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Abstract

In the MAGIC project, three major components — an ATM internetwork, a
distributed, network-based storage system, and a terrain visualization applica~
tion — were designed, implemented, and integrated to create a testbed for
demonstrating real-time, interactive exchange of data at high speeds among
distributed resources. The testbed was developed as a system, with special
consideration to how performance was affected by interactions among the
components. This article presents an overview of the project, with emphasis
on the challenges associated with implementing a complex distributed system.
and with coordinating a multi-organization collaborative project that relied on
distributed development. System—level design issues and performance measure-
ments are described, as is a tool that was developed for analyzing perfor-
mance and diagnosing problems in a distributed system. The management
challenges that were encountered and some of the lessons learned during the
course of the three-year project are discussed, and a brief summary of
MAGIC-ll, a recently initiated follow-on project, is given.

igabit-per-second networks offer the promise
of a major advance in computing and commu—
nications: high—speed access to remote
resources, including archives. time-critical

data sources, and processing power. Over the past six
years, there have been several efforts to develop gigabit
networks and to demonstrate their utility, the most notable
being the five testbeds that were supported by ARPA and
National Science Foundation (NSF) funding: Aurora,
BLANCA. CASA, Nectar, and VISTAnet [1]. Each of
these testbeds comprised a mix of applications and net—
working technology, with some focusing more heavily on
applications and others on networking. The groundbreak-
ing work done in these testbeds had a significant impact
on the development of high-speed networking technology
and on the rapid progress in this area in the 19905.

It became clear, however, that a new paradigm for
application development was needed in order to realize
the full benefits of gigabit networks. Specifically, network—
based applications and their supporting resources. such as
data servers, must be designed explicitly to operate effec—
tively in a high-speed networking environment. For exam-
ple, an interactive application working with remote storage
devices must compensate for network delays. The MAGIC
project, which is the subject of this article, is the first high-
speed networking testbed that was implemented according
to this paradigm. The major components of the testbed
were considered to be interdependent parts of a system,
and wherever possible they were designed to optimize end—
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to—end system performance rather than individual compo-
nent performance.

The objective of the MAGIC (which stands for “Multidi-
mensional Applications and Gigabit Internetwork Consor-
tium”) project was to build a testbed that could
demonstrate real-time, interactive exchange of data at
gigabit—per-second rates among multiple distributed
resources. This objective was pursued through a multidisci—
plinary effort involving concurrent development and subse-
quent integration of three testbed components:
- An innovative terrain visualization application that

requires massive amounts of remotely stored data
0 A distributed image server system with performance suf—

ficient to support the terrain visualization application
0 A standards-based high-speed internetwork to link the

computing resources required for real-time rendering of
the terrain

The three—year project began in mid-1992 and involved
the participation, support, and close cooperation of many
diverse organizations from government, industry, and
academia. These organizations had complementary skills
and had the foresight to recognize the benefits of collabo—
ration. The principal MAGIC research participants were:
0 Earth Resources Observation System Data Center, U.S.

Geological Survey (EDC)l
- Lawrence Berkeley National Laboratory, U.S. Depart—

ment of Energy (LBNL)l
- Minnesota Supercomputer Center, Inc. (MSCI)l
- MITRE Corporation1
0 Sprint
- SRI International (SRI)l

IThese arganiations were IimdedbyARPA.

08908044363050" ©WPatents Exhibit 1005 App'x A-N5



 

Image server system
(Storage and transmission
of raw image tiles)

 
(Real-time image processing) r: t."

Image server system
(Storage and transmission
of processed tiles)

i
Rendering engine
(Rendering and visualization
of terrain)

i
Workstations
(Over-the-shoulder
view of terrain)
 

: Figure 1 . Plannedfunctionality ofthe M401C testbed

- University of Kansas (KU)l
- U S WEST Communications, Inc.

Other MAGIC participants that contributed equipment,
facilities, and/or personnel to the effort were:
- Army High-Performance Computing Research Center

(AHPCRC)
- Battle Command Battle Laboratory, US. Army Com—

bined Arms Command (BCBL)
- Digital Equipment Corporation (DEC)
- Nortel, Inc./Bell Northern Research

- Southwestern Bell Telephone
- Splitrock Telecom

This article presents an overview of the
MAGIC project with emphasis on the chal-
lenges associated with implementing a
complex distributed system. Companion
articles [2, 3] focus on a LAN/WAN gate-
way and a performance analysis tool that
were developed for the MAGIC testbed.
The article is organized as follows. The fol-
lowing section briefly describes the three
major testbed components: the internet—
work, the image server system, and the
application. The third section discusses
some of the system—level considerations
that were addressed in designing these
components, and the fourth section pre-
sents some high—level performance mea—
surements. The fifth (affectionately
entitled “Herding Cats”) and sixth sections
describe how this mum—organizational col—
laborative project was coordinated, and the
technical and managerial lessons learned.
Finally, the last section provides a brief
summary of MAGIC-II, a follow—on project
begun in early 1996.
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Overview of the MAGIC Testbed

One of the primary goals of the MAGIC project was tocreate a testbed to demonstrate advanced capabilities
that would not be possible without a very high—speed inter—
network. MAGIC accomplished this goal by implementing
an interactive terrain visualization application, TerraVi-
sion, that relies on a distributed image server system (ISS)
to provide it with massive amounts of data in real time.
The planned functionality of the MAGIC testbed is depict-
ed in Fig. 1. Currently, TerraVision uses data processed
off-line and stored on the ISS. In the future the applica-
tion will be redesigned to enable real—time image process-
ing as well as real—time terrain visualization (see the last
section). Note that the workstations which house the appli-
cation, the servers of the ISS, and the “over-the—shoulder"

tool (see subsection entitled “The Terrain Visualization
Application"), as well as those that will perform the on-
line image processing, can reside anywhere on the network.

The MAGIC Internetwork

The MAGIC internetwork, depicted in Fig. 2, includes six
high—speed local area networks (LANs) interconnected by
a wide area network (WAN) backbone. The backbone,
which spans a distance of approximately 600 miles, is
based on synchronous optical network (SONET) technolo—
gy and provides OC—48 (2.4 Gbls) trunks, and OC-3 (155
Mbls) and OC-12 (622 Mbls) access ports. The LANs are
based on asynchronous transfer mode (ATM) technology.
Five of the LANs — those at BCBL in Fort Leavenworth,
Kansas, EDC in Sioux Falls, South Dakota, MSCI in Min-

neapolis, Minnesota, Sprint in Overland Park, Kansas, and
U S WEST in Minneapolis, Minnesota — use FORE Sys-
tems models ASX-100 and ASX—200 switches with OC—3c
and 100 Mbls TAXI interfaces. The ATM LAN at KU in

Lawrence, Kansas, uses a DEC AN2 switch, a precursor to
the DEC GigaSwitch/ATM, with OC-3c interfaces. The
network uses permanent virtual circuits (PVCs) as well as
switched virtual circuits (SVCs) based on both SPANS, a
FORE Systems signaling protocol, and the ATM Forum
User—Network Interface (UNI) 3.0 Q2931 signaling stan—

 
— SONET 06-48
— SONET 06-12 or 06-3

Workstations include:
DEC, SGI, SUN for ISS and
over-the—shoulder. SGI for
terrain visualization

I Figure 2. Configuration ofthe MAClCAWintemetwork.
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dard. The workstations at the MAGIC sites

include models from DEC, SCI, and Sun. As

part of MAGIC, an AN2/SONET gateway with
an OC-lZc interface was developed to link the
ANZ LAN at KU to the MAGIC backbone [2].

In addition to implementing the internetwork,
a variety of advanced networking technologies
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were developed and studied under MAGIC. A
high-performance parallel interface
(HIPPI)IATM gateway was developed to inter-
face an existing HIPPI network at MSCI to the
MAGIC backbone. The gateway is an IP router rather
than a network—layer device such as a broadband integrat-
ed services digital network (B—ISDN) terminal adapter,
and was implemented in software on a high—performance
workstation (an SGI Challenge). This architecture provides
a programmable platform that can be modified for net—
work research, and in the future can readily take advan-
tage of more powerful workstation hardware. In addition,
the platform is general—purpose; that is. it is capable of
supporting multiple HIPPI interfaces as well as other
interfaces such as fiber distributed data interface (FDDI).

Software was developed to enable UNIX hosts to com—
municate using Internet Protocol (IP) over an ATM net-
work. This IP/ATM software currently runs on
SPARCstations under Sun OS 4.1 and includes a device

driver for the FORE SBA series of ATM adapters. It sup-
ports PVCs, SPANS, and UNI 3.0 signaling, as well as the
“classical” IP and Address Resolution Protocol (ARP)
over ATM model [4]. The software should be extensible to
other UNIX operating systems, ATM interfaces, and
IPIATM address—resolution and routing strategies, and will
facilitate research on issues associated with the integration
of ATM networks into IP intemets.

In order to enhance network throughput, flow—control
schemes were evaluated and applied, and IPIATM host
parameters were tuned. Experiments showed that through-
put close to the maximum theoretically possible could be
attained on OC-3 links over long distances. To achieve
high throughput, both the maximum transmission unit
(MTU) and the Transmission Control Protocol (TCP) win—
dow must be large, and flow control must be used to
ensure fairness and to avoid cell loss if there are interact-

ing traffic patterns [5, 6].

The Terrain Visualization Application
TerraVision allows a user to view and navigate through (i.e.,
“fly over”) a representation of a landscape created from
aerial or satellite imagery [7]. The data used by TerraVision
are derived from raw imagery and elevation information
which have been preprocessed by a companion application
known as TerraForm. TerraVision requires very large
amounts of data in real time, transferred at both very
bursty and high steady rates. Steady traffic occurs when a user
moves smoothly through the terrain, whereas bursty traffic
occurs when the user jumps (“teleports') to a new position.
TerraVision is designed to use imagery data that are locat-
ed remotely and supplied to the application as needed by
means of a high—speed network. This design enables Ter—
raVision to provide high-quality, interactive visualization
of very large data sets in real time. TerraVision is of direct
interest to a variety of organizations. including the Depart—
ment of Defense. For example, the ability of a military
officer to see a battlefield and to share a common view

with others can be very effective for command and control.
Terrain visualization with TerraVision involves two activi-

ties: generating the digital data set required by the appli-
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I Figure 3. Relationship between tile resolutions andperspective View.
(Same: SRIInternational)

cation, and rendering the image. MAGIC's approach to
accomplishing these activities is described below. Enhance-
ments to the application that provide additional features
and capabilities are also described.

Data Preparation — In order to render an image, TerraVi—
sion requires a digital description of the shape and appear-
ance of the subject terrain. The shape of the terrain is
represented by a two—dimensional grid of elevation values
known as a digital elevation model (DEM). The appearance
of the terrain is represented by a set of aerial images,
known as orthographic projection images (ortho—images),
that have been specially processed (i.e., ortho—rectified) to
eliminate the effects of perspective distortion. and are in
precise alignment with the DEM. To facilitate processing,
distributed storage, and high-speed retrieval over a net-
work, the DEM and images are divided into small fixed-
size units known as tiles.

Low-resolution tiles are required for terrain that is dis-
tant from the viewpoint, whereas high—resolution tiles are
required for close—in terrain. In addition. multiple resolu—
tions are required to achieve perspective. These require-
ments are addressed by preparing a hierarchy of
increasingly lower—resolution representations of the DEM
and ortho-image tiles in which each level is at half the res-
olution of the previous level. The tiled, multiresolution
hierarchy and the use of multiple resolutions to achieve
perspective are shown in Fig. 3.

Rendering of the terrain on the screen is accomplished
by combining the DEM and ortho—image tiles for the
selected area at the appropriate resolution. As the user
travels over the terrain, the DEM tiles and their corre-

sponding ortho—image tiles are projected onto the screen
using a perspective transform whose parameters are deter-
mined by factors such as the user's viewpoint and field of
View. The mapping of a transformed ortho—image to its
DEM and the rendering of that image are shown in Fig. 4.

The data set currently used in MAGIC covers a 1200
km2 exercise area of the National Training Center at Fort
Irwin, Callfomia, and is about 1 Gpixel in size. It is derived
from aerial photographs obtained from the National Aerial
Photography Program archives and DEM data obtained
from the U.S. Geological Survey. The images are at
approximately 1 m resolution (i.e., the spacing between
pixels in the image corresponds to 1 m on the ground).
The DEM data are at approximately 30 in resolution (i.e.,
elevation values in meters are at 30 m intervals).

Software for producing the ortho—lmages and creating
the multiresolution hierarchy of DEM and ortho—image
tiles was developed as part of the MAGIC effort. These
processes were performed “off—line" on a Thinking
Machines Corporation Connection Machine (CM-5) super-
computer owned by the AHPCRC and located at MSCI.
The tiles were then stored on the distributed servers of the

ISS and used by terrain visualization software residing on
rendering engines at several locations.
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possible by precisely aligning the DEM and imagery
data with a world coordinate system as well as with
each other.

A number of buildings and vehicles have been
created and stored on the rendering engine for dis—
play as an overlay on the terrain. The locations of
vehicles can be updated periodically by transferring
vehicle location data, acquired with a global posi—
tioning system receiver, to the rendering engine for
integration into the terrain visualization displays.
Registration of the user's viewpoint to a map enables
the user to specify the area he wishes to explore by
pointing to it, and it aids the user in orienting him-
self.

In addition, an over-the-shoulder (OTS) tool was
developed to allow a user at a remote workstation to
view the terrain as it is rendered. The OTS tool is

based on a client/server design and uses XWindow
system calls. The user can view the entire image on
the 801 screen at low resolution, and can also select

a portion of the screen to view at higher resolution.
The frame rate varies with the size and resolution of

the viewed image, and with the throughput of the
workstation.

The Image Server System
The 188 stores, organizes, and retrieves the pro- 

. Figure 4. Mapplngan attire-image onto its digital elevafion model.
(Source: SRIInternational)

Image Rendering — TerraVision provides for two modes
of visualization: two-dimensional (2-D) and three-dimen-
sional (3—D). The 2—D mode allows the user to fly over the
terrain, looking only straight down. The user controls the
View by means of a 2—D input device such as a mouse.
Since virtually no processing is required, the speed at
which images are generated is limited by the throughput of
the system comprising the 158, the network, and the ren-
dering engine.

In the 3-D mode, the user controls the visualization by
means of an input device that allows six degrees of free-
dom in movement. The 3—D mode is computationally
intensive, and satisfactory visualization requires both high
frame rates (i.e., 15—30 frames/s) and low latencies (i.e., no
more than 0.1 s between the time the user moves an input
device and the time the new frame appears on the screen).

High frame rates are achieved by using a local very—
high—speed rendering engine, an SCI Onyx. with a cache of
tiles covering not only the area currently visible to the
user, but also adjacent areas that are likely to be visible in
the near future. A high—speed search algorithm is used to
identify the tiles required to render a given view. For
example, as noted above, perspective (i.e., 3-D) views
require higher—resolution tiles in the foreground and
lower-resolution tiles in the background. TerraVision
requests the tiles from the 155, places them in memory, and
renders the view. Latency is minimized by separating image
rendering from data input/output (110) so that the two activ-
ities can proceed simultaneously rather than sequentially
(see the section entitled “Design Considerations").

Additional Features and Capabilities — TerraVision
includes two additional features: superposition of fixed
and mobile objects on the terrain, and registration of the
user's viewpoint to a map. Both of these features are made
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cessed imagery and elevation data required by Ter-
raVision for interactive rendering of the terrain. The
ISS consists of multiple coordinated workstation—
based data servers that operate in parallel and are
designed to be distributed around a WAN. This

architecture compensates for the performance limitations
of current disk technology. A single disk can deliver data
at a rate that is about an order of magnitude slower than
that needed to support a high-performance application
such as TerraVision. By using multiple workstations with
multiple disks and a high—speed network, the 188 can deliv—
er data at an aggregate rate sufficient to enable real-time
rendering of the terrain. In addition, this architecture per-
mits location—independent access to databases, allows for
system scalability, and is low in cost. Although redundant
anays of inexpensive disks (RAID) systems can deliver higher
throughput than traditional disks. unlike the 188 they are
implemented in hardware and, as such, do not support multi-
ple data layout strategies; furthermore, they are relatively
expensive. Such systems are therefore not appropriate for
distributed environments with numerous data repositories
serving a variety of applications.

The 188, as currently used in MAGIC, comprises four or
five UNIX workstations (including Sun SPARCstations,
DEC Alphas, and SCI Indigos), each with four to six fast
SCSI disks on two to three SCSI host adapters. Each serv—
er is also equipped with either a SONET or a TAXI net-
work interface. The servers, operating in parallel, access
the tiles and send them over the network, which delivers

the aggregate stream to the host. This process is illustrated
in Fig. 5. More details about the design and operation of
the 185 can be found in [8].

Design Considerations

MAGIC, the single most perspicuous criterion of suc-
cessful operation is that the end user observes satisfactory

performance of the interactive TerraVision application.
When the user flies over the terrain, the displayed scene
must flow smoothly, and when he teleports to an entirely
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different location, the new scene must

appear promptly. Obtaining such per—

formance might be relatively straight- ed byforward if the terrain data were 'ep'w’m

collocated with the rendering engine. "Imimuuon
However, one of the original premises
underlying the MAGIC project is that
the data set and the application are
not collocated. There are several rea-
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sons for this, the most important being
that the data set could be extremely
large, so it might not be feasible to
transfer it to the user's site. Moreover,

experience has shown that in many
cases the “owner” of a data set is also

its “curator” and may be reluctant to
distribute it, preferring instead to keep
the data locally to simplify mainte-
nance and updates. Finally, it was
anticipated that future versions of the
application might work with a mobile
user and with fused data from multiple
sources, and neither of these capabili—
ties would be practical with local data.
Therefore, since the data will not be

local, the MAGIC components must
be designed to compensate for possible
delays and other degradations in the
end—to—end operation of the system.

In order to understand system—level
design issues, it is necessary to outline
the sequence of events that occurs when the user moves the
input device, causing a new scene to be generated. TerraVi—
sion first produces a list of new tiles required for the scene.
This list is sent to an ISS master, which performs a name
translation, mapping the logical address of each tile (the
tile identifier) to its physical address (server/disk/location
on disk). The master then sends each server an ordered list
of the tiles it must retrieve. The server discards the previ—
ous list (even if it has not retrieved all the tiles on that
list) and begins retrieving the tiles on the new list. Thus,
the design for the system comprising TerraVision, the ISS,
and the lntemetwork must address the following questions:
- How can TerraVision compensate for tiles it needs for

the next image but have not yet been received?
- How often should TerraVision request tiles from the 188?
-Where should the ISS master be located?

GHow should tiles be distributed among the ISS disks?
-How can cell loss be minimized near the rendering site

where the tile traffic becomes aggregated and conges—
tion may occur?

Missing Tiles
Network congestion, an overload at an ISS server, or a
component failure could result in the late arrival or loss of
tiles that are requested by the application. Several mecha—
nisms were implemented to deal with this problem. First,
although the entire set of high-resolution tiles cannot be
collocated with the application, it is certainly feasible to
store a complete set of lower—resolution tiles. For example,
if the entire data set comprises 1 Tbyte of high-resolution
tiles, then all of the tiles that are five or more levels coarser

would occupy less than 1.5 Mbyte, a readily affordable
amount of local storage. If a tile with resolution at, say,
level 3 is requested but not delivered in time for the image
to be rendered, then, until the missing level-3 tile arrives,
the locally available coarser tile from level 5 would be
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I Figure 5. Schematic leptewntation ofthe operation ofthe 155. (Source: Lammce
Berkeley National laboratory)

used in place of the 16 level—3 tiles. This substitution mani—
fests itself by the affected portion of the rendered image
appearing “fuzzy” for a brief period of time. Temporary
substitution of low—resolution tiles for high—resolution tiles
is particularly effective for teleporting because that opera-
tion requires a large number of new tiles, so it is more
likely that one or more will be delayed.

Second, TerraVision attempts to predict the path the
user will follow, requesting tiles that might soon be need-
ed, and assigning one of three levels of priority to each tile
requested. Priority-l tiles are needed as soon as possible;
the ISS retrieves and dispatches these first. This set of tiles
is ordered by TerraVision, with the coarsest assigned the
highest priority within the set. The reasons are:
0 The rendering algorithm needs the coarse tiles before it

needs the next—higher—resolution tiles.
0 There are fewer tiles at the coarser resolutions, so it is

less likely that they will be delayed.
The priority—2 tiles are those that the 188 should retrieve
but should transmit only if there are no priority-l tiles to
be transmitted; that is, priority-2 tiles are put on a lower—
priority transmit queue in the HO buffer of each 185 serv—
er. (ATM switches would be allowed to drop the cells
carrying these tiles.) Priority—3 tiles are those that should
be retrieved and cached at the ISS server; these tiles are

less likely to be needed by TerraVision. Note that there is
a trade-off between “overpredicting' — requesting too
many tiles — which would result in poor ISS performance
and high network load, and “underpredicting,” which
would result in poor application performance.

Finally, a tile will continue to be included in Terra—
Vision's request list if it is still needed and has not
yet been delivered. Thus, tiles or tile requests that are
dropped or otherwise “lost" in the network will likely be
delivered in response to a subsequent request from the
application.
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Frequency of Requests
Another trade—off pertains to the frequen—
cy at which TerraVision sends its request
list to the ISS. If the interval between

requests is too large, then some tiles will
not arrive when needed, resulting in a
poor-quality display; in addition, the ISS
will be idle and hence not used efficiently.
On the other hand, if the interval is too

short, then the request list might contain
tiles that are currently in transit from
servers to the application; this would
result in poor ISS performance and redun—
dant network traffic. For a typical MAGIC
configuration, the interval between
requests is currently set at 200 ms, a value
that was found empirically to yield satis—
factory performance. This value is based

between requests

is currently set at

200 ms, a value

that was found

empirically to yield

For a typical

MAGIC configura-

tion, the interval

aggregate throughput which can be
obtained from the ISS. The data place—
ment strategy depends on the application
and is a function of data type and access
patterns. For example, the retrieval pat—
tern for a database of video clips would be
quite different from that for a database of
images. A strategy was developed for a
terrain visualization type of application
that minimizes the retrieval time for a set

of tiles: the tiles assigned to a given disk are
as far apart as possible in the terrain in
order to maximize parallelism by minimizing
the probability that tiles on a request list
are on the same disk: and on each disk,
tiles that are near each other in the terrain are

placed as close as possible to minimize
retrieval time. Although this was shown to be

roughly on the measured latency of the satisfactory an optimal strategy for terrain path-fol-
ISS (about 100 ms) and on the estimated lowing as in TerraVision [9]. it was subse—
time required for a tile request to travel quently shown that ISS performance with
through the network from the TerraVision performance. random placement of tiles was only slightly
host to the ISS master and then to the

most distant ISS server, plus the time for
the tile itself to travel back to the host (perhaps a total of
50 ms). Additional measurements and analysis are needed
to more precisely determine the appropriate request fre-
quency as a function of the performance and location of
system components and of network parameters.

Location of ISS Master

Since tile requests flow from TerraVision to the ISS mas—
ter and thence to the servers themselves, the time for

delivering the requests to the servers is minimized when
the master is collocated with the TerraVision host. Howev—

er, locating the master with the host is neither desirable
nor practical for several reasons. The master is logically
part of the ISS; therefore, its location should not be con—
strained by the application. Also, an ISS may be used with
several applications concurrently, by multiple simultaneous
users of a particular application, or by a user whose host
may be unable to support any ISS functionality (e.g., a
mobile user). Moreover, replication of the master would
introduce problems associated with maintaining consisten—
cy among multiple masters when the ISS is in a read/write
environment, as it would be when real—time data are being
stored on the servers.

To first order, the delivery time of tile requests is limit-
ed by the time 1: for a request to travel from TerraVision
to the ISS server most distant from the TerraVision host.

Hence, if the master is approximately on the path from the
TerraVision host to that server, then I will not be much

greater than when the master and host are collocated. Fur—
thermore, in the current MAGIC testbed, 1: is much smaller

than the sum of the disk latency and the network transit
time. In other words, there is considerable freedom in

choosing the location of the ISS master. Satisfactory sys—
tem performance has been demonstrated, for example,
with the TerraVision host in Kansas City, the ISS master
in Sioux Falls, and servers in Minneapolis and Lawrence.
Of course, this conclusion might change if faster servers
reduce ISS latency considerably, or the geographic span of
the network were substantially larger.

Distribution of Tiles on ISS Servers

The manner in which data are distributed among the
servers determines the degree of parallelism and hence the
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worse. This was partly because tile retrieval
time is much less than the latency in the

ISS servers and network transit time, and is therefore not

currently a significant factor in overall performance. Ran—
dom placement is simpler to implement and is expected to
be satisfactory for many other applications. However, as
discussed for the location of the ISS master, this conclu—

sion may have to be revisited if the performance or the
geographic distribution of system components changes sig-
nificantly.

Avoiding Cell loss
When initially implemented, the MAGIC internetwork
exhibited very low throughput in certain configurations.
One cause of the low throughput was found to be mis-
matches between the burst rates of components in the com—
munications path. Examples of such rate mismatches were:
0 An OC-3 workstation interface transmitting cells at full

rate across the network to a 100 Mb/s TAXI interface
on another workstation

0 Two or more OC-3 input ports at an ATM switch send-
ing data to the same OC—3 output port
A mismatch, coupled with small buffers at the output

ports of ATM switches, caused cells to be dropped, which
in turn resulted in the retransmission of entire TCP pack—
ets, exacerbating the problem. In some cases the measured
useful throughput was less than one percent of the capaci-
ty of the lower speed line.

Previously it was noted that in many cases a large
MTU can increase throughput. However, once again there
is a trade—off. As the MTU size is increased, the number

of ATM cells needed to carry the MTU increases. The
probability that one or more cells from the MTU will be
dropped by the network therefore increases, which in turn
increases the probability that the MTU will have to be
retransmitted, thus possibly decreasing the effective
throughput. Flow—control techniques together with large
switch buffers and proper choice of protocol parameters
did provide satisfactory performance. Nevertheless, the
overriding conclusions are that the parameters of the
entire end-to—end system, not just those of a single host or
switch, must be tuned, each direction of the data path
must be evaluated separately, and every component in
each direction of the data path must be considered in the
evaluation.
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Performance

his section presents highlights of system-
level performance issues and measurements

of the MAGIC testbed. The input data rates
that are needed to support the TerraVision
application are calculated first, to provide the
context for the subsequent discussion. Then
the data rates that the network, the ISS, and

the application host can actually support are
described. Finally, a diagnostic tool that was
developed to help analyze system performance
is explained. More detailed information about
all of the above topics can be found in [3, 5, 6,
10].

TerraVision is used in one of two modes,

flyover or teleport. and the characteristics of
the data flow for the two modes are quite dif-
ferent. Flyover requires a relatively steady flow
over a relatively long period of time (many seconds),
whereas teleport requires a large burst of data but occurs
relatively infrequently. Quantitative requirements can be
estimated as follows. A high—resolution full—screen display
comprises about 100 tiles, each tile containing 128 x 128
pixels with 24 bits of color information, or approximately
0.4 Mb. If 10 new tiles are needed for a typical frame
update during flyover, then at 30 frames/s, the average
data rate is

(30 frames/s) x (10 tiles/frame) x (0.4 Mb/tile)
z 120 Mbls

at the application level in the host. Protocol overhead
might add approximately 15 percent to this value, resulting
in a line rate of about 140 Mbls. For a teleport, the burst
rate is considerably higher because the entire screen must
be repainted within, say, a quarter of a second after the
user selects the new location. If the total latency between
the instant the user enters the selection and the instant the
first bit of the first tile arrives at the TerraVision host is

150 ms, then the full screen of data must be transferred in

the remaining (250 — 150) = 100 ms. and the capacity
needed to support the transfer is

(100 tiles) x (0.4 Mb/tile)/(0.ls) = 400 Mbls

at the application level, or about 450 Mbls on the trans—
mission line.

The line capacity needed near the TerraVision host site
can be determined from these required rates and from the
end-to-end throughput that can be attained in the network.
Measurements on the MAGIC network showed that if the

MTU and the TCP window sizes were large enough, and if
flow control were used, then end-to-end TCP rates corre-

sponding to about 80 percent of the line rate could be sus—
tained; this is about 120 Mbls on an OC-3 line. Thus, a

flyover would completely fill a single 003 line, so in prac-
tice two lines are needed to allow for possible degrada—
tions and for variations around the average rate derived
above. Similarly, one OC-12 or four OC-3 lines are needed
to support a low—response—time teleport. Lower line capac—
ity on the path near the host would degrade the response
time (although the degradation would be less than linear
because of the additive factor of ISS latency). In summary,
the equivalent of two OC-3 lines into the host should give
satisfactory flyover performance and a teleport response
time less than 0.5 s, but more capacity is needed to reduce
the response time and to provide some cushion for con—
tention near the host site.

“31313 NePa'geMWfWS

 

500055006m065007m7500800085009000

 
I Figure 6. Timing data Iiom a configuration with two 155servers. (Source:

Laurence BerkeleyNational laboratory)

The next question is, “How many ISS servers are needed
to support the application?” Early measurements of a vari-
ety of workstations configured as 188 servers showed that a
typical SCSI disk delivered data at a steady rate of about
20 Mbls; a single SCSI adapter with multiple disks could
provide about 60 Mbls; and a workstation with multiple
adapters could deliver about 80 Mbls. Additional disks or
adapters did not increase throughput — the bottleneck
apparently being memory bandwidth — but did increase
the probability that the throughput could be sustained by
ensuring that the server was not idle. These data indicate
that tiles must be distributed over at least five servers to

obtain the 400 Mbls rate needed for good teleport perfor—mance.

The data streams from the ISS servers converge at the
TerraVision host, and recent measurements showed that

with four servers transmitting to a host with two OC-3
ATM ports, the aggregate application-level throughput was
only about 100 Mbls, and in fact was slightly less than the
throughput with a single server. (The peak throughput was
about 150 Mbls, with two input streams.) Cells are appar-
ently being dropped at the ATM interface. This is a seri—
ous bottleneck in overall system performance; the host and
interface vendors are aware of the problem and are work-
ing on a solution.

Clearly, understanding the overall performance of a net-
work—based distributed system such as MAGIC is an appre-
ciably more complex undertaking than simply
“concatenating” the standalone performance of the indi-
vidual components because there are interactions among
the components. It is important to be able to measure and
correlate these interactions in order to understand and

predict the performance of the system as a whole. Stated
in concrete terms, a problem observed by a user could
have a variety of causes. For example, in MAGIC it would
be acceptable if low-resolution tiles are used occasionally
in place of high—resolution tiles that are delayed or lost in
transit (as described in the previous section), but it would
be unacceptable if this occurred frequently. If such observ-
able degradation did occur, the cause could be the applica—
tion host dropping cells, ATM switches dropping cells,
excessive delay somewhere in the ISS, low 188 throughput
because of the way tiles are distributed among servers,
processing limitations of the TerraVision host, or a combi-
nation of these and other phenomena.

To aid in pinpointing potential problems. accurately syn—
chronized clocks were deployed at MAGIC sites, many
components were instrumented to log traffic data, and a

Unified Patents Exhibit 1005 App'x A-N1



tool was developed for collecting,
processing, and displaying the
logged data [3]. The tool's graphi-
cal portrayal of measured data
gives a readily comprehendible
view of the overall operation of
the system, permits performance
estimates to be calculated easily,
and provides an indication of
which components may be causing
performance problems. This tool,
which was developed toward the
end of the MAGIC project, has
proved to be extremely valuable in
diagnosing problems and in pro-
viding insight into techniques for improving performance.
The tool is applicable to many high—speed distributed sys—
tems. A brief description of its use is given below.

Figure 6 displays a representative sample of 4 s of data
from a configuration with the application host in Kansas City
(“tioc” in the legend), the ISS master in Sioux Falls (“edc”),
and one server at each. (The host was not running TerraV-
ision, but an application that emulates TerraVision by
sending the identical tile request lists which were sent dur-
ing a previously recorded TerraVision session.) The dia-
gram traces a time history for each requested tile, showing:
- When the application sends a request list (e.g., at 6800

ms) and when it is received by the ISS master (~6810)2
- When the master sends tile lists to the two servers (6820)

and when they are received (-6840 and ~6850)
- When the servers start and complete their read operations
- When the tile data are transmitted by the servers and

received by the host
In this example, the time between the request list leav-

ing the application host and the first tile arriving at the
host is 180 ms. The diagram shows that excluding the serv-
er time, the largest component of this 180 ms delay was
queuing at the server, a result of TCP retransmissions of
previously transmitted tiles that were, in effect, blocking
transmission of subsequent tiles. (The shallow—sloped lines
between “server send” and “app receive” represent tiles
with TCP transmissions.) Rough calculations of throughput
at each measurement point can readily be made by count-
ing the number of tiles processed in a selected interval of
time; for example, 15 tiles were received by the application
between 6980 and 7130 ms, for a throughput of about 40
Mb/s.

Herding Cats

[though the MAGIC project was an ambitious under-
taking, it nevertheless was able to achieve most of its

goals. The success of the project seems all the more
remarkable if one considers the degree of interorganiza-
tional collaboration that was required to design, develop,
test, and integrate the individual testbed components and
to ensure their interoperability. Indeed, fostering this col-
laboration was one of the most significant nontechnical
challenges facing the project — and one of its noteworthy
accomplishments.

More than a dozen diverse, geographically dispersed
organizations participated in MAGIC, and many of the
individuals involved in the project were experienced

2 These munen'aal value: were011defiom a velstm ofdu's diagam
wim an expanded timescale.
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I Figure 7. In the beginning, things looked difficult

researchers who were used to

working independently. Although
five of these organizations were
funded by ARPA, each had its
own contract and a statement of

work that was complementary to
the others but theoretically could
be executed separately from the
rest. In addition, the commercial

carriers and other organizations
that were expected to be major
contributors were not externally
funded and therefore were under

no obligation to participate
actively in the effort. Thus, the

situation at the outset was not unlike the metaphorical
herding of cats (Fig. 7).

The authors of this article were funded by ARPA to
oversee and coordinate the research and development (R
& D)efforts of the five ARPA—funded research partici—
pants, and to help facilitate their collaboration with the
carriers and with the other organizations contributing to
the project. This was a challenging assignment because
none of these organizations was contractually bound to
answer to a third party, so voluntary compliance of all
organizations was required. Considering the cast of players
and the circumstances of their affiliation, it would have

been imprudent to attempt to dictate direction or to
impose preferences. Furthermore, to do so not only would
have been ineffective but would have been counterproduc-
tive because a heavy-handed management style would have
stifled the innovation that was critical to the success of the

project. In other words, peremptory management might
have led to passive obedience (Fig. 8), but the results
would have been uninspired [11].

The challenge was to create an environment that facili-
tated progress and encouraged cooperation while at the
same time promoting creativity and initiative. The
approach used was to obtain mutual agreement on a com-
mon set of goals and related milestones which could not
be achieved without the contributions of all of the partici—
pants. In this way, the focus of the work shifted from the
pursuit of individual goals to the pursuit of common goals,
and collaboration was implicitly understood to be essential
for success. In retrospect, the reasons why this approach
worked well seem obvious. Having a common set of goals
engendered an esprit de corps among the participants
which gave the sense of a “virtual" organization dedicated
to the success of MAGIC.

However, participants soon recognized that while cama—
raderie and commitment were vital to success, team spirit
alone was not sufficient to ensure that success. Differences

in work styles, conflicting priorities, geographical disper—
sion of people and resources, and the sheer magnitude
of the interdependencies underscored the need for
centralized leadership and for “formal" procedures for
coordinating activities. As a result, members of the
MAGIC team willingly consented to, and complied with,
a set of management practices that they perceived as
facilitating the achievement of their technical objectives.
The management style was collegial with the authors serv-
ing as facilitators for defining and prioritizing project
activities, as mediators for resolving disputes, as liaison
with the project sponsor (ARPA), and as catalysts for pro-
moting the team interactions required to move forward.
Thus, as indicated in Fig. 9, MAGIC took a hybrid
approach to managing and coordinating its R 8: D, with
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progress toward common goals
achieved through high—level con—
sensus-building among the partic-
ipants.

Three practices stand out as
being most critical to the success
of the project: demonstrations,
planning with flexibility. and
ongoing communications.

Demonstrations — Although the
components of the MAGIC
testbed were designed to operate
as parts of a system, they were
developed independently by orga—
nizations that were not collocat—

ed. Therefore, interoperability testing and debugging were
difficult. To deal with this problem, demonstrations for
external observers were scheduled to mark the achieve-

ment of milestones. These demonstrations provided a
strong incentive for overcoming the logistical obstacles to
testing, and for uncovering and finding solutions to tough
problems. At first glance, these events appeared to be dis—
tractions from the research and a drain on people and
resources, and initially they were deemed antithetical to an
R & D project. In actuality they were the single most
important factor in accelerating progress. Often, it was in
the typically frantic last hours before a crucial demonstra-
tion that creative solutions to unforeseen problems were
conceived.

A number of major demonstrations were scheduled in
conjunction with quarterly project meetings or technical
symposia. The first, which took place approximately
halfway into the three—year project duration, marked the
completion of the first phase of the MAGIC testbed: ini—
tial versions of TerraVision and the 155 working together
over a partially completed backbone. The second, which
occurred about six months later, demonstrated improved
versions of both TerraVision and the 158 working together
over the full internetwork. This demonstration was attend-

ed by prospective end users of the system who provided
valuable feedback, including suggestions for additional
capabilities which were subsequently incorporated into
TerraVision, substantially improving the utility of the
application.

Planning with Flexibility — Researchers are notoriously
reluctant to document their ideas and approaches in
advance for fear of forfeiting their flexibility or limiting
their options; however, failure to do so can spell disaster
in a collaborative venture involving multiple organizations.
Therefore, one of the first priorities of the MAGIC team
was to develop a comprehensive research plan for the pro—
ject. If truth be told, the process of planning was far more
valuable than the plan itself. In creating the plan. each
organization was forced to clearly define its tasks and
milestones, to explore alternative approaches to accom-
plishing the work, and. most important, to identify interor—
ganizational relationships and dependencies. It was
understood that tasks and milestones, as well as technical

approaches, would most likely change and evolve over the
course of the three—year effort, and the plan was consid—
ered a working document to be revised and revisited as
appropriate. However, at the conclusion of the project, it
was gratifying to discover that the participants had accom—
plished most of the work they had intended to do within
the allotted time and budget constraints.
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Ongoing Communications —
Ongoing communication was an
important factor in maintaining
cohesiveness among team mem-
bers, and was essential for

accomplishing the work. Regular
interaction was achieved by hold-
ing weekly teleconferences and
quarterly project meetings to dis-
cuss technical issues and interor-

ganizational dependencies, to
plan joint activities and events,
and to identify and resolve prob-
lems. In addition. a variety of
mechanisms for exchanging infor-
mation were established, includ-

ing multiple mailers, and a project server for storing and
retrieving documents such as project plans, papers, and
reports. To facilitate collaboration on documents, a com-
mon desktop publishing package. which was available for
multiple platforms, was adopted by the team very early in
the project.

 
Lessons learned

he previous section described the challenges of manag—
ing the MAGIC project, and discussed some of the fac-

tors that promoted cooperation and collaboration among
the participants in this multidisciplinary, multi—organiza—
tional effort. Below are some additional lessons that were

learned — sometimes with pain — during the course of
the three—year project.

Technology for R&D Projects
R & D projects such as MAGIC depend on state—of—the—art
technology to achieve their goals. There are two alterna-
tives for obtaining this technology: develop it as part of
the project, or procure it from vendors or other sources.
Where possible, MAGIC opted for the latter alternative,
and milestones were planned based on vendors' stated
intentions regarding the capabilities of and projected
delivery dates for critical hardware and software. As a con-
sequence of this decision, MAGIC researchers learned two
important lessons.
Be Prepared to Deal with the limitations of Vendor Products —
Some of the vendor—supplied state—of—the—art products
required by MAGIC, for example, the SONET terminals
and the ATM switches, were available on schedule and

performed satisfactorily. Others, however, were either not
available in the time frame expected (e.g., OC—lZ cards for
the ATM switches) or did not function as anticipated.
Specifically, MAGIC researchers had to deal with three
types of limitations:
0 Product (im)maturity: Early production versions of prod-

ucts required a significant amount of tuning and debug-
ging that would be unacceptable in a mature product.
For example, some workstation operating systems initial-
ly had hard—coded upper limits on the TCP window size,
limiting the achievable throughput across a network hav—
ing a large bandwidth—delay product.

- Standalone performance vs. system performance: Prod-
ucts did not perform per their standalone specifications
when incorporated into a system. For example, the mea-
sured rate of a disk on an ISS server was typically less
than half the specified rate (perhaps caused by interac—
tions with the SCSI adapter).

- Single-component performance vs. multiple—component
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performance: When multiple
components were made to
operate in parallel, their per-
formance did not scale linearly.
For example, the rate at which
the TerraVision host could

absorb data increased only
slightly as the number of ATM
interfaces was increased.

Encourage the Active Involvement
of Vendors in the R & D Effort —

MAGIC depended on products
that were under development or
“on the horizon” when the pro—
ject was initiated, and progress
often hinged on timely access to
early releases or upgrades. In some cases, market pressures
on vendors took precedence over research needs, and the
products were delayed, or anticipated features were post-
poned or eliminated. In other cases, products were
released but were not robust, and vendor support was diffi-
cult to obtain. If equipment vendors had been more actively
involved in the R & D effort, the other researchers, as well
as ARPA and the carriers, would have been in a better

position to influence vendor priorities and development
schedules, and would have been more likely to gain the sup
port and assistance they needed to correct shortcomings.
Active vendor participation would have been beneficial to the
vendors as well, providing them with insight into the
strengths and limitations of their products, and helping
them identify additional features and performance enhance-
ments that might improve their competitive advantage.

Despite the difficulties associated with relying on ven-
dors for supporting technology, using vendor—supplied
products was preferable to developing customized products
as part of the project. Such development would have been
time- and resource—intensive, and possibly a duplication of
effort. In addition, customized technology is expensive to
replicate and difficult to transfer to other domains.

abiln‘y.

Support for Demonstrations
As discussed previously, demonstrations were sometimes
scheduled to coincide with major project events or mile-
stones. In addition, requests to demonstrate the capabili—
ties of the testbed were occasionally made by ARPA, by
the management of the participating organizations, or by
prospective end users. While there were significant bene—
fits associated with holding these demonstrations, prepar-
ing for them was time-consuming because it was frequently
necessary to reconfigure the network and to relocate and
assemble the required hardware. The MAGIC team
learned two lessons that helped facilitate the conduct of
demonstrations during the later stages of the project.

Establish a Reliable Testbed Configuration to Support
Demonstrations — Although demonstrations proved to be a
significant stimulus to progress, they sometimes conflicted
with planned experiments or with development and testing
activities. This was particularly troubling when work—in—
progress was interrupted or put on hold for a relatively
long period of time in order to reconfigure the network
(or to test modifications to TerraVision or the 185) to sup
port a scheduled event. This situation was remedied by
implementing stable versions of TerraVision and the ISS
and deploying them at selected locations. These versions
were used to support demonstrations, performance mea-
surements, and related activities. Updates to the demon-
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I Figure 9. Heterogeneous collaborative interoper—

stration versions of TerraVision
and the 188 were coordinated to

ensure their compatibility.

Plan Equipment logistics Carefully
and in Advance — Another

problem, pertinent to develop-
ment as well as demonstrations, is

the availability of equipment. Since
budgets are finite, choices must
be made regarding what equipment
to purchase and where this
equipment should be located.
While it is impossible to foresee all
contingencies, equipment needs
should be determined as far in

advance as possible. Doing so will minimize the disruptions
and stress associated with disassembling and transporting
hardware over long distances, and acquiring essential com-
ponents on short notice. It is especially important to devel—
op strategies for supporting off-site demonstrations,
particularly those that involve relocating large, cumber-
some equipment or require expensive hardware which can—
not easily be moved and is difficult to borrow or lease.

One way of helping to ensure that demonstrations can
be accommodated without undue disruption is to purchase
spares of inexpensive equipment. These spares would be
available not only for demonstrations, but for development
and experimentation in the event that an original malfunc—
tions. It is less feasible to duplicate expensive equipment;
however, if vendors of critical components are actively
involved in the project, they might be willing to support
demonstrations by providing the necessary hardware.

 

Support for Development
The MAGIC testbed consists of components that were
designed to interoperate but were developed independent-
ly by organizations that were geographically separated. In
addition, the end users of the system were not research
participants in the project. The following lessons were
learned regarding how to work more effectively and effi—
ciently under such conditions.

Build Tools to Enable Independent Development of Interop-
erable Components — Interoperability testing of a given
component was challenging because it required that other
components possess a level of functionality or performance
that was not always available when the tests were ready to
be conducted. One way to alleviate this problem was to
implement component simulators that enabled interoper—
ability testing. In MAGIC, the implementation of a Ter-
raVision simulator hastened progress on the 188, whereas
the decision not to implement an ISS simulator increased
the time needed to complete TerraVision.

Provide High—Speed Network Connections for All Major
Participants — Proper testing of TerraVision and the 155
required high-speed interconnectivity. However, SRI and
LBNL, the respective developers of these components, did
not have such connectivity. As a result, interoperability
testing could not be performed locally, and testing at
remote sites was both burdensome and inefficient. In the

MAGIC project, both of these organizations would have
benefited from having high—speed links to the backbone.

Solicit Periodic Input from End Users — Getting input from
end users helps to ensure that the final product has useful
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The MAGIC-ll
features, satisfactory performance, and a well—
designed interface. Input regarding desired
capabilities should be solicited early in the
effort and regularly thereafter as develop—
ment progresses. Although, as noted in
the previous section, MAGIC did benefit
from such input, the project would have
benefited even more if that input had
been obtained earlier and more frequently.

Future Work

he MAGIC project has demonstrated a
high—speed, wide—area IP/ATM inter—

network that supports a real-time terrain
visualization application and a distributed
storage system. ARPA recently approved
funding for a three-year follow-on effort,
MAGIC—II, which will build on the tech—

nology developed in the original MAGIC
project and on the existing MAGIC net—
work facilities. There are two major inter—
related goals in MAGIC—II:
- To enhance and upgrade the testbed to

demonstrate the utility and capabilities
of distributed processing and network—
based storage, coupled with high—speed
networks, to support a new generation
of real—time applications.

- To create a very large internetwork with
many end users that will be a realistic
test environment for ATM technology
and for the above type of application.

The MAGIC—II testbed will demonstrate

the scalability of the distributed storage
and distributed processing concepts by
configuring systems that have a large num—
ber of servers and processors on many
ATM networks spanning a large geograph—
ic area, and have multiple sets of data and
multiple simultaneous users.

The MAGIC-II testbed is based on a very general
paradigm in which high—performance computing, storage,
and communications are used to provide rapid access to
large amounts of distributed data, including real—time data
that must be processed and delivered to an end user on
demand. Applications that use this paradigm arise in a
variety of situations, including military operations, intelli-
gence imagery analysis, and natural disaster response. The
exact type, location. and ownership of the data used by
these applications may not be known in advance, and these
data may require a large amount of processing to be trans-
formed into useful information. In addition, the processed
data may have to be delivered to end users with a range of
communications speeds, link qualities, computational pow-
ers, and display capabilities. The data, as well as the com—
puting and storage resources required to process them,
may reside in multiple administrative domains that have
different usage and access control policies.

Specific work to be done in MAGIC—II includes aug-
menting the MAGIC internetwork with wireless nodes and
interconnecting it with other IP/ATM intemetworks to cre
ate a nation—wide, high-speed, wide-area testbed. This
testbed will be used for experimentation with protocols,
with routing techniques, and with mobile access to back—
bone services. A new version of TerraVision that can per-
form on-the—fly rectification coupled with algorithms for
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testbed will demon-

strate the scalability

of the distributed stor-

age and distributed

processing concepts

by configuring

systems that have a

large number

of servers and

processors on many

ATM networks span-

ning a large geo

graphic area, and

have multiple sets of

data and multiple

simultaneous users.

“in-transit” processing will permit near—
real—time visualization of raw imagery,
enabling data from sensors to be viewed
within minutes (rather than hours) after
being generated. (Fig. 1.) Data fusion
techniques will allow disparate data types
to be overlaid. The processing will be per-
formed by sets of distributed devices that
are constructed from resources owned by
multiple administrative domains. Algo-
rithms that dynamically determine the cur—
rent state of the network will provide
information to the application so that it
can adapt to current system performance
and to available system resources.

The MAGIC—II project will certainly
benefit from the lessons learned in the

original MAGIC project. Nevertheless, as
with any research effort, new challenges will
be encountered, and new lessons. both tech—

nical and organizational, will be learned in
meeting these challenges. Stay tuned.
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Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The CCITT (the International Telegraph and Telephone Consultative Committee) is a permanent
organ of the ITU. Some 166 member countries, 68 telecom operating entities, 163 scientific and industrial organizations
and 39 international organizations participate in CCITT which is the body which sets world telecommunications
standards (Recommendations).

The approval of Recommendations by the members of CCITT is covered by the procedure laid down in CCITT Resolution
No. 2 (Melbourne, 1988). In addition, the Plenary Assembly of CCITT, which meets every four years, approves
Recommendations submitted to it and establishes the study programme for the following period.

In some areas of information technology, which fall within CCITT’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of CCITT Recommendation T.81 was approved on 18th September 1992.
The identical text is also published as ISO/IEC International Standard 10918-1.

___________________

CCITT   NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized private operating agency.

  ITU  1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.
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Introduction

This CCITT Recommendation | ISO/IEC International Standard was prepared by CCITT Study Group VIII and the Joint
Photographic Experts Group (JPEG) of ISO/IEC JTC 1/SC 29/WG 10. This Experts Group was formed in 1986 to
establish a standard for the sequential progressive encoding of continuous tone grayscale and colour images.

Digital Compression and Coding of Continuous-tone Still images, is published in two parts:

– Requirements and guidelines;

– Compliance testing.

This part, Part 1, sets out requirements and implementation guidelines for continuous-tone still image encoding and
decoding processes, and for the coded representation of compressed image data for interchange between applications.
These processes and representations are intended to be generic, that is, to be applicable to a broad range of applications for
colour and grayscale still images within communications and computer systems. Part 2, sets out tests for determining
whether implementations comply with the requirments for the various encoding and decoding processes specified in Part
1.

The user’s attention is called to the possibility that – for some of the coding processes specified herein – compliance with
this Recommendation | International Standard may require use of an invention covered by patent rights. See Annex L for
further information.

The requirements which these processes must satisfy to be useful for specific image communications applications such as
facsimile, Videotex and audiographic conferencing are defined in CCITT Recommendation T.80. The intent is that the
generic processes of Recommendation T.80 will be incorporated into the various CCITT Recommendations for terminal
equipment for these applications.

In addition to the applications addressed by the CCITT and ISO/IEC, the JPEG committee has developped a compression
standard to meet the needs of other applications as well, including desktop publishing, graphic arts, medical imaging and
scientific imaging.

Annexes A, B, C, D, E, F, G, H and J are normative, and thus form an integral part of this Specification. Annexes K, L
and M are informative and thus do not form an integral part of this Specification.

This Specification aims to follow the guidelines of CCITT and ISO/IEC JTC 1 on Rules for presentation of CCITT |
ISO/IEC common text.
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INTERNATIONAL  STANDARD
   

    

CCITT  RECOMMENDATION

INFORMATION  TECHNOLOGY – DIGITAL  COMPRESSION
AND  CODING  OF CONTINUOUS-TONE  STILL  IMAGES –

REQUIREMENTS  AND  GUIDELINES

1 Scope

This CCITT Recommendation | International Standard is applicable to continuous-tone – grayscale or colour – digital still
image data. It is applicable to a wide range of applications which require use of compressed images. It is not applicable to
bi-level image data.

This Specification

– specifies processes for converting source image data to compressed image data;

– specifies processes for converting compressed image data to reconstructed image data;

– gives guidance on how to implement these processes in practice;

– specifies coded representations for compressed image data.

NOTE – This Specification does not specify a complete coded image representation. Such representations may include
certain parameters, such as aspect ratio, component sample registration, and colour space designation, which are application-
dependent.

2 Normative references

The following CCITT Recommendations and International Standards contain provisions which, through reference in this
text, constitute provisions of this CCITT Recommendation | International Standard. At the time of publication, the
editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements
based on this CCITT Recommendation | International Standard are encouraged to investigate the possibility of applying
the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers
of currently valid International Standards. The CCITT Secretariat maintains a list of currently valid CCITT
Recommendations.

– CCITT Recommendation T.80 (1992), Common components for image compression and communication –
Basic principles.

3 Definitions, abbreviations and symbols

3.1 Definitions and abbreviations

For the purposes of this Specification, the following definitions apply.

3.1.1 abbreviated format:  A representation of compressed image data which is missing some or all of the table
specifications required for decoding, or a representation of table-specification data without frame headers, scan headers,
and entropy-coded segments.

3.1.2 AC coefficient: Any DCT coefficient for which the frequency is not zero in at least one dimension.

3.1.3 (adaptive) (binary) arithmetic decoding: An entropy decoding procedure which recovers the sequence of
symbols from the sequence of bits produced by the arithmetic encoder.

3.1.4 (adaptive) (binary) arithmetic encoding: An entropy encoding procedure which codes by means of a recursive
subdivision of the probability of the sequence of symbols coded up to that point.

3.1.5 application environment: The standards for data representation, communication, or storage which have been
established for a particular application.

CCITT Rec. T.81 (1992 E) 1
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3.1.6 arithmetic decoder: An embodiment of arithmetic decoding procedure.

3.1.7 arithmetic encoder: An embodiment of arithmetic encoding procedure.

3.1.8 baseline (sequential): A particular sequential DCT-based encoding and decoding process specified in this
Specification, and which is required for all DCT-based decoding processes.

3.1.9 binary decision: Choice between two alternatives.

3.1.10 bit stream: Partially encoded or decoded sequence of bits comprising an entropy-coded segment.

3.1.11 block: An 8 × 8 array of samples or an 8 × 8 array of DCT coefficient values of one component.

3.1.12 block-row:  A sequence of eight contiguous component lines which are partitioned into 8 × 8 blocks.

3.1.13 byte: A group of 8 bits.

3.1.14 byte stuffing: A procedure in which either the Huffman coder or the arithmetic coder inserts a zero byte into
the entropy-coded segment following the generation of an encoded hexadecimal X’FF’ byte.

3.1.15 carry bit:  A bit in the arithmetic encoder code register which is set if a carry-over in the code register overflows
the eight bits reserved for the output byte.

3.1.16 ceiling function: The mathematical procedure in which the greatest integer value of a real number is obtained
by selecting the smallest integer value which is greater than or equal to the real number.

3.1.17 class (of coding process): Lossy or lossless coding processes.

3.1.18 code register: The arithmetic encoder register containing the least significant bits of the partially completed
entropy-coded segment. Alternatively, the arithmetic decoder register containing the most significant bits of a partially
decoded entropy-coded segment.

3.1.19 coder: An embodiment of a coding process.

3.1.20 coding: Encoding or decoding.

3.1.21 coding model: A procedure used to convert input data into symbols to be coded.

3.1.22 (coding) process: A general term for referring to an encoding process, a decoding process, or both.

3.1.23 colour image: A continuous-tone image that has more than one component.

3.1.24 columns: Samples per line in a component.

3.1.25 component: One of the two-dimensional arrays which comprise an image.

3.1.26 compressed data: Either compressed image data or table specification data or both.

3.1.27 compressed image data: A coded representation of an image, as specified in this Specification.

3.1.28 compression: Reduction in the number of bits used to represent source image data.

3.1.29 conditional exchange: The interchange of MPS and LPS probability intervals whenever the size of the LPS
interval is greater than the size of the MPS interval (in arithmetic coding).

3.1.30 (conditional) probability estimate: The probability value assigned to the LPS by the probability estimation
state machine (in arithmetic coding).

3.1.31 conditioning table: The set of parameters which select one of the defined relationships between prior coding
decisions and the conditional probability estimates used in arithmetic coding.

3.1.32 context: The set of previously coded binary decisions which is used to create the index to the probability
estimation state machine (in arithmetic coding).

3.1.33 continuous-tone image: An image whose components have more than one bit per sample.

3.1.34 data unit: An 8 × 8 block of samples of one component in DCT-based processes; a sample in lossless processes.
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3.1.35 DC coefficient: The DCT coefficient for which the frequency is zero in both dimensions.

3.1.36 DC prediction:  The procedure used by DCT-based encoders whereby the quantized DC coefficient from the
previously encoded 8 × 8 block of the same component is subtracted from the current quantized DC coefficient.

3.1.37 (DCT) coefficient: The amplitude of a specific cosine basis function – may refer to an original DCT coefficient,
to a quantized DCT coefficient, or to a dequantized DCT coefficient.

3.1.38 decoder: An embodiment of a decoding process.

3.1.39 decoding process: A process which takes as its input compressed image data and outputs a continuous-tone
image.

3.1.40 default conditioning: The values defined for the arithmetic coding conditioning tables at the beginning of
coding of an image.

3.1.41 dequantization: The inverse procedure to quantization by which the decoder recovers a representation of the
DCT coefficients.

3.1.42 differential component: The difference between an input component derived from the source image and the
corresponding reference component derived from the preceding frame for that component (in hierarchical mode coding).

3.1.43 differential frame: A frame in a hierarchical process in which differential components are either encoded or
decoded.

3.1.44 (digital) reconstructed image (data): A continuous-tone image which is the output of any decoder defined in
this Specification.

3.1.45 (digital) source image (data): A continuous-tone image used as input to any encoder defined in this
Specification.

3.1.46 (digital) (still) image: A set of two-dimensional arrays of integer data.

3.1.47 discrete cosine transform; DCT: Either the forward discrete cosine transform or the inverse discrete cosine
transform.

3.1.48 downsampling (filter):  A procedure by which the spatial resolution of an image is reduced (in hierarchical
mode coding).

3.1.49 encoder: An embodiment of an encoding process.

3.1.50 encoding process: A process which takes as its input a continuous-tone image and outputs compressed image
data.

3.1.51 entropy-coded (data) segment: An independently decodable sequence of entropy encoded bytes of compressed
image data.

3.1.52 (entropy-coded segment) pointer: The variable which points to the most recently placed (or fetched) byte in
the entropy encoded segment.

3.1.53 entropy decoder: An embodiment of an entropy decoding procedure.

3.1.54 entropy decoding: A lossless procedure which recovers the sequence of symbols from the sequence of bits
produced by the entropy encoder.

3.1.55 entropy encoder: An embodiment of an entropy encoding procedure.

3.1.56 entropy encoding: A lossless procedure which converts a sequence of input symbols into a sequence of bits
such that the average number of bits per symbol approaches the entropy of the input symbols.

3.1.57 extended (DCT-based) process: A descriptive term for DCT-based encoding and decoding processes in which
additional capabilities are added to the baseline sequential process.

3.1.58 forward discrete cosine transform; FDCT:  A mathematical transformation using cosine basis functions which
converts a block of samples into a corresponding block of original DCT coefficients.
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3.1.59 frame: A group of one or more scans (all using the same DCT-based or lossless process) through the data of one
or more of the components in an image.

3.1.60 frame header: A marker segment that contains a start-of-frame marker and associated frame parameters that are
coded at the beginning of a frame.

3.1.61 frequency: A two-dimensional index into the two-dimensional array of DCT coefficients.

3.1.62 (frequency) band: A contiguous group of coefficients from the zig-zag sequence (in progressive mode coding).

3.1.63 full progression: A process which uses both spectral selection and successive approximation (in progressive
mode coding).

3.1.64 grayscale image: A continuous-tone image that has only one component.

3.1.65 hierarchical: A mode of operation for coding an image in which the first frame for a given component is
followed by frames which code the differences between the source data and the reconstructed data from the previous
frame for that component. Resolution changes are allowed between frames.

3.1.66 hierarchical decoder: A sequence of decoder processes in which the first frame for each component is followed
by frames which decode an array of differences for each component and adds it to the reconstructed data from the
preceding frame for that component.

3.1.67 hierarchical encoder: The mode of operation in which the first frame for each component is followed by frames
which encode the array of differences between the source data and the reconstructed data from the preceding frame for
that component.

3.1.68 horizontal sampling factor: The relative number of horizontal data units of a particular component with respect
to the number of horizontal data units in the other components.

3.1.69 Huffman decoder: An embodiment of a Huffman decoding procedure.

3.1.70 Huffman decoding: An entropy decoding procedure which recovers the symbol from each variable length code
produced by the Huffman encoder.

3.1.71 Huffman encoder: An embodiment of a Huffman encoding procedure.

3.1.72 Huffman encoding: An entropy encoding procedure which assigns a variable length code to each input symbol.

3.1.73 Huffman table: The set of variable length codes required in a Huffman encoder and Huffman decoder.

3.1.74 image data: Either source image data or reconstructed image data.

3.1.75 interchange format:  The representation of compressed image data for exchange between application
environments.

3.1.76 interleaved: The descriptive term applied to the repetitive multiplexing of small groups of data units from each
component in a scan in a specific order.

3.1.77 inverse discrete cosine transform; IDCT: A mathematical transformation using cosine basis functions which
converts a block of dequantized DCT coefficients into a corresponding block of samples.

3.1.78 Joint Photographic Experts Group; JPEG: The informal name of the committee which created this
Specification. The “joint” comes from the CCITT and ISO/IEC collaboration.

3.1.79 latent output:  Output of the arithmetic encoder which is held, pending resolution of carry-over (in arithmetic
coding).

3.1.80 less probable symbol; LPS: For a binary decision, the decision value which has the smaller probability.

3.1.81 level shift: A procedure used by DCT-based encoders and decoders whereby each input sample is either
converted from an unsigned representation to a two’s complement representation or from a two’s complement
representation to an unsigned representation.
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3.1.82 lossless: A descriptive term for encoding and decoding processes and procedures in which the output of the
decoding procedure(s) is identical to the input to the encoding procedure(s).

3.1.83 lossless coding: The mode of operation which refers to any one of the coding processes defined in this
Specification in which all of the procedures are lossless (see Annex H).

3.1.84 lossy: A descriptive term for encoding and decoding processes which are not lossless.

3.1.85 marker:  A two-byte code in which the first byte is hexadecimal FF (X’FF’) and the second byte is a value
between 1 and hexadecimal FE (X’FE’).

3.1.86 marker segment: A marker and associated set of parameters.

3.1.87 MCU-row:  The smallest sequence of MCU which contains at least one line of samples or one block-row from
every component in the scan.

3.1.88 minimum coded unit; MCU:  The smallest group of data units that is coded.

3.1.89 modes (of operation): The four main categories of image coding processes defined in this Specification.

3.1.90 more probable symbol; MPS: For a binary decision, the decision value which has the larger probability.

3.1.91 non-differential frame: The first frame for any components in a hierarchical encoder or decoder. The
components are encoded or decoded without subtraction from reference components. The term refers also to any frame in
modes other than the hierarchical mode.

3.1.92 non-interleaved: The descriptive term applied to the data unit processing sequence when the scan has only one
component.

3.1.93 parameters: Fixed length integers 4, 8 or 16 bits in length, used in the compressed data formats.

3.1.94 point transform:  Scaling of a sample or DCT coefficient.

3.1.95 precision: Number of bits allocated to a particular sample or DCT coefficient.

3.1.96 predictor:  A linear combination of previously reconstructed values (in lossless mode coding).

3.1.97 probability estimation state machine: An interlinked table of probability values and indices which is used to
estimate the probability of the LPS (in arithmetic coding).

3.1.98 probability interval:  The probability of a particular sequence of binary decisions within the ordered set of all
possible sequences (in arithmetic coding).

3.1.99 (probability) sub-interval:  A portion of a probability interval allocated to either of the two possible binary
decision values (in arithmetic coding).

3.1.100 procedure: A set of steps which accomplishes one of the tasks which comprise an encoding or decoding
process.

3.1.101 process: See coding process.

3.1.102 progressive (coding): One of the DCT-based processes defined in this Specification in which each scan
typically improves the quality of the reconstructed image.

3.1.103 progressive DCT-based: The mode of operation which refers to any one of the processes defined in Annex G.

3.1.104 quantization table: The set of 64 quantization values used to quantize the DCT coefficients.

3.1.105 quantization value: An integer value used in the quantization procedure.

3.1.106 quantize: The act of performing the quantization procedure for a DCT coefficient.

3.1.107 reference (reconstructed) component: Reconstructed component data which is used in a subsequent frame of a
hierarchical encoder or decoder process (in hierarchical mode coding).
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3.1.108 renormalization:  The doubling of the probability interval and the code register value until the probability
interval exceeds a fixed minimum value (in arithmetic coding).

3.1.109 restart interval:  The integer number of MCUs processed as an independent sequence within a scan.

3.1.110 restart marker:  The marker that separates two restart intervals in a scan.

3.1.111 run (length):  Number of consecutive symbols of the same value.

3.1.112 sample: One element in the two-dimensional array which comprises a component.

3.1.113 sample-interleaved: The descriptive term applied to the repetitive multiplexing of small groups of samples from
each component in a scan in a specific order.

3.1.114 scan: A single pass through the data for one or more of the components in an image.

3.1.115 scan header: A marker segment that contains a start-of-scan marker and associated scan parameters that are
coded at the beginning of a scan.

3.1.116 sequential (coding): One of the lossless or DCT-based coding processes defined in this Specification in which
each component of the image is encoded within a single scan.

3.1.117 sequential DCT-based: The mode of operation which refers to any one of the processes defined in Annex F.

3.1.118 spectral selection: A progressive coding process in which the zig-zag sequence is divided into bands of one or
more contiguous coefficients, and each band is coded in one scan.

3.1.119 stack counter: The count of X’FF’ bytes which are held, pending resolution of carry-over in the arithmetic
encoder.

3.1.120 statistical conditioning: The selection, based on prior coding decisions, of one estimate out of a set of
conditional probability estimates (in arithmetic coding).

3.1.121 statistical model: The assignment of a particular conditional probability estimate to each of the binary
arithmetic coding decisions.

3.1.122 statistics area: The array of statistics bins required for a coding process which uses arithmetic coding.

3.1.123 statistics bin: The storage location where an index is stored which identifies the value of the conditional
probability estimate used for a particular arithmetic coding binary decision.

3.1.124 successive approximation: A progressive coding process in which the coefficients are coded with reduced
precision in the first scan, and precision is increased by one bit with each succeeding scan.

3.1.125 table specification data: The coded representation from which the tables used in the encoder and decoder are
generated and their destinations specified.

3.1.126 transcoder: A procedure for converting compressed image data of one encoder process to compressed image
data of another encoder process.

3.1.127 (uniform) quantization:  The procedure by which DCT coefficients are linearly scaled in order to achieve
compression.

3.1.128 upsampling (filter):  A procedure by which the spatial resolution of an image is increased (in hierarchical mode
coding).

3.1.129 vertical sampling factor: The relative number of vertical data units of a particular component with respect to
the number of vertical data units in the other components in the frame.

3.1.130 zero byte: The X’00’ byte.

3.1.131 zig-zag sequence: A specific sequential ordering of the DCT coefficients from (approximately) lowest spatial
frequency to highest.

3.1.132 3-sample predictor: A linear combination of the three nearest neighbor reconstructed samples to the left and
above (in lossless mode coding).
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3.2 Symbols

The symbols used in this Specification are listed below.

A probability interval

AC AC DCT coefficient

ACji AC coefficient predicted from DC values

Ah successive approximation bit position, high

Al successive approximation bit position, low

Api ith 8-bit parameter in APPn segment

APPn marker reserved for application segments

B current byte in compressed data

B2 next byte in compressed data when B = X’FF’

BE counter for buffered correction bits for Huffman coding in the successive approximation
process

BITS 16-byte list containing number of Huffman codes of each length

BP pointer to compressed data

BPST pointer to byte before start of entropy-coded segment

BR counter for buffered correction bits for Huffman coding in the successive approximation
process

Bx byte modified by a carry-over

C value of bit stream in code register

Ci component identifier for frame

Cu horizontal frequency dependent scaling factor in DCT

Cv vertical frequency dependent scaling factor in DCT

CE conditional exchange

C-low low order 16 bits of the arithmetic decoder code register

Cmi ith 8-bit parameter in COM segment

CNT bit counter in NEXTBYTE procedure

CODE Huffman code value

CODESIZE(V) code size for symbol V

COM comment marker

Cs conditioning table value

Csi component identifier for scan

CT renormalization shift counter

Cx high order 16 bits of arithmetic decoder code register

CX conditional exchange

dji data unit from horizontal position i, vertical position j

djik dji  for component k

D decision decoded

CCITT Rec. T.81 (1992 E) 7
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Da in DC coding, the DC difference coded for the previous block from the same component;
in lossless coding, the difference coded for the sample immediately to the left

DAC define-arithmetic-coding-conditioning marker

Db the difference coded for the sample immediately above

DC DC DCT coefficient

DCi DC coefficient for ith block in component

DCk kth DC value used in prediction of AC coefficients

DHP define hierarchical progression marker

DHT define-Huffman-tables marker

DIFF difference between quantized DC and prediction

DNL define-number-of-lines marker

DQT define-quantization-tables marker

DRI define restart interval marker

E exponent in magnitude category upper bound

EC event counter

ECS entropy-coded segment

ECSi ith entropy-coded segment

Eh horizontal expansion parameter in EXP segment

EHUFCO Huffman code table for encoder

EHUFSI encoder table of Huffman code sizes

EOB end-of-block for sequential; end-of-band for progressive

EOBn run length category for EOB runs

EOBx position of EOB in previous successive approximation scan

EOB0, EOB1, ..., EOB14 run length categories for EOB runs

EOI end-of-image marker

Ev vertical expansion parameter in EXP segment

EXP expand reference components marker

FREQ(V) frequency of occurrence of symbol V

Hi horizontal sampling factor for ith component

Hmax largest horizontal sampling factor

HUFFCODE list of Huffman codes corresponding to lengths in HUFFSIZE

HUFFSIZE list of code lengths

HUFFVAL list of values assigned to each Huffman code

i subscript index

I integer variable

Index(S) index to probability estimation state machine table for context index S

j subscript index

J integer variable
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JPG marker reserved for JPEG extensions

JPGn marker reserved for JPEG extensions

k subscript index

K integer variable

Kmin index of 1st AC coefficient in band (1 for sequential DCT)

Kx conditioning parameter for AC arithmetic coding model

L DC and lossless coding conditioning lower bound parameter

Li element in BITS list in DHT segment

Li(t) element in BITS list in the DHT segment for Huffman table t

La length of parameters in APPn segment

LASTK largest value of K

Lc length of parameters in COM segment

Ld length of parameters in DNL segment

Le length of parameters in EXP segment

Lf length of frame header parameters

Lh length of parameters in DHT segment

Lp length of parameters in DAC segment

LPS less probable symbol (in arithmetic coding)

Lq length of parameters in DQT segment

Lr length of parameters in DRI segment

Ls length of scan header parameters

LSB least significant bit

m modulo 8 counter for RSTm marker

mt number of Vi,j parameters for Huffman table t

M bit mask used in coding magnitude of V

Mn nth statistics bin for coding magnitude bit pattern category

MAXCODE table with maximum value of Huffman code for each code length

MCU minimum coded unit

MCUi ith MCU

MCUR number of MCU required to make up one MCU-row

MINCODE table with minimum value of Huffman code for each code length

MPS more probable symbol (in arithmetic coding)

MPS(S) more probable symbol for context-index S

MSB most significant bit

M2, M3, M4, ... , M15 designation of context-indices for coding of magnitude bits in the arithmetic coding
models

n integer variable

N data unit counter for MCU coding

N/A not applicable
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Nb number of data units in MCU

Next_Index_LPS new value of Index(S) after a LPS renormalization

Next_Index_MPS new value of Index(S) after a MPS renormalization

Nf number of components in frame

NL number of lines defined in DNL segment

Ns number of components in scan

OTHERS(V) index to next symbol in chain

P sample precision

Pq quantizer precision parameter in DQT segment

Pq(t) quantizer precision parameter in DQT segment for quantization table t

PRED quantized DC coefficient from the most recently coded block of the component

Pt point transform parameter

Px calculated value of sample

Qji quantizer value for coefficient ACji

Qvu quantization value for DCT coefficient Svu

Q00 quantizer value for DC coefficient

QACji quantized AC coefficient predicted from DC values

QDCk kth quantized DC value used in prediction of AC coefficients

Qe LPS probability estimate

Qe(S) LPS probability estimate for context index S

Qk kth element of 64 quantization elements in DQT segment

rvu reconstructed image sample

R length of run of zero amplitude AC coefficients

Rvu dequantized DCT coefficient

Ra reconstructed sample value

Rb reconstructed sample value

Rc reconstructed sample value

Rd rounding in prediction calculation

RES reserved markers

Ri restart interval in DRI segment

RRRR 4-bit value of run length of zero AC coefficients

RS composite value used in Huffman coding of AC coefficients

RSTm restart marker number m

syx reconstructed value from IDCT

S context index

Svu DCT coefficient at horizontal frequency u, vertical frequency v
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SC context-index for coding of correction bit in successive approximation coding

Se end of spectral selection band in zig-zag sequence

SE context-index for coding of end-of-block or end-of-band

SI Huffman code size

SIGN 1 if decoded sense of sign is negative and 0 if decoded sense of sign is positive

SIZE length of a Huffman code

SLL shift left logical operation

SLL α β logical shift left of α by β bits

SN context-index for coding of first magnitude category when V is negative

SOF0 baseline DCT process frame marker

SOF1 extended sequential DCT frame marker, Huffman coding

SOF2 progressive DCT frame marker, Huffman coding

SOF3 lossless process frame marker, Huffman coding

SOF5 differential sequential DCT frame marker, Huffman coding

SOF6 differential progressive DCT frame marker, Huffman coding

SOF7 differential lossless process frame marker, Huffman coding

SOF9 sequential DCT frame marker, arithmetic coding

SOF10 progressive DCT frame marker, arithmetic coding

SOF11 lossless process frame marker, arithmetic coding

SOF13 differential sequential DCT frame marker, arithmetic coding

SOF14 differential progressive DCT frame marker, arithmetic coding

SOF15 differential lossless process frame marker, arithmetic coding

SOI start-of-image marker

SOS start-of-scan marker

SP context-index for coding of first magnitude category when V is positive

Sqvu quantized DCT coefficient

SRL shift right logical operation

SRL α β logical shift right of α by β bits

Ss start of spectral selection band in zig-zag sequence

SS context-index for coding of sign decision

SSSS 4-bit size category of DC difference or AC coefficient amplitude

ST stack counter

Switch_MPS parameter controlling inversion of sense of MPS

Sz parameter used in coding magnitude of V

S0 context-index for coding of V = 0 decision

t summation index for parameter limits computation

T temporary variable

CCITT Rec. T.81 (1992 E) 11
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Taj AC entropy table destination selector for jth component in scan

Tb arithmetic conditioning table destination identifier

Tc Huffman coding or arithmetic coding table class

Tdj DC entropy table destination selector for jth component in scan

TEM temporary marker

Th Huffman table destination identifier in DHT segment

Tq quantization table destination identifier in DQT segment

Tqi quantization table destination selector for ith component in frame

U DC and lossless coding conditioning upper bound parameter

V symbol or value being either encoded or decoded

Vi vertical sampling factor for ith component

Vi,j jth value for length i in HUFFVAL

Vmax largest vertical sampling factor

Vt temporary variable

VALPTR list of indices for first value in HUFFVAL for each code length

V1 symbol value

V2 symbol value

xi number of columns in ith component

X number of samples per line in component with largest horizontal dimension

Xi ith statistics bin for coding magnitude category decision

X1, X2, X3, ... , X15 designation of context-indices for coding of magnitude categories in the arithmetic coding
models

XHUFCO extended Huffman code table

XHUFSI table of sizes of extended Huffman codes

X’values’ values within the quotes are hexadecimal

yi number of lines in ith component

Y number of lines in component with largest vertical dimension

ZRL value in HUFFVAL assigned to run of 16 zero coefficients

ZZ(K) Kth element in zig-zag sequence of quantized DCT coefficients

ZZ(0) quantized DC coefficient in zig-zag sequence order

4 General

The purpose of this clause is to give an informative overview of the elements specified in this Specification. Another
purpose is to introduce many of the terms which are defined in clause 3. These terms are printed in italics upon first usage
in this clause.
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4.1 Elements specified in this Specification

There are three elements specified in this Specification:

a) An encoder is an embodiment of an encoding process. As shown in Figure 1, an encoder takes as input
digital source image data and table specifications, and by means of a specified set ofprocedures generates
as output compressed image data.

b) A decoder is an embodiment of a decoding process. As shown in Figure 2, a decoder takes as input
compressed image data and table specifications, and by means of a specified set of procedures generates as
output digital reconstructed image data.

c) The interchangeformat, shown in Figure 3, is a compressed image data representation which includes all

table specifications used in the encoding process. The interchange format is for exchange between
application environments.

 
Figure 1 — Encoder

 
Figures 1 and 2 illustrate the general case for which the continuous—tone source and reconstructed image data consist of
multiple components. (A colour image consists of multiple components; a grayscale image consists only of a single
component.) A significant portion of this Specification is concerned with how to handle multiple-component images in a
flexible, application-independent way.
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App ieation environment

App Mien environment

E

Figure 3 — Interchange format for compressed image data

These figures are also meant to show that the same tables specified for an encoder to use to compress a particular image

must be provided to a decoder to reconstruct that image. However, this Specification does not specify how applications
should associate tables with compressed image data, nor how they should represent source image data generally within
their specific environments.

Consequently, this Specification also specifies the interchange format shown in Figure 3, in which table specifications are
included Within compressed image data. An image compressed with a specified encoding process within
one application environment, A, is passed to a different environment, B, by means of the interchange format.
The interchange format does not specify a complete coded image representation. Application—dependent information,
e.g. colour space, is outside the scope of this Specification.

4.2 Lossy and lossless compression

This Specificau'on specifies two classes of encoding and decoding processes, lossy and lossless processes. Those based on
the discrete cosine transform (DCT) are lossy, thereby allowing substantial compression to be achieved while producing a
reconstructed image with high visual fidelity to the encoder‘s source image.

The simplest DCT—based coding process is referred to as the baseline sequential process. It provides a capability which is
sufficient for many applications. There are additional DCT—based processes which extend the baseline sequential process
to a broader range of applications. In any decoder using enended DCT—based decoding processes, the baseline decoding
process is required to be present in order to provide a default decoding capability.

The second class of coding processes is not based upon the DCT and is provided to meet the needs of applications
requiring lossless compression. These lossless encoding and decoding processes are used independently of any of the
DCT-based processes.

A table summarizing the relationship among these lossy and lossless coding processes is included in 4.1 1 .

The amount of compression provided by any of the various processes is dependent on the characteristics of the particular
image being compressed, as well as on the picture quality desired by the application and the desired speed of compression
and decompression.
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4.3 DCT—based coding

Figure 4 shows the main procedures for all encoding processes based on the DCI‘. It illustrates the special case of a single—
component image; this is an appropriate simplification for overview purposes, because all processes specified in this
Specification operate on each image component independently.

8x8books

 
Figure 4 — DCT-based encoder amplified diagram

In the encoding process the input component’s samples are grouped into 8 x 8 blocks, and each block is transformed by

theforward DCT (FDCI') into a set of 64 values referred to as DCI' coefiicients. One of these values is referred to as the
DC coefiicient and the other 63 as the AC coeflicients.

Each of the 64 coefficients is then quantized using one of 64 corresponding values from a quantization table (determined
by one of the table specifications shown in Figure 4). No default values for quantization tables are specified in this
Specification; applications may specify values which customize picture quality for their particular image characteristics,

display devices, and viewing conditions.

After quantization, the DC coefficient and the 63 AC coefficients are prepared for entropy encoding, as shown in Figure

5. The previous quantized DC coefficient is used to predict the current quantized DC coefficient, and the difference is
encoded. The 63 quantized AC coefficients undergo no such differential encoding, but are converted into a one-
dimensional zig—zag sequence, as shown in Figure 5.

The quantized coefficients are then passed to an entropy encoding procedure which compresses the data further. One of
two entropy coding procedures can be used, as described in 4.6. If Hufl'man encoding is used, Huflimm table
specifications must be provided to the encoder. If arithmetic encoding is used, arithmetic coding conditioning table
specifications may be provided, otherwise the default conditioning table specifications shall be used.

Figure 6 shows the main procedures for all DCT—based decoding processes. Each step shown performs essentially the
inverse of its corresponding main procedure within the encoder. The entropy decoder decodes the zig—zag sequence of

quantized DCT coefficients. After dequantization the DCT coefficients are transformed to an 8 x 8 block of samples by
the inverse DCT (IDCI').

4.4 Lossloss coding

Figure 7 shows the main procedures for the lossless encoding processes. Apredictor combines the reconstructed values of
up to three neighbourhood samples at positions a, b, and c to form a prediction of the sample at position x as shown in
Figure 8. This prediction is then subtracted from the actual value of the sample at position x, and the diflerence is
losslessly entropycoded by either Huffman or arithmetic coding.
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Figure 5 — Preparation ofquantized coeflicients for entropy encoding

  
Figure 6 — DCT—based decoder simplified diagram

Lossas encode!

  

 
Figure 7 — Lossless encoder simplified diagram
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T SO0720-93/d008

c b

a x

Figure 8  –  3-sample prediction neighbourhood

       

This encoding process may also be used in a slightly modified way, whereby the precision of the input samples is reduced
by one or more bits prior to the lossless coding. This achieves higher compression than the lossless process (but lower
compression than the DCT-based processes for equivalent visual fidelity), and limits the reconstructed image’s worst-case
sample error to the amount of input precision reduction.

4.5 Modes of operation

There are four distinct modes of operation under which the various coding processes are defined: sequential
DCT-based, progressive DCT-based, lossless, and hierarchical. (Implementations are not required to provide all of
these.) The lossless mode of operation was described in 4.4. The other modes of operation are compared as follows.

For the sequential DCT-based mode, 8 × 8 sample blocks are typically input block by block from left to right, and block-
row by block-row from top to bottom. After a block has been transformed by the forward DCT, quantized and prepared for
entropy encoding, all 64 of its quantized DCT coefficients can be immediately entropy encoded and output as part of the
compressed image data (as was described in 4.3), thereby minimizing coefficient storage requirements.

For the progressive DCT-based mode, 8 × 8 blocks are also typically encoded in the same order, but in multiple scans
through the image. This is accomplished by adding an image-sized coefficient memory buffer (not shown in Figure 4)
between the quantizer and the entropy encoder. As each block is transformed by the forward DCT and quantized, its
coefficients are stored in the buffer. The DCT coefficients in the buffer are then partially encoded in each of multiple
scans. The typical sequence of image presentation at the output of the decoder for sequential versus progressive modes of
operation is shown in Figure 9.

There are two procedures by which the quantized coefficients in the buffer may be partially encoded within a scan. First,
only a specified band of coefficients from the zig-zag sequence need be encoded. This procedure is called spectral
selection, because each band typically contains coefficients which occupy a lower or higher part of the frequency spectrum
for that 8 × 8 block. Secondly, the coefficients within the current band need not be encoded to their full (quantized)
accuracy within each scan. Upon a coefficient’s first encoding, a specified number of most significant bits is encoded first.
In subsequent scans, the less significant bits are then encoded. This procedure is called successive approximation. Either
procedure may be used separately, or they may be mixed in flexible combinations.

In hierarchical mode, an image is encoded as a sequence of frames. These frames provide reference reconstructed
components which are usually needed for prediction in subsequent frames. Except for the first frame for a given
component, differential frames encode the difference between source components and reference reconstructed
components. The coding of the differences may be done using only DCT-based processes, only lossless processes, or
DCT-based processes with a final lossless process for each component. Downsampling and upsampling filters may be
used to provide a pyramid of spatial resolutions as shown in Figure 10. Alternatively, the hierarchical mode can be used to
improve the quality of the reconstructed components at a given spatial resolution.

Hierarchical mode offers a progressive presentation similar to the progressive DCT-based mode but is useful in
environments which have multi-resolution requirements. Hierarchical mode also offers the capability of progressive
coding to a final lossless stage.
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Figure 9 - Progressive versus sequential presentation

 
Tsm740-93leo

Figure 10 — Hierarchical mum-resolution encoding

4.6 Entropy coding alternatives

Two alternative entropy coding procedures are specified: Huffman coding and arithmetic coding. Huffman coding
procedures use Huffman tables, determined by one of the table specifications shown in Figures 1 and 2. Arithmetic coding
procedures use arithmetic coding conditioning tables, which may also be determined by a table specification. No default
values for Huffman tables are specified, so that applications may choose tables appropriate for their own environments.
Default tables are defined for the arithmetic coding conditioning.
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The baseline sequential process uses Huffman coding, while the extended DCT-based and lossless processes may use
either Huffman or arithmetic coding.

4.7 Sample precision

For DCT-based processes, two alternative sample precisions are specified: either 8 bits or 12 bits per sample. Applications
which use samples with other precisions can use either 8-bit or 12-bit precision by shifting their source image samples
appropriately. The baseline process uses only 8-bit precision. DCT-based implementations which handle 12-bit source
image samples are likely to need greater computational resources than those which handle only
8-bit source images. Consequently in this Specification separate normative requirements are defined for 8-bit and
12-bit DCT-based processes.

For lossless processes the sample precision is specified to be from 2 to 16 bits.

4.8 Multiple-component control

Subclauses 4.3 and 4.4 give an overview of one major part of the encoding and decoding processes – those which operate
on the sample values in order to achieve compression. There is another major part as well – the procedures which control
the order in which the image data from multiple components are processed to create the compressed data, and which
ensure that the proper set of table data is applied to the proper data units in the image. (A data unit is a sample for lossless
processes and an 8 × 8 block of samples for DCT-based processes.)

4.8.1 Interleaving multiple components

Figure 11 shows an example of how an encoding process selects between multiple source image components as well as
multiple sets of table data, when performing its encoding procedures. The source image in this example consists of the
three components A, B and C, and there are two sets of table specifications. (This simplified view does not distinguish
between the quantization tables and entropy coding tables.)

TISO0750-93/d011

A

B

C

Encoding
process

Source
image data Tab e speci

fication 1
Tab e speci

fication 2

Compressed
image data

Figure 11  –  Component-interleave and table-switching control

       

In sequential mode, encoding is non-interleaved if the encoder compresses all image data units in component A before
beginning component B, and then in turn all of B before C. Encoding is interleaved if the encoder compresses a data unit
from A, a data unit from B, a data unit from C, then back to A, etc. These alternatives are illustrated in Figure 12, which
shows a case in which all three image components have identical dimensions: X columns by Y lines, for a total of n data
units each.
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Data unit encoding order  non inter eaved
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Scan 1

Data unit encoding order  inter eaved

Figure 12  –  Interleaved versus non-interleaved encoding order

       

These control procedures are also able to handle cases in which the source image components have different dimensions.
Figure 13 shows a case in which two of the components, B and C, have half the number of horizontal samples relative to
component A. In this case, two data units from A are interleaved with one each from B and C. Cases in which components
of an image have more complex relationships, such as different horizontal and vertical dimensions, can be handled as
well. (See Annex A.)

A1 A

A

2

n

X

Y

1 2

Y

B B

n/2B

1 2

Y

n/2

C C

C

T SO0770-93/d013

X/2 X/2

A   A   B   C   A   A   B   C   A     A   B     C23 4 n-1 n1 2 1 1 2 n/2 n/2

Scan 1
Data unit encoding order  inter eaved

Figure 13  –  Interleaved order for components with different dimensions
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4.8.2 Minimum coded unit

Related to the concepts of multiple-component interleave is the minimum coded unit (MCU). If the compressed image
data is non-interleaved, the MCU is defined to be one data unit. For example, in Figure 12 the MCU for the non-
interleaved case is a single data unit. If the compressed data is interleaved, the MCU contains one or more data units from
each component. For the interleaved case in Figure 12, the (first) MCU consists of the three interleaved data units A1, B1,
C1. In the example of Figure 13, the (first) MCU consists of the four data units A1, A2 , B1, C1.

4.9 Structure of compressed data

Figures 1, 2, and 3 all illustrate slightly different views of compressed image data. Figure 1 shows this data as the output
of an encoding process, Figure 2 shows it as the input to a decoding process, and Figure 3 shows compressed image data
in the interchange format, at the interface between applications.

Compressed image data are described by a uniform structure and set of parameters for both classes of encoding processes
(lossy or lossless), and for all modes of operation (sequential, progressive, lossless, and hierarchical). The various parts of
the compressed image data are identified by special two-byte codes called markers. Some markers are followed by
particular sequences of parameters, as in the case of table specifications, frame header, or scan header. Others are used
without parameters for functions such as marking the start-of-image and end-of-image. When a marker is associated with a
particular sequence of parameters, the marker and its parameters comprise a marker segment.

The data created by the entropy encoder are also segmented, and one particular marker – the restart marker – is used to
isolate entropy-coded data segments. The encoder outputs the restart markers, intermixed with the entropy-coded data, at
regular restart intervals of the source image data. Restart markers can be identified without having to decode the
compressed data to find them. Because they can be independently decoded, they have application-specific uses, such as
parallel encoding or decoding, isolation of data corruptions, and semi-random access of entropy-coded segments.

There are three compressed data formats:

a) the interchange format;

b) the abbreviated format for compressed image data;

c) the abbreviated format for table-specification data.

4.9.1 Interchange format

In addition to certain required marker segments and the entropy-coded segments, the interchange format shall include the
marker segments for all quantization and entropy-coding table specifications needed by the decoding process. This
guarantees that a compressed image can cross the boundary between application environments, regardless of how each
environment internally associates tables with compressed image data.

4.9.2 Abbreviated format for compressed image data

The abbreviated format for compressed image data is identical to the interchange format, except that it does not include all
tables required for decoding. (It may include some of them.) This format is intended for use within applications where
alternative mechanisms are available for supplying some or all of the table-specification data needed for decoding.

4.9.3 Abbreviated format for table-specification data

This format contains only table-specification data. It is a means by which the application may install in the decoder the
tables required to subsequently reconstruct one or more images.

4.10 Image, frame, and scan

Compressed image data consists of only one image. An image contains only one frame in the cases of sequential and
progressive coding processes; an image contains multiple frames for the hierarchical mode.

A frame contains one or more scans. For sequential processes, a scan contains a complete encoding of one or more image
components. In Figures 12 and 13, the frame consists of three scans when non-interleaved, and one scan if all three
components are interleaved together. The frame could also consist of two scans: one with a non-interleaved component,
the other with two components interleaved.
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For progressive processes, a scan contains a partial encoding of all data units from one or more image components.
Components shall not be interleaved in progressive mode, except for the DC coefficients in the first scan for each
component of a progressive frame.

4.11 Summary of coding processes

Table 1 provides a summary of the essential characteristics of the various coding processes specified in this Specification.
The full specification of these processes is contained in Annexes F, G, H, and J.

Table 1 – Summary:  Essential characteristics of coding processes

Baseline process (required for all DCT-based decoders)

• DCT-based process
• Source image: 8-bit samples within each component
• Sequential
• Huffman coding:  2 AC and 2 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Extended DCT-based processes

• DCT-based process
• Source image: 8-bit or 12-bit samples
• Sequential or progressive
• Huffman or arithmetic coding:  4 AC and 4 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Lossless processes

• Predictive process (not DCT-based)
• Source image: P-bit samples (2  ≤  P  ≤  16)
• Sequential
• Huffman or arithmetic coding:  4 DC tables
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans

Hierarchical processes

• Multiple frames (non-differential and differential)
• Uses extended DCT-based or lossless processes
• Decoders shall process scans with 1, 2, 3, and 4 components
• Interleaved and non-interleaved scans
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5 Interchange format requirements

The interchange format is the coded representation of compressed image data for exchange between application
environments.

The interchange format requirements are that any compressed image data represented in interchange format shall comply
with the syntax and code assignments appropriate for the decoding process selected, as specified in Annex B.

Tests for whether compressed image data comply with these requirements are specified in Part 2 of this Specification.

6 Encoder requirements

An encoding process converts source image data to compressed image data. Each of Annexes F, G, H, and J specifies a
number of distinct encoding processes for its particular mode of operation.

An encoder is an embodiment of one (or more) of the encoding processes specified in Annexes F, G, H, or J. In order to
comply with this Specification, an encoder shall satisfy at least one of the following two requirements.

An encoder shall

a) with appropriate accuracy, convert source image data to compressed image data which comply with the
interchange format syntax specified in Annex B for the encoding process(es) embodied by the encoder;

b) with appropriate accuracy, convert source image data to compressed image data which comply with the
abbreviated format for compressed image data syntax specified in Annex B for the encoding process(es)
embodied by the encoder.

For each of the encoding processes specified in Annexes F, G, H, and J, the compliance tests for the above requirements
are specified in Part 2 of this Specification.

NOTE – There is no requirement in this Specification that any encoder which embodies one of the encoding processes
specified in Annexes F, G, H, or J shall be able to operate for all ranges of the parameters which are allowed for that process. An
encoder is only required to meet the compliance tests specified in Part 2, and to generate the compressed data format according to
Annex B for those parameter values which it does use.

7 Decoder requirements

A decoding process converts compressed image data to reconstructed image data. Each of Annexes F, G, H, and J
specifies a number of distinct decoding processes for its particular mode of operation.

A decoder is an embodiment of one (or more) of the decoding processes specified in Annexes F, G, H, or J. In order to
comply with this Specification, a decoder shall satisfy all three of the following requirements.

A decoder shall

a) with appropriate accuracy, convert to reconstructed image data any compressed image data with parameters
within the range supported by the application, and which comply with the interchange format syntax
specified in Annex B for the decoding process(es) embodied by the decoder;

b) accept and properly store any table-specification data which comply with the abbreviated format for table-
specification data syntax specified in Annex B for the decoding process(es) embodied by the decoder;

c) with appropriate accuracy, convert to reconstructed image data any compressed image data which comply
with the abbreviated format for compressed image data syntax specified in Annex B for the decoding
process(es) embodied by the decoder, provided that the table-specification data required for decoding the
compressed image data has previously been installed into the decoder.

Additionally, any DCT-based decoder, if it embodies any DCT-based decoding process other than baseline sequential,
shall also embody the baseline sequential decoding process.

For each of the decoding processes specified in Annexes F, G, H, and J, the compliance tests for the above requirements
are specified in Part 2 of this Specification.
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Annex  A

Mathematical definitions

(This annex forms an integral part of this Recommendation | International Standard)

A.1 Source image

Source images to which the encoding processes specified in this Specification can be applied are defined in this annex.

A.1.1 Dimensions and sampling factors

As shown in Figure A.1, a source image is defined to consist of Nf components. Each component, with unique identifier
Ci, is defined to consist of a rectangular array of samples of xi columns by yi lines. The component dimensions are derived
from two parameters, X and Y, where X is the maximum of the xi values and Y is the maximum of the yi values for all
components in the frame. For each component, sampling factors Hi and Vi are defined relating component dimensions xi
and yi to maximum dimensions X and Y, according to the following expressions:
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where Hmax and V max are the maximum sampling factors for all components in the frame, and   is the ceiling function.

As an example, consider an image having 3 components with maximum dimensions of 512 lines and 512 samples per line,
and with the following sampling factors:

Component
Component 1
Component 2 2

0 4 1
2 2
1 1

0 0

1 1

2

H V
H V
H V

= =
= =
= =

,
,
,

Then X = 512, Y = 512, Hmax = 4, Vmax = 2, and xi and yi for each component are
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512 256
1 256 512
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= =
= =
= =

,
,
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NOTE – The X, Y, Hi , and Vi  parameters are contained in the frame header of the compressed image data (see B.2.2),
whereas the individual component dimensions xi  and yi  are derived by the decoder. Source images with xi  and yi  dimensions which do
not satisfy the expressions above cannot be properly reconstructed.

A.1.2 Sample precision

A sample is an integer with precision P bits, with any value in the range 0 through 2P – 1. All samples of all components
within an image shall have the same precision P. Restrictions on the value of P depend on the mode of operation, as
specified in B.2 to B.7.

A.1.3 Data unit

A data unit is a sample in lossless processes and an 8 × 8 block of contiguous samples in DCT-based processes. The left-
most 8 samples of each of the top-most 8 rows in the component shall always be the top-left-most block. With this top-left-
most block as the reference, the component is partitioned into contiguous data units to the right and to the bottom (as
shown in Figure A.4).

A.1.4 Orientation

Figure A.1 indicates the orientation of an image component by the terms top, bottom, left, and right. The order by which
the data units of an image component are input to the compression encoding procedures is defined to be left-to-right and
top-to-bottom within the component. (This ordering is precisely defined in A.2.) Applications determine which edges of a
source image are defined as top, bottom, left, and right.
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Figure A.1 — Source image characteristics

A.2 Order of source image data encoding

The scan header (see 3.2.3) specifies the order by which source image data units shall be encoded and placed within the

compressed image data. For a given scan, if the scan header parameter Ns = 1, then data from only one source component

— the component specified by parameter Csl — shall be present within the scan. This data is non—interleaved by definition.
If Ns > 1 , then data from the Ns components C51 through Cst shall be present within the scan. This data shall always be
interleaved. The order of components in a scan shall be according to the order specified in the frame header.

The ordering of data units and the construction of minimum coded units (MCU) is defined as follows.

A.2.l Minimum coded unit (MCU)

For non-interleaved data the MCU is one data unit. For interleaved data the MCU is the sequence of data units defined by
the sampling factors of the components in the scan.

A.2.2 Non-interleaved order (Ns = 1)

When Ns = 1 (where N5 is the number of components in a scan), the order of data units within a scan shall be left-to-right

and top-to—bottom, as shown in Figure A.2. This ordering applies whenever Ns = 1, regardless of the values of
H1 and V1.

  

=————!_-—g"

Le“ Egan—IQ: _mnulga “'9Efl-——
_-_-J"'’7

Bottom Tsoomoeams

 

Figure A.’.’. — Non-interleaved data ordering
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A23 Interleaved order (Ns > 1)

When Ns > 1, each scan component Csi is partitioned into small rectangular arrays of Hk horizontal data units by V];
vertical data units. The subscripts k indicate that Hk and VK are from the position in the frame header component-

specification for which Ck = Csi. Within each Ht by Vk array, data units are ordered from left-to—right and top-to—bottom.

'Ihe arrays in turn are ordered from left-to—right and top-tobottom within each component.

As shown in the example of Figure A.3, Ns = 4, and MCU1 consists of data units taken first from the top-left-most region

of Cs1 , followed by data units from the corresponding region of C52, then from C53 and then from CS4. MCU2 follows the
same ordering for data taken from the next region to the right for the four components.

  

Cs,:H,=2 v1=2 CszzH2=2 v2=1 C33:H3=1V3=2 Cs4zH4=1V4=1
012345 012345 012 012

o o

1 1 o

2
TWG

3 
mm = «1;» (11:11 die «#31 d§o as] at} dio also
MCU2= doe dos d12 d13 doe dga do1 di1 d31
MCU3= din dis di4 dis: dtzu dgs (182 di2 ddz
MCU4 2 do diI dio 4.151 dio d121 dab dgo dio

Cs, data units 032 Cs3 Ca4

Figure A.3 — Interleaved data ordering example

A.2.4 Completion of partial MCU

For DCT—based processes the data unit is a block. Ifxi is not a multiple of 8, the encoding process shall extend the number
of columns to complete the right-most sample blocks. If the component is to be interleaved, the encoding process shall also
extend the number of samples by one or more additional blocks, if necessary, so that the number of blocks is an integer
multiple of Hi. Similarly, if yi is not a multiple of 8, the encoding process shall extend the number of lines to complete the
bottom-most block-row. Ifthe component is to be interleaved, the encoding process shall also extend the number of lines
by one or more additional block—rows, if necessary, so that the number of block—rows is an integer multiple of Vi.

NOTE — It is recommended that any incomplete MCUs be completed by replication of the right-most column and the bottom
line of each component.

For lossless processes the data unit is a sample. If the component is to be interleaved, the encoding process shall extend
the number of samples, if necessary, so that the number is a multiple of Hi. Similarly, the encoding process shall extend
the number of lines, if necessary, so that the number of lines is a multiple of Vi.

Any sample added by an encoding process to complete partial MCUs shall be removed by the decoding process.

A.3 DCT compression

A31 Level shift

Before a non-differential frame encoding process computes the FDCT for a block of source image samples, the samples

shall be level shifted to a signed representation by subtracting 2P — 1 , where P is the precision parameter specified in B2.2.
Thus, when P = 8, the level shift is by 128; when P =12, the level shift is by 2048.
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After a non-differential frame decoding process computes the IDCT and produces a block of reconstructed image samples,

an inverse level shift shall restore the samples to the unsigned representation by adding 21" 1 and clamping the results to
the range 0 to 21" 1.

A32 Orientation of samples for FDCT computation

Figure A.4 shows an image component which has been partitioned into 8 x 8 blocks for the FDCT computations. Figure

A.4 also defines the orientation of the samples within a block by showing the indices used in the FDCT equation of A33.

The definitions of block partitioning and sample orientation also apply to any DCI‘ decoding process and the output
reconstructed image. Any sample added by an encoding process to complete partial MCUs shall be removed by the
decoding process.

 
300 301 o o o 307

s10 311 ’ ' ' 317
. O .

. O C

O . .

S70 371 ° ' ' 377

Figure A.4 — Partition and orientation of 8 x 8 sample blocks

A33 FDCT and IDCT (informative)

The following equations specify the ideal functional definition of the FDCI' and the IDCT.

NOTE—Theseequations containterms which cannotbe represented with perfect accuracy by anyrealimplementation. The
accuracyrequirementsforthecomMmdFDCfandqumfiufimpmedmesamspedfiedeMZOfmisSpedficafithammacy
mqunrementsformecombineddeqliantizafionandDCFproceduresarealsospecifiedinPartZofthisSpecification.

where

otherwise.

FDCT:

lDCI':

7 7
1 (2x+1)u1t (2v+1)wr

S =—CCZ Escos—cos‘—
W 4 u v F0 F0 II 16 16

1 7 7 (2x+l)un (2y+1)m
s)“ = I 2', 2 Cu CV SW cosT cosT

= l/s/E for u,v = 0

= 1 otherwise

A3.4 DCT coefficient quantization (informative) and dequantization (normative)

After the FDCT is computed for a block, each of the 64 resulting DCT coeflicients is quantized by a uniform quantizer.
'Ihe quantizer step size for each coefficient SW is the value of the corresponding element Q", from the quantization table
specified by the frame parameter Tqi (see B22).
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The uniform quantizer is defined by the following equation. Rounding is to the nearest integer:

Sq round
S
Qvu

vu

vu
= F

HG
I
KJ

Sqvu is the quantized DCT coefficient, normalized by the quantizer step size.

NOTE – This equation contains a term which may not be represented with perfect accuracy by any real implementation. The
accuracy requirements for the combined FDCT and quantization procedures are specified in Part 2 of this Specification.

At the decoder, this normalization is removed by the following equation, which defines dequantization:

R Sq Qvu vu vu= ×

NOTE – Depending on the rounding used in quantization, it is possible that the dequantized coefficient may be outside the
expected range.

The relationship among samples, DCT coefficients, and quantization is illustrated in Figure A.5.

A.3.5 Differential DC encoding

After quantization, and in preparation for entropy encoding, the quantized DC coefficient Sq00 is treated separately from
the 63 quantized AC coefficients. The value that shall be encoded is the difference (DIFF) between the quantized DC
coefficient of the current block (DCi which is also designated as Sq00) and that of the previous block of the same
component (PRED):

DIFF DC PREDi= −

A.3.6 Zig-zag sequence

After quantization, and in preparation for entropy encoding, the quantized AC coefficients are converted to the zig-zag
sequence. The quantized DC coefficient (coefficient zero in the array) is treated separately, as defined in A.3.5. The zig-
zag sequence is specified in Figure A.6.

A.4 Point transform

For various procedures data may be optionally divided by a power of 2 by a point transform prior to coding. There are
three processes which require a point transform: lossless coding, lossless differential frame coding in the hierarchical
mode, and successive approximation coding in the progressive DCT mode.

In the lossless mode of operation the point transform is applied to the input samples. In the difference coding of the
hierarchical mode of operation the point transform is applied to the difference between the input component samples and
the reference component samples. In both cases the point transform is an integer divide by 2Pt, where Pt is the value of the
point transform parameter (see B.2.3).

In successive approximation coding the point transform for the AC coefficients is an integer divide by 2Al, where Al is the
successive approximation bit position, low (see B.2.3). The point transform for the DC coefficients is an arithmetic-shift-
right by Al bits. This is equivalent to dividing by 2Pt before the level shift (see A.3.1).

The output of the decoder is rescaled by multiplying by 2Pt. An example of the point transform is given in K.10.
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Figure A5 - Relationship between 8 x 8-block samples and DCT coeficients
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0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Figure A.6 – Zig-zag sequence of quantized DCT coefficients

A.5 Arithmetic procedures in lossless and hierarchical modes of operation

In the lossless mode of operation predictions are calculated with full precision and without clamping of either overflow or
underflow beyond the range of values allowed by the precision of the input. However, the division by two which is part of
some of the prediction calculations shall be approximated by an arithmetic-shift-right by one bit.

The two’s complement differences which are coded in either the lossless mode of operation or the differential frame
coding in the hierarchical mode of operation are calculated modulo 65 536, thereby restricting the precision of these
differences to a maximum of 16 bits. The modulo values are calculated by performing the logical AND operation of the
two’s complement difference with X’FFFF’. For purposes of coding, the result is still interpreted as a 16 bit two’s
complement difference. Modulo 65 536 arithmetic is also used in the decoder in calculating the output from the sum of
the prediction and this two’s complement difference.
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Annex  B

Compressed data formats

(This annex forms an integral part of this Recommendation | International Standard)
   

    

This annex specifies three compressed data formats:

a) the interchange format, specified in B.2 and B.3;
b) the abbreviated format for compressed image data, specified in B.4;
c) the abbreviated format for table-specification data, specified in B.5.

B.1 describes the constituent parts of these formats. B.1.3 and B.1.4 give the conventions for symbols and figures used in
the format specifications.

B.1 General aspects of the compressed data format specifications

Structurally, the compressed data formats consist of an ordered collection of parameters, markers, and entropy-coded data
segments. Parameters and markers in turn are often organized into marker segments. Because all of these constituent parts
are represented with byte-aligned codes, each compressed data format consists of an ordered sequence of 8-bit bytes. For
each byte, a most significant bit (MSB) and a least significant bit (LSB) are defined.

B.1.1 Constituent parts

This subclause gives a general description of each of the constituent parts of the compressed data format.

B.1.1.1 Parameters

Parameters are integers, with values specific to the encoding process, source image characteristics, and other features
selectable by the application. Parameters are assigned either 4-bit, 1-byte, or 2-byte codes. Except for certain optional
groups of parameters, parameters encode critical information without which the decoding process cannot properly
reconstruct the image.

The code assignment for a parameter shall be an unsigned integer of the specified length in bits with the particular value
of the parameter.

For parameters which are 2 bytes (16 bits) in length, the most significant byte shall come first in the compressed data’s
ordered sequence of bytes. Parameters which are 4 bits in length always come in pairs, and the pair shall always be
encoded in a single byte. The first 4-bit parameter of the pair shall occupy the most significant 4 bits of the byte. Within
any 16-, 8-, or 4-bit parameter, the MSB shall come first and LSB shall come last.

B.1.1.2 Markers

Markers serve to identify the various structural parts of the compressed data formats. Most markers start marker segments
containing a related group of parameters; some markers stand alone. All markers are assigned two-byte codes: an X’FF’
byte followed by a byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may optionally be preceded by any
number of fill bytes, which are bytes assigned code X’FF’.

NOTE – Because of this special code-assignment structure, markers make it possible for a decoder to parse the compressed
data and locate its various parts without having to decode other segments of image data.

B.1.1.3 Marker assignments

All markers shall be assigned two-byte codes: a X’FF’ byte followed by a second byte which is not equal to 0 or X’FF’.
The second byte is specified in Table B.1 for each defined marker. An asterisk (*) indicates a marker which stands alone,
that is, which is not the start of a marker segment.
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Table B.1 – Marker code assignments

Code Assignment Symbol Description

Start Of Frame markers, non-differential, Huffman coding

X’FFC0’
X’FFC1’
X’FFC2’
X’FFC3’

SOF0
SOF1
SOF2
SOF3

Baseline DCT
Extended sequential DCT
Progressive DCT
Lossless (sequential)

Start Of Frame markers, differential, Huffman coding

X’FFC5’
X’FFC6’
X’FFC7’

SOF5
SOF6
SOF7

Differential sequential DCT
Differential progressive DCT
Differential lossless (sequential)

Start Of Frame markers, non-differential, arithmetic coding

X’FFC8’
X’FFC9’
X’FFCA’
X’FFCB’

JPG
SOF9
SOF10
SOF11

Reserved for JPEG extensions
Extended sequential DCT
Progressive DCT
Lossless (sequential)

Start Of Frame markers, differential, arithmetic coding

X’FFCD’
X’FFCE’
X’FFCF’

SOF13
SOF14
SOF15

Differential sequential DCT
Differential progressive DCT
Differential lossless (sequential)

Huffman table specification

X’FFC4’ DHT Define Huffman table(s)

Arithmetic coding conditioning specification

X’FFCC’ DAC Define arithmetic coding conditioning(s)

Restart interval termination

X’FFD0’ through X’FFD7’ RSTm* Restart with modulo 8 count “m”

Other markers

X’FFD8’
X’FFD9’
X’FFDA’
X’FFDB’
X’FFDC’
X’FFDD’
X’FFDE’
X’FFDF’
X’FFE0’ through X’FFEF’
X’FFF0’ through X’FFFD’
X’FFFE’

SOI*
EOI*
SOS
DQT
DNL
DRI
DHP
EXP
APPn
JPGn
COM

Start of image
End of image
Start of scan
Define quantization table(s)
Define number of lines
Define restart interval
Define hierarchical progression
Expand reference component(s)
Reserved for application segments
Reserved for JPEG extensions
Comment

Reserved markers

X’FF01’
X’FF02’ through X’FFBF’

TEM*
RES

For temporary private use in arithmetic coding
Reserved
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B.1.1.4 Marker segments

A marker segment consists of a marker followed by a sequence of related parameters. The first parameter in a maflrer
segment is the two—byte length parameter. This length parameter encodes the number of bytes in the marker segment,
including the length parameter and excluding the two-byte marker. The marker segments identified by the SOF and SOS
marker codes are referred to as headers: the frame header and the scan header respectively.

3.1.1.5 Entropy-coded data segments

An entropy-coded data segment contains the output of an entropywoding procedure. It consists of an integer number of
bytes, whether the entropy—coding procedure used is Huffman or arithmetic.

NOTES

1 Maldng entropy-coded segments an integer number of bytes is perfumed as follows: for Huffman coding, l-bits are
used, ifnecessary, to pad the end ofthe compressed data to complete the final byte of a segment. For arithmetic coding, byte alignment
is performed in the procedure which terminates the entropy-coded segment (see D13).

2 Inordertoensurefliatamadrerdoesnotoccurwithinanentropycodedsegment,anyX’FF’ bytegeneratedbyeithera
Huffman or arithmetic encoder, or an X’FF’ byte that was generated by the padding of l-bits described in NOTE 1 above, is followed
by a “sniffed” zero byte (see D.l.6 and F123).

3.1.2 Syntax

In B.2 and 8.3 the interchange format syntax is specified. For the purposes of this Specification, the syntax specification
consists of:

— the required ordering of markers, parameters, and entropy-coded segments;
— identification of optional or conditional constituent parts;
— the name, symbol, and definition of each marker and parameter;
— the allowed values of each parameter;
— any restrictions on the above which are specific to the various coding processes.

The ordering of constituent parts and the identification of which are optional or conditional is specified by the syntax
figures in B.2 and B3. Names, symbols, definitions, allowed values, conditions, and restrictions are specified immediately
below each syntax figure.

B.1.3 Conventions for syntax figures

The syntax figures in B.2 and B.3 are a part of the interchange format specification. The following conventions, illustrated
in Figure 8.1 , apply to these figures:

— parameter/marker indicator: A thin—lined box encloses either a marker or a single parameter;

— segment indicator: A thick-lined box encloses either a marker segment, an entropy-coded data segment,
or combinations of these;

— parameter length indicator: The width of a thin—lined box is proportional to the parameter length (4, 8,
or 16 bits, shown as E, B, and D respectively in Figure 8.1) of the marker or parameter it encloses; the
width of thick—lined boxes is not meaningful;

— optional/conditional indicator: Square brackets indicate that a marker or marker segment is only
optionally or conditionally present in the compressed image data;

— ordering: In the interchange format a parameter or marker shown in a figure precedes all of those shown
to its right, and follows all of those shown to its left;

— entropy-coded data indicator: Angled brackets indicate that the entity enclosed has been entropy
encoded.

I Oflmal I

TWMIS

Figure 3.1 — Syntax notation conventions
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B.1.4 Conventions for symbols, code lengths, and values

Following each syntax figure in B2 and B.3, the symbol, name, and definition for each marker and parameter shown in
the figure are specified. For each parameter, the length and allowed values are also specified in tabular form.

The following conventions apply to symbols for markers and parameters:

— all marker symbols have three upper-case letters, and some also have a subscript. Examples: 501, SOFn;

— all parameter symbols have one upper—case letter; some also have one lower-case letter and some have
subscripts. Examples: Y, Nf, Hi, Tqi.

132 General sequential and progressive syntax

This clause specifies the interchange format syntax which applies to all coding processes for sequential DCf-based,
progressive DCT—based, and lossless modes of operation.

B21 High-level syntax

Figure B.2 specifies the order of the high—level constituent parts of the interchange format for all non—hierarchical
encoding processes specified in this Specification.

Couplessed large daa

 
\ I

,—' Ernropy-codedsegnmto iEntropycodedsegmemM

<MCU1>_<MCU g. <MCU hi <MCU.,>,<MCU..,,>, <MCU ,3,

W0

Figure 3.2 — Syntax for sequential DCT-based, progressive DCT—based,
and lossless modes of operation

The three markers shown in Figure B 2 are defined as follows:

801: Start of image marker — Marks the start of a compressed image represented in the interchange format or
abbreviated format.

E01: End of image marker — Marks the end of a compressed image represented in the interchange format or
abbreviated format.

RSTm: Restart marker — A conditional marker which is placed between entropy-coded segments only if restart
is enabled. There are 8 unique restart markers (m = 0 - 7) which repeat in sequence from 0 to 7, starting with
zero for each scan, to provide a modulo 8 restart interval count.

The top level of Figure 3.2 specifies that the non—hierarchical interchange format shall begin with an $01 marker, shall
contain one frame, and shall end with an EOI marker.
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The second level of Figure B.2 specifies that a frame shall begin with a frame header and shall contain one or more scans.
A frame header may be preceded by one or more table-specification or miscellaneous marker segments as specified in
B.2.4. If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan.

For sequential DCT-based and lossless processes each scan shall contain from one to four image components. If two to
four components are contained within a scan, they shall be interleaved within the scan. For progressive DCT-based
processes each image component is only partially contained within any one scan. Only the first scan(s) for the components
(which contain only DC coefficient data) may be interleaved.

The third level of Figure B.2 specifies that a scan shall begin with a scan header and shall contain one or more entropy-
coded data segments. Each scan header may be preceded by one or more table-specification or miscellaneous marker
segments. If restart is not enabled, there shall be only one entropy-coded segment (the one labeled “last”), and no restart
markers shall be present. If restart is enabled, the number of entropy-coded segments is defined by the size of the image
and the defined restart interval. In this case, a restart marker shall follow each entropy-coded segment except the last one.

The fourth level of Figure B.2 specifies that each entropy-coded segment is comprised of a sequence of entropy-
coded MCUs. If restart is enabled and the restart interval is defined to be Ri, each entropy-coded segment except the last
one shall contain Ri MCUs. The last one shall contain whatever number of MCUs completes the scan.

Figure B.2 specifies the locations where table-specification segments may be present. However, this Specification hereby
specifies that the interchange format shall contain all table-specification data necessary for decoding the compressed
image. Consequently, the required table-specification data shall be present at one or more of the allowed locations.

B.2.2 Frame header syntax

Figure B.3 specifies the frame header which shall be present at the start of a frame. This header specifies the source image
characteristics (see A.1), the components in the frame, and the sampling factors for each component, and specifies the
destinations from which the quantized tables to be used with each component are retrieved.

C1 1 1 1 C C

SOF PLf Y X Nf

H V Tq 2 2 V2H Tq 2 Nf Nf Nf NfH V Tq

n

T SO0850-93/d021

Frame header

Frame component-specification parameters

Component-specification
parameters

Figure B.3 – Frame header syntax

       

The markers and parameters shown in Figure B.3 are defined below. The size and allowed values of each parameter are
given in Table B.2. In Table B.2 (and similar tables which follow), value choices are separated by commas (e.g. 8, 12) and
inclusive bounds are separated by dashes (e.g. 0 - 3).

SOFn:  Start of frame marker – Marks the beginning of the frame parameters. The subscript n identifies whether
the encoding process is baseline sequential, extended sequential, progressive, or lossless, as well as which
entropy encoding procedure is used.

SOF0: Baseline DCT

SOF1: Extended sequential DCT, Huffman coding

SOF2: Progressive DCT, Huffman coding
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SOF3: Lossless (sequential), Huffman coding

SOF9: Extended sequential DCT, arithmetic coding

SOF10: Progressive DCT, arithmetic coding

SOF11: Lossless (sequential), arithmetic coding

Lf:  Frame header length – Specifies the length of the frame header shown in Figure B.3 (see B.1.1.4).

P:  Sample precision – Specifies the precision in bits for the samples of the components in the frame.

Y:   Number of lines – Specifies the maximum number of lines in the source image. This shall be equal to the
number of lines in the component with the maximum number of vertical samples (see A.1.1). Value 0 indicates
that the number of lines shall be defined by the DNL marker and parameters at the end of the first scan (see
B.2.5).

X:   Number of samples per line – Specifies the maximum number of samples per line in the source image. This
shall be equal to the number of samples per line in the component with the maximum number of horizontal
samples (see A.1.1).

Nf:   Number of image components in frame – Specifies the number of source image components in the frame.
The value of Nf shall be equal to the number of sets of frame component specification parameters (Ci, Hi, Vi,
and Tqi) present in the frame header.

Ci:  Component identifier – Assigns a unique label to the ith component in the sequence of frame component
specification parameters. These values shall be used in the scan headers to identify the components in the scan.
The value of Ci shall be different from the values of C1 through Ci − 1.

Hi:  Horizontal sampling factor – Specifies the relationship between the component horizontal dimension
and maximum image dimension X (see A.1.1); also specifies the number of horizontal data units of component
Ci in each MCU, when more than one component is encoded in a scan.

Vi:  Vertical sampling factor – Specifies the relationship between the component vertical dimension and
maximum image dimension Y (see A.1.1); also specifies the number of vertical data units of component Ci in
each MCU, when more than one component is encoded in a scan.

Tqi:  Quantization table destination selector – Specifies one of four possible quantization table destinations
from which the quantization table to use for dequantization of DCT coefficients of component Ci is retrieved. If
the decoding process uses the dequantization procedure, this table shall have been installed in this destination
by the time the decoder is ready to decode the scan(s) containing component Ci. The destination shall not be re-
specified, or its contents changed, until all scans containing Ci have been completed.

Table B.2 – Frame header parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lf 16 8 + 3 × Nf

P 8 8 8, 12 8, 12 2-16

Y 16 0-65 535

X 16 1-65 535

Nf 8 1-255 1-255 1-4 1-255

Ci 8 0-255

Hi 4 1-4

Vi 4 1-4

Tqi 8 0-3 0-3 0-3 0

36 CCITT Rec. T.81 (1992 E)

Page 197 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

B.2.3 Scan header syntax

Figure B.4 specifies the scan header which shall be present at the start of a scan. This header specifies which
component(s) are contained in the scan, specifies the destinations from which the entropy tables to be used with each
component are retrieved, and (for the progressive DCT) which part of the DCT quantized coefficient data is contained in
the scan. For lossless processes the scan parameters specify the predictor and the point transform.

NOTE – If there is only one image component present in a scan, that component is, by definition, non-interleaved. If there is
more than one image component present in a scan, the components present are, by definition, interleaved.

2 2 2

NsTd NsTa

NsCs

SOS Ls Ns Ss Se Ah Al

Cs1 Td1 Ta1 Cs Td Ta

TISO0860-93/d022

Scan header

Component-specification
parameters

Scan component-specification parameters

Figure B.4 – Scan header syntax

       

The marker and parameters shown in Figure B.4 are defined below. The size and allowed values of each parameter are
given in Table B.3.

SOS:  Start of scan marker – Marks the beginning of the scan parameters.

Ls:  Scan header length – Specifies the length of the scan header shown in Figure B.4 (see B.1.1.4).

Ns:  Number of image components in scan – Specifies the number of source image components in the scan. The
value of Ns shall be equal to the number of sets of scan component specification parameters (Csj, Tdj, and Taj)
present in the scan header.

Csj:  Scan component selector – Selects which of the Nf image components specified in the frame parameters
shall be the jth component in the scan. Each Csj shall match one of the Ci values specified in the frame header,
and the ordering in the scan header shall follow the ordering in the frame header. If Ns > 1, the order of
interleaved components in the MCU is Cs1 first, Cs2 second, etc. If Ns > 1, the following restriction shall be
placed on the image components contained in the scan:

j

N

j j

s
H V

=
∑ × ≤

1
10,

where Hj and Vj are the horizontal and vertical sampling factors for scan component j. These sampling factors
are specified in the frame header for component i, where i is the frame component specification index for which
frame component identifier Ci matches scan component selector Csj.

As an example, consider an image having 3 components with maximum dimensions of 512 lines and
512 samples per line, and with the following sampling factors:

Component

Component 1

Component 2 2

0 4 1

1 2

2 2

0 0

1 1

2

H V

H V

H V

= =
= =
= =

,

,

Then the summation of Hj × Vj is (4 × 1) + (1 × 2) + (2 × 2) = 10.

The value of Csj shall be different from the values of Cs1 to Csj – 1.
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Tdj:  DC entropy coding table destination selector – Specifies one of four possible DC entropy coding table
destinations from which the entropy table needed for decoding of the DC coefficients of component Csj is
retrieved. The DC entropy table shall have been installed in this destination (see B.2.4.2 and B.2.4.3) by the
time the decoder is ready to decode the current scan. This parameter specifies the entropy coding table
destination for the lossless processes.

Taj:  AC entropy coding table destination selector – Specifies one of four possible AC entropy coding table
destinations from which the entropy table needed for decoding of the AC coefficients of component Csj is
retrieved. The AC entropy table selected shall have been installed in this destination (see B.2.4.2 and B.2.4.3)
by the time the decoder is ready to decode the current scan. This parameter is zero for the lossless processes.

Ss:  Start of spectral or predictor selection – In the DCT modes of operation, this parameter specifies the first
DCT coefficient in each block in zig-zag order which shall be coded in the scan. This parameter shall be set to
zero for the sequential DCT processes. In the lossless mode of operations this parameter is used to select the
predictor.

Se:  End of spectral selection – Specifies the last DCT coefficient in each block in zig-zag order which shall be
coded in the scan. This parameter shall be set to 63 for the sequential DCT processes. In the lossless mode of
operations this parameter has no meaning. It shall be set to zero.

Ah:   Successive approximation bit position high – This parameter specifies the point transform used in the
preceding scan (i.e. successive approximation bit position low in the preceding scan) for the band of coefficients
specified by Ss and Se. This parameter shall be set to zero for the first scan of each band of coefficients. In the
lossless mode of operations this parameter has no meaning. It shall be set to zero.

Al:  Successive approximation bit position low or point transform – In the DCT modes of operation this
parameter specifies the point transform, i.e. bit position low, used before coding the band of coefficients
specified by Ss and Se. This parameter shall be set to zero for the sequential DCT processes. In the lossless
mode of operations, this parameter specifies the point transform, Pt.

The entropy coding table destination selectors, Tdj and Taj, specify either Huffman tables (in frames using Huffman
coding) or arithmetic coding tables (in frames using arithmetic coding). In the latter case the entropy coding table
destination selector specifies both an arithmetic coding conditioning table destination and an associated statistics area.

Table B.3 – Scan header parameter size and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Ls 16 6 + 2 × Ns

Ns 8 1-4

Csj 8 0-255a)

Tdj 4 0-1 0-3 0-3 0-3

Taj 4 0-1 0-3 0-3 0

Ss 8 0 0 0-63 1-7b)

Se 8 63 63 Ss-63c) 0

Ah 4 0 0 0-13 0

Al 4 0 0 0-13 0-15

a) Csj shall be a member of the set of Ci specified in the frame header.

b) 0 for lossless differential frames in the hierarchical mode (see B.3).

c) 0 if Ss equals zero.
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B24 Table-specification and miscellaneous marker segment syntax

Figure B.5 specifies that, at the places indicated in Figure 32, any of the table—specification segments or miscellaneous
marker segments specified in B.2.4.1 through 3.2.4.6 may be present in any order and with no limit on the number of
segments.

If any table specification for a particular destination occurs in the compressedimage data, it shall replace any previous
table specified for this destination and shall be used whenever this destinationis specifiedin the remaining scans in the
frame or subsequentimages representedIn the abbreviated format for compressedimage data. If a table specification for a
given destination occurs more than once in the compressed image data, each specification shall replace the previous
specification. The quantization table specification shall not be altered between progressive DCI' scans of a given
component.

Tables or niscelhieous maker semen!

['“me'l [mm] ' ' I'm“ 1segment1 W2 I I Wm
usoomeanma

malizatim tx-blespecificaionor

Huttma'l Hie-specificaionor

Anlh‘mic eondtm'ng Mespecitication
Marker segment . 0f _ _ .Restat "lewd ddnmm

or
Comment

0!
Appicahcn (ha

Figure BS — Tables/miscellaneous marker segment syntax

13.2.4.1 Quantization table-specification syntax

Figure B.6 specifies the marker segment which defines one or more quantization tables.

Define quantization tab e segnent

Mm: =fl
Tmama/ma 

Mutipe(t=1 n)

Figure 3.6 - Quantization table syntax

The marker and parameters shown in Figure B6 are defined below. The size and allowed values of each parameter are
given in Table B .4.

DQT: Define quantization table marker — Marks the beginning of quantization table—specification parameters.

Lq: Quantization table definition length — Specifies the length of all quantization table parameters shown in
Figure 3.6 (see B.l.1.4).
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Pq: Quantization table element precision — Specifies the precision of the Qk values. Value 0 indicates 8-bit Q;
values; value 1 indicates 16—bit Q: values. Pq shall be zero for 8 bit sample precision P (see 3.2 .2).

Tq: Quantization table destination identifier — Specifies one of four possible destinations at the decoder into
which the quantization table shall be installed.

(3;: Quantization table element — Specifies the kth element out of 64 elements, where k is the index in the zig—
zag ordering of the BLT coeflicients. The quantization elements shall be specified in zig-zag scan order.

Table BA — Quantization table-specification parameter sizes and values

 

t=1
Undefined

Undefined 
Qt 8, 16 1-255, 1-65 535 Undefined

 
 

The value 11 in Table 8.4 is the number of quantization tables specified in the DQT marker segment.

Once a quann'zation table has been defined for a particular destination, it replaces the previous tables stored in that
destination and shall be used, when referenced, in the remaining scans of the current image and in subsequent images
represented in the abbreviated format for compressed image data. If a table has never been defined for a particular
destination, then when this destination is specified in a frame header, the results are unpredictable.

An 8—bit DCT—based process shall not use a 16—bit precision quantization table.

8.2.4.2 Huffman table-specification syntax

Figure B.7 specifies the market segment which defines one or more Huffman table specifications.

Define Huffman We segmem

: I
DHT Lh Tc : 111 L 1 L 2 Il

k X.  
 

Multiple (t—— 1, n) \\

Synbol—lengfll xsiglmett-paamters \
"\

=~=E=w=lll=w=
moat)

Figure 3.7 - Huffman table syntax
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The marker and parameters shown in Figure B.7 are defined below. The size and allowed values of each parameter are
given in Table B.5.

DHT:   Define Huffman table marker – Marks the beginning of Huffman table definition parameters.

Lh:   Huffman table definition length – Specifies the length of all Huffman table parameters shown in Figure B.7
(see B.1.1.4).

Tc:  Table class – 0 = DC table or lossless table, 1 = AC table.

Th:   Huffman table destination identifier – Specifies one of four possible destinations at the decoder into which
the Huffman table shall be installed.

L i:  Number of Huffman codes of length i – Specifies the number of Huffman codes for each of the 16 possible
lengths allowed by this Specification. Li’s are the elements of the list BITS.

Vi,j :  Value associated with each Huffman code – Specifies, for each i, the value associated with each Huffman
code of length i. The meaning of each value is determined by the Huffman coding model. The Vi,j’s are the
elements of the list HUFFVAL.

Table B.5 – Huffman table specification parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lh 16 2 17
1

+ ∑ +
=t

n

tmc h

Tc 4 0, 1 0

Th 4 0, 1 0-3

Li 8 0-255

Vi  j 8 0-255

The value n in Table B.5 is the number of Huffman tables specified in the DHT marker segment. The value mt is the
number of parameters which follow the 16 Li(t) parameters for Huffman table t, and is given by:

m Lt
i

i= ∑
=1

16

In general, mt is different for each table.

Once a Huffman table has been defined for a particular destination, it replaces the previous tables stored in that
destination and shall be used when referenced, in the remaining scans of the current image and in subsequent images
represented in the abbreviated format for compressed image data. If a table has never been defined for a particular
destination, then when this destination is specified in a scan header, the results are unpredictable.
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B.2.4.3 Arithmetic conditioning table-specification syntax

Figure B.8 specifies the marker segment which defines one or more arithmetic coding conditioning table specifications.
These replace the default arithmetic coding conditioning tables established by the SOI marker for arithmetic coding
processes. (See F.1.4.4.1.4 and F.1.4.4.2.1.)

TcDAC La Tb Cs

T SO0900-93/d026

Define arithmetic conditioning segment

Mu tip e (t = 1   n)

Figure B.8 – Arithmetic conditioning table-specification syntax

       

The marker and parameters shown in Figure B.8 are defined below. The size and allowed values of each parameter are
given in Table B.6.

DAC:   Define arithmetic coding conditioning marker – Marks the beginning of the definition of arithmetic
coding conditioning parameters.

La:   Arithmetic coding conditioning definition length – Specifies the length of all arithmetic coding
conditioning parameters shown in Figure B.8 (see B.1.1.4).

Tc:  Table class –  0 = DC table or lossless table, 1 = AC table.

Tb:   Arithmetic coding conditioning table destination identifier – Specifies one of four possible destinations at
the decoder into which the arithmetic coding conditioning table shall be installed.

Cs:  Conditioning table value – Value in either the AC or the DC (and lossless) conditioning table. A single
value of Cs shall follow each value of Tb. For AC conditioning tables Tc shall be one and Cs shall contain a
value of Kx in the range 1 ≤ Kx ≤ 63. For DC (and lossless) conditioning tables Tc shall be zero and Cs shall
contain two 4-bit parameters, U and L. U and L shall be in the range 0 ≤ L ≤ U ≤ 15 and the value of Cs shall be
L + 16 × U.

The value n in Table B.6 is the number of arithmetic coding conditioning tables specified in the DAC marker segment.
The parameters L and U are the lower and upper conditioning bounds used in the arithmetic coding procedures defined
for DC coefficient coding and lossless coding. The separate value range 1-63 listed for DCT coding is the Kx conditioning
used in AC coefficient coding.

Table B.6 – Arithmetic coding conditioning table-specification parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

La 16 Undefined 2 + 2 × n

Tc 4 Undefined 0, 1 0

Tb 4 Undefined 0-3

Cs 8 Undefined 0-255 (Tc = 0), 1-63 (Tc = 1) 0-255
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B.2.4.4 Restart interval definition syntax

Figure B.9 specifies the marker segment which defines the restart interval.

DRI Ri

T SO0910-93/d027

Lr

Define restart interval segment

Figure B.9 – Restart interval definition syntax

       

The marker and parameters shown in Figure B.9 are defined below. The size and allowed values of each parameter are
given in Table B.7.

DRI:   Define restart interval marker – Marks the beginning of the parameters which define the restart interval.

Lr:   Define restart interval segment length – Specifies the length of the parameters in the DRI segment shown in
Figure B.9 (see B.1.1.4).

Ri:  Restart interval – Specifies the number of MCU in the restart interval.

In Table B.7 the value n is the number of rows of MCU in the restart interval. The value MCUR is the number of MCU
required to make up one line of samples of each component in the scan. The SOI marker disables the restart intervals. A
DRI marker segment with Ri nonzero shall be present to enable restart interval processing for the following scans. A DRI
marker segment with Ri equal to zero shall disable restart intervals for the following scans.

Table B.7 – Define restart interval segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lr 16 4

Ri 16 0-65 535 n × MCUR

B.2.4.5 Comment syntax

Figure B.10 specifies the marker segment structure for a comment segment.

COM Lc

T SO00920-93/d028

Cm
1

. . . Cm
Lc-2

Comment segment

Figure B.10 – Comment segment syntax
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The marker and parameters shown in Figure B.10 are defined below. The size and allowed values of each parameter are
given in Table B.8.

COM:  Comment marker – Marks the beginning of a comment.

Lc:   Comment segment length – Specifies the length of the comment segment shown in Figure B.10
(see B.1.1.4).

Cmi:  Comment byte – The interpretation is left to the application.

Table B.8 – Comment segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lc 16 2-65 535

Cmi 8 0-255

B.2.4.6 Application data syntax

Figure B.11 specifies the marker segment structure for an application data segment.

1 . . .APP n Lp Ap Ap Lp-2

TISO0930-93/d029

Application data segment

Figure B.11 – Application data syntax

       

The marker and parameters shown in Figure B.11 are defined below. The size and allowed values of each parameter are
given in Table B.9.

APPn:  Application data marker – Marks the beginning of an application data segment.

Lp:   Application data segment length – Specifies the length of the application data segment shown in
Figure B.11 (see B.1.1.4).

Api:  Application data byte – The interpretation is left to the application.

The APPn (Application) segments are reserved for application use. Since these segments may be defined differently for
different applications, they should be removed when the data are exchanged between application environments.

Table B.9 – Application data segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Lp 16 2-65 535

Api 8 0-255
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B.2.5 Define number of lines syntax

Figure B.12 specifies the marker segment for defining the number of lines. The DNL (Define Number of Lines) segment
provides a mechanism for defining or redefining the number of lines in the frame (the Y parameter in the frame header) at
the end of the first scan. The value specified shall be consistent with the number of MCU-rows encoded in the first scan.
This segment, if used, shall only occur at the end of the first scan, and only after coding of an integer number of MCU-
rows. This marker segment is mandatory if the number of lines (Y) specified in the frame header has the value zero.

DNL Ld NL

T SO0940-93/d030

Define number of lines segment

Figure B.12 – Define number of lines syntax

       

The marker and parameters shown in Figure B.12 are defined below. The size and allowed values of each parameter are
given in Table B.10.

DNL:   Define number of lines marker – Marks the beginning of the define number of lines segment.

Ld:   Define number of lines segment length – Specifies the length of the define number of lines segment shown
in Figure B.12 (see B.1.1.4).

NL:   Number of lines – Specifies the number of lines in the frame (see definition of Y in B.2.2).

Table B.10 – Define number of lines segment parameter sizes and values

Values

Parameter Size (bits) Sequential DCT Progressive DCT Lossless

Baseline Extended

Ld 16 4

NL 16 1-65 535a)

a) The value specified shall be consistent with the number of lines coded at the point where the DNL segment
terminates the compressed data segment.

B.3 Hierarchical syntax

B.3.1 High level hierarchical mode syntax

Figure B.13 specifies the order of the high level constituent parts of the interchange format for hierarchical encoding
processes.
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SOI EOI

T SO0950-93/d031

Compressed image data

[Tab es/misc ] DHP segment Frame 1 Framelast

Figure B.13 – Syntax for the hierarchical mode of operation

       

Hierarchical mode syntax requires a DHP marker segment that appears before the non-differential frame or frames. The
hierarchical mode compressed image data may include EXP marker segments and differential frames which shall follow
the initial non-differential frame. The frame structure in hierarchical mode is identical to the frame structure in non-
hierarchical mode.

The non-differential frames in the hierarchical sequence shall use one of the coding processes specified for SOFn markers:
SOF0, SOF1, SOF2, SOF3, SOF9, SOF10 and SOF11. The differential frames shall use one of the processes specified for
SOF5, SOF6, SOF7, SOF13, SOF14 and SOF15. The allowed combinations of SOF markers within one hierarchical
sequence are specified in Annex J.

The sample precision (P) shall be constant for all frames and have the identical value as that coded in the DHP marker
segment. The number of samples per line (X) for all frames shall not exceed the value coded in the DHP marker segment.
If the number of lines (Y) is non-zero in the DHP marker segment, then the number of lines for all frames shall not exceed
the value in the DHP marker segment.

B.3.2 DHP segment syntax

The DHP segment defines the image components, size, and sampling factors for the completed hierarchical sequence of
frames. The DHP segment shall precede the first frame; a single DHP segment shall occur in the compressed image data.

The DHP segment structure is identical to the frame header syntax, except that the DHP marker is used instead of the
SOFn marker. The figures and description of B.2.2 then apply, except that the quantization table destination selector
parameter shall be set to zero in the DHP segment.

B.3.3 EXP segment syntax

Figure B.14 specifies the marker segment structure for the EXP segment. The EXP segment shall be present if (and only
if) expansion of the reference components is required either horizontally or vertically. The EXP segment parameters apply
only to the next frame (which shall be a differential frame) in the image. If required, the EXP segment shall be one of the
table-specification segments or miscellaneous marker segments preceding the frame header; the EXP segment shall not be
one of the table-specification segments or miscellaneous marker segments preceding a scan header or a DHP marker
segment.

T SO0960-93/d032

EXP Le Eh Ev

Expand segment

Figure B.14 – Syntax of the expand segment
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The marker and parameters shown in Figure B.14 are defined below. The size and allowed values of each parameter are
given in Table B.l 1.

EXP: Expand reference components marker—Marks the beginning of the expand reference components
segment.

Le: Expand reference components segment length — Specifies the length of the expand reference components
segment (see B.1.1.4).

Eh: Expand horizontally — If one, the reference components shall be expanded horizontally by a factor of two.
If horizontal expansion is not required, the value shall be zero.

Ev: Expand vertically—If one, the reference components shall be expanded vertically by a factor of two.
If vertical expansion is not required, the value shall be zero.

Both Eh and Ev shall be one if expansion is required both horizontally and vertically.

Table 3.11 — Expand segment parameter sizes and values

 
 

B.4 Abbreviated format for compressed image data

Figure B.2 shows the high-level constituent parts of the interchange format. This format includes all table specifications
required for decoding. If an application environment provides methods for table specification other than by means of the
compressed image data, some or all of the table specifications may be omitted. Compressed image data which is missing

any table specification data required for decoding has the abbreviated format.

B5 Abbreviated format for table-specification data

Figure 8.2 shows the high-level constituent parts of the interchange format. If no fi'ames are present in the compressed
image data, the only purpose of the compressed image data is to convey table specifications or miscellaneous marker
segments defined in 8.2.4.1, 8.2.4.2, B.2.4.5, and B.2.4.6. In this case the compressed image data has the abbreviated
format for table specification data (see Figure B .15).

Connecaed'rrmedata

73009709311033

Figure 3.15 — Abbreviated format for table-specification data syntax

B.6 Summary

The order of the constituent parts of interchange format and all marker segment structures is summarized in Figures B.16
and B.17. Note that in Figure B.16 double-lined boxes enclose marker segments. In Figures B.16 and B.17 thick-lined
boxes enclose only markers.

The EXP segment can be mixed with the other tables/miscellaneous marker segments preceding the frame header but not
with the tables/miscellaneous marker segments preceding the DI-IP segment or the scan header.
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Annex  C

Huffman table specification

(This annex forms an integral part of this Recommendation | International Standard)

A Huffman coding procedure may be used for entropy coding in any of the coding processes. Coding models for
Huffman encoding are defined in Annexes F, G, and H. In this Annex, the Huffman table specification is defined.

Huffman tables are specified in terms of a 16-byte list (BITS) giving the number of codes for each code length from
1 to 16. This is followed by a list of the 8-bit symbol values (HUFFVAL), each of which is assigned a Huffman code. The
symbol values are placed in the list in order of increasing code length. Code lengths greater than 16 bits are not allowed.
In addition, the codes shall be generated such that the all-1-bits code word of any length is reserved as a prefix for longer
code words.

NOTE – The order of the symbol values within HUFFVAL is determined only by code length. Within a given code length
the ordering of the symbol values is arbitrary.

This annex specifies the procedure by which the Huffman tables (of Huffman code words and their corresponding 8-bit
symbol values) are derived from the two lists (BITS and HUFFVAL) in the interchange format. However, the way in
which these lists are generated is not specified. The lists should be generated in a manner which is consistent with the
rules for Huffman coding, and it shall observe the constraints discussed in the previous paragraph. Annex K contains an
example of a procedure for generating lists of Huffman code lengths and values which are in accord with these rules.

NOTE – There is no requirement in this Specification that any encoder or decoder shall implement the procedures in
precisely the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the function
specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it
satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in
Part 2.

C.1 Marker segments for Huffman table specification

The DHT marker identifies the start of Huffman table definitions within the compressed image data. B.2.4.2 specifies the
syntax for Huffman table specification.

C.2 Conversion of Huffman table specifications to tables of codes and code lengths

Conversion of Huffman table specifications to tables of codes and code lengths uses three procedures. The first procedure
(Figure C.1) generates a table of Huffman code sizes. The second procedure (Figure C.2) generates the Huffman codes
from the table built in Figure C.1. The third procedure (Figure C.3) generates the Huffman codes in symbol value order.

Given a list BITS (1 to 16) containing the number of codes of each size, and a list HUFFVAL containing the symbol
values to be associated with those codes as described above, two tables are generated. The HUFFSIZE table contains a list
of code lengths; the HUFFCODE table contains the Huffman codes corresponding to those lengths.

Note that the variable LASTK is set to the index of the last entry in the table.
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TISO1000-93/d036

Generate_size_table

K = 0
I = 1
J = 1

No

Yes

HUFFSIZE(K) = I
K = K + 1
J = J + 1

J > BITS(I)
?

I = I + 1
J = 1

No I > 16
?

Yes

HUFFSIZE(K) = 0
LASTK = K

Done

Figure C.1 – Generation of table of Huffman code sizes

        

CCITT Rec. T.81 (1992 E) 51

Page 212 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

A Huffman code table, HUFFCODE, containing a code for each size in HUFFSIZE is generated by the procedure in
Figure C.2. The notation “SLL CODE 1” in Figure C.2 indicates a shift-left-logical of CODE by one bit position.

T SO1010-93/d037

Generate_code_table

K = 0
CODE = 0
SI = HUFFSIZE(0)

HUFFCODE(K) = CODE
CODE = CODE + 1
K = K + 1

Yes

No

HUFFSIZE(K) = SI
?

Yes

No

HUFFSIZE(K) = 0
?

Done

NoYes

CODE = SLL CODE 1
SI = SI + 1

HUFFSIZE(K) = SI
?

Figure C.2 – Generation of table of Huffman codes

       

Two tables, HUFFCODE and HUFFSIZE, have now been generated. The entries in the tables are ordered according to
increasing Huffman code numeric value and length.

The encoding procedure code tables, EHUFCO and EHUFSI, are created by reordering the codes specified by
HUFFCODE and HUFFSIZE according to the symbol values assigned to each code in HUFFVAL.
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Figure C.3 illustrates this ordering procedure.

TISO1020-93/d038

Order_codes

K = 0

Yes

No

K < LASTK
?

Done

I = HUFFVAL(K)
EHUFCO(I) = HUFFCODE(K)
EHUFSI(I) = HUFFSIZE(K)
K = K + 1

Figure C.3 – Ordering procedure for encoding procedure code tables

       

C.3 Bit ordering within bytes

The root of a Huffman code is placed toward the MSB (most-significant-bit) of the byte, and successive bits are placed in
the direction MSB to LSB (least-significant-bit) of the byte. Remaining bits, if any, go into the next byte following the
same rules.

Integers associated with Huffman codes are appended with the MSB adjacent to the LSB of the preceding Huffman code.
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Annex  D

Arithmetic coding
(This annex forms an integral part of this Recommendation | International Standard)

An adaptive binary arithmetic coding procedure may be used for entropy coding in any of the coding processes except
the baseline sequential process. Coding models for adaptive binary arithmetic coding are defined in Annexes F, G,
and H. In this annex the arithmetic encoding and decoding procedures used in those models are defined.

In K.4 a simple test example is given which should be helpful in determining if a given implementation is correct.

NOTE – There is no requirement in this Specification that any encoder or decoder shall implement the procedures in
precisely the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the function
specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it
satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in
Part 2.

D.1 Arithmetic encoding procedures

Four arithmetic encoding procedures are required in a system with arithmetic coding (see Table D.1).

Table D.1 – Procedures for binary arithmetic encoding

Procedure Purpose

Code_0(S) Code a “0” binary decision with context-index S

Code_1(S) Code a “1” binary decision with context-index S

Initenc Initialize the encoder

Flush Terminate entropy-coded segment

The “Code_0(S)”and “Code_1(S)” procedures code the 0-decision and 1-decision respectively; S is a context-index
which identifies a particular conditional probability estimate used in coding the binary decision. The “Initenc” procedure
initializes the arithmetic coding entropy encoder. The “Flush” procedure terminates the entropy-coded segment in
preparation for the marker which follows.

D.1.1 Binary arithmetic encoding principles

The arithmetic coder encodes a series of binary symbols, zeros and ones, each symbol representing one possible result of a
binary decision.

Each “binary decision” provides a choice between two alternatives. The binary decision might be between positive and
negative signs, a magnitude being zero or nonzero, or a particular bit in a sequence of binary digits being zero or one.

The output bit stream (entropy-coded data segment) represents a binary fraction which increases in precision as bytes are
appended by the encoding process.

D.1.1.1 Recursive interval subdivision

Recursive probability interval subdivision is the basis for the binary arithmetic encoding procedures. With each binary
decision the current probability interval is subdivided into two sub-intervals, and the bit stream is modified (if necessary)
so that it points to the base (the lower bound) of the probability sub-interval assigned to the symbol which occurred.

In the partitioning of the current probability interval into two sub-intervals, the sub-interval for the less probable symbol
(LPS) and the sub-interval for the more probable symbol (MPS) are ordered such that usually the MPS sub-interval is
closer to zero. Therefore, when the LPS is coded, the MPS sub-interval size is added to the bit stream. This coding
convention requires that symbols be recognized as either MPS or LPS rather than 0 or 1. Consequently, the size of the
LPS sub-interval and the sense of the MPS for each decision must be known in order to encode that decision.
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The subdivision of the current probability interval would ideally require a multiplication of the interval by the probability
estimate for the LPS. Because this subdivision is done approximately, it is possible for the LPS sub-interval to be larger
than the MPS sub-interval. When that happens a “conditional exchange” interchanges the assignment of the sub-intervals
such that the MPS is given the larger sub-interval.

Since the encoding procedure involves addition of binary fractions rather than concatenation of integer code words, the
more probable binary decisions can sometimes be coded at a cost of much less than one bit per decision.

D.1.1.2 Conditioning of probability estimates

An adaptive binary arithmetic coder requires a statistical model – a model for selecting conditional probability estimates to
be used in the coding of each binary decision. When a given binary decision probability estimate is dependent on a
particular feature or features (the context) already coded, it is “conditioned” on that feature. The conditioning of
probability estimates on previously coded decisions must be identical in encoder and decoder, and therefore can use only
information known to both.

Each conditional probability estimate required by the statistical model is kept in a separate storage location or “bin”
identified by a unique context-index S. The arithmetic coder is adaptive, which means that the probability estimates at
each context-index are developed and maintained by the arithmetic coding system on the basis of prior coding decisions
for that context-index.

D.1.2 Encoding conventions and approximations

The encoding procedures use fixed precision integer arithmetic and an integer representation of fractional values in which
X’8000’ can be regarded as the decimal value 0.75. The probability interval, A, is kept in the integer
range X’8000’ ≤ A < X’10000’ by doubling it whenever its integer value falls below X’8000’. This is equivalent to
keeping A in the decimal range 0.75 ≤ A < 1.5. This doubling procedure is called renormalization.

The code register, C, contains the trailing bits of the bit stream. C is also doubled each time A is doubled. Periodically
– to keep C from overflowing – a byte of data is removed from the high order bits of the C-register and placed in the
entropy-coded segment.

Carry-over into the entropy-coded segment is limited by delaying X’FF’ output bytes until the carry-over is resolved. Zero
bytes are stuffed after each X’FF’ byte in the entropy-coded segment in order to avoid the accidental generation of
markers in the entropy-coded segment.

Keeping A in the range 0.75 ≤ A < 1.5 allows a simple arithmetic approximation to be used in the probability interval
subdivision. Normally, if the current estimate of the LPS probability for context-index S is Qe(S), precise calculation of
the sub-intervals would require:

Qe(S) × A Probability sub-interval for the LPS;
A – (Qe(S) × A) Probability sub-interval for the MPS.

Because the decimal value of A is of order unity, these can be approximated by

Qe(S) Probability sub-interval for the LPS;
A – Qe(S) Probability sub-interval for the MPS.

Whenever the LPS is coded, the value of A – Qe(S) is added to the code register and the probability interval is reduced to
Qe(S). Whenever the MPS is coded, the code register is left unchanged and the interval is reduced to A – Qe(S). The
precision range required for A is then restored, if necessary, by renormalization of both A and C.

With the procedure described above, the approximations in the probability interval subdivision process can sometimes
make the LPS sub-interval larger than the MPS sub-interval. If, for example, the value of Qe(S) is 0.5 and A is at the
minimum allowed value of 0.75, the approximate scaling gives one-third of the probability interval to the MPS and two-
thirds to the LPS. To avoid this size inversion, conditional exchange is used. The probability interval is subdivided using
the simple approximation, but the MPS and LPS sub-interval assignments are exchanged whenever the LPS sub-interval is
larger than the MPS sub-interval. This MPS/LPS conditional exchange can only occur when a renormalization will be
needed.

Each binary decision uses a context. A context is the set of prior coding decisions which determine the context-index, S,
identifying the probability estimate used in coding the decision.

Whenever a renormalization occurs, a probability estimation procedure is invoked which determines a new probability
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative
probabilities of renormalization after coding of LPS and MPS provide, by means of a table-based probability estimation
state machine, a direct estimate of the probabilities.
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D.1.3 Encoder code register conventions

The flow charts in this annex assume the register structures for the encoder as shown in Table D.2.

Table D.2 – Encoder register connections

MSB LSB

C-register 0000cbbb, bbbbbsss, xxxxxxxx, xxxxxxxx

A-register 00000000, 00000000, aaaaaaaa, aaaaaaaa

The “a” bits are the fractional bits in the A-register (the current probability interval value) and the “x” bits are the
fractional bits in the code register. The “s” bits are optional spacer bits which provide useful constraints on carry-over, and
the “b” bits indicate the bit positions from which the completed bytes of data are removed from the C-register. The “c” bit
is a carry bit. Except at the time of initialization, bit 15 of the A-register is always set and bit 16 is always clear (the LSB
is bit 0).

These register conventions illustrate one possible implementation. However, any register conventions which allow
resolution of carry-over in the encoder and which produce the same entropy-coded segment may be used. The handling of
carry-over and the byte stuffing following X’FF’ will be described in a later part of this annex.

D.1.4 Code_1(S) and Code_0(S) procedures

When a given binary decision is coded, one of two possibilities occurs – either a 1-decision or a 0-decision is coded.
Code_1(S) and Code_0(S) are shown in Figures D.1 and D.2. The Code_1(S) and Code_0(S) procedures use probability
estimates with a context-index S. The context-index S is determined by the statistical model and is, in general, a function
of the previous coding decisions; each value of S identifies a particular conditional probability estimate which is used in
encoding the binary decision.

TISO1800-93/d039

Code_1(S)

No YesMPS(S) = 1
?

Code_LPS(S) Code_MPS(S)

Done

Figure D.1 – Code_1(S) procedure
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T SO1030-93/d040

Code_0(S)

MSP(S) = 0
?

No Yes

Code_LPS(S) Code_MPS(S)

Done

Figure D.2 – Code_0(S) procedure

        

The context-index S selects a storage location which contains Index(S), an index to the tables which make up the
probability estimation state machine. When coding a binary decision, the symbol being coded is either the more probable
symbol or the less probable symbol. Therefore, additional information is stored at each context-index identifying the sense
of the more probable symbol, MPS(S).

For simplicity, the flow charts in this subclause assume that the context storage for each context-index S has an additional
storage field for Qe(S) containing the value of Qe(Index(S)). If only the value of Index(S) and MPS(S) are stored, all
references to Qe(S) should be replaced by Qe(Index(S)).

The Code_LPS(S) procedure normally consists of the addition of the MPS sub-interval A – Qe(S) to the bit stream and a
scaling of the interval to the sub-interval, Qe(S). It is always followed by the procedures for obtaining a new LPS
probability estimate (Estimate_Qe(S)_after_LPS) and renormalization (Renorm_e) (see Figure D.3).

However, in the event that the LPS sub-interval is larger than the MPS sub-interval, the conditional MPS/LPS exchange
occurs and the MPS sub-interval is coded.

The Code_MPS(S) procedure normally reduces the size of the probability interval to the MPS sub-interval. However, if
the LPS sub-interval is larger than the MPS sub-interval, the conditional exchange occurs and the LPS sub-interval is
coded instead. Note that conditional exchange cannot occur unless the procedures for obtaining a new LPS probability
estimate (Estimate_Qe(S)_after_MPS) and renormalization (Renorm_e) are required after the coding of the symbol (see
Figure D.4).

CCITT Rec. T.81 (1992 E) 57

Page 218 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

T SO1040-93/d041

Code_LPS(S)

A = A – Qe(S)

Yes

No

A < Qe(S)
?

C = C + A
A = Qe(S)

Estimate_Qe(S)_after_LPS
Renorm_e

Done

Figure D.3 – Code_LPS(S) procedure with conditional MPS/LPS exchange
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T SO1050-93/d042

Code_MPS(S)

A = A – Qe(S)

No

No

Yes

Yes

A < X’8000’
?

A < Qe(S)
?

C = C + A
A = Qe(S)

Estimate_Qe(S)_after_MPS
Renorm_e

Done

Figure D.4 – Code_MPS(S) procedure with conditional MPS/LPS exchange

       

D.1.5 Probability estimation in the encoder

D.1.5.1 Probability estimation state machine

The probability estimation state machine consists of a number of sequences of probability estimates. These sequences are
interlinked in a manner which provides probability estimates based on approximate symbol counts derived from the
arithmetic coder renormalization. Some of these sequences are used during the initial “learning” stages of probability
estimation; the rest are used for “steady state” estimation.

Each entry in the probability estimation state machine is assigned an index, and each index has associated with it a
Qe value and two Next_Index values. The Next_Index_MPS gives the index to the new probability estimate after an MPS
renormalization; the Next_Index_LPS gives the index to the new probability estimate after an LPS renormalization. Note
that both the index to the estimation state machine and the sense of the MPS are kept for each context-index S. The sense
of the MPS is changed whenever the entry in the Switch_MPS is one.

The probability estimation state machine is given in Table D.3. Initialization of the arithmetic coder is always with
an MPS sense of zero and a Qe index of zero in Table D.3.

The Qe values listed in Table D.3 are expressed as hexadecimal integers. To approximately convert the 15-bit integer
representation of Qe to a decimal probability, divide the Qe values by (4/3) × (X’8000’).
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Table D.3 – Qe values and probability estimation state machine

Index Qe Next_ Index Switch Index Qe Next_ Index Switch

_Value _LPS _MPS _MPS _Value _LPS _MPS _MPS

0 X’5A1D’ 1 1 1 57 X’01A4’ 55 58 0
1 X’2586’ 14 2 0 58 X’0160’ 56 59 0
2 X’1114’ 16 3 0 59 X’0125’ 57 60 0
3 X’080B’ 18 4 0 60 X’00F6’ 58 61 0
4 X’03D8’ 20 5 0 61 X’00CB’ 59 62 0
5 X’01DA’ 23 6 0 62 X’00AB’ 61 63 0
6 X’00E5’ 25 7 0 63 X’008F’ 61 32 0
7 X’006F’ 28 8 0 64 X’5B12’ 65 65 1
8 X’0036’ 30 9 0 65 X’4D04’ 80 66 0
9 X’001A’ 33 10 0 66 X’412C’ 81 67 0

10 X’000D’ 35 11 0 67 X’37D8’ 82 68 0
11 X’0006’ 9 12 0 68 X’2FE8’ 83 69 0
12 X’0003’ 10 13 0 69 X’293C’ 84 70 0
13 X’0001’ 12 13 0 70 X’2379’ 86 71 0
14 X’5A7F’ 15 15 1 71 X’1EDF’ 87 72 0
15 X’3F25’ 36 16 0 72 X’1AA9’ 87 73 0
16 X’2CF2’ 38 17 0 73 X’174E’ 72 74 0
17 X’207C’ 39 18 0 74 X’1424’ 72 75 0
18 X’17B9’ 40 19 0 75 X’119C’ 74 76 0
19 X’1182’ 42 20 0 76 X’0F6B’ 74 77 0
20 X’0CEF’ 43 21 0 77 X’0D51’ 75 78 0
21 X’09A1’ 45 22 0 78 X’0BB6’ 77 79 0
22 X’072F’ 46 23 0 79 X’0A40’ 77 48 0
23 X’055C’ 48 24 0 80 X’5832’ 80 81 1
24 X’0406’ 49 25 0 81 X’4D1C’ 88 82 0
25 X’0303’ 51 26 0 82 X’438E’ 89 83 0
26 X’0240’ 52 27 0 83 X’3BDD’ 90 84 0
27 X’01B1’ 54 28 0 84 X’34EE’ 91 85 0
28 X’0144’ 56 29 0 85 X’2EAE’ 92 86 0
29 X’00F5’ 57 30 0 86 X’299A’ 93 87 0
30 X’00B7’ 59 31 0 87 X’2516’ 86 71 0
31 X’008A’ 60 32 0 88 X’5570’ 88 89 1
32 X’0068’ 62 33 0 89 X’4CA9’ 95 90 0
33 X’004E’ 63 34 0 90 X’44D9’ 96 91 0
34 X’003B’ 32 35 0 91 X’3E22’ 97 92 0
35 X’002C’ 33 9 0 92 X’3824’ 99 93 0
36 X’5AE1’ 37 37 1 93 X’32B4’ 99 94 0
37 X’484C’ 64 38 0 94 X’2E17’ 93 86 0
38 X’3A0D’ 65 39 0 95 X’56A8’ 95 96 1
39 X’2EF1’ 67 40 0 96 X’4F46’ 101 97 0
40 X’261F’ 68 41 0 97 X’47E5’ 102 98 0
41 X’1F33’ 69 42 0 98 X’41CF’ 103 99 0
42 X’19A8’ 70 43 0 99 X’3C3D’ 104 100 0
43 X’1518’ 72 44 0 100 X’375E’ 99 93 0
44 X’1177’ 73 45 0 101 X’5231’ 105 102 0
45 X’0E74’ 74 46 0 102 X’4C0F’ 106 103 0
46 X’0BFB’ 75 47 0 103 X’4639’ 107 104 0
47 X’09F8’ 77 48 0 104 X’415E’ 103 99 0
48 X’0861’ 78 49 0 105 X’5627’ 105 106 1
49 X’0706’ 79 50 0 106 X’50E7’ 108 107 0
50 X’05CD’ 48 51 0 107 X’4B85’ 109 103 0
51 X’04DE’ 50 52 0 108 X’5597’ 110 109 0
52 X’040F’ 50 53 0 109 X’504F’ 111 107 0
53 X’0363’ 51 54 0 110 X’5A10’ 110 111 1
54 X’02D4’ 52 55 0 111 X’5522’ 112 109 0
55 X’025C’ 53 56 0 112 X’59EB’ 112 111 1
56 X’01F8’ 54 57 0
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D.1.5.2 Renormalization driven estimation

The change in state in Table D.3 occurs only when the arithmetic coder interval register is renormalized. This must always
be done after coding an LPS, and whenever the probability interval register is less than X'8000' (0.75 in decimal notation)
after coding an MPS.

When the LPS renormalization is required, Next_Index_LPS gives the new index for the LPS probability estimate. When
the MPS renormalization is required, Next_Index_MPS gives the new index for the LPS probability estimate. If
Switch_MPS is 1 for the old index, the MPS symbol sense must be inverted after an LPS.

D.1.5.3 Estimation following renormalization after MPS

The procedure for estimating the probability on the MPS renormalization path is given in Figure D.5. Index(S) is part of
the information stored for context-index S. The new value of Index(S) is obtained from Table D.3 from the column labeled
Next_Index_MPS, as that is the next index after an MPS renormalization. This next index is stored as the new value of
Index(S) in the context storage at context-index S, and the value of Qe at this new Index(S) becomes the new Qe(S).
MPS(S) does not change.

TISO1060-93/d043

Figure D.5 – Probability estimation on MPS renormalization path

Estimate_Qe(S)_
   after_MPS

I = Index(S)
I = Next_Index_MPS(I)
Index(S) = I
Qe(S) = Qe_Value(I)

Done
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D.1.5.4 Estimation following renormalization after LPS

The procedure for estimating the probability on the LPS renormalization path is shown in Figure D.6. The procedure is
similar to that of Figure D.5 except that when Switch_MPS(I) is 1, the sense of MPS(S) must be inverted.

TISO1070-93/d044

Figure D.6 – Probability estimation on LPS renormalization path

Estimate_Qe(S)_
  after_LPS

I = Index(S)

No YesSwitch_MPS(I) = 1
?

I = Next_Index_LPS(I)
Index(S) = I
Qe(S) = Qe_Value(I)

MPS(S) = 1 – MPS(S)

Done

       

D.1.6 Renormalization in the encoder

The Renorm_e procedure for the encoder renormalization is shown in Figure D.7. Both the probability interval register A
and the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT; when CT is zero,
a byte of compressed data is removed from C by the procedure Byte_out and CT is reset to 8. Renormalization continues
until A is no longer less than X’8000’.
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T SO1080-93/d045

Renorm e

A = SLL A 1
C = SLL C 1
CT = CT  1

No

Yes

Done

CT = 8

Byte out

No

Yes

A < X 8000
?

CT = 0
?

Figure D.7  –  Encoder renormalization procedure

       

The Byte_out procedure used in Renorm_e is shown in Figure D.8. This procedure uses byte-stuffing procedures which
prevent accidental generation of markers by the arithmetic encoding procedures. It also includes an example of a
procedure for resolving carry-over. For simplicity of exposition, the buffer holding the entropy-coded segment is assumed
to be large enough to contain the entire segment.

In Figure D.8 BP is the entropy-coded segment pointer and B is the compressed data byte pointed to by BP. T in Byte_out
is a temporary variable which is used to hold the output byte and carry bit. ST is the stack counter which is used to count
X’FF’ output bytes until any carry-over through the X’FF’ sequence has been resolved. The value of ST rarely exceeds 3.
However, since the upper limit for the value of ST is bounded only by the total entropy-coded segment size, a precision of
32 bits is recommended for ST.

Since large values of ST represent a latent output of compressed data, the following procedure may be needed in high
speed synchronous encoding systems for handling the burst of output data which occurs when the carry is resolved.
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T SO1090-93/d046

Byte out

T = SRL C 19

Yes

No

B = B + 1

Stuff 0

ST = ST + 1

Yes No

Output stacked
   zeros

BP = BP + 1
B = T

BP = BP + 1
B = T

C = C AND X 7FFFF

Done

Output stacked
   X FF s

T > X FF
?

T = X FF
?

Figure D.8  –  Byte_out procedure for encoder

       

When the stack count reaches an upper bound determined by output channel capacity, the stack is emptied and the stacked
X’FF’ bytes (and stuffed zero bytes) are added to the compressed data before the carry-over is resolved. If a carry-over
then occurs, the carry is added to the final stuffed zero, thereby converting the final X’FF00’ sequence to the X’FF01’
temporary private marker. The entropy-coded segment must then be post-processed to resolve the carry-over and remove
the temporary marker code. For any reasonable bound on ST this post processing is very unlikely.

Referring to Figure D.8, the shift of the code register by 19 bits aligns the output bits with the low order bits of T. The
first test then determines if a carry-over has occurred. If so, the carry must be added to the previous output byte before
advancing the segment pointer BP. The Stuff_0 procedure stuffs a zero byte whenever the addition of the carry to the data
already in the entropy-coded segments creates a X’FF’ byte. Any stacked output bytes – converted to zeros by the carry-
over – are then placed in the entropy-coded segment. Note that when the output byte is later transferred from T to the
entropy-coded segment (to byte B), the carry bit is ignored if it is set.
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If a carry has not occurred, the output byte is tested to see if it is X’FF’. If so, the stack count ST is incremented, as the
output must be delayed until the carry-over is resolved. If not, the carry-over has been resolved, and any stacked X’FF’
bytes must then be placed in the entropy-coded segment. Note that a zero byte is stuffed following each X’FF’.

The procedures used by Byte_out are defined in Figures D.9 through D.11.

TISO1810-93/d047

Yes

No

Done
BP = BP + 1
B = 0
ST = ST  1

Output stacked
   zeros

ST = 0
?

Figure D.9  –  Output_stacked_zeros procedure for encoder

       

T SO1100-93/d048

Output_stacked_
   X’FF’s

Yes

No

Done
BP = BP + 1
B = X’FF’
BP = BP + 1
B = 0
ST = ST – 1

ST = 0
?

Figure D.10  –  Output_stacked_X’FF’s procedure for encoder
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TISO1110-93/d049

Stuff 0

No

Yes

Done

BP = BP + 1
B = 0

B = X FF
?

Figure D.11  –  Stuff_0 procedure for encoder

       

D.1.7 Initialization of the encoder

The Initenc procedure is used to start the arithmetic coder. The basic steps are shown in Figure D.12.

TISO1120-93/d050

Initenc

Done

Initia ize statistics areas
ST = 0
A = X 10000

  (see Note be ow)
C = 0
CT = 11
BP = BPST  1

Figure D.12  –  Initialization of the encoder
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The probability estimation tables are defined by Table D.3. The statistics areas are initialized to an MPS sense of 0 and a
Qe index of zero as defined by Table D.3. The stack count (ST) is cleared, the code register (C) is cleared, and the interval
register is set to X’10000’. The counter (CT) is set to 11, reflecting the fact that when A is initialized to X’10000’ three
spacer bits plus eight output bits in C must be filled before the first byte is removed. Note that BP is initialized to point to
the byte before the start of the entropy-coded segment (which is at BPST). Note also that the statistics areas are initialized
for all values of context-index S to MPS(S) = 0 and Index(S) = 0.

NOTE – Although the probability interval is initialized to X’10000’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized to
zero.

D.1.8 Termination of encoding

The Flush procedure is used to terminate the arithmetic encoding procedures and prepare the entropy-coded segment for
the addition of the X’FF’ prefix of the marker which follows the arithmetically coded data. Figure D.13 shows this flush
procedure. The first step in the procedure is to set as many low order bits of the code register to zero as possible without
pointing outside of the final interval. Then, the output byte is aligned by shifting it left by CT bits; Byte_out then removes
it from C. C is then shifted left by 8 bits to align the second output byte and Byte_out is used a second time. The
remaining low order bits in C are guaranteed to be zero, and these trailing zero bits shall not be written to the entropy-
coded segment.

T SO1130-93/d051

F ush

Done

Byte out

C = SLL C 8

C = SLL C CT

C ear fina bits

Byte out
Discard fina zeros

Figure D.13  –  Flush procedure
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Any trailing zero bytes already written to the entropy-coded segment and not preceded by a X’FF’ may, optionally, be
discarded. This is done in the Discard_final_zeros procedure. Stuffed zero bytes shall not be discarded.

Entropy coded segments are always followed by a marker. For this reason, the final zero bits needed to complete decoding
shall not be included in the entropy coded segment. Instead, when the decoder encounters a marker, zero bits shall be
supplied to the decoding procedure until decoding is complete. This convention guarantees that when a DNL marker is
used, the decoder will intercept it in time to correctly terminate the decoding procedure.

T SO1140-93/d052

C ear fina bits

No

Yes

C = T

T = T + X 8000

Done

T = C + A  1
T = T AND

  X FFFF0000

T < C
?

Figure D.14  –  Clear_final_bits procedure in Flush
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TISO1150-93/d053

BP = BP  1

BP = BP + 1

Done

Discard fina zeros

Yes

Yes

Yes

No

No

No

BP < BPST
?

B = 0
?

B = X FF
?

Figure D.15  –  Discard_final_zeros procedure in Flush

      

D.2 Arithmetic decoding procedures

Two arithmetic decoding procedures are used for arithmetic decoding (see Table D.4).

The “Decode(S)” procedure decodes the binary decision for a given context-index S and returns a value of either 0 or 1. It
is the inverse of the “Code_0(S)” and “Code_1(S)” procedures described in D.1. “Initdec” initializes the arithmetic
coding entropy decoder.

Table D.4 – Procedures for binary arithmetic decoding

Procedure Purpose

Decode(S) Decode a binary decision with context-index S

Initdec Initialize the decoder
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D.2.1 Binary arithmetic decoding principles

The probability interval subdivision and sub-interval ordering defined for the arithmetic encoding procedures also apply to
the arithmetic decoding procedures.

Since the bit stream always points within the current probability interval, the decoding process is a matter of determining,
for each decision, which sub-interval is pointed to by the bit stream. This is done recursively, using the same probability
interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts from the bit stream
any interval the encoder added to the bit stream. Therefore, the code register in the decoder is a pointer into the current
probability interval relative to the base of the interval.

If the size of the sub-interval allocated to the LPS is larger than the sub-interval allocated to the MPS, the encoder invokes
the conditional exchange procedure. When the interval sizes are inverted in the decoder, the sense of the symbol decoded
must be inverted.

D.2.2 Decoding conventions and approximations

The approximations and integer arithmetic defined for the probability interval subdivision in the encoder must also be
used in the decoder. However, where the encoder would have added to the code register, the decoder subtracts from the
code register.

D.2.3 Decoder code register conventions

The flow charts given in this section assume the register structures for the decoder as shown in Table D.5:

Table D.5 – Decoder register conventions

MSB LSB

Cx register xxxxxxxx, xxxxxxxx

C-low bbbbbbbb, 00000000

A-register aaaaaaaa, aaaaaaaa

Cx and C-low can be regarded as one 32-bit C-register, in that renormalization of C shifts a bit of new data from bit 15 of
C-low to bit 0 of Cx. However, the decoding comparisons use Cx alone. New data are inserted into the “b” bits of C-low
one byte at a time.

NOTE – The comparisons shown in the various procedures use arithmetic comparisons, and therefore assume precisions
greater than 16 bits for the variables. Unsigned (logical) comparisons should be used in 16-bit precision implementations.

D.2.4 The decode procedure

The decoder decodes one binary decision at a time. After decoding the decision, the decoder subtracts any amount from
the code register that the encoder added. The amount left in the code register is the offset from the base of the current
probability interval to the sub-interval allocated to the binary decisions not yet decoded. In the first test in the decode
procedure shown in Figure D.16 the code register is compared to the size of the MPS sub-interval. Unless a conditional
exchange is needed, this test determines whether the MPS or LPS for context-index S is decoded. Note that the LPS for
context-index S is given by 1 – MPS(S).
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When a renormalization is needed, the MPS/LPS conditional exchange may also be needed. For the LPS path, the
conditional exchange procedure is shown in Figure D.17. Note that the probability estimation in the decoder is identical
to the probability estimation in the encoder (Figures D.5 and D.6).

TISO1160-93/d054

Decode(S)

A = A  Qe(S)

A < X 8000

D = MPS(S)

Return D

Yes No

Yes

No

D = Cond MPS exchange(S)
Renorm d

D = Cond LPS exchange(S)
Renorm d

Cx < A
?

Figure D.16  –  Decode(S) procedure

       

For the MPS path of the decoder the conditional exchange procedure is given in Figure D.18.
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Ya No

D = MPS(S)
Cx = Cx A

A 206(8)

Estimate 0e(S)
alter LPS 

Figure D.17 — Decoder LPS path conditional exchange procedure

  
Figure D.18 - Decoder MPS path conditional exchange procedure
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D.2.5 Probability estimation in the decoder

The procedures defined for obtaining a new LPS probability estimate in the encoder are also used in the decoder.

D.2.6 Renormalization in the decoder

The Renorm_d procedure for the decoder renormalization is shown in Figure D.19. CT is a counter which keeps track of
the number of compressed bits in the C-low section of the C-register. When CT is zero, a new byte is inserted into C-low
by the procedure Byte_in and CT is reset to 8.

Both the probability interval register A and the code register C are shifted, one bit at a time, until A is no longer less than
X’8000’.

T SO1190-93/d057

Renorm d

Yes

No

Byte in

CT = 8

Done

Yes

No

A = SLL A 1
C = SLL C 1
CT = CT  1

CT = 0
?

A < X 8000
?

Figure D.19  –  Decoder renormalization procedure
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The Byte_in procedure used in Renorm_d is shown in Figure D.20. This procedure fetches one byte of data,
compensating for the stuffed zero byte which follows any X’FF’ byte. It also detects the marker which must follow the
entropy-coded segment. The C-register in this procedure is the concatenation of the Cx and C-low registers. For simplicity
of exposition, the buffer holding the entropy-coded segment is assumed to be large enough to contain the entire segment.

B is the byte pointed to by the entropy-coded segment pointer BP. BP is first incremented. If the new value of B is not a
X’FF’, it is inserted into the high order 8 bits of C-low.

T SO1200-93/d058

Byte in

BP = BP + 1

Yes No

Unstuff 0 C = C + SLL B 8

Done

B = X FF
?

Figure D.20  –  Byte_in procedure for decoder
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The Unstuff_0 procedure is shown in Figure D.21. If the new value of B is X’FF’, BP is incremented to point to the next
byte and this next B is tested to see if it is zero. If so, B contains a stuffed byte which must be skipped. The zero B is
ignored, and the X’FF’ B value which preceded it is inserted in the C-register.

If the value of B after a X’FF’ byte is not zero, then a marker has been detected. The marker is interpreted as required and
the entropy-coded segment pointer is adjusted (“Adjust BP” in Figure D.21) so that 0-bytes will be fed to the decoder
until decoding is complete. One way of accomplishing this is to point BP to the byte preceding the marker which follows
the entropy-coded segment.

TISO1210-93/d059

Unstuff 0

BP = BP + 1

Yes No

C = C OR X FF00

Done

Interpret marker
Adjust BP

B = 0
?

Figure D.21  –  Unstuff_0 procedure for decoder
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D.2.7 Initialization of the decoder

The Initdec procedure is used to start the arithmetic decoder. The basic steps are shown in Figure D.22.

T SO1220-93/d060

Initdec

Byte in

C = SLL C 8

Done

Byte in

Initia ize statistics areas
BP = BPST  1
A = X 0000

  (see Note be ow)
C = 0

C = SLL C 8
CT = 0

Figure D.22  –  Initialization of the decoder

       

The estimation tables are defined by Table D.3. The statistics areas are initialized to an MPS sense of 0 and a Qe index of
zero as defined by Table D.3. BP, the pointer to the entropy-coded segment, is then initialized to point to the byte before
the start of the entropy-coded segment at BPST, and the interval register is set to the same starting value as in the encoder.
The first byte of compressed data is fetched and shifted into Cx. The second byte is then fetched and shifted into Cx. The
count is set to zero, so that a new byte of data will be fetched by Renorm_d.

NOTE – Although the probability interval is initialized to X’10000’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized to
zero.

D.3 Bit ordering within bytes

The arithmetically encoded entropy-coded segment is an integer of variable length. Therefore, the ordering of bytes and
the bit ordering within bytes is the same as for parameters (see B.1.1.1).
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Annex  E

Encoder and decoder control procedures

(This annex forms an integral part of this Recommendation | International Standard)

This annex describes the encoder and decoder control procedures for the sequential, progressive, and lossless modes of
operation.

The encoding and decoding control procedures for the hierarchical processes are specified in Annex J.

NOTES

1 There is no requirement in this Specification that any encoder or decoder shall implement the procedures in precisely
the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder implement the function specified
in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this Specification is that it satisfy the
requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliance tests specified in Part 2.

2 Implementation-specific setup steps are not indicated in this annex and may be necessary.

E.1 Encoder control procedures

E.1.1 Control procedure for encoding an image

The encoder control procedure for encoding an image is shown in Figure E.1.

TISO1230-93/d061

Encode image

Append SOI marker

Encode frame

Append EOI marker

Done

Figure E.1  –  Control procedure for encoding an image

       

CCITT Rec. T.81 (1992 E) 77

Page 238 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

E.1.2 Control procedure for encoding a frame

In all cases where markers are appended to the compressed data, optional X’FF’ fill bytes may precede the marker.

The control procedure for encoding a frame is oriented around the scans in the frame. The frame header is first appended,
and then the scans are coded. Table specifications and other marker segments may precede the SOFn marker, as indicated
by [tables/miscellaneous] in Figure E.2.

Figure E.2 shows the encoding process frame control procedure.

T SO1240-93/d062

Encode frame

Encode scan

Yes

No

Done

[Append DNL
segment]

Yes

No

[Append tab es/misce aneous]
Append SOF   marker and rest
   of frame header

First scan
?

More scans
?

Figure E.2  –  Control procedure for encoding a frame

n

       

E.1.3 Control procedure for encoding a scan

A scan consists of a single pass through the data of each component in the scan. Table specifications and other marker
segments may precede the SOS marker. If more than one component is coded in the scan, the data are interleaved. If
restart is enabled, the data are segmented into restart intervals. If restart is enabled, a RSTm marker is placed in the coded
data between restart intervals. If restart is disabled, the control procedure is the same, except that the entire scan contains a
single restart interval. The compressed image data generated by a scan is always followed by a marker, either the EOI
marker or the marker of the next marker segment.
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Figure E.3 shows the encoding process scan control procedure. The loop is terminated when the encoding process has
coded the number of restart intervals which make up the scan. “m” is the restart interval modulo counter needed for the
RSTm marker. The modulo arithmetic for this counter is shown after the “Append RSTm marker” procedure.

TISO1250-93/d063

Encode scan

Done

Yes

No

Encode restart
   interva

[Append tab es/misce aneous]
Append SOS marker and rest of

scan header
m = 0

Append RST   marker
m = (m + 1) AND 7

More interva s
?

Figure E.3  –  Control procedure for encoding a scan

m
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E.1.4 Control procedure for encoding a restart interval

Figure E.4 shows the encoding process control procedure for a restart interval. The loop is terminated either when the
encoding process has coded the number of minimum coded units (MCU) in the restart interval or when it has completed
the image scan.

T SO1260-93/d064

Reset encoder

Encode MCU

Prepare for marker

Done

Yes

No

Encode restart
interva

More MCU
?

Figure E.4  –  Control procedure for encoding a restart interval

       

The “Reset_encoder” procedure consists at least of the following:

a) if arithmetic coding is used, initialize the arithmetic encoder using the “Initenc” procedure described
in D.1.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.1.1.5.1);

c) for lossless processes, reset the prediction to a default value for all components in the scan (see H.1.1);

d) do all other implementation-dependent setups that may be necessary.

The procedure “Prepare_for_marker” terminates the entropy-coded segment by:

a) padding a Huffman entropy-coded segment with 1-bits to complete the final byte (and if needed stuffing a
zero byte) (see F.1.2.3); or

b) invoking the procedure “Flush” (see D.1.8) to terminate an arithmetic entropy-coded segment.

NOTE – The number of minimum coded units (MCU) in the final restart interval must be adjusted to match the number
of MCU in the scan. The number of MCU is calculated from the frame and scan parameters. (See Annex B.)
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E.1.5 Control procedure for encoding a minimum coded unit (MCU)

The minimum coded unit is defined in A.2. Within a given MCU the data units are coded in the order in which they occur
in the MCU. The control procedure for encoding a MCU is shown in Figure E.5.

TISO1270-93/d065

Encode MCU

N = 0

Done

Yes

No

N = N + 1
Encode data unit

N = Nb
?

Figure E.5  –  Control procedure for encoding a minimum coded unit (MCU)

       

In Figure E.5, Nb refers to the number of data units in the MCU. The order in which data units occur in the MCU is
defined in A.2. The data unit is an 8 × 8 block for DCT-based processes, and a single sample for lossless processes.

The procedures for encoding a data unit are specified in Annexes F, G, and H.

E.2 Decoder control procedures

E.2.1 Control procedure for decoding compressed image data

Figure E.6 shows the decoding process control for compressed image data.

Decoding control centers around identification of various markers. The first marker must be the SOI (Start Of Image)
marker. The “Decoder_setup” procedure resets the restart interval (Ri = 0) and, if the decoder has arithmetic decoding
capabilities, sets the conditioning tables for the arithmetic coding to their default values. (See F.1.4.4.1.4 and F.1.4.4.2.1.)
The next marker is normally a SOFn (Start Of Frame) marker; if this is not found, one of the marker segments listed in
Table E.1 has been received.
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T SO1280-93/d066

Decode image

No

Yes

ErrorDecoder setup

Interpret markers

Decode frame

Done

No

Yes

SOI marker
?

SOF   marker
?

n

Figure E.6  –  Control procedure for decoding compressed image data

        

Table E.1 – Markers recognized by “Interpret markers”

Marker Purpose

DHT Define Huffman Tables

DAC Define Arithmetic Conditioning

DQT Define Quantization Tables

DRI Define Restart Interval

APPn Application defined marker

COM Comment

Note that optional X’FF’ fill bytes which may precede any marker shall be discarded before determining which marker is
present.
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The additional logic to interpret these various markers is contained in the box labeled “Interpret markers”. DHT markers
shall be interpreted by processes using Huffman coding. DAC markers shall be interpreted by processes using arithmetic
coding. DQT markers shall be interpreted by DCT-based decoders. DRI markers shall be interpreted by all decoders.
APPn and COM markers shall be interpreted only to the extent that they do not interfere with the decoding.

By definition, the procedures in “Interpret markers” leave the system at the next marker. Note that if the expected SOI
marker is missing at the start of the compressed image data, an error condition has occurred. The techniques for detecting
and managing error conditions can be as elaborate or as simple as desired.

E.2.2 Control procedure for decoding a frame

Figure E.7 shows the control procedure for the decoding of a frame.

T SO1290-93/d067

Decode frame

Interpret markers

Decode scan

Done

Yes

No

Yes

No

Interpret frame header

SOS marker
?

EOI marker
?

Figure E.7  –  Control procedure for decoding a frame

       

The loop is terminated if the EOI marker is found at the end of the scan.

The markers recognized by “Interpret markers” are listed in Table E.1. Subclause E.2.1 describes the extent to which the
various markers shall be interpreted.
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E.2.3 Control procedure for decoding a scan

Figure E.8 shows the decoding of a scan.

The loop is terminated when the expected number of restart intervals has been decoded.

T SO1300-93/d068

Decode scan

Done

Yes

No

Interpret scan header
m = 0

Decode restart
   interva

More interva s
?

Figure E.8  –  Control procedure for decoding a scan
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E.2.4 Control procedure for decoding a restart interval

The procedure for decoding a restart interval is shown in Figure E.9. The “Reset_decoder” procedure consists at least of
the following:

a) if arithmetic coding is used, initialize the arithmetic decoder using the “Initdec” procedure described
in D.2.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.2.1.3.1);

c) for lossless process, reset the prediction to a default value for all components in the scan (see H.2.1);

d) do all other implementation-dependent setups that may be necessary.

T SO1310-93/d069

Reset decoder

Decode MCU

Find marker

Done

Yes

No

Decode restart
interva

More MCU
?

Figure E.9  –  Control procedure for decoding a restart interval

       

At the end of the restart interval, the next marker is located. If a problem is detected in locating this marker, error handling
procedures may be invoked. While such procedures are optional, the decoder shall be able to correctly recognize restart
markers in the compressed data and reset the decoder when they are encountered. The decoder shall also be able to
recognize the DNL marker, set the number of lines defined in the DNL segment, and end the “Decode_restart_interval”
procedure.

NOTE – The final restart interval may be smaller than the size specified by the DRI marker segment, as it includes only the
number of MCUs remaining in the scan.
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E.2.5 Control procedure for decoding a minimum coded unit (MCU)

The procedure for decoding a minimum coded unit (MCU) is shown in Figure E.10.

In Figure E.10 Nb is the number of data units in a MCU.

The procedures for decoding a data unit are specified in Annexes F, G, and H.

T SO1320-93/d070

Decode MCU

N = 0

Done

Yes

No

N = N + 1
Decode data unit

N = Nb
?

Figure E.10  –  Control procedure for decoding a minimum coded unit (MCU)
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Annex  F

Sequential DCT-based mode of operation

(This annex forms an integral part of this Recommendation | International Standard)
   

    

This annex provides a functional specification of the following coding processes for the sequential DCT-based mode of
operation:

1) baseline sequential;

2) extended sequential, Huffman coding, 8-bit sample precision;

3) extended sequential, arithmetic coding, 8-bit sample precision;

4) extended sequential, Huffman coding, 12-bit sample precision;

5) extended sequential, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in F.1, and the decoding process is specified in F.2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is necessary only that an
encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in
compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliance tests specified in Part 2.

F.1 Sequential DCT-based encoding processes

F.1.1 Sequential DCT-based control procedures and coding models

F.1.1.1 Control procedures for sequential DCT-based encoders

The control procedures for encoding an image and its constituent parts – the frame, scan, restart interval and
MCU – are given in Figures E.1 to E.5. The procedure for encoding a MCU (see Figure E.5) repetitively calls the
procedure for encoding a data unit. For DCT-based encoders the data unit is an 8 × 8 block of samples.

F.1.1.2 Procedure for encoding an 8 ×× 8 block data unit

For the sequential DCT-based processes encoding an 8 × 8 block data unit consists of the following procedures:

a) level shift, calculate forward 8 × 8 DCT and quantize the resulting coefficients using table destination
specified in frame header;

b) encode DC coefficient for 8 × 8 block using DC table destination specified in scan header;

c) encode AC coefficients for 8 × 8 block using AC table destination specified in scan header.

F.1.1.3 Level shift and forward DCT (FDCT)

The mathematical definition of the FDCT is given in A.3.3.

Prior to computing the FDCT the input data are level shifted to a signed two’s complement representation as described in
A.3.1. For 8-bit input precision the level shift is achieved by subtracting 128. For 12-bit input precision the level shift is
achieved by subtracting 2048.

F.1.1.4 Quantization of the FDCT

The uniform quantization procedure described in Annex A is used to quantize the DCT coefficients. One of four
quantization tables may be used by the encoder. No default quantization tables are specified in this Specification.
However, some typical quantization tables are given in Annex K.

The quantized DCT coefficient values are signed, two’s complement integers with 11-bit precision for 8-bit input
precision and 15-bit precision for 12-bit input precision.
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F.1.1.5 Encoding models for the sequential DCT procedures

The two dimensional array of quantized DCT coefficients is rearranged in a zig-zag sequence order defined in A.3.6. The
zig-zag order coefficients are denoted ZZ (0) through ZZ(63) with:

ZZ(0)  =  Sq
00

,ZZ(1)  =  Sq
01

,ZZ(2)  =  Sq
10,•,•,•,ZZ(63)  =  Sq

77

Sqvu are defined in Figure A.6.

Two coding procedures are used, one for the DC coefficient ZZ(0) and the other for the AC coefficients ZZ(1)..ZZ(63).
The coefficients are encoded in the order in which they occur in zig-zag sequence order, starting with the DC coefficient.
The coefficients are represented as two’s complement integers.

F.1.1.5.1 Encoding model for DC coefficients

The DC coefficients are coded differentially, using a one-dimensional predictor, PRED, which is the quantized DC value
from the most recently coded 8 × 8 block from the same component. The difference, DIFF, is obtained from

DIFF = ZZ(0) – PRED

At the beginning of the scan and at the beginning of each restart interval, the prediction for the DC coefficient prediction
is initialized to 0. (Recall that the input data have been level shifted to two’s complement representation.)

F.1.1.5.2 Encoding model for AC coefficients

Since many coefficients are zero, runs of zeros are identified and coded efficiently. In addition, if the remaining
coefficients in the zig-zag sequence order are all zero, this is coded explicitly as an end-of-block (EOB).

F.1.2 Baseline Huffman encoding procedures

The baseline encoding procedure is for 8-bit sample precision. The encoder may employ up to two DC and two AC
Huffman tables within one scan.

F.1.2.1 Huffman encoding of DC coefficients

F.1.2.1.1 Structure of DC code table

The DC code table consists of a set of Huffman codes (maximum length 16 bits) and appended additional bits (in most
cases) which can code any possible value of DIFF, the difference between the current DC coefficient and the prediction.
The Huffman codes for the difference categories are generated in such a way that no code consists entirely of 1-bits
(X’FF’ prefix marker code avoided).

The two’s complement difference magnitudes are grouped into 12 categories, SSSS, and a Huffman code is created for
each of the 12 difference magnitude categories (see Table F.1).

For each category, except SSSS = 0, an additional bits field is appended to the code word to uniquely identify which
difference in that category actually occurred. The number of extra bits is given by SSSS; the extra bits are appended to the
LSB of the preceding Huffman code, most significant bit first. When DIFF is positive, the SSSS low order bits of DIFF
are appended. When DIFF is negative, the SSSS low order bits of (DIFF – 1) are appended. Note that the most significant
bit of the appended bit sequence is 0 for negative differences and 1 for positive differences.

F.1.2.1.2 Defining Huffman tables for the DC coefficients

The syntax for specifying the Huffman tables is given in Annex B. The procedure for creating a code table from this
information is described in Annex C. No more than two Huffman tables may be defined for coding of DC coefficients.
Two examples of Huffman tables for coding of DC coefficients are provided in Annex K.
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Table F.1 – Difference magnitude categories for DC coding

SSSS DIFF values

0 0

1 –1,1

2 –3,–2,2,3

3 –7..–4,4..7

4 –15..–8,8..15

5 –31..–16,16..31

6 –63..–32,32..63

7 –127..–64,64..127

8 –255..–128,128..255

9 –511..–256,256..511

10 –1 023..–512,512..1 023

11 –2 047..–1 024,1 024..2 047

F.1.2.1.3 Huffman encoding procedures for DC coefficients

The encoding procedure is defined in terms of a set of extended tables, XHUFCO and XHUFSI, which contain the
complete set of Huffman codes and sizes for all possible difference values. For full 12-bit precision the tables are relatively
large. For the baseline system, however, the precision of the differences may be small enough to make this description
practical.

XHUFCO and XHUFSI are generated from the encoder tables EHUFCO and EHUFSI (see Annex C) by appending to the
Huffman codes for each difference category the additional bits that completely define the difference. By definition,
XHUFCO and XHUFSI have entries for each possible difference value. XHUFCO contains the concatenated bit pattern of
the Huffman code and the additional bits field; XHUFSI contains the total length in bits of this concatenated bit pattern.
Both are indexed by DIFF, the difference between the DC coefficient and the prediction.

The Huffman encoding procedure for the DC difference, DIFF, is:

SIZE = XHUFSI(DIFF)

CODE = XHUFCO(DIFF)

code SIZE bits of CODE

where DC is the quantized DC coefficient value and PRED is the predicted quantized DC value. The Huffman code
(CODE) (including any additional bits) is obtained from XHUFCO and SIZE (length of the code including additional
bits) is obtained from XHUFSI, using DIFF as the index to the two tables.

F.1.2.2 Huffman encoding of AC coefficients

F.1.2.2.1 Structure of AC code table

Each non-zero AC coefficient in ZZ is described by a composite 8-bit value, RS, of the form

RS = binary ’RRRRSSSS’
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The 4 least significant bits, ’SSSS’, define a category for the amplitude of the next non-zero coefficient in ZZ, and the 4
most significant bits, ’RRRR’, give the position of the coefficient in ZZ relative to the previous non-zero coefficient (i.e.
the run-length of zero coefficients between non-zero coefficients). Since the run length of zero coefficients may exceed
15, the value ’RRRRSSSS’ = X’F0’ is defined to represent a run length of 15 zero coefficients followed by a coefficient
of zero amplitude. (This can be interpreted as a run length of 16 zero coefficients.) In addition, a special value
’RRRRSSSS’ = ’00000000’ is used to code the end-of-block (EOB), when all remaining coefficients in the block are
zero.

The general structure of the code table is illustrated in Figure F.1. The entries marked “N/A” are undefined for the
baseline procedure.

0 1 2 109

0

15

EOB
N/A
N/A
N/A
ZRL

.      .      .

RRRR

SSSS

TISO1330-93/d071

COMPOSITE VALUES

Figure F.1 – Two-dimensional value array for Huffman coding

       

The magnitude ranges assigned to each value of SSSS are defined in Table F.2.

Table F.2 – Categories assigned to coefficient values

SSSS AC coefficients

1 –1,1

2 –3,–2,2,3

3 –7..–4,4..7

4 –15..–8,8..15

5 –31..–16,16..31

6 –63..–32,32..63

7 –127..–64,64..127

8 –255..–128,128..255

9 –511..–256,256..511

10 –1 023..–512,512..1 023

The composite value, RRRRSSSS, is Huffman coded and each Huffman code is followed by additional bits which specify
the sign and exact amplitude of the coefficient.

The AC code table consists of one Huffman code (maximum length 16 bits, not including additional bits) for each
possible composite value. The Huffman codes for the 8-bit composite values are generated in such a way that no code
consists entirely of 1-bits.
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The format for the additional bits is the same as in the coding of the DC coefficients. The value of SSSS gives the number
of additional bits required to specify the sign and precise amplitude of the coefficient. The additional bits are either the
low-order SSSS bits of ZZ(K) when ZZ(K) is positive or the low-order SSSS bits of ZZ(K) – 1 when ZZ(K) is negative.
ZZ(K) is the Kth coefficient in the zig-zag sequence of coefficients being coded.

F.1.2.2.2 Defining Huffman tables for the AC coefficients

The syntax for specifying the Huffman tables is given in Annex B. The procedure for creating a code table from this
information is described in Annex C.

In the baseline system no more than two Huffman tables may be defined for coding of AC coefficients. Two examples of
Huffman tables for coding of AC coefficients are provided in Annex K.

F.1.2.2.3 Huffman encoding procedures for AC coefficients

As defined in Annex C, the Huffman code table is assumed to be available as a pair of tables, EHUFCO (containing the
code bits) and EHUFSI (containing the length of each code in bits), both indexed by the composite value defined above.

The procedure for encoding the AC coefficients in a block is shown in Figures F.2 and F.3. In Figure F.2, K is the index
to the zig-zag scan position and R is the run length of zero coefficients.

The procedure “Append EHUFSI(X’F0’) bits of EHUFCO(X’F0’)” codes a run of 16 zero coefficients (ZRL code of
Figure F.1). The procedure “Code EHUFSI(0) bits of EHUFCO(0)” codes the end-of-block (EOB code). If the last
coefficient (K = 63) is not zero, the EOB code is bypassed.

CSIZE is a procedure which maps an AC coefficient to the SSSS value as defined in Table F.2.

F.1.2.3 Byte stuffing

In order to provide code space for marker codes which can be located in the compressed image data without decoding,
byte stuffing is used.

Whenever, in the course of normal encoding, the byte value X’FF’ is created in the code string, a X’00’ byte is stuffed
into the code string.

If a X’00’ byte is detected after a X’FF’ byte, the decoder must discard it. If the byte is not zero, a marker has been
detected, and shall be interpreted to the extent needed to complete the decoding of the scan.

Byte alignment of markers is achieved by padding incomplete bytes with 1-bits. If padding with 1-bits creates a X’FF’
value, a zero byte is stuffed before adding the marker.

F.1.3 Extended sequential DCT-based Huffman encoding process for 8-bit sample precision

This process is identical to the Baseline encoding process described in F.1.2, with the exception that the number of sets of
Huffman table destinations which may be used within the same scan is increased to four. Four DC and four AC Huffman
table destinations is the maximum allowed by this Specification.

F.1.4 Extended sequential DCT-based arithmetic encoding process for 8-bit sample precision

This subclause describes the use of arithmetic coding procedures in the sequential DCT-based encoding process.

NOTE – The arithmetic coding procedures in this Specification are defined for the maximum precision to encourage
interchangeability.

The arithmetic coding extensions have the same DCT model as the Baseline DCT encoder. Therefore, Annex F.1.1 also
applies to arithmetic coding. As with the Huffman coding technique, the binary arithmetic coding technique is lossless. It
is possible to transcode between the two systems without either FDCT or IDCT computations, and without modification of
the reconstructed image.

The basic principles of adaptive binary arithmetic coding are described in Annex D. Up to four DC and four AC
conditioning table destinations and associated statistics areas may be used within one scan.

The arithmetic encoding procedures for encoding binary decisions, initializing the statistics area, initializing the encoder,
terminating the code string, and adding restart markers are listed in Table D.1 of Annex D.
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TISO1340-93/d072

Encode AC
coefficients

K = 0
R = 0

K = K + 1

ZZ(K) = 0
?

Yes

YesNo

No

R = R + 1

K = 63
?

Append EHUFSI(X F0 ) bits
       of EHUFCO(X F0 )
R = R  16

Append EHUFSI(X 00 ) bits
of EHUFCO(X 00 )

Yes R > 15
?

No

Encode R ZZ(K)

R = 0

K = 63
?

No Yes

Done

Figure F.2 – Procedure for sequential encoding of AC coefficients with Huffman coding
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T SO1350-93/d073

Encode R ZZ(K)

SSSS = CSIZE(ZZ(K))
RS = (16 × R) + SSSS
Append EHUFSI(RS) bits
       of EHUFCO(RS)

ZZ(K) < 0
?

Yes

No

ZZ(K) = ZZ(K)  1

Append SSSS
ow order bits of ZZ(K)

Done

Figure F.3 – Sequential encoding of a non-zero AC coefficient

       

Some of the procedures in Table D.1 are used in the higher level control structure for scans and restart intervals described
in Annex E. At the beginning of scans and restart intervals, the probability estimates used in the arithmetic coder are reset
to the standard initial value as part of the Initenc procedure which restarts the arithmetic coder. At the end of scans and
restart intervals, the Flush procedure is invoked to empty the code register before the next marker is appended.

F.1.4.1 Arithmetic encoding of DC coefficients

The basic structure of the decision sequence for encoding a DC difference value, DIFF, is shown in Figure F.4.

The context-index S0 and other context-indices used in the DC coding procedures are defined in Table F.4
(see F.1.4.4.1.3). A 0-decision is coded if the difference value is zero and a 1-decision is coded if the difference is not
zero. If the difference is not zero, the sign and magnitude are coded using the procedure Encode_V(S0), which is
described in F.1.4.3.1.

F.1.4.2 Arithmetic encoding of AC coefficients

The AC coefficients are coded in the order in which they occur in the zig-zag sequence ZZ(1,...,63). An end-of-block
(EOB) binary decision is coded before coding the first AC coefficient in ZZ, and after each non-zero coefficient. If the
EOB occurs, all remaining coefficients in ZZ are zero. Figure F.5 illustrates the decision sequence. The equivalent
procedure for the Huffman coder is found in Figure F.2.
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T SO1360-93/d074

Encode DC DIFF

V = DIFF

V = 0
?

No Yes

Code 1(S0)
Encode V(S0)

Code 0(S0)

Done

Figure F.4 – Coding model for arithmetic coding of DC difference

        

The context-indices SE and S0 used in the AC coding procedures are defined in Table F.5 (see F.1.4.4.2). In Figure F.5,
K is the index to the zig-zag sequence position. For the sequential scan, Kmin is 1 and Se is 63. The V = 0 decision is part
of a loop which codes runs of zero coefficients. Whenever the coefficient is non-zero, “Encode_V(S0)” codes the sign and
magnitude of the coefficient. Each time a non-zero coefficient is coded, it is followed by an EOB decision. If the EOB
occurs, a 1-decision is coded to indicate that the coding of the block is complete. If the coefficient for K = Se is not zero,
the EOB decision is skipped.

F.1.4.3 Encoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement integer values. The
decomposition of these signed integer values into a binary decision tree is done in the same way for both the DC and AC
coding models.

Although the binary decision trees for this section of the DC and AC coding models are the same, the statistical models
for assigning statistics bins to the binary decisions in the tree are quite different.

F.1.4.3.1 Structure of the encoding decision sequence

The encoding sequence can be separated into three procedures, a procedure which encodes the sign, a second procedure
which identifies the magnitude category, and a third procedure which identifies precisely which magnitude occurred
within the category identified in the second procedure.

At the point where the binary decision sequence in Encode_V(S0) starts, the coefficient or difference has already been
determined to be non-zero. That determination was made in the procedures in Figures F.4 and F.5.

Denoting either DC differences (DIFF) or AC coefficients as V, the non-zero signed integer value of V is encoded by the
sequence shown in Figure F.6. This sequence first codes the sign of V. It then (after converting V to a magnitude and
decrementing it by 1 to give Sz) codes the magnitude category of Sz (code_log2_Sz), and then codes the low order
magnitude bits (code_Sz_bits) to identify the exact magnitude value.
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There are two significant differences between this sequence and the similar set of operations described in F.1.2 for
Huffman coding. First, the sign is encoded before the magnitude category is identified, and second, the magnitude is
decremented by 1 before the magnitude category is identified.

TISO1370-93/d075

Encode AC
Coefficients

K = Kmin

K = EOB
?

Yes

No

Code 1(SE)

Code 0(SE)

K = K + 1 K = K + 1

V = ZZ(K)

V = 0
?

Yes

No

Code 0(S0)

Code 1(S0)
Encode V(S0)

K = Se
?

YesNo

Done

Figure F.5 – AC coding model for arithmetic coding
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T SO1380-93/d076

Encode V(S)

Encode sign of V

Sz =  V   1

Encode og2 Sz

Encode Sz bits

Done

Figure F.6 – Sequence of procedures in encoding non-zero values of V

        

F.1.4.3.1.1 Encoding the sign

The sign is encoded by coding a 0-decision when the sign is positive and a 1-decision when the sign is negative
(see Figure F.7).

The context-indices SS, SN and SP are defined for DC coding in Table F.4 and for AC coding in Table F.5. After the sign
is coded, the context-index S is set to either SN or SP, establishing an initial value for Encode_log2_Sz.

F.1.4.3.1.2 Encoding the magnitude category

The magnitude category is determined by a sequence of binary decisions which compares Sz against an exponentially
increasing bound (which is a power of 2) in order to determine the position of the leading 1-bit. This establishes the
magnitude category in much the same way that the Huffman encoder generates a code for the value associated with the
difference category. The flow chart for this procedure is shown in Figure F.8.

The starting value of the context-index S is determined in Encode_sign_of_V, and the context-index values X1 and X2
are defined for DC coding in Table F.4 and for AC coding in Table F.5. In Figure F.8, M is the exclusive upper bound for
the magnitude and the abbreviations “SLL” and “SRL” refer to the shift-left-logical and shift-right-logical operations – in
this case by one bit position. The SRL operation at the completion of the procedure aligns M with the most significant bit
of Sz (see Table F.3).

The highest precision allowed for the DCT is 15 bits. Therefore, the highest precision required for the coding decision
tree is 16 bits for the DC coefficient difference and 15 bits for the AC coefficients, including the sign bit.
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TISO1390-93/d077

Encode sign of V

V < 0
?

Yes No

Code 1(SS) Code 0(SS)

S = SN S = SP

Done

Figure F.7 – Encoding the sign of V

        

Table F.3 – Categories for each maximum bound

Exclusive upper
bound (M)

Sz range Number of low order
magnitude bits

1 0 0

2 1 0

4 2,3 1

8 4,...,7 2

16  8,...,15 3

32 16,...,31 4

64 32,...,63 5

128 64,...,127 6

256 128,...,255 7

512 256,...,511 8

1 024 512,...,1 023 9

2 048 1 024,...,2 047 10

4 096 2 048,...,4 095 11

8 192 4 096,...,8 191 12

16 384 8 192,...,16 383 13

32 768 16 384,...,32 767 14
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TISO1400-93/d078

Encode og2 Sz

M = 1

Sz < M
?

Yes

No

Code 1(S)

M = 2
S = X1

Sz < M
?

Yes

No

Code 1(S)

M = 4
S = X2

Sz < M
?

Yes

No

Code 1(S) Code 0(S)

M = SLL M 1
S = S + 1

M = SRL M 1

Done

Figure F.8 – Decision sequence to establish the magnitude category
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F.1.4.3.1.3 Encoding the exact value of the magnitude

After the magnitude category is encoded, the low order magnitude bits are encoded. These bits are encoded in order of
decreasing bit significance. The procedure is shown in Figure F.9. The abbreviation “SRL” indicates the shift-right-
logical operation, and M is the exclusive bound established in Figure F.8. Note that M has only one bit set – shifting M
right converts it into a bit mask for the logical “AND” operation.

The starting value of the context-index S is determined in Encode_log2_Sz. The increment of S by 14 at the beginning of
this procedure sets the context-index to the value required in Tables F.4 and F.5.

T SO1410-93/d079

Encode Sz bits

S = S + 14

M = SRL M 1

M = 0
?

Yes

No

T = M AND Sz

T = 0
?

NoYes

Code 0(S) Code 1(S)

Figure F.9 – Decision sequence to code the magnitude bit pattern

Done
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F.1.4.4 Statistical models

An adaptive binary arithmetic coder requires a statistical model. The statistical model defines the contexts which are used
to select the conditional probability estimates used in the encoding and decoding procedures.

Each decision in the binary decision trees is associated with one or more contexts. These contexts identify the sense of the
MPS and the index in Table D.3 of the conditional probability estimate Qe which is used to encode and decode the binary
decision.

The arithmetic coder is adaptive, which means that the probability estimates for each context are developed and
maintained by the arithmetic coding system on the basis of prior coding decisions for that context.

F.1.4.4.1 Statistical model for coding DC prediction differences

The statistical model for coding the DC difference conditions some of the probability estimates for the binary decisions on
previous DC coding decisions.

F.1.4.4.1.1 Statistical conditioning on sign

In coding the DC coefficients, four separate statistics bins (probability estimates) are used in coding the zero/not-zero (V =
0) decision, the sign decision and the first magnitude category decision. Two of these bins are used to code the V = 0
decision and the sign decision. The other two bins are used in coding the first magnitude decision, Sz < 1; one of these
bins is used when the sign is positive, and the other is used when the sign is negative. Thus, the first magnitude decision
probability estimate is conditioned on the sign of V.

F.1.4.4.1.2 Statistical conditioning on DC difference in previous block

The probability estimates for these first three decisions are also conditioned on Da, the difference value coded for the
previous DCT block of the same component. The differences are classified into five groups: zero, small positive, small
negative, large positive and large negative. The relationship between the default classification and the quantization scale is
shown in Figure F.10.

5 4 3 2 1 0 +1 +2 +3 +4 +5

0

T SO1420-93/d080

    

 arge  sma + sma + arge

DC difference

C assification

Figure F.10 – Conditioning classification of difference values

        

The bounds for the “small” difference category determine the classification. Defining L and U as integers in the range 0 to
15 inclusive, the lower bound (exclusive) for difference magnitudes classified as “small” is zero for L = 0, and is 2L–1 for
L > 0.

The upper bound (inclusive) for difference magnitudes classified as “small” is 2U.

L shall be less than or equal to U.

These bounds for the conditioning category provide a segmentation which is identical to that listed in Table F.3.

F.1.4.4.1.3 Assignment of statistical bins to the DC binary decision tree

As shown in Table F.4, each statistics area for DC coding consists of a set of 49 statistics bins. In the following
explanation, it is assumed that the bins are contiguous. The first 20 bins consist of five sets of four bins selected by a
context-index S0. The value of S0 is given by DC_Context(Da), which provides a value of 0, 4, 8, 12 or 16, depending on
the difference classification of Da (see F.1.4.4.1.2). The remaining 29 bins, X1,...,X15,M2,...,M15, are used to code
magnitude category decisions and magnitude bits.
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Table F.4 – Statistical model for DC coefficient coding

Context-index Value Coding decision

S0 DC_Context(Da) V = 0
SS S0 + 1 Sign of V

SP S0 + 2 Sz < 1 if V > 0

SN S0 + 3 Sz < 1 if V < 0

X1 20 Sz < 2

X2 X1 + 1 Sz < 4

X3 X1 + 2 Sz < 8

. . .

. . .

X15 X1 + 14 Sz < 215

M2 X2 + 14 Magnitude bits if Sz < 4

M3 X3 + 14 Magnitude bits if Sz < 8

. . .

. . .

M15 X15 + 14 Magnitude bits if Sz < 215

F.1.4.4.1.4 Default conditioning for DC statistical model

The bounds, L and U, for determining the conditioning category have the default values L = 0 and U = 1. Other bounds
may be set using the DAC (Define Arithmetic coding Conditioning) marker segment, as described in Annex B.

F.1.4.4.1.5 Initial conditions for DC statistical model

At the start of a scan and at the beginning of each restart interval, the difference for the previous DC value is defined to be
zero in determining the conditioning state.

F.1.4.4.2 Statistical model for coding the AC coefficients

As shown in Table F.5, each statistics area for AC coding consists of a contiguous set of 245 statistics bins. Three bins are
used for each value of the zig-zag index K, and two sets of 28 additional bins X2,...,X15,M2,...,M15 are used for coding
the magnitude category and magnitude bits.

The value of SE (and also S0, SP and SN) is determined by the zig-zag index K. Since K is in the range 1 to 63, the
lowest value for SE is 0 and the largest value for SP is 188. SS is not assigned a value in AC coefficient coding, as the
signs of the coefficients are coded with a fixed probability value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

The value of X2 is given by AC_Context(K). This gives X2 = 189 when K ≤ Kx and X2 = 217 when K > Kx, where Kx is
defined using the DAC marker segment (see B.2.4.3).

Note that a X1 statistics bin is not used in this sequence. Instead, the 63 × 1 array of statistics bins for the magnitude
category is used for two decisions. Once the magnitude bound has been determined – at statistics bin Xn, for example – a
single statistics bin, Mn, is used to code the magnitude bit sequence for that bound.

F.1.4.4.2.1 Default conditioning for AC coefficient coding

The default value of Kx is 5. This may be modified using the DAC marker segment, as described in Annex B.

F.1.4.4.2.2 Initial conditions for AC statistical model

At the start of a scan and at each restart, all statistics bins are re-initialized to the standard default value described in
Annex D.
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Table F.5 – Statistical model for AC coefficient coding

Context-index Value Coding decision

SE 3 × (K – 1) K = EOB

S0 SE + 1 V = 0

SS Fixed estimate Sign of V

SN,SP S0 + 1 Sz < 1

X1 S0 + 1 Sz < 2

X2 AC_Context(K) Sz < 4

X3 X2 + 1 Sz < 8

. . .

. . .

X15 X2 + 13 Sz < 215

M2 X2 + 14 Magnitude bits if Sz < 4

M3 X3 + 14 Magnitude bits if Sz < 8

. . .

. . .

M15 X15 + 14 Magnitude bits if Sz < 215

F.1.5 Extended sequential DCT-based Huffman encoding process for 12-bit sample precision

This process is identical to the sequential DCT process for 8-bit precision extended to four Huffman table destinations as
documented in F.1.3, with the following changes.

F.1.5.1 Structure of DC code table for 12-bit sample precision

The two’s complement difference magnitudes are grouped into 16 categories, SSSS, and a Huffman code is created for
each of the 16 difference magnitude categories.

The Huffman table for DC coding (see Table F.1) is extended as shown in Table F.6.

Table F.6 – Difference magnitude categories for DC coding

SSSS Difference values

12 –4 095..–2 048,2 048..4 095

13 –8 191..–4 096,4 096..8 191

14 –16 383..–8 192,8 192..16 383

15 –32 767..–16 384,16 384..32 767

F.1.5.2 Structure of AC code table for 12-bit sample precision

The general structure of the code table is extended as illustrated in Figure F.11. The Huffman table for AC coding is
extended as shown in Table F.7.
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0 1 2

0

15

EOB
N/A
N/A
N/A
ZRL

            

RRRR

SSSS

T SO1430-93/d081

13 14

COMPOSITE VALUES

Figure F.11 – Two-dimensional value array for Huffman coding

        

Table F.7 – Values assigned to coefficient amplitude ranges

SSSS AC coefficients

11 –2 047..–1 024,1 024..2 047

12 –4  095..–2 048,2 048..4  095

13 –8 191..–4  096,4 096..8 191

14 –16 383..–8 192,8 192..16 383

F.1.6 Extended sequential DCT-based arithmetic encoding process for 12-bit sample precision

The process is identical to the sequential DCT process for 8-bit precision except for changes in the precision of the FDCT
computation.

The structure of the encoding procedure is identical to that specified in F.1.4 which was already defined for a 12-bit
sample precision.

F.2 Sequential DCT-based decoding processes

F.2.1 Sequential DCT-based control procedures and coding models

F.2.1.1 Control procedures for sequential DCT-based decoders

The control procedures for decoding compressed image data and its constituent parts – the frame, scan, restart interval and
MCU – are given in Figures E.6 to E.10. The procedure for decoding a MCU (Figure E.10) repetitively calls the
procedure for decoding a data unit. For DCT-based decoders the data unit is an 8 × 8 block of samples.

F.2.1.2 Procedure for decoding an 8 × 8 block data unit

In the sequential DCT-based decoding process, decoding an 8 × 8 block data unit consists of the following procedures:

a) decode DC coefficient for 8 × 8 block using the DC table destination specified in the scan header;

b) decode AC coefficients for 8 × 8 block using the AC table destination specified in the scan header;

c) dequantize using table destination specified in the frame header and calculate the inverse 8 × 8 DCT.

F.2.1.3 Decoding models for the sequential DCT procedures

Two decoding procedures are used, one for the DC coefficient ZZ(0) and the other for the AC coefficients ZZ(1)...ZZ(63).
The coefficients are decoded in the order in which they occur in the zig-zag sequence order, starting with the DC
coefficient. The coefficients are represented as two’s complement integers.
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F.2.1.3.1 Decoding model for DC coefficients

The decoded difference, DIFF, is added to PRED, the DC value from the most recently decoded 8 × 8 block from the
same component. Thus ZZ(0) = PRED + DIFF.

At the beginning of the scan and at the beginning of each restart interval, the prediction for the DC coefficient is
initialized to zero.

F.2.1.3.2 Decoding model for AC coefficients

The AC coefficients are decoded in the order in which they occur in ZZ. When the EOB is decoded, all remaining
coefficients in ZZ are initialized to zero.

F.2.1.4 Dequantization of the quantized DCT coefficients

The dequantization of the quantized DCT coefficients as described in Annex A, is accomplished by multiplying each
quantized coefficient value by the quantization table value for that coefficient. The decoder shall be able to use up to four
quantization table destinations.

F.2.1.5 Inverse DCT (IDCT)

The mathematical definition of the IDCT is given in A.3.3.

After computation of the IDCT, the signed output samples are level-shifted, as described in Annex A, converting the
output to an unsigned representation. For 8-bit precision the level shift is performed by adding 128. For 12-bit precision
the level shift is performed by adding 2 048. If necessary, the output samples shall be clamped to stay within the range
appropriate for the precision (0 to 255 for 8-bit precision and 0 to 4 095 for 12-bit precision).

F.2.2 Baseline Huffman Decoding procedures

The baseline decoding procedure is for 8-bit sample precision. The decoder shall be capable of using up to two DC and
two AC Huffman tables within one scan.

F.2.2.1 Huffman decoding of DC coefficients

The decoding procedure for the DC difference, DIFF, is:

T = DECODE

DIFF = RECEIVE(T)

DIFF = EXTEND(DIFF,T)

where DECODE is a procedure which returns the 8-bit value associated with the next Huffman code in the compressed
image data (see F.2.2.3) and RECEIVE(T) is a procedure which places the next T bits of the serial bit string into the low
order bits of DIFF, MSB first. If T is zero, DIFF is set to zero. EXTEND is a procedure which converts the partially
decoded DIFF value of precision T to the full precision difference. EXTEND is shown in Figure F.12.
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T SO1440-93/d082

EXTEND(V T)

V   = 2     t
T –1

V < V 
?

t Yes

No

V   = (SLL 1 T) + 1
V = V + V  

t

t

Return V

Figure F.12 – Extending the sign bit of a decoded value in V

        

F.2.2.2 Decoding procedure for AC coefficients

The decoding procedure for AC coefficients is shown in Figures F.13 and F.14.
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TISO1450-93/d083

Decode AC
coefficients

K = 1
ZZ(1 63) = 0

K = K + 1 K = K + 16

RS = DECODE

SSSS = RS modu o 16
RRRR = SRL RS 4
R = RRRR

SSSS = 0
?

Yes

No

K = K + R

Decode ZZ(K)

K = 63
?

R = 15
?

No

Yes

Yes

No

Done

Figure F.13 – Huffman decoding procedure for AC coefficients 
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TISO1460-93/d084

Decode ZZ(K)

ZZ(K) = RECEIVE(SSSS)
ZZ(K) = EXTEND(ZZ(K) SSSS)

Done

Figure F.14 – Decoding a non-zero AC coefficient

        

The decoding of the amplitude and sign of the non-zero coefficient is done in the procedure “Decode_ZZ(K)”, shown in
Figure F.14.

DECODE is a procedure which returns the value, RS, associated with the next Huffman code in the code stream
(see F.2.2.3). The values SSSS and R are derived from RS. The value of SSSS is the four low order bits of the composite
value and R contains the value of RRRR (the four high order bits of the composite value). The interpretation of these
values is described in F.1.2.2. EXTEND is shown in Figure F.12.

F.2.2.3 The DECODE procedure

The DECODE procedure decodes an 8-bit value which, for the DC coefficient, determines the difference magnitude
category. For the AC coefficient this 8-bit value determines the zero run length and non-zero coefficient category.

Three tables, HUFFVAL, HUFFCODE, and HUFFSIZE, have been defined in Annex C. This particular implementation
of DECODE makes use of the ordering of the Huffman codes in HUFFCODE according to both value and code size.
Many other implementations of DECODE are possible.

NOTE – The values in HUFFVAL are assigned to each code in HUFFCODE and HUFFSIZE in sequence. There are no
ordering requirements for the values in HUFFVAL which have assigned codes of the same length.

The implementation of DECODE described in this subclause uses three tables, MINCODE, MAXCODE and VALPTR,
to decode a pointer to the HUFFVAL table. MINCODE, MAXCODE and VALPTR each have 16 entries, one for each
possible code size. MINCODE(I) contains the smallest code value for a given length I, MAXCODE(I) contains the largest
code value for a given length I, and VALPTR(I) contains the index to the start of the list of values in HUFFVAL which
are decoded by code words of length I. The values in MINCODE and MAXCODE are signed 16-bit integers; therefore, a
value of –1 sets all of the bits.

The procedure for generating these tables is shown in Figure F.15. The procedure for DECODE is shown in Figure F.16.
Note that the 8-bit “VALUE” is returned to the procedure which invokes DECODE.

CCITT Rec. T.81 (1992 E) 107

Page 268 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

TISO1470-93/d085

Figure F.15 – Decoder table generation

Decoder tab es

I = 0
J = 0

MAXCODE(I) = 1 I = I + 1

I > 16
?

Yes

No

BITS(I) = 0
?

No

Yes

Done

VALPTR(I) = J
MINCODE(I) = HUFFCODE(J)
J = J + BITS(I)  1
MAXCODE(I) = HUFFCODE(J)
J = J + 1
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TISO1480-93/d086

DECODE

I = 1
CODE = NEXTBIT

I = I + 1
CODE = (SLL CODE 1) + NEXTBIT

CODE > MAXCODE(I)
?

Yes

No

J = VALPTR(I)
J = J + CODE  MINCODE(I)
VALUE = HUFFVAL(J)

Return VALUE

Figure F.16 – Procedure for DECODE
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F.2.2.4 The RECEIVE procedure

RECEIVE(SSSS) is a procedure which places the next SSSS bits of the entropy-coded segment into the low order bits of
DIFF, MSB first. It calls NEXTBIT and it returns the value of DIFF to the calling procedure (see Figure F.17).

TISO1490-93/d087

RECEIVE(SSSS)

I = 0
V = 0

I = I + 1
V = (SLL V 1) + NEXTBIT

I = SSSS
?

Yes

No

Return V

F igur e F 17  Pr ocedur e for  R EC E I V E (SSSS)

        

F.2.2.5 The NEXTBIT procedure

NEXTBIT reads the next bit of compressed data and passes it to higher level routines. It also intercepts and removes stuff
bytes and detects markers. NEXTBIT reads the bits of a byte starting with the MSB (see Figure F.18).

Before starting the decoding of a scan, and after processing a RST marker, CNT is cleared. The compressed data are read
one byte at a time, using the procedure NEXTBYTE. Each time a byte, B, is read, CNT is set to 8.

The only valid marker which may occur within the Huffman coded data is the RSTm marker. Other than the EOI or
markers which may occur at or before the start of a scan, the only marker which can occur at the end of the scan is the
DNL (define-number-of-lines).

Normally, the decoder will terminate the decoding at the end of the final restart interval before the terminating marker is
intercepted. If the DNL marker is encountered, the current line count is set to the value specified by that marker. Since the
DNL marker can only be used at the end of the first scan, the scan decode procedure must be terminated when it is
encountered.
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T SO1500-93/d088

NEXTBIT

CNT = 0
?

Yes

No

B = NEXTBYTE
CNT = 8

B = X FF
?

Yes

No

B2 = NEXTBYTE

B2 = 0
?

Yes

Yes

No

No

B2 = DNL
?

BIT = SRL B 7
CNT = CNT  1
B = SLL B 1

Process DNL marker

Return BIT Error Terminate scan

Figure F.18 – Procedure for fetching the next bit of compressed data

        

F.2.3 Sequential DCT decoding process with 8-bit precision extended to four sets of Huffman tables

This process is identical to the Baseline decoding process described in F.2.2, with the exception that the decoder shall be
capable of using up to four DC and four AC Huffman tables within one scan. Four DC and four AC Huffman tables is the
maximum allowed by this Specification.

F.2.4 Sequential DCT decoding process with arithmetic coding

This subclause describes the sequential DCT decoding process with arithmetic decoding.

The arithmetic decoding procedures for decoding binary decisions, initializing the statistical model, initializing the
decoder, and resynchronizing the decoder are listed in Table D.4 of Annex D.

Some of the procedures in Table D.4 are used in the higher level control structure for scans and restart intervals described
in F.2. At the beginning of scans and restart intervals, the probability estimates used in the arithmetic decoder are reset to
the standard initial value as part of the Initdec procedure which restarts the arithmetic coder.
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The statistical models defined in F.1.4.4 also apply to this decoding process.

The decoder shall be capable of using up to four DC and four AC conditioning tables and associated statistics areas within
one scan.

F.2.4.1 Arithmetic decoding of DC coefficients

The basic structure of the decision sequence for decoding a DC difference value, DIFF, is shown in Figure F.19. The
equivalent structure for the encoder is found in Figure F.4.

T SO1510-93/d089

Decode DC DIFF

D = Decode(S0)

D = 0
?

No Yes

Decode V(S0) DIFF = 0

DIFF = V

Done

Figure F.19 – Arithmetic decoding of DC difference

        

The context-indices used in the DC decoding procedures are defined in Table F.4 (see F.1.4.4.1.3).

The “Decode” procedure returns the value “D” of the binary decision. If the value is not zero, the sign and magnitude of
the non-zero DIFF must be decoded by the procedure “Decode_V(S0)”.

F.2.4.2 Arithmetic Decoding of AC coefficients

The AC coefficients are decoded in the order that they occur in ZZ(1,...,63). The encoder procedure for the coding process
is found in Figure F.5. Figure F.20 illustrates the decoding sequence.

112 CCITT Rec. T.81 (1992 E)

Page 273 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

TISO1520-93/d090

Decode AC
coefficients

K = Kmin

D = Decode(SE)

D = 1
?

Yes

No

K = K + 1 K = K + 1

D = Decode(S0)

D = 0
?

Yes

No

Decode V(S0)

ZZ(K) = V

K = Se
?

YesNo

Done

Figure F.20 – Procedure for decoding the AC coefficients

           

The context-indices used in the AC decoding procedures are defined in Table F.5 (see F.1.4.4.2).
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In Figure F.20, K is the index to the zig-zag sequence position. For the sequential scan, Kmin = 1 and Se = 63. The
decision at the top of the loop is the EOB decision. If the EOB occurs (D = 1), the remaining coefficients in the block are
set to zero. The inner loop just below the EOB decoding decodes runs of zero coefficients. Whenever the coefficient is
non-zero, “Decode_V” decodes the sign and magnitude of the coefficient. After each non-zero coefficient is decoded, the
EOB decision is again decoded unless K = Se.

F.2.4.3 Decoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement 16-bit integer values. The
decoding decision tree for these signed integer values is the same for both the DC and AC coding models. Note, however,
that the statistical models are not the same.

F.2.4.3.1 Arithmetic decoding of non-zero values

Denoting either DC differences or AC coefficients as V, the non-zero signed integer value of V is decoded by the
sequence shown in Figure F.21. This sequence first decodes the sign of V. It then decodes the magnitude category of V
(Decode_log2_Sz), and then decodes the low order magnitude bits (Decode_Sz_bits). Note that the value decoded for Sz
must be incremented by 1 to get the actual coefficient magnitude.

T SO1530-93/d091

Decode V(S)

Decode sign of V

Decode og2 Sz

Decode Sz bits

V = Sz + 1

SIGN = 1
?

Yes
V = V

Done

Figure F.21 – Sequence of procedures in decoding non-zero values of V

No

        

114 CCITT Rec. T.81 (1992 E)

Page 275 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

F.2.4.3.1.1 Decoding the sign

The sign is decoded by the procedure shown in Figure F.22.

The context-indices are defined for DC decoding in Table F.4 and AC decoding in Table F.5.

If SIGN = 0, the sign of the coefficient is positive; if SIGN = 1, the sign of the coefficient is negative.

T SO1540-93/d092

Decode sign of V

SIGN = Decode(SS)

SIGN = 1
?

Yes No

S = SN S = SP

Done

Figure F.22 – Decoding the sign of V

        

F.2.4.3.1.2 Decoding the magnitude category

The context-index S is set in Decode_sign_of_V and the context-index values X1 and X2 are defined for DC coding in
Table F.4 and for AC coding in Table F.5.

In Figure F.23, M is set to the upper bound for the magnitude and shifted left until the decoded decision is zero. It is then
shifted right by 1 to become the leading bit of the magnitude of Sz.
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TISO1550-93/d093

Decode og2 Sz

M = 1

D = Decode(S)

D = 0
?

Yes

No

M = 2
S = X1

M = 4
S = X2

D = Decode(S)

D = Decode(S)

D = 0
?

YesD = 0
?

Yes

No

No

M = SLL M 1
S = S + 1

M = SRL M 1
Sz = M

Done

Figure F.23 – Decoding procedure to establish the magnitude category
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F.2.4.3.1.3 Decoding the exact value of the magnitude

After the magnitude category is decoded, the low order magnitude bits are decoded. These bits are decoded in order of
decreasing bit significance. The procedure is shown in Figure F.24.

The context-index S is set in Decode_log2_Sz.

T SO1560-93/d094

Decode_Sz_bits

S = S + 14

M = SRL M 1

M = 0
?

Yes

No

D = Decode(S) Done

D = 0
?

Yes

No

Sz = M OR Sz

Figure F.24 – Decision sequence to decode the magnitude bit pattern

        

F.2.4.4 Decoder restart

The RSTm markers which are added to the compressed data between each restart interval have a two byte value which
cannot be generated by the coding procedures. These two byte sequences can be located without decoding, and can
therefore be used to resynchronize the decoder. RSTm markers can therefore be used for error recovery.
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Before error recovery procedures can be invoked, the error condition must first be detected. Errors during decoding can
show up in two places:

a) The decoder fails to find the expected marker at the point where it is expecting resynchronization.

b) Physically impossible data are decoded. For example, decoding a magnitude beyond the range of values
allowed by the model is quite likely when the compressed data are corrupted by errors. For arithmetic
decoders this error condition is extremely important to detect, as otherwise the decoder may reach a
condition where it uses the compressed data very slowly.

NOTE – Some errors will not cause the decoder to lose synchronization. In addition, recovery is not
possible for all errors; for example, errors in the headers are likely to be catastrophic. The two error
conditions listed above, however, almost always cause the decoder to lose synchronization in a way which
permits recovery.

In regaining synchronization, the decoder can make use of the modulo 8 coding restart interval number in the low order
bits of the RSTm marker. By comparing the expected restart interval number to the value in the next RSTm marker in the
compressed image data, the decoder can usually recover synchronization. It then fills in missing lines in the output data by
replication or some other suitable procedure, and continues decoding. Of course, the reconstructed image will usually be
highly corrupted for at least a part of the restart interval where the error occurred.

F.2.5 Sequential DCT decoding process with Huffman coding and 12-bit precision

This process is identical to the sequential DCT process defined for 8-bit sample precision and extended to four Huffman
tables, as documented in F.2.3, but with the following changes.

F.2.5.1 Structure of DC Huffman decode table

The general structure of the DC Huffman decode table is extended as described in F.1.5.1.

F.2.5.2 Structure of AC Huffman decode table

The general structure of the AC Huffman decode table is extended as described in F.1.5.2.

F.2.6 Sequential DCT decoding process with arithmetic coding and 12-bit precision

The process is identical to the sequential DCT process for 8-bit precision except for changes in the precision of the IDCT
computation.

The structure of the decoding procedure in F.2.4 is already defined for a 12-bit input precision.
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Annex  G

Progressive DCT-based mode of operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functional specification of the following coding processes for the progressive DCT-based mode
of operation:

1) spectral selection only, Huffman coding, 8-bit sample precision;

2) spectral selection only, arithmetic coding, 8-bit sample precision;

3) full progression, Huffman coding, 8-bit sample precision;

4) full progression, arithmetic coding, 8-bit sample precision;

5) spectral selection only, Huffman coding, 12-bit sample precision;

6) spectral selection only, arithmetic coding, 12-bit sample precision;

7) full progression, Huffman coding, 12-bit sample precision;

8) full progression, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in G.1, and the decoding process is specified in G.2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is necessary only that an
encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in
compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliance tests specified in Part 2.

The number of Huffman or arithmetic conditioning tables which may be used within the same scan is four.

Two complementary progressive procedures are defined, spectral selection and successive approximation.

In spectral selection the DCT coefficients of each block are segmented into frequency bands. The bands are coded in
separate scans.

In successive approximation the DCT coefficients are divided by a power of two before coding. In the decoder the
coefficients are multiplied by that same power of two before computing the IDCT. In the succeeding scans the precision of
the coefficients is increased by one bit in each scan until full precision is reached.

An encoder or decoder implementing a full progression uses spectral selection within successive approximation. An
allowed subset is spectral selection alone.

Figure G.1 illustrates the spectral selection and successive approximation progressive processes.

G.1 Progressive DCT-based encoding processes

G.1.1 Control procedures and coding models for progressive DCT-based procedures

G.1.1.1 Control procedures for progressive DCT-based encoders

The control procedures for encoding an image and its constituent parts – the frame, scan, restart interval and MCU – are
given in Figures E.1 through E.5.

The control structure for encoding a frame is the same as for the sequential procedures. However, it is convenient to
calculate the FDCT for the entire set of components in a frame before starting the scans. A buffer which is large enough to
store all of the DCT coefficients may be used for this progressive mode of operation.

The number of scans is determined by the progression defined; the number of scans may be much larger than the number
of components in the frame.
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Figure G.1 — Spectral selection and successive approximation progressive processes
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The procedure for encoding a MCU (see Figure E.5) repetitively invokes the procedure for coding a data unit. For
DCT-based encoders the data unit is an 8 × 8 block of samples.

Only a portion of each 8 × 8 block is coded in each scan, the portion being determined by the scan header parameters Ss,
Se, Ah, and Al (see B.2.3). The procedures used to code portions of each 8 × 8 block are described in this annex. Note,
however, that where these procedures are identical to those used in the sequential DCT-based mode of operation, the
sequential procedures are simply referenced.

G.1.1.1.1 Spectral selection control

In spectral selection the zig-zag sequence of DCT coefficients is segmented into bands. A band is defined in the scan
header by specifying the starting and ending indices in the zig-zag sequence. One band is coded in a given scan of the
progression. DC coefficients are always coded separately from AC coefficients, and only scans which code DC
coefficients may have interleaved blocks from more than one component. All other scans shall have only one component.
With the exception of the first DC scans for the components, the sequence of bands defined in the scans need not follow
the zig-zag ordering. For each component, a first DC scan shall precede any AC scans.

G.1.1.1.2 Successive approximation control

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). The successive approximation bit position parameter Al specifies the actual point
transform, and the high four bits (Ah) – if there are preceding scans for the band – contain the value of the point transform
used in those preceding scans. If there are no preceding scans for the band, Ah is zero.

Each scan which follows the first scan for a given band progressively improves the precision of the coefficients by one bit,
until full precision is reached.

G.1.1.2 Coding models for progressive DCT-based encoders

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). These models also apply to the progressive DCT-based encoders, but with the
following changes.

G.1.1.2.1 Progressive encoding model for DC coefficients

If Al is not zero, the point transform for DC coefficients shall be used to reduce the precision of the DC coefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded, using the procedure described in Annex
F. If Ah is not zero, the least significant bit of the point transformed DC coefficients shall be coded, using the procedures
described in this annex.

G.1.1.2.2 Progressive encoding model for AC coefficients

If Al is not zero, the point transform for AC coefficients shall be used to reduce the precision of the AC coefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded using modifications of the procedures
described in Annex F. These modifications are described in this annex. If Ah is not zero, the precision of the coefficients
shall be improved using the procedures described in this annex.

G.1.2 Progressive encoding procedures with Huffman coding

G.1.2.1 Progressive encoding of DC coefficients with Huffman coding

The first scan for a given component shall encode the DC coefficient values using the procedures described in F.1.2.1. If
the successive approximation bit position parameter Al is not zero, the coefficient values shall be reduced in precision by
the point transform described in Annex A before coding.

In subsequent scans using successive approximation the least significant bits are appended to the compressed bit stream
without compression or modification (see G.1.2.3), except for byte stuffing.

G.1.2.2 Progressive encoding of AC coefficients with Huffman coding

In spectral selection and in the first scan of successive approximation for a component, the AC coefficient coding model is
similar to that used by the sequential procedures. However, the Huffman code tables are extended to include coding of
runs of End-Of-Bands (EOBs). See Table G.1.
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Table G.1 – EOBn code run length extensions

EOBn code Run length

EOB0 1

EOB1 2,3

EOB2 4..7

EOB3 8..15

EOB4 16..31

EOB5 32..63

EOB6 64..127

EOB7 128..255

EOB8 256..511

EOB9  512..1 023

EOB10 1 024..2 047

EOB11 2 048..4 095

EOB12 4 096..8 191

EOB13 8 192..16 383

EOB14 16 384..32 767

The end-of-band run structure allows efficient coding of blocks which have only zero coefficients. An EOB run of length
5 means that the current block and the next four blocks have an end-of-band with no intervening non-zero coefficients.
The EOB run length is limited only by the restart interval.

The extension of the code table is illustrated in Figure G.2.

0 1 2 .      .      .

RRRR

SSSS

13 14

EOB0
EOB1

EOB14
ZRL

0
1

14
15

T SO1580-93/d096

COMPOSITE VALUES

Figure G.2 – Two-dimensional value array for Huffman coding

        

The EOBn code sequence is defined as follows. Each EOBn code is followed by an extension field similar to the
extension field for the coefficient amplitudes (but with positive numbers only). The number of bits appended to the EOBn
code is the minimum number required to specify the run length.

If an EOB run is greater than 32 767, it is coded as a sequence of EOB runs of length 32 767 followed by a final EOB run
sufficient to complete the run.

At the beginning of each restart interval the EOB run count, EOBRUN, is set to zero. At the end of each restart interval
any remaining EOB run is coded.

The Huffman encoding procedure for AC coefficients in spectral selection and in the first scan of successive
approximation is illustrated in Figures G.3, G.4, G.5, and G.6.
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Encode EOBHUN

EOBRUN =
EOBRUN +1

EOBRUN : X 7FFF

Encode R ZZ(K)
Encode EG3RUN

 
Figure 6.3 — Procedure for progressive encoding ofAC coefficients with Huffman coding
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In Figure G.3, Ss is the start of spectral selection, Se is the end of spectral selection, K is the index into the list of
coefficients stored in the zig-zag sequence ZZ, R is the run length of zero coefficients, and EOBRUN is the run length of
EOBs. EOBRUN is set to zero at the start of each restart interval.

If the scan header parameter Al (successive approximation bit position low) is not zero, the DCT coefficient values ZZ(K)
in Figure G.3 and figures which follow in this annex, including those in the arithmetic coding section, shall be replaced
by the point transformed values ZZ’(K), where ZZ’(K) is defined by:

ZZ’(K)  =
ZZ(K)x

2Al

EOBSIZE is a procedure which returns the size of the EOB extension field given the EOB run length as input. CSIZE is a
procedure which maps an AC coefficient to the SSSS value defined in the subclauses on sequential encoding (see F.1.1
and F.1.3).

T SO1600-93/d098

Encode EOBRUN

EOBRUN = 0
?

Yes

No

SSSS = EOBSIZE(EOBRUN)
I = SSSS × 16
Append EHUFSI(I)
   bits of EHUFCO(I)
Append SSSS ow order
   bits of EOBRUN
EOBRUN = 0

Done

Figure G.4 – Progressive encoding of a non-zero AC coefficient

        

TISO1610-93/d099

Encode ZRL

Append EHUFSI(X F0 )
   bits of EHUFCO(X F0 )
R = R  16

Done

Figure G.5 – Encoding of the run of zero coefficients
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TISO1620-93/d100

Encode R ZZ(K)

SSSS = CSIZE(ZZ(K))
I = (16 × R) + SSSS
Append EHUFSI(I)
   bits of EHUFCO(I)   

ZZ(K) < 0
?

Yes

No ZZ(K) = ZZ(K)  1

Append SSSS ow order
   bits of ZZ(K)
R = 0

Done

Figure G.6 – Encoding of the zero run and non-zero coefficient

        

G.1.2.3 Coding model for subsequent scans of successive approximation

The Huffman coding structure of the subsequent scans of successive approximation for a given component is similar to the
coding structure of the first scan of that component.

The structure of the AC code table is identical to the structure described in G.1.2.2. Each non-zero point transformed
coefficient that has a zero history (i.e. that has a value ± 1, and therefore has not been coded in a previous scan) is defined
by a composite 8-bit run length-magnitude value of the form:

RRRRSSSS

The four most significant bits, RRRR, give the number of zero coefficients that are between the current coefficient and the
previously coded coefficient (or the start of band). Coefficients with non-zero history (a non-zero value coded in a
previous scan) are skipped over when counting the zero coefficients. The four least significant bits, SSSS, provide the
magnitude category of the non-zero coefficient; for a given component the value of SSSS can only be one.

The run length-magnitude composite value is Huffman coded and each Huffman code is followed by additional bits:

a) One bit codes the sign of the newly non-zero coefficient. A 0-bit codes a negative sign; a 1-bit codes a
positive sign.

b) For each coefficient with a non-zero history, one bit is used to code the correction. A 0-bit means no
correction and a 1-bit means that one shall be added to the (scaled) decoded magnitude of the coefficient.
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Non-zero coefficients with zero history are coded with a composite code of the form:

HUFFCO(RRRRSSSS)   +   additional bit  (rule a)   +   correction bits  (rule b)

In addition whenever zero runs are coded with ZRL or EOBn codes, correction bits for those coefficients with non-zero
history contained within the zero run are appended according to rule b above.

For the Huffman coding version of Encode_AC_Coefficients_SA the EOB is defined to be the position of the last point
transformed coefficient of magnitude 1 in the band. If there are no coefficients of magnitude 1, the EOB is defined to be
zero.

NOTE – The definition of EOB is different for Huffman and arithmetic coding procedures.

In Figures G.7 and G.8 BE is the count of buffered correction bits at the start of coding of the block. BE is initialized to
zero at the start of each restart interval. At the end of each restart interval any remaining buffered bits are appended to the
bit stream following the last EOBn Huffman code and associated appended bits.

In Figures G.7 and G.9, BR is the count of buffered correction bits which are appended to the bit stream according to rule
b. BR is set to zero at the beginning of each Encode_AC_Coefficients_SA. At the end of each restart interval any
remaining buffered bits are appended to the bit stream following the last Huffman code and associated appended bits.

G.1.3 Progressive encoding procedures with arithmetic coding

G.1.3.1 Progressive encoding of DC coefficients with arithmetic coding

The first scan for a given component shall encode the DC coefficient values using the procedures described in F.1.4.1. If
the successive approximation bit position parameter is not zero, the coefficient values shall be reduced in precision by the
point transform described in Annex A before coding.

In subsequent scans using successive approximation the least significant bits shall be coded as binary decisions using a
fixed probability estimate of 0.5 (Qe = X’5A1D’, MPS = 0).

G.1.3.2 Progressive encoding of AC coefficients with arithmetic coding

Except for the point transform scaling of the DCT coefficients and the grouping of the coefficients into bands, the first
scan(s) of successive approximation is identical to the sequential encoding procedure described in F.1.4. If Kmin is
equated to Ss, the index of the first AC coefficient index in the band, the flow chart shown in Figure F.5 applies. The
EOB decision in that figure refers to the “end-of-band” rather than the “end-of-block”. For the arithmetic coding version
of Encode_AC_Coefficients_SA (and all other AC coefficient coding procedures) the EOB is defined to be the position
following the last non-zero coefficient in the band.

NOTE - The definition of EOB is different for Huffman and arithmetic coding procedures.

The statistical model described in F.1.4 also holds. For this model the default value of Kx is 5. Other values of Kx may be
specified using the DAC marker code (Annex B). The following calculation for Kx has proven to give good results for 8-
bit precision samples:

Kx = Kmin + SRL  (8 + Se – Kmin)  4

This expression reduces to the default of Kx = 5 when the band is from index 1 to index 63.
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T SO1630-93/d101

Encode AC
coefficients SA

K = Ss  1
R = 0
BR = 0

K = K + 1

ZZ(K) = 0
?

No Yes

R > 15
?

Yes

No K ≥ EOB
?

Yes

No

ZZ(K)  = 1
?

Yes

No

Encode EOBRUN
Append BE bits
Encode ZRL
Append BR bits

Append LSB of ZZ(K)
   to buffered bits
BR = BR + 1Encode EOBRUN

Append BE bits
Encode R ZZ(K)
Append BR bits

K = Se
?

No

Yes

Yes

NoK = Se
?

EOBRUN =
   EOBRUN + 1
BE = BE + BR

EOBRUN = X 7FFF
?

Yes

No

Encode EOBRUN
Append BE bits

Done

R = R + 1

Figure G.7 – Successive approximation coding of AC coefficients using Huffman coding
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TISO1640-93/d102

Append BE bits

BE = 0
?

Yes

No

Append BE buffered bits
   to bit stream
BE = 0

Done

Figure G.8 – Transferring BE buffered bits from buffer to bit stream

        

TISO1650-93/d103

Append BR bits

BR = 0
?

Yes

No

Append BR buffered bits
   to bit stream
BR = 0

Done

Figure G.9 – Transferring BR buffered bits from buffer to bit stream
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G.1.3.3 Coding model for subsequent scans of successive approximation

The procedure “Encode_AC_Coefficient_SA” shown in Figure G.10 increases the precision of the AC coefficient values
in the band by one bit.

As in the first scan of successive approximation for a component, an EOB decision is coded at the start of the band and
after each non-zero coefficient.

However, since the end-of-band index of the previous successive approximation scan for a given component, EOBx, is
known from the data coded in the prior scan of that component, this decision is bypassed whenever the current index, K,
is less than EOBx. As in the first scan(s), the EOB decision is also bypassed whenever the last coefficient in the band is
not zero. The decision ZZ(K) = 0 decodes runs of zero coefficients. If the decoder is at this step of the procedure, at least
one non-zero coefficient remains in the band of the block being coded. If ZZ(K) is not zero, the procedure in Figure G.11
is followed to code the value.

The context-indices in Figures G.10 and G.11 are defined in Table G.2 (see G.1.3.3.1). The signs of coefficients with
magnitude of one are coded with a fixed probability value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

G.1.3.3.1 Statistical model for subsequent successive approximation scans

As shown in Table G.2, each statistics area for subsequent successive approximation scans of AC coefficients consists of a
contiguous set of 189 statistics bins. The signs of coefficients with magnitude of one are coded with a fixed probability
value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

G.2 Progressive decoding of the DCT

The description of the computation of the IDCT and the dequantization procedure contained in A.3.3 and A.3.4 apply to
the progressive operation.

Progressive decoding processes must be able to decompress compressed image data which requires up to four sets of
Huffman or arithmetic coder conditioning tables within a scan.

In order to avoid repetition, detailed flow diagrams of progressive decoder operation are not included. Decoder operation
is defined by reversing the function of each step described in the encoder flow charts, and performing the steps in reverse
order.
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TISO1660-93/d104

Encode AC
coefficients SA

K = Kmin

K < EOBx
?

Yes

No

K = EOB
?

Yes

No

Code 1(SE)

Code 0(SE)

K = K + 1 K = K + 1

ZZ(K) = 0
?

Yes

No

Code 0(S0)

CodeSA ZZ(K)

K = Se
?

YesNo

Done

Figure G.10 – Subsequent successive approximation scans for coding
of AC coefficients using arithmetic coding

    

130 CCITT Rec. T.81 (1992 E)

Page 291 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

T SO1670-93/d105

CodeSA ZZ(K)

T = LSB ZZ(K)
Yes No ZZ(K)  > 1

? Code 1(S0)

T = 1
?

YesNo ZZ(K) > 0
?

No Yes

Code 0(SC) Code 1(SC) Code 1(SS) Code 0(SS)

Done

Figure G.11 – Coding non-zero coefficients for subsequent successive approximation scans

        

Table G.2 – Statistical model for subsequent scans of successive
approximation coding of AC coefficient

Context-index AC coding Coding decision

SE 3 × (K–1) K = EOB

S0 SE + 1 V = 0

SS Fixed estimate Sign

SC S0 + 1 LSB ZZ(K) = 1
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Annex  H

Lossless mode of operation

(This annex forms an integral part of this Recommendation | International Standard)
   

    

This annex provides a functional specification of the following coding processes for the lossless mode of operation:

1) lossless processes with Huffman coding;

2) lossless processes with arithmetic coding.

For each of these, the encoding process is specified in H.1, and the decoding process is specified in H.2. The functional
specification is presented by means of specific procedures which comprise these coding processes.

NOTE – There is no requirement in this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner specified in this annex. It is necessary only that an encoder or decoder
implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this
Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the
compliance tests specified in Part 2.

The processes which provide for sequential lossless encoding and decoding are not based on the DCT. The processes used
are spatial processes based on the coding model developed for the DC coefficients of the DCT. However, the model is
extended by incorporating a set of selectable one- and two-dimensional predictors, and for interleaved data the ordering of
samples for the one-dimensional predictor can be different from that used in the DCT-based processes.

Either Huffman coding or arithmetic coding entropy coding may be employed for these lossless encoding and decoding
processes. The Huffman code table structure is extended to allow up to 16-bit precision for the input data. The arithmetic
coder statistical model is extended to a two-dimensional form.

H.1 Lossless encoder processes

H.1.1 Lossless encoder control procedures

Subclause E.1 contains the encoder control procedures. In applying these procedures to the lossless encoder, the data unit
is one sample.

Input data precision may be from 2 to 16 bits/sample. If the input data path has different precision from the input data, the
data shall be aligned with the least significant bits of the input data path. Input data is represented as unsigned integers
and is not level shifted prior to coding.

When the encoder is reset in the restart interval control procedure (see E.1.4), the prediction is reset to a default value. If
arithmetic coding is used, the statistics are also reset.

For the lossless processes the restart interval shall be an integer multiple of the number of MCU in an MCU-row.

H.1.2 Coding model for lossless encoding

The coding model developed for encoding the DC coefficients of the DCT is extended to allow a selection from a set of
seven one-dimensional and two-dimensional predictors. The predictor is selected in the scan header (see Annex B). The
same predictor is used for all components of the scan. Each component in the scan is modeled independently, using
predictions derived from neighbouring samples of that component.

H.1.2.1 Prediction

Figure H.1 shows the relationship between the positions (a, b, c) of the reconstructed neighboring samples used for
prediction and the position of x, the sample being coded.
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c b

xa

T SO1680-93/d106

Figure H.1  –  Relationship between sample and prediction samples

        

Define Px to be the prediction and Ra, Rb, and Rc to be the reconstructed samples immediately to the left, immediately
above, and diagonally to the left of the current sample. The allowed predictors, one of which is selected in the scan
header, are listed in Table H.1.

Table H.1 – Predictors for lossless coding

Selection-value Prediction

0 No prediction (See Annex J)

1 Px = Ra

2 Px = Rb

3 Px = Rc

4 Px = Ra + Rb – Rc

5 Px = Ra + ((Rb – Rc)/2)a)

6 Px = Rb + ((Ra – Rc)/2)a)

7 Px = (Ra + Rb)/2

a) Shift right arithmetic operation

Selection-value 0 shall only be used for differential coding in the hierarchical mode of operation. Selections 1, 2 and 3 are
one-dimensional predictors and selections 4, 5, 6, and 7 are two-dimensional predictors.

The one-dimensional horizontal predictor (prediction sample Ra) is used for the first line of samples at the start of the scan
and at the beginning of each restart interval. The selected predictor is used for all other lines. The sample from the line
above (prediction sample Rb) is used at the start of each line, except for the first line. At the beginning of the first line and
at the beginning of each restart interval the prediction value of 2P – 1 is used, where P is the input precision.

If the point transformation parameter (see A.4) is non-zero, the prediction value at the beginning of the first lines and the
beginning of each restart interval is 2P – Pt – 1, where Pt is the value of the point transformation parameter.

Each prediction is calculated with full integer arithmetic precision, and without clamping of either underflow or overflow
beyond the input precision bounds. For example, if Ra and Rb are both 16-bit integers, the sum is a 17-bit integer. After
dividing the sum by 2 (predictor 7), the prediction is a 16-bit integer.
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For simplicity of implementation, the divide by 2 in the prediction selections 5 and 6 of Table H.1 is done by an
arithmetic-right-shift of the integer values.

The difference between the prediction value and the input is calculated modulo 216. In the decoder the difference is
decoded and added, modulo 216, to the prediction.

H.1.2.2 Huffman coding of the modulo difference

The Huffman coding procedures defined in Annex F for coding the DC coefficients are used to code the modulo 216

differences. The table for DC coding contained in Tables F.1 and F.6 is extended by one additional entry. No extra bits
are appended after SSSS = 16 is encoded. See Table H.2.

Table H.2 – Difference categories for lossless Huffman coding

SSSS Difference values

0 0

1 –1,1

2 –3,–2,2,3

3 –7..–4,4..7

4 –15..–8,8..15

5 –31..–16,16..31

6 –63..–32,32..63

7 –127..–64,64..127

8 –255..–128,128..255

9 –511..–256,256..511

10 –1 023..–512,512..1 023

11 –2 047..–1 024,1 024..2 047

12 –4 095..–2 048,2 048..4 095

13 –8 191..–4 096,4 096..8 191

14 –16 383..–8 192,8 192..16 383

15 –32 767..–16 384,16 384..32 767

16 32 768

H.1.2.3 Arithmetic coding of the modulo difference

The statistical model defined for the DC coefficient arithmetic coding model (see F.1.4.4.1) is generalized to a two-
dimensional form in which differences coded for the sample to the left and for the line above are used for conditioning.

H.1.2.3.1 Two-dimensional statistical model

The binary decisions are conditioned on the differences coded for the neighbouring samples  immediately above and
immediately to the left from the same component. As in the coding of the DC coefficients, the differences are classified
into 5 categories: zero(0), small positive (+S), small negative (–S), large positive (+L), and large negative (–L). The two
independent difference categories combine to give 25 different conditioning states. Figure H.2 shows the two-dimensional
array of conditioning indices. For each of the 25 conditioning states probability estimates for four binary decisions are
kept.

At the beginning of the scan and each restart interval the conditioning derived from the line  above is set to zero for the
first line of each component. At the start of each line, the difference to the left is set to zero for the purposes of calculating
the conditioning.
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Difference above (position b)

Figure H.2  –  5 × 5 Conditioning array for two-dimensional statistical model

        

H.1.2.3.2 Assignment of statistical bins to the DC binary decision tree

Each statistics area for lossless coding consists of a contiguous set of 158 statistics bins. The first 100 bins consist of
25 sets of four bins selected by a context-index S0. The value of S0 is given by L_Context(Da,Db), which provides a
value of 0, 4,..., 92 or 96, depending on the difference classifications of Da and Db (see H.1.2.3.1). The value for S0
provided by L_Context(Da,Db) is from the array in Figure H.2.

The remaining 58 bins consist of two sets of 29 bins, X1, ..., X15, M2, ..., M15, which are  used to code magnitude
category decisions and magnitude bits. The value of X1 is given by X1_Context(Db), which provides a value of 100 when
Db is in the zero, small positive or small negative categories and a value of 129 when Db is in the large positive or large
negative categories.

The assignment of statistical bins to the binary decision tree used for coding the difference  is given in Table H.3.

Table H.3 – Statistical model for lossless coding

Context-index Value Coding decision

S0 L_Context(Da,Db) V = 0

SS S0 + 1 Sign

SP S0 + 2 Sz < 1 if V > 0

SN S0 + 3 Sz < 1 if V < 0

X1 X1_Context(Db) Sz < 2

X2 X1 + 1 Sz < 4

X3 X1 + 2 Sz < 8

. . .

. . .

X15 X1 + 14 Sz < 215

M2 X2 + 14 Magnitude bits if Sz < 4

M3 X3 + 14 Magnitude bits if Sz < 8

. . .

. . .

M15 X15 + 14 Magnitude bits if Sz < 215
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H.1.2.3.3 Default conditioning bounds

The bounds, L and U, for determining the conditioning category have the default values L = 0 and U = 1. Other bounds
may be set using the DAC (Define-Arithmetic-Conditioning) marker segment, as described in Annex B.

H.1.2.3.4 Initial conditions for statistical model

At the start of a scan and at each restart, all statistics bins are re-initialized to the standard default value described in
Annex D.

H.2 Lossless decoder processes

Lossless decoders may employ either Huffman decoding or arithmetic decoding. They shall be capable of using up to four
tables in a scan. Lossless decoders shall be able to decode encoded image source data with any input precision from 2 to
16 bits per sample.

H.2.1 Lossless decoder control procedures

Subclause E.2 contains the decoder control procedures. In applying these procedures to the lossless decoder the data unit
is one sample.

When the decoder is reset in the restart interval control procedure (see E.2.4) the prediction is reset to the same value
used in the encoder (see H.1.2.1). If arithmetic coding is used, the statistics are also reset.

Restrictions on the restart interval are specified in H.1.1.

H.2.2 Coding model for lossless decoding

The predictor calculations defined in H.1.2 also apply to the lossless decoder processes.

The lossless decoders, decode the differences and add them, modulo 216, to the predictions to create the output. The
lossless decoders shall be able to interpret the point transform parameter, and if non-zero, multiply the output of the
lossless decoder by 2Pt.

In order to avoid repetition, detailed flow charts of the lossless decoding procedures are omitted.
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Annex  J

Hierarchical mode of operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functional specification of the coding processes for the hierarchical mode of operation.

In the hierarchical mode of operation each component is encoded or decoded in a non-differential frame. Such frames may
be followed by a sequence of differential frames. A non-differential frame shall be encoded or decoded using the
procedures defined in Annexes F, G and H. Differential frame procedures are defined in this annex.

The coding process for a hierarchical encoding containing DCT-based processes is defined as the highest numbered
process listed in Table J.1 which is used to code any non-differential DCT-based or differential DCT-based frame in the
compressed image data format. The coding process for a hierarchical encoding containing only lossless processes is
defined to be the process used for the non-differential frames.

Table J.1 – Coding processes for hierarchical mode

Process Non-differential frame specification

1 Extended sequential DCT, Huffman, 8-bit Annex F, process 2

2 Extended sequential DCT, arithmetic, 8-bit Annex F, process 3

3 Extended sequential DCT, Huffman, 12-bit Annex F, process 4

4 Extended sequential DCT, arithmetic, 12-bit Annex F, process 5

5 Spectral selection only, Huffman, 8-bit Annex G, process 1

6 Spectral selection only, arithmetic, 8-bit Annex G, process 2

7 Full progression, Huffman, 8-bit Annex G, process 3

8 Full progression, arithmetic, 8-bit Annex G, process 4

9 Spectral selection only, Huffman, 12-bit Annex G, process 5

10 Spectral selection only, arithmetic, 12-bit Annex G, process 6

11 Full progression, Huffman, 12-bit Annex G, process 7

12 Full progression, arithmetic, 12-bit Annex G, process 8

13 Lossless, Huffman, 2 through 16 bits Annex H, process 1

14 Lossless, arithmetic, 2 through 16 bits Annex H, process 2

Hierarchical mode syntax requires a DHP marker segment that appears before the non-differential frame or frames. It may
include EXP marker segments and differential frames which shall follow the initial non-differential frame. The frame
structure in hierarchical mode is identical to the frame structure in non-hierarchical mode.

Either all non-differential frames within an image shall be coded with DCT-based processes, or all non-differential frames
shall be coded with lossless processes. All frames within an image must use the same entropy coding procedure, either
Huffman or arithmetic, with the exception that non-differential frames coded with the baseline process may occur in the
same image with frames coded with arithmetic coding processes.

If the non-differential frames use DCT-based processes, all differential frames except the final frame for a component shall
use DCT-based processes. The final differential frame for each component may use a differential lossless process.

If the non-differential frames use lossless processes, all differential frames shall use differential lossless processes.

For each of the processes listed in Table J.1, the encoding processes are specified in J.1, and decoding processes are
specified in J.2.

NOTE – There is  no requirement in this Specification that any encoder or decoder which embodies one of the
above-named processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is
necessary only that an encoder or decoder implement the function specified in this annex. The sole criterion for an encoder or decoder
to be considered in compliance with this Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for
decoders), as determined by the compliance tests specified in Part 2.
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In the hierarchical mode of operation each component is encoded or decoded in a non-differential frame followed by a
sequence of differential frames. A non-differential frame shall use the procedures defined in Annexes F, G, and H.
Differential frame procedures are defined in this annex.

J.1 Hierarchical encoding

J.1.1 Hierarchical control procedure for encoding an image

The control structure for encoding of an image using the hierarchical mode is given in Figure J.1.

TISO1700-93/d108

Encode image

Encode frame

Append EOI marker

Done

Yes

No

YesNo

[Generate down samp ed images]
Append SOI marker
[Append tab es/misce aneous]
Append DHP marker segment

Reconstruct components
using matching

decoder process

[Upsamp e reference components and
    append EXP marker segment]
Generate differentia  components
Encode differentia frame
Reconstruct differentia  components
Reconstruct components

Differentia  frame
?

More frames
?

Figure J.1  –  Hierarchical control procedure for encoding an image

        

In Figure J.1 procedures in brackets shall be performed whenever the particular hierarchical encoding sequence being
followed requires them.
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In the hierarchical mode the define-hierarchical-progression (DHP) marker segment shall be placed in the compressed
image data before the first start-of-frame. The DHP segment is used to signal the size of the image components of the
completed image. The syntax of the DHP segment is specified in Annex B.

The first frame for each component or group of components in a hierarchical process shall be encoded by a
non-differential frame. Differential frames shall then be used to encode the two’s complement differences between source
input components (possibly downsampled) and the reference components (possibly upsampled). The reference
components are reconstructed components created by previous frames in the hierarchical process. For either differential or
non-differential frames, reconstructions of the components shall be generated if needed as reference components for a
subsequent frame in the hierarchical process.

Resolution changes may occur between hierarchical frames in a hierarchical process. These changes occur if
downsampling filters are used to reduce the spatial resolution of some or all of the components of the source image. When
the resolution of a reference component does not match the resolution of the component input to a differential frame, an
upsampling filter shall be used to increase the spatial resolution of the reference component. The EXP marker segment
shall be added to the compressed image data before the start-of-frame whenever upsampling of a reference component is
required. No more than one EXP marker segment shall precede a given frame.

Any of the marker segments allowed before a start-of-frame for the encoding process selected may be used before either
non-differential or differential frames.

For 16-bit input precision (lossless encoder), the differential components which are input to a differential frame are
calculated modulo 216. The reconstructed components calculated from the reconstructed differential components are also
calculated modulo 216.

If a hierarchical encoding process uses a DCT encoding process for the first frame, all frames in the hierarchical process
except for the final frame for each component shall use the DCT encoding processes defined in either Annex F or Annex
G, or the modified DCT encoding processes defined in this annex. The final frame may use a modified lossless process
defined in this annex.

If a hierarchical encoding process uses a lossless encoding process for the first frame, all frames in the hierarchical process
shall use a lossless encoding process defined in Annex H, or a modified lossless process defined in this annex.

J.1.1.1 Downsampling filter

The downsampled components are generated using a downsampling filter that is not specified in this Specification. This
filter should, however, be consistent with the upsampling filter. An example of a downsampling filter is provided in  K.5.

J.1.1.2 Upsampling filter

The upsampling filter increases the spatial resolution by a factor of two horizontally, vertically, or both. Bi-linear
interpolation is used for the upsampling filter, as illustrated in Figure J.2.

a x b a

x

b

T SO1710-93/d109

Figure J.2  –  Diagram of sample positions for upsampling rules
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The rule for calculating the interpolated value is:

P (Ra Rb) / 2x = +

where Ra and Rb are sample values from adjacent positions a and b of the lower resolution image and Px is the
interpolated value. The division indicates truncation, not rounding. The left-most column of the upsampled image matches
the left-most column of the lower resolution image. The top line of the upsampled image matches the top line of the lower
resolution image. The right column and the bottom line of the lower resolution image are replicated to provide the values
required for the right column edge and bottom line interpolations. The upsampling process always doubles the line length
or the number of lines.

If both horizontal and vertical expansions are signalled, they are done in sequence – first the horizontal expansion and
then the vertical.

J.1.2 Control procedure for encoding a differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCU also apply to the encoding of differential
frames, and the scans, restart intervals, and MCU from which the differential frame is constructed. The differential frames
differ from the frames of Annexes F, G, and H only at the coding model level.

J.1.3 Encoder coding models for differential frames

The coding models defined in Annexes F, G, and H are modified to allow them to be used for coding of two’s complement
differences.

J.1.3.1 Modifications to encoder DCT encoding models for differential frames

Two modifications are made to the DCT coding models to allow them to be used in differential frames. First, the FDCT of
the differential input is calculated without the level shift. Second, the DC coefficient of the DCT is coded directly –
without prediction.

J.1.3.2 Modifications to lossless encoding models for differential frames

One modification is made to the lossless coding models. The difference is coded directly – without prediction. The
prediction selection parameter in the scan header shall be set to zero. The point transform which may be applied to the
differential inputs is defined in Annex A.

J.1.4 Modifications to the entropy encoders for differential frames

The coding of two’s complement differences requires one extra bit of precision for the Huffman coding of AC coefficients.
The extension to Tables F.1 and F.7 is given in Table J.2.

Table J.2 – Modifications to table
of AC coefficient amplitude ranges

SSSS AC coefficients

15 –32 767..–16 384, 16 384..32 767

The arithmetic coding models are already defined for the precision needed in differential frames.
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J.2 Hierarchical decoding

J.2.1 Hierarchical control procedure for decoding an image

The control structure for decoding an image using the hierarchical mode is given in Figure J.3.

T SO1720-93/d110

Decode image

ErrorInterpret markers

Done

Decode frame

Non Hierarchica  mode

No

Yes

Yes

No

Yes

Yes

No

No

[Upsamp e reference components]
Decode differentia frame
Reconstruct components

SOI marker
?

EOI marker
?

Hierarchica
?

Differentia  frame
?

Figure J.3  –  Hierarchical control procedure for decoding an image

        

CCITT Rec. T.81 (1992 E) 141

Page 302 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

The Interpret markers procedure shall decode the markers which may precede the SOF marker, continuing this decoding
until either a SOF or EOI marker is found. If the DHP marker is encountered before the first frame, a flag is set which
selects the hierarchical decoder at the “hierarchical?” decision point. In addition to the DHP marker (which shall precede
any SOF) and the EXP marker (which shall precede any differential SOF requiring resolution changes in the reference
components), any other markers which may precede a SOF shall be interpreted to the extent required for decoding of the
compressed image data.

If a differential SOF marker is found, the differential frame path is followed. If the EXP was encountered in the Interpret
markers procedure, the reference components for the frame shall be upsampled as required by the parameters in the EXP
segment. The upsampling procedure described in J.1.1.2 shall be followed.

The Decode_differential_frame procedure generates a set of differential components. These differential components shall
be added, modulo 216, to the upsampled reference components in the Reconstruct_components procedure. This creates a
new set of reference components which shall be used when required in subsequent frames of the hierarchical process.

J.2.2 Control procedure for decoding a differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCU also apply to the decoding of differential
frames and the scans, restart intervals, and MCU from which the differential frame is constructed. The differential frame
differs from the frames of Annexes F, G, and H only at the decoder coding model level.

J.2.3 Decoder coding models for differential frames

The decoding models described in Annexes F, G, and H are modified to allow them to be used for decoding of two’s
complement differential components.

J.2.3.1 Modifications to the differential frame decoder DCT coding model

Two modifications are made to the decoder DCT coding models to allow them to code differential frames. First, the IDCT
of the differential output is calculated without the level shift. Second, the DC coefficient of the DCT is decoded directly –
without prediction.

J.2.3.2 Modifications to the differential frame decoder lossless coding model

One modification is made to the lossless decoder coding model. The difference is decoded directly – without prediction. If
the point transformation parameter in the scan header is not zero, the point transform, defined in Annex A, shall be
applied to the differential output.

J.2.4 Modifications to the entropy decoders for differential frames

The decoding of two’s complement differences requires one extra bit of precision in the Huffman code table. This is
described in J.1.4. The arithmetic coding models are already defined for the precision needed in differential frames.
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Annex  K

Examples and guidelines

(This annex does not form an integral part of this Recommendation | International Standard)

This annex provides examples of various tables, procedures, and other guidelines.

K.1 Quantization tables for luminance and chrominance components

Two examples of quantization tables are given in Tables K.1 and K.2. These are based on psychovisual thresholding and
are derived empirically using luminance and chrominance and 2:1 horizontal subsampling. These tables are provided as
examples only and are not necessarily suitable for any particular application. These quantization values have been used
with good results on 8-bit per sample luminance and chrominance images of the format illustrated in Figure 13. Note that
these quantization values are appropriate for the DCT normalization defined in A.3.3.

If these quantization values are divided by 2, the resulting reconstructed image is usually nearly indistinguishable from the
source image.

Table K.1 – Luminance quantization table

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Table K.2 – Chrominance quantization table

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99
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K.2 A procedure for generating the lists which specify a Huffman code table

A Huffman table is generated from a collection of statistics in two steps. The first step is the generation of the list of
lengths and values which are in accord with the rules for generating the Huffman code tables. The second step is the
generation of the Huffman code table from the list of lengths and values.

The first step, the topic of this section, is needed only for custom Huffman table generation and is done only in the
encoder. In this step the statistics are used to create a table associating each value to be coded with the size (in bits) of the
corresponding Huffman code. This table is sorted by code size.

A procedure for creating a Huffman table for a set of up to 256 symbols is shown in Figure K.1. Three vectors are defined
for this procedure:

FREQ(V) Frequency of occurrence of symbol V
CODESIZE(V) Code size of symbol V
OTHERS(V) Index to next symbol in chain of all symbols in current branch of code tree

where V goes from 0 to 256.

Before starting the procedure, the values of FREQ are collected for V = 0 to 255 and the FREQ value for V = 256 is set to
1 to reserve one code point. FREQ values for unused symbols are defined to be zero. In addition, the entries in
CODESIZE are all set to 0, and the indices in OTHERS are set to –1, the value which terminates a chain of indices.
Reserving one code point guarantees that no code word can ever be all “1” bits.

The search for the entry with the least value of FREQ(V) selects the largest value of V with the least value of FREQ(V)
greater than zero.

The procedure “Find V1 for least value of FREQ(V1) > 0” always selects the value with the largest value of V1 when
more than one V1 with the same frequency occurs. The reserved code point is then guaranteed to be in the longest code
word category.
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TISO1730-93/d111

Code size

Done

V1 = OTHERS(V1)

V2 = OTHERS(V2)

OTHERS(V1) = V2

YesNo

No

Yes

No

Yes

CODESIZE(V1) =
CODESIZE(V1) + 1

CODESIZE(V2) =
CODESIZE(V2) + 1

Find V1 for east va ue of
   FREQ(V1) > 0
Find V2 for next east va ue
   of FREQ(V2) > 0

FREQ(V1) =
   FREQ(V1) +
   FREQ(V2)
FREQ(V2) = 0

V2 exists
?

OTHERS(V1) = 1
?

OTHERS(V2) = 1
?

Figure K.1  –  Procedure to find Huffman code sizes
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Once the code lengths for each symbol have been obtained, the number of codes of each length is obtained using the
procedure in Figure K.2. The count for each size is contained in the list, BITS. The counts in BITS are zero at the start of
the procedure. The procedure assumes that the probabilities are large enough that code lengths greater than 32 bits never
occur. Note that until the final Adjust_BITS procedure is complete, BITS may have more than the 16 entries required in
the table specification (see Annex C).

T SO1740-93/d112

Count BITS

I = 0

I = I + 1

Adjust BITS

Done

Yes

No

Yes

No

I = 257

BITS(CODESIZE(I)) =
BITS(CODESIZE(I)) + 1

CODESIZE(I) = 0
?

Figure K.2  –  Procedure to find the number of codes of each size
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Figure K.3 gives the procedure for adjusting the BITS list so that no code is longer than 16 bits. Since symbols are paired
for the longest Huffman code, the symbols are removed from this length category two at a time. The prefix for the pair
(which is one bit shorter) is allocated to one of the pair; then (skipping the BITS entry for that prefix length) a code word
from the next shortest non-zero BITS entry is converted into a prefix for two code words one bit longer. After the BITS
list is reduced to a maximum code length of 16 bits, the last step removes the reserved code point from the code length
count.

TISO1750-93/d113

Adjust BITS

I = 32

Yes

No

J = I  1 I = I  1

J = J  1

I = I  1

Done

Yes No

No

No

Yes

Yes

BITS(I) = BITS(I)  1

BITS(I) = BITS(I)  2
BITS(I  1) = BITS(I  1) + 1
BITS(J + 1) = BITS(J + 1) + 2
BITS(J) = BITS (J)  1

BITS(I) > 0
?

BITS(J) > 0
?

BITS(I) = 0
?

I = 16
?

Figure K.3  –  Procedure for limiting code lengths to 16 bits
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The input values are sorted according to code size as shown in Figure K.4. HUFFVAL is the list containing the input
values associated with each code word, in order of increasing code length.

At this point, the list of code lengths (BITS) and the list of values (HUFFVAL) can be used to generate the code tables.
These procedures are described in Annex C.

T SO1760-93/d114

Sort input

J = 0

J = J + 1

I = I + 1

Done

Yes

No

Yes

No

No

Yes

HUFFVAL(K) = J
K = K + 1

I = 1
K = 0

CODESIZE(J) = I
?

J > 255
?

I > 32
?

Figure K.4  –  Sorting of input values according to code size

        

K.3 Typical Huffman tables for 8-bit precision luminance and chrominance

Huffman table-specification syntax is specified in B.2.4.2.
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K.3.1 Typical Huffman tables for the DC coefficient differences

Tables K.3 and K.4 give Huffman tables for the DC coefficient differences which have been developed from the average
statistics of a large set of video images with 8-bit precision. Table K.3 is appropriate for luminance components and Table
K.4 is appropriate for chrominance components. Although there are no default tables, these tables may prove to be useful
for many applications.

Table K.3 – Table for luminance DC coefficient differences

Category Code length Code word

0 2 00

1 3 010

2 3 011

3 3 100

4 3 101

5 3 110

6 4 1110

7 5 11110

8 6 111110

9 7 1111110

10 8 11111110

11 9 111111110

Table K.4 – Table for chrominance DC coefficient differences

Category Code length Code word

0 2 00

1 2 01

2 2 10

3 3 110

4 4 1110

5 5 11110

6 6 111110

7 7 1111110

8 8 11111110

9 9 111111110

10 10 1111111110

11 11 11111111110

K.3.2 Typical Huffman tables for the AC coefficients

Tables K.5 and K.6 give Huffman tables for the AC coefficients which have been developed from the average statistics of
a large set of images with 8-bit precision. Table K.5 is appropriate for luminance components and Table K.6 is appropriate
for chrominance components. Although there are no default tables, these tables may prove to be useful for many
applications.
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Table K.5 – Table for luminance AC coefficients (sheet 1 of 4)

Run/Size Code length Code word

0/0   (EOB) 4 1010

0/1 2 00

0/2 2 01

0/3 3 100

0/4 4 1011

0/5 5 11010

0/6 7 1111000

0/7 8 11111000

0/8 10 1111110110

0/9 16 1111111110000010

0/A 16 1111111110000011

1/1 4 1100

1/2 5 11011

1/3 7 1111001

1/4 9 111110110

1/5 11 11111110110

1/6 16 1111111110000100

1/7 16 1111111110000101

1/8 16 1111111110000110

1/9 16 1111111110000111

1/A 16 1111111110001000

2/1 5 11100

2/2 8 11111001

2/3 10 1111110111

2/4 12 111111110100

2/5 16 1111111110001001

2/6 16 1111111110001010

2/7 16 1111111110001011

2/8 16 1111111110001100

2/9 16 1111111110001101

2/A 16 1111111110001110

3/1 6 111010

3/2 9 111110111

3/3 12 111111110101

3/4 16 1111111110001111

3/5 16 1111111110010000

3/6 16 1111111110010001

3/7 16 1111111110010010

3/8 16 1111111110010011

3/9 16 1111111110010100

3/A 16 1111111110010101
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Table K.5 (sheet 2 of 4)

Run/Size Code length Code word

4/1 6 111011

4/2 10 1111111000

4/3 16 1111111110010110

4/4 16 1111111110010111

4/5 16 1111111110011000

4/6 16 1111111110011001

4/7 16 1111111110011010

4/8 16 1111111110011011

4/9 16 1111111110011100

4/A 16 1111111110011101

5/1 7 1111010

5/2 11 11111110111

5/3 16 1111111110011110

5/4 16 1111111110011111

5/5 16 1111111110100000

5/6 16 1111111110100001

5/7 16 1111111110100010

5/8 16 1111111110100011

5/9 16 1111111110100100

5/A 16 1111111110100101

6/1 7 1111011

6/2 12 111111110110

6/3 16 1111111110100110

6/4 16 1111111110100111

6/5 16 1111111110101000

6/6 16 1111111110101001

6/7 16 1111111110101010

6/8 16 1111111110101011

6/9 16 1111111110101100

6/A 16 1111111110101101

7/1 8 11111010

7/2 12 111111110111

7/3 16 1111111110101110

7/4 16 1111111110101111

7/5 16 1111111110110000

7/6 16 1111111110110001

7/7 16 1111111110110010

7/8 16 1111111110110011

7/9 16 1111111110110100

7/A 16 1111111110110101

8/1 9 111111000

8/2 15 111111111000000
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Table K.5 (sheet 3 of 4)

Run/Size Code length Code word

8/3 16 1111111110110110

8/4 16 1111111110110111

8/5 16 1111111110111000

8/6 16 1111111110111001

8/7 16 1111111110111010

8/8 16 1111111110111011

8/9 16 1111111110111100

8/A 16 1111111110111101

9/1 9 111111001

9/2 16 1111111110111110

9/3 16 1111111110111111

9/4 16 1111111111000000

9/5 16 1111111111000001

9/6 16 1111111111000010

9/7 16 1111111111000011

9/8 16 1111111111000100

9/9 16 1111111111000101

9/A 16 1111111111000110

A/1 9 111111010

A/2 16 1111111111000111

A/3 16 1111111111001000

A/4 16 1111111111001001

A/5 16 1111111111001010

A/6 16 1111111111001011

A/7 16 1111111111001100

A/8 16 1111111111001101

A/9 16 1111111111001110

A/A 16 1111111111001111

B/1 10 1111111001

B/2 16 1111111111010000

B/3 16 1111111111010001

B/4 16 1111111111010010

B/5 16 1111111111010011

B/6 16 1111111111010100

B/7 16 1111111111010101

B/8 16 1111111111010110

B/9 16 1111111111010111

B/A 16 1111111111011000

C/1 10 1111111010

C/2 16 1111111111011001

C/3 16 1111111111011010

C/4 16 1111111111011011
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Table K.5 (sheet 4 of 4)

Run/Size Code length Code word

C/5 16 1111111111011100

C/6 16 1111111111011101

C/7 16 1111111111011110

C/8 16 1111111111011111

C/9 16 1111111111100000

C/A 16 1111111111100001

D/1 11 11111111000

D/2 16 1111111111100010

D/3 16 1111111111100011

D/4 16 1111111111100100

D/5 16 1111111111100101

D/6 16 1111111111100110

D/7 16 1111111111100111

D/8 16 1111111111101000

D/9 16 1111111111101001

D/A 16 1111111111101010

E/1 16 1111111111101011

E/2 16 1111111111101100

E/3 16 1111111111101101

E/4 16 1111111111101110

E/5 16 1111111111101111

E/6 16 1111111111110000

E/7 16 1111111111110001

E/8 16 1111111111110010

E/9 16 1111111111110011

E/A 16 1111111111110100

F/0    (ZRL) 11 11111111001

F/1 16 1111111111110101

F/2 16 1111111111110110

F/3 16 1111111111110111

F/4 16 1111111111111000

F/5 16 1111111111111001

F/6 16 1111111111111010

F/7 16 1111111111111011

F/8 16 1111111111111100

F/9 16 1111111111111101

F/A 16 1111111111111110

CCITT Rec. T.81 (1992 E) 153

Page 314 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

Table K.6 – Table for chrominance AC coefficients (sheet 1 of 4)

Run/Size Code length Code word

0/0   (EOB) 2 00

0/1 2 01

0/2 3 100

0/3 4 1010

0/4 5 11000

0/5 5 11001

0/6 6 111000

0/7 7 1111000

0/8 9 111110100

0/9 10 1111110110

0/A 12 111111110100

1/1 4 1011

1/2 6 111001

1/3 8 11110110

1/4 9 111110101

1/5 11 11111110110

1/6 12 111111110101

1/7 16 1111111110001000

1/8 16 1111111110001001

1/9 16 1111111110001010

1/A 16 1111111110001011

2/1 5 11010

2/2 8 11110111

2/3 10 1111110111

2/4 12 111111110110

2/5 15 111111111000010

2/6 16 1111111110001100

2/7 16 1111111110001101

2/8 16 1111111110001110

2/9 16 1111111110001111

2/A 16 1111111110010000

3/1 5 11011

3/2 8 11111000

3/3 10 1111111000

3/4 12 111111110111

3/5 16 1111111110010001

3/6 16 1111111110010010

3/7 16 1111111110010011

3/8 16 1111111110010100

3/9 16 1111111110010101

3/A 16 1111111110010110

4/1 6 111010
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Table K.6 (sheet 2 of 4)

Run/Size Code length Code word

4/2 9 111110110

4/3 16 1111111110010111

4/4 16 1111111110011000

4/5 16 1111111110011001

4/6 16 1111111110011010

4/7 16 1111111110011011

4/8 16 1111111110011100

4/9 16 1111111110011101

4/A 16 1111111110011110

5/1 6 111011

5/2 10 1111111001

5/3 16 1111111110011111

5/4 16 1111111110100000

5/5 16 1111111110100001

5/6 16 1111111110100010

5/7 16 1111111110100011

5/8 16 1111111110100100

5/9 16 1111111110100101

5/A 16 1111111110100110

6/1 7 1111001

6/2 11 11111110111

6/3 16 1111111110100111

6/4 16 1111111110101000

6/5 16 1111111110101001

6/6 16 1111111110101010

6/7 16 1111111110101011

6/8 16 1111111110101100

6/9 16 1111111110101101

6/A 16 1111111110101110

7/1 7 1111010

7/2 11 11111111000

7/3 16 1111111110101111

7/4 16 1111111110110000

7/5 16 1111111110110001

7/6 16 1111111110110010

7/7 16 1111111110110011

7/8 16 1111111110110100

7/9 16 1111111110110101

7/A 16 1111111110110110

8/1 8 11111001

8/2 16 1111111110110111

8/3 16 1111111110111000
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Table K.6 (sheet 3 of 4)

Run/Size Code length Code word

8/4 16 1111111110111001

8/5 16 1111111110111010

8/6 16 1111111110111011

8/7 16 1111111110111100

8/8 16 1111111110111101

8/9 16 1111111110111110

8/A 16 1111111110111111

9/1 9 111110111

9/2 16 1111111111000000

9/3 16 1111111111000001

9/4 16 1111111111000010

9/5 16 1111111111000011

9/6 16 1111111111000100

9/7 16 1111111111000101

9/8 16 1111111111000110

9/9 16 1111111111000111

9/A 16 1111111111001000

A/1 9 111111000

A/2 16 1111111111001001

A/3 16 1111111111001010

A/4 16 1111111111001011

A/5 16 1111111111001100

A/6 16 1111111111001101

A/7 16 1111111111001110

A/8 16 1111111111001111

A/9 16 1111111111010000

A/A 16 1111111111010001

B/1 9 111111001

B/2 16 1111111111010010

B/3 16 1111111111010011

B/4 16 1111111111010100

B/5 16 1111111111010101

B/6 16 1111111111010110

B/7 16 1111111111010111

B/8 16 1111111111011000

B/9 16 1111111111011001

B/A 16 1111111111011010

C/1 9 111111010

C/2 16 1111111111011011

C/3 16 1111111111011100

C/4 16 1111111111011101

C/5 16 1111111111011110
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Table K.6 (sheet 4 of 4)

Run/Size Code length Code word

C/6 16 1111111111011111

C/7 16 1111111111100000

C/8 16 1111111111100001

C/9 16 1111111111100010

C/A 16 1111111111100011

D/1 11 11111111001

D/2 16 1111111111100100

D/3 16 1111111111100101

D/4 16 1111111111100110

D/5 16 1111111111100111

D/6 16 1111111111101000

D/7 16 1111111111101001

D/8 16 1111111111101010

D/9 16 1111111111101011

D/A 16 1111111111101100

E/1 14 11111111100000

E/2 16 1111111111101101

E/3 16 1111111111101110

E/4 16 1111111111101111

E/5 16 1111111111110000

E/6 16 1111111111110001

E/7 16 1111111111110010

E/8 16 1111111111110011

E/9 16 1111111111110100

E/A 16 1111111111110101

F/0   (ZRL) 10 1111111010

F/1 15 111111111000011

F/2 16 1111111111110110

F/3 16 1111111111110111

F/4 16 1111111111111000

F/5 16 1111111111111001

F/6 16 1111111111111010

F/7 16 1111111111111011

F/8 16 1111111111111100

F/9 16 1111111111111101

F/A 16 1111111111111110
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K.3.3 Huffman table-specification examples

K.3.3.1 Specification of typical tables for DC difference coding

A set of typical tables for DC component coding is given in K.3.1. The specification of these tables is as follows:

For Table K.3 (for luminance DC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00’

The set of values following this list is

X’00 01 02 03 04 05 06 07 08 09 0A 0B’

For Table K.4 (for chrominance DC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 03 01 01 01 01 01 01 01 01 01 00 00 00 00 00’

The set of values following this list is

X’00 01 02 03 04 05 06 07 08 09 0A 0B’

K.3.3.2 Specification of typical tables for AC coefficient coding

A set of typical tables for AC component coding is given in K.3.2. The specification of these tables is as follows:

For Table K.5 (for luminance AC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 02 01 03 03 02 04 03 05 05 04 04 00 00 01 7D’

The set of values which follows this list is

X’01 02 03 00 04 11 05 12 21 31 41 06 13 51 61 07

22 71 14 32 81 91 A1 08 23 42 B1 C1 15 52 D1 F0

24 33 62 72 82 09 0A 16 17 18 19 1A 25 26 27 28

29 2A 34 35 36 37 38 39 3A 43 44 45 46 47 48 49

4A 53 54 55 56 57 58 59 5A 63 64 65 66 67 68 69

6A 73 74 75 76 77 78 79 7A 83 84 85 86 87 88 89

8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5 A6 A7

A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2 C3 C4 C5

C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA E1 E2

E3 E4 E5 E6 E7 E8 E9 EA F1 F2 F3 F4 F5 F6 F7 F8

F9 FA’
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For Table K.6 (for chrominance AC coefficients), the 16 bytes which specify the list of code lengths for the table are

X’00 02 01 02 04 04 03 04 07 05 04 04 00 01 02 77’

The set of values which follows this list is:

X’00 01 02 03 11 04  05 21 31 06 12 41 51 07 61 71

13 22 32 81 08 14 42 91 A1 B1 C1 09 23 33 52 F0

15 62 72 D1 0A 16 24 34 E1 25 F1 17 18 19 1A 26

27 28 29 2A 35 36 37 38 39 3A 43 44 45 46 47 48

49 4A 53 54 55 56 57 58 59 5A 63 64  65 66 67 68

69 6A 73 74 75 76 77 78 79 7A 82 83 84 85 86 87

88 89 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5

A6 A7 A8 A9 AA B2 B3 B4 B5  B6 B7 B8 B9 BA C2 C3

C4 C5 C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA

E2 E3 E4 E5 E6 E7 E8 E9 EA F2 F3 F4 F5 F6 F7 F8

F9 FA’

K.4 Additional information on arithmetic coding

K.4.1 Test sequence for a small data set for the arithmetic coder

The following 256-bit test sequence (in hexadecimal form) is structured to test many of the encoder and decoder paths:

X’00020051     000000C0     0352872A     AAAAAAAA     82C02000     FCD79EF6     74EAABF7     697EE74C’

Tables K.7 and K.8 provide a symbol-by-symbol list of the arithmetic encoder and decoder operation. In these tables the
event count, EC, is listed first, followed by the value of Qe used in encoding and decoding that event. The decision D to
be encoded (and decoded) is listed next. The column labeled MPS contains the sense of the MPS, and if it is followed by
a CE (in the “CX” column), the conditional MPS/LPS exchange occurs when encoding and decoding the decision (see
Figures D.3, D.4 and D.17). The contents of the A and C registers are the values before the event is encoded and decoded.
ST is the number of X’FF’ bytes stacked in the encoder waiting for a resolution of the carry-over. Note that the A register
is always greater than X’7FFF’. (The starting value has an implied value of X’10000’.)

In the encoder test, the code bytes (B) are listed if they were completed during the coding of the preceding event. If
additional bytes follow, they were also completed during the coding of the preceding event. If a byte is listed in the
Bx column, the preceding byte in column B was modified by a carry-over.

In the decoder the code bytes are listed if they were placed in the code register just prior to the event EC.

For this file the coded bit count is 240, including the overhead to flush the final data from the C register. When the
marker X’FFD9’ is appended, a total of 256 bits are output. The actual compressed data sequence for the encoder is (in
hexadecimal form)

X’655B5144     F7969D51     7855BFFF     00FC5184     C7CEF939     00287D46     708ECBC0     F6FFD900’
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Table K.7 – Encoder test sequence (sheet 1 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

1 0 0 5A1D 0000 00000000 11 0

2 0 0 CE 5A1D A5E3 00000000 11 0

3 0 0 2586 B43A 0000978C 10 0

4 0 0 2586 8EB4 0000978C 10 0

5 0 0 1114 D25C 00012F18 9 0

6 0 0 1114 C148 00012F18 9 0

7 0 0 1114 B034 00012F18 9 0

8 0 0 1114 9F20 00012F18 9 0

9 0 0 1114 8E0C 00012F18 9 0

10 0 0 080B F9F0 00025E30 8 0

11 0 0 080B F1E5 00025E30 8 0

12 0 0 080B E9DA 00025E30 8 0

13 0 0 080B E1CF 00025E30 8 0

14 0 0 080B D9C4 00025E30 8 0

15 1 0 080B D1B9 00025E30 8 0

16 0 0 17B9 80B0 00327DE0 4 0

17 0 0 1182 D1EE 0064FBC0 3 0

18 0 0 1182 C06C 0064FBC0 3 0

19 0 0 1182 AEEA 0064FBC0 3 0

20 0 0 1182 9D68 0064FBC0 3 0

21 0 0 1182 8BE6 0064FBC0 3 0

22 0 0 0CEF F4C8 00C9F780 2 0

23 0 0 0CEF E7D9 00C9F780 2 0

24 0 0 0CEF DAEA 00C9F780 2 0

25 0 0 0CEF CDFB 00C9F780 2 0

26 1 0 0CEF C10C 00C9F780 2 0

27 0 0 1518 CEF0 000AB9D0 6 0 65

28 1 0 1518 B9D8 000AB9D0 6 0

29 0 0 1AA9 A8C0 005AF480 3 0

30 0 0 1AA9 8E17 005AF480 3 0

31 0 0 174E E6DC 00B5E900 2 0

32 1 0 174E CF8E 00B5E900 2 0

33 0 0 1AA9 BA70 00050A00 7 0 5B

34 0 0 1AA9 9FC7 00050A00 7 0

35 0 0 1AA9 851E 00050A00 7 0

36 0 0 174E D4EA 000A1400 6 0
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Table K.7 – Encoder test sequence (sheet 2 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

37 0 0 174E BD9C 000A1400 6 0

38 0 0 174E A64E 000A1400 6 0

39 0 0 174E 8F00 000A1400 6 0

40 0 0 1424 EF64 00142800 5 0

41 0 0 1424 DB40 00142800 5 0

42 0 0 1424 C71C 00142800 5 0

43 0 0 1424 B2F8 00142800 5 0

44 0 0 1424 9ED4 00142800 5 0

45 0 0 1424 8AB0 00142800 5 0

46 0 0 119C ED18 00285000 4 0

47 0 0 119C DB7C 00285000 4 0

48 0 0 119C C9E0 00285000 4 0

49 0 0 119C B844 00285000 4 0

50 0 0 119C A6A8 00285000 4 0

51 0 0 119C 950C 00285000 4 0

52 0 0 119C 8370 00285000 4 0

53 0 0 0F6B E3A8 0050A000 3 0

54 0 0 0F6B D43D 0050A000 3 0

55 0 0 0F6B C4D2 0050A000 3 0

56 0 0 0F6B B567 0050A000 3 0

57 1 0 0F6B A5FC 0050A000 3 0

58 1 0 1424 F6B0 00036910 7 0 51

59 0 0 1AA9 A120 00225CE0 4 0

60 0 0 1AA9 8677 00225CE0 4 0

61 0 0 174E D79C 0044B9C0 3 0

62 0 0 174E C04E 0044B9C0 3 0

63 0 0 174E A900 0044B9C0 3 0

64 0 0 174E 91B2 0044B9C0 3 0

65 0 0 1424 F4C8 00897380 2 0

66 0 0 1424 E0A4 00897380 2 0

67 0 0 1424 CC80 00897380 2 0

68 0 0 1424 B85C 00897380 2 0

69 0 0 1424 A438 00897380 2 0

70 0 0 1424 9014 00897380 2 0

71 1 0 119C F7E0 0112E700 1 0

72 1 0 1424 8CE0 001E6A20 6 0 44

73 0 0 1AA9 A120 00F716E0 3 0
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Table K.7 – Encoder test sequence (sheet 3 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

74 1 0 1AA9 8677 00F716E0 3 0

75 0 0 2516 D548 00041570 8 0 F7

76 1 0 2516 B032 00041570 8 0

77 0 0 299A 9458 00128230 6 0

78 0 0 2516 D57C 00250460 5 0

79 1 0 2516 B066 00250460 5 0

80 0 0 299A 9458 00963EC0 3 0

81 1 0 2516 D57C 012C7D80 2 0

82 0 0 299A 9458 0004B798 8 0 96

83 0 0 2516 D57C 00096F30 7 0

84 0 0 2516 B066 00096F30 7 0

85 0 0 2516 8B50 00096F30 7 0

86 1 0 1EDF CC74 0012DE60 6 0

87 1 0 2516 F6F8 009C5FA8 3 0

88 1 0 299A 9458 0274C628 1 0

89 0 0 32B4 A668 0004C398 7 0 9D

90 0 0 2E17 E768 00098730 6 0

91 1 0 2E17 B951 00098730 6 0

92 0 0 32B4 B85C 002849A8 4 0

93 1 0 32B4 85A8 002849A8 4 0

94 0 0 3C3D CAD0 00A27270 2 0

95 1 0 3C3D 8E93 00A27270 2 0

96 0 0 415E F0F4 00031318 8 0 51

97 1 0 415E AF96 00031318 8 0

98 0 0 CE 4639 82BC 000702A0 7 0

99 1 0 415E 8C72 000E7E46 6 0

100 0 0 CE 4639 82BC 001D92B4 5 0

101 1 0 415E 8C72 003B9E6E 4 0

102 0 0 CE 4639 82BC 0077D304 3 0

103 1 0 415E 8C72 00F01F0E 2 0

104 0 0 CE 4639 82BC 01E0D444 1 0

105 1 0 415E 8C72 0002218E 8 0 78

106 0 0 CE 4639 82BC 0004D944 7 0

107 1 0 415E 8C72 000A2B8E 6 0

108 0 0 CE 4639 82BC 0014ED44 5 0

109 1 0 415E 8C72 002A538E 4 0

110 0 0 CE 4639 82BC 00553D44 3 0
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Table K.7 – Encoder test sequence (sheet 4 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

111 1 0 415E 8C72 00AAF38E 2 0

112 0 0 CE 4639 82BC 01567D44 1 0

113 1 0 415E 8C72 0005738E 8 0 55

114 0 0 CE 4639 82BC 000B7D44 7 0

115 1 0 415E 8C72 0017738E 6 0

116 0 0 CE 4639 82BC 002F7D44 5 0

117 1 0 415E 8C72 005F738E 4 0

118 0 0 CE 4639 82BC 00BF7D44 3 0

119 1 0 415E 8C72 017F738E 2 0

120 0 0 CE 4639 82BC 02FF7D44 1 0

121 1 0 415E 8C72 0007738E 8 0 BF

122 0 0 CE 4639 82BC 000F7D44 7 0

123 1 0 415E 8C72 001F738E 6 0

124 0 0 CE 4639 82BC 003F7D44 5 0

125 1 0 415E 8C72 007F738E 4 0

126 0 0 CE 4639 82BC 00FF7D44 3 0

127 1 0 415E 8C72 01FF738E 2 0

128 0 0 CE 4639 82BC 03FF7D44 1 0

129 1 0 415E 8C72 0007738E 8 1

130 0 0 CE 4639 82BC 000F7D44 7 1

131 0 0 415E 8C72 001F738E 6 1

132 0 0 3C3D 9628 003EE71C 5 1

133 0 0 375E B3D6 007DCE38 4 1

134 0 0 32B4 F8F0 00FB9C70 3 1

135 1 0 32B4 C63C 00FB9C70 3 1

136 0 0 3C3D CAD0 03F0BFE0 1 1

137 1 0 3C3D 8E93 03F0BFE0 1 1

138 1 0 415E F0F4 000448D8 7 0 FF00FC

139 0 0 CE 4639 82BC 0009F0DC 6 0

140 0 0 415E 8C72 00145ABE 5 0

141 0 0 3C3D 9628 0028B57C 4 0

142 0 0 375E B3D6 00516AF8 3 0

143 0 0 32B4 F8F0 00A2D5F0 2 0

144 0 0 32B4 C63C 00A2D5F0 2 0

145 0 0 32B4 9388 00A2D5F0 2 0

146 0 0 2E17 C1A8 0145ABE0 1 0
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Table K.7 – Encoder test sequence (sheet 5 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

147 1 0 2E17 9391 0145ABE0 1 0

148 0 0 32B4 B85C 00084568 7 0 51

149 0 0 32B4 85A8 00084568 7 0

150 0 0 2E17 A5E8 00108AD0 6 0

151 0 0 299A EFA2 002115A0 5 0

152 0 0 299A C608 002115A0 5 0

153 0 0 299A 9C6E 002115A0 5 0

154 0 0 2516 E5A8 00422B40 4 0

155 0 0 2516 C092 00422B40 4 0

156 0 0 2516 9B7C 00422B40 4 0

157 0 0 1EDF ECCC 00845680 3 0

158 0 0 1EDF CDED 00845680 3 0

159 0 0 1EDF AF0E 00845680 3 0

160 0 0 1EDF 902F 00845680 3 0

161 1 0 1AA9 E2A0 0108AD00 2 0

162 1 0 2516 D548 000BA7B8 7 0 84

163 1 0 299A 9458 00315FA8 5 0

164 1 0 32B4 A668 00C72998 3 0

165 1 0 3C3D CAD0 031E7530 1 0

166 1 0 415E F0F4 000C0F0C 7 0 C7

167 0 0 CE 4639 82BC 00197D44 6 0

168 0 0 415E 8C72 0033738E 5 0

169 1 0 3C3D 9628 0066E71C 4 0

170 1 0 415E F0F4 019D041C 2 0

171 0 0 CE 4639 82BC 033B6764 1 0

172 1 0 415E 8C72 000747CE 8 0 CE

173  0 0 CE 4639 82BC 000F25C4 7 0

174 1 0 415E 8C72 001EC48E 6 0

175 1 0 CE 4639 82BC 003E1F44 5 0

176 1 0 4B85 F20C 00F87D10 3 0

177 1 0 CE 504F 970A 01F2472E 2 0

178 0 0 CE 5522 8D76 03E48E5C 1 0

179 0 0 504F AA44 00018D60 8 0 F9

180 1 0 4B85 B3EA 00031AC0 7 0

181 1 0 CE 504F 970A 0007064A 6 0

182 1 0 CE 5522 8D76 000E0C94 5 0

183 1 0 59EB E150 00383250 3 0
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Table K.7 – Encoder test sequence (sheet 6 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

184 0 1 59EB B3D6 0071736A 2 0

185 1 0 59EB B3D6 00E39AAA 1 0

186 1 1 59EB B3D6 0007E92A 8 0 38

187 1 1 5522 B3D6 000FD254 7 0

188 1 1 504F BD68 001FA4A8 6 0

189 0 1 4B85 DA32 003F4950 5 0

190 1 1 CE 504F 970A 007FAFFA 4 0

191 1 1 4B85 A09E 00FFED6A 3 0

192 0 1 4639 AA32 01FFDAD4 2 0

193 0 1 CE 4B85 8C72 04007D9A 1 0

194 1 1 CE 504F 81DA 0000FB34 8 0 39 00

195 1 1 4B85 A09E 0002597E 7 0

196 1 1 4639 AA32 0004B2FC 6 0

197 0 1 415E C7F2 000965F8 5 0

198 1 1 CE 4639 82BC 0013D918 4 0

199 0 1 415E 8C72 00282B36 3 0

200 0 1 CE 4639 82BC 0050EC94 2 0

201 1 1 4B85 F20C 0003B250 8 0 28

202 1 1 4B85 A687 0003B250 8 0

203 1 1 4639 B604 000764A0 7 0

204 0 1 415E DF96 000EC940 6 0

205 1 1 CE 4639 82BC 001ECEF0 5 0

206 0 1 415E 8C72 003E16E6 4 0

207 1 1 CE 4639 82BC 007CC3F4 3 0

208 0 1 415E 8C72 00FA00EE 2 0

209 1 1 CE 4639 82BC 01F49804 1 0

210 0 1 415E 8C72 0001A90E 8 0 7D

211 1 1 CE 4639 82BC 0003E844 7 0

212 0 1 415E 8C72 0008498E 6 0

213 1 1 CE 4639 82BC 00112944 5 0

214 0 1 415E 8C72 0022CB8E 4 0

215 1 1 CE 4639 82BC 00462D44 3 0

216 1 1 415E 8C72 008CD38E 2 0

217 1 1 3C3D 9628 0119A71C 1 0

218 1 1 375E B3D6 00034E38 8 0 46

219 1 1 32B4 F8F0 00069C70 7 0

220 1 1 32B4 C63C 00069C70 7 0
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Table K.7 – Encoder test sequence (sheet 7 of 7)

EC D MPS CX Qe A C CT ST Bx B
(hexadecimal) (hexadecimal) (hexadecimal)

221 0 1 32B4 9388 00069C70 7 0

222 1 1 3C3D CAD0 001BF510 5 0

223 1 1 3C3D 8E93 001BF510 5 0

224 1 1 375E A4AC 0037EA20 4 0

225 0 1 32B4 DA9C 006FD440 3 0

226 1 1 3C3D CAD0 01C1F0A0 1 0

227 1 1 3C3D 8E93 01C1F0A0 1 0

228 0 1 375E A4AC 0003E140 8 0 70

229 1 1 3C3D DD78 00113A38 6 0

230 0 1 3C3D A13B 00113A38 6 0

231 0 1 415E F0F4 00467CD8 4 0

232 1 1 CE 4639 82BC 008E58DC 3 0

233 0 1 415E 8C72 011D2ABE 2 0

234 1 1 CE 4639 82BC 023AEBA4 1 0

235 1 1 415E 8C72 0006504E 8 0 8E

236 1 1 3C3D 9628 000CA09C 7 0

237 1 1 375E B3D6 00194138 6 0

238 1 1 32B4 F8F0 00328270 5 0

239 1 1 32B4 C63C 00328270 5 0

240 0 1 32B4 9388 00328270 5 0

241 1 1 3C3D CAD0 00CB8D10 3 0

242 1 1 3C3D 8E93 00CB8D10 3 0

243 1 1 375E A4AC 01971A20 2 0

244 0 1 32B4 DA9C 032E3440 1 0

245 0 1 3C3D CAD0 000B70A0 7 0 CB

246 1 1 415E F0F4 002FFCCC 5 0

247 1 1 415E AF96 002FFCCC 5 0

248 1 1 3C3D DC70 005FF998 4 0

249 0 1 3C3D A033 005FF998 4 0

250 1 1 415E F0F4 01817638 2 0

251 0 1 415E AF96 01817638 2 0

252 0 1 CE 4639 82BC 0303C8E0 1 0

253 1 1 4B85 F20C 000F2380 7 0 C0

254 1 1 4B85 A687 000F2380 7 0

255 0 1 4639 B604 001E4700 6 0

256 0 1 CE 4B85 8C72 003D6D96 5 0

Flush: 81DA 007ADB2C 4 0 F6

FFD9
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Table K.8 – Decoder test sequence (sheet 1 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

1 0 0 5A1D 0000 655B0000 0 65 5B

2 0 0 CE 5A1D A5E3 655B0000 0

3 0 0 2586 B43A 332AA200 7 51

4 0 0 2586 8EB4 332AA200 7

5 0 0 1114 D25C 66554400 6

6 0 0 1114 C148 66554400 6

7 0 0 1114 B034 66554400 6

8 0 0 1114 9F20 66554400 6

9 0 0 1114 8E0C 66554400 6

10 0 0 080B F9F0 CCAA8800 5

11 0 0 080B F1E5 CCAA8800 5

12 0 0 080B E9DA CCAA8800 5

13 0 0 080B E1CF CCAA8800 5

14 0 0 080B D9C4 CCAA8800 5

15 1 0 080B D1B9 CCAA8800 5

16 0 0 17B9 80B0 2FC88000 1

17 0 0 1182 D1EE 5F910000 0

18 0 0 1182 C06C 5F910000 0

19 0 0 1182 AEEA 5F910000 0

20 0 0 1182 9D68 5F910000 0

21 0 0 1182 8BE6 5F910000 0

22 0 0 0CEF F4C8 BF228800 7 44

23 0 0 0CEF E7D9 BF228800 7

24 0 0 0CEF DAEA BF228800 7

25 0 0 0CEF CDFB BF228800 7

26 1 0 0CEF C10C BF228800 7

27 0 0 1518 CEF0 B0588000 3

28 1 0 1518 B9D8 B0588000 3

29 0 0 1AA9 A8C0 5CC40000 0

30 0 0 1AA9 8E17 5CC40000 0

31 0 0 174E E6DC B989EE00 7 F7

32 1 0 174E CF8E B989EE00 7

33 0 0 1AA9 BA70 0A4F7000 4

34 0 0 1AA9 9FC7 0A4F7000 4

35 0 0 1AA9 851E 0A4F7000 4

36 0 0 174E D4EA 149EE000 3

37 0 0 174E BD9C 149EE000 3

38 0 0 174E A64E 149EE000 3

39 0 0 174E 8F00 149EE000 3

40 0 0 1424 EF64 293DC000 2
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Table K.8 – Decoder test sequence (sheet 2 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

41 0 0 1424 DB40 293DC000 2

42 0 0 1424 C71C 293DC000 2

43 0 0 1424 B2F8 293DC000 2

44 0 0 1424 9ED4 293DC000 2

45 0 0 1424 8AB0 293DC000 2

46 0 0 119C ED18 527B8000 1

47 0 0 119C DB7C 527B8000 1

48 0 0 119C C9E0 527B8000 1

49 0 0 119C B844 527B8000 1

50 0 0 119C A6A8 527B8000 1

51 0 0 119C 950C 527B8000 1

52 0 0 119C 8370 527B8000 1

53 0 0 0F6B E3A8 A4F70000 0

54 0 0 0F6B D43D A4F70000 0

55 0 0 0F6B C4D2 A4F70000 0

56 0 0 0F6B B567 A4F70000 0

57 1 0 0F6B A5FC A4F70000 0

58 1 0 1424 F6B0 E6696000 4 96

59 0 0 1AA9 A120 1EEB0000 1

60 0 0 1AA9 8677 1EEB0000 1

61 0 0 174E D79C 3DD60000 0

62 0 0 174E C04E 3DD60000 0

63 0 0 174E A900 3DD60000 0

64 0 0 174E 91B2 3DD60000 0

65 0 0 1424 F4C8 7BAD3A00 7 9D

66 0 0 1424 E0A4 7BAD3A00 7

67 0 0 1424 CC80 7BAD3A00 7

68 0 0 1424 B85C 7BAD3A00 7

69 0 0 1424 A438 7BAD3A00 7

70 0 0 1424 9014 7BAD3A00 7

71 1 0 119C F7E0 F75A7400 6

72 1 0 1424 8CE0 88B3A000 3

73 0 0 1AA9 A120 7FBD0000 0

74 1 0 1AA9 8677 7FBD0000 0

75 0 0 2516 D548 9F7A8800 5 51

76 1 0 2516 B032 9F7A8800 5

77 0 0 299A 9458 517A2000 3

78 0 0 2516 D57C A2F44000 2

79 1 0 2516 B066 A2F44000 2

80 0 0 299A 9458 5E910000 0

168 CCITT Rec. T.81 (1992 E)

Page 329 of 448 Unified Patents Exhibit 1005 App'x A-N



ISO/IEC 10918-1 : 1993(E)

Table K.8 – Decoder test sequence (sheet 3 of 7)

EC D MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

81 1 0 2516 D57C BD22F000 7 78
82 0 0 299A 9458 32F3C000 5
83 0 0 2516 D57C 65E78000 4
84 0 0 2516 B066 65E78000 4
85 0 0 2516 8B50 65E78000 4
86 1 0 1EDF CC74 CBCF0000 3
87 1 0 2516 F6F8 F1D00000 0
88 1 0 299A 9458 7FB95400 6 55
89 0 0 32B4 A668 53ED5000 4
90 0 0 2E17 E768 A7DAA000 3
91 1 0 2E17 B951 A7DAA000 3
92 0 0 32B4 B85C 72828000 1
93 1 0 32B4 85A8 72828000 1
94 0 0 3C3D CAD0 7E3B7E00 7 BF
95 1 0 3C3D 8E93 7E3B7E00 7
96 0 0 415E F0F4 AF95F800 5
97 1 0 415E AF96 AF95F800 5
98 0 0 CE 4639 82BC 82BBF000 4
99 1 0 415E 8C72 8C71E000 3

100 0 0 CE 4639 82BC 82BBC000 2
101 1 0 415E 8C72 8C718000 1
102 0 0 CE 4639 82BC 82BB0000 0
103 1 0 415E 8C72 8C71FE00 7 FF 00
104 0 0 CE 4639 82BC 82BBFC00 6
105 1 0 415E 8C72 8C71F800 5
106 0 0 CE 4639 82BC 82BBF000 4
107 1 0 415E 8C72 8C71E000 3
108 0 0 CE 4639 82BC 82BBC000 2
109 1 0 415E 8C72 8C718000 1
110 0 0 CE 4639 82BC 82BB0000 0
111 1 0 415E 8C72 8C71F800 7 FC
112 0 0 CE 4639 82BC 82BBF000 6
113 1 0 415E 8C72 8C71E000 5
114 0 0 CE 4639 82BC 82BBC000 4
115 1 0 415E 8C72 8C718000 3
116 0 0 CE 4639 82BC 82BB0000 2
117 1 0 415E 8C72 8C700000 1
118 0 0 CE 4639 82BC 82B80000 0
119 1 0 415E 8C72 8C6AA200 7 51

120 0 0 CE 4639 82BC 82AD4400 6
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Table K.8 – Decoder test sequence (sheet 4 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

121 1 0 415E 8C72 8C548800 5

122 0 0 CE 4639 82BC 82811000 4

123 1 0 415E 8C72 8BFC2000 3

124 0 0 CE 4639 82BC 81D04000 2

125 1 0 415E 8C72 8A9A8000 1

126 0 0 CE 4639 82BC 7F0D0000 0

127 1 0 415E 8C72 85150800 7 84

128 0 0 CE 4639 82BC 74021000 6

129 1 0 415E 8C72 6EFE2000 5

130 0 0 CE 4639 82BC 47D44000 4

131 0 0 415E 8C72 16A28000 3

132 0 0 3C3D 9628 2D450000 2

133 0 0 375E B3D6 5A8A0000 1

134 0 0 32B4 F8F0 B5140000 0

135 1 0 32B4 C63C B5140000 0

136 0 0 3C3D CAD0 86331C00 6 C7

137 1 0 3C3D 8E93 86331C00 6

138 1 0 415E F0F4 CF747000 4

139 0 0 CE 4639 82BC 3FBCE000 3

140 0 0 415E 8C72 0673C000 2

141 0 0 3C3D 9628 0CE78000 1

142 0 0 375E B3D6 19CF0000 0

143 0 0 32B4 F8F0 339F9C00 7  CE

144 0 0 32B4 C63C 339F9C00 7

145 0 0 32B4 9388 339F9C00 7

146 0 0 2E17 C1A8 673F3800 6

147 1 0 2E17 9391 673F3800 6

148 0 0 32B4 B85C 0714E000 4

149 0 0 32B4 85A8 0714E000 4

150 0 0 2E17 A5E8 0E29C000 3

151 0 0 299A EFA2 1C538000 2

152 0 0 299A C608 1C538000 2

153 0 0 299A 9C6E 1C538000 2

154 0 0 2516 E5A8 38A70000 1

155 0 0 2516 C092 38A70000 1

156 0 0 2516 9B7C 38A70000 1

157 0 0 1EDF ECCC 714E0000 0

158 0 0 1EDF CDED 714E0000 0

159 0 0 1EDF AF0E 714E0000 0

160 0 0 1EDF 902F 714E0000 0
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Table K.8 – Decoder test sequence (sheet 5 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

161 1 0 1AA9 E2A0 E29DF200 7 F9

162 1 0 2516 D548 D5379000 4

163 1 0 299A 9458 94164000 2

164 1 0 32B4 A668 A5610000 0

165 1 0 3C3D CAD0 C6B4E400 6 39

166 1 0 415E F0F4 E0879000 4

167 0 0 CE 4639 82BC 61E32000 3

168 0 0 415E 8C72 4AC04000 2

169 1 0 3C3D 9628 95808000 1

170 1 0 415E F0F4 EE560000 7 00

171 0 0 CE 4639 82BC 7D800000 6

172 1 0 415E 8C72 81FA0000 5

173 0 0 CE 4639 82BC 6DCC0000 4

174 1 0 415E 8C72 62920000 3

175 1 0 CE 4639 82BC 2EFC0000 2

176 1 0 4B85 F20C BBF00000 0

177 1 0 CE 504F 970A 2AD25000 7 28

178 0 0 CE 5522 8D76 55A4A000 6

179 0 0 504F AA44 3AA14000 5

180 1 0 4B85 B3EA 75428000 4

181 1 0 CE 504F 970A 19BB0000 3

182 1 0 CE 5522 8D76 33760000 2

183 1 0 59EB E150 CDD80000 0

184 0 1 59EB B3D6 8CE6FA00 7 7D

185 1 0 59EB B3D6 65F7F400 6

186 1 1 59EB B3D6 1819E800 5

187 1 1 5522 B3D6 3033D000 4

188 1 1 504F BD68 6067A000 3

189 0 1 4B85 DA32 C0CF4000 2

190 1 1 CE 504F 970A 64448000 1

191 1 1 4B85 A09E 3B130000 0

192 0 1 4639 AA32 76268C00 7 46

193 0 1 CE 4B85 8C72 245B1800 6

194 1 1 CE 504F 81DA 48B63000 5

195 1 1 4B85 A09E 2E566000 4

196 1 1 4639 AA32 5CACC000 3

197 0 1 415E C7F2 B9598000 2

198 1 1 CE 4639 82BC 658B0000 1

199 0 1 415E 8C72 52100000 0

200 0 1 CE 4639 82BC 0DF8E000 7 70
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Table K.8 – Decoder test sequence (sheet 6 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

201 1 1 4B85 F20C 37E38000 5

202 1 1 4B85 A687 37E38000 5

203 1 1 4639 B604 6FC70000 4

204 0 1 415E DF96 DF8E0000 3

205 1 1 CE 4639 82BC 82AC0000 2

206 0 1 415E 8C72 8C520000 1

207 1 1 CE 4639 82BC 827C0000 0

208 0 1 415E 8C72 8BF31C00 7 8E

209 1 1 CE 4639 82BC 81BE3800 6

210 0 1 415E 8C72 8A767000 5

211 1 1 CE 4639 82BC 7EC4E000 4

212 0 1 415E 8C72 8483C000 3

213 1 1 CE 4639 82BC 72DF8000 2

214 0 1 415E 8C72 6CB90000 1

215 1 1 CE 4639 82BC 434A0000 0

216 1 1 415E 8C72 0D8F9600 7 CB

217 1 1 3C3D 9628 1B1F2C00 6

218 1 1 375E B3D6 363E5800 5

219 1 1 32B4 F8F0 6C7CB000 4

220 1 1 32B4 C63C 6C7CB000 4

221 0 1 32B4 9388 6C7CB000 4

222 1 1 3C3D CAD0 2EA2C000 2

223 1 1 3C3D 8E93 2EA2C000 2

224 1 1 375E A4AC 5D458000 1

225 0 1 32B4 DA9C BA8B0000 0

226 1 1 3C3D CAD0 4A8F0000 6 C0

227 1 1 3C3D 8E93 4A8F0000 6

228 0 1 375E A4AC 951E0000 5

229 1 1 3C3D DD78 9F400000 3

230 0 1 3C3D A13B 9F400000 3

231 0 1 415E F0F4 E9080000 1

232 1 1 CE 4639 82BC 72E40000 0

233 0 1 415E 8C72 6CC3EC00 7 F6

234 1 1 CE 4639 82BC 435FD800 6

235 1 1 415E 8C72 0DB9B000 5

236 1 1 3C3D 9628 1B736000 4

237 1 1 375E B3D6 36E6C000 3

238 1 1 32B4 F8F0 6DCD8000 2

239 1 1 32B4 C63C 6DCD8000 2

240 0 1 32B4 9388 6DCD8000 2
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Table K.8 – Decoder test sequence (sheet 7 of 7)

EC D  MPS CX Qe A C CT B
(hexadecimal) (hexadecimal) (hexadecimal)

241 1 1 3C3D CAD0 33E60000 0

242 1 1 3C3D 8E93 33E60000 0

Marker detected: zero byte fed to decoder

243 1 1 375E A4AC 67CC0000 7

244 0 1 32B4 DA9C CF980000 6

245 0 1 3C3D CAD0 9EC00000 4

246 1 1 415E F0F4 40B40000 2

247 1 1 415E AF96 40B40000 2

248 1 1 3C3D DC70 81680000 1

249 0 1 3C3D A033 81680000 1

Marker detected: zero byte fed to decoder

250 1 1 415E F0F4 75C80000 7

251 0 1 415E AF96 75C80000 7

252 0 1 CE 4639 82BC 0F200000 6

253 1 1 4B85 F20C 3C800000 4

254 1 1 4B85 A687 3C800000 4

255 0 1 4639 B604 79000000 3

256 0 1 CE 4B85 8C72 126A0000 2

K.5 Low-pass downsampling filters for hierarchical coding

In this section simple examples are given of downsampling filters which are compatible with the upsampling filter defined
in J.1.1.2.

Figure K.5 shows the weighting of neighbouring samples for simple one-dimensional horizontal and vertical low-pass
filters. The output of the filter must be normalized by the sum of the neighbourhood weights.

1 2 1 1

2

1

TISO1770-93/d115

Figure K.5  –  Low-pass filter example

        

The centre sample in Figure K.5 should be aligned with the left column or top line of the high resolution image when
calculating the left column or top line of the low resolution image. Sample values which are situated outside of the image
boundary are replicated from the sample values at the boundary to provide missing edge values.

If the image being downsampled has an odd width or length, the odd dimension is increased by 1 by sample replication on
the right edge or bottom line before downsampling.
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K.6 Domain of applicability of DCT and spatial coding techniques

The DCT coder is intended for lossy coding in a range from quite visible loss to distortion well below the threshold for
visibility. However in general, DCT-based processes cannot be used for true lossless coding.

The lossless coder is intended for completely lossless coding. The lossless coding process is significantly less effective
than the DCT-based processes for distortions near and above the threshold of visibility.

The point transform of the input to the lossless coder permits a very restricted form of lossy coding with the “lossless”
coder. (The coder is still lossless after the input point transform.) Since the DCT is intended for lossy coding, there may
be some confusion about when this alternative lossy technique should be used.

Lossless coding with a point transformed input is intended for applications which cannot be addressed by DCT coding
techniques. Among these are

– true lossless coding to a specified precision;

– lossy coding with precisely defined error bounds;

– hierarchical progression to a truly lossless final stage.

If lossless coding with a point transformed input is used in applications which can be met effectively by DCT coding, the
results will be significantly less satisfactory. For example, distortion in the form of visible contours usually appears when
precision of the luminance component is reduced to about six bits. For normal image data, this occurs at bit rates well
above those for which the DCT gives outputs which are visually indistinguishable from the source.

K.7 Domain of applicability of the progressive coding modes of operation

Two very different progressive coding modes of operation have been defined, progressive coding of the DCT coefficients
and hierarchical progression. Progressive coding of the DCT coefficients has two complementary procedures, spectral
selection and successive approximation. Because of this diversity of choices, there may be some confusion as to which
method of progression to use for a given application.

K.7.1 Progressive coding of the DCT

In progressive coding of the DCT coefficients two complementary procedures are defined for decomposing the 8 × 8 DCT
coefficient array, spectral selection and successive approximation. Spectral selection partitions zig-zag array of DCT
coefficients into “bands”, one band being coded in each scan. Successive approximation codes the coefficients with
reduced precision in the first scan; in each subsequent scan the precision is increased by one bit.

A single forward DCT is calculated for these procedures. When all coefficients are coded to full precision, the DCT is the
same as in the sequential mode. Therefore, like the sequential DCT coding, progressive coding of DCT coefficients is
intended for applications which need very good compression for a given level of visual distortion.

The simplest progressive coding technique is spectral selection; indeed, because of this simplicity, some applications may
choose – despite the limited progression that can be achieved – to use only spectral selection. Note, however, that the
absence of high frequency bands typically leads – for a given bit rate – to a significantly lower image quality in the
intermediate stages than can be achieved with the more general progressions. The net coding efficiency at the completion
of the final stage is typically comparable to or slightly less than that achieved with the sequential DCT.

A much more flexible progressive system is attained at some increase in complexity when successive approximation is
added to the spectral selection progression. For a given bit rate, this system typically provides significantly better image
quality than spectral selection alone. The net coding efficiency at the completion of the final stage is typically comparable
to or slightly better than that achieved with the sequential DCT.

K.7.2 Hierarchical progression

Hierarchical progression permits a sequence of outputs of increasing spatial resolution, and also allows refinement of
image quality at a given spatial resolution. Both DCT and spatial versions of the hierarchical progression are allowed, and
progressive coding of DCT coefficients may be used in a frame of the DCT hierarchical progression.

The DCT hierarchical progression is intended for applications which need very good compression for a given level of
visual distortion; the spatial hierarchical progression is intended for applications which need a simple progression with a
truly lossless final stage. Figure K.6 illustrates examples of these two basic hierarchical progressions.
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Figure K.6 — Sketch of the basic operations of the hierarchical mode

K.7.2.1 DCT Hierarchical progression

If a DCl' hierarchical progression uses reduced spatial resolution, the early stages of the progression can have better image
quality for a given bit rate than the early stages of non-hierarchical progressive coding of the DCT coefficients. However,

at the point where the distortion between source and output becomes indistinguishable, the coding efficiency achieved
with a DCI‘ hierarchical progression is typically significantly lower than the coding efficiency achieved with a non-
hierarchical progressive coding of the DCT coefficients.

While the hierarchical DCI‘ progression is intended for lossy progressive coding, a final spatial differential coding stage
can be used. When this final stage is used, the output can be almost lossless, limited only by the difference between the
encoder and decoder lDCI' implementations. Since lDCI' implementations can differ significantly, truly lossless coding
after a DCT hierarchical progression cannot be guaranteed. An important alternative, therefore, is to use the input point
transform of the final lossless differential coding stage to reduce the precision of the differential input. This allows a
bounding of the difference between source and output at a significantly lower cost in coded bits than coding of the full

precision spatial difference would require.

K.7.2.2 Spatial hierarchical progression

If lossless progression is required, a very simple hierarchical progression may be used in which the spatial lossless coder
with point transformed input is used as a first stage. This first stage is followed by one or more spatial differential coding
stages. The first stage should be nearly lossless, such that the low order bits which are truncated by the point transform are
essentially random — otherwise the compression efficiency will be degraded relative to non-progressive lossless coding.
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K.8 Suppression of block-to-block discontinuities in decoded images

A simple technique is available for suppressing the block-to-block discontinuities which can occur in images compressed
by DCT techniques.

The first few (five in this example) low frequency DCT coefficients are predicted from the nine DC values of the block
and the eight nearest-neighbour blocks, and the predicted values are used to suppress blocking artifacts in smooth areas of
the image.

The prediction equations for the first five AC coefficients in the zig-zag sequence are obtained as follows:

K.8.1 AC prediction

The sample field in a 3 by 3 array of blocks (each block containing an 8 × 8 array of samples) is modeled by a
two-dimensional second degree polynomial of the form:

P(x,y) = A1(x2y2) + A2(x2y) + A3(xy2) + A4(x2) + A5(xy) + A6(y2) + A7(x) + A8(y) + A9

The nine coefficients A1 through A9 are uniquely determined by imposing the constraint that the mean of P(x,y) over
each of the nine blocks must yield the correct DC-values.

Applying the DCT to the quadratic field predicting the samples in the central block gives a prediction of the low
frequency AC coefficients depicted in Figure K.7.

TISO1790-93/d117
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Figure K.7  –  DCT array positions of predicted AC coefficients

        

The prediction equations derived in this manner are as follows:

For the two dimensional array of DC values shown

DC1 DC2 DC3
DC4 DC5 DC6
DC7 DC8 DC9

The unquantized prediction equations are

AC01 = 1,13885 (DC4 – DC6)
AC10 = 1,13885 (DC2 – DC8)
AC20 = 0,27881 (DC2 + DC8 – 2 × DC5)
AC11 = 0,16213 ((DC1 – DC3) – (DC7 – DC9))
AC02 = 0,27881 (DC4 + DC6 – 2 × DC5)

The scaling of the predicted AC coefficients is consistent with the DCT normalization defined in A.3.3.
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K.8.2 Quantized AC prediction

The prediction equations can be mapped to a form which uses quantized values of the DC coefficients and which
computes quantized AC coefficients using integer arithmetic. The quantized DC coefficients need to be scaled, however,
such that the predicted coefficients have fractional bit precision.

First, the prediction equation coefficients are scaled by 32 and rounded to the nearest integer. Thus,

1,13885 × 32 = 36

0,27881 × 32 = 9

0,16213 × 32 = 5

The multiplicative factors are then scaled by the ratio of the DC and AC quantization factors and rounded appropriately.
The normalization defined for the DCT introduces another factor of 8 in the unquantized DC values. Therefore, in terms
of the quantized DC values, the predicted quantized AC coefficients are given by the equations below. Note that if (for
example) the DC values are scaled by a factor of 4, the AC predictions will have 2 fractional bits of precision relative to
the quantized DCT coefficients.

QAC01 = ( (Rd × Q01) + (36 × Q00 × (QDC4 – QDC6)))/(256 × Q01)
QAC10 = ( (Rd × Q10) + (36 × Q00 × (QDC2 – QDC8)))/(256 × Q10)
QAC20 = ( (Rd × Q20) + ( 9 × Q00 × (QDC2 + QDC8 – 2 × QDC5)))/(256 × Q20)
QAC11 = ( (Rd × Q11) + ( 5 × Q00 × ((QDC1 – QDC3) – (QDC7 – QDC9))))/(256 × Q11)
QAC02 = ( (Rd × Q02) + ( 9 × Q00 × (QDC4 + QDC6 – 2 × QDC5)))/(256 × Q02)

where QDCx and QACxy are the quantized and scaled DC and AC coefficient values. The constant Rd is added to get a
correct rounding in the division. Rd is 128 for positive numerators, and –128 for negative numerators.

Predicted values should not override coded values. Therefore, predicted values for coefficients which are already non-zero
should be set to zero. Predictions should be clamped if they exceed a value which would be quantized to a non-zero value
for the current precision in the successive approximation.

K.9 Modification of dequantization to improve displayed image quality

For a progression where the first stage successive approximation bit, Al, is set to 3, uniform quantization of the DCT gives
the following quantization and dequantization levels for a sequence of successive approximation scans, as shown in
Figure K.8:
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Fi gur e K .8  –  I l l ust r at i on of  tw o r econst r uct ion  st r ategies

Quantized DCT coefficient value

        

The column to the left labelled “Al” gives the bit position specified in the scan header. The quantized DCT coefficient
magnitudes are therefore divided by 2Al during that scan.
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Referring to the final scan (Al = 0), the points marked with “t” are the threshold values, while the points marked with “r”
are the reconstruction values. The unquantized output is obtained by multiplying the horizontal scale in Figure K.8 by the
quantization value.

The quantization interval for a coefficient value of zero is indicated by the depressed interval of the line. As the bit
position Al is increased, a “fat zero” quantization interval develops around the zero DCT coefficient value. In the limit
where the scaling factor is very large, the zero interval is twice as large as the rest of the quantization intervals.

Two different reconstruction strategies are shown. The points marked “r” are the reconstruction obtained using the normal
rounding rules for the DCT for the complete full precision output. This rule seems to give better image quality when high
bandwidth displays are used. The points marked “x” are an alternative reconstruction which tends to give better images on
lower bandwidth displays. “x” and “r” are the same for slice 0. The system designer must determine which strategy is best
for the display system being used.

K.10 Example of point transform

The difference between the arithmetic-shift-right by Pt and divide by 2Pt can be seen from the following:

After the level shift the DC has values from +127 to –128. Consider values near zero (after the level shift), and the case
where Pt = 1:

Before Before After After

level shift point transform divide by 2 shift-right-arithmetic 1

131 +3 +1 +1

130 +2 +1 +1

129 +1 0 0

128 0 0 0

127 –1 0 –1

126 –2 –1 –1

125 –3 –1 –2

124 –4 –2 –2

123 –5 –2 –3

The key difference is in the truncation of precision. The divide truncates the magnitude; the arithmetic shift truncates the
LSB. With a divide by 2 we would get non-uniform quantization of the DC values; therefore we use the shift-right-
arithmetic operation.

For positive values, the divide by 2 and the shift-right-arithmetic by 1 operations are the same. Therefore, the shift-right-
arithmetic by 1 operation effectively is a divide by 2 when the point transform is done before the level shift.
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Annex  L

Patents
(This annex does not form an integral part of this Recommendation | International Standard)

L.1 Introductory remarks

The user’s attention is called to the possibility that – for some of the coding processes specified in Annexes F, G, H, and J
– compliance with this Specification may require use of an invention covered by patent rights.

By publication of this Specification, no position is taken with respect to the validity of this claim or of any patent rights in
connection therewith. However, for each patent listed in this annex, the patent holder has filed with the Information
Technology Task Force (ITTF) and the Telecommunication Standardization Bureau (TSB) a statement of willingness to
grant a license under these rights on reasonable and non-discriminatory terms and conditions to applicants desiring to
obtain such a license.

The criteria for including patents in this annex are:

a) the patent has been identified by someone who is familiar with the technical fields relevant to this
Specification, and who believes use of the invention covered by the patent is required for implementation
of one or more of the coding processes specified in Annexes F, G, H, or J;

b) the patent-holder has written a letter to the ITTF and TSB, stating willingness to grant a license to an
unlimited number of applicants throughout the world under reasonable terms and conditions that are
demonstrably free of any unfair discrimination.

This list of patents shall be updated, if necessary, upon publication of any revisions to the Recommendation | International
Standard.

L.2 List of patents

The following patents may be required for implementation of any one of the processes specified in Annexes F, G, H, and J
which uses arithmetic coding:

US 4,633,490, December 30, 1986, IBM, MITCHELL (J.L.) and GOERTZEL (G.): Symmetrical Adaptive Data
Compression/Decompression System.

US 4,652,856, February 4, 1986, IBM, MOHIUDDIN (K.M.) and RISSANEN (J.J.): A Multiplication-free
Multi-Alphabet Arithmetic Code.

US 4,369,463, January 18, 1983, IBM, ANASTASSIOU (D.) and MITCHELL (J.L.): Grey Scale Image
Compression with Code Words a Function of Image History.

US 4,749,983, June 7, 1988, IBM,  LANGDON (G.): Compression of Multilevel Signals.

US 4,935,882, June 19, 1990, IBM, PENNEBAKER (W.B.) and MITCHELL (J.L.): Probability Adaptation
for Arithmetic Coders.

US 4,905,297, February 27, 1990, IBM, LANGDON (G.G.), Jr., MITCHELL (J.L.), PENNEBAKER (W.B.),
and RISSANEN (J.J.): Arithmetic Coding Encoder and Decoder System.

US 4,973,961, November 27, 1990, AT&T, CHAMZAS (C.), DUTTWEILER (D.L.): Method and Apparatus
for Carry-over Control in Arithmetic Entropy Coding.

US 5,025,258, June 18, 1991, AT&T, DUTTWEILER (D.L): Adaptive Probability Estimator for Entropy
Encoding/Decoding.

US 5,099,440, March 24, 1992, IBM, PENNEBAKER (W.B.) and MITCHELL (J.L.): Probability Adaptation
for Arithmetic Coders.

Japanese Patent Application 2-46275, February 26, 1990, MEL ONO (F.), KIMURA (T.), YOSHIDA (M.), and
KINO (S.): Coding System.

The following patent may be required for implementation of any one of the hierarchical processes specified in Annex H
when used with a lossless final frame:

US 4,665,436, May 12, 1987, EI OSBORNE (J.A.) and SEIFFERT (C.): Narrow Bandwidth Signal
Transmission.
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No other patents required for implementation of any of the other processes specified in Annexes F, G, H, or J had been
identified at the time of publication of this Specification.

L.3 Contact addresses for patent information

Director, Telecommunication Standardization Bureau (formerly CCITT)
International Telecommunication Union
Place des Nations
CH-1211 Genève 20, Switzerland
Tel. +41 (22) 730 5111
Fax: +41 (22) 730 5853

Information Technology Task Force
International Organization for Standardization
1, rue de Varembé
CH-1211 Genève 20, Switzerland
Tel: +41 (22) 734 0150
Fax: +41 (22) 733 3843

Program Manager, Licensing
Intellectual Property and Licensing Services
IBM Corporation
208 Harbor Drive
P.O. Box 10501
Stamford, Connecticut 08904-2501, USA
Tel: +1 (203) 973 7935
Fax: +1 (203) 973 7981 or +1 (203) 973 7982

Mitsubishi Electric Corp.
Intellectual Property License Department
1-2-3 Morunouchi, Chiyoda-ku
Tokyo 100, Japan
Tel: +81 (3) 3218 3465
Fax: +81 (3) 3215 3842

AT&T Intellectual Property Division Manager
Room 3A21
10 Independence Blvd.
Warren, NJ 07059, USA
Tel: +1 (908) 580 5392
Fax: +1 (908) 580 6355

Senior General Manager
Corporate Intellectual Property and Legal Headquarters
Canon Inc.
30-2 Shimomaruko 3-chome
Ohta-ku Tokyo 146 Japan
Tel: +81 (3) 3758 2111
Fax: +81 (3) 3756 0947

Chief Executive Officer
Electronic Imagery, Inc.
1100 Park Central Boulevard South
Suite 3400
Pompano Beach, FL 33064, USA
Tel: +1 (305) 968 7100
Fax: +1 (305) 968 7319
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Annex  M

Bibliography

(This annex does not form an integral part of this Recommendation | International Standard)
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