribute memory space and 
specifies which configuration registers are implemented 
in the card. Also identifies the last configuration entry 
within the configuration table, and provides a method of 
appending subtuples to the basic configuration tuple. 

Subtuples define additional information related to the 
card's configuration. Subtuple codes 80h-BFh are re-

,'~ 

servetl for vendor specific items, while COh- FEh are 
reserved for future PCMCIA standard definition. Cur-
rently, only the Custom Interface subtuple has been 
defined. 

lB CFTABLE_ENTRY Configuration Table Entry-Provides configuration 
options supported by the card. Each configuration table 
entry provides additional configuration options. The 
entire set of configuration entries within the CIS is called 
the configuration table. 

lC DEVICE_OC Other Conditions Device Information (common mem-
ory) - Specifies the characteristics of devices mapped in 
the common memory address space, when operating 
under conditions other than the defaults. For example, if 
the card is a dual voltage card (operates at both 5 volts 
and 3.3 volts) the characteristics of the common memory 
devices may be altered depending on which voltage is 
applied. There must be a one-to-one correspondence 
between the information fields listed in the Device In-
formation tuple and the Other Conditions Device 
Information tuple. 

160 

175

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 11: The Card Information Structure (CIS) 
Table 11-7 Tuples Defined for Compatibility Layer One (Continued) 

Code (h) CISTPL_NAME Description and Purpose 

10 DEVICE_OA Other Conditions Device Information (attribute mem-
ory).-Specifies the characteristics of devices mapped in 
the attribute memory address space, when operating 
under conditions other than the defaults. For example, if 
the card is a dual voltage card (operates at both 5 volts 
and 3.3 volts) the characteristics of the attribute memory 
devices may be altered depending on which voltage is 
applied. There must be a one-to-one correspondence 
between the information fields listed in the Device In-
formation tuple and the Other Conditions Device 
Information tuple. 

lE DEVICEGEO Device Geometry (common memory) - Device geome-
try provides the erase, read, and write characteristics of 
programmable devices. This tuple consists of multiple 
entries for each device identified in the device informa-
tion tuple. 

lF DEVICEGEO_A Device Geometry (attribute memory)- Device geome-
try provides the erase, read, and write characteristics of 
programmable devices. This tuple consists of multiple 
entries for each device identified in the device informa-
tion tuple. 

20 MANFID PCMCIA Manufacturers Identification - Contains the 
PCMCIA manufacturer identification code and manufac-
turer card identifier and revision information. 

21 FUNCID Function Identification-Categorizes the card's func-
tional type and specifies whether the card should be 
initialized during basic system initialization or when the 
operating system loads. 

A multi-function device may also be specified, in which 
case additional Function Identification tuples for each of 
the card's functions will follow. 

Code (h) CISTPL_NAME Description and Purpose 

161 

176

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table 11-7 Tuples Defined for Compatibility Layer One (Continued) 

Code (h) CISTPL_NAME Description and Purpose 

22 

FF 

162 

FUNCE Function Extension-Provides detailed information 
about a specific function previously identified by the 
function identification tuple. This tuple contains addi-
tional information useful to application programs or 
utility programs that are PCMCIA aware. Function ex-
tensions, if applicable, follow each Function 
Identification tuple in the tuple chain. 

Extensions are useful for defining the capabilities of 
various types of devices such as modems and network 
interface cards. 

END Termination tuple - Indicates that this tuple is the last 
tuple in the string. However, by default parsing software 
will continue processing tuples at location zero in com-
mon memory. This implied jump to common memory 
occurs unless this tuple string contains either a 
LONGLINK OR NO _LINK tuple. If a no-link tuple has 
been encountered, the tuple string ends without further 
processing. If a valid long-link tuple has been encoun-
tered, tuple processing continues at the location 
specified, contingent on the presence of a LINKTARGET 
tuple at the target location. If there is neither a long- link 
nor a no-link tuple within the tuple string, tuple process-
ing should continue at location zero in common 
memory. 

Sample CIS implementations for SRAM, FAX/MODEM, Flash Card and ATA 
Hard Drive are discussed in later chapters. 

Note that the CIS must start at address location zero in attribute address 
space or at the location specified by the LONGLINK_MFC tuple in multiple 
function PC Cards. 

177

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 12: Function Configuration Registers 

Chapter 12 
The Previous Chapter 

The previous chapter discussed the CIS and its role in the PC Card configura
tion process. Tuples were introduced and their format and structure were 
described. The basic structure of the CIS' s configuration table required by I/ 0 
cards was also described. 

This Chapter 

This chapter discusses the configuration registers and provides a complete de
scription of each register specified by the PC Card standard. Configuration 
register implementations for both single and multiple function cards are cov
ered. 

The Next Chapter 

The next chapter describes a sample SRAM card implementation, including a 
functional block diagram of the SRAM card along with a sample CIS. 

Configuration Registers 

Each PC Card's I/ 0 function must implement configuration registers. The PC 
Card standard defines the following configuration registers: 

• Configuration Option Register- mandatory for all I/0 functions 
• Configuration and Status Register- optional 
• Pin Replacement Register - optional 
• Socket and Copy Register - optional 
• Extended Status Register - optional 
• I/ 0 Base Address Register(s) - mandatory for multi-function PC Cards 
• I/0 Limit Register- optional 

163 

178

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

164 

The format of each register is listed in table 12-1. These configuration registers 
are mapped into the attribute memory space at the location specified within 
the CONFIG tuple. Note that each function of a multiple function PC Card 
will have a dedicated set of configuration registers. 

Table 12-1. Format of the Function Configuration Registers 

Offset 7 6 5 4 3 2 1 0 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

Configuration Option Register 

SRESET LevlREQ Function Configuration Index 

Configuration and Status Register 

Changed SigChg IOIS8 RFU Audio PwrDwn Intr IntrAck 

Pin Replacement Register 

CBVD1 CBVD2 CREADY CWProt RBVD1 RBVD2 RREADY RWProt 

Socket and Copy Register 

RFU Copy Number Socket Number 

Extended Status Register 

Req 
Event3 Event2 Eventl ReqAttn Enable3 Enable2 Enablel Attn 

Enable 

1/0 Base 0 

1/0 Base 1 

1/0 Base 2 

1/0 Base 3 

1/0Limit 

Each of these registers have read/write capability and are mapped at even lo
cations, consistent with the design of attribute memory. The definition of each 
configuration register is detailed below. 

Configuration Option Register 

The configuration option register (COR) configures PC Cards that have pro
grammable address decoders. Once a card's client driver successfully parses 
the CIS and obtains the system resources required by the card, it assigns the 
resources to the card via the COR. 

As discussed earlier in this chapter, the configuration table within the CIS 
specifies the configuration options that a given card supports. Each entry 

179

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 12: Function Configuration Registers 

within the CIS contains a different combination of resources that satisfies a 
card's resource requirements. When the configuration options described by a 
particular configuration entry are found to be available, the index number of 
that configuration entry is written to the COR (refer to table 12-2). The index 
number programs the card to utilize the resources specified within the associ
ated configuration table entry. 

As shown in table 12-2, the COR also specifies whether the card should use 
level or pulse mode interrupts and provides a means for software to reset the 
card. Note that some memory cards may implement this register to support 
software reset as shown in the flash example. (See the chapter entitled, "A 
FLASH Card Example.") 

Table 12-2. Configuration Option Register format and Definition 

7 6 5 I 4 I 3 I 2 I 1 I 0 

SRESET LevlReq Configuration Index 

SRESET 

LevlReq 

Conf Index 

Software Reset. Setting this bit to one (1) places the card in the 
reset state. This is equivalent to assertion of the RESET signal ex
cept that this bit is not cleared. Returning this bit to zero (0), 
leaves the card in the same state that follows a hardware reset. 
This bit is set to zero by power up and hardware reset. 

Level Mode IREQ#. Level Mode Interrupts are selected when this 
bit is one (1). Pulse Mode Interrupts are selected when this bit is 
zero (0). 

Configuration Index. This field is written with the index number 
of the entry in the card's Configuration Table that corresponds to 
the configuration option chosen for the card. When the Configu
ration Index is 0, the card's I/0 is disabled and will not respond 
to any I/ 0 cycles and will use the memory-only interface. 
Multi-function Card Index definition. The PC Card standard 
specifically defines the use of each bit within the configuration 
index. 
Bit O - Enables/ disables specific function. l=enabled; O=disabled 
Bit 1-Specifies I/0 addressing used. l=I/0 addresses specified 
by the base and limit registers are passed to function; O=all host 
I/0 address are passed to the function. ·(This bit is valid only 
when function is enable via bit 0.) 

Bit 2 - Enables IREQ# routing. l=This function will deliver inter
rupts to the PC Card's IREQ# line; O=interrupts disabled for this 
function. (This bit is valid only when function is enabled.) 
Bits 3-5 - vendor specific 

165 

180

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

166 

Card Configuration a·nd Status Register 

This register contains a variety of functions used to control the card and re
port status, as shown in table 12-3. These functions include: 

• Status change indication and reporting (bits 6 and 7) 
• PCM CIA host expansion bus interface size (bit 5) 
• Audio enable (bit 3) 
• Power down control for power conservation (bit 2) 
• Interrupt pending status (bit 1) 

Status Change 

Prior to being configured, an I/0 card interfaces to the HBA as a memory 
only device. While in this state, any status change event must be reported di
rectly over the appropriate status change pin. However, when the card is 
configured, (the COR is written) the card switches to the I/0 interface and 
status change events are now reported via the pin replacement register (PRR) 
and the card configuration and status register (CSR). 

The status changed bit (bit 7) and the signal change bit (bit 6) of the CSR de
termine whether a status change has occurred when the card is configured for 
the I/0 interface and whether it should be reported over the I/0 interface's 
STSCHG# pin. When a status change event occurs, the appropriate bit is set in 
the PRR and the status changed bit (Chng) is set in the CSR. When a status 
change occurs, the card asserts the STSCHG# pin to notify the HBA of the 
event. The Chng bit remains set until the PRR bit is reset indicating that the 
status change event has been processed. 

The signal change bit (SigChg) is used by the HBA to disable the card from as
serting the STSCHG# pin again until the current status change event has been 
processed. Software must clear this bit when processing a status change inter
rupt for the card. This permits the next status change event to be reported 
once the previous event has been processed. 

181

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 12: Function Configuration Registers 

Table 12-3. Card Configuration and Status Register and Definition 

7 6 5 4 3 2 1 0 

Chng SigChg IOis8 Resrv Audio PwrDn Intr IntrAck 
(0) 

Chng Status Change Detected. This bit indicates that one or more of the Pin 
Replacement Register bits (CBVD1, CBVD2, CROY, or CWProt) is set to 
one, normally causing the STSCHG# signal to be asserted. However, if 
the SigChg bit (see below) is 1 and the card is configured for an I/0 
interface, the STSCHG# pin is asserted when this bit is set. 

SigChg Signal Change Enable/Disable. This bit is set and reset by the host to 
enable and disable a status-change signal from the status register. When 
this bit is set and the card is configured for the I/0 interface, the Chng 
bit controls pin 63 (STSCHG#). If no status change signal is desired, this 
bit should be set to zero and the STSCHG# signal will be held <leas-
serted when the card is configured for I/0. 

IOis8 1/0 Cycles Occur Only as 8-bit Transfers. When the host can provide 
I/0 cycles only using the D7:DO data path, the PCMCIA software will 
set this bit to a 1. The card is guaranteed that accesses to 16-bit registers 
will occur as two byte accesses rather than a single 16-bit access. This 
information is useful when 16-bit and 8-bit registers overlap. 

Resrv Reserved bits must be 0. 

Audio Audio Enable. This bit enables audio information to be sent to the HBA 
via the speaker pin when configured for an I/0 interface. 

PwrDn Power Down. This bit is set to one to request that the card enter a 
power-down state. PCMCIA software must not place the card into a 
power-down state while the card's READY pin is in the low (Busy) 
state. 

Intr Interrupt Request Pending. This bit represents the internal state of the 
interrupt request. This value is available whether or not interrupts have 
been configured. How the Intr bit is cleared is dependent of how the 
IntrAck bit is configured. 
IntrAck=O - Intr reflects the function's interrupt request status. If the 
interrupt is cleared within the function, then Intr is reset by the func-
tion. 

IntrAck=l - Intr remains set even though the interrupt condition has 
been cleared. It is reset by system software to indicate it is ready to re-
ceive another interrupt (implemented to support interrupt sharing). 

167 

182

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

168 

Table 12-3. Card Configuration and Status Register and Definition(Continued) 

7 6 5 4 3 2 1 0 

Chng SigChg I0is8 Resrv Audio PwrDn Intr IntrAck 
(0) 

IntrAck Interrupt Acknowledge. This bit determines the response of the Intr 
bit. The functionality associated with the IntrAck bit permits two or 
more functions to share the PC Card's IREQ# pin. 
IntrAck=O - when IntrAck is reset Intr functions as described above to 
support a single interrupt implementation. 
IntrAck=l - This causes the Intr bit to remain set even though the in
terrupt service routine has already serviced the interrupt. Normally, the 
interrupt service routine clears the interrupt pending bit in a function 
specific register, causing the Intr also to be deared. However, to sup
port interrupt sharing the Intr bit is not cleared until PCMCIA specific 
software is ready to handle the next interrupt request. When cleared by 
the PCMCIA software, other interrupt requests that are pending can 
now be asserted over the PC Card's IREQ# pin. (Refer to the chapter 
entitled, "Multiple Function PC Cards." 

Size of Host Expansion Bus 

The I0is8 bit reflects the size of the expansion bus that the HBA connects to. 
When this bit is set, I/0 cycles will always occurs as individual 8-bit transfers 
over the lower data path (D7:DO). When the bit is reset, accesses to 16-bit reg
isters will occur in a single cycle. 

Audio Enable 

The Audio bit is set to enable audio information to be sent over the I/0 inter
face's SPKR pin. Whether or not the I/0 card has audio capability is specified 
within the miscellaneous information structure within the configuration table 
entry. 

Power Conservation Mode 

Some cards support a low power mode that can be used for power conserva
tion. Power management software can set the power down (PwrDn) bit, 
placing the card in a low power state, if supported. Note that this bit should 
not be set if the card is in the busy state as indicated by the PRR. 

183

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 12: Function Configuration Registers 

Interrupt Pending 

The Intr bit is set by the card when its interrupt request (IREQ#) pin is as
serted. If the PC Card implements a single I/ 0 function, the Intr bit remains 
set until the interrupt service routine is executed, at which time the Intr bit is 
reset. 

Pin Replacement Register 

Cards using a memory only interface report status change directly to the HBA 
via the status change pins. However, when a card uses the 1/0 interface, the 
status change pins are replaced by other I/ 0 specific interface signals. As a re
sult, the HBA has no visibility of status change events that may occur on the 
I/ 0 card. The pin replacement register (PRR) replaces the HBA functions that 
are normally used to indicate the status of change events for the memory in
terface. 

Refer to table 12-4. The PRR specifies the current state of the status change 
events (bits 3:0) and whether a change has occurred for a particular event (bits 
7:4). The current state of the events (RWP, RREADY, RBVD2, and RBVD1) can 
be read directly from the lower four bits of the PRR register. When a change 
occurs for any of these items, its corresponding changed bit is set in the upper 
group of bits. In this way, processing software can read the upper four bits to 
determine which event(s) has occurred and therefore, the one needing to be 
processed. When a given event is processed, the lower portion of the register 
can be read to check the new state of the event that signaled the change. When 
the event is processed, software should reset the changed bit, thus permitting 
another event to be reported. 

Table 12-4. Pin Replacement Register 

7 6 5 4 3 2 1 0 

CBVD1 CBVD2 CRdy CWP RBVD1 RBVD2 RREADY RWP 

CBVD1, CBVD2 Changed BVD1 and BVD2. These bits are set to one when 
the corresponding bit (RBVD1 and/ or RBVD2) changes from 
one state to another. These bits may also be cleared by the 
host. 

CREADY Changed READY. This bit is set to one when the bit 
RREADY changes state. This bit may also be cleared by the 
host. 

169 

184

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



170 

Table 12-4. Pin Replacement Register (Continued) 

CWProt 

RBVDl, RBVD2 

RRdy 

RWProt 

Changed Write Protect. This bit is set to one when the bit 
RRWProt changes state. This bit may also be cleared by the 
host. 

Current State of BVD1 and BVD2. These bits represent the 
internal state of the Battery Voltage Detect circuits on cards 
that contain a battery. They correspond to the values that 
would be on pins 63 and 62, BVD1 and BVD2 respectively. 
When this bit is set, the corresponding changed bit is also set. 
When this bit is cleared, the corresponding changed bit is 
unaffected. 

Current State of Ready. This bit represents the internal state 
of the READY signal. This bit reflects the state of READY 
(since the READY pin has been reallocated for use as Inter
rupt Request on IO Cards). When this bit is set, the 
corresponding changed bit is also set. When cleared, the cor
responding changed bit is unaffected. 

Current State of Write-Protect Switch. This bit represents 
the current state of the Write-Protect switch. This bit reflects 
the state of the Write Protect switch when pin 24 is being 
used for IOIS16#. When this bit is set, the corresponding 
changed bit is also set. When cleared, the corresponding 
changed bit is unaffected. 

Socket and Copy Register 

Refer to table 12-5. This register is used for I/0 cards that can coexist with one 
or more identical cards within the system and respond to the same I/0 ad
dress ranges. This capability can be used for ATA (IDE) drives that are 
designated as drive O and drive 1. Each responds to the same I/0 address 
space but can be uniquely identified with the socket and copy register. The 
first card configured will be assigned as copy zero and each card configured 
thereafter receives the next sequential copy number. The socket number iden
tifies the socket that a given copy occupies. 

185

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 12: Function Configuration Registers 

Table 12-5. Socket and Copy Register 

7 I 6 5 I 4 I 3 2 I 1 I 0 

Reserved (0) Copy Number Socket Number 

Reserved This bit is reserved for future standardization. This bit 
must be set to zero (0) by software when the register is 
written. 

Copy Number Cards that can coexist with other cards (twin cards) 
that are configured identically, should have a copy 
number identifying this particular copy of the card. (0 
to MAX twin cards, MAX= n-1) This field indicates to 
the card that it is "nth" copy of the card installed in the 
system that is identically configured. The first card in-
stalled receives the value 0. This permits identical 
cards designed to do so to share a common set of I/ 0 
ports while remaining uniquely identifiable and con-
secutively ordered. 

Socket Number This field indicates to the card that it is located in the 
nth socket. The first socket is numbered 0. This permits 
any cards designed to do so to share a common set of 
I/ 0 ports while remaining uniquely identifiable. 

Extended Status Register 

This register has been added to the PC Card standard to extend the number of 
events that can be reported via the STSCHG# pin and to give software the 
ability to detect and clear the event. The extended status register is organized 
as an upper nibble (whose bits are set when the corresponding function event 
occurs) and a lower nibble (that enables and disables setting the "Changed" 
bit in the CSR). When a status change interrupt occurs PC Card software can 
read the extended status register to determine if an associated bit has caused 
an the interrupt. 

171 

186

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

D7 

Table 12-6 illustrates the format of the extended status register. Notice that 
only the "Requires Attention" and "Requires Attention Enable" bits are de
fined. 

Table 12-6. Format and definition of the Extended Status Register 

D6 05 04 03 02 01 II DO 

Event3 Event2 Eventl ReqAttn Enable3 Enable2 Enablel 

II 
ReqAttn 
Enable 

Field Description 

Event3 Reserved for future expansion/ definition, must be reset (0) 

Event2 Reserved for future expansion/ definition, must be reset (0) 

Eventl Reserved for future expansion/ definition, must be reset (0) 

ReqAttn This bit is latched within one (1) ms of an event occurring on the PC Card, (such as the start 
of each cycle of the ring frequency to indicate the presence of ringing on the phone line in 
the case of a modem card). When this bit is set to a one (1), and the Req Attn Enable bit is set 
to a one (1), the Changed bit in the Configuration and Status register will also be set to a one 
(1), and if the SigChg bit in the Configuration and Status register has also been set by the 
host, the STSCHG# pin (63) will be asserted. The host writing a one (1) to this bit will reset 
it to zero (0). Writing a zero (0) to this bit will not have any effect. 

Enable3 Reserved for future expansion/ definition, must be reset (0) 

Enable2 Reserved for future expansion/ definition, must be reset (0) 

Enablel Reserved for future expansion/ definition, must be reset (0) 

ReqAttnEn- Setting this bit to a one (1) enables the setting of the Changed bit in the Configuration and 
able 

172 

Status register when the Req Attn bit is set. When this bit is reset to a zero (0), this feature is 
disabled. The state of the Req Attn bit is not affected by the Req Attn Enable bit. 

1/0 Base Registers 

The PC Card standard defines these I/ 0 base registers for use by multiple 
function cards, but they can also be used by single function cards. These regis
ters define the base 1/0 address to which the function's 1/0 registers will be 
mapped into the host processor's address space. The number of registers used 
depends on the address space supported by the host processor. Since Intel 
compatible x86 processors have only 64KB of address space, only the first two 
registers are needed to specify a base address anywhere within the entire 
64KB space. 

187

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 12: Function Configuration Registers 

1/0 Limit Register 

This register relates to the 1/0 base registers by specifying the maximum 
range of 1/0 addresses that can be mapped beginning at the base address. 
This register is bit mapped such that the most significant bit that is set deter
mines the number of address lines used to decode the address and therefore 
the maximum block of address space supported. The most significant bit and 
all bits of less~r significance must be set within the register. This results in the 
possible number of address lines as listed in table 12-7. Note that the largest 
block of 1/0 address space that can be defined is 256 bytes. 

This register is optional and need not be implemented for each function if all 
functions within the PC Card use the same number of 1/ 0 registers. 

Table 12-7. Address Limit Associated with Function Base Address Register 

Bit Position Maximum 

7 6 5 4 3 2 1 0 Number of 

# of Address Lines Defined by Bit position Address 

8 7 6 5 4 3 2 1 Locations 

0 0 0 0 0 0 0 0 Not defined 

0 0 0 0 0 0 0 1 2 

0 0 0 0 0 0 1 1 4 

0 0 0 0 0 1 1 1 8 

0 0 0 0 1 1 1 1 16 

0 0 0 1 1 1 1 1 32 

0 0 1 1 1 1 1 1 64 

0 1 1 1 1 1 1 1 128 

1 1 1 1 1 1 1 1 256 

173 

188

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 13: An SRAM Card Example 

Chapter 13 
The Previous Chapter 

The previous chapter discussed the configuration registers and provided a 
complete description of each register specified by the PC Card standard. Con
figuration register implementations for both single and multiple function 
cards were covered. 

This Chapter 

This chapter describes a sample SRAM card implementation, including a 
functional block diagram of the SRAM card along with a sample CIS. 

The Next Chapter 

The next chapter describes a sample flash card implementation, including a 
functional block diagram of the card, a sample CIS, and configuration regis
ters implemented by the card. 

An SAAM Card Example 

Figure 13-1 illustrates the functional blocks associated with an SRAM memory 
card. Note that this is an example implementation of a 2MB SRAM card. The 
contents of the CIS are illustrated and discussed in the next section. 

175 

189

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

.----------------------------
I OE# 

I WE# 

I REG# Address Decode . 
I 

CE1# and 
I CE2# Control Logic 

• 
SA25:SAO 

I II' 

I 
I 

Cl) 

~ 
I <O 

U) 

I ~ -
""O I \? (1) 

,, 
Memory 

(") :J 

I 
., 

" Array r, 

(") I 
c::::: w 

--i ~ Sl) . "' ii! .. Odd '"I 
"""I D15:D8 

::J D15:D8 Byte C. C/l i'r '< I y C) 

Ji 
I' 

< 

--.I I ~ .4 t.. Io I - r <; Expansion ) OJ sa. I ~ g ~ .. 
Bus )> OJ I rv ::J 

~ C/l (1) -c: !2 :J 

I/ 
Memory ., 

en I 
~ 

r, Array w 
)> I 
C. • I u :;I 

~ Even Ill 
Sl) D7:DO 

::J D7:DO Byte C/l 
"'C 'f' " g .. i. !It. l' -CD I 

"""I 
...._ 

I J. 
I .. 
I 

,, 
Attribute 

I 
J Memory 

" I .. 
I D7:DO " Even 

I v Byte 
Vee 

I 
, 

I 
I WP 

I • Write Protect 
Switch 

I 
I BVD1# Low 
I BVD2# 

Battery 

I 
Detection 

CD1# 
I j_ CD2# 

I l PC Card ... . ... * I 

L--------------------------
Figure 13-1. Block Diagram of 2MB SRAM PC Card 

176 

190

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 13: An SRAM Card Example 

The SRAM CIS 

The following example illustrates the CIS implemented within a typical SRAM 
card. SRAM PC Card design is relatively simple when compared to 1/0 cards. 
As shown in figure 13-2, a typical SRAM CIS may consist of four tuples. The 
sections following figure 13-2 describe the purpose and contents of each tuple 
in the SRAM example. Refer to appendix A for a detailed listing and analysis 
of the tuples contained in this SRAM example. 

SC 
SA 
4E 
4C 

A 
8 

0 

/ 
Termination Tuple 

Checksum Tuple 

Version 1 /Product Information 
Tuple 

Device Information Tuple 

Attribute Memory Space 
Figure 13-2. Map of Attribute Memory Addresses on Example SRAM Card 

I 

I 

177 

191

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

178 

Device Information Tuple 

As described earlier, the Device Information tuple defines all the information 
needed to characterize an SRAM memory card. The device information tuple 
defines the following operational characteristics: 

• Device Type (SRAM in this example). 
• Device Speed (250ns is this example). 
• Write-Protect switch (WPS) definition. Whether the memory defined 

within the tuple is affected by the write-protect switch (WPS is used). 
• Size of the memory array (2MB in this example). 

Since no configuration table exists, the memory array described is mapped by 
default at base address zero within common memory address space. 

Level 1 Version / Product Information Tuple 

This tuple contains the PCMCIA version of the CIS and ASCII characters de
scribing the product. The data area within the SRAM level 1 
version/ production information tuple consists specifically of: 

• Major version 4 (relates to JEIDA release 4.0). 
• Minor version 1 (relates to PCMCIA release 1.0) A major version number 

of 4 and a minor version number of 1 indicates 2.x compliant CIS. 
• ASCII string indicating manufacturer and card description. 
• ASCII string indicating model number of card. 
• ASCII string indicating serial number card. 

The ASCII character strings contained within the product information portion 
of the tuple are defined by the PC Card manufacturer. The manufacturer and 
card description information within this tuple are typically read and dis
played by PCMCIA configuration software when a card is configured. This 
notifies the user that the card has been recognized and identified. 

192

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 13: An SRAM Card Example 

Checksum Tuple 

The checksum tuple provides a way for processing software to verify that the 
data read from the CIS is correct. The checksum data block information in
cludes: 

• Offset from checksum tuple to the start address of the range to be 
checked. 

• Number of locations to be checksummed from the start address. 
• Checksum value. 

More than one checksum tuple can be used within a CIS. This example con
tains a single checksum tuple used to check the CIS from location zero to 
location 4Ch. 

Termination Tuple 

The termination tuple consists only of the tuple code FFh. In this example, 
when processing software encounters the termination tuple, it will continue 
tuple processing by going to location zero in common memory. Common 
memory may contain additional tuple information written there by PCMCIA 
aware software that formats the SRAM memory for use as a virtual drive. 

This capability stems from 1.0 compliant cards that did not require that a CIS 
be implemented. When processing software attempts to read the CIS, a value 
of FFh will be returned when no CIS is implemented. This is interpreted by 
software as a termination tuple. Software then reads from location zero in 
common memory where a link-target tuple will be found. The software then 
looks for a BIOS Parameter Block (BPB) that characterizes the size of the 
SRAM to be used as a virtual drive. 

179 

193

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 14: A Flash Card Example 

Chapter 14 
The Previous Chapter 

The previous chapter described a simple SRAM card implementation, includ
ing a functional block diagram of the SRAM card along with a sample CIS. 

This Chapter 

This chapter describes a flash card implementation, including a functional 
block diagram of the card, a sample CIS, and configuration registers imple
mented by the card. 

The Next Chapter 

The next chapter describes an example FAX/Modem implementation, includ
ing a functional block diagram, a sample CIS, and configuration registers 
implemented by the card. 

An Example Flash Card Implementation 

Figure 14-1 illustrates the functions associated with an Intel series II Flash
card. This example is based on a 10MB flash memory array and includes a 
CIS contained within the flash control ASIC. This card also incorporates flash 
memory that implements a ready /busy (RDY /BSY#) pin and takes advantage 
of the memory socket's READY pin. 

181 

194

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

I' Expansion ., 

"'#---==-=-Bus -y' 

182 

-0 
0 
0 
Sl) 

a 
_:c 
:co 
OJ~ 
)>OJ 
-c: 

en 
)> 
a. 
Sl) 

'"O 
,-+ 

CD -

,I, 

,-
1 

---------------------~ 
I 
I OE# , Flash Cardi---....::0:..=E;::..# ___________ _, 

--1---'W_E_# ___ ; Control WE# 

I REG# ASIC 
I 
• CE1# 

1 CE2# 

.. 
I~ 

I SA25:SAO 11 

~. .. 
..... 

I 
I 
I 
I 
I 
I 

~ I 

.... 
I 
I 
I 

I 
I 

I 
I 

015:08 

07:DO 

READY 

WP 

1 
Vee 

I 

CD1# 

CO2# 

I 

I 
L -

, 
J 

y 

.. 
y 

1 

Address 
Buffers 

Data 
trans

ceivers 

[:] 

... .. 
I/ , 
I\.-- SA 19:SAO 
I 'f v' 

/ 
\. 
'l' 

... 
015:08 ') 

.. , 

Flash 
Memory 

Array 
Odd 
Byte 

1...-___ ,, Flash 
V Memory 

Array 

-

A~--------.,·~• Even 
~ ... ---=o""-7:=o,,_o -~/) Byte __ , 
'l' Y,__~~~ 

RDY/BSY# /from flash memorv) 

I w,;1e Protect 
Switch 

PC Card -. 
Figure 14-1. 20MB Flash Card Functional Diagram 

195

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 14: A Flash Card Example 

A Flash Memory CIS Example 

Following is an example of a flash memory card's attribute memory address 
space. As shown in figure 14-2, this flash card implements both a CIS and 
configuration registers. The sections following figure 14-2 describe the pur
pose and conte.nts of each tuple used by the flash card in this example. 
Appendix B contains a detailed listing and explanation of the tuples in this 
flash memory card example. 

4002h 
4000h 

D4h 

C6h 
C4h 

22h 
20h 
1Ah 
18h 

OAh 
08h 
OOh 

Flash Card CIS Example 

/ / 
Configuration Registers 

Configuration Tuple 

Version 1/Product Information 
Tuple 

JEDEC Device ID Tuple 

Device Geometry Tuple 

Device Information Tuple 
V 

Figure 14-2. Example Contents of a Flash Card's Attribute Address Space 

183 

196

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

184 

Device Information Tuple 

The device information tuple identifies the basic characteristics of the card. 
The device information tuple determines the following parameters: 

• Device Type (flash memory). 
• Device Speed (150ns). 
• Write-Protect switch (WPS) definition. Whether the memory defined 

within the tuple is affected by the write-protect switch (WPS used). 
• Size of the memory array (10MB). 

Unlike the previous SRAM example, the contents of the Device Information 
tuple does not completely characterize a flash memory array. Flash cards re
quire an additional Device Geometry tuple to specify the block size for erasing 
and writing to the flash memory array. 

Since no configuration table exists, the memory array described is not pro
grammable and responds only to location O to 10MB in common memory 
address space. 

Device Geometry Tuple 

Flash memory cards are block oriented devices when writing to or erasing 
their memory arrays. As a result, the Memory Technology driver must know 
the block size in order to access the device correctly. The Device Geometry 
tuple contains the block size that is implemented by the memory array for 
erasing, writing and reading the flash card. Information described by the tuple 
includes: 

• Internal bus width (always 2 bytes for release 1.0 - 2.x cards). 
• Erase geometry block size. 
• Read geometry block size. 
• Write geometry block size. 
• Partition size (indicates partition size, if the memory array is partitioned). 
• Interleave size (describes whether hardware interleaving is incorporated 

to enhance read performance, and if so, what the interleaving size is). 

197

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 14: A Flash Card Example 

JEDEC Device Identifier (ID) Tuple 

Many memory devices contain the JEDEC Device ID tuple within their CIS. 
As its name suggests, this tuple contains the card manufacturer's JEDEC ID 
and incorporates device type information that specifies a corresponding pro
gramming algorithm. The Joint Electronics Device Engineering Council 
(JEDEC) assigns an ID to manufacturers designing programmable memory 
devices. All programmable memory devices should have a corresponding 
JEDEC identifier. 

Note that for each entry in a device information (DEVICE) tuple a correspond
ing entry must be made in the JEDEC device identifier tuple. If a DEVICE 
tuple contains both programmable and non-programmable memory devices, 
then the JEDEC tuple entries for the non-programmable device will contain 
null values. 

Level 1 Version/ Product Information Tuple 

This tuple contains the PCMCIA compliance level of the CIS (level 1 version) 
and ASCII characters describing the product. The data area within the flash 
level 1 version/production information tuple consists specifically of: · 

• Major version 5 (relates to PC Card February, 1995 release). 
• Minor version O (relates to PC Card February, 1995 release). 

Note: A major version number of 5 and a minor version number of O indi
cates compliance with the PC Card 95 release. 

• ASCII string indicating manufacturer and card description. 
• ASCII string indicating model number of card. 
• ASCII string indicating serial number of card. 

The ASCII character strings contained within the product information portion 
of the tuple are defined by the manufacturer. The manufacturer name and 
card description is sometimes read and displayed by PCMCIA utilities when a 
card is configured. This tuple is also commonly used by PC Card enablers that 
are designed to identify and configure a specific card. 

185 

198

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

186 

Configuration Tuple 

The Configuration tuple identifies the type of the configuration register(s) 
used by the PC Card, along with their location within attribute memory space. 
Data entries within the Configuration tuple contain the following: 

• Size of address fields-This entry defines the number of bytes used by this 
tuple to identify the location of the configuration registers. Since these 
registers can be located anywhere within attribute memory address space 
(0 to 64MB), the number of bytes needed to define their location depends 
on where they reside in the address space. In this example, the registers 
are mapped to location 4000h, therefore only two bytes are needed to 
specify their location. 

• Size of configuration register mask field- Specifies the number of bytes 
needed by the configuration register mask field to identify the configura
tion registers implemented by this function. PCMCIA currently defines 
ten configuration registers of the 128 configuration registers that can be 
specified. To specify all 128 registers the configuration register mask field 
would require sixteen 8-bit mask registers. This example implementation 
uses the first two registers, therefore a single mask register is imple
mented. Refer to the section entitled, "Flash Card Configuration Registers" 
later in this chapter for details. 

• Index number of the last entry in the configuration table-Since this ex
ample flash card has no configuration table this entry is zero. 

• Starting (base) address of the configuration registers-In this example, a 
two byte field identifies the location of the configuration registers in at
tribute memory (location 4000h). 

• Configuration register mask - A bit map that corresponds to the configu
ration register implemented by the PC Card function. The mask value in 
this example specifies that only registers corresponding to bit O (the Con
figuration Option Register) and bit 1 (the Status Register) are 
implemented. 

Termination Tuple 

The termination tuple consists only of the tuple code FFh. In this example, 
when processing software encounters the termination tuple, it will continue 
tuple processing by going to location zero in common memory. Common 

199

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 14: A Flash Card Example 

memory may contain additional tuple information written there by PCMCIA 
aware software that formats the flash memory for use as a virtual drive. 

This capability stems from 1.0 compliant cards that did not require that a CIS 
be implemented. When processing software attempts to read the CIS, a value 
of FFh will be returned since no CIS is implemented. This is interpreted by 
software as a termination tuple. Software then reads from location zero in at
tribute memory where a link-target tuple will be found. The software then 
looks for a BIOS Parameter Block (BPB) that characterizes the size of the 
memory used as a virtual drive. 

Flash Card Configuration Registers 

The flash card in this example uses two of the configuration registers that are 
defined by the PCMCIA standard. These two registers are the configuration 
option register and the configuration status register. As implemented, these 
register use only a small portion of the associated functions defined by 
PCMCIA. 

Configuration Option Register 

The flash card in this example uses the configuration option register (bit 7) to 
permit software reset capability at the card level. The other functions associ
ated with the configuration option register are not used. 

Configuration Status Register 

The flash card in this example also uses the configuration status register (bit 2) 
for placing the card into the power down state for power conservation. All 
other functions associated with the configuration status register are not used. 

187 

200

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 15: A FAX/Modem Example 

Chapter 15 
The Previous Chapter 

The previous chapter described a flash card implementation, including a 
functional block diagram of the card, a sample CIS, and configuration regis
ters implemented by the card. 

This Chapter 

This chapter describes an example FAX/Modem implementation, including a 
functional block diagram, sample CIS, and related configuration registers. 

The Next Chapter 

The next chapter describes an PC Card AT A drive implementation, including 
a functional block diagram, a sample CIS, and configuration registers imple
mented by the card. 

An Example FAX/Modem Card 

Figure 15-1 illustrates the functions incorporated into a FAX/Modem PC 
Card. The socket interface is configured as a memory-only interface when the 
PC Card is first installed and reconfigured as a memory or I/ 0 socket during 
the configuration process. Note that all the registers in this PC Card imple
mentation are 8-bit registers; therefore,· this PC Card does not assert the 
IOIS16# pin. 

The modem consists of the UART (Universal Asynchronous Re
ceiver/Transmitter), the modem controller, the modem data pump and the 
DAA (Data Access Arrangement). 

189 

201

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

'*" (1: Cl 
cc ! Q 

0 
Cl) Cl)~ 
Cl) "'C C 0 
Cl> o o·-"O O (.) g> 

"'C Cl) "'O ....I 
<(0 C 

CCI 

'*" '*" cc '*" Cl 
cc :s: (!} 

Q Q UJ 
a: 

<( 
<( 
0 

.... 0.. 

E~ EE 
Cl) 0 Cl) ::, 

"'C .... "'Ca.. 
0 "E 0 CCI 
~o ~ci:i (.) Cl 

'*" 0 ~ ~ UJ 
<( <( () 

Cl) 

19 ci, a5 
CCI C > 

0 CCI·-.... Q) ...... u 

'*" ~ '*" 
() CD 

en it Q ~ 

PC Card Host Bus Adapter 
(HBA) 

'*" UJ 
() 

Cl) 

c3 

0 
0 
> 

Figure 15-1. Functional Block Diagram of FAX/Modem PC Card 

190 

""O 
lo... 
('CS 

(.) 

(.) 
a.. 

'*" '*" 
iS (\J 

Cl 
() () 

202

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 15: A FAX/Modem Example 

FAX/Modem Resource Requirements 

FAX/Modems require I/ 0 address space and a system IRQ line to allow the 
application software to communicate via a standard serial interface. In MS
DOS and Windows implementations, the serial interface has been mapped to 
a standardized range of addresses and associated IRQ lines. These conven
tional resource locations are needed because communications software 
typically accesses FAX/Modem hardware registers directly. Software typi
cally expects the serial interface to be mapped to the conventional resources 
that are frequently referred to by the DOS device names: communications 
ports one through four (COM 1, COM 2, COM 3, and COM 4). 

The convention location for these communications interface are: 

• COM 1 = 1/0 addresses 3F8h-3FFh and IRQ 4 
• COM 2 = 1/0 addresses 2F8h-2FFh and IRQ 3 
• COM 3 = 1/0 addresses 3E8h-2EFh and IRQ 4 
• COM 4 = 1/0 addresses 2E8h-3EFh and IRQ 3 

Note that some communications software may be able to access the serial in
terface at other non-conventional address locations and IRQs. Specifically, PC 
Card aware application programs can gain access to the PC Card configura
tion information and determine how the PC Card has been configured by the 
enabler. Once the application knows how the PC Card has been configured, it 
can gain access to the card via the specified 1/0 address locations and IRQ 
lines without having to rely upon the conventional configurations specified 
above. 

A FAX/Modem CIS Example 

Figure 15-2 illustrates the contents of attribute memory address space for a 
FAX/modem. Notice that the CIS contains a configuration table. A configura
tion table is used by PC Cards having functions that can be configured using a 
variety of different system resources. The configuration table consists of en
tries that define different resources combinations that can be assigned to the 
PC Card. If one of the resource combinations are available for the PC Card's 
use, then it can be successfully configured. If the resource combinations re
quired by the FAX/Modem are not available for use then the card cannot be 
configured. 

191 

203

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

192 

Device Information Tuple 

The Device Information tuple identifies the basic characteristics of memory 
cards. Since the FAX/Modem is an I/ 0 device, the device information tuple 
contains no relevant information. The data portion of this tuple is zero, indi
cating that this card is not a memory card. 

Level 1 Version / Product Information Tuple 

This tuple contains the PCMCIA compliance level of the CIS (i.e. the version 
of CIS, recall that level 1, or layer 1 of the metaformat defines the CIS) and 
ASCII characters describing the product. The data area within the 
FAX/Modem level 1 version/production information tuple consists specifi
cally of: 

• Major version 5 (relates to PC Card February, 1995 release). 
• Minor version O (relates to PC Card February, 1995 release). 

Note: A major version number of 4 and a minor version number of 1 indi
cates 2.x compliant CIS. 

• ASCII string indicating manufacturer and card description. 
• ASCII string indicating model number of the card. 
• ASCII string indicating serial number of the card. 

The ASCII character strings contained within the product information portion 
of the tuple are defined by the manufacturer. The manufacturer name and 
card description is sometimes read and displayed by PCMCIA utilities when a 
card is configured. This tuple is also used by client device drivers that are de
signed to identify a specific card. 

Card Manufacturer Identification (ID) Tuple 

As its name suggests, this tuple contains the PCMCIA card manufacturer's ID 
number. The PCMCIA organization assigns an ID to the manufacturers de
signing PCMCIA compliant cards. 

204

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 15: A FAX/Modem Example 

204h 

200h 

16Ah 
168h 

166h 

164h 

F4h 
F2h 

E6h 
E4h 

68h 
66h 
60h 
5Eh 
54h 
52h 

08h 
06h 
OOh 

/ / 

Configuration Registers 

Termination Tuple 

No-Link Tuple 

Configuration Table 
(5 configuration table entries) 

Configuration Tuple 

Extended Function Information 
Tuples 

(6 extension tuples) 

Function Identification Tuple 

Card Manufacturer Identification 
Tuple 

Version 1/Product Information 
Tuple 

Device Information Tuple 
/ 

Figure 15-2. Example of Attribute Memory Address Contents for FAX/Modem 

Function Identification Tuple 

The Function Identification tuple determines the type of functional device that 
is implemented in the PC Card. Memory cards can be specified through the 
Device Information tuple, whereas, 1/0 devices must use the Function Identi
fication tuple. This tuple defines the following items: 

193 

205

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

194 

• Function type code - consists of a code representing the type of device 
implemented in the PC Card. The function type associated with the 
FAX/ modem is a serial port. 

• Initialization byte - specifies whether this device should be configured 
during system initialization (also called Power-On Self Test or POST) and 
whether the card has a ROM containing configuration software. This is 
used by devices when loading the operating system. Not used by the 
FAX/modem. 

Function Extension Tuples 

Function Extension tuples are defined by PCMCIA for some types of devices, 
including modems. Function Extension tuples must immediately follow the 
Function Identification tuple to which they apply. This example consists of six 
different function extension tuples. Within each tuple is a code identifying it 
as a particular type of function extension. These extensions fall into three basic 
categories for serial devices: 

• Data modem extensions 
• FAX modem extensions 
• Voice modem extensions (not use1 by the FAX/ modem) 

Each Function Extension tuple provides information related to the capabilities 
of the modem. This information includes items such as communications pro
tocols, error correction protocols, and other communications parameters. This 
information can be used by PCMCIA aware applications to automatically 
configure the application based on the card's capabilities. 

Configuration Tuple 

The Configuration tuple identifies the type of the configuration register(s) 
implemented in the PC Card, along with their location within attribute mem
ory space. This tuple also specifies the index number of the last entry within 
the CIS. Data entries within the Configuration tuple contain the following: 

• Size of address fields - This entry defines the number of bytes used later 
within this tuple to identify the location of the configuration registers. 
Since the configuration registers can be located anywhere within attribute 
memory address space (0 to 64MB), the number of bytes needed to define 

206

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 15: A FAX/Modem Example 

their location depends on where they reside in the address space. In this 
example, the registers are mapped starting at location 200h; therefore, 
only two bytes are needed to specify their location. 

• Size of configuration register mask field - Specifies the number of bytes 
needed by the configuration register mask field to identify the configura
tion registers in;lplemented by this function. PCMCIA currently defines 
ten configuration registers out of the 128 configuration registers that can 
be identified. To specify all 128 registers the configuration register mask 
field would require sixteen 8-bit mask registers. This example implemen
tation uses registers 0, 1, and 2 therefore a single mask register is 
implemented. Refer to the section entitled, "FAX/Modem Card Configu
ration Registers" later in this chapter for details. 

• Index number of the last entry in the configuration table - This value in
dicates to processing software when the last entry within the card's 
configuration tuple has been reached. 

• Starting (base) address of the configuration registers - In this example, a 
two byte field identifies the location of the configuration registers in at
tribute memory (location 0200h). 

• Configuration register mask - Specifies that configuration registers zero 
(Configuration Option Register), one (Status Register) and two (Pin Re
placement Register) are implemented. 

Configuration Table 

The configuration table contains the configuration option supported by the 
FAX/ modem card. The card in this particular example contains five entries 
within the configuration table, each defining a different combination of system 
resources required to support its functions. The serial port used by the mo
dem requires an eight byte block of contiguous I/ 0 addresses and a system 
interrupt line. This device supports standard resources defined by convention 
in the DOS environment. The following list shows the 8-byte I/ 0 range and 
IRQ line specified by each entry within the configuration table. 

• COM 1-I/O base address 3F8h and IRQ 4 (entry 1) 
• COM 2-I/O base address 2F8h and IRQ 3 (entry 2) 
• COM 3-I/O base address 3E8h and IRQ 4 (entry 3) 
• COM 4-I/O base address 2E8h and IRQ 3 (entry 4) 
• Any 8-byte range of I/0 addresses and any one of the IRQs: 2, 3, 4, 5, 7, 9, 

10, or 15 (entry 5) 

195 

207

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

196 

The first resource combination that can be allocated by the system will be as
signed to the HBA and PC Card for its use. The index number of the 
configuration table entry that satisfied the resource requirements is pro
grammed into the configuration option register. This configures the PC Card 
to respond to the resources specified within the selected configuration table 
entry. 

No-Link Tuple 

The no-link tuple tells processing software to terminate tuple processing when 
the termination tuple is reached. This prevents the implied jump to location 
zero of common memory. 

Termination Tuple 

The termination tuple consists only of the tuple code FFh. In this example, 
when processing software encounters the termination tuple, it will end tuple 
processing since the no-link tuple exists in the tuple listing. 

FAX/Modem Configuration Registers 

The FAX/Modem card in this example implements three of the ten configura
tion registers defined by the PCMCIA standard. These registers include the 
configuration option register, status register and pin replacement register. 
Their use in the fax/ modem card is defined in the following sections. 

Configuration Option Register 

The configuration option register performs several functions related to the 
FAX/modem card's operation: 

• Configuration Index - selects the entry within the configuration table 
that satisfied the card's resource requirements. This value programs the 
I/ 0 address decoders on the card to respond to the correct address range. 

• Interrupt Request Level - selects whether level or pulse mode interrupts 
should be delivered over the IREQ# pin by the PC Card. 

208

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 15: A FAX/Modem Example 

• Software Reset - provides the ability for software to reset the PC Card. 
Setting this bit has the same affect on the hardware as asserting the RESET 
pin. 

Configuration Status Register 

This register performs the following functions as they relate to the 
FAX/ modem card: 

• Audio Supported - set by software to enable the PC Card to output 
audio information to the HBA via the speaker pin. 

• Interrupt Pending - set by the PC Card to indicate that an interrupt has 
been asserted to the HBA and has not yet been serviced. 

• Status Change - set by the PC Card to indicate that a pin replacement 
register has been implemented and should be checked to see if a status 
change has occurred. 

Pin Replacement Register 

The pin replacement register is used to report status change events that are 
supported by the PC Card. This is done in lieu of socket interface pins that are 
not available when the socket is configured as an 1/0 interface. The 
FAX/ modem in this example implements the READY status change function 
and therefore implements the pin replacement register. 

197 

209

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 16: An ATA PC Card Example 

Chapter 16 
The Previous Chapter 

The previous chapter described an example FAX/Modem implementation, 
including a functional block diagram, sample CIS, and related configuration 
registers. 

This Chapter 

This chapter describes an example PC Card AT A drive implementation, in
cluding a functional block diagram, a sample CIS, and configuration registers 
implemented by the card. 

The Next Chapter 

The next chapter describes a multi-function PC Card design, including a func
tional block diagram, a multi-function CIS, and related configuration registers. 

An ATA PC Card Example 

Figure 16-1 illustrates the functions contained within an ATA PC Card based 
on rotating magnetic media. Other ATA PC Card designs are based on flash 
memory technology implemented as virtual disk drives that provide the same 
programming interface employed by standard ATA disk drives. 

As with any PC Card, the initial socket interface is automatically configured 
as a memory-only interface when the PC Card is first installed. After the CIS 
is read and the ATA PC Card's enabler has detected the AT A card's presence, 
the enabler initiates the configuration process. As discussed in the following 
section an ATA PC Card can be configured to operate with the memory inter
face (i.e. the registers are mapped into the processor's memory address space) . 
or with the memory or 1/0 interface (using standard 1/0 mapping). 

199 

210

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

"1J 
0 
0 
Sl> a. 

- :r: :r:O 
CIJ S!l 
)> CIJ 
-c 

en 
)> 
0.. 
Sl> 
-0 
.-+ 
Cl) -

INPACK# 

IOIS16# 

Vee 

CD1# 

CD2# 

lo. - - -

Address Decode 
and 

Control Logic 

0 
en 
~ 

ATA 
Controller 

Attribute 
Memory 

Even 
Byte 

Data 

Drive 
Control 

Motor/Head 
Controls 

1.8" Platters 

PC Card 

Figure 16-1. Functional Block Diagram of an ATA Disk Drive PC Card 

200 

211

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 16: An ATA PC Card Example 

ATA System Resource Requirements 

ATA devices contain two register blocks called the command register block 
and control register block. Each of these register blocks must be assessable by 
the system. PC Card ATA devices support either I/ 0 or memory-mapping 
using one of four addressing modes listed in table 16-1. 

Standard mapping in the ISA environment includes the assignment of two 
separate I/0 address ranges to map ATA drive registers into. If these ranges 
are not available, another range of I/ 0 addresses can be used. If neither of the 
standard I/0 address ranges are available, then a contiguous block of 16 I/0 
locations is requested for mapping the command and control block registers 
into. 

Alternatively, the registers can be mapped into memory locations. When 
memory-mapping is chosen, a contiguous 2KB block of memory locations is 
used. The command and control registers are mapped into the first 16 bytes of 
the 2KB memory block, while the last 1KB of the block is used as a high speed 
buffer to transfer data to and from the PC card. 

Table 16-1. ATA Addressing Options Supported by PCMCIA 

Address Mode Command Block Control Block 

I/0- Primary ATA drive address 1FOh-1F7h 3F6h-3F7h 

I/ 0 - Secondary ATA drive address 170h-177h 376h- 377h 

1/0-Any 16-byte contiguous range XXX:Oh - XXX:Fh 

Memory - Any 2KB address range Card must respond to locations Oh - Fh and 400h -
7FFh within the 2KB range 

In addition to mapping the registers, an interrupt request line must also be 
supported for I/0 addressing. Normally IRQ 14 is used by ATA drives. When 
configured for memory-mapped registers, the socket interface does not define 
an interrupt line, therefore software polling must be used. 

Supporting Two Drives 

It is possible for two ATA drives to be simultaneously installed into PCMCIA 
sockets of the same HBA. When accessing these drives, some method must be 
used to individually select these drives as either drive O or drive 1. This is ac
complished in a standard ATA environment via the daisy-chained cable with 

201 

212

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

the cable-select signal or by jumpers (switches) on the drive. In the PCMCIA 
environment, the Socket and Copy Register, defined as one of the configura
tion registers, can be used to identify two ATA PC cards mapped to the same 
address space. The copy number programmed into the Socket and Copy Reg
isters is used by the HBA to differentiate between drive O from drive 1. 

The AT A Card's CIS 

202 

When an AT A card is installed, the normal process of calling client drivers 
that have registered with card services occurs. These client drivers attempt to 
identify the card installed to determine if it should be configured by them. 
AT A client drivers typically identify their card by interpreting one or more of 
the following CIS tuples: 

• The JEDEC ID tuple. 
• The Manufacturers ID tuple. 
• The Function ID and Disk Device Function Extension tuples. 

Once a PC Card has been detected as an AT A disk, the CIS can be further 
processed to determine the configuration options supported by the card. 

The PC Card AT A specification defines Function Identification Extension tu
ples that are used to identify the disk as an AT A interface and to specify 
features supported by the AT A card. The Interface Function Extension tuple 
must immediately follow the Function Identification tuple that identifies the 
card as a disk device. 

Disk Device Function Extensions 

This tuple specifies additional information for disk devices. Two function ex
tension types are currently defined. As shown in table 16-2, the first disk 
function extension tuple (type 01h) defines the type of interface used by the 
disk. An interface type of 01h indicates an ATA drive interface. 

Table 16-2. Disk Function Extension Tuple Format (Type 1) 

Offset Disk Function Extension Tuple Format 
0 TPL CODE CISTPL FUNCE (22H) 
1 TPL LINK Link to next tuple 
2 TPL TYPE Interface type extension (Olh) 
3 TPLFE DATA Interface type code (Olh = ATA Interface) 

213

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 16: An AT A PC Card Example 

A second Disk Function Extension defines additional ATA Card features as 
shown in table 16-3. 

Table 16-3. PC Card ATA Function Extension Tuple 

Offset CIS Tuple Comments Bit Fields 
OOh 

02h 

04h 

06h 

08h 

22h cistpl_funce ATA Function Extension tuple Tuple Code 

03h link This tuple has 3 info bytes Link Length 

02h tplfe_type Basic PC Card Extension tuple PC Card AT A Basic Features 

xxh tplfe_data PC Card ATA Features Byte 1 R R R R u Is IV 
xxh tplfe_data PC Card ATA Features Byte 2 R I E N p 

The bit fields illustrated in table 16..:3 are defined in table 16-4 for normal operation 
and table 16-5 for low power modes. 

Table 16-4. Bit Definition for Normal Operation 

Name Description Values 

V VppPower 0 Not Required 

1 Required for Media Modification Accesses 

2 Required for all Media Accesses 

3 Required Continuously 

s Silicon 0 Rotating Device 

1 Silicon Device 

u Unique Drive Iden- 0 Identify Drive Model/Serial Number may not be unique 
tifier 

1 Identify Drive Model/Serial Number is guaranteed unique 

R Reserved This field is reserved for future standardization. Must be 0. 

203 

214

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

p 

N 

E 

I 

R 

204 

Table 16-5. Bit Definition for Low Power Operation 

Low Power Modes Bit 3: 0 Low Power Mode Use Required to Minimize Power 

(Idle, Standby, Sleep) Bit 3: 1 Drive Automatically Minimizes Power. No need for host to 

actively power manage. 

Bit 2: 0 Idle Mode Not Supported 

Bit 2: 1 Idle Mode Supported 

Bit 1: 0 Standby Mode Not Supported 

Bit 1: 1 Standby Mode Supported 

Bit 0: 0 Sleep Mode Not Supported 

Bit 0: 1 Sleep Mode Supported 

3F7/377 Register 0 = All Primary and Secondary 1/0 Addressing Modes include ports 

Inhibit Available 3F7 or 377. 

1 = Some Primary or Secondary 1/0 Addressing Modes exclude 3F7 

and/ or 377 for floppy interference avoidance. 

Index Emulated 0 = Index Bit is Not Emulated 

1 = Index Bit is Supported or Emulated 

I0IS16# on Twin 0 = 10IS16# use is Unspecified on Twin-Card Configurations 

Card 1 = 10IS16# is asserted only for Data Register on Twin-Card 

Configurations 

Reserved This field is reserved for future standardization. Must be 0. 

IPL from a PCMCIA ATA Drive 

To load the operating system from a PCMCIA ATA drive, the drive must be 
configured during main system initialization, commonly referred to as POST 
(power-on self test). The initialization byte within the Function Identification 
table specifies if a PC Card should be configured during POST. 

Since in many systems PC Cards are not installed until the operating system 
loads, the system designer must provide PCMCIA initialization software. This 
software must read the CIS of all cards installed in sockets to determine if 
they should be configured before the operating system loads. Many of the 
vendors that supply socket services have a solution (i.e. ROM-based PCMCIA 
initialization code) that permits PC AT A cards and others requiring early 
configuration to be initialized during POST. 

215

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 16: An AT A PC Card Example 

An Example AT A Card CIS 

Figure 16-2 illustrates a memory map of the attribute memory address space 
used by a sample ATA card that implements rotating media. This example 
CIS supports all the addressing modes specified in table 16-1. Appendix D 
contains a detailed listing of this CIS. 

206h 

200h 

D8h 

D6h 

D4h 
D2h 

CCh 

CAh 

C4h 

C2h 

40h 

3Eh 

32h 

30h 

OCh 
OAh 

OOh 

, ,, 

Configuration Registers 

Termination Tuple 

No-Link Tuple 

Extended Function Information 
Tuple 

Function Identification Tuple 

Configuration Table 
(4 configuration table entries) 

Configuration Tuple 
. 

Version 1/Product Information 
Tuple 

Device Information Tuple 
.I 

Figure 16-2. Sample ATA CIS and Configuration Register Map 

205 

216

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

206 

Device Information Tuple 

Since the ATA card contains a memory-mapped options for it registers, the 
Device Information tuple contains a valid memory device entry. The informa
tion described in this tuple includes: 

• Memory type (specified as function specific memory) 
• Extended memory speed defined (400ns) 
• Memory size (2KB) 

Level 1 Version/ Product Information Tuple 

This tuple contains the PCMCIA compliance level of the CIS (level 1 version) 
and ASCII characters describing the product. The data area within the ATA 
level 1 version/ production information tuple consists specifically of: 

• Major version 4 (indicates 2.x compliant CIS) 
• Minor version 1 (indicates 2.x compliant CIS) 
• ASCII string indicating manufacturer 
• ASCII string indicating model information 

The ASCII character strings contained within the product information portion 
of the tuple are left for the manufacturer to define. The manufacturer name 
and card description is sometimes read and displayed by PCMCIA utilities 
when a card is configured. This tuple is also used by client device drivers that 
are designed to identify a specific card. 

Configuration Tuple 

The Configuration tuple identifies the type of the configuration register(s) 
used by the PC Card, along with their location within attribute memory space. 
Data entries within the Configuration tuple contain the following: 

• Size of address fields - this entry defines the number of bytes used 
by this tuple to identify the location of the configuration registers. 
Since these registers can be located anywhere within attribute mem
ory address space (0 - 64MB), the number of bytes needed to define 
their location depends on where they reside in the address space. In 

217

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 16: An ATA PC Card Example 

this example, the registers are mapped to location 200h, therefore only 
two bytes are needed to specify their location. 

• Size of configuration register mask field - specifies the number and 
mix of configuration registers implemented by the PC Card. A bit 
map of the configuration register identifies how many registers are 
implemented. PCMCIA currently defines four configuration registers, 
but provides expandability up to 32 configuration registers (requiring 
four 8-bit mask registers). This example implementation uses all four 
registers, therefore a signal mask register is implemented. 

• Index number of the last entry in the configuration table. Since this 
example has four configuration entries, the index number of entry 
four is specified. 

• Starting (base) address of the configuration registers - In this exam
ple, a two byte field identifies the location of the configuration 
registers in attribute memory (location 200h). 

• Configuration register mask - Specifies that configuration registers 
zero (Configuration Option Register), one (Status Register) two (Pin 
Replacement Register) and three (Socket and Copy Register) are im
plemented. 

Configuration Table 

The configuration table contains the configuration option supported by the 
ATA card. This card in this particular example contains four entries within the 
configuration table, each defining a different combination of system resources 
required to support its functions. This card supports all four configuration 
options defined by the PCMCIA and ATA standards as listed in table 16-1. 

Function Identification Tuple 

The Function Identification tuple determines the type of functional device that 
is employed by the PC Card. This tuple defines the following items: 

• Function type code - consists of a code representing the type of de
vice employed by the PC Card. The function type associated with the 
AT A card is fixed disk. 

• Initialization byte - specifies whether this device should be config
ured during system initialization (also called Power-On Self Test or 
POST) and whether the card has a ROM containing configuration 

207 

218

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

software. Since the ATA drive may need to load the operating system, 
the POST bit is set. This indicates that the system should configure 
this card during POST. Refer to the section entitled, "IPL from a 
PCMCIA ATA Drive", discussed earlier in this chapter. 

Function Extension Tuples 

208 

Two Function Extension tuples are defined by PCMCIA for ATA drives. This 
sample CIS includes only the type 1 disk function extension that identifies the 
fixed disk interface type as AT A. 

No-Link Tuple 

This No-Link tuple indicates that when the Termination tuple is reached that 
no more tuples exist within the string. 

Termination Tuple 

The termination tuple consists only of the tuple code FFh. In this example, 
when processing software encounters the checksum tuple, it terminates tuple 
processing since the No-Link tuple was previously encountered in this tuple 
string. 

Configuration Registers 

The AT A card in this example implements all four configuration registers de
fined by the PCMCIA standard. These registers include the Configuration 
Option Register, Status Register, Pin Replacement Register and Socket and 
Copy Register. 

219

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 17: A Multiple Function PC Card Example 

Chapter 17 
The Previous Chapter 

The previous chapter described an example PC Card ATA drive implementa
tion, including a functional block diagram, a sample CIS, and configuration 
registers implemented by the card. 

This Chapter 

This chapter discusses the multiple function PC Card strategy and the 
mechanisms for achieving it. It also includes a functional block diagram of a 
multiple function PC Card, a sample multi-function CIS, related configuration 
registers, and multi-function interrupt handling. 

The Next Chapter 

The next chapter provides an overview of the PCMCIA software environment 
and the configuration process. 

Overview 

Since most systems implement a limited number of PC Card sockets (usually 
one or two), it is advantageous to implement cards containing multiple func
tions. However, prior to release of the PC Card standard PCMCIA did not 
offer full support for multiple function PC Cards. Only one CIS structure and 
only one set of configuration registers were specified for a PC Card. This 
meant that each function had to somehow share the single CIS and configura
tion registers. Several multiple function cards have been designed, but these 
implementations are typically vendor-specific/proprietary solutions and re
quire vendor-specific client drivers that have been designed with knowledge 
of the implementation. 

209 

220

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

The PC Card standard now incorporates a multiple function card strategy that 
specifies how multiple functions must be implemented. This permits software 
solutions that are aware of the multiple function implementation to recognize 
and configure multiple function PC Cards. An important part of this imple
mentation is the definition of a separate CIS and configuration registers for 
each function implemented within the PC Card. This chapter discusses the 
multiple function PC Card strategy and the mechanisms for achieving it. 

An Example Multiple Function PC Card 

Figure 17-1 illustrates a functional block diagram associated with a multiple 
function PC Card. Each function has its own CIS mapped into the PC Card's 
attribute memory address space, along with its own set of configuration regis
ters. Note in this PC Card example that both functions require use of 
interrupts. Since a PC Card memory or I/0 socket interface defines only one 
IREQ# pin, it is necessary to share the IREQ# pin between functions. The in
terrupt requests from the functions are labeled IREQO# and IREQl # 
respectively, which are inputs to the interrupt routing logic illustrated in fig
ure 17-1. The interrupt routing logic also includes inputs named INTRO and 
INTRl from the configuration registers. These inputs represent the state of the 
INTR bit in the configuration status register. When the INTR bit is cleared, the 
interrupt routing logic knows that the corresponding interrupt request has 
been serviced, and that it is free to generate another IREQ# to the HBA. Inter
rupt sharing is discussed in the section entitled, "Shared Interrupt Handling" 
later in this chapter. 

An Example CIS 

210 

Each function within a multiple function PC Card must have its own CIS. 
However, some information specified within a CIS is common to the PC Card 
itself (i.e. the information applies to all functions implemented by the PC 
Card). For this reason multiple function PC Cards contain a global CIS along 
with separate CISs for each function implemented. Since each function has its 
own CIS, it can specify the location of the configuration registers needed to 
support its function. Figure 17-2 illustrates a multi-function CIS structure that 
includes two functions. 

221

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 17: A Multiple Function PC Card Example 

'"U 
() 

() 
Sl) 

a. 
- :r: :r:O 
OJ~ 
)>OJ 
-c: 

(/) 

~ 
Sl) 

""O ...... 
CD 
'""'l 

---------------------1 

OE# 

WE# 

I !ORD# 

IOWR# 

REG# 

CE1# 

IOIS16# 

INPACK# 

IREQ# IREQ 
Routing 
Logic 

Vee 

CD1# 

CD2# 

Address 
R/W# 

Decode CE# 

and 
Control 
Logic 

CIS 

PC Card 

Figure 17-1. Functional Diagram of a Multiple Function PC Card 

211 

222

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Every multiple function PC Card that is compliant with the standard must in
clude a primary CIS that c_ontains a LongLink_MFC tuple. This tuple specifies 
the location within attribute memory of the function-specific CISs that are re
quired for each function implemented within the PC Card. Each function
specific CIS must begin with a LINKTARGET tuple to verify the start of the 
CIS. The standard specifies the tuples that must be included within the pri
mary CIS, which ones are optional, and their exact order within the CIS. Table 
17-1 lists these tuples in the required order. 

Table 17-1. Tuples Defined for the Primary CIS (Listed in the Order) 

Tuple Name Required/ Optional Description 

CISTPL_DEVICE Required Specifies whether memory is implemented within 
PC Card's common memory address space. 

If common memory is not used, the type code must 
be NULL. 

CISTPL_MANFID Optional Only one manufacturer's ID tuple can be imp le-
mented. 

CISTPL_ VERS_I Optional May be used by enabling software to identify the PC 
Card. 

CISTPL_LONGLINK_MFC Required Specifies the number of functions (i.e. the number of 
configuration register sets) within the PC Card, and 
the starting address of each function-specific CIS 
within attribute memory space. 

The standard also specifies the order and combination of tuples required for 
each secondary CIS. These tuples are listed in table 17-2. 

Table 17-2. Tuples Defined for each Secondary CIS (Listed in the Order) 

Tuple Name Required/ Optional Description 

CISTPL_LINKTARGET Required Used to validate the beginning of a function-specific 
CIS. 

CISTPL_FUNCID Required Must be used to identify the function. 

CISTPL_FUNCE Optional Some functions have extensions that specify additional 
information about the function. 

CISTPL_ CONFIG Required Describes presence and location of Function Configu-
ration Registers for this function. 

CISTPL_ENTRY Required Specifies the configuration requirements of this func-
tion. 

212 

223

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 17: A Multiple Function PC Card Example 

\:: 

Function 2 
Config. Regs. 

Function 1 
Config. Regs. 

Configuration Table 
(Entry Tuples) 

CONFIG Tuple 

FUNCID Tuple 

LINKTARGET 

Configuration Table 
(Entry Tuples) 

CONFIG Tuple 

FUNCID Tuple 

LINKTARGET 

LONGLINK_MFC 

Optional Tuples 

DEVICE Tuple 

Attribute Memory 
Address Space 

FFFFFFF 

Function 2 
CIS 

Function 1 
CIS 

Global 
CIS 

0000000 

Figure 17-2. An Example CIS Structure Supporting Two Functions. 

213 

224

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Configuration Registers 

Each function contains its own set of configuration registers and may include 
the registers illustrated in table 17-3. The exact set of registers employed by 
each function depends on the requirements of the particular function being 
implemented. Each function that uses the I/0 interface must include the Con
figuration Option Register, the 1/0 Base and typically the 1/0 Limit registers 
(the I/0 Size register may be eliminated as discussed below in the section en
titled "I/ 0 Limit Register"), all other registers are optional. 

Once the PC Card's enable has correctly identified the functions within the 
card, it must configure the HBA and PC Card. Configuring the PC Card 
means writing the appropriate values into the configuration registers that 
have been implemented. Refer to the chapter entitled "The Configuration 
Registers" for a detailed explanation of each register. 

Table 17-3. The Configuration Registers Defined by the PC Card Standard 

Offset 7 6 5 4 3 2 1 0 

0 Configuration Option Register 

SRESET LevlREQ Function Configuration Index 

2 Configuration and Status Register 

Changed SigChg IOIS8 RFU Audio PwrDwn Intr IntrAck 

4 Pin Replacement Register 

CBVD1 CBVD2 CREADY CWProt RBVD1 RBVD2 RREADY RWProt 

6 Socket and Copy Register 

RFU Copy Number Socket Number 

8 Extended Status Register 

Req 
Event3 Event2 Eventl ReqAttn Enable3 Enable2 Enablel Attn 

Enable 

10 1/0 Base 0 

12 I/0 Base 1 

14 1/0 Base 2 

16 1/0 Base 3 

18 1/0 Limit 

214 

225

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 17: A Multiple Function PC Card Example 

Configuration Option Register 

The configuration option register (COR) has a specific definition (different 
from single function PC Cards) when employed within multiple function PC 
Cards. Specifically, the configuration index field is different from the single 
function implementation. Recall that in a single function PC Card the configu
ration index field can be defined in any fashion that the single function card 
designer chooses, which specifies a given configuration for the card (i.e. a 
value corresponding to the index number of the configuration table entry that 
specifies the configuration chosen by the enabler). However, the multi
function PC Card must implement the configuration index field as specifically 
defined in table 17-4. 

Note that the definition of the SRESET and LevlReq bits are the same as for 
single function cards. Each bit is defined in table 17-4. 

Table 17-4. Configuration Option Register format and Definition 

7 6 II 5 I 4 I 3 I 2 I 1 I 0 

SRESET LevlReqll Configuration Index 

SRESET Software Reset. Setting this bit to one (1) places the card in the 
reset state. This is equivalent to assertion of the RESET signal ex-
cept that this bit is not cleared. Returning this bit to zero (0), leaves 
the card in the same state that follows a hardware reset. This bit is 
set to zero by power up and hardware reset. 

LevlReq Level Mode IREQ#. Level Mode Interrupts are selected when this 
bit is one (1). Pulse Mode Interrupts are selected when bit is zero. 

Conf Index Multi-function Card Index definition. The PC Card standard 
specifically defines use of each bit within the configuration index. 
Bit O - Enables/ disables this function. l=enabled; O=disabled 
Bit 1 - Specifies the number of I/0 addresses used. l=I/0 func-
tion uses the number of address lines specified by the base and 
limit registers; O=all host I/0 address are passed to the function. 
(This bit is valid only when function is enable via bit 0.) 

Bit 2 - Enables IREQ# routing. l=the function will deliver inter-
rupts to the PC Card's IREQ# line; O=interrupts disabled for this 
function. (This bit is valid only when function is enabled.) 
Bits 3-5 - vendor specific 

215 

226

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

216 

Card Configuration and Status Register 

Portions of the Card Configuration and Status Register (CSR) have also been 
redefined to support interrupt sharing on multi-function PC Cards. A new bit 
named IntrAck (interrupt acknowledge) specifies how the Intr bit is imple
mented. Refer to table 17-5 

• Single function PC Cards with IntrAck reset (0) - the Intr bit remains set 
until the interrupt service routine is executed, at which time the Intr bit is 
reset. 

• Multiple function PC Cards with INTRack set (1) - the Intr bit remains 
set even though the interrupt service routine has already serviced the in
terrupt request. Normally, the interrupt service routine clears an interrupt 
pending bit within a function specific register, causing the Intr within the 
CSR also to be cleared. However, to support interrupt sharing the Intr bit 
is not cleared until card services is ready to handle the next interrupt re
quest. When cleared by card services, other interrupt requests that are 
pending can now be generated via the PC Card's IREQ# pin. 

Table 17-5. Card Configuration and Status Register and Definition 

7 6 5 4 3 2 1 0 

Chng SigChg IOis8 Resrv Audio PwrDn Intr IntrAck 
(0) 

Chng Status Change Detected. This bit indicates that one or more of the Pin 
Replacement Register bits (CBVDl, CBVD2, CRDY, or CWProt) is set to 
one, normally causing the STSCHG# signal to be asserted. However, if 
the SigChg bit (see below) is 1 and the card is configured for an I/0 
interface, the STSCHG# pin is asserted when this bit is set. 

SigChg Signal Change Enable/Disable. This bit is set and reset by the host to 
enable and disable a status-change signal from the status register. When 
this bit is set and the card is configured for the I/0 interface, the Chng 
bit controls pin 63 (STSCHG#). If no status change signal is desired, this 
bit should be set to zero and the STSCHG# signal will be held deas-
serted when the card is configured for l/0. 

I0is8 1/0 Cycles Occur Only as 8-bit Transfers. When the host can provide 
I/0 cycles only using the D7:DO data path, the PCMCIA software will 
set this bit to a 1. The card is guaranteed that accesses to 16-bit registers 
will occur as two byte accesses rather than a single 16-bit access. This 
information is useful when 16-bit and 8-bit registers overlap. 

Resrv Reserved bits must be 0. 

227

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 17: A Multiple Function PC Card Example 
Table 17-5. Card Configuration and Status Register and Definition (Continued) 

7 

Chng 

Audio 

6 5 4 3 2 1 0 

SigChg I0is8 Resrv Audio PwrDn Intr IntrAck 
(0) 

Audio Enable. This bit enables audio information to be sent to the HBA 
via the speaker pin when configured for an I/ 0 interface. 

PwrDn Power Down. This bit is set to one to request that the card enter a 
power-down state. PCMCIA software must not place the card into a 
power-down state while the card's READY pin is in the low (Busy) 
state. 

Intr Interrupt Request Pending. This bit represents the internal state of the 
interrupt request. This value is available whether or not interrupts have 
been configured. How the Intr bit is cleared is dependent of how the 
IntrAck bit is configured. 
IntrAck=O - Intr reflects the function's interrupt request status. If the 
interrupt is cleared within the function, then Intr is reset by the func
tion. 

IntrAck=l - Intr remains set even though the interrupt condition has 
been cleared. It is reset by system software to indicate it is ready to re
ceive another interrupt (implemented to support interrupt sharing). 

IntrAck Interrupt Acknowledge. This bit determines the response of the Intr 
bit. The functionality associated with the IntrAck bit permits two or 
more functions to share the PC Card's IREQ# pin. 
IntrAck=O - when IntrAck is reset Intr functions as described above to 
support a single interrupt implementation. 
IntrAck=l - This causes the Intr bit to remain set even though the in
terrupt service routine has already serviced the interrupt. The Intr bit is 
not cleared until Card Services is ready to handle the next interrupt 
request. When the Intr bit is cleared, the PC Card generates another 
interrupt request (if another interrupt request is pending from another 
function). 

1/0 Base Registers 

The PC Card standard requires use of the I/ 0 base registers by multiple 
function cards, and they can also be used by single function cards. These reg
isters define the base 1/0 address at which the function's 1/0 registers will be 
mapped into the host processor's address space. The number of registers used 
depends on the address space supported by the host processor. Since Intel 

217 

228

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

218 

compatible x86 processors have 64KB of address space only the first two regis
ters are needed to specify a base address anywhere within the entire 64KB 
space. 

Note that in a typical single function PC Card the 1/0 address range is speci
fied by the configuration index value within the configuration option register. 
This value identifies the configuration table entry that specifies the 1/0 ad
dress range that the PC Card has been configured to use. 

1/0 Limit Register 

This register corresponds to the I/ 0 base registers and specifies the maximum 
number of 1/0 addresses that can be mapped beginning at the base address. 
This register is bit mapped such that the most significant bit set within the 
register determines the number of address lines used to decode the address 
and therefore the maximum block of address space supported. The most sig
nificant bit and all bits of lesser significance must be set within the register. 
This results in the possible number of address lines as listed in table 17-6. 
Note that the largest block of 1/0 address space that can be defined is 256 
bytes. 

This register is optional and need not be implemented for each function if all 
functions within the PC Card use the same number of I/ 0 address lines. 

Table 17-6. Address Limit Associated with Function Base Address Register 

Bit Position Maximum 
7 6 5 4 3 2 1 0 Number of 

# of Address Lines Defined by Bit position Address 
8 7 6 5 4 3 2 1 Locations 
0 0 0 0 0 0 0 0 Not defined 
0 0 0 0 0 0 0 1 2 
0 0 0 0 0 0 1 1 4 
0 0 0 0 0 1 1 1 8 
0 0 0 0 1 1 1 1 16 
0 0 0 1 1 1 1 1 32 
0 0 1 1 1 1 1 1 64 
0 1 1 1 1 1 1 1 128 
1 1 1 1 1 1 1 1 256 

229

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 17: A Multiple Function PC Card Example 

Shared Interrupt Handling 

The PC Card standard defines an interrupt sharing mechanism that allows 
multiple I/0 functions to share the PC Card's single IREQ# pin. This mecha
nism requires specific hardware and software support beyond that required 
for single function PC Cards. The changes required are: 

• Multiple Function PC Card - interrupt sharing logic required. 
• HBA - no changes required. 
• Socket Services - no changes required. 
• Card Services - provides ISR registration, must detect IRQ, determine 

which PC Card function generated the interrupt, and route the request to 
the interrupting function's enabler. 

• PC Card Enabler - must support sharing protocol. 

Review of Single Function Interrupt Handling 

The following discussion reviews the interrupt handling procedures typically 
employed in single function PC Card implementations. This discussion is 
based on an x86-based system operating in real mode. 

IRQ Initialization 

The PC Card's enabler, after having determined the configuration require
ments of the PC Card, requests a specific IRQ line from card services by 
making the RequestIRQ function call. Card services then verifies that the IRQ 
line is available by successfully completing the function call. The enabler now 
knows that it has acquired the IRQ that it wanted and must "hook" the inter
rupt (i.e. place the starting address of its interrupt service routine into the 
interrupt table entry that corresponds to the IRQ line that it has been as
signed) so that interrupt requests are directed to its interrupt service routine 
(ISR). 

Next, the enabler requests that card services configure the HBA so that it 
steers the PC Card's IREQ# line to the specified IRQ line on the expansion bus 
(using the RequestConfiguration function call). Card services in turn makes 
the appropriate calls to socket services, directing it to load the appropriate 

219 

230

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

220 

registers within the HBA; thereby, setting it up to steer the PC Card's inter
rupt requests over the specified IRQ line. 

Handling the Interrupt Request 

A summary of the events that take place when a PC Card generates an IREQ# 
are detailed in the following paragraphs. 

When a PC Card generates an interrupt request, it sets its interrupt pending 
bit in the CSR register and asserts the IREQ# line. The HBA steers the PC 
Card's IREQ# to the selected IRQ line and on to the interrupt controller. The 
interrupt controller responds by asserting the processor's interrupt request 
input (INTR). This causes the processor to cease normal program_ execution 
and to interrogate the interrupt controller to find out which interrupt has oc
curred. The interrupt controller responds by sending the interrupt table entry 
number corresponding to the IRQ line that generated the interrupt request. 
The processor receives the entry number (aka vector) and performs a memory 
read to get the starting address of the interrupt service routine from the inter
rupt table. 

The processor temporarily stores the ISRs starting address in a special register 
(not named) and saves the current status of the program that was being exe
cuted when the interrupt occurred (i.e. pushes the flags, CS, and IP registers 
to the stack). This is done so the processor can return to the original program 
after the interrupt has been serviced. Once the processor saves its place, it 
then moves the ISRs starting address into the CS and IP registers, causing it to 
begin fetching and executing instructions from the PC Card's interrupt service 
routine. 

The ISR reads the Configuration Status Register (CSR) to verify that an inter
rupt request is pending (i.e. the Intr bit is set). If the Intr bit is set, the ISR 
recognizes that an interrupt is pending and clears the Intr bit since the inter
rupt is now being serviced. 

After clearing the interrupt within the PC Card, the ISR continues execution. 
Before the ISR completes it must also clear the interrupt at the interrupt con
troller to prevent the interrupt from being serviced again (i.e. the interrupt 
controller will send the same vector to the processor, causing the same ISR to 
be executed again). The interrupt is cleared by issuing an End Of Interrupt 
(EOI) command to the interrupt controller. After the EOI command has been 
issued and the interrupt has been serviced, the ISR executes an Interrupt Re-

231

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 17: A Multiple Function PC Card Example 

turn instruction (IRET). The IRET causes the processor to restore the flags, CS, 
and IP registers previously saved, returning it to normal program flow. 

Note: for a more in-depth discussion of x86 interrupt handling refer to the 
MindShare book entitled ISA System Architecture, published by Addison
Wesley. 

Multiple Function Interrupt Handling 

Each function within a multiple function PC Card has its own enabler that in
cludes an interrupt service routine designed specifically for that function. The 
following sections detail the interrupt handling procedures for multi-function 
PC Cards. 

IRQ Initialization 

Multiple function IRQ initialization must be handled differently than single 
PC Card initialization. When a given enabler detects that its function is im
plemented within a multiple function PC Card it reads the function specific 
CIS, determines the configuration requirements of its function and initiates the 
configuration of the HBA and PC Card. Since a PC Card has a single IREQ# 
pin, all functions within the PC Card must share the same interrupt line. 

Interrupt sharing is managed by card services. The interrupt sharing mecha
nism requires that the ISR for each function be registered with card services. 
The following describes the actions that would typically be taken by each 
function enabler during IRQ initialization. 

Function Zero 

When an enabler detects the presence of its function within a multi-function 
PC Card and determines that an interrupt is required, it must request an in
terrupt from card services. The multiple function enabler passes the starting 
address of its ISR to card services when it makes the RequestIRQ function call. 
It also identifies the location of its function by passing card services the logical 
socket number and logical function number (zero in this example) for its 
function. 

Card services then provides a first level interrupt handler (FLIH) by hooking 
the interrupt table entry corresponding to the interrupt requested by the en-

221 

232

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

222 

abler. Note that multiple function enablers register their ISR with card serv
ices and do not directly hook the interrupt. When the interrupt is generated 
card services FLIH will be executed. 

Function One 

When function one's enabler detects its function within the multiple function 
PC Card, it must also request an interrupt (via the RequestIO service) from 
card services. When making the service call, the enabler passes the starting 
address of its interrupt service routine to card services and specifies the logi
cal socket and function number (one in this example) of the PC Card. After the 
HBA and PC Card are configured, an interrupt generated by function one will 
cause the FLIH within card services to execute. 

Handling the Interrupt Request 

A summary of the events that take place when a multiple function, PC Card 
generates an IREQ# are detailed in the following paragraphs. The example is 
based on an ISA platform. Refer to Figure 17-3. 

When a single function within a multiple function PC Card generates an inter
rupt request it sets the Intr bit in its CSR register and signals the PC Card's 
interrupt routing logic. The routing logic in turn asserts the PC Card's IREQ# 
line. The HBA steers the IREQ# signal to the selected IRQ line and on to the 
interrupt controller. The interrupt controller responds by asserting the proces
sor's interrupt r,equest input. This causes the processor to cease normal 
program execution and to interrogate the interrupt controller to find out 
which interrupt has occurred. The interrupt controller responds by sending 
the processor an 8-bit interrupt table entry number corresponding to the IRQ 
line that generated the interrupt request. The processor receives the entry 
number (a.k.a. the vector) and performs a memory read to get the starting ad
dress of the card services FLIH from the interrupt table. 

The processor temporarily stores the FLIH' s starting address in a special reg
ister (not named) and saves the current status of the program that was being 
executed when the interrupt occurred (i.e. pushes the flags, CS, and IP regis
ters to the stack). This is done so the processor can return to the original 
program after the interrupt has been serviced. Once the processor saves its 
place, it then moves the FLIH's starting address into the CS and IP registers, 
causing the processor to begin fetching and executing instructions from card 
services FLIH. 

233

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



() 
(/) 

() 
~ 
'iii 
jj 
0 

Chapter 17: A Multiple Function PC Card Example 

- ,---

jj 
0 
JJ 

~ 
3 
(/) 

0 
() 
(/) 

I 
I 

Entrv 

B ISR Function O Function 1 
Enabler Enabler 

Exit Exit 

:D JJ (1) CD .0 .0 C C (1) CD 
~ !'e. 
:D jj 
0 0 

ISR Address I I ISR Address I 
t t 

Interrupt Handling 
Routine 

' 
() () 
(/) jj (/) 
() 0 () 
ro :, ro 
Ill Ill 
iil iil 
jj jj 
0 0 

I IRQ Steering I Logic 
~ 

J PC Card I 
IIREQ# Routing I 

IR~ ~1# 

--- ,__ 

Function Function 
- 0 1 ~ 

~ 

- -
jj 
0 
:D 

~ 
3 
(/) 

0 
() 
(/) 

~ ...._ 

PC Card 
Enablers 

Card 
Services 

HBA 

Multiple 
Function 
PC Card 

Figure 17-3. Multiple Function IRQ Sharing Procedure. 

223 

234

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

224 

The FLIH reads the function Configuration Status Registers (CSRs) to deter
mine which function currently has an interrupt request pending (i.e. the 
function whose Intr bit is set). If the Intr bit is set for one of the functions, the 
FLIH calls the ISR for that function, using the starting address that the enable 
passed to card services when the RequestIRQ function was performed. 

The function's ISR does not clear the interrupt at the function's CSR, nor at the 
interrupt controller as single function ISRs do. When the ISR completes exe
cution, it returns to the FLIH. Before the FLIH completes, it issues an EOI 
command to the interrupt controller, preventing it from servicing the same in
terrupt again. The FLIH also clears the Intr bit within the CSR, indicating that 
card services is ready to handle another interrupt request. This prompts the 
interrupt routing logic to issue another IREQ#, if another function within the 
card has signaled that it has an interrupt request pending. After the EOI 
command has been issued, the FLIH executes the IRET instruction, returning 
the processor to normal program flow. 

Applications Unaware of Multiple Function Protocol 

The Problem 

Generic enablers for some functions (e.g. modems) request specific resources 
that common application program expect the function to use (e.g. many com
munications programs expect the modem to use the convention 1/0 address 
space and IRQ lines associated with COMl or COM2). If two or more func
tions within a single PC Card require specific IRQ lines, then the interrupt 
sharing mechanism will not work. However, the PC Card Standard permits 
one of the functions within a multiple function card to request a specific IRQ 
that it requires to maintain compatibility with application programs. The en
abler for functions that require a specific IRQ does not participate in the 
interrupt sharing protocol. Note however, that all other functions within the 
multiple function PC Card must support the interrupt sharing protocol. 

An Example Solution 

As an example, a generic modem enabler, being unaware that multiple func
tion support exists, will not register its ISR with card services. Therefore, 
when the enabler calls the RequestIRQ function the ISR address field will be 

235

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 17: A Multiple Function PC Card Example 

zero. (Note that card services permits only one enabler per socket to specify 
an ISR address field of zero.) Card services assigns the specific IRQn to the 
modem enabler to satisfy its configuration. The modem enabler then "hooks" 
the interrupt (places the starting address of its ISR into the interrupt table en
try corresponding to the IRQn line that it has been assigned). Next, card 
services "hooks" the same interrupt by reading and saving the starting ad
dress of the modem's ISR and replacing it with the starting address of the 
FLIH. 

Enablers for other functions within the PC Card must register their ISRs with 
card services. When any of the functions within a PC Card generate an inter
rupt request, the FLIH will be executed first (because the processor will obtain 
the starting address of the FLIH when it obtains the starting address of the ISR 
in the interrupt table). The FLIH checks the interrupt pending bits within each 
function to detect which has an interrupt pending. 

If the modem has an interrupt pending, the FLIH jumps to the entry point of 
the modem's ISR (recall that card services previously read and saved the 
starting address of the modem's ISR when it installed the FLIH in the inter
rupt table). The modem's ISR executes normally by clearing the PC Card's 
interrupt request (for level interrupts) and performing the EOI command, and 
executing IRET. 

Changes to Card Services Functions 

To support multiple function PC Cards, many of the card services functions 
have been modified. For example, when accessing a single function PC Card, 
the function could be identified by merely specifying the logical socket num
ber in which the PC Card resided. However, when a PC Card contains more 
than one function each function within the PC Card is identified by an addi
tional logical function number. Table 17-7 lists of services that have added 
support for multiple function implementations. 

225 

236

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table 17-7. Card Services Modified for Multiple Function Support 

Service Name Code 

AccessConfigurationRegister 36h 

GetCardServicesinfo OBh 

GetConfigurationinfo 04h 

GetEventMask 2Eh 

GetFirstClient , OEh 

GetFirstTuple 07h 

GetN extClient 2Ah 

GetNextTuple OAh 

GetStatus OCh 

GetTupleData 0Dh 

ModifyConfiguration 27h 

RegisterMTD 1Ah 

ReleaseConfiguration 1Eh 

ReleaseExclusive 2Dh 

ReleaseIO 1Bh 

ReleaseIRQ 1Ch 

ReleaseSocketMask 2Fh 

RequestConfiguration 30h 

RequestExclusive 2Ch 

RequestIO 1Fh 

RequestIRQ 20h 

RequestSocketMask 22h 

ResetFunction 11h 

SetEventMask 31h 

226 

237

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Part Four 

PCMCIA Software 

238

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 18: The Configuration Process 

Chapter 18 
The Previous Chapter 

The previous chapter discussed the multiple function PC Card strategy and 
the mechanisms for achieving it. It also included a functional block diagram of 
a multiple function PC Card, a sample multi-function CIS, related configura
tion registers, and multi-function interrupt handling. 

This Chapter 

This chapter provides an overview of the PCMCIA software environment and 
the configuration process. The primary role and interaction between each 
piece of software is established. This chapter also introduces the common 
software solutions provided along with the most popular suppliers. 

The Next Chapter 

The next chapter discusses the role of socket services and the initialization 
process. It also defines each function and details the calling interface. 

Overview of the Configuration Process 

Each PC Card must have an enabler that recognizes it, reads the CIS to de
termine the PC Card's resource requirements, programs the host bus adapter 
(HBA) and configures the card. Figure 18-1 illustrates the most common form 
of PC Card enabler known as the c;lient driver. Client drivers interface directly 
to Card Services, which services requests from the client drivers. Client driv
ers call a variety of services within card services to assist it in configuring and 
controller accesses to its PC Card. Using card services greatly simplifies the 
job of enabling the PC Card, monitoring status change events, and controlling 
access to the card. 

229 

239

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

As illustrated in figure 18-1, card services interfaces directly to socket services 
to gain access to the HBA and PC Card. Socket services is designed with spe
cific knowledge of the HBA hardware design and contains software routines 
that card services can call to gain access to the registers within the HBA with
out having to know the low-level details of the hardware interface. 

Configuring a PC Card may take place when the system powers up (if the PC 
Card is already installed in a socket), or when a PC Card is inserted into a 
socket (after the system is powered up and fully operational). In either case, 
the PC Card must be detected by an enabler and configured. Without an en
abler, a PC Card would never be recognized by the system. Once a PC Card is 
configured, it then responds like any other device residing on the host bus. 

This configuration processor involves interaction between a client driver, card 
services, socket services, and the PC Card's CIS. The Role of each of these 
items is reviewed below. 

Configuration and 
Event Notification 

Software 

Hardware Run-Time 
Software 

PC Card Enablers 
(PCMCIA lnit & Event Processing) 

Card Services 

Socket Services 

230 

Conf1g 

Host System 

PCMCIA 
Host Bus Adapter 

PC Card PC Card 

Figure 18-1. PCMCIA Software Flow 

Applications 

Operating 
System 

Device Drivers 
(Run·Time Code) 

240

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 18: The Configuration Process 

The Role of the CIS 

Each PC Card is required to have a Card Information Structure, or CIS to be 
compliant with 2.x or PC Card implementations. The CIS is a data structure 
that is stored in non-volatile memory, which provides a method for software 
to determine what kind of PC Card is installed, along with its speed, size, sys
tem resources required by the card, and other pertinent information. The CIS 
is mapped within the attribute memory space or alternatively can be located 
in common memory address space. 

As illustrated in figure 18-1, the CIS is read by PC Card client drivers (via card 
and socket services) during card initialization to determine the configuration 
options supported by the card. Once the card type and resource requirements 
have been read from the CIS, the PC Card client driver programs the HBA 
and configures the PC Card, again via card and socket services. No further ac
cess is typically made to the CIS after the card has been initialized. The PC 
Card can now be accessed via the host expansion bus, just like any other ex
pansion device. Note that the CIS is only accessed by programs that are 
PCMCIA aware. Most application programs have no knowledge that they are 
accessing devices implemented in PC Card packages. 

The Role of the Socket Service Functions 

Socket services provides a set of software routines written specifically to ac
cess the registers within a given HBA. Socket services eliminates the need for 
special knowledge of the HBA hardware programming interface. These rou
tines or functions are comparable to the BIOS routines that are used in the PC 
environment. In practice, most client drivers seldom, if ever, directly access 
socket service functions, because properly designed enablers access the HBA 
via card services. Card services, makes calls to socket services at the HBA re
quest. 

The Role of Card Services 

Card services provides a central resource available to all client drivers. Spe
cifically, card services is a collection of service routines designed for use by 
programmers writing enablers for PC Cards. These services provide a soft
ware interface that permits the programmer to simplify code and helps to 

231 

241

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

232 

reduce conflicts with other client drivers and with allocating system resources 
for PC Cards. 

A major function of card services is to provide call-back services to notify the 
enablers that a particular event has occurred. Each enabler must register with 
card services and specify which PC Card events that it wishes to be notified 
of. When card services detects a given event (e.g. a card has been inserted or 
removed) it then calls each enabler that previously registered to receive notifi
cation of card insertion or removal. 

The Role of the PC Card Enabler 

PC Card enablers must recognize that a PC Card has been installed and access 
the card's CIS to determine if it should attempt to configure the card. 

Three basic types of enablers exist: 

• Dedicated enablers - designed for a particular PC Card. 
• Generic (Super) enablers - designed for a wide range of PC Card types. 
• Point enablers - designed to configure and enable the PC Card without 

using card and socket services. 

Note that dedicated enablers and generic enablers both interface to card serv
ices as illustrated in figure 18-1. These enablers all register with card services 
when they first install. The registration process permits access to card services 
and allows the enabler to specify the events that it wishes to be notified of. 
Enablers that use card services are also referred to as client drivers. 

Dedicated Enablers 

Dedicated enablers are typically supplied by the PC Card manufacturer to in
crease the probability that the card will install correctly in the absence of a 
generic driver. Dedicated enablers identify a specific PC Card and will typi
cally not recognize and enabler other PC Cards of the same type. These 
enablers may also manage functions that are unique to a given PC Card im
plementation. 

242

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 18: The Configuration Process 

Generic Enablers 

Generic enablers are designed to handle PC Cards of a particular functional 
type. For example, the system manufacturer may include generic drivers for 
card types such as SRAM, flash ROM, Modems, and ATA drives. These en
ablers attempt to identify and enable cards based on a generic type without 
regard to the manufacturer or special features that may be incorporated into 
the PC Card's design. 

Another class of generic enablers are the super I/0 enablers. These enablers 
are designed to recognize and configure a wide range of I/0 devices such as, 
modem, fax/ modems, LAN controllers, etc. These enablers reduce the num
ber of enablers that must be installed to detect the possible PC Cards that 
might be installed in a socket. The exact mechanism employed by these super 
enablers varies, but all have the same goal of enabling the most common I/0 
cards. Most system manufacturers supply super I/0 client solutions as a part 
of the PCMCIA software shipped with the PC. 

Point Enablers 

Point enablers are dedicated enablers that bypass card and socket services. 
These enablers are popular in environments such as DOS where limited mem
ory address space is available for application programs. Card and socket 
services take a considerable amount of memory when they install. Added to 
this is the space required by the enabler(s) and any TSR (terminate and stay 
resident programs) that might be used. As a result, too little memory is left for 
many application programs to run. One solution is to eliminate the PCMCIA 
specific software, thereby freeing up memory space that is needed to run the 
application programs. Point enablers are needed to configure the PC Cards 
that the user want to access. In the absence of card and socket services, point 
enablers must load the appropriate registers within the HBA to recognize and 
configure their PC Card. 

For more information regarding enablers refer to the Chapter entitled, "PC 
Card Enablers." 

233 

243

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

PCMCIA Software Solutions 

234 

The entire PCMCIA software environment is typically provided by a single 
vendor. This software includes generic enablers, card services, a resource de
tection utility that builds the resource table (used by card services), and socket 
services. PC manufacturers license these software solutions for use in their 
products. PCMCIA software is available from several different vendors. The 
major vendor and the name of their PCMCIA software is listed in table 18-1. 

Table 18-1. Major Vendors of PCMCIA Software Solutions 

PCMCIA Software Vendor Product Name 

American Megatrends (AMI) AMICARDZ 

Award CardWare 

IBM PlayAtWill (DOS & OS/2) 

Microsoft r Windows95 

Phoenix Technology PCM3+ 

SystemSoft CardSoft 

While most PCMCIA software solutions provide the same basic functionality, 
many differences have existed. Some of the differences are inconsequential, 
such as, differences in logical drive letter assignments for various types of PC 
Cards, the visual and/ or audible feedback provided when cards are inserted 
or removed, etc. However, some differences have been potentially more criti
cal, including: 

• HBAs supported 
• Power management support 
• Flash card support (i.e. Flash file systems and MTDs) 
• Abridged versions of card services (Note that the functionality not in-

cluded in card services is typically integrated directly into the enablers.) 
• Resource Allocation (PC Cards mapped to different system resources) 
• Generic enabler support (Types of PC Cards supported) 

As the PCMCIA software has matured, the problematic differences between 
vendor solutions have diminished. Further, the PC Card 95 release has de
fined specific support for several areas that were previously the source of 
significant differences between vendor solutions. 

244

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

Chapter 19 
The Previous Chapter 

The previous chapter provided an overview of the PCMCIA software envi
ronment and the configuration process. The primary role and interaction be
tween each piece of software was established. The chapter also introduced the 
common software solutions provided along with the most popular suppliers. 

This Chapter 

This chapter discusses the role of socket services. It also describes the initiali
zation of socket services and explains the basic purpose of the functions com
monly supported in the PC environment. 

The Next Chapter 

The next chapter focuses on the role of card services in the PCMCIA environ
ment. It reviews each of the functions defined by the PC Card specification 
that apply to 16-bit PC Cards, along with related return codes. The call back 
mechanism is also described and the event and call back codes are defined. 

The Role of Socket Services-Making Life Easier 

Before the development of socket services, a PC Card's client driver was re
sponsible for ensuring that its card satisfied the requirements of the PC Card 
plug and play environment. Plug and play means that the PC Card can be 
automatically configured after being installed in a system, without requiring 
user intervention. In the PC Card environment this responsibility includes: 

• Accessing registers within the HBA to open an attribute memory window, 
allowing access to the card's CIS. 

• Interpreting the CIS to determine the configuration requirements of the 
card. 

235 

245

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

236 

• Determining if the resources needed by the card are available (not already 
in use by other system devices). 

• Loading HBA registers with the specified configuration values that permit 
host software to access the PC Card. 

• Polling HBA registers to monitor socket status change events (e.g. card 
removal). 

• Releasing system resources by clearing registers in the HBA when a card 
removal event occurs. 

• Providing the ability to perform these functions regardless of the HBA 
design. 

These requirements make it clear that developing PC Card client driver prior 
to the introduction of socket services required detailed knowledge of the par
ticular HBA's hardware interface. Furthermore, HBA design changes could 
lead to heavy revision and update of the client driver. 

As shown in figure 19-1, today's client drivers can configure a PC Card with 
relative ease by accessing the PCMCIA configuration software that is com
prised of card and socket services. This chapter focuses on the role of socket 
services, which eliminates the need for client drivers to know the details of the 
HBA hardware. 

Configuration and 
Event Notification 

Software 

PC Card Enablers 
(PCMCIA lnit & Event Processing) 

Card Services 

Socket Services 
Conf1g 

Hardware 

Host System 

PCMCIA 
Host Bus Adapter 

PC Card PC Card 

Run-Time 
Software 

Applications 

Operating 
System 

Device Drivers 
(Run·Time Code) 

Figure 19-1. Relationship of Socket Services to the Rest of the System. 

246

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

Socket services provides a set of functions that can be called by client drivers 
(typically card services), eliminating the need for special knowledge of the 
HBA hardware programming interface. These functions can be compared to 
the BIOS routines that are used in the PC environment. In practice, most client 
drivers seldom, if ever, directly access socket service functions, because client 
drivers typically access the HBA via card services. Card services, makes calls 
to socket services at the client drivers request. In fact, card services blocks ac
cess attempts to socket services that are made by client drivers. 

Installation and Initialization 

Socket services can be contained in ROM, can be loaded into system memory 
via an installable device driver, or can be ,incorporated as extensions to the 
operating system. In the PC environment socket services are typically installed 
via a device driver and must be loaded into the system before card services 
and other client drivers (i.e. any software that requires socket services). With
out socket services being present card services and PC Card client drivers will 
not install. 

The method used to install socket services and the protocol used to call the 
functions is platform dependent. The PCMCIA standard currently defines the 
socket services function call interface only for the Intel x86 platform. Refer to 
the section entitled, "Socket Services Calling Convention" later in this chapter. 

Socket Services Functions 

As discussed in the chapter entitled, "The Host Bus Adapter", the HBA must 
be programmed to allow system access to the PC Card and to manage a vari
ety of HBA functions including: 

• Specifying the socket interface type (memory or I/0). 
• Programming memory address windows. 
• Programming I/ 0 address windows. 
• Steering each PC Car.d's IREQ# signal to the selected system interrupt line. 
• Steering the HBA's status change interrupt to the selected system inter-

rupt line. 
• Controlling socket power switching. 
• Enabling power conservation features. 

• Controlling EDC generators. 

237 

247

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

238 

Socket services controls these functions through a defined set of function calls, 
each related to objects managed by the adapter. Table 19-1 lists the functions 
according to the object-based grouping defined below: 

• Adapter Functions - Those functions that affect all sockets that are con
trolled by the HBA (i.e., setting V cc to 3.3 volts for one socket causes all 
other sockets to also receive 3.3 volts). Adapter functions also pertain to 
items such as the single status change interrupt, which reports status 
changes for all sockets. 

• Socket Functions - Those functions controlled individually at the socket 
level (i.e., setting V cc to 3.3 volts for a given socket affects only that 
socket). 

• Window Functions - Those functions that control the memory and I/ 0 
address windows. 

• Error Detection and Correction (EDC) Functions - Those functions used 

to interact with the EDC generators. 

Table 19-1. Socket Services Functions 

Acknowledgeinterrupt 
GetAccessOffsets 
GetAdapter 
GetAdapterCount 
GetSetPrior Handler 
GetSetSSAddr 
GetSSinfo 
GetVendorinfo 
InquireAdapter 
SetAdapter 
VendorSpecific 

GetPage 
Get Window 
Inquire Window 
SetPage 
Set Window 

GetEDC 
InquireEDC 
PauseEDC 
ReadEDC 
ResumeEDC 

0$~~tijttf'.ift1'.~fiij»f/(C SetEDC 
GetSocket 
GetStatus 
InquireSocket 
ResetSocket 
SetSocket 

StartEDC 
StopEDC 

248

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

Note that three new socket service functions were added to the PC Card 95 
Standard. These functions support CardBus bridge implementations and are 
not included in this book For information regarding CardBus, see Mind
Share's CardBus System Architecture book, published by Addison-Wesley. 

Socket services has also been designed to permit ease of use. Within each 
functional group shown in table 19-1, there is are "inquire," "get," and "set" 
functions, defined below: 

• Inquire functions - used to report the capabilities of each object defined. 
• Get functions - used to report the current parameter settings associated 

with the object. 
• Set functions - used to set the parameters associated with the object. 

The "get" and "set" functions for a specific item have the same basic data struc
ture format, allowing easy modification of parameters. For example, if some 
parameter within the adapter must be modified, the GetAdapter function can 
be called to obtain the current adapter settings. This adapter setting informa
tion can be written back to the adapter registers using the SetAdapter function 
once the specific parameter has been changed. This technique permits easy 
read/ modify/ write operations to modify individual parameters without 
having to build the entire data structure that must be passed to socket services 
when the function is called. 

Socket Services Calling Convention 

The method used for calling functions depends on the specific platform. Cur
rently, the PCMCIA specification details the programming interface or socket 
services binding, for Intel x86-compatible systems. The binding specifies USE 

of software interrupt lAh to call socket service functions (real mode). This in
terrupt is typically used by the real-time clock BIOS functions. Therefore 
socket services shares entry lAh in the interrupt table with the real-time clock 

When in protected mode the method of calling socket service functions is op
erating system specific. 

When socket services installs it hooks interrupt 1Ah. This is done by reading 
and saving the current value of entry lAh within the interrupt table (the real 
time clock BIOS entry pointer) and replacing it with an entry point for its own 
functions. Socket services functions can then be called using the INT lAh in
struction. The function numbers are defined in table 19-2 and the general reg-

239 

249

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

240 

ister usage is defined as follows. The exact register content defined for each 
function can be found in the PCMCIA specification: 

Entry: [AH] 
[AL] 
[BH] 
[BL] 
[CX] 
[DX] 
[DS]:[(E)SI] 
[ES]:[(E)DI] 
[DI] 

Exit: [CF] 
[AH] 

Function number desired in hex 
HBAnumber 
Window number 
Page or Socket ( depending on function) 
Counts 
Attributes 
Reserved in ROM BIOS Int lAh interface 
Pointer to socket services client buffer 
Offset in 4 KB units 

Status (carry set= error, reset= success) 
Success or failure return code depending on 
Carry Flag value. 

If the value in the AH register does not match one of the socket services func
tions, socket services will pass the call on to the Real Time Clock function, 
whose entry point was saved during initialization of socket services. 

Note that the last function number within socket services is for card services 
(function OAFh). Card services also installs into entry lAh in the interrupt ta
ble and therefore will be called before socket services. Card service functions 
are called using the OAFh value in the AH register, allowing definition of the 
call as a CS function. CS then checks the AL register to identify which CS 
function is being called. If, however, a socket services function is called, then 
the AH register contains a value other than OAFh and CS will not pass the 
function to socket services. This prevents client drivers from accessing socket 
services directly and changing HBA settings without CS being notified. See 
the chapter entitled "PC Card Configuration: Card Services and Client Driv
ers" for additional information. 

Upon exit from a socket services routine, a return (or completion) code is 
placed in the AH register. The state of the carry flag determines whether the 
socket service function incurred an error or executed successfully. Table 19-3 
lists the return codes. 

250

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

Table 19-2. Socket Services Function Code Listing 

SS Functions Arranged Alphabetically SS Functions Arranged Numerically 

Function Code Code Function 

ACCESS_OFFSETS OAlh 80h GET_ADP _CNT 

ACK_INTERRUPT 9Eh 81h and 82h Reserved 

CARD _SERVICES OAFh 83h GET_SS_INFO 

GET_ADAPTER 85h 84h INQ_ADAPTER 

GET_ADP _CNT 80h 85h GET_ADAPTER 

GET_EDC 96h 86h SET_ADAPTER 

GET_PAGE · 8Ah 87h INQ_WINDOW 

GET_SOCKET 8Dh 88h GET_WINDOW 

GET_SS_INFO 83h 89h SET_WINDOW 

GET_STATUS 8Fh 8Ah GET_PAGE 

GET_ VENDOR_INFO 9Dh 8Bh SET_PAGE 

GET_WINDOW 88h 8Ch INQ_SOCKET 

INQ_ADAPTER 84h 8Dh GET_SOCKET 

INQ_EDC 95h 8Eh SET_SOCKET 

INQ_SOCKET 8Ch 8Fh GET_STATUS 

INQ_WINDOW 87h 90h RESET_SOCKET 

PAUSE_EDC 99h 91h thru 94h Reserved 

PRIOR_HANDLER 9Fh 95h INQ_EDC 

READ_EDC 9Ch 96h GET_EDC 

Reserved 81hand 82h 97h SET_EDC 

Reserved 91h thru 94h 98h START_EDC 

Reserved for expansion A2h thruADh 99h PAUSE_EDC 

RESET_SOCKET 90h 9Ah RESUME_EDC 

RESUME_EDC 9Ah 9Bh STOP_EDC 

SET_ADAPTER 86h 9Ch READ_EDC 

SET_EDC 97h 9Dh GET_ VENDOR_INFO 

SET_PAGE 8Bh 9Eh ACK_INTERRUPT 

SET_SOCKET 8Eh 9Fh PRIOR_HANDLER 

SET_WINDOW 89h OAOh SS_ADDR 

SS_ADDR OAOh OAlh ACCESS_OFFSETS 

START_EDC 98h A2h thruADh Reserved for expansion 

STOP_EDC 9Bh OAEh VEND _SPECIFIC 

VEND_SPECIFIC OAEh OAFh CARD _SERVICES 

241 

251

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table 19-3. Socket Services Return Codes 

Return Codes listed alphabetically Return Codes listed numerically 

Name of Return Code Code Code Name of Return Code 

BAD ADAPTER Olh OOh Success 

BAD ATTRIBUTE 02h Olh BAD_ADAPTER 

BAD BASE 03h 02h BAD _ATTRIBUTE 

BAD EDC 04h 03h BAD BASE 

BAD_IRQ 06h 04h BAD_EDC 

BAD MODE 16h 05h reserved 

BAD OFFSET 07h 06h BAD_IRQ 

BAD_PAGE 08h 07h BAD_OFFSET 

BAD _SERVICE 15h 08h BAD PAGE 

BAD_SIZE OAh 09h READ _FAILURE 

BAD SOCKET OBh OAh BAD_SIZE 

BAD SPEED 17h OBh BAD_SOCKET 

BAD TYPE ODh OCh reserved 

BAD VCC OEh ODh BAD_TYPE 

BAD_VPP OFh OEh BAD_VCC 

BAD_WINDOW 11h OFh BAD VPP 

BUSY 18h 10h reserved 

NO CARD 14h 11h BAD_WINDOW 

READ _FAILURE 09h 12h WRITE FAILURE 

reserved 05h 13h reserved 

reserved OCh 14h NO_CARD 

reserved 10h 15h BAD _SERVICE 

reserved 13h 16h BAD_MODE 

reserved 19h-FFh 17h BAD SPEED 

Success OOh 18h BUSY 

WRITE_FAILURE 12h 19h-FFh reserved 

242 

252

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

Adapter Functions 

The adapter functions can be categorized into four classes: 

• Functions used to identify the number of adapters within the system and 
to assign socket services to a specific adapter or adapters. Note that in 
some cases multiple adapters having different hardware interfaces may be 
installed in the system. This would require multiple versions of socket 
services be installed to handle the various adapters. 

• Functions that control adapter parameters via the inquire, get and set 
functions. ; 

• A function used to support status change interrupt processing. 
• Low-level access and protected-mode support functions. 

Verifying SS is installed (GetAdapterCount) 

The Get Adapter Count (GetAdapterCount) function is used by the socket 
service client (typically Card Services) to determine if socket services is in
stalled and to determine the number of HBAs in the system. This function is 
typically the first function called and returns the following information to the 
client. 

• the number of adapters that are detected by socket services 
• the ASCII string "SS" that verifies that socket services is installed. 

Once the client detects that one or more adapters are installed, socket services 
must be assigned to a given adapter or adapters. 

Getting Information from Socket Services (GetSSlnfo) 

A socket service client calls Get Socket Services Information (GetSSinfo) to de
termine among other things the number of adapters discovered and controlled 
by a given set of socket services. When making the GetSSinfo call, the client 
passes a logical HBA number to socket services as an input. This logical num
ber will be used by the client when it wants to access the HBA in the future. 
Socket services must remember the logical HBA number and use it to identify 
accesses to an HBA. Socket services will assign the logical HBA number to the 
first HBA that it discovers. If socket services discovers more than one HBA, it 
will assign the next logical number to the second HBA it discovers, etc. Socket 

243 

253

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

244 

services returns the total number of adapters that it has discovered, telling the 
client the number of adapters this particular set of socket services controls, 
and therefore the range of logical adapters that it will respond to in the future. 

Note that the first adapter detected by the first set of socket services installed 
is assigned as adapter "O". The client will continue making GetSSinfo calls 
until all HBAs have been located. This means that one GetSSinfo call will be 
make by the client for each set of socket services installed. Normally only one 
set of socket services will be installed. 

The following information is returned by the GetSSinfo function: 

• Compliance level of adapter. Returned as BCD (Binary Coded Decimal) 
value. (i.e. 0500h = PC Card Standard, February 1995). 

• Number of adapters supported or found by this set of socket services. If 
socket services recognizes more than one adapter in the system, it returns 
the total number that it finds and therefore the number it can control. 

• First adapter number supported. Note that the first socket services in
stalled always controls adapter zero. The adapter numbers are assigned 
sequentially starting with zero. 

The GetSSlnfo function must be run once for each set of socket services in
stalled, thereby assigning logical adapter numbers to all adapters controlled 
by a particular copy of socket services. 

When Two or More Socket Services Are Needed 
(GetSetPriorHandle) 

Some users may want to add more PCMCIA sockets to their system, resulting 
in two or more different HBA implementations. For example, consider a note
book system with two sockets. When the system is installed in a docking sta
tion, more sockets can be added via an additional HBA inserted in an 
expansion card slot. The additional HBA may have a different hardware inter
face, requiring its own set of socket services. 

PCMCIA can accommodate multiple sets of socket services to support a vari
ety of different HBA implementations. During the initialization process, a 
socket services client (the SS initialization routine) detects existing HBAs and 
identifies those that it is compatible with, using the GetAdapterCount and 
GetSSinfo (as discussed earlier). When installed, additional socket services 
will also initialize and attempt to identify HBAs that they are compatible with. 

254

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

When an additional copy of socket services is installed, the client must de
termine which adapter numbers have already been assigned by previous cop
ies of socket services. The new socket services initialization code can then call 
the GetSSinfo, to ascertain the first adapter that this new socket services will 
control. 

When a socket services client (card services) makes a call, it specifies a target 
adapter number or a target socket residing within a particular adapter. The 
socket services copy receiving the call will be the last installed. If the target 
adapter or socket is not controlled by this set of socket services, it must pass 
the call to the next socket services in the chain. This means that some method 
of linking copies of socket services must be employed. The exact method used 
to link all copies of socket services together depends on the implementation 
used by a given architecture. 

Some architectures may use the socket services function GetSetPriorHandle to 
link together multiple copies of socket services. The GetSetPriorHandle func
tion retrieves the handle (entry point address) at which the previous socket 
services resides. In this way, a linked list of entry points can be maintained 
such that each socket services passes the call to the next until the target 
adapter is located. The socket services chain can also be modified (set), allow
ing a new socket services to supersede or replace an existing copy. 

The Intel X86 architecture uses a software interrupt, 1Ah, to call socket serv
ices. When the first set of socket services installs, it first reads and saves the 
existing value in entry 1Ah of the interrupt table and then replaces it with its 
entry point. If another socket services installs, it also uses entry 1A, by reading 
and saving the previous pointer (belonging to the current socket services) and 
replacing it with its own pointer. In this way, each subsequent socket services 
that installs obtains the pointer to the previous socket services, creating a 
linked list. Calls to a particular adapter will then be passed from one socket 
services to the next until the target adapter is located. 

Controlling HBA Parameters (lnquireAdapter, GetAdapter, 
SetAdapter) 

Before configuring the HBA, the programmer must first determine a specific 
HBA's capabilities using the InquireAdapter function. Once its capabilities are 
determined, the HBA configuration parameters can be set using the Se
tAdapter function. If necessary, the client can check the current adapter set
tings using the GetAdapter function. 

245 

255

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

InquireAdapter Function. This function requires the following input parame
ters be specified: the target adapter number and the location of a memory 
buffer. The function returns information to the processor's registers and to the 
specified memory buffer. Parameters returned to the processor's registers in
clude: 

• Number of sockets 
• Number of address windows 
• Number of EDC generators 

Parameters returned in memory buffer provide additional information regard
ing the capabilities of the adapter. The memory buffer format is defined by the 
socket services specification and can be categorized into two separate parts as 
shown in table 19-4. 

Table 19-4. Adapter Information Structure Definition 

Adapter Information Structure 
Adapter Characteristics Indicators - If indicator bit is set, indicators for write protect, battery 

status, busy status and XIP (Execute-in-place) status are shared for all Structure 
sockets on the adapter. If reset, indicators exist for individual sockets. 

Power Level - If power level bit is set, the adapter applies the same 
power level to all sockets. When a SetSocket function is used to set the 
power for a specific socket, that setting is reflected at all sockets. If 
power level bit is reset, the adapter can apply power to sockets indi-
vidually in response to the SetSocket function. 

Data Bus Width - When data bus width bit is set, all adapter address 
windows use the same data width. If data bus width bit is reset, data 
width can be assigned to individual windows within the adapter. 

Status Interrupts (High Level) - Bit map of system interrupts to 
which status interrupts can be steered using an active high state. 
Status Interrupts (Low Level) - Bit map of system interrupts to 
which status interrupts can be steered using an active low state. 

Power Entry Structure Number of Power Entries 

Power Entries - Each entry specifies a voltage level supported and 
the socket pins (Vee, Vppl and Vpp2) to which the voltage level ap-
plies. The voltage level is specified as a DC voltage in tenth of a volt 
increments. Flag bits are set to indicate the voltage is valid for the 
specified supply. 

246 

256

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

GetAdapter Function. The GetAdapter function returns the current status of 
the HBA settings. When the GetAdapter function is called, the socket services 
client must pass the physical adapter number to socket services. Adapter pa
rameter states returned by this function include: 

• Powerdown state - If the bit is set, the adapter is in power conservation 
state and the SetAdapter function should be used to restore full power be
fore using the adapter. If the bit is reset, full power is applied and the 
adapter is fully functional. 

• Maintain state - If this bit is set, configuration information is retained by 
the adapter hardware during power conservation mode. If reset, the client 
is responsible for maintaining adapter configuration information during 
power conservation. 

• Status Change Interrupt Steering - Returns the system interrupt line, to 
which status change interrupts are directed. 

• Status Change Interrupt Level - If set, the status change interrupt is ac
tive high. If reset, the interrupt is active low. 

• Status Change Interrupt Enable/Disable State - The status change in-
terrupt is enabled when set and disabled when reset. 

SetAdapter Function. HBA parameters can be set using the SetAdapter func
tion. The exact same parameter mapping is used for the SetAdapter function 
as for the GetAdapter function. This allows for easy read-modify-write opera
tions when a specific parameter must be changed. 

For example, to place the adapter into power conservation mode, the Get
Adapter function can be called and the powerdown bit can be toggled. Next 
the SetAdapter call can be made, causing the powerdown bit to be set within 
the adapter. 

Vendor Functions (GetVendorlnfo, VendorSpecific) 

The GetVendorlnfo function returns information about the vendor that im
plemented the socket services for a particular adapter in the system. Input pa
rameters to socket services for this call include: 

• HBAnumber 
• Type of vendor information requested - a code type of zero indicates 

that the programmer is requesting the vendor information as an ASCIIZ 
string (only code currently defined). 

247 

257

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

248 

• Pointer to the buffer where the ASCIIZ string is to be returned. The buffer 
format is specified in the socket services standard. 

The function returns the ASCIIZ string to the buffer specified, indicating the 
version number of this particular release of socket services. The vendor's first 
release of socket services must use a version number of 0100h (release 1.00). 

The optional VendorSpecific function is left up to the vendor to implement. 
The adapter number is specified as an input parameter to socket services 
when the call is made. The functions supported and the function identification 
numbers are defined by the vendor to support capabilities beyond the scope 
of the specification. 

Indirect Access to PC Card Memory (GetAccessOffsets) 

Some HBAs may access memory cards via I/0 registers rather than via mem
ory-mapped address ranges. This eliminates memory address conflicts that 
might otherwise occur when mapping a PC Card into the system memory ad
dress space. These HBAs define a command set that is used when accessing 
the cards. The client driver uses the GetAccessOffsets function to locate the 
code that performs these commands. These memory client drivers are HBA 
specific. 

Determining What Card Caused a Status Change Interrupt 
(Acknowledgelnterrupt) 

When a status change event occurs at one of the HBAs sockets, an interrupt 
request is generated by the HBA. The socket services client (typically card 
services) is notified of the event via a system interrupt. When the client re
ceives the interrupt, it has no knowledge of which socket encountered the 
status change event or what the specific event was. The client must determine 
which socket has experienced a status change event by calling the Acknowl
edgelnterrupt function. Once the socket (or sockets) that has experienced a 
status change has been determined, then the GetStatus function is called to de
termine which event caused the interrupt. 

The Acknowledgelnterrupt function must be called once for each HBA in the 
system. The client supplies the HBA number to socket services when the Ac
knowledgelnterrupt function is called and socket services returns a bit map of 
the sockets within the HBA that have experienced a status change. When ob-

258

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

taining status information from the HBA, socket services also prepares the 
adapter to generate another status change interrupt when one occurs. 

In the interrupt service routine, the sockets that have experienced a status 
change are determined using the Acknowledgelnterrupt function. After the in
terrupt service routine completes, the client then calls the GetStatus function, 
specifying the socket that experienced the status change. Most HBAs preserve 
the state of the status change so that the status change event that caused the 
interrupt can be determined using the GetStatus function. If the HBA does not 
preserve this state information, then socket services must. 

Note that the Acknowledgelnterrupt function is called by the status change in
terrupt service routine. Socket services must not re-enable interrupts while 
processing a status change interrupt service routine. This could cause nesting 
of status change interrupts to itself, a situation that socket services is unpre
pared to manage. 

Socket Functions 

Socket functions deal with parameters that can be controlled on a 
socket-by-socket basis. These calls require that a particular socket number be 
specified, whereas adapter functions require an HBA number. The following 
sections discuss each function in the socket group. 

Controlling Individual Sockets (lnquireSocket, SetSocket, 
GetSocket) 

Functions used to control a socket are similar to the adapter functions that are 
used to control HBA functionality. The adapter functions control parameters 
that apply to all sockets supported by a specific HBA, whereas the socket 
functions control parameters that apply individually to each of the HBA' s 
sockets. 

249 

259

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

250 

InquireSocket. This function requires that a target socket number be specified 
along with the address of a memory buffer. This function returns the follow
ing information: 

• Events that can trigger a status change interrupt. These events can be a 
combination of the following items: 

• PC Card write-protect (WP) signal. 
• A signal (from card interlock logic) indicating the state of a card lock 

mechanism. 
• A signal (from the card interlock logic) indicating a request to eject a 

PC Card from the socket. 
• A signal indicating a request to insert a card into the socket. 
• PC Card BVDl signal indicating that the card's battery is completely 

discharged. 
• PC Card BVD2 signal indicating the card's battery is weak. 
• PC Card READY signal, indicating a change in the card's ready state . 

. • PC Card Detect Signals. 

• Bit map of status change events that are reported via the GetStatus func
tion. This bit map includes all the items that can generate a status change 
interrupt (listed above), plus other events that do not generate an inter
rupt but whose status is returned to the socket services client driver by 
the GetStatus function. 

• Bit map of items for which there is a control or an indicator supported at 
the socket level. Indicators are items such as LED indicators that the HBA 
provides which shows the status of given events. These items may in
clude: 

• Indicator for WP signal. 
• Indicator for state of card lock mechanism. 
• Control for motor to eject card from socket. 
• Control for motor to insert card into socket. 
• Control to establish a card lock. 
• Indicator for BVDl and BVD2 state. 
• Indicator showing when card is in use. 
• Indicator for execute-in-place (XIP) application is progress. 

• The Socket Information Structure is returned to a memory buffer supplied 
by the socket services client. The memory buffer format is defined by the 
socket services as shown in table 19-5. 

260

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

Table 19-5. Socket Information Structure Definition 

Socket Information Structure 
Socket Characteristics Socket Interface Type-If interface bit is set, the socket is a 

Structure memory only interface. If reset, the socket interface is mem-
ory or I/0. 

PC Card Interrupts (High Level)-Bit map of system inter-
rupts to which PC Card interrupts can be steered using an 
active high state. 

PC Card Interrupts (Low Level)-Bit map of system inter-
rupts to which PC Card interrupts can be steered using an 
active low state. 

GetSocket Function. The GetSocket function returns the current status of the 
HBA socket settings. When the GetSocket function is called, the socket serv
ices client must pass the adapter and socket number to socket services. The 
parameter's returned by this function are: 

• Status Change Mask - Returns the current setting of the events that 
cause a status change interrupt from the socket. 

• V cc Level - Returns the current supply voltage applied to the socket on 
the Vee pin. 

• Vpp Levels -Returns the current supply voltage applied to the socket on 
the Vpp pins. Separate values are returned for Vppl and Vpp2. 

• State Change. Returns the latched values of the status change events that 
have occurred at the socket. 

• Socket Controls and Indicators - Returns a bit map of socket controls 
and indicators that are in use. Bits that are set indicate the control or indi
cator is activated. 

• IREQ Routing - Returns the system interrupt line to which the card's 
IREQ# signal is directed. Optionally, an additional bit can specify whether 
the IREQ# signal should be inverted or not, and another optional bit can 
enable or disable interrupt routing. 

• Interface Type - Returns the interface setting. Only one of the following 
selections can be set; a "Memory-Only" interface and a "Memory or I/ O" 
interface 

SetSocket Function. Socket parameters are set using the SetSocket function. 
The exact same parameter mapping is used for the SetSocket function as for 
the GetSocket function. That is, the data structure format for the SetSocket 

251 

261

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

252 

function mirrors the definition of the GetSocket function's data structure for
mat listed earlier. This simplifies read-modify-write operations when a spe
cific parameter must be changed. 

Determining the Current Status of the Socket and PC Card 
(GetStatus) 

This function is intended to be called by the socket services client to determine 
what event(s) have caused a status change interrupt. This call should not be 
made during hardware interrupt processing of the status change interrupt, 
but rather after the interrupt has been processed and the socket(s) experienc
ing a status change event has been identified. The socket services client can 
then call the GetStatus function to determine which event caused the status 
change interrupt. 

The information returned reflects the current state of the parameters set 
within the HBA: 

• Returns the current state of the events that can cause a status change in
terrupt (as defined by the InquireSocket function) and the current state of 
the socket control and indicators (also defined in the InquireSocket func
tion). 

• Returns the current bit map of parameters or events that cause a status 
change interrupt. These events are defined in the GetSocket function's 
status change mask. 

• Returns a bit map of Socket control and indicator bits supported by HBA. 
• Returns the current settings of the IREQ Routing parameters. 
• Returns the current Interface Type setting. 

Resetting the Socket Under Software Control (ResetSocket) 

This function provides a software reset to the PC Card and resets the socket 
hardware interface to its power-on default condition as follows: 

• Socket interface is reset to memory only. 
• IREQ routing is disabled. 
• All socket supplies (Vee, Vppl, and Vpp2) are set to Svdc. 
• All address windows are disabled. 

• All EDC Generators are disabled. 

262

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

Window Functions 

Window functions, like the adapter and socket functions, include the inquire, 
get, and set functions, as well as page functions that allow memory windows 
to be divided into multiple pages. Memory locations within a window can be 
segmented into 16KB pages. 

Controlling Windows (lnquireWindow, GetWindow and Set
Window) 

The window functions are designed for flexibility, such that they can be used 
for common memory, attribute memory, or 1/0. Despite this flexibility pro
vided by socket services, a given hardware implementation of the HBA may 
be more restrictive. The capabilities for each window is obtained when the 
socket services client calls the InquireWindow function for each window de
tected by the InquireAdapter function. 

The characteristics of a given window extend far beyond whether they can be 
used for memory, I/0 or both. Many other parameters such as the base ad
dress, window size, fastest and slowest devices supported, etc., must be char
acterized for each window. Once the characteristics of the window is 
determined then it can be programmed by the socket services client at the re
quest of the PC Card's driver. 

InquireWindow Function. When the InquireWindow function is called, the 
HBA number and window number are passed to socket services, along with a 
pointer to a memory buffer supplied by the socket services client. Information 
is returned to the processor's registers and to the specified memory buffer. 
The total set of information returned to the socket services client includes the 
following: 

• Window Type - Returns the characteristics of the window selected with 
the HBA and window parameters. A single window may be designed to 
provide support for any or all of the following: 

• A window can be used as a common memory window. 
• A window can be used as an attribute memory window. 
• A window can be used as an 1/0 window. 
• A window can specify that the WAIT# signal from the PC Card to is 

used to generate additional wait states during a socket data transfer. 

253 

263

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

254 

• Note that even though socket services allows a window to be used as both 
an I/0 window and a memory window, this usually is not the case. More 
typically, hardware designs restrict a given window to either I/0 ad
dresses or memory addresses, but not both. 

• Socket Assignment - Returns a bit map of sockets that a window can be 
assigned to. Bit zero refers to socket zero and bit N refers to the maximum 
socket number. The size of this bit map restricts the number of sockets 
that can be supported by a given HBA. In the x86 environment, socket 
services has a 16-bit field, permitting a maximum of 16 sockets per HBA. 

• Window Characteristics Structure - Returns a variety of windows pa
rameters to a memory buffer supplied by the socket services client. Two 
types of window characteristics structures are defined: one for memory 
windows and one for I/0 windows. As mentioned earlier, a given 
adapter may be designed to permit a given window to support memory 
addresses only, I/0 addresses only, or both memory or I/0. A window 
characteristics structure is returned for each window type supported by 
the target address window. 

Table 19-6 lists the parameters defined within a memory window characteris
tics structure, and table 19-7 lists parameters defined within a I/0 window 
structure. The parameter definition for many of the entries within both struc
tures are identical; however, some important differences exist. Parameters 
that differ are highlighted in tables 19-6 and 19-7. 

264

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

Table 19-6. Memory Window Characteristics Structure Definition 

Memory Characteristics Structure 
Mem Window Capabilities Consists of flag bits that specify any of the parameters listed below. 

Base Address Determines if the base address is programmable (bit is set) or is 
fixed (bit is reset) in the host's address space. If programmable, the 
base address must be within the range specified by the FirstByte and 
LastByte entries, and if fixed, the base address location is specified 
by the value of the FirstByte entry and the LastByte entry has no 
meaning. 

Window Size Determines if the memory window size is programmable (bit is set) 
or is fixed (bit is reset). If programmable, the size can be any value 
within the range specified by the Minimum Size and Maximum Size 
entries. If fixed, the window size is determined by the value of the 
Minimum Size entry and the Maximum Size entry should be set to 
the same value and the Minimum Size. 

Window Enable Determines if the HBA will preserve window state information 
when the window is disabled (bit is set), or whether software must 
be responsible for preserving the state information (bit is reset). This 
means that when the window 'is re-enabled, it must be repro-
grammed by the client if the HBA does not preserve the informa-
tion. 

8-Bit Data Width Determines whether the memory window supports 8-bit data trans-
fers to the socket required (8-bit hosts). If set, 8-bit transfers are 
supported and if reset, they are not supported. 

16-Bit Data Width Determines whether the memory window supports 16-bit data 
transfers to the socket required (16-bit hosts). If set, 16-bit transfers 
are supported and if reset, they are not supported. 

Base Address If set, the base address must be programmed to start at an address 
Alignment aligned on the size of the window. If reset, the base address can be 

programmed to start anywhere within the window's address range, 
consistent with the "Base Address Alignment" value (defined later). 

Window Size In- Determines if windows supporting a programmable size must be 
crements sized in "powers of two" increments consistent with the "Window 

Size Granularity" value defined later (bit is set). If the granularity is 
4KB, then the window size can be 4KB, 8KB, 16KB, 32KB, ....... up to 
the maximum size of the window. If bit is reset, window sizes can 
be any multiple of the "Window Size Granularity" value -- 4KB, 
8KB, 12KB, 16KB, 20KB ....... up to the maximum window size. 

Window Page Specifies whether offsets specified to Set Page must be on bounda-
Boundaries. ries equal to the size of the window (bit is set), or if page offset can 

be set without relation to the window size (bit is reset). 

255 

265

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 
Table 19-6. Memory Window Characteristics Structure Definition(Continued) 

Memory Characteristics Structure 
Mem Window Capabilities Consists of flag bits that specify any of the parameters listed below. 

Window Page Determines if window"hardware supports dividing a window into 
Support multiple pages (bit set), or does not support window paging (bit is 

reset). 
Page Sharing If set, the window paging hardware is shared with another window 

and care must be taken to ensure that no conflicts arise due to re-
source sharing. If reset, paging hardware is dedicated to the win-
dow. 

Page Enable. If set, the HBA preserves the paging characteristics when the page 
is disabled. If reset, the software must preserve the settings and re-
program the paging hardware when the page is enabled again. 

Write-Protect. Determines if the window can be write-protected (bit is set) or not 
(bit is reset). 

FirstByte The first byte in the host .system's addressable memory space that 
can be programmed for the window's base address. Note that if the 
base address register is not programmable, the value is the fixed 
address for the window's base address. 

LastByte The last byte in the host system's memory address space that the 
window can be programmed to. 

Minimum Window Size Defines minimum size that the window can be programmed to. 

Maximum Window Size Maximum size that window can be programmed to. 

Window Size Granularity Window size granularity determines the minimum size that a win-
dow can be programmed to based on the hardware implementation. 
For example, if lower address lines A 11 :AO go directly to the PC 
Card socket, then the window size that can be programmed is based 
on 4KB intervals. 

Base Address Alignment Specifies the base address alignment value for the window. 
Window Offset Alignment Specifies the alignment boundaries that the window offset can be 

programmed to for remapping the system address to PCMCIA 
memory. 

Selected Access Speed Specifies the slowest access speed supported for devices accessed 
through this window. 

Fastest Access Speed Specifies the fastest access speed supported for devices accessed 
through this window. 

256 

266

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

Table 19-7. I/0 Window Information Structure Definition 

1/0 Window Information Structure 
1/0 Window Capabilities Consists of flag bits that specify any combination of the parameters below. 

Base Address Determines if the base address is programmable (bit is set) or is fixed 
(bit is reset) in the host's address space. If programmable, the base 
address must be within the range specified by the FirstByte and Last-
Byte entries, and if fixed, the base address location is specified by the 
value of the FirstByte entry and the LastByte entry has no meaning. 

Window Size Determines if the I/0 window size is programmable (bit is set) or is 
fixed (bit is reset). If programmable, the size can be any value within 
the range specified by the Minimum Size and Maximum Size entries. 
If fixed, the window size is determined by the value of the Minimum 
Size entry and the Maximum Size entry should be set to the same 
value and the Minimum Size. 

Window Enable Determines if the HBA will preserve window state information when 
the window is disabled (bit is set), or whether the client must be re-
sponsible for preserving the state information (bit is reset). This means 
that the window must be reprogrammed by the client when re-
enabled if the HBA does not preserve the information. 

8-Bit Data Width Determines whether the I/ 0 window supports 8-bit data transfers to 
the socket required by 8-bit hosts. If set, 8-bit transfers are supported 
and if reset, they are not supported. 

16-Bit Data Width Determines whether the l/0 window supports 16-bit data transfers to 
the socket (16-bit hosts). If set, 16-bit transfers are supported ai::rd if 
reset, they are not supported (8-bit hosts). 

Base Address If set, the base address must be programmed to start at address loca-
Alignment tions equal to the size of the window. If reset, the base address can be 

programmed to start anywhere within the window's address range, 
consistent with the "Base Address Alignment" value defined later. 

Window Size Determines if windows supporting a programmable size must sized in 
Increments "powers of two" increments consistent with the "Window Size Granu-

larity", or if the windows size can be any multiple of the "Window Size 
Granularity" value. 

INPACK Signal Specifies whether the adapter supports the Input Port Acknowledge 
Support (INPACK) signal or not. The INPACK signal permits an I/0 window 

to overlap address space mapped elsewhere in the system. 
EISA Slot Spe- Indicates support for EISA compatible addressing. In this case, the 

cific I/0 Address HBA in this case should respond to I/0 addresses consistent with the 
Support slot specific addressing protocol required by EISA systems. See the 

MindShare publication, "EISA System Architecture" for details. 

257 

267

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 
Table 19-7. I/0 Window Information Structure Definition (Continued) 

1/0 Window Information Structure, 
1/0 Window Capabilities Consists of flag bits that specify any combination of the parameters below. 

Ignore EISA- Determines whether accesses to ISA address alias ranges should be 
Defined alias ignored or not when slot-specific EISA I/0 addressing is used: 
(ISA) 1/0 Ac-

cesses. 

FirstByte The first byte in the host system's addressable I/0 space that can be 
programmed for the window's base address. Note that if the base ad-
dress register is not programmable the value is the fixed address for 
the window's base address. 

LastByte The last byte in the host system's I/0 address space that the window 
can be programmed to. 

Minimum Window Size Defines minimum size that window can be programmed to. 

Maximum Window Size Maximum size that window can be programmed to. 

Window Size Granularity Describes the size interval that the window can be programmed to. 

Base Address Alignment Specifies the base address alignment value. 

Number of Address Lines Specifies the number of address lines decoded by the window. 
Decoded 

EISA Slot Addressing Specifies the upper nibble (A15:A12) of an x86 I/0 address when 
EISA addressing is supported. 

Fastest Access Speed Specifies the fastest access speed supported for devices accessed 

258 

through this window. 

GetWindow Function. The Get Window function returns the current setting 
of the window specified by the programmer. The programmer passes the 
HBA and window numbers to the function. The function returns the following 
information: 

• Socket to which window is assigned. 

• Window size. 

• Current State of window hardware-Returns the current setting of other 
window parameters. The value can be a combination of the following: 

• Memory or 1/0 mapped. This bit specifies whether the window is 
mapped into the host system's memory address space or I/0 address 
space. 

• Enabled or disabled. Specifies whether the window is currently en
abled or disabled. 

268

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 19: Socket Services 

• Window data width. Specifies whether the window is programmed 
for 16-bit data width or 8-bit data width. 

• Memory window pages used (memory windows only). This parame
ter indicates if memory window pages are in use, indicating that this 
window is subdivided into multiple 16KB pages and that the GetPage 
and SetPage functions can be used for accessing individual pages 
within the window. 

• EISA 1/0 Mapping used. 
• Card access permitted during EISA 1/0 accesses. If this bit is set and 

EISA mapping is used, accesses to standard ISA addresses result in 
PC Card accesses. If reset, accesses to ISA addresses are ignored. 

• Access Speed. Indicates the current access speed programmed into the 
memory window. 

• Window's Base Address. 

SetWindow Function. This function uses the same mapping as the GetWin
dow function. The definition of the parameters are the same, allowing the 
GetWindow function to be called to obtain the current window settings. Pa
rameters requiring modification can then be changed from the current settings 
and the SetWindow function called to update the window's settings. 

EDC Functions 

Error Detection/Correction Generators are optional for PCMCIA HBAs. 
These functions are designed to enable and control EDC generators imple
mented by HBAs. However, card services provides no support for EDC func
tions. Furthermore, to the author's knowledge no current HBA designs 
employ EDC generators. Based on these issues discussion of the socket serv
ices EDC functions has been omitted from this book. 

Maximum Number of Sockets Per HBA 

The maximum number of sockets that a single adapter can support under con
trol of socket services is limited by the InquireWindow function. A bit-map of 
assignable sockets is returned by this function. The size of this bit-mapped 
socket selection field defines the maximum number of sockets supported by 
each adapter. The field size is not defined by PCMCIA and depends on the 

259 

269

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

260 

socket services implementation. The Intel x86 socket services definition de
fines a 16-bit socket selection field, permitting 16 sockets per HBA. 

Maximum Number of HBAs Supported by Socket 
Services 

The maximum number of adapters supported by socket services depends on 
several factors, including: 

• Limitations associated with the implementation of socket services for a 
given platform. For example, the field size used to specify a target adapter 
can vary with a particular implementation. Note that the x86 implementa
tion uses an 8-bit field, permitting 256 adapters to be specified (clearly not 
a meaningful limitation). 

• Constraints related to available space when implementing socket services 
in ROM. 

• Constraints related to available memory space required by multiple sets of 
socket services required to support numerous adapters. 

270

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

Chapter 20 
The Previous Chapter 

The previous chapter discussed the role of socket services. It also described 
the initialization of socket services and explained the basic purpose of the 
functions commonly supported in the PC environment. 

This Chapter 

This chapter focuses on the role of card services in the PCMCIA environment. 
It also reviews each of the functions defined by the PC Card specification that 
apply to 16-bit PC Cards, along with related return codes. The call-back 
mechanism is also described and the event and call-back codes are defined. 

The Next Chapter 

The next chapter discusses the three basic types of enablers: point enablers, 
device specific enablers, and super enablers. The chapter also discusses the 
specific jobs performed by several different device specific enablers including 
SRAM enablers, FLASH enablers, I/0 device enablers, and ATA enablers. 

Overview 

Each PC Card must have a client driver that recognizes it, reads the CIS to de
termine its resource requirements, programs the host bus adapter (HBA) and 
configures the PC Card. As illustrated in figure 20-1, PC Card client drivers 
interface directly to Card Services.·Card services simplifies the job of configur
ing a PC Card and monitoring status change events. 

261 

271

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Configuration and 
Event Notification 

Software 

Hardware Run-Time 
Software 

PC Card Enablers 
(PCMCIA lnit & Event Processing) Host System Applications 

262 

Card Services 

Socket Services I 

Config 

PCMCIA 
Host Bus Adapter 

PC Card PC Card 

Figure 20-1. PCMCIA Software Flow 

Operating 
System 

Device Drivers 
(Run-Time Code) 

Configuring a PC Card may take place when the system powers up (if the PC 
Card is already installed in a socket), or when a PC Card is inserted into a 
socket (after the system is powered up and fully operational). In either case, 
the PC Card must be detected and configured by an enabler. Without an en
abler, a PC Card would never be recognized by the system. However, once a 
PC Card is recognized and configured by the enabler, it then responds like 
any other device residing on the host bus. 

Enablers that use card services are called card services client drivers. The term 
client driver is used because card services and the enablers perform their 
functions based on the client/ server model. Card services exists to serve the 
needs of its clients (i.e. the enablers) as they attempt to configure and access 
their PC Cards. Two basic types of client drivers exist: 

• Dedicated client drivers -. designed for a particular PC Card. 
• Generic or super client drivers - designed for a wide range of PC Cards. 

272

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

Dedicated client drivers are typically supplied by the PC Card manufacturer 
to increase the probability that its card will be recognized and configured cor
rectly in the absence of a generic driver. Dedicated client drivers may also 
manage functions that are unique to a given manufacturer's implementation. 

Generic client drivers are frequently designed to handle PC Cards of a par
ticular functional type. For example, the system manufacturer may include 
generic drivers for card types such as SRAM, flash ROM, Modems, and ATA 
drives. Ideally, a single super client driver could detect and configure all PC 
Cards regardless of type. 

Enabling PC Cards Before Card Services 

Prior to the release of card services, the enabler was burdened with recogniz
ing when a card was inserted into a socket, reading its CIS, programming the 
HBA and configuring the PC Card so that it responded to a given system ad
dress range. The PC Card's enabler also had to continually monitor the socket 
to detect if the PC Card was removed. If removed, the enabler would deallo
cate the system resources the card was using by clearing registers in the HBA. 
In this way, the HBA would no longer respond to addresses previously as
signed to the PC Card. 

To configure a card, an enabler also had to determine what address ranges 
were available within the system (not in use by other devices) for allocation to 
its card. This was an almost impossible job for enablers since they had no 
knowledge of the other devices incorporated into the system or of other in
stalled PC Cards. Assumptions had to be made by the programmer based on 
what resources were likely available so that contention with other devices was 
(hopefully) avoided. 

It is also possible that other software applications or utility programs written 
by other programmers may want to share access to a given PC Card. These 
various programs will not be aware of each other and, as a result, conflicts 
may occur. 

In summary, PC Card enablers that are compliant with PCMCIA releases 
prior to 2.0 each act independently, unaware of the existence of each other. 
Furthermore, they have no. knowledge of the resources available within the 
system that could safely be allocated to their associated PC Card. 

263 

273

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

The Role of Card Services 

264 

Card services provides a central resource available to all client drivers. Spe
cifically, card services is a collection of functions designed for use by 
programmers writing client drivers for PC Cards. These functions provide a 
software interface that permits the programmer to simplify code and helps to 
reduce conflicts with other client drivers and system resources. Card services 
is divided into five functional groupings by the PCMCIA specification: 

• Client Services-Provides a registration facility that permits client drivers 
to register and be notified by card services when specific socket events oc
cur (such as card insertion or removal). 

• Resource Management-Allows client drivers to request the use of sys
tem resources required by the PC Card they are enabling. If the resources 
are granted, addition resource management functions can be used to as
sign these resources by programming the HBA (via socket services) and 
configuring the PC Card (by writing to the PC Card's configuration regis
ters). 

• Client Utilities-Provides a set of functions that allow the client driver to 
perform common jobs with ease. For example, the functions include ac
cessing the PC Card's CIS, thereby simplifying tuple processing code. 

• Bulk Memory Services-Provides block memory functions to read, write, 
copy and erase blocks of data within memory cards (without knowledge 
of the specific memory technology). These functions are passed to the ap
propriate Memory Technology Driver (MTD) that understands the 
hardware protocol necessary to erase or write to devices such as flash 
memory. (See the next chapter "PC Card Enablers" for details regarding 
memory technology drivers.) 

• Advanced Client Services-Provides specialized functions that may be 
needed by some client drivers. 

Only one copy of card services is required (and permitted), since it controls 
access to all sockets (whether associated with a single adapter or multiple 
adapters). Once a PC Card has been configured, it responds like any other 
host bus device. As a result, application programs designed to access a par
ticular function need not even be aware of the existence of card and socket 
services. Card services and socket services are employed by enablers during: 

• PC Card initialization and configuration (client driver makes calls). 
• PC Card event notification (interrupt driven calls). 

274

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

• Block transfers to/from memory card (memory client driver makes calls 
during run-time). 

During other times, card and socket services remain in memory, but are not 
used. The following sections discuss typical uses of the card services func
tions. The information included in this chapter is not intended for reference 
purposes. The function descriptions provide only a basic description of the 
function's purpose. Refer to the PCMCIA Card Services standard for the exact 
calling parameters, format, field sizes, etc., of each function. 

Initialization of Card Services 

Card Services is designed as an operating system dependent extension that 
provides client services for the PC Card environment. Card services may 
come with the operation system as a built-in extension (e.g. OS/2 and Win
dows 95). In the MS-DOS environment, card services is typically implemented 
as an installable device driver. 

In the DOS environment card services are called using an INT lA instruction, 
requiring that card services "hook" entry lAh within the interrupt table. Also 
card services hooks the hardware interrupt used by the HBA to report status 
change events. This allows card services to be notified when a status change 
event occurs at the socket level. 

Verifying the Presence of Socket Services 

Since card services utilizes socket services to fulfill client driver requests, it 
must install after socket services installs. Socket services may reside in ROM 
on the system, or may be installed as a loadable device driver when the oper
ating system loads. If socket services installs as a device driver, card services 
must be placed in the config.sys so that it installs after socket services. 

Before card services installs it must verify that socket services are resident. 
This is done by calling the GetAdapterCount function within socket services. 
This function returns the total number of HBAs detected in the system and 
which returns the ASCII string "SS" verifying that socket services is present. If 
"SS" is detected, then card services proceeds with its installation. 

265 

275

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

266 

After card services installs, it blocks access to socket services. If a client driver 
attempts to call socket services directly, card services will not pass the call on 
to socket services, but will return failure to the client driver. This prevents a 
client driver from using socket services to access the adapter hardware di
rectly and perhaps allocating resources or modifying the HBA's programming 
without the knowledge of card services. Since this would result in card serv
ices becoming desynchronized with regard to the actual adapter hardware, 
attempts to access socket services without going through card services are 
prevented. 

Note that card services does include a function (ReturnSSEntry) that can be 
called by a client driver that returns the entry point of socket services. This 
allows a client driver to gain direct access to socket services, but it must not 
perform any socket service function that causes card services to become de
synchronized with the HBA. 

Verifying that Card Services Installed 

Initialization code used to install card services also includes code that actually 
calls card services to validate that the installation of card services was success
ful. This is accomplished by calling the GetCSinfo service, which returns 
information about this version of card services and the ASCII values "CS" to 
verify that card services are present. If card services installed correctly, the 
initialization code can make additional service call to prepare card services for 
access by a PC Card client driver. 

Determining Availability of System Resources 

One of the major functions performed by card services is to allocate available 
system resources to PC Cards. Resource management services are called by a 
PC Card's client driver in an attempt to acquire the resources (i.e. the 1/0 ad
dress space, memory address space, IRQ line, and DMA channels) that will 
satisfy the card's configuration requirements. Card services must check the 
available system resources to verify that the requested resources are not al
ready used by the system. 

Since card services is an extension to the operation system, in many operating 
environments it will have no specific knowledge of the resources that are al
ready being used by other devices installed into the system. As a result, some 

276

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

method must be employed by card services (or by other platform specific 
software) that can detect free resources that can be allocated and assigned to 
PC Cards. The exact method used is operating system and hardware platform 
specific. 

In x86 DOS compatible systems, a utility program is typically used to scan the 
host system i11 an attempt to detect the presence of devices that use system re
sources. The utility program builds a table of system resources that are not in 
use and passes the table to card services. Card services then manages the re
sources table as resources are requested and released by the client drivers as 
PC Cards are inserted and removed from sockets. This program is either em
bedded within card services initialization code or is implemented as a 
separate installable device driver that executes immediately after card services 
has installed (e.g. listed in the config.sys file immediately following the card 
services device driver) and before the PC Card enablers. 

Power Management Support 

Power management support was added to the PC Card standard (95 release). 
Card service defines power management (PM) support via power manage
ment call-back events. Card services can be designed to detect the presence of 
a power management facility within the PC platform and register to receive 
notification of power management events. When card services receives the 
power management notification, it calls-back all client drivers that registered 
to receive the PM events. 

Card Services Calling Conventions 

When a client calls card services, the binding used in a given environment will 
differ. The PC Card specification specifies a card services programming inter
face (binding) for x86 real mode (DOS), Intel 80286 Protected Mode 
(Windows), Intel 80286 Protected Mode (OS/2), and Intel 80386 Flat Address 
Model (Windows VxD Clients). Each binding specifies the register usage for 
calling card services functions and the register usage employed when the call
back handler is invoked. An example of the binding specified for the Intel X86 
Real Mode environment follows. Refer to the card services specification for 
additional information. 

267 

277

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

268 

Input: 

Output: 

[AH] 
[AL] 
[DX] 
[DI]:[SI] 

[CX] 
[ES]:[BX] 

AFh (specifies card services function) 
Service Desired (service code number) 
Handle 
Pointer argument 
[DI]=16-bit segment, [SIJ=16-bit offset 
Argument Length (total length of argument packet) 
Pointer to argument packet (used when additional address space 
is required to pass parameters and data) 
[ES]=16-bit segment, [BX]=16-bit offset 

[AX] Return Code 
[CF] Success when clear, failure when set 

Specifying the Service 

The AH register must contain a value of AFh to specify that this card is meant 
for card services. The AL register then specifies the service code number of 
the service being requested. 

Table 20-1 lists all of the services (listed in alphabetical order) defined by the 
PC Card Standard along with their associated service number. Table 20-2 lists 
the services and their service number in ascending numerical order. Note that 
the services in shaded boxes were added by the PC Card 95 release. 

The value placed in the AH register permits card services to block access to 
socket services functions made by enablers. Note that AFh is the last function 
number within socket services (function OAFh) and is defined for use by card 
services. 

When card services initializes, it hooks entry 1Ah in the interrupt table. Card 
services saves the current value of entry 1Ah (pointing to socket services) be
fore installing its own. As a result, card services knows the entry point for 
socket services. INT 1Ah calls now access card services, which verifies that the 
call is a card services call by checking for the value AFh in the AH register. If 
verified, the card services function call specified in the AL register is then 
processed. 

If card services finds a value other than OAFh, it then checks to determine if 
the value represents a valid socket services function. If it is a valid socket 

278

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

services function, card services blocks access and returns failure to the calling 
program.. This prevents client drivers from accessing socket services directly 
and changing HBA settings without card services being notified. 

If the value in the AH register is for neither card services nor socket services, 
then card services passes the call to socket services, knowing it will not rec
ognize the call. Socket services then passes the call to the previous interrupt 
service routine in the chain. Interrupt table entry lAh is used by the real-time 
clock functions in DOS compatible machines, therefore, card and socket serv
ices shares INT lAh with the real-time clock functions. 

The Handle 

A handle may specify the client making the service call or a particular re
source that is being targeted by the function. The client handle is returned to 
the client during the registration process. This handle is used by the client 
when requesting many services. For example, a memory client may choose to 
Open a region of memory within a memory card for use with other memory 
services (i.e. read, write, or erase services). The client must specify its client 
handle in the DX register as an input and card services returns a memory 
handle (to identify the region of memory) to the DX register. The client later 
uses memory handle as an input when calling the read, write, or erase mem
ory services. 

269 

279

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table 20-1. Card Services Listed in Alphabetical Order 

Function Code Function Code 

AccessConfigReg 36h ModifyConfiguration 27h 

AddSocketServices 32h ModifyWindow 17h 

AdjustResourcelnfo 35h OpenMemory 18h 

CheckEraseQueue 26h ReadMemory 19h 

CloseMemory OOh RegisterClient 10h 

Copy Memory 01h RegisterEraseQueue OFh 

DeregisterClient 02h RegisterMTD 1Ah 

DeregisterEraseQueue 25h RegisterTimer 28h 

GetCardServiceslnfo 0Bh ReleaseConfiguration 1Eh 

GetClientlnfo 03h Release OMA 3Bh 

GetConfigurationlnfo 04h ReleaseExclusive 2Dh 

GetEvenMask 2Eh ReleaseIO 1Bh 

GetFirstClient OEh ReleaseIRQ 1Ch 

GetFirstPartition 05h ReleaseSocketMask 2Fh 

GetFirstRegion 06h Release Window 1Dh 

GetFirstTuple 07h ReplaceSocket Services 33h 

GetFirstWindow 37h RequestConfiguration 30h 

GetMemPage 39h RequestDMA 3Ah 

GetNextClient 2Ah RequestExclusive 2Ch 

GetNextPartition 08h RequestlO 1Fh 

GetNextRegion 09h RequestlRQ 20h 

GetNextTuple OAh RequestSocketMask 22h 

GetNextWindow 38h Request Window 21h 

GetStatus OCh ResetCard 11h 

GetTupleData 0Dh ReturnSSEntry 23h 

MapLogSocket 12h SetEvenMask 31h 

Map Log Window 13h SetRegion 29h 

MapMemPage 14h V alidateCIS 2Bh 

MapPhySocket 15h VendorSpecific 34h 

MapPhyWindow 16h WriteMemory 24h 

270 

280

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

Table 20-2. Card Services Function Codes Listed in Numerical Order 

Code Function Code Function 

OOh CloseMemory 1Eh ReleaseConfiguration 

Olh Copy Memory 1Fh RequestlO 

02h DeregisterClient 20h RequestIRQ 

03h GetClientlnfo 21h Request Window 

04h GetConfigurationlnfo 22h RequestSocketMask 

05h GetFirstPartition 23h ReturnSSEntry 

06h GetFirstRegion 24h WriteMemory 

07h GetFirstTuple 25h DeregisterEraseQueue 

08h GetNextPartition 26h CheckEraseQueue 

09h GetNextRegion 27h ModifyConfiguration 

OAh GetNextTuple 28h RegisterTimer 

0Bh GetCardServiceslnfo 29h SetRegion 

OCh GetStatus 2Ah GetNextClient 

0Dh GetTupleData 2Bh ValidateCIS 

OEh GetFirstClient 2Ch RequestExclusive 

OFh RegisterEraseQueue 2Dh ReleaseExclusive 

10h RegisterClient 2Eh GetEvenMask 

11h ResetFunction 2Fh ReleaseSocketMask 

12h MapLogSocket 30h RequestConfiguration 

13h Map Log Window 31h SetEvenMask 

14h MapMemPage 32h AddSocketServices 

15h MapPhySocket 33h ReplaceSocket Services 

16h MapPhyWindow 34h VendorSpecific 

17h Modify Window 35h AdjustResourcelnfo 

18h OpenMemory 36h AccessConfigReg 

19h ReadMemory 37h GetFirstWindow 

1Ah RegisterMTD 38h GetNextWindow 

1Bh ReleaseIO 39h GetMemPage 

1Ch ReleaseIRQ 3Ah RequestDMA 

1Dh Release Window 3Bh ReleaseDMA 

271 

281

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

272 

The Argument Packet 

Some services require that the client provide a memory buffer to pass parame
ters. Functions requiring a large data area for passing parameters use an 
argument packet. The pointer to the argument packet specifies the start mem
ory location of the buffer, while the argument length specifies the size of the 
buffer (i.e. length of argument packet). The size and format of the argument 
packet is typically depends of the individual function. 

Not all of the generic arguments just defined are used when calling a given 
service. Many functions require only a function code, handle and the pointer 
argument to pass all of the required parameters. Some service require the 
pointer argument, while other require use of the argument packet. 

Return Codes 

A variety of codes may be returned by card services into the processor's AX 
register. The return codes specify the results of the service. Table 20-3 lists and 
defines each of the return codes in alphabetical order. Table 20-4 lists the re
turn codes in numerical order. 

The Pointer Argument 

Some services require a read/write buffer to pass input and output informa
tion between the client and card services. The pointer argument value placed 
in the DI and SI registers specifies the location of the memory buffer. These 
same buffer is used by card services to return data to the client. DI:SI are also 
used to specify the memory location the call-back buffer. 

282

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

Table 20-3. Card Services Return Codes Listed in Alphabetical Order 

Return Code Value Description 

BAD _ADAPTER Olh Specified adapter is invalid 

BAD_ARG_LENGTH lBh ArgLength argument is invalid 

BAD_ARGS lCh Values in Argument Packet are invalid 

BAD_ATTRlBUTE 02h Value specified for attributes field is invalid 

BAD_BASE 03h Specified base system memory address is invalid 

BAD_EDC 04h Specified EDC generator is invalid 

BAD_HANDLE 21h ClientHandle is invalid 

BAD_IRQ 06h Specified IRQ level is invalid 

BAD_OFFSET 07h Specified PC Card memory array offset is invalid 

BAD_PAGE 08h Specified page is invalid 

BAD_SIZE OAh Specified size is invalid 

BAD_SOCKET OBh Specified socket is invalid (logical or physical) 

BAD_SPEED 17h Specified speed is unavailable 

BAD_TYPE 0Dh Window or interface type specified is invalid 

BAD_VCC OEh Specified Vee power level index is invalid 

BAD_ VERSION 22h Client version is unsupported 

BAD_VPP OFh Specified VPPl or VPP2 power level index is invalid 

BAD_WINDOW llh Specified window is invalid 

BUSY 18h Unable to process request at this time - retry later 

CONFIGURA TION_LOCKED 1Dh A configuration has already been locked 

GENERAL_FAILURE 19h An undefined error has occurred 

IN_USE lEh Requested resource is being used by a client 

NO_CARD 14h No PC Card in socket 

NO _MORE_ITEMS lFh There are no more of the requested item 

OUT_ OF _RESOURCE 20h Card Services has exhausted resource 

READ _FAILURE 09h Unable to complete read request 

Reserved 05, oc, 10, 13h Reserved for historical purposes 

SUCCESS OOh The request succeeded 

UNSUPPORTED _MODE 16h Processor mode is not supported 

UNSUPPORTED _SERVICE 15h Implementation does not support service 

WRlTE_FAILURE 12h Unable to complete write request 

WRITE_PROTECTED lAh Media is write-protected 

273 

283

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table 20-4. Card Services Return Codes Listed in Numerical Order 

Value Return Code Description 

OOh SUCCESS The request succeeded 

Olh BAD _ADAPTER Specified adapter is invalid 

02h BAD _ATTRIBUTE Value specified for attributes field is invalid 

03h BAD_BASE Specified base system memory address is invalid 

04h BAD_EDC Specified EDC generator is invalid 

05h Reserved Reserved for historical purposes 

06h BAD_IRQ Specified IRQ level is invalid 

07h BAD_OFFSET Specified PC Card memory array offset is invalid 

08h BAD_PAGE Specified page is invalid 

09h READ _FAILURE Unable to complete read request 

OAh BAD_SIZE Specified size is invalid 

OBh BAD_SOCKET Specified socket is invalid (logical or physical) 

OCh Reserved Reserved for historical purposes 

0Dh BAD_TYPE Window or interface type specified is invalid 

OEh BAD_VCC Specified V cc power level index is invalid 

OFh BAD_VPP Specified VPPl or VPP2 power level index is invalid 

10h Reserved Reserved for historical purposes 

llh BAD_WlNDOW Specified window is invalid 

12h WRITE_FAILURE Unable to complete write request 

13h Reserved Reserved for historical purposes 

14h NO_CARD No PC Card in socket 
• 

15h UNSUPPORTED _SERVICE Implementation does not support service 

16h UNSUPPORTED_MODE Processor mode is not supported 

17h BAD_SPEED Specified speed is unavailable 

18h BUSY Unable to process request at this time - retry later 

19h GENERAL_FAILURE An undefined error has occurred 

lAh WRITE_FROTECTED Media is write-protected 

lBh BAD _ARG_LENGTH ArgLength argument is invalid 

lCh BAD_ARGS Values in Argument Packet are invalid 

1Dh CONFIGURA TION_LOCKED A configuration has already been locked 

lEh IN_USE Requested resource is being used by a client 

lFh NO _MORE_ITEMS There are no more of the requested item 

20h OUT_OF_RESOURCE Card Services has exhausted resource 

21h BAD_HANDLE ClientHandle is invalid 

22h BAD_ VERSION Client version is unsupported 

274 

284

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

Client Services (Client Registration and Support) 

The category of card services defined as "client services functions" are those 
typically used when a card services client driver performs device initializa
tion. Other services within this category provide basic card support. Table 
20-5 lists the card services functions typically used during the registration 
process. The sections following the table discuss the registration process and 
discuss the use of each function listed. 

Table 20-5. Client Services Functions 

Client Services Functions 

Tuple Name Description 

GetCardServiceslnfo Determines if a valid copy of card services is installed and reports informa-
tion regarding this copy of card services, including its revision and 
compliance level. 

RegisterClient Used by the client to register with card services as either a memory, MTD or 
1/0 client. The client driver also specifies which card status events (such as 
card removal) it wishes to be notified of by card services. The client can also 
request that card services generate artificial card insertion events for all PC 
Cards that are currently installed, allowing the client to configure PC Cards it 
wishes to use. 

DeregisterClient Allows the client to notify card services that it no longer requires notification 
of status change events. 

GetStatus Returns the current status of the PC Card and its socket. It returns the same 
information obtained with the socket services GetStatus function. 

ResetCard This function resets the PC Card specified in the input argument, providing 
that all other clients that are using the same PC Card agree. Since more that 
one client may use a card, the ResetCard function will not be satisfied until all 
other clients agree to the reset. Card services generates Reset Request call-
back events to all registered clients. Once all client drivers have responded to 
the call-back, card services calls the client that initiated the request via a Reset 
Complete call-back to inform the client whether the reset succeeded or failed. 

SetEventMask Used by the client to indicate the events it wishes to receive call-backs for. 
During registration, a client driver can specify which PC Card events that it 
wants to be notified of. This function can be used after registration to change 
the global event mask, originally set during RegisterClient. This function can 
also be used to change the SocketEvent mask originally set during Request-
SocketMask (see table 20-8), but only if the RequestSocketMask function has 
been previously called by the client. 

GetEventMask Allows the client to obtain the current values of either the global or socket 
event mask. 

275 

285

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

276 

Determining If Card Services Is Installed 
( GetCardServiceslnfo) 

The registration process begins with the card services client verifying that a 
valid copy of card services is installed and determining the compliance level 
of this particular version of card services. The GetCardServicesinfo function 
performs this task. When the card services client calls the GetCardServicesinfo 
function, it specifies a buffer size and pointer to the buffer where card services 
data is to be returned. Information returned by the GetCardServicesinfo func
tion: 

• Length of data returned by card services. 
• Card services signature-Two consecutive bytes containing the ASCII 

characters "CS" verify the validity of the returned data. 
• Number of sockets-Returns the number of sockets in the system. 
• Card services revision-Indicates the vendor's revision level. 
• Card services compliance level-Indicates the PCMCIA compliance level 

of card services. The compliance level is the PCMCIA release number 
upon which this socket services was based. 

• Location of vendor string-Optional information can be provided by the 
card services vendor. This field specifies the start location within the 
buffer where the vendor information can be found. See "Vendor String" 
below. 

• Vendor string length-Specifies the length of the vendor string. 
• Vendor string-A vendor-defined string comprised of ASCIIZ characters. 

Signing Up with Card Services (RegisterClient) 

Once the card services client determines that an appropriate copy of card 
services exists, it then can register with card services using the RegisterClient 
function. A card services client driver registers with card services for notifica
tion of selected events generated by PC Cards. This function can also be used 
by the card services client to request that card services notify it of all PC 
Cards currently installed. This gives the card services client driver an oppor
tunity to identify and configure the PC Cards that it requires access to. 

286

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

In summary, the card services client registers with card services for the fol
lowing reasons: 

• To receive notification of specified PC Card status change events. 
• To specify the type of client (memory, 1/0 or MTD) that is registering. 
• To receive notification of PC Cards already installed in sockets (artificial 

card insertion events). 

Note that card services returns a handle to the client upon return from the 
RegisterClient function. The client driver uses this handle to identify itself 
when calling other card services functions. Note that card services returns to 
the client drivers without having fully completed the registration process. 
Card services attempts to complete the registration process in the background 
and notifies the client driver that registration has been completed via the 
RegistrationComplete call-back. 

Receiving Notification Qf Status Change Events 

To receive notification of status change events occurring at the PC Card, the 
client driver must specify the events that it wishes to be notified of. This is ac
complished by the card services calling a routine within the client when a card 
status change event occurs. This routine is referred to as the client's call-back 
routine. The card services client driver must specify the entry point of its call
back routine and the start address of a data buffer to deposit the change event 
into. Note that an event mask is passed to card services when the RegisterCli
ent function is called, indicating to card services the events for which the 
client wants to be notified. Events that can be specified include the following 
(Refer to the section later in this chapter entitled "The Call-Back Process" for 
additional information): 

• Write Protect change. 
• Card Lock change (from HBAs that support a card interlock mechanism). 
• Card Ejection request (HBAs supporting a card interlock mechanism). 
• Card Insertion request (HBAs supporting a card interlock mechanism). 
• Battery Dead. 
• Ready Change. 
• Card Detect Change. 
• Power Management Change. 
• PC Card reset request by another client. 
• Socket Services Updated. 

277 

287

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

278 

A given client determines which of the events it wants to be notified of during 
the registration process. For example, if the client driver so specifies, it can 
register with card services to receive card insertion events. This allows the cli
ent driver to be notified when a PC Card is inserted, permitting it to then 
check the PC Card to determine if it should configure the card. 

The card insertion callback is triggered when a PC Card is inserted. Card 
services is notified via a status change interrupt generated by the HBA. Card 
services then interrogates the HBA to determine the cause of interrupt and 
calls back all client drivers that have registered to be notified of the card in
sertion event. When called-back each client driver then reads the card's CIS to 
determine if it should configure the card. 

When call-backs occur, card services passes event information to the clients 
call-back buffer. The information passed typically includes an event code, 
logical socket number and information specific to the event. The exact infor
mation returned to the client depends on the specific event. Refer to the 
PCMCIA Card Services standard for details. 

Note that the GetEventMask function can be used by the client driver to read 
the current setting of its event mask. The client passes its card services handle 
to identify itself, and card services returns the event mask indicating which 
status change events the client is currently registered to receive. Similarly, a 
client driver can call the card service's SetEventMask function to change the 
events for which it wants to be notified. 

Determining the Order of Call-Backs: Client Driver Type 

When a client driver registers with card services, it must also specify its driver 
type. For example, if a PC Card contains SRAM, flash memory, and I/0 regis
ters, the client driver that configures the card must contain a separate client 
driver for each group, and must register with card services three separate 
times as defined below: 

• I/0 client driver. 
• Memory technology client driver (MTD) for Flash memory. 
• Memory client driver. 

The client driver type determines the order in which clients are called-back 
when a status change event occurs. I/0 clients are called first on a Last In 
First Out (LIFO) basis; that is, the last I/0 client registered is the first to be 
called. This is done on the premise that the last I/0 client installed likely su-

288

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

persedes client drivers installed previously. MTD drivers are called next on a 
FIFO basis (the first to register is the first to be called). Finally, the memory 
client drivers receive the call-back last, also in a FIFO order. 

Artificial Card Insertion Events 

A client driver may also register with card services to have artificial card in
sertion events generated during the registration process. Card services can 
create a call-back to the client driver for each card currently installed in the 
system. In this way, the client driver's call-back routine can determine which 
of the cards already installed it should attempt to configure. 

A client driver determines whether it should configure a card based on read
ing the CIS to determine if it recognizes the card. For example, a client driver 
may be designed to recognize a specific card (usually a client driver written 
by a manufacturer for only its card), or it may recognize any card within a 
given group (usually a client driver written for example to recognize all mo
dem cards). When recognizing a card that it has been designed to configure 
and monitor, it then attempts to configure the card when an card insertion 
event occurs, providing that the card has not already been configured. 

When artificial insertion notifications have been made for all PC Cards in
stalled in sockets, card services generates a RegistrationComplete event. This 
event informs the client driver that the call-back process is complete. Note 
that when card services returns from the initial RegisterClient service, the 
registration process is not complete. Card services attempts to complete the 
registration process in the background; and therefore, the client is not fully 
registered until the RegistrationComplete call-back is received. 

When processing the artificial card insertion events, the client driver may or 
may not recognize any PC Cards currently installed that it can configure. The 
client driver having registered with card services to receive card insertion 
events, will remain in memory and be called-back when a another PC Card is 
inserted sometime later. The client driver then checks to see if it can the con
figure this card. 

279 

289

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Telling Card Services You're Leaving 
(DeregisterClient) 

If a client driver will no longer be available at the call-back entry point (for ex
ample a driver that is transient), it must deregister with card services by 
passing its card services handle to card services and calling the DeregisterCli
ent function. This tells card services that the client driver will no longer 
require call-backs. 

Client Utility Services (Detecting a PC Card) 

During the configuration process, the client driver must determine if it wishes 
to enable the PC Card, and if so, should attempt to configure it for operation. 
Once the client driver establishes that it will attempt to configure the PC Card, 
it may also be necessary to read additional information from the card to de
termine the specific resources it requires. 

The GetConfigurationlnfo function may be sufficient for many client drivers 
to determine if they should configure the PC Card. Other client drivers may 
need to further process the CIS to determine if it should attempt to configure 
the card. Card services assists with this by providing a group of utility func
tions that the client driver can use to obtain additional configuration 
information from the PC Card's CIS. These functions are listed in table 20-6. 

Table 20-6. Client Utility Functions Used by the Client Driver to Access PC Card 
Information 

Client Utility Functions 

Function Name Description 

Acces~ConfigRegisters Used to access a PC Card configuration registers. 

GetConfigura tionlnfo Provides the client with information about a specified socket and the PC Card 
installed. This information can be used to determine the configuration re-
quirements of the PC Card installed. 

GetFirstTuple Permits the client to specify a given tuple code and find the first occurrence of 
that tuple within the PC Card's CIS. 

GetNextTuple Requests that card services find the next occurrence of the tuple code that was 
previously specified for the GetFirstTuple function. 

GetTupleData Requests the contents of the specified tuple, once it has been located using 
GetFirst/NextTuple. 

280 

290

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 
Table 20-6. Client Utility Functions Used by the Client Driver to Access 

PC Card Information (Continued) 

Client Utility Functions 

Function Name Description 

GetFirstRegion Used by memory technology client drivers (MTDs) to get device information 
for devices defined for the first region within the PC Card (as defined in the 
card's CIS). Information received by the client includes: location of region 
within the card, size of region, speed of devices within region, memory type 
(attribute or common), erase/write capabilities, etc. 

GetNextRegion Finds the device information for the next region within the card. 

GetFirstPartition Similar to the GetFirstRegion function, this function returns information for 
the first partition on the card based on information contained in the PC Card's 
CIS. If a PC Card has no partition information defined in its CIS, then card 
services may be able to determine partition information based on a given file 
system structure (such as the BIOS parameter block (BPB)/FAT structure used 
by DOS). 

GetNextPartition Finds device information for the next partition. 

Client drivers can use these utility functions to obtain information regarding 
the configuration of the PC Card in a given socket, or to scan the CIS itself to 
determine the exact configuration requirements of the PC Card. If the client 
driver is a memory drive, the job of determining the configuration require
ments can be quite simple, since it is likely that the first tuple (Device 
Information Tuple) within the CIS will provide the client driver with much (if 
not all) of the information it needs to configure the card. Tuple processing for 
I/ 0 devices can be considerably more challenging due to the resource combi
nations that may be required. 

Evaluating the PC Card and Socket 
(GetConfigurationlnfo) 

The GetConfigurationlnfo service provides the enabler with information about 
the specified socket and card. An enabler may call this function to determine if 
the card installed into the socket has already been configured. If not config
ured the information returned to the enabler provides a general view of the 
card installed in the socket. Refer to table 20-7 for a list of the information re
turned by the GetConfigurationlnfo service. 

The GetConfigurationlnfo service returns information from the PC Card's CIS 
including the device ID, function ID, and manufacturing ID. This information 
provides a way for the enabler to quickly determine whether or not it should 
attempt to configure the card. 

281 

291

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table 20-7. Information Returned by the GetConfigurationinfo Service 

Information Returned Description 

Logical socket/function number This field contains the logical socket and function number specified. 

Attribute Bits Indicates whether the PC Card has been previously configured and 
if exclusively owned. Also provides miscellaneous information 
regarding the configuration of the card. 

Vee setting The values returned in these fields are those that the 

Vppl setting configuring client driver passed to card services during 

Vpp2 setting RequestConfiguration call. If the card/function has not 

Interface type been configured, these values are invalid. 

Config. register base address 

Status register settings The values returned in these fields are the values that 

Pin replacement register settings were written to the configuration registers by the enabler 

Socket and copy register settings when it called the RequestConfiguration service. These 

Config. option register settings values are invalid if the card/function is not configured. 

Config. Registers implemented This values is obtained from the information passed to card services 
during the RequestConfiguration call. 

First device type This value is taken from the DEVICE tuple. 

Function code These values are taken from the Function ID tuple. 

System initialization byte 

Manufacturers code These values are taken from the Manufacturers ID tuple. 

Manufacturers Information 

Card values This field is a bit map that indicates which configuration register 
were written with valid values. 

Assigned IRQ These fields contain the values specified when the 

IRQ attributes RequestIRQ service was called for this function/ card. 

Base ports 1 These fields are derived from the information specified 

Number of ports when the RequestIO function was called. If the Request-

Attributes 1 IO function has not been called the number of ports 

Base ports 2 fields will contain OOh. 

Number of ports 

Attributes 2 

I/ 0 address lines 

Extended Status Contains the value written to the extended status register when the 
RequestConfiguration call was made. 

DMA Attributes Defines the DREQ# pin assignments and DMA width. 

Assigned Channel Specifies the DMA channel requested during configuration. 

Number of 1/0 windows Specifies the number of 1/0 windows in use for this socket and 
function. 

Number of memory windows Specifies the number of memory windows in use for this socket and 
function. 

282 

292

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

Additionally, the GetConfigurationlnfo function provides specific configura
tion information about a socket and card that has already been configured. If 
the card has been previously configured, then card services returns the client 
handle (in handle argument, DX register) of the enabler that has already con
figured the card, along with the primary configuration settings. If the card has 
not been configured then the client handle and configuration settings returned 
by the service are invalid. 

Note that support for multiple function cards has been added. An enabler can 
specify the logical socket and a function within the PC Card that it wishes to 
get information about. 

Scanning the CIS (GetFirstTuple, GetNextTuple, Get
Tuple Data) 

When the client driver must determine the specific configuration requirements 
of the PC Card, it reads the configuration table within the PC Card's CIS. The 
client driver can use the GetFirstTuple function to specifically request the tu
ple containing the information it needs. For example, if a client driver wishes 
to find the first Configuration Table Entry within the CIS, it passes the socket 
number and the desired tuple code (lBh for the configuration table entry tu
ple) to card services and calls the GetFirstTuple function. Card services will 
scan the card's CIS looking for the first instance of the tuple code that was 
specified in the call. 

The GetTupleData function can be called next to obtain the data within the 
tuple. When the data is returned, the client driver interprets the data to de
termine the system resources required by the PC Card. The client then 
attempts to obtain these resources from card services and, if successful, no 
further tuple processing is necessary. However, if the system resources speci
fied in the first configuration table entry are not available, then the client must 
continue processing the CIS by calling the GetNextTuple function, which finds 
the next occurrence within the CIS of the indicated tuple type. This process 
continues until the resources specified by a Configuration Table Entry are de
termined to be available. If no more tuples of the type specified exist within 
the CIS when the GetNextTuple is called, card services returns a code indicat
ing that no more items are available. 

Note that the GetFirstTuple, GetNextTuple, and GetTupleData functions use 
the same argument packet format. This simplifies calling these utility func-

283 

293

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

tions (since the argument packet returned by one function can be used when 
calling the other). 

Simplifying CIS Processing for Memory and MTD 
Clients (GetFirstPartition, GetNextPartition, 
GetFirstRegion, GetNextRegion) 

Some client drivers may need to obtain information describing partitions and 
regions within memory cards. Since obtaining the necessary information re
quires reading multiple tuples, the GetFirst/NextRegion and 
GetFirst/NextPartition functions can be used by clients to-get the required in
formation without having to process the tuples individually. 

Resource Management Services (Assigning Resources) 

284 

Card Services maintains a database of resources available within the system. 
Client drivers can call card services to verify availability of resources needed 
by their PC Card. Configuring a PC Card and programming the HBA is a two 
step process. 

1. The client driver must acquire each resource from the resource table one 
at a time. If any of the resources required are not all available, this particu
lar combination of resources cannot be satisfied and another group must 
tried. 

2. Once all resources required by the PC Card have been successfully allo
cated, the actual configuration (allocation of these resources to the HBA 
and PC Card) occurs. 

The resource management functions allow the client driver to verify the avail
ability of and to allocate resources required by the PC Card. These functions 
are listed in table 20-8. The services in the shaded boxes were added by the PC 
Card 95 standard. Refer to the card services specification for details related to 
these functions. 

294

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Function Name 

RequestIO 

RequestIRQ 

Request Window 

ReleaselO 

ReleaselRQ 

Release Window 

Chapter 20: Card Services 

Table 20-8. Resource Management Functions 

Resource Management Functions 

Description 

Used to request I/0 address ranges for the PC Card. This function can be 
called only once per socket, and a maximum of two I/0 address ranges can be 
specified per card. Input parameters request the starting or base address for 
each range and the number of 1/0 address locations requested for each range, 
and whether a given address range is to be shared with other devices within 
the system. This function, if successful, assigns the specified 1/0 address 
ranges to the client and adjusts the card services resource table to indicate 
that the assigned ranges are no longer available. 

Used to obtain a system interrupt line for the calling client. The client speci
fies which interrupt line or lines will satisfy its interrupt needs. Input 
parameters request that an interrupt be either exclusive (not shared), time
multiplexed shared (client coordinates with other clients sharing this line, 
using the ModifyConfiguration function to enable and disable its connection 
to the interrupt line) or shared dynamically through an interrupt sharing 
protocol supported by the system. An input parameter also specifies whether 
the interrupt sent from the PC Card should be pulse or level mode. This func
tion, if successful, assigns the specified IRQ line to the client and adjusts the 
card services resource table to indicate that the assigned IRQ is no longer 
available. 

Allows the client to request ownership of a block of system memory ad
dresses. The client passes the starting (base) address and the size of the 
memory window along with a variety of other parameter to card services. 
Other parameters include: type of memory window (attribute or common), 
window enabled or disabled, whether window can be shared with other cli
ents (only time-multiplexed sharing is permitted), whether paging of window 
is enabled, and speed of the memory devices. This function assigns the ad
dress ranges (if available) to the client and adjusts the resource table to 
indicate that they are no longer available. Note that this same block of ad
dresses can be assigned to another client if the shared parameter is set. This 
function can be called multiple times per socket, up to the maximum number 
of memory windows supported by the HBA. Card services passes a window 
handle back to the client to be used when calling other functions pertaining to 
this window. 

Adjusts the resource table by releasing the 1/0 address range(s) acquired by a 
client with the RequestlO service. 

Adjusts the resource table by releasing the IRQ acquired by a client with the 
RequestIRQ service. 

Adjusts the resource table by releasing the block of memory address locations 
acquired by a client with the Request Window function. The window handle 
is passed to card services to specify the window to be released. 

285 

295

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Modify Window 

MapMemPage 

RequestSocketMask 

ReleaseSocketMask 

ModifyConfiguration 

RequestConfiguration 

ReleaseConfiguration 

286 

Table 20-8. Resource Management Functions (Continued) 

Allows parameters assigned to a given block of memory addresses acquired 
with the RequestWindow function to be modified. These parameters include 
memory device speed, window type (attribute or memory) and window en
abled or disabled. The window handle is passed to card services to specify the 
window to be modified. 

Selects a 16KB memory block within the PC Card to be mapped into a 16KB 
page within system memory. The 16KB memory block within the PC Card is 
identified by the client with an absolute offset value from the beginning of the 
PC Card's memory array. 

Selects the status change events that the client wishes the PC Card to generate. 
The client specifies which status change events it wants to be generated at the 
socket. A bit-map of the events masks each status change event that should 
not be reported by the HBA from the specified card. Note that during the 
RegisterClient function, the client driver indicates which status change events 
it wishes to be notified of, setting a global event mask. 

Releases the status change events mask, so that no status change events are 
reported by the PC Card residing in this specified socket. 

Allows the configuration established by the Request Configuration function to 
be modified. Note that IRQ routing and the 1/0 address range assigned can
not be modified with this function. These parameters can only be changed by 
first releasing the configuration and then performing the requests for those 
resources again. 

Used to establish the configuration for an 1/0 interface. The 1/0 address 
ranges and system int~rrupt previously acquired are established at the hard
ware level (HBA and PC Card). Other configurable items are also specified 
based on the values indicated by the selected Configuration Table Entry, in
cluding: Vee, Vppl, Vpp2, interface type (memory only or memory/IO) and 
setting for the configuration registers, if present. 

This function releases the configuration information set previously using the 
RequestConfiguration function. This function returns the interface to a mem
ory-only interface and power is removed from the socket (if no memory client 
indicates its use of the PCCard). The IRQ and 1/0 resources must be released 
separately to adjust the resource table. 

296

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

Requesting a Resource 

A client driver may use three types of request functions to determine if the re
sources that its PC Card requires is available. These functions include: 

• RequestIO-used to request a range of I/0 address locations 
• RequestIRQ-used to request a system interrupt line 
• RequestWindow-used to request a range of memory address locations 
• RequestDMA-used to request a DMA channel. 

A client driver whose PC Card requires one or more of these system resources 
calls card services to determine their availability. The client passes its handle 
to card services along with a pointer to the memory buffer containing the in
put argument packet. The argument packet passed to card services specifies 
parameters identifying the resource being requested. Card services checks the 
allocation table to determine if the requested resource is available. If available, 
card services updates its resource table, indicating that the resource is no 
longer available and returns "success" along with the argument packet, verify
ing that the resource parameters that have been granted. 

Once all of the resources required by a PC Card have been acquired with the 
request functions, the actual task of programming the HBA and configuring 
the card can then occur. See the chapter entitled, "Client Drivers". 

Card services has no way of knowing what resources are available for a PC 
Card to use. As a result, platform-specific utility programs have been written 
to probe the system and build a data base of available resources. This data 
base is passed to card services to manage. 

Requesting Resource Combinations 

Consider the example of a serial port that typically requires a range of I/0 
addresses and an IRQ. In a PC-DOS environment, a serial port is typically 
configured either as COMl (I/0 locations 3F8h-3FFh & IRQ4), COM2 (2F8h-
2FFh & IRQ3), COM3 (3E8h-3EFh & IRQ4) or COM4 (2E8h-2EFh & IRQ3). The 
client driver for a serial port must ensure that both the RequestIO and the Re- . 
questIRQ functions return success before configuring the PC Card and HBA. 

Assume that the client attempts to configure the serial port as COMl. If the 
RequestIO function returns "success", then I/0 locations 3F8h-3FFh are allo-

287 

297

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

288 

cated to the client driver and the resource table is updated to indicate these 
1/0 addresses are no longer available. Next, the client driver calls RequestIRQ 
to obtain IRQ4, but card services returns BAD _IRQ to the client, indicating 
that IRQ4 is not available. If the client simply moved to the next configuration 
option (COM2), the 1/0 address range 3F8h-3FFh would remain allocated and 
other clients requesting an address within that range will not be successful, 
even though the addresses are not being used. 

To avoid this problem, the client must release resources that have been 
granted but will not be used. The ReleaseIO function would be used in this in
stance before moving on to the next configuration option. Similarly, the 
ReleaseIRQ and ReleaseWindow are used to release interrupts and memory 
address ranges, respectively. 

Configuring the HBA and PC Card 
(RequestConfiguration} 

When the client driver has obtained from card services all of the resources 
needed by the card, then the actual configuration can take place. Prior to this 
time the resources have been granted to the client driver for assignment to its 
PC Card, but neither the HBA nor the PC Card have yet been configured to 
use these resources. 

The card services client uses the RequestConfiguration function to complete 
the configuration process. When the RequestConfiguration function is called, 
card services makes the appropriate calls to socket services to set the specified 
values into the window registers and IRQ steering registers. Also, the index 
number of the Configuration Table Entry whose configuration options were 
successfully allocated is written to the card's Configuration Option Register, 
located in attribute memory. 

The client must ensure that it is ready to perform all of the functions associ
ated with a fully-operational card before calling the RequestConfiguration 
function. Once the function call completes, the PC Card and HBA are config
ured and the PC Card is now "on line". For example, in an x86 environment, if 
interrupts are used by a given PC Card, the client driver must ensure that the 
pointer to the device's interrupt service routine has been installed in the inter
rupt table prior to configuring the card. It will then be prepared to handle the 
card's interrupt requests. 

298

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

Bulk Memory Services 

Bulk memory services primarily relate to memory clients, utility programs, 
execute-in-place (XIP) managers, and other clients requiring access to memory 
cards. These clients can use bulk memory functions to access memory devices 
without knowing the details of the various memory technologies used by PC 
Cards. The functions within the bulk memory services group support RAM 
devices, but not devices such as flash memory. 

Table 20-9. Bulk Memory Functions 

Bulk Memory Services Functions 

OpenMemory This function opens an area of common memory within a PC Card that 
is to be accessed some time in the future (i.e. read, write, copy or erase 
operation). A memory handle is returned that identifies this memory 
range when performing one of the operations mentioned above. 

ReadMemory This functions reads data from an area of common memory specified by 
a given memory handle (obtained from the OpenMemory function). The 
calling MTD passes a pointer during the call specifying a system mem-
ory buffer to which data is to be returned. 

WriteMemory This function writes data to a common memory area identified with a 
memory handle obtained via the OpenMemory function. The calling 
MTD passes a pointer to a system memory buffer that contains the data 
to be written. 

Copy Memory This function reads data from a source location and writes it to a desti-
nation within the same common memory region that is identified by a 
memory handle obtained via the OpenMemory function. 

CloseMemory This function closes an area of common memory that was previously 
opened with the OpenMemory function. The calling MTD passes the 
memory handle of the memory area to be closed along with the call. 

RegisterEraseQueue Establishes an erase queue where erase entries can be made. 

CheckEraseQueue Notifies card services that one or more erase request entries have been 
sent to the erase queue. 

DeregisterEraseQueue Eliminates an erase queue previously registered using the RegisterE-
raseQueue function. This function fails if erase entries within the queue 
are still pending completion. 

Since flash memory devices require particular erase and write algorithms, 
PCMCIA chose not to attempt embedding the code necessary to support all 
potential variations into card services. Instead, a memory device that requires 
a specific algorithm must supply a memory technology driver (MTD) that is 
designed to handle access to the card. When a client such as a memory client 
attempts to access memory within a flash card, card services passes the re-

289 

299

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

quest to the flash MTD, which makes the low-level access to the memory de
vice. Table 20-9 lists the bulk memory functions and provides a brief 
description of each. 

Advanced Client Functions 

290 

Advanced client functions include miscellaneous functions that satisfy the 
special needs of some client drivers. Table 20-10 lists the advanced client 
functions and provides a brief description of each. Refer to the PCMCIA card 
services specification for details. 

Table 20-10. Advanced Card Services Functions 

Advanced Card Services Functions 

ReturnSSEntry Provides a means of gaining access directly to socket services. Normally, 
access to socket services is denied by card services to ensure that it main-
tains synchronization with the state of the HBA. If client drivers are 
allowed access to socket services, the HBA setting can be modified without 
card services knowledge. If absolutely required, a client driver can request 
access to socket services via the ReturnSSEntry call. The programmer must 
be certain that nothing is changed at the HBA level that will affect the op-
eration of card services. 

MapLogSocket Determines the physical adapter and socket that is assigned to a logical 
socket number. 

MapPhySocket Identifies the logical socket number assigned to a physical adapter and 
socket. 

Map Log Window Identifies the physical adapter and window that are mapped to a given 
logical window handle. 

Map Phy Window Identifies the logical window handle assigned to a given physical adapter 
and window. 

RegisterMTD Assigns an MID to a region of memory. When access to the assigned region 
occurs, the MTD is called to handle the memory operation. 

RegisterTirner Allows a client driver to register for-callback at specified time intervals. A 
client may register multiple times to get notification at various time inter-
vals. Timing is based on lms interval. The client specifies the call-back 
interval based on the number of lms ticks specified during registration. A 
timer handle is returned during registration and passed to the client when 
the call-back occurs. This permits the client to identify the specific timer 
that has expired when the call-back occurs. 

SetRegion Allows a client driver of a card that does not have a CIS to specify the char-
acteristics of a given region within the card. 

ValidateCIS Scans the CIS by reading the tuple chain contained on the PC Card. The 
function returns the number of valid tuples found within the chain. 

300

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 
Table 20-10. Advanced Card Services Functions (Continued) 

Advanced Card Services Functions 

RequestExclusive Permits a client driver to request exclusive access to a given PC Card. Card 
services ensures that no other client is currently using the card before 
granting exclusive access to this client driver. If another client driver is 
currently using the card and is unwilling to release control, then function 
will fail. 

ReleaseExclusive Releases exclusive access to a card that was previously granted via the 
RequestExclusive function. 

GetFirstClient Returns the client handle of the first client to register with card services. 

GetNextClient Returns the client handle of the next client to register with card services. 

GetClientinfo Provides client driver information for the client handle specified. 

AddSocketServices Allows another socket services handler to be installed to support an addi-
tional HBA. 

ReplaceSocketServices Replaces the current version of socket services with a new version. 

VendorSpecific Defined by the vendor of card services to extend functionality. 

AdjustResourcelnfo Adjusts the resource database maintained by card services. This data base 
contains the system resources that are available for use by PC Cards. This 
function allows system resources to either be added or removed from the 
database. 

The Call-Back Process 

Card service makes call-backs to clients that are triggered by a wide variety of 
events. The type of call-back events can be categorized as: 

• Card insertion/ removal events 
• Registration complete event 
• Status Change events 
• Card insertion/ ejection request events 
• Exclusive request/ compete events 
• Reset request/ complete events 
• Client Information request event 
• Erase Complete event 
• MTD Request event 
• Timer event 
• New socket services event 

When making call-backs card services uses the call-back entry point specified 
by each client during registration. The specific events supported by card 
services are listed in figure 20-11. 

291 

301

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

292 

Some events must be supported by all clients. During registration, the client 
driver specifies the individual events that it wishes to be notified of. The 
events that must be supported include: 

• Client_Info - a client may request information about another client when 
calling the GetClientinfo service. Card services calls-back the specified cli
ent using the Client_Info call-back. 

• Exclusive_Request - an client that has previously configured a PC Card 
rnay receive a RequestExclusive call-back, indicating that another client 
wishes to gain exclusive access to the PC Card. For example, a generic cli
ent driver rnay have enabled a modem, but a device-specific client driver 
may want to gain exclusive access to the same PC Card. 

• Reset_Request - request by a client to reset a socket/PC Card must be 
granted by other clients using the same socket/PC Card. This call-back 
notifies a client that a ResetRequest has been made. 

Identifying a Status Change Event 

When a status change event occurs at one of the PCMCIA sockets, an inter
rupt is generated by the HBA. Card services is notified of the event via a 
system interrupt (called a status change or management interrupt). When the 
card services receives the interrupt, it must determine which socket encoun
tered the status change event. Card services accomplishes this by calling the 
socket services Acknowledgelnterrupt function which returns the socket(s) 
that experienced the status change event. Once the socket or sockets that have 
experienced a status change have been identified, then card services calls the 
GetStatus function to determine which event caused the interrupt. 

The Acknowledgelnterrupt function must be called once for each HBA in the 
system. The client supplies the HBA number to socket services when the Ac
knowledgelnterrupt function is called, and socket services returns a bit rnap of 
the sockets within the adapter that have experienced a status change. When 
obtaining status information from. the HBA, socket services also prepares the 
HBA to generate another status change interrupt if another should occur. 

The Acknowledgelnterrupt function only identifies the sockets that have ex
perienced a status change. After the Acknowledgelnterrupt routine completes, 
card services then calls the socket services GetStatus function, HBAs typically 
preserve the state of the status change so that the exact status change event 
that caused the interrupt can be determined using the GetStatus function. If 
the HBA does not preserve this state information, then socket services must. 

302

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 20: Card Services 

Note that the Acknowledgelnterrupt function is called by the status change in
terrupt service routine. Interrupts must not be re-enabled while processing a 
status change interrupt. This could cause nesting of status change interrupts 
while processing the socket service's Acknowledgelnterrupt, a situation that 
socket services is unprepared to manage (because the routine is non
reentrant). 

The Client Call-Back 

Numerous events can occur that require a call-back to client drivers. These 
events are listed in table 20-11. The events in the shaded boxes were added 
with the PC Card 95 release. 

Table 20-11. Call-Back Events Defined by Card Services 

Event Code Source Client(s) Registered By 

BATTERY_DEAD Olh Hardware Socket RequestSocketMask 

BATTERY_LOW 02h Hardware Socket RequestSocketMask 

CARD _INSERTION 40h Hardware All RegisterClient 
CARD_INSERTION [A] 40h DeregisterMTD MTDs RegisterClient 

CARD_INSERTION [A] 40h RegisterClient Requester RegisterClient 

CARD _INSERTION [A] 40h ReleaseExclusive All RegisterClient 

CARD_INSERTION [Al 40h RequestExclusive Requester RequestExclusive 

CARD _INSERTION [Al 40h RequestExclusive All RegisterClient 

CARD_LOCK 03h Hardware Socket RequestSocketMask 

CARD_READY 04h Hardware Socket RequestSocketMask 

CARD_REMOV AL 05h Hardware Socket RequestSocketMask 

CARD_REMOVAL [Al 05h ReleaseExclusive Socket RequestSocketMask 

CARD _REMOVAL [Al 05h RequestExclusive All RegisterClient 

CARD_RESET llh ResetFunction Socket RequestSocketMask 

CARD_UNLOCK 06h Hardware Socket RequestSocketMask 

CLIENT_INFO 14h GetClientlnfo Provider RegisterClient 

EJECTION_ COMPLETE 07h Hardware Socket RequestSocketMask 

EJECTION_REQUEST 08h Hardware Socket RequestSocketMask 

ERASE_ COMPLETE 81h Queued Erase Requester RequestEraseQueue 

EXCLUSIVE_ COMPLETE 0Dh RequestExclusive Requester RequestExclusive 

EXCLUSIVE_REQUEST OEh RequestExclusive Socket RequestSocketMask 

INSERTION_ COMPLETE 09h Hardware Socket RequestSocketMask 

INSERTION_REQUEST OAh Hardware Socket RequestSocketMask 

MTD_REQUEST 12h Card Services MTD RegisterClient 

.... fj•({••.:.:,········~~··· 
,,sl'II'-· '.·>:O";>·,, ,_;{c,:-::.1. •,;;;_•,, 

j-,/;}. · y,, ..•••. -.. ''. c:jJrti,if) 
j}f '''\," i~~l,:1,1 /,;< "<:< i 

.. ._ e.• ·l1~~~1Z~{ly;t~§1<i:·•.\ 
ii>,',,, .• -,--,;;-·,,·"'-

293 

303

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table 20-11. Call-Back Events Defined by Card Services 

REGISTRATION_ COMPLETE 82h RegisterClient Requester RegisterClient 

REQUEST _ATTENTION 18h Hardware All RegisterClient 

RESET_COMPLETE 80h ResetFunction Requester ResetFunction 

RESET_PHYSICAL OFh ResetFunction ~ocket RegisterClient 

RESET_REQUEST 10h, ResetFunction Socket RegisterClient 

SS_UPDATED 16h Card Services All RegisterClient 

TIMER_EXPIRED 15h Hardware Requester RegisterTirner 

WRITE_PROTECT 17h Hardware All RegisterClient 

Configuring PC Cards During POST 

294 

The previous discussions of PC Card configuration have presumed that the 
cards will be installed when the operating system loads or when the PC Card 
is inserted sometime after the operating system has loaded and the system is 
running. If however, the need to load the operating system from the PC Card 
exists, the previously discussed approaches for configuring the cards don't 
work 

To perform initial program load (IPL) from a PC Card, ROM-based PCMCIA 
initialization code must be included with the system. This code must be able 
to program the HBA and parse the CIS to determine if a given card should be 
configured during POST (Power-On Self Test). Once the HBA has been pro
grammed, memory cards containing a boot sector can be recognized as 
bootable since they will contain a BIOS Parameter Block (BPB) that permits the 
booting from the PC Card in the same fashion as a floppy drive. 

Similarly, ATA drives can be recognized by ROM code by reading the initiali
zation byte within the Function Identification tuple. The initialization byte 
specifies that the device should be configured during POST .. Once the ATA 
drive is configured, IPL can occur from the PCMCIA ATA drive like any other 
ATA drive. 

Note that this initialization process occurs prior to card services being in
stalled. As a result, the a client driver will not have registered to receive status 
change events from the PC Card. When the operating system boots, a driver 
for the PC Card that is performing IPL can register with card services. 

304

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 21: Client Drivers 

Chapter 21 
The Previous Chapter 

The previous chapter focused on the role of card services in the PCMCIA en
vironment. It also reviewed each of the functions defined by the PC Card 
specification that apply to 16-bit PC Cards, and defined the related return 
codes. The call back mechanism was also described and . the event and call 
back codes were defined. 

This Chapter 

This chapter discusses the three basic types of enablers: point enablers, device
specific enablers, and super enablers. The chapter also discusses the jobs per
formed by generic memory enablers (and MTDs) and 1/0 device enablers. 

The Next Chapter 

The next chapter discusses the problems associated with loading the operating 
system from a PC Card. It also defines mechanisms used to determiµe 
whether a given PC Card is a bootable device, and the firmware support re
quired to support PC Card booting. 

Overview 

This chapter discusses PC Card enablers. The chapter focuses primarily on cli
ent driver enablers, but also includes a brief discussion of point enablers at the 
end of the chapter. Note that the terms PC Card enabler, client, client driver, 
and device driver are all used to describe the software that is responsible for 
configuring a PC Card. This chapter uses the terms enabler and client driver. 

295 

305

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Specific types of client drivers (enablers) discussed in this chapter include: 

• SRAM client drivers 
• Flash client drivers and Memory Technology Drivers (MTDs) 
• Generic I/ 0 client drivers 

In order to configure a PC Card, enablers must first register with card serv
ices. The primary function of an enabler is to detect and configure PC Cards 
that it supports. As such, the enabler must be prepared to configure its card 
no matter when it is installed. In order to configure cards installed after power 
up, the enabler registers with card services to receive a call back (i.e., a card 
insertion call-back) each time card services detects that a PC Cards has been 
installed. During registration, the enabler can also request that card services 
generate a call-back for each PC Card already installed, thereby calling the en
abler's configuration routine. 

The Card Insertion Call-Back 

296 

When card services makes a card insertion call-back it specifies the type of 
call-back initiated, along with the logical socket that the card was inserted 
into. The call-back routine then attempts to configure the card. Figure 21-1 il
lustrates the typical process used by an enabler to configure a card. The CIS 
may have to be accessed several times to obtain a combination of card
required resources that can be successfully allocated to the card (i.e., resources 
that are not already assigned to other devices). 

The configuration process begins when card services makes the card insertion 
call-back to the enabler. The enabler detects which event caused the call-back 
and obtains information supplied by card services (e.g., which logical socket 
the card was inserted into). 

The method of configuring a card varies depending of the type of card to be 
configured. The next section discusses generic memory enablers, and the fol
lowing section describes the operation of a generic I/0 enabler. 

As discussed in the previous chapter, a variety of services are available for the 
PC Card enablers (i.e., card services client drivers) to configure a PC Card. 

306

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 21: Client Drivers 

Start Configuration 

l Card configured 

Call or does not belong 

GetConfiglnfo 
to enabler 

onfigured Card not c 
and b elongs to ~ 

~ 

enabler 
~ 

Process 
CIS 

Not available, 

Request 
try next options 

allocation Not available, 
of resources no more options 

Resources 
granted to 
enabler 

, 

Call 
RequestConfig 

i 
End 

(card configured) 

~ End -(ca rd not configured) 

~ End -(car d not configured) 

Figure 21-1. A Sample Configuration Process Used By a Card Services Client 

Memory Drivers and Memory Technology Drivers 

Memory client drivers provide virual disk drive support. In short, these driv
ers are responsible for storing and retrieving files within the memory card. 
The method required to access the memory card varies depending on the type 
of memory devices (i.e., memory technology) implemented in the card. Since 
memory devices (such as flash) require various programming algorithms, 
each memory type must have an associated memory technology driver 
(MTD). 

297 

307

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

298 

Figure 21-2 illustrates the overall software architecture specified for accessing 
memory cards as virtual disk drives. Notice that memory client drivers re
ceive file access requests from the file system and must access the memory 
card to fullfill each request. The file system might be the standard file system 
used by the opertating system (e.g., the DOS FAT system) or an installable 
system required when accessing flash memory. Card services provides bulk 
memory services that simplifies the memory client driver's job of accessing a 
specific block of memory within the memory card. 

SRAM memory client drivers typically interface directly to the operating sys
tem's file manager, since there are no restrictions related to writing and 
reading data to or from SRAM. These client drivers are designed to access 
memory via the bulk memory services provided by card services. Since ac
cessing SRAM is uniform and quite simple (byte read/write capability), the 
memory technology driv12r is incorporated into card services. 

Flash memory client drivers interface directly to a flash file system. A special 
file system is required for flash devices due to the special requirements asso
ciated with writing to flash memory. Two major factors are: 

• Write operations require first erasing a specified block of memory fol
lowed by the block write, and may take several seconds to complete. 

• Flash memory also has a limited write-cycle life. That is, repetitive era
sures and writes to the same memory block destroys the chips ability to 
retain data within that block. The maximum number of erasures and 
writes are specified by the manufacturer (e.g., a flash device may specify 
as life of as few as 10,000 writes). 

Knowing the restrictions associated with accessing flash memory, the flash file 
system is designed specifically to provide compatible access to flash memory. 
For example, the flash file system distributes writes to flash memory to 
minimize the effects of repetitive write ware and accomodates the slow erase 
time. 

Memory enablers (client drivers) have a formidable task to perform since a 
wide variety of memory card implementations exist. The enabler must also 
acquire a drive letter from the operating system to allocate to each card slots 
that a memory card might be inserted into. The following sections describe the 
jobs performed by SRAM and flash client drivers. 

308

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Operating 
System 

Card Services 

Socket Services 

Chapter 21: Client Drivers 

Applications 

SRAM 
Client Driver 

Installable 
File System 

Bulk Memory Services _,___., Memory 
'--~------' Technolog 

SAAM 
MTD 

SRAM 
Card 

HBA! 
,· 

Flash 
Card 

Driver 

Figure 21-2. Memory Client Driver Software Environment 

SRAM Client Drivers 

SRAM client drivers typically load as installable device drivers via the con
fig.sys file or equivalent mechanism. One of the tasks performed by the device 
driver is to detect the presence of card services by calling the GetCSinfo serv
ice. If the call returns the ASCII string "CS," then SRAM client driver 
recognizes that card services are installed. Note that if card services is not in
stalled, the SRAM driver typically reports the error condition and terminates 

299 

309

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

300 

without remaining resident in memory. When card services is detected, the 
driver then registers with card services. 

The driver must also obtain logical drive letters needed to perform the disk 
emulation. Note that the drive letter is acquired when the device driver in
stalls even though a memory card may not be installed in the system. In this 
case, an attempt to access files associated with the drive letter assigned to the 
socket will result in a drive not ready error. 

SRAM Client Driver Registers with Card Services 

The client driver performs the registration process by calling the RegisterCli
ent service. The SRAM client identifies itself as a memory client, registers to 
receive relevant call-back events, and passes a pointer to its call-back routine. 
The client may also request that card services generate a card insertion call
back for each PC Card already installed in the system. The memory client re
ceives a handle value from card services when it returns from the call. Once 
registered, the memory client awaits call-backs from card servcies, notifying it 
when a PC card is inserted or removed. 

The SRAM Client Driver Call-Back 

When card services generates the card insertion call-back, it also passes the 
logical socket number that the PC Card was inserted into. The memory client 
then attempts to configure the PC Card. 

The memory client must first determine if it should attempt to configure the 
PC Card by determining the card type. Memory clients can use the bulk 
memory services to access a specific region within the PC card. To access 
memory, the client first calls the OpenMemory service by specifying an offset 
within the card's attribute or common memory address space. Card services 
then returns a memory handle to the client that it can use when accessing 
memory relative to the offset specified in the OpenMemory service. Note that 
if card services does not support bulk memory services, the memory client 
must use the RequestWindow service to specify the host system address space 
that it wishes to use to access PC Card memory. 

Reading from or writing to PC Card memory is accomplished by calling the 
ReadMemory or WriteMemory services. The memory client passes the mem
ory handle it received from the OpenMemory service and specifies the 
memory offset and range of addresses it wishes to access. The call will likely 

310

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 21: Client Drivers 

specify location zero within the attribute memory address space. When the 
data is returned to the memory client it evaluates the DEVICE tuple to de
termine if the card contains SRAM. 

Note that determining the card type can be a complicated process for memory 
clients. Some memory cards implement the CIS in attribute memory (required 
by the PC Card standard), some implement the CIS in common memory, 
while others do not implement a CIS at all. To complicate matters, some CIS 
implementations are invalid, requiring the enabler to attempt interpretation of 
the faulty CIS. If the card does not contain a CIS, the enabler attempts to de
tect the presence of the BPB (BIOS parameter block), which contains 
information that specifies the logical size of the disk. The BPB if present 
should reside at either location O or 512 in common memory. 

If an SRAM card is detected, the call-back routine return to card services, in
dicating that the card Wa$ successfully configured. If the PC Card was not an 
SRAM card, the client returns to card services, indicating the card was not 
configured by the SRAM enabler. 

Flash Client Drivers 

Figure 21-3 illustrates the flash client driver software environment. Three 
types of flash client drivers are illustrated in figure 21-3. Two of the client 
drivers are shown interfacing to a flash file system and the other via a file 
translation layer. (Each file system is discussed later in this chapter.) 

The flash client drivers typically load as installable device drivers via the con
fig.sys file or equivalent mechanism. The first task performed by the device 
driver is to detect the presence of card services. If card services are not in
stalled, the flash driver typically reports the error condition and terminates 
without remaining resident in memory. When card services is detected, the 
driver then registers with card services. 

Flash client drivers differ from SRAM drivers in two important ways: 

• Flash client drivers interface to the flash file system 
• MTD client drivers must be installed to handle calls made to bulk memory 

services 

The MTD must register prior to the flash client driver. This is necessary be
cause the flash client driver uses the MTD to access the flash card. 

301 

311

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Operating 
System 

Card Services 

Socket Servic es 

Applications 

I . 
' 

Installable Standard 
File System File System 

~ ' 

' ,r 

Flash Flash 
File System Translation 

Laver 

Flash Flash Flash 
Client Driver Client Driver Client Driver 

J~ t t ... ... 
I Bulk Memory Services 

If I, 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

~ ~ 

I, 

HBA 

u 
Flash 
Card 

, Memory 
Technology 

Driver 

Figure 21-3. Software Environment Required for Flash Card Support 

302 

312

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 21: Client Drivers 

Like SRAM client drivers, flash client drivers must also obtain logical drive 
letters needed to perform the disk emulation. The drive letter is acquired 
when the device driver installs even though a memory card may not be in
stalled in the system. In this case, an attempt to access files associated with the 
drive letter assigned to the socket will result in a drive not ready error. 

The Flash File System 

Two primary types of flash file system solution are provided by software 
vendors today. These systems are generally referred to as the flash file system 
(FFS) and flash translation layer (FTL) as illustrated in figure 21-3. The FFS 
provides file management based on variable size data blocks, while the FTL 
interfaces directly to the DOS file system which allocates data based on stan
dard block sizes. The FTL system is compatible with disk utility programs 
such as Norton and PC Tools, whereas~ the FFS-based systems are not. 

MTD Registers with Card Services 

The MTD registers with card services by calling the RegisterClient service. 
When registering the MTD specifies that it is a MTD client during , specifies 
relevant call-back events it want to be notified of, and passes a pointer to its 
call-back routine. The MTD client may also request that card services generate 
a card insertion call-back for each PC Card already installed in the system. 
The MTD client receives a handle value from card services when it returns 
from the call. Once registered, the MTD awaits call-backs from card servcies, 
notifying it when a PC card is inserted or removed. 

The MTD Call-Back 

When card services generates the card insertion call-back, it also passes the 
logical socket number that the PC Card was inserted into. The MTD client 
then determines if the PC Card contains any flash memory that it is designed 
to access. This can be accomplished by calling the GetFirstRegion and Get
NextRegion services. These services return information (ol?tained from the 
CIS) about the card type, size, location, access time, and block erase details of 
the regions. If the MTD recognizes a regions of memory that it knows how to 
access, it then registers with card services to control access to that specific re
gion of memory. 

303 

313

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

304 

MTD Registers Memory Regions 

To register a memory region with card services the MTD calls the Regis
terMTD service. This notifies card services that the MTD has agreed to handle 
access to the memory regions specified. When a flash client driver requests 
access to this region via bulk memory services, card services will make an 
MTDRequest call-back to the MTD. The information specified in the call-bac1> 
packet specifies the operation be requested. 

Flash Client Driver Registers with Card Services 

The client driver performs the registration process by calling the RegisterCli
ent service. The flash client identifies itself as a memory client, during 
registration and specifies which call-back events it wishes to be notified of, 
and passes a pointer to its call-back routine. The client may also request that 
card services generate a card insertion call-back for each PC Card already in
stalled in the system. The memory client receives a handle value from card 
services when it returns from the call. Once registered, the memory client 
awaits call-backs from card services, notifying it when a PC card is inserted or 
removed. 

The Flash Client Driver Call-Back 

When card services generates the card insertion call-back, it also passes the 
logical socket number that the PC Card was inserted into. The memory client 
then attempts to configure the PC Card. 

The memory client must first determine if the card is the type that it is de
signed to enable. Memory clients can use the bulk memory services to access a 
specific region within the PC card. To access memory, the client first calls the 
OpenMemory service by specifying an offset within the card's attribute or 
common memory address space. Card services then returns a memory handle 
to the client for use when accessing memory starting at the offset specified in 
the OpenMemory service. Also when the OpenMemory service is called, card 
services recognized the region being opened is registered by the MTD. Note 
that if card services does not support bulk memory services, the memory cli
ent must use the RequestWindow service to specify the host system address 
space that it wishes to use to access PC Card memory. 

314

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 21: Client Drivers 

Reading from or writing to PC Card memory is accomplished by calling the 
ReadMemory or WriteMemory services. In this instance, the memory client 
passes the memory handle it received from the OpenMemory service and 
specifies the memory offset and range of addresses it wishes to access. The 
call will likely specify location zero within the attribute memory address 
space. When the data is returned to the memory client it evaluates the DE
VICE tuple to determine if the card contains flash memory. 

If a flash card is detected the call-back routine returns to card services, indicat
ing that the card was successfully configured. If the PC Card was not a flash 
card, the client returns to card services, indicating the card was not enabled 
by the flash client driver. 

Accessing Flash Memory 

Once the flash card has been enabled, access made to the flash card virtual 
drive will be fulfilled. The flash client driver receives the request from the 
flash file system and calls the appropriate bulk memory service. Card services 
recognizes that the call is to a region controlled by an MID that previously 
register to access the specified memory region. Card services responds by 
making MID call-backs to specify the operation being requested. 

1/0 Card Client Drivers 

Two basic types of I/ 0 client drivers are popular. 

• Device-specific client drivers - drivers designed to detect and configure 
a specific PC Card. The client drivers are typically shipped by the manu
facturer of a PC Card and are designed to configure this specific PC Card. 

• Generic (Super) client drivers - drivers designed to detect and configure 
a wide range of 1/0 cards based on generic types, regardless of manufac
turer. 

Each type of 1/0 client driver install as device drivers when the config.sys file 
is executed during the system boot process. Figure 21-4 illustrates the primary 
actions taken by an generic 1/0 client driver when it initializes, registers with 
card services and attempts to configure PC Cards. 

305 

315

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

. 306 

Start 

Enabler Waits 
for Call-back from 

Card Seivices 

1 CS makes 
Registration 

I Complete 
I Call-back 

End 

Call 
GetFirstTuple 

(Conflg Table Enty) 

NO 

Return 
toes 

Call 
RequestlO/ 
RequestlRQ/ 
RequestWndw 
RequestDMA 

Release 
Duplicate 
Resouces 

(if any) 

Call 
RequestConfig 

NO 

Call 
GetNextTuple 

(next config 
entry) 

Release 
Resouces 

For Incomplete 
Entry 

Release 
Resouces 

For Incomplete 
Entry 

Figure 21-4. I/0 Enabler Registration and PC Card Configuration Process 

1/0 Client Driver Registers with Card Services 

The registration process begins after the client driver detects that card services 
has initialized. This is accomplished with the GetCardServiceslnfo call. Card 
services returns information about card services and verifies its presence by 
also returning the ASCII string "CS." If card services is not initialized, the I/0 
client driver reports the error condition and terminates without remaining 
resident in memory. If card services are present the client driver calls the 
RegisterClient service. When the I/0 client driver makes the call it: 

• identifies itself as an I/ 0 client, 
• specifies which events it wants to be notified of, 
• requests a card insertion call-back for each PC Card currently installed in 

sockets, and 
• passes the entry point of it call-back routine when making the call. 

316

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 21: Client Drivers 

Card services returns a client handle to the I/0 client driver upon return from 
the RegisterClient service. The client driver then awaits card insertion call
backs. Card services generates a Cardlnsertion call-back for each PC Card al
ready installed in a card socket (as requested by the client driver during 
registration). If all sockets are empty, card services generates a Configura
tionComplete call-back to signal the end of the configuration process. This 
example presumes that an I/0 PC Card was installed when the system was 
powered on. 

The 1/0 Client Driver Call-Back 

Card services generates a Cardlnsertion call-back to the I/0 client driver. The 
driver detects the call-back and evaluates the call-back packet to determine 
the socket into which the PC Card was inserted. 

Identifying the PC Card 

Next the GetConfigurationlnfo service is called to determine if the PC Card 
has already been configured by another enabler. If already configured, the cli
ent driver returns to card services without configuring the PC Card. If the PC 
Card has not been configured, the client driver evaluates other data returned 
by the GetConfigurationlnfo service to determine the type of function that is 
associated with the PC Card. If the function is one that the generic I/0 enabler 
is designed to handle, the configuration process continues. 

Determining Resources Requirements 

Next, the client driver checks the first entry within the configuration table to 
determine the resources required by the card. This can be accomplished by 
and calling the GetFirstTuple service and specifying a tuple code of 1 Bh (the 
configuration table entry tuple code). Card services scans the CIS until if finds 
the first instance of tuple lBh and returns to the client driver. The I/0 driver 
checks the completion status and detects that card services has located the 
first configuration table entry. Next, the client driver calls GetTupleData and 
card services returns the contents of the first configuration table entry. The 
tuple data is evaluated to determine the resources required by the PC Card. 

307 

317

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

308 

Requesting the Resources 

As the client driver detects a configurable resource within the configuration 
table entry (e.g., a range of I/0 address locations), it checks with card services 
to determine if the resource is available for the I/ 0 card to use. The client re
quests a resource by calling the respective resource request service (e.g., 
RequestIO). When RequestIO is called Card services receives the base 1/0 
address and range of address locations requested. It uses these values to per
forms a look-up within the resource management table to determine if the 
resource is available. Card services indicates whether or not the resource was 
available in the return code. 

The client driver makes requests for all resources listed within the configura
tion table entry and determines their availability. The configurable resources 
that can be acquired from the system include: 

• Memory address locations-via the RequestWindow service 
• I/ 0 address locations - via the RequestIO service 
• Interrupt request lines - via the RequestIRQ service 
• DMA channels - via the RequestDMA service 

The specific actions taken when a resource is not available depends of whether 
the entry is a default entry of not, as discussed in the following paragraph. 

If the client driver detects that the entry is tagged as a default entry, it knows 
that it should attempt to acquire all resources that are specified within this en
try. It should retain all resource acquired from card services even if one or 
more of the resources requested are not available. If the entry is not a default 
entry, the client driver knows that the entire set of resources specified within 
entry must be obtained to satisfy the configuration. If any one resource is not 
available, then the client driver should release any individual resources that 
were acquired from card services by calling the respective release resource 
service (e.g., ReleaseIO). 

If a given entry fails to satisfy the PC Card's configuration, the client driver 
then proceeds to the next entry by calling the GetNextTu,ple service. Card 
services finds the next configuration table entry (tuple 1B) and the client 
driver calls GetTupleData and starts the resource acquisition process again. 

318

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 21: Client Drivers 

Configuring the PC Card 

When all resources needed for the PC Card's configuration have been ac
quired from the system, the client driver configures the HBA and PC Card by 
calling the RequestConfiguration service. In response, card services configures 
the HBA and PC Card. The HBA is configured by loading the appropriate 
HBA registers (via socket services) that satisfy the configuration being re
quested. This includes reconfiguring the socket interface to memory or I/ 0, 
programming the I/0 window registers, and programming the IREQ# steer
ing logic to direct the IRQ to the appropriate system IRQ line. The PC Card is 
configured by writing the index number of the configuration table entry (the 
entry that satisfied the configuration) into the configuration option register 
(COR) within the card's attribute memory address space. 

Point Enablers 

Point enablers are dedicated enablers that bypass card and socket services. 
These enablers are popular in environments such as DOS where limited mem
ory address space is available for application programs. Card and socket 
services take a considerable amount of memory when they install. Added to 
this is the space required by the enabler(s) and any TSR (terminate and stay 
resident programs) that might be used. As a result, too little memory is left for 
many application programs to run. 

One solution used to relieve this memory shortage, is to remove card and 
socket services from the system, thereby freeing up memory that is needed to 
run the application program. Eliminating the card and socket services pre
vents PC Card client drivers from performing their functions, thus _PC Card 
are never enabled and cannot be used. In order to use PC Cards point enablers 
are needed to configure the PC Cards. 

In the absence of card and socket services, point enablers must communicate 
directly with the HBA to load the appropriate registers necessary to gain ac
cess to the PC Card. The card's CIS must be read and interpreted to identify 
the PC Card. If the point enabler recognizes the PC Card, it attempts to con
figure the card by loading the appropriate registers within the HBA to satisfy 
the configuration, and by writing to the configuration registers to configure 
the PC Card. Note that the resources used to configure the PC Card must be 
specified manually by the user (typically via software switches). 

309 

319

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 22: Booting from PC Cards 

Chapter 22 
The Previous Chapter 

The previous chapter discussed the three basic types of enablers: point en
ablers, device-specific enablers, and generic (super) enablers. The chapter also 
discussed the jobs performed by generic memory enablers (and MTDs) and 
I/ 0 device enablers. 

This Chapter 

This chapter discusses the problems associated with loading the operating 
system from a PC Card. It also defines mechanisms used to determine 
whether a given PC Card is a bootable device, and the firmware support re
quired to support PC Card booting. 

The Next Chapter 

The next chapter introduces execute-in-place (XIP) support defined by the PC 
Card standard. The major components of an XIP environments are specified 
and the XIP mechanism is described. 

Configuring PC Cards During POST 

The previous discussions of PC Card configuration have presumed that PC 
Cards will be initialized either as the operating system loads or when the PC 
Card is inserted into a socket sometime after the operating system has loaded 
and the system is running. If however, the need to load the operating system 
from a PC Card exists, the previously discussed approaches for configuring 
the cards don't work. 

311 

320

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

312 

The Problem 

The normal method used in the PC environment to configure and initialize 
bootable devices (i.e., hard drive, video controller, and LAN adapters that 
support remote boot from the network) requires that the bootable device con
tain initialization code in a device-specific ROM. The system initialization 
code contained within system ROM scans the region of memory address space 
from location COOOOh-DFFFFh to detect the presence of a device ROMs (i.e., a 
bootable devices). If a device ROM is detected, the system calls the initializa
tion routine within the device ROM which is responsible for configuring the 
device. In this way, the bootable device is configured and can participate in 
loading the operating system. 

To perform initial program load (IPL) from a PC Card, it too must be config
ured prior to beginning the boot operation. The standard method of 
configuring PC Cards requires the use of socket services, card services, and 
the PC Card's client driver. This software doesn't initialize until the operating 
system loads, making it unavailable for configuring a PC Card that must be 
used to load the operation system. Even if the PC Card contains a device 

· ROM it cannot be detected by the system firmware during the ROM scan 
(because a memory window must first be programmed within the HBA to 
gain access to PC Card memory). 

The Solution 

ROM-based PCMCIA initia.lization code must be included with the system to 
support IPL from PC Cards. This firmware code must be able to program the 
HBA to open an attribute memory window to permit access to the CIS. Then 
the CIS can be evaluated to determine if the PC card is bootable, and there
fore, should be configured during the POST (Power-On Self Test) sequence. 

Bootable Memory Cards 

The PCMCIA initialization firmware detects the presence of memory cards 
and configure them by opening a common memory window to provide access 
to the PC Cards memory array (i.e., virtual drive). The boot code being PC 
Card aware attempts to load the operating system from the memory card. If 
the memory card has been formatted and the system files reside within the 

321

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 22: Booting from PC Cards 

memory card, the firmware will recognize the boot sector and load the operat
ing system from the memory card. 

Note that once the operating system loads, the memory cards will no longer 
be accessible unless the memory card contains a config.sys file that lists all of 
the PCMCIA relevant drivers. In this case, the socket services, card services, 
and the associated client drivers are loaded, thereby, providing access to the 
PC Cards after the operating system has loaded. 

Bootable AT A Devices 

PCMCIA initialization firmware recognizes ATA PC Cards by evaluating the 
function identification tuple within the CIS (table 22-1). The function identifi
cation tuple indicates the device type as shown in table 22-2. The shaded area 
identifies the value used by the AT A PC Card. 

Table 22-1. Format of the Function Identification Tuple 

Byte Function Identification Tuple Format 

0 TPL_CODE CISTPL_FUNCID (21H) 

1 TPL_LINK Link to next tuple (at least 2) 

2 TPLFID _FUNCTION PC Card function code 

3 TPLFID _SYSINIT System initialization bit mask 

Note that function extension tuple will follow the function identification tuple 
that identify specific features associated with the ATA card (Refer to the chap
ter entitled, "An ATA PC Card Example"). The function identification tuple 
also includes an initialization byte that specifies whether the device should be 
configured during POST and whether the ATA card contains a device ROM. 
(See table 22-3.) 

If the initialization byte indicates that the AT A card should be configured 
during POST but that it does not contain a device ROM, then the firmware is 
responsible for configuring the AT A card. Once the AT A card is configured, 
the operating system can boot directly from the drive. 

313 

322

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

314 

Tab)e 22-2. Contents of the Function Identification Byte 

Code Name Meaning 

Oh Multi-Function PC Card has multiple functions. Examine the fol-
lowing function identification tuples that follow for 
individual functions. 

lh Memory Memory Card (RAM, ROM, EPROM, flash, etc.). 

2h Serial Port Serial I/0 port, includes modem cards. 

3h Parallel Port Parallel printer port, may be bi-directional. 

4h Fixed Disk Fixed drive, may be silicon may be removable. 

Sh Video Adapter Video interface, extension tuples 
(type and resolutions supported). 

6h Network LAN Local Area Network adapter. 
Adapter 

7h AIMS Auto-Incrementing Mass Storage card. 

8 .. FFh Reserved Unused in this release. Reserved by PCMCIA for 
future use. 

Table 22-3. Contents of the Initialization Byte 

7 I 6 I 5 I 4 I 3 I 2 1 0 

Reserved for future use, must be set to zero (0) ROM POST 

If the ATA drive also contains a device ROM, then firmware can map the 
ROM into the ROM scan region (COOOOh-DFFFFh) and the standard initializa
tion process will detect the device ROM. The AT A device ROM containing the 
ATA enabler and driver will be called by PCM CIA firmware. The ATA' s de
vice ROM performs the configuration process and returns to the system 
firmware. Once the drive is configured, IPL can occur from the PCMCIA 
ATA drive like any other ATA drive. 

323

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 23: Execute In Place (XIP) 

Chapter 23 
The Previous Chapter 

The last chapter discussed the problems associated with loading the operating 
system from a PC Card. It also defined mechanisms used to determine 
whether a given PC Card is a bootable device, and the firmware support re
quired to support booting from PC Cards. 

This Chapter 

This chapter discusses the Execute-In-Place mechanism defined by PCMCIA 
that allows code to be executed directly from the card rather than copying 
files to and executing from system memory. 

The Next Chapter 

The next chapter introduces the ExCA (QuickSwap) specification that defines 
a required set of hardware and software support that is intended to improve 
PC Card interoperability across platforms based on the Intel X86 architecture. 

The XIP Goals 

Execute-In-Place (XIP) provides a mechanism for application programs to exe
cute directly from PC Card memory. This eliminates the need to copy code 
from the PC Card into host memory before being executed, reducing the 
amount of system memory address space needed to load and execute a large 
application program. This is a particular concern in the DOS operating envi
ronment where memory address space is at a premium. Application programs 
written to support XIP could be supplied on a ROM-based PC Card or could 
be loaded from disk to a memory card (such as flash) and be executed directly 
from the PC Card. 

315 

324

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Similar techniques, including the popular expanded memory specification 
(EMS), allow an application to reside in memory outside the memory address 
range that is addressable by DOS. Small portions (16KB pages) of these remote 
memory ranges are mapped into areas addressable by DOS, permitting them 
to be accessed. The EMS protocol defined in the Lotus/Intel/Microsoft (LIM) 
specification is supported by XIP and is called LXIP. Additionally, XIP defines 
support for applications designed to use extended memory (address space be
yond 1MB) using Intel 80386 compatible addressing modes. This form of XIP 
is termed EXIP. A new type of XIP called SXIP (Simple XIP) is defined for sys
tems with very limited paging mechanisms and small address space. The 
execution and read-only data images require no more than 64KB of address 
space. 

The XIP Software Hierarchy 

316 

The functions performed by XIP software includes: 

• Setting up XIP partitions in PC Card memory. 
• Establishing directories within PC Card memory. 
• Copying XIP applications into the XIP partitions. 
• Mapping the application within the processor's addressable space. 
• Starting the XIP application execution. 
• Providing services for the XIP application so that it can manage program 

execution. 

XIP File Management 

XIP applications do not use the normal DOS File Allocation Table (FAT) or 
Flash File System (FFS). Instead, XIP applications use a dedicated software in
terface consisting of XIP utilities, XIP management software and socket 
services to map the PC Card memory into an XIP partition. The XIP software 
can only execute an XIP application from an XIP partition. An XIP partition 
can be set up in PC Card memory by utility programs. The PCMCIA specifi
cation details the organization and data structures required for partitions and 
directory entries. 

325

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 23: Execute In Place (XIP) 

The XIP Loader 

Once the dedicated XIP partition exists then an XIP application can be loaded 
into the PC Card's common memory address space within an XIP partition. 
The XIP directory also contained within PC Card memory is then updated to 
reflect the application's presence. An XIP application from the user perspec
tive begins execution in the same way that a DOS application does (by typing 
the name of the executable file). In this case, however, an XIP loader is in
voked when an executable XIP file is called. The XIP loader's task is to find the 
XIP application that resides within an XIP partition in PC Card memory. The 
loader searches for the application within the XIP directory, maps the appli
cation into system address space and starts the application. 

The XIP Device Drivers (API and Hardware Manipula
tion) 

Once started, the application manages program execution by making the nec
essary calls to the XIP driver. The PCMCIA specification' defines all of the 
functions needed by the application. The XIP device-driver functionality is 
split between a high-level driver (XIP.SYS) and a low-level driver 
(PCMCIA.SYS). The high-level driver is implemented as an installable device 
driver and provides all the services needed by the XIP application. This pro
vides the XIP application's APL The low-level driver provide services for the 
high-level driver when it needs to access the memory-mapping hardware 
within the HBA. It can be installed as an installable device driver or included 
in the system's BIOS routines. 

The intent of the split driver approach is to remove the details of the hardware 
interface from the high-level driver, making it easy to implement a generic XIP 
driver that can be used with any XIP-capable system. The system manufac
turer then need only concentrate on developing the low-level driver used to 
manipulate the hardware (the same as the related socket service functions). 

317 

326

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

LXIP 

EXIP 

SXIP 

318 

LXIP is compatible with the LIM 4.0 specification. This protocol requires that 
four separate 16KB blocks of contiguous memory address space, called page 
frames, be mapped into the processor's memory address space. Each of these 
four page frames must permit access within the PC Card's XIP application, 
which is also organized into 16KB blocks, called pages. An LXIP application is 
aware of this organization and interacts with the LXIP manager to access PC 
Card memory via the page frames. 

A PCMCIA host bus adapter designed to support the LXIP capability must 
have the ability to map these four 16KB address ranges independently. The 
LXIP manager accepts requests from the XIP application and sets up access to 
PC Card memory via the socket services interface and the HBA. 

EXIP specifies the ahility of applications to execute directly from PC Card 
memory when the memory card is mapped into the processor's extended ad
dress space (above 1MB). The EXIP manager determines where PC Card 
memory will be allocated in extended memory and programs the HBA to map 
the card into extended memory. 

SXIP applications are quite small and cannot exceed more than 64KB of ad
dress space. In this respect they are similar to .com programs that execute in a 
single x86 memory segment. The entire program image is directly mapped 
into the processor's address space and no remapping or paging is performed. 

327

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Part Five 

ExCA(QuickSwap) 

328

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 24: ExCA (QuickSwap) 

Chapter 24 
The Previous Chapter 

The previous chapter described the Execute-In-Place (XIP) functionality pro
vided by PCMCIA that allows code to be executed directly from files stored 
on PC Cards. Three types of XIP were defined: one for small applications 
(SXIP), one based on expanded memory concepts (LXIP) and the other for 
applications using extended memory (EXIP). 

This Chapter 

This chapter introduces the ExCA (QuickSwap) specification that defines a re
quired set of hardware and software support, intended to improve PC Card 
interoperability across platforms based on Intel x86 architecture. 

The Next Chapter 

The next chapter provides a sample PCMCIA host bus adapter. The adapter 
documented is the Cirrus Logic PD6722 designed for use in x86 PC-based sys
tems. 

The ExCA Goal 

The Intel ExCA (Exchangeable Card Architecture) specification provides spe
cific HBA, PC Card, and software requirements for systems implementing 
DOS-based Intel x86 compatible systems. By defining minimum hardware and 
software requirements for these systems, Intel hopes to ensure PC Card com
patibility across x86 systems implementing the ExCA standard. 

The need for such a standard stems from the flexibility incorporated into the 
PCMCIA specification. The standard was designed to provide latitude for de
signers who are developing PCMCIA solutions over a wide range of PC and 

321 

329

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

non-PC platforms. However, this latitude, while achieving its goal, also cre
ates a greater possibility of compatibility problems. 

ExCA Scope 

In most respects, the ExCA specification defines a subset of the features within 
the PCMCIA standards, narrowing down the implementation possibilities and 
reducing the risk of PC Cards and systems being developed that are incom
patible with one another. Additionally, ExCA defines some system 
characteristics not specified in the PCMCIA standard. The ExCA specification 
describes the minimum capabilities of the following items: 

• The ExCA Host Bus Adapter 
• Socket Services 
• Card Services 
• PC Cards (both memory-only and memory and I/0) 

ExCA also encompasses a three phase compliance test, including socket 
hardware functional testing, system software functional testing and system in
tegration testing. 

This chapter highlights the ExCA specification's features. Refer to the ExCA 
specification for complete details. 

ExCA Host Bus Adapter Requirements 

322 

Host bus adapter requirements fall into the following categories: 

• Address Mapping (memory and I/0) 
• Interrupt Support 
• System Power 
• PC Card Insertion and Removal 
• Event WakeUp (i.e. ring indicate when system is in sleep mode) 

Address Mapping {memory and 1/0) 

Specific requirements exist for ExCA compliant host bus adapters to ensure 
that address windowing capability provides the features needed in DOS
based operating environments. Address mapping features are described for 

330

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 24: ExCA (QuickSwap) 

ExCA compliant sockets for both memory sockets and Memory or 1/0 sock
ets. 

Memory Address Mapping· 

Each socket must include a minimum of four memory windows that can be 
acquired and used by a socket. This requirement provides support for ex
panded memory (L-XIP) in which four. separate 16KB address ranges must be 
acquired from system memory and mapped to the PC Card. Support must 
also exist for each socket to provide a fifth window, thereby allowing access to 
attribute memory when necessary. 

Each memory window must support system address capabilities for both real 
mode (within the first 1MB of memory address space) and protected mode 
(above 1MB of memory address space) operation. Furthermore each ExCA 
memory address window must have the following capabilities and character
istics: 

• windows are mappable anywhere between 256KB to 16MB (in host space) 
• minimum window size of 4KB 
• maximum window size of 256KB (real mode) 
• maximum window size of 8MB (protected mode) 
• window size can be any 4KB increment (4, 8, 12, 16, 20 KB ..... ) or may be 

a power of two size (4, 8, 16, 32, 64 KB ...... ) 

Consistent with the PCMCIA specification, memory windows are not allowed 
to overlap in system address space, unless use of the address range is time 
multiplexed. 

1/0 Address Mapping 

ExCA requires that at least two I/ 0 windows be implemented per socket. 
Characteristics of ExCA I/ 0 windows include: 

• minimum window size of 1 byte 
• maximum windows size of 256 bytes 
• window size must be power of two (1, 2, 4, 8, 16, 32 .... bytes) 

Note that no remapping of the system 1/0 address is required. Addresses are 
directly mapped from system address locations to the same locations on the 
PC Card. 

323 

331

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

324 

ExCA does not support overlapping I/0 windows without time multiplexing 
them, as is required for overlapping memory windows. This means that no 
support need exist for the INP ACK# signal on ExCA compliant adapters. 

Interrupt Support 

ExCA adapters generate a status change interrupt for all card status change 
events defined in the PCMCIA specification and they redirect or steer PC 
Card interrupts to system IRQ lines as required. 

Status Change Interrupt 

ExCA adapters generate a single status change interrupt for card events from 
all adapter sockets. Software must have the ability to globally select which 
type of card events generate a status change interrupt. Additionally, individ
ual events can be masked at the socket, providing selection of specific events 
that generate a status change interrupt on a per socket basis. Support must 
also exist for enabling and disabling the status change interrupt under soft
ware control. 

The adapter captures all status change events reported by each socket so that 
software can determine which socket encountered the status change event. 
The actual state of the status change signals from each socket can also be read 
directly from the adapter. 

Status change events from I/0 cards are reported when an I/0 card asserts 
its status change pin. Status change information must be read directly from 
the I/0 card's configuration register (pin replacement register). 

PC Card Interrupts 

A PC Card interrupt must be steerable to any available system interrupt. 
Availability depends on the host system implementation as listed in table 24-1. 

ExCA compliant systems must ensure that at least one interrupt is available 
for standard communications and local area networks (LANs). In other 
words, the system must supply at least one interrupt request line from each 
bullet list that follows. 

332

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 24: ExCA (QuickSwap) 

Table 24-1. Interrupts Potentially Available For Use By PC Cards 

Systems with One Inter- Systems with Two Interrupt Controllers 
rupt Controller 

IRQ2 IRQ 2/9 IRQ10 

IRQ3 IRQ3 IRQ 11 

IRQ4 IRQ4 IRQ12 

IRQS IRQS IRQ14 

,IRQ7 IRQ7 IRQ15 

Standard Communications Interrupts (Serial Port) 

• IRQ3 
• IRQ4 

Standard LAN Interrupts 

• IRQS 
• IRQ7 
• IRQ 10 
• IRQ 11 
• IRQ 15 

Note that ExCA recommends that all interrupts listed in table 24-1 be sup
ported by the adapter. However, a given implementation may choose to use 
only a subset since the system design likely uses some of the interrupts. 

Interrupt sharing support is system dependent. Systems based on ISA host 
buses do not support interrupt sharing, while systems based on Micro Chan
nel and EISA can share interrupts. Micro Channel and EISA devices use level 
sensitive interrupt triggering to support sharing, thus cards that support only 
the PCMCIA specified pulse-mode interrupts will not behave according to the 
level sensitive triggering protocol. ExCA compliant adapters must support 
level-mode interrupts from the PC Card, while pulse-mode support is op
tional. 

325 

333

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

326 

System Power Requirements 

ExCA systems must supply minimum power requirements as indicated in the 
ExCA specification. PCMCIA compliant PC Cards requiring more power than 
specified by the ExCA specification may not operate correctly when installed 
in sockets that are ExCA compliant. Additionally, ExCA compliant systems 
need not provide separate programmable voltages for Vppl and Vpp2. Refer 
to the ExCA specification for actual power requirements. The voltage supply 
combinations that must be provided at the socket include those listed in table 
24-2. 

Table 24-2. ExCA Voltage Requirements 

Vee Vppl Vpp2 

required Ov Ov Ov 

required 5v 5v 5v 

required 5v 12v 12v 

optional 5v 0v Ov 

PC Card Insertion/Removal 

The ExCA specification defines the sequence of events, interface signal status, 
Vee and Vpp levels and critical timing delays for PC Card insertion and re
moval. The ExCA specification supports both cold socket insertion 
(recommended) and warm insertion (not recommended). Hot socket insertion 
of PC Cards is not supported by the ExCA. Table 24-3 defines the difference 
between cold, warm and hot PCMCIA sockets. 

Table 24-3. State of Socket When PC Card is Inserted 

Address State Data State at Control Signal 
Socket State Vee and Vpp at Signal Signal Contact State at Signal 

Contact Contact 

Cold Socket Off HighZ orOv HighZorOv HighZorOv 

Warm Socket On HighZ orOv HighZorOv HighZorOv 

Hot Socket On Driven Active Driven Active Driven Active 

334

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 24: ExCA (QuickSwap) 

Card Insertion 

The ExCA specification defines the sequence of events and minimum time du
ration for these events when a card is inserted into a socket. The sequence of 
events is listed below. 

1. Card inserted into socket (both CDl # and CD2# asserted) 
2. Adapter applies Vee 
3. Adapter asserts reset to PC Card 
4. Adapter removes reset and PC Card begins initialization 
5. Initialization completes within 20 ms or else deasserts READY 
6. Client driver polls READY to detect when PC Card is ready to be ac

cessed. 

Card Removal 

The ExCA specification also defines the sequence of events that are recom
mended when the PC Card is removed from the socket as listed below. Note 
that when a PC Card is removed from the system, the socket interface may be 
active. 

1. Adapter detects card removal (CDl# and/ or CD2# deasserted) 
2. Adapter ceases to drive active signals to the interface (address, data and 

control signals go to high impedance state or Ov) 
3. Vee removed from the socket (not required if warm socket insertion is 

supported) 

Note that the adapter detects that a card is being removed before any of the 
other interface or power pins lose contact with the socket (because the Card 
Detect pins are shortest). Next, the adapter releases the interface by tri-stating 
the address, data and control lines, (which are the intermediate length signal 
pins), and finally removes power to the Vee pins (which are the longest pins). 
As the PC Card is removed it is still in contact with the signals pins and 
power pins long after they are disabled by the adapter. 

ExCA Socket Services 

The ExCA specification defines a minimum subset of socket services functions 
that are required for ExCA compliance. Table 24-4 lists the socket services 
functions and notes those that are required versus optional. 

327 

335

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

328 

Table 24-4. Socket Services Functions Required/Optional 
for ExCA Compliant Systems 

Function Required? 

GET_ADP_CNT Yes. 

GET_SS_INFO Yes 

INQ_ADAPTER Yes 

GET_ADAPTER Yes 

SET_ADAPTER Yes 

INQ_WINDOW Yes 

GET_WINDOW Yes 

SET_WINDOW Yes 

GET_FAGE Yes 

SET_PAGE Yes 

INQ_SOCKET Yes 

GET_SOCKET · Yes 

SET_SOCKET Yes 

GET_STATUS Yes 

RESET_SOCKET Yes 

INQ_EDC No 

GET_EDC No 

SET_EDC No 

START_EDC No 

PAUSE_EDC No 

RESUME_EDC No 

STOP_EDC No 

READ_EDC No 

GET_ VENDOR_INFO No 

ACK_INTERRUPT Yes 

PRIOR_HANDLER No 

SS_ADDR No 

ACCESS_ OFFSETS No 

VEND_SPECIFIC No 

CARD _SERVICES Yes 

Note that the EDC and vendor specific functions are optional for ExCA 
compliant socket services. The implementation and definition of the required 
socket services functions are compliant with the PCMCIA socket services 
standard. 

336

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 24: ExCA (QuickSwap) 

ExCA Card Services 

ExCA compliant systems must support card services; but, like socket services 
not every card services function is required. Table 24-5 lists the card services 
functions that are required. 

Tab[(; 24-5. Card Services Functions Required/Optional For ExCA Compliance 

Function Required? Function Required? 

Client Services Functions DeregisterEraseQueue No 

GetCardServiceslnfo Partial CloseMemory No 

RegisterClient Yes Client Utilities Functions 

DeregisterClient Yes GetFirstTuple Yes 

GetStatus Yes GetNextTuple Yes 

ResetCard Yes GetTupleData Yes 

SetEvenMask Yes GetFirstRegion No 

GetEvenMask Yes GetNextRegion No 

Resource Management Functions GetFirstPartition No 

RequestlO Yes GetNextPartition No 

ReleaseIO Yes Advanced Client Services Functions 

RequestIRQ Yes ReturnSSEntry Yes 

ReleaseIRQ Yes MapLogSocket Yes 

Request Window Yes MapPhySocket Yes 

Release Window Yes MapLogWindow Yes 

Modify Window Yes MapPhyWindow Yes 

MapMemPage Yes RegisterMTD No 

RequestSocketMask Yes RegisterTimer Yes 

ReleaseSocketMask Yes SetRegion No 

RequestConfiguration Yes ValidateCIS Yes 

GetConfigurationlnfo Yes RequestExclusive Yes 

ModifyConfiguration Yes ReleaseExclusive Yes 

ReleaseConfiguration Yes GetFirstClient Yes 

Bulk Memory Services Functions GetNextClient Yes 

OpenMemory No GetClientinfo Yes 

ReadMemory No AddSocketServices No 

WriteMemory No ReplaceSocket Services No 

Copy Memory No VendorSpecific No 

RegisterEraseQueue No AdjustResourceinfo Yes 

CheckEraseQueue No AccessConfigurationRegister No 

329 

337

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

ExCA PC Cards 

ExCA recommends which tuples an ExCA compliant PC Card should imple
ment. Table 24-6 below lists the recommended tuples for memory and I/0 PC 
Cards. The lower portion of the table lists three tuples that might contain in
formation needed by system initialization code or peripheral installation 
software for determining if a PC Card should be installed and configured 
during POST (Power-On Self Test) prior to loading the operating system. This 
capability is needed primarily for those devices that must be used to load and 
install the operating system. 

Table 24-6. Tuples Recommended by the ExCA Specification 

Tuples Recommended by ExCA Memory Cards ? 1/0 Cards? 

Device Information Yes Yes 

Level 1 Version/Product Information Yes Yes 

Configuration Yes Yes 

Configuration Table Entry Yes Yes 

JEDEC Device ID Yes No 

Device Geometry Information (flash) Yes No 

Recommended for bootable PC Cards 

Card Manufacturer ID Yes Yes 

Function ID Yes Yes 

Function Extension Yes Yes 

PC Card Event WakeUp 

330 

Systems implementing power conservation modes, such as suspend or sleep, 
may want to wake the system up if some critical event occurs at the PC Card. 
Events, such as a call to a modem, could be used to wake the system up and 
return to normal full power operation so that the event can be processed. Cur
rently the PCMCIA specification (release 2.1) does not define an event wakeup 
procedure, and in its absence, ExCA defines the following optional definition 
for event wakeup. 

Two events can cause event wakeup in an ExCA compliant system: 

• Ring Indication from a modem or fax 
• remote power up from a LAN card 

338

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 24: ExCA (QuickSwap) 

ExCA compliant HBAs and PC Cards use socket pin 63 (Status Change) for 
event wakeup, replacing either the READY, Write Protect or Battery Voltage 
Change status change indication on the PC Card. The PC Card indicates its 
support of event wakeup via the CIS. 

The Configuration Table Entry tuple identifies the card's capability for using 
event wakeup via pin 63. The configuration entry tuple contains a miscellane
ous features field that can be used to specify which status change indicators 
are supported by the card and is used to indicated which status change event 
that the event wakeup mechanism uses. The host bus adapter is programmed 
to direct the status change indication to the power management interrupt, 
which requests that the system return to full power operation. 

331 

339

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

332 

340

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Part Six 

An Example HBA 

341

 
Part Six

An Example HBA  

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 25: An Example HBA-The CL-PD6722 

Chapter 25 
The Previous Chapter 

The previous chapter introduces the ExCA (QuickSwap) specification that de
fines a required set of hardware and software support, intended to improve 
PC Card interoperability across platforms based on Intel x86 architecture. 

This Chapter 

This chapter provides an overview of a sample PCMCIA host bus adapter 
(The Cirrus Logic CL-PD6722) used in Intel x86 implementations for either an 
original PC or ISA compatible host bus. 

Introduction to the CL-PD6722 

This chapter is intended as a brief look at an actual PCMCIA host bus adapter. 
The Cirrus Logic CL-PD6722 was chosen as the example adapter for several 
reasons. First, the Intel 82365 PCMCIA adapter chip is currently implemented 
in more systems that any other, and the CL-PD6722 is register compatible 
with the Intel chip, with a few minor exceptions. The second reason is that it 
includes considerably more functionality than the Intel chip. 

The CL-PD6722 controls two PCMCIA sockets via a single 208-pin PQFP. Fea
tures of the CL-PD6722 include the following: 

• PCMCIA 2.1 and JEIDA 4.1 Compliant 
• Intel 82365SL (Step A) compatible register set, ExCA compliant 
• ISA host bus interface 
• Dual socket interface 
• Automatic Low-Power Dynamic Mode 
• Programmable Suspend Mode for power conservation 
• Five programmable memory windows per socket 
• Two programmable I/0 windows per socket 
• 8-bit or 16-bit host bus interface 

335 

342

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

• AT A disk interface support for small form-factor drives 
• DMA support 
• Mixed-Voltage operation (3.3v or 5v) operation 

Socket Power Control 

336 

The CL-PD6722 uses the PowerGood signal from the system's power supply 
as its reset. When PowerGood transitions from low to high the CL-PD6722 
leaves the reset state and begins operation. Power to the socket is controlled 
by chip outputs that go to power switching devices. As shown in figure 25-1, 
the CL-PC6722 has four output signals per socket that control power to the 
socket as follows: 

• Vcc_5 - when asserted 5v is applied to socket Vee 
• V cc_3 - when asserted 3.3v is applied to socket V cc 
• Vpp_ Vcc when asserted Vee is applied to socket Vpp1. 

• Vpp_PGM when asserted the programming voltage (12v} is applied to 

socket V pp 1. 

Internal registers determine which of these signals will be asserted and when. 

+ + 
0, w 
< w a. < 

/ / 
(") a. 

C') 

/ 1 / 

Vcc_5 
~ ,... 

PD6722 Vcc_3 Power Socket Vee 
~ ... 
~ Switching ~ 

Vpp_Vcc 
~ 

Socket Vpp 
~ ,... 
~ 

Vpp_PGM 
~ 

~ 1/ 

J~ 

I./ 
+ 
....L 

I\) 

< a. 
(") 

Figure 25-1. CL-PD6722 Socket Power Control Signals 

343

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 25: An Example HBA -The CL-PD6722 

Vee Control 

In PCMCIA 2.1 compliant systems, Vee to the socket must always be Sv, but 
can be switched to 3.3v if the PC Card indicates the ability to operate at 3.3v 
via the CIS. If 3.3v operation is supported, software will write to Miscellane
ous Control 1 register, specifying that Vee should be switched to 3.3v. (Note 
that the CL-PD6722 provides limited support for Vee sensing and can be used 
in new designs that incorporate the low voltage connectors. Contact Cirrus 
Logic for details.) 

The CL-PD6722 supports two methods of applying Vee to the socket: 

• Vee control via the client driver, card service and socket services software 
chain when a card is detected. 

• Automatic V cc control via the CL-PD6722 controller 

When a card is inserted into the socket, the -CD pins are asserted and the 
adapter detects the card's presence. When autopower mode is not selected, 
the adapter waits to be commanded by the software before applying V cc to 
the socket. Software must set bit four in the Power Control register (Refer to 
figure 25-2) to enable power to the socket. The adapter responds by asserting 
the V cc_S signal. 

) 

If bit five is set during system initialization, the adapter automatically supplies 
Vee to the adapter (asserts Vcc_S) when it detects the presence of a card. Vee 
is automatically removed from the card when the card is removed. Note that 
power is removed based on timing parameters specified in the ExCA specifi
cation. 

7 6 5 4 3 2 1 0 
I 

Card Auto Vee Vpp1 Vpp1 
Enable Resv Pwr Pwr Resv Resv Cntrl Cntrl 

EN EN bit 1 bit 0 ~ 

Figure 25-2. The Power Control Register 

337 

344

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Vpp1 Control 

Bits zero and one of the Power Control register determine whether V cc (5v or 
3.3 v), 12v, or zero volts is applied to the Vppl pin. (Refer to table 25-1) 

Table 25-1. Socket Vpp Control 

Bit 1 Bit 0 VPP PGM VPP_VCC SocketVppl 

0 0 Deasserted Deasserted zero volts 

0 1 De asserted Asserted selected Vee (3.3v or 5v) 

1 0 Asserted De asserted +12v 

1 1 De asserted De asserted zero volts 

PC Card Data Transfers 

338 

The adapter monitors ISA host bus activity to see if the bus cycle is intended 
for it or a PC Card installed in one of its sockets. Figure 25-3 shows the signals 
and functional blocks involved in transferring bus cycles to the target PC 
Card. Note that figure 25-3 shows a single socket interface to simplify the il
lustration. In reality, the socket signals shown are duplicated for the second 
socket. 

The adapter must decode the address when an ISA bus cycle is run to deter
mine if either a local access is being made to one of its registers or whether the 
access is to a PC Card. PC Card accesses are determined via the window ad
dress registers. If an ISA access is made to an address location that falls within 
the address window programmed for a the PC Card, then the adapter knows 
that the PC Card is being accessed and starts a data transfer either to or from 
the card depending on the state of the ISA read/write command lines. In es
sence, the HBA decodes addresses like other ISA adapters. The HBA performs 
the decode to determine if the transaction is for it (an HBA register) or one of 
its sockets. 

The CL-PD6722 uses a First In First Out serial memory (FIFO) to store up to 
four write operations. When a write occurs from the host ISA bus, the 
CL-PD6722 stores the write in the FIFO and completes the operation in zero 
ISA wait states. The adapter then runs the socket access to the target PC Card 
to complete the write transfer. In this way, write operations to PC Cards al-

345

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 25: An Example HBA-The CL-PD6722 

ways complete at zero waits states until the FIFO fills up. Note that the FIFO 
is bypassed on read transfers. 

SA11:SAO •• 
Address Buffer Enable 

LA23:LA17 

BALE 
Window CA25:CA12 
Mapping 

Logic REG# 

0 )> 
(1) n 

SA16:SA1 < n 
(1) o· (/) 

(1) (/) 

Adapter (/) -i ;;:;· ~i" (1) 5· 
Address ~ 

0) 
(Q 

Decoder Register 

0 
Select 

0 
i'l. 
Q. 

SBHE# 
SAO 
IOR# I 
IOW# CE1# 

ISA 1PCMCIA MEMR# CE2# 
MEMW# Host I Socket IORD# 

BALE IOWR# 
BCLK Interface : Interface OE# 
osc Control WE# 

REFRESH 1 Control 
1016# 101816# 
M16# INPACK# 

CHRDY WAIT# 
NOWS# 

~ 
rn 
::, 
Jl) 
CT 
ii> 

Write 
FIFO 

Figure 25-3. Basic Functional Blocks Used During Data Transfers 

339 

346

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

The CL-PD6722 contains two timing register sets each consisting of three reg
isters that control transfer timing: 

• Setup Timing register 
• Command Timing register 
• Recovery Timing register 

These registers provide very flexible transaction timing when accessing PC 
Cards. Refer to the CL-PD6722 data book for details regarding these registers. 

Address Window Mapping 

340 

The CL-PD6722 has seven window address registers for each socket: Five 
memory window registers and two I/0 window register. Associated with 
each register is the transfer speed of the devices that respond within the win
dow. 

Memory Interface 

The memory window register is comprised of six 8-bit registers containing the 
following information (refer to figure 25-4): 

• Lower byte of window start address (LA19:LA17; SA16:SA12). Note that 
address line 12 is the smallest address used to define a memory address 
window. This supports the ExCA's requirement that windows start on 
4KB boundaries. The lower 12-bits of the address (SAl 1:SAO) go directly 
to the socket via a buffer. 

• Upper portion of window start address (LA23:LA20). The window start 
address reflects the maximum address capability of the ISA host bus 
(16MB). 

• Lower byte of window stop (end) address (LA19:LA17; SA16:SA12). 
Note that memory windows must also end on even 4KB boundaries, 
making the smallest memory window 4KB. 

• Upper portion of window stop (end) address (LA23:LA20) 
• Lower byte of window offset (CAl 9:CA12). Note that the offset is com

prised of the Card Address value that is added to the ISA address, 
permitting the card address to appear anywhere within the PC Card's 
64MB of address space. 

• Upper portion of window offset (CA25:CA20). 

347

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 25: An Example HBA -The CL-PD6722 

The address register also contains bits that determine characteristics about the 
specified range of addresses. These characteristics include: 

• Data Size - Specifies whether access should be made to devices based on 
8-bit or 16-bit addressing mode (depends on host bus size). 

• Access Time (Timer Select) - The CL-PD6722 incorporates two timing 
register sets that determine the cycle time of the devices that are mapped 
into the address window. 

• Type of Window (-REG) - Determines whether the window is used to ac
cess attribute memory or common memory. 

• Write Protect (WP) - specifies whether the memory within the window 
address range should be write protected. Writes to address within the 
window are inhibited if WP is set. 

r Address 19 - 12 ~ 
7 6 4 3 0 

r ~~: I Reserved Address 23 - 20 ~ 
Window Start 

r Address 1 9 - 12 

7 6 5 4 3 

timer Select I Reserved I Address 23 - 20 
. . . . . ......... . 

t 
7 

0 
0 
1 
1 

6 

rWP 
1
REG#

1 

5 

0 
1 
0 
1 

. . . . . 
Selects Timer Set O 
Selects Timer Set 1 
Selects Timer Set 1 
Selects Timer Set 1 

Window Stop 

Address 19 - 12 

Address 25 - 20 

Window Offset 

0 

~ 
0 

~ 
Figure 25-4. Registers Comprising a Single Memory Address Window 

341 

348

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

342 

1/0 Interface 

I/ 0 devices are mapped through the I/ 0 window address registers. Each 
socket contains two I/ 0 window registers each comprised of seven one byte 
registers as follows (refer to figure 25-5): 

• Upper byte of window start address (SA15:SA8) 
• Lower byte of window start address (SA7:SAO) 
• Upper byte of window stop (end) address (SA15:SA8) 
• Lower byte of window start address (SA7:SAO) 
• Upper byte of window offset register (CA15:CA8) 
• Lower byte of window offset register (CA7:CA1) 
• Control bits for both 1/0 windows 

Note that the 1/0 start address can begin and end on any byte boundary and 
can be any length. ExCA specifies constraints regarding I/ 0 address window 
size and start addresses that compliant software should observe. Since the ISA 
host bus supports a maximum of 64KB of 1/0 address space, only 15 address 
bit are used. The offset capability allows software to map two devices at the 
same system address space and offset or remap the system addresses to sepa
rate locations with the PC Cards 1/0 address space. 

Note that the characteristics of both 1/0 windows is controlled via the 1/0 
window control register. The characteristics include: 

• Data Size (data size and -10IS16) - An 1/0 device can be either an 8-bit or 
16-bit device. The size can be programmed via the data size bit or can be 
dynamically determined by the PC Card via the -10IS16 signal. 

• Cycle Timing (Timing Select) - the access timing of the devices responding 
within the window is determined by the value of a timing register set. The 
timing select bit determines which timer set should be used. 

349

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 25: An Example HBA-The CL-PD6722 

r 
r 

r 
r 

r 

Window Start (Address 15 - 8) 

Window Start (Address 7 - O) 

Window Stop (Address 15 - 8) ~ 
Window Stop (Address 7 - 0) ~ 

Window Offset (Address 15 - 8) 

r Window Offset (Address 7 - 1 ) I Resv ~ 

7 6 5 4 3 2 1 0 

Timing I I I Timing I Reg. Resv IOIS16 D~ta Reg Resv IOIS16 D~ta 
Select Srce Size Select Srce S1ze . . 

1/0 Window 1 1/0WindowO 

1/0 Control Register 

Figure 25-5. Register Comprising a Single I/0 Address Window 

343 

350

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Status Change Reporting 

344 

Status change interrupts are typically reported via a system interrupt when
ever a status change event occurs. A single status change interrupt is used to 
report status changes for all sockets. Status change events that can re:5ult in a 
status change interrupt include: 

For Memory Cards: 

• Battery Dead Detection 
• Battery Low Warning 
• Change in Ready /Busy status 
• Card Detect Change 

For I/ 0 Cards: 

• Status Change Pin is asserted - The I/0 card's configuration registers 
must be read to determine which of the previously mentioned status 
changes have occurred. 

The CL-PD6722 reports a status change (also called management) interrupt 
over the one of the system IRQ lines specified in the Management Interrupt 
Configuration register (refer to figure 25-6). The upper four bits of the register 
determine which IRQ line the status change should be reported over, while 
the lower four bits determine which of the status change events should result 
in an interrupt being reported. These lower four bits act as a global mask to 
eliminate one or more of the status change· events from being reported by the 
adapter. 

, ; 

IRQ IRQ IRQ IRQ Card Batt Batt 
Detect Ready Warn Dead 

Bit 3 Bit2 Bit 1 Bit 0 Enable Enable Enable Enable; 

Figure 25-6. Management Interrupt Configuration Register 

System software having been notified of a status change must determine 
which status change caused the interrupt. The Card Status Change register 
indicates the source of the status change. (Refer to figure 25-7.) 

351

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 25: An Example HBA-The CL-PD6722 

7 6 5 4 3 2 1 0 
/ / 

Card Batt Batt 
Resrv Resrv Resrv Resrv Detect Ready Warn Dead 

Chnge Chnge Chnge Chnge 
11 

Figure 25-7. Card Status Change Register 

The actual state of the socket interface pins can also be observed by software 
on a socket by socket basis when a memory interface is used. The interface 
status register provides the capability as shown in figure 25-8. When an I/0 
interface is defined, the PC Card must be interrogated directly to determine 
the state of status change indictors. 

7 6 5 4 3 2 1 0 
/ / 

Vpp PWR 
ROY BVD2 BVD1 

Valid On WP CD2# CD1# 
II 

Figure 25-8. Interface Status Register 

Interrupt Steering 

When a card interrupt occurs, the adapter generates an IRQ to the system. The 
IRQ line to which the card interrupt is directed is controlled via the interrupt 
and general control register. (Refer to figure 25-9.) The lower four bits deter
mine which IRQ line the interrupt is steered to. Note that this register is also 
used to enable management interrupt generation via bit four, and if the card 
uses interrupts the card type bit (five) will indicate an I/0 card type. 

Bit six of the register is set and reset to control reset to the PC Card. Bit seven 
is used when the 1/0 device is either a FAX, Modem, or network interface 
card (NIC). This pin is set when the status change pin from the PC Card is 
used to wake the system up due to external activity that requires system at
tention. The bit is defined as Ring Indicate (RI) since it is commonly used by 
FAX or modem cards to notify the system of an incoming call. 

345 

352

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

7 6 5 4 3 2 1 0 

Ring Card Card IREQ IRQ IRQ IRQ IRQ 
Ind Rese1 Type Enable Bit 3 Bit 2 Bit 1 Bit 0 

Figure 25-9. Interrupt and General Control Register 

Refer to the CL-PD6722 data book for additional details regarding which in
terrupt pins are supported and how interrupts are reported. 

The ATA Socket Interface 

346 

Figure 25-10 illustrates the socket interface when configured for ATA. Many 
of the signals used by the memory and I/ 0 interfaces are no connections (NC) 
when the socket is configured for ATA. This interface is intended for manu
facturers that want to use a PCMCIA socket to support their internal IDE 
drives. When used as an imbedded connector, the CL-PD6722 can be pro
grammed to operate in the AT A mode, making the socket compatible with the 
AT A interface. This interface also provides a slight increase in performance 
when compared to the standard 1/0 interface approach described in chapter 
nine. 

AT A Registers 

The PCMCIA host bus adapter accesses ATA devices using two register 
groups. The groups are defined as: 

• Command Block Registers - used to send commands to the drive, transfer 
data between the host and drive and return drive status to the host. 

• Control Block Registers - used for drive control and returning alternate 
status information to the host. 

The ATA host bus adapter accesses registers within each group by asserting 
the -CSO and -CS1 signals. These signals identify which register block is being 
accessed, while address lines A2, A 1 and AO select the target register within 
the block. The binary value of A2:AO should not be thought of as consecutive 
byte accesses, but rather as a binary code allowing selection of either 8-bit or 
16-bit registers. For example, when CSO is asserted the command register 
block is selected and address lines A2:AO determine which of the eight regis
ter is being accessed. Register zero is the 16-bit data register selected with a 

353

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Chapter 25: An Example HBA -The CL-PD6722 

binary code of zero. The next register is the 8-bit error/ feature register. (Refer 
to table 25-2). It is beyond the scope of this book to discuss the definition and 
use of the ATA registers. Refer to the ANSI AT A specification and the AT A 
standard within the PCMCIA specification for details regarding register defi
nition and commands. 

Ground 35 1 Ground 
CD1# ~ 36 2 Data3 
Data 11 37 3 Data4 
Data 12 38 4 Data5 
Data 13 39 5 Data6 
Data 14 40 6 Data 7 
Data 15 41 7 cso 
CS1 42 8 NC 
VS1# 43 9 OE# (Logic zero) 
IORD# 44 10 NC 
IOWR# 45 11 CS1 
NC 46 12 NC 
NC 47 13 NC 
NC 48 14 NC 
NC 49 15 NC 
NC 50 16 IREQ# 
Vee 51 17 Vee 
NC 52 18 NC 
NC 53 19 NC 
NC 54 20 NC 
NC 55 21 NC 
NC 56 22 NC 
VS2# 57 23 NC 
RESET 58 24 NC 
-WAIT 59 25 NC 
INPACK# ~ 60 26 NC 
REG# 61 27 Address 2 
SPKR# 62 28 Address 1 
STSCHG# ~ 63 29 Address O 
Data8 64 30 DataO 
Data 9 65 31 Data 1 
Data 10 66 32 Data2 
CD2# ~ 67 33 IOIS16# 
Ground 68 34 Ground 

Figure 25-10. ATA Socket Interface 

347 

354

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table 25-2. Example Addressing Scheme Used by ATA Cards 

ATA Command Register Block (-CS1 asserted) 

Register# Read Function Write Function 
(A2:AO) (-IORD asserted) (-IOWR asserted) 

0 Data Register (16-bit register) Data Register (16-bit register) 

1 Error Register (8 bits) Features (8 bits) 

2 Sector Count (8 bits) Sector Count (8 bits) 

3 Sector Number (8 bits) Sector Number (8 bits) 

4 Cylinder Low (8 bits) Cylinder Low (8 bits) 

5 Cylinder High (4 bits) Cylinder High (4 bits) 

6 Head Number (3 bits) Head Number (3 bits) 

7 Status Information (8 bits) Command Register '(8 bits) 

OMA Support 

348 

The CL-PD6722 also supports DMA transfers between an 1/0 Card and 
memory. This capability is achieved through a special DMA-type PCMCIA in
terface cycle. This cycle is defined such that conflicts with standard PCMCIA 
memory or 1/0 cycles is avoided. These cycles are distinguished from normal 
1/0 cycles by the -REG signal being high during an 1/0 cycle. This is an un
defined condition in the PCMCIA 2.1 specification. 

A register within the adapter controls the DMA function. The signal used by 
the PC Card to request a DMA transfer is programmable. When the controller 
sees the DMA request from the PC Card, it then requests a DMA transfer 
from the ISA bus's DMA controller by asserting a DMA request on the ISA 
bus. The CL-PD6722 uses the IRQ 9 and 10 lines to report a DMA request. If 
configured for DMA these IRQ lines cannot be used. Refer to the CL-PD6722 
data book for details. 

355

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendices 

356

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix A:SRAM CIS Example 

Appendix A: 
SRAMCIS 
Example 
The following example is the attribute memory address map showing 
the CIS tuples implemented within a typical SRAM card. This listing 
includes page number where the tuple description can be found. 

Offset/ Adr Data Description and interpretation Page 
(hex) (hex) Ref 

0/0 01 Device Info Tuple 353 

1/2 03 Link to next tuple 353 

2/4 61 Device type = 6 (SRAM) Device Speed= 1 
(250ns) 353 

3/6 7C Unit Size=128K Number of Units=16 
Total size = 2MB 355 

4/8 FF Termination Byte 353 

5/A 15 Level 1 Version/Product Information Tuple 355 

6/C 20 Link to next tuple 356 

7/E 04 Major Version number=4 356 

8/10 01 Minor Version number=O (PC Card 95 release) 356 

9/12 58 X (The remaining entries within the tuple 
are ASCII codes) 356 

A/14 59 y 356 

B/16 5A z 356 

C/18 00 End Manufacturing ID 356 

D/1A 32 2 356 

E/lC 4D M 356 

F/lE 42 B 356 

10/20 20 356 

351 

357

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Offset/ Adr Data Description and interpretation Page 
(hex) (hex) Ref 

11/22 53 s 356 

12/24 52 R 356 

13/26 41 A 356 

14/28 4D M 356 

15/2A 00 End Card Description Information 356 

16/2C 53 s 356 

17/2E 52 R 356 

18/30 30 0 356 

19/32 30 0 356 

lA/34 30 0 356 

lB/36 30 0 356 

lC/38 31 1 356 

1D/3A 00 End Model Information 1 356 

1E/3C 53 s 356 

1F/3E 52 R 356 

20/40 30 0 356 

21/42 30 0 356 

22/44 30 0 356 

23/46 30 0 356 

24/48 32 2 356 

25/4A 00 End Model Information 2 356 

26/4C FF Termination Byte 356 

27/4E 10 Checksum Tuple 356 

28/50 05 Link to next tuple 357 

29/52 D9 Offset fm Checksum tuple (27h) to checksum 
start address. D9h (low byte); FFh (high 
byte)=FFD9h + 0027h (tuple address)=OOOOh 

2A/54 FF 357 
2B/56 27 Number of CIS locations to be checksummed 

from start address= 27h (low byte); 
2C/58 00 ooh (high byte)=0027h 357 

2D/5A DE Checksum Value=DEh 357 

2E/5C FF Termination Tuple 357 

352 

358

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix A:SRAM CIS Example 

Device Information Tuple 

Table -1 shows the format of the device information tuple. Shaded 
areas show portions of the tuple definition used by the SRAM card in 
the example. 

The SRAM CIS listing includes a link value of 03h, indicating only two 
bytes are used for device info, followed by the termination byte. 

Table A -1. Device Information Tuple Format 
Byte Device Information Tuple Format 

0 TPL CODE CISTPL DEVICE (Olh) 
1 TPL_LINK Link to next tuple (03h) 

Device Info 1 (2 or more bytes) 
Device Info 2 (2 or more bytes) 

... Device Info n (2 or more bytes) 
m FFH termination byte (marks end of device info 

field) 

The SRAM's device information tuple contains information for a single 
block of memory, therefore, only one device info block (Device Info 1) is 
defined. Device info 1 is comprised of two bytes in this example: 
• Device Type and Speed Byte 
• Device Size Byte 

Device Type and Speed Byte 

Refer to table -2. The first byte describes the device speed, whether the 
write protect switch affects this address range, and the device type. 
Note that the device type code is only used to describe devices that use 
a fixed memory address range, and not for dynamically relocatable 
devices. Relocatable devices use the configuration entry tuples to 
describe the memory address ranges supported. 

The device type and speed byte contains a 61h value, equating to the 
values shown below. Note that extended speed information can be used 
in lieu of the standard speed definitions. This capability permits speed 
definitions that might be supported by host bus adapters capable of 
supporting a wide range of programmable transfer rates. 

353 

359

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table A -2. Memory Device Type and Speed Information 

Byte 7 16 Is j4 3 2 11 lo 
0 Device Type Code = 6 WPS=O Device Speed Codes = 1 

1 Extended Device Speed (if Device Speed Code equals 7h, otherwise omitted) 

2 .. m-1 Additional Extended Device Speed (if bit 7 of Extended Device Speed is 1, 
otherwise omitted) 

m .. n Extended Device Type (if Device Type Code equals Eh, otherwise omitted) 

Table A-3. Device S eed Codes 
Code Name Meanin 
OH I DSPEED _NULL e = null 

lh 250 nsec 

2h ED_200NS 200 nsec 

3h DSPEED _150NS 150 nsec 

4h DSPEED _lOONS 100 nsec 

5h-6h (Reserved) 

7h DSPEED_EXT Use extended s eed b te. 

Ti bl A 4 D a e - ev1ce T ype Cd o es 

Code Name Meaning 

0 DTYPE_NULL No device. Generally used to designate a hole 
in the address space. If used, speed field should 
be set to OH 

1 DTYPE_ROM Masked ROM 

2 DTYPE_OTPROM One-time programmable PROM 

3 DTYPE_EPROM UVEPROM 

4 DTYPE_EEPROM EEPROM 

5 DTYPE_FLASH FlashEPROM 

6 DTYPE_SRAM Static RAM (JEIDA has Nonvolatile RAM) 

7 DTYPE_DRAM Dynamic RAM (JEIDA has Volatile RAM) 

8-Ch Reserved 

Oh DTYPE_FUNCSPEC* Function-specific memory address range. 
Includes memory-mapped 1/0 registers, dual-
ported memory, communication buffers, etc., 
not intended to be used as general-purpose 
memory. 

Eh DTYPE_EXTEND Extended type follows. 

Fh Reserved 

354 

360

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix A:SRAM CIS Example 

Device Size Byte 

The SRAM's device size byte entry contains 7Ch. This represents a three 
bit "unit size code" of 4h, and the number of address units value of OFh. 
One is added to the number of address units value to obtain the actual 
number of units. Refer to table -5 for byte format. 

Table A -5. Device Size Definition 
7 I 5 I 4 I 3 112 11 lo 
# of address units(Fh) + 1= 10h (16d) II Unit Size Code= 4h 

(16 units x 128KB unit size= 2MB) 

Code Unit Size Max Size 
0 512 bytes 16K 
1 2K 64K 
2 8K 256K 
3 32K IM 
4 128K 4M 
5 512K 16M 
6 2M 64M 
7 Reserved Reserved 

Level 1 Version/ Product Information Tuple 

Table -6 shows the format and contents of the Level 1 Version/Product 
Information tuple. This tuple provides the PCMCIA compliance level 
supported by the PC Card and includes manufacturer defined product 
information. The tuple includes three fields: 

• The major version byte indicating PCMCIA version information. 
• The minor version byte indicating compliance with a given PCMCIA 

release. 
• A variable length field comprised of one or more strings of ASCII 

characters specified by the manufacturer: A value of OOh demarks 
each ASCII string. 

355 

361

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table A -6. Level 1 Version/ Product Information Tuple Format 
Byte Level 1 Version/Product Information Tuple Format 

0 TPL CODE CISTPL_ VERS_1 (15h). 

1 TPL LINK Link to next tuple (20h). 

2 TPLL V1_MAJOR Major version number (04h). 

3 TPLLV1_MINOR Minor version number (01h) for Release 2.0 and 
2.01 

4 TPLLV1_INFO Product information string: name of the 
manufacturer, terminated by OOh. 
Additional product information, in text; 
terminated by OOH. Suggested use: lot number. 
Additional product information, in text; 
terminated by OOh. Suggested use: define special 
programming conditions. 

n FFh: termination byte (marks end of list). 

Checksum Tuple 

356 

The Checksum tuple is included with this particular SRAM card for 
additional reliability. In this example, the CIS checksum region is 
defined as offset O (beginning of CIS) and the number of bytes included 
in the checksum is 27 (byte O to 26). Refer to table -7 for the tuple 
format. Note that this tuple contains three fields: 

• Relative start address of the memory block within the CIS to be 
checked. The relative address is specified as an offset value (contents 
of this field) added to the offset of the checksum tuple code (the 
address/2). In this example the beginning of the CIS. (FFD9h + 0027 
= 0000h) 

• Length of the block to be checked. The length is specified as an offset 
value. The checksum is performed by summing the even bytes in the 
address range. The last location in the range can be expressed as 
"target address + 2 * length - 1 ". 

• Checksum value to be tested. 

362

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix A:SRAM CIS Example 

~ bl A 7 Ch k a e - ec sum T l F up,e orma t 
Byte Checksum Tuple Format 
0 TPL CODE CISTPL VERS 1 (15h). 
1 TPL LINK Link to next tuple (05h). 
2 .. 3 TPLCKS_ADDR Offset to region to be checked ,LSB first. 

(FFD9h) 
4 .. 5 TPLCKS_LEN Length of region to be checked, LSB first. 

(0027h) 
6 TPLCKS_CS Checksum value of the region 

Termination Tuple 

The Termination tuple identifies the end of the current tuple list. The 
termination tuple consists only of the tuple code FFh. This tuple should 
be the last tuple in a linked list, but does not necessarily indicate the end 
of the entire string of tuples within the PC Card. Whether processing 
software stops or continues processing tuples upon encountering the 
termination tuple depends on the absence or presence of other link
specific tuples in the string as stated below: 

• If a no-link tuple is contained in the tuple list, then this is the only 
tuple list and tuple processing ends. 

• If a long-link tuple is contained in the tuple list, then process the 
secondary tuple list beginning at the address specified by the long
link tuple. 

• When processing a secondary tuple list, if no long-link tuple is 
contained in the tuple list, then no more tuples exist. 

• If there is no link-specific tuple contained in the primary CIS tuple 
list, then tuple processing should continue at location zero in 
common memory. In other words, a long-link tuple to common 
memory is implied when there is no link tuple in the primary CIS. 

In this example, link-specific tuples were not included, causing parsing 
software to continue tuple processing at location zero within common 
memory address space. 

357 

363

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix B: Flash Memory CIS Example 

Appendix B: 
Flash Memory 
CIS Example 
The following is an example of a flash memory tuple chain. The 
reference page number indicates where the tuple description can be 
found. 

Offset/ Adr Data Description and Interpretation Page 
(HEX) (HEX) Ref 

0/0 01 Device Info Tuple 361 

1/2 03 Link to next tuple 362 

2/4 53 Device type = 5 (FLASH); Device Speed = 3 
(150ns) 362 

3/6 26 Unit Size = 2MB, Number of Units = 5, 
Total size = 10MB 364 

4/8 FF Tuple Termination Byte 362 

5/A 1E Device Geometry Tuple 364 

6/C 06 Link to next tuple 365 

7/E 02 Internal bus width of card= 2 bytes (release 1.0 
and 2.0 cards) 366 

8/10 11 Erase geometry block size (2<n-l)) = 2<11h-l) = 206) = 
64K 366 

9/12 01 Read geometry block size (2<n-1)) = 20h-l) = 2<0) = 1 366 

A/14 D1 Write geometry block size (2<n-l)) = 2<1h-l) = 2<0) = 1 366 

B/16 03 Partition size(2<p-l)) = 2<3h-l) = 2(2) = 4 366 

C/18 01 Interleave size(2<q-l)) = 20h-l) = 2<0) = 1 366 

359 

364

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Offset/ Adr Data Description and Interpretation Page 
(HEX) (HEX) Ref 

D/lA 18 JEDEC Identifier tuple 367 

E/lC 02 Link to next tuple 367 

F/lE 98 Flash Designs JEDEC-ID 

10/20 B9 46F006 JEDEC-ID 

11/22 15 Level 1 Version/Product Information Tuple 367 

12/24 26 Link to next tuple 368 

13/26 04 Major Version number = 4 368 

14/28 01 Minor Version number= 1 (Release 2.0 or 2.1) 368 

15/2A 46 F (ASCII string "FLASH DESIGNS") 368 

16/2C 76 L 368 

17/2E 41 A 368 

18/30 53 s 368 

19/32 48 H 368 

lA/34 20 SPACE 368 

lB/36 44 D 368 

lC/38 45 E 368 

1D/3A 53 s 368 

1E/3C 49 I 368 

1F/3E 47 G 368 

20/40 4E N 368 

21/42 53 s 368 

22/44 00 <end manufacturer name> 368 

23/46 31 1 (ASCII string "lOMB FLASH") 368 

24/48 30 0 368 

25/4A 4D M 368 

26/4C 42 B 368 

27/4E 20 space 368 

28/50 46 F 368 

29/52 4C L 368 

360 

365

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix B: Flash Memory CIS Example 

Offset/ Adr Data Description and Interpretation Page 
(HEX) (HEX) Ref 
2A/54 41 A 368 

2B/56 53 s 368 

2C/58 48 H 368 

2D/5A 56 V (ASCII string "VERSION 02") 368 

2E/5C 45 E 368 

2F/5E 52 R 368 

30/60 53 s 368 

31/62 49 I 368 

32/64 4F 0 368 

33/66 4E N 368 

34/68 20 space 368 

35/6A 30 0 368 

36/6C 32 2 368 

37/6E 00 <end version information> 368 

38/70 FF Tuple termination byte 368 

39/72 IA Configuration Tuple 368 

3A/74 06 Link to next tuple 369 

3B/76 01 Size of fields 369 

3C/78 00 Index of last configuration entry within 
configuration table 370 

3D/7A 00 Attribute memory address where configuration 
3E/7C 40 registers are mapped (location 4000h) 370 

3F/7E 03 Configuration register presence mask 
(configuration option & status registers) 371 

40/80 FF Tuple termination byte 368 

41/82 FF Termination Tuple (End of tuple string) 371 

361 

366

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Device Information Tuple 

362 

Table B-1 shows the format of the Device Information tuple. Shaded areas show 
portions of the tuple definition used by the flash card in the example. 

The flash CIS listing includes a link value of 03h, indicating only two 
bytes are used for device info, followed by the termination byte. 

Table B-1. Device Information Tuple Format 
Byte Device Information Tuple Format 
0 TPL CODE CISTPL DEVICE (01h) 
1 TPL LINK Link to next tuple 

Device Info 1 (2 or more bytes) 
Device Info 2 (2 or more bytes) 

... Device Info n (2 or more bytes) 
n FFh termination byte (marks end of device info 

tuple) 

The Flash's device information tuple contains information for a single 
block of memory, therefore only one device info block (Device Info 1) is 
defined. Device info 1 is comprised of two bytes in this example: 

• Device Type and Speed Byte (53h) 
• Device Size Byte (26h) 

Device Type and Speed -Byte 

Refer to table B-2. The first byte describes the device speed, whether the 
write protect switch affects this address range, and the device type. 
Note that the device type code is only used to describe devices that use 
a fixed memory address range, and not for dynamically relocatable 
devices. Relocatable devices use the configuration entry tuples to 
describe the memory address ranges supported. 

The device type and speed byte contains a 53h, equating to the values 
shown in table B-2. Note that extended speed information can be used 
in lieu of the standard speed definitions. This capability permits speed 

367

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Byte 
0 
1 
2 .. m-1 
m .. n 

Appendix B: Flash Memory CIS Example 

definitions that might be supported by host bus adapters capable of 
supporting a wide range of programmable transfer rates. 

The device speed information contained in the tuple is specified as a 
code. Refer to table B-3 

Table B-2. Device Information Entry 
7 16 ls 14 3 2 11 lo 
Device Type Code = 5 WPS=O Device Speed Codes = 3 
Extended Device Speed (if Device Speed Code equals 7h, otherwise omitted) 
Additional Extended Device Speed (only if bit 7 of Extended Device Speed= 1) 
Extended Device Type (if Device Type Code equals Eh, otherwise omitted) 

I'. bl B 3 D a e - evice S dC d ,pee o es 
Code Name Meaning 
Oh DSPEED NULL Use when device type = null 
1h DSPEED 250NS 250 nsec 
2h DSPEED 200NS 200 nsec 
3h DSPEED 150NS 150 nsec 
4h DSPEED_100NS 100 nsec 
5h-6h (Reserved) 
7h DSPEED EXT Use extended speed byte. 

~ bl B 4 D a e - evice T Cd ype o es 
Code Name Meaning 
0 DTYPE_NULL No device. Generally used to designate a hole 

in the address space. If used, speed field should 
be set to Oh. 

1 DTYPE ROM Masked ROM 
2 DTYPE OTPROM One-time programmable PROM 
3 DTYPE EPROM UVEPROM 
4 DTYPE EEPROM EEPROM 
5 DTYPE FLASH FlashEPROM 
6 DTYPE SRAM Static RAM (JEIDA has Nonvolatile RAM) 
7 DTYPE DRAM Dynamic RAM (JEIDA has Volatile RAM) 
8-Ch Reserved 
Dh DTYPE_FUNCSPEC* Function-specific memory address range. 

Includes memory-mapped 1/0 registers, dual-
ported memory, communication buffers, etc., 
that are not intended to be used as general-
purpose memory. 

Eh DTYPE EXTEND Extended type follows. 
Fh Reserved 

363 

368

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Device Size Byte 

The flash's device size byte entry contains 26h. This represents a three 
bit "unit size code" of 6h, and the number of address units value of 04h. 
One is added to the number of address units value to obtain the actual 
number of units. This equates to a unit size of 2MB times 5 unit, or 
10MB. Refer to table B-5. 

Table B-5. Device Information Size B11te Format 
Bits 7 6 5 4 13 2 1 0 
Data Value 0 0 1 0 10 1 1 0 
Interpretation # of address units (04h) + 1= 05h (Sd) Unit Size Code = 6h 

(5 units x 2MB unit size= 10MB) 

Table B-6. Unit Size Codes 
Code Unit Size Max Size (32 units) 
0 512 bytes 16K 
1 2K 64K 
2 8K 256K 
3 32K 1M 
4 128K 4M 
5 512K 16M 
6 2M 64M 
7 Reserved Reserved 

Device Geometry Tuple 

364 

The device geometry tuple provides the erase, read, and write 
characteristics of the flash device. This tuple consists of multiple entries 
for each device identified in the device information tuple. Refer to table 
B-7. In this example, a single device (a 150ns, 10MB flash card) was 
defined in the device information tuple. Therefore, a single device 
geometry field is defined within the device geometry tuple (as indicated 
by the shaded area in the table). 

Note that for multiple device cards (i.e. SRAM/Flash card), multiple 
device information entries are continued within the device information 
tuple. The device geometry tuple must contain a device information 

369

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix B: Flash Memory CIS Example 

entry corresponding to each device information entry in the device 
information tuple. Device geometry entries must exist even if the device 
geometry information is not relevant (as in the case of SRAM). 

'I bl B 7 D . G a e - evice t T l F eome :rtf up. e ormat 
Byte Device Geometry Tuple Format 
0 TPL CODE CISTPL DEVICEGEO (lEH) 
1 TPL LINK Link to next tuple (6H) 
2 .. 7 Device geometry for first device info entry (6 bytes) 
8 .. D Device geometry for second device info entry (6 bytes) 
.. Device geometry for remain device info entries (6 bytes) 

Device Geometry Information 

The device geometry information consists of six fields that define the 
characteristics of the memory array or arrays within the memory card. 
These entries include: 

• Internal data bus width within the card. 
• Minimum erase block size. 
• Minimum read block size. 
• Minimum write block size 
• Hardware interleaving factor used by the card. 

Table B-8 defines how each of these values are expressed in each of the 
one byte fields. Table B-9 shows the resultant characteristics of the 
example flash card. Note that the erase, read and write block size must 
be multiplied by the bus size value and interleave factor to obtain the 
overall geometric characteristics of the card. 

365 

370

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

366 

Table B-8. Device Geometrv Information Fields Definition 
Byte Device Geometrv Fields Definition 
1 DGTPL_BUS Internal card data bus width. This entry = n, 

where the bus width is 2<n-t) bytes. n=2 for release 
1.0 & 2.0 cards. 

2 DGTPL_EBS Minimum Erase Block Size of memory arrays. 
This entry=n, where the minimum EBS is 2<n-t) 
address increments for bus-width accesses. 

3 DGTPL_RBS Minimum Read Block Size of memory arrays or 
segments. This entry=n, where the minimum RBS 
is 2<n-t) address increments for bus-width accesses. 

4 DGTPL_WBS Minimum Write Block Size of memory array 
segments. This entry=n, where the minimum WBS 
is 2<n-t) address increments for bus-width accesses. 

5 DGTPL_PART Minimum size or granularity into which memory 
array segments can be partitioned. This entry=:p, 
where the minimum partition granularity is z<p-t) 
erase blocks. P= 1 where array partitioning on 
erase block boundaries is allowed. 

6 DGTPL_HWIL Value = q, where card architectures employ a 
multiple of i<q-l) times interleaving of the entire 
memory array or subsystems with the above 
characteristics. Non-interleaved cards have values 
of q= 1. The value q = 00h is not allowed. 

Table B-9. Interpretation of the Device Geometry Information Fields for Sample 
Flash Card 

Device Geometry Calculated Value Data Bus Interleave Resultant 
Field Description from Field Entry Width Factor Geometry 
Bus Width 2 bytes NA NA NA 
Hardware 1 NA NA NA 
Interleave 
Erase Geometry 64k X 2 bytes X 1 = 128 kb 
Read Geometry 1 X 2 bytes X 1 = 2 bytes 
Write Geometry 1 X 2 bytes X 1 = 2 bytes 

371

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix B: Flash Memory CIS Example 

JEDEC Identifier Tuple 

The JEDEC Identifier tuple is an optional tuple used by programmable 
devices. This tuple must have a JEDEC identifier entry for each device 
specified in the device information tuple, whether or not a given device 
is programmable. In this way, a one-to-one correspondence is 
maintained between the device information tuples and the JEDEC 
identifier entries. If a given device is not programmable, then the 
corresponding JEDEC identifier entry for that device will contain OOh. 

The basic structure of the JEDEC Identifier tuple is shown in table B-10. 
Only the shaded fields are used for the flash card example. Refer to 
table B-11 for a description of the contents of each JEDEC identifier. 

Table B-10. JEDEC Identifier Tuple Format 

Byte JED EC Identifier Tuple Format 

0 TPL CODE CISTPL_JEDEC C (18H) 
1 TPL LINK Link to next tuple (2H) 
2 .. 7 JEDEC identifier for first device info entry (2 bytes) 
8 .. D JEDEC identifier for second device info entry (2 bytes) 
.. 

1 

JEDEC identifier for remaining device info entries (2 bytes) 

Manufacturer-specific data specifying device type, programming 
info, etc. 

Level 1 Version / Product Information Tuple 

Table B-12 illustrates the format and contents of the level 1 
version/prodm;t information tuple. This tuple provides the PCMCIA 
compliance level supported by the PC Card and includes manufacturer 
defined product information. The tuple includes three data fields: 

• The major version byte indicating PCMCIA version information. 
• The minor version byte indicating compliance with a given PCMCIA 

release. 

367 

372

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

• A variable length field comprised of one or more strings of ASCII 
characters specified by the manufacturer. A value of OOh demarks 
each ASCII string. The tuple is terminated by FFh. 

Table B-12. Level 1 Version/Product Information Tuple Format 
Byte Level 1 Version/Product Information Tuple Format 

0 TPL CODE CISTPL VERS 1 (15H) 
1 TPL LINK Link to next tuple 
2 TPLLVl_MAJOR Major version number (04H) 
3 TPLL Vl_MINOR Minor version number (Olh) for Release 2.0 and 

2.01 
4 TPLL Vl_INFO Product information string: name of the 

manufacturer, terminated by OOh. Additional 
product information, in text; terminated by 
OOh. Suggested use: lot number. Additional 
product information, in text; terminated by 
OOh. Suggested use: programming conditions. 

n FFH: termination byte (marks end of list). 

Configuration Tuple 

368 

The configuration tuple identifies the number of configuration registers 
implemented and their location in attribute memory. The configuration 
tuple consists of six data entries. Table B-13 shows the actual format of 
the configuration tuple. Note that the entries used in the flash example 
are shaded. 

• Size of fields-specifies the number of bytes in the "configuration 
registers base address" field, in the "configuration presence mask" 
field, and in the "reserved field." 

• Index number of the last entry in the configuration table. 
• Configuration registers base address in attribute memory. 
• Configuration presence mask-identifies the configuration registers 

that are implemented. 
• Reserved Field. 
• Subtuple information-containing additional card configuration 

information. 

373

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix B: Flash Memory CIS Example 

Table B-13. Confi~uration Tuple Format 

Byte Configuration Tuple Format 

0 TPL CODE Configuration tuple code (CISTPL CONFIG, lAH) 
1 TPL_LINK Link to next tuple (n-1; minimum 1) 
2 TPCC SZ Size of Fields Byte 
3 TPCC_LAST Index Number of the last entry in the Card 

Configuration Table 
4 .. TPCC_RADR Configuration Registers Base Address in attribute 

memory space. 1,2,3, or 4 bytes depending upon 
the size field in TPCC LAST 

.. TPCC_RMSK Configuration Registers Presence Mask. 1 to 16 
bytes as indicated by the count in TPCC SZ. 

.. TPCC_RSVD Reserved area O - 3 bytes. Must be O bytes until 
defined. 

q+l..r TPCC_SBTPL The rest of the tuple is reserved for subtuples 
containing optional information related to the card 
's configuration. 

Size of fields 

The size of fields entry describes the number of bytes used in the 
TPCC_RADR, TPCC_RMSK and TPCC_RFSZ fields as shown in table 
B-14. In the flash card example, the size of fields entry has a value of 
Olh, indicating the following values: 

• TPCC_RASZ - a one must be added to the hex value in this field to 
determine the number of bytes in TPCC_RADR used to specify the 
configuration registers base address. In this example, the 
TPCC_RADR entry consists of two bytes. 

• TPCC_RMSZ - a one must be added to the hex value in this field 
to determine the number of bytes in TPCC_RMSK used to indicate 
which of the option registers have been implemented. In this 
example, the TPCC_RMSK entry consists of one byte. 

• TPCC_RFSZ - the number of bytes reserved for future use (either 
0,1,2 or 3). Must be zero for release 2.0 compliance. 

369 

374

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table B-14. Size of Fields Byte 

Bits 7 6 5 4 3 2 1 I 0 

Data Value 0 0 0 0 0 0 0 I 1 
Field TPCC RFSZ TPCC RMSZ TPCC_RASZ 

Definition (RESR Size=O) (Size of TPCC_RMSK=O) (Size of TPCC RADR=l ) 

370 

Index Number of Last Configuration Entry 

This entry contains the index number of the last configuration entry of 
the card's configuration table and a reserved field as shown in table 
B-15. Since no configuration table is used in this example, the "last 
index" value is zero. Bits six and seven are reserved future use and must 
be set to zero. 

Table B-15. Last Confif-?uration Index 
Bits 7 6 5 4 3 2 I 1 I 

Data Value 0 0 0 0 0 0 I 0 I 
0 

1 
Field Reserved for The index number of the final entry in the Card 

Definition future use Configuration Table when scanning the CIS from 
(Resr bits=O) address zero (Last Index =, 0) 

Configuration Registers Base Address Entry 

The entry consists of either 1,2,3 or 4 bytes as specified by the 
"TPCC_RASZ" field of the "Size of Fields" entry. In this example, the 
"TPCC_RASZ" field indicates this entry consists of two bytes as shown 
in the shaded area of table B-16. The resulting address is attribute 
memory location 4000h (or 32,768d). 

Table B-16. Confif-?uration Re!,?ister Base Address Entry 
Bits Configuration Register Base Address Entry 
Field Base Address Bits 7:0 (OOH) 

Definition Base Address Bits 15:8 (40H) 
Base Address Bits 23:16 
Base Address Bits 25:24 

375

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix B: Flash Memory CIS Example 

Configuration Presence Mask 

The presence mask entry consists of a variable number of fields as 
determined by the TPCC_RMSZ field within the size of fields tuple 
entry. The presence mask is a bit map of configuration registers that can 
be implemented. The presence mask entry can contain a maximum of 
sixteen one byte fields (TPCC_RMSZ = 4 bits), and the eight bits in each 
field represents a configuration register; therefore, 128 configuration 
registers can be identified. The format of the presence mask fields is 
shown in figure B-17. In this example, the presence mask entry consists 
of a single byte (indicated by shading). 

Currently, only four registers are specified by the PCMCIA standard. 
Each of these registers is numbered as follows: 

Register O = Configuration Option Register 
Register 1 = Card Configuration and Status Register 
Register 2 = Pin Replacement Register 
Register 3 = Socket and Copy Register 

The value 03h specified in the flash card example indicates that the 
"configuration option register" and "card configuration and status 
register" have been implemented in this card. Refer to Table B-17. 

Bits 
Field 

Definition 
Confi 
Confi 
Confi 
Confi 
Confi 
Confi 
Confi 

Format 
Format 

371 

376

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Termination Tuple 

372 

The termination tuple consists only of the tuple code FFh. This tuple 
should be the last tuple in the linked list. The action taken when 
encountering an end of list tuple depends on which form of link tuple, if 
any, was previously encountered in the tuple: 

• If a no-link tuple is contained in the tuple list, then this is the only 
tuple list. 

• If a long-link tuple is contained in the tuple list, then process the 
secondary tuple list beginning at the address specified by the long
link 

• when processing a secondary tuple list, If no long-link tuple is 
contained in the tuple list, then no more tuples exist. 

• If no link-specific tuples are contained in the primary CIS tuple list, 
then tuple processing should continue at location zero in common 
memory. In other words, a long-link tuple to common memory is 
implied when there is no link-specific tuple in the primary CIS. Tuple 
processing continues only if the link-target tuple is found at location 
zero in common memory. 

377

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

Appendix C: 
FAX/Modem 
Tuple Example 

Offset/ Addr Data Description and interpretation Page 
(hex) Ref 

0/0 01 Device Info Tuple 379 

1/2 02 Link= 2h 379 

2/4 00 Not a memory device 379 

3/6 FF Termination byte 379 

4/8 15 Level 1 Version/Product Information Tuple 379 

5/A 24 Link= 24h 380 

6/C 04 Major Version number= 4 380 

7/E 01 Minor Version number= 1 (Release 2.0 or 2.1) 380 

8/10 58 X (The remaining entries within the tuple are ASCII 
codes) 380 

9/12 59 y 380 

A/14 SA z 380 

B/16 00 <End manufacturers name> 380 

C/18 32 2 380 

D/lA 2E 380 

E/lC 34 4 380 

F/lE 2F I 380 

10/20 39 9 380 

11/22 2E 380 

12/24 36 6 380 

13/26 20 380 

14/28 44 D 380 

373 

378

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Offset/ Addr Data Description and interpretation Page 
(hex) Ref 

15/2A 41 A 380 

16/2C 54 T 380 

17/2E 41 A 380 

18/30 2F I 380 

19/32 46 F 380 

lA/34 41 A 380 

lB/36 58 X 380 

lC/38 20 380 

10/3A 40 M 380 

1E/3C 4F 0 380 

1F/3E 44 0 380 

20/40 45 E 380 

21/42 40 M 380 

22/44 00 <End product name> 380 

23/46 30 0 380 

24/48 30 0 380 

25/4A 31 1 380 

26/4C 00 <End lot number> 380 

27/4E 41 A 380 

28/50 00 <End version information> 380 

29/52 FF Termination byte (End tuple) 380 

2A/54 20 Manufacturer Identification Tuple 380 

2B/56 04 Link to next tuple 381 

2C/58 AA Manufacturer AAh (low byte); 00 (high byte)= AAOOh 381 

205A 00 

2E/5C 96 Product code= 96h 381 

2F/5E 00 Revision Information = 0 381 

30/60 21 Function Identification Tuple 381 

31/62 02 Link to next tuple 382 

32/64 02 Function code 2 = serial interface 382 

33/66 00 Initialization byte = no init during POST and no ROM 382 

34/68 22 Function extension tuple 383 

35/6A 04 Link to next tuple 384 

36/6C 00 Tuple function extension type = 0 385 

374 

379

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

Offset/ Addr Data Description and interpretation Page 
(hex) Ref 

37/6E 01 UART type= 1 (16450 UART) 385 

38/70 OF UART capabilities= even, odd parity; mark, space, 1 

39/72 lC stop and 7 bit characters 385 

3A/74 22 Modem function extension tuple 385 

3B/76 09 Link to next tuple 385 

3C/78 05 Tuple function extension type = 5 385 

3D/7A lF Flow control methods= 31 Trans, RTS/CTS, 
XON/XOFF 385 

3E/7C 3F DCE command buffer size = 63 385 

3F/7E 00 DCE to DTE buffer size = 000300h (768d) 385 

40/80 03 

41/82 00 

42/84 00 DTE to DCE buffer size = 000300h (768d) 385 

43/86 03 

44/88 00 

45/8A 22 Modem function extension tuple 385 

46/8C 09 Link to next tuple 385 

47/8E 06 Tuple function extension type = 6 385 

48/90 IF Flow control methods= 31 Trans, RTS/CTS, 
XON/XOFF 385 

49/92 3F DCE command buffer size = 63 385 

4A/94 00 DCE to DTE buffer size = 000400h (16384d) 385 

4B/96 40 

4C/98 00 

4D/9A 00 DTE to DCE buffer size = 000400h (16384d) 385 

4E/9C 04 

4F/9E 00 

50/AO 22 Modem function extension tuple 385 

51/A2 OD Link to next tuple 385 

52/A4 02 Tuple function extension type = 2 385 

53/A6 01 Max DTE to UART BPS (v 75) = 256 385 

54/A8 00 

55/AA 3F Modulation Standards= 003Fh (V.22BIS, V.22, 
Bell212A, V23, 

375 

380

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Offset/ Addr Data Description and interpretation Page 
(hex) Ref 

56/AC 00 V21 and Bell 103) 385 

57/AE 03 Error Correction Detection protocols= 03h (V.42 MNP) 

385 

58/BO 03 Data compression protocols= 03h (MNP5, V.42BIS) 385 

59/B2 lF Command protocols= lFh (V.25BIS, MNP AT, AT 3-1) 385 

5A/B4 07 Escape mechanisms = 7 385 

5B/B6 00 Data encryption = 0 385 

5C/B8 01 Misc. features= 1 (caller ID) 385 

SD/BA BS Country Code = 181 385 

SE/BC FF Country Code = 255 385 

SF/BE 22 Modem function extension tuple 385 

60/CO 08 Link to next tuple 385 

61/C2 13 Tuple function extension type = 13 385 

62/C4 01 Max. DTE to UARTBPS (v /75) = 256 385 

63/C6 00 

64/C8 07 Modulations Standards supported= V.29, V.27ter, V.21 385 

65/CA 00 Data encryption = 0 385 

66/CC 00 FAX feature selection= 0 385 

67/CE 00 

68/DO BS Country Code = 181 385 

69/D2 22 Modem function extension tuple 385 

6A/D4 08 Link to next tuple 385 

6B/D6 23 Tuple function extension type 385 

6C/D8 01 Max. DTE to UART BPS (v/7 5) = 256 385 

6D/DA 00 

6E/DC 07 Modulation standards supported= v.29, V.27ter, V.21 385 

6F/DE 00 Data encryption = 0 385 

70/EO 00 FAX feature selection = 0 385 

71/E2 00 

72/E4 BS Country Code = 181 385 

73/E6 lA Configuration Table Tuple 385 

74/E8 05 Link to next tuple 386 

75/EA 01 2-byte base address register; 1-byte configuration mask 386 

76/EC 24 Index number of last configuration table entry = 24h 387 

376 

381

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

Offset/ Addr Data Description and interpretation Page 
(hex) Ref 

77/EE 00 base address of configuration registers = 0200h 18 

78/FO 02 

79/F2 17 Configuration mask = Config Option, Status and Pin 
Replacement 388 

7A/F4 1B Configuration Table Entry Tuple 389 

7B/F6 11 Link to next tuple 390 

7C/F8 EO Config Index= EOh (Interface byte used, default entry, 
Index= 20h) 390 

7D/FA 41 Interface description byte = Mem/10 interface, READY 
active, BVD inactive, WP inactive, MWait inactive. 

391 

7E/FC 90 Feature selection byte= (Power, timing, 1/0, INTR, 
Misc. defined) 393 

7F/FE 78 Power description byte (!static, Iavg, Ipeak, lpwrdn) 395 

80/100 75 !static = 80ma · 397 

81/102 70 Iavg = 90ma 397 

82/104 06 lpeak = lOOma 397 

83/106 15 Ipwrdn = 13ma 397 

84/108 E7 Timing description byte (READY scaling factor=lOd, no 
wait timing, and no reserved speed) 398 

85/lOA SF 5.0(mantissa) * lOms (exponent)* 10 (scaling factor)= 
500 ms max READY Delay 399 

86/lOC AA 1/0 description byte (10 address lines, 8-bit device, 
includes range) 400 

87/lOE 60 Length size descriptor = 1 address and 1 length 402 

88/110 F8 Start address = 03F8h 

89/112 03 403 

8A/114 07 Length of address block= 0-7 (8 bytes) 403 

8B/116 24 Interrupt descriptor byte = IRQ4, level mode 403 

8C/118 28 Misc. description byte = Audio Feedback present 403 

8D/11A 1B Configuration Table Entry 404 

8E/11C 08 Link to next tuple 404 

8F/11E 21 Configuration Index = 21h, no interface description 
byte 404 

90/110 18 Feature selection byte 404 

377 

382

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Offset/ Addr Data Description and interpretation Page 
(hex) Ref 

91/122 AA I/0 description byte (10 address lines, 8 bit device, 
includes range) 404 

92/124 60 Length size descriptor = 1 address and 1 length 404 

93/126 F8 Start address = 02F8h 404 

94/128 02 404 

95/12A 07 Length of address block= 0-7 (8 bytes) 404 

96/12C 23 Interrupt description byte = IRQ3, level mode 404 

97/12E 1B Configuration Table Entry 404 

98/130 08 Link to next tuple 404 

99/132 22 Configuration Index = 22h, no interface description 
byte 404 

9A/134 18 Feature selection byte 404 

9B/136 AA I/0 description byte (10 address lines, 8 bit device, 
includes range) 404 

9C/138 60 Length size descriptor = 1 address and 1 length 404 

9D/13A E8 Start address = 03E8h 404 

9E/13C 03 404 

9F/13E 07 Length of address block= 0-7 (8 bytes) 404 

A0/140 24 Interrupt description byte = IRQ4, level mode 404 

Al/142 1B Configuration Table Entry 404 

A2/144 08 Link to next tuple 404 

A3/146 23 Configuration Index = 23h, no interface description 
byte 404 

A4/148 18 Feature selection byte 404 

A5/14A AA I/0 description byte (10 address lines, 8 bit device, 
includes range) 404 

A6/14C 60 Length size descriptor = 1 address and 1 length 404 

A7/14E E8 Start address = 02E8h 404 

A8/150 02 

A9/152 07 Length of address block= 0-7 (8 bytes) 404 

AA/154 23 Interrupt description byte = IRQ3, level mode 404 

AB/156 1B Configuration Table Entry 404 

AC/158 06 Link to next tuple 404 

378 

383

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

Offset/ Addr Data Description and interpretation Page 
(hex) Ref 

AD/ISA 24 Configuration Index = 24h, no interface description 
byte 404 

AE/15C 18 Feature selection byte 404 

AF/15E 23 I/ 0 description byte (3 address lines, no range) 404 

B0/160 30 Interrupt description byte (use IRQ mask) 404 

Bl/162 BC Permissible IRQ lines = IRQ2, 3, 4, 5, 7, 9, 10 or 15 

B2/164 86 404 

B3/166 14 No Link Tuple 404 

B4/168 00 Link to next tuple 404 

B5/16A FF Termination Tuple (end of tuple list) 404 

Device Information Tuple 

The device information tuple must be the first tuple of any release 2.0 
compliant system and must be located at attribute memory address lo
cation zero. Device information provided in this tuple applies only to 
memory devices. When an I/ 0 only card is used, the device information 
field will be only one byte long and contain a zero. Table C-1 shows the 
format of the device information tuple. Shaded area show portions of 
the tuple definition used by the FAX/ modem card in this example. 
The FAX/ modem CIS listing includes a link value of 02h, indicating 
only one byte for device information, followed by the termination byte. 

Table C-1. Device Information Tuple Format 
Bvte Device Information Tuple Format 

0 TPL CODE CISTPL DEVICE (Olh) 
1 TPL LINK Link to next tuple (02h) 

Device Info 1 (OOh = null - not a memory device) 
Device Info 2 (2 or more bytes) 

... Device Info n (2 or more bytes) 
n FFh termination byte (marks end of device info field) 

379 

384

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Level 1 Version/ Product Information Tuple 

Table C-2 shows the format and contents of the level 1 version/product 
information tuple. This tuple provides the PCMCIA compliance level 
supported by the PC Card and includes manufacturer defined product 
information. The tuple includes three fields: 
• The major version byte indicating PCMCIA version information. 
• The minor version byte indicating compliance with a given 

PCMCIA release. 
• A variable length field comprised of one or more strings of ASCII 

characters specified by the manufacturer. A value of OOh demarks 
each ASCII string. 

Table C-2. Level 1 Version/Product Information Tuple Format 
Byte Level 1 Version/Product Information Tuple Format 

0 TPL CODE II CISTPL VERS 1 (15h). 

1 I TPL LINK I Link to next tuple (24h). 

2 I TPLL Vl MAJOR I Major version number (04h). 

3 I TPLLVl MINOR I Minor version number (Olh) for Release 2.0 and 2.01 

4 TPLLVl_INFO Product information string: name of the manufacturer, termi-
nated by OOh. 
Additional product information, in text; terminated by OOh. In 
this example: 
• Product name 

• Lot number 

• Version 

n FFh termination byte (marks end of list). 

Manufacturer Identification Tuple 

380 

This tuple provides information about the PC Card manufacturer and 
consists of two fields: 

• Manufacturer ID 
• Manufacturer specific card ID information 

The format of the Manufacturer Identification tuple is shown in Table 
C-3. 

385

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

Table C-3. Manufacturer Identification Tuple 
Byte Manufacturer Identification Tuple 

0 TPL CODE CISTPL MANFID (20h) 
1 TPL LINK Link to next tuple (04h) 
2 .. 3 TPLMID MANF PCMCIA PC Card manufacturer code 
4 . .5 TPLMID _ CARD Manufacturer information (Card Number and/ or 

Revision) 

Manufacturer ID Field (TPLMID_MANF) 

The value stored in this two-byte field is assigned by PCMCIA with ID 
codes starting at 0100h and ending at FFFFh. The first 256 codes, 0000h 
to OOFFh, are reserved for manufacturers that already have an eight-bit 
JEDEC ID code from the Electronics Industry Association (EIA). This 
eight-bit ID code may be used as part of the PCMCIA ID. In this case, 
the JEDEC ID is used as the least-significant eight bits of the PCMCIA . 
code, with the most significant eight bits all zeros. 

Manufacturer Card ID Field (TPLMIC_CARD) 

This two~byte field is designated for manufacturer information regard
ing the PC Card. The first byte is typically used to identify the card and 
the second byte for card revision information. The FAX/ modem listing 
defines the first byte as a product code (28h) and the second as revision 
information (OOh). 

Function Identification Tuple 

This tuple identifies individual functions within the PC Card and speci
fies whether the function should be automatically configured during 
system initialization. The tuple contains two fields: 

• Function Code byte 
• System Initialization Bit Mask 

If a PC Card contains multiple functions, this tuple must be repeated for 
each function. In this case, an initial function identification tuple must 
be used to specify the PC Card as a multifunction card, followed by a 

381 

386

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

382 

separate function identification tuple for each function. For a given 
function, if additional function-specific information is available, func
tion extension tuples will follow the function identification tuple for that 
function. Refer to table C-4 for the tuple's basic format. 

Table C-4. Function Identification Tuple Format 
Byte Function Identification Tuple Format 
0 TPL_CODE CISTPL FUNCID (21h ) 
1 TPL LINK Link to next tuple (02h) 
2 TPLFID FUNCTION PC Card function code (02h) 
3 TPLFID SYSINIT System initialization bit mask (OOh) 

Function Code Byte (TPLFID_FUNCTION) 

This field contains a code that identifies the basic function of the PC 
Card. In this example, the FAX/modem is a serial device (code 02h). 
Table C-5 lists the functions supported by PCMCIA. 

Table C-5. PC Card Function Codes 
Code 

0 

1 

Name 
Multi
Function 

Memory 

l~:--=~-:il-r:=====""~ 

4 Fixed Disk 
5 Video 

Ada ter 
6 NetworkLAN 

Ada ter 
7 AIMS 

8 .. FFh Reserved 

Meanin 
PC card has multiple functions. Function 
identification tuples for each individual func
tion must follow this tu 1e. 
Memory card (RAM, ROM, EPROM, flash, 
etc.). 

be silicon or removable). 
Video interface extension tuples (type and 
resolutions). 
Local Area Network adapter. 

Auto-Incrementin Mass Stora e card. 
Unused in release 2.x. Reserved by PCMCIA 
for future use. 

387

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

System Initialization Byte (TPLFID_SYSINIT) 

This field contains two bits that permits a PC Card to perform initial 
program load (IPL): 

• POST bit - specifies whether a given function should be configured 
during system initialization 

• ROM bit - indicates whether the PC Card contains an expansion 
ROM 

The format of the system initialization byte is shown in table C-6. Note 
that for the FAX/modem both bits are zero, indicating no requirement 
for configuration during system initialization and no expansion ROM is 
included on the card. 

~ bl C 6 I ·t. z · t. B t F t a e - . ni ta 1za wn ,y; e orma 

7 I 6 I 5 I 4 I 3 I 2 1 0 

Reserved for future use, must be set to zero (0) ROM POST 

Function Extension Tuple 

Not all classes of devices have function extension tuples defined. 
Working groups within PCMCIA that are concerned with specific PC 
card functions define function extensions. Relevant to the FAX/ modem 
example, the function extensions for the serial port have been defined 
by PCMCIA. These extensions include support for the serial port itself 
(UART), data modems, facsimile modems, and voice modems. 

The extension tuples for modem support include the features normally 
seen in application software. The extension tuples provide information 
for use by application software and play no role in the PC Card's con
figuration. The types of information included in the extensions include 
the various features supported by the modem such as: communication 
protocols, error correction, command support, and data compression 
support. 

Table C-7 shows the common format of the function extension tuples. 
Each function extension tuple has the same tuple code (22h), a link field 
and two function.,.specific fields: 

383 

388

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

384 

• Function Extension Type Code Field - this field identifies the spe
cific function extension defined by this tuple. 

• Function-specific information - this field contains data that is spe
cific to a given extension type. 

Ti bl C 7 F t. E t a e - unc ion x enszon T l F up e orma t 
Byte Function Extension Tuple Format 

0 TPL CODE CISTPL FUNCE (22H) 
1 TPL LINK Link to next tuple 
2 TPL_TYPE Function Extension Type Code (see ta-

ble C-8) 
3 .. n TPLFE DATA Function-specific information 

Function Extension Type Code (TPL_ TYPE) 

A separate function extension tuple is used for each type of extension 
defined. The particular type of function extension is defined in the 
function extension type code entry (TPL_TYPE). TPL_TYPE consists of 
two fields: 

• Subfunction ID - this is the function extension type ID code 
• Subfunction Descriptor - this identifies the EIA/TIA modem serv-

ice class 

Table C-8 lists the modem extensions and their associated function 
codes. This example includes serial port, data modem and facsimile 
modem extensions (those used in the example are shown in the shaded 
areas). The subfunction descriptor specifies a numeric value related to 
the EIA/TIA class of service supported by the modem. The 
FAX/modem in this example specifies a subfunction descriptor for the 
facsimile modem for class 1 and class 2 support. 

389

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

Table C-8. Modem Function Extensions 
7 6 5 4 

The extension descriptor is used in conjunc
tion with the FAX modem services function 
(code 3h). 

• In addition to the FAX modem services, the 
descriptor code adds the following: 

13h = class 1 fax command support 
23h = class 2 fax command support 

Note: The sequence of function extension tuples 
in the FAX/Modem example is as follows: 

3 2 1 
Subfunction ID 

0 

Code O - Modem Interface Description. (Default 
for Data & FAX, 8 & 9 not used) 

7 Describes capabilities of the voice 
modem interface. 

Code 5, 6 - Data & FAX modem inter-face capa
bilities. 

Code 2, 3, 3 - Data Modem Services & FAX Mo
dem Services (class 1 & class 2) 

8 

9 

10 

11-15 

Describes serial port interface for data 
modem services. 
Describes serial port interface for 
facsimile modem services. 
Describes serial port interface for 
voice modem services. 
Reserved for future standardization, 
set to zero. 

Function-Specific Data (TPLFE_DAT A) 

Definition of the function-specific data depends on the subfunction ID 
or mode extension type. The structure of these data fields are detailed in 
the PCMCIA specification and are not repeated here. A review of the 
tuple list gives a good idea of the information specified in each type of 
function extension tuples. 

Configuration Tuple 

The Configuration tuple identifies the number of configuration registers 
implemented and their location in attribute memory. The configuration 
tuple consists of six data entries. Table C-9 shows the actual format of 

385 

390

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

386 

the configuration tuple. Note that the data entries used in the 
FAX/Modem example are shaded. 

• Size of fields-specifies the number of bytes in the configuration 
registers base address field, in the configuration presence mask 
field, and in the reserved field. 

• Index number of the last entry in the configuration table. 
• Configuration registers base address in attribute memory. 
• Configuration presence mask-identifies the configuration registers 

implemented. 
• Reserved Field. 
• Subtuple information-containing additional card configuration in

formation. 

TPCC_RSVD Reserved area 0-3 bytes. Must be O bytes until de
fined. 

q+ 1..r TPCC_SBTPL The rest of the tuple is reserved for subtuples con
taining standardized optional additional informa
tion related to the Card Confi uration. 

Size of fields 

The size of fields entry describes the number of bytes used in the 
TPCC_RADR, TPCC_RMSK and TPCC_RFSZ fields as shown in table 
C-10. In the Flash card example, the size of fields entry has a value of 
Olh, resulting in the following values: 

391

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

• TPCC_RASZ - a one must be added to the hex value in this field to 
determine the number of bytes in TPCC_RADR used to specify the 
configuration registers base address. In this example, the 
TPCC_RADR entry consists of two bytes. 

• TPCC_RMSZ - a one must be added to the hex value in this field 
to determine the number of bytes in TPCC_RMSK used to indicate 
which of the option registers have been implemented. In this ex
ample, the TPCC_RMSK entry consists of one byte. 

• TPCC_RFSZ - the number of bytes reserved for future use (either 
0,1,2 or 3). Must be zero for release 2.0 compliance. 

Table C-10. Size of Fields B11te 
Bits 7 I 6 5 I 4 I 3 2 l 1 l 0 

Data Value 0 I o 0 I o I o 0 I o I 1 
Field Defini- TPCC_RFSZ TPCC_RMSZ TPCC_RASZ 

tion (RESR Size=O) (Size of TPCC RMSK=O) (Size of TPCC RADR=l ) 

Index Number of Last Configuration Entry 

This entry contains the index number of the last configuration entry of 
the card's configuration table and a reserved field as shown in table 
C-11. The value contained in the "last index" field in this example is 24h. 
Bits six and seven are reserved future use and must be set to zero. 

Table C-11. Last Confi:<uration Index 
Bytes/Bits 7 I 6 5 I 4 I 3 I 2 I 1 I 
Data Value 0 I 0 1 I 0 I 0 I 1 I 0 I 

0 

0 
Field Defini- Reserved for fu- The index number of the final entry in the Card Configuration 

tion ture use Table when scanning the CIS from address zero 
(Resr bits=O) (Last Index = 24h) 

Configuration Registers Base Address Entry 

This entry consists of either 1,2,3 or 4 bytes as specified by the 
"TPCC_RASZ" field of the "Size of Fields" entry. In this example, the 
"TPCC_RASZ" field indicates this entry consists of two bytes as shown 

387 

392

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

388 

in the shaded area of table C-11. The resulting address is attribute 
memory location 0200h (or 512d). 

B tes/Bits 
Field 

Definition 

Base Address Bits 25:24 

Configuration Presence Mask 

The "presence mask" entry consists of a variable number of fields as de
termined by the TPCC_RMSZ field within the "size of fields" tuple en
try. The presence mask is a bit map of configuration registers that can be 
implemented. The presence mask entry can contain a maximum of six
teen one byte fields (TPCC_RMSZ = 4 bits), and the eight bits in each 
field represents a configuration register; therefore, 128 configuration 
registers can be identified. The format of the presence mask fields is 
shown in table C-13. In this example, the presence mask entry consists 
of a single byte (indicated by shading). 

Currently, only four registers are specified by the PCMCIA standard. 
Each of these registers is numbered as follows: 

Register O = Configuration Option Register 
Register 1 = Card Configuration and Status Register 
Register 2 = Pin Replacement Register 
Register 3 = Socket and Copy Register 

The value 17h specified in the FAX/Modem card example means that 
the configuration option register, card configuration, and status register, 
pin replacement register and a manufacturer specific register 4 have 
been implemented in this card. 

393

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

Table C-13. Confi!zuration Re5<ister Mask 
Bytes/Bits 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

Field Confo:mration Registers 7:0 (17H) 
Definition Configuration Registers 15:8 

Configuration Registers 23:16 
Configuration Registers 31:24 
Configuration Registers 39:32 
Configuration Registers 47:40 
...................................................... 
Configuration Registers 127:120 

Configuration Table Entry Tuple 

Configuration table entry tuples comprise the configuration table within 
the CIS. This table provides the configuration options available for the 
PC Card, with each configuration table entry containing a different 
combination of options. These configuration table entries are scanned in 
sequence by PC Card enabling software in an attempt to find a configu
ration that can be satisfied with available system resources. 

Enabling software reads the configuration table entries one at a time to 
determine the configurable resources that the card requires. After each 
configuration table entry is read, the enabling software checks available 
system resources to see if the resources requested are available. If avail
able, enabling software configures the host bus adapter and PC Card. If, 
however, the configuration cannot be satisfied, enabling software pro
ceeds to the next configuration table entry to obtain alternate configura
tion options. This process continues until the PC Card's configuration is 
satisfied. If the configuration cannot be satisfied will available resources, 
the card cannot be enabled by the enabling software. 

Typically, the first configuration entry tuple within the configuration 
table is specified as the default. This tuple details the desired configura
tion for the PC Card. Since this tuple is the default, any configuration 
parameters that are successfully acquired from card services will be re
tained. Subsequent configuration entries include other permissible con
figuration combinations. 

Refer to table C-14 for the following discussion. The configuration table 
entry tuple contains up to twelve entries. The number of entries de
pends on the number of configuration parameters that must be specified 

389 

394

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

390 

for the additional PC Card options the designer needs to specify. The 
shaded areas of table C-14 show the entries used by the FAX/Modem in 
the first configuration table entry tuple. Note that in this example, the 
link value is 1 lh. The other entries are detailed below. 

Additional information about the configuration in subtuple 
format 

Configuration Table Index Byte 

Refer to table C-15. The index byte consists of three fields: 

• Configuration Index 
• Default bit 
• Interface bit 

Table C-15. Con · uration Index Ent 
7 6 5 

Interface Default 

Configuration Index 

Each configuration table entry contains a unique index number for 
identification purposes. The index number of the configuration table en
try tuple that satisfies the configuration tells the PC Card which con-

0 

395

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

figuration options were selected during the configuration process. To 
enable the configuration described in the tuple, the index number is 
written to the configuration option register. ' 

Default Bit 

This bit specifies whether or not this particular configuration table entry 
provides default values. In the FAX/Modem example, the first entry is a 
default entry. If the enabler is able to acquire all configuration parame
ters specified by a default entry (i.e. obtain the resources required by the 
card) then the card is configured with the based on the system resources 
specified within the entry. In the event that some, but not all resources 
were successfully acquired from the system, the enabler retains those 
that were granted. The enabler then proceeds to the next entry and at
tempts to complete the configuration based on alternative parameters 
specified in the next entry. 

When the default bit of the entry is not set, the default conditions are 
those specified by the last entry encountered that had its default bit set. 
If one or more of the resources specified by a non-default entry, then the 
enabler must release all resources specified by the non-default entry. 
Note that all entries in the FAX/Modem example are non-default en
tries, except the first entry. 

Interface Bit 

The interface bit is set in the first entry of this example, specifying that 
an interface configuration byte follows this byte. If this bit is a zero, then 
the interface configuration byte is not present within the tuple. (All sub
sequent entries have the interface bit cleared.) When no interface byte 
exists, the interface is presumed to be a standard memory only inter
face, with no requirement to support the wait signal. 

Interface Description Byte 

This byte describes the type of interface the card requires and specifies 
some associated features. Refer to table C-16. The fields within the Inter
face-definition byte are: 

391 

396

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

392 

• The interface type field 
• The card status reporting fields, consisting of: 
• - Battery Voltage Detection Active field 
• - Write Protect Active field 
• - Ready /Busy Active field 
• Memory Cycle Wait signal required field 

Table C-16. Entrv Interface Description Field 
Bits 7 6 5 4 3 I 2 I 1 

Value 0 1 0 0 0 I 0 I 0 
· Function MWait RdyBsy WP BVDs Interface Type 

not Re- Active Inactive Inactive 
q'd 

The Interface Type Field 

The four-bit interface type field defines the PC Card's interface type. 
Notice that the FAX/Modem has an interface type field value of lh. The 
16 possible values and their associated meanings are: 

Oh Memory Only Interface - The status reporting bit fields 
are not valid for this interface type. 

lh Memory or I/0 Interface - All other bits within this en
try are meaningless when this interface is selected. 

2h-3h Reserved for future standardization. 
4h-7h Custom Interfaces (0-3) corresponding to the definition of 

the CCSTPL_ CIF subtuples in the Configuration Tuple. 
The custom interface number is the relative position of the 
CCSTPL_ CIF subtuple used by this configuration in the 
set of CCSTPL_ CIF subtuples within the Configuration 
Tuple for this card. 

8h-Fh Reserved for future standardization. 

The Card Status Reporting Fields 

When an I/0 device such as the FAX/Modem is u~~d the status report
ing signals, which are part of the memory interfke pinout, are not 
available when the memory or I/0 interface is used. These status sig
nals are: 

I 0 

I 1 

397

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Bits 

Appendix C: FAX/Modem Tuple Example 

• Battery Voltage Detection 
• Write-Protect switch position 
• Ready /Busy status 

Since the FAX/Modem reports ready /busy status, the I/0 device must 
report status via the Pin Replacement Register within the CIS in lieu of 
the signal pins. The Rdy /Bsy Active bit is set to indicate that the Pin 
Replacement Register is used to report ready /busy status. 

Memory Cycle Wait Signal Required Field 

This single bit field specifies that the PC Card requires wait support for 
the memory device accesses. 

Feature-selection field 

This byte indicates which additional fields are present within the tuple. 
The FAX/Modem has a value of 9Dh in the feature selection byte as 
shown in table C-17. Definition of each of the feature selection byte's 
fields is detailed in table C-18. Note the definition used by the 
FAX/Modem is indicated by shading. 

~ bl C 17 F t S l t. B t a e - ea ure e ec wn ,ye 

II 7 6 5 4 3 2 1 
Value= 1 0 0 1 1 1 0 

9d 
Option Misc MemSpace IRQ IO Timing Power 
Fields Space 

393 

0 

1 

398

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Power 

Timing 

IO Space 

IRQ 

394 

Table C-18. Feature Selection B te Field De 'nition 
The power supply requirements and load characteristics for 
this configuration are indicated. There may be 0,1,2, or 3 
fields following representing Vee, Vpp, or both Vppl and 
V 2 in that order. The codin is as follows: 

Code 

0 

2 

3 
0 

0 

0 

Vee and Vpp (Vppl=Vpp2) power-description
structures. 

When the default bit is set in this tuple, or no con
figuration entry tuple has been scanned with its de
fault bit set, then no timing is specified. RDY /BSY 
may indicate busy indefinitely. WAIT will be active 
from O to 12 microseconds. 

When the default bit is set in the tuple, or no configu
ration-entry tuple has been scanned with its default 
bit set, then no I/ 0 space is used. 
Otherwise, the 1/0 space requirement is specified by 
the most-recently scanned configuration entry tuple 
with its default bet set. 

When the default bit is set in this tuple, or no con
figuration-entry tuple has been scanned with its de
fault bit set, then no Interrupt is used. 
Otherwise, the Interrupt request requirement is 
specified by the most recent scanned configuration 
entr tu le with its default bit set. 

399

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example· 

Table C-18. Feature Selection Byte Field Definition (Continued) 

MemSpace Memory address space mapping requirements for this con
figuration. There may be 0,2,4, or n bytes of information fol
lowin the interru t re uest structure. The codin follows: 

Misc 

Code Descri tion 
0 When the default bit is set in this tuple, or no con

figuration entry tuple has been scanned with its de
fault bit set, then no configuration dependent, 
memory address space is used. 
Otherwise, the memory address space requirement is 
specified by the most recently scanned configuration 
entr tu le with its default bit set. 

3 A memory space selection byte followed by table 
memory space descriptors (length determined by se
lection b te) 

0 When the default bit is set in this tuple, or no Con
figuration-Entry tuple has been scanned with its de
fault bit set, then the miscellaneous fields are 
interpreted to be all zero. 
Otherwise, the miscellaneous fields are specified by 
the most-recently scanned configuration entry tuple 
with its default bit set. 

Power-Description Structure 

The feature selection byte determines which power structure(s) will be 
defined within the configuration table entry tuple (only a V cc power de
scription structure in this example). Additionally, each power
description structure defines a variable number of power parameters 
that will be specified. The power description structure consists of: 

• A Power Parameter Selection byte 
• Power Parameter Definition byte(s) 

395 

400

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

396 

Power Parameter Selection byte 

The power parameter selection byte specifies which parameters are to 
be described within the power-description structure. Table C-19 lists 
the power parameters specified by the FAX/Modem (78h). Note that 
current parameters but no voltage parameters are defined. Definition of 
the parameter selection fields is stated in Table C-20. 

Ti bl C 19 P a e - ower D . t' St t P t Slt' Bt escrzp wn rue ure arame er e ec ion ;ye 
7 6 5 4 ' 3 2 1 0 

value 0 1 ······ .. 1 1 ···t . 
0 0 0 

•• 
Power RFU l'Dwri P~a'.k ·. A.vg ·. Static Max Min Norn 
Def. (0) l 

1·. 

I I .. l .· 
V V V . 

Table C-20. Power Selection Parameter De 'nition 
NomV 

MinV 
MaxV 
Static! 

Power:-down su 
Reserved for future standardization. 

Power Parameter Definition Bytes 

Values for each of the power parameters is determined by codes placed 
in the mantissa and exponent fields of the power parameter definition 
byte. Table C-21 shows each of the definition bytes along with the corre
sponding values for each of the four parameters specified by the power 
parameter selection byte. The actual values are calculated by multiply
ing the mantissa and exponent together. The values for the mantissa are 
given in table C-22 and values for the exponent are given in table C-23. 

401

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



* 

Appendix C: FAX/Modem Tuple Example 

Note that bit seven in each of the parameter definition bytes indicates 
whether power parameter extension bytes will follow each of the defi
nition bytes. The FAX/Modem card does not implement power exten
sions. However, for reference purposes table C-24 shows the values and 
definition provided by the extensions. 

Table 3-21. Power Parameter Ddinition for FAX/Modem 
Byte 7 6 5 4 3 2 1 0 

1 0 1 1 1 0 1 0 1 
!static EXT Mantissa= Eh (8) Exponent= Sh (10ma) 

2 0 1 1 1 1 1 0 1 
lavg EXT Mantissa = Fh (9) Exponent = Sh (1 Oma) 

3 0 0 0 0 0 1 1 0 
lpeak EXT Mantissa= Oh (1) Exponent= 6h (lOOma) 

4 0 0 0 1 0 1 0 1 
Ipwrdn EXT Mantissa= 2h (1.3) Exponent= Sh (lOma) 

The extension bytes may be continued indefinitely until the first byte which 
contains a O or 7, which is the final byte of the extension 

Table C-22. Mantissa Values for Power Definition 

The Mantissa Values (hex) 

Mantissa Value 
0 1 
1* 1.2 
2* 1.3 
3* 1.5 
4 2 
5* 2.5 
6 3 
7* 3.5 
8 4 
9* 4.5 
A 5 
B* 5.5 
C 6 
D 7 
E 8 
F 9 

* These values are not permitted when the EXT bit is set. 

397 

402

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

398 

Table C-23. Exponent Values for Power Definiti on 
The Exponent of the Current and Voltage Values are 
given below: 

Exponent Current Scale Voltage Scale 
0 100nA 10µV 
1 1 µA 100µV 
2 10µA lmV 
3 100µA 10mV 
4 lmA 100mV 
5 10mA 1V 
6 100mA 10V 
7 1A 100V 

~ bl C 24 P a e - ower D . t E t escrzp or x enswn B t ,ye 
Extension Extension Values and Definition 
(Bit 7) (Bits 6:0) 

0 .. 63h Binary value for the next two decimal digits to the right of the 
current value. 

64 .. 7Ch Reserved 
7Dh No connection (i.e. high impedance) permitted during sleep or 

power-down only (Must be last extension byte). 
7Eh Zero value required (must be only extension byte). 
7Fh No connection (i.e. high impedance) is required (must be only 

extension byte). 
Extension bytes may be concatenated indefinitely. The final extension byte 
contains a O in bit 7. 

Timing Description Structure 

The Timing Description structure allows the card designer to specify: 

• maximum time interval the wait signal will be asserted 
• maximum time interval that the card will remain in the busy state 
• reserved-time definition 

The timing description structure defines up to four bytes used to 
define the timing parameters. Refer to table C-25. The first byte 
(byte 0), called the timing scale factor byte, has two purposes: to 
determine which of the timing parameters are to be defined and if 
so, what scaling factor is to be applied to the timing descriptor for 
that parameter. The three bytes that follow the timing scale factor 
byte are the actual timing descriptors for the three parameters. 
Only the Ready /Busy timing parameter is implemented by 
FAX/Modem (the bytes used are shaded). 

403

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

Timing Scale Factor Byte 

WAIT 
Scale 

RdyBsy 
Scale 

Res'd 
Scale 

Each field within the timing scale factor byte defines how the 
timing parameter values that follow are to be interpreted. Refer to 
table C-26. 

'I bl C 26 T' . S l F t a e - immfZ ca e ac ors 
This field is the power of 10 scaling factor to be applied to the MAX WAIT timing 
parameter byte which follows. The value 3 indicates that the WAIT signal is not 
used and the MAX WAIT Speed is not present following this byte. 
This field is the power of 10 scaling factor to be applied to the MAX time the card 
will be in the Busy State. A value of 7 indicates that Ready /Busy is not used and no 
maximum time is present. 
This field is the power 10 scaling factor which is to be applied to a reserved-time 
definition. A value of 7 indicates that no reserved-speed bytes follows. 

Ready/Busy Timing Description Byte 

The FAX/Modem has a value of 5Fh in the ready /busy timing descrip
tion byte. The format of the timing description byte is shown in table C-
27. The mantissa and exponent values are speed codes, referring to the 
values in table C-28. The ready /busy timing parameter is calculated as 
follows: 

5.0 (mantissa) * 10ms (exponent) * 10 (scaling factor) = 500 ms 

'I bl C 27 T' . D a e - imm}Z . t' B t escrip wn itfi e 
Byte 7 6 5 4 3 2 1 I 0 

1 0 1 0 1 1 1 1 I 1 
!static NA Mantissa = Bh (5.0d) Exponent= 7h (lOms) 

399 

404

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

400 

Table C-28. Extended Device S eed Cod~s 
Mantissa onent 

Code Meanin Code Meanin 
Oh Reserved Oh 1 ns 
lh 1.0 lh 10 ns 
2h 1.2 2h 100 ns 
3h 1.3 3h 1 µs 
4h 1.5 4h lOµs 
Sh 2.0 Sh 100 µs 
6h 2.5 6h lms 
7h 3.0 
8h 3.5 
9h 

Ch 5.5 
Dh 6.0 
Eh 7.0 
Fh 8.0 

1/0-Description Structure 

The I/ 0-description structure consists of the following entries as shown 
in table C-29: 

• I/ 0 Address Decode Requirements byte 
• I/0 Address Range Descriptor Byte (defines the number of address 

ranges included within the structure, and characterizes the number 
of bytes used to define each of the I/0 address ranges that follow) 

• Address Range Descriptions (up to 16 entries, each defining a range 
of I/0 addresses that the card uses) 

405

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

1/0 Address Decode Requirements Byte 

This byte contains four fields as shown in table C-30. The table also 
provides a definition for each field. The FAX/Modem contains a value 
of AAh in this field, representing the following: 

• Ten I/0 Address lines are used by the card's address decoder. 
• The card is an 8-bit device. 
• One I/0 address range (followed by one I/0 address descriptor). 

1/0 Address Range Descriptor Byte 

This byte determines the number of address ranges that the card re
quires and determines the number of bytes used in each address range 
description that follows. Three fields specify this information: 

• Number of I/0 Address Ranges field - specifies the number of I/0 
address blocks that the card requires. For each range specified, an 
address range description entry follows. 

• Address Size field - specifies the number of bytes used in the I/ 0 
address descriptions to specify the starting address range. 

• Length Size field - specifies the number of bytes used in the I/0 ad-
dress descriptions to specify the length of the address range. 

The FAX/Modem contains a value of 60h in this field, telling software 
responsible for reading the card's I/0 address requirements how to in
terpret the address range descriptions. Refer to table C-31. The number 
of I/0 address ranges is one, so only one I/0 address range description 
follows this byte. Within this I/ 0 address description, the starting ad
dress is specified by two bytes, while a single byte specifies the length of 
the range. 

401 

406

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Bits 

value 
(AAh) 
Def. 

0 

1-26 

27-31 

1 

1 

Range 

402 

a e -T bl C 30 I/0 Add ress eco e D d D . t' escrtp wn 
7 6 5 4 I 3 I 2 1 0 

1 0 1 0 
I 

1 
I 

0 1 0 

Range Bus16 Bus8 I/ 0 Address Lines = 10 

1/0 Address Lines Field 
(Total number of address lines used by card decoder) 

When the 1/0Address Lines field is zero, the card will respond to all addresses pre-
sented to it. The system is entirely responsible for when the card is selected, and at 
what addresses the card is selected. The system must assign to the card a portion of the 
address space which is at least as large as the number of bytes indicated in the length 
field of the following range entry. The Base Address for the I/0 space (assigned to the 
card by the system) must begin on a 2*n address boundary such that 2*n is greater than 
the number of bytes indicated in the length field. 
When IOAddrLines is non-zero, the card performs address decoding to determine 
when it is selected. In this case, the card and the system share the determination of 
when a card is actually selected. The card must indicate in IOAddrLines the highest 
address line (plus 1) which it decodes to determine when it has been selected. The card 
provides a list of ranges of addresses for which it is selected within the 1/0 space that 
it decodes. 
The system and the card then share the task of determining when the card is selected. 
The system controls when the CE# pins are asserted during 1/0 cycles, and the card 
determines to which addresses it will respond when it is enabled by those CE# signals. 
The card returns the INP ACK# signal to the system whenever the card can recognizes 
the I/ 0 address on the bus. 
Reserved 

0 

1 

Descri tion 

16-bit registers accessible over data lines D15:DO only 
(no 8-bit accesses to 16-bit registers are supported) 
8-bit card registers accessible to odd bytes may take place over D15:D8 or 
D7:DO. . 

Same as previous combination except 8-bit access are supported to 16-bit 
re isters. 

If this bit is a "zero", the card responds to all addresses and uses all 1/0 address lines 
to distinguish among its I/ 0 ports. In this case, the amount of address space which 
should be allocated to the card is indicated by the number of address lines decoded by 
the card (e.g. 4 lines means 16 addresses). No 1/0 address range descriptor byte fol
lows. 

407

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix C: FAX/Modem Tuple Example 

a e -T bl C 31 I/0 Add ress R t equzremen s 
Byte 7 I 6 5 4 3 I 2 I 1 0 

Value 0 I 1 1 0 0 I 0 I 0 0 
1 Length Size Address Size Number of 1/0 Address Ranges 

(1 byte) (2 bytes) (value+ 1= 1 address range) 

Address Range Description 

The actual I/ 0 addresses specified by the FAX/Modem for the first 
configuration table entry are 3F8-3FFh as indicated in table C-32. 

a e -T bl C 32 I/0 Add ress R anRe D . t' escrzp ton 
Start of 1/0 Address (3F8h) -This field is 0, l, 2 or 4 bytes long (2 bytes in this example). Address 

bits in bytes which are not Jresent are zeros 

Data 7 6 5 4 3 2 1 0 

F8h 1 1 1 1 1 0 0 0 
03h 0 0 0 0 0 0 1 1 

Length of 1/0 Address (field value+ 1) -This field is 1, 2 or 4 bytes long (1 byte in this example) 
Length bits in bytes which are not present are zeros 

Data 7 6 5 4 3 2 1 0 

07h+l 0 0 0 0 0 1 1 1 

Interrupt Request Description Structure 

The interrupt request description consists of either a single byte or three 
bytes depending on the value of bit 4 (mask) in the first byte. In the 
FAX/Modem example, the mask bit is a zero, meaning that the mask 
registers (bytes 1 & 2) will not be used. Refer to table C-33. The shaded 
area shows the values used in this example. 

403 

408

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

404 

Miscellaneous Information Structure 

The miscellaneous information structure defines additional features that 
a given PC Card might support. These features are defined in table 
C-34. 

Table C-34. Miscellaneous Features Field 
Byte 7 6 5 4 3 2 I 1 I 0 

0 EXT Resrvd Pwr Read Audio Max Twin Cards 
(0) Down Only 

Max Twins This field indicates that cards which support installation of identical cards in the 
system be differentiated from each other in a sequential manner. For example, 
first twin is card 0, second is card 1, and so on. This allows the cards to share I/0 
ports and interrupts in a manner consistent with some peripherals commonly 
used in PC computers, such as ATA drives. 
The max-twins field specifies the maximum number of other identical cards 
which can be configured identically to this card. This permits more than one card 
to be installed in host which responds to the identical I/0 addresses. The host 
allows the cards to distinguish among themselves by writing their "Copy" num-
bers (e.g. 0, for the first card, 1 for the second, etc.) into the copy field of the Socket 
and Copy Register in the Card Configuration Registers. 

Audio This bit indicates that the card allows the BVD2 signal to be used as Audio Wave-
form for the speaker. This operation is controlled by the Audio Enable Bit in the 
Card Control and Status Configuration Register. 

Read Only This bit indicates that the card contains a data-storage medium which is read-only 
for .this configuration. There may be other configurations for which the storage 
medium is read/write. 

PwrDown This bit indicates that the card supports a power-down mode controlled by the 
power-down bit in the Control and Status Register. 

Resrvd (0) These bits are reserved for future definition and must be 0. 
EXT An extension follows this byte. A series of extension bytes, which will be defined 

by PCMCIA, is terminated when an extension byte is encountered which does not 
have the EXT bit set. 

The remaining tuple entries provide options for the I/ 0 range and IRQ 
lines. If these resources requested in the first configuration table entry 
are not available, then the next configuration table entry is checked. This 
continues until a resource combination is satisfied. Note that the last 
configuration table entry requests any 8-byte range of I/ 0 addresses 
and a large variety of possible IRQ lines, thereby increasing the chances 
that the card can be configured. 

409

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix D: AT A Disk CIS Example 

Appendix D: 
ATA Disk CIS 
Example 
The following section includes a sample CIS for an AT A PC Card. This 
sample CIS is from the Maxtor MobileMax 105 MB ATA Drive. Notice 
that the CIS includes four configuration table entry tuples to support all 
four addressing modes. 

Offset/ Addr Data Description and Interpretation 
(hex) (hex) 

0/0 01 Device Info Tuple 

1/2 04 Link to next tuple 

2/4 DF Device type = D (Function Specific Memory Device) Device Speed=7 (ext.) 

3/6 4A Mantissa= 9 (4.0) Exponent= 2 (100ns) - Speed= 400ns 

4/8 01 Unit Size=2KB Number of Units=l - Total size= 2KB 

5/A FF Termination Byte 

6/C 15 Level 1 Version/Product Information Tuple 

7/E 11 Link to next tuple 

8/10 04 Major Version number=4 

9/12 01 Minor Version number=l (Release 2.0 or 2.1) 

A/14 4D M (The remaining entries within the tuple are ASCII codes) 

B/16 61 a 

C/18 78 X 

D/1A 74 t 

E/lC 6F 0 

F/lE 72 r 

10/20 00 end of manufacturer name string 

405 

410

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Offset/ Addr Data Description and Interpretation 
(hex) (hex) 

11/22 4D M 

12/24 78 X 

13/26 4C L 

14/28 31 1 

15/2A 30 0 

16/2C 35 5 

17/2E 00 00 End Model Information String 

18/30 FF Tuple end byte 

19/32 lA Configuration Tuple 

lA/34 05 Link to next tuple 

lB/36 01 Configuration register address size = 2 bytes 

lC/38 03 Last configuration entry number = 3 

1D/3A 00 Configuration Registers base address = 00 (LSB) 02 (MSB) 

1E/3C 02 base address = 200h 

1F/3E OF configuration registers at location 200,202,204, and 206 

20/40 1B Configuration Table Entry Tuple 

21/42 10 Link to next tuple 

22/44 co Config entry= O; interface byte follows; default set 

23/46 co Interface = memory; wait & rdy /bsy active; bvd & wp inactive 

24/48 AS Feature Selection= Power, Timing, Memory address range, misc entries 

25/4A 7F Power Description= nom v, min v, static i, avg i, peak i, and pwrdwn i 

26/4C 55 nom v = 5v 

27/4E 40 min V = 4.5 V 

28/50 D5 maxv= 5.25v 

29/52 19 

2A/54 26 static i = 400ma 

2B/56 26 avg i = 400ma 

2C/58 6E peak i = 700ma 

2D/5A 54 pwrdwn i = 5ma 

2E/5C FF no extended wait, no rdy /bsy, or reserved defined 

2F/5E 08 2KB memory address range starting at address 0 

30/60 00 

31/62 20 Support for powerdown bit in configuration status register 

32/64 1B Configuration Table Entry tuple 

33/66 12 Link to next tuple 

406 

411

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix D: AT A Disk CIS Example 

Offset/ Addr Data Description and Interpretation 
(hex) (hex) 

34/68 Cl Configuration entry= 1; interface described; default set 

35/6A 41 Interface= I/0; rdy /bsy active; wait, wp and bvd not active 

36/6C 9D Feature selection= power, timing, I/0 addr range, IRQ and misc. entries 

37/6E 7F Power descrip = nom v, min v, max v, static i, avg i, peak i, & pwrdn i 

38/70 55 nom v= 5v 

39/72 4D min v = 4.5 v 

3A/74 D5 max v= 5.25v 

3B/76 19 

3C/78 26 static i = 400ma 

3D/7A 26 avg i = 400ma 

3E/7C 6E peak i = 700ma 

3F/7E 54 pwrdwn i = 5ma 

40/80 FF no extended wait, no rdy /bsy, or reserved defined 

41/82 64 I/0 addr range= 16 contiguous bytes, 8 or 16-bit mode 

42/84 FO IRQ shared, pulse or level mode supported 

43/86 FF All IRQs supported = IRQ15: IRQO 

44/88 FF 

45/8A 20 Support for powerdown bit in configuration status register 

46/8C 1B Configuration Table Entry tuple 

47/8E oc Link to next tuple 

48/90 82 Configuration entry = 2; interface described; default not set 

49/92 41 Interface = I/ O; rdy /bsy active; wait, wp and bvd not active 

4A/94 18 Feature selection = I/ 0 address range and IRQ entries 

4B/96 EA 10 addr lines decoded, 8 or 16 bit mode, subranges follow 

4C/98 61 2 address ranges; 2 byte addresses; 1 byte length 

4D/9A FO first address range= FO (LSB), 01 (MSB) = OlFOh 

4E/9C 01 

4F/9E 07 Length of first address range = 8 bytes 

50/ AO F6 Second address range = F6 (LSB), 03 (MSB) = 03F6h 

51/A2 03 

52/A4 01 Length of second address range = 2 bytes 

53/A6 EE IRQ shared, pulse or level, IRQ 14 

54/A8 1B Configuration Table Entry tuple 

55/AA oc Link to next tuple 

56/AC 83 Configuration entry = 2; interface described; default not set 

407 

412

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Offset/ Addr Data Description and Interpretation 
(hex) (hex) 

S7/AE 41 Interface= 1/0; rdy /bsy active; wait, wp and bvd not active 

S8/BO 18 Feature selection= 1/0 address range and IRQ entries 

S9/B2 EA 10 addr lines decoded, 8 or 16 bit mode, subranges follow 

SA/B4 61 2 address ranges; 2 byte addresses; lbyte length 

SB/B6 70 first address range= 70 (LSB), 01 (MSB) = 0170h 

SC/B8 01 

SD/BA 07 Length of first address range = 8 bytes 

SE/BC 76 Second address range = 76 (LSB), 03 (MSB) = 0376h 

SF/BE 03 

60/CO 01 Length of second address range = 2 bytes 

61/C2 EE IRQ shared, pulse or level, IRQ 14 

62/C4 21 Function ID Tuple 

63/C6 02 Link to next tuple 

64/C8 04 Device type 4= Fixed Disk Drive 

6S/CA 01 Initialization byte = attempt configuration at Power-On Self Test (POST) 

66/CC 22 Disk Drive Function Extension Tuple 

67/CE 02 Link to next tuple 

68/DO 01 Disk device interface 

69/D2 01 AT A interface 

6A/D4 14 No-link tuple 

6B/D6 00 link to next tuple 

6C/D8 FF End of Tuple String 

Device Information Tuple 

408 

The device information tuple must be the first tuple of any release 2.0 
compliant system and must be located at attribute memory address 
location zero. Device information provided in this tuple applies only to 
memory devices. Normally when an I/0 only card is used, the device 
information field will be only one byte long and contain a zero. In this 
case, however, the PC Card supports memory-mapped I/0. Table D-1 
shows the format of the device information tuple. Shaded area show 
portions of the tuple definition used by the ATA card in this example. 

413

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix D: AT A Disk CIS Example 

The CIS listing includes a link value of 04h, indicating that the extended 
speed byte is used. 

Table D-1. Device Information Tuple Format 

Byte Device Information Tuple Format 

0 TPL_CODE CISTPL_DEVICE (OlH) 

l TPL_LINK Link to next tuple 

Device Info 1 (OOh = no valid device information) 

Device Info 2 (2 or more bytes) 

... Device Info n (2 or more bytes) 

n FFH (marks end of device info field) 

The ATA card's Device Information tuple contains information for a 
single block of memory, therefore, only one device info block (Device 
Info 1) is defined. Device info 1 is comprised of three bytes in this 
example: 

• Device Type and Speed Byte 
• Extended Speed Byte 
• Device Size Byte 

Device Type and Speed Byte 

Refer to table D-2. The first byte describes the device speed, whether the 
write protect switch affects this address range, and the device type. 
Note that the device type code is only used to describe devices that use 
a fixed memory address range, and not for dynamically relocatable 
devices. Relocatable devices use the configuration entry tuples to 
describe the memory address ranges supported. 

The device type and speed byte contains a DFh value equating to the 
values shown below. Note that extended speed information is used in 
lieu of the standard speed definitions (refer to table D-3), since the 
devices being accessed within the memory address range are registers. 

The extended speed byte contains a codes for a marl.tissa and exponent 
value. The ATA card's CIS in this example contains a value of 4Ah, 
equating to a mantissa of 4.0 and an exponent of lOOns or a device 
speed of 400ns. 

409 

414

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table D-2. Memory Device Type and Speed Information 

Byte 7 I 6 I 5 I 4 3 2 I 1 I 0 

0 Device Type Code = D WPS=l Device Speed Codes = 7 

1 Extended Device Speed (if Device Speed Code equals 7h, otherwise omitted) 

2 .. m-1 Additional Extended Device Speed (if bit 7 of Extended Device Speed is 1, 
otherwise omitted) 

m .. n Extended Device Type (if Device Type Code equals Eh, otherwise omitted) 

Table D-3. Device Speed Codes 

Code Name Meaning 
Oh I DSPEED NULL I Use when device type= null 

lh I DSPEED 250NS I 250 nsec 

2h I DSPEED 200NS I 200 nsec 

3h I DSPEED 150NS I 150 nsec 

4h I DSPEED 100NS I 100 nsec 

5h-6h (Reserved) 

7h DSPEED EXT Use extended speed byte. 

Table D-4. Device Type Codes 

Code Name Meaning 

0 DTYPE_NULL No device. Generally used to designate a hole 
in the address space. If used, speed field should 
be set to OH 

1 DTYPE_ROM Masked ROM 

2 DTYPE_OTPROM One-time programmable PROM 

3 DTYPE_EPROM UVEPROM 

4 DTYPE_EEPROM EEPROM 

5 DTYPE_FLASH FlashEPROM 

6 DTYPE_SRAM Static RAM (JEIDA has Nonvolatile RAM) 

7 DTYPE_DRAM Dynamic RAM (JEIDA has Volatile RAM) 

8-Ch Reserved 

Dh DTYPE_FUNCSPEC* Function-specific memory address range. 
Includes memory-mapped 1/0 registers, dual-
ported memory, communication buffers, etc., 
which are not intended to be used as general-
purpose memory. 

Eh DTYPE_EXTEND Extended type follows. 

Fh Reserved 

410 

415

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix D: AT A Disk CIS Example 

Device Size Byte 

The ATA device size byte entry contains Olh. This represents a three bit 
"unit size code" of 4h, and the number of address units value of OFh. 
One is added to the number of address units value to obtain the actual 
number of units. Refer to table D-5 for byte format. 

Table D-5. Device Size Definition 

7 I 6 I 5 I 4 I 3 2 I 1 I 0 

# of address units(Oh) + 1= lh Unit Size Code = lh 

(1 unit x 2KB unit size = 2KB) 

Code Units Max Size 

0 512 bytes 16 K 

1 2K 64K 

2 SK 256K 

3 32K IM 

4 128 K 4M 

5 512K 16M 

6 2M 64M 

7 Reserved Reserved 

Level 1 Version/ Product Information Tuple 

Table D-6 shows the format and contents of the level 1 version/ product 
information tuple. This tuple provides the PCMCIA compliance level 
supported by the PC Card and includes manufacturer defined product 
information. The tuple includes three fields: 

• The major version byte indicating PCMCIA version information. 
• The· minor version byte indicating compliance with a given 

PCMCIA release. 
• A variable length field comprised of one or more strings of ASCII 

characters specified by the manufacturer. A value of OOh demarks 
each ASCII string. 

411 

416

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Table D-6. Level 1 Version/Product Information Tuple Format 

Byte Level 1 Version/Product Information Tuple Format 

0 TPL_CODE CISTPL_ VERS_l (15h). 

1 I TPL_LINK I Link to next tuple (24h). 

2 I TPLLVl_MAJOR I Major version number (04h). 

3 I TPLLVl_MINOR I Minor version number (Olh) for Release 2.0 and 2.01 

4 TPLL Vl_INFO Product information string: name of the manufacturer, 
terminated by OOh. 

Additional product information, in text; terminated by OOh. In 
this example: 

• Product name 

• Model Information 

n FFh: marks end of list. 

Configuration Tuple 

412 

The Configuration tuple identifies the number of configuration registers 
implemented and their location in attribute memory. The configuration 
tuple consists of six data entries as follows. Table D-7 shows the actual 
format of the configuration tuple. Note that the tuples used in the ATA 
disk example are shaded. 

• . Size of fields-specifies the number of bytes in the "configuration 

registers base address" field, in the "configuration presence mask" 

field, and in the "reserved field" 

• Index number of the last entry in the configuration table 

• Configuration registers base address in attribute memory 

• Configuration presence mask-identifies the configuration registers 

implemented 

• Reserved Field 

• Subtuple information-containing additional card configuration 

information 

417

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix D: AT A Disk CIS Example 

Table D-7. Configuration Tuple Format 

Byte 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 TPL_CODE Configuration tuple code (CISTPL_CONFIG, 1AH) 

1 TPL_LINK Link to next tuple (n-1; minimum 1) 

2 TPCC_SZ Size of Fields Byte 

3 TPCC_LAST Index Number of the last entry in the Card 
Configuration Table 

4 .. TPCC_RADR Configuration Registers Base Address in Reg 
Space. 1,2,3, or 4 bytes depending upon the size 
field in TPCC_LAST 

.. TPCC_RMSK Configuration Registers Present Mask. 1 to 16 
bytes as indicated by the count in TPCC_SZ. 

.. TPCC_RSVD Reserved area 0-3 bytes. Must be O bytes until 
defined. 

q+l .. r TPCC_SBTPL The rest of the tuple is reserved for subtuples 
containing standardized optional additional 
information related to the Card Configuration. 

Size of fields 

The size of fields entry describes the number of bytes used in the 
TPCC_RADR, TPCC_RMSK and TPCC_RFSZ fields as shown in table 
D-8. In the Flash card example, the size of fields entry has a value of 
Olh, resulting in the following values: 

• TPCC_RASZ - a one must be added to the hex value in this field to 
determine the number of bytes in TPCC_RADR used to specify the 
configuration registers base address. In this example, the 
TPCC_RADR entry consists of two bytes. 

• TPCC_RMSZ - a one must be added to the hex value in this field 
to determine the number of bytes in TPCC_RMSK used to indicate 
which of the option registers have been implemented. In this 
example, the TPCC_RMSK entry consists of one byte. 

• TPCC_RFSZ - the number of bytes reserved for future use (either 
0,1,2 or 3). Must be zero for release 2.0 compliance. 

413 

418

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

414 

Table D-8. Size of Fields Byte 

Bits 7 6 5 4 3 2 1 0 

Data Value 0 0 0 0 0 0 0 1 

Field TPCC_RFSZ TPCC_RMSZ TPCC_RASZ 
Definition (RESR Size=O) (Size of TPCC_RMSK=O) (Size of TPCC_RADR=l ) 

Index Number of Last Configuration Entry 

This entry contains the index number of the last configuration entry of 
the card's configuration table and a reserved field as shown in table D-9. 
The value contained in the "last index" field in this example is 03h. Bits 
six and seven are reserved future use and must be set to zero. 

Table D-9. Last Configuration Index 

Bytes/Bits 7 6 5 4 3 2 1 

Data Value 0 0 0 0 0 0 1 

0 

1 

Field Reserved for future The index number of the final entry in the Card Configuration 
Definition use Table when scanning the CIS from address zero 

(Resr bits=O) (Last Index = 03d) 

Configuration Registers Base Address Entry 

This entry consists of either 1,2,3 or 4 bytes as specified by the 
"TPCC_RASZ" field of the "Size of Fields" entry. In this example, the 
"TPCC_RASZ" field indicates this entry consists of two bytes as shown 
in the shaded area of table D-10. The resulting address is 0200h or 
attribute memory location 512d. 

Table D-10. Configuration Register Base Address 

Bytes/Bits 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

Field Base Address Bits 7:0 (OOh) 

Definition Base Address Bits 15:8 (02h) 

Base Address Bits 23:16 

Base Address Bits 25:24 

419

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix D: AT A Disk CIS Example 

Configuration Presence Mask 

The "presence mask" entry consists of a variable number of fields as 
determined by the TPCC_RMSZ field within the "size of fields" tuple 
entry. The presence mask is a bit map of configuration registers that can 
be implemented. The presence mask entry can contain a maximum of 
eight one byte fields (TPCC_RMSZ = 3 bits), and the eight bits in each 
field represents a configuration register; therefore, 64 configuration 
registers can be identified. The format of the presence mask fields is 
shown in figure D-11. In this example, the presence mask entry consists 
of a single byte (indicated by shading). 

Currently, only four registers are specified by the PCMCIA standard. 
Each of these registers is numbered as follows: 

Register O = Configuration Option Register 

Register 1 = Card Configuration and Status Register 

Register 2 = Pin Replacement Register 

Register 3 = Socket and Copy Register 

The value OFh specified in the AT A CIS means that the "configuration 
option register", "card configuration and status register", "pin 
replacement register" and "Socket and Copy register" have been 
implemented in this card. 

Table D-11. Configuration Register Mask 

Bytes/Bits 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

Field Configuration Registers 7:0 (OFh) 

Definition Configuration Registers 15:8 

Configuration Registers 23:16 

Configuration Registers 31:24 

Configuration Registers 39:32 

Configuration Registers 47:40 

Configuration Registers 55:48 

Configuration Registers 63:56 

415 

420

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

Configuration Table 

The configuration table contains four entries each of which describes a 
different combination of resource options required by the AT A card. 

Function Identification Tuple 

416 

This tuple identifies a PC card's function and specifies whether the 
function should be automatically configured during system 
initialization. The tuple contains two fields: 

• Function Code byte. 
• System Initialization Bit Mask. 

Refer to table D-12 for the tuple's basic format. 

Table D-12. Function Identification Tuple Format 

Byte Function Identification Tuple Format 
0 TPL_CODE CISTPL_FUNCID (21H ) 
1 TPL LINK Link to next tuple (at least 2) 
2 TPLFID FUNCTION PC Card function code 
3 TPLFID SYSINIT System initialization bit mask 

Function Code Byte {TPLFID_FUNCTION) 

This field contains a code that identifies the basic function · of the PC 
card. In this example, the ATA card is a Fixed Disk (code 04h). Table 
D-13 lists the functions supported by PCMCIA. 

421

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix D: AT A Disk CIS Example 

Table D-13. PC Card Function Codes 

Code Name Meaning 

Oh Multi-Function PC Card has multiple functions. Examine the following 
function identification tuples that follow for individual 
functions. 

lh Memory Memory Card (RAM, ROM, EPROM, flash, etc.). 

2h Seri~l Port Serial 1/0 port, includes modem cards. 

3h Parallel Port Parallel printer port, may be bi-directional. 

4h Fixed Disk Fixed drive, may be silicon may be removable. 

Sh Video Adapter Video interface, extension tuples (type and resolutions). 

6h Network LAN Local Area Network adapter. 
Adapter 

7h AIMS Auto-Incrementing Mass Storage card. 

8 .. FFh Reserved Unused in this release. Reserved by PCMCIA for future 
use. 

System Initialization Byte (TPLFID_SYSINIT) 

This field contains two bits that permit a PC card to perform initial 
program load (IPL): 

• POST bit - specifies whether a given function should be configured 
during system initialization. 

• ROM bit - indicates whether the PC card contains an expansion 
ROM. 

The format of the System Initialization byte is shown in table D-14. Note 
that for an ATA card, the POST bit is usually set to one, indicating the 
card should be configured during system initialization. A designer may 
or may not choose to incorporate an expansion ROM on the card. 

Table D-14. Initialization Byte 

7 I 6 I 5 I 4 I 3 I 2 1 0 

Reserved for future use, must be set to zero (0) ROM POST 

417 

422

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

418 

Function Extension Tuple 

Two extension tuples have been defined for ATA drives. One identifies 
the interface type and another specifies additional PC Card AT A 
features. Table D-15 shows the common format of the Function 
Extension tuples. Each Function Extension tuple has the same tuple 
code (22h), a link field and two function-specific fields: 

• Function Extension Type Code field - this field identifies the 
specific function extension defined by this tuple. 

• Function-specific information - this field contains data that is 
specific to a given extension type. 

Table D-15. Function Extension Tuple Format 

Byte Function Extension Tuple Format 

0 TPL_CODE CISTPL_FUNCE (22H) 

1 TPL_LINK Link to next tuple 

2 TPL_TYPE Function Extension Type Code 

3 .. n TPLFE_DATA Function-specific information 

423

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Code 

23h 

40h 

41h 

42h 

Appendix E: Metaformat Layers 2, 3, and 4 

Appendix E: 
Metaformat 
Layers 2, 3, and 4 
The following table lists and describes the tuples defined for the Layer 
2: Data Recording Format, of the PC Card Metaformat. 

Name Description 

CISTPL_SWIL Software interleaving - This tuple allows software 
interleaving of data within a partition on the card. 
This tuple indicates the software interleaving factor. 

CISTPL_ VERS _2 Level-2 version tuple - This tuple indicates the 
compliance of the level 2 tuples within the card and 
provides information regarding the general 
organization of the PC Card. 

CISTPL_FORMAT Data recording format for Common Memory - This 
tuple provides information about how the card is 
organized and accessed for use as a virtual disk 
drive. This tuple includes information defining: 

• Whether access is memory-like (byte accessible) 
or disk-like (accessed in blocks of address 
space). 

• The error correction method employed and 
length. 

• Byte address of first data byte in this partition 

• Number 0£ data bytes in this partition . 

CISTPL_GEOMETRY Partition geometry - This tuple is for use by cards 
that have disk-like partitions. Provides instructions 
to the file management system that requires data be 

419 

424

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

43h CISTPL_BYTEORDER 

44h CISTPL_DATE 

45h CISTPL_BATTERY 

47h CISTPL_FORMAT_A 

420 

located based on cylinders, tracks, and sectors. 

Byte ordering for disk-like partitions - This tuple is 
intended for PC Cards that have a memory-like 
organization. That is, cards that can be read from 
and written to one byte at a time. This tuple specifies 
the order for multi-byte data, and the order in which 
bytes map into words (even two byte block) for 16-
bit cards. 

Card Initilization date - This tuple indicates the 
date and time that the PC Card was last formatted. 

Battery replacement date - This tuple is intended 
for PC Cards having battery-backed storage. It 
indicates the date of the last battery replacement, 
and the date that replacement is likely to be required 
again. 

Data recording format for Attribute Memory -This 
tuple provides information about how the card is 
organized and accessed for use as a virtual disk 
drive. This tuple includes information defining: 

• Whether access is memory-like (byte accessible) 
or disk-like (accessed in blocks of address 
space). 

• The error correction method employed and 
length. 

• Byte address of first data byte in this partition 

• Number of data bytes in this partition. 

425

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix E: Metaformat Layers 2, 3, and 4 

The following table describes the tuple defined for metaformat Layer 3: Data 
Organization Tuples. 

Code Name Description 

46h CISTPL_ORG Partition organization - This tuple contains information abo
the organization of a partition within a PC Card. The tup
describes whether: 

• the partition contains a file system and specifies type a
version. 

• the partition contains applications-specific information a
specifies name and version. 

• the partition contains executable code images and specifi
name and version of the organization scheme. 

• the partition uses a vendor-specific organization . 

The table below describes the tuple defined for metaformat Layer 4: System
Specific Standard Tuples. 

Code Name Description 

90h CISTPL_SPCL Special Purpose - These tuple has meaning for DOS fi
systems and are used to define an interchange format for car
formatted with the DOS-FAT-based file system. 

Also provides a standard for executing code directly from a P
Card, called execute-in-place or XIP. 

80h-8Fh Vendor unique tuples 

421 

426

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Appendix F: References 

Appendix F: 
References 

Additional references on PCMCIA: 

Dipert, Brian and Levy, Markus Designing with Flash Memory, 
Annabooks, 1993. 

Mori, Michael T. And Welder, W. Dean, The PCMCIA Developer's Guide, 
Second Edition, Sycard Technology, 1994-95. 

PCMCIA/JEIDA, PC Card Standard, Volumes 1-12, February 1995 
2635 North First Street, Suite 209, San Jose, CA 95131, USA, phone: (408) 
433-2273. 

423 

427

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Glossary 

Glossary 
Access speed. The time required for a given memory or 1/0 device to accept or supply 
data when it is selected by a given bus master. 

Address offset. The value (typically measured in bytes) that specifies an address loca
tion relative to a given base ( or, start) address. 

Address translation. The process of converting one form of address to another. Typi
cally performed by a bridge device when passing a transactions between buses that 
implement different addressing protocols. 

Address window speed. The cycle time associated with accessing a memory or 1/0 
device. PCMCIA specifies the same cycle time for all devices that are mapped within 
the same host bus adapter address window. 

Advanced client services. A category of services within card services that perform 
advanced functions not typically used by standard client drivers (or, enablers). 

AIMS interface. Auto-Indexing Mass Storage (or, AIMS) is an extension to the 
PCMCIA specification that provides a simple PC Card interface used typically for 
storing large images. 

AT. An acronym for advanced technology used by IBM when naming their 80286-
based PCs (i.e. IBM PC-AT). Note that AT and ISA (Industry Standard Architecture) 
are commonly used terms to designate compatibility with the IBM PC-AT. 

ATA. An acronym for AT attachment. An ANSI standard that defines a disk drive 
interface between an AT compatible bus and IDE (integrated drive electronics) disk 
drives. 

ATA PC Card. A PC Card that conforms to the ATA standard (in most respects), 
providing a standard programming interface which is supported by virtually all of to
day's PCs. 

AT A flash card. An PC Card that employs flash memory and uses an AT A interface 
to emulate a disk drive. 

Attribute memory. PC Card address space used to store configuration information. 
The card's CIS and configuration registers are mapped into attribute memory address 
space. Only even address locations within attribute memory contain valid information. 

425 

428

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

426 

Battery warning. Memory cards used to emulate disk drives must provide a battery to 
retain information, if they use volatile memory. These cards have two signals pins 
(BVDl and BVD2- battery voltage detect 1 and 2) that can be used to report a low 
battery warning or a dead battery indication to the system. 

Bulk memory services. A category of card services used by memory client drivers to 
gain access and manage block memory transfers. 

BVD1 and BVD2. Memory cards used to emulate disk drives must provide a battery 
to retain information, if they use volatile memory. These cards have two signals pins 
(BVDl and BVD2- battery voltage detect 1 and 2) that can be used to report a low 
battery warning or a dead battery indication to the system. 

Call-back. The process used by card services to notify clients of events that they 
should respond to. The call-back calls a routine within the client driver used to handle 
the event notification. 

Card detection. The process of recognizing that a PC Card has been inserted into a 
socket and notifying enabling software responsible for configuring the card. 

Card information structure. Also called the CIS, this data structure is incorporated 
into PC Cards to characterize the function(s) contained within the card. The CIS con
sists of individual elements called tuples, each of which describes a given 
characteristic of the card. The CIS is typically mapped into attribute memory address 
space, but is sometimes implemented in common memory address space. 

Card services. A collection of software functions based on the client server model 
that permits unified control to all PC Card sockets and related hardware. PC Card cli
ent drivers register with card services to obtain access to PC Cards and sockets. 

Resource Management Services. A category of card services that used by a client 
driver to acquire system resources needed for configuring their card. When a client 
driver requests resource for their card, card services checks to verify that the requested 
resource is not being used by some other device within the system. Card services per
forms look-ups within its resource management table that contains the resources that 
are available for allocation to PC Cards. 

Card Types. PCMCIA are defines three card types (types 1, 2, and 3). These cards 
have the same electrical interface and different only in height. 

CD1# and CD2#. The Card Detect (CD) pins signal that a card is fully inserted into a 
PC Card socket. When the HBA detects these pins asserted it notifies card services via 
an interrupts. 

429

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Glossary 

CEl# and CE2#. The card enable (CE) pins specify that a PC Card is being accessed 
and whether one or two bytes are being requested. 

CIS. See Card information structure. 

Client driver. A client driver, also called an enabler, is responsible for configuring 
and enabling a PC Card when it is first inserted into a card socket. The client registers 
with and makes calls to card services provides the services necessary to fulfill the cli
ents requests. 

Client utility services. A category of card services used by client drivers to request 
that card services perform complex tasks that would otherwise require many low-level 
requests be made by the client driver. 

Common memory. Address space within a PC Card used as the working memory, 
where files are typically stored. 

Configuration process. The process involving reading and interpreting a PC Cards 
CIS entries to determine the type of function implemented by the PC Card and it con
figuration requirements. 

Configuration registers. Configuration registers within a PC Card provide the ability 
to program it for a given configuration and obtain status information about the card. 

DACK. DMA acknowledge (or, DACK) is a PC Card input for PC Card 1/0 func
tions that support DMA transfers. This signal is returned to the 1/0 card from the host 
system's DMA controller in response to a DMA request by the card. DACK signals 
the beginning of the DMA transfer between memory and the 1/0 function. 

Dedicated enabler. A PC Card enabler that is designed to configure and enable a 
specific PC Card. Dedicated enablers are usually supplied by the PC Card manufac
turer. Also called Device-specific enabler. 

Device-specific enabler. See Dedicated enabler 

Digital Audio.Waveform. The audio information output over a PC Card's 
SPEAKER# (SPKR#) pin to the host system's, used to drive the host system's speaker. 

OMA. Direct memory access (or, DMA) in the PC environment is the a transfer be
tween the host system's main memory and an 1/0 device. The transfer is controlled by 
the host-resident DMA controller. 

OMA Acknowledge. DMA acknowledge ( or, DACK) is a PC Card input for PC Card 
1/0 functions that support DMA transfers. This signal is returned to the 1/0 card from 

427 

430

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

428 

the host system's DMA controller in response to a DMA request by the card. DACK 
signals the beginning of the DMA transfer between memory and the 1/0 function. 

DMA Bus Cycle. A bus cycle performed by the host system DMA controller 

DMA clock. The clock used to run the Host DMA controller. 4MHz in a PC Com
patible system. 

DMA Request. DMA request (or, DREQ#) is a PC Card signal used by 1/0 cards that 
support DMA. The 1/0 card asserts DREQ# to notify the host DMA controller that it 
is ready to transfer data between itself and memory. 

DREQ#. See DMA Request. 

Dual-voltage cards. PC Cards that can operation at either 5vdc or 3.3vdc. 

EMS. Expanded Memory Specification ( or, EMS) defines a memory management 
procedure that allows additional memory to be added to a DOS-based PC that typically 
supports only 1MB of usable address space. EMS was defined by Lotus, Intel, and Mi
crosoft and is also referred to as the (LIM specification). Only applications written to 
support EMS can access the additional system memory. 

Enabler. The software responsible for detecting, configuring, and enabling a PC 
Card. Enablers are also called client drivers, because they interface to the PC Card 
environment via card services. Compare Point Enabler. 

Event call-back. The mechanism used by card services to notify its clients (PC Card 
enablers) of specific events that have occurred at the PC Card and socket. The en
ablers are responsible for processing the events. 

Event notification. Another term for a card services call-back. See Event call-back. 

Event wakeup. An event that is external to the PC that stimulates a PC Card to per
form some type of action (e.g. a remote call to a modem), when the system is in a 
power conservation state. The external event is used to "wake" the system so that it 
can respond. 

ExCA. Exchangeable Card Architecture ( or, ExCA) is a specification defined by Intel 
to promote interoperability of PC Cards between x86-based PCs. Note that ExCA has 
been renamed QuickSwap. 

Execute-in-place. Execute-in-place (or, XIP) refers to the ability of a PC memory 
card that emulates a disk drive to execute code directly from memory, rather than 

431

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Glossary 

having to copy and execute the file from host memory. Only applications written to 
support XIP can execute directly from PC Card memory. 

EXIP. A type of XIP, called Extended XIP, that requires a 386 or later x86 compati
ble processor. PC Card memory in this case is mapped into host system address space 
above 1MB. 

Expanded Memory Specification. Expanded Memory Specification (or, EMS) de
fines a memory management procedure that allows additional memory to be added to 
a DOS-based PC that typically supports only 1MB of usable address space. EMS was 
defined by Lotus, Intel, and Microsoft and is also referred to as the (LIM specifica
tion). Only applications written to support EMS can access the additional system 
memory. 

FFS. See Flash file system. 

Flash file system. A file system designed to manage access to PC Card flash memory 
that emulates a disk drive. A specific file system is required for flash memory to sup
port the special write characteristics of flash memory. Also called FFS. 

Flash translation layer. A form of flash file system that interfaces to the DOS file 
system, rather than implementing a specific installable file system that replaces DOS 
when accessing virtual flash drives. Also called FTL. 

FTL. See Flash translation layer. 

Generic enabler. A PC Card enabler designed to recognize and configure a wide va
riety of card types. Compare Dedicated enabler. 

HBA. Host Bus Adapter (or, HBA) is the hardware interface between the host expan
sion bus and PC Card sockets. The HBA bridges, or translates transactions between 
the PC Card sockets and the expansion bus. 

HLDA. Hold Acknowledge (or, HLDA) is an output from an x86 processor and an in
put to the DMA controller. HLDA is asserted by the processor when it detects its 
HOLD signal has been asserted by the DMA controller in response to DREQ# being 
asserted by the PC Card 1/0 device. 

HOLD. Hold request ( or, HOLD) is an input to an x86 processor that directs it to re
linquish control of the system bus. This signal is asserted by the host DMA controller 
to request use of the system buses so that it can perform a DMA transfer. See also 
HLDA. 

429 

432

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



, PCMCIA System Architecture 

430 

Host bus adapter. Host Bus Adapter ( or, HBA) is the hardware interface between the 
host expansion bus and PC Card sockets. The HBA bridges, or translates transactions 
between the PC Card sockets and the expansion bus. 

Hot insertion. The term used to describe the ability of PC Cards to be inserted and 
removed from the system after it has already been powered on. 

1/0 address window. A range of 1/0 address location programmed into the HBA that 
corresponds to the address locations used by an 1/0 card to access its internal regis
ters. The HBA recognizes when software attempts an access to a location within the 
specified range and forwards the transaction to the target 1/0 card and socket. 

1/0 Read Command. A command that is asserted by the host system to indicate that 
an 1/0 read operation is being performed. A card socket signal (IORD#) is asserted 
when an 1/0 read targets a PC Card register. 

1/0 size is 16-bits. A socket interface signal (10IS16#) output from an 1/0 card, tell
ing the HBA the size of the register being accessed (either 8- or 16-bits). 

1/0 Status Change. A socket interface signal (STSCHG#) asserted by an 1/0 card to 
notify the HBA and the enabler that a status change has occurred within the PC Card 

1/0 Write Command. A command that is asserted by the host system to indicate that 
an 1/0 write operation is being performed. A PC Card signal (IOWR#) is asserted by 
the HBA when it recognizes that an 1/0 write operation is targeting a PC Card regis
ter. 

IDE. Integrated drive electronics ( or, IDE) is a type of hard drive that incorporates 
must of the hard drive controller logic within the drive itself. The interface between an 
ISA compatible bus and the IDE drive is called the ATA interface. 

INPACK#. See Input port acknowledge. 

Input port acknowledge. Input port acknowledge (or, INPACK#) is an output signal 
from an 1/0 card during an 1/0 read that accesses a PC Card register. This signal no
tifies the HBA that the access belongs to the PC Card. 

Interrupt request. A request to the system that indicates that the 1/0 card needs 
servicing. The interrupt request ultimately calls the PC Card's interrupt service rou
tine (or, ISR). The interrupt request is signaled via the card's IREQ# pin. 

IOIS16#. 1/0 is 16 bits ( or, IOIS 16#) is a socket interface signal output from an 1/0 
card, telling the HBA the size of the register being accessed (either 8- or 16-bits). 

433

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Glossary 

IORD#. The I/0 read command (or, IORD#) is a signal asserted by the host system to 
indicate that an I/0 read operation is being performed from the I/0 card. 

IOWR#. A command that is asserted by the host system to indicate that an 1/0 write 
operation is being performed. The PC Card signal (IOWR#) is asserted by the HBA 
when it recognizes that an 1/0 write operation is targeting a PC Card register. 

IPL. Initial Program Load refers to the process of loading the operating system during 
the power-up sequence. Sometimes also referred to as the boot process. 

IREQ# Also called IREQ#, this PC Card 

JEDEC. Acronym for Joint Electronics Device Engineering Council. 

JEIDA. Acronym for Japanese Electronics Industry Development Association. 

Level mode interrupts. A method of signaling interrupts to the host system. A PC 
Card using level mode interrupts causes an interrupt to be registered, or triggered, by 
asserting the IREQ# pin and keeping it low until the interrupt is cleared by the ISR. 

LIM 4.0. See Expanded Memory Specification. 

Low voltage socket. A PC Card socket that can apply either 5vdc or 3.3vdc as the 
initial Vee power to the socket. The HBA that supports a low voltage socket monitors 
the voltage sense pins (VS 1 # and VS2#) to detect the initial voltage required by the 
PC Card. 

LXIP. A form of XIP referred to as Expanded XIP that employs an expanded memory 
approach to map the PC Card memory. 

Management interrupts. Interrupts generated by the HBA to notify card services that 
a status change has occurred within the PC Card environment. 

Memory address windows. A range of memory address location programmed into 
the HBA that corresponds to the address locations used by a memory card to access its 
internal memory array. The HBA recognizes when software attempts an access to a 
location within the specified range and forwards the transaction to the memory card 
and socket. 

Memory enabler. PC Card software designed to recognize, configure, and enable 
memory cards. Also called memory client driver. 

431 

434

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

432 

Memory-only interface. The PC Card socket interface that supports only memory 
cards. The socket is always configured as a memory-only socket when a PC Card is 
first inserted. The socket can be changed to a memory or I/0 interface if the enabler 
detects that the PC Card contains an I/0 function. 

Memory or 1/0 interface. The PC Card socket interface that supports both memory 
and I/0 functions. The socket is changed from a memory-only to a memory-only 
socket when the HBA and PC Card are configured. 

Memory technology driver. A client driver employed to handle low-level access to 
flash memory that requires special programming algorithms. Card services calls the 
memory technology driver when a flash memory enabler calls the bulk memory serv
ices. Also referred to as an MTD. 

Metaformat. A formatting standard defined by the PC Card standard that describes 
low-level formatting information. 

MTD. See Memory technology driver. 

OE#. Output enabler (or, OE#) is a socket interface signal that indicated that a mem
ory read command is being performed from PC Card memory. 

Offset. The value (typically measured in bytes) that specifies an address location rela
tive to a given base ( or, start) address. 

PCMCIA. Acronym for Personal Computer Memory Card International Association. 

Point enablers. A PC Card enabler that recognizes and configures a PC Card by ac
cessing the HBA and PC Card directly without the support of card and socket services. 

Power Management. A hardware and software solution empfoyed to conserve power. 

Pulse mode interrupts. A form of interrupt triggering used to support interrupt shar
ing in the ISA environment. The interrupt is triggered on the trailing edge of the PC 
Card's negative pulse. 

READY. An output pin from a memory card that indicates that it is ready for the next 
transaction. If deasserted, indicates that the memory card is busy performing a com
mand and is not ready to receive the next transaction. 

435

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Glossary 

REG#. The register (REG#) pin is a socket interface pin asserted by the HBA to indi
cate an attribute memory access (when OE# or WE# is asserted) or an 1/0 access 
(when IORD# or IOWR# is asserted). 

Registration. The process used by enablers to obtain the services of card services. 

Reset. A socket interface pin used to reset the PC Card. 

Resource allocation. The process employed by a PC Card enabler and card services to 
determine if system resources are available to be assigned to the PC Card. 

Socket interface. The electrical and mechanical interface for PC Cards. 

Socket services. PCMCIA specific software that provides low-level routines needed to 
access a given implementation of HBA. Socket services consists of a collection of 
functions that are typically called by card services to access HBA registers. 

SPKR#. The speaker signal defined by the memory or 1/0 socket interface. Used to 
carry digital audio information from the PC Card to the host speaker. 

Status change events. PC card and socket events that reflect some change in the 
status of the PC Card. When a status change event occurs, the HBA generates an in
terrupt to signal card services of the event. 

STSCHG#. Status change is an output signal from an 1/0 card to signal that a status 
change has occurred. 

SXIP. A type of XIP, called simple XIP, that maps PC Card memory into an address 
range no larger than 64KB in size. 

TC. An output signal from the DMA controller indicating that the transfer is com
plete (i.e. the DMA controller has reached the Terminal Count). This signal is an 
input to PC Cards that support DMA transfer. 

Tuples. The name given to the elements within the CIS that describe characteristics of 
the PC Card. 

Type 1 card. A PC Card with a maximum thickness of 3.3mm. 

Type II card. A PC Card with a maximum thickness of 3.3mm. 

Type III card. A PC Card with a maximum thickness of 3.3mm. 

Virtual disk. A memory card that is used to emulate a hard drive. 

Vppl and Vpp2. Programming voltage pins defined for the socket interface. 

433 

436

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

434 

VS1# and VS2#. Voltage sense pins defined for the low-voltage socket interface. 
These pins determine the initial V cc level to apply to the socket. 

WAIT#. A socket interface pin used by a PC Card to force wait states into a transac
tion. 

WP. See Write-protect. 

Write-protect. Write-protect (or, WP) is a output pin from a PC memory card indicat
ing whether the user has chosen to write-protect memory (i.e. files). 

XIP. See Execute-in-place. 

XIP-expanded memory. A form of XIP referred to as Expanded XIP that employs an 
expanded memory approach to map the PC Card memory. 

XIP-extended. A type of XIP, called Extended XIP, that requires a 386 or later x86 
compatible processor. PC Card memory in this case is mapped into host system ad
dress space above 1MB. 

XIP-Simple. A type of XIP, called simple XIP, that maps PC Card memory into an 
address range no larger than 64KB in size. 

437

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



Index 
-8-

8237 DMA controller, 90 

-A-
Access speed, 22 
Access timing, 134 
AccessConfigRegisters, 280 
Acknowledgelnterrupt, 292 
Address offset, 127 
Address translation, 121 
Address window speed, 132 
AddSocketServices, 291 
AdjustResourcelnfo, 291 
Advanced client services functions defined, 

264 
AIMS interface, 107 
Artificial card insertion events, 279 
ATA 
Sample CIS, 205 
Support for two drives, 106 
AT A CIS example, 202 
ATA configuration options, 106, 201 
ATA contiguous 1/0 address mapping, 105 
ATA flash card designs, 103 
ATA Function Extensions, 202 
ATA interface, 101 
ATA memory-mapped, 106 
ATA PC Cards, 103 
AT A primary address, 105 
ATA registers, 346 
ATA resource requirements, 105, 201 
ATA secondary address, 105 
ATA support for two drives, 201 
ATA vs ATA PC Card, 105 
Attribute memory, 48, 65 

Attribute memory address, 57 
Attribute memory read timing, 66 
Attribute memory transfer speed, 65 
Attribute memory write timing, 67 

Battery location, 36 
Battery warning, 63 

-B-

Booting from ATA cards, 313 
Booting from memory cards, 312 
Booting from PC Cards, 294, 311 
Bulk Memory functions, 289 
Bulk memory services, 289 
Bulk memory services functions defined, 

264 
BVD1 and BVD2, 60, 63 

-C
Call-back, 292, 293 
Call-backs, 278 
Card detection, 117 
Card information structure, 24 
Card insertion call-back, 296, 300, 303, 

304 
Card keying, 40 
Card lock, 141 
Card lock mechanisms, 141 
Card power, 50 
Card services, 22, 28, 264 
Advanced Client functions, 290, 291 
Card Services Specification, 18 
Card services, power management, 267 
Card servicesResource Management func-

tions:, 285, 286 
Card Types, 35 
Cardlnsertion call-back, 307 

435 

438

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

CDl# and CD2#, 60, 117 
CBI# and CE2#, 55, 71, 134 
CheckEraseQueue, 289 
CIS,24,29, 145,147 
Access timing, 158 
Configuration Table, 195 
FAX/modem example, 191 
Flash example, 183 
SRAM example, 177 
Client driver, 24 
Client driver call-backs, 278 
Client services functions defined, 264 
Client services funtions, 275 
Client utility functions, 280 
Client Utility functions defined, 264 
CloseMemory,289 
CL-PD6722, 335 
Address windows, 340 
AT A registers, 346 
AT A socket interface, 346 
DMA support, 348 
Features, 335 
1/0 window registers, 342 
Interface Status register, 345 
Interrupt and General Control register, 345 
Interrupt steering, 345 
Management interrupt configuration regis-

ter, 344 
Memory window registers, 340 
Power control, 336 
Status Change register, 344 
Status change reporting, 344 
Timing register set, 340 
V cc control, 337 
Vppl control, 338 
Common memory, 48, 65 
16-bit address mode, 68 
Common memory cycle time, 69 
Common memory, 8-bit address mode, 70 
Configuration process, 229, 296 
Configuration registers, 163, 196, 214 
1/0 base registers, 217 

436 

1/0 limit register, 218 
Configuration table entry, 288 
Configuraton registers 

Configuration Option Register, 164, 196 
Configuration Status Register, 166, 197, 

216 
Pin Replacement Register, 169, 197 
Socket and Copy Register, 170 

CopyMemory, 289 
Cycle time, common memory, 69 

-D
DACKJREG#, 93 
DACK2#, 89 
Data Transfers, 59 
Dedicated enablers, 232 
DeregisterClient, 280 
DeregisterEraseQueue, 289 
Device size, 135 
Digital Audio Waveform, 75 
Dimensions of PC Cards, 36 
Direct mapping, 121 
DMA Acknowledge, 89 
DMA Bus Cycle, 94 
DMA channels, 90 
DMA clock, 95 
DMA Compressed Timing, 96 
DMA Extended Write option, 97 
DMA read/write definition, 87 
DMA request, 89 
DMA start memory address, 87 
DMA Transfer Count, 87 
DMA transfer count exhausted, 90 
DMA, BOP (End-of-Process), 90 
DMA, TC (Terminal Count reached), 90 
DMAC states, 95 
DREQ#, 92 
DREQ2, 89 
Dual-voltage cards, 40 

439

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



-E
EDC support, 141 
Electrical Specification, 18 
EMS, 316 
Enabler, 22, 28 
EOP (End-of-Process), 90 
Event call-back, 291 
Event notification, 291 
ExCA, 321 
ExCA, Card insertion/removal require-

ments, 326 
ExCA, Card services requirements, 329 
ExCA, Event wakeup, 330 
ExCA, HBA requirements, 322 
ExCA, I/0 address windows, 323 
ExCA, Interrupt requirements, 324 
ExCA, Memory address windows, 323 
ExCA, PC Card Interrupt requirements, 

324 
ExCA, Socket services requirements, 327 
ExCA, Status Change Interrupt require-

ments, 324 
ExCA, System Power requirements, 326 
Execute-in-place, 315 
EXIP, 316,318 
Expanded Memory Specification, 316 

-F
FFS, 303 
First level interrupt handler, 224 
Flash file system, 298, 303 
Flash memory client drivers, 298 
Flash memory enablers, 298 
flash translation layer, 303 
FLIH, 222, 224 
FTL, 303 

-G-
Generic enabler, 24 
Generic enablers, 233 

GetCardServiceslnfo, 276 
GetClientlnfo, 291 
GetConfigurationinfo, 280, 282, 283 
GetFirstClient, 291 
GetFirstPartition, 281, 284 
GetFirstRegion, 281, 284 
GetFirstTuple, 280, 283 
GetFirstWindow, 286 
GetMemPage, 286 
GetNextClient, 291 
GetNextPartition, 281, 284 
GetNextRegion, 281,284 
GetNextTuple, 280, 283 
GetNextWindow, 286 
GetTupleData, 280, 283 

-H
HBA, 22, 26, 113, 115 

Functions, 115 
HBA, EDC, 141 
HBA, maximum number supported, 116 
HBA, maximum sockets/HBA, 117 
HBA, Power management, 141 
HLDA, 89 
HOLD, 89 
Host bus adapter, 22. see HBA 
Hot insertion, 22 

-I-

I/0 address window overlapping, 130 
I/0 address windows, 130 
I/0 address windows, direct mapped, 130 
I/0 addressing, 8-bit mode, 80 
I/0 data transfers, 79 
1/0 Read Command, 7 5 
1/0 size is 16-bits, 75 
1/0 Status Change, 7 5 
I/0 status change events, 78 
I/0 transfer timing, 81 
I/0 transfers 

16-bit access to 8-bit register, 82 

437 

440

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

1/0 transfers with 16-bit registers, 82 
1/0 Write Command, 75 
IDE Drive, 104 
Initial program load, 312 
Initialization, 265 
Initialization byte, 313 
INPACK#, 75, 78, 130 
Input Port Acknowledge, 7 5 
Interrupt Request, 7 5 
Interrupts, 135 
10IS16#, 75, 77, 78,80,83 
IORD#, 75 
IORD# and IOWR#, 77 
IOWR#, 75 
IPL, 312 
IPL from ATA cards, 204 
IPL from PC Cards, 294, 311 
IREQ#, 75, 78 

-J
JEIDA, 14 
JEIDA battery status, 63 
JEIDA Extensions, 19 

-L-
Level interrupts, 137 
Level mode interrupts, 136 
LIM 4.0, 318 
Low voltage socket, 41, 51 
Low-voltage socket, 53 
LXIP, 316,318 

-M-
Management interrupts, 139 
MapLogSocket, 290 
MapLogWindow, 290 
MapMemPage,286 
MapPhySocket,290 
MapPhyWindow, 290 
Media Storage Formats Specification, 19 

438 

Memory Address mapping, 121 
Memory address windows, 126 

Overlapping, 127 
Memory client drivers, 297 
Memory data transfers, 65 
Memory enablers, 297 
Memory interface, 48 
Memory or 1/0 interface, 74, 133 
Memory read timing, Attribute memory, 

66 
Memory technology driver, 305 
Memory technology drivers, 297 
Memory transfer speed, 65 
Memory transfer using WAIT#, 71 
Memory-only interface, 133 
Metaformat, 29 

Layers, 31 
Metaformat Specification, 18 
ModifyConfiguration, 286 
ModifyWindow, 286 
MTD, 290,297,303,305 
Multiple function card, 209, 210 
Multiple function interrupts, 219, 221 

-0-
0E#, 59 
OpenMemory, 289,300,304 
Overlapping 1/0 Windows, 130 
Overlapping memory windows, 127 

-P
PC Card Address, 55 
PC Card AT A specification, 19 
PC Card Data, 59 
PC Card detection, 117 
PC Card device size, 135 
PC Card dimensions, 36 
PC Card Interrupts, 135 
PC Card socket, 22 
PC Cards, 14 
PCMCIA, 14 

441

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA Evolution, 17 
PCMCIA Extensions, 19 
PCMCIA.SYS, 317 
Physical Specification, 18 
Pin definition, memory interface, 48 
Pin length, 42 
Pin replacement register, 79 
Point enablers, 233, 309 
POST, 313 
Power Control register, 337 
Power Management, 141,267 
Power switching, 119 
Pulse interrupts, 138 
Pulse mode interrupts, 136 

-R-
Read transfers, common memory, 68 
ReadMemory,289,305 
READY, 60, 62 
READY Status, 62 
REG#, 59, 77 
RegisterClient, 276, 300, 303, 304 
RegisterEraseQueue, 289 
RegisterMTD, 290 
RegisterTimer, 290 
Registration, 27 5 
Registration Complete, 277, 279 
ReleaseConfiguration, 286 
ReleaseDMA, 286 
ReleaseExclusive, 291 
ReleaseIO, 285 
ReleaseIRQ, 285 
ReleaseSocketMask, 286 
Release Window, 285 
ReplaceSocketServices, 291 
RequestConfiguration, 286, 288 
RequestDMA, 285 
RequestExclusive, 291 
Requesting resources, 287 
RequestlO, 285 
RequestIRQ, 285 
RequestSocketMask, 286 

RequestWindow, 285 
Reset, 64 
Resource allocation, 284 
Resource management functions defined, 

264 
RetumSSEntry, 290 
Ring Indicate, 330 

SetRegion, 290 
Socket 

-S-

2.x compliant socket, 40 
Access timing, 134 
Keying, 2.x socket, 40 
Keying, low voltage socket, 40 
Low voltage, 52 

Socket Address, 16-bit mode, 56 
Socket Address, 8-bit mode, 57 
Socket and Copy Register, 106,202 
Socket functions, 249 
Socket interface, 116 

Address lines, 55 
Data lines, 59 
Vppl and Vpp2, 54 

Socket interface control, 133 
Socket interface selection, 133 
Socket keying, 40 
Socket power, 50, 119 
Socket service 

Installation, 237 
Socket services, 22, 27, 235 

Acknowledgelnterrupt, 248 
Adapter functions, 243 
Adapter functions defined, 238 
EDC functions defined, 239 
Function summary, 237 
functions, 239 
GetAccessOffsets, 248 
GetAdapter, 245 
GetAdapterCount, 243 
GetSetPriorHandle, 244 
GetSetSSAddr, 248 

439 

442

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



PCMCIA System Architecture 

GetSocket, 249 
GetSSinfo, 243 
GetStatus, 252 
GetVendorlnfo, 247 
GetWindow, 253 
InquireAdapter, 245 
InquireSocket, 249 
InquireWindow, 253 
ResetSocket, 252 
SetAdapter, 245 
SetSocket, 249 
SetWindow, 253 
Socket functions defined, 238 
VendorSpecific, 247 
Window functions, 253 
Window functions defined, 238 
x86 function codes, 241 

Socket Services Specification, 18 
Socket Status Change, 119 
Socket transfer timing control, 133 
Socket, low voltage, 41 
Sockets, 22 
SPKR#, 75, 79 
SRAM client drivers, 298,299, 301 
SRAM enablers, 298 
Standard socket, 52 
Status change events, 60, 277 
Status signals, 60 
STSCHG#, 75, 79 
SXIP, 316,318 

-T
Tc (DMA Terminal Count), 90 
TC, to PC Card, 93 
Tuples, 148, 330 

Definition, 148 
Summary listing, 158 
Tuple format, 148 

Type 1 card, 36 
Type I card, Extended, 39 
Type II card, 37 

440 

Type II card, Extended, 39 
Type III card, 38 
Types of PC Card, 36 

-V
Validatec1s, 290 
Vee, 119 
V cc, 2.x socket, 50 
V cc, low voltage socket, 51 
VendorSpecific, 291 
Virtual disk, 22 
Voltage Sense, 51, 120 
Voltage sense pins, 50 
Vppl and Vpp2, 54, 120 
VSl# and VS2#, 50, 51, 120 

-W
WAIT#,64, 71, 79,134 
Wait# timing, 71 
Word vs byte access, 134 
WP,60,62 
write protect switch location, 36 
Write timing, attribute memory, 67 
WriteMemory, 289,305 
Write-Protect, 62 

-X-
x86 function codes, 271 
XIP, 315 
XIP application, 318 
XIP device driver, 317 
XIP file management, 316 
XIP loader, 317 
XIP manager, 318 
XIP Specification, 19 
XIP.SYS, 317 
XIP-expanded memory, 318 
XIP-extended, 318 
XIP-Simple, 318 

443

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



444

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



at www.awprofessional.com/register 

You may be eligible to receive: 

• Advance notice of forthcoming editions of the book 

• Related book recommendations 

• Chapter excerpts and supplements of forthcoming titles 

• Information about special contests and promotions 

throughout the year 

• Notices and reminders about author appearances, 

tradeshows, and online chat 

Co~.· ~-
If you are interested in writing a book or re 
manuscripts prior to publication, please 

Editorial Department 
Addison-Wesley Professional 
75 Arlington Street, Suite 300 
Boston,MA 02116 USA 
Email: AWPro@aw.com 

Visit us on the Web: http://www.awprofessional.com 

445

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545

18545
Sticky Note
None set by 18545

18545
Sticky Note
MigrationNone set by 18545

18545
Sticky Note
Unmarked set by 18545



446


