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GRAPHICS RENDERING SYSTEM WITH
RECONFIGURABLE PIPELINE SEQUENCE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation-in-part of 08/410.345
filed Mar. 24, 1995, and claims priority from provisional
60/008.803 filed Dec. 18, 1995. which is hereby incorpo-
rated by reference.

BACKGROUND AND SUMMARY OF THE
INVENTION

The present application relates to computer graphics and
animation systems. and particularly to 3D graphics render-
ing hardware. Background of the art and the prior
embodiment, according to the parent application. is
described below. Some of the distinctions of the presently
preferred embodiment are particularly noted beginning on

page 8.
COMPUTER GRAPHICS AND RENDERING

Modern computer systems normally manipulate graphical
objects as high-level entities. For example, a solid body may
be described as a collection of triangles with specified
vertices, or a straight line segment may be described by
listing its two endpoints with three-dimensional or two-
dimensional coordinates. Such high-level descriptions are a
necessary basis for high-level geometric manipulations, and
also have the advantage of providing a compact format
which does not consume memory space unnecessarily.

Such higher-level representations are very convenient for
performing the many required computations. For example,
ray-tracing or other lighting calculations may be performed,
and a projective transformation can be used to reduce a
three-dimensional scene to its two-dimensional appearance
from a given viewpoint. However. when an image contain-
ing graphical objects is to be displayed, a very low-level
description is needed. For example, in a conventional CRT
display, a “flying spot” is moved across the screen (one line
at a time), and the beam from each of three electron guns is
switched to a desired level of intensity as the flying spot
passes each pixel location. Thus at some point the image
model must be translated into a data set which can be used
by a conventional display. This operation is known as
“rendering.”

The graphics-processing system typically interfaces to the
display controller through a “frame store” or “frame buffer”
of special two-port memory, which can be written to ran-
domly by the graphics processing system, but also provides
the synchronous data output needed by the video output
driver. (Digital-to-analog conversion is also provided after
the frame buffer.) Such a frame buffer is usually imple-
mented using VRAM memory chips (or sometimes with
DRAM and special DRAM controllers). This interface
relieves the graphics processing system of most of the
burden of synchronization for video output. Nevertheless,
the amounts of data which must be moved around are very
sizable, and the computational and data-transfer burden of
placing the correct data into the frame buffer can still be very
large.

Even if the computational operations required are quite
simple, they must be performed repeatedly on a large
number of data points. For example, in a typical 1995
high-end configuration, a display of 1280x1024 elements
may need to be refreshed at 72 Hz, with a color resolution

Page 14 of 1055

10

15

20

25

30

35

45

50

55

65

2

of 24 bits per pixel. If blending is desired. additional bits
(e.g. another 8 bits per pixel) will be required to store an
“alpha™ or transparency value for each pixel. This implies
manipulation of more than 3 billion bits per second, without
allowing for any of the actual computations being per-
formed. Thus it may be seen that this is an environment with
unique data manipulation requirements.

If the display is unchanging. no demand is placed on the
rendering operations. However, some common operations
(such as zooming or rotation) will require every object in the
image space to be re-rendered. Slow rendering will make the
rotatior or zoom appear jerky. This is highly undesirable.
Thus efficient rendering is an essential step in translating an
image representation into the correct pixel values. This is
particularly true in animation applications. where newly
rendered updates to a computer graphics display must be
generated at regular intervals.

The rendering requirements of three-dimensional graph-
ics are particularly heavy. One reason for this is that, even
after the three-dimensional model has been translated to a
two-dimensional model, some computational tasks may be
bequeathed to the rendering process. (For example. color
values will need to be interpolated across a triangle or other
primitive.) These computational tasks tend to burden the
rendering process. Another reason is that since three-
dimensional graphics are much more lifelike, users are more
likely to demand a fully rendered image. (By contrast, in the
two-dimensional images created e.g. by a GUI or simple
game, users will learn not to expect all areas of the scene to
be active or filled with information.)

FIG. 1A is a very high-level view of other processes
performed in a 3D graphics computer system. A three
dimensional image which is defined in some fixed 3D
coordinate system (a “world” coordinate system) is trans-
formed into a viewing volume (determined by a view
position and direction). and the parts of the image which fall
outside the viewing volume are discarded. The visible
portion of the image volume is then projected onto a viewing
plane, in accordance with the familiar rules of perspective.
This produces a two-dimensional image, which is now
mapped into device coordinates. It is important to under-
stand that all of these operations occur prior to the operations
performed by the rendering subsystem of the present inven-
tion. FIG. 1B is an expanded version of FIG. 1A, and shows
the flow of operations defined by the OpenGL standard.

A vast amount of enginecring effort has been invested in
computer graphics systems, and this area is one of increasing
activity and demands. Numerous books have discussed the
requirements of this area; see, .g., ADVANCES IN COMPUTER
GRAPHICS (ed. Enderle 1990-); Chellappa and Sawchuk,
DIGITAL IMAGE PROCESSING AND ANALYSIS (1985); CoM-
PUTER GRAPHICS HARDWARE (ed. Reghbati and Lee 1988);
COMPUTER GRAPHICS: IMAGE SYNTHESIS (ed. Joy et al.);
Foley et al., FUNDAMENTALS OF INTERACTIVE COMPUTER
GRAPHICS (2.ed. 1984); Foley, COMPUTER GRAPHICS PRIN-
CIPLES & PRACTICE (2.ed. 1990); Foley, INTRODUCTION TO
COMPUTER GRAPHICS (1994); Giloi, Interactive Computer
Graphics (1978); Hearn and Baker. COMPUTER GRAPHICS
(2.ed. 1994); Hill. CoMPUTER GRAPHICS (1990); Latham,
DICTIONARY OF COMPUTER GRAPHICS (1991); Magnenat-
Thalma, IMAGE SYNTHESIS THEORY & PRACTICE (1988);
Newman and Sproull, PRINCIPLES OF INTERACTIVE COM-
PUTER GRAPHICS (2.ed. 1979); PICTURE ENGINEERING (ed. Fu
and Kunii 1982); PICTURE PROCESSING & DIGITAL FILTERING
(2.ed. Huang 1979); Prosise, How COMPUTER GRAPHICS
WORK (1994); Rimmer. BIT MAPPED GRAPHICS (2.ed. 1993);
Salmon, COMPUTER GRAPHICS SYSTEMS & CONCEPTS

Unified Patents Exhibit 1005 App'x O-MM



5.,798.770

3

(1987); Schachter, COMPUTER IMAGE GENERATION (1990);
Watt, THREE-DIMENSIONAL COMPUTER GRAPHICS (2.ed.
1994); Scott Whitman. MULTIPROCESSOR METHODS FOR
CoMPUTER GRAPHICS RENDERING; the SIGGRAPH Pro-
CEEDINGS for the years 1980-1994; and the /EEE Computer
Graphics and Applications magazine for the years
1990-1994.

Background: Graphics Animation

In many areas of computer graphics a succession of
slowly changing pictures are displayed rapidly one after the
other, to give the impression of smooth movement. in much
the same way as for cartoon animation. In general the higher
the speed of the animation, the smoother (and better) the
result.

When an application is generating animation images. it is
normally necessary not only to draw each picture into the
frame buffer, but also to first clear down the frame buffer,
and to clear down auxiliary buffers such as depth (Z) buffers,
stencil buffers, alpha buffers and others. A good treatment of
the general principles may be found in Computer Graphics:
Principles and Practice. James D. Foley et al., Reading
Mass.: Addison-Wesley. A specific description of the various
auxiliary buffers may be found in The OpenGL Graphics
System: A Specification (Version 1.0), Mark Segal and Kurt
Akeley, SGL

In most applications the value written, when clearing any
given buffer, is the same at every pixel location, though
different values may be used in different auxiliary buffers.
Thus the frame buffer is often cleared to the value which
corresponds to black, while the depth (Z) buffer is typically
cleared to a value corresponding to infinity.

The time taken to clear down the buffers is often a
significant portion of the total time taken to draw a frame, so
it is important to minimize it.

Background: Paralielism in Graphics Processing

Due to the large number of at least partially independent
operations which are performed in rendering, many propos-
als have been made to use some form of parallel architecture
for graphics (and particularly for rendering). See, for
example, the special issue of Computer Graphics on parallel
rendering (September 1994). Other approaches may be
found in earlier patent filings by the assignee of the present
application and its predecessors, e.g. U.S. Pat. No. 5,195,
186. and published PCT applications PCT/GB%0/00987,
PCT/GB%0/01209. PCT/GB%0/01210, PCT/GB90/01212,
PCT/GB90/01213, PCTAGB90/01214, PCT/GB90/01215,
and PCT/GB90/01216.

Background: Pipelined Processing Generally

There are several general approaches to parallel process-
ing. One of the basic approaches to achieving parallelism in
computer processing is a technique known as pipelining. In
this technique the individual processors are, in effect, con-
nected in series in an assembly-line configuration: one
processor performs a first set of operations on one chunk of
data, and then passes that chunk along to another processor
which performs a second set of operations, while at the same
time the first processor performs the first set operations
again on another chunk of data. Such architectures are
generally discussed in Kogge, THE ARCHITECTURE OF PIPE-
LINED COMPUTERS (1981).

Background: The OpenGL™ Standard

The “OpenGL” standard is a very important software
standard for graphics applications. In any computer system
which supports this standard, the operating system(s) and
application software programs can make calls according to
the OpenGL standards, without knowing exactly what the
hardware configuration of the system is.
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The OpenGL standard provides a complete library of
low-level graphics manipulation commands. which can be
used to implement three-dimensional graphics operations.
This standard was originally based on the proprietary stan-
dards of Silicon Graphics. Inc.., but was later transformed
into an open standard. It is now becoming extremely
important. not only in high-end graphics-intensive
workstations. but also in high-end PCs. OpenGL is sup-
ported by Windows NT™, which makes it accessible to
many PC applications.

The OpenGL specification provides some constraints on
the sequence of operations. For instance. the color DDA
operations must be performed before the texturing
operations, which must be performed before the alpha
operations. (A “DDA” or digital differential analyzer. is a
conventional piece of hardware used to produce linear
gradation of color (or other) values over an image area.)

Other graphics interfaces (or “APIs”), such as PHIGS or
XGL. are also current as of 1995; but at the lowest level,
OpenGL is a superset of most of these.

The OpenGL standard is described in the OPENGL ProO-
GRAMMING GUIDE (1993), the OPENGL REFERENCE
MANUAL (1993), and a book by Segal and Akeley (of SGI)
entitled THE OPENGL GRAPHICS SYSTEM: A SPECIFICATION
(Version 1.0).

FIG. 1B is an expanded version of FIG. 1A, and shows the
flow of operations defined by the OpenGL standard. Note
that the most basic model is carried in terms of vertices, and
these vertices are then assembled into primitives (such as
triangles. lines, etc.). After all manipulation of the primitives
has been completed, the rendering operations will transiate
each primitive into a set of “fragments.” (A fragment is the
portion of a primitive which affects a single pixel.) Again, it
should be noted that all operations above the block marked
“Rasterization” would be performed by a host processor, or
possibly by a “geometry engine” (i.c. a dedicated processor
which performs rapid matrix multiplies and related data
manipulations), but would normally not be performed by a
dedicated rendering processor such as that of the presently
preferred embodiment.

One disadvantage of standards such as OpenGL is that
they require that texturing or other processor-intensive
operations be performed on data before pixel elimination
tests, e.g. depth testing, is performed, which wastes proces-
sor time by performing costly texturing calculations on
pixels which will be eliminated later in the pipeline. When
the OpenGL specification is not required or when the current
Open(I state vector cannot eliminate pixels as a result of the
alpha test, however, it would be much more efficient to
climinate as many pixels as possible before doing these
calculations. The present application discloses a method and
device for reordering the processing steps in the rendering
pipeline to either accommodate order-specific specifications
such as OpenGL. or to provide for an optimized throughput
by only performing processor-intensive operations on pixels
which will actually be displayed.

Background: Texturing

Texture patterns are commonly used as a way to apply
realistic visual detail at the sub-polygon level. See Foley et
al.. COMPUTER GRAPHICS: PRINCIPLES AND PRACTICE (2.ed.
1990, comr. 1995). especially at pages 741-744; Paul S.
Heckbert, “Fundamentals of Texture Mapping and Image
Warping.,” Thesis submitted to Dept. of EE and Computer
Science, University of California, Berkeley, Jun. 17, 1994;
Heckbert. “Survey of Computer Graphics,” IEEE Computer
Graphics. November 1986, pp.56ff. Since the surfaces are
transformed (by the host or geometry engine) to produce a
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2D view, the textures will need to be similarly transformed
by a linear transform (normally projective or “affine™). (In
conventional terminology, the coordinates of the object
surface, i.e. the primitive being rendered, are referred to as
an (s.t) coordinate space. and the map of the stored texture
is referred to a (u.v) coordinate space.) The transformation
in the resulting mapping means that a horizontal line in the
(x.y) display space is very likely to correspond to a slanted
line in the (u.v) space of the texture map, and hence many
page breaks will occur, due to the texturing operation, as
rendering walks along a horizontal line of pixels.

Innovative System and Methods

The preferred embodiment discloses a pipelined graphics
processor in which the sequence can be dynamically recon-
figured (e.g. between primitives) in a rendering sequence.
The pipeline sequence can be configured for compliance
with specifications such as OpenGL, but may also be opti-
mized by reconfiguring the pipeline sequence to eliminate
unnecessary processing. In a preferred embodiment. pixel
elimination sequences such as depth and stencil tests are
performed before texturing calculations are performed, so
that unneeded pixel data is discarded before said texturing
calculations are performed.

It is noted that the texturing operations become more
computation-intense, early elimination of unneeded pixels
becomes even more valuable. For example, Phong shading
and bump mapping both require many more operations than
more common shading and texture mapping techniques, thus
making the system of the present application even more
valuable in real-time rendering systems.

An overhead cost is that the reconfigurable portion of the
pipeline must be flushed at each reconfiguration—but since
reconfiguration is normally done only on a per-primitive
basis, or even less frequently. this is a relatively small cost.

BRIEF DESCRIPTION OF THE DRAWING

The disclosed inventions will be described with reference
to the accompanying drawings, which show important
sample embodiments of the invention and which are incor-
porated in the specification hereof by reference, wherein:

FIG. 1A, described above. is an overview of key elements
and processes in a 3D graphics computer system.

FIG. 1B is an expanded version of FIG. 1A, and shows the
flow of operations defined by the OpenGL standard.

FIG. 2A is an overview of the graphics rendering chip of
the preferred embodiment of the parent case.

FIG. 2B is an overview of the graphics rendering chip of
the presently preferred embodiment.

FIG. 2C is a more schematic view of the sequence of
operations performed in the graphics rendering chip of FIG.
2B. when operating in a first mode.

FIG. 2D is a different view of the graphics rendering chip
of FIG. 2B. showing the connections of a readback bus
which provides a diagnostic pathway.

FIG. 2E is yet another view of the graphics rendering chip
of FIG. 2B, showing how the functions of the core pipeline
of FIG. 2C are combined with various external interface
functions.

FIG. 2F is yet another view of the graphics rendering chip
of FIG. 2B. showing how the details of FIFO depth and
lookahead are implemented. in the presently preferred
embodiment.

FIG. 3A shows a sample graphics board which incorpo-
rates the chip of FIG. 2B.
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FIG. 3B shows another sample graphics board
implementation. which differs from the board of FIG. 3Ain
that more memory and an additional component is used to
achieve higher performance.

FIG. 3C shows another graphics board, in which the chip
of FIG. 2B shares access to a common frame store with GUI
accelerator chip.

FIG. 3D shows another graphics board, in which the chip
of FIG. 2B shares access to a common frame store with a
video coprocessor (which may be used for video capture and
playback functions.

FIG. 4A illustrates the definition of the dominant side and
the subordinate sides of a triangle.

FIG. 4B illustrates the sequence of rendering an Anti-
aliased Line primitive.

FIG. 5A is a detailed view of the router unit of the
presently preferred embodiment.

FIG. 5B is a detailed view of the data path through the
router unit of the presently prefemred embodiment when
operating in a first mode.

FIG. 5C is a detailed view of the data path through the
router unit of the presently preferred embodiment when
operating in a second mode.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The numerous innovative teachings of the present appli-
cation will be described with particular reference to the
presently preferred embodiment (by way of example. and
not of limitation). The presently preferred embodiment is a
GLINT™ 400TX™ 3D rendering chip. The Hardware Ref-
erence Manual and Programmer’s Reference Manual for this
chip describe further details of this sample embodiment.
Both are available, as of the effective filing date of this
application, from 3Dlabs Inc. Ltd., 181 Metro Drive, Suite
520, San Jose Calif. 95110.

Definitions

The following definitions may help in understanding the
exact meaning of terms used in the text of this application:
application: a computer program which uses graphics ani-

mation.

depth (Z) buffer: A memory buffer containing the depth
component of a pixel. Used to, for example, eliminate
hidden surfaces.

blt double-buffering: A technique for achieving smooth
animation, by rendering only to an undisplayed back
buffer, and then copying the back buffer to the front once
drawing is complete.

FrameCount Planes: Used to allow higher animation rates by
enabling DRAM local buffer pixel data, such as depth (Z),
to be cleared down quickly.

frame buffer: An area of memory containing the displayable
color buffers (front, back, left, right, overlay, underlay).
This memory is typically separate from the local buffer.

local buffer: An area of memory which may be used to store
non-displayable pixel information: depth(Z). stencil.

FrameCount and GID planes. This memory is typically

separate from the framebuffer.

pixel: Picture element. A pixel comprises the bits in all the
buffers (whether stored in the local buffer or framebuffer),
corresponding to a particular location in the framebuffer.

stencil buffer: A buffer used to store information about a
pixel which controls how subsequent stencilled pixels at
the same location may be combined with the current value
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in the framebuffer. Typically used to mask complex
two-dimensional shapes.

Preferred Chip Embodiment—Overview

The GLINT™ high performance graphics processors
combine workstation class 3D graphics acceleration. and
state-of-the-art 2D performance in a single chip. All 3D
rendering operations are accelerated by GLINT. including
Gouraud shading. texture mapping. depth buffering, anti-
aliasing. and alpha blending.

The scalable memory architecture of GLINT makes it
ideal for a wide range of graphics products. from PC boards
to high-end workstation accelerators.

There will be several of the GLINT family of graphics
processors: the GLINT 300SX™ is the embodiment of the
parent case, and the GLINT 400TX™ is a presently pre-
ferred embodiment which is which is described herein in
great detail. The two devices are generally compatible, with
the 400TX adding local texture storage and texel address
generation for all texture modes.

FIG. 2B is an overview of the graphics rendering chip of
the presently preferred embodiment (i.e. the GLINT
400TX™),

General Concept

The overall architecture of the GLINT chip is best viewed
using the software paradigm of a message passing system. In
this system all the processing blocks are connected in a long
pipeline with communication with the adjacent blocks being
done through message passing. Between each block there is
a small amount of buffering, the size being specific to the
local communications requirements and speed of the two
blocks.

The message rate is variable and depends on the rendering
mode. The messages do not propagate through the system at
a fixed rate typical of a more traditional pipeline system. If
the receiving block can not accept a message, because its
input buffer is full, then the sending block stalls until space
is available.

The message structure is fundamental to the whole system
as the messages are used to control, synchronize and inform
each block about the processing it is to undertake. Each
message has two fields—a 32 bit data field and a 9 bit tag
field. (This is the minimum width guaranteed, but some local
block to block connections may be wider to accommodate
more data.) The data field will hold color information,
coordinate information, local state information. etc. The tag
field is used by each block to identify the message type so
it knows how to act on it.

Each block. on receiving a message, can do one of several
things:

Not recognize the message so it just passes it on to the

next block.

Recognize it as updating some local state (to the block) so
the local state is updated and the message terminated,
i.e. not passed on to the next block.

Recognize it as a processing action, and if appropriate to
the unit, the processing work specific to the unit is
done. This may entail sending out new messages such
as Color and/or modifying the initial message before
sending it on. Any new messages are injected into the
message stream before the initial message is forwarded
on. Some examples will clarify this.

When the Depth Block receives a message ‘new
fragment’, it will calculate the corresponding depth and do
the depth test. If the test passes then the ‘new fragment’
message is passed to the next unit. If the test fails then the

Page 17 of 1055

10

15

20

25

35

45

50

55

60

8

message is modified and passed on. The temptation is not to
pass the message on when the test fails (because the pixel is
not going to be updated), but other units downstream need
to keep their local DDA units in step.

(In the present application. the messages are being
described in general terms so as not to be bogged down in
detail at this stage. The details of what a ‘rew fragment’
message actually specifies (i.e. coordinate. color
information) is left till later. In general. the term “pixel” is
used to describe the picture element on the screen or in
memory. The term “fragment” is used to describe the part of
a polygon or other primitive which projects onto a pixel.
Note that a fragment may only cover a part of a pixel.) When
the Texture Read Unit (if enabled) gets a ‘new fragment’
message. it will calculate the texture map addresses, and will
accordingly provide 1. 2, 4 or 8 texels to the mext unit
together with the appropriate number of interpolation coef-
ficients.

Each unit and the message passing are conceptually
running asynchronous to all the others. However, in the
presently preferred embodiment there is considerable syn-
chrony because of the common clock.

How does the host process send messages? The message
data field is the 32 bit data written by the host. and the
message tag is the bottom 9 bits of the address (excluding
the byte resolution address lines). Writing to a specific
address causes the message type associated with that address
to be inserted into the message queue. Alternatively, the
on-chip DMA controller may fetch the messages from the
host’s memory.

The message throughput, in the presently preferred
embodiment, is S0M messages per second and this gives a
fragment throughput of up to 50M per second, depending on
what is being rendered. Of course, this rate will predictably
be further increased over time, with advances in process
technology and clock rates.

Linkage

The block diagram of FIG. 2A shows how the units are
connected together in the GLINT 300SX embodiment, and
the block diagram of FIG. 2B shows how the units are
connected together in the presently preferred embodiment.
Some general points are:

The following functionality is present in the 400TX. but
missing from the 300SX: The Texture Address (TAddr)
and Texture Read (TRd) Units are missing. Also. the
router and multiplexer are missing from this section, so
the unit ordering is Scissor/Stipple, Color DDA, Tex-
ture Fog Color, Alpha Test, LB Rd, etc.

In the embodiment of FIG. 2B, the order of the units can
be configured in two ways. The most general order
(Router, Color DDA, Texture Unit, Alpha Test, LB Rd,
GID/Z/Stencil, LB Wr, Multiplexer) and will work in
all modes of OpenGL. However, when the alpha test is
disabled it is much better to do the Graphics ID. depth
and stencil tests before the texture operations rather
than after. This is because the texture operations have
a high processing cost and this should not be spent on
fragments which are later rejected because of window,
depth or stencil tests.

The loop back to the host at the bottom provides a simple
synchronization mechanism. The host can insert a Sync
command and when all the preceding rendering has
finished the sync command will reach the bottom host
interface which will notify the host the sync event has
occurred.

Benefits

The very modular nature of this architecture gives great

berefits. Each unit lives in isolation from all the others and
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has a very well defined set of input and output messages.

This allows the internal structure of a unit (or group of units)

to be changed to make algorithmic/speed/gate count trade-

offs.

The isolation and well defined logical and behavioral
interface to each unit allows much better testing and veri-
fication of the correctness of a unit.

The message passing paradigm is casy to simulate with
software, and the hardware design is nicely partitioned. The
architecture is self synchronizing for mode or primitive
changes.

The host can mimic any block in the chain by inserting
messages which that block would normally generate. These
message would pass through the earlier blocks to the mim-
icked block unchanged and from then onwards to the rest of
the blocks which cannot tell the message did not originate
from the expected block. This allows for an easy work
around mechanism to correct any flaws in the chip. It also
allows other rasterization paradigms to be implemented
outside of the chip, while still using the chip for the low level
pixel operations.

“A Day in the Life of a Triangle”

Before we get too detailed in what each unit does it is
worth while looking in general terms at how a primitive (e.g.
triangle) passes through the pipeline. what messages are
generated, and what happens in each unit. Some simplifi-
cations have been made in the description to avoid detail
which would otherwise complicate what is really a very
simple process. The primitive we are going to look at is the
familiar Gouraud shaded Z buffered triangle, with dithering.
It is assumed any other state (i.e. depth compare mode) has
been set up, but (for simplicity) such other states will be
mentioned as they become relevant.

The application generates the triangle vertex information
and makes the necessary OpenGL calls to draw it.

The OpenGL serverflibrary gets the vertex information,
transforms, clips and lights it. It calculates the initial
values and derivatives for the values to interpolate (X,
X ighr Ted, green, blue and depth) for unit change in dx
and dxdy,,,. All these values are in fixed point integer and
have unique message tags. Some of the values (the depth
derivatives) have more than 32 bits to cope with the
dynamic range and resolution so are sent in two halves
Finally, once the derivatives, start and end values have
been sent to GLINT the ‘render triangle’ message is sent.

On GLINT: The derivative, start and end parameter mes-
sages are received and filter down the message stream to
the appropriate blocks. The depth parameters and deriva-
tives to the Depth Unit; the RGB parameters and deriva-
tive to the Color DDA Unit; the edge values and deriva-
tives to the Rasterizer Unit.

The ‘render triangle’ message is received by the rasterizer
unit and all subsequent messages (from the host) are
blocked until the triangle has been rasterized (but mot
necessarily written to the frame store). A ‘prepare to
render’ message is passed on so any other blocks can
prepare themselves.

The Rasterizer Unit walks the left and right edges of the
triangle and fills in the spans between. As the walk
progresses messages are send to indicate the direction of
the next step: StepX or StepYDomEdge. The data field
holds the current (x, y) coordinate. One message is sent
per pixel within the triangle boundary. The step messages
are duplicated into two groups: an active group and a
passive group. The messages always start off in the active
group but may be changed to the passive group if this
pixel fails one of the tests (e.g. depth) on its path down the
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message stream. The two groups are distinguished by a
single bit in the message tag. The step messages (in either
form) are always passed throughout the length of the
message stream, and are used by all the DDA units to keep
their interpolation values in step. The step message effec-
tively identifies the fragment and any other messages
pertaining to this fragment will always precede the step
message in the message stream.

The Scissor and Stipple Unit. This unit does 4 tests on the
fragment (as embodied by the active step message). The
screen scissor test takes the coordinates associated with
the step message, converts them to be screen relative (if
necessary) and compares them against the screen bound-
aries. The other three tests (user scissor. line stipple and
area stipple) are disabled for this example. If the enabled
tests pass then the active step is forwarded onto the next
unit, otherwise it is changed into a passive step and then
forwarded.

The Color DDA unit responds to an active step message by
generating a Color message and sending this onto the next
unit. The active step message is then forwarded to the next
unit. The Color message holds, in the data field. the
current RGBA value from the DDA. If the step message
is passive then no Color message is generated. After the
Color message is sent (or would have been sent) the step
message is acted on to increment the DDA in the correct
direction, ready for the next pixel.

Texturing, Fog and Alpha Tests Units are disabled so the
messages just pass through these blocks.

In general terms the Local Buffer Read Unit reads the
Graphic ID, Stencil and Depth information from the Local
Buffer and passes it onto the next unit. More specifically
it does:

1. If the step message is passive then no further action
occurs.

2. On an active step message it calculates the linear
address in the local buffer of the required data. This is
done using the (X, Y) position recorded in the step
message and locally stored information on the ‘screen
width’ and window base address. Separate read and
write addresses are calculated.

3. The addresses are passed to the Local Buffer Interface
Unit and the identified local buffer location read. The
write address is held for use later.

4. Sometime later the local buffer data is returned and is
formatted into a consistent internal format and inserted
into a ‘Local Buffer Data’ message and passed on to the
next unit.

The message data field is made wider to accommodate
the maximum Local Buffer width of 52 bits (32
depth, 8 stencil, 4 graphic ID, 8 frame count) and this
extra width just extends to the Local Buffer Write
block.

The actual data read from the local buffer can be in
several formats to allow narrower width memories to
be used in cost sensitive systems. The narrower data
is formatted into a consistent internal format in this
block.

The Graphic ID, Stencil and Depth Unit just passes the
Color message through and stores the LBData message
until the step message arrives. A passive step message
would just pass straight through. When the active step
message is received the internal Graphic ID, stencil and
depth values are compared with the ones in the LBData
message as specified by this unit’s mode information. If
the enabled tests pass then the new local buffer data is sent
in the LBWriteData message to the next unit and the
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active step message forwarded. If any of the enabled tests

fail then an LBCancelWrite message is sent followed by

the equivalent passive step message. The depth DDA is
stepped to update the local depth value.

The Local Buffer Write Unit performs any writes which are
necessary. The LBWriteData message has its data format-
ted into the external local buffer format and this is posted
to the Local Buffer Interface Unit to be written into the
memory (the write address is already waiting in the Local
Buffer Interface Unit). The LBWriteCancel message just
informs the Local Buffer Interface Unit that the pending
write address is no longer needed and can be discarded.
The step message is just passed through.

In general terms the Framebuffer Read Unit reads the color
information from the framebuffer and passes it onto the
next unit. More specifically it does:

1. If the step message is passive then no further action
occeurs,

2. On an active step message it calculates the linear
address in the framebuffer of the required data. This is
done using the (X. Y) position recorded in the step
message and locally stored information on the ‘screen
width’ and window base address. Separate read and
write addresses are calculated.

3. The addresses are passed to the Framebuffer Interface
Unit and the identified framebuffer location read. The
write address is held for use later.

4. Sometime later the color data is returned and inserted
into a ‘Frame Buffer Data’ message and passed on to
the next unit.

The actual data read from the framestore can be in
several formats to allow narrower width memories to
be used in cost sensitive systems. The formatting of
the data is deferred until the Alpha Blend Unit as it
is the only unit which needs to match it up with the
internal formats. In this example no alpha blending
or logical operations are taking place, so reads are
disabled and hence no read address is sent to the
Framebuffer Interface Unit. The Color and step mes-
sages just pass through.

The Alpha Blend Unit is disabled so just passes the messages
through.

The Dither Unit stores the Color message internally until an
active step is received. On receiving this it uses the least
significant bits of the (X, Y) coordinate information to
dither the contents of the Color message. Part of the
dithering process is to convert from the internal color
format into the format of the framebuffer. The new color
is inserted into the Color message and passed on, followed
by the step message.

The Logical Operations are disabled so the Color message is
just converted into the FBWriteData message (just the tag
changes) and forwarded on to the next unit. The step
message just passes through.

The Framebuffer Write Unit performs any writes which are
necessary.

The FBWriteData message has its data posted to the
Framebuffer Interface Unit to be written into the
memory (the write address is already waiting in the
Framebuffer Interface Unit).

The step message is just passed through.

The Host Out Unit is mainly concerned with synchroniza-
tion with the host so for this example will just consume
any messages which reach this point in the message
stream.

This description has concentrated on what happens as one

fragment flows down the message stream. It is important to
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remember that at any instant in time there are many frag-
ments flowing down the message stream and the further
down they reach the more processing has occurred.
Interfacing Between Blocks FIG. 2B shows the FIFO buff-
ering and lookahead connections which are used in the
presently preferred embodiment. The FIFOs are used to
provide an asynchronous interface between blocks. but are
expensive in terms of gate count. Note that most of these
FIFOs are only one stage deep (except where indicated).
which reduces their area. To maintain performance. looka-
head connections are used to accelerate the “startup” of the
pipeline. For example, when the Local-Buffer-Read block
issues a data request, the Texture/Fog/Color blocks also
receive this, and begin to transfer data accordingly. Nor-
mally a single-entry deep FIFO cannot be read and written
in the same cycle. as the writing side doesn’t know that the
FIFO is going to be read in that cycle (and hence become
eligible to be written). The look-ahead feature give the
writing side this insight, so that single-cycle transfer can be
achieved. This accelerates the throughput of the pipeline.

Programming Model

The following text describes the programming model for
GLINT.

GLINT as a Register file

The simplest way to view the interface to GLINT is as a
flat block of memory-mapped registers (i.e. a register file).
This register file appears as part of Region 0 of the PCI
address map for GLINT. See the GLINT Hardware Refer-
ence Manual for details of this address map.

When a GLINT host software driver is initialized it can
map the register file into its address space. Each register has
an associated address tag. giving its offset from the base of
the register file (since all registers reside on a 64-bit
boundary, the tag offset is measured in multiples of § bytes).
The most straightforward way to load a value into a register
is to write the data to its mapped address. In reality the chip
interface comprises a 16 entry deep FIFQ, and each write to
a register causes the written value and the register’s address
tag to be written as a new eatry in the FIFO.

Programming GLINT to draw a primitive consists of
writing initial values to the appropriate registers followed by
a write to a command register. The last write triggers the
start of rendering.

GLINT has approximately 200 registers. All registers are
32 bits wide and should be 32-bit addressed. Many registers
are split into bit fields, and it should be noted that bit 0 is the
least significant bit.

Register Types

GLINT has three main types of register:

Control Registers

Command Registers

Internal Registers

Control Registers are updated only by the host—the chip
effectively uses them as read-only registers. Examples of
control registers are the Scissor Clip unit min and max
registers. Once initialized by the host, the chip only reads
these registers to determine the scissor clip extents.

Command Registers are those which, when written to,
typically cause the chip to start rendering (some command
registers such as ResetPickResult or Sync do not initiate
rendering). Normally, the host will initialize the appropriate
control registers and then write to a command register to
initiate drawing. There are two types of command registers:
begin-draw and continue-draw. Begin-draw commands
cause rendering to start with those values specified by the
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control registers. Continue-draw commands cause drawing
to continue with internal register values as they were when
the previous drawing operation completed. Making use of
continue-draw commands can significantly reduce the
amount of data that has to be loaded into GLINT when
drawing multiple connected objects such as polylines.
Examples of command registers include the Render and
ContinueNewL.ine registers.

For convenience this application will usually refer to
“sending a Render command to GLINT” rather than saying
(more precisely) “the Render Command register is written
to, which initiates drawing”.

Internal Registers are not accessible to host software.
They are used internally by the chip to keep track of
changing values. Some control registers have corresponding
internal registers. When a begindraw command is sent and
before rendering starts, the internal registers are updated
with the values in the corresponding control registers. If a
continue-draw command is sent then this update does not
happen and drawing continues with the current values in the
internal registers. For example. if a line is being drawn then
the StartXDom and StartY control registers specify the (x. y)
coordinates of the first point in the line. When a begin-draw
command is sent these values are copied into internal
registers. As the line drawing progresses these internal
registers are updated to contain the (X, y) coordinates of the
pixel being drawn. When drawing has completed the internal
registers contain the (X. y) coordinates of the next point that
would have been drawn. If a continue-draw command is
now given these final (X, y) internal values are not modified
and further drawing uses these values. If a begin-draw
command had been used the internal registers would have
been reloaded from the StartXDom and StartY registers.

For the most part internal registers can be ignored. It is
helpful to appreciate that they exist in order to understand
the continue-draw commands.

GLINT VO Interface

There are a number of ways of loading GLINT registers
for a given context:

The host writes a value to the mapped address of the

register

The host writes address-tag/data pairs into a host memory
buffer and uses the on-chip DMA to transfer this data
to the FIFO.

The host can perform a Block Command Transfer by
writing address and data values to the FIFQO interface
registers.

In all cases where the host writes data values directly to
the chip (via the register file) it has to worry about FIFO
overflow. The InFIFOSpace register indicates how many
free entries remain in the FIFQ. Before writing to any
register the host must ensure that there is enough space left
in the FIFO. The values in this register can be read at any
time. When using DMA, the DMA controller will automati-
cally ensure that there is room in the FIFO before it performs
further transfers. Thus a buffer of any size can be passed to
the DMA controller.

FIFO Control

The description above considered the GLINT interface to
be a register file. More precisely, when a data value is
written to a register this value and the address tag for that
register are combined and put into the FIFO as a new entry.
The actual register is not updated until GLINT processes this
entry. In the case where GLINT is busy performing a time
consuming operation (e.g. drawing a large texture mapped
polygon). and not draining the FIFO very quickly. it is
possible for the FIFO to become full. If a write to a register

Page 20 of 1055

10

15

20

25

30

35

45

50

55

65

14

is performed when the FIFO is full no entry is put into the
FIFO and that write is effectively lost.

The input FIFO is 16 entries deep and each entry consists
of a tag/data pair. The InFIFOSpace register can be read to
determine how many entries are free. The value returned by
this register will never be greater than 16.

To check the status of the FIFO before every write is very
inefficient. so it is preferably checked before loading the data
for each rectangle. Since the FIFO is 16 entries deep. a
further optimization is to wait for all 16 entries to be free
after every second rectangle. Further optimizations can be
made by moving dXDom. dXSub and dY outside the loop
(as they are constant for each rectangle) and doing the FIFO
wait after every third rectangle.

The InFIFOSpace FIFO control register contains a count
of the number of entries currently free in the FIFO. The chip
increments this register for each entry it removes from the
FIFO and decrements it every time the host puts an entry in
the FIFO.

The DMA Interface

Loading registers directly via the FIFO is often an inef-
ficient way to download data to GLINT. Given that the FIFO
can accommodate only a small number of entries, GLINT
has to be frequently interrogated to determine how much
space is left. Also, consider the situation where a given API
function requires a large amount of data to be sent to GLINT.
If the FIFO is written directly then a return from this
function is not possible until almost all the data has been
consumed by GLINT. This may take some time depending
on the types of primitives being drawn.

To avoid these problems GLINT provides an on-chip
DMA controller which can be used to load data from
arbitrary sized (<64K 32-bit words) host buffers into the
FIFO. In its simplest form the host software has to prepare
a host buffer containing register address tag descriptions and
data values. It then writes the base address of this buffer to
the DMAAddress register and the count of the number of
words to transfer to the DMACount register. Writing to the
DMACount register starts the DMA transfer and the host can
now perform other work. In general, if the complete set of
rendering commands required by a given call to a driver
function can be loaded into a single DMA buffer then the
driver function can return. Meanwhile, in parallel, GLINT is
reading data from the host buffer and loading it into its FIFO.
FIFO overflow never occurs since the DMA controller
automatically waits until there is room in the FIFO before
doing any transfers.

The only restriction on the use of DMA control registers
is that before attempting to reload the DMACount register
the host software must wait until previous DMA has com-
pleted. It is valid to load the DM A Address register while the
previous DMA is in progress since the address is latched
internally at the start of the DMA transfer.

Using DMA leaves the host free to return to the
application. while in parallel. GLINT is performing the
DMA and drawing. This can increase performance signifi-
cantly over loading a FIFO directly. In addition, some
algorithms require that data be loaded multiple times (e.g.
drawing the same object across multiple clipping
rectangles). Since the GLINT DMA only reads the buffer
data, it can be downloaded many times simply by restarting
the DMA. This can be very beneficial if composing the
buffer data is a time consuming task.

The host can use this hardware capability in various ways.
For example, a further optional optimization is to use a
double buffered mechanism with two DMA buffers. This
allows the second buffer to be filled before waiting for the
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previous DMA to complete. thus further improving the
parallelism between host and GLINT processing. Thus., this
optimization is dependent on the allocation of the host
memory. If there is only one DMA host buffer then either it
is being filled or it is being emptied—it cannot be filled and
emptied at the same time. since there is no way for the host
and DMA to interact once the DMA transfer has started. The
host is at liberty to allocate as many DMA buffers as it
wants; two is the minimum to do double buffering. but
allocating many small buffers is generally better, as it gives
the benefits of double buffering together with low latency
time, so GLINT is not idle while large buffer is being filled
up. However. use of many small buffers is of course more
complicated.

In general the DMA buffer format consists of a 32-bit
address tag description word followed by one or more data
words. The DMA buffer consists of one or more sets of these
formats. The following paragraphs describe the different
types of tag description words that can be used.

DMA Tag Description Format

There are 3 different tag addressing modes for DMA:
hold, increment and indexed. The different DMA modes are
provided to reduce the amount of data which needs to be
transferred, hence making better use of the available DMA
bandwidth. Each of these is described in the following
sections.

Hold Format

In this format the 32-bit tag description contains a tag
value and a count specifying the number of data words
following in the buffer. The DMA controller writes each of
the data words to the same address tag. For example. this is
useful for image download where pixel data is continuously
written to the Color register. The bottom 9 bits specify the
register to which the data should be written; the high-order
16 bits specify the number of data words (minus 1) which
follow in the buffer and which should be written to the
address tag (note that the 2 -bit mode field for this format is
zero so a given tag value can simply be loaded into the low
order 16 bits).

A special case of this format is where the top 16 bits are
zero indicating that a single data value follows the tag (i.e.
the 32-bit tag description is simply the address tag value
itself). This allows simple DMA buffers to be constructed
which consist of tag/data pairs.

Increment Format

This format is similar to the hold format except that as
each data value is loaded the address tag is incremented (the
value in the DMA buffer is not changed; GLINT updates an
internal copy). Thus, this mode allows contiguous GLINT
registers to be loaded by specifying a single 32-bit tag value
followed by a data word for each register. The low-order 9
bits specify the address tag of the first register to be loaded.
The 2 bit mode field is set to 1 and the high-order 16 bits are
set to the count (minus 1) of the number of registers to
update. To enable use of this format, the GLINT register file
has been organized so that registers which are frequently
loaded together have adjacent address tags. For example. the
32 AreaStipplePattern registers can be loaded as follows:

AreaStipplePattern0, Count=31, Mode=1
row O bits
row 1 bits

row 31 bits

Indexed Format
GLINT address tags are 9 bit values. For the purposes of
the Indexed DMA Format they are organized into major
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groups and within each group there are up to 16 tags. The
low-order 4 bits of a tag give its offset within the group. The
high-order 5 bits give the major group number.

The following Register Table lists the individual registers
with their Major Group and Offset in the presently preferred
embodiment:

Register Table

The folowing table lists registers by group. giving their
tag values and indicating their type. The register groups may
be used to improve data transfer rates to GLINT when using
DMA.

The following types of register are distinguished:

Major Off-
Group set
Unit Register (hex) (hex) Type
Rasterizer StartXDom 00 g Control
dXDom [0.0] 1 Control
StartXSub 00 2 Control
dXSub 00 3 Control
StartY 00 4 Control
dy 00 5 Control
Count 00 6 Control
Render 00 7 Command
ContinneNewLine [4.4] 8 Command
ContinueNewDom 00 9 Command
ContinueNewSub 0 A Command
Continue 00 B Command
FlushSpan 00 C Command
BitMaskPattern 00 D Mixed
Rasterizer PointTable[0-3) 01 0-3  Control
RasterizerMode 01 4 Control
Scissor ScissorMode o3 0 Control
Stipple
ScissorMinXY 03 1 Control
ScissorMaxXY 03 2 Control
ScreenSize 03 3 Control
AreaStippleMode 03 4 Control
LineStippleMode 03 5 Control
LoadLineStipple 03 6 Controt
Counters
UpdateLineStipple 03 7 Command
Counters
SaveLineStipple 03 8 Command
State
WindowOrigin 03 9  Control
Scissor AreaStipplePat- 04 O-F  Control
Stipple tern[0-31] o5 oOF
Texture TexelQ oC 1] Control
Color/Fog
Texell oc 1 Control
Texel2 oc 2 Control
Texel3 ocC 3 Control
Texeld oc 4 Control
Texel5 oC 5 Control
Texel6 0G 6 Control
Texel7 ocC 7 Control
Interp0 oC 8 Control
Interpl oC 9 Control
Interp2 oC A Control
Interp3 ocC B Control
Interpd oc C  Control
TextureFilter oc D Control
Texture/Fog TextureColor oD o} Control
Color Mode
TextureEnvColor oD 1 Control
FogMode oD 2 Control
FogColor oD 3 Control
FStart oD 4 Control
dFdx oD 5 Control
dFdyDom oD 6 Control
Color DDA RStart OF 0 Control
dRdx OF 1 Control
dRdyDom OF 2 Control
GStart OF 3 Control
dGdx OF 4 Control
dGdyDom OF 5 Control
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-continued
Major Off-
Group set
Unit Register (hex) (hex) Type
BStart OF 6 Control
dBdx OF 7 Control
dBdyDom OF 8 Control
AStart OF 9 Control
dAdx OF A Control
dAdyDom OF B Control
ColorDDAMode OF C Control
ConstantColor OF D Control
Color OF E Mixed
Alpha Test AlphaTestMode 10 0 Control
AntialiasMode 10 1 Control
Alpha Blend  AlphaBlendMode 10 2 Control
Dither DitherMode 3 Control
Logical Ops  FBSoftwareWrite 10 4 Control
Mask
LogicalOpMode 10 5 Control
FBWriteData 10 6 Contro}
LB Read LBReadMode 11 Q Control
LBReadFormat 11 1 Control
LBSourceOffset 1l 2 Control
LBStencil 1 5 Cutput
LBDepth 11 6  Output
LBWindowBase 11 7 Control
LB Write LBWriteMode 11 8 Control
LBWriteFormat 1 9 Control
GID/Stencil/ Window 13 0 Control
Depth
StencilMode 13 1 Control
StencilData 13 2 Control
Stencil 13 3 Mixed
DepthMode 13 4 Control
Depth 13 5 Mixed
ZStartU 13 6 Contro]
ZStartL 13 7 Control
dZ&xU 13 8 Control
dZdxl 13 9 Control
dZdyDomU 13 A Control
dZdyDomL 13 B Control
FastClearDepth 13 C Control
FB Read FBReadMode 15 0 Control
FBSourceOffset 15 1 Control
FBPixelOffset 15 2 Control
FBColor 15 3 Cutput
FBWindowBase 15 6 Control
FB Write FBWriteMode 15 7 Control
FBHardware Write 15 8 Control
Mask
FBBlockColor 15 9 Control
Host Out FilterMode 18 4} Control
StatisticMode 18 1 Control
MinRegion 18 2 Control
MaxRegion 18 3 Control
ResetPickResult 18 4 Command
MinHitRegion 18 5 Command
MaxHitRegion 18 6 Command
PickResult 18 7 Command
Sync 18 8 Command

This format allows up to 16 registers within a group to be
loaded while still only specifying a single address tag
description word.

If the Mode of the address tag description word is set to
indexed mode. then the high-order 16 bits are used as a mask
to indicate which registers within the group are to be used.
The bottom 4 bits of the address tag description word are
unused. The group is specified by bits 4 to 8. Each bit in the
mask is used to represent a unique tag within the group. If
a bit is set then the corresponding register will be loaded.
The number of bits set in the mask determines the number
of data words that should be following the tag description
word in the DMA buffer. The data is stored in order of
increasing corresponding address tag.
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DMA Buffer Addresses

Host software must generate the correct DMA buffer
address for the GLINT DMA controller. Normally, this
means that the address passed to GLINT must be the
physical address of the DMA buffer in host memory. The
buffer must also reside at contiguous physical addresses as
accessed by GLINT. On a system which uses virtual
memory for the address space of a task, some method of
allocating contiguous physical memory. and mapping this
into the address space of a task, must be used.

If the virtual memory buffer maps to non-contiguous
physical memory. then the buffer must be divided into sets
of contiguous physical memory pages and each of these sets
transferred separately. In such a situation the whole DMA
buffer cannot be transferred in one go; the host software
must wait for each set to be transferred. Often the best way
to handle these fragmented transfers is via an interrupt
handler.

DMA Interrupts

GLINT provides interrupt support. as an alternative
means of determining when a DMA transfer is complete. If
enabled. the interrupt is generated whenever the DMACount
register changes from having a non-zero to having a zero
value. Since the DMACount register is decremented every
time a data item is transferred from the DMA buffer this
happens when the last data item is transferred from the DMA
buffer.

To enable the DMA interrupt, the DMAInterruptEnable
bit must be set in the IntEnable register. The interrupt
handler should check the DMAFlag bit in the IntFlags
register to determine that a DMA interrupt has actually
occurred. To clear the interrupt a word should be written to
the IntFlags register with the DMAFlag bit set to one.

This scheme frees the processor for other work while
DMA is being completed. Since the overhead of handling an
interrupt is often quite high for the host processor, the
scheme should be tuned to allow a period of polling before
sleeping on the interrupt.

Output FIFO and Graphics Processor FIFO
Interface

To read data back from GLINT an output FIFO is pro-
vided. Each entry in this FIFO is 32-bits wide and it can hold
tag or data values. Thus its format is unlike the input FIFO
whose entries are always tag/data pairs (we can think of each
entry in the input FIFO as being 41 bits wide: 9 bits for the
tag and 32 bits for the data). The type of data written by
GLINT to the output FIFO is controlled by the FilterMode
register. This register allows filtering of output data in
various categories including the following:

Depth: output in this category results from an image

upload of the Depth buffer.

Stencil: output in this category results from an image

upload of the Stencil buffer.

Color: output in this category results from an image

upload of the framebuffer.

Synchronization: synchronization data is sent in response

to a Sync command.

The data for the FilterMode register consists of 2 bits per
category. If the least significant of these two bits is set (0x1)
then output of the register tag for that category is enabled;
if the most significant bit is set (0x2) then output of the data
for that category is enabled. Both tag and data output can be
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enabled at the same time. In this case the tag is written first
to the FIFO followed by the data.

For example. to perform an image upload from the
framebuffer. the FilterMode register should have data output
enabled for the Color category. Then. the rectangular area to
be uploaded should be described to the rasterizer. Each pixel
that is read from the framebuffer will then be placed into the
output FIFO. If the output FIFO becomes full, then GLINT
will block internally until space becomes available. It is the
programmer’s responsibility to read all data from the output
FIFO. For example, it is important to know how many pixels
should result from an image upload and to read exactly this
many from the FIFO.

To read data from the output FIFO the OutputFIFOWords
register should first be read to determine the number of
entries in the FIFQ (reading from the FIFO when it is empty
returns undefined data). Then this many 32-bit data items are
read from the FIFO. This procedure is repeated until all the
expected data or tag items have been read. The address of the
output FIFO is described below.

Note that all expected data must be read back. GLINT will
block if the FIFO becomes full. Programmers must be
careful to avoid the deadlock condition that will result if the
host is waiting for space to become free in the input FIFO
while GLINT is waiting for the host to read data from the
output FIFO.

Graphics Processor FIFO Interface

GLINT has a sequence of 1Kx32 bit addresses in the PCI
Region 0 address map called the Graphics Processor FIFO
Interface. To read from the output FIFO any address in this
range can be read (normally a program will choose the first
address and use this as the address for the output FIFO). All
32-bit addresses in this region perform the same function:
the range of addresses is provided for data transfer schemes
which force the use of incrementing addresses.

Writing to a location in this address range provides raw
access to the input FIFO. Again, the first address is normally
chosen. Thus the same address can be used for both input
and output FIFOs. Reading gives access to the output FIFO;
writing gives access to the input FIFO.

Writing to the input FIFO by this method is different from
writing to the memory mapped register file. Since the
register file has a unique address for each register, writing to
this unique address allows GLINT to determine the register
for which the write is intended. This allows a tag/data pair
to be constructed and inserted into the input FIFQ. When
writing to the raw FIFO address an address tag description
must first be written followed by the associated data. In fact,
the format of the tag descriptions and the data that follows
is identical to that described above for DMA buffers. Instead
of using the GLINT DMA it is possible to transfer data to
GLINT by constructing a DMA-style buffer of data and then
copying each item in this buffer to the raw input FIFO
address. Based on the tag descriptions and data written
GLINT constructs tag/data pairs to enter as real FIFO
entries. The DMA mechanism can be thought of as an
automatic way of writing to the raw input FIFO address.

Note, that when writing to the raw FIFO address the FIFO
full condition must still be checked by reading the
InFIFOSpace register. However. writing tag descriptions
does not cause any entries to be entered into the FIFO: such
a write simply establishes a set of tags to be paired with the
subsequent data. Thus, free space need be ensured only for
actual data items that are written (not the tag values). For
example. in the simplest case where each tag is followed by
a single data item. assuming that the FIFO is empty, then 32
writes are possible before checking again for free space.
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Other Interrupts
GLINT also provides interrupt facilities for the following:

Sync: If a Sync command is sent and the Sync interrupt has
been enabled then once all rendering has been completed,
a data value is entered into the Host Out FIFO. and a Sync
interrupt is generated when this value reaches the output
end of the FIFQO. Synchronization is described further in
the next section.

External: this provides the capability for external hardware
on a GLINT board (such as an external video timing
generator) to generate interrupts to the host processor.

Error: if enabled the error interrupt will occur when GLINT
detects certain error conditions . such as an attempt to
write to a full FIFO.

Vertical Retrace: if enabled a vertical retrace interrupt is
generated at the start of the video blank period.

Each of these are enabled and cleared in a similar way to
the DMA interrupt.

Synchronization

There are three main cases where the host must synchro-
nize with GLINT:

before reading back from registers

before directly accessing the framebuffer or the local-

buffer via the bypass mechanism

framebuffer management tasks such as double buffering

Synchronizing with GLINT implies waiting for any pend-
ing DMA to complete and waiting for the chip to complete
any processing currently being performed. The following
pseudo-code shows the general scheme:

GLINTData data;
/1 wait for DMA to complete
while (*DMACount != 0) {
poll or wait for interrupt
}
while (*InFIFOSpace < 2) {
3 /1 wait for free space in the FIFO

}
1/ enable sync output and send the Sync command
data.Word = 0;
data.FilterMode.Synchronization = 0x1;
FilterMode(data. Word);
Sync(0x0);
/* wait for the sync output data */
do {

while (*OutFIFOWords = 0)

; /1 poll waiting for data in output

FIFO
} while (*OutputFIFO != Sync.._tag);

Initially, we wait for DMA to complete as normal. We
then have to wait for space to become free in the FIFO (since
the DMA controller actually loads the FIFO). We need space
for 2 registers: one to enable generation of an output sync
value, and the Sync command itself. The enable flag can be
set at initialization time. The output value will be generated
only when a Sync command has actually been sent, and
GLINT has then completed all processing.

Rather than polling it is possible to use a Sync interrupt
as mentioned in the previous section. As well as enabling the
interrupt and setting the filter mode, the data sent in the Sync
command must have the most significant bit set in order to
generate the interrupt. The interrupt is generated when the
tag or data reaches the output end of the Host Out FIFQ. Use
of the Sync interrupt has to be considered carefully as
GLINT will generally empty the FIFO more quickly than it
takes to set up and handle the interrupt.

Host Framebuffer Bypass

Normally. the host will access the framebuffer indirectly
via commands sent to the GLINT FIFO interface. However,

Unified Patents Exhibit 1005 App'x O-MM



5.798.770

21

GLINT does provide the whole framebuffer as part of its
address space so that it can be memory mapped by an
application. Access to the framebuffer via this memory
mapped route is independent of the GLINT FIFO.

Drivers may choose to use direct access to the framebuffer
for algorithms which are not supported by GLINT. The
framebuffer bypass supports big-endian, little-endian and
GIB-endian formats.

A driver making use of the framebuffer bypass mecha-
nism should synchronize framebuffer accesses made
through the FIFO with those made directly through the
memory map. If data is written to the FIFO and then an
access is made to the framebuffer, it is possible that the
framebuffer access will occur before the commands in the
FIFO have been fully processed. This lack of temporal
ordering is generally not desirable.

Framebuffer Dimensions and Depth

At reset time the hardware stores the size of the frame-
buffer in the FBMemoryControl register. This register can be
read by software to determine the amount of VRAM on the
display adapter. For a given amount of VRAM., software can
configure different screen resolutions and off-screen
memory regions.

The framebuffer width must be set up in the FBReadMode
register. The first 9 bits of this register define 3 partial
products which determine the offset in pixels from one
scanline to the next. Typically, these values will be worked
out at initialization time and a copy kept in software. When
this register needs to be modified the software copy is
retrieved and any other bits modified before writing to the
register.

Once the offset from one scanline to the next has been
established, determining the visible screen width and height
becomes a clipping issue. The visible screen width and
height are set up in the ScreenSize register and enabled by
setting the ScreenScissorEnable bit in the ScissorMode
register.

The framebuffer depth (8, 16 or 32-bit) is controlled by
the FBModeSel register. This register provides a 2 bit field
to control which of the three pixel depths is being used. The
pixel depth can be changed at any time but this should not
be attempted without first synchronizing with GLINT. The
FBModeSel register is not a FIFO register and is updated
immediately it is written. f GLINT is busy performing
rendering operations, changing the pixel depth will corrupt
that rendering.

Normally. the pixel depth is set at initialization time, To
optimize certain 2D rendering operations it may be desirable
to change it at other times. For example. if the pixel depth
is normally 8 (or 16) bits, changing the pixel depth to 32 bits
for the duration of a bitblt can quadruple (or double) the blt
speed, when the bit source and destination edges are aligned
on 32 bit boundaries. Once such a blt sequence has been set
up the host software must wait and synchronize with GLINT
and then reset the pixel depth before continuing with further
rendering. It is not possible to change the pixel depth via the
FIFO, thus explicit synchronization must always be used.

Host Localbuffer Bypass

As with the framebuffer. the localbuffer can be mapped in
and accessed directly. The host should synchronize with
GLINT before making any direct access to the localbuffer.

At reset time the hardware saves the size of the localbuffer
in the LBMemoryControl register (localbuffer visible region
size). In bypass mode the number of bits per pixel is either
32 or 64. This information is also set in the LBMemory-
Control register (localbuffer bypass packing). This pixel
packing defines the memory offset between one pixel and the
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next. A further set of 3 bits (localbuffer width) in the
LBMemoryControl register defines the number of valid bits
per pixel. A typical localbuffer configuration might be 48
bits per pixel but in bypass mode the data for each pixel
starts on a 64-bit boundary. In this case valid pixel data will
be contained in bits 0 to 47. Software must set the LBRead-
Format register to tell GLINT how to interpret these valid
bits.

Host software must set the width in pixels of each scanline
of the localbuffer in the LBReadMode FIFO register. The
first 9 bits of this register define 3 partial products which
determine the offset in pixels from one scanline to the next.
As with the framebuffer partial products, these values will
usually be worked out at initialization time and a copy kept
in software. When this register needs to be modified the
software copy is retrieved and any other bits modified before
writing to the register. If the system is set up so that each
pixel in the framebuffer has a comresponding pixel in the
localbuffer then this width will be the same as that set for the
framebuffer.

The localbuffer is accessible via Regions 1 and 3 of the
PCI address map for GLINT. The localbuffer bypass sup-
ports big-endian and little-endian formats. These are
described in a later section.

Register Read Back

Under some operating environments, multiple tasks will
want access to the GLINT chip. Sometimes a server task or
driver will want to arbitrate access to GLINT on behalf of
multiple applications. In these circumstances, the state of the
GLINT chip may need to be saved and restored on each
context switch. To facilitate this, the GLINT control regis-
ters can be read back. (However, internal and command
registers cannot be read back.)

To perform a context switch the host must first synchro-
nize with GLINT. This means waiting for outstanding DMA
to complete. sending a2 Sync command and waiting for the
sync output data to appear in the output FIFQ. After this the
registers can be read back.

To read a GLINT register the host reads the same address
which would be used for a write, i.c. the base address of the
register file plus the offset value for the register.

Note that since internal registers cannot be read back care
must be taken when context switching a task which is
making use of continue-draw commands. Continue-draw
commands rely on the internal registers maintaining previ-
ous state. This state will be destroyed by any rendering work
done by a new task. To prevent this. continue-draw com-
mands should be performed via DMA since the context
switch code has to wait for outstanding DMA to complete.
Alternatively, continue-draw commands can be performed
in a non-preemptable code segment.

Normally, reading back individual registers should be
avoided. The need to synchronize with the chip can
adversely affect performance. It is usually more appropriate
to keep a software copy of the register which is updated
when the actual register is updated.

Byte Swapping

Internally GLINT operates in little-endian mode.
However, GLINT is designed to work with both big- and
little-endian host processors. Since the PCIBus specification
defines that byte ordering is preserved regardless of the size
of the transfer operation., GLINT provides facilities to
handle byte swapping. Each of the Configuration Space,
Control Space. Framebuffer Bypass and Localbuffer Bypass
memory areas have both big and little endian mappings
available. The mapping to use typically depends on the
endian ordering of the host processor.
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The Configuration Space may be set by a resistor in the
board design to be either little endian or big endian.

The Control Space in PCI address region 0. is 128K bytes
in size, and consists of two 64K sized spaces. The first 64K
provides little endian access to the control space registers;
the second 64K provides big endian access to the same
registers.

The framebuffer bypass consists of two PCI address
regions: Region 2 and Region 4. Each is independently
configurable to by the Aperture0 and Aperture 1 control
registers respectively. to one of three modes: no byte swap.
16-bit swap. full byte swap. Note that the 16 bit mode is
needed for the following reason. If the framebuffer is
configured for 16-bit pixels and the host is big-endian then
simply byte swapping is not enough when a 32-bit access is
made (to write two pixels). In this case, the required effect
is that the bytes are swapped within each 16-bit word, but the
two 16-bit halves of the 32-bit word are not swapped. This
preserves the order of the pixels that are written as well as
the byte ordering within each pixel. The 16 bit mode is
referred to as GIB-endian in the PCI Multimedia Design
Guide, version 1.0.

The localbuffer bypass consists of two PCI address
regions: Region 1 and Region 3. Each is independently
configurable to by the Aperture0 and Aperture 1 control
registers respectively. to one of two modes: no byte swap.
full byte swap.

To save on the size of the address space required for
GLINT. board vendors may choose to turn off access to the
big endian regions (3 and 4) by the use of resistors on the
board.

There is a bit available in the DMAControl control
register to enable byte swapping of DMA data. Thus for
big-endian hosts, this control bit would normally be enabled.
Red and Blue Swapping

For a given graphics board the RAMDAC and/or API will
usually force a given interpretation for true color pixel
values. For example, 32-bit pixels will be interpreted as
either ARGB (alpha at byte 3, red at byte 2, green at byte 1
and blue at byte 0) or ABGR (blue at byte 2 and red at byte
0). The byte position for red and blue may be important for
software which has been written to expect one byte order or
the other, in particular when handling image data stored in
a file.

GLINT provides two registers to specify the byte posi-
tions of blue and red internally. In the Alpha Blend Unit the
AlphaBlendMode register contains a 1-bit field called Col-
orOrder. If this bit is set to zero then the byte ordering is
ABGR; if the bit is set to one then the ordering is ARGB. As
well as setting this bit in the Alpha Blend unit, it must also
be set in the Color Formatting unit. In this unit the Dither-
Mode register contains a Color Order bit with the same
interpretation. The order applies to all of the true color pixel
formats. regardless of the pixel depth.

Hardware Data Structures

Some of the hardware data structure implementations
used in the presently preferred embodiment will now be
described in detail. Of course these examples are provided
merely to illustrate the presently preferred embodiment in
great detail, and do not necessarily delimit any of the
claimed inventions.

Localbuffer

The localbuffer holds the per pixel information corre-
sponding to each displayed pixel and any texture maps. The
per pixel information held in the localbuffer are Graphic ID
(GID). Depth. Stencil and Frame Count Planes (FCP). The
possible formats for each of these fields, and their use are
covered individually in the following sections.

Page 25 of 1055

10

15

20

25

30

35

40

45

50

55

65

24

The maximum width of the localbuffer is 48 bits. but this
can be reduced by changing the external memory
configuration, albeit at the expense of reducing the func-
tionality or dynamic range of one or more of the ficlds.

The localbuffer memory can be from 16 bits (assuming a
depth buffer is always needed) to 48 bits wide in steps of 4
bits. The four fields supported in the localbuffer, their
allowed lengths and positions are shown in the following
table:

Field Lengths Start bit positions

Depth 16,24,32 0

Stencil 0,48 16, 20, 24, 28, 32

FrameCount 0,4, 8 16, 20, 24, 28, 32, 36, 40

GID 0,4 16, 20, 24, 28, 32, 36, 40, 44, 48

The order of the fields is as shown with the depth field at
the least significant end and GID field at the most significant
end. The GID is at the most significant end so that various
combinations of the Stencil and FrameCount field widths
can be used on a per window basis without the position of
the GID fields moving. If the GID field is in a different
positions in different windows then the ownership tests
become impossible to do.

The GID, FrameCount, Stencil and Depth fields in the
localbuffer are converted into the internal format by right
justification if they are less than their internal widths, i.e. the
unused bits are the most significant bits and they are set to
0.

The format of the localbuffer is specified in two places:
the LBReadFormat register and the LBWriteFormat register.

It is still possible to part populate the localbuffer so other
combinations of the field widths are possible (i.e. depth field
width of 0). but this may give problems if texture maps are
to be stored in the localbuffer as well.

Any non-bypass read or write to the localbuffer always
reads or writes all 48 bits simultaneously.

GID field

The 4 bit GID field is used for pixel ownership tests to
allow per pixel window clipping. Each window using this
facility is assigned one of the GID values, and the visible
pixels in the window have their GID field set to this value.
If the test is enabled the current GID (set to correspond with
the current window) is compared with the GID in the
localbuffer for each fragment. If they are equal this pixel
belongs to the window so the localbuffer and framebuffer at
this coordinate may be updated.

Using the GID field for pixel ownership tests is optional
and other methods of achieving the same result are:
clip the primitive to the window’s boundary (or rectangular

tiles which make up the window’s area) and render only

the visible parts of the primitive

use the scissor test to define the rectangular tiles which make
up the window’s visible area and render the primitive
once per tile (This may be limited to only those tiles
which the primitive intersects).

Depth Field

The depth field holds the depth (Z) value associated with
a pixel and can be 16, 24 or 32 bits wide.

Stencil Field

The stencil field holds the stencil value associated with a
pixel and can be 0. 4 or 8 bits wide.

The width of the stencil buffer is also stored in the
StencilMode register and is needed for clamping and mask-
ing during the update methods. The stencil compare mask
should be set up to exclude any absent bits from the stencil
compare operation.
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FrameCount Field

The Frame Count Field holds the frame count value
associated with a pixel and can be 0. 4 or 8 bits wide. It is
used during animation to support a fast clear mechanism to
aid the rapid clearing of the depth and/or stencil fields
needed at the start of each frame.

In addition to the fast clear mechanism the extent of all
updates to the localbuffer and framebuffer can be recorded
(MinRegion and MaxRegion registers) and read back
(MinHitRegion and MaxHitRegion commands) to give the
bounding box of the smallest area to clear. For some
applications this will be significantly smaller than the whole
window or screen. and hence faster.

The fast clear mechanism provides a method where the
cost of clearing the depth and stencil buffers can be amor-
tized over a number of clear operations issued by the
application. This works as follows:

The window is divided up into n regions. where n is the
range of the frame counter (16 or 256 ). Every time the
application issues a clear command the reference frame
counter is incremented (and allowed to roll over if it exceeds
its maximum value) and the n™ region is cleared only. The
clear updates the depth and/or stencil buffers to the new
values and the frame count buffer with the reference value.
This region is much smaller than the full window and hence
takes less time to clear.

When the localbuffer is subsequently read and the frame
count is found to be the same as the reference frame count
(held in the Window register) the localbuffer data is used
directly. However, if the frame count is found to be different
from the reference frame count (held in the Window register)
the data which would have been writien. if the localbuffer
had been cleared properly. is substituted for the stale data
returned from the read. Any new writes to the localbuffer
will set the frame count to the reference value so the next
read on this pixel works normally without the substitution.
The depth data to substitute is held in the FastClearDepth
register and the stencil data to substitute is held in the
StencilData register (along with other stencil information).

The fast clear mechanism does not present a total solution
as the user can elect to clear just the stencil planes or just the
depth planes. or both. The situation where the stencil planes
only are ‘cleared’ using the fast clear method, then some
rendering is done and then the depth planes are ‘cleared’
using the fast clear will leave ambiguous pixels in the
localbuffer. The driver software will need to catch this
situation. and fall back to using a per pixel write to do the
second clear. Which field(s) the frame count plane refers to
is recorded in the Window register.

When clear data is substituted for real memory data
(during normal rendering operations) the depth write mask
and stencil write masks are ignored to mimic the OpenGL
operation when a buffer is cleared.

Localbuffer Coordinates

The coordinates generated by the rasterizer are 16 bit 2°s
complement numbers, and so have the range +32767 to
-32768. The rasterizer will produce values in this range. but
any which have a negative coordinate, or exceed the screen
width or height (as programmed into the ScreenSize
register) are discarded.

Coordinates can be defined window relative or screen
relative and this is only relevant when the coordinate gets
converted to an actual physical address in the localbuffer. In
general it is expected that the windowing system will use
absolute coordinates and the graphics system will use rela-
tive coordinates (to be independent of where the window
really is).
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GUI systems (such as Windows, Windows NT and X)
usually have the origin of the coordinate system at the top
left corner of the screen but this is not true for all graphics
systems. For instance OpenGL uses the bottom left corner as
its origin. The WindowQOrigin bit in the LBReadMode
register selects the top left (0) or bottom left (1) as the origin.

The actual equations used to calculate the localbuffer
address to read and write are:

Botiom left origin:
Destination address = LBWindowBase — Y * W + X

Source address =
LBWmdowBase — Y*W + X + LBSourceOffset
Top left origin:
Destination address = LBWindowBase + Y * W+ X
Source address =

LBWindowBase + Y*W + X + LBSourceOffset

where:
X is the pixel’s X coordinate.
Y is the pixel’s Y coordinate.
LBWindowBase holds the base address in the localbuffer
of the current window.

LBSourceOffset is normally zero except during a copy
operation where data is read from one address and
written to another address. The offset between source
and destination is held in the LBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PPO, PP1 and
PP2 fields in the LBReadMode register.

These address calculations translate a 2D address into a

linear address.

The Screen width is specified as the sum of selected
partial products so a full multiply operation is not needed.
The partial products are selected by the fields PP0, PP1 and
PP2 in the LBReadMode register.

For arbitrary width screens. for instance bitmaps in ‘off
screen” memory, the next largest width from the table must
be chosen. The difference between the table width and the
bitmap width will be an unused strip of pixels down the right
hand side of the bitmap.

Note that such bitmaps can be copied to the screen only
as a series of scanlines rather than as a rectangular block.
However, often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Texture Memory

The localbuffer is used to hold textures in the GLINT
400TX variant. In the GLINT 300SX variant the texture
information is supplied by the host.

Framebuffer

The framebuffer is a region of memory where the infor-
mation produced during rasterization is written prior to
being displayed. This information is not restricted to color
but can include window control data for LUT management
and double buffering.

The framebuffer region can hold up to 32 MBytes and
there are very few restrictions on the format and size of the
individual buffers which make up the video stream. Typical
buffers include:

True color or color index main planes,

Overlay planes,

Underlay planes,

Window ID planes for LUT and double buffer

management,

Cursor planes.
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Any combination of these planes can be supported up to
a maximum of 32 MBytes, but usually it is the video level
processing which is the limiting factor. The following text
examines the options and choices available from GLINT for
rendering, copying. etc. data to these buffers.

To access alternative buffers either the FBPixelOffset
register can be loaded, or the base address of the window
held in the FBWindow-Base register can be redefined. This
is described in more detail below.

Buffer Organization

Each buffer resides at an address in the framebuffer
memory map. For rendering and copying operations the
actual buffer addresses can be on any pixel boundary.
Display hardware will place some restrictions on this as it
will need to access the multiple buffers in parallel to mix the
buffers together depending on their relative priority. opacity
and double buffer selection. For instance, visible buffers
(rather than offscreen bitmaps) will typically need to be on
a page boundary.

Consider the following highly configured example with a
1280x1024 double buffered system with 32 bit main planes
(RGBA). 8 bit overlay and 4 bits of window control infor-
mation (WID).

Combining the WID and overlay planes in the same 32 bit
pixel has the advantage of reducing the amount of data to
copy when a window moves. as only two copies are
required—one for the main planes and one for the overlay
and WID planes.

Note the position of the overlay and WID planes. This was
not an arbitrary choice but one imposed by the (presumed)
desire to use the color processing capabilities of GLINT
(dither and interpolation) in the overlay planes. The conver-
sion of the internal color format to the external one stored in
the framebuffer depends on the size and position of the
component. Note that GLINT does not support all possible
configurations. For example; if the overlay and WID bits
were swapped, then eight bit color index starting at bit 4
would be required to render to the overlay. but this is not
supported.

Framebuffer Coordinates

Coordinate generation for the framebuffer is similar to
that for the localbuffer. but there are some key differences.

As was mentioned before, the coordinates generated by
the rasterizer are 16 bit 2's complement numbers. Coordi-
nates can be defined as window relative or screen relative,
though this is only relevant when the coordinate gets con-
verted to an actual physical address in the framebuffer. The
WindowOrigin bit in the FBReadMode register selects top
left (0) or bottom left (1) as the origin for the framebuffer.

The actual equations used to calculate the framebuffer
address to read and write are:

Bottom left origin:
Destination address = FBWindowBase — Y*W + X +
FBPixelOffset
Source address = FBWindowBase — Y*W + X +
FBPixelOffset + FBSourceOffset
Top left Origin:
Destination address = FBWindowBase + Y*W + X +
FBPixelOffset
Source address = FBWindowBase + Y*W + X +
FBPixelOffset + FBSourceOffset

These address calculations translate a 2D address into a
linear address. so non power of two framebuffer widths (i.e.
1280) are economical in memory.

The width is specified as the sum of selected partial
products so a full multiply operation is not needed. The
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partial products are selected by the fields PP0, PP1 and PP2

in the FBReadMode register. This is the same mechanism as

is used to set the width of the localbuffer. but the widths may
be set independently.

For arbitrary screen sizes, for instance when rendering to
‘off screen” memory such as bitmaps the next largest width
from the table must be chosen. The difference between the
table width and the bitmap width will be an unused strip of
pixels down the right hand side of the bitmap.

Note that such bitmaps can be copied to the screen only
as a series of scanlines rather than as a rectangular block
However. often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Color Formats

The contents of the framebuffer can be regarded in two
ways:

As a collection of fields of up to 32 bits with no meaning or
assumed format as far as GLINT is concerned. Bit planes
may be allocated to control cursor. LUT. multi-buffer
visibility or priority functions. In this case GLINT will be
used to set and clear bit planes quickly but not perform
any color processing such as interpolation or dithering.
All the color processing can be disabled so that raw reads
and writes are done and the only operations are write
masking and logical ops. This allows the control planes to
be updated and modified as necessary. Obviously this
technique can also be used for overlay buffers, etc.
providing color processing is not required.

As a collection of one or more color components. All the
processing of color components. except for the final write
mask and logical ops are done using the internal color
format of 8 bits per red, green, blue and alpha color
channels. The final stage before write mask and logical
ops processing converts the internal color format to that
required by the physical configuration of the framebuffer
and video logic. The nomenclature n@m means this
component is n bits wide and starts at bit position m in the
framebuffer. The least significant bit position is 0 and a
dash in a column indicates that this component does not
exist for this mode. The ColorOrder is specified by a bit
in the DitherMode register.

Some important points to note:

The alpha channel is always associated with the RGB color
channels rather than being a separate buffer. This allows
it to be moved in parallel and to work cormrectly in
multi-buffer updates and double buffering, If the frame-
buffer is not configured with an alpha channel (e.g. 24 bit
framebuffer width with 8:8:8:8 RGB format) then some of
the rendering modes which use the retained alpha buffer
cannot be used. In these cases the NoAlphaBuffer bit in
the AlphaBlendMode register should be set so that an
alpha value of 255 is substituted. For the RGB modes
where no alpha channel is present (e.g. 3:3:2) then this
substitution is done automatically.

For the Front and Back modes the data value is replicated
into both buffers.

All writes to the framebuffer try to update all 32 bits
irrespective of the color format. This may not matter if the
memory planes don’t exist, but if they are being used (as
overlay planes, for example) then the write masks
(FBSoftwareWriteMask or FBHardware WriteMask) must
be set up to protect the alternative planes.

‘When reading the framebuffer RGBA components are scaled
to their internal width of 8 bits, if needed for alpha
blending.

CI values are left justified with the unused bits (if any) set
to zero and are Subsequently processed as the red compo-
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nent. The result is replicated into each of the streams G.B
and A giving four copies for CI8 and eight copies for CI4.
The 4:4:4:4 Front and Back formats are designed to
support 12 bit double buffering with 4 bit Alpha, in a32
bit system.
The 3:3:2 Front and Back formats are designed to support
8 bit double buffering in a 16 bit system.
The 1:2:1 Front and Back formats are designed to support
4 bit double buffering in an 8 bit system.
1t is possible to have a color index buffer at other positions
as long as reduced functionality is acceptable. For
example a 4 bit CI buffer at bit position 16 can be
achieved using write masking and 4:4:4:4 Front format
with color interpolation, but dithering is lost.
The format information needs to be stored in two places:
the DitherMode register and the AlphaBlendMode register.

Internal Color Channe]
Format Name R G B A
Color 0 818388 3@0 8@8 8@16 8@
Order: 1 5555 5@0 5@5 5@10 5@15
RGB 2 4444 4@0 4@4 4@8 4@12
3 44:44 4@0 4@8 4@16 4@24
Front 4@4 4@12 4@20 4@28
4 4444 4@0 4@8 4@16 4@24
Back 4@4 4@12 4@20 4@28
5 332 3@0 3@3 2@6 —
Front 3@8 3@11 2@14
6 332 3@0 3@3 2@6 —
Back 3@38 3@11 2@14
7 L2l 1@0 2@1 1@3 —
Front 1@4 2@5 1@7
8 L2l 1@0 2@1 1@3 —
Back 1@4 2@5 1@7
Color 0 88:88 8@16 8@8 8@0 s@24
Order: 1 5555 5@10 5@5 5@0 5@15
BGR 2 4444 4@8 4@4 4@0 4@12
3 4444 4@16 4@8 4@0 4@24
Front 4@20 4@12 4@4 4@28
4 4444 4@16 4@8 4@0 4@24
Back 4@20 4@12 4@4 4@28
5 332 3@s 3@2 2@0 —
Front 3@13 3@10 2@8
6 3:3:2 3@5 3@2 2@0 —
Back 3@13 3@10 2@8
7 1:2:1 i@3 2@l 1@0 —
Front 1@7 2@5 1@4
8 L2 1@3 2@1 1@0 —
Back 1@7 2@5 1@4
CI 14 CI8 8@0 0 0 o]
15 CH 4@0 0 0 0

Overlays and Underlays

In a GUI system there are two possible relationships
between the overlay planes (or underlay) and the main
planes.

The overlay planes are fixed to the main planes, so that if
the window is moved then both the data in the main
planes and overlay planes move together.

The overlay planes are not fixed to the main planes but
floating, so that moving a window only moves the
associated main or overlay planes.

In the fixed case both planes can share the same GID. The
pixel offset is used to redirect the reads and writes between
the main planes and the overlay (underlay) buffer. The pixel
ownership tests using the GID field in the localbuffer work
as expected.

In the floating case different GIDs are the best choice,
because the same GID planes in the localbuffer can not be
used for pixel ownership tests. The alternatives are not to use
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the GID based pixel ownership tests for one of the buffers
but rely on the scissor clipping. or to install a second set of
GID planes so each buffer has it’s own set. GLINT allows
either approach.

If rendering operations to the main and overlay planes
both need the depth or stencil buffers, and the windows in
each overlap then each buffer will need its own exclusive
depth and/or stencil buffers. This is easily achieved with
GLINT by assigning different regions in the localbuffer to
each of the buffers. Typically this would double the local-
buffer memory requirements.

One scenario where the above two considerations do not
cause problems. is when the overlay planes are used exclu-
sively by the GUI system. and the main planes are used for
the 3D graphics.

VRAM Modes

High performance systems will typically use VRAM for
the framebuffer and the extended functionality of VRAM
over DRAM can be used to enhance performance for many
rendering tasks.

Hardware Write Masks.

These allow write masking in the framebuffer without
incurring a performance penalty. If hardware write masks
are not available, GLINT must be programmed to read the
memory, merge the value with the new value using the write
mask, and write it back.

To use hardware write masking, the required write mask
is written to the FBHardwareWriteMask register, the
FBSoftwareWriteMask register should be set to all 1’s, and
the number of framebuffer reads is set to O (for normal
rendering). This is achieved by clearing the ReadSource and
ReadDestination enables in the FBReadMode register.

To use software write masking, the required write mask is
written to the FBSoftwareWriteMask register and the num-
ber of framebuffer reads is set to 1 (for normal rendering).
This is achieved by setting the ReadDestination enable in the
FBReadMode register.

Block Writes Block writes cause consecutive pixels in the
framebuffer to be written simultaneously. This is useful
when filling large areas but does have some restrictions:

No pixel level clipping is available;

No depth or stencil testing can be done;

All the pixels must be writien with the same value so no
color interpolation, blending, dithering or logical ops
can be done; and

The area is defined in screen relative coordinates.

Block writes are not restricted to rectangular areas and
can be used for any trapezoid. Hardware write masking is
available during block writes.

The following registers need to be set up before block fills
can be used:

FBBlockColor register with the value to write to each

pixel; and

FBWriteMode register with the block width field.

Sending a Render command with the PrimitiveType field
set to “trapezoid™ and the FastFillEnable and FastFillIncre-
ment fields set up will then cause block filling of the area.
Note that during a block fill of a trapezoid any inappropriate
state is ignored so even if color interpolation, depth testing
and logical ops. for example, are enabled they have no effect.

The block sizes supported are 8, 16 and 32 pixels. GLINT
takes care of filling any partial blocks at the end of spans.
Graphics Programming

GLINT provides a rich variety of operations for 2D and
3D graphics supported by its Pipelined architecture.
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The Graphics Pipeline
This section describes each of the units in the graphics

Pipeline. FIG. 2C shows a schematic of the pipeline. In this

diagram., the localbuffer contains the pixel ownership values

(known as Graphic IDs), the FrameCount Planes (FCP).

Depth (Z) and Stencil buffer. The framebuffer contains the

Red. Green. Blue and Alpha bitplanes. The operations in the

Pipeline include:

Rasterizer scan converts the given primitive into a series of
fragments for processing by the rest of the pipeline.

Scissor Test clips out fragments that lie outside the bounds
of a user defined scissor rectangle and also performs
screen clipping to stop illegal access outside the screen
memory.

Stipple Test masks out certain fragments according to a
specified pattern. Line and area stipples are available.
Color DDA is responsible for generating the color informa-
tion (True Color RGBA or Color Index(CI)) associated

with a fragment.

Texture is concerned with mapping a portion of a specified
image (texture) onto a fragment. The process involves
filtering to calculate the texture color, and application
which applies the texture color to the fragment color.

Fog blends a fog color with a fragment’s color according to
a given fog factor. Fogging is used for depth cuing images
and to simulate atmospheric fogging.

Antialias Application combines the incoming fragment’s
alpha value with its coverage value when anti aliasing is
enabled.

Alpha Test conditionally discards a fragment based on the
outcome of a comparison between the fragments alpha
value and a reference alpha value.

Pixel Ownership is concerned with ensuring that the location
in the framebuffer for the current fragment is owned by
the current visual. Comparison occurs between the given
fragment and the Graphic ID value in the localbuffer, at
the corresponding location, to determine whether the
fragment should be discarded.

Stencil Test conditionally discards a fragment based on the
outcome of a test between the given fragment and the
value in the stencil buffer at the corresponding location.
The stencil buffer is updated dependent on the result of the
stencil test and the depth test.

Depth Test conditionally discards a fragment based on the
outcome of a test between the depth value for the given
fragment and the value in the depth buffer at the corre-
sponding location. The result of the depth test can be used
to control the updating of the stencil buffer.

Alpha Blending combines the incoming fragment’s color
with the color in the framebuffer at the corresponding
location.

Color Formatting converts the fragment’s color into the
format in which the color information is stored in the
framebuffer.

This may optionally involve dithering.

The Pipeline structure of GLINT is very efficient at
processing fragments, for example, texture mapping calcu-
lations are not actually performed on fragments that get
clipped out by scissor testing. This approach saves substan-
tial computational effort. The pipelined nature does however
mean that when programming GLINT one should be aware
of what all the pipeline stages are doing at any time. For
example. many operations require both a read and/or write
to the localbuffer and framebuffer; in this case it is not
sufficient to set a logical operation to XOR and enable
logical operations, but it is also necessary to enable the
reading/writing of data from/to the framebuffer.
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A Gouraud Shaded Triangle

We may now revisit the “day in the life of a triangle”
example given above. and review the actions taken in greater
detail. Again, the primitive being rendered will be a Gouraud
shaded. depth buffered triangle. For this example assume
that the triangle is to be drawn into a window which has its
colormap set for RGB as opposed to color index operation.
This means that all three color components; red. green and
blue, must be handled. Also, assume the coordinate origin is
bottom left of the window and drawing will be from top to
bottom. GLINT can draw from top to bottom or bottom to
top.

Consider a triangle with vertices. v,. v, and v, where each
vertex comprises X. Y and Z coordinates. Each vertex has a
different color made up of red. green and blue (R. G and B}
components. The alpha component will be omitted for this
example,

Initialization

GLINT requires many of its registers to be initialized in
a particular way. regardless of what is to be drawn. for
instance, the screen size and appropriate clipping must be set
up. Normally this only needs to be done once and for clarity
this example assumes that all initialization has already been
done.

Other state will change occasionally, though not usually
on a per primitive basis, for instance enabling Gouraud
shading and depth buffering.

Dominant and Subordinate Sides of a Triangle

As shown in FIG. 4A, the dominant side of a triangle is
that with the greatest range of Y values. The choice of
dominant side is optional when the triangle is either flat
bottomed or flat topped.

GLINT always draws triangles starting from the dominant
edge towards the subordinate edges. This simplifies the
calculation of set up parameters as will be seen below.

These values allow the color of each fragment in the
triangle to be determined by linear interpolation. For
example, the red component color value of a fragment at
XN, Ym could be calculated by:

adding dRdy,,. for each scanline between Y, and Y,,, to
R,.

then adding dRdx for each fragment along scanline Y,
from the left edge to X,.

The example chosen has the ‘knee.’ i.e. vertex 2. on the
right hand side, and drawing is from left to right. If the knee
were on the left side (or drawing was from right to left), then
the Y deltas for both the subordinate sides would be needed
to interpolate the start values for each color component (and
the depth value) on each scanline. For this reason GLINT
always draws triangles starting from the dominant edge and
towards the subordinate edges. For the example triangle, this
means left to right.

Register Set Up for Color Interpolation

For the example triangle, the GLINT registers must be set
as follows, for color interpolation. Note that the format for
color values is 24 bit, fixed point 2°s complement.

/! Load the color start and delta values to draw
I a triangle

RStart (R,)

GStart (G,)

BStart (B,)
dRdyDom (dRdy, ;)
dGdyDom (dGdy,3)
dBdyDom (dBdy,,)
dRdx (dRdx)

/f To walk up the dominant edge

/! To walk along the scanline
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-continued

dGdx (dGdx)
dBdx (dBdx)

Calculating Depth Gradient Values
To draw from left to right and top to bottom, the depth
gradients or deltas) required for interpolation are:

L-Z)

dZdyy3 = -YT—T[

And from the plane equation:

Y: - Y- Y: - ¥
= @2y B V| @z 22 }

where
c=1(X; — X5)(¥a = ¥3) — (X - X3)(Y, - Y¥p)h

The divisor, shown here as c. is the same as for color
gradient values. The two deltas dZdyl, , and dZdx allow the
Z value of each fragment in the triangle to be determined by
linear interpolation. just as for the color interpolation.
Register Set Up for Depth Testing

Internally GLINT uses fixed point arithmetic. Each depth
value must be converted into a 2’s complement 32.16 bit
fixed point number and then loaded into the appropriate pair
of 32 bit registers. The ‘Upper’ or ‘U’ registers store the
integer portion, whilst the ‘Lower’ or ‘L’ registers store the
16 fractional bits. left justified and zero filled.

For the example triangle. GLINT would need its registers
set up as follows:

/1 Load the depth start and delta values
// to draw a triangie

ZStartU (Z1_MS)

ZStartL (Z1_LS)

dZdyDomU (dZdy13_MS)
dZdyDoml (dZdy13_LS)

dZdxU (dZdx_MS)

dZaxL (dZdx_LS)

Calculating the Slopes for each Side

GLINT draws filled shapes such as triangles as a series of
spans with one span per scanline. Therefore it needs to know
the start and end X coordinate of each span. These are
determined by ‘edge walking’. This process involves adding
one delta value to the previous span’s start X coordinate and
another delta value to the previous span’s end x coordinate
to determine the X coordinates of the new span. These delta
values are in effect the slopes of the triangle sides. To draw
from left to right and top to bottom. the slopes of the three
sides are calculated as:

X;-X,

dXp=—p—y—
X-X

dXp=—p—y—
X;—-X3

G 7

This triangle will be drawn in two parts. top down to the
‘knee’ (i.e. vertex 2). and then from there to the bottom. The
dominant side is the left side so for the top half:
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dXDom=dX,,

dXSub=dX,,

The start X.Y. the number of scanlines. and the above
deltas give GLINT enough information to edge walk the top
half of the triangle. However. to indicate that this is not a flat
topped triangle (GLINT is designed to rasterize screen
aligned trapezoids and flat topped triangles). the same start
position in terms of X must be given twice as StartXDom
and StartXSub.

To edge walk the lower half of the triangle. selected
additional information is required. The slope of the domi-
nant edge remains unchanged, but the subordinate edge
slope needs to be set to:

dXSub=dX,,

Also the number of scanlines to be covered from Y, to Y,
needs to be given. Finally to avoid any rounding errors
accumulated in edge walking to X, (which can lead to pixel
errors), StartXSub must be set to X,

Rasterizer Mode

The GLINT rasterizer has a number of modes which have
effect from the time they are set until they are modified and
can thus affect many primitives. In the case of the Gouraud
shaded triangle the default value for these modes are suit-
able.

Subpixel Correction

GLINT can perform subpixel cormrection of all interpo-
lated values when rendering aliased trapezoids. This comec-
tion ensures that any parameter (color/depth/texture/fog) is
comrectly sampled at the center of a fragment. Subpixel
correction will generally always be enabled when rendering
any trapezoid which is smooth shaded., textured. fogged or
depth buffered. Control of subpixel correction is in the
Render command register described in the next section. and
is selectable on a per primitive basis.

Rasterization

GLINT is almost ready to draw the triangle. Setting up the
registers as described here and sending the Render command
will cause the top half of the example triangle to be drawn.

For drawing the example triangle, all the bit fields within
the Render command should be set to 0 except the Primi-
tiveType which should be set to trapezoid and the SubPix-
elCorrectionEnable bit which should be set to TRUE.

// Draw triangle with knee

/1 Set deltas

StartXDom (X,<<16) // Converted to 16.16 fixed
point

dXDom (((X; - X)<<16¥(Y; - Y,))

StartXSub (X,<<16})

dXSub (X, - X, )<<16)/(Y, - ¥}))

StartY (Y,<<16)

dY (-1<<16)

Count (Y, - Y,)

1/ Set the render command mode

render. PrimitiveType = GLINT__TRAPEZOID_ PRIMITIVE
render. SubPixelCorrectionEnable = TRUE

// Draw the top half of the triangle

Render{render)

After the Render command has been issued, the registers
in GLINT can immediately be altered to draw the lower half
of the triangle. Note that only two registers need be loaded
and the command ContinueNewSub sent. Once GLINT has
received ContinueNewSub, drawing of this sub-triangle will
begin.
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/] Setup the delta and start for the new edge
StartXSub (X,<<16)

dXSub ((Xs - X;)<<16)(Y; - Y5))

/! Draw sub-triangle

ContinueNewSub (Y, — Y;) / Draw lower half

Rasterizer Unit

The rasterizer decomposes a given primitive into a series
of fragments for processing by the rest of the Pipeline.

GLINT can directly rasterize:

aliased screen aligned trapezoids

aliased single pixel wide lines

aliased single pixel points

antialiased screen aligned trapezoids

antialiased circular points

All other primitives are treated as one or more of the

above. for example an antialiased line is drawn as a series of
antialiased trapezoids.
Trapezoids GLINT’s basic area primitives are screen
aligned trapezoids. These are characterized by having top
and bottom edges parallel to the X axis. The side edges may
be vertical (a rectangle). but in general will be diagonal. The
top or bottom edges can degenerate into points in which case
we are left with either flat topped or flat bottomed triangles.
Any polygon can be decomposed into screen aligned trap-
ezoids or triangles. Usually, polygons are decomposed into
triangles because the interpolation of values over non-
triangular polygons is ill defined. The rasterizer does handle
flat topped and flat bottomed ‘bow tie’ polygons which are
a special case of screen aligned trapezoids.

To render a triangle, the approach adopted to determine
which fragments are to be drawn is known as ‘edge walk-
ing’. Suppose the aliased triangle shown in FIG. 4A was to
be rendered from top to bottom and the origin was bottom
left of the window. Starting at (X1, Y1) then decrementing
Y and using the slope equations for edges 1-2 and 1-3. the
intersection of each edge on each scanline can be calculated.
This results in a span of fragments per scanline for the top
trapezoid. The same method can be used for the bottom
trapezoid using slopes 2-3 and 1-3.

It is usually required that adjacent triangles or polygons
which share an edge or vertex are drawn such that pixels
which make up the edge or vertex get drawn exactly once,
This may be achicved by omitting the pixels down the left
or the right sides and the pixels along the top or lower sides.
GLINT has adopted the convention of omitting the pixels
down the right hand edge. Control of whether the pixels
along the top or lower sides are omitted depends on the start
Y value and the number of scanlines to be covered. With the
example. if StartY =Y1 and the number of scanlines is set to
Y1-Y2, the lower edge of the top half of the triangle will be
excluded. This excluded edge will get drawn as part of the
lower half of the triangle.

To minimize delta calculations. triangles may be scan
converted from left to right or from right to left. The
direction depends on the dominant edge, that is the edge
which has the maximum range of Y values. Rendering
always proceeds from the dominant edge towards the rel-
evant subordinate edge. In the example above, the dominant
edge is 1-3 so rendering will be from right to left.

The sequence of actions required to render a triangle (with
a ‘knee’) is:

Load the edge parameters and derivatives for the domi-

nant edge and the first subordinate edges in the first
triangle.
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Send the Render command. This starts the scan conver-
sion of the first triangle. working from the dominant
edge. This means that for triangles where the knee is on
the left we are scanning right to left, and vice versa for
triangles where the knee is on the right.

Load the edge parameters and derivatives for the remain-
ing subordinate edge in the second triangle.

Send the ContinueNewSub command. This starts the scan
conversion of the second triangle.

Pseudocode for the above example is:

// Set the rasterizer mode to the default
RasterizerMode (0)

/1 Setup the start values and the deltas.

/! Note that the X and Y coordinates are converted
# 10 16.16 format

StartXDom (X1<<16)

dXDom ((X3— X1)<<16}(Y3 - Y1))

StartXSub (X1<<16)

dXSub (((X2—- X1)<<16¥/(Y2 - Y1))

StartY (Y1<<16)

dY (-1<16) /f Down the screen

Count (Y1 - Y2)

{/ Set the render mode to aliased primitive with

{/ subpixel correction.

render.PrimitiveType = GLINT_TRAPEZOID_PRIMITIVE
render.SubpixelCorrectionEnable = GLINT_TRUE
render. AntialiasEnable = GLINT_DISABLE

// Draw top half of the triangle

Render(render)

/1 Set the start and delta for the second half of

/1 the triangle.

StartXSub (X2<<16)

dXSub {(((X3- X2)<<16¥(Y3 ~Y2))

/f Draw lower half of triangle

ContinueNewSub (abs(Y2 — Y3))

After the Render command has been sent, the registers in
GLINT can immediately be altered to draw the second half
of the triangle. For this. note that only two registers need be
loaded and the command ContinueNewSub be sent. Once
drawing of the first triangle is complete and GLINT has
received the ContinueNewSub command, drawing of this
sub-triangle will start. The ContinueNewSub command reg-
ister is loaded with the remaining number of scanlines to be
rendered.

Lines

Single pixel wide aliased lines are drawn using a DDA
algorithm, so all GLINT needs by way of input data is
StartX, StartY, dX. dY and length.

For polylines, a ContinueNewLine command (analogous
to the Continue command used at the knee of a triangle) is
used at vertices.

When a Continue command is issued some error will be
propagated along the line. To minimize this, a choice of
actions are available as to how the DDA units are restarted
on the receipt of a Continue command. It is recommended
that for OpenGL rendering the ContinneNewLine command
is not used and individual segments are rendered.

Antialiased lines, of any width. are rendered as antialiased
screen-aligned trapezoids.

Points

GLINT supports a single pixel aliased point primitive. For
points larger than one pixel trapezoids should be used. In this
case the PrimitiveType field in the Render command should
be set to equal GLINT_POINT__PRIMITIVE.

Anti aliasing

GLINT uses a subpixel point sampling algorithm to
antialias primitives. GLINT can directly rasterize antialiased
trapezoids and points. Other primitives are composed from
these base primitives.
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The rasterizer associates a coverage value with each
fragment produced when antialiasing. This value represents
the percentage coverage of the pixel by the fragment.
GLINT supports two levels of antialiasing quality:

normal, which represents 4x4 pixel subsampling

high. which represents 8x8 pixel subsampling.

Selection between these two is made by the Antialias-
ingQuality bit within the Render command register.

When rendering antialiased primitives with GLINT the
FlushSpan command is used to terminate rendering of a
primitive. This is due to the pature of GLINT antialiasing.
When a primitive is rendered which does not happen to
complete on a scanline boundary. GLINT retains antialiasing
information about the last sub-scanline(s) it has processed.
but does not generate fragments for them unless a FlushSpan
command is received. The commands ContinueNewSub.
ContinueNewDom or Continue can then be used, as
appropriate, to mainfain continuity between adjacent trap-
ezoids. This allows complex antialiased primitives to be
built up from simple trapezoids or points.

To illustrate this consider using screen aligned trapezoids
to render an antialiased line. The line will in general consist
of three screen aligned trapezoids as shown in FIG. 4B. This
FIG. illustrates the sequence of rendering an Antialiased
Line primitive. Note that the line has finite width.

The procedure to render the line is as follows:

1 Setup the blend and coverage application units
/! as appropriate - not shown

// In this example only the edge deltas are shown
1/ loaded into registers for clarity. In reality

/f start X and Y values are required

/1 Render Trapezoid A

dY(1<<16)

dXDom(dXDoml<<16)

dXSub(dXSubl<<16)

Count(countl)

render PrimitiveType = GLINT__TRAPEZOID
remder. AntialiasEnable = GLINT_TRUE
render.AntialiasQuality = GLINT_ MIN_ ANTIALIAS
render.CoverageEnable = GLINT__TRUE
Render(render)

11 Render Trapezoid B

dXSub(dXSub2<<16)

ContinueNew Sub{count2)

// Render Trapezoid C

dXDom(dXDom2<<16)
ContinmueNewDom(count3)

// Now we have finished the primitive flush out
/f the last scanline

FlushSpan( )

Note that when rendering antialiased primitives, any
count values should be given in subscanlines, for example if
the quality is 4x4 then any scanline count must be multiplied
by 4 to convert it into a subscanline count. Similarly, any
delta value must be divided by 4.

When rendering. AntialiasEnable must be set in the
Antialias-Mode register to scale the fragments color by the
coverage value. An appropriate blending function should
also be enabled.

Note. when rendering antialiased bow-ties, the coverage
value on the cross-over scanline may be incorrect.

GLINT can render small antialiased points. Antialiased
points are treated as circles, with the coverage of the
boundary fragments ranging from 0% to 100%. GLINT
supports:

point radii of 0.5 to 16.0 in steps of 0.25 for 4x4

antialiasing

point radii of 0.25 to 8.0 in steps of 0.125 for §x8

antialiasing
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To scan convert an antialiased point as a circle, GLINT
traverses the boundary in sub scanline steps to calculate the
coverage value. For this, the sub-scanline intersections are
calculated incrementally using a small table. The table holds
the change in X for a step in Y. Symmetry is used so the table
only holds the delta values for one quadrant.

StartXDom. StartXSub and StartY are set to the top or
bottom of the circle and dY set to the subscanline step. In the
case of an even diameter, the last of the required entries in
the table is set to zero.

Since the table is configurable, point shapes other than
circles can be rendered. Also if the StartXDom and StartX-
Sub values are not coincident then horizontal thick lines
with rounded ends. can be rendered.

Block Write Operation

GLINT supports VRAM block writes with block sizes of
8. 16 and 32 pixels. The block write method does have some
restrictions: None of the per pixel clipping. stipple., or
fragment operations are available with the exception of write
masks. One subtle restriction is that the block coordinates
will be interpreted as screen relative and not window relative
when the pixel mask is calculated in the Framebuffer Units.

Any screen aligned trapezoid can be filled using block
writes. not just rectangles.

The use of block writes is enabled by setting the FastFil-
1Enable and FastFilllncrement fields in the Render command
register. The framebuffer write unit must also be configured.

Note only the Rasterizer, Framebuffer Read and Frame-
buffer Write units are involved in block filling. The other
units will ignore block write fragments, so it is not necessary
to disable them.

Sub Pixel Precision and Correction

As the rasterizer has 16 bits of fraction precision, and the
screen width used is typically less than 26 wide a number
of bits called subpixel precision bits, are available. Consider
a screen width of 4096 pixels. This figure gives a subpixel
precision of 4 bits (4096=2"%). The extra bits are required for
a number of reasons:

antialiasing (where vertex start positions can be supplied

to subpixel precision)

when using an accumulation buffer (where scans are

rendered multiple times with jittered input vertices)
for correct interpolation of parameters to give high quality
shading as described below

GLINT supports subpixel correction of interpolated val-
ues when rendering aliased trapezoids. Subpixel correction
ensures that all interpolated parameters associated with a
fragment (color, depth, fog, texture) are correctly sampled at
the fragment’s center. This correction is required to ensure
consistent shading of objects made from many primitives. It
should generally be enabled for all aliased rendering which
uses interpolated parameters.

Subpixel comrection is not applied to antialiased primi-
tives.

Bitmaps

A Bitmap primitive is a trapezoid or line of ones and zeros
which control which fragments are generated by the raster-
izer. Only fragments where the corresponding Bitmap bit is
set are submitted for drawing. The normal use for this is in
drawing characters, although the mechanism is available for
all primitives. The Bitmap data is packed contiguously into
32 bit words so that rows are packed adjacent to each other.
Bits in the mask word are by default used from the least
significant end towards the most significant end and are
applied to pixels in the order they are generated in.
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The rasterizer scans through the bits in each word of the
Bitmap data and increments the XY coordinates to trace out
the rectangle of the given width and height. By default. any
set bits (1) in the Bitmap cause a fragment to be generated,

40
Warning: During image upload, all the returned fragments
must be read from the Host Qut FIFO, otherwise the GLINT
pipeline will stall. In addition it is strongly recommended
that any units which can discard fragments (for instance the

any reset bits (0) cause the fragment to be rejected. 5 following tests: bitmask. alpha. user scissor, screen scissor.
The selection of bits from the BitMaskPattern register can  gipple. pixel ownership, depth. stencil), are disabled other-
be mirrored. that is. the pattern is traversed from MSB to  yice 3 shortfall in pixels returned may occur. also leading to
LSB rather than LSB to MSB. Also. the sense of the test can deadlock.
be reversed such that a set bit causes a fragment to be . .
rejected and vice versa. This control is found in the Raster- 10 Note that because the area of interest in copy/upload/
izerMode register. dl‘ovynload operations is df:ﬁncd by the rasterizer, it is not
When one Bitmap word has been exhausted and pixels jn ~ limited to rectangular regions.
the rectangle still remain then rasterization is suspended Color formatting can be used when performing image
until the next write to the BitMaskPattern register. Any copies. uploads and downloads. This allows data to be
unused bits in the last Bitmap word are discarded. 15 formatted from, or to. any of the supported GLINT color
Image Copy/Upload/Download formats.
GLINT supports three “pixel rectangle” operations: copy,
upload and download. These can apply to the Depth or Rasterizer Mode
Stencil Buffers (held within the localbuffer) or the frame-
buffer. 20 A number of long-term modes can be set using the
It should be emphasized that the GLINT copy operation  Rasterizer-Mode register, these are:
moves RAW blocks of data around buffers. To zoom or Mirror BitMask: This is a single bit flag which specifies the
re-format data. in the presently preferred embodiment. exter- direction bits are checked in the BitMask register. If the
nal software must upload the data, process it and then bit is reset. the direction is from least significant to most
download it again. 25 significant (bit 0 to bit 31), if the bit is set, it is from most
To copy a rectangular area, the rasterizer would be significant to least significant (from bit 31 to bit 0).
configured to render the destination rectangle, thus gener-  Invert BitMask: This is a single bit which controls the sense
ating fragments for the area to be copied. GLINT copy of the acceptreject test when using a Bitmask. If the bit
works by adding a linear offset to the destination fragment’s is reset then when the BitMask bit is set the fragment is
address to find the source fragment’s address. 30 accepted and when it is reset the fragment is rejected.
Note that the offset is independent of the origin of the When the bit is set the sense of the test is reversed.
buffer or window, as it is added to the destination address.  Fraction Adjust: These 2 bits control the action taken by the
Care must be taken when the source and destination overlap rasterizer on receiving a ContinueNewLine command. As
to choose the source SCann.ing direction so that the Over]ap- GLINT uses a DDA algorithm to render IanS. an error
ping area is not overwritten before it has been moved. This 35 accumulates in the DDA value. GLINT provides for
may be done by swapping the values writien to the StartX- greater control of the error by doing one of the following:
Dom and StartXSub. or by changing the sign of dY and leaving the DDA running. which means errors will be
setting StartY to be the opposite side of the rectangle. propagated along a line.
Localbuffer copy operations are correctly tested for pixel j ; . .
ownership. Note that this implies two reads of the 40 setting the fraction bits to either zero. a half or almost
localbuffer, one to collect the source data, and one to get the .2 half ,(OX TFFF). N . .
destination GID for the pixel ownership test. Bias Coordinates: Only the integer portion of the values in
GLINT buffer upload/downloads are very similar to cop- the DDAs aret used to' genf:rate ﬁaglpent addresses. then
ies in that the region of interest is generated in the rasterizer. the actu.al astlgn required is alr)c_)undmg gif valulc)§. this can
However, the localbuffer and framebuffer are generally 45 0¢ achieved by setting the bias coordinate bit to true
configured to read or to write only, rather than both read and which will automatically add almost a half (0x7FFF) to
write. The exception is that an image load may use pixel all 1f1put co?rd.ma.tes.
ownership tests, in which case the localbuffer destination  Rasterizer Unit Registers
read must be enabled. Real coordinates with fractional parts are provided to the
Units which can generate fragment values, the color DDA 50 rasterizer in 2°s complement 16 bit integer, 16 bit fraction
unit for example, should generally be disabled for any format. The following Table lists the command registers
copy/upload/download operations. which control the rasterizer unit:
Register Name Description
Render Starts the rasterization process
ContinueNewDom  Allows the rasterization to continue with a new dominant
edge. The dominant edge DDA is reloaded with the new
parameters. The subordinate edge is carried on from the
previous trapezoid. This allows any convex polygon to be
broken down info a collection of trapezoids, with continuity
maintained across boundaries.
The data field holds the number of scanlines {or sub scan-
lines) to fill. Note this count does not get loaded into the
Count register.
ContinueNewSub Allows the rasterization to continue with a new subordinate
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Register Name Description

parameters. The dominant edge is carried on from the

previous trapezoid. This is useful when scan converting

triangles with a ‘knee’ (i.e. two subordinate edges).
The data field holds the number of scanlines {or sub

scanlines) to fill. Note this count does not get loaded into

the Count register.
Continue

have been loaded, but does not cause either of the

trapezoid’s edge DDAs to be reloaded.

The data field holds the number of scanlines {or sub

scanlines) to fill. Note this count does not get loaded into

the Count register.
ContinueNewLine
a polyline. The XY position is carried on from the

previous line, but the fraction bits in the DDAs can be:

kept, set to zero, half, or nearly one half, under control of

the RasterizerMode.

The data field hoids the number of scanlines to fill. Note

this count does not get loaded into the Count register.
The use of ContinueNewLine is not recommended for

OpenGL because the DDA units will start with a slight
etror as compared with the value they would have been

loaded with for the second and subsequent segments.
FlushSpan
all sub spans may be defined.

Used when antialiasing to force the last span out when not

Allows the rasterization to continue after new delta value(s)

Allows the rasterization to continue for the next segment in

The following Table shows the control registers of the
rasterizer, in the presently preferred embodiment:

RasterizerMod

e Defines the long term mode of operation of the rasterizer.

StartXDom Initial X value for the dominant edge in trapezoid filling,
or initial X value in line drawing.

dXDom Value added when moving from one scanline (or sub
scanline) to the next for the dominant edge in trapezoid
filling.
Also holds the change in X when plotting lines so for Y
major lines this will be some fraction (dx/dy), otherwise
it is normally + 1.0, depending on the required scanning
direction.

StartXSub Initial X value for the subordinate edge.

dXSub Value added when moving from one scanline (or sub
scanline) to the next for the subordinate
edge in trapezoid filling.

StartY Initial scanline (or sub scanline) in trapezoid filling,
or initial Y position for line drawing.

dy ‘Value added to Y to move from one scanline to the
next. For X major lines this will be some fraction
(dy/dx), otherwise it is normally + 1.0,
depending on the required scanning direction.

Count Number of pixels in a line.
Number of scanlines in a trapezoid,
Number of sub scanlines in an antialiased trapezoid.
Diameter of a point in sub scanlines.

BitMaskPattern Value used to control the BitMask stipple operation (if
enabled).

PointTable0 Antialias point data table, There are 4 words in the table

PointTabie1 and the register tag is decoded to select a word.

PointTable2

PointTable3

For efficiency. the Render command register has a number
of bit fields that can be set or cleared per render operation,
and which qualify other state information within GLINT.
These bits are AreaStippleEnable, LineStippleEnable.
ResetLineStipple. TextureEnable FogEnable. CoverageEn-
able and SubpixelCormection.

One use of this feature can occur when a window is
cleared to a background color. For normal 3D primitives,
stippling and fog operations may have been enabled, but
these are to be ignored for window clears. Initially the
FogMode, AreaStippleMode and LineStippleMode registers
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are enabled through the UnitEnable bits. Now bits need only
be set or cleared within the Render command to achieve the
required result, removing the need for the FogMode. AreaSt-
ippleMode and LineStippleMode registers to be loaded for
every render operation.

The bitfields of the Render command register. in the
presently preferred embodiment, are detailed below:
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Bit

Name

Description

4,5

67

10

11

12

13

Area-
Stipple-
Enable

Line-
Stipple-
Enable

Reset-
Line-
Stipple

FastFillE
nable
Fast-Fill-
Incremen
t

Primitive-

Antialias-
Enable

SyncOn
HostData

TextureE
nable
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This bit, when set, enables area stippling of the fragments
produced during rasterization. Note that area stipple in the
Stipple Unit must be enabled as well for stippling to occur.
‘When this bit is reset no area stippling occurs irrespective of
the setting of the area stipple enable bit in the Stipple Unit.
This bit is useful to temporarily force no area stippling for this
primitive.

This bit, when set, enables line stippling of the fragments
produced during rasterization in the Stipple Unit. Note that
line stipple in the Stipple Unit must be enabled as well for stip-
pling to occur.

When this bit is reset no line stippling occurs irrespective of
the setting if the line stipple enable bit in the Stipple Unit.
This bit is useful to temporarily force no line stippling for this
primmitive.

This bit, when set, causes the line stipple counters in the
Stipple Unit to be reset to zero, and would typically be used
for the first segment in a polyline. This action is also qualified
by the LineStippleEnable bit and also the stipple enable bits in
the Stipple Unit.

When this bit is reset the stipple counters carry on from where
they left off (if Line stippling is enabled)

This bit, when set, causes fast block filling of primitives.
‘When this bit is reset the normal rasterization process occurs.
This two bit field selects the block size the framebuffer
supports. The sizes supported and the corresponding codes
are:

0 = 8 pixels

1 = 16 pixels

2 = 32 pixels

This two bit field selects the primitive type to rasterize. The
primitives are:

0 =Line

1 = Trapezoid

2 = Point

This bit, when set, causes the generation of sub scanline data
and the coverage value o be calculated for each fragment.
The number of sub pixel samples to use is controlled by the
AntialiasingQuality bit.

When this bit is reset normal rasterization occurs.

This bit, when set, sets the sub pixel resolution to be 8 x 8
When this bit is reset the sub pixel resolution is 4 x 4.

When this bit and the AntialiasingEnable are set, the dx values
used to remove from one scanline to the next are derived from
the Point Table.

This bit, when set, causes a number of actions: -

The least significant bit or most significant bit (depending on
the MirrorBitMask bit) in the Bit Mask register is extracted
and optionally inverted (controlled by the InvertMask bit).

If this bit is O then the corresponding fragment is culled from
being drawn.

After every fragrant the Bit Mask register is rotated by one
bit.

If all the bits in the Bit Mask register have been used then
rasterization is suspended until a new BitMaskPattern is
received. If any other register is written while the rasterization
is suspended then the rasterization is aborted. The register
write which caused the abort is then processed as normal.
Note the behavior is slightly different when the Syn-
¢OnHostData bit is set to prevent a deadlock from occurring.
In ¢his case the rasterization doesn’t suspend when all the bits
have been used and if new BitMaskPattern data words are not
received in a timely manner then the subsequent fragments will
just reuse the bitmask.

When this bit is set a fragment is produced only when one of
the following registers has been writien by the host: Depth,
FBColor, Stencil or Color. If SyncOnBitMask is reset, then if
any register other than one of these four is written to, the
rasterization is aborted. If SyncOuBitMask is set, then if any
register other than one of these four, or BitMaskPattern, is
written to, the rasterization is aborted. The register write
which caused the abort is then processed as normal. Writing to
the BitMaskPattern register doesn’t cause any fragments to be
generated, but just updates the BitMask register.

This bit, when set, enables texturing of the fragments produced
during rasterization. Note that the Texture Units must be
suitably enabled as well for any texturing to occur.
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Bit

Name Description

14

When this bit is reset no texturing occurs irrespective of the
setting of the Texture Unit controls.

This bit is useful to temporarily force no texturing for this
primitive,

This bit, When set, enables fogging of the fragments produced
during rasterization. Note that the Fog Unit must be suitably
enabled as well for any fogging to occur.

When this bit is reset no fogging occurs irrespective of the
setting of the Fog Unit controls.

This bit is useful to temporarily force no fogging for this
primitive.

This bit, when set, enables the coverage value produced as part
of the antialiasing to weight the alpha value in the alpha test
unit. Note that this unit must be suitably enabled as well.
‘When this bit is reset no coverage application. occurs irrespec-
tive of the setting of the AntialiasMode in the Alpha. Test unit.
This bit, when set enables the sub pixel correction of the color,
depth, fog and texture values at the start of a scanline. When
this bit is reset no correction is done at the start of a scanline.

Fog-
Enable

Coverage-
Enable

SubPixel-

tion

Enable

Sub pixel corrections are only applied to aliased trapezoids.

A number of long-term rasterizer modes are stored in the
RasterizerMode register as shown below:

Bit Name Description

When this bit is set the bitmask bits are consumed from
the most significant end towards the least significant end.
‘When this bit is reset the bitmask bits are consumed from
the least significant end towards the most significant end.
‘When this bit is set the bitmask is inverted first before
being tested.

These bits control the action of a ContinueNewLine com-
mand and specify how the fraction bits in the Y and
XDom DDAs are adjusted

0: No adjustment is done

1: Set the fraction bits to zero

2: Set the fraction bits to half

3: Set the fraction to nearly half, i.e. Ox7fff

These bits control how much is added onto the
StartXDom, StartXSub and StartY values, when they are
loaded into the DDA units. The original registers are not
affected:

0: Zero is added

1: Half is added

2: Nearly half, i.e. Ox7fff is added

0  Mirror-
BitMask

1 InvertBit-
Mask
Fraction-
Adjust

23

4,5 BiasCoor-

dinates

Scissor Unit

Two scissor tests are provided in GLINT, the User Scissor
test and the Screen Scissor test. The user scissor checks each
fragment against a user supplied scissor region; the screen
scissor checks that the fragment lies within the screen.

This test may reject fragments if some part of a window
has been moved off the screen. It will not reject fragments
if part of a window is simply overlapped by another window
(GID testing can be used to detect this).

Stipple Unit

Stippling is a process whereby each fragment is checked
against a bit in a defined pattern. and is rejected or accepted
depending on the result of the stipple test. If it is rejected it
undergoes no further processing; otherwise it proceeds down
the pipeline. GLINT supports two types of stippling, line and
area.
Area Stippling

A 32x32 bit area stipple pattern can be applied to frag-
ments. The least significant n bits of the fragment’s (X.Y)
coordinates, index into a 2D stipple pattern. If the selected
bit in the pattern is set, then the fragment passes the test.
otherwise it is rejected. The number of address bits used,
allow regions of 1.2.4.8.16 and 32 pixels to be stippled. The
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address selection can be controlled independently in the X
and Y directions. In addition the bit pattern can be inverted
or mirrored. Inverting the bit pattern has the effect of
changing the sense of the accept/reject test. If the mirror bit
is set the most significant bit of the pattern is towards the left
of the window, the default is the converse.

In some situations window relative stippling is required
but coordinates are only available screen relative. To allow
window relative stippling, an offset is available which is
added to the coordinates before indexing the stipple table. X
and Y offsets can be controlled independently.

Line Stippling

In this test, fragments are conditionally rejected on the
outcome of testing a linear stipple mask. If the bit is zero
then the test fails, otherwise it passes. The line stipple
pattern is 16 bits in length and is scaled by a repeat factor r
(in the range 1 to 512 ). The stipple mask bit b which
controls the acceptance or rejection of a fragment is deter-
mined using:

b=(floor (s/r)) mod 16
where s is the stipple counter which is incremented for every
fragment (normally along the line). This counter may be
reset at the start of a polyline, but between segments it
continues as if there were no break.

The stipple pattern can be optionally mirrored, that is the
bit pattern is traversed from most significant to least sig-
nificant bits, rather than the default, from least significant to
most significant.

Color DDA Unit

The color DDA unit is used to associate a color with a
fragment produced by the rasterizer. This unit should be
enabled for rendering operations and disabled for pixel
rectangle operations (i.e. copies, uploads and downloads).
Two color modes are supported by GLINT, true color RGBA
and color index (CI).

Gouraud Shading

When in Gouraud shading mode, the color DDA unit
performs linear interpolation given a set of start and incre-
ment values. Clamping is used to ensure that the interpolated
value does not underflow or overflow the permitted color
range.

For a Gouraud shaded trapezoid, GLINT interpolates
from the dominant edge of a trapezoid to the subordinate
edges. This means that two increment values are required
per color component, one to move along the dominant edge
and one to move across the span to the subordinate edge.

Unified Patents Exhibit 1005 App'x O-MM



5.798.770

47

Note that if one is rendering to multiple buffers and has
initialized the start and increment values in the color DDA
unit, then any subsequent Render command will cause the
start values to be reloaded.

If subpixel correction has been enabled for a primitive,
then any correction required will be applied to the color
components.

Flat Shading

In flat shading mode. a constant color is associated with
each fragment. This color is loaded into the ConstantColor
register.

Texture Unit

The texture unit combines the incoming fragment’s color
(generated in the color DDA unit) with a value derived from
interpolating texture map values (texels).

Texture application consists of two stages; derivation of
the texture color from the texels (a filtering process) and then
application of the texture color to the fragment’s color,
which is dependent on the application mode (Decal. Blend
or Modulate).

GLINT 300SX compared with the GLINT 400TX

Both the GLINT 300SX and GLINT 300TX support all
the filtering and application modes described in this section.
However. when using the GLINT 300SX. texel values,
interpolants and texture filter selections are supplied by the
host. This implies that texture coordinate interpolation and
texel extraction are performed by the host using texture
maps resident on the host. The recommended technique for
performing texture mapping using the GLINT 300SX is to
scan convert primitives on the host and render fragments as
GLINT point primitives.

The GLINT 400TX automatically genmerates all data
required for texture application as textures are stored in the
localbuffer and texture parameter interpolation with full
perspective correction takes place within the processor. Thus
the GLINT 400TX is the processor of choice when full
texture mapping acceleration is desired, the GLINT 300SX
is more suitable in applications where the performance of
texture mapping is not critical.

Texture Color Generation.

Texture color generation supports all the filter modes of
OpenGL, that is:

Minification:

Nearest

Linear

NearestMipMapNearest

NearestMipMapLinear

LinearMipMapNearest

LinearMipMapL.inear
Magnification:

Nearest

Linear

Minification is the name given to the filtering process
used whereby multiple texels map to a fragment, while
magnification is the name given to the filtering process
whereby only a portion of a single texel maps to a single
fragment.

Nearest is the simplest form of texture mapping where the
nearest texel to the sample location is selected with no
filtering applied.

Linear is a more sophisticated algorithm which is depen-
dent on the type of primitive. For lines (which are 1D). it
involves linear interpolation between the two nearest texels,
for polygons and points which are considered to have finite
area, linear is in fact bi-linear interpolation which interpo-
lates between the nearest 4 texels.
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Mip Mapping is a technique to allow the efficient filtering
of texture maps when the projected area of the fragment
covers more than one texel (ie. minification). A hierarchy of
texture maps is held with each one being half the size (or one
quarter the area) of the preceding one. A pair of maps are
selected, based on the projected area of the texture. In terms
of filtering this means that three filter operations are per-
formed: one on the first map. one on the second map and one
between the maps. The first filter name (Nearest or Linear)
in the MipMap name specifies the filtering to do on the two
maps, and the second filter name specifies the filtering to do
between maps. So for instance. linear mapping between two
maps, with linear interpolation between the results is sup-
ported (LinearMipMapLinear). but linear interpolation on
one map, nearest on the other map, and linear interpolation
between the two is not supported.

The filtering process takes a number of texels and
interpolants. and with the current texture filter mode pro-
duces a texture color.

Fog Unit

The fog unit is used to blend the incoming fragment’s
color (generated by the color DDA unit. and potentially
modified by the texture unit) with a predefined fog color.
Fogging can be used to simulate atmospheric fogging. and
also to depth cue images.

Fog application has two stages; derivation of the fog
index for a fragment, and application of the fogging effect.
The fog index is a value which is interpolated over the
primitive using a DDA in the same way color and depth are
interpolated. The fogging effect is applied to each fragment
using one of the equations described below.

Note that although the fog values are linearly interpolated
over a primitive the fog values can be calculated on the host
using a linear fog function (typically for simple fog effects
and depth cuing) or a2 more complex function to model
atmospheric aftenuation. This would typically be an expo-
nential function.

Fog Index Calculation—The Fog DDA

The fog DDA is used to interpolate the fog index (f)
across a primitive. The mechanics are similar to those of the
other DDA units, and horizontal scanning proceeds from
dominant to subordinate edge as discussed above.

The DDA has an internal range of approximately +511 to
—512, so in some cases primitives may exceed these bounds.
This problem typically occurs for very large polygons which
span the whole depth of a scene. The correct solution is to
tessellate the polygon until polygons lie within the accept-
able range, but the visual effect is frequently negligible and
can often be ignored.

The fog DDA calculates a fog index value which is
clamped to lie in the range 0.0 to 1.0 before it is used in the
appropriate fogging equation. (Fogging is applied differently
depending on the color mode.)

Antialias Application Unit

Antialias application controls the combining of the cov-
erage value generated by the rasterizer with the color gen-
erated in the color DDA units. The application depends on
the color mode, either RGBA or Color Index (CI).
Antialias Application

When antialiasing is enabled this unit is used to combine
the coverage value calculated for each fragment with the
fragment’s alpha value. In RGBA mode the alpha value is
multiplied by the coverage value calculated in the rasterizer
(its range is 0% to 100%). The RGB values remain
unchanged and these are modified later in the Alpha Blend
unit which must be set up appropriately. In CI mode the
coverage value is placed in the lower 4 bits of the color field.
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The Color Look Up Table is assumed to be set up such that
each color has 16 intensities associated with it, one per
coverage entry.

Polygon Antialiasing

When using GLINT to render antialiased polygons. depth
buffering cannot be used. This is because the order the
fragments are combined in is critical in producing the
correct final color. Polygons should therefore be depth
sorted. and rendered front to back. using the alpha blend
modes: SourceAlphaSaturate for the source blend function
and One for the destination blend function. In this way the
alpha component of a fragment represents the percentage
pixel coverage. and the blend function accumulates cover-
age until the value in the alpha buffer equals one, at which
point no further contributions can made to a pixel.

For the antialiasing of general scenes, with no restrictions
on rendering order. the accumulation buffer is the preferred
choice. This is indirectly supported by GLINT via image
uploading and downloading, with the accumulation buffer
residing on the host.

When antialiasing, interpolated parameters which are
sampled within a fragment (color. fog and texture), will
sometimes be unrepresentative of a continuous sampling of
a surface, and care should be taken when rendering smooth
shaded antialiased primitives. This problem does not occur
in aliased rendering, as the sample point is consistently at the
center of a pixel.

Alpha Test Unit

The alpha test compares a fragment’s alpha value with a
reference value. Alpha testing is not available in color index
(CI) mode, The alpha test conditionally rejects a fragment
based on the comparison between a reference alpha value
and one associated with the fragment.

Localbuffer Read/Write Unit

The localbuffer holds the Graphic ID, FrameCount, Sten-
cil and Depth data associated with a fragment. The local-
buffer read/write unit controls the operation of GID testing,
depth testing and stencil testing.

Localbuffer Read

The LBReadMode register can be configured to make 0,
1 or 2 reads of the localbuffer. The following are the most
common modes of access to the localbuffer:

Normal rendering without depth, stencil or GID testing.

This requires no localbuffer reads or writes.

Normal rendering without depth or stencil testing and
with GID testing. This requires a localbuffer read to get
the GID from the localbuffer.

Normal rendering with depth and/or stencil testing
required which conditionally requires the localbuffer to
be updated. This requires localbuffer reads and writes
to be enabled.

Copy operations. Operations which copy all or part of the
localbuffer with or without GID testing. This requires
reads and writes enabled.

Image upload/download operations. Operations which
download depth or stencil information to the local
buffer or read depth. stencil fast clear or GID from the
localbuffer.

Localbuffer Write

Writes to the localbuffer must be enabled to allow any
update of the localbuffer to take place. The LBWriteMode
register is a single bit flag which controls updating of the
buffer.

Pixel Ownership (GID) Test Unit

Any fragment generated by the rasterizer may undergo a
pixel ownership test. This test establishes the current frag-
ment’s write permission to the localbuffer and framebuffer.
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Pixel Ownership Test

The ownership of a pixel is established by testing the GID
of the current window against the GID of a fragment’s
destination in the GID buffer. If the test passes, then a write
can take place, otherwise the write is discarded. The sense
of the test can be set to one of: always pass, always fail, pass
if equal. or pass if not equal. Pass if equal is the normal
mode. In GLINT the GID planes. if present. are 4 bits deep
allowing 16 possible Graphic ID’s. The current GID is
established by setting the Window register.

If the unit is disabled fragments pass through undisturbed.

Stencil Test Unit

The stencil test conditionally rejects fragments based on
the outcome of a comparison between the value in the stencil
buffer and a reference value. The stencil buffer is updated
according to the current stencil update mode which depends
on the result of the stencil test and the depth test.

Stencil Test

This test only occurs if all the preceding tests (bitmask,
scissor, stipple. alpha. pixel ownership) have passed. The
stencil test is controlled by the stencil function and the
stencil operation. The stencil function controls the test
between the reference stencil value and the value held in the
stencil buffer. The stencil operation controls the updating of
the stencil buffer, and is dependent on the result of the stencil
and depth tests.

If the stencil test is enabled then the stencil buffer will be
updated depending on the outcome of both the stencil and
the depth tests (if the depth test is not enabled the depth
result is set to pass).

In addition a comparison bit mask is supplied in the
StencilData register. This is used to establish which bits of
the source and reference value are used in the stencil
function test. In addition it should normally be set to exclude
the top four bits when the stencil width has been set to 4 bits
in the StencilMode register.

The source stencil value can be from a number of places
as controlled by a field in the StencilMode register:

LBWriteData

Stencil Use

Test logic This is the normal mode.

Stencil This is used, for instance, in the OpenGL draw pixels

Tegister function where the host supplies the stencil values in the
Stencil register.
This is used when a constant stencil values is needed, for
example, when clearing the stencil buffer when fast clear
planes are not available.

LBSourceData: This is used, for instance, in the OpenGL copy pixels

(stencil function when the stencil planes are to be copied to the

value read destination. The source is offset from the destination by

from the the value in LBSourceOffset register.

localbuffer)

Source stencil  This is used, for instance, in the OpenGL copy pixels

value read function when the stencil planes in the destination

from the are not to be updated. The stencil data will come

localbuffer either from the localbuffer date, or the FCStencil
register, depending on whether fast clear
operations are enabled.

Depth Test Unit
The depth (Z) test, if enabled. compares a fragment’s

depth against the comesponding depth in the depth buffer.
The result of the depth test can effect the updating of the
stencil buffer if stencil testing is enabled. This test is only
performed if all the preceding tests (bitmask, scissor, stipple,
alpha. pixel ownership. stencil) have passed. The source
value can be obtained from a number of places as controlled
by a field in the DepthMode register:

Unified Patents Exhibit 1005 App'x O-MM



5.798.770

51
Source Use
DDA (see This is used for normal Depth buffered 3D rendering.
below)

Depth register  This is used, for instance, in the OpenGL draw pixels
function where the host supplies the depth values through
the Depth register.

Alternatively this is used when 2 constant depth value is
needed, for example, when clearing the depth buffer
(when fast clear planes are not available) or 2D
rendering where the depth is held constant.

LBSourceData: This is used, for instance, in the OpenGL copy pixels

Source depth  function when the depth planes are to be copied
value from the to the destination.

localbuffer

Source Depth  This is used, for instance, in the OpenGL copy pixels

function when the depth planes in the destination are
not updated. The depth data will come either from the
localbuffer or the FCDepth register depending the state
of the Fast Clear modes in operation.

When using the depth DDA for normal depth buffered
rendering operations the depth values required are similar to
those required for the color values in the color DDA unit:
ZStart=Start Z Value
dZdYDom=Increment along dominant edge.
dZdX=Increment along the scan line.

The dZdX value is not required for Z-buffered lines.

The depth unit must be enabled to update the depth buffer.
If it is disabled then the depth buffer will only be updated if
ForceL-BUpdate is set in the Window register.

Framebuffer Read/Write Unit

Before rendering can take place GLINT must be config-
ured to perform the correct framebuffer read and write
operations. Framebuffer read and write modes effect the
operation of alpha blending, logic ops, write masks, image
upload/download operations and the updating of pixels in
the framebuffer.

Framebuffer Read
The FBReadMode register allows GLINT to be config-

ured to make 0, 1 or 2 reads of the framebuffer. The

following are the most common modes of access to the
framebuffer: Note that avoiding unnecessary additional
reads will enhance performance.

Rendering operations with no logical operations, software
write-masking or alpha blending. In this case no read of
the framebuffer is required and framebuffer writes should
be enabled.

Rendering operations which use logical ops, software write
masks or alpha blending. In these cases the destination
pixel must be read from the framebuffer and framebuffer
writes must be enabled.

Image copy operations. Here setup varies depending on
whether hardware or software write masks are used. For
software write masks. the framebuffer needs two reads,
one for the source and one for the destination. When
hardware write masks are used (or when the software
write mask allows updating of all bits in a pixel) then only
one read is required.

Image upload. This requires reading of the destination
framebuffer reads to be enabled and framebuffer writes to
be disabled.

Image download. In this case no framebuffer read is required
(as long as softwarc writemasking and logic ops are
disabled) and the write must be enabled.

For both the read and the write operations, an offset is
added to the calculated address. The source offset
(FBSourceOffset) is used for copy operations. The pixel
offset (FBPixelOffset) can be used to allow multi-buffer
updates. The offsets should be set to zero for normal
rendering.
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for common rendering operations:

Read- ReadDes- Read Data

Source tination Writes Type Rendering Operation

Disabled Disabled Enabled —— Rendering with no logi-
cal operations, software
write masks or blending.

Disabled Disabled Enabled — Image download.

Disabled Enabled Disabled FBColor Image upload.

Enabled Disabled Enabled FBDefault Image copy with
hardware write masks.

Disabled Enabled Enabled FBDefault Rendering using logi-
cal operations, soft-
ware write masks
or blending.

Enabled Enabled Enabled FBDefault Image copy with
software writemasks.

Framebuffer Write

Framebuffer writes must be enabled to allow the frame-
buffer to be updated. A single 1 bit flag controls this
operation.

The framebuffer write unit is also used to control the
operation of fast block fills, if supported by the framebuffer.
Fast fill rendering is enabled via the FastFillEnable bit in the
Render command register, the framebuffer fast block size
must be configured to the same value as the FastFilllncre-
ment in the Render command register. The FBBlockColor
register holds the data written to the framebuffer during a
block fill operation and should be formatted to the ‘raw’
framebuffer format. When using the framebuffer in 8 bit
packed mode the data should be replicated into each byte.
When using the framebuffer in packed 16 bit mode the data
should be replicated into the top 16 bits.

When uploading images the UpLoadData bit can be set to
allow color formatting (which takes place in the Alpha
Blend unit).

It should be noted that the block write capability provided
by the chip of the presently preferred embodiment is itself
believed to be novel. According to this new approach. a
graphics system can do masked block writes of variable
length (e.g. 8. 16, or 32 pixels, in the presently preferred
embodiment). The rasterizer defines the limits of the block
to be written, and hardware masking logic in the frame-
buffer interface permits the block to be filled in, with a
specified primitive, only up to the limits of the object being
rendered. Thus the rasterizer can step by the Block Fill
increment. This permits the block-write capabilities of the
VRAM chips to be used optimally, to minimize the length
which must be written by separate writes per pixel.

Alpha Blend Unit

Alpha blending combines a fragment’s color with those of
the corresponding pixel in the framebuffer. Blending is
supported in RGBA mode only.

Alpha Blending

The alpha blend unit combines the fragment’s color value

with that stored in the framebuffer. using the blend equation:

C,=CsS+CD

where: C, is the output color; C, is the source color
(calculated internally); C, is the destination color read from
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the framebuffer; S is the source blending weight; and D is
the destination blending weight. S and D are not limited to
finear combinations; lookup functions can be used to imple-
ment other combining relations.

If the blend operations require any destination color
components then the framebuffer read mode must be set
appropriately.

Image Formatting

The alpha blend and color formatting units can be used to
format image data into any of the supported GLINT frame-
buffer formats.

Consider the case where the framebuffer is in RGBA
4:4:4:4 mode, and an area of the screen is to be uploaded and
stored in an 8 bit RGB 3:3:2 format. The sequence of
operations is:

Set the rasterizer as appropriate

Enable framebuffer reads

Disable framebuffer writes and set the UpLoadData bit in

the FBWriteMode register

Enable the alpha blend unit with a blend function which

passes the destination value and ignores the source
value (source blend Zero, destination blend One) and
set the color mode to RGBA 4:4:4:4

Set the color formatting unit to format the color of

incoming fragments to an 8 bit RGB 3:3:2 framebuffer
format.

The upload now proceeds as normal. This technique can
be used to upload data in any supported format.

The same technique can be used to download data which
is in any supported framebuffer format, in this case the
rasterizer is set to sync with FBColor, rather than Color. In
this case framebuffer writes are enabled, and the UpLoad-
Data bit cleared.

Color Formatting Unit

The color formatting unit converts from GLINT s internal
color representation to a format suitable to be written into
the framebuffer. This process may optionally include dith-
ering of the color values for framebuffers with less than 8
bits width per color component. If the unit is disabled then
the color is not modified in any way.

As noted above, the framebuffer may be configured to be
RGBA or Color Index (CI).

Color Dithering

GLINT uses an ordered dither algorithm to implement
color dithering. Several types of dithering can be selected.

If the color formatting unit is disabled. the color compo-
nents RGBA are not modified and will be truncated when
placed in the framebuffer. In CI mode the value is rounded
to the nearest integer. In both cases the result is clamped to
a maximum value to prevent overflow.

In some situations only screen coordinates are available,
but window relative dithering is required. This can be
implemented by adding an optional offset to the coordinates
before indexing the dither tables. The offset is a two bit
number which is supplied for each coordinate, X and Y. The
XOffset, YOffset fields in the DitherMode register control
this operation, if window relative coordinates are used they
should be set to zero.

Logical Op Unit

The logical op unit performs two functions; logic opera-
tions between the fragment color (source color) and a value
from the framebuffer (destination color); and. optionally,
control of a special GLINT mode which allows high per-
formance flat shaded rendering.

High Speed Flat Shaded Rendering

A special GLINT rendering mode is available which
allows high speed rendering of unshaded images. To use the
mode the following constraints must be satisfied:
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Flat shaded aliased primitive
No dithering required
No logical ops
No stencil., depth or GID testing required
No alpha blending The following are available:
Bit masking in the rasterizer
Area and line stippling

User and Screen Scissor test

If all the conditions are met then high speed rendering can
be achieved by setting the FBWriteData register to hold the
framebuffer data (formatted appropriately for the frame-
buffer in use) and setting the UseConstantFBWriteData bit
in the LogicalOpMode register. All unused units should be
disabled.

This mode is most useful for 2D applications or for
clearing the framebuffer when the memory does not support
block writes. Note that FBWriteData register should be
considered volatile when context switching.

Logical Operations
The logical operations supported by GLINT are:

Mode Name Operation  Mode Name Operation
0 Clear 0 8 Nor ~S D)
1 And S&D 9  Equivalent ~S*D)
2 And Reverse S & -D 10 Invert ~D
3 Copy S 11 Or Reverse Si-D
4 And Inverted ~S& D 12 Copy Invert ~5
5 Noop D 13 Or Invert ~S 1D
6 Xor $*D 14 Nand ~S & D)
7 Or SID 15 Set 1

Where:
S=Source (fragment) Color, D=Destination (framebuffer)
Color.

For correct operation of this unit in a mode which takes
the destination color, GLINT must be configured to allow
reads from the framebuffer using the FBReadMode register.

GLINT makes no distinction between RGBA and CI
modes when performing logical operations. However, logi-
cal operations are generally only used in CI mode.
Framebuffer Write Masks

Two types of framebuffer write masking are supported by
GLINT. software and hardware. Software write masking
requires a read from the framebuffer to combine the frag-
ment color with the framebuffer color. before checking the
bits in the mask to see which planes are writeable. Hardware
write masking is implemented using VRAM write masks
and no framebuffer read is required.

Software Write Masks

Software write masking is controlled by the FBSoftware-
WriteMask register. The data field has one bit per frame-
buffer bit which when set, allows the corresponding frame-
buffer bit to be updated. When reset it disables writing to that
bit. Software write masking is applied to all fragments and
is not controlled by an enable/disable bit. However it may
effectively be disabled by setting the mask to all 1’s. Note
that the ReadDestination bit must be enabled in the FBRead-
Mode register when using software write masks, in which
some of the bits are zero.

Hardware Write Masks

Hardware write masks, if available, are controlled using
the FBHardwareWriteMask register. If the framebuffer sup-
ports hardware write masks. and they are to be used. then
software write masking should be disabled (by setting all the
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bits in the FBSoftwareWriteMask register). This will resuit

in fewer framebuffer reads when no logical operations or

alpha blending is needed.
If the framebuffer is used in 8 bit packed mode. then an

8 bit hardware write mask must be replicated to all 4 bytes

of the FBHardwareWriteMask register. If the framebuffer is

in 16 bit packed mode then the 16 bit hardware write mask
must be replicated to both halves of the FBHardware Write-

Mask register.

Host Out Unit
Host Qut Unit controls which registers are available at the

output FIFO., gathering statistics about the rendering opera-

tions (picking and extent testing) and the synchronization of

GLINT via the Sync register. These three functions are as

follows:

Message filtering. This unit is the last unit in the core so any
message not consumed by a preceding unit will end up
here. These messages will fall in to three classifications:
Rasterizer messages which are never consumed by the
earlier units, messages associated with image uploads,
and finally programmer mistakes where an invalid mes-
sage was written to the input FIFO. Synchronization
messages are a special category and are dealt with later.
Any messages not filtered out are passed on the output
FIFO.

Statistic Collection. Here the active step messages are used
to record the extent of the rectangular region where
rasterization has been occurring, or if rasterization has
occurred inside a specific rectangular region. These facili-
ties are useful for picking and debug activities.

Synchronization. It is often useful for the controlling soft-
ware to find out when some rendering activity has
finished, to allow the timely swapping or sharing of
buffers, reading back of state. etc. To achieve this the
software would send a Sync message and when this
reached this unit any preceding messages or their actions
are guaranteed to have finished. On receiving the Sync
message it is entered into the FIFO and optionally gen-
erates an interrupt.

Sample Board-Level Embodiment

A sample board incorporating the GLINT chip may
include simply:
the GLINT chip itself, which incorporates a PCI interface;
Video RAM (VRAM), to which the chip has read-write

access through its frame buffer (FB) port;

DRAM. which provides a local buffer then made for such
purposes as Z buffering; and

a RAMDAC, which provides analog color values in accor-
dance with the color values read out from the VRAM.

Thus one of the advantages of the chip of the presently
preferred embodiment is that a minimal board implementa-
tion is a trivial task.

FIG. 3A shows a sample graphics board which incorpo-
rates the chip of FIG. 2B.

FIG. 3B shows another sample graphics board
implementation. which differs from the board of FIG. 3A in
that more memory and an additional component is used to
achieve higher performance.

FIG. 3C shows another graphics board. in which the chip
of FIG. 2B shares access to a common frame store with GUI
accelerator chip.

FIG. 3D shows another graphics board, in which the chip
of FIG. 2B shares access to a common frame store with a
video coprocessor (which may be used for video capture and
playback functions (e.g. frame grabbing).

Alternative Board Embodiment with Additional Video Pro-
cessor
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In the presently preferred embodiment. the frame buffer
interface of the GLINT chip contains additional simple
interface logic. so that two chips can both access the same
frame buffer memory. This permits the GLINT chip to be
combined with an additional chip for management to the
graphics produced by the graphical user interface. This
provides a migration path for users and applications who
need to take advantage of the existing software investment
and device drivers for various other graphics chips.

FIG. 3C shows another graphics board. in which the chip
of FIG. 2B shares access to a common frame store with a
GUI accelerator chip (such as an §3 chip). This provides a
path for software migration. and also provides a way to
separate 3D rendering tasks from 2D rendering.

In this embodiment, a shared framebuffer is used to enable
multiple devices to read or write data to the same physical
framebuffer memory. Example applications using the
GLINT 3008X:

Using a video device as a coprocessor to GLINT, to grab
live video into the framebuffer. for displaying video in
a window or acquiring a video sequence;

Using GLINT as a 3D coprocessor to a 2D GUI
accelerator, preserving an existing investment in 2D
driver software.

In a coprocessor system. the framebuffer is a shared
resource, and so access to the resource needs to be arbitrated.
There are also other aspects of sharing a framebuffer that
need to be considered:

Memory refreshing;

Transfer of data from the memory cells into the shift
registers of the VRAM;

Control of writemasks and color registers.

GLINT uses the S3 Shared Frame Buffer Interface (SFBI) to
share a framebuffer. This interface is able to handle all of the
above aspects for two devices sharing a frame buffer, with
the GLINT acting as an arbitration master or slave.

Timing Considerations in Shared Frame-Buffer
Interface

The Control Signals used in the Shared Framebuffer
interface, in the presently preferred embodiment. are as
follows:

GLINT as Primary Controller

FBRegN is internally re-synchronized to System Clock.

FBSelOEN remains negated.

FBGntN is asserted an unspecified amount of time after
FBRegN is asserted.—Framebuffer Address, Data and
Control lines are tri-stated by GLINT (the control lines
should be held high by external pull-up resistors). The
secondary controller is now free to drive the Frame-
buffer lines and access the memory.

FBGntN remains asserted until GLINT requires a frame-
buffer access, or a refresh or transfer cycle.

FBReqN must remain asserted while FBGntN is asserted.

When FBGntN is removed, the secondary controller must
relinquish the address. data and control bus in a grace-
ful manner i.e. RAS. CAS, WE and OE must all be
driven high before being tri-stated.

The secondary controller must relinquish the bus and
negate FBReqN within 500 ns of FBGntN being
negated.

Once FBRegN has been negated, it must remain inactive
for at least 2 system clocks (40 ns at 50 MHz).

GLINT as a Secondary Controller
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Framebuffer Refresh and VRAM transfer cycles by
GLINT are turned off when GLINT is a secondary
framebuffer controller.
GLINT asserts FBRegN whenever is requires a frame-
buffer access.
FBGntN is internally re-synchronized to system clock.

When FBGntN is asserted. GLINT drives FBselOEN to
enable any external buffers used to drive the control
signals, and then drives the framebuffer address. data
and control lines to perform the memory access.
FBRegN remains asserted while FBGntN is asserted.

When FBGntN is negated, GLINT finishes any outstand-
ing memory cycles, drives the control lines inactive,
negates FBselOEN and then tri-states the address, data
and control lines. then releases FBRegN. GLINT guar-
antees to release FBRegN within 500 ns of FBGntN
being negated.

GLINT will not reassert FBReqN within 4 system clock
cycles (80 ns@ 50 MHz).

Considerations for Board-Level Implementations

The following are some points to be noted when imple-

menting a shared framebuffer design with a GLINT 3008X:

Some 2D GUI Accelerators such as the 83 Vision964, and
GLINT use configuration resistors on the framebuffer
databus at reset. In this case care should be taken with
the configuration setup where it effects read only reg-
isters inside either device. If conflicts exist that can not
be resolved by the board initialization software, then
the conflicts should be resolved by isolating the two
devices from each other at reset so they can read the
correct configuration information. This isolation need
only be done for the framebuffer databus lines that
cause problems;

GLINT should be configured as the secondary controller
when used with an S3 GUI accelerator, as the S3
devices can only be primary controllers;

GLINT cannot be used on the daughter card interface as
described in the S3 documentation, because this gives
no access to the PCI bus. A suitable PCI bridge should
be used in a design with a PCI 2D GUI accelerator and
GLINT so they can both have access to the PCI bus;

The use of ribbon cable to carry the framebuffer signals
between two PCI boards is not recommended. because
of noise problems and the extra buffering required
would impact performance;

The GLINT 300SX does not provide a way of sharing its
localbuffer.

The 400TX also allows grabbing of live video into the
localbuffer and real-time texture mapping of that video into
the framebuffer for video manipulation effects.

Alternative Board Embodiments with Multiple
Rendering Accelerator Chips

This technical note describes some system design issues
on how multiple GLINT devices can be used in parallel to
achieve higher performance. The main driving force for
higher performance is the simulation market which, at the
low end. demands somewhere between 25-30M texture
mapped pixels per second.

There are some key points before we look at different
parallel organizations:

To gain any benefit from running multiple GLINTs in
parallel, the overall system must be rendering bound. If
the system is host bound or geometry bound. then adding
in more GLINTs will pot improve the systems perfor-
mance,
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The memory systems (i.e. local buffer and framebuffer) are
duplicated for each GLINT. Recall that the texture maps
are stored in the local buffer. A single GLINT places very
high demands on the memory systems. and it would be
very difficult to share them between multiple GLINTS. In
the presently preferred embodiment there are no provi-
sions for sharing the local buffer. so if this is necessary it
would have to be done behind GLINT’s back and trans-
parently. The framebuffer can be shared (since GLINT has
a SFB interface). but this is likely to be a bottle neck if
shared between GLINTS.

Broadcast. In some parallel systems each GLINT will get the
same (or mostly the same) primitive data and just render
those pixels assigned to it. It is very desirable that this data
is written by the host only once, or fetched from the host
address space once if DMA is being used. This presents
two issues: Firstly the PCI bus does not have any concept
of broadcasting to multiple devices. and secondly GLINT
does not have a dedicated FIFO status signal pin an
external controller can use. Neither of these issues are
insurmountable, but will require hardware to solve.
However. if the application only uses a ‘few’ large texture
mapped primitives so repeatedly sending or fetching the
parameters for each GLINT will not be a problem.

To avoid problems with Antialiasing, Bitmasks for
characters. or Line stipple, the area stipple table can be used
to reserve scanlines to a processor.

Parallel Configurations
This section looks at some of the common ways of

applying parallelism to the rendering operation. The list is

not exhaustive and an interested reader is directed to the
book by Whitman cited above. No one paradigm is best and
the choice is very application or market dependent.

Frame Interleaving
Frame Interleaving is where a GLINT works on frame n,

the next GLINT works on frame n+1, etc. Each GLINT does
everything for its own frame and the video is sourced from
each GLINT’s framebuffer in turn. This paradigm is perhaps
the simplest one with very little hardware overhead and none
of the above complications regarding amtialiasing, block
copies, bitmasks and line stipples.

This scheme only works when the image is double
buffered (normal for simulation systems) and where the
increase in transport delay is acceptable. Transport delay is
the time it takes for a user to see a visual change after new
input stimulus to the system has occurred. With 4 GLINTs
this will be 4 frame times attributable to the rendering
system, plus whatever else the whole system adds.

The cost of this method is also one of the highest. as ALL
the memory has to be duplicated. By contrast, the schemes
where the screen is divided up can save depth and color
buffer memory (but not texture memory).

Sequential frames will usually have very similar amounts
of rendering, unless there is a discontinuity in the viewing
position and/or orientation, so load balancing is generally
good.

Frame Merging or Primitive Parallelism
Frame merging is a similar technigue to frame interleav-

ing where each GLINT has a full local buffer and frame-

buffer. In this case the primitives are distributed amongst the

GLINTs and the resultant partial images composited using

the depth information to control which fragment from the

multiple buffers is displayed in each pixel position.

GLINT has not been designed to share the local buffer
(where the depth information is held) so the compositing is
not readily supported. Also the composition frequently
needs to be done at video rate so requires some fast
hardware.
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Alpha blending and Antialiasing presents some problems
but the bitmask. block copies and line stipple are easily
accommodated. Good load balancing depends on even dis-
tribution of primitives. Not all primitives will take the same
amount of time to process so a round robin distribution
scheme. or a heuristic one with takes into account the
expected processing time for each primitive will be needed.
Screen Subdivision—Blocks

Here the screen is divided up into large contiguous
regions and a GLINT looks after each region. Primitives
which overlap between regions are sent to both regions and
scissor clipping used. Primitives contained wholly in one
region are ideally just sent to the one GLINT.

The number of regions and the horizontal and/or vertical
division of the screen can be chosen as appropriate, but
horizontal bands are usually easier for the video hardware to
cope with, Each GLINT only needs enough local buffer and
frame buffer to cover the pixels in its own region, but texture
maps are duplicated in full. Block copies are a problem
when the block, or part block is moved between regions. Bit
masking and line stipples can be solved with some careful
clipping.

Load balancing is very poor in this paradigm. since most
of the scene complexity can be concentrated into one region.
Dynamically changing the size of the regions based on
expected scene complexity (maybe measured from the pre-
vious frame) can alleviate the poor load balancing to some
extent.

Screen Subdivision—Interleaved Scanlines

The interleave factor is every other n™ scanline where n
is the number of GLINTs. Vertical interleaves are possible,
but not supported by the GLINT rasterizer. Nearly all
primitives will overlap multiple scanlines so are ideally
broadcast to all GLINTs. Each GLINT will have different
start values for the rasterization and interpolation param-
eters.

Each GLINT only needs enough local buffer and frame
buffer to cover the pixels in its own region. but texture maps
are duplicated in full.

Some block copies are a problem when the block is
moved between non nth scanlines, but horizontal moves are
available with any alignment. Bit masking can be solved
with some careful clipping, but line stipples have no easy
solution. Antialiasing is not normally a problem but with
GLINT 300SX there is no provision for sub scanline steps
as well as nth scanline steps. Load balancing is excellent in
this paradigm which is the main reason it features promi-
nently in the literature.

Thus the simplest and lowest risk method of using mul-
tiple GLINTs is Frame Interleaving. but if this is not an
option. e.g. because of the transport delay or the amount of
memory needed, then the next best choice is the Interleaved
Scanline.

Linkage

FIG. 2B shows how the units are connected together.
Some general points are:

The order of the units can be configured in two ways. The
most general order (Router. Colour DDA, Texture Units,
Fog Unit. Alpha Test, LB Rd. GID/Z/Stencil, LB Wr,
Multiplexer) and will work in all modes of OpenGL.
However, when the alpha test is disabled it is much better to
do the Graphics ID, depth and stencil tests before the texture
operations rather than after. This is because the texture
operations have a high processing cost and this should not be
spent on fragments which are later rejected because of
window, depth or stencil tests.
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Router Unit Description

The Router Unit allows the order of some of the units to
be changed so that texturing can be done before or after the
depth test. Any texture operations will cause a loss in
performance over the same non-textured rendering. so it is
a good idea only to texture those pixels which pass all the
depth. stencil and GID tests. OpenGL defines the order in
which operations are to be performed on fragments as
texture, alpha test. stencil and then depth. It is very likely
that in a typical scene many textured fragments will get
rejected by the depth test, say, which isn’t the most effective
use of the texturing capacity. If the alpha test is disabled (or
cannot reject fragments) then OpenGL compatible semantics
are still maintained if the order is rearranged to be stencil.
depth, texture and then alpha test.

The message stream can be re-configured into either of
the two orders using the RouterMode message. The reset
order is texture, then depth so a to be compatible with
OpenGL. Changing the pipeline order is self synchronising
so the user doesn’t need to wait for the message stream to
empty first.

Implementation

This unit is divided into two sub-units: a switcher and a
multiplexer. FIG. SA shows how these are connected
together. The basic operation is as follows:

When the Switcher sub-unit receives a RouterMode mes-
sage it makes a note of the new order, forwards the Rou-
terMode message on and blocks all further messages until it
receives a resume signal from the Multiplexer sub unit.
When the resume signal is asserted the Switcher
re-configures the message paths according to the new order
and un-blocks the message stream so it starts to flow again.

When the Multiplexer sub-unit receives the RouterMode
message it re-configures the message paths according to the
new order and asserts the resume signal to the Switcher. The
RouterMode message is consumed. The unit order is con-
trolled using the RouterMode message. It uses the 0-bit of
the passed message to indicate if the processing order is:

Bit 0=0
Bit 0=1

TextureDepth
DepthTexture

When the order is TextureDepth (the default after reset) the
message routing is done according to FIG. SB. When the
order is DepthTexture the message routing is done according
to FIG. 5C.

Disclosed Embodiments

Among the disclosed classes of preferred embodiments,
there is provided: A method for processing graphics data
through a data path comprising the steps of: (a) receiving a
routing command from a data bus input; (b) stalling further
input from said data bus input until previous data has exited
said data path; (c) resuming said input from said data bus
input; (d) if said routing command has a first value, then
performing a first set of graphics processes on said data, and
then performing a second set of graphics processes on said
data; (e) if said routing command has a second value,
thenperforming said second set of graphics processes on said
data, and thenperforming said first set of graphics processes
on said data, wherein some portion of said data may be
eliminated by said first or second sets of graphics process
according to the results of said processes; wherein steps (d)
and (¢) are repeated until a new routing command is
received; wherein said first set of graphics processes
requires a longer processing time than said second set of
graphics processes.
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Among the disclosed classes of preferred embodiments,
there is also provided: A method for processing graphics
data through a data path comprising the steps of: (a) receiv-
ing a routing command from a data bus input; (b) stalling
further input from said data bus input until previous data has
exited said data path; (c) resuming said input from said data
bus input; (d) if said routing command has a first value,
thenperforming a set of texturing processes on said data, and
thenperforming a set of pixel elimination processes on said
data; (e) if said routing command has a second value.
thenperforming said set of pixel elimination processes on
said data, and thenperforming said set of texturing processes
on said data, wherein some portion of said data may be
eliminated by said set of pixel elimination processes accord-
ing to the results of said processes; wherein steps (d) and (e)
are repeated until a new routing command is received;
wherein said first set of graphics processes requires a longer
processing time than said second set of graphics processes.

Among the disclosed classes of preferred embodiments,
there is also provided: A method for rendering graphics data
comprising the steps of: (a) receiving a routing commmand
from a data bus input; (b) stalling further input from said
data bus input until previous data has exited said data path;
(c) resuming said input from said data bus input; (d) if said
routing command has a first value, thenperforming a set of
texturing processes on said data, and thenperforming a set of
pixel elimination processes on said data; () if said routing
command has a second value, thenperforming said set of
pixel elimination processes on said data, and thenperforming
said set of texturing processes on said data, wherein some
portion of said data may be eliminated by said set of pixel
elimination processes according to the results of said pro-
cesses; (f) rendering said data and writing the results to a
memory; (g) displaying the contents of said memory;
wherein steps (d) and (¢) are repeated until a new routing
command is received;wherein said set of texturing processes
requires a longer processing time than said set of pixel
elimination processes.

Among the disclosed classes of preferred embodiments,
there is also provided: A method for processing graphics
data through a data path comprising the steps of: (a) receiv-
ing a routing command from a data bus input; (b) stalling
further input from said data bus input until previous data has
exited said data path; (c) resuming said input from said data
bus input; (d) if said routing command has a first value,
thenreading said graphics data from said data bus input;
performing a color DDA process on said data;performing a
texturing process on said data;performing an alpha test on
said data; if the data has passed the previous test, then
performing a graphics ID test on said data; if the data has
passed the previous tests. then performing a stencil test on
said data;if the data has passed the previous tests. then
performing a depth test on said data; and if the data has
passed the previous tests, then writing said data to a local
bus; (e¢) if said routing command has a second value,
thenreading said graphics data from said data bus input;
performing a graphics ID test on said data:if the data has
passed the previous test, then performing a stencil test on
said data; if the data has passed the previous tests, then
performing a depth test on said data; if the data has passed
the previous tests. then performing a color DDA process on
said data; if the data has passed the previous tests. then
performing a texturing process on said data; if the data has
passed the previous tests. then performing an alpha test on
said data; if the data has passed the previous tests. then
writing said data to a local bus; wherein steps (d) and (¢) are
repeated until a new routing command is received.
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Among the disclosed classes of preferred embodiments,
there is also provided: A pipelined graphics processing
device, comprising:a switching device connected to a data
bus input and configured to route graphics data received on
said data bus according to instruction data received on said
data bus; a multiplexing device connected to said switching
device and to a data bus output; a first processing block
connected and configured to receive said graphics data from
said switching device and pass processed graphics data to
said multiplexing device; anda second processing block
connected and configured to receive said graphics data from
said switching device and pass processed graphics data to
said multiplexing device; wherein said switching device
routes said graphics data according to a first data path,
wherein said graphics data is processed by said first pro-
cessing block and then by said second processing block. or
a second data path. wherein said graphics data is processed
by said second processing block before said first processing
block. according to said instruction data.

Among the disclosed classes of preferred embodiments.
there is also provided: A pipelined graphics processing
device, comprising: a routing device connected to a data bus
input and data bus output and configured to route graphics
data received on said data bus according to instruction data
received on said data bus; a first processing block connected
and configured to receive said graphics data from said
routing device and pass processed graphics data back to said
routing device; anda second processing block connected and
configured to receive said graphics data from said routing
device and pass processed graphics data back to said routing
device; wherein said routing device routes data according to
a first data path, wherein said graphics data is processed by
said first processing block and then by said second process-
ing block. or a second data path, wherein said graphics data
is processed by said second processing block before said
first processing block, according to said instruction data.

Among the disclosed classes of preferred embodiments,
there is also provided: A graphics processing subsystem,
comprising: at least four functionally distinct processing
units, each including hardware elements which are custom-
ized to perform a rendering operation which is not per-
formed by at least some others of said processing units; at
least some ones of said processing units being connected to
operate asynchronously to one another; a frame buffer,
connected to be accessed by at least one of said processing
units;said processing units being mutually interconnected in
a pipeline relationship. with at least some successive ones of
said processing units being interconnected through a FIFO
buffer; and wherein at least one said processing unit is
connected to look downstream, in said pipeline relationship,
past the immediately succeeding one of said processors; and
wherein at least two of said processing units may be dynami-
cally reordered in said pipeline relationship; whereby the
duty cycle of said processors is increased while permitting
use of a reduced depth for said FIFO.

Modifications and Variations

As will be recognized by those skilled in the art. the
innovative concepts described in the present application can
be modified and varied over a wremendous range of
applications. and accordingly the scope of patented subject
matter is not limited by any of the specific exemplary
teachings given.

The foregoing text has indicated a large number of
alternative implementations. particularly at the higher
levels, but these are merely a few examples of the huge
range of possible variations.
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For example. the preferred chip context can be combined
with other functions, or distributed among other chips. as
will be apparent to those of ordinary skill in the art.

For another example, the described graphics systems and
subsystems can be used. in various adaptations. not only in
high-end PC’s. but also in workstations. arcade games. and
high-end simulators.

For another example, the described graphics systems and
subsystems are not necessarily limited to color displays, but
can be used with monochrome systems.

For another example. the described graphics systems and
subsystems are not necessarily limited to displays, but also
can be used in printer drivers.

What is claimed is:
1. A method for processing graphics data through a data
path comprising the steps of:

(a) receiving a routing command from a data bus input;

(b) stalling further input from said data bus input until

previous data has exited said data path;

(c) resuming said input from said data bus input;

(d) if said routing command has a first value, then

performing a first set of graphics processes on said data,
and then
performing a second set of graphics processes on said
(e) if said routing command has a second value, then
performing said second set of graphics processes on
said data. and then
performing said first set of graphics processes on said
data, wherein some portion of said data is selectively
eliminated by said first or second sets of graphics
process according to the results of said processes;
wherein steps (d) and (€) are repeated until a new routing
command is received;
wherein said first set of graphics processes requires a
longer processing time than said second set of graphics
processes.

2. The method of claim 1, wherein said first set of graphics
processes comprises the steps of:

reading said graphics data from said data bus input;

performing a color DDA process on said data;

performing a texturing process on said data; and
performing an alpha test on said data.

3. The method of claim 1, wherein said second set of
graphics processes comprises the step of if the data has
passed all previous tests, then performing a graphics ID test
on said data.

4. The method of claim 1, wherein said second set of
graphics processes comprises the step of if the data has
passed the previous tests, then performing a stencil test on
said data.

5. The method of claim 1. wherein said second set of
graphics processes comprises the steps of if the data has
passed the previous tests, then performing a depth test on
said data.

6. The method of claim 1, wherein step (d) comprises
steps according to the OpenGL standard.

7. The method of claim 1, wherein step (b) is performed
by a switcher connected at said data bus input.

8. The method of claim 1. wherein a multiplexer at an
output of said data path indicates when said data path is clear
and step (c) can begin.
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9. A method for processing graphics data through a data

path comprising the steps of:

(a) receiving a routing command from a data bus input;

(b) stalling further input from said data bus input until
previous data has exited said data path;

(c) resuming said input from said data bus input;

(d) if said routing command has a first value, then
performing a set of texturing processes on said data,

and then
performing a set of pixel elimination processes on said
data;
(e) if said routing command has a second value, then
performing said set of pixel elimination processes on
said data. and then

performing said set of texturing processes on said data,
wherein some portion of said data is selectively
eliminated by said set of pixel elimination processes
according to the results of said processes;

wherein steps (d) and (e) are repeated until a new routing
command is received;

wherein said first set of graphics processes requires a
longer processing time than said second set of graphics
processes.

10. A method for rendering graphics data comprising the

steps of:

(a) receiving a routing command from a data bus input;

(b) stalling further input from said data bus input until
previous data has exited said data path;

(c) resuming said input from said data bus input;

(d) if said routing command has a first value, then
performing a set of texturing processes on said data,

and then
performing a set of pixel elimination processes on said
data;
(e) if said routing command has a second value, then
performing said set of pixel elimination processes on
said data, and then

performing said set of texturing processes on said data,
wherein some portion of said data is selectively
climinated by said set of pixel elimination processes
according to the results of said processes;

(f) rendering said data and writing the results to a
memory;

(g) displaying the contents of said memory;

wherein steps (d) and (e) are repeated until a new routing
command is received;

wherein said set of texturing processes requires a longer
processing time than said set of pixel elimination
processes.

11. A method for processing graphics data through a data

path comprising the steps of:

(a) receiving a routing command from a data bus input;

(b) stalling further input from said data bus input until
previous data has exited said data path;

(c) resuming said input from said data bus input;

(d) if said ronting command has a first value. then
reading said graphics data from said data bus input;
performing a color DDA process on said data;
performing a texturing process on said data;
performing an alpha test on said data;
if the data has passed the previous test. then performing

a graphics ID test on said data;
if the data has passed the previous tests, then perform-
ing a stencil test on said data;
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if the data has passed the previous tests. then perform-
ing a depth test on said data; and

if the data has passed the previous tests, then writing
said data to a local bus;

(e) if said routing command has a second value, then

reading said graphics data from said data bus input;

performing a graphics ID test on said data;

if the data has passed the previous test. then performing
a stencil test on said data;

if the data has passed the previous tests, then perform-
ing a depth test on said data;

if the data has passed the previous tests. then perform-
ing a color DDA process on said data;

if the data has passed the previous tests, then perform-
ing a texturing process on said data;

if the data has passed the previous tests. then perform-
ing an alpha test on said data;

if the data has passed the previous tests, then writing
said data to a local bus;

wherein steps (d) and (e) are repeated until a new routing

command is received.

12. The method of claim 11, wherein step (d) comprises
steps according to the OpenGL standard.

13. The method of claim 11, wherein step (b) is performed
by a switcher connected at said data bus input.

14. The method of claim 11. wherein a multiplexer at said
local bus indicates when said data path is clear and step {(c)
can begin.

15. A pipelined graphics processing device, comprising:

a

switching device connected to a data bus input and
configured to route graphics data received on said data
bus according to instruction data received on said data
bus;

a multiplexing device connected to said switching device

a

and to a data bus output;

first processing block connected and configured to
receive said graphics data from said switching device
and pass processed graphics data to said multiplexing
device; and

second processing block connected and configured to
receive said graphics data from said switching device
and pass processed graphics data to said multiplexing
device;

wherein said switching device routes said graphics data

according to a first data path, wherein said graphics
data is processed by said first processing block and then
by said second processing block, or a second data path,
wherein said graphics data is processed by said second
processing block before said first processing block,
according to said instruction data.

16. The device of claim 15, wherein said first data path
processes said graphics data according to the OpenGL
standard.

17. The device of claim 15, wherein said switching device
halts all input data until the current data path is clear before
switching data paths.

18. The device of claim 15, wherein said multiplexing
device is configured to determine when the current data path
is clear and to allow said switching device to switch data
paths.
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19. A pipelined graphics processing device. comprising:
a routing device connected to a data bus input and data
bus output and configured to route graphics data
received on said data bus according to instruction data
received on said data bus;

a first processing block connected and configured to
receive said graphics data from said routing device and
pass processed graphics data back to said routing
device; and

a second processing block connected and configured to
receive said graphics data from said routing device and
pass processed graphics data back to said routing
device;

wherein said routing device routes data according to a first
data path, wherein said graphics data is processed by
said first processing block and then by said second
processing block, or a second data path. wherein said
graphics data is processed by said second processing
block before said first processing block, according to
said instruction data.

20. A graphics processing subsystem. comprising:

at least four functionally distinct processing units. each
including hardware elements which are customized to
perform a rendering operation which is not performed
by at least some others of said processing units; at least
some ones of said processing units being connected to
operate asynchronously to one another;

a frame buffer, connected to be accessed by at least one of
said processing units;

said processing units being mutually interconnected in a
pipeline relationship, with at least some successive
ones of said processing units being interconnected
through a FIFQ buffer;

and wherein at least one said processing unit is connected
to look downstream, in said pipeline relationship, past
the immediately suncceeding one of said processors;

and wherein at least two of said processing units are
selectively dynamically reordered in said pipeline rela-
tionship;

whereby the duty cycle of said processors is increased

while permitting use of a reduced depth for said FIFO.

21. The graphics processing subsystem of claim 20,
wherein said processing units include a texturing unit.

22. The graphics processing subsystem of claim 20,
wherein said processing units include a scissoring unit.

23. The graphics processing subsystem of claim 20,
wherein said processing units include a memory access unit
which reads and writes a local buffer memory.

24. The graphics processing subsystem of claim 20.
wherein at least some ones of said processing units include
internally paralleled data paths.

25. The graphics processing subsystem of claim 20.
wherein all of said processing units are integrated into a
single integrated circuit.

26. The graphics processing subsystem of claim 20.
wherein all of said processing units, but not said frame
buffer. are integrated into a single integrated circuit.

LI I T .
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SYSTEM AND PROCESS FOR OBJECT
RENDERING ON THIN CLIENT
PLATFORMS

COPYRIGHT DISCLAIMER

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to a method of
providing full feature program processing according to a
variety of standard language codes such as HTML, JAVA
and other standard languages, for execution on a thin client
platform. More particularly the invention relates to methods
for compiling and rendering full feature standard HTML and
JAVA programs into a format which is efficient for a limited
processing resource platforms.

2. Description of Related Art

Standard HTML and JAVA programs, and other hypertext
languages, are designed for computers having a significant
amount of data processing resources, such as CPU speed and
memory bandwidth, to run well. One feature of these object
specifying languages is the ability to specify a graphic object
for display using relative positioning. Relative positioning
enables the display of the graphic object on displays having
a wide range of dimensions, resolutions, and other display
characteristics. However, relative positioning of graphic
objects requires that the target device have computational
resources to place the graphic object on the display at
specific coordinates. Thus, there are a number of
environments, such as TV set top boxes, hand held devices,
digital video disk DVD players, compact video disk VCD
players or thin network computer environments in which
these standard object specifying languages are inefficient or
impractical. The original HTML and JAVA programs run
very slowly, or not at all, in these types of thin client
environments. To solve these problems, simpler versions of
HTML and JAVA have been proposed, which have resulted
in scripting out some of the features. This trades off some of
the nice functionality of HTML and JAVA, which have
contributed to their wide acceptance. Furthermore, use in
thin client environments of the huge number of files that are
already specified according to these standards, is substan-
tially limited.

SUMMARY OF THE INVENTION

The present invention provides a system and method for
processing an Display object specified by an object speci-
fying language such as HTML, JAVA or other languages
relying on relative positioning, that require a rendering
program utilizing a minimum set of resources, for use in a
target device that has limited processing resources unsuited
for storage and execution of the HITML rendering program,
JAVA virtual machine, or other rendering engine for the
standard. Thus, the invention can be characterized as a
method for storing data concerning such an object that
includes first receiving a data set specifying the object
according to the object specifying language, translating the
first data set into a second data set in an intermediate object
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language adapted for a second rendering program suitable
for rendering by the target device that utilizes actual target
display coordinates. The second data set is stored in a
machine readable storage device, for later retrieval and
execution by the thin client platform.

The object specifying language according to alternative
embodiments comprises a HTML standard language or other
hypertext mark up language, a JAVA standard language or
other object oriented language that includes object specify-
ing tools.

The invention also can be characterized as a method for
sending data concerning such an object to a target device
having limited processing resources. This method includes
receiving the first data set specifying the object according to
the first object specifying language, translating the first data
set to a second data set in an intermediate object language,
and then sending the second data set to the target device. The
target device then renders the object by a rendering engine
adapted for the intermediate object language. The step of
sending the second data set includes sending the second data
set across a packet switched network such as the Internet or
the World Wide Web to the target device. Also, the step of
translating according to one aspect of the invention includes
sending the first data set across a packet switched network
to a translation device, and executing a translation process
on the translation device to generate the second data set. The
second data set is then transferred from the translation
device, to the target device, or alternatively from the trans-
lation device back to the source of the data, from which it is
then forwarded to the target device.

According to other aspects of the invention, the step of
translating the first data set includes first identifying the
object specifying language of the first data set from among
a set of object specitying languages, such as HTML and
JAVA. Then, a translation process is selected according to
the identified object specifying language.

According to yet another aspect of the invention, before
the step of translating the steps of identifying the target
device from among a set of target devices, and selecting a
translation process according to the identified target device,
are executed.

In yet another alternative of the present invention, a
method for providing data to a target device is provided.
This method includes requesting for the target device a first
data set from a source of data, the first data set specifying the
object according to the object specifying language; translat-
ing the first data set to a second data set in an intermediate
language adapted for execution according to a second ren-
dering program by the target device. The second data set is
then sent to this target device. This allows a thin platform
target device to request objects specified by full function
HTML, JAVA and other object specifying languages, and
have them automatically translated to a format suitable for
rendering in the thin environment.

Thus, the present invention provides a method which uses
a computer to automatically compile standard HTML, JAVA
and other programs so that such programs can run both CPU
and memory efficiently on a thin client platform such as a
TV set top box, a VCD/DVD player, a hand held device, a
network computer or an embedded computer. The automatic
compilation maintains all the benefits of full feature HTIML
and JAVA or other language.

The significance of the invention is evident when it is
considered that in the prior art, standard HTML and JAVA
were reduced in features or special standards are created for
the thin client environment. Thus according to the prior art
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approaches, the standard programs and image files on the
Internet need to be specially modified to meet the needs of
special thin client devices. This is almost impossible con-
sidering the amount of HTML and JAVA formatted files on
the Web. According to the invention each HTML file,
compiled JAVA class file or other object specifying language
data set is processed by a standard full feature HTML
browser JAVA virtual machine, or other complementary
rendering engine, optimized for a target platform on the fly,
and then output into a set of display oriented language codes
which can be easily executed and displayed on a thin client
platform. Furthermore, the technique can use in general to
speed up the HTML and JAVA computing in standard
platforms.

Other aspects and advantages of the present invention can
be seen upon review of the figures, the detailed description
and the claims which follow.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a simplified diagram of a end user thin platform
for execution of a compiled code data source according to
the present invention.

FIG. 2 is a simplified diagram of a user workstation and
server for precompiling a composed data set according to the
present invention.

FIG. 3 is a simplified diagram of a precompiler for a
HTML formatted file.

FIG. 4 is a simplified diagram of a precompiler for a JAVA
coded program.

FIG. § is a class inheritance hierarchy for a precompiler
for HTML.

FIG. 6 is a flow chart for the HTML precompiler process.

FIG. 7 illustrates the compiled HTML structure according
to one embodiment of the present invention.

FIGS. 8A-8B illustrate a compiled HTML run time
engine for execution on the thin platform according to the
present invention.

FIG. 9 is a flow chart of the process for precompiling a
JAVA program according to the present invention.

FIG. 9A is a flow chart of one example process for
translating the byte codes into a reduced byte code in the
sequence of FIG. 9.

FIG. 10 is a schematic diagram illustrating use of the
present invention in the Internet environment.

FIG. 11 is a schematic diagram illustrating use of the
present invention in a “network computer” environment.

FIG. 12A is a schematic diagram illustrating use of the
present invention in an off-line environment for producing a
compiled format of the present invention and saving it to a
storage medium.

FIG. 12B illustrates the off-line environment in which the
stored data is executed by thin platform.

DETAILED DESCRIPTION

A detailed description of preferred embodiments of the
present invention is provided with respect to FIGS. 1-12A
and 12B. FIGS. 1-2 illustrated simplified implementation of
the present invention. FIGS. 3-9 and 9A illustrate processes
executed according to the present invention. FIGS. 10-12A
and 12B illustrate the use of the present invention in the
Internet environment or other packet switched network
environment.

FIG. 1 illustrates a “thin” platform which includes a
limited set of data processing resources represented by box
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10, a display 11, and a “compiled code” rendering engine 12
for a display oriented language which relies on the data
processing resources 10. The end user platform 10 is
coupled to a compiled code data source 13. A compiled code
data sources comprises, for example a VCD, a DVD, or
other computer readable data storage device. Alternatively,
the compiled code data source 13 consists of a connection to
the World Wide Web or other packet switched or point-to-
point network environment from which compiled code data
is retrieved.

The limited data processing resources of the thin platform
10 include for example a microcontroller and limited
memory. For example, 512k of RAM associated with a 8051
microcontroller, or a 66 MHz MIPS RISC CPU and 512k of
dynamic RAM may be used in a representative thin plat-
form. Other thin user platforms use low cost microproces-
sors with limited memory. In addition, other thin platforms
may comprise high performance processors which have little
resources available for use in rendering the compiled code
data source. Coupled with the thin platform is a compiled
code rendering engine 12. This rendering engine 12 is a
relatively compact program which runs efficiently on the
thin platform data processing resources. The rendering
engine translates the compiled code data source data set into
a stream of data suitable for the display 11. In this
environment, the present invention is utilized by having the
standard HTML or JAVA code preprocessed and compiled
into a compiled HTML/JAVA format according to the
present invention using the compiler engine described in
more detail below on a more powerful computer. The
compiled HTML/JAVA codes are saved on the storage
media. A small compiled HTML/JAVA run time engine 12 is
embedded or loaded into the thin client device. The run time
engine 12 is used to play the compiled HTML/JAVA files on
the thin platform 10. This enables the use of a very small
client to run full feature HTML or JAVA programs. The
machine can be used both online, offline or in a hybrid mode.

FIG. 2 illustrates the environment in which the compiled
code data is generated according to the present invention.
Thus for example, a developer workstation 20 is coupled
with image rendering tools such as HIML, JAVA, or other
image tools 21. The workstation 20 is coupled to a server for
the composed data 22. The server includes a precompiler 23
which takes the composed data and translates it into the
compiled code data. Compiled code data is then sent to a
destination 24 where it is stored or rendered as suits the
needs of a particular environment. Thus for example, the
destination may be a VCD, DVD or the World Wide Web.

According to the environment of FIG. 2 compiled HTML
and JAVA “middleware” is implemented on an Internet
server. Thus the thin set top box or other compiled code data
destination 24 is coupled to the Internet/Intranet through the
compiled HTML/JAVA middleware 22, 23. A small com-
piled HTMI/JAVA run time engine is embedded in the thin
destination device. All the HTML/JAVA files created in the
workstation 20 go through the middleware server 22 to reach
the thin client devices. The HTML/JAVA files are converted
to the compiled format on the fly by the precompiler 23 on
the middleware server 22. The server 22 passes the compiled
code onto the destination device. This allows for most
software updates of precompiler techniques to be made in
the server environment without the need to update the
destination devices. Also, any changes in the run time engine
that need to be executed in the destination device 24 can be
provided through the link to the server 22.

FIGS. 3 and 4 illustrate simplified diagrams of the pre-
compilers for HTML and JAVA respectively. In FIG. 3,
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standard HTML files are received at input 500 and applied
to a HTML parser 501. The output of the parser is applied
to a command module 502 which includes a HTML render-
ing engine 503, and memory resident HTML objects opti-
mizing engine 504. The output consists of the compiled 5
HTML output engine 505 generates the output with simpli-
fied graphics primatives.

The basic class inheritance hierarchy for the HTML
precompiling is shown in FIG. 5. The process of translating
a HTML file to the compiled HTML structure of the present 10
invention is illustrated in FIG. 6. The process begins at point
800 in FIG. 6. The first step involves loading the HTML file
into the rendering device. Next information concerning the
target device is loaded (step 820). The HTML file is then
parsed by searching for HTML tags, and based on such tags 13
creating the class structure of FIG. 5 (step 830).

Using the parameters of the target device, and the parsing
class structure set up after the parsing process, the algorithm

6

does HTML rendering based on a class hierarchy adapted to
the dimensions and palette of the target device (step 840).
This fixes the coordinates of all the graphic objects specified
by the HTML code on the screen of the target device. For
example, the paragraphs are word wrapped, horizontal rules
are placed in particular places, the colors are chosen, and
other device specific processes are executed.

After the rendering, all the display information is saved
back into the class structure of FIG. 5. Finally the process
goes through the class hierarchy and outputs the rendering
information in compiled HTML format (step 850). The
compiled HTML instructions are primitives that define
rectangles, text, bitmaps and the like and their respective
locations. After outputting the compiled instructions, the
process is finished (step 860).

A simplified pseudo code for the HTML compilation
process is provided in Table 1.

TABLE 1

Copyright EnReach 1997

function convert__html (input : pointer) : chtmlfile;
// this takes a pointer to an HTML file and translates it into a CHTML binary file

begin

devicelnfo := LoadDeviceInfo( );  // Loads size and colors of target device

Parse HTML file

// use a parser to break the HTML file up into
// tags represented in a fashion suitable for display

For each HTML tag (<IMG . . . » = 1 tag, <P> a paragraph </P> =1 tag),
select a sequence of CHTML instructions to render the tag on the output device.
As instructions are selected, colors and positioning are optimized based on the

device size and palette.

CHTML instructions include:
TITLE string
TEXT formatted text at a specific position,

complex formatting will
require multiple CHTML TEXT instructions

IMAGE image information including image-map,

ANCHOR

animation info, image data
HTML reference
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Basic geometric instructions such as: SQUARE, FILLEDSQUARE, CIRCLE,
FILLEDCIRCLE, and LINE, permit the complex rendering required by some
HTML instructions to be decomposed into basic drawing instructions. For
example, the bullets in front of lists can be described in CHTML instructions
as squares and circles at specific locations.
CHTML instructions including TEXT and IMAGE instructions can be
contained within anchors. The CHTML compiler must properly code all
instructions to indicate if an instruction is contained in an anchor.

The CHTML instructions can then be written to the output file along with some header

information.

end;

Table 2 sets forth the data structure for the precompiling

process.

TABLE 2

Copyright EnReach 1997

/* HTML font structure */
typedef struct tagHTMLFont

char name[64];

int size;

int bold;

int italic;

int underline;

int strikeout;
} HTMLFont;
/* FG point structure */
typedef struct tagFGPoint
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TABLE 2-continued

Copyright EnReach 1997

{
int fX;
int £Y;
} FGPoint;

/* FG rectangle structure */
typedef struct tagFGRect

int fLeft;
int fTop;
int fRight;
int fBottom;
} FGRect;
/* html node types, used by hType attribute in HTML__InfoHead structure */
#define HTML_ TYPE_TITLE 0O /* title of the html page */
#define HTML_TYPE_TEXT 1 /* text node */
#define HTML_ TYPE_CHINESE 2 /* chinese text node */
#define HTML_TYPE_IMAGE 3 /* image node */
#define HTML_ TYPE_SQUARE 4 /* square frame */
#define HTML__TYPE_FILLEDSQUARE 5  /* filled square */
#define HTML_ TYPE_CIRCLE 6 /* circle frame */
#define HTML_ TYPE_ FILLEDCIRCLE 7 /* filled circle */
#define HTML_TYPE_LINE 8 /* line */
#define HTML_ TYPE_ ANCHOR 9 /* anchor node */
#define HTML_ TYPE__ ANIMATION 10 /* animation node */
#define HTML_TYPE_MAPAREA 11 /* client side image map area node */

/* header info of compiled html file */
typedef struct tagHTML.__FileHead

unsigned int fBgColor; /* background color index */
unsigned int fPaletteSize; /* size of palette */

} HTML_ FileHead;

/* header info of each html node */

typedef struct tagHTML.__InfoHead

unsigned int hType; /* type of the node */
unsigned int hSize; /* size of htmlInfo */
} HTML_ InfoHead;
/* html info structure */
typedef struct tagHTML.__Info

HTML_ InfoHead htmlHead; /* header info */
unsigned char htmlInfo[1]; /* info of the html node */
} HTML_ Info;

/* html title structure */
typedef struct tagHTML__Title

unsigned int textLen; /* length of text buffer */
char textBuffer[1]; /* content of text buffer */
} HTML_ Title;

/* html text structure */
typedef struct tagHTML__ Text

FGPoint dispPos; /* display coordinates */
int anchorID; /* anchor id if it’s inside an anchor, -1 if not */
HTMLFont textFont; /* font of the text */
unsigned int textColor; /* color index of the text */
unsigned int textLen; /* length of text buffer */
char textBuffer[1]; /* content of text buffer */
} HTML_ Text

/* html chinese structure */
typedef struct tagHTML__Chinese

FGPNT dispPos; /* display coordinates */

int anchorID; /* anchor id if it’s inside an anchor, -1 if not */
unsigned int textColor; /* color index of the text */

unsigned int bufLen; /* length of the bitmap buffer (16* 16) */
char textBuffer[1]; /* content of text buffer */

} HTML_ Chinese;
/* html image structure */
typedef struct tagHTML._ Image

FGRect dispPos; /* display coordinates */
int anchorID; /* anchor id if it’s inside an anchor, -1 if not */
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int animationID; /* animation id if it supports animation, -1 if not */

int animationDelay;
char mapName[64];
image map */
void *data;
data */
unsigned int fnameLen;
char fname[1];
} HTML_ Image;
/* square structure */
typedef strnct tagHTML.__Square

FGRect dispPos;

/* delay time for animation */

/* name of client side image map, empty if no

/* used to store image

/* length of the image file name */
/* image filename */

/* display coordinates */

unsigned int borderColor; /* border color index */

} HTML_ Square;
/* filled square structure */

typedef struct tagHTML.__FilledSquare

FGRect dispPos;

/* display coordinates */

unsigned int brushColor; /* the inside color index */

} HTML_ FilledSquare;
/* circle structure */
typedef struct tagHTML.__Circle

FGRect dispPos;

/* display coordinates */

unsigned int borderColor; /* border color index */

} HTML_ Circle
/* circle structure */
typedef struct tagHTML.__FilledCircle

FGRect dispPos;

/* display coordinates */

unsigned int brushColor; /* the inside color index */

} HTML_ FilledCircle;
/* line structure */
typedef struct tagHTML_ Line

FGPoint startPos;
FGPoint endPos;
int style;
etc.) */
unsigned int penColor;
} HTML_ Line;
/* anchor structure */
typedef struct tagHTML__Anchor

int anchorID;
unsigned int hrefLen;.
char href[1];
} HTML_ Anchor;
/* animation structure */
typedef struct tagHTML__Animation

int animationID;

/* line starting position */
/* line end position */
/* style of the line (solid, dashed, dotted,

/* pen color index */

/* id of the anchor */
/* length of href */
/* url of the anchor */

/* id of the animation */

unsigned int frameTotal; /* total number of animation frames */

long runtime;
} HTML_ Animation;
#define SHAPE_ RECTANGLE 0
#define SHAPE CIRCLE 1
#define SHAPE_ POLY 2
/* image map area structure */
typedef struct tagHTML.__MapArea

char mapName[64];
*/
intshape;
int numVer;
int coords[6]2];
unsigned int hrefLen;
char href[1];
} HTML_ MapArea;

/* animation runtime */

/* name of client side image map

/* shape of the area */
/* number of vertix */
/* coordinates */
/* length of href */
/* url the area pointed to */

An example routine for reading this file into the thin
platform memory follows in Table 3.
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reading this file:
#define BLOCK__SIZE 256
/* returns number of nodes */
long read__chm(const char *filename, /* input: .chm file name */
HTML_ Info ***ppNodeList, /* output: array of (HTML_ Info *)
including anchors. */

YUVQUAD **ppPalette, /* output: page palette */

unsigned int *palette_size) /* output: palette size */
{

int fd;

char head[12];
long total__nodes = 0;
long max__nodes = 0;
HTML__FileHead myFileHead;
HTML__InfoHead myInfoHead;
HTML_ Info *pNodelnfo;
void *pNodeData;
long i;
HTML__InfoHead *pHead;
if (!ppNodeList || !ppPalette || Ipalette_size)
return 0;
(*ppNodeList) = NULL;
(*ppPalette) = NULL;
(*palette_size) = 0
/* open file */
fd = _open(filename,_O_ BINARY|_O_ RDONLY);
if(fd < 0)
return 0;
/* read header and check for file type */
if (_read(fd, head, 10) != 10)
{
_ close(fd);
return 0;

¥
if (strnemp(head, “<COMPHTML>”, 10))

_ close(fd);
return 0;

)
/* read file header */
if(__read(fd, &myFileHead, sizeof(HTML_ FileHead)) !=
sizeof(HTML_ FileHead))
{
_ close(fd);
return 0;

(*palette_ size) = myFileHead.fpaletteSize;
/* read the palette */
if ((*palette_size) > 0)

(*ppPalette) = (YUVQUAD *)malloc(sizeof( YUVQUAD)*
(*palette__size));
if (_read(fd, (*ppPalette), sizeof(YUVQUAD) * (*palette_size))
!= (int) (sizeof(YUVQUAD) * (*palette_size)))

_ close(fd);
return 0;
}
/* read anchors along with other html nodes */

while (1)

if (_read(fd, &mylnfoHead, sizeof(HTML,_ InfoHead))
1= sizeof(HTML_ InfoHead))

break;
¥
if (myInfoHead.hSize > 0)

pNodelnfo = (HTML_ Info *) malloc(myInfoHead.hSize +
sizeof(HTML_ InfoHead));

if (!pNodelnfo)

break;

memepy(pNodelnfo, &mylnfoHead,
sizeof(HTML_ InfoHead));

if (_read(fd, &pNodelnfo[sizeof( HTML_ InfoHead)],
mylnfoHead.hSize)
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!= (int)myInfoHead.hSize)
break;

/* check if we need to do memory allocation */
if (total _nodes >= max_ nodes)

if(!max_ nodes)
/* no node in the list yet */
(*ppNodeList) = (HTML_ Info **)
malloc(
sizeof(HTML_ Info *)*
BLOCK__SIZE);

else

(*ppNodeList) = (HTML_ Info **)
realloc((*ppNodeList),
max_ nodes + sizeof(HTML,_ Info
*) * BLOCK__SIZE);
}
if (!(*ppNodeList))
break;
max__nodes += BLOCK_SIZE;

(*ppNodeList)[total_nodes] = pNodelnfo;
total__nodes++;

}

¥

_ close(fd);

/* test our data */

for (i = 0; 1 < total_nodes; i++)

{
pNodelnfo = (*ppNodeList)[i];
pHead = (HTML_ InfoHead *) pNodelnfo;
pNodeData = pNodelnfo + sizeof(HTML_ InfoHead);
if(pHead->hType == HTML_ TYPE_ TEXT)

HTML_ Text *pText = (HTML_ Text *) pNodeData;

¥
else if(pHead->hType == HTIML_TYPE_ IMAGE)

HTML_Image *pImage = (HTML_Image *) pNodeData;
if (pImage—>fnamelen > 0)

/* load the image file */
plmage—>data = load__ybm(plmage—>fname);
else if (pHead->hType == HTML_ TYPE_ ANCHOR)

HTML__Anchor *pAnchor = (HTML__Anchor *)
pNodeData;

¥
else if(pHead->hType == HTIML_TYPE_ ANIMATION)

HTML_ Animation *pAnimation = (HTML_ Animation *)
pNodeData;

else if(pHead->hType == HTML_TYPE_ MAPAREA)

HTML_ MapArea *pMapArea = (HTML_MapArea *)
pNodeData;

ilse if (pHead->hType == HTML_TYPE_ LINE)

HTML_ Line *pLine = (HTML_ Line *) pNodeData;
ilse if(1)Head—>hType == HTML_TYPE_ SQUARE)

HTML_ Square *pSquare = (HITML_ Square *) pNodeData;
else if(pHead->hType == HTML_ TYPE_ CIRCLE)

HTML_ Circle *pCircle = (HTML_ Circle *) pNodeData;
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else if (pHead->hType == HTML_ TYPE_ FILLEDSQUARE)

HTML__FilledSquare *pFilledSquare =
(HTML_ FilledSquare *) pNodeData;

else if (pHead->hType == HTML_ TYPE_ FILLEDCIRCLE)

HTML_ FilledCircle *pFilledCircle = (HTML_ FilledCircle

*) pNodeData;
else if(pHead->hType == HTML_TYPE_ TITLE)
HTML_ Title *pTitle = (HTML_ Title *) pNodeData;

return total _nodes;

}

The compiled HTML file structure is set forth in FIG. 7
as described in Table 2. The file structure begins with a ten
character string COMPHTML 900. This string is followed
by a HIML file header structure 901. After the file header
structure, a YUV color palette is set forth in the structure 902
this consists of an array of YUVQUAD values for the target
device. After the palette array, a list 903 of HTML infor-
mation structures follows. Usually the first HTML informa-
tion structure 904 consists of a title. Next, a refresh element
typically follows at point 905. This is optional. Next in the
line is a background color and background images if they are
used in this image. After that, a list of display elements is
provided in proper order. The anchor node for the HTML file
is always in front of the nodes that it contains. An animation
node is always right before the animation image frames start.
The image area nodes usually appear at the head of the list.

The HTML file header structure includes a first value
BgColor at point 906 followed by palette size parameters for
the target device at point 907. The YUVQUAD values in the
color palette consist of a four word structure specifying the
Y, U, and V values for the particular pixel at points 908—910.
The HTML information structures in the list 903 consist of
a type field 911, a size field 912, and the information which
supports the type at field 913. The type structures can be a
HTML_ Title, HTML_ Text, HTML__Chinese, HTML__
Xxge, HTML_ Square, HTML _ FilledSquare, HTML__
Circle, HTML_ FilledCircle, HTML_ Line, HTML__
Author, HTML__Animation, . . .

Functions that would enable a thin platform to support
viewing of HTML-based content pre-compiled according to
the present invention includes the following:

General graphics functions
int DrawPoint (int x, int y, COLOR color, MODE mode);
int DrawLine (int x1, int y1, int x2, int y2, COLOR color,
MODE mode);

int DrawRectangle(int x1, int y1, int X2, int y2, COLOR

color, MODE mode);

int FillRectangle(int x1, int y1, int x2, int y2, COLOR

color, MODE mode);

int ClearScreen(COLOR color);

Color palette

int ChangeYUVColorPalette( );
Bitmap function

int BitBlt(int dst_ x1, int dst_y1, int dst_x2, int dst_y2,

unsigned char *bitmap, MODE mode);
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String drawing functions

int GetStringWidth(char *str, int len);

int GetStringHeight(char *str, int len);

int DrawStringOnScreen(int x, int y, char *str, int len,
COLOR color, MODE mode);

Explanation

All (x, y) coordinates are based on the screen resolution
of the target display device (e.g. 320x240 pixels).

COLOR is specified as an index to a palette.

MODE defines how new pixels replace currently dis-
played pixels (COPY, XOR, OR, AND).

Minimum support for DrawLine is a horizontal or vertical
straight line, although it would be nice to have support
for diagonal lines.

The ChangeYUVColorPalette function is used for every
page.

BitBlt uses (x1, y1) and (x2, y2) for scaling but it is not
a requirement to have this scaling functionality.

String functions are used for English text output only.
Bitmaps are used for Chinese characters.

FIGS. 8A and 8B set forth the run time engine suitable for
execution on a thin client platform for display of the
compiled HTML material which includes the function out-
lined above in the “display” step 1220 of FIG. 8B.

The process of FIG. 8A starts at block 1000. The ran time
engine is initialized on the client platform by loading the
appropriate elements of the run time engine and other
processes known in the art (step 1010). The next step
involves identifying the position of the file, such as on the
source CD or other location from which the file is to be
retrieved and setting a flag (step 1020). The flag is tested at
step 1030. If the flag is not set, then the algorithm branches
to block 1040 at which the flag is tested to determine
whether it is -1 or not. If the flag is -1, then the algorithm
determines that a system error has occurred (step 1050) and
the process ends at step 1060. If the flag at step 1040 is not
-1, then the file has not been found (step 1070). Thus after
step 1070 the algorithm returns to step 1020 to find the next
file or retry.

If at step 1030, the flag is set to 1 indicating that the file
was found, then the content of the file is retrieved using a
program like that in Table 3, and it is stored at a specified
address. A flag is returned if this process succeeds set equal
to 1 otherwise it is set equal to O (step 1080). Next the flag
is tested (step 1090). If the flag is not equal to 1 then reading
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of the file failed (step 1100). The process then returns to step
1020 to find the next file or retry.

If the flag is set to 1, indicating that the file has been
successfully loaded into the dynamic RAM of the target
device, then the “Surf HTML” process is executed (step
1110). The details of this process are illustrated in FIG. 8B.
Next the current page URL name is updated according to the
HTML process (step 1120). After updating the current URL
name, the process returns to step 1020 to find the next file.

FIG. 8B illustrates the “Surf HTML” process of step
1110 in FIG. 8A. This process starts at point 1200. The first
part is initialization step 1210. A display routine is executed
at step 1220 having the fixed coordinate functions of the
precompiled HTML data set. First, the process determines
whether applets are included in the file (step 1230). If they
are included, then the applet is executed (step 1240). If no
applets are included or after execution of the applet, then a
refresh flag is tested (step 1240). If the flag is equal to 1, then
it is tested whether a timeout has occurred (step 1250). If a
timeout has occurred, then the current page is updated (step
1260) and the process returns set 1210 of FIG. 8B, for
example.

If at block 1240 the refresh flag was not equal to 1, or at
block 1250 the timeout had not expired, then the process
proceeds to step 1270 to get a user supplied input code such
as an infrared input signal provided by a remote control at
the target device code. In response to the code, a variety of
process are executed as suits a particular target platform to
handle the user inputs (step 1280). The process returns a
GO_HOME, or a PLAY URL command, for example,
which result in returning the user to a home web page or to
a current URL, respectively. Alternatively the process loops
to step 1270 for a next input code.

As mentioned above, FIG. 4 illustrates the JAVA precom-
piler according to the present invention. The JAVA precom-
piler receives standard full feature JAVA byte codes as input
on line 600. Byte codes are parsed at block 601. A JAVA
class loader is then executed at block 602. The classes are
loaded into a command module 603 which coordinates
operations of a JAVA virtual machine 604, a JAVA garbage
collection module 605, and a JAVA objects memory map-
ping optimizing engine 606. The output is applied by block
607 which consists of a compiled JAVA bytecode format
according to the present invention.

The process is illustrated in FIG. 9 beginning at block
1500. First the JAVA bytecode file is loaded (block 1510).
Next, the JAVA classes are loaded based on the interpretation
of the bytecode (step 1520). Next the classes are optimized
at step 1530. After optimizing the classes, the byte codes are
translated to a reduced bytecode (step 1540). Finally the
reduced bytecode is supplied (step 1550) and the algorithm
stops at step 1560. Basically the process receives a JAVA
source code file which usually has the format of a text file
with the extension JAVA. The JAVA compiler includes a
JAVA virtual machine plus compiler classes such as SUN-
.TOOLS.JAVAC which are commercially available from
Sun Micro Systems. The JAVA class file is parsed which
typically consists of byte codes with the extension .CLASS.
A class loader consists of a parser and bytecode verifier and
processes other class files. The class structures are processed
according to the JAVA virtual machine specification, such as
the constant pool, the method tables, and the like. An
interpreter and compiler are then executed. The JAVA virtual
machine executes byte codes in methods and outputs com-
piled JAVA class files starting with “Main”. The process of
loading and verifying classes involves first finding a class. If
the class is already loaded a read pointer to the class is
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returned, if not, the class is found from the user specified
class path or directory, in this case a flash memory chunk.
After finding the class, the next step is executed. This
involves loading the bytes from the class file. Next, class file
bytes are put into a class structure suitable for run time use,
as defined by the JAVA virtual machine specification. The
process recursively loads and links the class to its super
classes. Various checks and initializations are executed to
verify and prepare the routine for execution. Next, initial-
ization is executed for the method of the class. First the
process ensures that all the super classes are initialized, and
then cause the initialization method for the class. Finally, the
class is resolved by resolving a constant pool entry the first
time it is encountered. A method is executed with the
interpreter and compiler by finding the method. The method
may be in the current class, its super class or other classes
as specified. A frame is created for the method, including a
stack, local variables and a program counter. The process
starts executing the bytecode instructions. The instructions
can be stack operations, branch statements, loading/storing
values, from/to the local variables or constant pool items, or
invoking other methods. When an invoked method is a
native function, the implemented platform dependent func-
tion is executed.

In FIG. 9A, the process of translating JAVA byte codes
into compiled byte codes (step 1504 of FIG. 9) is illustrated.
According to the process FIG. 9A, the high level class byte
codes are parsed from the sequence. For example, Windows
dialog functions are found (1570). The high level class is
replaced with its lower level classes (1580). This process is
repeated until all the classes in the file become basic classes
(1590). After this process, all the high level functions have
been replaced by lower level level basic functions, such as
draw a line, ete. (1600).

JAVA byte codes in classes include a number of high level
object specifying functions such as a window drawing
function and other tool sets. According to the present
invention, these classes are rendered by the precompiler into
a set of specific coordinate functions such as those outlined
above in connection with the HIML precompiler. By pre-
compiling the object specifying functions of the JAVA byte
code data set, significant processing resources are freed up
on the thin client platform for executing the other programs
carried in a JAVA byte code file. Furthermore, the amount of
memory required to store the run time engine and JAVA
class file for the thin client platform according to the present
invention which is suitable for running a JAVA byte code file
is substantially reduced.

FIG. 10 illustrates one environment in which use of the
present invention is advantageous. In particular, in the
Internet environment a wide variety of platforms are imple-
mented. For example, an end user workstation platform 100
is coupled to the Internet 101. An Internet server platform
102 is also coupled to the Internet 101 and includes storage
for JAVA data sets, HTML data sets, and other image files.
Aserver 103 with an intermediate compiler according to the
present invention for one or more of the data sets available
in the Internet is coupled to the Internet 101 as well. A
variety of “thin” platforms are also coupled to the Internet
and/or the server 103. For example, an end user thin plat-
form A 104 is coupled to the server 103. End user thin
platform B 105 is coupled to the server 103 and to the
Internet 101. End user thin platform C 106 is coupled to the
Internet 101 and via the Internet all the other platforms in the
network. A variety of scenarios are thus instituted. The
source of data sets for end user platform C 106 consists of
the World Wide Web. When it requests a file from server

Unified Patents Exhibit 1005 App'x O-MM



5,987,256

19

102, the file is first transferred to the intermediate compiler
at server 103, and from server 103 to the end user platform
106. End user platform A 104 is coupled directly to the
server 103. When it makes a request for a file, the request is
transmitted to the server 103, which retrieves the file from
its source at server 102, translates it to the compiled version
and sends it to platform A 104. End user platform B is
coupled to both the server 103 and to the Internet 101. Thus,
it is capable of requesting files directly from server 102. The
server 102 transmits the file to server 103 from which the
translated compiled version is sent to platform B 105.
Alternatively, platform B may request a file directly from
server 103 which performs all retrieval and processing
functions on behalf of platform B.

FIG. 11 illustrates an alternative environment for the
present invention. For example, the Internet 120 and an
Intranet 121 are connected together. A server 122 is coupled
to the Intranet 121 and the Internet 120. The server 122
includes the HTML and JAVA intermediate compiling
engines according to the present invention as represented by
block 123. The server 122 acts as a source of precompiled
data sets for thin client platforms 124, 125 and 126 each of
which has a simplified run time engine suitable for the
compiled data sets. Thus the powerful HTML/JAVA engine
resides on the network server 122. The thin network com-
puters 124, 125, 126 are connected to the server have only
the simplified run time engine for the compiled image set.
Thus, very small computing power is required for executing
the display. Thus computing tasks are done using the net-
work server, but displayed on a thin network computer
terminals 124-126.

FIGS. 12A and 12B illustrate the off-line environment for
use of the present invention. In FIG. 12A, the production of
the compiled files is illustrated. Thus, a standard object file,
such as an HTML or JAVA image, is input online 1300 to a
compiler 1301 which runs on a standard computer 1302. The
output of the compiler on line 1303 is the compiled bitmap,
compiled HTML or compiled JAVA formatted file. This file
is then saved on a non-volatile storage medium such as a
compact disk, video compact disk or other storage medium
represented by the disk 1304.

FIG. 12B illustrates the reading of the data from the disk
1304 and a thin client such as a VCD box, a DVD box or a
set top box 1305. The run time engine 1306 for the compiled
data is provided on the thin platform 130S.

Thus, off-line fill feature HTML and JAVA processing is
provided for a run time environment on a very thin client
such as a VCD/DVD player. The standard HTML/JAVA
objects are pre-processed and compiled into the compiled
format using the compiler engine 1301 on a more powerful
computer 1302. The compiled files are saved on a storage
medium such as a floppy disk, hard drive, a CD-ROM, a
VCD, or a DVD disk. A small compiled run time engine is
embedded or loaded into the thin client device. The run time
engine is used to play the compiled files. This enables use of
a very small client for running full feature HTML and JAVA
programs. Thus, the machine can be used in both online, and
off-line modes, or in a hybrid mode.

The foregoing description of a preferred embodiment of
the invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise forms disclosed. Obviously,
many modifications and variations will be apparent to prac-
titioners skilled in this art. It is intended that the scope of the
invention be defined by the following claims and their
equivalents.
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What is claimed is:

1. Amethod of translating a document on a first device for
use on a second device, the document being in a standard
HTML language, the method comprising:

reading the document;

reading a profile describing characteristics of the second

device, the profile including a display resolution and a
supported image format; and

translating the document on the first device according to

the profile, the translating including

retrieving a plurality of images referenced by the
document,

generating a color palette for the second platform using
the plurality of images and the document,

executing the document according to the standard
HTML language using the profile to generate a
plurality of drawing instructions for displaying the
document on the second device,

translating the plurality of images from respective
formats to the supported image format, and

outputting a translated document, the translated docu-
ment including at least a reference to the color
palette, the plurality of images in the supported
image format, and the plurality of drawing instruc-
tions.

2. The method of claim 1 wherein the reading the docu-
ment further comprises retrieving the document from a
world wide web (WWW) site based on a uniform resource
locator (URL).

3. The method of claim 1 wherein the profile includes a
maximum number of colors for the color palette.

4. The method of claim 3 wherein the generating the color
palette using the plurality of images and the document
comprises:

creating a set of colors comprised of all colors used in the

plurality of images and all colors used in the document;
reducing the set of colors to contain no more than the
maximum number of colors for the color palette.

5. The method of claim 1 wherein the document includes
a plurality of references to a plurality of images, each of the
plurality of references comprising a URL, and the retrieving
a plurality of images referenced by the document further
comprises retrieving respective images using the plurality of
references.

6. The method of claim 1 wherein the executing the
document according to the standard HTML language using
the profile to generate a plurality of drawing instructions for
displaying the document on the second device further com-
prises:

executing the document for display on the second device

according to the display resolution;

positioning HTML elements in the document according to

the display resolution;

word wrapping HTML text elements in the document

according to the display resolution; and

generating a plurality of text drawing elements.

7. The method of claim 6 wherein the generating a
plurality of text drawing elements further comprises gener-
ating a text element for each text segment, a text segment
comprised of one or more characters from the document, the
one or more characters sharing a font, a size, a style, and a
color, and the text segment occupying not more than one line
in the font at the size in the style, each text element including
an absolute position at which the text segment should be
displayed on the second device.

8. The method of claim 6 further comprising generating a
plurality of graphics drawing elements including:
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generating a plurality of line elements;

generating a plurality of rectangle elements; and

generating a plurality of circle elements.

9. The method of claim 6 further comprising generating a
plurality of link elements, each link element including a
URL of a corresponding linked item.

10. The method of claim 1 wherein the supported image
format includes a color palette indexed bitmap format and
the translating the plurality of images from respective for-
mats to the supported image format comprises:

decoding each of the plurality of images into a red-green-

blue bitmap format;

selecting a color in the color palette for pixels in each of

the plurality of images; and

outputting a color palette indexed bitmap format for each

of the plurality of images.

11. The method of claim 10 wherein the document com-
prises a plurality of Java classes, and wherein the executing
the document according to the standard HTML language
using the profile to generate a plurality of drawing instruc-
tions for displaying the document on the second device
comprises:

loading and verifying the plurality of Java classes;
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initializing methods associated with the plurality of Java
classes; and

replacing calls to complex drawing operations with a
plurality of graphics drawing elements and a plurality
of text drawing elements.

12. The method of claim 1 wherein the translated docu-
ment includes a plurality of text elements and a plurality of
graphics drawing elements.

13. The method of claim 1 wherein the standard HTML
language comprises a Java language program.

14. The method of claim 1 wherein the translating the
document on the first device for use on the second device
further comprises:

receiving a request at the first device over a packet
switched network from the second device, the request
including a URL;

retrieving the document using the URL responsive to the
request; and

providing the translated document to the second device
over the packet switched network.

#* #* #* #* #*
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Abstract

We describe a software system supporting interactive visualization
of large terrains in a resource-limited environment, i.e. a low-end
client computer accessing a large terrain database server through a
low-bandwidth network. By “large”, we mean that the size of the
terrain database is orders of magnitude larger than the computer
RAM. Superior performance is achieved by manipulating both ge-
ometric and texture data at a continuum of resolutions, and, at any
given moment, using the best resolution dictated by the CPU and
bandwidth constraints. The geometry is maintained as a Delaunay
triangulation of a dynamic subset of the terrain data points, and the
texture compressed by a progressive wavelet scheme.

A careful blend of algorithmic techniques enables our system
to achieve superior rendering performance on a low-end computer
by optimizing the number of polygons and texture pixels sent to
the graphics pipeline. It guarantees a frame rate depending only
on the size and quality of the rendered image, independent of the
viewing parameters and scene database size. An effic ent paging
scheme minimizes data I/O, thus enabling the use of our system in
a low-bandwidth client/server data-streaming scenario, such as on
the Internet.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; D.4.4 [Operating Systems]:
Communications Management—Network Communication.
Keywords: Terrain rendering, level-of-detail, interactive graphics

1 Introduction

Terrain visualization is an important component of many civilian
and military applications [10, 3]. The input to the terrain visualiza-
tion problem is usually a large Digital Terrain Map (DTM), consist-
ing of elevation data sampled on a regular grid, and corresponding
aerial and/or satellite texture data, which is mapped onto the recon-
structed terrain surface. The output is rendered images of the terrain
surface, usually as part of a “fly hrough” sequence.

The advent of the World-Wide-Web suggests the running of
this type of application over the Internet, in a client/server sce-
nario. The server is a very large remote database, accessed by the

Page 70 of 1055

client, usually a low-end computer, over a narrow-bandwidth line
(3 KByte/sec is typical for the contemporary Internet). The two
bottlenecks that have to be overcome are the bandwidth in deliver-
ing relevant terrain data from the server to the client, and the CPU
power required at the client for rendering this data.

The key to eff cient terrain rendering is eff cient online manipu-
lation of both the geometric and texture data, especially when the
scene database at the server is orders of magnitude larger that the
size of client system RAM. Naive terrain rendering algorithms con-
vert each DTM cell (bounded by four adjacent grid points) into two
3D triangles, and render (send through the graphics pipeline) all
such triangles in a region determined by the viewing frustum. They
also map the texture data at its highest resolution onto these poly-
gons. This is a very ineffic ent procedure, as for low pitch angles,
the number of these triangles and texture pixels (texels) may be ex-
tremely large. Each individual triangle projection to image space is
very small, and many texels may be condensed to one image pixel,
contributing negligibly to the image. One remedy to this prob-
lem, adopted in a number of works over the past few years (e.g.
[8]) is to maintain the scene data at a number of discrete levels-
of-detail. Since terrain areas at large viewing distances project to
small image areas, there is no point rendering them in full detail.
At any given moment during the animation, the appropriate level-
of-detail is used to render the image. To do this effectively, pieces
of the scene must be taken from multiple levels (foreground areas
from a high-detail version, and background areas from a low-detail
version), requiring methods to “stitch” together pieces of differ-
ent models in a continuous fashion, so that there are no holes or
breaks along the seams. This has proven to be a major problem
for the geometric data, since there usually is no topological corre-
lation between the different levels of detail. De Berg and Dobrint
[1], Cohen-Or and Levanoni [5], and Lindstrom et al. [12] have
provided partial solutions to the stitching problem.

In this paper we use a different approach to maintaining the
terrain geometry, proposed independently by Klein and Huttner
[11] and Delepine [6]. The geometry is treated in a continuous-
resolution fashion. We do not maintain multiple geometric models
(at different levels of detail), rather continuously update one model
online to represent in an optimal way the projection of the terrain
contained in the viewing frustum. As a result, the number of poly-
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gons in the approximation is more or less constant, independent of
the viewing parameters (for a f xed frame rate). For the texture,we
employ a progressive wavelet compression scheme [2], which en-
ables the extraction of texture at a continuum of resolutions from
arbitrary prefi es of the encoded bit stream.

Our ultimate goal is to render any terrain image in time propor-
tional to the imageresolution (in pixels), and not to the scene com-
plexity, number of DTM points in the viewing frustrum, texture
resolution, etc. We are motivated by the (simple) observation that
an image of fi ed resolution can contain only a bounded amount
of information, therefore any algorithm rendering such an image
should not use more than a bounded number of polygons and tex-
els. Such algorithms are called output-sensitive. Most algorithms
are not output-sensitive, and in order that they be such, require care-
ful design. Our system contains a careful blend of techniques, some
borrowed from computational geometry, which together achieve a
high degree of output sensitivity, enabling adequate performance in
a limited-resource environment.

Since one server may be accessed simultaneously by a large
number of clients, is is crucial to minimize the amount of work the
server performs per client. If this load is minimized, the server will
be scalable, able to support a virtually unlimited number of clients.
We adhere to this principle throughout our implementation.

Using these methods, we have developed a client application
achieving terrain visualization at interactive rates on a low-end SGI
(O2)workstation, accessing a server database over a network with
bandwidth comparable to the Internet. This paper describes the ar-
chitecture and algorithms incorporated into our system.

2 System Overview

The large terrain scene resides on the server disk, partitioned into
geometry and texture tiles of fxed size. A raw geometry tile con-
tains a matrix of elevation heights, and a texture tile a matrix of
texels. Tiling schemes are standard in terrain visualization appli-
cations (e.g. [4]). The server processes requests for geometry and
texture data received from remote clients. In a preprocessing step
at the server, applied independently to each tile (thus enabling a
scene consisting of an unlimited number of tiles), the DTM points
are assigned “grades” related to their importance in approximating
the terrain surface. These grades are obtained from the simplifica-
tion algorithm of Heckbert and Garland [9]. Using these grades
as a third dimension, the DTM points in each tile are organized
into a 3D octree, which will enable effic ent answers to future geo-
metric queries. The client maintains online a geometry cache con-
taining DTM points from a small subset of the server’s geometry
tiles. Even from these tiles, only the relevant upper levels of the
corresponding octrees are imported to the client. Which levels are
relevant is determined on the f'y by the client.

At any given moment, a subset of the geometry cache points are
maintained at the client in a dynamic Delaunay triangulation, our
primary geometric data structure. To maintain the triangulation, we
use the algorithms of Devillers, Meiser and Teillaud [7] for eff cient
insertion and deletion into a 2D Delaunay triangulation. Delaunay
triangulations are commonly considered to be suitable for terrain
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visualization purposes. A DTM point deserves to be in the triangu-
lation if its grade is greater than a threshold, which is proportional
to the distance of the point from the viewpoint. Section 3 elaborates
on the details of how we handle the geometry.

The texture data is maintained at the server in tiles, compressed
using the progressive wavelet scheme of Buccigrossi and Simon-
celli [2]. This scheme compresses the data to approximately 30%
of its raw size with negligble loss, and, more important, allows the
decoding of the texture data from any prefi of the bit stream. Nat-
urally, using more bits will result in a higher quality result. Client
requests for texture data at a given resolution result in the streaming
ofthe prefi of minimal length suffic ng for the required resolution.
Section 4 describes our handling of the texture in more detail.

The client graphics pipeline, sometimes supported in hardware,
is fed relevant triangles and texels. This pipeline takes care of the
basic rendering operations, e.g. perspective projection, hidden sur-
face elimination, and texture mapping. The main issues we ad-
dress in our implementation are the minimization of data transmit-
ted from the server to the client caches and subsequently fed to the
graphics pipeline.

Typical triangulations and rendered images generated by our
client system are shown in Fig. 2.

3 Geometry Processing

3.1 Data Reduction

A typical DTM is supplied on a regular grid, and this data is usu-
ally highly redundant. If the surface is to be approximated by a
piecewise-linear 2D function (a collection of planar polygons), a
small number of large polygons suffic to approximate the surface
well in planar regions. On the other hand, terrain areas with high
curvature, such as ridges and ravines, require a large number of
small polygons to achieve a satisfactory approximation (see Fig.
2). By this argument, is it obvious that some DTM points are more
important than others. Heckbert and Garland [9] have described
a procedure which starts off with a small number of DTM points
(usually the four corners of the DTM coverage), and incremen-
tally adds points whose contribution to the surface ap