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PREFACE

Spatial data consist of points, lines, rectangles, regions, surfaces, and volumes. The
representation of such data is becoming increasingly important in applications in
computer graphics, computer vision, database management systems, computer-aided
design, solid modeling, robotics, geographic information systems (GIS), image pro-
cessing, computational geometry, pattern recognition, and other areas. Once an appli-
cation has been specified, it is commonfor the spatial data types to be more precise.
For example, consider a geographic information system (GIS). In such a case, line
data are differentiated on the basis of whether the lines are isolated (e.g., earthquake
faults), elements of tree-like structures (e.g., rivers and their tributaries), or elements
of networks (e.g., rail and highway systems). Similarly region data are often in the
form of polygonsthat are isolated (e.g., lakes), adjacent (e.g., nations), or nested (e.g.,
contours). Clearly the variations are large.

Manyofthe data structures currently used to represent spatial data are hierarchi-
cal. They are based on the principle of recursive decomposition (similar to divide and
conquer methods [Aho74]). One such data structure is the quadtree (octree in three
dimensions). As we shall see, the term quadtree has taken on a generic meaning. In
this book, it is my goal to show how a numberof hierarchical data structures used in

different domainsare related to each other and to quadtrees. My presentation concen-
trates on these different representations and illustrates how a numberof basic opera-
tions that use them are performed.

Hierarchical data structures are useful because of their ability to focus on the
interesting subsets of the data. This focusing results in an efficient representation and
in improved execution times. Thus they are particularly convenient for performingset
operations. Manyof the operations described can often be performed asefficiently, or
more so, with other data structures. Nevertheless hierarchical data structures are

attractive because of their conceptual clarity and ease of implementation. In addition,
the use of some of them provides a spatial index. This is very useful in applications
involving spatial databases.
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viii I PREFACE

As an example of the type of problems to which the techniques describedin this
book are applicable, consider a cartographic database consisting of a number of maps
and sometypical queries. The database contains a contour map, say at 50-foot eleva-
tion intervals, and a land use map classifying areas according to crop growth. Our
goal is to determine all regions between 400- and 600-foot elevation levels where
wheat is grown. This will require an intersection operation on the two maps. Such an
analysis could be rather costly, depending on the way the mapsare represented. For
example, since areas where com is grown are of no interest, we wish to spend a
minimal amount of effort searching such regions. Yet traditional region representa-
tions such as the boundary code [Free74] are very local in application, making it
difficult to avoid examining a corn-growing area that meets the desired elevation
criterion. In contrast, hierarchical representations such as the region quadtree are
more global in nature and enable the elimination of larger areas from consideration.

Another query might be to determine whether two roadsintersect within a given
area. We could check them point by point; however, a more efficient method of
analysis would be to represent them by a hierarchical sequence of enclosing rectangles
and to discover whetherin fact the rectangles do overlap. If they do not, the search is
terminated. If an intersection is possible, more work mayhave to be done, depending
on which methodof representation is used.

A similar query can be constructed for point data— for example, to determine
all cities within 50 miles of St. Louis that have a population in excess of 20,000.
Again we could check each city individually. However, using a representation that
decomposes the United States into square areas having sides of length 100 miles
would mean that at most four squares need to be examined. Thus California andits
adjacentstates can be safely ignored.

Finally, suppose we wish to integrate our queries over a database containing
many different types of data (e.g., points, lines, areas). A typical query might be,
“Find all cities with a population in excess of 5,000 people in wheat-growing regions
within 20 miles of the Mississippi River.” In this book we will present a number of
different ways of representing data so that such queries and other operations can be
efficiently processed.

This book is organized as follows. There is one chapter for each spatial data
type, in which I present a numberof different data structures. The aim is to gain the
ability to evaluate them and to determine their applicability. Two problemsare treated
in great detail: the rectangle intersection problem, discussed in the context of the
representation of collections of small rectangles (Chapter 3), and the point location
problem,discussed in the context of the representation of curvilinear data (Chapter4).
A comprehensive treatment of the use of quadtrees and octrees in other applications in
computer graphics, image processing, and geographic information systems (GIS) can
be found in [Same90b].

Chapter 1 gives a general introduction to the principle of recursive decomposi-
tion with a concentration on two-dimensional regions. Key properties, as well as a
historical overview,are presented.
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PREFACE ll ix

Chapter 2 discusses hierarchical representations of multidimensional point data.
These data structures are particularly useful in applications in database management
systems because they are designedto facilitate responses to search queries.

Chapter 3 examines the hierarchical representation of collections of small rec-
tangles. Such data arise in applications in computational geometry, very large-scale
integrations (VLSI), cartography, and database management. Examples from these
fields (e.g., the rectangle intersection problem) are used to illustrate their differences.
Many of the representations are closely related to those used for point data. This
chapter is an expansion of [Same88a].

Chapter4 treats the hierarchical representation of curvilinear data. The primary
focus is on the representation of polygonal maps. The goalis to be able to solve. the
point location problem. Quadtree-like solutions are compared with those from com-
putational geometry suchas the K-structure [Kirk83] and the layered dag [Edel86a].

Chapter 5 looks at the representation of three-dimensional region data. In this
case, a numberof octree variants are examined, as well as constructive solid geometry
(CSG) and the boundary model (BRep). Algorithms are discussed for converting
between some of these representations. The representation of surfaces (i.e., 2.5-
dimensional data) is also briefly discussed in this chapter.

There are a numberof topics for which justice requires a considerably more
detailed treatment. However, due to space limitations, I have omitted a detailed dis-
cussion of them andinstead refer interested readers to the appropriate literature. For
example, surface representations are discussed briefly with three-dimensional data in
Chapter 5 (also see Chapter 7 of (Same90b]). The notion of a pyramid is presented
only at a cursory level in Chapter 1 so that it can be contrasted with the quadtree. In
particular, the pyramid is a multiresolution representation, whereas the quadtree is a
variable resolution representation. Readers are referred to Tanimoto and Klinger
[Tani80] and the collection of papers edited by Rosenfeld (Rose83a] for a more
comprehensive exposition on pyramids.

Results from computational geometry, although related to many of the topics
covered in this book, are discussed only in the context of representations for collec-
tions of small rectangles (Chapter 3) and curvilinear data (Chapter 4). For more
details on early work involving someof these and related topics, interested readers
should consult the surveys by Bentley and Friedman [Bent79b], Overmars (Over88a],
Edelsbrunner (Edel84], Nagy and Wagle [Nagy79], Peuquet (Peuq84], Requicha
[Requ80], Srihari (Srih81], Samet and Rosenfeld [Same80d], Samet (Same84b,
Same88a], Samet and Webber [Same88c, Same88d], and Toussaint [Tous80].

There are also a numberof excellent texts containing material related to the
topics that I cover. Rosenfeld and Kak (Rose82a] should be consulted for an ency-
clopedic treatment of image processing. Mantyla (Mant87] has written a comprehen-
sive introduction to solid modeling. Burrough [Burr86] provides a survey of geo-
graphic information systems (GIS). Overmars [Over83] has produced a particularly
good treatment of multidimensional point data. In a similar vein, see Mehlhorn’s
[Mehl84] unified treatment of multidimensional searching and computational
geometry. For thorough introductions to computational geometry, see Preparata and
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K-structure and the layered dag in Section 4.3 are relevant to computational geometry.
Bucket methods such as linear hashing, spiral hashing, grid file, and EXCELL, in Sec-
tion 2.8, and R-trees in Section 3.5.3 are important in the study of database manage-
ment systems. Methods for multidimensional searching that are discussed include k-d
trees in Section 2.4, range trees and priority search trees in Section 2.5, and point-
based rectangle representations in Section 3.4. The discussions of the representation
of two-dimensional regions in Chapter |, polygonal representations in Chapter 4, and
use of point methods for focussing the Hough Transform are relevant to image pro-
cessing. Finally the rectangle-representation methods and plane-sweep methods of
Chapter 3 are importantin the field of VLSI design.

The natural homefor courses that use this book is in a Computer science depart-
ment, but the book could also be used in a curriculum in geographic information
systems (GIS). Such a course is offered in geography departments. The emphasis for
a course in this area would be on the use of quadtree-like methods for representing
spatial data.
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Shamos [Prep85] and Edelsbrunner [Edel87] (also see [Prep83, ORou88]). A broader
view of the literature can be found in related bibliographies such as the ongoing col-
lective effort coordinated by Edelsbrunner [Edel83c, Edel88], and Rosenfeld’s annual
collection of references in the journal Computer Vision, Graphics, and Image Pro-
cessing (e.g., [Rose88]).

Nevertheless, given the broad and rapidly expanding nature of the field, I am
bound to have omitted significant concepts and references. In addition at times I
devote a disproportionate amount of attention to some concepts at the expense of oth-
ers. This is principally for expository purposes; I feel that it is better to understand
somestructures well rather than to give readers a quick runthrough of buzzwords. For
these indiscretions, I beg your pardon and hope you nevertheless bear with me.

Myapproachis an algorithmic one. Wheneverpossible, I have tried to motivate
critical steps in the algorithms by a liberal use of examples. I feel that it is of
paramount importance for readers to see the ease with which the representations can
be implemented and used. In each chapter, except for the introduction (Chapter 1), I
give at least one detailed algorithm using pseudo-codeso that readers can see how the
ideas can be applied. The pseudo-codeis a variant of the ALGOL [Naur60] program-
ming language that has a data structuring facility incorporating pointers and record
structures. Recursion is used heavily. This language has similarities to C [Kern78],
PASCAL [Jens74], SAIL [Reis76], and ALGOL W [Baue68]. Its basic features are

described in the Appendix. However, the actual codeis not crucial to understanding
the techniques, and it maybe skipped on a first reading. The index indicates the page
numbers where the code for each algorithm is found.

In manycasesI also give an analysis of the space and time requirements ofdif-
ferent data structures and algorithms. The analysis is usually of an asymptotic nature
and is in terms of big O and Q notation [Knut76]. The big O notation denotes an
upper bound. For example, if an algorithm takes O(log,N) time, then its worst-case
behavior is never any worse than log,N. The Q notation denotes a lower bound. As
an example of its use, consider the problem of sorting N numbers. When wesaythat
sorting is Q(N:log>N) we meanthat given any algorithm for sorting, there is some set
of N input values for which the algorithm will require at least this much time.

At times I also describe implementations of some of the data structures for the
purpose of comparison. In such cases counts, such as the numberoffields in a record,
are often given. These numbers are meant only to amplify the discussion. They are
notto be taken literally, as improvements are always possible once a specific applica-
tion is analyzed morecarefully.

Each chapter contains a substantial number of exercises. Many ofthe exercises
develop further the material in the text as a meansof testing the reader’s understand-
ing, as well as suggesting future directions. When the exercise orits solution is not
my own, I have preceded it with the nameof its originator. The exercises have not
been graded by difficulty. They rarely require any mathematical skills beyond the
undergraduate level for their solution. However, while some of the exercises are quite
straightforward, others require some ingenuity. Solutions, or references to papers that
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contain the solution, are provided for a substantial numberof the exercises that do nat
require programming. Readers are cautionedto try to solve the exercises before turn-
ing to the solutions. It is my belief that much can be learned this way (for the student
and, even more so, for the author). The motivation for undertaking this task was my
wonderful experience on myfirst encounter with the rich work on data structures by
Knuth [Knut73a, Knut73b].

An extensive bibliography is provided. It contains entries for both this book and
the companion text [Same90b]. Notall of the references that appearin the bibliogra-
phy are cited in the two texts. They are retained for the purpose of giving readers the
ability to access the entire body ofliterature relevant to the topics discussed in them.
Each reference is annotated with a key word(s) and a list of the numbers of the sec-
tions in whichit is cited in either of the texts (including exercises and solutions). In
addition, a name and credit index is provided that indicates the page numbers in this
book on which each author’s workis cited or a credit is made.
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A GUIDE TO THE INSTRUCTOR

This book can be used in a second data structures course, one with emphasis on
the representation of spatial data. The focus is on the use of the principle of divide-
and-conquer for which hierarchical data structures provide a good demonstration.
Throughoutthe book both worst-case optimal methods and methodsthat work well in
practice are emphasized in conformance with my view that the well-rounded computer
scientist should be conversant with both types of algorithms. This material is more
than can be covered in one semester; but the instructor can reduce it as necessary. For
example, the detailed examples can be skipped or used as a basis of a term project or
programming assignments.

The book can also be used to organize a course to be prerequisite to courses in
computer graphics and solid modeling, computational geometry, database manage-
ment systems, multidimensional searching, image processing, and VLSI design. The
discussions of the representations of two-dimensional regions in Chapter 1, polygonal
representations in Chapter 4, and most of Chapter 5 are relevant to computer graphics
and solid modeling. The discussions of plane-sweep methods and their associated
data structures such as segmenttrees, interval trees, and priority search trees in Sec-
dons 3.2 and 3.3 and point location and associated data structures such as the
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INTRODUCTION
 
 

There are numeroushierarchical data structuring techniques in use for representing
spatial data. One commonly used technique is the quadtree, which has evolved from
workin different fields. Thus it is natural that a numberof adaptationsofit exist for
each spatial data type. Its development has been motivated to a large extent by a
desire to save storage by aggregating data having identical or similar values. Wewill
see, however, that this is not always the case. In fact, the savings in execution time
that arise from this aggregation are often of equal or greater importance.

In this chapter we start with a historical overview of quadtrees, including
definitions. Since the primary focus in this book is on the representation of regions,
whatfollowsis a discussion of region representation in the context of different space
decomposition methods. This is done by examining polygonal and nonpolygonal til-
ings of the plane. The emphasis is on justifying the use of a decomposition into
squares. We conclude with a detailed analysis of the space requirements of the quad-
tree representation.

Most of the presentation in this chapter is in the context of two-dimensional
regions. The extension of the topics in this chapter, and remaining chapters, to three-
dimensional region data, and higher, is straightforward and, aside from definitions, is
often left to the exercises. Nevertheless, the concept of an octree, a quadtree-like
representation of three-dimensional regions, is defined and a brief explanation is given
of how someofthe results described here are applicable to higher-dimensionaldata.

1.1. BASIC DEFINITIONS

First, we define a few terms with respect to two-dimensional data. Assume the
existence of an array of picture elements (termed pixe/s) in two dimensions. We use
the term image to refer to the original array of pixels. If its elements are black or

Page 15 of 448 Unified Patents Exhibit 1005 App'x A-N



    

                  
                

              
                

 
                
             

               
                

                      
        

          
              

            
             
            

            
                

                

       
                

                 
              

             
                       

              
     

      

              
              

         

          
       
      

            
              

              
            

         

Page 16 of 448 Unified Patents Exhibit 1005 App'x A-N

2 |l 1. INTRODUCTION

white, then it is said to be binary. If shades of gray are possible (i.e., gray levels), the
imageis said to be a gray—scale image. In the discussion, we are primarily concerned
with binary images. Assumethat the imageis on aninfinite background of white pix-
els. The border of the image is the outer boundary of the square corresponding to the
alTay.

Two pixels are said to be 4-adjacent if they are adjacent to each other in the
horizontal or vertical direction. If the concept of adjacency also includes adjacencyat
a comer(i.e., diagonal adjacencies), then the pixels are said to be 8-adjacent. A set S
is said to be four —connected (eight -—connected)if for any pixels p, g inS there exists a |
sequence of pixels p=po, P},°'',Pn=4 in S, such that p,;,, is 4-adjacent (8-
adjacent) top;,O Si <n.

A black region, or black four-connected component, is a maximal four-
connected set of black pixels. The process of assigning the same label to all 4-
adjacent black pixels is called connected component labeling (see Chapter 5 of
[Same90b]). A white region is a maximal eight —connected set of white pixels defined
analogously. The complement of a black region consists of a union of eight-
connected white regions. Exactly one of these white regions contains the infinite
background of white pixels. All the other white regions,if any, are called holes in the
black region. The black region, say R, is surroundedbythe infinite white region and R
surroundsthe other white regions,if any.

A pixel is said to have four edges, each of which is of unit length. The bound-
ary of a black region consists of the set of edges of its constituent pixels that also
serve as edges of white pixels. Similar definitions can be formulated in terms ofrec-
tangular blocks, all of whose pixels are identically colored. For example, two disjoint
blocks, P and Q, are said to be 4-adjacentif there exists a pixel p in P and a pixel g ing
such that p and g are 4-adjacent. Eight-adjacency for blocks (as well as connected
componentlabeling) is defined analogously.

1.2 OVERVIEW OF QUADTREES AND OCTREES

The term quadtree is used to describe a class of hierarchical data structures whose

commonproperty is that they are based on the principle of recursive decomposition of
space. They can be differentiated on the following bases:

1. The type of data they are used to represent
2. The principle guiding the decomposition process
3. The resolution (variable or not)

Currently they are used for point data, areas, curves, surfaces, and volumes.
The decomposition may be into equal parts on each level(i.e., regular polygons and
termed a regular decomposition), or it may be governed by the input. In computer
graphics this distinction is often phrased in terms of image-space hierarchies versus
object-space hierarchies, respectively {Suth74]. The resolution of the decomposition
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Figure 1.1 An example of (a) a region, (b) its binary array,
(c) its maximal blocks (blocks in the region are shaded), and
(d) the corresponding quadtree

(i.e., the number of times that the decomposition process is applied) may be fixed
beforehand,or it may be governed by properties of the input data. For some applica-
tions we can also differentiate the data structures on the basis of whetherthey specify
the boundaries of regions (e.g., curves and surfaces) or organize their interiors(e.g.,
areas and volumes).

The first example of a quadtree representation of data is concerned with the
representation of two-dimensional binary region data. The most studied quadtree
approach to region representation, called a region quadtree (but often termed a quad-
tree in the rest of this chapter), is based on the successive subdivision of a bounded
image array into four equal-sized quadrants. If the-array does not consist entirely of
ls or entirely of Os (i.e., the region does not cover the entire array), then it is subdi-
vided into quadrants, subquadrants, and so on, until blocks are obtained that consist
entirely of 1s or entirely of Os; that is, each block is entirely contained in the region or
entirely disjoint from it. The region quadtree can be characterized as a variable reso-
lution data structure.

As an example of the region quadtree, consider the region shownin Figure |.la
represented by the 2° x 2° binary array in Figure 1.1b. Observe that the 1s correspond
to picture elements (i.e., pixels) in the region, and the Os correspond to picture ele-
ments outside the region. The resulting blocks for the array of Figure 1.1b are shown
in Figure |.lc. This process is represented by a tree of degree 4 (i.e., each nonleaf
node hasfour sons).
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In the tree representation, the root node correspondsto the entire array. Each
son of a node represents a quadrant (labeled in order NW, NE, SW, SE) of the region
represented by that node. The leaf nodes of the tree correspond to those blocks for
which no further subdivision is necessary. A leaf node is said to be black or white

depending on whetherits corresponding blockis entirely inside (it contains only 1s) or
entirely outside the represented region (it contains no Is). All nonleaf nodes are said
to be gray(i.e., its block contains Os and 1s). Given a 2” x 2” image,the root nodeis
said to be at level 1 while a nodeat level 0 correspondsto a single pixel in the image.!
The region quadtree representation for Figure 1.1¢ is shown in Figure 1.1d. The leaf
nodes are labeled with numbers, while the nonleaf nodes are labeled with letters. The
levels of the tree are also marked.

Ourdefinition of the region quadtree implies that it is constructed by a top-down
process. In practice, the process is bottom-up, and one usually uses one of two
approaches. Thefirst approach [Same80b] is applicable when the image array is not
too large. In such a case, the elements of the array are inspected in the order given by
the labels on the array in Figure 1.2 (which corresponds to the image of Figure 1.1a).
This order is also known as a Morton order [Mort66] (discussed in Section 1.3). By
using such a method,a leaf node is never created until it is known to be maximal. An
equivalent statementis that the situation does not arise in which fourleaf nodes of the
same color necessitate the changing of the color of their parent from gray to black or
white as is appropriate. (For more details, see Section 4.1 of [Same90b].)

The second approach [Same8 la] is applicable to large images. In this case, the

elements of the image are processed one row at a time—for example, in the order
given bythe labels on the array in Figure 1.3 (which corresponds to the imageof Fig-
ure |.1a). This order is also knownas a roworraSter-scan order (discussed in Section

1.3). A quadtree is built by adding pixel-sized nodes one by one in the order in which
they appearin the file. (For more details, see Section 4.2.1 of [Same90b].) This pro-
cess can be time-consuming due to the many merging and nodeinsertion operations
that need to take place.

The above method has been improved by using a predictive method [Shaf86a,
Shaf87a], which only makesa single insertion for each nodein the final quadtree and
performs no merge operations. It is based on processing the imagein row order(top
to bottom, left to right), always inserting the largest node(i.e., block) for which the
current pixel is the first (upper leftmost) pixel. Such a policy avoids the necessity of
merging since the upper leftmost pixel of any block is inserted before any otherpixel
of that block. Therefore it is impossible for four sibling nodes to be of the samecolor.
This method makesuse of an auxiliary array of size O(2”") for a 2” x 2” image. (For
moredetails, see Section 4.2.3 of [Same90b].)

The region quadtree is easily extended to represent three-dimensional binary
region data and the resulting data structure is called a region octree (termed an octree

 

' Alternatively we can say that the root nodeis at depth 0 while a node at depth # correspondsto a single
pixel in the image. In this book both concepts oflevel and depth are used to describe the relative position of
nodes. The onethat is chosenis context dependent.
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Figure 1.2 Morton orderfor the pixels of Figure 1.1

in the rest of this chapter). We start with a 2” x 2” x 2” object array of unit cubes
(termed voxels or obels). The octree is based on the successive subdivision of an

object array into octants. If the array does not consist entirely of 1s or entirely ofOs,it
is subdivided into octants, suboctants, and so on until cubes (possibly single voxels)
are obtained that consist of Is or of Os; that is, they are entirely contained in the region
or entirely disjoint from it.

This subdivision process is represented by a tree of degree 8 in which the root
node represents the entire object and the leaf nodes correspond to those cubes of the
array for which no further subdivision is necessary. Leaf nodesare said to be black or
white (alternatively, full or void) depending on whethertheir corresponding cubesare
entirely within or outside the object, respectively. All nonleaf nodes are said to be
gray. Figure 1.4a is an example of a simple three-dimensional object, in the form of a
Staircase, whose octree block decomposition is given in Figure 1.4b and whose tree
representation is given in Figure 1.4c.

The region quadtree is a memberofa class of representations characterized as
being a collection of maximal (according to an appropriate definition) blocks, each of
which is contained in a given region and whose unionis the entire region. The sim-
plest such representation is the runlength code, where the blocks are restricted to
1 Xx m rectangles [Ruto68]. A more general representation treats the region as a union
of maximal square blocks (or blocks of any other desired shape) that may possibly
overlap. Usually the blocks are specified by their centers and radii. This representa-
tion is called the medial axis transformation (MAT) [Blum67, Rose66]. Of course,
other approaches are also possible (e.g., rectangular coding [Kim83, Kim86], TID
[Scot85, Scot86]).

 
-Figure 1.3. Raster-scan orderfor the pixels of Figure 1.1
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Figure 1.4 (a) Example three-dimensional object; (b) its
octree block decomposition; (c) its tree representation

The region quadtree is a variant on the maximal block representation. It
requires the blocks to be disjoint and to have standard sizes(i.e., sides of lengths that
are powers of two) and standard locations. The motivation for its developmentis a
desire to obtain a systematic way to represent homogeneousparts of an image. Thus
to transform the data into a region quadtree, a criterion must be chosen for deciding
that an image is homogeneous(i.e., uniform).

One such criterion is that the standard deviation of its gray levels is below a
given threshold r. Using this criterion, the image array is successively subdivided into
quadrants, subquadrants, and so on until homogeneousblocksare obtained. This pro-
cess leads to a regular decomposition. If one associates with each leaf node the mean
gray level of its block, the resulting region quadtree will then completely specify a
piecewise approximation to the image where each homogeneous block is represented
by its mean. The case where /=0 (i.e., a block is not homogeneous unlessits gray
level is constant) is of particular interest since it permits an exact reconstruction of the
image from its quadtree.

Note that the blocks of the region quadtree do not necessarily correspond to
maximal homogeneous regions in the image. Most likely there exist unions of the
blocks that are still homogeneous. To obtain a segmentation of the image into maxi-
mal homogeneous regions, we must allow merging of adjacent blocks (or unions of
blocks) as long as the resulting region remains homogeneous. This is achieved by a
‘split-and-merge* algorithm [Horo76]. However, the resulting partition will no longer
be represented by a quadtree; instead the final representation is in the form of an adja-
cency graph. Thus the region quadtree is used as an initial step in the segmentation
process.

For example, Figure |.5b-d demonstrates the results of the application, in
sequence, of merging. splitting, and grouping to the initial image decomposition of
Figure 1.5a. In this case, the image isinitially decomposed into 16 equal-sized square
blocks. Next the ‘merge’ step attempts to form larger blocks by recursively merging
groups of four homogeneous ‘brothers’ (the four blocks in the NW and SE quad-
rants of Figure |.5b). The ‘split’ step recursively decomposes blocks that are not
homogeneous (the NE and SW quadrants of Figure |.5c) until a particular homo-
geneity criterion is satisfied or a given level is encountered. Finally the * grouping’
step aggregates all homogeneous 4-adjacent black blocks into one region apiece;
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Figure 1.5 Exampleillustrating the ‘split-and-merge’
segmentation procedure:(a) start, (b) merge, (c) split,
(d) grouping

the 8-adjacent white blocks are similarly aggregated into white regions (Figure 1.5d).
An alternative to the region quadtree representation is to use a decomposition

method that is not regular (i.e., rectangles of arbitrary size rather than squares). This
alternative has the potential of requiring less space. Its drawbackis that the determi-
nation of optimal partition points may be computationally expensive (see Exercise
1.10). A closely related problem, decomposing a region into a minimum numberof
rectangles, is known to be NP-complete? [Gare79] if the region is permitted to contain
holes [Ling82].

The homogeneity criterion ultimately chosen to guide the subdivision process
depends on the type of region data represented. In the remainder of this chapter we
shall assumethat the domain is a 2” x 2” binary image with 1, or black, corresponding
to foreground and 0, or white, corresponding to background (e.g., Figure 1.1).

> A problem is in np if it can be solved nondeterministically in polynomial time. A nondeterministic
solution process proceeds by ‘guessing’ a solution and then verifying that the solution is correct, Assume
that 7 is the size of the problem (e.g., for sorting, n is the numberof records to be sorted). Intuitively, then.
a problem is in NP if there is a polynomial P(7) such that if one guesses a solution, it can be verified in
O(P(n)) time, whether the guess is indeed a correct solution. Thus the verification process is the key to
determining whether a problem is in NP, not the actual solution of the problem,

A problem is NP-complete if it is ‘at least as hard’ as any other problem in NP, Somewhat more
formally, a problem P, in NP is NP-completeif the following property holds:for all other problems#. in Nit. 1
P, can be solved deterministically in O(f(7)) time, then P; can be solved in O(P(f(7))) time tor some
polynomial P. It has been conjectured that no NP-complete problem can be solved deterministically 10
polynomial time, but this is not known for sure. The theory of np-completeness is discussed in detail 1
[Gare79],
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Nevertheless the quadtree and octree can be used to represent multicolored data (e.g.,
a landuse class mapassociating colors with crops [Same87a]).

It is interesting to note that Kawaguchi, Endo, and Matsunaga [Kawa83] use a
sequence of m binary-valued quadtrees to encode image data of 2” gray levels, where
the various gray levels are encoded by use of Gray codes(see, e.g., [McCl65]). This
should lead to compaction (i.e., larger-sized blocks) since the Gray code guarantees
that the binary representation of the codes of adjacent gray level values differ by only
one binary digit.? Note, though, that if the primary interest is in image compression,
there exist even better methods (see, e.g., [Prat78]); however, they are beyond the
scope of this book (but see Chapter 8 of [Same90b]). In another context, Kawaguchi,
Endo, and Yokota [Kawa80b] point out that a sequence of related images(e.g., in an
animation application) can be stored compactly as a sequence of quadtrees such that
the ?elementis the result of exclusive oring thefirst 7 images (see Exercise 1.7).

Unfortunately the term quadtree has taken on more than one meaning. The
region quadtree, as described earlier, is a partition of space into a set of squares whose
sides are all a power of two long. This formulation is due to Klinger [Klin71] and
Klinger and Dyer, who used the term Q-tree [Klin76], whereas Hunter [Hunt78] was
the first to use the term quadtree in such a context. Actually a more precise term
would be quadtrie, as it is really a trie structure [Fred60] in two dimensions.’ A simi-
lar partition of space into rectangular quadrants, also termed a quadtree, was used by
Finkel and Bentley [Fink74]. It is an adaptation of the binary search tree [Knut73b] to
two dimensions (which can be easily extended to an arbitrary number of dimensions).
It is primarily used to represent multidimensional point data, and weshallreferto it as
a point quadtree where confusion with a region quadtreeis possible.

As an example of a point quadtree, consider Figure 1.6, which is built for the
sequence Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, and Miami>

 

3 The Gray code is motivated by a desire to reduce errors in transitions between successive gray level
values. Its one bit difference guarantee is achieved by the following encoding. Consider the binary
representation of the integers from 0 to 2”—1. This representation can be obtained by constructing a binary
tree, say 7, of height m where each left branch is labeled 0 while each right branch is labeled 1. Each leaf
node, say P. is given the label formed by concatenating the labels of the branches taken by the path from the
root to P. Enumerating the leaf nodes from left to right yields the binary integers 0 to 2”~1. The Gray
codes of the integers are obtained by constructing a new binary tree, say 7’, such that the labels of some of
the branches in7’ are the reverse of what they were in7. The algorithm is as follows. Initially, 7’ is a copy
ofr. Next, traverse T in preorder(i.e., visit the root node, followed by the left and right subtrees). For each

branch in 7labeled 1, exchange the labels of the two descendant branchesof its corresponding branch in 7’,
Noaction is taken for descendants of branches in 7 labeled 0. Enumerating the leaf nodes in 7’ fromleft to
right yields the Gray codesofthe integers 0 to 2”—1. For example, for 8 graylevels (i.e.. 71 =3), we have
000, 001, O11, 010, 110, 11, 101. 100,

* In a one-dimensionalmie structure, each data item or key is treated as a sequence of characters where each
character has 7 possible values. A node at depth i in the trie represents an M-way branch depending on the
i" character. The data are stored in the leaf nodes, and the shape of the trie is independent ofthe order in
whichthe data are processed. Such a structure is also knownas a digital tree {[Knut73b],

> The correspondence between coordinate values and city namesis not geographically correct, This liberty
has beentaken so that the same example can be used throughoutthe textto illustrate a variety of concepts.
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(0, 100) (100, 100)

Y (5,45)DENVER 
CHICAGO

DENVER TORONTO OMAHA MOBILE

BUF FALO ATLANTA MIAMI

Figure 1.6 A point quadtree and the recordsit represents

in the order in which they are listed here.® Its shape is highly dependent on the order
in which the points are added to it. Of course, trie-based point representations also
exist (see Sections 2.6.1 and 2.6.2).

Exercises

1.1. The region quadtree is an alternative to an image representation that is based on the use
of an array or even a list. Each of these image representations may be biased in favor of
the computation ofa particular adjacency relation. Discuss these biases for the array, list,
and quadtree representations.

1.2. Given the array representation of a binary image, write an algorithm to construct the
corresponding region quadtree.

© Refer to Figure 2.5 to see how the point quadtree is constructed in an incremental fashion for Chicago,
Mobile, Toronto, and Buffalo.
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1.3. Given an image represented by a region quadtree with 8 black and w white nodes, how
manyadditional nodes are necessary for the nonleaf nodes?

1.4. Given an image represented by a region octree with & black and w white nodes, how
many additional nodesare necessary for the nonleaf nodes?

1.5. Suppose that an octree is used to represent a collection of disjoint spheres. What would
you useasaleaf criterion?

1.6. The quadtree can be generalized to represent data in arbitrary dimensions. As we saw,
the octree is its three-dimensional analog. The renowned artist Escher [Coxe86] is noted
for etchings of unusual interpretations of geometric objects such as staircases. How
would you represent one of Escher’s staircases?

1.7. Let @ denote an exclusive or operation. Given a sequence of related images,
<P,,, Py-1) °° *, Po>, define another sequence <Q,, Q,-1,°°*,.Q> such that Qg = Py and
OQ, =P; ®Q;_, fori > 0. Show that when the sequences P and @ are represented as quad-
trees, replacing sequence P by sequence @ results in fewer nodes.

1.8. Prove that in Exercise 1.7 the sequence P can be reconstructed from the sequence g. In
particular, given Q; and Q;_,, determineP;.

1.9. Write an algorithm to construct the Gray codesofthe integers 0 to 2”—1,
1.10. Find a polynomial-time algorithm to decompose a region optimally so that its quadtree

representation uses a minimum amountof space (i.e., a minimum numberof nodes). In
this case, you can assume that the decomposition lines can be placed in arbitrary posi-
tions so that the space requirement is reduced. In other words, the decomposition lines
need notsplit the space into four squares of equal size. Thus the decomposition is similar

to that induced by a point quadtree.

1.3. HISTORY OF THE USE OF QUADTREES AND OCTREES

The origin of the principle of recursive decomposition, upon which all quadtrees are
based, is difficult to ascertain. Below, to give some indication of the uses of the
region quadtree, someof its applications to geometric data are traced briefly. Most
likely it was first seen as a way of aggregating blocks of zeros in sparse matrices.
Indeed Hoare [Hoar72] attributes a one-level decomposition of a matrix into square
blocks to Dijkstra. Morton [Mort66] used it as a meansof indexing into a geographic
database(i.e., it acts as a spatial index).

Warnock, in a pair of reports that serve as landmarks in computer graphics
[Warmn68, Warmn69b], described the implementation of hidden-line and hidden-surface
elimination algorithms using a recursive decomposition of the picture area. The pic-
ture area is repeatedly subdivided into rectangles that are successively smaller while
searching for areas that are sufficiently simple to be displayed. Klinger [Klin71] and
Klinger and Dyer [Klin76] applied these ideas to pattern recognition and imagepro-
cessing, while Hunter [Hunt78] used them for an animation application.

The SRI robot project [Nils69] used a three-level decomposition of space to
represent a map of the robot’s world. Eastman [East70] observes that recursive
decomposition might be used for space planning in an architectural context and
presents a simplified version of the SRI robot representation. A quadtree-like represen-
tation in the form of production rules called DF-expressions (denoting ‘depth-first’) is
discussed by Kawaguchi and Endo [Kawa80a] and Kawaguchi, Endo, and Yokota
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[Kawa80b] (see also Section 1.5), Tucker [Tuck84a] uses quadtree refinement as a
control strategy for an expert vision system.

The three-dimensional variant of the region quadtree—the octree—was
developed independently by a numberof researchers. Hunter [Hunt78] mentionedit
as a natural extension of the quadtree. Reddy and Rubin [Redd78] proposed the
octree as one of three representations for solid objects. The second is a three-
dimensional generalization of the point quadtree of Finkel and Bentley [Fink74]—that
is, a decomposition into rectangular parallelepipeds (as opposed to cubes) with planes
perpendicular to the x, y, and z axes. The third breaks the object into rectangular
parallelepipeds that are not necessarily aligned with an axis. The parallelepipeds are
of arbitrary sizes and orientations. Each parallelepiped is recursively subdivided into
parallelepipeds in the coordinate space of the enclosing parallelepiped. Reddy and
Rubin prefer the third approach forits ease of display.

Situated somewhere between the second and third approaches of Reddy and
Rubin is the method of Brooks and Lozano-Perez [Broo83] (see also [Loza81]), who

use a recursive decomposition of space into an arbitrary numberof rectangular paral-
lelepipeds, with planes perpendicular to the x, y, and z axes, to model space in solving
the findpath or piano movers problem [Schw88] in robotics. This problem arises
when planning the motion of a robot in an environment containing known obstacles
and the desired solution is a collision-free path obtained by use of a search. Faverjon
{[Fave84] discusses an approach to this problem that uses an octree, as do Samet and
Tamminen [Same85g] and Fujimura and Samet [Fuji89].

Jackins and Tanimoto [Jack80] adapted Hunter and Steiglitz’s quadtree transla-
tion algorithm [Hunt78, Hunt79b] to objects represented by octrees. Meagher
[Meag82a] developed numerous algorithms for performing solid modeling operations
in an environment where the octree is the underlying representation. Yau and Srihari
[Yau83] extended the octree to arbitrary dimensions in the process of developing
algorithms to handle medical images.

Both quadtrees and octrees are frequently used in the construction of meshes for
finite element analysis. The use of recursive decomposition for meshes wasinitially
suggested by Rheinboldt and Mesztenyi [Rhei80]. Yerry and Shephard [Yerr83]
adapted the quadtree and octree to generate meshes automatically for three-
dimensional solids represented by a superquadric surface-based modeler. This has
been extended by Kela, Voelcker, and Goldak [Kela84b] (see also [Kela86]) to mesh
boundary regions directly, rather than through discrete approximations, and to facili-
tate incremental adaptive analysis by exploiting the spatial index nature of the quad-
tree and octree.

Parallel to the developmentof the quadtree and octree data structures, there has
been related work by researchersin the field of image understanding. Kelly [Kell71]
introduced the concept of a plan, which is a small picture whose pixels represent
gray-scale averages over 8x8 blocksof a larger picture. Needless effort in edge detec-
tion is avoided by first determining edges in the plan and then using these edges to
search selectively for edges in the larger picture. Generalizations of this idea
motivated the development of multiresolution image representations—for example,
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Figure 1.7 Structure of a pyramid having three levels

the recognition cone of Uhr [Uhr72], the preprocessing cone of Riseman and Arbib
[Rise77], and the pyramid of Tanimoto and Pavlidis [Tani75]. Of these representa-
tions, the pyramidis the closest relative of the region quadtree.

Given a 2” x 2” image array, say A(”), a pyramid is a sequence ofarrays {A(i)}
such that A(i—1) is a version of A(/) at half the scale ofA(/). A(O) is a single pixel. Fig-
ure 1.7 showsthe structure of a pyramid havingthree levels. It should be clear that a
pyramid can also be defined in a more general way by permitting finer scales of reso-
lution than the poweroftwoscale.

Attimes,it is more convenient to define a pyramid in the form of a tree. Again,
assuming a 2” x 2” image, a recursive decomposition into quadrants is performed,just
as in quadtree construction, except that we keep subdividing until we reach the indi-
vidual pixels. The leaf nodes of the resulting tree represent the pixels, while the nodes
immediately above the leaf nodes correspond to the array A(n—1), which is of size
2"-! x 2"! The nonleaf nodes are assigned a value that is a function of the nodes
below them (i.e., their sons) such as the average gray level. Thus we see that a
pyramid is a multiresolution representation, whereas the region quadtreeis a variable

 
Figure 1.9 A(2) corresponding to Figure 1.8
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Figure 1.10 The overlapping blocks in which pixel 28
participates

resolution representation. Another analogy is that the pyramid is a complete quadtree
[Knut73a].

The above definition of a pyramid is based on nonoverlapping 2 x 2 blocks of
pixels. An alternative definition, termed an overlapping pyramid, uses overlapping
blocks of pixels. One of the simplest schemes makes use of 4 x 4 blocks that overlap
by 50% in both the horizontal and vertical directions (Burt81]. For example, Figure
1.8 is a 2? x23 array, say A(3), whose pixels are labeled 1-64. Figure 1.9 is A(2)
corresponding to Figure 1.8 with elements labeled A-P. The 4x4 neighborhood
corresponding to elementF in Figure 1.9 consists of pixels 10-13, 18-21, 26-29, and
34-37. This method implies that each block at a given level participates in four
blocks at the immediately higher level. Thus the containment relations between
blocks no longer form a tree. For example, pixel 28 participates in blocksF, G, J, and K
in the next higher level (see Figure 1.10 where the four neighborhoods corresponding
to F,G,J, and K are drawn as squares).

To avoid treating border cases differently, each level in the overlapped pyramid
is assumed to be cyclically closed (i.e., the top row at each level is adjacentto the bot-
tom row and similarly for the columns at the extreme left and right of each level).
Once again wesay that the value of a nodeis the average of the values of the nodes in
its block on the immediately lower level. The overlapped pyramid may be compared
with the Quadtree Medial Axis Transform (see Section 9.3.1 of {Same90b]) in the
sense that both mayresult in nondisjoint decompositions of space.

Pyramids have been applied to the problemsof feature detection and extraction
since they can be usedto limit the scope of the search. Oncea piece of information of
interest is found at a coarse level, the finer resolution levels can be searched. This

approach was followed by Davis and Roussopoulos [Davi80] in approximate pattern
matching. Pyramids can also be used for encoding information aboutedges,lines, and
curves in an image [Shne8Ic, Krop86]. One note of caution: the reduction of resolu-
tion has an effect on the visual appearance of edges and small objects [Tani76]. In
particular, at a coarser level of resolution, edges tend to get smeared, and region
separation may disappear. Pyramids have also been used asthe starting point for a
‘split-and-merge’ segmentation algorithm [Piet82].

Quadtree-like decompositions are useful as space-ordering methods. The pur-
pose is to optimize the storage and processing sequences for two-dimensional data by
mapping them into one dimension(i.e., linearizing them). This mapping should pre-
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Figure 1.11 The result of applying a numberofdifferent
space-ordering methods to an 8 x 8 image whosefirst ele-
mentis in the upperleft corner of the image: (a) row order,
(b) row-prime order, (c) Morton order, (d) Peano-Hilbert
order, (e) Cantor-diagonalorder, (f) spiral order

serve the spatial locality of the original two-dimensional image in one dimension. The
result of the mapping is also knownas a space-filling curve [Gold81, Witt83] because
it passes through every point in the image.

Goodchild and Grandfield [Good83] discuss a number of space-ordering
methods, some of whichare illustrated in Figure 1.11. Each has different characteris-
tics. The row (Figure 1.11a), also knownas raster-scan, and row-primeorders (Figure
1.11b) are similar in the same way as are the Morton [Mort66, Pean90] (Figure 1.1 1c)
and the Peano-Hilbert [Hilb91] (Figure 1.11d) orders. The primary difference is that
in both the row-prime and Peano-Hilbert orders every element is a 4-adjacent neigh-
bor of the previous element in the sequence, and thus they havea slightly higher
degree of locality than the row and Mortonorders, respectively. Both the Morton and
Peano-Hilbert orders exhaust a quadrant or subquadrantof a square image before exit-
ing it. They are both related to quadtrees; however, as we saw above, the Morton
order does not traverse the image in a spatially contiguous manner(the result has the
Shape of the letter ‘N’ or ‘Z’ and is also known as N order {Whit82] and Z order
[Oreng4]),

For both the Morton and Peano-Hilbert orders, there is no need to know the

maximum yalues of the coordinates. The Morton order is symmetric, while the
Peano-Hilbert order is not. One advantage of the Morton orderis that the position of
each elementjn the ordering (termed its key) can be determined by interleaving the
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bits of the x and vy coordinates of the element; this is not easy for the Peano-Hilbert
order. Another advantage of the Morton orderis that the recursion necessary forits
generation is quite easy to specify.

Other orders are the Cantor-diagonal order (Figure 1.11e) and the spiral order
(Figure 1.11f). The Cantor-diagonal order proceeds outward from the origin andvisits
the elements in an order similar to row-prime with the difference that elements are
visited in order of their increasing ‘Manhattan’ (or ‘city block’) distance.’ Thusit is
good for ordering a space that is unbounded in the two directions emanating from the
origin which has been relocated to the center of the image. On the other hand, the
spiral orderis attractive when ordering a space that is unboundedin the four directions
emanating from the origin.

The mostinteresting orders, as far as we are concerned, are the Morton and
Peano-Hilbert orders since they can also be used to order a space that has been aggre-
gated into squares. Of these two orderings, the Morton order is by far the more fre-
quently used as a result of the simplicity of the conversion process between the key
and its corresponding elementin the multidimensional space. In this book weare pri-
marily interested in Morton orderings. (For further discussion of some of the proper-
ties of these two orderings, see [Patr68, Butz71, Alex79, Alex80, Laur85].)

Exercises

1.11. Write an algorithm to extract the x and y coordinates from a Peano-Hilbert order key.
1.12. Write an algorithm to construct the Peano-Hilbert key for a given point (x,y). Try to

make it optimal.
1.13. Suppose that you are given a 2” x 2” array of points such that the horizontal and vertical

distances between 4-adjacent points are 1. What is the average distance between succes-
sive points when the points are ordered according to the ordersillustrated in Figure 1.11?
Whatabout a random order?

1.14. Suppose that you are given a 2” x 2” image. Assumethat the image is stored on disk in
pages of size 2” x 2” where is much larger than m. What is the average costofretriev-
ing a pixel and its 4-adjacent neighbors whenthe imageis ordered according to the orders
illustrated in Figure 1.11?

1.15. The traveling salesman problem [Lawl85] is one where a set of points is given andit is
desired to find the path of minimum distance such that each point is visited only once.
This is an NP-complete problem [Gare79] and thus there is a considerable amount of work
in formulating approximate solutions to it [Bent82]. For example, considerthe following
approximate solution. Assume that the points are uniformly distributed in the unit
square. Let d be the expected Euclidean distance between two independentpoints. Now,
sort the points using the row order and the Morton order. Laurini [Laur85] simulated the
average Euclidean distance between successive points in these orders and found it to be
d/2 for the row order and d/3 for the Morton order. Can you derive these averages
analytically? What are the average values for the other orders illustrated in Figure 1.11?
Whatabout a random order?

7 The Manhattan distance between points (x,, y,) and (x, y2) is |x; —¥2|+]y) — y2 | (for more details, see
Section 9.1 of [Same90b]),
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1.16. Suppose that the traveling salesman problem is solved using a traversal of the points in
Morton order as discussed in Exercise 1.15. In particular, assume that the set of pointsis
decomposedin such a way that each square block contains just one point. This yields a
point representation that is analogous to the region quadtree (termed a PR quadtree and
discussed in Section 2.6.2). How close does such a solution cometo optimality?

1.4 SPACE DECOMPOSITION METHODS

In general, any planar decomposition used as a basis for an image representation
should possess the following two properties:

1. The partition should be an infinitely repetitive pattern so that it can be used
for imagesof anysize.

2. The partition should be infinitely decomposable into increasingly finer pat-
terns (i.e., higher resolution).

In this section, the discussion is restricted to two-dimensional data. Thus we are

dealing with planar space decompositions. Space decompositions can be classified
into two categories, depending on the nature of the pattern. The pattern can consist of
polygonal shapes or nonpolygonal shapes. The polygonal shapes are generally com-
putationally simpler since their sides can be expressed in termsof linear relations
(e.g., equations of lines). They are good for approximating the interior of a region.
The nonpolygonal shapes are more flexible since they provide good approximations,
in terms of measures, of the boundaries (e.g., perimeter) of regions as well as their
interiors (e.g., area).®

Moreover, the normals to the boundaries of nonpolygonal shapes are notre-
stricted to a fixed set of directions. For example, in the case of rectangulartiles, there
is a 90 degree discontinuity between the normals to boundaries of adjacenttiles. This
lack of continuity is a drawback in applications in fields such as computer graphics
where such tasks as shading make use of the directions of the surface. However,
working with nonpolygonal shapes generally requires use of floating point arithmetic,
and henceit is usually more complex.

The remainder of this section expands on a number of polygonal decomposi-
tions and compares them. It also contains a brief discussion of one nonpolygonal
decomposition that consists of a collection of sector-like objects whose arcs are not
necessarily part of a circle. This method is based on polar coordinates where the arc
joining two distinct points is formed by linear interpolation. The term sectortree is
used to describe it. This discussion is of an advanced nature and can be skipped on an
initial reading.

 

* Recall the statementin Section 1.2 that hierarchical data structures are often differentiated on the basis of
whetherthey specify the boundariesof regions or organize their interiors,
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1.4.1. PolygonalTilings

Bell, Diaz, Holroyd, and Jackson [Bell83] discuss a number of polygonaltilings of the
plane (i.e., tessellations) that satisfy property 1. Figure 1.12 illustrates some of these
tessellations. They also present a taxonomyofcriteria to distinguish betweenthe vari-
ous tilings. The tilings, consisting of polygonaltiles, are described by use of a nota-
tion based on the degree of each vertex as the edges(i.e., sides) of the ‘atomic’ tile are
visited in order, forming a cycle. For example,the tiling described by [4.87] (Figure
1.12c) has the shape of a triangle where the first vertex has degree four while the
remaining two vertices have degree eight apiece.

A tiling is said to be regular if the atomic tiles are composed of regular
polygons(i.e., all sides are of equal length as are the interior angles). A moleculartile
is an aggregation of atomic tiles to form a hierarchy. It is not necessarily constrained
to have the same shape as the atomic tile. Whena tile at level k (for all kK >0) has the
same shape asatile at level0(i.e., it is a scaled image ofa tile at level 0), then the til-
ing is Said to be similar.

Bell et al. focus on the isohedral tilings where a tiling is said to be isohedralif
all the tiles are equivalent under the symmetry group ofthe tiling. A more intuitive

 
e

Figure 1.12 Sample tessellations: (a)[4*] square;
(b) [6°] equilateral triangle; (c) [4.87] isoceles triangle;
(d) [4.6.12] 30-60righttriangle; (e) [3°] hexagon
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Figure 1.13 Examples of (a) isohedral and
(b) nonisohedraltilings

way to conceptualize this definition is to assume the position of an observer who
standsin the center of a tile having a given orientation and scans the surroundings. If
the view is independentofthe tile, the tiling is isohedral. For example, consider the
two tilings in Figure 1.13 consisting of triangles (Figure 1.13a) and trapezoids (Figure
1.13b). The triangles are isohedral, whereas the trapezoids are not, as can be seen by
the view from tiles A and B.

In the case of the trapezoidal tiling, the viewer from A is surrounded by an
infinite number of concentric hexagons, whereasthis is not the case for B. In other
words, the trapezoidal tiling is not periodic. Also note that all of the tiles in Figure
1.13a are described by [6°], while those in Figure 1.13b are either [37.47], [37.67], or
[3.4.67] (i.e., tiles labeled 1, 2, and 3, respectively, in Figure 1.13b). When the
isohedraltilings are classified by the action of their symmetry group,there are 81 dif-
ferent types [Griin77, Griin87]. When they are classified by their adjacency structure,
as done here, there are 11 types.

The most relevant criterion to the discussion is the distinction between limited

and unlimited hierarchies of tilings. A Jimited tiling is not similar. A tiling that
satisfies property 2 is said to be unlimited. Equivalently, in a limited tiling, no change
of scale lowerthan the limit tiling can be made withoutgreat difficulty. An alternative
characterization of an unlimited tiling is that each edge of a tile lies on an infinite
straight line composed entirely of edges. Interestingly the hexagonaltiling [3°] is lim-
ited. Bell et al. claim that only fourtilings are unlimited. These are the tilings given
in Figure 1.12a—d. Of these, [44], consisting of square atomictiles (Figure 1.12a), and
[6°], consisting of equilateral triangle atomic tiles (Figure 1.12b), are well-knownreg-
ular tessellations [Ahuj83]. For these twotilings we consider only the moleculartiles
given in Figures 1.14a and 1.14b.

The tilings [4*] and [6°] can generate an infinite numberof different molecular
tiles where each moleculartile at the first level consists of n? atomic tiles (n > 1).
The remaining nonregular unlimited triangular tilings, [4.87] (Figure 1.12c) and
[4.6.12] (Figure 1.12d), are less well understood. One way of generating [4.87] and
[4.6.12] is to join the centroids of the tiles of [44] and [6°], respectively, to both their
vertices and midpoints of their edges. Each ofthe tilings [4.87] and [4.6.12] has two
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Figure 1.14 Examplesillustrating unlimitedtilings: (a) [4*]
hierarchy, (b) [6°] hierarchy, (c) ordinary [4.87] hierarchy,
(d) ordinary [4.6.12] hierarchy, (e) rotation [4.87] hierarchy,
(f) reflection [4.6.12] hierarchy

types of hierarchy. [4.87] has an ordinary (Figure 1.14c) and a rotation hierarchy
(Figure 1.14e) requiring a rotation of 135 degrees between levels. [4.6.12] has an
ordinary (Figure 1.14d) and a reflection hierarchy (Figure 1.14f), which requires a
reflection of the basic tile betweenlevels.

The distinction between the two types of hierarchies for [4.87] and [4.6.12] is
necessary becausethetiling is not similar without a rotation or a reflection when the
hierarchy is not ordinary. This can be seen by observing the use of dots in Figure 1.14
to delimit the atomictiles in the first moleculartile. Similarly broken lines are used to
delimit the componentsof tiles at the second level (assuming atomic tiles are at level
0). For the ordinary [4.87] and [4.6.12] hierarchies, each moleculartile at thefirst
level consists of n? (n > 1) atomictiles. In the reflection hierarchy of [4.6.12], each
molecular tile at the first level consists of 3 -”? (n > 1) atomic tiles, while for the
rotation hierarchy of [4.87], 2 -? (n > 1) atomic tiles comprise a molecular tile at the
first level.

To represent data in the Euclidean plane, any of the unlimited tilings could have
been chosen. For a regular decomposition,the tilings [4.87] and [4.6.12] are ruled out.
Comparing ‘square’ [4*] and ‘triangular’ [6°] quadtrees, we find that they differ in
terms of adjacency andorientation. Let us say that twotiles are neighbors if they are
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adjacent either along an edgeor at a vertex.Atiling is uniformly adjacentif the dis-
tances between the centroid of onetile and the centroids of all its neighbors are the
same. The adjacency numberofa tiling is the number of different intercentroid dis-
tances between anyonetile and its neighbors. In the case of [44], there are only two
adjacency distances, whereas for [6°] there are three adjacencydistances.

A tiling is said to have uniform orientationif all tiles with the same orientation
can be mappedinto each otherbytranslations of the plane that do notinvolve rotation
or reflection. Tiling [4*] displays uniform orientation, while [6°] does not. Under the
assumption that uniform orientation and a minimal adjacency distanceis preferable,
wesay that [4*] is more useful than [67]. It is also very easy to implement. Neverthe-
less, [6°] has its uses. For example, Yamaguchi, Kunii, Fujimura, and Toriya
[Yama84] use a triangular quadtree to generate an isometric view from an octree
representation of an object (see Section 7.1.4 of [Same90b]).

Of the limited tilings, many types of hierarchies may be generated [Bell83];
however, in general, they cannot be decomposed beyond the atomic tiling without
changing the basic tile shape. This is a serious deficiency of the hexagonaltessella-
tion [3°] (Figure 1.12e) since the atomic hexagon can be decomposedonlyintotri-
angles. Nevertheless the hexagonaltessellation is of considerable interest. It is regu-
lar, has a uniform orientation, and, most important, displays a uniform adjacency(i.e.,
each neighborofatile is at the same distance from it).

There are a numberof different hexagonal hierarchies distinguished by classify-
ing the shape ofthe first-level molecular tile on the basis of the number of hexagons
that it contains. Three of these tiling hierarchies are given in Figure 1.15 and are
called n-shapes where n denotes the numberof atomictiles in the first-level molecular
tile. Of course, these n-shapesare not unique.

 
Figure 1.15 Three different hexagonaltiling hierarchies:
(a) 4-shape, (b) 7-shape, (c) 9-shape
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The 4-shape and the 9-shape have an unusual adjacency property in the sense
that no matter how large the molecular tile becomes, contact with two ofthe tiles(i.e.,
the one above and the one below) is along only one edge of a hexagonal atomictile,
while contact with the remaining four molecular tiles is along nearly one-quarter of
the perimeter of the corresponding molecular tile. The hexagonal pattern of the 4-
shape and 9-shape molecular tiles has the shape of a rhombus. In contrast, a 7-shape
moleculartile has a uniform contact with its six neighboring moleculartiles.

The type of quadtree used often depends on the grid formed by the image sam-
pling process. Square quadtrees are appropriate for square grids and triangular quad-
trees for triangular grids. In the case of a hexagonal grid [Burt80], the 7-shape hierar-
chy is frequently used since the shape of its molecular tile is more like a hexagon. It
is usually described as rosette—like (i.e., a septree). Note that septrees have jagged
edges as they are mergedto form larger units (e.g., Figure 1.15b). The septree is used
by Gibson and Lucas [Gibs82] (whocall it a generalized balanced ternary or GBT for
short) in the developmentof algorithms analogousto those existing for quadtrees.

Although the septree can be built up to yield large septrees, the smallest resolu-
tion in the septree must be decided upon in advancesince its primitive components
(i.e., hexagons) cannot later be decomposed into septrees. Therefore the septree
yields only a partial hierarchical decomposition in the sense that the components can
always be merged into larger units, but they cannot always be broken down. For
region data, a pixel is generally an indivisible unit, and thus unlimited decomposition
is not absolutely necessary. However, in the case of other data types such as points
(see Chapter 2) and lines (see Chapter 4), we will see that the decomposition rules of
somerepresentations require that two entities be separated, which mayleadtoalevel
of decomposition not knownin advance(e.g., a decomposition rule that restricts each
square to contain at most one point). In this book the discussion is limited to square
quadtreesand their variants.

Whenthedata are spherical, a numberof researchers have proposedthe useof a
representation based on an icosahedron (a 20-faced polyhedron whose faces are regu-
lar triangles) [Dutt84, Feke84]. The icosahedronis attractive because, in terms of the
numberof faces, it is the largest possible regular polyhedron. Each of the triangular
faces can be further decomposed in a recursive mannerinto n? (n > 1) spherical tri-
angles(the [6°] tiling).

Fekete and Davis [Feke84] let » = 2, which meansthat at each level of decom-

position, three new vertices are generated by halving each side of the triangle; con-
necting them together yields four triangles. They use the term property sphere to
describe their representation. The property sphere has been used in object recogni-
tion; it is also of potential use in mapping the globe because it can enable accurate
modeling of regions around the poles. For example, see Figure 1.16, which is a prop-
erty sphere representation of some spherical data. In contrast, planar quadtrees are
less attractive the farther we get from the equator dueto distortions in planarity caused
by the earth’s curvature. Of course, for true applicability for mapping, we need a
closer approximation to a sphere than is provided by the 20 triangles of the
icosahedron. Moreover, we want a wayto distinguish between different elevations.
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Figure 1.16 Property sphere representation of some
spherical data: (a) data, (b) decomposition on a sphere,
(c) decomposition on a plane

Dutton [Dutt84] lets » = ¥3, which meansthat at each level of decomposition,
one new vertex is created by connecting the centroid of the triangle to its vertices.
The result is an alternating sequence oftriangles so that each level is fully contained
in the level that was created two steps previously and has nine times as manytriangles
as that level. Dutton uses the term friacon to describe the resulting hierarchy. As an
example, consider Figure 1.17, which illustrates four levels of a triacon decomposi-
tion. The initial and odd-numbered decompositions are shown with heavy lines, and
the even-numbered decompositions are shown with broken andthin lines.

 
  

  
 
 

WL

LER

Figure 1.17 Example of a triacon hierarchy
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The icosahedron is not the only regular polyhedron that can be used to model
spherical data. Others include the tetrahedron, hexahedron, octahedron, and dodeca-
hedron, which have 4, 6, 8, and 12 faces, respectively. Collectively these five
polyhedra are known as the Platonic solids [Peuq84]. The faces of the tetrahedron
and octahedron are equilateral triangles, while the faces of the hexahedron and do-
decahedron are squares and regular pentagons, respectively.

The dodecahedron is not an appropriate primitive because the pentagonal faces
cannot be further decomposedinto pentagonsor other similar shapes. The tetrahedron
and hexahedron (the basis of the octree) have internal angles that are too small to
model a sphere properly, thereby leading to shape distortions.

Dutton [Dutt84] points out that the octahedron is attractive for modeling spheri-
cal data such as the globe because it can be aligned so that the poles are at opposite
vertices and the prime meridian and the equator intersect at another vertex. In addi-
tion, one subdivision line of each face is parallel to the equator. Of course, for all of
the Platonic solids, only the vertices of the solids touch the sphere; the facets of the
solids are interior to the sphere.

Other decompositions for spherical data are also possible. Tobler and Chen
!Tobl86] point out the desirability of a close relationship to the commonly used sys-
tem of latitude and longitude coordinates. In particular, any decomposition that is
chosen should enable the use of meridians and parallels to refer to the data. An addi-
tional important goal is for the partition to be into units of equal area, which rules out
the use of equally spacedlines of latitude (of course, the lines of longitude are equally
spaced). In this case, the sphere is projected into a plane using Lambert’s cylindrical
projection [Adam49], which is locally area preserving. Authalic coordinates
[Adam49], which partition the projection into rectangles of equal area, are then
derived. (For more details, see [Tobl86].)

The quadtree decomposition has the property that at each subdivision stage, the
image is subdivided into four equal-sized parts. When the original image is a square,
the result is a collection of squares, each of which has a side whose length is a power
of 2. The binarv image tree (termed bintree) [Know80, Tamm84a, Same88b] is an
alternative decomposition defined in a manner analogousto the region quadtree except
that at each subdivision stage we subdivide the image into two equal-sized parts. In
two dimensions, at odd stages. we partition along the x coordinate, and at even stages,
along the y coordinate. The bintree is equivalent to the region quadtree if we replace
all leaf nodes at odd stages of subdivision by two identically colored sons.

The bintree is related to the region quadtree in the same wayasthe k-d tree
[Bent75b] (see Section 2.4) is related to the point quadtree [Fink74]. The difference is
that region quadtrees and bintrees are used to represent region data with fixed subdivi-
sion points, while point quadtrees and k-d trees are used to represent point data where
the values of the points determine the subdivision. For example. Figure 1.18 is the
bintree representation corresponding to the image of Figure 1.1. We assumethat for
the x (y) partition, the left subtree corresponds to the west (south) half of the image
and the right subtree correspondsto the east (north) half. Once again,as in Figure 1.1,
all leaf nodes are labeled with numbers, and the nonleaf nodesare labeled with letters.
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 SOUTH NORTH SOUTH.

 

Figure 1.18 Bintree representation corresponding to Fig-
ure 1.1: (a) block decomposition, (b) bintree representation
of blocksin (a)

The quadtree and bintree decompose a region into equal-sized parts. Kanatani
{[Kana85} suggests using splitting rules based on the Fibonacci sequence of numbers.
The Fibonacci numbers consist of the sequence of numbers f; that satisfy the relation
fi =fi-; +fi-2, with fo = 1 and f; =1. We can try to devise both quadtree and bintree
splitting rules based on such a sequence. Generally for a decomposition schemeto be
useful in geometric applications, it must have pixel-sized squares (i.e., 1 x 1) as the
primitive tiles. At first glance, it appears that the Fibonacci sequence gives quiteabit
of leeway in deciding on a splitting sequence and on the sizes of the regions
corresponding to the subtrees and the primitive tiles.

* One possible quadtree splitting rule is to restrict all shapes to squares with sides
whoselengths are Fibonacci numbers. Clearly not all the shapes can be squares since
we cannot aggregate these squares into larger squares that obey this rule. Another
possibility is to restrict the shapes to rectangles the length of whosesides are either
equal Fibonacci numbers or are successive Fibonacci numbers (see Exercise 1.26).
Weterm this condition the 2-d Fibonacci condition.

In this discussion, we have assumedsplitting rules that ensure that vertical sub-
division lines at the same level are colinear as well as for horizontal lines at the same

level. For example, when using a quadtree splitting rule, the vertical lines that subdi-
vide the NW and SW quadrantsare colinear, as well as for the horizontal lines that sub-
divide the NW and NE quadrants. An alternative is to relax the colinearity restriction;
however, the sides of the shapes muststill satisfy the 2-d Fibonacci condition (see
Exercise 1.27).

As can be seen in Exercises 1.26 and 1.27, neither a quadtree nor a bintree can
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Figure 1.19 (a) An arbitrary space decomposition and
(b) its BSP tree. The arrows indicate the direction of the
positive halfspaces.

be used byitself as a basis for Fibonacci-based space decomposition; however, a com-
bination of the two structures could be used. Whenthe lengths of the sides of a rec-
tangle are equal, the rectangle is split into four rectangles such that the lengths of the
sides satisfy the 2-d Fibonacci condition. When the lengths of the sides of a rectangle
are not equal, the rectangle is split into two rectangles with the split along a line (an
axis) parallel to the shorter (longer) of the two sides. Interestingly the dimensions of
the A-series of European paper are based on a Fibonacci sequence—thatis, the ele-
ments of the series are of dimension f; X f;_; multiplied by an appropriate scale factor.

Another variation on the bintree idea, termed adaptive hierarchical coding
(AHC), is proposed by Cohen, Landy, and Pavel [Cohe85b]. In this case, the image is
again split into two equal-sized parts at each stage, but there is no need to alternate
between the x and y Coordinates. The decision as to the coordinate on whichto parti-
tion depends on the image. This technique may require some workto get the optimal
partition from the point of view of a minimum numberof nodes(see Exercise 1.29).

An even more general variation on the bintree is the BSP tree of Fuchs, Kedem,
and Naylor [Fuch80, Fuch83]. Its variants are used in some hidden-surface elimina-
tion algorithms (see Section 7.1.5 of [Same90b}) and in some implementations of
beam tracing (see Section 7.3 of [Same90b]). It is applicable to data of arbitrary
dimension, although here it is explained in the context of two-dimensional data. At
each subdivision stage, the image is subdivided into two parts of arbitrary size. Note
that successive subdivision lines need be neither orthogonal nor parallel. Therefore
the resulting decomposition consists of arbitrarily shaped convex polygons.

The BSP tree is a binary tree. To be able to assign regions to the left and right
subtrees, we associate a direction with each subdivision line. In particular, the sub-
division lines are treated as separators between two halfspaces.” Let the line have the

d

° A (linear) halfspace in d-space is defined by the inequality } a; -x, 20 on the d+1 homogeneous10

coordinates (x, = 1). The halfspace is represented by a column vector a. In vector notation, the inequality is
written as a -x 20. In the case of equality, it defines a hyperplane with a as its normal. It is important to
note that halfspaces are volume, not boundary, elements.
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equation a@ ++ +b -y+c=0. Wesaythat the right subtree is the ‘positive’ side and
contains all subdivision lines formed by separators that satisfy a-x+b-y+c20.
Similarly we say that the left subtree is ‘negative’ and contains all subdivision lines
formed by separators that satisfy a -x+b-y +c <0. As an example, consider Fig-
ure 1.19a, which is an arbitrary space decomposition whoseBSPtree is given in Figure
1.19b. Notice the use of arrowsto indicate the direction of the positive halfspaces.

Exercises

1.17. Given a [6*] tiling such that each side of an atomic tile has a unit length, compute the
three adjacency distances from the centroid of an atomic tile.

1.18. Repeat Exercise 1.17 for [3°] and [4*], again assumingthat each side of an atomic tile has
a unit length.

1.19. Suppose that you are given an imagein the form of a binary array of pixels, The result is
a square grid. How can youview this grid as a hexagonal grid?

1.20. Show how the property sphere data structure can be used to modelthe earth, In particu-
lar, discuss how to represent landmassfeatures, such as mountain ranges and crevices.

1.21 Suppose that you use an icosahedron to model spherical data. Initially there are 20 faces.
How manyfacesare thereafter the first level of decomposition when n = 2? n = V3?

1.22. Whatis the ratio of leaf nodes to nonleaf nodesin a bintree for a d-dimensional image?
1.23, What is a lower bound ontheratio of leaf nodes in a bintree to that in a quadtree for a d-

dimensional image? What is an upper bound? Whatis the average?
1.24. Is it true that the total number of nodes in a bintree is always less than that in the

corresponding quadtree?
1.25. The Fibonacci numbers are defined by the relation f, =/,-; +f,» Devise a two-

dimensional analog ofthis relation to correspond to a splitting rule that would haveto be
satisfied in a Fibonacci-based space decomposition that yields four parts, Generalize this
result to dimensions,

1.26. Give a counterexample to the use of a quadtree splitting rule in a Fibonacci-based space
decomposition.

1.27, Give a counterexample to the use of a bintree splitting rule in a Fibonacci-based space
decomposition.

1.28. Suppose that you use the combination quadtree-bintree approach to a Fibonacci-based
space decomposition. Prove that any image such that the lengths ofits sides satisfy the
2-d Fibonacci condition can be decomposed into subimages whose sides obey this pro-
perty and with a primitive tile of size 1 x 1,

1.29. Suppose that you use the AHC method, How manydifferent rectangles and positions must

be examined in building such a structure for a 2” x 2” image?

1.4.2 NonpolygonalTilings

In the previous section we focused on space decompositions based on polygonaltiles.
This is the prevalent method in use today. For certain applications, however, the use
of polygonal tiles can lead to problems. For example, suppose that we have a decom-
position based on square tiles. In this case, as the resolution is increased, the area of
the approximated region approaches the true value of the area; however, this is not
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true for a boundary measure such as the perimeter. To see this, consider a quadtree
approximation of an isosceles right triangle where the ratio of the approximated per-
imeter to the true perimeteris 4/(2 + V2) (see Exercise 1.30). Other problemsinclude
the discontinuity of the normals to the boundaries of adjacent tiles.

There are a number of ways of attempting to overcome these problems. The
hierarchical probe model of Chen [Chen85b] is an approach based ontreating space
as a polar plane and recursively decomposingit into sectors. We say that each sector
consists of an origin, two sides (labeled 1 and 2 corresponding to the order in which
they are encountered when proceeding in a counterclockwise direction), and an arc.
The points at which the sides of the sector intersect (or touch) the object are called
contact points. (p,8) denotes a point in the polar plane. Let (p;, 8;) be the contact
point with the maximum value of p in direction 0;. Each sector represents a region
bounded by the points (0,0), (p,,9;), and (p2,05), where 0, =2kn/2" and
Q@, = 0, + 27/2” such that & and 7 are nonnegative integers (k < 2"). The arc between
the two nonorigin contact points (p,, 9,) and (p2, 82) of a sector is approximated by
the linear parametric equations (0 < f < 1):

PY) =P, +(P2—-Py)-f Off) =O, + (8. — 8) -t.

Note that the interpolation curves are arcs of spirals due to the linear relation between
p and 8.

The sectortree is a binary tree that represents the result of recursively subdivid-
ing sectors in the polar plane into two sectors of equal angular intervals. Thus the
recursive decomposition is only with respect to 9, not p. The decomposition stops
whenever the approximation of a part of an object by a sector is deemed to be ade-
quate. The computation of the stopping condition is implementation dependent. For
example, it can be the maximum deviation in the value of p between a point on the
boundary and the correspondingpoint(i.e., at the same value of 8) on the approximat-
ing arc. Initially the universeis the interval [0,27).

In the presentation, we assume that the origin of the polar plane is contained
within the object. See Exercise 1.36 for a discussion of how to represent an object
that does not contain the origin of the polar plane. The simplest case arises when the
object is convex. The result is a binary tree where each leaf node represents a sector
and contains the contact points of its corresponding arc. For example, consider the
object in Figure 1.20. The construction of its sector tree approximation is shown in

Figure 1.20 Example convex object
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Figure 1.21 Successive sector tree approximations for the
object of Figure 1.20: (a) x intervals, (b) n/2 intervals, (c) n/4
intervals, (d) x/8 intervals

Figures 1.21a-d. The final binary tree is given in Figure 1.22 with interval endpoints
labeled according to Figure |.21d.

The situation is more complex whenthe object is not convex. This means that
each side of a sector may intersect the boundary ofthe object at an arbitrary, and pos-
sibly different, number of contact points. In the following, each sector will be seen to
consist of a set of alternating regions within and outside the object. These regions are
three-sided or four-sided and have at least one side that is colinear with a side of the

sector. The discussion is illustrated with the object of Figure 1.23a whose sector tree
decomposition is given in Figure 1.23b. The final binary tree is given in Figure 1.24.
A better indication of the quality of the approximation can be seen by examining Fig-
ure 1.23c, which contains an overlay of Figures 1.23a and |.23b.

When the boundary of the object intersects a sector at two successive contact
points, say P and Q,that lie on the same side, say S, of the sector, then the region

{0,29}

 (0.7/2)

wadwnsr y (39/47)
{l {4,2) (5,6)  
 (1/431/8) (39/8 7/2)

(2,3) {3,4)

Figure 1.22 Binary tree representation of the sector tree
of Figure 1.20
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Figure 1.23 (a) Example object, (b) its sector tree descrip-
tion, and (c) a comparison of the sector tree approximation
(thin lines) with the original object (thick lines). Note the
creation of a hole corresponding to the region formed by
points A, B, 6, 7, C, D, and 5

bounded by S and PQ must be approximated. Without loss of generality, assume that
the region is inside the object. There are two choices. An inner approximation
ignores the region bytreating the segment of S between P and @ aspart of the approxi-
mated boundary (e.g., the region between points 9 and 10 in sector (97/8, 57/4) in
Figure |.23b).

An outer approximation inserts two identical contact points, say R and 7, on the
other side of the sector and then approximates the region by the three-sided region
formed by the segment of S between P and Q and the spiral arc approximations of PR
and QT. The value of R (and hence 7) is equal to the average of the value of p at P and
Q. For example, the region between points 4 and 5 in sector [52/4, 37/2) in Figure
1.23b is approximated by the region formed with points C and D.

Of course, the same approximation process is applied to the part of the region
outside the object. In Figure 1.23b, we have an inner approximation for the region
between points 7 and 8 in sector (37/2, 27), and an outer approximation for the region
between points 5 and 6 in sector [97/8, 57/4), by virtue of the introduction of points A
and B.

Oneof the problems with the sectortree is that its use can lead to the creation of
holes that do not exist in the original object. This situation arises when the decompo-
sition is not carried out to a level of sufficient depth. For example, consider Figure
1.23b, which has a hole boundedby the arcs formed bypoints A, B, 6, 7, C, D, and 5.
This is a result of the inner approximation for the region between points 7 and 8 in
sector (37/2, 27) and an outer approximation for the region between points 4 and 5 in
sector [51/4, 3/2). This situation can be resolved by further decomposition in either
or both of sectors (37/2, 27m) and [57/4, 37/2).

The result of the approximation process is that each sector consists of a collec-
tion of three-sided and four-sided regions that approximate the part of the object con-
tained in the sector. This collection is stored in the leaf node of the sectortree asa list

of pairs of points in the polar plane. It is interesting to observe that the boundaries of
the interpolated regions are not stored explicitly in the tree. Instead each pair of points
corresponds to the boundary of a region. Since the origin of the polar plane is within
the object, an odd numberof pairs of points is associated with each leaf node. For
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[0,27}

 
 
 

[7 ,577/4) (6,7)0[57/4, 37/2)
(5,C)
(4,D)
(9,8)
(10,11)

[77 97/8) (B,6)0 [977/8,577/4)
(2,3) {A,5)

(3,4)

Figure 1.24 Binary tree representation of the sector tree
of Figure 1.23

example, consider the leaf node in Figure 1.24 corresponding to the sector
[5n/4, 3x/2). The first pair, together with the origin, defines the first region (e.g.,
(6,7)). The next two pairs of points define the second region (e.g., (5,C) and (4,D)),
with each successive twopairs of points defining the remaining regions.

The sector tree is a partial polar decomposition, as the subdivision process is
based only on the value of 8. A total polar decomposition would partition the polar
plane on the basis of both p and 0. The result is analogous to a quadtree, andit is
termed a polar quadtree. There are a numberofpossible rules for the decomposition
process (see Exercise 1.42). For example, consider a decomposition that recursively
halves both p and 6 at each level. In general, the polar quadtree is a variant of a maxi-
mal block representation. As in the sector tree, the blocks are disjoint. Unlike the
sector tree, blocks in the polar quadtree do have standard sizes. In particular, all
blocks in the polar quadtree are either three sided (i.e., sectors) or four sided (i.e.,
quadrilaterals, two of whose sides are arcs). Thus the sides of polar quadtree blocks
are not based on interpolation.

The primary motivation for presenting the sector tree is to show that space
decompositions could also be based on nonpolygonaltiles. In the rest of this book the
primary concern is with space decompositions based on rectangles (especially
squares) and showing how a numberof operations can be performed when they serve
as the underlying representation. The techniques are quite general and can be applied
to most space decomposition methods. Thus the sector tree is not discussed further
except in the context of its adaptation to the representation of three-dimensional data
(see Section 5.6). Nevertheless, the following contains a brief mention of some of the
operations to whichthe sectortree lendsitself.

Set operations such as union and intersection are straightforward. Scaling is
trivial as the sector tree need not be modified; all values of p are interpreted as scaled
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by the appropriate scale factor. The number of nodesin a sector tree is dependent on
its orientation—thatis, on the points chosen as the origin and the contact point chosen
to serve as (p,0). Rotation is not so simple; it cannot be implemented by simply rear-
ranging pointers (but see Exercise 1.40). Translation is computationally expensive
since the changein the relative position of the object with respect to the origin means
that the entire sector tree mustbe reconstructed.

1.30.

1.31.

1.32.

1.33.

1.37.

1.38.

1.39.

1.40.

1.41,

1.42.

Exercises

Prove that for an isosceles right triangle represented by a region quadtree, the ratio of the
approximated perimeterto the true perimeteris 4/(2 + V2).
Repeat Exercise 1.30 for a circle(i.e., find the ratio).
Whenthe objects have linear sides, polygonal tiles are superior. How would you usethe
sector tree decomposition method with polygonaltiles?
In the discussion of the situation arising when the boundary of the object intersects a sec-
tor at two successive contact points, say P and Q,that lie on the sameside, say S, of the
sector, we assumed that the region bounded by S and P@ wasinside the object. Suppose
that this region is outside the object. How doesthis affect the inner and outer approxima-
tions?

Can you traverse the boundary of an object represented by a sector tree by visiting each
leaf node just once?

. When using a sector tree, how would you handle the situation that the boundary of the
object just touches the side of a sector without crossingit (i.e., a tangent if the boundary
is differentiable)?

How would you usea sector tree to represent an object that does not contain the origin of
the polar plane?

The outer approximation used in building a sector tree always yields a three-sided region.
Two ofthe sides are arcs of spirals with respect to a common origin. This implies a sharp
discontinuity of the derivative at the point at which they meet. Can you devise a way to
smoothe this discontinuity?
Does the inner approximation used in building a sector tree always underestimate the
area? Similarly does the outer approximation always overestimate the area?
Compare the inner and outer approximations used in building a sector tree. Is there ever
a reason for the outer approximation to be preferred over the inner approximations (or
vice-versa)?

Define a complete sector tree in an analogous manner to a complete binary tree—thatis,
all leaf nodes are at the same level, say n. Prove that a complete sector tree is invariant
underrotation in multiples of 27/2”.
Write an algorithm to trace the boundary of an object represented by a sectortree.
Suppose that it is desired to decompose space into nonpolygonal shapes. Develop a
quadtree-like data structure based on polar coordinates (i.e., p and 9). Investigate dif-
ferent splitting rules for polar quadtrees. In particular, you do not need to alternate the
splits—that is, you could split on p several times in a row, and so on. This technique is
used in the adaptive k—d tree [Frie77] (see Section 2.4.1) by decomposing the quartering
process into two splitting operations—one for the x coordinate and one for the y coordi-
nate. What are the possible shapes for the quadrants of such trees (e.g., @ lorus,
doughnut, wheels with spokes)?
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1.5 SPACE REQUIREMENTS

The primary motivation for the developmentof the quadtree was the desire to reduce
the amount of space necessary to store data through the use of aggregation of homo-
geneous blocks. As we will see in subsequent chapters, an important by-product of
this aggregation is the reduction of the execution time of a numberof operations(e.g.,
connected componentlabeling, component counting). However, a quadtree imple-
mentation does have overhead in terms of the nonleaf nodes. For an image with B and
w black and white blocks, respectively, 4 - (6 + W)/3 nodes are required. In contrast, a
binary array representation of a 2” x 2" image requires only 27" bits; however, this
quantity grows quite quickly. Furthermore, if the amount of aggregation is minimal
(e.g., a checkerboard image), the quadtree is not veryefficient.

The overhead for the nonleaf nodes can be reduced at times by using a pointer-
less representation. Pointer-less representations can be grouped into two categories.
Thefirst, termed a DF-expression, represents the quadtree as a traversal of its consti-
tuent nodes [Kawa80a]. For example,letting “B’, “w’, and ‘*G’ correspondto black,
white, and gray nodes, respectively, and assuming a traversal in the order NW,NE, SW,
and SE, the quadtree of Figure 1.1 would be represented by GWGWWBBGWGW
BBBWBGBBGBBBWW.

The second approach treats the quadtree as a collection of the leaf nodes
comprising it. Each node is represented by a pair of numbers (Garg82c]. The first
numberis the level of the tree at which the node is located. The second numberis

termed a locational code. It is formed by a concatenation of base 4 digits correspond-
ing to directional codesthat locate the node along a path from the root of the quadtree.
The directional codes take on the values 0, 1, 2, 3 corresponding to quadrants NW,NE,
SW,SE, respectively. For exampie, node 15 in Figure 1.1 is represented by the pair of
numbers (0,320), which is decoded as follows. The base 4 locational code is 320.

The pair denotes a nodeat level O that is reached by a sequenceoftransitions, SE, SW,
and NW,starting at the root. A quadtree representation based onthe use oflocational
codes is called linear quadtree by Gargantini [Garg82a, Garg82c] (because the
addresses are keys in a linearlist of nodes). Pointer-less representations are discussed
in greater detail in Chapter 2 of [Same90b].

The worst case for a quadtree of a given depth in terms of storage requirements
occurs when the region correspondsto a checkerboard pattern as in Figure 1.25. The
amountof space required is obviously a function of the resolution (i.e., the numberof
levels in the quadtree), the size of the image(i.e., its perimeter), and its positioning in
the grid within which it is embedded. As a simple example, Dyer [Dyer82] has shown
that arbitrarily placing a square of size 2” x 2” at any position in a 2" x 2” image
requires an average of O(2”*? + n—m) quadtree nodes. An alternative characteriza-
tion of this result is that the average amount of space necessary is O(p +m) where p is
the perimeter(in pixel widths) of the block.

Dyer’s O(p+n) result for a square image is merely an instance of the earlier
work of Hunter and Steiglitz [Hunt78, Hunt79a] who proved some fundamental
theorems on the space requirements of images represented by quadtrees. In their
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Figure 1.25 A checkerboard andits quadtree

studies, Hunter and Steiglitz used simple polygons (polygons with nonintersecting
edges and without holes); however, these theorems have been observed to hold in
arbitrary images (see [Rose82b] for empirical results in a cartographic environment).

In Hunter and Steiglitz’s formulation, a polygon is represented by a three-color
variant of the quadtree. In essence, there are three types of nodes: interior, boundary,
and exterior. A nodeis said to be of type boundary if an edge of the polygon passes
through it. /nterior and exterior nodes correspond to areas within, and outside,
respectively, the polygon and can be merged to yield larger nodes. The resulting
quadtree is analogous to the MX quadtree representation of point data described below
(for more details, see Section 2.6.1), and this term will be used to describe it. In par-
ticular, boundary nodes are analogous to black nodes, while interior and exterior
nodes are analogousto white nodes.

Figure 1.26 illustrates a sample polygon and its MX quadtree. One disadvantage
of the MX quadtree representation for polygonallines is that a width is associated with
them, whereas in a purely technical sense these lines have a width of zero. Also shift-
ing Operations may result in information loss. (For more appropriate representations
of polygonal lines, see Chapter4.)

An upper bound on the numberof nodes in such a representation of a polygon
can be obtained in the following manner. First, we observe that a curve of length
d+e(€>0) can intersect at most six squares of side width d. Now consider a
polygon, say G, having perimeter p, that is embedded in a grid of squares each of side
width d. Mark the points at which G enters and exits each square. Choose one of
these points, say P, as a starting point for a decomposition of G into a sequence of
curves. Define the first curve in G to be the one extending from P until six squares
have been intersected and a crossing is made into a different seventh square. This is
the starting point for another curve in G that intersects six new squares, not counting
those intersected by any previous curve.

Page 47 of 448 Unified Patents Exhibit 1005 App'x A-N



34 || 1 INTRODUCTION

 
Figure 1.26 Hunter and Steiglitz’s quadtree representa-
tion of a polygon

We now decompose G into a series of such curves. Since each curve adds at
most six new squares andhaslength ofat least d, we see that a polygon with perimeter
p cannotintersect more than 6 -[p/d] squares. Given a quadtree with a root at level 7
(i.e., the grid of squares is of width 2"), at level i each square is of width 2’. Therefore
polygon G cannotintersect more than B (i) = 6 -{p/2'] quadrantsat level i. Recall that
our goal is to derive an upper bound on the total number of nodes. This bound is
attained when each boundary nodeatlevel / has three brother nodesthat are notinter-
sected. Of course, only boundary nodes can have sons, and thus no more than
B(i) nodes at level i have sons. Since each node at level j is a son of a node at level

i+1, there are at most 4-8(i+1) nodes at level 7. Summing up over 7levels
(accounting for a root node at level 7 and four sons), we find that the total number of
nodesin the tree is bounded by

n-2
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Therefore, we have proved:

Theorem 1.1. The quadtree corresponding to a polygon with perimeter
p embedded in a 2” x2" image has a maximum of 24-n—-19+24-p
(1.e., O(p +7)) nodes. CO

The proof of Theorem 1.1 is based on a decomposition of the polygon into a
sequence of curves, each of which intersects at most six squares. This bound can be
tightened by examining patterns of squares to obtain minimum lengths and
corresponding ratios of possible squares per unit length. For example, observe that
once a curve intersects six squares, the next curve of length d in the sequence can
intersect at most two new squares. In contrast, it is easy to construct a sequence of
curves of length d + € (€ > 0) such that almost each curve intersects two squares of
side length d. Such a construction leads to an upper bound of the form
a-n+b+8-p where a and b are constants (see Exercise 1.48). Hunter and Steiglitz
use a slightly different construction to obtain a bound of 16-1 — 11] + 16- p (see Exer-
cise 1.49).

Nevertheless, the bound of Theorem |.1 is attainable as demonstrated by the fol-
lowing examples. First, consider a square of side width 2 that consists of the central
four squares in a 2” x 2” image (see Figure 1.27). Its quadtree has 16-n — 11 nodes
(see Exercise 1.50). Second, consider a curve that follows a vertical line through the
center of a 2” x 2” image. Now, makeit a bit longer by makingit intersect all of the
pixels on either side of the vertical line (see Figure 1.28). As n increases, the total
numberof nodes in the quadtree approaches 8 - p where p = 2” (see Exercise 1.51). A
polygon having a numberof nodes approaching 8 - p can be constructed in a similar
manner by approximating a square in the center of the image whoseside is one-fourth
the side of the image (see Exercise 1.52). In fact, it has been shown by Hunter
[Hunt78] that O(p+n) is a least upper bound on the number of nodes in a quadtree
corresponding to a polygon (see Exercise 1.53).

 
Figure 1.27 Example quadtree with 16 -n— 11 nodes
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Figure 1.28 Example quadtree with approximately 8-p
nodes

Theorem 1.1 can be recast by measuring the perimeter p in terms of the length
of a side of the image in which the polygon is embedded—i.e., for a 2" x 2” image
p=p’-2". Thus the value of the perimeter no longer depends onthe resolution of
the image. Restating Theorem 1.1 in terms of p’ results in a quadtree having
O(p’-2"+n) nodes. This leads to the following importantcorollary:

Corollary 1.1. The maximum number of nodes in a quadtree
corresponding to an imageis directly proportional to the resolution of the
image. C]

The significance of Corollary 1.1 is that when using quadtrees, increasing the
image resolution leads to a linear growth in the numberof nodes. This is in contrast to
the binary array representation where doubling the resolution leads to a quadrupling of
the numberofpixels.

Since in most practical cases the perimeter, p, dominates the resolution, 7, the
results of Theorem 1.1 are usually interpreted as stating that the numberof nodes in a
quadtree is proportional to the perimeter of the regions contained therein.!° Meagher
[Meag80] has shown that this theorem also holds for three-dimensional data (i.e., for
polyhedra represented by octrees) when the perimeter is replaced by the surface area.
The perimeter and the surface area correspond to the size of the boundary of the
polygon and polyhedron—that is, in two and three dimensions, respectively. In d
dimensionsthis result can be stated as follows:

Theorem 1.2: The size of a d-dimensional quadtree of a d-dimensional
polyhedron is proportional to the sum of the resolution and the size of the
boundary of the object. C]

 

'0 Of course, the storage used by runlength codes is also proportional to the perimeter of the regions.
However, runlength codesdo notfacilitate access to different parts of the regions(i.e., they have poorspatial
indexing properties).
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Aside from their implications on the storage requirements, Theorems 1.1 and 1.2
also directly affect the analysis of the execution time of algorithms. In particular,
most algorithms that execute on a quadtree representation of an image instead of an
array representation have an execution time proportional to the numberof blocks in
the image rather than the numberofpixels. In its most general case, this means that
the application of a quadtree algorithm to a problem in d-dimensional space executes
in time proportional to the analogous array-based algorithm in the (d—-1)-dimensional
space of the surface of the original d-dimensional image. Thus quadtrees are some-
what like dimension-reducing devices.

Theorem 1.2 assumesthat the image consists of a polyhedron. Walsh [Wals85}]
lifts this restriction and obtains a weaker complexity bound. Assuming an image of
resolution 7 and measuring the perimeter, say p, in terms of the numberof border pix-
els, he proves that the total number of nodes in a d-dimensional quadtree is less than
or equal to 4- -p. Furthermore he showsthat the numberof black nodesis less than
or equal to (24-1)-n-p/d.

The complexity measures discussed above do notexplicitly reflect the fact that
the amount of space occupied by a quadtree corresponding to a region is extremely
sensitive to its orientation (i.e., where it is partitioned). For example, in Dyer’s exper-
iment, the number of nodes required for the arbitrary placement of a square of size
2”x2” at any position in a 2” x2” image ranged between 4-(n-m)+1 and
4-p+16-(n-m)- 27, with the average being O(p+n-—m). Clearly shifting the
image within the space in which it is embedded can reduce the total number of nodes.
The problem of finding the optimal position for a quadtree can be decomposed into
two parts. First, we must determine the optimal grid resolution and, second, the
partition points.

Grosky and Jain [Gros83} have shownthat for a region such that w is the max-
imum of its horizontal and vertical extent (measured in pixel widths) and
2"-! <w <2", the optimalgrid resolution is either n or 7+1. In other words embed-
ding the region in a larger area than 2”*! x 2”*! and shifting it around will not result
in fewer nodes. Using similar reasoning, it can be shownthat translating a region by
2* pixels in any direction does not change the numberofblack or white blocksof size
less than 2* x 2* [Li82].

Armedwith the aboveresults, Li, Grosky, and Jain [Li82} developed the follow-
ing algorithm thattreats the imageas a binary array and finds the configuration of the
region in the image so that its quadtree requires a minimum numberof nodes. First,
enlarge the image to be 2”*! x 2”*!, and place the region within it so that the region’s
northernmost and westernmost pixels are adjacent to the northern and western bord-
ers, respectively, of the image. Next apply successive translations to the image of
magnitude power of twoin the vertical, horizontal, and corner directions and keep
count of the numberof leaf nodes required. Initially 2°”** leaf nodes are necessary.
The following is a more precise statementof the algorithm:

1. Attempt to translate the image by (x,y) where x and y correspond to unit
translations in the horizontal and vertical directions, respectively. Each of
x and y takes on the values 0 or1.
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2. For the result of each translation in step 1, construct a new array at one-half
the resolution. Each entry in the new array correspondsto a 2 X 2 blockin
the translated array. For each entry in the new array that corresponds to a
single color (not gray) 2 x 2 block in the translated array, decrement the
leaf node count by3.

3. Recursively apply steps | and 2 to each result of steps 1 and 2. This pro-
cess stops when nosingle-color 2 x 2 block is foundin step 2 (i.e., they are
all gray) or if the new array is a | x | block. Record the total translation
and the minimum leaf node count.

Step 2 makes use of the property that for a translation of 2*, there is a need to
check only if single-color blocks of size 2 x 2* or more are formed. In fact, because
of the recursion, at each step we check only for the formation of blocks of size
2‘t! x 2**1_ Note that the algorithm tries every possible translation since any integer
can be decomposed into a summation of powers of two(i.e., use its binary representa-
tion). In fact this is why a translation of (0,0) is part of step 1. Although the algo-
rithm computes the positioning of the quadtree with the minimum numberofleaf
nodes, it is also the positioning of the quadtree with the minimum total number of
nodes since the numberof nonleaf nodesin a quadtree of T leaf nodesis (7—1)/3.

As an example of the algorithm, consider the region given in Figure 1.29a
whose block decomposition is shown in Figure 1.29b. Its quadtree requires 52 leaf
nodes. Thefirst step is to enlarge the image, place the region in the upperleft corner,
and form the array (Figure 1.30). The optimal positioning is such that Figure 1.30 is
shifted 7 units in the horizontal direction and 3 units in the vertical direction. This

corresponds to a sequence oftranslations (1,1), (1,1), and (1,0). The intermediate
translated arrays are shownin Figure 1.31. All gray nodesin the translated arrays are
labeled with a ‘G’ while black nodes are shaded. The optimal quadtree contains 46
leaf nodes andis given in Figure |.32.

Nowlet us trace the algorithm asit applies the optimal sequence oftranslations,
in more detail. Initially the leaf node countis 256. A translation of (1,1) leads to Fig-
ure 1.31a where 58 of the array entries correspond to single-color 2 x 2 blocks in the
translated array. The leaf node count is decremented by 58 -3=174, resulting in

 
a

Figure 1.29 Example (a) image and (b) its block decom-
position used to demonstrate the optimal positioning
process
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Figure 1.30 The array corresponding to the imagein Fig-
ure 1.29 priorto the start of the optimal positioning process

82. The next translation of (1,1) leads to Figure 1.31b, where 11 of the array entries
correspondto single-color 2 x 2 blocks. Therefore 11 - 3 = 33 is subtracted from 82,
and the leaf node count is now 49. Thefinal translation of (1,0) leads to Figure 1.31c,
where only one of the array entries correspondsto a single-color 2 x 2 block in the
translated array. Decrementing the leaf node count results in 46 nodes, and the pro-
cess terminates. Of course, we have failed to describe the remaining 4” — 3 transla-
tions that were also attempted.

Despite trying all possible translations, the algorithm is quite efficient. The key
is that for each translation, only the blocks whose motion can lead to space saving
need to be considered. This is a direct consequence of the property that a translation
of 2* does not change the numberof blocksof size less than 2‘ x 2‘. For an image
that has been enlarged tofit ina 2"*! x 2”*! array, the algorithm will have a maximum
depth of recursion of n. Since at each level of recursion we need an arrayat half the
resolution of the previous level, the total amount of space required is (4/3) - 22"*?.

 
Figure 1.31 The successive translated arrays at half-
resolution after application of (a) (1,1) and (b) (1,1), and
(c) (1,0) to the original image array of Figure 1.30

Page 53 of 448 Unified Patents Exhibit 1005 App'x A-N



40 || 1. INTRODUCTION

 
Figure 1.32 Optimal positioning of the quadtree of Figure
1.29

The basic computational task of the algorithm is to count 2 x 2 blocks of a single
color. It can be shown that 4-7 . 2?"*? array elements are examinedin this process
(see Exercise 1.63). Thus the algorithm uses O (27") space and takes O(n - 27") time.
Nevertheless experiments with typical images showthat the algorithm haslittle effect
(e.g., [Same84c]).

Exercises

1.43. Consider the arbitrary placement of a square of size 2” x 2” at any position in a 2” x 2”
image. Prove that in the best case 4 - (n—m) + | nodes are required, while the worst case
requires 4 -p + 16-(n—m)—27 nodes. How manyof these nodes are black and white,
assuming that the square is black? Prove that on the average, the numberof nodesthatis
required is O(p+n—m).

1.44. Whatare the worst-case storage requirements of storing an arbitrary rectangle in a quad-
tree corresponding to a 2” x2” image? Give an example of the worst case and the
numberof nodesit requires.

1.45 Assumethat the probability of a particular pixel’s being black is one-half and likewise for
being white. Given a 2” x2” image represented by a quadtree, what is the expected
numberof nodes, say £ (7), in the quadtree? Also compute the expected numberofblack,
white, and gray nodes.

1.46 Suppose that instead of knowing the probability a particular pixel is black or white, we
know the percentage of the total pixels in the image that are black. Given a 2" x 2”
image represented by a quadtree, what is the expected numberof nodesin the quadtree?

1.47. The proof of Theorem 1.1 and the subsequent discussion raise the question of how N
squares should be arranged so that each is intersected by a curve of minimum length
extending to the outside of the squares on each end. Such a configuration leads to a
minimal curve in the sense that it has a maximalratio of squares to length. For which
value of4 is this ratio the smallest?

1.48. Try to prove that the upper bound of Theorem 1.1 can be tightened to bea -n+b+8-p
where a and b are constants.
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Decomposethe polygon used in the proof of Theorem |.] into a sequence of curves in
the following manner. Mark the points where G enters and exits each square of side
width d. Choose one of these points, say P, and define the first curve in G as extending
from P until four squares have been intersected and a crossing is madeinto a different
fifth square. This is the starting point for another curve in G that intersects four new
squares, not counting those intersected by any previous curve. Prove that all of the
curves, except for the last one, must be at least of length d. Using this result, prove that
the upper bound on the numberof nodesin the quadtree is 16-” —11+16-p.
Prove that the quadtree corresponding to a square of side width 2 consisting of the central
four squares in a 2” x 2” image has 16 - n — 11 nodes(see Figure 1.27).
Take a curve that follows a vertical line through the center of a 2” x 2” image and
lengthen it slightly by making it intersect all of the pixels on either side of the vertical
line (see Figure 1.28). Prove that as increases, the total number of nodes in the quad-
tree approaches8 - p where p = 2”.
Using a technique analogousto that used in Exercise 1.51, construct a polygon of perime-
ter p by approximating a square in the center of the image whoseside is one-fourth the
side of the image. Provethat its quadtree has approximately 8 - p nodes.

. Prove that O(p+n) is a least upper bound on the number of nodes in a quadtree
corresponding to a polygon. Assume that p <2” (i.e., the number of pixels in the
image). Equivalently the polygon boundary can touchall of the pixels in the mosttrivial
way but can be no longer. Decomposeyourproof into two parts depending on whetherp
is greater than 4 - n.

. Can you prove that for an arbitrary quadtree (not necessarily a polygon), the numberof
nodes doublesas the resolution is doubled?

. Derive a result analogous to Theorem 1.1 for a three-dimensional polyhedron represented
as an octree. In this case the perimeter correspondsto the surface area.
Prove Theorem 1.2.

Assuming an image of resolution n and measuring the perimeter, say p, in terms of the
numberof border pixels, prove that the total number of nodes in a d-dimensional quad-
tree is less than or equal to 4-7 - p.
Assuming an image of resolution ” and measuring the perimeter, say p, in terms of the
numberof border pixels, prove that the total number of black nodes in a d-dimensional
quadtreeis less than or equalto (27 — 1)-n - p/d.
Howtight are the bounds obtained in Exercises 1.57 and 1.58 for the numberof nodesin
a d-dimensional quadtree for an arbitrary region? Are they realizable?
Prove that for a region such that w is the maximum ofits horizontal and vertical extent
(measured in pixel widths) and 2”"' < w <2", the optimal grid resolution is either n or
n+l.

Prove that translating a region by 2‘ pixels in any direction does not change the number
of black or white blocksof size less than 2* x 2¢.

Can you formally prove that the method described in the text does indeed yield the
optimal quadtree?
Prove that 4-7 -2?"*? array elements are examined in the process of constructing the
optimal quadtree.
How would youfind the optimal bintree?
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1

SYSTEM FOR MANAGINGTILED IMAGES USING
MULTIPLE RESOLUTIONS

MICROFICHE APPENDIX

A microfiche appendix containing computer source
code is attached. The microfiche appendix comprises
one (1) sheet of microfiche having 74 frames.

BACKGROUNDOF THE INVENTION

1. Field of the Invention

The present invention relates to memory manage-
ment systems and, more particularly, to the memory
managementoflarge digital images.

2. Description of the Prior Art
The present invention comprises a memory manage-

ment system for large digital images. These digital, or
raster, images are made up of a matrix of individually
addressable pixels, which are ultimately represented
inside of a computeras bit-maps. Large digital images,
such as those associated with engineering drawings,
topographic maps, satellite images, and the like, are
often manipulated by a computer for the purpose of
viewing or editing by a user. The size of, such images
are often on the order of tens and even hundreds of

Megabytes. Given the current cost of semiconductor
memoryit is economically impracticable to dedicate a
tandom access memory (RAM)to storing even.a single
large digital image (hereinafter just referred to as a
“digital image”). Thus, the image is usually stored on a
slower, secondary storage medium such as a magnetic
disk, and only the sections being used are copied into
main memory (also called RAM memory).

However, as is well known by users of computer
aided design (“CAD”) systems, a simplistic memory
transfer scheme will cause degraded performance dur-
ing manytypical operations, including zooming or pan-
ning. Essentially, during such operations, the computer
cannot transfer data between disk and main memory
fast enough so that the user must wait for a video dis-
play to be refreshed. Clearly, these periods of waiting
on-memory transfers are wasteful of engineering time.

Presently, to enhance main memory storage of only
relevant sections of a digital image, the image is logi-
cally segmented into rectangular regionscalled “tiles”.
Two currently preferred standards for segmenting an
image into tiles are promulgated by the Computer
Aided Logistics Support (CALS) organization of the
United States. government (termed the “CALS stan-
dard” herein) and by Aldus Corporation of Seattle,
Washington, as defined in the Tagged Image Format
File (TIFF) definition (e.g., “TIFF Specification, Revi-
sion 5.0, Appendix L). Among othertile sizes, both
standards define a square tile having dimensions of
512x512 pixels. Thus, if each pixel requires one byte of
storage, the storage of one such tile would require a
minimum of 256 kilobytes of memory.

Others, such as Thayer, et al. (U.S. Pat. No.
4,965,751) and Sawada,et al. (U.S. Pat. No. 4,920,504)
have discussed tiling or blocking a memory. However,
such computer hardwareis generally associated with a
graphics board for improving the speed of pixel trans-
fers between a frame buffer and a video display by
addressing a group ofpixels simultaneously. These sys-
tems have no relationship to tiling of the imageitself
and thus do not require knowledgeof imagesize. Tiling
has also been used to refer to polygon filling as in Dal-
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rymple, et al. (U.S. Pat. No. 4,951,230), which is unre-
lated to the notion oftiling discussed herein.

The patent to Ewart (U.S. Pat. No. 4,878,183) dis-
cusses interlaced cells, each cell containing one or more
pixels, for storing continuous tone images such as pho-
tographs. The variable size cells are used to vary the
resolution of an image according to a distance whichis
to be perceived by a user. However, the Ewart disclo-
sure does not discuss rasterized binary images contain-
ing line drawings, nor does Ewart discuss virtual mem-
ory management for modifying or editing images, as
will be more fully discussed below.

Even when stored in a mass storage system, an image
library, containing a numberofdigital images, will con-
sume disk space very quickly. Furthermore, “raw”
digital images are generally too large to transfer from
mass storage to portable floppy disks, or between com-
puter systems (by telephone, for example), in a timely
and inexpensive manner unless some meansis used to
reduce the size of the image. Hence, users of binary
images employ image compression techniques to im-
prove storage and transfer efficiencies. One existing
compression standard applicable to facsimile transmis-
sion, CCITT Group IV, or T.6 compression, is now
being used for digital images. Like many other compres-
sion techniques, however, the CCITT standard uses
Statistical techniques to compress data and, hence,it
does not always produce a compressed image that is
smaller than the original, uncompressed image. That
means that image libraries will often contain a mix of
compressed and uncompressed binary images. Similar
compression standards exist for color and gray-scale
images such as those promulgated by the JPEG (Joint
Photog. Exp. Group) Standards Committee of the
CCITT as SGV III Draft Standard.

At the present time, digital images are typically
viewed and modified with an image editor using an
off-the-shelf computer workstation. These workstations
usually come with a sophisticated operating system,
such as UNIX,that employs a virtual memoryto effec-
tively manage memoryaccesses in secondary and main
memories. In an operating system having virtual mem-
ory, the data that represents the executable instructions
for a program or the variables used by that program do
not need to reside entirely in main memory. Instead, the
operating system brings portions of the program into
main memory only as needed. (The data that is not
stored in main memorybeing stored on magnetic disk or
other like nonvolatile memory.) The address space that
is available to any one application program is generally
managed in blocks of convenientsizes called “pages” or
“segments”.

In general, a virtual memory system allows applica-
tion programs to be written and executed without con-
cern for the managementofvirtual memory carried out
by the operating system. Thus, independence ofthe size
of main memory is achieved by creating a “virtual”
address space for the program. The operating system
translates virtual addresses into physical addresses (in a
main or cache memory) with the aid of an “address
translation table’. This table contains one entry per
virtual memory segmentof status information. For in-
stance, segment status will commonly include informa-
tion about whether a segmentis currently in main mem-
ory, when a segment was last used, a disk address at
which the disk copy of the segmentresides, and a RAM
address at which the segment resides (only valid if the
segment is currently loaded in main memory).
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When the program attempts to access data in a seg-
mentthat is not currently resident in main memory, the
operating system reads the segment from disk into main
memory. The operating system may need to discard
another segment to make room for the new one (by
overwriting the area of main memory occupied by the
old segment), so some method of determining which
segmentto discard is required. Usually the methodis to
discard the least recently used segment.If the discarded
segment was modified then it must be written back to
disk. The operating system completes the “swap”oper-
ation by updating the addresstranslation table entries of
the new and discarded segments.

In summary, the conventional memory management
schemes consider data to be in one of twostates:resi-

dent or not resident in main memory. Which segments
are stored in main memory at any given time is gener-
ally determined only by past usage, with no way of
predicting future memory demands. Forinstance, just
because a segment is the least recently used does not
mean that it will not be used at the very next memory
access.

However, the management of virtual memory for
images departs significantly from conventional virtual
memory schemes because images and computer pro-
gramsare accessed in very different ways. Computer
programs tend to access one small neighborhood of
virtual address, and then jump to some distant, essen-
tially random, location. However, during normal image
processing operations an image is accessed in one of a
finite set of predictable patterns. It is not surprising then
that conventional memory management systems can
significantly degrade performance whenused in image
processing applications by applying inappropriate mem-
ory managementrules. Rules which should be abided
by a memory managementsystem for large digital im-
ages are the following:

1. Image memory must be managed as rectangular
image regions (called “tiles’), not as linear memory
address ranges.

2. An imagetile can exist in five forms: uncompressed
memory-resident, compressed memory-resident, un-
compressed disk-resident, compressed disk-resident and
“can be derived from other available imagetiles’, in
contrast to the two basic forms of memory-resident and
disk-resident available in conventional virtual memory
schemes.

3. The image region that will be affected by a particu-
lar image processing operation is known before the
operation begins, and that information can be conveyed
to the memory manager.

4. An image memory manager must be tunable to
different system capabilities and image types. For exam-
ple, many computers can decompress a tile of binary
data much faster that they can retrieve the uncom-
pressed version of the sametile from disk. On the other
hand, some images cannot be compressedatall.

5. An image memory management system should
support the capability to “undo” editing operations
which is built into the memory manager for optimal
performance and ease of use. Thus, the memory man-
ager could easily save copies of the compressedtiles in
the affected region, and quickly restore the image to the
original state by simply modifying the tile directory
entries to point to the old version.

Reader, et al., (“Address Generation and Memory
Management for Memory Centered Image Processing
Systems”, SPIE, Vol. 757, Methods for Handling and
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Processing Imagery, 1987) discuss a primitive memory
management system for images. However, in that sys-
tem, imagetiles are only stored in memory and not on
disk. Furthermore, in the Reader, et al., system, there is
no capability to handle images in compressed form, nor
is there any discussion of “undoing”editing operations.

Consequently, a need exists for an image memory
managementsystem that provides: linkages with a ras-
ter image editor which includes modify and undo opera-
tions, true virtual memory for large images specifying
locations on disk and in memory, simultaneous handling
of compressed and uncompressed images, and a method
for rapidly constructing reduced resolution viewsof the
image for display. The latter need is particularly impor-
tant when viewing a large image reduced to fit on a
video display.

SUMMARYOF THE INVENTION

The above-mentioned needsare satisfied by the pres-
ent invention which includes a memory management
system for tiled images. The memory managementsys-
tem includes a tile manager for maintaining a virtual
memory comprising a main memory and a secondary
memory such as a disk. The tiled images may include
tiles in compressed or uncompressed form.

Thetile manager selects the form of imagetile that
most appropriately matches a request. Each tile of an
image mayexist in one or moreoffive different forms,
or states, as follows: uncompressed and resident in the
image data cache, compressed andresident in the image
data cache, uncompressed and resident on disk, com-
pressed and resident on disk and not loaded but re-creat-
able using data from higher-resolution imagetiles.

An imagestack having successively lower-resolution
subimages is constructed from a full resolution source
image. The lower-resolution images in the image stack
may be used to enhance such standard image accesses as
zooming and panning where high speed image reduc-
tion is advantageous.

The image memory management system provides
linkages with image processing applications that facili-
tate image modifications. The tile manager need only
store compressedtiles that relate to so-called undoable
operations.

These and other objects and features of the present
invention will become more fully apparent from the
following description and appended claims taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a perspective view of an image stack com-
prising full, half, quarter and eighth resolution tiled
images;

FIG. 2 is a full resolution image of a mechanical part;
FIG.3 is a half resolution image of the mechanical

part shown in FIG.2; ,
FIG.4 is a quarter resolution image of the mechanical

part shown in FIG.2;
FIG.5 is an eighth resolution image of the mechani-

cal part shownin FIG.2;
FIG. 6 is a block diagram showing one preferred

embodiment of a computer system that includes the
present invention;

FIG. 7 is a memory map showing the general ar-
rangement of cache memory according to the present
invention;
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FIG.8 is a state diagram defining theflow oftile data
between different storage states according to the pres-
ent invention;

FIGS.9A and B are a diagram of one preferred data
structure defining document information according to
the present invention;

FIG.10 is a diagram of one preferred data structure
defining a tile header for maintaining the status of com-
pressed or uncompressedtiles;

FIG.11 is a diagram ofa partial calling hierarchy for
the various functions of the presently preferred embodi-
ment of the tile manager of the present invention;

FIG.12 is a flow diagram of one preferred embodi-
ment of the tile manager;

FIG. 13 is a flow diagram defining the “initialize
cache manager” function referred to in the flow dia-
gram of FIG. 12;

FIG.14 is a state diagram of the locking and unlock-
ing of a memory,state, according to the present inven- .
tion;

FIGS. 15A, 15B, and 15Care a flow diagram defining
the “create image access context” function referred to
in FIG.12;

FIG.16 is a diagram, of a data structure defining the
access context referred to in FIGS. 15A,B;

FIGS. 17A and 17B are a flow diagram defining the
“save region for undo” function referred to in FIG.
15B;

FIG. 18 is a flow diagram defining the “load tiled
raster image” function referred to in FIG. 12;

FIG. 19 is a flow diagram defining the “load TIFF
subimage tile information into tile headers” function
referred to in FIG. 18;

FIG.20 is a flow diagram defining a “store tile info in
tile headers” function referred to in FIG.12;

FIG.21 is a flow diagram defining the “begin undoa-
ble raster operation” function referred to in FIG. 12;

FIGS. 22A and 22B are a flow diagram defining the
“read rows from region” function referred to in FIG.
12;

FIGS. 23A and 23B are a flow diagram defining the
“write rows to region” function referred to in FIG. 12;

FIG.24 is a flow diagram defining the “close image
access context” function referred to. in FIG. 12;

FIGS. 25A and 25B are a flow diagram defining the
“undo previous raster operations” function referred to
in FIG.12;

FIG. 26 is a flow diagram defining the “quit cache
manager” function referred to in FIG. 12;

FIG. 27 is a flow diagram defining the “lock ex-
panded imagetile group” function referred to.in FIG.
22A;

FIG. 28 is a flow diagram defining the “lock ex-
pandedtile” function referred to in FIG. 27; .

FIG. 29 is a flow diagram defining the “unlock ex-
panded imagetile group” function referred to in FIG.
27;

FIG. 30 is a flow diagram defining the “unlock ex-
panded tile” function referred to in FIG. 29;

FIG.31 is a flow diagram defining the “create tile
from higher-resolution tiles” function referred to in
FIG. 28;

FIG.32 is a flow diagram defining the “allocate space
for uncompressed version oftile” function referred to in
FIG, 28;

FIG. 33 is a flow diagram defining the “create un-
compressed version of tile from compressed version”
function referred to in FIG. 28; ‘
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’ FIG. 34 is a flow diagram defining the “create com-

pressed low resolution tile from compressed higher-
resolution tiles” function referred to in FIG. 31;

FIG. 35 is a flow diagram defining the “copy uncom-
pressed high resolution tile to uncompressed low reso-
lution tiles” function referred to in FIG. 31;

FIGS. 36A and 36B are a flow diagram defining the
“collect freeable cache memory”function referred to in
FIG.32;.

FIG.37 is a flow diagram defining the “free uncom-
pressed version of tile” function referred to in FIGS.
36A,B; and

FIG.38 is a flow diagram defining the “create com-
pressed version of tile from uncompressed version”
function-referred to in FIG. 17B.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference is now made to the drawings wherein like
parts are designated with like numerals throughout.

FIG.1 illustrates an image stack, generally indicated
at 100. The design of the image stack 100 is based on the
idea that image memory can be managedas small square
regions, calledtiles, that are mostly independent of one
another. In general, a tile may be either uncompressed
(also termed expanded) or compressed. While the basic
uncompressedtile size could be a variable,it is presently
preferred to befixed at 32 kilobytes, or 512 pixels by 512
pixels to conform with the Computer Aided Logistics
Support (CALS)raster file format standard for binary
images. (Note that the present invention allows binary
and color images to coexist in a common image memory
management system.)

In order to compensate for lower performance ex-
pected with a virtual memory managementsystem for
images, particularly when reducing large portions (by
combining pixels) of the image for display, the present
invention automatically maintains a series of reduced
resolution copies, called subimages, of the full resolu-
tion image. Preferably, the resolution (i.e., pixels per
inch) of each subimage is reduced by exactly half rela-
tive to the next higher-resolution subimage. Thus, the
image stack 100 can be visualizing as an inverted
pyramid, wherein the images can be stacked beginning
with a full resolution subimage (or image) 102 at the
top, followed by a half resolution subimage 104, then a
quarter resolution subimage 106, and an eighth resolu-
tion subimage 108. (in FIG. 1, the subimages 102-108
are outlined by bolded lines.)

The subimages 102, 104, 106, 108 are superimposed
on a set of tiled subimages 110c, 1105, 110c, 110d, re-
spectively, defining sets oftiles. The extent of the image
stack 100 ends at the resolution that allows the entire

subimage to be stored within a single tile 108 (prefera-
bly 512X512 pixels square). Each lower-resolution
subimage 104-108is a faithful representation of the full
resolution subimage 102 at all times, with the exception
of certain times during operations that modify the ap-
pearance of the full resolution subimage 102.

FIG. 2 illustrates an 84'"%11", A-size mechanical
drawing (to scale) as the full resolution subimage 102
showing a mechanical part 1202. Ofcourse, other larger
drawingssuchas, for example, D-size and E-size may be
used by the present invention. Also, other image pro-
cessing applications besides mechanical drawings may
be used with the present invention including electrical
schematics, topographical maps, satellite images, hea-
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ting/ventilating/air conditioning (HVAC) drawings,
and the like.

FIG.3 illustrates the corresponding half resolution
subimage 104 showing the half resolution part 1200.
FIG.4 illustrates the corresponding quarter resolution
subimage 106 showing the quarter resolution part 120c.
Lastly, FIG. 5 illustrates an eighth resolution subimage
108 showing the eighth resolution part 120d. In the
preferred embodiment, reduced resolution subimages
can be used any time that a reduction factor of 2:1 or
higher would be used to scale a region of interest in the
full resolution subimage 102 for display, plotting or
copying.

The subimages 102-108 can be loaded from a source
imagefile, if they exist, or they can be created on de-
mandby the image memory managementsystem ofthe
present invention. The present invention includes edit-
ing capabilities that allow a user to trade off between
“quick flash” pan/zoom performance and file size as
measured by the number of reduced resolution subim-
ages stored with each image. Depending onthe applica-
tion, the user will normally opt to store one or more
reduced resolution subimages with each source image
file.

The lower-resolution subimages, for example, subim-
ages 104-108, are utilized by the image memory man-
agement system to producethe illusion of instant access
to any region of the image at any scale factor (not just
the scale factor of the overview subimage). Increasing
the number of lower-resolution subimages gives a
higher quality “first flash” image during panning and
zooming and reducesthe timeto getthe final version of
the image to the screen.

FIG.6 illustrates a computer workstation generally
indicated at 150 which is representative of the type of
computer that is used with the present invention. The
workstation 150 comprises a computer 152, a color
monitor 154, a mouse 156, a keyboard 158, a floppy disk
drive 160, a hard disk drive 162 and an Ethernet com-
munications port 164. The computer 152 includes a
motherboard bus 166 and an I/O bus 168. The I/O bus

168,in one preferred embodiment, is an IBM PC/AT ®
bus, also knownas an Industry Standard Architecture
(ISA) bus. The twobuses 166, 168 are electrically con-
nected by an I/O businterface and controller 170.

The I/O bus 168 provides an electromechanical com-
munication path for a numberof1/0 circuits. For exam-
ple, a graphics display controller 172 connects the mon-
itor 154 to the I/O bus 168. In the presently preferred
embodiment, the monitor 154 is a 19-inch color monitor
having a 1,024 x 768 pixel resolution. A serial communi-
cations controller 174 connects the mouse 156 to the

1/0 bus 168. The mouse 156 is used to “pick” an image
entity displayed on the monitor 154.

The 1/0 bus 168 also supports the hard disk drive
162, and the Ethernet communications port 164. A hard
disk controller 176 connects the hard disk drive 162 to

the I/O bus 168. The hard disk drive 162, in one possible
configuration of the workstation generally indicated at
150, stores 60 megabytes of data. An Ethernet commu-
nications controller 178 connects an Ethernet communi-

cations port 164 with the I/O bus 168. The Ethernet
communications controller 178 supports the industry
standard communications protocol TCP/IP which in-
cludes FTP and Telnet functions. The Ethernet com-

munications port 164 of the preferred embodimental-
lows the Workstation 150 to be connected to a network
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which may include, among other things, a document
scanner (not shown) and a print server (not shown).

The motherboard bus 166 also supports certain basic
1/0 peripherals. For example, the motherboard bus 166
is connected to a keyboard and floppy disk controller
180 which supports the keyboard 158 and the floppy
disk drive 160. The floppy disk drive 160, in one present
configuration, can access floppy disks which store up to
1.2 megabytes of data.

The fundamental processing components of the com-
puter 152 are a microprocessor 182 such as, for example,
an 80386 microprocessor manufactured by Intel, a math
coprocessor 184 such as, for example, a 80387 math
coprocessor also manufactured by Intel and a main
memory generally indicated at 186 comprising, for ex-
ample, 4 megabytes of random access memory (RAM).
The main memory 186is used to store certain computer
software including a Unix compatible operating system
188 such as, for example, SCO Xenix licensed by Santa
Cruz Operation of Santa Cruz, California, a subsidiary
of Microsoft Corporation, an image processing applica-
tion 190, a tile manager 192, and an image data cache
194. The image processing application 190 includes
editing functions such as zoom and pan.

Another presently preferred computer workstation
150 having somewhat different processing components
from those just described is available from Sun Mi-
crosystems, Inc. of Mountain View, California, under
the tradename “SPARCstation 1”. In such an embodi-

ment, the UNIX compatible operating system would be
licensed directly from Sun.

Although a representative workstation has been
shown and described, one skilled in the applicable tech-
nology will understand that many other computer and
workstation configurations are available to support the
present invention.

FIG.7 illustrates a representative configuration of
the image data cache 194 sometimeafter the tile man-
ager 192 (FIG.6) begins operation. A set of compressed
tiles 222 are kept at the low addresses of the image data
cache 194,and a set ofuncompressed (or expanded)tiles
224 at the high addresses of the image data cache 194.
The terms expanded or uncompressed are used inter-
changeably. In between the twosets oftiles 222, 224 is
a reserved area 226 (free cache memory). Asthe opera-
tion of the tile manager 192 continues, the image data
cache 194 becomes more unordered. As the cachere-

quirement for compressed or uncompressed tiles in-
creases, each set oftiles 222, 224 approach the reserve
area 226 from each end.In fact, the reserve area 226 can
become completely exhausted.

Since the memory managementschemesthat apply to
compressed data allocation are very different from that
of uncompressed data, it is desirable to keep the twosets
of tiles 222, 224 separate. Compressedtiles are variable
sized tiles (blocks of memory) 222a,5,c,d,e,fwhereas the
uncompressedtiles are all fixed sized tiles 224a,b,c,d and
therefore the locations of the fixed sized tiles 224 are

interchangeable. Linked lists of allocated memory are
kept sorted according to size and address for com-
pressed tiles. The numberof linked lists is a variable
numberbut presently there are about 64 different size
categories for compressed tiles and only one size cate-
gory for uncompressedtiles (for binary images).

To use the image data cache 194, the memory man-
agement functions begin by determining how muchfast
memory (RAM) and slow memory (disk or host mem-
ory) is available for image memory uses. When an image
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is loaded, the system allocates memory forimage infor-
mation and related tile directory structures. Cache man-
agement parameters are modified as necessary to bal-
ance the requirements for expandedtile and compressed
tile cache memory. The expanded tile cache memory
pool and the compressed tile cache memory pool allow
tiles from different images to intermingle. Expanded
and compressed tiles are kept in separate areas as much
as possible so that memory allocation can be optimized
for each of two different situations(i.e., fixed allocation
block size versus variable size). However, the storage
ranges of compressed and expandedtiles are allowed to
mingle so as.to maximize the flexibility of the cache
usage.

FIG.8 is a state diagram illustrating the flow ofimage
data ortiles between different storage states 250. A tile
can contain data in one or moreoffive states or forms

as illustrated by ovals in FIG. 8. The possible formsare:
uncompressed and resident in cache memory (state
252); compressed and resident in cache memory (state
256); uncompressed and resident on disk (state 268);
compressed and resident on disk (state 262); “not
loaded”but re-creatable using information from higher-
resolution imagetiles (state 272).

For most image access operations, the image data
must be uncompressed and resident in cache memory
252. However, that form consumes the most cache
memory ofany of the five forms. Therefore, a primary
function of the tile manager 192 is to transform image
tile data between state 252 and the other states which

consumeless (in the case of state 256) or no cache mem-
ory whatsoever(in the cases of states 268, 262 and 272).

Theeight transformation operations, shown in square
boxes in FIG. 8, constitute the main computational
operations associated with managing image memory.
The operation “load compressed tile image data from
disk into cache memory” 264 is typically the first opera-
tion performed on a tile because most pre-scanned im-
ages are stored in compressed form in disk files. (A
discussion of this “virtual loading” is provided herein-
below.) The load operation 264 is performed by the
Load CompFromDisk function which simply copies
data from the disk into cache memory. Thedisk loca-
tion and number of bytes to read is stored in thetile
header fields 368 and 376 shownin FIG.10.

The function LoadCompFromDiskis normally used
by the function LockCompHandle whenthe tile man-
ager 192 needs to access the compressed form of data
associated with a tile. LockCompHandleis analogous to
LockExpHandle, described in FIG. 28. The LockCom-
pHandle function is also included in source code form in
the Microfiche Appendix, in the file tilealloc.c.

Compressed data in cache 256 can be written back to
the disk by the operation 260. This is the reverse of the
LoadCompFromDisk function. The present embodi-
ment is capable of writing to disk in a wide variety of
file formats. One skilled in the art can easily create a
function to perform this task.

Compressed data in cache can be uncompressed(also
termed “expanded”) into another region of cache mem-
ory by the expand operation 258. The expand operation
258 is controlled by the “Expand Tile” function 440
whichis describedwith respect to FIG. 33. The method
of image compression varies according to image type
(e.g. binary, 8-bit color, 24-bit color). Commonly used
compression techniques include CCITT T.6 for binary
images and CCITT SGVIII (draft standard) for color
and. gray-scale images. The ExpandTile function 440
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selects the appropriate compression algorithm byrefer-
ring to field 306 ofthe Document Information Structure
shownin FIG.9.

Uncompressed data in cache 252 can be compressed
and written to a separate region of cache memory by
the compress operation 254. The compress operation
254 is controlled by the CompressTile function 450
described with respect to FIG. 38. Like ExpandTile,
the CompressTile function 450 uses an image compres-
sion algorithm appropriate to the image type.

Uncompressed data. on disk 268 can also be read di-
rectly into cache memory by the load operation 270.
The load operation 270 is performed by the LoadEx-
pFromDisk function, which appears in source code
form in the Microfiche Appendix, in file diskcach.c.
The LoadExpFromDisk function is analogous to Load-
CompFromDisk. The LoadExpFromDisk function re-
fers to the fields 362 and 374 of the tile header 350

shownin FIG.10, for the location and numberof bytes
of the expandedfile data on the disk.

Uncompressed data in cache 252 can be written back
to the disk by the save to disk operation 266. This opera- .
tion is analogousto the save to disk operation 260 which
operates on compressed data. The present embodiment
can write compressed or uncompressed tile data to disk
in a variety of formats. One skilled in the art can easily
implement an equivalent function.

Imagedata fortiles in the “not loaded” state 272 must
be constructed by resampling higher-resolution tiles.
(During normal operation, only lower-resolution tiles
can exist in this state—the full resolution subimagetiles
are always “loaded”.) The present embodiment pro-
vides two operations from the “not loaded”state 272 to
the “loaded”state 252, 256. Uncompressed higher-reso-
lution tile data is resampled to create uncompressed
data in cache 252 by the resample operation 274. Simi-
larly, in the resample operation 276, compressed data in
cache 256 can be created from compressed higher-reso-
lution tile data.

In both resampling operations, extensive advantageis
taken of the fact that the resolutions of adjacent subim-
ages in the subimagestack are related by a powerof2.
This greatly simplifies and speeds the resampling opera-
tion. Basic resampling techniques are well-known (See,
for example, A. Rosenfeld and A. C. Kab, Digital Pic-
ture Processing, Academic Press, 1976). The resampling
operation 274 and 276 are controlled by the function
LoadSubImTile 436 described with respect to FIG.31.

In summary, FIG. 8 showsthata great part ofthetile
manager’sutility derives from its ability to coordinate a
variety of forms of image data in the course of complex
image processing operations.

Generally, the way data starts out on the disk 162 is
by loading a tiled imagefile into an application 190 via
the tile manager 192. An image file, like a Tagged
Image File Format (TIFF) or CALStiled imagefile,
for example, can be loaded instantaneously, in a virtual
sense. In the tiled formats, there are tiled image data
that is stored in the image file and at the beginning of
the file there is a directory with entries that locate the
tiles (for example, the disk file version oftile 0 in subim-
age 0, (0,0), is located at one addressin the file and the
disk file version of tile 1, subimage 0 (0,1) is located at
another address in the file). When an image file is
loaded, the tile manager 192 gets the tile offsets and
stores them in the tile directory and does nothing else.
Hence, the imagefile is basically loaded without copy-
ing any data from the disk 162 into the image data cache
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194, and a directory is created that mapsthetiles in the
virtual image memory space onto the disk 162.

FIG.9Aillustrates a documentinformation structure

300. Each image, or document, in the system is associ-
ated with (and described by) a document information
structure (called “docinfo”, defined in FIG. 9). The
docinfo structure contains information about the image
as a whole, such as color and pixel organization, etc. It
also contains a list of subimages contained in the image.
Each subimage entry in the docinfo structure contains
information about that subimage, such as width and
height, etc. The intention is to make this data visible
only to cache management functions and low-level
access functions. The overall docinfo data structure 300

contains the following information:
302 Self-reference to document handle. Handle value

assigned to this document by the host procedure
which created the document. This value is unique
over the entire system.

304 “Overviews Invalid”flag. This flag is true if the
documentis in the middle of a write operation.

306 Cache image compression algorithm. Compres-
sion algorithm used by the memory manager for
this image.

308 Image color type. How the imageis displayed.
310 Bits per image pixel. Numberofbits per image

pixel. ©
312 Tile size information. Size of expanded tile in

pixels. The tiles are assumed to be square.
314 Number of subimages in doc. Numberof subim-

ages maintained in this document. The minimum
value is one (the full resolution subimage).

316 Inputfile info. Input raster file information.
318 Outputfile info. Output raster file information.
320 List of subimage headers. Array of pointers to

subimage headerstructures 321. Thefirst entry in
the array is always the full resolution image. Each
position thereafter corresponds to a 2X resolution
reduction from the previous subimage.

The subimage header structure 321 is illustrated in
FIG. 9B. Each subimage has its own entry with each
field as follows:

312 Pointer to tile headers.

314 Pointer to tile directory. Pointer to array of
pointers to tile header records. This two-dimen-
sional table provides an easy wayto accessindivid-
ual tile headers on a (row,col) basis.

326 Subimage width and height. The width (x extent)
and height (y extent) of the document measured in
pixels.

328 Numberoftile rows & cols in subimage. Number
of tile rows in the image and the numberoftile
columns(i.e., the numberoftiles needed to span the
height and width of the image).

330 Image stack index of this subimage. This is the
position of the subimage in the docinfo structure
subimagelist. It can also be used to determine the
factor by which the subimageresolution is reduced
relative to the full resolution subimage.

332 Pixel resolution of this subimage. Scan resolution
in pixels per millimeter.

FIG.10 illustrates the tile header 350. The tile man-

ager’s analog to the conventional address translation
table is the tile directory. The tile directory is a two-di-
mensional array of entries corresponding to the two-di-
mensional array oftiles that form the image. Each full
and reduced resolution image has its owntile directory.
Thetile directory record contains a list of pointers to
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lists of individual tile headers. Thelist in the tile direc-

tory record has one entry for each row oftiles. Each of
those entries points to a tile header record list with as
many elementsas tile columns. Thus, there is one tile
directory record per subimage and onetile header re-
cord per tile. The tile header record defines the current
state of the tile and contains information used by the
cache management functions. The tile header contains
the following information:

352 Pointer to document containing this tile. Pointer
to the document to whichthis tile belongs.

354 Index of subimage containing this tile. Index of
the subimage(i.e., image stack layer) that contains
this tile.

356 Row and column indices of tile. Tile row and

column position of this tile within the subimage.
358 Status information. Defines the current state of

the tile. This includes lock counts for expanded and
compressedtiles.

360 Preserve count. Value greater than zero means
the tile is desired for future operation, so thetile
should be preserved in cacheif possible.

362 Location of uncompressed image data in cache
memory. Location of uncompressed (expanded)
image data for this tile (if it exists). Status flag
“ExpCached”will be true to indicate that the data
is currently in expanded tile cache memory.

364 Location of compressed image data in cache
memory. Location of compressed image data for
this tile (if it exists). ‘Status flag ““CompCached”
will be true to indicate that the data is currently in
compressed tile cache memory.

366 Location of uncompressed image data on disk.
Location of uncompressed (expanded) image data
for this tile (if it exists). Status flag “ExpOnDisk”
will be true to indicate that the data is currently on
disk.

368 Location of compressed image data on disk. Lo-
cation of compressed image data for this tile (if it
exists). Status flag “CompOnDisk” will be true to
indicate that the data is currently on disk.

370 Link to next less recently used tile. Pointer to
next older (less recently used)tile, not necessarily a
tile in this image.

372 Link to next more recently used tile. Pointer to
next newer (more recently used) tile, not necessar-
ily a tile in this image.

374 Numberof bytes of expanded data in tile.
376 Numberof bytes of compressed data in tile.
FIG.11 illustrates a calling hierarchy 400 for the

constituent functions. Further discussions relating to
flow diagrams, herein, will include names which corre-
spond to source code modules written in the “C” pro-
gramming language. The object codeis presently gen-
erated from the source code using a “C” compiler li-
censed by Sun Microsystems, Inc. However, one skilled
in the technology will recognize that the steps of the
accompanying flow diagrams can be implemented by
using a numberof different compilers and/or program-
ming languages.

The top level in the program hierarchy is Main 402.
Main initiates the functions calls to the lower level

functions. Main embodies the top level control flow of
the present invention.

The first function called by Main is Initialize Cache
Manager 404 (InitCacheManager). InitCacheManager
allocates the RAM and disk swap space needed for a
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particular raster image. It must be called before at-
tempting to load any imagetiles into memory.

The next function Main maycall is Load Tiled Raster
Image 408 (LoadTIFF). LoadTIFF manages the load-
ing oftiled images. This is the process where an existing
image file on disk is mapped into memory.

Main will then call the function Begin Undoable
Raster Operation 410 (BeginUndoableRasOp). Begi-
nUndoableRasOp marks the beginning of a distinct,
“undoable” raster image operation. This function does
not save any region of image memory but only creates
a new entry on the undo stack. The current version of
the tiles in the affected region are saved by InitIma-
geAccess.

The following function called by Main is Create
Image Access Context 412 (InitImageAccess). InitIma-
geAccess prepares the tile cache managerfor upcoming
accesses to a particular region of the specified image.
This function creates a data structure called an “access

context” (defined in FIG. 16) that is used by the sequen-
tial access functions.

Main optionally calls the function Read Rows From
Region 414 (ReadRowToRow)next according to the
operation performed by the user. ReadRowToRow
causes one input/output buffer row orstrip to be read
and transformed from tiled image memoryas specified
in the associated InitImageAccesscall and the resulting
access context.

The next optional function called by Main is Write
Rows To Region 416 (WriteRowToRow), again ac-
cording to the operation performed by the user. Write-
RowToRow causes one input/output buffer row or
strip to be transformed and written to tiled image mem-
ory as specified in the associated InitImageAccesscall
and the resulting access context.

It should be understood that other access functions,
such as random pixel accesses, may optionally be called
by Main.

Main then calls the function Close Image Access
Context 418 (EndImageAccess). EndImageAccesster-
minates and discards an image access context. The
memory allocated for the access context structure is
freed: The tile manager is informed that the specified
region of image memoryis no longer needed by this
operator.

The next function, Undo Previous Raster Operations
420 (UndoPreviousRasOp), is optionally called by
Main. UndoPreviousRasOp restores the specified re-
gion to its original state using information from the
undostack.

The last function Main calls is Quit Cache Manager
422 (EndCacheManager). EndCacheManagerfrees the
RAMand disk swap space. This function basically re-
verses what InitCacheManager does.

The second level of functions on the calling hierar-
chy 400 is shown starting with Load TIFF Subimage
Tile Information into Tile Headers 424 (LoadTiff-
TilesStd) which is called by function LoadTIFF 408.
LoadTiffTilesStd manages the loading of TIFF images
with strip structure.

The LoadTiffTilesStd function 424 calls a function

Store Tile Information in Tile Headers 425 (Load-
SubImDiskCache). LoadSubImDiskCache loads the
tile directory of the specified subimage with informa-
tion about the location, size and format of individual
imagetiles contained in a disk-resident tiled imagefile.
It is the low-level interface for the “indirect file load”
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capability. The tile headers are assumed to be com-
pletely zeroed when this functionis called.

The InitImageAccess function 412 calls a function
Save Region For Undo 426 (SaveRegionForUndo).
SaveRegionForUndosaves the specified region on the
undostack.It is called from within InitlmageAccessif
the SaveForUndo flag is true. It can also be used for
low level operations that do not go through InitIma-
geAccess. SaveRegionForUndo can then be called mul-
tiple times for different documents and different regions
within a document so that arbitrarily complex editing
operations can be easily undone.

The ReadRowToRow function 414 calls a function

Lock Expanded Image Tile Group 428 (ExpTileLock).
ExpTileLock “locks” memory handles referring to
expanded imagetiles. (The notion of locking and un-
locking memory blocks is further discussed below with
reference to FIG.14.) It also updates the associated tile
header structure as appropriate for the operating sys-
tem.

The ReadRowToRowfunction 414 also calls a func-

tion Unlock Expanded Image Tile Group. 430 (Exp-
TileUnlock). ExpTileUniock unlocks memory handles
referring to expanded imagetiles. It also updates the
associated tile header structure as appropriate for the
operating system.

The function ExpTileUnlock 430 calls a function
Unlock Expanded Tile 432 (UnlockExpHandle). Un-
lockExpHandle unlocks an individual expanded tile
handle. The lock count is decremented as appropriate.
The tile is not actually swapped out of cache at this
point but it becomes a candidate for swapping.

The function ExpTileLock 428 calls a function Lock
ExpandedTile 434 (LockExpHandle). LockExpHandle
locks an individual expanded tile handle. The lock
count is incremented and the status flags are set as ap-
propriate.

The LockExpHandle function calls a function Create
Tile From Higher-Resolution Tiles 436 (LoadSubIm-
Tile). LoadSubImTile creates a valid expanded version
of the specified tile by scaling down from the next high-
er-resolution subimage. This function is called recur-
sively as necessary to get to a higher-resolution subim-
age where there is valid data. (Note: the tiles in the
full-resolution subimage are always valid and loaded
although not necessarily present in the cache memory.)

The function LockExpHandle 434 next calls a func-
tion Allocate Space for Uncompressed Version of Tile
438 (AllocExpHandle). AllocExpHandle allocates
space in cache memory for a single expandedtile.

The function LockExpHandle 434 also calls a func-
tion Create Uncompressed Version of Tile From Com-
pressed Version 440 (ExpandTile). ExpandTile uses a
tile that exists in compressed form but not expanded
form, allocates space for an expandedtile and decom-
presses the image data into that space.

The function LoadSubImTile 436 calls a function

Create Compressed Lower-Resolution Tile From Com-
pressed Higher-Resolution Tiles 442 (Comp-
CopyToOview). CompCopyToOview creates a valid
compressed versionofthe specifiedtile by scaling down
from compressed or expanded version of the given
higher-resolution subimage tiles. The function Load-
SubImTile 436 also calls a function Copy Uncom-
pressed High-Resolution Tiles to Uncompressed Low-
Resolution Tile 444 (CopyTileToOview).
CopyTileToOview updates the region of the next low-
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er-resolution overview corresponding to the specified
tile.

The Function CompCopyToOview 442 calls a func-
tion Collect Freeable Cache Memory 446 (CollectFre-
eCache). CollectFreeCache collects freed memory
states or enlarges the cachefile and adds the new mem-
ory capacity to the reserve list. This function is called
when the cache manager usage exceeds preset limits.
Therefore it makes sense to take time to free up as much
memory as is convenient at this opportunity.

The function CollectFreeCachecalls a function Free

Uncompressed Version of Tile 448 (FreeExpHandle).
FreeExpHandle frees space used for storage of ex-
panded imagetiles.

The function CollectFreeCache 446 alsocalls a func-

tion Create Compressed Version of Tile From Uncom-
pressed Version 450 (CompressTile). CompressTile
uses a tile that exists in expanded form but not com-
pressed form, allocates space for a compressedtile and
compresses the image data into that space.

FIG.12is the top-level control flow for the tile man-
ager 192 (also called “Main’’). The tile manager 192 can
be executed on a numberof operating systems or with-
out an operating system. However, the workstation 150
(FIG.6) preferably includes the Unix compatible oper-
ating system 188. Another preferred operating system is
Microsoft MS-DOSrunning with or without Microsoft
Windows3.0.

Movingfromastart state 470 to an initialization state

10

20

25

404, the tile manager 192 performsaninitialization of 30
the image data cache 194 to determine the available
memory space, or the amount of physical RAM and
disk space available for a cache “‘file”. At this point, the
cache appearsto the tile manager 192 as one contiguous
range of physical addresses in memory.If the tile cache
has already been initialized, this step is skipped. The
possibility of multiple image access contexts (discussed
below) allows multiple simultaneous requests.

Thetile manager 192 has another parameter whichis
called the fast memory portion of the image data cache
194. This parameteris particularly relevant when work-
ing on top of another virtual operating system such as
Unix. The fast memory limit specifies approximately
how much of the image cachefile is actually kept in
RAM memory at any moment by the native operating
system (e.g., Unix). The balance of data (the less re-
cently used portion) is likely to have been swapped out
to the disk. The tile manager attempts to limit the
amount of cache space used to store expandedtiles to
less than the fast memory limit, but the limit can be
exceeded if necessary with some degradation in perfor-
mance. However, the total cache size limit is never
exceeded. In operating systems without virtual memory
capabilities built in (e.g., MS-DOS), the fast memory
limit is the same as the total cachesize limit.

Then the tile manager 192 moves to a function 472
wherein the tile manager 192 loadsa tiled raster image
file. The function 472 (comprising the function 408, for
example) loads any type of imagefile, and preferably a
tiled image, into the memory address space configured
by the tile manager 192. If the image to be modified is
already loaded, this step is skipped. Then the tile man-
ager 192 movesto a function 410 wherethetile manager
192 marks the beginning of an undoable raster operation
if the tile manager 192 is writing to the image. The
function 410 is an optional state andit is only used if the
user wants to be able to undo the operation that modi-
fies the image.
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Any time that a region of the image needs to be ac-

cessed (for reading or writing) an image access context
is created. This image access context is used to define
the region for use by the tile manager. The creation is
performed automatically by the file manager without
effort by the user. For example, an image access context
is created when the user drawsa line in a region of the
image.

Referring back to FIG.12, the tile manager 192 tran-
sitions to a function 412 to create the image access con-
text. The image access context contains all of the state
information about the access operation. It is possible to
have multiple access contexts opened simultaneously
with each access having stored state information con-
tained in the access context. Thus, the tile manager 192
is re-entered and re-used by interleaved operations
without confusion due to the unique access contexts of
each image operation.

The tile manager 192 proceeds to a loop state 474
wherein the tile manager 192 begins a FOR-loopforall
of the rows or columnsin the region. The FOR-loopis
executed multiple times if the operation specified by the
user is a row or columnstrip oriented access. Strips are
composedofone or more rowsor one or more columns
of data. For each of the strips, the tile manager 192
reads or writes the rows or columnsof data in the strip
in a function 476. The function 476 actually comprises a
set of functions including ReadRowtoRow 414 (FIG.
11) and WriteRowtoRow 416.

Whenthe tile manager 192 has processed all the row
and columnsin the region, the tile manager 192 moves
to a function (EndImageAccess) 418 where the tile
manager 192 closes the image access context which
frees all of the temporary buffers that were allocated for
the image access context.

Thetile manager 192 transitions to an undo previous
raster operation function (UndoPreviousRasOp) 420.
This causes a modified image to revert to its previous
state. The image tiles that had been modified are re-
placed by their original versions. This again is an op-
tional step that the user initiates, if a mistake is made.

If the raster image is required for future operations,
the tile manager movesto state 422. Otherwise, moving
to a state 478, the tile manager 192 unloadsthe raster
image. Unloading the raster image simply frees the
memory that had been associated with that particular
raster image. This is not a save raster image operation
which would be slightly more complicated, but a save
operation could be executed here. Of course, the image
processing application 190 supports loading and saving
raster images.

Ifmore operations will be performedthe tile manager
movesto state 480. Otherwise, from state 478, tile man-
ager 192 movesto a quit cache managerfunction (End-
CacheManager) 422. Herein, the tile manager 192 frees
the image data cache 194 (FIG.6). Presumably, all of
the images have been unloadedas in the state 478 so that
this operation frees the image data cache memory and
prepares the system for shut down.Lastly, the tile man-
ager 192 terminates at an end state 480.

FIG.13 illustrates the initializing of the cache man-
ager function 404. The function 404 is entered by the
task manager 192 at a state 488. Then, movingto a state
490, the task manager 192 initializes the cache usage
variables. Of course, in the beginning,all of the cache
spaceis available for use, in what is called the free-mem-
ory reserve list. That is, no cache memoryis being used
for expanded or compressed image data.
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At state 492, the task manager 192 allocates tile cache
memory by requesting a portion of the address space
fromthe memory space owned by the operating system.
In a virtual memory system such as Unix, the request is
handled by memory mappinga large file. The operating
system does not allocate any memory,butit reserves an
address space. Moving to a state 494, the task manager
192 allocates a common blank tile. When dealing with
binary images, space is reserved for one blank tile,
which is kept aroundat all times for common usage by
any numberof operations, or access contexts.

At state 496 a compression buffer is allocated to be
used as a scratch buffer when compressing data since,in
general, the size of the resulting compressed data is
unknown before a tile of image data is compressed.
Hence, compressed data blocks will be variable sized.
The tile manager 192 then exits the InitCacheManager
function 404 at an end state 498.

FIG.14 illustrates a general memory state diagram
with reference to a block of memory being “locked” or
“unlocked”. In the diagram, ovals are states and rectan-
gular blocks are operations.

The state diagram is entered at a start state 502 by a
new memory block. There are three basics states.
“FREE”is a state 504 where there is no memoryallo-
cated. Actually, a block of memoryis considered freeif
it is in one of the memoryfreelists,i.e., the “reserve free
list”, the “compressed free list” or the “expanded tile
free list”. It should be understood that the free list for

the compressed tiles are actually composed of many
lists based. on the varying sizes of memory blocks.

Within a tile header (FIG. 10) the tile manager 192
controls a memory handle whichis a structure that has
a pointer to (or location of) image data in the cache and
a lock count (not shown) for both compressed and ex-
panded versionsofa tile.

A memory block transitions from the free state to
unlocked, but allocated is through a state 506 for allo-
cating the memory. handle, which moves the block out
of the free list and into use by a tile. As opposed to free,
unlocked means that the memory block containsvalid
data andthatit is associated with a tile but not currently
being accessed. That is, the block is not being read or
written at the time.

Now,thetile is unlocked at.a state 508 but it contains
valid data. Therefore, the next step is to lock.the block,
or lock the memory handle at a state 512 and then it
becomes a locked memorystate at a state 514. That
means it contains valid data and it is currently in use.
The block can be locked more than once, each time just
incrementing the lock count.

The lock count may be incremented multiple times,
for example, when two access contexts (operations) are
accessing the same region of memory. Hence, both
contexts lock the block of memory ortile by increment-
ing the lock count. Whenthefirst access context is done
it decrements the lock count. But the tile manager 192
knowsthat thattile is. still in use by an access because
the locked countis still non-zero.

The inverse operation is to unlock the handle at a
state 516 and as long as the lock count is not decre-
mented to zero at state 518, it stays locked. Once the
lock count is decremented to zero, it becomes unlocked
again at the state 508.

An unlockedtile is fair game for the tile manager 192
when the memory manager needsto find some space to
lock a newtile. Therefore, when the tile manager 192is

Page 104 of 448

45

55

65

18

looking for space, unlocked memory blocks may be
freed and returned to the free memorylists.

The wayto go from the unlocked state 508 to the free
state 504 is by freeing the handle in which case the
memory block is moved onto the free memorylist.

Referring now to FIG. 15, the flow diagram for the
InitImageAccess function 412 shows the operation
wherethe tile manager 192 creates the image access
context starting at a state 530. At a state §32 the input
parameters are validated. If there is an error with the
input parameters, the function ends immediately at an
end state 534.

Input parameters include a document handleindicat-
ing which image that the user wants to read or write
from. Thus, the document handle must be validated.
Another parameter is whether the user wants to read or
write to the image. A transformation matrix, also input,
basically directs how to scale, rotate, shear, etc., the
imagedata.

If the input parametersare valid, the tile manager 192
locks the documenthandle at a state 536. The document

handle locks and unlocks just like other structures and
resourcesin the tile managerand it prevents one user of
a particular document or image from modifying or
deleting that image while another operation or another
access contextis still using that document.

Then, at a state 538, the tile manager 192 tests
whether a non-orthogonal rotation has been specified.
For example, a rotation of 30° causes the tile manager
192 go into a special operationthatinitializes the access
with rotation. That also creates an access context but

after a more involved process. Then the tile manager
192 ends the function 412 at a state 534 with a valid
access context for rotations.

If an orthogonal rotation is specified then the tile
manager 192, allocates a conventional access context at
a state 542. Then the tile manager 192 continues to a
decision state 544 wherein the subimageselection crite-
rion is specified. For instance, the user may request the
“Jow resolution” option which selects the lowest reso-
lution subimage in the document’s imagestack. (In the
context of an imageeditor, this may be the best solution
during zooming or panning.) The user mayalso specify
“most available”’—i.e.. whatever subimage has tiles
currently in cache memory,regardless of the resolution.
In either case, the tile manager 192 proceedsto a state
546 to select the reduced resolution subimage that is
appropriate to that particular choice, i.e., either the one
that has the resolution just greater than what was re-
quested or a subimage whosetiles covering the access
region are currently in cache. Now,at a state 548, the
tile manager 192 adjusts the transformation matrix so as
to. now refer to the reduced resolution subimage rather
than the full resolution subimage by adjusting scale
factors.

Alternatively, if the state 544 determines that the full
resolution subimageis selected then the transformation
matrix is unchanged. Proceeding to a state 552,the pixel
and tile limits of the affected image region are calcu-
lated. Knowingthese limits, in a state 554, the tile man-
ager 192 creates a temporary directory for the tiles in
that region. This directory is a two-dimensional array
that referencesthe tiles that contains the affected pixels.
Later on the tile manager 192 refers to the region tile
directory becauseit is specific to tiles that are inside the
affected region.

Thetile manager 192 theninitializes the image scaling
functions in a state 556. Such scaling functions presently
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used are the subject of applicant’s concurrent applica-
tion entitled “Process for High Speed Rescaling of
Binary Images” (U.S. Ser. No. 08/014,085,filed Feb. 4,
1993, which is a continuation of Ser. No. 07/949,761
filed Sep. 23,1992, now abandoned,which is a continua-
tion of Ser. No. 07/693,010 filed Apr. 30, 1991 now
abandoned.

Movingon,the tile manager 192 tests whether polyg-
onal clipping is required at a state 558. For example, a
request may be madeto only read from within a specific
polygonal region. If that is the case, the tile manager
192 initializes the polygonal region clipping functions in
the tile manager 192 by passing in the boundary lists.
The polygonal clipping function translates the bound-
ary lists into edge lists that are used to very efficiently
tead out the rows or columnsofdata.

For example, suppose a “flood” request is made to
turn all of the pixels black within an octagonal region.
One way to accomplish the operation is to specify the
points of the corners of the octagon in image coordi-
nates and pass that in with the initialization of access
context request, which would pass those vertices of the
polygon into the polygonal clipping function set up
function.

Thenthe tile manager 192 comesto a state 562, where
the tile manager 192 allocates buffers for scaling, if
necessary. Thisis the situation where intermediate cop-
ies of the rows or columns of data may need to be kept
during the process of scaling. Then thetile manager 192
tests whether the user specified that the region needed
to be saved for undoing, at a decision state 564.

An important feature of the present invention is an
“undo” operation that is integrated with the image
memory management so that only compressed tiles
need to be saved after an undoable edit operation. In
this way, a user can easily and quickly retract an edit
operation that is no longer desired. For example, in
mapping applications, e.g., USGS Quadrangle maps,
the impression of a very large mapis desired, but it is
really composed of smaller map quadrants that were
separately scanned, trimmed, adjusted and fit together.
The smaller maps can be visually and logically joined
into a single, large image. Using the present invention, a
user can add a feature, such as a new sub-division, town,
or road, that crosses a map boundary, specifying that
the feature is undoable. Later, the user can remove the
feature modification to the image by specifying the
undo operation.

Nowata decision state 568, the question is whether
to update the subimages during the operation.If this is
a write operation the tile manager 192 always writes
into the full resolution subimage and the changes
“trickle down” into the low resolution subimages. But
the tile manager 192 has an option as to whether the
lower-resolution tiles are updated during the modifica-
tion operation or later when the tiles are requested for
viewing operations. There are advantages in doing
them both ways.

For example, if the affected regionis small, it is more
efficient to update the subimages while progressing
through the operation. In this mode, when thetile is
unlocked, the manager 192 immediately copies the data
downinto the next lower subimagetile but only one of
the cornersofthetile is affected. Thus, only portions of
the low resolution subimagetiles need to be modified.

If, however, the subimages are not updated during
the operation, then as soon as the image access context
is created all of the subimagetiles that overlap the af-
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fected region are invalidated (they become “not
loaded”). Hence, when the memory manager goes to
access them again at somelater time, it has to recon-
struct them from the higher-resolution tiles. The advan-
tage of that is that the memory requirement at any one
momentis half of that of if the tile manager 192 was
updating all of the tiles simultaneously. In this way, the
tile manager 192 sets a flag at a state 570.

In state 572 the tile manager 192 “preserves” the
affected tiles in the affected subimages. Again,it relates
to whether the tile manager 192 is updating subimages
or not. If the tile manager 192 is reading, then it pre-
serves only thetiles in the region of the subimage that
will be accessed.

Theability to “preserve”, or preferentially retain tiles
that will be accessed in the course ofthe operation,is an
importantfeature of the present invention that can yield
significantly higher performance in certain situations
where memory capacity limitations are encountered.
Whena tile is “preserved” for a particular access opera-
tion, it’s preserve count 360 is incremented. The cache
managertreats tiles with non-zero preserve countsdif-
ferently from tiles with zero preserve count. The cache
managerwill discard unlocked unpreservedtiles before
discarding older preserved tiles. (The cache manager
normally discardsolderorless recently used tiles before
discarding newer or morerecently used tiles.)

Then, within the creation of the access context, the
tile manager 192 actually locks down the first row or
columnoftiles in the region to establish the cache mem-
ory requirement for this operation, at a state 574. If this
succeeds, then the caller is assured that there will be
sufficient cache space for the entire operation.

The tile manager 192 can perform row or column
accesses. However, the following discussion only refers
to a row access.

Then,at a decision state 576, if the tile manager 192
cannotsatisfy the request to lock downthat first row of
tiles, the function 412 terminates at the end state 578.
Otherwise, at state 580 the tile manager 192initializes
the row access functions.

Now, once the tile manager 192 has initialized the
row access function in state 580 the tile manager 192
invalidates the affected subimagetiles if the tile man-
ager 192 is writing to the full resolution subimage at a
State 582. Finally, in a state 584 the tile manager 192
returns the handle or a pointer to this access context to
the user. From then onthe user just uses this pointer to
the access context and pointers to input and output
buffers to get the next row or column ofdata.

FIG. 16 illustrates the access context structure 600.

Thestructure 600 operates on a high level to hide the
low level operation from the user and contains book-
keeping information along with some memory manage-
ment information. The access context 600 contains the

following information:
602 Pointer to affected doc. Pointer to the document

being accessed.
604 “Subimage Choice” option value. Specifies how

to choose which of the subimages will be read from
or written to.

606 Index of affected subimage. Index of the specific
subimagedirectly affected by this access context.

608 Access quantum. Specifies “granularity” of
image access.

610 Read/write option. Specifies what type of image
Memory accesses to prepare for (e.g., read or
write).
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612 Basic orthogonal! rotation value. Specifies the
image rotation in terms of how the bits in each
buffer row are read from or written to the image
(e.g., write buffer row to image column with in-
creasing “‘y” coordinate).

614 Pixel combination operation. Specifies the pixel
operation performed when combining the buffer
contents and image contents. The results of the
operation are stored in the output buffer when

_Yeading. The results go into image memory when
writing.

616 Scaler type operation. Specifies the type of scaler
preferred. In other embodiments, this may include
fast low-accuracy scaling and line width-preserv-
ing scaling.

618 “Update overviews” flag. True flag indicates
overview subimages should be updated in the
course of this modification of the full resolution

image. This causes the overviews to be correct
when the access is complete.

620 I/O buffer width & height. Width (ie., row
length), total number of rows to process and pitch
in pixels of the input/output bitmap.

622 I/O buffer pitch (bytes/row). Pitch of the input-
/output buffer in bytes used for multi-row accesses.
The input/output buffer is assumed to be a contigu-
ous memory bitmap at least as large as the access
quanta. It is always read or written in the natural
order (by rows, low address to high). Flipping and
rotation is always done on the image memoryside.

624 1/0 buffer bit offset to start of run. Indicates

where the buffer’s x=0 pixel lies within the first
long word ofthe buffer’s storage space. It must be
between 0 and 31-inclusive. This parameter allows
the caller to match up with arbitrary bit align-
ments.

626 Rows perstrip (for AQ_STRIP access quan-
tum). When operating in the AQ_STRIP mode,
this specifies the maximum number of rows per
input/outputstrip. Fewer rows maybe written into
the last strip if the end of the access region is hit
before the strip is filled.

628, Numberof I/O buffer rows yet to be processed.
This variable is used in the access routines to keep
track of the number of input/output rows remain-
ing for the access operation.

630 Pointer to access function used in ‘“Seq-
BuflmageAccess”. Pointer to the image access
function thatis tailored to the specific access mode
requested.

632 Stepping directions for image row and column
indices. The stepping increment each timethein-
put/output buffer is advanced one row and one
pixel. The allowed values are +1, 0, and —1.

634 Pointer to polygon clipping information. Refers
to an edgetable structure for controlling polygonal
boundary clipping.

636 Pointer to raster scaling information. Tile level
access information used by lower level modules in
the course of the operation.

638 Pointer to uncompressed data in currently locked
tiles. Pointer to an array of pointers directly into
expandedtile image data. This list is used to accel-
erate sequential access into image memory. As
each newtile row or column is encountered in a

sequential access, this array is set to point directly
into the affected tiles, which have been brought
into cache memory and locked down. In other
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embodiments this could also be used to point to
compressedtiles.

640 Pointer to region tile directory. Pointer to a 2-
dimensional array of pointers to the tiles in the
affected region of the subimage.

642 Next image row & column to be accessed. The
index of the next image row and column to be
accessed in sequential row and column operations.

644 Terminal row & column of access region. Stop-
ping values for sequential row and column opera-
tions.

646 Unclipped extent of access region. Defines the
imageregion that will be accessed over the course
of the operation.

648 Clipped extent of access region. Defines the por-
tion of the requestedimage region that actually
falls within the boundaries of the image. Pixels
outside of this rectangle are treated as background
pixels.

650 Clipped image buffer bit offset and length. These
values specify where, in the intermediate image
row or column buffer, the first bit from the clipped
image region is located and how manybits are to be
read from or written to tiled image memory.

652 Numberof tile rows & cols in access region.
Numberoftile columns and rows in the affected

region.
654 Row & columnofcurrently locked tiles. Column

and/or row index of the currently locked tile or
tiles.

656 Image row & col at origin offirst tile in access
region. Pixel coordinates of the upper-left pixel in
the upper-left tile of the affected region.

658 Numberof 1/O buffer rows held over for next

strip. Numberofrowsofoutput data that did notfit
into the previous row and must be returned in the
next and subsequent rows when expanding while
reading image data.

660 Pointer to imagetiling/untiling buffer. Points to
a temporary buffer to hold data extracted from
tiled memoryprior to scaling when reading from
image memory.

662 Numberof bytesin tiling/untiling buffer. Size of
buffer in bytes.

664 Bit offset for tiling/untiling buffer. Bit offset to
the first valid pixel in tiling/untiling buffer.

666 Access transformation matrix. The transforma-

tion matrix mapping input/output buffer pixels
onto the pixels of this subimage.

FIG. 17 illustrates the flow diagram for the “Save
Region for Undo” function 426 as referenced in FIG.
15. The tile manager 192 starts at a state 680, moves to
682 where the tile manager 192 locks the document
handle of the affected document that contains the re-

gion to save for undo. The tile manager 192 can save
multiple regions from multiple documents sequentially
and then undo them all in one operation later. Thus, the
application programmeris allowed to easily undo multi-
ple-region operations with a single undo call at alater
point.

Movingto a state 684, the tile manager 192 clips the
modified region to the image boundaries since there is
no information to save outside of the image. Then the
tile manager 192 movesto a decision state 686 wherein
the tile manager 192 tests whether the affected region
overlaps the image.If thereis no overlap,thatis to say,
there is no image data to save, thenthe tile manager 192
movesto a state 688 wherethe tile manager 192 unlocks
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the documenthandle and terminates the function 426 at
an end state 690.

If, however at state 686, the modified region does
overlap the image,the tile manager 192 movestoastate
692 wherein the tile manager 192 allocate memory for
an “undo region header”. The undo region header is
similar to a document header, but reduced compara-
tively in the amount of data conveyed therein. The
undo region header will be associated with tile header
information, etc.

Thetile manager 192 then moves to a state 694 where
the tile manager 192 allocates memoryfor “undo region
tile headers”. These tile headers will be used to store

copiesof the original versionsof thetiles in the affected
region. The tile manager 192 then proceedsto a state
696 wherein the tile manager 192 makes an “undotile
directory”.

Then the tile manager 192 movesto a loop state 698
wherethe tile manager 192 loopsfor each tile row in the
region. Thetile manager 192 then transitions to a loop
state 700 wherein the tile manager 192 loops again for
each tile column in the region (Thus, there is a two-di-
mensional loop.)

The tile manager 192 movesfrom the state 700 to a
decision state 702 where the tile manager 192 checks to
see if that particular tile in the documentis loaded in the
image cache memory.If thetile is not loaded, the tile
manager 192 skips to the nexttile in the region by re-
turning to the loop state 700. OtherWise, if the tile is
loaded,the tile manager 192 marks the undo copyofthe
tile as loaded in a state 704.

Note that there are two tiles. One is the original ver-
sion ofthetile thatis still associated with the document

and the secondis the copy that the tile manager 192is
going to make and associate with the undo region
header.

At a decision state 706, a test determines whether the
documenttile is blank. Ifthe tile is blank (i.e., all back-
ground color), then the tile manager 192 moves to a
state 708 and simply marks the undotile as “blank” and
returns to the FOR-loop at 700. If the documenttile is
not blank, then thetile manager 192 movesto a state 710
and the tile manager 192 marks the undotile as “not
blank” and movesto a state 712 Wherein the tile man-

ager 192 tests whether the documenttile has a valid
copy of compressed data on the disk.

If a valid copy of compressed data does reside on
disk, the tile manager 192 moves to a state 714 and
simply copies the compressedtile disk location and size
information from the documenttile header to the undo

tile header. Notethatit is possible for a particulartile to
have multiple representations of the same data. Thatis,
a compressed version and an expanded version of the
tile may exist in cache simultaneously. And a tile may
have a compressed version in cache as well as on the
disk. For undo,the strategy is to store the most compact
version possible. The most compact version with regard
to cache memory usageis to have a copy of the com-
pressed tile on the disk.

If there is no compressed copy ofthe tile on the disk,
the tile manager 192 proceeds to a decision state 716
wherein the tile manager 192 determines whether an
uncompressed copy of the documenttile resides on the
disk. If the test succeeds, the tile manager 192 enters a
state 718 and copies the uncompressedtile disk location
and size information from the documenttile to the undo

tile and then returns to the inner FOR-loop at a loop
state 700.
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If, at state 716, there is no uncompressedtile informa-

tion on the disk, the tile manager 192 continues execu-
tion to a state 720 in FIG. 17B wherein the tile manager
192 locks the compressed version of the documenttile.
This locking of the compressed version of the document
tile may cause an expanded version of the documenttile
to be compressed and a compressed version created.
Therefore, there is a possibility of an error and that is
checked at the decision state 722.

If there is an error than the tile manager 192 unlocks
the document handle at a state 724 and terminates with
an error condition at the end state 726. If there was no

error in locking the compressed version ofthetile then
the tile manager 192 moves from the state 722 to a state
728 wherein the tile manager 192 allocates and locks
down cache memory for a copy of the compressed data
to be associated with the undo header. There is another

error possibility at this point and the tile manager 192
checks for an error ata decision state 730. If there is an

error then the tile manager 192 returnsto a state 724 and
thereafter terminates the function 426.

If there was no error in locking cache memoryat the
state 730, the tile manager 192 movesto a state 732 and
copies the compressed data from the documenttile to
the undotile. The tile manager 192 actually copies the
data that is stored within the tile—i.e., the compressed
image data is copied from the documentversion to the
undo version. Then the tile manager 192 movesto a
state 734 and unlocks the compressed version of the
documenttile. Now,at a state 736, the tile manager 192
unlocks the compressed version of the undotile and the
tile manager 192 returns to the inner FOR-loopatstate
700 on FIG. 17A wherethe tile manager 192 loops back
to continue the loop for all of the tiles in the affected
region.

Whenthetile manager 192is done with all ofthetiles
in the affected region, the tile manager 192 movesto a
state 738 wherethetile manager 192 links the new undo
headerinto the undo region list. Thus, multiple regions
can be saved in the undolist and then in one operation,
by calling undo previous raster operation, all of the
operations that had been accumulated, can be undone.
Thenthe tile manager 192 movesto a state 742 wherein
the tile manager 192 unlocks the document handle and
terminates the function 426 normally.

FIG. 18 showsthe loadtile to raster image function
(LoadTiff). FIG. 18 is a flow diagram for the part of
LoadTiff that loads tiled images only. In reference to
FIG. 18, the overall process may be understood
whereby an existing file on the disk,i.e., an imagefile on
disk, is mapped into memory. As described below, the
overall process permits loading large images in a short
time period relative to how long it would take to actu-
ally copy all of the image data into the computer’s mem-
ory. In accordance with the present invention, the pro-
cess shown in FIG. 18 is called the indirect loading
capability. As shown in FIG. 18, the tile manager 192
begins the LoadTIFF function 408 at a start state 750
and moves to a state 752 where the tile manager 192
openstheinputfile that is on the disk. If there is an error
onthe disk, the tile manager 192 prints an error message
at a state 754 and terminates at an end state 756. If no

error exists, then the tile manager 192 movesto a state
758 and checks for the TIFF headerstructure that iden-

tifies that the inputfile is in fact a TIFF file. While the
disclosure below discusses a TIFFfile,it is to be under-
stood that the process shown in FIG. 18 may beper-
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formed on all types of tiled files, such as a MIL-R-
28002A Type II file or an IBM IOCAtiledfile.

Still referring to FIG. 18, if the tile manager 192 finds
something other than TIFF header structure at state
758, the tile manager 192 moves to state 754 to indicate
an error, and then exits at the end state 756. If thetile
manager 192 finds a TIFF header structure while at
state 758, the tile manager 192 moveto a state 760,
wherein the tile manager 192 counts the number of
subimages in the TIFF file, one or more of which may
exist in a TIFF file.

Next, the tile manager 192 moves to a state 762 and
reads the full resolution subimage information which
constitutes the basic information about the image, e.g.,
the image width and height, the size of the tiles, the
compression format that is used, and the resolution. If
the basic image information is not present and in proper
form, the tile manager 192 moves to the state 754 to
indicate an error. On the other hand,if no erroris indi-
cated at state 762, the tile manager 192 movesto state
764, wherein the tile manager 192 creates a skeleton
documentand locks that document. The skeleton docu-

ment at this point contains no cache memory but only
tile directory and tile headers that represent in a virtual
sense thetiles that compose the image.

Thetile manager 192 next movesto-a state 766 where
the TIFF full resolution subimage tile information is
loaded into the tile headers for the full resolution subim-

age, as morefully disclosed below in reference to FIG.
19. Next, the tile manager 192 moves to a loop state 768
where there is a loop for each of the remaining lower
resolution subimages. While in this loop, the tile man-
ager 192 accesses a decision state 770, wherein thetile
manager 192 determines whether

feliraV Q)

where

fr is the full resolution subimage resolution in pixels
per inch; and

ir is the particular low resolution subimageresolution
in pixels per inch.

If the ratio offr to Ir is a power of two, then a success-
ful test is indicated, and the tile manager 192 moves to
a function 424 and loads the TIFF subimagetile infor-
mationinto thetile headers for that particular subimage
level. On the other hand, if the ratio offr to Ir is not a
poweroftwo, as indicated at the decision state 770, then
the tile manager 192 ignores the particular subimage
under test and returns to the state 768 until all of the

subimages in thefile are processed. Whenall subimages
have been processed, the tile manager 192 moves to a
state 772 and unlocks the document handle of the newly
created document and terminates normally at an end
state 756.

Nowreferring to FIG. 19, the function 424 whereby
the tile manager 192 loads the TIFF subimagetile infor-
mation into tile headers is shown. Moreparticularly, the
tile manager 192 beginsat a start state 780 and movesto
a state 782 wherein the tile manager 192 reads the num-
ber of tiles in the subimage. Then the tile manager 192
moves to a state 784 wherein the tile manager 192 allo-
cates temporary buffers for the tile modeoffset and byte
countlists. These three lists have one entry eachpertile
in the subimage.If the tile manager 192 cannot properly
allocate the temporary buffers, then the tile manager
192 exits with an.error condition at an end state 786.

Upon successful allocation of the buffers, the tile
manager 192 moves to a state 788 wherethe tile man-
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ager 192 reads the tile offset and byte count information
from the disk file into the allocated buffers. In the TIFF

file standard,all tiles are stored in the same mode(e.g.,
compressed). However, othertiled file formats (e.g.,
MIL-R-28002A Type II) specify the storage mode for
eachtile. The tile mode simply states whether a particu-
lar tile is stored in compressed form, in uncompressed
form, or whether thetile is all foreground or back-
ground color. The tile manager 192 next moves to a
state 790 where the tile manager 192 fills in the tile
storage modelist. At state 790, the tile manager 192
synthesizes the tile mode information that the TIFF file
does not contain itself. Then the tile manager 192 moves
to the function 425 wherein the tile manager 192 stores
the information in the subimagetile headers (FIG. 10),
and terminates at an end state 786.

Now referring to FIG. 20, the function 425 whereby
the tile manager 192 stores file information in tile head-
ers is shown. Thetile manager 192 begins this process at
a start state 800 and moves to a state 802 wherethetile

manager 192 locks the document handle of the docu-
ment for which the tile manager 192 is loading the
subimage for. This function is performed once per
subimage in the file and there may be multiple subim-
ages in the file. Consequently, the locking of the docu-
ment handle function can be performed several times in
the process of loading a single document.

As shown in FIG.20, in the event that an error oc-
curs in locking the document handle the tile manager
192 terminates at an end state 804. On the other hand,if
the tile manager 192 successfully locks the document
handleat state 802, the tile manager 192 movesto a state
806 wherethe tile manager 192 determines whether the
numberoftiles in the file matches the numberoftiles

expected for the particular subimage in the particular
file or document. If a mismatch exists between the ac-

tual and expected numberoftiles, the tile manager 192
movesto a state 808 to print an error message and then
terminatesat the end state 804. On the other hand,in the
event that the numberofactual tiles matches the num-

ber of expected tiles, the tile manager 192 moves to a
loop state 810 wherethe tile manager 192 entersthefirst
part of a FOR-loop for each tile row. Still referring to
FIG.20, the tile manager 192 moves from state 810 to
state 812 for each tile column. Accordingly, it will be
understood that the tile manager 192 is processing a
two-dimensional array at the states 810, 812.

In accordance with the present invention, the tile
manager 192 processes,at states 810, 812,all of thetiles
required to coverthe particular subimage. Next, thetile
manager 192 moves to a decision state 814 wherein the
tile manager checks the value in the tile mode entry to
determine whetherthetile data is compressed.If the tile
data is compressed, the tile manager 192 moves to a
state 816 and stores the file offset and byte count in the
compressedtile handle. The compressed tile handleis a
part of the tile header structure, andthefile offset is the
location of the compressed data for the particular tile
within the file as measured by a byte offset from the
start ofthefile. The byte count represents the number of
bytes of compressed data associated with the particular
-tile starting at the offset that is provided at thetile.
From state 816, the tile manager moves to state 828,
wherein the tile managersets a flag to indicate that the
particulartile is not blank.

In the event that the tile manager determines at state
814thatthe tile data is not compressed,the tile manager
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192 moves to a decision state 818 where the tile man-

ager 192 checksto see if the data is uncompressed. If the
data is uncompressed on thedisk, the tile manager 192
stores the file offset byte count information in the un-
compressedtile handle in-state 820. From state 818, the
tile manager movesto state 828, wherein the tile man-
ager sets a flag to indicate that the particular tile is not
blank.

If the tile manager 192 determines at state 818 that the
tile data is not uncompressed, then the tile manager 192
moves to state 822, wherein the tile manager 192 checks
to see whetherthetile is all foreground at a state 822.
Forexample, in a black and white drawing engineering
document, foreground coloris black, so the tile man-
ager 192 treats a foregroundas a blacktile. If thetile is
determined to be a foregroundtile, the tile manager 192
proceeds to state 824, wherein the tile manager 192
creates an all foregroundtile, and then sets the flag as
not blank at state 828. As an example,if the image being
processed is a color image, the tile manager 192 could
fill the tile with the foreground color at the state 824.

On the other hand,ifthetile is not all foreground, the
tile manager proceedsto state 826 to determine whether
the tile is all background. As discussed above, binary
images usually have background pixels which are white
or zero value. If a particulartile is blank, the tile man-
ager 192 movesto a state 828 where the tile manager
192 sets the blank flag to indicate that the tile is indeed
a blank tile. If at the state 826 the tile manager 192
determines that the tile is not all background,thetile
manager 192 terminates with an error at an end state
830. In other words, having determinedat state 822 that
the particular tile was not all foreground, the only possi-
bility left at state 826 is that the tile is all background.
Consequently, a determination at state 826 that the tile
is not all background indicatesan error.

From state 828, the tile manager 192 movestoastate
832 and sets the loaded flag to true indicating that a
valid image information set has been associated with the
particulartile. The tile manager 192 completes the loop
described above for each tile. After having processed
each tile in the particular image, the tile manager 192
exits the two FOR-loops and movesto a state 834 where
the tile manager 192 unlocks the document handle and
then terminates normally at the end state 830.

Nowreferring to FIG.21, the tile manager 192 per-
forms a function which for purposes of the present
invention will be termed “Undoable Raster Operation”.
The function shown in FIG.21 is performedbythetile
master 192 in the function “Begin Undoable Ras-Op”,
andis a relatively simple function, the purpose of which
is to clear the undo regionlist. Moreparticularly, in the
process shownin FIG, 21,the tile manager 192 frees al!
of the undo regions associated with the previous opera-
tion to prepare for a new undo operation. Indeed, the
present invention could be configured to have multiple
level undo, i.e., the system of the present invention
could undo twoor three or more operations going into
the past and also to be able to.redo all of those opera-
tions at the user’s choice. For example, the last three
operations could be undoneandthenthe oldest of those
operations redone.

In specific reference to FIG.21, the tile manager 192
begins at a start state 840 and then proceeds to loopstate
842, in whichthetile manager 192 executes a FOR-loop
for each undo region in the currentlist. The tile man-
ager 192 loops to a state 844 wherethe tile manager 192
frees all of the memory associated with that undo re-

Page 109 of 448

20

25

30

35

40

45

50

55

65

28
gion. This may include freeing compressed data that is
stored in cache or expanded data thatis stored in cache
and associated with the undo region. Whenthetile
manager 192 finishes all of the regions,the tile manager
192 terminates at an end state 846.

Nowreferring to FIGS. 22A and 22B,there is shown
the control flow for the ReadRowToRowfunction 414

which produces one or more rowsof scaled image data
each time it is performed. It is one of the basic image
access functions. It should be understood that thetile

manager 192 can also read columnsofan image,etc., so
as to produce a rotated output.

Thetile manager 192 enters the function 414 by mov-
ing to a start state 850 and proceeds to a decision state
852 where the tile manager 192 checks for a region
overrun. In other words, when the access context is
created, the region thatis going to be read in the course
of the overall operation is specified, and in the event
that the read row to row subfunction is accessed too

many times, the region will be overrun. Any such over-
run is detected by the tile manager 192 at state 852 and
reported at state 854. In the event of an overrun,thetile
manager 192 terminates at an end state 856.

If, on the other hand, no region overrun has oc-
curred, the tile manager 192 moves to a decision state
858 where the tile manager 192 checks to see whether
old results are carried over to the new strip. Such a
carryover could occur when, for example, raster data is
being enlarged by expanding oneor morelines from the
image. For example, whenraster data is being enlarged
by 4x, each line of input generates four (4) lines of
output. Accordingly, three (3) output rows could be
carried over for later strips. With this eventuality in
mind,the tile manager 192 ascertains whether any data
is being carried overandifso,the tile manager 192 uses
the carried-over data before generating a new row.
Consequently,if there is new data carried over,the tile
manager 192 moves to a state 860 where new rows are
generated from the carried over data.

Next, the tile manager 192 movesto a state 862 where
the tile manager 192 checksto see if a particular strip is
full. For purposes of the present invention,a strip is a
collection of rows, i.e., a set of numbers arranged in
rowsAsindicated at state 862, if the strip is full, then
the tile manager 192 ends at the end state 856.

If the strip is not full and the tile manager 192 has
used up all the carried over data, then the tile manager
192 movesto a decision state 864 where the tile man-

ager 192 checks for ghosting,i.e., the skipping of some
rows of data in order to produce a low quality image
while panning or zooming. If ghosting is in effect, the
tile manager 192 moves to state 866, wherein thetile
manager 192 calculates the number of blank lines to
create. The system then movesto a state 868 where the
tile manager 192 writes the blank lines to the output
strip buffer.

From state 864, if no ghosting was detected, or state
868, if ghosting is not in effect, the system movesto
state 870 where the tile manager 192 again checks to see
if the strip bufferis full. If it is, the tile manager 192 exits
at the end state 856. If it is not, the tile manager 192
checksto see that therearestill input rows to read in a
decision state 872. If there aren’t, the tile manager 192
has reached the end of the specified image region, and
proceeds to state 874 to obtain another row of output
data by flushing the scaler buffers. In accordance with
the present invention, in the state 874 the tile manager
192 sets a flag that is subsequently passed down to the
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scaler functions to flush intermediate results from the

scaler functions. This is the case when for reducing
data, ie., if a plurality of rows is being combined into
one output row. That is how the last output row is
produced.

From state 874, the system movesto state 894, shown
in FIG. 22B. On the other hand,in the event that there
are no unread imagerowsatstate 872, the system moves
to decision state 876, where the system determines
whether the row is outside of the valid image bound-
aries. If yes, the system moves to a state 878, where the
tile manager 192 substitutes blank lines for the input.
Thetile manager proceeds from state 878 to a state 894,
shownin FIG.22B.If the answerto the decision at state

876. is no, the. system moves to a decision state 880,
shown in FIG. 22B, to check whether the row is con-
tained in the currently locked tile row.

At state 880, the tile manager 192 moves down the
image, and the system sequentially passes through suc-
cessive tile rows. Each tile contains, e.g., 512 rows, so
when a particular tile row is locked it stays locked until
all 512 image rowsin that tile row have been read. Each
time the system arrives at a new rowit tests to see that
the row is contained in the currently locked tile row. If
it is not, the system moves to the state 430 (function
ExpTileUnlock) to unlock the old tile row and lock
downthe newtile row (at state 428). In addition,the tile
manager 192 has to unpreserve the row oftiles that was
just unlocked. Unpreserving them tells the memory
manager that those tiles are no longer needed for this
access operation and it can do whatit wishes with them.

Next, the system proceeds to a decision state 882 to
determine whether anytiles are blank: If they are, the
tile manager 192 substitutes a reference to a “common
blank tile” and that commonblank tile is used, as indi-
cated at state 884. All tiles that are blank are mapped
onto this common blank tile. Consequently, the tile
manager 192 uses less image memory.

From state 884, 882, or 880, as appropriate, tile man-
ager 192 proceeds to a decision state 886 to check for
polygonal clipping. If the tile manager 192 is doing
polygonal clipping then each input row of data is
clipped as appropriate for that polygon in states 888 and
890. The loop allows multiple clipped regions within
each row.If there is no clipping, then the tile manager
192 simply copies the entire input row from the image
into the input row buffer in a state 892. Then thetile
manager 192 moveto a state 894 wherethe tile manager
192 passes these input rows throughthe scalerif the tile
manager 192 is scaling the data. Finally, the tile man-
ager 192 takes the results of the scalers and copies that
information to the output strip buffer if necessary at a
state 896..The tile manager 192 then returnsto the state
870 (shown in. FIG. 22A) wherethe tile manager 192
continues the process of retrieving input rows and scal-
ing them until the tile manager 192 has filled the output
strip buffer. The system then moves to the termination
condition at the end state 856.

Nowreferring to FIG. 23A, a process which will be
referred to as “Write Rows to Region” will be de-
scribed. The tile manager 192 starts at state 900 and
moves to state 902 where the tile manager 192 tests for
region overrun. Region overrun can occur when the
calling function attempts to write more rows to the
image than was specified when the access context was
created. If the region was overrun,the tile manager 192
reports an error at state 904 and terminates with an
error at state 906. If there is no region overrun,thetile
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manager 192 moves to the FOR-loop in state 908 where
the tile manager 192 loops for each input row in the
input buffer, which is the buffer that is passed in by the
calling function. It contains the data that is to be pro-
cessed and written to the image. The loop is executed
for each row and moves to state 910 where the input
data is passed through the scaler functions and put into
a temporary buffer. If the scaler does not always pro-
duce an output row,as is the case when reducing the
resolution, a plurality of input rows may have to be
combined to produce a single output row. So, at the
State 912, the tile manager 192 determines whether an
output row was produced after the input row is scaled.
Ifnot, the tile manager 192 goes back to the loop atstate
908 and continues the process as described. On the
other hand, when the tile manager determines at state
912 that an output row was produced, the tile manager
192 movesto state 914 which is a FOR-loop for each
copy of the scale row to write to the image. It may be
the case that more than one copy of the scaled row
needs to be written into image memory. Thisis the case
whenthetile manager 192 is expanding the input image
data. It may be that one input row is replicated four
times to get a 4X expansion factor.

Next, the tile manager 192 movesto state 916 where
the tile manager 192 checksto see if the destination row
index is outside of the image’s clipping boundaries.If so,
the tile manager 192 simply ignores it and moves back
to state 914. If it is within the clip boundariesthetile
manager 192 movesto state 918 where the tile manager
192 determines whether the destination row is in the

currently locked tile row. If it is not, the tile manager
192 movesto state 920 where the tile manager 192 un-
preserves and unlocksthe old tile row thatis currently
locked. Thetile manager 192 then moves to state 922 to
determine whether the update overview flag is true.
Thisis an option that is specified in the lo access context
and it determines how lower-resolution tiles are up-
dated whenthe full resolution subimageis modified. If
the update overview flag is true, then the tile manager
192 movesto state 924 wherethe tile manager 192 un-
preserves the low resolutiontiles that will no longer be
needed.

After the system has unpreserved the low resolution
tiles that are no longer needed at state 924, the system
moves to state 926 and locks down the newtile row.

Only the full resolution tile row is locked at this level.
The lowresolution tiles are actually updated when the
call to unlock the old tile row is made.

Next, the tile manager 192 moves to state 928 to de-
termine whether an error was detected when the new

tile row was locked. If so, the system terminates with an
error condition at state 906. If there is no errororif in

state 918 the tile manager 192 finds that the destination
rowis currently in the lockedtile row, the tile manager
192 moves to state 930 in FIG. 23B. At state 930, thetile
manager 192 determines whether polygonal clippingis
activated. If it is, the tile manager 192 computes the clip
points for the current image row,as indicated at state
932, which results in a list of clip point pairs.

The tile manager 192 then moves to state 934,
wherein the tile manager 192 conducts a FOR-loop for
each of the clip point pairs that the tile manager 192
computed in state 930. As shown in FIG. 23B,thetile
manager 192 loops to state 936 where the tile manager
192 copies pixels from a scaler output buffer to the
image row between eachpair of clip points. When that
loop terminates, the tile manager 192 returns to state
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914 in FIG. 22A. Onthe other hand,if the tile manager
determines at state 930 that polygonal clipping is not
active, the tile manager 192 movesto state 938, wherein
the tile manager 192 copies the scaler output buffer
pixels to the image row without clipping. Thetile man-
ager 192 then proceedsto state 914.

Nowreferring to FIG. 24, the tile managerstarts at
state 950 in the end access function shown in FIG. 24

and proceeds to state 952. At state 952, the system
cleans up after row or column access functions by free-
ing buffers used by the row or column access functions.

Next, at state 954, the tile manager 192 unlocks the
last row or column oftiles accessed. Then, the system
moves to state 956 where the tile manager 192 un-
preserves anytiles in the region thatarestill preserved.
The system may perform the functionsat states 954, 956
when an operation was aborted in mid-progress and it
cleans up after those partially completed operations.

Atstate 958, the tile manager 192 cleans up after the
polygonal clipping function. If there was polygonal
clipping involvedin this access context thetile manager
192 has to free the buffers that contain the polygon edge
information.

Next, the system movesto state 960, wherethetile
manager 192 frees scaler buffers, the temporarytile
directory, etc.. From state 960, the system moves to
state 962, wherein the tile manager 192 unlocks the
document handle to indicate to the memory manager
that the access context no longer is referring to the
particular document associated with the document han-
dle.

Thetile manager 192 next moves to state 964 where
the memory that was used to store the data for the
access contextis freed. Then, the system ends the clean
up function at state 966.

Referring now to FIGS. 25A,B,a function is shown
which, for purposes of the present invention, will be
termed the “Undo Previous Raster Operations”. The
tile manager 192 starts at state 970 and movesto state
972, wherein the tile manager determines whether any
undo regions exist in the list or if the list is empty. If no
regions exist then the tile manager 192 moves to end
state 974 and terminates normally.

If the tile manager 192 determines at state 972 that
“undo” regions do exist, the tile manager 192 moves to
state 976, where the tile manager 192 enters a loop for
each undoregionin thelist. In this loop, the tile man-
ager 192 movesto state 978 wherethetile manager 192
locks the affected document handle. The document
handle that is locked is the one that was stored in the

undoregion headerthat tells where that particular undo
region came from. Thetile manager 192 moves from
state 978 to state 980 where the tile manager 192 saves
the current document region to support redo(i.e. an
“undo” operation following by another “undo” opera-
tion). Then the tile manager 192 moves to state 982 to
invalidate the affected tiles in the lower-resolution
subimages. The strategy represented by states 980, 982
in FIG.25Ais to save the minimum amountof informa-

tion that is needed to reconstruct the image, which
meansthe tile manager 192 saves only the affectedtiles
in the full res subimage.

Next, the system moves to a loop indicated by the
states 984, 986. In this loop, for each tile, the tile man-
ager 192 movesto state 988, discarding the document
tile image data. Then the tile manager 192 moves to
state 990 to determine whetherthe undotile is loaded. If

it is not loaded, the tile manager 192 movesto state 992
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wherethe tile manager 192 marks the documenttile as
“not loaded”. If the tile is determined to be loaded at

state 990, the tile manager 192 movesto state 994 to
mark the documenttile as “loaded”. From state 994, the

system movesto state 996 in FIG. 25B.
Atstate 996, shownin FIG. 25B, the tile manager 192

determines whether the undotile is marked as blank. If

it is, the tile manager 192 moves to state 998, wherein
the tile manager marks the documenttile as blank, and
then the system loops backto state 986. If the undotile
is determined to be not blank at state 996, the tile man-
ager 192 moveto state 1000. At state 1000, the tile man-
ager 192 checks to see if the undo tile points to com-
pressed data onthe disk.If it does, the tile manager 192
movesto state 1002 and copies the disk location and size
information about the compressed data into the docu-
menttile header and loops back around.If there is no
compressed data on the disk, then the tile manager 192
moves from state 1000 to state 1004, wherein thetile
manager 192 determines whether uncompressed data
exists on the disk associated with the undotile.

If so,the tile manager 192 moves to state 1006,
wherein the file manager 192 copies the disk location
and size information about the uncompressed data into
the documenttile header and loops backto state 986. If
the system determines at state 1004 that there is no
uncompressed data on the disk, the tile manager 192
proceeds to state 1008, wherein the tile manager 192
determines whether the undotile “points” to uncom-
pressed data in cache memory.If it does, the tile man-
ager 192 movesto state 1010, wherein the tile manager
192 copies the pointer to the uncompressed data from
the undo header to the documenttile header.

From state 1010, the system returnsto state 986. If no
uncompressed data exists in the cache, however, as
determined in state 1008, the tile manager 192 stores a
pointer to the compressed data in cache in the docu-
menttile header and returnsto state 986.

Referring back to FIG. 25A, when thetile manager
192 has completed the loop described above, the system
moves to state 1014, unlocking the document handle.
From state 1014, the tile manager 192 proceedsto state
1016, wherein the tile manager 192 frees the memory
associated with the undo header. Thetile manager 192
then moves to state 976. Thus, the system returns to
state 976 for each undo regionin thelist. As intended by
the present invention, the tile manager 192 continues
the loop for all of the regions in the list. The undo re-
gions are restored in “last-in-first-out” order. At the
completion of the looping process described above, the
system moves to state 974.

Nowreferring to FIG. 26, when thetile manager 192
ends the cache management,the tile manager 192starts
the process shownin FIG.26 at state 1020 and proceeds
to state 1022 wherein the system frees the compression
buffer. From state 1022, the system proceedsto state
1024, wherein the system frees the commonblank tile.
Next, the system moves to state 1026 to free the tile
cache memory. The system then ends the process
shownin FIG.26 at state 1028.

FIG.27 provides an explanation of the function exp
tile lock. The tile manager 192 starts at state 1040 and
movesto state 1042 wherethe tile manager 192 enters a
FOR-loopfor each tile row to be locked. In accordance
with the present invention, the system in the exp tile
lock function is capable of locking downall the tiles in
a two dimensional region.
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For each tile in the specified region, the system
moves to state 1046, wherein the tile manager 192 deter-
mines whetherthe particular tile is blank. To make this
determination, the system examines flags in the tile
headeritself or checks the image data for that tile to
determineifthere are any non-backgroundpixels.Ifit is
not a blank tile, the tile manager 192 moveto state 434
where the tile manager 192 locks the uncompressed
version of the tile. Then the tile manager 192 proceeds
to state 1050, wherein the tile manager 192 determines
whether an error had occurred in the process of creat-
ing the uncompressed version ofthe tile. If no erroris
found at state 1050, the tile manager 192 continues to
loop to the nexttile in the region by returning to state
1044. If an error did occur, as determined at state 1050,
the system proceeds to state 430 to unlock previously
locked tiles, and then endsat state 1056.

Inthe event that the tile manager 192 at state 1046
detected that the particular tile was a virtual blank tile,
ie., a tile that exists only by virtue of the fact that there
is a tile directory entry forthat tile, the tile manager 192
take no action, other than to loop back to state 1044 for
further processing.

FIG. 28 illustrates the control flow for the “lock

expanded tile” function 434 wherein the tile manager
192 takes a single tile and locks the expanded version of
the tile in the image data cache 194. Thetile manager
192 enters the function 434 at a start state 1060, and
proceeds to a decision state 1062 wherein the tile man-
ager 192 tests whetherthetile is marked as “loaded”. As
already mentioned, a loadedtile is one that either con-
tains or references valid image data, is either uncom-
pressed or compressed image data, andit either resides
in cache memory oron thedisk.If thetile is not loaded,
the tile manager 192 moves to a function 436 wherein
the tile must be created from higher resolution tiles
which are loaded. Afterwards, the tile manager 192
determines if there was an error in a decision state 1066.

If there was an error, the tile manager 192 terminates
the function 434 at an end state 1068 and reports the
error condition. Otherwise, if there was no error in
creating thetile, the tile manager 192 continues, moving
from the state 1066 to a decision state 1070.

Thetile to be locked is now loaded so the tile man-

ager 192 tests whether the uncompressed version of the
tile is in cache memory. The objective of the function
434 is to guarantee that there is an uncompressed ver-
sion of the tile in cache memory. Now,if the uncom-
pressed version is not in the cache,the tile manager 192
proceeds to a decision state 1072 to determine whether
the selected tile is a blank tile.

If thetile is blank, the tile manager 192 proceeds to a
state 438 to create a blank tile. Note here that the func-

tion ExpTileLock 428 (FIG. 27) will detect a blank tile
before calling the function 434 if it can take advantage
of using a commonblanktile at a higher level. In other
words,if the tiles are locked for reading only,i.e., the
image data will not be modified in any way, then all
blank tiles can refer to the same section of blank mem-

ory. However,if the tiles are locked for writing,all tiles
must have their own memory because different image
data can be written to the different tiles.

At this point, state 438, memory has presumably been
allocated for a blank tile. Moving to a state 1074,thetile
manager 192 tests whether there was an error and
movesto the end state 1068 if there was an error.

Returning in the discussion to the decision state 1072,
if the tile is not blank, then the tile manager 192 transi-
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tions to a decision state 1076 and tests whetherthereis

a uncompressed version of that tile on the disk. If the
uncompressed version is on disk, then the tile manager
192 reads that uncompressed version from the disk into
cache memoryat a state 1078. Then the tile manager
192 moves to the state 1074 to test for errors.

If, at the state 1076, there is not an uncompressed
version on the disk, the tile manager 192 movesto the
function 440 so as to createthetile from the compressed
version. The compressed version can be either in cache
memory or on the disk, and this is handled by the func-
tion 440. Again, the tile manager 192 checks for an error
at the state 1074.

Now,assuming that there was no error found at the
state 1074, the result is that the tile manager 192 has an
uncompressed version of the tile in cache. Therefore,
the tile manager 192 proceeds to a decision state 1080 to
verify that the uncompressed version is valid. It is some-
times the case that the uncompressed version ofa tile is
locked by one access context and then for come reason
it is invalidated by another access context. This happens
when the first access context is reading an uncom-
pressed version of a tile from a lower resolution image,
and another access context is actively modifying thefull
resolution subimage with a particular setting of-parame-
ters. If the tile not valid, the function 434 is terminated
at the end state 1068.

Alternatively, a valid tile that was determined at the
state 1080 causes the tile manager 192 to increment the
uncompressed data lock count for that tile at a state
1082. The lock countstarts out at zero for an unlocked

tile and can increment as high as necessary. However,
the lock count will be decremented once for each un-

locking operation. It is important to match the number
of timesa tile is locked with the numberof timesthetile

is unlocked. Otherwise, the tile would end up in a per-
manently allocated (unfreeable), locked state.

Proceeding to a decision state 1084, the tile manager
192 tests whether thetile is locked for writing or for
reading. If the tile manager 192 locked the tile for writ-
ing, the execution of the function 434 continues to a
state 1086 wherein the “blank”status flag is invalidated.
The blank status flag is actually a combination of two
flags. One that saysthat thetile is blank or not blank and
the second flag that saysif the first flag is valid or not.
The reason for twoflags is that the way to detect that a
tile is blank is by searching throughall the pixels in that
tile. To do so every timethefile is accessed would be
wasteful so occasionally, truly blank tiles won’t be han-
dled as blank tiles. Hence, there is a second flag that is
set, in the state 1086, when the first flag is invalid. The
secondflag indicates that the tile must later be examined
to determine whetheritis still blank.

The tile manager 192 next moves to a state 1088 to
invalidate the disk-resident, uncompressed version of
the tile, if one exists. This is because the tile manager
192 will modify the cache-resident version ofthetile.
To synchronize the cache-resident and disk-resident
versions, the disk-resident version is invalidated. Then,
at a state 1090, the tile manager 192 invalidates and frees
the compressed versions if they exist.

A compressed version ofthe tile may be in cache or
on the disk and, at the state 1090, the tile manager 192
cleans both out of memory. Thus, at the end of the
“lock for writing” operation, the only valid version of
the tile is the expanded version in cache, which at this
point is locked. Then the tile manager 192 continues to
a State 1092 to move the newly locked, expanded ver-
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sion of the tile to the front of the “most recently used
(MRU)”list of uncompressedtiles.

The MRUlist is a doubly-linked list wherein, starting
at the beginning, thetile is found that was most recently
used, then the next most recently used, and so on, the
last tile was used the longest time ago. Thatlist is used
by the cache managerto determine whichtiles are least
likely to be used again as a second level of criteria.

Finally, the tile manager 192 terminates the LockEx-
pHandle at the end state 1068.

FIG.29 illustrates the control flow for the “unlock-

ing expanded imagetile group” function 430. The func-
tion 430 is just the reverse of lock expanded imagetile
group. In other words, there is a region of lockedtiles
which must be unlocked because the access to thetiles

is complete. Generally, the two functions, ExpTileLock
and ExpTileUnlock are called for a row or column of
image data rather than a region but an entire region
lock/unlock is possible.

Thetile manager 192 enters the function 430 at a start
state 1110. The loop states 1102 and 1104 represent the
beginning of nested FOR-loops. That is, the outer loop,
beginning at the state 1102, unlocks a row oftiles, and
the inner loop, beginning at the state 1104 unlocks a
columnoftiles. Moving from the state 1102, to the state
1104, and then to the function 432, the tile manager 192
unlocks the uncompressed version of the tile. Whenall
the tiles in the region are unlocked,the tile manager 192
terminates the function 430 at an end state 1108.

Nowreferring to FIG.30, the tile manager 192 enters
the UnlockExpHandle function 432, referred to in FIG.
29, at a start state 1110. The tile manager 192 proceeds
to a decision state 1112 to test whether the uncom-

pressed version of the currently selected tile is in fact
locked,i.e., whether the lock count is non-zero. If the
tile is not locked, the tile manager 192 exits the function
432 at an end state 1114.

If, at the state 1112, the tile is found to be locked, the
tile manager 192 movesto a state 1116 to decrement the
lock count. Thereafter, the execution continues to a
decision state 1118 wherein the tile manager 192tests
whether the “update overview”flag is set true. If the
flag is set, the tile manager 192 movesto a state 1120 to
update the corresponding lower-resolutiontiles. In the
process of modifyingtiles, the tile manager 192 locks a
tile down in the image data cache to write to it. When
the tile is unlocked, that is a signal to the memory man-
ager to update the lowerresolution tiles that correspond
to the higher resolution tile. Thus, the image data in the
high resolution tile being unlocked is copied down into
the lowerresolution tiles, all the way down to the bot-
tom of the imagestack. ,

Oncethe lowerresolution images are modified, or if
the overviews are not being updated, the tile manager
192 proceedsto a decision state 1122 to test whether the
lock countis exactly zero. If the lock count is not zero,
the tile manager 192 terminates the function 432 at the
end state 1114.

Otherwise, the tile manager 192 moves to a state 1124
to clear the “cachecollection delay” flag. The cache
collection delay flag is set by the tile manager after
unsuccessfully trying to reduce the expanded memory
usage of the cachefile. It is cleared in the function 432
because there is now the possibility of freeing thetile
that was just unlocked. In other words, the tile can be
removed from the cache to create somespace. This flag
prevents the tile manager or the cache manager from
making repeated, unsuccessful attempts to create space.
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After the tile manager 192 clears the flag, execution

proceeds to a decision state 1126 to determine whether
the uncompressed version of the tile is invalid. As ex-
plained hereinabove,it is possible for one access context
to have the expanded version of the tile locked down
and another access context to invalidate the data in that

tile. The tile must remain in memory until thefirst ac-
cess context unlocks thetile. Onceit is unlocked and the

lock count is decremented to zero, if the tile is invalid,
the tile manager 192 moves to a state 1128 to free the
uncompressed tile version, or remove the tile from the
image data cache. In either case, the tile manager 192
terminates the function 432 at the end state 1114.

FIG.31illustrates the control flow for the “createtile

from higher-resolutiontiles” function 436 referred to in
FIG.28. Thetile manager 192 begins the function 436 at
a start state 1140 and proceedsto a decision state 1142 to
determine whetherthetile is in fact already loaded, in
which case no further processing is needed andthetile
manager 192 terminates the function 436 at an end state
1144. Assuming that thetile is not loaded, the tile man-
ager 192 movesto a decision state 1146 to test whether
a higher resolution subimageexists.

This function is called only for lower resolution
subimages where the tile manager 192 can create the
lower-resolution tiles from higher-resolution tiles.
Hence, higher-resolution subimages must exist for the
function to succeed. If no higher-resolution subimages
exist, the tile manager 192 reports the error and termi-
nates the function 436 at the end state 1144.

If the higher-resolution subimage does exist, the tile
manager 192 proceeds to a state 1150 to calculate the
indices of, or locate, the four higher-resolutiontiles that
reduceto this tile. There are four tiles involved because

the preferred resolution step between subimagelevelsis
two in the presently preferred embodiment. Thus, since
there are two dimensions, four higher-resolution tiles
are required to produce each next lowerresolutiontile.

Thereafter, the tile manager 192 enters a FOR-loopat
a loop state 1152. For each of the four higher-resolution
tiles, the tile manager 192 tests whetherthetile is loaded
in the image data cache, at a decision state 1154. If the
tile is not loaded, then the tile manager 192 movesto a
state 1156 wherein a recursive call is made to the “load

subimage tile” function to create the corresponding
higher-resolution tile from yet higher-resolution tiles.
This case occursif a the tile is a few layers down in the
image stack and thetiles in all but the full resolution
subimage had been invalidated. Therefore, the function
436 invokesitself to work all the way back up to the top
level, recreate the higher-resolution tiles and then work
back down to thetile of interest. Only higher-resolution
tiles that map to the particular lower-resolution tile
need be loaded

Assuming that all the higher-resolution tiles have
been loaded, the FOR-loop terminates andthe tile man-
ager 192 proceeds to test whetherall of the higher-reso-
lution tiles are blank. If all four of the high resolution
tiles mapped to this low resolution are blank, the tile
manager 192 transitions to a state 1160 to mark the low
resolution tile as blank. The tile manager 192 does not
create any image data for the blank, lower-resolution
tile. The tile manager 192 and terminates the function
436 at the end state 1144.

If, however, one or more of the higher-resolution
tiles is not blank, the tile manager 192 moves to a state
1162 to make a determination as to whetheritis faster to

create the lower-resolution tile by scaling the com-
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pressed version of the higher-resolution tiles or the
expanded version of the higher-resolutiontiles. An al-
gorithm is used at the state 1162 to decide which is
faster and depends on the-machine that the program is
running on, and other considerations. If it is faster to
scale the compressed data the tile manager 192 movesto
the function 442 to create the compressed, lower-reso-
lution tile directly from the compressed higher-resolu-
tion tiles.

Now,if it is determined that it is faster to scale the
expanded version of the data, the tile manager 192
moves from the state 1162 to a state 1166 to allocate

memory for the uncompressed version of the lower-
resolution tile. From the state 1166, the tile manager 192
moves to the beginning of a FOR-loop at a loop state
1168 wherein for each of the higher-resolutiontiles the
tile manager 192 scales the expanded version of the
higher-resolutiontile directly into the proper position in
the lower-resolution tile using the function 444. When
the tile manager 192 has scaled each of the four high
resolution tiles, the tile manager 192 has completed the
creation of the expanded version of the low resolution
tile.

The tile manager 192 then proceeds, from either of
the states 1168 or 442 to a decision state 256. wherein the

tile manager 192 determines if an error was incurred in
that process. If there was an error, the tile manager 192
movesto a state 1172 to report the error. From either of
the states 1170 (if no error) or 1172, the tile manager
terminates the function 436 at the end state 1144.

FIG. 32 contains the flow diagram for the “allocate
space for uncompressed version of tile” function 438
referred to in FIG. 28. The tile manager 192 enters the
function 438at a start state 1180 and movesto a decision

state’ 1182 to test whether the “soft” uncompressed
cache usage limit is exceeded. The soft uncompressed
cachelimit is a numberthatis cast into the tile manager
192 duringinitialization and it basically sets a guideline
for how muchofthe image data cacheis to be devoted
to uncompressed imagedata. If the cache managergets
a request for uncompressed cache space andfinds that
this soft limit has been exceeded, it attempts to reduce
the amount of expanded imagedata that is held in cache
either by compressing expandedtiles or by discarding
expanded tiles that have valid compressed versions or
some other way to recreate them.

If the tile manager 192 finds that the soft limit is ex-
ceeded, the tile manager 192 movesto a state 1184 to
first check whether the “cache collection delay”flag is
set. This flag is set after an unsuccessful attempt to
reduce cache memory usage and prevents repeated
unsuccessful calls to collect free cache at a state 1186.

Thus, the tile manager 192 will not try to reduce the
expanded memory usage until the flag is cleared in the
“unlock expanded tile handle” function 432 (FIG.30).

If the cache collection delay flag is not set, the tile
manager moves to a state 1186 to collect free cache
memory by freeing uncompressedtiles. After that, the
tile manager 192 movesto a decision state 1188 to test
whether the soft uncompressed cache usagelimitisstill
exceeded after an attempt to reduce the memoryusage.
If the usageis still exceeded, the tile manager 192prints
a warning message on the video display 154 (FIG.6) at
a State 1190 and then sets the cache collection delay flag
at a state 1192.

Returning in the discussion to the state 1182, if the
soft limit was not exceeded,orif it was not exceeded at
the state 1188, the tile manager 192 movesto a decision
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state 1194 to determine whetherthere is memoryavail-
able in the uncompressedtile free list. If there is not
memoryavailable in the uncompressedtile free list, then
the tile manager 192 movesto a decision state 1196 to
determine whether there is memory available in the
cachereservelist. If there is no memoryavailable there,
the tile manager 192 movesto a state 329 wherein the
tile manager 192 againtries to collect free cache space
by unlocking or freeing both uncompressed and com-
pressed tiles. At this point, the tile manager 192 must
free space in order to allocate space for this uncom-
pressed tile. The tile manager 192 moves to a state 1200
to determine whether memory is now available in the
cache reservelist. In the state 1198, when the cache
memory spaceis freed, it is placed into the cache re-
serve list. If memory is not available, then the tile man-
ager 192 moves to a state 1202 and prints a “cache
overflow” error message and terminates the function
438 with an error condition at the end state 1204.

Now,taking an alternate path from the states 1194,
1196 and 1200, if the tile manager 192 can successfully
get space for the uncompressed tile data, then the tile
manager 192 movesto a state 1206 wherethe tile man-
ager 192 finds the free block with the highest memory
address. If there is a choice between two or morefree

memoryblocks, the tile manager 192 chooses the one
with the highest address to try to keep all of the ex-
panded image data at the high address end of the cache
file. Once the tile manager 192 finds the highest address
block, it moves to a state 1208 to unlink the free block
from the free memorylinklist.

Thereare actually two possibilities for the free mem-
ory link list when the tile manager 192 is looking for
expanded memory. Oneis the uncompressedtile free
list and the otheris the cachereservelist. In either case,

the tile manager 192 unlinks the block of memory that
the tile manager 192 is interested in from the free list
and relinks the remaining memoryblocksofthe affected
freelist.

Thetile manager 192 then transitions to a state 1210
to initialize the newly allocated block to all background
color. Then the tile manager 192 movesto a state 1212
to movethe description of the memory block (a pointer
to the tile header) to the front of the most recently used
tile list. Moving to a state 1214, the tile manager 192
updates the soft uncompressed cache memory usage
counter that was checked at the state 1182. Thetile

manager 192 continuesto a state 1216 to store the mem-
ory address in the tile header. The memoryblock that
the tile manager 192 has just allocated is a pointer that
is stored in the tile header data structure. That is how

the memory block is associated with the tile. Then the
tile manager 192 terminates normally from the function
438 at the end state 1204.

FIG.33 illustrates the process by which the present
invention expands the compressed version ofatile to
create an uncompressed version. Specifically, as shown
in FIG. 33, the tile manager 192 starts at a start state
1220 and moves to a test function at state 1222, where

the tile manager 192 determines whether the com-
pressed version of thetile, or the compressedtile data,
is in cache memory.Ifit is not, then the tile manager 192
moves to state 1224, wherein the system loads the nec-
essary data from thedisk. If there is an error detected at
state 1224, the tile manager 192 movesto state 1228 to
terminate the process.

From state 1226, if compressed data was successfully
loaded from thedisk or from state 1222if it was in cache
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to begin with, the tile manager 192 moves to state 1230,
wherein the tile manager 192 locks the compressed tile
image data. This step simply increments the lock count
on the compressed memorystate. From state 1230, the
system moves to state 1232, wherein the tile manager
192 allocates and locks the uncompressed tile memory
block. The system then moves to state 1234 to deter-
mine whetheran error occurred at state 1232. If so, the
tile manager 192 moves to state 1236 and unlocks the
compressed tile data. From state 1236, the system
moves to state 1238 to report the error. The system then
terminates at end state 1228.

On the other hand,if no error existed as determined
at state 1234, the system movesto state 1240, wherein
the tile manager. 192 uncompresses the compressed data.
Next, the tile manager 192 moves to state 1242 to deter-
mine whether an error occurred at state 1240. If an

error occurred at state 1240, the tile manager 192 moves
to state 1236 and functions as described previously.
Otherwise, the tile manager 192 moves to stat 1244 to
unlock the compressed and uncompressed data, and
then terminates at end state 1228.

FIG.34 illustrates a process for creating compressed
low resolution tiles from compressed higher resolution
tiles. The tile manager 192 starts at start state 1250 and
proceedsto state 1252, wherein the system enters a loop
which is followed by the system for each of the four
high resolution tiles required to produce a single low
resolution tile. More specifically, at state 1252 thetile
manager 192 locks the compressed version of the high
resolution tile. The system then proceedsto state 1256,
wherein the tile manager 192 determines whether an
error occurred at state 1254. In the event that an error

occurred, the tile manager proceeds to end state 1258
and terminates. If no error occurred, the tile manager
192 returns to state 1252 and continues the loop de-
scribed above for each of the four high resolution tiles.

After processing all four high resolution tiles as de-
scribed, the system proceedsto state 1260 wherethetile
manager 192 scales the compressed data to half resolu-
tion. The process performed at state 1260 results in a
compressed version of the low resolution tile. Then the
tile manager 192 movesto a loop represented by states
1262, 1264, wherein for each of the high resolutiontiles
the tile manage 192 unlocks the compressed version of
thetile.

Next, the tile manager 192 movesto state 1266 where
the tile manager 192 allocates and locks memory for the
compressed version of the low resolution tile. At state
1266,the tile manager 192 actually puts the compressed
version of the low resolution tile in a general, common
buffer that is large enough to hold the maximum possi-
ble size of the compressed results. The actual valid data
is usually much less than that than the maximum possi-
ble size, so the tile manager 192 only saves the valid
amountofdata.

From state 1266, the system moves to state 1268 to
determine whetheran error occurred at state 1266. If an

efror occurred, the system moves to end state 1258 and
terminates. Otherwise, the system moves to state 1270
wherethe tile manager 192 copies the compressed data
out of the temporary compressed data buffer into the
newly allocated space in the cache. Then thetile man-
ager 192 movesto state 1272 wherethe tile manager 192
unlocks the compressed version of the low resolution
tile that now contains valid data. The system then termi-
nates normally at state 1258.
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Now referring to FIG. 35, a process is shown

wherebythe system resamples uncompressed high reso-
lution tiles to an uncompressed lowresolutiontile. The
tile manager 192starts at start state 1280 and movesto
state 1282, wherein the tile manager 192 locks the un-
compressed version ofa single high resolutiontile. This
function scales a single high resolution tile to update
one quarter of a tile in the half-resolution subimage.
That quartertile is rescaled to update one-sixteenth of a
tile in the quarter-resolution subimage. This continues
to the lowest resolution subimage. Next, the tile man-
ager 192 proceedsto state 1284 to determine whetheran
error occurred in locking the uncompressed version of
the high resolutiontile. If there Was an error, then the
tile manager 192 proceeds to state 1286 and terminates
with an error condition. Otherwise, the tile manager
192 moves to state 1288 where the tile manager 192
determines how manylevels of the subimage are to be
updated. This function can be used to update a subset of
subimagesorthe entire image stack in the case where a
single tile is modified in the full resolution subimage.It
will propagate that change all the way downto the
lowest-resolution subimage in the image stack.

Next, the tile manager 192 proceeds to state 1290
wherethetile manage 192 determines the tile index that
is to be updated. In accordance with the present inven-
tion, when a change is propagated from the higher
resolution down to the low resolution oftiles, the sys-
tem calculates which tile corresponds to the affected
area. Then the tile manager 192 movesto state 1290
wherethe tile manager 192 determines whether the low
resolution tile that the tile manager 192 is about to up-
date is marked as loaded or not. This step is intended for
the situation in which not all of the low resolution sub-

states are populated during the loading of a raster im-
age.

If the system determines that one or more low resolu-
tion tiles are not loaded, the system proceedsto state
1294, wherein the tile manager 192 invalidatesall of the
low resolution tiles that would otherwise be affected by
the change. The system then exits normally at end state
1286. If the low resolution tile is about to be modified is

loaded, as determinedat state 1292, the tile manager 192
movesto state 1296, wherein the system locks the un-
compressed version of the low resolution tile. Thetile
manager 192 then movesto state 1298 to determine
whetheran error occurred at state 1296 and,if so, the
system movesto end state 1286 to terminate. Otherwise,
the system moves to state 1300. wherein the tile man-
ager 192 scales the raster data from the high resolution
tile downto the low resolution tile. Then the tile man-

ager 192 moves to state 1302 wherethe tile manager 192
unlocks the high resolutiontile.

Next, the system moves to state 1304, wherein thetile
manager 192 recursively modifies the loop variables
such that the low resolution tiles that the tile manager
192 just finished updating become the high resolution
tiles for the next succeeding iteration. Once all the
subimages have been updated as described, the system
exits at end state 1286.

Nowreferring to FIGS. 36A and 36B, a process to
collect free cache is shown. This process can be called
from several other processes. The tile manager 192
beginsat start state 1310 in FIG. 36A and moves tostate
1312 to determine whether a cache collection operation
is in process. If so, the system exits at end state 1314.
This prevents recursive calls to collect free cache
which might otherwise occur. If the system at state
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1312 determines that no collection is in progress, then
the tile manager 192 movesto state 1316 wherethetile
manager 192sets a flag indicating that a collection is in
progress.

From state 1316, the system moves to state 1320,
where the tile manager 192 estimates the number of
memory blocks to free in this operation. The reason for
freeing a numberofblocks instead ofjust one blockis to
reduce the computational overhead associated with the
cache collection operations. The tile manager 192 typi-
cally estimates the amount of memory required to equal
the numberoftiles in a single row of the full resolution
subimage of the document associated with the most
recently used tile.

Once this estimate has been made, the system pro-
ceeds to state 1322 wherein the tile manager 192 con-
siders the options that the tile manager 192 passed into
this function. There are three options. One, as indicated
at state 1324,is to reduce the uncompressed cache usage ,
only while not affecting the compressed data that is
currently held in cache. The second option,indicated at
State 1328, is to reduce the compressed cache memory
usage only. The third option, indicated at state 1326,is
to reduce the total cache memoryusage including both
compressed and uncompressed data.

From state 1324 or state 1326, the tile manager 192
moves to state 1330, where the tile manager 192:stores
all of the free states currently in the uncompressed free
list into the cache reservelist. As the tile manager 192
performsthe process in state 1330, the tile manager 192
attempts to consolidate the memory blocks. Thatis, if
there are two free blocks that are adjacent to one an-
other, the system automatically turns them intoasingle,
larger contiguous block. From state 1328, on the other
hand, the system moves to state 1358, shown in FIG.
36B and discussed below.

From state 1330, the tile manager 192 movesto state
1332, wherein the tile manager 192 determines whether
the tile manager 192 has created a memoryblock large
enoughto satisfy the initial request. If so, the tile man-
ager 192 terminates normally at end state 1314. Other-
wise, the tile manager 192 movesto state 1334 where
the tile manager 192 frees any unlocked, uncompressed
tiles which are blank. The tile manager 192 then moves
to state 1336 where the tile manager 192 determines
whether the tile manager 192 has free sufficient mem-
ory. If so, the tile manager 192 exits at end state 1314.
Otherwise, the tile manager 192 moves to state 1338
wherethe tile manager 192 frees unlocked, unpreserved
uncompressed tiles that have valid compressed versions
in cache or are on a disk, or that have valid, uncom-
pressed versions on the disk beginning with the least
recently used tile. After having freed that particular
class oftiles, if the tile manager 192 determines,at state
1340, that the memory request has beensatisfied, thetile
manager 192 moves to state 1314 and terminates. Other-
wise, the tile manager 192 moves to state 1342, shown in
FIG. 36B.

Now referring to FIG. 36B, the tile manager 192
begins at state 1342, wherein the tile manager 192 com-
presses the free unlocked, unpreserved uncompressed
tiles that don’t have a valid compressed version or other
source from whichthe tile can be recreated. To do this

the tile manager 192 processes expanded tile data
through a compression algorithm. Thetile manager 192
then creates a compressed version ofthat tile so that the
uncompressed version of the tile can be discarded.
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Next, the tile manager 192 moves to state 1344,
wherein the system determines whether the request
made at state 1342 has beensatisfied. If so, the system
terminates at end state 1346. Otherwise, the system
movesto state 1348, wherein the tile manager 192 frees
unlocked, but preserved uncompressed tiles that have
valid compressed or uncompressed copies. The tile
manager 192 preferentially frees the oldest suchtiles.

From thestate 1348, the tile manager 192 proceeds to
a decision state 1350 to test whether the request madeat
the state 1348 was satisfied. If so, the function 446 is
terminated at the end state 1346. Otherwise, the tile
manager 192 moves to a state 1352 to compress and then
free unlocked, but preserved, uncompressed tiles that
do not have valid compressed versions.

Next, the tile manager 192 moves to state 1354,
wherein the system determines whether the request
made at state 1352 has been satisfied. If so, the system
terminates at end state 1346. Otherwise, the system
moves to state 1356, wherein the tile manager 192 deter-
mines whetherto free data memory blocks. If not, the
system terminates at state 1346. Otherwise, the system
movesto state 1358,to free unlocked preserved, uncom-
pressed tiles that don’t have valid compressed versions
already.

The system next moves to state 1360 to determine
whether the request has beensatisfied. If so, the system
terminates at state 1346. Otherwise, the system movesto
state 1362 to print an error message, and then terminate
at state 1346.

Nowreferring to FIG. 37,the tile manager 192starts
at state 1380 and moves to state 1382 wherethe tile

manager 192 determines whether the uncompressed
version is in fact still locked—that is if the lock count

for uncompressed version ofthat tile is non-zero. If the
tile is still locked then the tile manager 192 moves to
state 1384 and prints a warning message. Thenthetile
manager 192 terminates at end state 1386.

If, at state 1382, the system determined that the un-
compressed version is not locked, then the tile manager
192 moves to state 1388 where the tile manager 192
determines whether the uncompressed data has already
been freed. If it has then the tile manager 192 terminates
at end state 1386. Otherwise, the tile manager 192
movesto state 1390 wherethe tile manager 192 unlinks
the uncompressed memorystate from the most recently
usedlist.

From state 1390, the tile manager 192 movesto state
1392 where the tile manager 192 updates and decre-
ments the total uncompressed memory usage counter
by the appropriate amount. The tile manager 192 then
movesto state 1394 where the tile manager 192 moves
the memory block to the uncompressed memory free
list. In accordance with the present invention, the tile
manager 192 keeps the list sorted by decreasing address.
Consequently, when the tile manager 192 allocates ex-
panded memory blocks, the tile manager 192 tends to
choose the preferred blocks that have higher addresses
because they are at the front of the free list.

Next, the tile manager 192 moves to state 1396,
wherein the tile manager 192 sets a pointer in thetile
headerto null and the tile manager 192 sets the uncom-
pressed tile status flags. This ensures that the tile header
reflects the fact that it no longer has an uncompressed
data associated with it. Then thetile manager 192 termi-
nates at end state 1386.

Now referring to FIG. 38, a process by which the
system compressesa tile is shown. The system begins at
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start state 1400, and moves to state 1402, wherein the
tile manager 192 determines whether the uncompressed
tile data is in cache memory.Ifit is not, the tile manager
192 moves to state 1404 and loads the uncompressed
data into cache memoryfrom the disk. The system then
moves to state 1406, to determine whether an error
occurred at state 1404. If so, the system terminates at
end state 1408. Otherwise, the system proceedsto state
1410.

Atstate 1410, the tile manager 192 locks the uncom-
pressed tile data, and then moves to state 1412, to deter-
mine whether an error occurred at state 1410. If an

error occurred, the system terminates at end state 1408.
Otherwise, the system moves to state 1414, wherein the
tile manager 192 compresses the image data into a com-
mon buffer. For binary images of text and line draw-
ings,the tile manager 192 uses a CCITT group4 encod-
ing.

From state 1414, the tile manager 192 moves to state
1416 to determine whether an error occurred at state

1414. If an error indeed occurred, the system moves to.
state 1418 to unlock the uncompressedtiles, and then
exits at end state 1408. Otherwise, the system proceeds
to state 1420, wherein the tile manager 192 allocates and
locks cache memoryspace for the compressedtile data.

From state 1420, the system proceedsto state 1422 to
determine whetheran error occurredat state 1420. If an

error occurred, the system moves to state 1418 and
proceeds as described above. Otherwise, the system
movesto state 1424, wherein the tile manager 192 cop-
ies the compressed data from the common buffer into
the newly allocated cache memorystate. The system
moves from state 1424 to state 1426, wherein thetile
manager 192 unlocks the compressed and uncom-
pressed tile data and then terminates at end state 1408.

While the above detailed description has shown, de-
scribed and pointed out the fundamental novel features
of the invention as applied to various embodiments, it
will be understood that various omissions and substitu-

tions and changes in the form and details of the device
illustrated may be madebythoseskilled in the art, with-
out departing from the spirit of the invention.

Whatis claimedis:

1. An image memory management system, compris-
ing:

a computer having a processor and an image mem-
ory, the image memory comprising a main memory
and a secondary memory;

an image stack, located in the image memory, com-
prising a plurality of similar digital images, each
digital image having a plurality of pixels grouped
into at least onetile, and each digital image having
a resolution different from the other digital images;

meansfor accessing a selected oneofthetiles in the
image stack;

first means for transferring a selected one ofthetiles
from the secondary memory to the main memory
when thetile is accessed by the accessing means
and thetile is absent from the main memory; and

second meansfor transferring a selected one of the
tiles from the main memory to the secondary mem-
ory when the main memoryis full.

2. The system defined in claim 1, additionally com-
prising means for modifying a selected oneofthetiles.
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3. The system defined in claim 2, wherein the second

transferring means only transfer tiles that have been
modified by the modifying means.

4. The system defined in claim 1, wherein the main
memory is semiconductor memory.

5. The system defined in claim 1, wherein the second-
ary memory is a magnetic disk.

6. The system defined in claim 1, wherein eachtile is
square.

7. The system defined in claim 1, wherein a lowest
resolution digital image comprises onetile.

8. The system defined in claim 1, wherein a prese-
lected digital image in the image stack is resampled to
obtain another digital image in the image stack.

9. The system defined in claim 1, wherein at least one
ofthe digital images is compressed.

10. The system defined in claim 1, wherein the access-
ing means is responsive to an image access operation
selected by a user.

11. The system defined in claim 10, wherein the
image access operation is zooming or panning the im-
age.

12. The system defined in claim 10, wherein the
image access operation is reversible.

13. A method of managing images in a computer
having a processor and an image memory comprising a
slower access memory and a faster access memory,
comprising thestepsof:

creating a digital image;
resampling the digital image so as to form an image

stack comprising the digital image and one or more
lowerresolution digital images;

dividing each image into equal sized, rectangular
tiles; and

evaluating a location in the image memoryoftiles in
each digital image of the image stack in a given
region ofinterest.

14. The method defined in claim 13, additionally
comprising updating modified regions of all images
whenan edit operation is completed.

15. The method defined in claim 13, wherein the
evaluating step includes the following order of decreas-
ing availability:

exists in the faster access memory in uncompressed
form;

exists in the slower access memory in uncompressed
form;

exists in the faster access memory in compressed
form;

exists in the slower access memory in compressed
form; and

must be constructed from higherresolutiontiles.
16. The method defined in claim 13, wherein the

evaluating step includes the following order of decreas-
ing availability:

exists in the faster access memory in uncompressed
form;

exists in the slower access memory in uncompressed
form;

exists in the slower access memory in compressed
form; and

must be constructed from higherresolutiontiles.
17. The method defined in claim 13, wherein the

evaluating step includes selecting the digital image with
the lowest resolution higher than a requested resolution
at a given view scale.* € *& *& *
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[57] ABSTRACT

A global mapping system which organizes mapping
data into a hierarchy of successive magnitudesor levels
for presentation of the mapping data with variable reso-
lution, starting fromafirst or highest magnitude with
lowest resolution and progressing to a last or lowest
magnitude with highest resolution. The idea of this
hierarchical structure can be likened to a pyramid with
fewerstones or “tiles” at the top, and where each suc-
cessive descending horizontal level or magnitude con-
tains four times as many “tiles” as the level or magni-
tude directly above it. The top or first level of the
pyramid contains 4 tiles, the second levle contains 16
tiles, the third contains 64 tiles and so on, such that the
base of a 16 magnitudeor level pyramid would contain
4 to the 16th power or 4,294,967,296 tiles. This total
includes “hyperspace” which is later clipped or ig-
nored. Digital data corresponding to each of the sepa-
rate data base tiles is stored in the database under a

unique filename.
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ELECTRONIC GLOBAL MAP GENERATING
SYSTEM

BACKGROUNDOF THE INVENTION

1. Technical Field
This invention relates to a new variable resolution

global map generating system for structuring digital
Mapping data in a new data base structure. managing
and controlling the digital mapping data according to
new mapping data access strategies, and displaying the
mapping data in a new map projection of the earth.

2. Background Art
Numerous approaches have been forwarded to pro-

vide improved geographical maps, for example:
U.S. Pat. No. 4,315,747, issued to McBryde on Feb.

16, 1982, describes a new map “projection” and inter-
secting array of coordinate lines known as the “grati-
cule”, which is a composite of two previously known
forms of projection. In particular, the equatorial por-
tions of the world are represented by a fusiform equal
area projection in which the meridian curves, if ex-
tended, would meet at points at the respective poles,
referred to as “pointed poles”. In contrast, the polar
regions of the world mapare represented bya flat polar
equal area projection in which the poles are depicted as
straight horizontal lines with the meridians intersecting
along its length. Thus, in a flat polar projection the
meridian curves converge toward the poles but do not
meetat a point and,instead, intersect a horizontal linear
pole. The two componentportions of the flat world
map are joined wherethe parallels are of equal length.
The composite is said to be “homolinear” because all of
the meridian curves are similar curves, for example,
sine, cosine or tangent curves, which merge wherethe
two formsofprojection are joined where the respective
parallels are equal. The flat polar projections in the
polar portions of the map provide a compromise with
the Mercator cylinder projections, thereby greatly re-
ducing distortion.

U.S. Pat. No. 1,050,596, issued to Bacon on Jan. 14,
1913, describes another composite projection for world
maps and charts which uses a Mercatoror cylindrical
projection for the central latitudes of the earth and a
convergent projection at the respective poles. In the
central latitudes, the grids of the Mercator projection
net or graticule are rectangular. In the polar regions, the
converging meridians may beeither straight or curved.

U.S. Pat. No 1,620,413, issued to Balch. on Dec. 14,
1926, discusses gnomic projections from a conformal
sphere to a tangent plane and Mercatoror cylindrical
projections from the conformal sphere to a tangent
cylinder. Balch is concerned with taking into account
the non-spherical shape of the earth, and therefore,
devises the so-called “conformal sphere” which repre-
sents the coordinates from the earth whose shape is
actually that of a spheroid or ellipsoid of revolution,
without material distortion.

U.S. Pat. No. 752,957, issued to Colas on Feb. 23,
1904, describes a map projection in which a map ofthe
entire world is plotted or transcribed on an oval con-
structed from two adjacent side by side circles with arcs
joining the two circles. The meridians are smooth
curves equally spaced at the equator, while the latitude
lines are non-parallel curves.

U.S. Pat. No. 400,642 issued to Beaumont on Apr.2,
1889, describes a map of the earth on twointersecting
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spheres, on which the coordinate lines of latitude and
longitudeareall arcs of circles.

U.S. Pat. No. 751,226, issued to Grinten on Feb. 2,
1904, represents the whole world upon the plane sur-
face of a single circle with twice the diameter of the
corresponding globe, the circle being delineated by a
graticule of coordinates oflatitude and longitude which
are also arcsof circles.

U.S. Pat. No. 3,248,806, issued to Schrader on May 3,
1966, discloses a subdivision of the earth into a system
of pivotally mounted flat maps, each map segmentrep-
resenting only a portion of the earth’s surface in spheri-
cal projection on an equilateral spherical triangle to
minimize distortion. :

U.S. Pat. No. 2,094,543, issued to Lackey et al on
Sept. 28, 1937, describes a projector for optically pro-
ducing a variety of different map projections, including
orthographic, stereographic and globular projections
onto flat translucent screens and a variety of other pro-
jections on shaped screens.

U.S. Pat. No. 2,650,517, issued to Falk on Sept. 1,
1953, describes a photographic method for making geo-
graphical maps.

U.S. Pat. No. 2,354,785, issued to Rohl on Aug. 1,
1944, discloses two circular maps which are mounted
side by side, and an arrangement for rotating the two
maps in unison so that corresponding portions of the
earth’s surface are atall times in properrelationship.

U.S. Pat. No. 3,724,079, issued to Jasperson et al on
Apr. 3, 1973, discloses a navigational chart display de-
vice which is adapted to display a portion of a map and
enable a pilot to fix his position, to plot courses and to
measure distances.

US. Pat. No. 2,431,847 issued to Van Dusen on Dec.
2, 1947, discloses a projection arrangement, in which a
portion of the surface of a spherical or curved map may
be projected in exact scale and in exact proportional
relationship.

McBryde and Thomas, Equal Area Projections for
World Statistical Maps, Special Publication No. 245,
Coast & Geodetic Survey 1949.

In addition to the above further teachings as to geo-
graphical mapping can be foundin the Elements ofCar-
tooraphy, 4th edition which was written by Arthur Rob-
inson, Randall Sale and Joel Morrison, and published by
John Wiley & Sons (1978).

The present invention seeks to provide a low cost and
efficient mapping system which allows the quick and
easy manipulation of and access to an extraordinary
amount of mapping information,i.e., a mapping system
which allows a user to quickly and easily access a de-
tailed map of any geographical area of the world.

Map information can be stored using at least three
different approaches, i.e., paper, analog storage and
digital storage, each approach having its own advan-
tages and disadvantages as detailed below.

The paper mapping approach has been aroundsince
papyrus and will probably exist for the next thousand
years.

Advantages of paper storage:
inexpensive.
once printed, no further processing is required to

access the map information,so not subject to processing
breakdown.

Disadvantages of paper storage:
can become bulky and unwieldy when dealing with a

large geographical area, or a large amount of maps.
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paper does not have the processing capabilities or
“intelligence” of computers, and therefore does not
support automated search or data processing capabili-
ties.

cannot be updated cheaply and easily.
The analog mapping approach is used to provide

what is commonly knownas videodisc maps. Theinfor-
mation is storedas still frames under N.T.S.C. (National
Television Standards Committee) conventions. To
make maps, a television camera moves across a paper
map lying on a workbench. Every few inches a frameis
recorded on videotape. After one row of the map is
completely recorded, the camera is moved downto the
next row of frames to be recorded. This processis re-
peated until frames representing a checkerboard pattern
of the entire map are recorded. The recorded videotape
could be used to view the map: however, access time to
scan to different areas of the recorded mapis usually
excessive. As a result, a videodisc, with its quicker ac-
cess time, is typically used as the medium for analog
map storage. The recorded videotape is sent to a pro-
duction house which “stamps” out 8 inch or 12 inch
diameter, videodiscs.

Advantages of the analog storage approach:
one side of a 12 inch videodisc can hold 54.000

“frames” of a paper map. A frameis typically equal to
23 X3 inches of the paper map.

access time to any frame can befast usually under 5
seconds.

once located on the videodisc, the recorded analog
map information will be used to control the raster scan
of a monitor and to produce a reproduction of the map
in 1/30th of a second.

through additional hardware and software, mapping
symbols, text and/or patterhsn can be overlaid on top of
the recorded frame.

Disadvantages of the analog storage approach:
the “frames” are photographed from paper maps,

which, as mentioned above, cannot be updated cheaply
or easily.

due to paper map projections, mechanical camera
movements, lens distortions and analog recording elec-
tronics, the videodisc image which is reproducedis not
as accurate as the original paper map.

as a result of the immediately above phenomena,
latitude and longitude information which is extracted
from the reproduced image cannotbefully trusted.

if a major error is made in recording any one ofthe
54,000 frames,it usually requires redoing and re-stamp-
ing.

since frames cannot be scrolled, most implementa-
tions employ a 50% overlap technique. This allows the
viewer to jump around the database with a degree of
visual continuity: however, this is at a sacrifice of stor-
age capacity. If the frame originally covered 243
inches or approximately 8 square inches of the paper
map, the redundant overlap information is 6 square
inches, leaving only 2 square inches of new information
in the centroid of each frame.

as a result of the immediately above deficiency, a
2X3 foot map containing 864 square inches would
require 432 frames; thus, only 125 paper maps could be
stored on oneside of a 12 inch videodisc. ;

must take hundreds of video screen dumps to make a
hard copy of a maparea of interest and, even then, the
screens do not immediately splice together because of
the overlap areas.
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the biggest disadvantageis that, since frames have to
be arranged in a checkerboard fashion, there is no way
to jump in directions other that north, south, east or
west and maintain visual continuity. As an example, the
visual discontinuity in viewing a “great circle” route
from Alaska to New York would be unbearable forall

but the most hearty.
The digital mapping approach has been aroundforat

least 20 years and is much morefrequently used than the
analog approach. Digital data bases are stored in com-
puters in a format similar to text of other databases.
Unlike map information on a videodisc, the outstanding
map features are stored asalist of objects to be drawn,
each object being defined by a plurality of vector “dot”
coordinates which define the crude outline of the ob-

ject. As one example, a road is drawn by connecting a
series of dots which were chosen to define the path(ie.,
the “outline”’) of the road. Once drawn,further data and
processing can be used to smooth the crudeoutline of
the object, place text, such as the nameor description of
the object in a mannersimilar to what happens when
drawing on a paper map.

Advantagesof the digital approach:
digital maps are the purest form of geographical map-

ping data: from them, paper and analog maps can be
produced. ‘

digital maps can be quickly and easily updated in near
real-time, and this updating can be in response to data
input from external sources(e.g., geographical monitor-
ing devices suchassatellite photography).

digital maps can be easily modified to effect desirable
mapping treatments such as uncluttering, enhancing,'
coloring, etc.

digital maps can be easily and accurately scaled, ro-
tated and drawn at any perspective view point.

digital maps can be caused to reproduce mapsin 3-D.
digital maps can drive pen-plotters (for easy paper

reproductions), robots, etc.
digital maps can be stored on any mass storage de-

vice.

Disadvantages of the digital approach:
digital maps require the use or creation of a digital

database: this is a very time-consuming and expensive
process, but once it is made, the data base can be very
easily copied and used for manydifferent projects.

The digital approach is utilized with the present in-
vention, as this approach provides overwhelming ad-
vantages over the above-described paper and analog
approaches.

In designing any mapping system, several features are
highly desirable:

First,it is highly desirable that the mapping system be
of low cost.

Second, and probably most important, is access time.
Notonly is it generally desirable that the desired map
section be accessible and displayed within a reasonable
amountof time, but in someinstances, this access timeis
critical.

In addition to the above, the present invention (as
mentioned above), seeks to provide a third important
feature,—a mapping system which allows the manipula-
tion of and access to an extraordinary amount of map-
ping information,i.e., a mapping system which allows a
user to quickly and easily access a detailed map of any
geographical area of the world.

A tremendous barrier is encountered in any attempt
to provide this third feature. In utilizing the digital
approach to map a large geographical area in detail
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(e.g., the earth), one should be able to appreciate that
the storage of mapping data sufficient to accurately
define all the geographical features would represent a
tremendous data base.

While there have been digital mapping implementa-
tions which have successfully been able to manipulate a
tremendous data base, these implementations involve
tremendous cost(i.e., for the operation and maintenance
of massive mainframe computer and data storage facili-
ties). Furthermore, there is much room for improve-
mentin terms of access time as these mainframe imple-
mentations result in access times which are only as
quick as 20 seconds. Thus,therestill exists a need for a
low-cost digital mapping system which can allow the
storage, manipulation and quick(i.e., “real time’) access
and visual display of a desired map section from a tre-
mendous mapping data base.

There are several additional mapping system features
which are attractive.

It is highly desirable that a mapping system be sensi-
tive to and compensate for distortions caused by map-
ping curved geographical (i.e., earth) surfaces onto a
flat, two-dimensional representation. While prior art
approaches have provided numerous methods with
varying degrees of success, there is a need for further
improvements which are particularly applicable to the
digital mapping system of the present invention.

It is additionally attractive for a mapping system to
easily allow a user to change his/her “relative viewing
position”, and that in changingthis relative position, the
change in the map display should reflect a feeling of
continuity. Note that the “relative viewing position
should be able to be changed in a numberofdifferent
ways. First, the mapping system should allow a user to
selectively cause the map display to scroll or “fly”
along the geographical map to view a different (i.e.,
“lateral”) position of the geographical map while main-
taining the same degree of resolution as the starting
position. Second, the mapping system should allow a
userto selectively vary the size of the geographical area
being displayed (.e., “zoom”’) whilestill maintaining an
appropriate degree of resolution, ie., allow a user to
selectively zoom to a higher “relative viewing position”
to view a larger geographical area with lower resolu-
tion regarding geographical, political and cultural char-
acteristics, or zoom to a lower“relative viewing posi-
tion” to view a smaller geographical area with higher
Tesolution. (Note that maintaining the appropriate
amountof resolution is important to avoid mapdisplays
whichare effectively barren or are cluttered with geo-
graphical, political and cultural features.) Again, while
prior art approaches have provided numerous methods
with varying degrees of success, there is a need for
further improvements whichare particularly applicable
to the digital mapping system of the present invention.

Thefinal feature concerns compatibility with existing
mapping formats. As mentioned above,the creation of a
digital database is a very tedious, time-consuming and
expensive process. Tremendous bodies of mapping data
are available from many important mapping authorities,
for example, the U.S. Geological Survey (USGS), De-
fense Mapping Agency (DMA), National Aeronautics
and Space Administration (NASA), etc. In terms of
both being able to easily utilize the mapping data pro-
duced by these agencies, and represent an attractive
mapping system to these mapping agencies, it would be
highly desirable for a mapping system to be compatible
with all of the mapping formats used by these respective
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6
agencies. Prior art mapping systems havebeen deficient
in this regard; hence,therestill exists a need for such a
mapping system.

SUMMARYOF THE INVENTION

The present invention provides a digital mapping
method and system of a unique implementation to sat-
isfy the aforementioned needs.

The present invention provides a computer imple-
mented method and system for manipulating and ac-
cessing digital mapping data in a tremendousdata base,
and for the reproduction and display of electronic dis-
play maps whichare representative of the geographical,
political and cultural features of a selected geographical
area. The system includes a digital computer, a mass
storage device (optical or magnetic), a graphics moni-
tor, a graphics controller, a pointing device, such as a
mouse, and a unique approach for structuring, manag-
ing, controlling and displaying the digital map data.

The global map generating system organizes the map-
ping data into a hierarchy of successive magnitudes or
levels for presentation of the mapping data with vari-
able resolution, starting from a first or highest magni-
tude with lowest resolution and progressing to a last or
lowest magnitude with highest resolution. The idea of
this hierarchical structure can be likened to a pyramid
with fewer stones or “tiles” at the top, and where each
successive descending horizontal level or magnitude
contains four times as many “tiles” as the level or mag-
nitude directly above it. The top or first level of the
pyramid contains 4 tiles, the second level contains 16
tiles, the third contains 64 tiles and so on, such that the
base of a 16 magnitude or level pyramid would contain
4 to the 16th power or 4,294,967,296 tiles. This total
includes “hyperspace” which is later clipped or ig-
nored. Hyperspace is that excess imaginary spaceleft
over from mapping of 360 deg, space to a zero magni-
tude virtual or imaginary space of 512 deg, square.

A first object of the present invention is to provide a
digital mapping method and system which are of low
cost.

A second and more important object of the present
invention is to provide a unique digital mapping method
and system which allow access to a display of the geo-
graphical, political and cultural features of a selected
geographical area within a minimum amountoftime.

A third object of the present invention is to provide a
digital mapping method and system which allow the
manipulation of and access to an extraordinary amount
of mapping information, i.e., a mapping method and
system which allow a user to quickly and easily access
a detailed map of any geographical area of the world.

Anotherobject of the present invention is to provide
a digital mapping method and system which recognize
and compensate for distortion introduced by the repre-
sentation of curved (i.e., earth) surfaces onto a flat two-
dimensional display.

Still a further object of the present invention is to
provide a digital mapping method and system which
allow a user to selectively change his/her “relative
viewing position”, i.e., to cause the display monitor to
scroll or “fly” to display a different “lateral” mapping
position of the same resolution, and to cause the display
monitor to “zoom” to a higher or lower position to
display a greater or smaller geographical area, with an
appropriate degree of resolution.

A fifth object of the present invention is to provide a
digital mapping method and system utilizing a unique
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mapping graticule system which allows mapping data
to be compatibly adopted from several widely utilized
mapping graticule systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, structures and fea-
tures of the present invention will become more appar-
ent from the following detailed description of the pre-
ferred mode for carrying out the invention; in the de-
scription to follow, reference will be made to the ac-
companying drawings in which:

FIG.1is an illustration corresponding to a flat pro-
jection of the earth’s surface.

FIG,2 is an illustration of a digital computer and
mass storage devices which can be utilized in imple-
menting the present invention.

FIGS. 3A-3Fareillustrations of monitor displays
showing the ability of the present invention to display
varying sizes of geographical areas at varying degrees
of resolution.

FIG.4 is a cross-sectional diagram of a simple build-
ing example explaining the operation of the present
invention.

FIG. 5A and B are plan view representations of a
paper 450 as it is viewed from the relative viewing
position A shownin FIG.4.

FIG.6 is a plan view representation of a paper 450 as
it is viewed from the relative viewing position B shown
in FIG. 4.

FIG.7 is a plan view representation of a paper 450 as
it is viewed from the relative viewing position C shown
in FIG.4.

FIG.8 is a pyramidal hierarchy of the data basefile
structure showing an example of the ancestry which
exits between files.

FIG.9A is a plan view representation of a paper 450,
with the paper being divided into a first level of quad-
rant areas.

FIG.9B is an illustration of a monitor displaying a
digital map of the area enclosed by the dashed portions
in FIG. 9A.

FIG. 10A is a plan view representation of a paper
450, with the upper-left and lower-right paper quadrant
areas being further divided into quadrants.

FIG.10B is an illustration of a monitor displaying a
digital map of the area enclosed by the upper-left
dashed portion in FIG. 10A.

FIG. 11A is a plan view representation of a paper
450, with several sections of the second level of quad-
rants being further divided into additional quadrants.

FIG. 11B is a higher resolution display of the area
enclosed within the dashed portion in FIG. 11A.

FIG.12 is a plan viewillustration of a quadrant area
division, with a two-bit naming protocol being assigned
to each of the quadrant areas.

FIG.13 is a pyramidal hierarchy ofthe data base files
using the two-bit naming protocol of FIG. 12, and
showing an example of the ancestry which exits be-
tweenfiles.

FIG.14is a plan view illustration of a 360° x 180° flat
projection of the earth being impressed in the
512° 512° mapping area of the present invention, with
a first quadrant division dividing the mapping area into
four equal 250° x 256° mapping areas.

FIG.15 is the same plan view illustration of FIG.14,
with a second quadrant division dividing the mapping
area into 16 equal 126° 128° mappingareas.
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FIG.16 is the same plan view illustration of FIG. 15,
with a third quadrant division dividing the mapping
area into 64 equal 64° x 64° mappingareas.

FIG.17 is the same plan view illustration of FIG. 16,
with a fourth quadrant division dividing the mapping
area into 256 equal 32° 32° mappingareas.

FIG.18 is the same plan view illustration of FIG. 17,
with a fifth quadrant division dividing the mapping area
into 1024 equal 16° < 16° mapping areas.

FIG.19 is the same plan view illustration of FIG.18,
with a sixth quadrant division dividing the mapping
area into 4096 equal 8° 8° mapping areas.

FIG.20is an illustration showing the application of
polar compression at the 8th level or magnitudeof reso-
lution.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTSOF THE

INVENTION

Before turning to the detailed description of the pre-
ferred embodiments of the invention, it should be noted
that the mapillustrations used throughout the drawings
are only crude approximations which are only being
used to illustrate important features and aspects and the
operation of the present invention; therefore. the geo-
graphical political and cultural outlines may very well
differ from actual outlines.

FIG.1 is a crude representation of what the earth’s
surface would look like if it were laid flat and viewed

from a “relative viewing position” which is a great
distance in space. Shownas vertical lines are: 10, corre-
sponding to the 0° meridian extending through Green-
wich, England; 20, corresponding to the 180° west me-
ridian: and, 30, corresponding to the 180° east meridian.
Shownashorizontal lines are: 40, corresponding to the
equator: 50, corresponding to 90° north (i.e.. the north
pole): and 60, corresponding to 90° south (i.e.. the south
pole).

Note that at this “relative viewing position”, not
much detail as to cultural featuresis seen;i.e., all that is
seen is the general outline of the main geographical
masses of the continents.

The present invention seeks to provide a low cost and
efficient computer-based mapping method and system
having a unique approachfor arranging and accessing a
digital mapping database of unlimited size, i.e., a map-
ping method and system which can manipulate and
access a data base having sufficient data to allow the
mapping system to reproduce digital maps of any geo-
graphical area with different degrees of resolution. This
can be most easily understood by viewing FIG. 2 and
FIGS. 3A-F.

Because of the overwhelming advantages over the
paper and analog mapping approaches,the digital map-
ping approach is utilized with the present invention;
thus, there is shown in FIG. 2, a digital computer 200,
having a disk or hard drive 280, a monitor 210, a key-
board 220 (having a cursor control portion 230), and a
mouse device 240. As mentioned previously,in a digital
mapping approach, mapping information is stored in a
format similar to the text of other databases, i.e., the
outstanding map featuresare stored asa list of objects to
be drawn, each object being defined by a plurality of
vector “dot” coordinates which define the crude out-

line of the object. (Note: the reproduction ofa digital
map from a list of objects and “dot” vectors is well
knowntheart, andis not the subject matter of the pres-
ent invention; instead, the invention relates to a unique
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method and system for storing and accessingthelist of
objects and “dot” vectors contained in a tremendous
digital data base.)

Once a geographical map has been “digitized”,—i.e.,
convertedto a list of objects to be drawn andaplurality
of vector “dot” coordinates which define the crude

outline of the object —, the mapping database must be
stored in the memory of a mass storage device. Thus,
the digital computer 200, which is to be used with the
mapping method and system of the the present inven-
tion, is shown associated with the magnetic disk 260
(which represents any well-known magnetic mass stor-
age medium, e.g., floppy disks, hard disks. magnetic
tape,etc.), and the CD-ROM 270 (whichrepresents any
well-known optical storage medium, e.g. a laser-read
compact disk). Alternatively, the digital mapping data-
base can be stored on, and the digital computer can be
associated with any well known electronic mass storage
memory medium (e.g., ROM, RAM,etc.). Because of
every increasing availability. reductions in cost, and
tremendous storage capacities, the preferred memory
mass storage medium is the CD-ROM,i.e., a laser-read
compactdisk.

The discussion now turns to FIGS. 3A-F, showing
illustrations of monitor displays which provide a brief
illustration of the operation of the present invention.
Although the digital nature of the maps of FIGS.
3A-3Fcan easily be detected due to the jagged outlines,
it should be understood that these geographical outlines
could easily be smoothed using any of a number of
“smoothing” techniques which are well-knownto those
skilled in the digital mapping art.

In FIG.3A. the digital computer has retrieved rele-
vant mapping information from the digital mapping
database, and has produced a monitor display of a digi-
tal map substantially corresponding to the flat projec-
tion of the earth’s surface which was shownin FIG.1.

In FIG. 3A, the monitor display reflects a “relative
viewing position” which is a great distance in space,
and hence, only the crude geographical outline of the
continents is shown with sparse detail.

Suppose a user wishes to view a mapofthestates of
Virginia and Marylandin greater detail. By entering the
appropriate commands using the keyboard 220 or the
mouse device 240, a user can cause the monitor display
to “zoom” to a lower “relative viewing position’, such
that the monitor displays a digital map of a smaller
geographical area which is shownat a higher degree of
resolution. Thus, in FIG. 3B the a digital map of the
continents of the western hemisphere is displayed in
greater detail.

By entering additional commands, a user can cause
the monitor display to further “zoom”to the following
displays: FIG. 3C showing North America in greater
detail; FIG. 3D showing the eastern half of the United
States in greater detail: FIG. 3E showing the east coast
of the United States in greater detail; and. FIG. 3F
showing Virginia and Marylandin greaterdetail.

Although in this example, the monitor display was
caused to “zoom” to Virginia and Maryland,it should,
be appreciated that the present invention allowed a user
to selectively zoom into any geographical area of the
earth, and once a user has reached the desired degree of
mapping resolution, the mapping system of the present
invention also allows the user to “scroll” or “fly” to a
different lateral position on the map.

Furthermore, although the drawings illustrate the
monitor display zooming to display state boundaries,
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and features, it should be further appreciated that the
present invention is by no meanslimited to this degree
of resolution. In fact, the degree of resolution capable
with the present invention will be shown to be limited
only by the operating system of the digital computer
200 with which the present invention is used. In one
demonstration, the monitor display has been shown to
be able to zoom to resolution where the outlines of

streets were displayed. Even further degrees of resolu-
tion are possible as will be more fully understood after
the discussions below.

In digitally mapping a large geographicalarea (e.g.,
the earth) in detail, —especially in the degree of resolu-
tion mentioned above —, one should be able to appreci-
ate that the storage of digital mapping datasufficient to
accurately define all the geographical, political and
cultural features would represent a tremendousdigital
mapping database. In order to provide a low cost map-
ping system having quick access time and allowing a
high degree of resolution, what is needed is a mapping
system having an effective approach for arranging an
accessing the digital database. Prior art mapping sys-
tems have been deficient in this regard.

The mapping system ofthe present inventionutilizes
a new and extremely effective approach, which can be
most easily understood using the following simplified
example.

In FIG.4, there is shown the cross-section of a build-
ing 400, with a square hole 410 (shownin cross-section)
cut through the third level floor 420. with a larger
square hole 430 (shownin cross-section) cut in the sec-

- ond level floor 440, and with a large square piece of
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paper 450 (shownin cross-section) laid out on the first
level floor 460. Suppose it was desired to build up a
digital data base which could be used to reproduce a
digital map of the paper 450 with varying degrees of
resolution.

First, one would take the “relative viewing position”
A, and view the paper 450 through the square hole 410
in the third level floor 420. At this level. the paper 450
appears small (FIG. 5A), and the degree of resolution is
such that the message appears only asaseries of dots. In
order to build up a digital mapping database, the visual
perception (FIG. 5A) is imagined to be divided into
four equal quadrants a, b, c, d (FIG. 5B), and visual
features appearing in each respective area is digitized
and stored in a separate database file. Thus, four sepa-
rate database files can be utilized to reproducea digital
map of the paper 450 as viewed from position A (FIG.
4)

In orderto digitize and record data corresponding to
a second(or higher) degree ofresolution, the next “rela-
tive viewing position” B (FIG.4) is taken to view the
paper 450 through the square hole 430. At this level, the
paper 450 appears larger (FIG. 6), and the degree of
resolution is such that the message now appears as a
series of lines. At this second level, the map is imagined
as being divided into four times as many areas as the
first imaginary division, and then, the visual information
contained within each area is digitized and stored in a
separate database file. Thus, 16 files can be used to
reproduce a digital map of the paper 450, as viewed
from the relative viewing position B (FIG.4).

In orderto digitize and record data corresponding to
a third (or higher) degree of resolution. the next “rela-
tive viewing position” C (FIG.4) is taken to view the
paper 450. At this level, paper 450 now appearslarger
(FIG. 7) and has visual features of higher resolution.
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The paper 450 is imagined as being divided into four
times as many areas as the second imaginary division,
and the visual informationis digitized.and stored. Thus,
64 files could be used to reproduce a digital map of the
paper 450, as viewed from therelative viewing position
C FIG. 4).

Oncedigital data has been entered for the abovethree
“relative viewing positions” A, B, C (FIG. 4), the digi-
tal mapping database contains 4+16+64 or 84 files
which can be conceptually envisioned as being ar-
ranged in a pyramid structure as shown in FIG.8. In
orderto allow a user to selectively display any desired
map section at the desired degree of resolution, the
digital computer 200 must be able to know which of the
84 files to access such that the appropriate mapping data
can be obtained. The present invention accomplishes
this by conceptually arranging the files in a pyramidal
structure, and assigning a file name to each file which is
related both to thefile’s position and ancestry within the
pyramidal structure. This can be morespecifically de-
scribed as follows:

A file’s ancestry can be explained using theillustra-
tions of FIGS. 5B, 6 and 7. In FIG. 5B, the paper 450,
as viewed from “relative viewing position” A (FIG.4),
is subjected to an imaginary division into four quadrants
a, b, c, and d: Quadrants a, b, c, d are related to one
anotherin the sense thatit takes all four areas to repre-
sent the paper 450: hence quadrants a, b, c, d can be
termed as brothers andsisters.

FIG.6 is an illustration of the paper 450 as it appears
from the relative viewing position B (FIG.4). with the
paper 450 being subjected to an imaginary division into
16 areas. Note that the arease, f, g, h (FIG. 6) represent
the same area of paper 450 as the quadrant a (FIG. 5B).
In effect, quadrant a has been enlarged (to show a
higher degree of resolution) and divided into quadrants
e, f, g, h. Thus, it can be said that quadrant a (FIG. 5B)
is the parent, and that quadrantse, f, g, h (FIG. 6) are
brothers and sisters and the offspring of ancestor a.
Similar discussions can be made for quadrants b, c and
d and the remaining area of FIG.6.

FIG.7 is an illustration of the paper 450 asit appears
from the relative viewing position C (FIG.4). with the
paper 450 being subjected to an imaginary division into
64 areas. In a mannersimilar to the discussion above,
note that areas s, t, w, x (FIG. 7) represent the same area
of paper 450 as the quadrant h (FIG.6). In effect, quad-
rant h has been enlarged (to show a higher degree of
resolution) and divided into quadrantss,t, w, x. Thus,it
can be said that quadrant a (FIG. 5B) is the grandpar-
ent, quadrant h (FIG.6) is the parent, and quadrantss,
t, w, x (FIG.7) are the brothers andsisters and offspring
of ancestors a and h.

As described previously, once FIGS. 5B, 6 and 7 are
subjected to the imaginary divisions, the visual informa-
tion in each area (or quadrant) is digitized and stored in
a separatefile. The 84 resulting files can be conceptually
envisioned as the pyramidal structure shownin FIG.8.
In FIG.8, dashed lines are utilized to show the lineage
of the files just discussed.

FIG.8 is further exemplary ofonefile naming opera-
tion which can be utilized with the present invention.

At the top of the pyramidal structure (FIG. 8). each
of the four quadrantfiles is arbitrarily assigned a differ-
ent character. A, B, C, D, (Note: The characters as-
signed are notcritical with regard to the invention and
hence it should be noted that any characters can be
assigned, e.g., 0,1,2,3, etc.)
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In moving down one level in the pyramidal struc-
ture,, the filenames for each ofthe respectivefiles on the
second level is increased to two characters.

In calculating the filenames, it is convenient to first
divide the secondlevelfiles into groups of four, accord-
ing to parentage. To maintain a record of ancestry, the
ancestor filename of each file is maintained as the first

part ofthe filename. In determining the secondpart, the
naming protocol which was utilized to name the quad-
rant files of the top level, is also utilized in naming the
respective quadrant files on the second level. Thus,
parent file A is shown as being related to descendent
(i.e., brother and sister) files AA, AB, AC, AD. Similar
discussion can be made for the remaining files along
these twolevel.

A similar process can be utilized in providing the
unique filenamesto the third level files. At this level, the
filenames consist of three characters. Again, the ances-
tor filename of each file would be maintained asa first

filenamepart, in order to maintain a record ofancestry.
In the example illustrated (FIG. 8), parent file AD is
shown as being related to descendent(i.e., brother and
sister) files ADA, ADB, ADC, ADD.Similar discus-
sions can be made for the remaining files along these
twolevels, and furthermore, similar discussions can be
made each time a pyramidallevel is added.

From the above discussion, one should be able to
realize that the above-described naming convention is
particularly useful in programming a digital computer
to move through the pyramidal file structure to access
the appropriate data corresponding to varying degrees
of resolution. More particularly, one should be able to
realize that, since file names increase one character in
length each time there is a downward movement
through the pyramidal structure and the protocol for
naming descendent files is known, the digital computer
can be programmed to quickly and easily access the
appropriate files for a smaller mapping area with a
greater degree of resolution. Similarly, one should be
able to realize that, since the filenames decrease one
character in length each timethere is.an upward move-
ment through the pyramidal structure, the digital com-
puter can be programmed to quickly and easily access
the appropriate files for a greater mapping area with a
smaller degree of resolution.

The following example is believed to provide an
increase in the understanding of the present invention.

In the example,it is assumed that the digital database
corresponding to the three resolutions of the paper 450
(as shownin FIGS. 4, 5A-B,6, 7) have been loaded to
be accessible from the memory massstorage device, and
furthermore, it is assumed that the mapping system is
programmedtoinitially access and display a digital map
correspondingto the digital mapping data in thefiles A,
B, C, D (FIG.8). Thus, the monitor (FIG. 9B) would
display (in low resolution) the entire area enclosed
within dashed portion 900 illustrated on the paper 450
(FIG. 9A). (Note: The reproduction of a digital map
from digital data from several differentfiles or sources
is well-knownin theart and is not the subject matter of
the present invention.)

Suppose the user notices the dotted area on the low
resolution map and wishes to investigate this area fur-
ther. By using the appropriate keys (e.g. .,7,17,~)
and/or a mouse device, a user can give the mapping
system an indication that he/she wishes to see the
smaller area (i.e., quadrant A) at a higher degree of
resolution. Uponreceiving this preference, the mapping
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system can use its knowledgeofthe file naming opera-
tions to quickly determine the namesofthe files which
must be accessed. More specifically, using A as the
parent file name and following the existing quadrant
naming protocol the mapping system is quickly and
easily able to calculatethatit is files AA, AB. AC, AD
which it needs to access. Oncethese files are accessed,
the monitor in FIG. 10B displays (in higher resolution)
the area enclosed within the dashed portion 1000 as
illustrated on the paper 450 (FIG. 10A).

If a useris still not satisfied with the degree of map-
ping resolution, the user can again use the appropriate
keys or mouse device to indicate that he/she wishes to
see the smaller area (e.g., quadrant D; FIG. 10A) in a
higher degree of resolution. In using AD as the parent
filename and following the existing quadrant naming
protocol, the mapping system is quickly and easily able
to calculate that it is files ADA, ADB, ADC, ADD
which it needs to access. Oncethese files are accessed,
the monitor (FIG. 11B) displays (in higher resolution),
the area enclosed within the dashed portion 1100 as
illustrated on the paper 450 (FIG. 11A).

Oneskilled in the digital mapping and computerpro-
gramming art should recognizethat “‘scrolling” or “fly-
ing” to different lateral “relative viewing positions” to
display a different lateral portion of the map is also
provided by the present invention. Instead of adding or
removing filename characters as in a change ofresolu-
tion, in this instance, the mapping system must be pro-
grammed to keep track of the filenames of the current
position and also, the orderly arrangementof filenames
so that the appropriate filenames corresponding to the
desired lateral position can be determined. As an exam-
ple if the user desired to scroll to the right border of the
paper 450, the mapping system would respond by ac-
cessing and causing the monitor to display the digital
maps corresponding to the following sequenceoffiles:
(Note: In this example,it is assumed that it takes 4 files
to provide sufficient digital data to display a full digital
map on a monitor) ADA, ADB, ADC, ADD; ADB,
ADD, BCA, BCC; BCA, BCB, BCC, BCD; BCB,
BCD, BDA, BDC; and BDA, BDB, BDC, BDD.If the
user, then desired to scroll to the bottom (right corner)
of the paper 450, the mapping system would respond by
accessing and causing the monitorto display the digital
maps corresponding to the following files: BDA, BDB,
BDC, BDD; BDC, BDD, DBA, DBB; DBA, DBB,
DBC. DBD; DBC, DBD, DDH, DDB; DDA, DDB,
DDC, DDD.In effect as all of the files in the above
example correspond to the same level of resolution all
these files (and any group of files which exist on the
same level of resolution) can be taken as being related as
cousins.

FIGS.9A, 10A, 11A can also be used to illustrate the
operation of moving toward the display of a larger
mapping area with a lower degree of resolution.

Assumethatafter lateral “scrolling” or “flying”, that
the monitor is now displaying (not shown)a digital map
corresponding to the enclosed area 1110 shownin FIG.
11A.(Note: at this position the mapping system is ac-
cessing and display a digital map corresponding to the
digital data in the files DCA, DCB, DCC, DCD). Sup-
pose the user now wishes to cause the “relative viewing
position” to zoom upward, such that the monitor will
display a larger portion of the paper 450 at a lower
degreeof resolution. By using the appropriate keys or a
mouse device, the user indicates his/her preference to
the mapping system. Upon receiving this preference,
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the mapping system is programmed to quickly deter-
mine the names of the files which must be accessed.

Morespecifically, the mapping system is able to look at
the first portion of the filenames currently being used
(.e., DCA, DCB, DCC, DCD), to immediately deter-
mine that these files have the ancestry DC,i.e., have a
grandfather D and a parent DC. The mapping system
then immediately determines brother andsister files of
parentfile DC as being DA, DB and DD.The mapping
system then accesses these files and causes the monitor
to display a digital map (not shown) corresponding to
the enclosed portion 1010 (FIG. 10A)of the paper 450.

Suppose the user again indicate a preference to cause
the “relative viewing position” zoom upward. Upon
receiving this preference, the mapping system again
goes through a process similar to that discussed immedi-
ately above. However, this time the mapping system
looks at the filenames currently being used (i.e., DA,
DB, DC, DD) and determines that parent file D has
brotherandsister files A, B and C. The mapping system
then immediately accesses these files and causes the
monitor to display a digital map (FIG. 9B) correspond-
ing to the enclosed portion 900 (FIG. 9A) of the paper
450.

The text now turns to a description of the operation
for assigning uniquefilenames in the currently preferred
embodiment,i.e., in a digital mapping system which is
implemented in a DOS operating system.

As anyone skilled in the computer art will know.
every computer operating system has its own uniqueset
of rules which must be followed. In an implementation
of the present invention in a DOS operating system. the
DOSrules must be followed. Since a critical feature of

the present invention is the division of the digital map-
ping database into a plurality of files (each having a
unique filename), of particular concern with the present
invention is the DOS rules regarding the naming of
filenames.

A DOSfilename may be up to eight (8) characters
long, and furthermore. may contain three (3) additional
trailing characters which can representa file specifica-
tion. Thus, a valid DOS filename can be represented by
the following form:

where can be replaced by any ASCII character
(including blanks), except for the following ASCII
characters:

se

“NUDE <> ts,
and ASCII characters below 20H. The currently pre-
ferred embodiment stays within these DOS filename
rules by using the file naming operations which are
detailed below.

Because the assigned filenames will be seen to be
related to hexadecimais, a useful chart containing the
hexadecimal base andalso a conversionlist (which will
be shown to be convenient ahead), is reproduced below:

 
Column 1 Column 2 Column 3

0000 0 G
0001 1 H
0010 2 I
0011 3 J
0100 4 K
o101 5 L
O110 6 M
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-continued

Column 1 Column 2 Column 3

Ollt 7 N
1000 8 oO
1001 9 P
1010 A Q
1011 B R
1100 c Ss
1101 D T
1110 E U
11li F Vv 

The first column containsa list of all the possible 4-bit
binary combinations: the second column contains the
hexadecimal equivalent of these binary numbers: and
the third column concerns a “mutant-hex” conversions

which wili be shownto be importantin the discussion to
follow. In the operatidns to assign unique filenames for
use in a DOS operating system, the present invention
looks at each of the eight DOSfilenamecharacters as
hexadecimal characters rather than ASCII characters.

Hence, while the following discussion will center
around determining uniquefilenames using hexadecimal
(and “mutant-hexadecimal’’) characters, it should be
understood in an actual DOS implementation, the hexa-
decimal filenames must be further converted into the

equivalent ASCII characters such that the appropriate
DOSfile namingrules are followed.

At this point, it is also useful to note that the file
naming operation of the preferred embodiment is not
concerned with the trailing three character filename
extension. However,it should be further noted that this
three character filename extension may proveuseful in
specifying data from different sources, and allowing the
different types of data to reside in the same database. As
examples, the filename extension “.spm” might specify
data from scanned paper maps, the filename extension
“si” might specify data from satellite imagery, the file-
nameextension “.ged” might specify gridded elevation
data,etc.

As a result of the foregoing and following discus-
sions, it will be seen that the naming operation of the
preferred embodiment is concerned only with a file-
name of the following form:

whereeach ‘“—” represents a character whichis a hexa-
decimal character within the character set of “0-9” and
“A-F”, or is a “mutant-hexadecimal” character within
the character set of “G-V”.

Several more important file naming details should be
discussed.

First, it should be pointed out that thefirst four (4)
filename characters is designated as corresponding to
the “x” coordinate characters, and thelast four (4) file-
namecharacters are designated as corresponding to the
“y” coordinate characters.

Second, during the file naming operations, often it is
necessary to convert the filename characters into the
equivalent binary representation. As each hexadecimal
character can be converted into a four bit binary num-
ber, it can be seen that the first four (4) filename charac-
ters (designated as “x” coordinate characters) can be
converted into sixteen (16) binary bits designated as “x”
bits, and similarly, that the last four (4) filename charac-
ters (designated as “‘y” coordinate characters) can be
converted into sixteen (16) binary bits designated as “y”
bits. As will become more apparent ahead, each of these
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sixteen (16) “x” and “y” bits correspondsto a filename
bit which can be manipulated whenassigning filenames
at a corresponding magnitudeor level of mapping reso-
lution,e.g., the first “x” and first “‘y” bits correspond to
filename bits which can be manipulated whenassigning
unique filenamesat the first magnitude, the second “x”
and second “y” bits correspond to filename bits which
can be manipulated when assigning unique filenames at
the second magnitude, etc.

Third, FIG. 12 corresponds to the naming protocols
which are utilized to modify and relate a parent file-
nameto four (4) quadrant filenames. Note that there is
a two-bit naming protocolin each of the quadrantfiles.
As will become more clear ahead, thefirst bit of each
protocol determines whether the current “x” filename
bit will be modified (i.e., if the first protocol bit is a “1”,
the current “x”filenamebit is changed to a “1”, and if
first protocolbit is a “0”, the current “x”filenamebit is
maintained as a “0”), and the second bit determines
whether the current “y” filename bit will be modified
(in a similar manner).

The text now turnstoafile naming example whichis
believed to provide further teachings and clarity to the
currently preferred file naming operation.

FIG.13is anillustration of a portion of the preferred
digital data base, with the plurality of files (partially
shown) being arranged in a conceptual pyramidal man-
ner in a manner similar to that which was described

with reference to FIG. 8. More specifically, there are
shownfourfiles 1300 having digital data corresponding
to a first level or magnitude of mapping resolution,
sixteen files 1310 having digital data corresponding to a
second level or magnitude of mappingresolution, sixty-
four files 1320 having digital data corresponding to a
third level or magnitude of mapping resolution, and a
partial cut-awayof a plurality of files 1330 having data
corresponding to a fourth level or magnitude of map-
ping resolution. Although not shown,it is to be under-
stood that, in the preferred embodiment, additional
pyramidal structure corresponding to levies magnitudes
five throughsixteen similarly exist. As examples of the
file naming operation, filenames will now be calculated
for the files which essentially occupy the same positions
as the files which were outlined in FIG.8.

We begin with the initializing eight (8) character
filename:

 

 

which can be converted to the binary equivalent:
 
0000 ~=69000 «40000 «=860000=:0000-s—«ikkdk0—s—“éaw—“=eés«é IW 

This binary representation is the basic foundation which
will be used to calculate all of the filenamesforthefiles

onthefirst level (1300). Note, that the first and last four
filename characters, and thefirst and last sixteen bits are

slightly separated in order to conveniently distinguish
the “x” and “y” coordinate characters and bits. Both the
first (leftmost) “x” bit and thefirst (leftmost) “y” bit are
the bits which can be manipulated in assigning a unique
filenameto the files on thefirst level.

File naming begins with the first (upper-rightmost)
file on the first level 1300. The naming protocol as-
signed to this quadrantfile is the two-bit protocol 10”.
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Asthe first protocol bit is a “1”, this means that the
current“x” bit must be changed to a “1”. As the second
protocolbit is a “0”, this means that the current “y”bit
is maintained as a “O”. As a result of the foregoing, the
first (upper-rightmost) file is assigned the filename hav-
ing the binary equivalentof:

1000 ~=0000 «40000 §=©0000-—(0k00—sii—i—‘—a—tiéiéED

which can be converted to the hex characters:

 

 

In proceeding clockwise, next is the second (lower-
rightmost) file on the first level 1300. The naming pro-
tocol assigned to this quadrantfile is the two-bit proto-
col “11”. As the first protocol bit is a “1”, the current
“x” bit is changed to a “1”: similarly, as the second
protocol bit is a “1”, the current “y”bit is changed to a
“1”, As a result of the foregoing, the second (lower-
rightmost) file is assigned the filename having the bi-
nary equivalentof:

 

Continuing clockwise, next is the third (lower-left-
most) file on the first level 1300. The naming protocol
assigned to this quadrant file is the two-bit protocol
“01”. As the first protocol bit is a “0”, the current “x”
bit is maintained at 0. As the second protocolbit is a
“1”, the current “y”bit is changed to a “1”. As a result
of the foregoing. the third (lower-leftmost) file is as-
signed the filename having the binary equivalentof:

1000 0000 0000 0000
 
0000 ©0000 380000 0000

which can be converted to the hex characters:

 

Finally, there is the fourth (upper-leftmost)file on the
first level 1300. The naming protocol assigned to this
quadrantis the two-bit protocol “00”. As neither of the
protocolbits is a “1”, it can be easily seen that neither of
the current “x” and “y” bits changes, and hence, the
fourth (upper-leftmost) file is assigned the filename
having the binary equivalentof:

0000 «=60000 «20000 0000-—s—i“tk—“‘tiC(iSC“‘éiéOD

which can be converted to the hex characters:

 

In further discussions of the example, it is important
to note that the initializing (8) character filename of
0000 0000 (which was utilized to calculate the filenames
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of the files on the first level 1300) is not utilized in as-
signing filenames on subsequent levels. In namingfiles
from the second level or magnitude downward, the
binary equivalent of the parentfile’s nameis utilized as
the foundation from which the descendentfile’s nameis

derived. It is only coincidental that the filename of the
parent file 00000000 (located in the user-left most cor-
ner of the first level 1300) is the sameas theinitializing
filename. Use of the parent’s filename to calculate the
descendent’s filename will become morereadily appar-
ent ahead in the example.

In continuing the file naming example, the fourth
(upper-leftmost) file (having filename 00000000) in the
first level 1300 can be viewed as being the parentfile of
the four (highlighted) quadrantfiles in the secondlevel
1310. As stated above, the binary equivalent of parent
file’s 00000000 nameis utilized as the foundation for

calculating the descendentfile’s filenames. At this sec-
ond level or magnitude, the second “x” and “y’’ bits
from theleft in the parent’s binary filenameare taken as
the “current” bits which can be manipulated to provide
a unique filename for the descendentfiles.

Asthe calculation of the filename for the fourth (up-
per-leftmost) file of the second level 1310 illustrates a
very important. modification in the file naming opera-
tion, the example will first continue with discussions
correspondingto thisfile. .

Asthe naming protocol assigned to the fourth (upper-
leftmost) file of the second level 1310 is two-bit proto-
col “00”, it can be seen that neither of the current ‘‘x”
and “y” bit would be changed. Hencethe parent’s file-
name 00000000 is unchanged, and is attempted to be
adopted as the descendent’s filename. However, note
that this is extremely undesirable as the operation of the
present invention is based on assigning each datafile a
unique filename, and furthermore, a DOS operation
system will not allow the samefilename to be assigned
to two different files. To avoid this clash. the preferred
file naming operation of the present invention incor-
prates a further step which can be detailed as follows:

First calculate the filename as explained above. Once
the binary filename is obtained, convert to the eight
character hexadecimal equivalent.

Next, take the decimal numberof the current level or
magnitude and subtract one (1) to result in a decimal
magnitude modifier. Convert the decimal magnitude
modifier into a four-bit binary magnitude modifier, and
line these four bits up with the four hexadecimal “x”
filename characters. Whenever a “1” appears in the
binary magnitude modifier. the corresponding aligned
“x” filename character is converted to a “mutant-hex-

adecimal” character. i.e., a decimal 16 value is added to
convert the aligned filename character into a one of the
“mutant-hexadecimal”characters in the characterset of
“G-V”’,

Conversions from a hexadecimal character to a “mu-

tant-hexadecimal” character can be most readily made
using the chart detailed above. As an example,if deci-
mal 16 is added to the hex character “0” (Column2),
there is a conversion to the “mutant-hexadecimal”char-

acter “G” (Column 3). Similarly, if decimal 16 is added
to the hex character ‘‘1”” (Column 2), there is a conver-
sion to the “‘mutant-hexadecimal” character “H” (Col-
umn 3). Similar discussion can be made for the remain-
ing hex and “mutant-hexadecimal characters in the
chart.

Once correspondingly aligned filename characters
are converted to “‘mutant-hexadecimal”, the resultant
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eight (8) characters correspondto thefile’s uniquefile-name.

The above processing will now be applied to the
fourth (upper-rightmost) file of the second level 1310
(which was recently discussed above). The resultant
binary filename:
 

0000 0000 0000 0000 0000) 40000) «6(0000)—_(0000 

is converted to the hex characters:

 

 

equivalent and is aligned with the “x” filename charac-
ters above, as follows:

 

 

Only the fourth bit of the binary magnitude modifier is
a “1”, so only the fourth “x” filename character needs
to be converted to “mutant-hexadecimal”. From the

chart, the hexadecimal character “0” is shown to con-
vert to a “mutant-hexadecimal” character “G”. Thus.

the unique filename which is assigned to the fourth
(upper-leftmost) file of the second level 1310,is:
 

G 0 0 0 0. 

In continuing the example to calculate the filename
for the first (upper-right-quadrant) file of the second
level 1310. it can be seen that this file is assigned the
two-bit naming protocol “10”. The first protocolbit is a
“1” which indicates that the current (second from the
left) “x” bit of the parentfile’s binary filename must be
changed to a “1”, In contrast, the second protocolbit is
a “0”, which indicates that the current (second from the
left) “y” bit is maintained as “0” Thus the parent file-name:

 
0000 0000 0000 0000 0000) 0000) 6(0000)=—(0000 

is converted to:

 
0100 0000 0000 0000 0000 0000 0000 0000 

which results in the hex characters:

 

The level or magnitude two (2) minus one(1) results in
a decimal magnitude modifier of one (1). The decimal
magnitude modifier is converted to the four-bit binary
equivalent andis aligned with the “x” filename charac-
ters above, as follows:
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Only the fourth bit of the binary magnitude modifieris
a “1”, so only the fourth “x” filename character needs
to be converted to “mutant-hexadecimal”’. From the

chart, the hexadecimal character “0” is shown to con-
vert to a “mutant-hexadecimal” character “G”. Thus,
the unique filename whichis assignedto thefirst (upper-
right-quadrant)file of the second level 1310,is:

G 0 0 0 0.

Turning now to the second (lower-right-quadrant) file,
this file is assigned the two-bit naming protocol “11”.
Thefirst protocol bit is a “1” which indicates that the
current (second from the left) “x” bit of the parentfile’s
binary filename must be changedto a “1”, and similarly,
the second protocolbit is a “1”, which indicates that the
current (second from theleft) “‘y” bit of the parentfile’s
binary filename must be changed to a “1” Thus the
parent filename:
 

0000 0000 0000 0000 0000 0000 0000)=0000

is converted to:

 

The level or magnitude two (2) minus one (1) results in
a decimal magnitude modifier of one (1). The decimal
magnitude modifier is converted to the four-bit binary
equivalent and is aligned with the “x” filename charac-
ters above, as follows:

 

 

Only the fourth bit of the binary magnitude modifier is
a “1”, so only the fourth “x” filename character needs
to be converted to ‘“mutant-hexadecimal’. From the

chart, the hexadecimal character ‘“‘0” is shown to con-
vert to a “mutant-hexadecimal” character “G”. Thus,
the unique filename which is assigned to the second
(lower-right quadrant)file of the second level 1310,is:
 

G 4 0 0 0. 

In applying the above operations to the third (lower-
left-quadrant) file of the second level 1310, it can be
easily calculated that the resultant filenameis:

 
G 4 0 0 0. 

The example of the file naming operation is further
extended to the third level or magnitude. as this exam-
ple is illustrative of both the use of the parent file’s
binary filename to calculate the descendent’s filename,
and the removal of “‘mutant-hexadecimal” conversions
before calculating the descendent’s filename.
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In FIG. 13. the third (ower-right-quadrant) file of
the secondlevel 1310 is shown as being the parentofthe
four (4) quadrantfiles highlighted in the third level or
magnitude 1320.

The discussion centers on the calculation of the

unique filename for the second (lower-right-quadrant)
file in the third level 1320. Before the parent filename
can be used as the foundation for calculating the descen-
dent’s filename. all “mutant-hexadecimal” conversions

must be removed. Thusthe parent filename:

 

 

4 0 0 G 4 0 0 0.

is converted back to:

4 0 0 0 4 0 0 0.

which is further converted to the binary equivalent:

0100 0000 0000 0000 0100 0000 0000 0000

In continuing the calculation, this second (lower-
right-quadrant)file is assigned the two-bit naming pro-
‘tocol “11”. The first protocol bit is a “1” which indi-
cates that the current (third from theleft) “x”bit of the
parentfile’s binary filename must be changed to a “1”,
and similarly, the second protocol bit is a “1”, which
indicates that the current (third from the left) “y’’ bit of
the parentfile’s binary filename must be changed to a
“1”, Thus the parent filename:

0100 0000 0000 O0O0OO 0100 000 0000 0000

is converted to:

0110 0000 0000 0000 0110 0000 0000 0000

which results in the hex characters:

 

The level or magnitude three (3) minus one (1) results in
a decimal magnitude modifier of two (2). The decimal
magnitude modifier is converted to the four-bit binary
equivalent and is aligned with the ‘“‘x” filename charac-
ters above, as follows:

Only the third bit of the binary magnitude modifieris a
“1”, so only the third “x” filename character needsto be
converted to “mutant-hexadecimal”. From the chart,
the hexadecimal character “0” is shown to convert to a
“mutant-hexadecimal” character “G”’. Thus, the unique
filename which is assigned to the second (lower-right-
quadrant) file of the third level 1320,is:
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Thefilenames for several additional third level files

will be given to give the patent reader further practice.
In applying the above operations to the first (upper-

right-quadrant) file of the third level 1320, it can be
easily calculated that the resultant filenameis:

G 0 4 0 0 0. 

In applying the above operationsto the third (ower-
left-quadrant) file of the third level 1320, it can be easily
calculated that the resultant filenameis:

G 0 6 0 0 0.

Finally, in applying the above operations to the
fourth (upper-left-quadrant)file of the third level 1320,
it can be easily calculated that the resultant filenameis:

As a result of all of the foregoing teachings, one
skilled in the art should now be able to calculate the

filename of any other of the 1.4 billion files which
would be required to provide digital maps correspond-
ing to sixteen (16) resolutions of any geographical area
on earth. Furthermore, oncea file is being accessed, by
understanding the rules and operations ofthe file nam-
ing operation one skilled in the are should be able to
calculate any otherrelated files, i.e., parent files. and
brother/sister/cousin files.

While the unique approach for storing and accessing
files in the pyramidal file structure has been particularly
pointed out. further discussion is needed as to an addi-
tional advantageous feature of the present invention.

As mentioned previously, the creation of a digital
database is a very tedious, time consuming and expen-
sive process. Tremendous bodies of mapping data are
available from many important mappingauthorities, for
example, the U.S. Geological Survey (USGS), Defense
Mapping Agency (DMA), National Aeronautics and
Space Administration (NASA), etc.

The maps and mapping information produced by the
aboverecited agencies, is always based on well estab-
lished mapping area divisions. As a few examples, the
Defense Mapping Agency (DMA)produces maps and
mapping information based on the following mapping
areas: GNC maps which are 2° 2°: JNC maps which
are 1° 1°; ONC maps which are 30’ 30’: TPC maps
which are 15’ x 15’; and JOG maps whichare 7.5’ 7.5’.
As a further example, the U.S. Geological Survey
(USGS)also produces mapsand utilizes mapping infor-
mation based on 15’ 15’ and 7.5’ 7.5’.

In terms of both being able to easily utilize the map-
ping data produced by these agencies, and represent an
attractive mapping system to these mapping agencies,it
would be highly desirable for the mapping system of the
present invention to be compatible with all of the map-
ping formats used by these respective agencies. Such is
not the case when the mapping database is based on a
gtaticule system corresponding to 360°

If one were to apply multiple quadrant divisions to
the 360° x 180° flat map projectionofthe earth (FIG.1).
one would result in the following mapping area subdivi-
sions:
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Level of quadrantdiv.: Resultant mapping area:

1 (4) 180° x 90°
2 (16) 90° x 45°
3 (64) 45° x 22.5°
4 (256) 22.5° x 11.25°
5 (1024) 11.25° x 5.625°

etc. 

Note that these mapping area subdivisions are very
awkward, and do not match any of the well settled
mapping area subdivisions. (It should be further noted
that no better results are obtained if the initial map
projection is imagined asbeing a 360°360° square
instead of a rectangle.)

In order to avoid these awkward mapping subdivi-
sions, and result in quadrant divisions which precisely
match widely used mapping area subdivisions, the pres-
ent invention utilizes a unique initial map projection.

Morespecifically, as can be seen in FIG. 14, the pres-
ent invention initially begins with a unique 512° 512°
initial map projection. Shown centered in the
512°512° map projection is the now familiar
360° x 180° flat projection of the surface of the earth.
Although the 512°X512° projection initially appears
awkward and a waste ofmap projection space, the great
advantages which are resultant from the use of this
projection will become moreapparentin the discussions
to follow.

To aid in this discussion, provided on the next pageis
a chart which details these important advantagesas well
as other useful information regarding the use of this map
projection.

15

24

less complicated, the non-DOSfile naming operation
will be used in the discussion.

The digital mapping of the earth surfaces begins in
FIG. 14. The visual perception of the earth surfacesis
experienced as being centered, and occupying only a
portion of the 512°512° projection. A first quadrant
division is applied to result in four equal 256° 256°
mapping areas. The visual information in each of the
areas is digitized, and stored in a separatefile, Thus,it
can be seen that one would haveto accessfourfiles a, b,
c, d in order to reproduce a digital map corresponding
to the earth surfaces as viewed from this “relative view-

ing position.”
Oneskilled in the art, might, at this point, wonderif

the massive blank portions of the 512° 512° projec-
tions result in large blank portions on the digital map
display. The preferred embodiment avoid this phenom-
ena, through a simple watchdog operation, i.e., the
computer is programmed to keep track of longitudinal
and latitudinal movements from aninitial position of 0°
longitude and 0° latitude, and the computer does not
allow scrolling of the monitor display beyond 90° north
or south.

Asto side to side movements, the computer allows
scrolling beyond 180° east or west by patching the ap-
propriate data files together to perform a “wrap
around” operation. Note that, with the knowledge of
the logical file naming operation, the computer can
quickly and easily calculate the appropriate files toaccess.

Before moving to the next level or magnitude of
mapping resolution, it is beneficial to note the corre-
spondence between our findings and the enties in the

MAGNITUDE EQUIVALENCY CHART FOR DELORME PROJECTION
Chart assumes69 statute miles per degree at equator

#
Windows/

Ht of MAG Pixel Data reso- Size of

MAG- \ window Ht of # w/polar resolution _lution(ft) Equivalent paper map
NI- Window Size statute window Windows com- 480 monitor 1024-based Paper Map__imageat

TUDE without overlap miles kilometers per MAG pression (ft) window Scales equator(in)
1 256° x 256° 17664 28421 4 4 91080
2 128° x 128° 8832 14211 8 8 45540
3 64° x 64° 4416 7105 24 24 48576 22770 1:100 million 2.8 & 2.8
4 32° x 32° 2208 3553 72 72 24288 11385 1:50 million 2.8 X 2.8
5 16° x 16° 1104 1776 288 288 8612144 5693 1:30 million 2.3 x 2.3
6 8° x 8° 552 888 1152 858 6072 2846 1:16 million 2.2 x 2.2
7 ex 4 276 444 4232 3432 3036 1423 1:10 million 1.7 X 1.7
8 2° x 2 138 222 16200 12808=:1518 712 1:5 million=1.7 x 1.7
9 I? x 1° 69 111 64800 51210 759 356 1:2 million 2.2 x 2.2

10 30’ X 30° “34.5 55.5 259000 204840 380 178 1:1 million 2.2 X 2.2
11 iS’ x 15’ 17,25 27.8 1036800 813600 190 89 1:500,000 2.2 x 2.2
12 LS X 7.5 8.625 13.9 4147200 3277440 95 44 1:250,000 2.2 « 2.2
13 3.75’ & 3.75’ 4.312 6.9 16588800 13109760 4TA 22 1:125,000 2.2 x 2.2

: 1:100,000 2.73 x 2.73
1:80,000 3.4 x 34

14 1.875’ X 1.875" 2.156 3.5 66355200 $2439040 23.7 11 1:62,500 2.2 x 2.2
1:50,000 2.73 x 2.73
1:40,000 3.4 x 3.4

15 0.9375’ x 0.9375’ 1.078 17 265420800 209756160 119 5.6 1:24,000 2.8 x 2.8
1:20,000 3.4 x 3.4

16 0.46875’ x 0.46875’ 0.539 0.9 1016683200 839024640 3.9 2.8 1:12,000 2.8 X 2.8

The best way to see the advantages of the 512° x 512°

above-indicated chart.

mapping projection, is to use it with the previously,
taught, quadrant division and pyrimidalfile structure to
show how this unique mapping projection can provide
digital maps of any geographical areas of the earth, with
16 levels or magnitudes of resolution. Asit is slightly
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In looking at the left-most column, and tracing down
to magnitude 1, note that the 256° x 256° window size
exactly matches our determination. Furthermore, note
that our findings is also in agreement with the number —
of widowsi.e., 4. It is also interesting to note from the
third column,that the height or “relative viewing posi-
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tion” of this magnitude or level would be 17, 664 statute
miles above the earth’s surface.

Turning now to the second level or magnitude of
resolution (FIG. 15). a further quadrant division is ap-
plied, resulting in sixteen (16) mapping areas of
128° 128°. The respective filenames which are as-
signed to each of the mapping areas is shown. In view-
ing FIG. 15, note that there are eight (8) mapping areas
which are not intersected by the earth’s surface. In
order to save valuable memory space, the preferred
embodiment will ignore, and in fact will never create
these files. Note that there is no use for these files as

they do not contain any digital mapping data nor will
they ever have any descendents which hold mapping
data. In order to implementthis “file selectivity”, the
preferred embodiment again utilizes a watchdog ap-
proach. Morespecifically, as the computer already
knowsthe degree (°) size of the earth’s surface and the
degree(°) size of each of the mappingareas (i.e., at each
level or magnitude of resolution), it can be seen that the
computer can easily calculate the filenames which will
not intersect the earth’s surface.

Againit is useful to correspond ourfindings with the
entries in the chart.

Ourfindings are substantiated, as, at a magnitude of 2,
the window size is shown as being 128° 128°, and
there are shownto be eight (8) pertinent windows or
files at this magnitude. Again,it is interesting to note
that the height or “relative viewing position” of this
window would be 8,832 statute miles above the earths
earth’s surface.

It is important to note that, although the “relative
viewing position” of each level or magnitude is moving
closerto the earth, the visual perception of the earth (as
seen in FIGS. 14-19 is not illustrated as getting larger
with a greater degree of detail. This is because or the
papersize limitations.

In the third level or magnitude of resolution (FIG.
16). a further quadrant division is applied, resulting in
sixty-four (64) mapping areas of of 64° 64°. As the
projection is beginning to represent a large plurality of
mapping areas, the filenames have been ommitted.
However, it should be understood that the filename
assigned to a respective file in this and subsequent de-
grees of resolution, can easily be calculated by follow-
ing the previously described file naming operation. In
this projection, it can be seen that 40 mapping areas or
files are not used, resulting in 24 files which contain the
digital mapping data of this resolution. Note that the
observed window,and usedfiles again correlates to the
entries in the chart. Furthermore, it can be seen that the
height or “relative viewing position”is at 4,416 statute
miles above the earth.

Further quadrant divisions and the corresponding
data can be seen in the FIGS. 17-19 and the chart. From

the foregoing discussions, prior teachings, and data
from the chart, one skilled in the art should be able to
quickly appreciate that a mapping system can be con-
structed which can provide digital maps corresponding
to a plurality of resolutions, of any geographical area of
the world.

The chart can now be used to observe the tremen-

dous advantage provided by the 512° x 512° projection.
In the second column of the chart, one can view the
sizes of the mapping area divisions which are produced
as a result of the continued quadrant division of the
512° 512° projection. One skilled in the mapping art
will be able to fully appreciate that the resultant map-
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ping area divisions exactly correspond to well settled
and widely used mapping area formats.

Having described all of the important operations of
the present invention, the following further conclu-
sions, comments and teachings can be made.

With the mapping system of the present invention,
the mapping data are structured at each magnitude or
level into windows,frames ortiles representing subdivi-
sions or partitions of the surface area at the specified
magnitude. The windows, frames ortiles of all magni-
tudes for whatever resolution are structured to receive

substantially the same amount or quantity of mapping
data for segmented visual presentation of the mapping
data by window.

As a further improvement, the lapping system of the
present invention can further store and organize map-
ping data into attributed or coded geographical and
cultural features according to the classification and
level or resolution or magnitude for presentation on the
map display. Several examples of this was previously
discussed with regard to the use of the filename exten-
sion.If this further improvementis used, the computer
can be programmed and arranged for managing and
accessing the mapping data, and excluding or including
coded features in tiles of a particular magnitude accord-
ing to the resolution and density of mapping data appro-
priate to the particular magnitude of the window. The
selective display of attributed geographical and cultural
features according to resolution maintains or limits the
mapping data entered in each tile to no greater than a
specified full complement of mapping data for whatever
magnitude.

In reviewing the file naming operations which were
described, one can see that the global map generating
system data base structurerelates tiles of the same mag-
nitude bytile position coordinates that are keyed to the
control corner of each tile and maintained in the name

of the “tile-file’. Continuity of samescale tiles is main-
tained during scrolling between adjacent or neighbor-
ing tiles in any direction. The new data base structure
also relates tiles of different magnitudes by vertical
lineage through successive magnitudes. Each tile of a
higher magnitude and lowerresolutionis an “ancestor
tile’ encompassing a lineage of “descendant tiles” of
lower magnitude and high resolution in the next lower
magnitude. Thus the present invention permits access-
ing, displaying and presenting the structured mapping
data bytile, by scrolling between adjacent or neighbor-
ing tiles of different magnitude in the same vertical
lineage for varying the resolution.

In its simplest form the coordinate system is Carte-
sian, but the invention contemplates a variety of virtual -
tile manifestations of windowing the mapping data at
each magnitude: for example:tilting the axes; scaling
one axis relative to another; having one or both axes
logarithmic; or rendering the coordinate space as non-
Euclidean all together.

When dealing with vector or point information and
gridded data, the most common methodis to describe
individual points as an x-y offset from the control cor-
ner of the tile. In this way the mapping data exist as
pre-processed relative points on a spherical surface in a
de-projected space. The mapping data can then be pro-
jected at the user interface with an application program.
When projected, all data ultimately represent points of
latitude and longitude. Tiles may also contain mapping
data as variable offsets of arc in the x and y directions.
The tile header may carry an internal descriptor defin-
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ing what type of mapping data is contained. Theappli-
cation or display program may then decode and project
the data to the appropriate latitude or longitude posi-
tions.

The map generating system contemplates storing
analog mapping data in electronic mapping frames in
which the raw analog data would be scanned and con-
verted digitally to the tile structure and then later ac-
cessed and projected for the purposeof displaying con-
tinuous analog mapping data.

In the preferred example embodiment, the digital
mapping data are structured by window ortile in a
substantially rectangular configuration encompassing
defined widths and heights in degrees of latitude and
longitude for each magnitude. The mapping data repre-
senting each magnitude or level are stored in a de-
projected format according to mapping on an imaginary
cylindrical surface. For display of the maps, however,
the data base manager accesses and presentsthetiles in
a projected form, according to the real configuration of
the mapped surface, by varying the aspectratio oflati-
tude to longitude dimensions of the tiles according to
the absolute position of the window on the surface area.

For example, for a spherical or spheroidal giobe hav-
ing an equatorand poles, such as the earth, the mapping
data are accessed and displayed by aspecting or narrow-
ing the width in the west-east dimensionof the tiles of
the same magnitude, while scrolling from the equator to
the poles. This is accomplished by altering the width of
thetile relative to the height. In the graphics display of
each windowortile on the monitor, thetiles are pres-
ented essentially as rectangles having an aspect ratio
substantially equal to the center latitude encompassed
by the tile. Thus, the width of the visual display win-
dowsis corrected in two respects. First, the overall
width is corrected by aspecting to a narrower width,
during scrolling in the direction of the poles, and to a
wider width during scrolling in the direction of the
equator. Second, the width ofthetile is averaged to the
center latitude width encompassedbythetile through-
outthetile height to conserve the rectangular configu-
ration. Alternatively, or in addition, further compensa-
tion may be provided by increasing the numberof de-
grees of longitude encompassed by the tiles during
scrolling from the equator to the poles to compensate
for the compound curvature of the globe.

A feature and advantageof this new method and new
system of map projection are that the dramatic and
perverse distortion of the globe near the poles, intro-
duced by the traditional and conventional Mercator
projection is substantially eliminated. According to the
invention, the compensating aspect ratio of latitudinal
to longitudinal dimension of aspecting is a function of
the distance from the equator, where the aspectratio is
one, to the poles where the aspect ratio approaches
zero, all as described for example in Elements of Car-
tography, 4th edition. John Wiley & Sons (1978) by
Arthur Robinson, Randall Sale and Joel Morrison.

The new system contemplates “polar compression”
(FIG.20) in the following manner. Starting at 64 de-
grees latitude, the width of each tile doubles for every
eight degreesoflatitude. From 72 degrees to 80 degrees
latitude, there are 4 degrees of longitude for 1 degree of
latitude. From 80 degrees to 88 degreeslatitude, it be-
comeseight to one, and from 88 degrees to the pole (90
degrees) it becomes 16 to one (seeillustration of polar
compression). (FIG. 20)
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Another feature and advantage of the way in which

the new map system and new projection handle polar
mapping data are in the speed required to access and
display polar data. The new polar compression method
drastically minimizes tile or window seeks and standard
1/O time. Also, without compressing the poles, the
Creation/Edit Software would have to work on in-

creasingly narrow tiles as the aspect ratio approached
zero at the poles.

The invention embodies an entirely new cartographic
organization for an automated atlas of the earth or other
generally spherical or spheroidal globe with 360 de-
grees of longitude and 180 degreesoflatitude, an equa-
tor and poles. The digital mapping data for the earth is
structured on an imaginary surface space having 512
degrees of latitude and longitude. The imaginary 512
degree square surface represents the zero magnitude or
root node at the highest level above the earth for a
hierarchial type quadtree data base structure. In fact,
the 512 degree square plane at the zero magnitude en-
compasses the entire earth in a single tile. The map of
the earth, of course,fills only a portion of the root node
window of 512 degrees square, and the remainder may
be deemed imaginary space or “hyperspace”.

In the preferred example embodiment from a zero
magnitude virtual or imaginary space 512 degrees
square, the data base structure of the global map gener-
ating system descendsto a first magnitude of mapping
data in fourtiles, windows or quadrants, each compris-
ing 256 degrees of latitude and longitude. Each quad-
rant represents mapping data for one-quarter of the
earth thereby mapping 180 degrees of longitude and 90
degreesof latitude in the imaginary surfaceof thetile or
frame comprising 256 degrees square, leaving excess
imaginary space or “hyperspace”’. In the second magni-
tude, the digital mapping data are virtually mapped and
stored in an organization of 16 tiles or windows each
comprising 128 degrees of latitude and longitude.

The map generating system supports two windowing
formats, one based on the binary system of the 512
degree square zero magnitude root node with hyper-
space and the other based on a system of a 360 degree
square root node without hyperspace. A feature and
advantageof the virtual 512 degree data base structure
with hyperspace are that the tiles or windows to be
displayed at respective magnitudes are consistent with
conventional mapping scale divisions, for example,
those followed by the U.S. Geological Survey (USGS).
Defense Mapping Agency (DMA). National Aeronau-
tics and Space Administration (NASA) and other gov-
ernment mapping agencies. Thus, typical mappingscale
divisions of the USGS and military mapping agencies
include scale divisions in the same range of 1 deg, 30
‘minutes. 15 minutes. 7.5 minutes of arc on the earth s

surface. This common subdivision of mapping space
does not exist in a data structure based on a 360 degree
model without hyperspace (see chart).

Thus, according to the present invention, the world is
represented in an assemblage of magnitudes, with each
magnitude divided into adjacent tiles or windows on a
virtual or imaginary two-dimensional plane or cylinder.
At higher magnitudes the quadiree tiles of mapping data
do not fill the imaginary projection space. However,
from the seventh magnitude down, the mapping data
fills a virtual closed cylinder, and no hyperspaceexists
at these levels.

In the preferred example embodimentthe invention
(running on a 16 bit computer) has sixteen magnitudes
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or levels (with extensions to 20 levels) representing
sixteen altitudes or distances above the surface of the

earth. At the lowest (16th) magnitude of highest resolu-
tion and closest to the earth, the data base structure
contains over onebillion tiles or windows (excluding
hyperspace), each encompassinga tile height of approx-
imately one half statute mile. At this level of resolution,
one pixel on a monitor of 480 pixels in height represents
approximately 6 feet on the ground. Mapping data are
positioned within eachtile using a 0 to 1023 offset coor-
dinatestructure, resulting in a data resolution of approx-
imately 3 feet at this level of magnitude(see chart). The
contemplated 20th magnitudetile or window heightis
approximately 175 feet, which results in a pixel resolu-
tion of about 4 inches on a monitor of 480 pixels in
height and a data resolution of about 2 inches, when
utilizing the 0 to 1023 offset coordinate structure. Alter-
natively, the map-generating system contemplates an
extended offset from 10 bits (0 to 1023) to an offset of 16
bits (0 to 65,535). In this case, the extended 20th magni-
tude results in a data resolution of 3 hundredths of an
inch.

Forstill more resolution, the map generating system
contemplates 32 magnitudes on a 32 bit computer and
representing 32 altitudes or distances about the surface
of the earth. Each level of magnitude may define map-
ping data within eachtile using a 32 bit offset coordinate
structure, thereby giving relative mathematical accu-
racy to a billionth of an inch. In all practicality, 20
separate magnitudes orlevels are morethan sufficient to
carry the necessary levels of resolution and accuracy.

The new invention provides users with the ability
graphically to view mapping data from any part of the
world-wide data base graphically on a monitor, either
by entering coordinates and a level of zoom (or magni-
tude) on the keyboard, or by “flying” to that location in
the “step-zoom” mode using consecutive clicks of the
mouse or other pointing device. Once a location has
been chosen (this point becomes the user-defined screen
center). the mapping software accesses all adjacenttiles
needed to fill the entire view window of the monitor

and, then, projects the data to the screen. Same scale
scrolling is accomplished by simply choosing a new
screen center and maintaining the same magnitude.

Vertical zooming up or down is accomplished by
choosing another magnitude or level from the menu
area with the pointing device or by directly entering
location and magnitude on the keyboard. An advantage
of this vertical lineage of tiles organized in a quadtree
structure is that it affords the efficient and easily fol-
lowed zooming continuity inherent in the present in-
vention. Further discussion of such quadtree data orga-
nization is found in the article. “The Quadtree and Re-
lated Hierarchical Data Structures”, by Hannan Samet,
Computer Surveys. Volume 16 , No. 2, (June 1984),
Pages 187 et seq.

The map-generating system also supports many types
of descriptive information such as that contained in
tabular or relational data bases. This descriptive infor-
mation can be linked to the mapping data with a latitude
and longitude coordinate position but may need to be
displayed in alternate ways. Descriptive information is
better suited for storage in a relational format and can
be linked to the map with a “spatial hook”.

In summary, the present invention provides a new
automated world atlas and global map generating sys-
tem having a multi-level hierarchial quadtree data base
structure and a data base manageror controller which
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permits scrolling, through mappingtiles or windowsof
a particular magnitude, and zooming between magni-
tudes for varying resolution. While the data base orga-
nizationis hierarchial between levels or magnitudes,it is
relational within each level, resulting in a three dimen-
sional network of mapping and descriptive information.
The present invention also provides a new mapping
projection that has similarities to the Mercator projec-
tion but eliminates drastic distortions near the poles for
the purpose of presentation through a method of “as-
pecting” tile widths as a function of the latitudinal dis-
tance from the equator.

While the invention has been particularly shown and
described with reference to the preferred embodiment
thereof, it will be understood by those skilled in the art
that various changes in form and details of the device
and the method may be madetherein without departing
from the spirit and scope of the invention.

Whatis claimed is:

1. A computer implemented method for generating,
displaying and presenting an electronic map from digi-
tal mapping data for a surface area having geographical
and cultural features, said method comprising the steps
of:

organizing the mapping data into a hierarchy of a
plurality of successive magnitudes or levels for
presentation of said mapping data with variable
degrees of mapping resolution, each magnitude for
presentation of said mapping data with a different
degree of mapping resolution fromafirst or highest
magnitude with lowest resolution to a last or low-
est magnitude with highest resolution;

structuring said mapping data at each magnitude into
a plurality of windows, framesorfiles representing
subdivisions or partitions of said surface area, said
windowsofa respective magnitude including map-
ping data which are appropriate to a degree of
mapping resolution being afforded at said magni- .
tude while excluding mapping data which are not
appropriate to said degree of mapping resolution,
and at least a portion of said windowsofeach mag-
nitude being structured to receive substantially a
same predetermined amount or quantity of map-
ping data for segmented presentation of the map-
ping data by window;

organizing said mapping data into records of geo-
graphical or cultural features for presentation
within said windows, and coding said features;

managing said mapping data for each window by
excluding or including coded features appropriate
to the degree of mapping resolution and density
being afforded by said window,such that a quan-
tity of mapping data entered in each window is no
greater than said predetermined amount;

relating windows of a same magnitude by window
position coordinates or names andstructuring said
windows with overlap or mapping data between
adjacent or neighboring windows of a magnitude
or achieve display continuity during generation,
display and presentation of an electronic map;

relating windowsofdifferent magnitude by vertical
lineage through successive magnitudes, each win-
dow of a higher magnitude and lowerresolution
being an ancestor window beingrelated to a plural-
ity of descendant windowsof lower magnitude and
higher resolution in a next lower magnitude;

accessing and displaying or presenting mapping data
for different positions of a selected magnitude by

Unified Patents Exhibit 1005 App'x A-N



Page 143 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
31

scrolling between adjacent or neighboring win-
dowsof a same magnitude in predetermined north,
south, each and west directions;

and accessing and displaying or presenting mapping
data for different selected magnitudes having dif-
ferent resolutions by zooming between windowsof
different magnitudes in a same vertical lineage.

2. The method of claim 1 further comprising:
organizing said mapping data of said surface area by

degrees of latitude and longitude;
structuring each said window of mapping data to

represent a substantially rectangular surface area
configuration encompassing defined degrees of
latitude and longitude for each magnitude, and
storing the mapping data for each magnitude in a
vertical Mercator projection format;

accessing and presenting said windows of mapping
data in a corrected or compensated projection for-
mat departing from said Mercator projection for-
mat according to a real configuration of said sur-
face area, by varying an aspectratio oflatitude to
longitudinal dimensions of each window according
to a coordinate position of said window with re-
spect to a coordinate layout of said surface area.

3. The method of claim 2 wherein said surface area

comprises a spherical or spheroidal globe having an
equator and poles, said method comprising the further
steps of:

accessing and presenting mapping data in a corrected
projection format by aspecting or narrowing, in a
direction from an equator to pole, the width or
latitudinal dimension of windows, of a same magni-
tude, which encompass the same number of de-
grees oflatitude and longitude; ,

and periodically increasing a number of degrees of
longitude encompassed by said windowsin said
direction from equator to pole to compensate for
compound curvature ofsaid globe.

4. The method of claim 1 wherein said surface area

comprises a generally spherical or spheroidal globe
with 360 degrees of longitudinal, 180 degrees oflatitude.
and an equator and poles, said method comprising the
further steps of:

relating windowsofdifferent magnitudes by vertical
lineage in a hierarchical quadtree database struc-
ture, by successively partitioning or subdividing
ancestor windows of a vertical lineage into four
descent windowsor quadrantsat a next lower mag-
nitude or level, and incorporating additional re-
cords of features in said descendant windowsto

incorporate mapping data for a next higher resolu-
tion.

5. The method of claim 4 wherein said hierarchical

quadtree database structure comprises at least sixteen
degrees of magnitudesorlevels.

6. The method of claim 4 comprising the further steps
of: .

mapping and storing mapping data for said globe in a
virtual Mercator projection format representing an
imaginary surface having 512 degrees of longitude
and latitude comprising a zero magnitude or root
node of said hierarchical quadtree database struc-
ture;

mapping and storing a first degree or highest magni-
tude of mapping data in four windowsor quadrants
each comprising 256 degrees of longitude andlati-
tude, each window ofsaid first degree of magni-
tude comprising mapping data for one quarter of
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said globe thereby mapping 180 degrees of surface
area longitude and 90 degrees of surface arealati-
tude in said imaginary surface of 256 degrees of
longitude and latitude and leaving excess imagi-
nary space;

mapping and storing a second degree of magnitude of
mapping data in sixteen windows each comprising
128 degrees of longitude andlatitude of said imagi-
nary surface, each windowofsaid second degree of
magnitude comprising mapping data for a further
subdivision or partition of said globe;

and mapping and storing third through twelfth de-
grees of magnitude thereby forming additional
levels of a hierarchical quadtree database structure
so that an eleventh magnitude comprises windows
encompassing 15 secondsoflatitude and a twelfth
magnitude comprises windows encompassing
seven and a half secondsoflatitude;

whereby,as a result of the foregoing, windowsof said
electronic map at respective magnitudes orlevels
are consistent with conventional mapping scale
divisions.

7. The method of claim 6 wherein said hierarchical

quadtree database structure comprises sixteen degree of
magnitudes or levels including a sixteenth magnitude
comprising over 1.4 billion windows, each encompass-
ing approximately a fraction of a minute of a degree of
latitude.

8. The method of claim 6 wherein each said window

correspondsto a trapezoidal surface area configuration.
9. The method of claim 6 comprising the step offloat-

ing mapping data records of selected features from a
window of one magnitude to a window of the same
vertical lineage in another magnitude.

10. The method of claim 6 comprising the further
steps of: generating analog mapping data, structuring
said analog mapping data according to a same format as
digital mapping data, and overlaying and presenting
said digital mapping data and analog mapping data dur-
ing generation, display and presentation of an electronic
map.

11. The methodofclaim 6 comprising the further step
of selectively filling said windows with mapping data so
that some windows contain a full complement of map-
ping data appropriate to a degree of mapping resolution
being afforded at said magnitude, and other windows,
each of which correspond to a subdivision of surface
area containing few or no geographical or cultural fea-
tures, contain less than a full complement of mapping
data.

12. The method of claim 6 comprising the further
steps of:

accessing and presenting mapping data in a corrected
projection format by aspecting or narrowing,in a
direction from an equatorto pole, a width orlatitu-
dinal dimension of windows, of a same magnitude,
which encompass the same number of degrees of
latitude and longitude;

and periodically increasing a number of degrees of
longitude encompassed by said windowsin said
direction from equator to pole to compensate for a
compound curvature of said globe.

13. The method of claim 12 comprising the further
steps of accessing and presenting mapping data in cor-
rected projection format, with each window having a
width substantially equal to a center latitude width of
said window throughout said window,so that said win-
dow is of rectangular configuration.
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14. An electronic map generating system including a

digital computer, a mass storage device, a display moni-
tor, graphics controller, and system software for struc-
turing, managing, controlling and displaying digital
mapping data for a surface area having cultural and
geographical features, said system comprising:

a database structure comprising a hierarchical data-
base structure programmed and arranged for orga-
nizing said digital mapping data into a hierarchy of
a plurality of successive magnitudes or levels for
presentation of mapping data with variabie resolu-
tion, each magnitude for presentation of said map-
ping data with a different degree of mapping reso-
lution from a first or highest magnitude of lowest
resolution to a last or lowest magnitude of lowest
resolution to a last or lowest magnitude of highest
resolution, and for structuring said digital mapping
data at each magnitudeinto a plurality of windows,
frames or files representing subdivisions or parti-
tions of said surface area, said windowsofa respec-
tive magnitude including mapping data which are
appropriate to a degree of mapping resolution
being afforded at said magnitude while excluding
mapping data which are not appropriate to said
degree of mapping resolution, at least a portion of
said windowsofall magnitudes being structured to
receive substantially a same predetermined amount
of mapping data for segmented presentation of said
mapping data by window,said mapping data being
organized into coded records of geographical and
cultural features within each window;

a database manager or controller programmed and
arranged for managing said mapping data by mag-
nitude or level by excluding or including coded
records of features in-each windowofa particular
magnitude according to a resolution and density of
mapping data appropriate to the particular magni-
tude of said each window,and maintaining a quan-
tity of mapping data entered in each window to no
greater than a specified full complement whatever
the magnitude of the window;

said database structure being programmedto relate
windowsof a same magnitude by position coordi-
nates or names, and to structure windowsofa same
magnitude with overlap of mapping data between
adjacent or neighboring windows of a magnitude
to achieve display continuity during generation,
display and presentation of an electronic map, and
to relate windowsof different magnitude by verti-
cal lineage through successive magnitudes, each
window of a higher magnitude and lower resolu-
tion being an ancestor window of a plurality of
descendant windows of lower magnitude and
higher resolution in a next lower magnitude;

said database manager being programmedto access
and display or present mapping data for different
positions of a selected magnitude by scrolling be-
tween adjacent or neighboring windowsof a same
magnitude in predetermined north, south, east and
west directions, and being programmed to access
and display or present mapping data for different
magnitudes having different resolutions by zoom-
ing between windowsofdifferent magnitudes in a
same vertical lineage.

15. The system of claim 14 wherein said hierarchical
database structure is programmed to organize said map-
ping data by degrees of latitude and longitude and to
structure each window of mapping data to represent a
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substantially rectangular surface area configuration
encompassing predetermined degrees of latitude and
longitude, said windows for each magnitude being
stored in virtual Mercator projection format, said data-
base manager being programmedto access and present
windows of mapping data in a corrected or compen-
sated projection format departing from Mercator pro-
jection format according to a real configuration of said
surface area by varying an aspectratio oflatitude and
longitude dimensions of each window according to a
coordinate position of said each window with respect to
a coordinate layout of said surface area.

16. The system of claim 15 wherein said surface area
comprises a spherical or spheroidal globe having an
equatorand poles, and wherein said database manageris
programmed to access and present mapping data in a
corrected projection format by aspecting or narrowing,
in a direction from an equator to pole, the width or
latitudinal dimension of windows, of a same magnitude,
which encompass the same numberof degrees oflongi-
tude, said database manager being further programmed
to periodically increase a number of degrees of longi-
tude encompassed by said windowsin said direction
from equator to pole to compensate for compound cur-
vature of said globe.

17. The system of claim 16 wherein said hierarchical
database structure comprises a hierarchical quadtree
database structure successively partitioning or subdivid-
ing ancestor windowsof a vertical lineage into four
descendant windowsor quadrants at a next lower mag-
nitude or level, and incorporating additional coded
records offeatures in said descendant windowsto incor-

porate mapping data for a next higher resolution.
18. The system of claim 17 wherein said database

structure is programmed andarrangedto store the map-
ping data in a virtual Mercator projection representing
an imaginary surface having 512 degrees of longitude
and latitude comprising a zero magnitude or root node
of said hierarchical quadtree database structure,
wherein a first degree or first magnitude of mapping
data comprises four windows, each window ofsaid first
magnitude comprising mapping data for one quarter of
said globe on an imaginary surface area of 256 degrees
of longitude and latitude, said hierarchical quadtree
database structure comprising, in addition to first
through tenth magnitudes each having windows which
are predetermined subdivisions of said imaginary sur-
face having 512 degrees of longitude and latitude, at
least an eleventh magnitude having windows encom-
passing 15 minutes of latitude, and a twelfth magnitude
having windows encompassing 7.5 minutes oflatitude,
so that windowsofa resultant electronic map at respec-
tive said eleventh and twelfth magnitudes or levels are
consistent with conventional mapping scale divisions.

19. The system of claim 18 wherein said hierarchical
quadtree database structure comprises at least 16 de-
grees of magnitudes orlevels, said sixteenth magnitude
comprising over 1.4 billion windows, each encompass-
ing degrees oflatitude of approximately a fraction of a
second of a degree.

20. The system of claim 19 further comprising a data-
base of digital mapping data selectively entered in said
database structure, such that some of said windows

contain a full complement of mapping data appropriate
to a degree of mapping resolution being afforded at said
magnitude, and other windows, each of which corre-
spondto a subdivision of surface area containing few or
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no geographical or cultural features, contain less than a
full complement of mapping data.

21. The system of claim 19 further comprising a data-
base of analog data structured according to a same
format as said digital data, and means for overlaying
said digital and analog data for electronic map presenta-
tion.

22. An electronic map generating system for generat-
ing reproductions of a map with selectable degrees of
mapping resolution, said map generating system com-
prising:

database meansstoring a plurality of computerfiles
containing mapping data corresponding to respec-
tive surface areas of a mapping surface, wherein
said plurality of computerfiles is organized into a
plurality of successive magnitudes, each magnitude
for presentation of said mapping data with a differ-
ent degree of mapping resolution fromafirst or
highest magnitude with lowest resolution to a last
or lowest magnitude with highest resolution,files
of a respective magnitude including mapping data
which are appropriate to a degree of mapping reso-
lution being afforded at said respective magnitude
while excluding mapping data which are not ap-
propriate to said degree of mapping resolution, and
wherein a predetermined file naming procedureis
utilized to assign, to each respective computerfile,
a unique filename which:
relates said respective computerfile to all other

computerfiles having mapping data correspond-
ing to a same magnitude or degree of mapping
resolution; and

relates said respective computer file to any com-
puter file comprising mapping data correspond-
ing to a Samesurface area ofa mapping surface as
said respective computerfile; and

database manager means for accessing said plurality
of computer files using said predetermined file
naming procedure, to generate a reproduction of a
selected area of a map at a selected degree of map-
ping resolution.

23. An electronic map generating system as claimed
in claim 22,

wherein eachsaid unique filenameis represented by a
value contained in a plurality ofbits, and

wherein said predetermined file naming procedure:
utilizes a first predetermined subsetof said plurality

of bits to relate said respective files having map-
ping data corresponding to a same magnitude or
degree of mapping resolution; and

utilizes a second predetermined subset of said plu-
rality of bits to relate said respective computer
file to any computer file comprising mapping
data corresponding to a same surface area of a
mapping surface as said respective computerfile.

24. An electronic map generating system as claimed
in claim 23, wherein said unique filenamealso includes
geographical information which can be used to relate a
geographical coordinate position of a respective com-
puter file with respect to a coordinate layout ofsurface
areas of said mapping surface.

25. An electronic map generating system as claimed
in claim 22,

wherein an assignment ofsaid unique filenames using
said predeterminedfile naming procedure results in
said respective computerfiles of said plurality to be
related in a quadtree database structure.
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26. An electronic map generating system as claimed
in claim 25, wherein the respective area of a mapping
surface covered within the computer files of consecu-
tive magnitudes or degrees of mapping resolution
changes at a predetermined rate in that, when a com-
puterfile at a reference magnitude or degree of mapping
resolution contains mapping data corresponding to an
NXN area of a mapping surface (where N is a real
number, and is associated with one of the conventional

degree °, minute ', or second " mappingscale divisions),
then a computerfile at a next consecutive magnitude
having a higher degree of mapping resolution contains
mapping data corresponding to an (N/2) X(N/2) area of
said mapping surface.

27. An electronic map generating system as claimed
in claim 26, wherein the value of N at said reference
magnitude or degree of mapping resolution, corre-
sponds to one of the following values: 512°, 256°, 128°,
64°, 32°, 16°, 8°, 4°, 2°, 1°, 30’, 15’, 7.5’, 3.75’, 1.875’,
0.9375’ and 0.46875’.

28. A method for providing an electronic map gener-
ating system for generating reproductions of a map with
selectable degrees of mapping resolution, said method
comprising the stepsof:

storing a plurality of computer files containing map-
ping data corresponding to respective surface areas
of a mapping surface, wherein said plurality of
computerfiles is organized into a plurality of suc-
cessive magnitudes, each magnitude for presenta-
tion of said mapping data with a different degree of
mapping resolution from a first or highest magni-
tude with lowest resolution to a last or lowest mag-
nitude with highestresolution, files of a respective
magnitude including mapping data which are ap-
propriate to a degree of mapping resolution being
afforded at said respective magnitude while ex-
cluding mapping data which are not appropriate to
said degree of mapping resolution, and wherein a
predetermined file naming procedureis utilized to
assign, to each respective computerfile, a unique
filename which:

relates said respective computer file to all other
computerfiles having mapping data correspond-
ing to a same magnitude or degree of mapping
resolution; and

relates said respective computerfile to any com-
puter file comprising mapping data correspond-
ing to a samesurfacearea of a mappingsurface as
said respective computerfile; and

accessing said plurality of computerfiles using said
predetermined file naming procedure, to generate a
reproduction of a selected area of a map at a se-
lected degree of mapping resolution.

29. A method as claimed in claim 28,
wherein each said uniquefilename is represented by a

value contained in a plurality of bits, and
wherein said predetermined file naming procedure;

utilizes a first predetermined subsetofsaid plurality
of bits to relate said respective computer file to
all other computer files having mapping data
corresponding to a same magnitude or degree of
mapping resolution; and

utilizes a second predetermined subset of said plu-
tality of bits to relate said respective computer
file to any computer file comprising mapping
data corresponding to a same surface area of a
mappingsurfaceas said respective computerfile.
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30. A method as claimed in claim 29, wherein said
unique filenamealso includes geographical information
which can be used to relate a geographical coordinate
position of a respective computerfile with respectto a
coordinate layout of surface areas of said mapping sur-
face.

31. A method as claimed in claim 28,
wherein an assignmentof said unique filenames using

said predeterminedfile naming procedureresults in
said respective computerfiles of said plurality to be
related in a quadtree database structure.

32. A method as claimed in claim 31, wherein the
respective area of a mapping surface covered within the
computerfiles of consecutive magnitudes or degrees of
mapping resolution changes at a predeterminedrate in
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that, when a computerfile at a reference magnitude or
degree of mapping resolution contains mapping data
corresponding to an NXN area of a mapping surface
(whereN is a real number,andis associated with one of
the conventional degree °, minute ', or second ” map-
ping scale divisions), then a computer file at a next
consecutive magnitude having a higher degree of map-
ping resolution contains mapping data corresponding to
an (N/2)X(N/2) area of said mapping surface.

33. A method as claimed in claim 32, wherein the
value of N at said reference magnitude or degree of
mapping resolution, corresponds to one of the follow-
ing values: 512°, 256°, 128°, 64°, 32°, 16°, 8°, 4°, 2°, 1°,
30’, 15’, 7.5’, 3.75’, 1.875’, 0.9375’ and 0.46875’.» *£ 8&8 & *&
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