

Page 1 of 448 Unified Patents Exhibit 1005 App'x A-N

The Design and

Analysis of

Spatial Data
Structures

Page 1 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 2 of 448 Unified Patents Exhibit 1005 App'x A-NPage 2 of 448

The Design and

Analysis of

Spatial Data
Structures

Hanan Samet

UNIVERSITY OF MARYLAND

A
VV

ADDISON — WESLEY PUBLISHING COMPANY, INC.

Reading, Massachusetts ° Menlo Park, California ° New York

Don Mills, Ontario 0 Wokingham, England 0 Amsterdam

Bonn 0 Sydney 0 Singapore 0 Tokyo 0 Madrid 0 San Juan

Unified Patents Exhibit 1005 App'x A-N

Page 3 of 448 Unified Patents Exhibit 1005 App'x A-N

This book is in the Addison -Wesley Series in Computer Science

Michael A. Harrison: Consulting Editor

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark

claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value.

They have been tested with care, but are not guaranteed for any particular purpose. The publisher does not

offer any warranties or representations, nor does it accept any liabilities with respect to the programs or

applications.

Library of Congress Cataloging-in-Publication Data

Samet, Hanan.

The Design and analysis of spatial data structures/by Hanan Samet.
p. cm.

Bibliography: p.
Includes index.

ISBN 0—201—50255—0

1. Data structures (Computer science) 2. Computer graphics.
I. Title.

QA76.9.D35826 1989 89—30382
005.7'3 —dc19 CIP

Reprinted with corrections January, 1994

Copyright © 1990 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmit—

ted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the publisher. Printed in the United States of America. Published simultane-

ously in Canada.

456789 1011 12 13 14—MA-97 9695 94

Credits:
Thor Bestul created the cover art.

Gyun' Fekete generated Figure 1.16; Daniel DeMenthon, Figures 120, 1.21, and 1.23; Jiang-Hsing
Chu, Figures 2.48 and 2.52; and Walid Aref, Figures 4.38 through 4.40.

Figures 1.1, 4.9, and 4.10 are from H. Samet and R. E. Webber, On encoding boundaries with quad-
trees, IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 3 (May 1984), 365—369. © 1984
IEEE. Reprinted by permission of IEEE.

Figures 1.2, 1.3, 1.5 through 1.10, 1.12, 1.14, 1.25, 1.26, 2.3, 2.4, 2.18, 2.20, 2.30, 2.32, 2.53, 2.54,
2.57, 2.58, 3.20, 3.21, 4.1 through 4.5, 4.7, 4.8, 4.11, and 5.2 are from H. Samet, The quadtree and related
hierarchical data structures, ACM Computing Surveys 16, 2 (June 1984), 187—260. Reprinted by permission
of ACM.

Figures 1.4 and 5.6 are from H. Samet and R. E. Webber, Hierarchical data structures and algorithms
for computer graphics. Part 1. Fundamentals, IEEE Computer Graphics and Applications 8, 3 (May 1988),
48—68. © 1988 IEEE. Reprinted by permission of IEEE.

Figure 1.30 is from M. Li, W. I. Grosky, and R. Jain, Normalized quadtrees with respect to transla-
tions, Computer Graphics and Image Processing 20, 1 (September 1982), 72—81. Reprinted by permission
of Academic Press.

. Figures 2.7 and 2.10 through 2.15 are from H. Samet, Deletion in two-dimensional quad trees, Com-
munications of the ACM 23, 12 (December 1980), 703—7 10. Reprinted by permission of ACM.

Figures 2.26 and 2.27 are from D. T. Lee and C. K. Wong, Worst-case analysis for region and partial
region searches in multidimensional binary search trees and quad trees, Acta Informatica 9. 1 (1977). 23—29-
Reprinted by permrssron of Springer Verlag.
Continued on p. 493

Page 3 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 4 of 448 Unified Patents Exhibit 1005 App'x A-N

To my parents, Julius and Lotte

Page 4 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 5 of 448 Unified Patents Exhibit 1005 App'x A-N

PREFACE

Spatial data consist of points, lines, rectangles, regions, surfaces, and volumes. The

representation of such data is becoming increasingly important in applications in

computer graphics, computer vision, database management systems, computer-aided

design, solid modeling, robotics, geographic information systems (GIS), image pro-

cessing, computational geometry, pattern recognition, and other areas. Once an appli-

cation has been specified, it is common for the spatial data types to be more precise.

For example, consider a geographic information system (GIS). In such a case, line

data are differentiated on the basis of whether the lines are isolated (e.g., earthquake

faults), elements of tree-like structures (e.g., rivers and their tributaries), or elements

of networks (e.g., rail and highway systems). Similarly region data are often in the

form of polygons that are isolated (e.g., lakes), adjacent (e.g., nations), or nested (e.g.,

contours). Clearly the variations are large.

Many of the data structures currently used to represent spatial data are hierarchi—

cal. They are based on the principle of recursive decomposition (similar to divide and

conquer methods [Aho74]). One such data structure is the quadtree (octree in three

dimensions). As we shall see, the term quadtree has taken on a generic meaning. In

this book, it is my goal to show how a number of hierarchical data structures used in

different domains are related to each other and to quadtrees. My presentation concen-

trates on these different representations and illustrates how a number of basic opera-

tions that use them are performed.

Hierarchical data structures are useful because of their ability to focus on the

interesting subsets of the data. This focusing results in an efficient representation and

in improved execution times. Thus they are particularly convenient for performing set

operations. Many of the operations described can often be performed as efficiently, or

more so, with other data structures. Nevertheless hierarchical data structures are

attractive because of their conceptual clarity and ease of implementation. In addition,

the use of some of them provides a spatial index. This is very useful in applications

involving spatial databases.

Page 5 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 6 of 448 Unified Patents Exhibit 1005 App'x A-N

viii n PREFACE

As an example of the type of problems to which the techniques described in this

book are applicable, consider a cartographic database consisting of a number of maps

and some typical queries. The database contains a contour map, say at 50-foot eleva-

tion intervals, and a land use map classifying areas according to crop growth. Our

goal is to determine all regions between 400- and 600-foot elevation levels where

wheat is grown. This will require an intersection operation on the tWO maps. Such an

analysis could be rather costly, depending on the way the maps are represented. For

example, since areas where Corn is grown are of no interest, we wish to spend a

minimal amount of effort searching such regions. Yet traditional region representa-

tions such as the boundary code [Free74] are very local in application, making it

difficult to avoid examining a com-growing area that meets the desired elevation

criterion. In contrast, hierarchical representations such as the region quadtree are

more global in nature and enable the elimination of larger areas from consideration.

Another query might be to determine whether two roads intersect within a given

area. We could check them point by point; however, a more efficient method of

analysis would be to represent them by a hierarchical sequence of enclosing rectangles

and to discover whether in fact the rectangles do overlap. If they do not, the search is

terminated. If an intersection is possible, more work may have to be done, depending

on which method of representation is used.

A similar query can be constructed for point data—for example, to determine

all cities within 50 miles of St. Louis that have a population in excess of 20,000.

Again we could check each city individually. However, using a representation that

decomposes the United States into square areas having sides of length 100 miles

would mean that at most four squares need to be examined. Thus California and its

adjacent states can be safely ignored.

Finally, suppose we wish to integrate our queries over a database containing

many different types of data (e.g., points, lines, areas). A typical query might be,

“Find all cities with a population in excess of 5,000 people in wheat-growing regions

within 20 miles of the Mississippi River.” In this book we will present a number of

different ways of representing data so that such queries and other operations can be

efficiently processed.

This book is organized as follows. There is one chapter for each spatial data

type, in which I present a number of different data structures. The aim is to gain the

ability to evaluate them and to determine their applicability. Two problems are treated

in great detail: the rectangle intersection problem, discussed in the context of the

representation of collections of small rectangles (Chapter 3), and the point location

problem, discussed in the context of the representation of curvilinear data (Chapter 4).
A comprehensive treatment of the use of quadtrees and octrees in other applications in

computer graphics, image processing, and geographic information systems (GIS) can
be found in [Same90b].

Chapter 1 gives a general introduction to the principle of recursive decomposi-
tion with a concentration on two-dimensional regions. Key properties, as well as a

historical overview, are presented.

Page 6 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 7 of 448 Unified Patents Exhibit 1005 App'x A-N

PREFACE II iX

Chapter 2 discusses hierarchical representations of multidimensional point data.

These data structures are particularly useful in applications in database management

systems because they are designed to facilitate responses to search queries.

Chapter 3 examines the hierarchical representation of collections of small rec-

tangles. Such data arise in applications in Computational geometry, very large-scale

integrations (VLSI), cartography, and database management. Examples from these

fields (e.g., the rectangle intersection problem) are used to illustrate their differences.

Many of the representations are closely related to those used for point data. This

chapter is an expansion of [Same88a].

Chapter 4 treats the hierarchical representation of curvilinear data. The primary

focus is on the representation of polygonal maps. The goal is to be able to Solvethe

point location problem. Quadtree-like solutions are compared with those from Com-

putational geometry such as the K-structure [Kirk83] and the layered dag [Edel86a].

Chapter 5 looks at the representation of three-dimensional region data. In this

case, a number of octree variants are examined, as well as constructive solid geometry

(CSG) and the boundary model (BRep). Algorithms are discussed for converting

between some of these representations. The representation of surfaces (i.e., 2.5-

dimensional data) is also briefly discussed in this chapter.

There are a number of topics for which justice requires a considerably more

detailed treatment. However, due to space limitations, I have omitted a detailed dis-

cussion of them and instead refer interested readers to the appropriate literature. For

example, surface representations are discussed briefly with three-dimensional data in

Chapter 5 (also see Chapter 7 of [Same90b]). The notion of a pyramid is presented

only at a cursory level in Chapter 1 so that it can be contrasted with the quadtree. In

particular, the pyramid is a multiresolution representation, whereas the quadtree is a

variable resolution representation. Readers are referred to Tanimoto and Klinger

[Tani80] and the Collection of papers edited by Rosenfeld [Rose83a] for a more

comprehensive exposition on pyramids.

Results from computational geometry, although related to many of the topics

covered in this book, are discussed only in the context of representations for collec-

tions of small rectangles (Chapter 3) and curvilinear data (Chapter 4). For more

details on early work involving Some of these and related topics, interested readers

should consult the surveys by Bentley and Friedman [Bent79b], Overmars [Over88a],

Edelsbrunner [Edel84], Nagy and Wagle [Nagy79], Peuquet [Peuq84], Requicha

[Requ80], Srihari [Srih81],‘ Samet and Rosenfeld [Same80d], Samet [Same84b,

Same88a], Samet and Webber [Same88c, Same88d], and Toussaint [Tous80].

There are aISO a number of excellent texts containing material related to the

topics that I cover. Rosenfeld and Kak [Rose82a] should be consulted for an ency-

clopedic treatment of image processing. Mantyla [Mant87] has written a comprehen-

sive introduction to solid modeling. Burrough [Burr86] provides a survey of geo-

graphic information systems (GIS). Overmars [Over83] has produced a particularly

good treatment of multidimensional point data. In a similar vein, see Mehlhom’s

[Mehl84] unified treatment of multidimensional searching and computational

geometry. For thorough introductions to computational geometry, see Preparata and

Page 7 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 8 of 448 Unified Patents Exhibit 1005 App'x A-N

PREFACE ii xiii

K-structure and the layered dag in Section 4.3 are relevant to computational geometry.

Bucket methods such as linear hashing, spiral hashing. grid file. and EXCELL. in Sec-

tion 2.8, and R-trees in Section 3.5.3 are important in the study of database manage-

ment systems. Methods for multidimensional searching that are discussed include k—d

trees in Section 2.4, range trees and priority search trees in Section 2.5, and point-

based rectangle representations in Section 3.4. The discussions of the representation

of two-dimensional regions in Chapter 1. polygonal representations in Chapter 4, and

use of point methods for focussing the Hough Transform are relevant to image pro-

cessing. Finally the rectangle-representation methods and plane-sweep methods of

Chapter 3 are important in the field of VLSI design.

The natural home for courses that use this book is in a Computer science depart-

ment, but the book Could also be used in a curriculum in geographic information

systems (615). Such a course is offered in geography departments. The emphasis for

a course in this area would be on the use of quadtree-like methods for representing

spatial data.

Page 8 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 9 of 448 Unified Patents Exhibit 1005 App'x A-N

x II PREFACE

Shamos [Prep85] and Edelsbrunner [Ede187] (also see [Prep83, ORou88]). A broader

view of the literature can be found in related bibliographies such as the ongoing col-

lective effort coordinated by Edelsbrunner [Ede183c, Ede188], and Rosenfeld’s annual

collection of references in the journal Computer Vision, Graphics, and Image Pro-

cessing (e.g., [Rose88]).

Nevertheless, given the broad and rapidly expanding nature of the field, I am

bound to have omitted significant concepts and references. In addition at times I

devote a disproportionate amount of attention to some concepts at the expense of oth-

ers. This is principally for expository purposes; I feel that it is better to understand

some structures well rather than to give readers a quick runthrough of buzzwords. For

these indiscretions, I beg your pardon and hope you nevertheless bear with me.

My approach is an algorithmic one. Whenever possible, I have tried to motivate

critical steps in the algorithms by a liberal use of examples. I feel that it is of

paramount importance for readers to see the ease with which the representations can

be implemented and used. In each chapter, except for the introduction (Chapter 1), I

give at least one detailed algorithm using pseudo-code so that readers can see how the

ideas can be applied. The pseudo-code is a variant of the ALGOL [Naur60] program-

ming language that has a data structuring facility incorporating pointers and record

structures. Recursion is used heavily. This language has similarities to C [Kem78],

PASCAL [Jens74], SAIL [Reis76], and ALGOL W [Baue68]. Its basic features are

described in the Appendix. However, the actual code is not crucial to understanding

the techniques, and it may be skipped on a first reading. The index indicates the page

numbers where the code for each algorithm is found.

In many cases I also give an analysis of the space and time requirements of dif-

ferent data structures and algorithms. The analysis is usually of an asymptotic nature

and is in terms of big 0 and Q notation [Knut76]. The big 0 notation denotes an

upper bound. For example, if an algorithm takes 0(log2N) time, then its worst-case

behavior is never any worse than log2N. The Q notation denotes a lower bound. As

an example of its use, consider the problem of sorting N numbers. When we say that

sorting is Q(N-log2N) we mean that given any algorithm for sorting, there is some set

ofN input values for which the algorithm will require at least this much time.

At times I also describe implementations of some of the data structures for the

purpose of comparison. In such cases counts, such as the number of fields in a record,

are often given. These numbers are meant only to amplify the discussion. They are

not to be taken literally. as improvements are always possible once a specific applica-

tion is analyzed more carefully.

Each chapter contains a substantial number of exercises. Many of the exercises

develop further the material in the text as a means of testing the reader’s understand-

ing, as well as suggesting future directions. When the exercise or its solution is not

my own, I have preceded it with the name of its originator. The exercises have not

been graded by difficulty. They rarely require any mathematical skills beyond the

undergraduate level for their solution. However, while some of the exercises are quite

straightforward, others require some ingenuity. Solutions, or references to papers that

Page 9 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 10 of 448 Unified Patents Exhibit 1005 App'x A-N

PREFACE H Xi

contain the Solution, are provided for a substantial number of the exercises that do not

require programming. Readers are cautioned to try to solve the exercises before tum-

ing to the solutions. It is my belief that much can be learned this way (for the student

and, even more so, for the author). The motivation for undertaking this task was my

wonderful experience on my first encounter with the rich work on data structures by

Knuth [Knut73a, Knut73b].

An extensive bibliography is provided. It contains entries for both this book and

the companion text [Same90b]. Not all of the references that appear in the bibliogra-

phy are cited in the two texts. They are retained for the purpose of giving readers the

ability to access the entire body of literature relevant to the topics discussed in them.

Each reference is annotated with a key word(s) and a list of the numbers of the sec-

tions in which it is cited in either of the texts (including exercises and solutions). In

addition, a name and credit index is provided that indicates the page numbers in this
book on which each author’s work is cited or a credit is made.

ACKNOWLEDGMENTS

Over the years I have received help from many people, and I am extremely

grateful to them. In particular Robert E. Webber, Markku Tamminen, and Michael B.

Dillencourt have generously given me much of their time and have gone over critical

parts of the book. I have drawn heavily on their knowledge of some of the topics

covered here. I have also been extremely fortunate to work with Azriel Rosenfeld

over the past ten years. His dedication and scholarship have been a true inspiration to

me. I deeply cherish our association.

I was introduced to the field of spatial data structures by Gary D. Knott who

asked “how to delete in point quadtrees.” Azriel Rosenfeld and Charles R. Dyer pro-

vided much interaction in the initial phase of my research. Those discussions led to

the discovery of the neighbor-finding principle. It is during that time that many of the

basic conversion algorithms between quadtrees and other image representations were

developed as well. I learned much about image processing and computer vision from

them. Robert E. Webber taught me computer graphics, Markku Tarnminen taught me

solid modeling and representations for multiattribute data, and Michael B. Dillencour'

taught me about computational geometry.

During the time that this book was written, my research was supported, in part.

by the National Science Foundation, the Defense Mapping Agency, the Harry

Diamond Laboratory, and the Bureau of the Census. In particular I would like tn

thank Richard Antony, Y. T. Chien, Su-shing Chen, Hank Cook, Phil Emmerrnan, In»:

Rastatter, Alan Saalfeld, and Larry Tokarcik. I am appreciative of their support.

Many people helped me in the process of preparing the book for publication

Acknowledgments are due to Rene McDonald for Coordinating the day-to—day matter:

Page 10 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 11 of 448 Unified Patents Exhibit 1005 App'x A-N

Xil H PREFACE

of getting the book out and copyediting; to Scott Carson, Emery Jou, and Jim Purtilo

for TROFF assistance beyond the call of duty; to Marisa Antoy and Sergio Antoy for

designing and implementing the algorithm forrnatter used to typeset the algorithms; to

Barbara Burnett, Michael B. Dillencourt, and Sandra German for help with the index;

to Jay Weber for setting up the TROFF macrofiles so that I can keep track of symbolic

names and thus be able to move text around without worrying about the numbering of

exercises, sections, and chapters; to Liz Allen for early TROFF help; to Nono Kusuma,

Mark Stanley, and Joan Wright Hamilton for drawing the figures; to Richard Muntz

and Gerald Estrin for providing temporary office space and computer access at UCLA;

to Sandy German, Gwen Nelson, and Janet Salzman for help in initial typing of the

manuscript; to S. S. Iyengar, Duane Marble, George Nagy, and Terry Smith who

reviewed the book; and to Peter Gordon, John Remington, and Keith Wollman at

Addison-Wesley Publishing Company for their encouragement and confidence in this

project.

Aside from the individuals named above, I have also benefited from discussions

with many other people over the past years. They have commented on various parts

of the book and include Chuan-Heng Ang, Walid Aref, James Arvo, Harvey H. Atkin-

son, Thor Bestul, Sharat Chandran, Chiun-Hong Chien, Jiang-Hsing Chu, Leila De

Floriani, Roger Eastman, Herbert Edelsbrunner, Claudio Esperanca, Christos Falout—

sos, George (Gyuri) Fekete, Kikuo Fujimura, John Gannon, John Goldak, Erik Hoel,
Liuqing Huang, Frederik W. Jansen, Ajay Kela, David Kirk, Per Ake Larson, Dani

Lischinski, Don Meagher, David Mount, Randal C. Nelson, Glenn Pearson, Ron

Sacks-Davis, Timos Sellis, Clifford A. Shaffer, Deepak Sherlekar, Li Tong, Brian

Von Herzen, Peter Widmayer, and David Wise. I deeply appreciate their help.

A GUIDE TO THE INSTRUCTOR

This book can be used in a second data structures course, one with emphasis on

the representation of spatial data. The focus is on the use of the principle of divide-

and-conquer for which hierarchical data structures provide a good demonstration.

Throughout the book both worst-case optimal methods and methods that work well in

practice are emphasized in conformance with my view that the well-rounded computer

scientist should be conversant with both types of algorithms. This material is more

than can be covered in one semester; but the instructor can reduce it as necessary. For

example, the detailed examples can be skipped or used as a basis of a term project or

programming assignments.

The book can also be used to organize a course to be prerequisite to courses in

computer graphics and solid modeling, computational geometry, database manage-

ment systems, multidimensional searching, image processing, and VLSI design. The

discussions of the representations of two-dimensional regions in Chapter 1, polygonal

representations in Chapter 4, and most of Chapter 5 are relevant to computer graphics

and solid modeling. The discussions of plane-sweep methods and their associated

data structures such as segment trees, interval trees, and priority search trees in Sec—

(ions 3.2 and 3.3 and point location and associated data structures such as the

Page 11 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 12 of 448 Unified Patents Exhibit 1005 App'x A-N

CONTENTS

Preface

1 INTRODUCTION

1.1 Basic Definitions

1.2 Overview of Quadtrees and Octrees

1.3 History of the Use of Quadtrees and Octrees

1.4 Space Decomposition Methods

1.4.1 Polygonal Tilings

1.4.2 Nonpolygonal Tilings

1.5 Space Requirements

2 POINT DATA

2.1 Introduction

2.2 Nonhierarchical Data Structures

2.3 Point Quadtrees

2.3.1 Insertion

2.3.2 Deletion

2.3.3 Search

2.4 k-d Trees

2.4.1 Insertion

2.4.2 Deletion

2.4.3 Search

2.4.4 Comparison with Point Quadtrees

2.5 Range Trees and Priority Search Trees

2.6 Region—based Quadtrees

2.6.1 MX Quadtrees

2.6.2 PR Quadtrees

vii

10

16

17

26

32

43

44

46

48

49

54

64

66

68

73

77

8O

80

85

86

92

Page 12 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 13 of 448 Unified Patents Exhibit 1005 App'x A-N

XVi ll CONTENTS

2.6.3 Comparison of Point and Region—based Quadtrees 104

2.7 Bit Interleaving 105

2.8 Bucket Methods 1 10

2.8.1 Hierarchical Bucket Methods 1 11

2.8.2 Nonhierarchical Bucket Methods 1 16

2.8.2.1 Linear Hashing 117

2.8.2.2 Spiral Hashing 125

2.8.2.3 Grid File 135

2.8.2.4 EXCELL 141

2.9 Conclusion 147

3 COLLECTIONS OF SMALL RECTANGLES 153

3.1 Introduction 155

3.2 Plane-Sweep Methods and the Rectangle Intersection Problem 158

3.2.1 Segment Trees 160
3.2.2 Interval Trees 165

3.2.3 Priority Search Trees 171

3.2.4 Alternative Solutions and Related Problems 174

3.3 Plane-Sweep Methods and the Measure Problem 178

3.4 Point-based Methods 186

3.5 Area-based Methods ‘ 199

3.5.1 MX~CIF Quadtrees 200

3.5.1.1 Insertion 202

3.5.1.2 Deletion 206

3.5.1.3 Search 209

3.5.2 Multiple Quadtree Block Representations 213

3.5.3 R-trees 219

4 CURVILINEAR DATA 227

4.1 Strip Trees. Arc Trees, and BSPR 228

4.2 Methods Based on the Region Quadtree 235

4.2.1 Edge Quadtrees 235

4.2.2 Line Quadtrees 237

4.2.3 PM Quadtrees 239

4.2.3.1 The PMl Quadtree 240

4.2.3.2 The PM2 Quadtree 257

4.2.3.3 The PM3 Quadtree 261
4.2.3.4 PMR Quadtrees 264

4.2.3.5 Fragments 269

4.2.3.6 Maintaining Labels of Regions 275

4.2.4 Empirical Comparisons of the Different

Representations 278

4.3 Methods Rooted in Computational Geometry 286
4.3.1 The K-structure 287

Page 13 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 14 of 448 Unified Patents Exhibit 1005 App'x A-N

CONTENTS H xvii

4.3.2 Separating Chains and Layered Dags 293

4.3.3 Comparison with PM Quadtrees 306

4.4 Conclusion 312

5 VOLUME DATA 315

5.1 Solid Modeling 316

5.2 Region Octrees 318

5.3 PM Octrees 326

5.4 Boundary Model (BRep) 331

5.5 Constructive Solid Geometry (CSG) 338

5.5.1 CSG Evaluation by Bintree Conversion 340

5.5.1.1 Algorithm for a Single Halfspace 341

5.5.1.2 Algorithm for a CSG Tree 346

5.5.1.3 Incorporation of the Time Dimension 355
5.5.2 PM-CSG Trees 360

5.6 Surface-based Object Representations 365
5.7 Prism Trees 370

5.8 Cone Trees 374

Solutions to Exercises 377

Appendix: Description of Pseudo-Code Language 411
References 415

Name and Credit Index 465

Subject Index 477

Page 14 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 15 of 448 Unified Patents Exhibit 1005 App'x A-N

INTRODUCTION

There are numerous hierarchical data structuring techniques in use for representing

spatial data. One commonly used technique is the quadtree, which has evolved from

work in different fields. Thus it is natural that a number of adaptations of it exist for

each spatial data type. Its development has been motivated to a large extent by a

desire to save storage by aggregating data having identical or similar values. We will

see, however, that this is not always the case. In fact, the savings in execution time

that arise from this aggregation are often of equal or greater importance.

In this chapter we start with a historical overview of quadtrees, including

definitions. Since the primary focus in this book is on the representation of regions,

what follows is a discussion of region representation in the context of different space

decomposition methods. This is done by examining polygonal and nonpolygonal til-

ings of the plane. The emphasis is on justifying the use of a decomposition into

squares. We conclude with a detailed analysis of the space requirements of the quad-

tree representation.

Most of the presentation in this chapter is in the context of two-dimensional

regions. The extension of the topics in this chapter, and remaining chapters, to three-

dimensional region data, and higher, is straightforward and, aside from definitions, is

often left to the exercises. Nevertheless, the concept of an octree, a quadtree-like

representation of three-dimensional regions, is defined and a brief explanation is given

of how some of the results described here are applicable to higher-dimensional data.

1.1 BASIC DEFINITIONS

First, we define a few terms with respect to two-dimensional data. Assume the

existence of an array of picture elements (termed pixels) in two dimensions. We use

the term image to refer to the original array of pixels. If its elements are black or

Page 15 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 16 of 448 Unified Patents Exhibit 1005 App'x A-N

2 ll 1 INTRODUCTION

white, then it is said to be binary. If shades of gray are possible (i.e., gray levels), the

image is said to be a gray —scale image. In the discussion, we are primarily concerned

with binary images. Assume that the image is on an infinite background of white pix-

els. The border of the image is the outer boundary of the square corresponding to the

array.

Two pixels are said to be 4-aa’jacent if they are adjacent to each other in the

horizontal or vertical direction. If the concept of adjacency also includes adjacency at

a comer (i.e., diagonal adjacencies), then the pixels are said to be 8-aa’jacent. A set S

is said to be four—connected (eight—connected) if for any pixels p, q in S there exists a '

sequence of pixels p =p0,p1, - ' - ,p,, =q in S, such that pm is 4-adjacent (8-

adjacent) to p,-, 0 S i < n.

A black region, or black four-connected component, is a maximal four—

connected set of black pixels. The process of assigning the same label to all 4-

adjacent black pixels is called connected component labeling (see Chapter 5 of

[Same90b]). A white region is a maximal eight —connected set of white pixels defined

analogously. The complement of a black region consists of a union of eight-

connected white regions. Exactly one of these white regions contains the infinite

background of white pixels. All the other white regions, if any, are called holes in the

black region. The black region, say R, is surrounded by the infinite white region and R

surrounds the other white regions, if any.

A pixel is said to have four edges, each of which is of unit length. The bound—

ary of a black region consists of the set of edges of its constituent pixels that also

serve as edges of white pixels. Similar definitions can be formulated in terms of rec-

tangular blocks, all of whose pixels are identically colored. For example, two disjoint

blocks, P and Q, are said to be 4-aa’jacent if there exists a pixel p in P and a pixel q in Q

such that p and q are 4-adjacent. Eight-adjacency for blocks (as well as connected

component labeling) is defined analogously.

1.2 OVERVIEW OF QUADTREES AND OCTREES

The term quadtree is used to describe a class of hierarchical data structures whose

common property is that they are based on the principle of recursive decomposition of

space. They can be differentiated on the following bases:

1. The type of data they are used to represent

2. The principle guiding the decomposition process

3. The resolution (variable or not)

Currently they are used for point data, areas, curves, surfaces, and volumes.

The decomposition may be into equal parts on each level (i.e., regular polygons and

termed a regular decomposition), or it may be governed by the input. In computer

graphics this distinction is often phrased in terms of image—space hierarchies versus

object—space hierarchies, respectively [Suth74]. The resolution of the decomposition

Page 16 of 448 Unified Patents Exhibit 1005 App'x A-N

1,2 OVERVIEW OF QUADTREES AND OCTREES ll 3

 EEEEEEEE EEEEEEEE IEEEEEIEEJ EIEIEEEE} °IHHIHIEE EEHHEIEE BEHIHIEH EEIHHIEE

ll l2 l3 l4

789|0 ISISIYIB

Figure 1.1 An example of (a) a region, (b) its binary array,

(0) its maximal blocks (blocks in the region are shaded), and

(d) the corresponding quadtree

(i.e., the number of times that the decomposition process is applied) may be fixed

beforehand, or it may be governed by properties of the input data. For some applica-

tions we can also differentiate the data structures on the basis of whether they specify

the boundaries of regions (e.g., curves and surfaces) or Organize their interiors (e.g.,

areas and volumes).

The first example of a quadtree representation of data is concerned with the

representation of two-dimensional binary region data. The most studied quadtree

approach to region representation, called a region quadtree (but often termed a quad-

tree in the rest of this chapter), is based on the successive subdivision of a bounded

image array into four equal-sized quadrants. If the'array does not consist entirely of

ls or entirely of Os (i.e., the region does not cover the entire array), then it is subdi-

vided into quadrants, subquadrants, and so on, until blocks are obtained that consist

entirely of Is or entirely of OS; that is, each block is entirely contained in the region or

entirely disjoint from it. The region quadtree can be characterized as a variable reso-
lution data structure.

As an example of the region quadtree, consider the region shown in Figure 1.1a

represented by the 23 x 23 binary array in Figure 1.1b. Observe that the Is correspond

to picture elements (i.e., pixels) in the region, and the Os correspond to picture ele-

ments outside the region. The resulting blocks for the array of Figure l.lb are shown

in Figure l.lc. This process is represented by a tree of degree 4 (Le, each nonleaf

node has four sons).

Page 17 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 18 of 448 Unified Patents Exhibit 1005 App'x A-N

4 ll 1 INTRODUCTION

In the tree representation, the root node corresponds to the entire array. Each

son of a node represents a quadrant (labeled in order NW, NE, SW, SE) of the region

represented by that node. The leaf nodes of the tree correspond to those blocks for

which no further subdivision is necessary. A leaf node is said to be black or white

depending on whether its corresponding block is entirely inside (it contains only 1s) or

entirely outside the represented region (it contains no Is). All nonleaf nodes are said

to be gray (i.e., its block contains 0s and 1s). Given a 2" X 2" image, the root node is

said to be at level)1 while a node at level 0 corresponds to a single pixel in the image.1

The region quadtree representation for Figure 1.1c is shown in Figure 1.1d. The leaf

nodes are labeled with numbers, while the nonleaf nodes are labeled with letters. The

levels of the tree are also marked.

Our definition of the region quadtree implies that it is constructed by a top-down

process. In practice, the process is bottom-up, and one usually uses one of two

approaches. The first approach [Same80b] is applicable when the image array is not

too large. In such a case, the elements of the array are inspected in the order given by

the labels on the array in Figure 1.2 (which corresponds to the image of Figure 1.1a).

This order is also known as a Morton order [Mort66] (discussed in Section 1.3). By

using such a method, a leaf node is never created until it is known to be maximal. An

equivalent statement is that the situation does not arise in which four leaf nodes of the

same color necessitate the changing of the color of their parent from gray to black or

white as is appropriate. (For more details, see Section 4.1 of [Same90b].)

The second approach [Same81a] is applicable to large images. In this case, the

elements of the image are processed one row at a time—for example, in the order

given by the labels on the array in Figure 1.3 (which corresponds to the image of Fig-

ure 1.1a). This order is also known as a row or raster-scan order (discussed in Section

1.3). A quadtree is built by adding pixel-sized nodes one by one in the order in which

they appear in the file. (For more details, see Section 4.2.1 of [Same90b].) This pro—

cess can be time-consuming due to the many merging and node insertion operations

that need to take place.

The above method has been improved by using a predictive method [Shaf86a,

Shaf87a], which only makes a single insertion for each node in the final quadtree and

performs no merge operations. It is based on processing the image in row order (top

to bottom, left to right), always inserting the largest node (i.e., block) for which the

current pixel is the first (upper leftmost) pixel. Such a policy avoids the necessity of

merging since the upper leftmost pixel of any block is inserted before any other pixel

of that block. Therefore it is impossible for four sibling nodes to be of the same color.

This method makes use of an auxiliary array of size 0(2") for a 2’1 x 2" image. (For

more details, see Section 4.2.3 of [Same90b].)

The region quadtree is easily extended to represent three-dimensional binary

region data and the resulting data structure is called a region oc'trce (termed an oc‘trec

' Altematively we can say that the root node is at depth 0 while a node at depth 11 corresponds to a single
pixel in the image. In this book both concepts of level and depth are used to describe the relative position of

nodes. The one that is chosen is context dependent.

Page 18 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 19 of 448 Unified Patents Exhibit 1005 App'x A-N

1.2 OVERVIEW OF QUADTREES AND OCTREES H 5

IIIIIIEEIEI
IIIIIEIEIIE
HIE-IE}I-IEE
IIIIIIEIEEEEI
IEEE EEEEEEI ‘
IEEEEIIE§

Figure 1.2 Mon‘on order for the pixels of Figure 1.1

in the rest of this chapter). We start with a 2" x 2" x 2" object array of unit cubes

(termed voxels or obels). The octree is based on the successive subdivision of an

object array into octants. If the array does not consist entirely of 1s or entirely of US, it

is subdivided into octants, suboctants, and so on until cubes (possibly single voxels)

are obtained that consist of 1s or of OS; that is, they are entirely contained in the region

or entirely disjoint from it.

This subdivision process is represented by a tree of degree 8 in which the root

node represents the entire object and the leaf nodes correspond to those cubes of the

array for which no further subdivision is necessary. Leaf nodes are said to be black or

white (alternatively, full or void) depending on whether their corresponding cubes are

entirely within or outside the object, respectively. All nonleaf nodes are said to be

gray. Figure 1.4a is an example of a simple three-dimensional object, in the form of a

staircase, whose octree block decomposition is given in Figure 1.4b and whose tree

representation is given in Figure 1.4c.

The region quadtree is a member of a class of representations characterized as

being a collection of maximal (according to an appropriate definition) blocks, each of

which is contained in a given region and whose union is the entire region. The sim-

plest such representation is the runlength code, where the blocks are restricted to

l x m rectangles [Ruto68]. A more general representation treats the region as a union

of maximal square blocks (or blocks of any other desired shape) that may possibly

overlap. Usually the blocks are specified by their centers and radii. This representa-

tion is called the medial axis transformation (MAT) [B1um67, Rose66]. Of course,

other approaches are also possible (e.g., rectangular coding [Kim83, Kim86], TID

[Scot85, Scot86]).

Figure 1.3 Raster—scan order for the pixels of Figure 1.1

Page 19 of 448 Unified Patents Exhibit 1005 App'x A-N

6 ll 1 INTRODUCTION

A

8
3114 421513

7511986|2|D
a c

Figure 1.4 (3) Example three-dimensional object; (b) its

octree block decomposition; (0) its tree representation

The region quadtree is a variant on the maximal block representation. It

requires the blocks to be disjoint and to have standard sizes (i.e., sides of lengths that

are powers of two) and standard locations. The motivation for its development is a

desire to obtain a systematic way to represent homogeneous parts of an image. Thus

to transform the data into a region quadtree. a criterion must be chosen for deciding

that an image is homogeneous (i.e.. uniform).

One such criterion is that the standard deviation of its gray levels is below a

given threshold r. Using this criterion. the image array is successively subdivided into

quadrants, subquadrants, and so on until homogeneous blocks are obtained. This pro-

cess leads to a regular decomposition. If one associates with each leaf node the mean

gray level of its block. the resulting region quadtree will then completely specify a

piecewise approximation to the image where each homogeneous block is represented

by its mean. The case where [:0 (Le, a block is not homogeneous unless its gray

level is constant) is of particular interest since it permits an exact reconstruction of the

image from its quadtree.

Note that the blocks of the region quadtree do not necessarily correspond to

maximal homogeneous regions in the image. Most likely there exist unions of the

blocks that are still homogeneous. To obtain a segmentation of the image into maxi-

mal homogeneous regions. we must allow merging of adjacent blocks (or unions of

blocks) as long as the resulting region remains homogeneous. This is achieved by a

‘split-and—merge' algorithm [Horo76]. However. the resulting partition will no longer

be represented by a quadtree; instead the final representation is in the form of an adja-

cency graph. Thus the region quadtree is used as an initial step in the segmentation

process.

For example. Figure 1.5b—d demonstrates the results of the application. in

sequence. of merging. splitting. and grouping .to the initial image decomposition of

Figure 1.5a. In this case. the image is initially decomposed into 16 equal-sized square

blocks. Next the ‘merge' step attempts to form larger blocks by recursively merging

groups of four homogeneous 'brothers‘ (the four blocks in the NW and SE quad-

rants of Figure l.5b). The ‘split‘ step recursively decomposes blocks that are not

homogeneous (the NE and sw quadrants of Figure l.5c) until a particular homo-

geneity criterion is satisfied or a given level is encountered. Finally the ‘grouping‘

step aggregates all homogeneous 4-adjacent black blocks into one region apiece;

Page 20 of 448 Unified Patents Exhibit 1005 App'x A-N

1.2 OVERVIEW OF QUADTREES AND OCTREES ll 7

Figure 1.5 Example illustrating the ‘split-and-merge'

segmentation procedure: (a) start, (b) merge, (0) split,

(d) grouping

the 8-adjacent white blocks are similarly aggregated into white regions (Figure l.5d).

An alternative to the region quadtree representation is to use a decomposition

method that is not regular (i.e., rectangles of arbitrary size rather than squares). This

alternative has the potential of requiring less space. Its drawback is that the determi-

nation of optimal partition points may be computationally expensive (see Exercise

1.10). A closely related problem, decomposing a region into a minimum number of

rectangles, is known to be NP-complete2 [Gare79] if the region is permitted to contain

holes [Ling82].

The homogeneity criterion ultimately chosen to guide the subdivision process

depends on the type of region data represented. In the remainder of this chapter we

shall assume that the domain is a 2" x 2" binary image with l, or black. corresponding

to foreground and 0, or white, corresponding to background (e.g., Figure 1.1).

3 A problem is in NP if it can be solved nondetenninistically in polynomial time. A nondeterministic

solution process proceeds by ‘guessing‘ a solution and then verifying that the solution is correct. Assume

that n is the size ofthe problem (e.g., for sorting, n is the number of records to be sorted). Intuitively. then.

a problem is in NP if there is a polynomial P(n) such that if one guesses a solution. it can be verified in

0(P(")) time. whether the guess is indeed a correct solution. Thus the verification process is the key In

determining whether a problem is in NP. not the actual solution of the problem.

A problem is NP-complete if it is ‘at least as hard” as any other problem in NP. Somexxlmt more

formally. a problem P. in NP is NP-complete ifthe following propeny holds: for all other problems r in NI'. II'

P, can be solved detenninistically in 0(f(n)) time. then P, can be solved in 0(P(f(n))) time for \UHIL’

polynomial P. It has been conjectured that no NP-complete problem can be solved dctcnninis‘ticnlh Ill

polynomial time. but this is not known for sure. The theory of rap-completeness is discussed in detail in
[Gare79].

Page 21 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 22 of 448 Unified Patents Exhibit 1005 App'x A-N

8 ll 1 INTRODUCTION

Nevertheless the quadtree and octree can be used to represent multicolored data (e.g.,

a landuse class map associating colors with crops [Same87a]).

It is interesting to note that Kawaguchi, Endo, and Matsunaga [Kawa83] use a

sequence of m binary-valued quadtrees to encode image data of 2’" gray levels, where

the various gray levels are encoded by use of Gray codes (see, e.g., [McC165]). This

should lead to compaction (i.e., larger-sized blocks) since the Gray code guarantees

that the binary representation of the codes of adjacent gray level values differ by only

one binary digit.3 Note, though, that if the primary interest is in image compression,

there exist even better methods (see, e.g., [Prat78]); however, they are beyond the

scope of this book (but see Chapter 8 of [Same90b]). In another context, Kawaguchi,

Endo, and Yokota [Kawa80b] point out that a sequence of related images (e.g., in an

animation application) can be stored compactly as a sequence of quadtrees such that

the 1"" element is the result of exclusive oring the first 1‘ images (see Exercise 1.7).

Unfortunately _the term quadtree has taken on more than one meaning. The

region quadtree, as described earlier, is a partition of space into a set of squares whose

sides are all a power of two long. This formulation is due to Klinger [Klin7l] and

Klinger and Dyer, who used the term Q-tree [Klin76], whereas Hunter [Hunt78] was

the first to use the term quadtree in such a context. Actually a more precise term

would be quadtrie, as it is really a trie structure [Fred60] in two dimensions.4 A simi-

lar partition of space into rectangular quadrants, also termed a quadtree, was used by

Finkel and Bentley [Fink74]. It is an adaptation of the binary search tree [Knut73b] to

two dimensions (which can be easily extended to an arbitrary number of dimensions).

It is primarily used to represent multidimensional point data, and we shall refer to it as

a point quadtree where confusion with a region quadtree is possible.

As an example of a point quadtree, consider Figure 1.6, which is built for the

sequence Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, and Miami5

3 The Gray code is motivated by a desire to reduce errors in transitions between successive gray level

values. Its one bit difference guarantee is achieved by the following encoding. Consider the binary

representation of the integers from 0 to 2’” — 1. This representation can be obtained by constructing a binary

tree, say T. of height m where each left branch is labeled 0 while each right branch is labeled 1. Each leaf

node, say P. is given the label formed by concatenating the labels of the branches taken by the path from the

root to P. Enumerating the leaf nodes from left to right yields the binary integers 0 to 2’" - l. The Gray

codes of the integers are obtained by constructing a new binary tree, say ‘1". such that the labels of some of

the branches in T ’ are the reverse of what they were in T. The algorithm is as follows. Initially, T’ is a copy

of T. Next, traverse T in preorder (i.e., visit the root node, followed by the left and right subtrees). For each

branch in T labeled 1. exchange the labels of the two descendant branches of its corresponding branch in T’.

No action is taken for descendants of branches in 7‘ labeled 0. Enumerating the leaf nodes in 7" from left to

right yields the Gray codes of the integers 0 to 2’" — 1. For example, for 8 gray levels (i.e., m :3). we have
000. 001,011,010. 110. 111. 101. 100.

4 In a one—dimensional m‘c structure. each data item or key is treated as a sequence of characters where each
character has M possible values. A node at depth 1‘ in the trie represents an M-way branch depending on the

1"" character. The data are stored in the leaf nodes, and the shape of the trie is independent of the order in
which the data are processed. Such a structure is also known as a digital (rec [Knut73b].

5 The correspondence between coordinate values and city names is not geographically correct. This liberty
has been taken so that the same example can be used throughout the text to illustrate a variety of concepts.

Page 22 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 23 of 448 Unified Patents Exhibit 1005 App'x A-N

1.2 OVERVIEW OF QUADTREES AND OCTREES II 9

(O, |OO) (IOO. lOO)

(60. 75)
TORONTO

BUFFALO

.<

(IO0.0)

CHICAGO

DENVER TORONTO OMAHA MOBILE

A/Ihll
BUFFALO ATLANTA MIAMI

II MI

Figure 1.6 A point quadtree and the records it represents

in the order in which they are listed here.6 Its shape is highly dependent on the order

in which the points are added to it. Of course, trie-based point representations also

exist (see Sections 2.6.] and 2.6.2).

Exercises

1.1. The region quadtree is an alternative to an image representation that is based on the use

of an array or even a list. Each of these image representations may be biased in favor of

the computation of a particular adjacency relation. Discuss these biases for the array, list,

and quadtree representations.

1.2. Given the array representation of a binary image, write an algorithm to construct the

corresponding region quadtree.

6 Refer to Figure 25 to see how the point quadtree is constructed in an incremental fashion for Chicago,
Mobile, Toronto, and Buffalo.

Page 23 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 24 of 448 Unified Patents Exhibit 1005 App'x A-N

10 ll 1 INTRODUCTION

1.3. Given an image represented by a region quadtree with 8 black and W white nodes, how

many additional nodes are necessary for the nonleaf nodes?

1.4. Given an image represented by a region octree with 8 black and W white nodes, how

many additional nodes are necessary for the nonleaf nodes?

1.5. Suppose that an octree is used to represent a collection of disjoint spheres. What would

you use as a leaf criterion?

1.6. The quadtree can be generalized to represent data in arbitrary dimensions. As we saw,

the octree is its three—dimensional analog. The renowned artist Escher [Coxe86] is noted

for etchings of unusual interpretations of geometric objects such as staircases. How

would you represent one of Escher’s staircases?

1.7. Let 6-) denote an exclusive or operation. Given a sequence of related images,

<P,,, P,,_1, - ~ - , P0), define another sequence <Q,,, Q,,_1, ' ~ ' ,Q0> such that Q0 2 P0 and

Q,- = P,- @ QM for i > 0. Show that when the sequences P and Q are represented as quad—

trees, replacing sequence P by sequence Q results in fewer nodes.

1.8. Prove that in Exercise 1.7 the sequence P can be reconstructed from the sequence Q. In

particular, given Qi and Qi_1, determine P,-.

1.9. Write an algorithm to construct the Gray codes of the integers 0 to 2"’-l.

1.10. Find a polynomial-time algorithm to decompose a region optimally so that its quadtree

representation uses a minimum amount of space (i.e., a minimum number of nodes). In

this case, you can assume that the decomposition lines can be placed in arbitrary posi-

tions so that the space requirement is reduced. In other words, the decomposition lines

need not split the space into four squares of equal size. Thus the decomposition is similar

to that induced by a point quadtree.

1.3 HISTORY OF THE USE OF QUADTREES AND OCTREES

The origin of the principle of recursive decomposition, upon which all quadtrees are

based, is difficult to ascertain. Below, to give some indication of the uses of the

region quadtree, some of its applications to geometric data are traced briefly. Most

likely it was first seen as a way of aggregating blocks of zeros in sparse matrices.

Indeed Hoare [Hoar72] attributes a one-level decomposition of a matrix into square

blocks to Dijkstra. Morton [Mort66] used it as a means of indexing into a geographic

database (i.e., it acts as a spatial index).

Wamock, in a pair of reports that serve as landmarks in computer graphics

[Wam68, Wam69b], described the implementation of hidden-line and hidden-surface

elimination algorithms using a recursive decomposition of the picture area. The pic—

ture area is repeatedly subdivided into rectangles that are successively smaller while

searching for areas that are sufficiently simple to be displayed. Klinger [Klin7l] and

Klinger and Dyer [Klin76] applied these ideas to pattern recognition and image pro-

cessing, while Hunter [Hunt78] used them for an animation application.

The SR1 robot project [Nils69] used a three-level decomposition of space to

represent a map of the robot’s world. Eastman [East70] observes that recursive

decomposition might be used for space planning in an architectural context and

presents a simplified version of the SR] robot representation. A quadtree-like represen-

tation in the form of production rules called DF-expressions (denoting ‘depth-first‘) is

discussed by Kawaguchi and Endo [Kawa80a] and Kawaguchi, Endo, and Yokota

Page 24 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 25 of 448 Unified Patents Exhibit 1005 App'x A-N

1.3 HISTORY OF THE USE OF QUADTREES AND OCTREES ll 11

[Kawa80b] (see also Section 1.5). Tucker [Tuck84a] uses quadtree refinement as a

control strategy for an expert vision system.

The three-dimensional variant of the region quadtree—the octree—was

developed independently by a number of researchers. Hunter [Hunt78] mentioned it

as a natural extension of the quadtree. Reddy and Rubin [Redd78] proposed the

octree as one of three representations for solid objects. The second is a three-

dimensional generalization of the point quadtree of Finkel and Bentley [Fink74]——that

is, a decomposition into rectangular parallelepipeds (as opposed to cubes) with planes

perpendicular to the x, y, and z axes. The third breaks the object into rectangular

parallelepipeds that are not necessarily aligned with an axis. The parallelepipeds are

of arbitrary sizes and orientations. Each parallelepiped is recursively subdivided into

parallelepipeds in the coordinate space of the enclosing parallelepiped. Reddy and

Rubin prefer the third approach for its ease of display.

Situated somewhere between the second and third approaches of Reddy and

Rubin is the method of Brooks and Lozano—Perez [Broo83] (see also [Loza8l]), who

use a recursive decomposition of space into an arbitrary number of rectangular paral—

lelepipeds, with planes perpendicular to the x, y, and z axes, to model space in solving

the findpath or piano movers problem [Schw88] in robotics. This problem arises

when planning the motion of a robot in an environment containing known obstacles

and the desired solution is a collision-free path obtained by use of a search. Faverjon

[Fave84] discusses an approach to this problem that uses an octree, as do Samet and

Tamminen [Same85g] and Fujimura and Samet [Fuji89].

Jackins and Tanimoto [Jack80] adapted Hunter and Steiglitz’s quadtree transla-

tion algorithm [Hunt78, Hunt79b] to objects represented by octrees. Meagher

[Meag82a] developed numerous algorithms for performing solid modeling operations

in an environment where the octree is the underlying representation. Yau and Srihari

[Yau83] extended the octree to arbitrary dimensions in the process of developing

algorithms to handle medical images.

Both quadtrees and octrees are frequently used in the construction of meshes for

finite element analysis. The use of recursive decomposition for meshes was initially

suggested by Rheinboldt and Mesztenyi [Rhei80]. Yerry and Shephard [Yerr83]

adapted the quadtree and octree to generate meshes automatically for three—

dimensional solids represented by a superquadric surface—based modeler. This has

been extended by Kela, Voelcker, and Goldak [Kela84b] (see also [Kela86]) to mesh

boundary regions directly, rather than through discrete approximations, and to facili-

tate incremental adaptive analysis by exploiting the spatial index nature of the quad-
tree and octree.

Parallel to the development of the quadtree and octree data structures, there has

been related work by researchers in the field of image understanding. Kelly [Kell7l]

introduced the concept of a plan, which is a small picture whose pixels represent

gray-scale averages over 8X8 blocks of a larger picture. Needless effort in edge detec-

tion is avoided by first determining edges in the plan and then using these edges to

search selectively for edges in the larger picture. Generalizations of this idea

motivated the development of multiresolution image representations—for example,

Page 25 of 448 Unified Patents Exhibit 1005 App'x A-N

12 II 1 INTRODUCTION

E]

El

E
Figure 1. 7 Structure of a pyramid having three levels

the recognition cone of Uhr [Uhr72], the preprocessing cone of Riseman and Arbib

[Rise77], and the pyramid of Tanimoto and Pavlidis [Tani75]. Of these representa-

tions, the pyramid is the closest relative of the region quadtree.

Given a 2" x 2” image array, say A(n), a pyramid is a sequence of arrays {A(i)]

such thatA(i—l) is a version ofA(i) at half the scale ofA(i). A(0) is a single pixel. Fig-

ure 1.7 shows the structure of a pyramid having three levels. It should be clear that a

pyramid can also be defined in a more general way by permitting finer scales of reso-

lution than the power of two scale.

At times, it is more convenient to define a pyramid in the form of a tree. Again,

assuming a 2" x 2" image, a recursive decomposition into quadrants is performed, just

as in quadtree construction, except that we keep subdividing until we reach the indi—

vidual pixels. The leaf nodes of the resulting tree represent the pixels, while the nodes

immediately above the leaf nodes correspond to the array A(n—l), which is of size

2"‘1 x 2"". The nonleaf nodes are assigned a value that is a function of the nodes

below them (i.e., their sons) such as the average gray level. Thus we see that a

pyramid is a multiresolution representation, whereas the region quadtree is a variable

Figure 1.9 A(2) corresponding to Figure 1.8

Page 26 of 448 Unified Patents Exhibit 1005 App'x A-N

1.3 HISTORY OF THE use OF QUADTREES AND OCTREES II 13

lineman-u
HEMEEDUB
DDEEEEEE
Ea. EBB EEEI E
E El!!! mm an IE

Figure 1.10 The overlapping blocks in which pixel 28

participates

resolution representation. Another analogy is that the pyramid is a complete quadtree

[Knut73a].

The above definition of a pyramid is based on nonoverlapping 2 x 2 blocks of

pixels. An alternative definition, termed an overlapping pyramid, uses overlapping

blocks of pixels. One of the simplest schemes makes use of 4 x 4 blocks that overlap

by 50% in both the horizontal and vertical directions [Burt8l]. For example, Figure

1.8 is a 23 x23 array, say A(3), whose pixels are labeled 1-64. Figure 1.9 is A(2)

corresponding to Figure 1.8 with elements labeled A-P. The 4x4 neighborhood

corresponding to element F in Figure 1.9 consists of pixels 10—13, 18—21, 26—29, and

34—37. This method implies that each block at a given level participates in four

blocks at the immediately higher level. Thus the containment relations between

blocks no longer form a tree. For example, pixel 28 participates in blocks F, G, J, and K

in the next higher level (see Figure 1.10 where the four neighborhoods corresponding

to F, G, J, and K are drawn as squares).

To avoid treating border cases differently, each level in the overlapped pyramid

is assumed to be cyclically closed (i.e., the top row at each level is adjacent to the bot-

tom row and similarly for the columns at the extreme left and right of each level).

Once again we say that the value of a node is the average of the values of the nodes in

its block on the immediately lower level. The overlapped pyramid may be compared

with the Quadtree Medial Axis Transform (see Section 9.3.1 of [Same90b]) in the

sense that both may result in nondisjoint decompositions of space.

Pyramids have been applied to the problems of feature detection and extraction

since they can be used to limit the scope of the search. Once a piece of information of

interest is found at a coarse level, the finer resolution levels can be searched. This

approach was followed by Davis and Roussopoulos [Davi80] in approximate pattern

matching. Pyramids can also be used for encoding information about edges, lines, and

curves in an image [Shne8lc, Krop86]. One note of caution: the reduction of resolu-

tion has an effect on the visual appearance of edges and small objects [Tani76]. In

particular, at a coarser level of resolution, edges tend to get smeared, and region

separation may disappear. Pyramids have also been used as the starting point for a

‘split-and-merge’ segmentation algorithm [Piet82].

Quadtree-like decompositions are useful as space-ordering methods. The pur-

pose is to optimize the storage and processing sequences for two-dimensional data by

mapping them into one dimension (i.e., linearizing them). This mapping should pre-

Page 27 of 448 Unified Patents Exhibit 1005 App'x A-N

14 II 1 INTRODUCTION

n======.
.======:I
3:32:32.
.======:I

unannz.
uunuunu
nnunnun

'HBHIIHS'
nnnnunrm
“cannula:
unnunnun
CHBSUHSH

I'L'flfl

CS=====.
fl=====flll
llfl===nllll
IIIIBSHIIIIII
IIIIIICHIIIIH
llllu==flllll
Iau=:=::m
u======u

uaaaaauu
nanaannn
uaaaaaau
quannannuaaauaau
cacacaca

(D ..

Figure 1.11 The result of applying a number of different

space-ordering methods to an 8 x 8 image whose first ele-

ment is in the upper left corner of the image: (a) row order,

(b) row-prime order, (0) Morton order, (d) Peano-Hilbert

order, (e) Cantor-diagonal order, (f) spiral order

serve the spatial locality of the original two-dimensional image in one dimension. The

result of the mapping is also known as a space-filling curve [Gold81, Witt83] because

it passes through every point in the image.

Goodchild and Grandfield [Good83] discuss a number of space-ordering

methods, some of which are illustrated in Figure 1.11. Each has different characteris-

tics. The row (Figure 1.11a), also known as raster-scan, and row-prime orders (Figure

1.11b) are similar in the same way as are the Morton [Mort66, Pean90] (Figure 1.11c)

and the Peano-Hilbert [Hilb91] (Figure 1.11d) orders. The primary difference is that

in both the row-prime and Peano-l—lilbert orders every element is a 4-adjacent neigh-

bor of the previous element in the sequence, and thus they have a slightly higher

degree of locality than the row and Morton orders, respectively. Both the Morton and

Peano-Hilben orders exhaust a quadrant or subquadrant of a square image before exit-

ing it. They are both related to quadtrees; however. as we saw above, the Morton

Order does not traverse the image in a spatially contiguous manner (the result has the

Shape of the letter ‘N‘ or ‘Z’ and is also known as N order [Whit82] and Z order

lOren841).

. For both the Morton and Peano-I-lilber’t orders, there is no need to know the
maxrmum values of the coordinates. The Morton order is symmetric. while the

Peano-Hilben order is not. One advantage of the Monon order is that the position of
each ClemP-nt in the ordering (termed its key) can be determined by interleaving the

Page 28 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 29 of 448 Unified Patents Exhibit 1005 App'x A-N

1.3 HISTORY OF THE USE OF QUADTREES AND OCTREES ll 15

bits of the x and y coordinates of the element; this is not easy for the Peano-Hilbert

order. Another advantage of the Morton order is that the recursion necessary for its

generation is quite easy to specify.

Other orders are the Cantor-diagonal order (Figure 1.11e) and the spiral order

(Figure 1.1 If). The Cantor-diagonal order proceeds outward from the origin and visits

the elements in an order similar to row-prime with the difference that elements are

visited in order of their increasing ‘Manhattan’ (or ‘city block’) distance.7 Thus it is

good for ordering a space that is unbounded in the two directions emanating from the

origin which has been relocated to the center of the image. On the other hand, the

spiral order is attractive when ordering a space that is unbounded in the four directions

emanating from the origin.

The most interesting orders, as far as we are concerned, are the Morton and

Peano-Hilbert orders since they can also be used to order a space that has been aggre-

gated into squares. Of these two orderings, the Morton order is by far the more fre-

quently used as a result of the simplicity of the conversion process between the key

and its corresponding element in the multidimensional space. In this book we are pri-

marily interested in Morton orderings. (For further discussion of some of the proper-

ties of these two orderings, see [Patr68, Butz71, Alex79, Alex80, Laur85].)

Exercises

1.11. Write an algorithm to extract the x and y coordinates from a Peano-Hilbert order key.

1.12. Write an algorithm to construct the Peano-Hilbert key for a given point (x, y). Try to

make it optimal.

1.13. Suppose that you are given a 2" X 2" array of points such that the horizontal and vertical

distances between 4-adjacent points are 1. What is the average distance between succes-

sive points when the points are ordered according to the orders illustrated in Figure 1.11?
What about a random order?

1.14. Suppose that you are given a 2" X 2" image. Assume that the image is stored on disk in

pages of size 2’" X 2'" where n is much larger than m. What is the average cost of retriev-

ing a pixel and its 4-adjacent neighbors when the image is ordered according to the orders

illustrated in Figure 1.11?

1.15. The traveling salesman problem [Law185] is one where a set of points is given and it is

desired to find the path of minimum distance such that each point is visited only once.

This is an NP-complete problem [Gare79] and thus there is a considerable amount of work

in formulating approximate solutions to it [Bent82]. For example, consider the following

approximate solution. Assume that the points are uniformly distributed in the unit

square. Let d be the expected Euclidean distance between two independent points. Now,

sort the points using the row order and the Morton order. Laurini [Laur85] simulated the

average Euclidean distance between successive points in these orders and found it to be

d/2 for the row order and d/ 3 for the Morton order. Can you derive these averages

analytically? What are the average values for the other orders illustrated in Figure 1.11?
What about a random order?

7 The Manhattan distance between points (x, , y,) and (x2, y2) is lxl —.\'2 |+|y, —y2 | (for more details, 566
Section 9.1 of [Same90b]).

Page 29 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 30 of 448 Unified Patents Exhibit 1005 App'x A-N

16 II 1 INTRODUCTION

1.16. Suppose that the traveling salesman problem is solved using a traversal of the points in

Morton order as discussed in Exercise 1.15. In particular, assume that the set of points is

decomposed in such a way that each square block contains just one point. This yields a

point representation that is analogous to the region quadtree (termed a PR quadtree and

discussed in Section 2.6.2). How close does such a solution come to optimality?

1.4 SPACE DECOMPOSITION METHODS

In general, any planar decomposition used as a basis for an image representation

should possess the following two properties:

1. The partition should be an infinitely repetitive pattern so that it can be used

for images of any size.

2. The partition should be infinitely decomposable into increasingly finer pat-

terns (i.e., higher resolution).

In this section, the discussion is restricted to two-dimensional data. Thus we are

dealing with planar space decompositions. Space decompositions can be classified

into two categories, depending on the nature of the pattern. The pattern can consist of

polygonal shapes or nonpolygonal shapes. The polygonal shapes are generally com-

putationally simpler since their sides can be expressed in terms of linear relations

(e.g., equations of lines). They are good for approximating the interior of a region.

The nonpolygonal shapes are more flexible since they provide good approximations,

in terms of measures, of the boundaries (e.g., perimeter) of regions as well as their

interiors (e.g., area).8

Moreover, the normals to the boundaries of nonpolygonal shapes are not re-

stricted to a fixed set of directions. For example, in the case of rectangular tiles, there

is a 90 degree discontinuity between the normals to boundaries of adjacent tiles. This

lack of continuity is a drawback in applications in fields such as computer graphics

where such tasks as shading make use of the directions of the surface. However,

working with nonpolygonal shapes generally requires use of floating point arithmetic,

and hence it is usually more complex.

The remainder of this section expands on a number of polygonal decomposi-

tions and compares them. It also contains a brief discussion of one nonpolygonal

decomposition that consists of a collection of sector-like objects whose arcs are not

necessarily part of a circle. This method is based on polar coordinates where the arc

joining two distinct points is formed by linear interpolation. The term sector tree is

used to describe it. This discussion is of an advanced nature and can be skipped on an

initial reading.

x Recall the statement in Section 1.2 that hierarchical data structures are often differentiated on the basis of

whether they specify the boundaries of regions or organize their interiors.

Page 30 of 448 Unified Patents Exhibit 1005 App'x A-N

1.4 SPACEDECOMPOSITION METHODS II 17

1.4.1 Polygonal Tilings

Bell, Diaz, Holroyd, and Jackson [Be1183] discuss a number of polygonal tilings of the

plane (i.e., tessellations) that satisfy property 1. Figure 1.12 illustrates some of these

tessellations. They also present a taxonomy of criteria to distinguish between the vari-

ous tilings. The tilings, consisting of polygonal tiles, are described by use of a nota-

tion based on the degree of each vertex as the edges (i.e., sides) of the ‘atomic’ tile are

visited in order, forming a cycle. For example, the tiling described by [4.82] (Figure
l.12c) has the shape of a triangle where the first vertex has degree four while the

remaining two vertices have degree eight apiece.

A tiling is said to be regular if the atomic tiles are composed of regular

polygons (i.e., all sides are of equal length as are the interior angles). A molecular tile

is an aggregation of atomic tiles to form a hierarchy. It is not necessarily constrained

to have the same shape as the atomic tile. When a tile at level k (for all k >0) has the

same shape as a tile at level 0 (i.e., it is a scaled image of a tile at level 0), then the til-

ing is said to be similar.

Bell et al. focus on the isohedral tilings where a tiling is said to be isohedral if

all the tiles are equivalent under the symmetry group of the tiling. A more intuitive

O O.

9

Figure 1.12 Sample tessellations: (a) [4“] square;
(b) [63] equilateral triangle; (c) [4.82] isoceles triangle;
(d) [4.6.12130—60 right triangle; (e) [35] hexagon

Page 31 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 32 of 448 Unified Patents Exhibit 1005 App'x A-N

18 II 1 INTRODUCTION

13x:07;
”may“
mauvge.

A AX®303£.€X

AVAVAVAVA VXI5®305®XI
AVAVAVAVAVA {edge-07

AVAVAVAVAVAVA uaaxlea
AVAVAVAVAVAVAVA V-(la'n‘V-I

a b

Figure 1.13 Examples of(a) isohedral and

(b) nonisohedra/ filings

way to conceptualize this definition is to assume the position of an observer who

stands in the center of a tile having a given orientation and scans the surroundings. If

the view is independent of the tile, the tiling is isohedral. For example, consider the

two tilings in Figure 1.13 consisting of triangles (Figure 1.13a) and trapezoids (Figure

1.13b). The triangles are isohedral, whereas the trapezoids are not, as can be seen by
the view from tiles A and B.

In the case of the trapezoidal tiling, the viewer from A is surrounded by an

infinite number of concentric hexagons, whereas this is not the case for B. In other

words, the trapezoidal tiling is not periodic. Also note that all of the tiles in Figure

1.13a are described by [63], while those in Figure 1.13b are either [32.42], [32.62], or

[3.4.62] (i.e., tiles labeled 1, 2, and 3, respectively, in Figure 1.13b). When the

isohedral tilings are classified by the action of their symmetry group, there are 81 dif-

ferent types [Griin77, Griin87]. When they are classified by their adjacency structure,

as done here, there are 11 types.

The most relevant criterion to the discussion is the distinction between limited

and unlimited hierarchies of tilings. A limited tiling is not similar. A tiling that

satisfies property 2 is said to be unlimited. Equivalently, in a limited tiling, no change

of scale lower than the limit tiling can be made without great difficulty. An alternative

characterization of an unlimited tiling is that each edge of a tile lies on an infinite

straight line composed entirely of edges. Interestingly the hexagonal tiling [36] is lim-

ited. Bell et a1. claim that only four tilings are unlimited. These are the tilings given

in Figure 1.12a—d. Of these, [44], consisting of square atomic tiles (Figure 1.12a), and
[63], consisting of equilateral triangle atomic tiles (Figure 1.12b), are well-known reg-

ular tessellations [Ahuj83]. For these two tilings we consider only the molecular tiles

given in Figures 1.14a and 1.14b.

The tilings [44] and [63] can generate an infinite number of different molecular
tiles where each molecular tile at the first level consists of n2 atomic tiles (1: > 1).

The remaining nonregular unlimited triangular tilings, [4.82] (Figure 1.12c) and
[4.6.12] (Figure 1.12d). are less well understood. One way of generating [4.82] and

[4.6.12] is to join the centroids of the tiles of [44] and [63], respectively, to both their
vertices and midpoints of their edges. Each of the tilings [4.82] and [4.6.12] has two

Page 32 of 448 Unified Patents Exhibit 1005 App'x A-N

1.4 SPACE DECOMPOSITION METHODS ll 19

EEEEEE
RENEE!
flfiflflflk
EEEEEV
“flflflfi

LA

Figure 1.14 Examples illustrating unlimited tilings: (a) [4‘]
hierarchy, (b) [63] hierarchy, (c) ordinary [4.82] hierarchy,
(d) ordinary [4.6.12] hierarchy, (e) rotation [4.82] hierarchy,
(f) reflection [4.6. 12] hierarchy

types of hierarchy. [4.82] has an ordinary (Figure 1.14c) and a rotation hierarchy
(Figure 1.14e) requiring a rotation of 135 degrees between levels. [4.6.12] has an

ordinary (Figure 1.14d) and a reflection hierarchy (Figure 1.14f), which requires a
reflection of the basic tile between levels.

The distinction between the two types of hierarchies for [4.82] and [4.6.12] is
necessary because the tiling is not similar without a rotation or a reflection when the

hierarchy is not ordinary. This can be seen by observing the use of dots in Figure 1.14

to delimit the atomic tiles in the first molecular tile. Similarly broken lines are used to

delimit the components of tiles at the second level (assuming atomic tiles are at level

0). For the ordinary [4.82] and [4.6.12] hierarchies, each molecular tile at the first
level consists of n2 (n > 1) atomic tiles. In the reflection hierarchy of [4.6.12], each
molecular tile at the first level consists of 3 . n2 (n > 1) atomic tiles, while for the

rotation hierarchy of [4.82], 2 - n2 (n > 1) atomic tiles comprise a molecular tile at the
first level.

To represent data in the Euclidean plane, any of the unlimited tilings could have

been chosen. For a regular decomposition, the tilings [4.82] and [4.6.12] are ruled out.
Comparing ‘square’ [44] and ‘triangular‘ [63] quadtrees. we find that they differ in
terms of adjacency and orientation. Let us say that two tiles are neighbors if they are

Page 33 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 34 of 448 Unified Patents Exhibit 1005 App'x A-N

20 II 1 INTRODUCTION

adjacent either along an edge or at a vertex. A tiling is uniformly adjacent if the dis-

tances between the centroid of one tile and the centroids of all its neighbors are the

same. The adjacency number of a tiling is the number of different intercentroid dis-

tances between any one tile and its neighbors. In the case of [44], there are only two

adjacency distances, whereas for [63] there are three adjacency distances.
A tiling is said to have uniform orientation if all tiles with the same orientation

can be mapped into each other by translations of the plane that do not involve rotation

or reflection. Tiling [44] displays uniform orientation, while [63] does not. Under the

assumption that uniform orientation and a minimal adjacency distance is preferable,

we say that [44] is more useful than [63]. It is also very easy to implement. Neverthe-

less, [63] ' has its uses. For example, Yamaguchi, Kunii, Fujimura, and Toriya

[Yama84] use a triangular quadtree to generate an isometric view from an octree

representation of an object (see Section 7.1.4 of [Same90b]).

Of the limited tilings, many types of hierarchies may be generated [Be1183];

however, in general, they cannot be decomposed beyond the atomic tiling without

changing the basic tile shape. This is a serious deficiency of the hexagonal tessella-

tion [36] (Figure 1.12e) since the atomic hexagon can be decomposed only into tri-

angles. Nevertheless the hexagonal tessellation is of considerable interest. It is regu-

lar, has a uniform orientation, and, most important, displays a uniform adjacency (i.e.,

each neighbor of a tile is at the same distance from it).

There are a number of different hexagonal hierarchies distinguished by classify-

ing the shape of the first-level molecular tile on the basis of the number of hexagons

that it contains. Three of these tiling hierarchies are given in Figure 1.15 and are

called n-shapes where n denotes the number of atomic tiles in the first-level molecular

tile. Of course, these n-shapes are not unique.

Figure 1.15 Three different hexagonal tiling hierarchies:

(a) 4-shape, (b) 7-shape, (c) 9-shape

Page 34 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 35 of 448 Unified Patents Exhibit 1005 App'x A-N

1.4 SPACEDECOMPOSITIONMETHODS II 21

The 4-shape and the 9-shape have an unusual adjacency property in the sense

that no matter how large the molecular tile becomes, contact with two of the tiles (i.e.,

the one above and the one below) is along only one edge of a hexagonal atomic tile,

while contact with the remaining four molecular tiles is along nearly one-quarter of

the perimeter of the corresponding molecular tile. The hexagonal pattern of the 4~

shape and 9-shape molecular tiles has the shape of a rhombus. In contrast, a 7~shape

molecular tile has a uniform contact with its six neighboring molecular tiles.

The type of quadtree used often depends on the grid formed by the image sam-

pling process. Square quadtrees are appropriate for square grids and triangular quad-

trees for triangular grids. In the case of a hexagonal grid [Burt80], the 7-shape hierar-

chy is frequently used since the shape of its molecular tile is more like a hexagon. It

is usually described as rosette—like (i.e., a septree). Note that septrees have jagged

edges as they are merged to form larger units (e.g., Figure 1.15b). The septree is used

by Gibson and Lucas [Gibs82] (who call it a generalized balanced ternary or GBT for

short) in the development of algorithms analogous to those existing for quadtrees.

Although the septree can be built up to yield large septrees, the smallest resolu-

tion in the septree must be decided up0n in advance since its primitive components

(i.e., hexagons) cannot later be decomposed into septrees. Therefore the septree

yields only a partial hierarchical decomposition in the sense that the components can

always be merged into larger units, but they cannot always be broken down. For

region data, a pixel is generally an indivisible unit, and thus unlimited decomposition

is not absolutely necessary. However, in the case of other data types such as points

(see Chapter 2) and lines (see Chapter 4), we will see that the decomposition rules of

some representations require that two entities be separated, which may lead to a level

of decomposition not known in advance (e.g., a decomposition rule that restricts each

square to contain at most one point). In this book the discussion is limited to square

quadtrees and their variants.

When the data are spherical, a number of researchers have proposed the use of a

representation based on an icosahedron (a 20-faced polyhedron whose faces are regu-

lar triangles) [Dutt84, Feke84]. The icosahedron is attractive because, in terms of the

number of faces, it is the largest possible regular polyhedron. Each of the triangular

faces can be further decomposed in a recursive manner into n2 (n > 1) spherical tri-
angles (the [63] tiling).

Fekete and Davis [Feke84] let n = 2, which means that at each level of decom-

position, three new vertices are generated by halving each side of the triangle; con-

necting them together yields four triangles. They use the term property sphere to

describe their representation. The property sphere has been used in object recogni-

tion; it is also of potential use in mapping the globe because it can enable accurate

modeling of regions around the poles. For example, see Figure 1.16, which is a prop—

erty sphere representation of some spherical data. In contrast, planar quadtrees are

less attractive the farther we get from the equator due to distortions in planarity caused

by the earth’s curvature. Of course, for true applicability for mapping, we need a

closer approximation to a sphere than is provided by the 20 triangles of the

icosahedron. Moreover, we want a way to distinguish between different elevations.

Page 35 of 448 Unified Patents Exhibit 1005 App'x A-N

22 II 1 INTRODUCTION

 935%6A
vv‘vvv

C

Figure 1.16 Property sphere representation of some

spherical data: (a) data, (b) decomposition on a sphere,

(c) decomposition on a plane

Dutton [Dutt84] lets it = 5, which means that at each level of decomposition,
one new vertex is created by connecting the centroid of the triangle to its vertices.

The result is an alternating sequence of triangles so that each level is fully contained

in the level that was created two steps previously and has nine times as many triangles

as that level. Dutton uses the term triacon to describe the resulting hierarchy. As an

example, consider Figure l.l7, which illustrates four levels of a triacon decomposi-

tion. The initial and odd-numbered decompositions are shown with heavy lines, and

the even-numbered decompositions are shown with broken and thin lines.

Figure 1.17 Example of a triacon hierarchy

Page 36 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 37 of 448 Unified Patents Exhibit 1005 App'x A-N

1.4 SPACEDECOMPOSITION METHODS II 23

The icosahedron is not the only regular polyhedron that can be used to model

spherical data. Others include the tetrahedron, hexahedron, octahedron, and dodeca-

hedron, which have 4, 6, 8, and 12 faces, respectively. Collectively these five

polyhedra are known as the Platonic solids [Peuq84]. The faces of the tetrahedron

and octahedron are equilateral triangles, while the faces of the hexahedron and do

decahedron are squares and regular pentagons, respectively.

The dodecahedron is not an appropriate primitive because the pentagonal faces

cannot be further decomposed into pentagons or other similar shapes. The tetrahedron

and hexahedron (the basis of the octree) have internal angles that are too small to

model a sphere properly, thereby leading to shape distortions.

Dutton [Dutt84] points out that the octahedron is attractive for modeling spheri-

cal data such as the globe because it can be aligned so that the poles are at opposite

vertices and the prime meridian and the equator intersect at another vertex. In addi-

tion, one subdivision line of each face is parallel to the equator. Of course, for all of

the Platonic solids, only the vertices of the solids touch the sphere; the facets of the

solids are interior to the sphere.

Other decompositions for spherical data are also possible. Tobler and Chen

[Tob186] point out the desirability of a close relationship to the commonly used sys-

tem of latitude and longitude coordinates. In particular, any decomposition that is

chosen should enable the use of meridians and parallels to refer to the data. An addi-

tional important goal is for the partition to be into units of equal area, which rules out

the use of equally spaced lines of latitude (of course, the lines of longitude are equally

spaced). In this case, the sphere is projected into a plane using Lambert’s cylindrical

projection [Adam49], which is locally area preserving. Authalic coordinates

[Adam49], which partition the projection into rectangles of equal area, are then

derived. (For more details, see [Tob186].)

The quadtree decomposition has the property that at each subdivision stage, the

image is subdivided into four equal-sized parts. When the original image is a square,

the result is a collection of squares, each of which has a side whose length is a power

of 2. The binary image tree (termed bintree) [Know80, Tamm84a, Same88b] is an

alternative decomposition defined in a manner analogous to the region quadtree except

that at each subdivision stage we subdivide the image into two equal-sized parts. In

two dimensions, at odd stages. we partition along the x coordinate, and at even stages,

along the y coordinate. The bintree is equivalent to the region quadtree if we replace

all leaf nodes at odd stages of subdivision by two identically colored sons.

The bintree is related to the region quadtree in the same way as the k-d tree

[Bent75b] (see Section 2.4) is related to the point quadtree [Fink74]. The difference is

that region quadtrees and bintrees are used to represent region data with fixed subdivi-

sion points, while point quadtrees and k-d trees are used to represent point data where

the values of the points determine the subdivision. For example. Figure 1.18 is the

bintree representation corresponding to the image of Figure 1.1. We assume that for

the x (y) partition, the left subtree corresponds to the west (south) half of the image

and the right subtree corresponds to the east (north) half. Once again, as in Figure 1.1,

all leaf nodes are labeled with numbers, and the nonleaf nodes are labeled with letters.

Page 37 of 448 Unified Patents Exhibit 1005 App'x A-N

24 II 1 INTRODUCTION

SOUTH NORTH

SOUTH.

Figure 1.18 Bintree representation corresponding to Fig-
ure 1.1: (a) block decomposition, (b) bintree representation

ofblocks in (a)

The quadtree and bintree decompose a region into equal-sized parts. Kanatani

[KanaSS] suggests using splitting rules based on the Fibonacci sequence of numbers.

The Fibonacci numbers consist of the sequence of numbers f,- that satisfy the relation

f,- =f,-_, +f,-_2, with f0 = l and f1 = 1. We can try to devise both quadtree and bintree

splitting rules based on such a sequence. Generally for a decomposition scheme to be

useful in geometric applications, it must have pixel-sized squares Ge, 1 x 1) as the

primitive tiles. At first glance, it appears that the Fibonacci sequence gives quite a bit

of leeway in deciding on a Splitting sequence and on the sizes of the regions

corresponding to the subtrees and the primitive tiles.

‘ One possible quadtree splitting rule is to restrict all shapes to squares with sides

whose lengths are Fibonacci numbers. Clearly not all the shapes can be squares since

we cannot aggregate these squares into larger squares that obey this rule. Another

possibility is to restrict the shapes to rectangles the length of whose sides are either

equal Fibonacci numbers or are successive Fibonacci numbers (see Exercise 1.26).
We term this condition the 2 -d Fibonacci condition.

In this discussiou, we have assumed splitting rules that ensure that vertical sub-

division lines at the same level are colinear as well as for horizontal lines at the same

level. For example, when using a quadtree splitting rule, the vertical lines that subdi-

vide the NW and sw quadrants are colinear, as well as for the horizontal lines that sub-

divide the NW and NE quadrants. An alternative is to relax the colinearity restriction;

however, the sides of the shapes must still satisfy the 2-d Fibonacci condition (see

Exercise 1.27).

As can be seen in Exercises 1.26 and 1.27, neither a quadtree nor a bintree can

Page 38 of 448 Unified Patents Exhibit 1005 App'x A-N

1.4 SPACE DECOMPOSITION METHODS II 25

Figure 1.19 (a) An arbitrary space decomposition and

(b) its BSP tree. The arrows indicate the direction of the

positive halfspaces.

be used by itself as a basis for Fibonacci-based space decomposition; however, a com—

bination of the two structures could be used. When the lengths of the sides of a rec~

tangle are equal, the rectangle is split into four rectangles such that the lengths of the

sides satisfy the 2-d Fibonacci condition. When the lengths of the sides of a rectangle

are not equal, the rectangle is split into two rectangles with the Split along a line (an

axis) parallel to the shorter (longer) of the two sides. Interestingly the dimensions of

the A-series of European paper are based on a Fibonacci sequence—that is, the ele—

ments of the series are of dimension f,- x f,-_. multiplied by an appropriate scale factor.

Another variation on the bintree idea, termed adaptive hierarchical coding

(AHC), is prOposed by Cohen, Landy, and Pavel [Cohe85b]. [n this case, the image is

again split into two equal’sized parts at each stage, but there is no need to alternate

between the x and y coordinates. The decision as to the coordinate on which to parti-

tion depends on the image. This technique may require some work to get the optimal

partition from the point of view of a minimum number of nodes (see Exercise 1.29).

An even more general variation on the bintree is the BSP tree of Fuchs, Kedem,

and Naylor [Fuch80, Fuch83]. Its variants are used in some hidden-surface elimina-

tion algorithms (see Section 7.1.5 of [Same90b]) and in some implementations of

beam tracing (see Section 7.3 of [Same90b]). It is applicable to data of arbitrary

dimension, although here it is explained in the context of two-dimensional data. At

each subdivision stage, the image is subdivided into two parts of arbitrary size. Note

that successive subdivision lines need be neither orthogonal nor parallel. Therefore

the resulting decomposition consists of arbitrarily shaped convex polygons.

The BSP tree is a binary tree. To be able to assign regions to the left and tight

subtrees, we associate a direction with each subdivision line. In particular, the sub-

division lines are treated as separators between two halfspaces.9 Let the line have the

d

9 A (linear) haIfSpace in d—space is defined by the inequality 2a, -x,- 20 on the d+1 homogeneousI=0

coordinates (x0 = l). The halfspace is represented by a column vector a. In vector notation, the inequality is

written as a ~x Z 0. In the case of equality, it defines a hyperplane with a as its normal. It is important to

note that halfspaces are volume. not boundary, elements.

Page 39 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 40 of 448 Unified Patents Exhibit 1005 App'x A-N

26 11 1 INTRODUCTION

equation a -.\‘ + b y + c = 0. We say that the right subtree is the ‘positive’ side and
contains all subdivision lines formed by separators that satisfy a -.r + b - y +c 20.

Similarly we say that the left subtree is ‘negative’ and contains all subdivision lines

formed by separators that satisfy a -x + b - y + c < 0. As an example, consider Fig-

ure 1.19a, which is an arbitrary space decomposition whose BSP tree is given in Figure

1.1%. Notice the use of arrows to indicate the direction of the positive halfspaces.

Exercises

1.17. Given a [63] tiling such that each side of an atomic tile has a unit length. compute the

three adjacency distances from the centroid of an atomic tile.

1.18. Repeat Exercise 1.17 for [36] and [44], again assuming that each side of an atomic tile has

a unit length.

1.19. Suppose that you are given an image in the form of a binary array of pixels. The result is

a square grid. How can you view this grid as a hexagonal grid?

1.20. Show how the property sphere data structure can be used to model the earth. In particu-

lar, discuss how to represent landmass features, such as mountain ranges and crevices.

1.21 Suppose that you use an icosahedron to model spherical data. Initially there are 20 faces.

How many faces are there after the first level of decomposition when n = 2? n = W?

1.22. What is the ratio of leaf nodes to nonleaf nodes in a bintree for a d-dimensional image?

1.23. What is a lower bound on the ratio of leaf nodes in a bintree to that in a quadtree for a (1-

dimensional image? What is an upper bound? What is the average?

1.24. Is it true that the total number of nodes in a bintree is always less than that in the

corresponding quadtree?

1.25. The Fibonacci numbers are defined by the relation f,, =f,,_, +f,,_3. Devise a two-

dimensional analog of this relation to correspond to a splitting rule that would have to be

satisfied in a Fibonacci-based space decomposition that yields four parts. Generalize this
result ton dimensions.

1.26. Give a counterexample to the use of a quadtree splitting rule in a Fibonacci-based space

decomposition.

1.27. Give a counterexample to the use of a bintree splitting rule in a Fibonacci-based space

decomposition.

1.28. Suppose that you use the combination quadtree-bintree approach to a Fibonacci-based

space decomposition. Prove that any image such that the lengths of its sides satisfy the

2-d Fibonacci condition can be decomposed into subimages whose sides obey this pro-

perty and with a primitive tile of size l x 1.

1.29. Suppose that you use the AHC method. How many different rectangles and positions must

be examined in buildino such a structure for a 2” x 2” ima e?C

1.4.2 NonpolygonalTilings

In the previous section we focused on space decompositions based on polygonal tiles.

This is the prevalent method in use today. For certain applications, however, the use

of polygonal tiles can lead to problems. For example, suppose that we have a decom-

position based on square tiles. In this case, as the resolution is increased. the area of

the aPPl'Uximatetl region approaches the true value of the area; however, this is not

Page 40 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 41 of 448 Unified Patents Exhibit 1005 App'x A-N

1.4 SPACEDECOMPOSITIONMETHODS ll 27

true for a boundary measure such as the perimeter. To see this, consider a quadtree

approximation of an isosceles right triangle where the ratio of the approximated per-
imeter to the true perimeter is 4/(2 + 5) (see Exercise 1.30). Other problems include
the discontinuity of the normals to the boundaries of adjacent tiles.

There are a number of ways of attempting to overcome these problems. The

hierarchical probe model of Chen [Chen85b] is an approach based on treating space

as a polar plane and recursively decomposing it into sectors. We say that each sector

consists of an origin, two sides (labeled 1 and 2 corresponding to the order in which

they are encountered when proceeding in a counterclockwise direction), and an arc.

The points at which the sides of the sector intersect (or touch) the object are called

contact points. (p,6) denotes a point in the polar plane. Let (p,, 6,) be the contact

point with the maximum value of p in direction 6,. Each sector represents a region

bounded by the points (0,0), (p1,61), and (92, 92), where 61 = 2k7t/2” and

62 = 61 + 27t/2” such that k and n are nonnegative integers (k < 2"). The arc between

the two nonorigin contact points (pl, 61) and (pg, 62) of a sector is approximated by

the linear parametric equations (0 S t S l):

P(’)=Pl +(Pz—Pl)" 9(f)=91+(92—91)"-

Note that the interpolation curves are arcs of spirals due to the linear relation between

p and 6.

The sector tree is a binary tree that represents the result of recursively subdivid-

ing sectors in the polar plane into two sectors of equal angular intervals. Thus the

recursive decomposition is only with respect to 6, not p. The decomposition stops

whenever the approximation of a part of an object by a sector is deemed to be ade-

quate. The computation of the stopping condition is implementation dependent. For

example, it can be the maximum deviation in the value of p between a point on the

boundary and the corresponding point (i.e., at the same value of 6) on the approximat-

ing arc. Initially the universe is the interval [0,27t).

In the presentation, we assume that the origin of the polar plane is contained

within the object. See Exercise 1.36 for a discussion of how to represent an object

that does not contain the origin of the polar plane. The simplest case arises when the

object is convex. The result is a binary tree where each leaf node represents a sector

and contains the contact points of its corresponding arc. For example, consider the

object in Figure 1.20. The construction of its sector tree approximation is shown in

Figure 1.20 Example convex object

Page 41 of 448 Unified Patents Exhibit 1005 App'x A-N

28 II 1 INTRODUCTION

b

63

it

Figure 1.21 Successive sector tree approximations for the

object of Figure 1.20: (a) TI intervals, (b) n/2 intervals, (c) n/4

intervals, (d) n/8 intervals

Figures 1.21a—d. The final binary tree is given in Figure 1.22 with interval endpoints

labeled according to Figure 1.21d.

The situation is more complex when the object is not convex. This means that

each side of a sector may intersect the boundary of the object at an arbitrary, and pos—

sibly different. number of contact points. In the following, each sector will be seen to

consist of a set of alternating regions within and outside the object. These regions are
three-sided or four-sided and have at least one side that is colinear with a side of the

sector. The discussion is illustrated with the object of Figure 1.23a whose sector tree

decomposition is given in Figure 1.23b. The final binary tree is given in Figure 1.24.

A better indication of the quality of the approximation can be seen by examining Fig-

ure 1.23c, which contains an overlay of Figures 1.233 and 1.23b.

When the boundary of the object intersects a sector at two successive contact

points, say P and Q, that lie on the same side, say 5, of the sector, then the region

[027 l

[om/2)

[OJ/4"!
(L2)

(4.5) (5 6)

[Iv/4,31r/8) [Sr/8,7/2)
(2.3) (3.4)

Figure 1.22 Binary tree representation of the sector tree

of Figure 1.20

Page 42 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 43 of 448 Unified Patents Exhibit 1005 App'x A-N

1.4 SPACE DECOMPOSITION METHODS ll 29

Figure 1.23 (a) Example object, (b) its sector tree descrip-

tion, and (c) a comparison of the sector tree approximation

(thin lines) with the original object (thick lines). Note the

creation of a hole corresponding to the region formed by

points A, B, 6, 7, C, D, and 5

bounded by S and PQ must be approximated. Without loss of generality, assume that

the region is inside the object. There are two choices. An inner approximation

ignores the region by treating the segment of S between P and Q as part of the approxi-

mated boundary (e.g., the region between points 9 and 10 in sector [97t/ 8, 57t/4) in

Figure 1.23b).

An outer approximation inserts two identical contact points, say R and T, on the

other side of the sector and then approximates the region by the three—sided region

formed by the segment of S between P and Q and the spiral arc approximations of PR

and QT. The value ofR (and hence T) is equal to the average of the value of p at P and

Q. For example, the region between points 4 and 5 in sector [57t/4, 37t/2) in Figure

1.23b is approximated by the region formed with points C and D.

Of course, the same approximation process is applied to the part of the region

outside the object. In Figure 1.23b, we have an inner approximation for the region

between points 7 and 8 in sector [37E/ 2, 27:), and an outer approximation for the region

between points 5 and 6 in sector [97t/8, 57t/4), by virtue of the introduction of points A
and B.

One of the problems with the sector tree is that its use can lead to the creation of

holes that do not exist in the original object. This situation arises when the decompo—

sition is not carried out to a level of sufficient depth. For example, consider Figure

1.23b, which has a hole bounded by the arcs formed by points A, B, 6, 7, C, D, and 5.

This is a result of the inner approximation for the region between points 7 and 8 in

sector [37E/ 2, 27E) and an outer approximation for the region between points 4 and 5 in

sector [57t/ 4, 3Tt/ 2). This situation can be resolved by further decomposition in either

or both of sectors [37t/2, 27:) and [57t/4, 37t/2).

The result of the approximation process is that each sector consists of a collec-

tion of three-sided and four—sided regions that approximate the part of the object con-
tained in the sector. This collection is stored in the leaf node of the sector tree as a list

of pairs of points in the polar plane. It is interesting to observe that the boundaries of

the interpolated regions are not stored explicitly in the tree. Instead each pair of points

corresponds to the boundary of a region. Since the origin of the polar plane is within

the object, an odd number of pairs of points is associated with each leaf node. For

Page 43 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 44 of 448 Unified Patents Exhibit 1005 App'x A-N

30 II 1 INTRODUCTION

[0.21r)

[0,7r)

[31r/2 ,21r)
(11,1)

[1r,51r/4) (6.7) [51r/4.31r/2)
(5,C)
(4,0)
(9.8)
(10,11)

[1r,91r/8) (8.6) [977/8,57r/4)
(2.3) (A5)

(3,4)

Figure 1.24 Binary tree representation of the sector tree

of Figure 1.23

example, consider the leaf node in Figure 1.24 corresponding to the sector

[STE/4, 33/2). The first pair, together with the origin, defines the first region (e.g.,

(6,7)). The next two pairs of points define the second region (e.g., (5,C) and (4,D)),

with each successive two pairs of points defining the remaining regions.

The sector tree is a partial polar decomposition, as the subdivision process is

based only on the value of 6. A total polar decomposition would partition the polar

plane on the basis of both p and 6. The result is analogous to a quadtree. and it is

termed a polar quadtree. There are a number of possible rules for the decomposition

process (see Exercise 1.42). For example, consider a decomposition that recursively

halves both p and 6 at each level. In general, the polar quadtree is a variant of a maxi—

mal block representation. As in the sector tree, the blocks are disjoint. Unlike the

sector tree, blocks in the polar quadtree do have standard sizes. In particular, all

blocks in the polar quadtree are either three sided (i.e., sectors) or four sided (i.e.,

quadrilaterals, two of whose sides are arcs). Thus the sides of polar quadtree blocks

are not based on interpolation.

The primary motivation for presenting the sector tree is to show that space

decompositions could also be based on nonpolygonal tiles. In the rest of this book the

primary concern is with space decompositions based on rectangles (especially

squares) and showing how a number of operations can be performed when they serve

as the underlying representation. The techniques are quite general and can be applied

to most space decomposition methods. Thus the sector tree is not discussed further

except in the context of its adaptation to the representation of three-dimensional data

(see Section 5.6). Nevertheless, the following contains a brief mention of some of the

operations to which the sector tree lends itself.

Set operations such as union and intersection are straightforward. Scaling is

trivial as the sector tree need not be modified; all values of p are interpreted as scaled

Page 44 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 45 of 448 Unified Patents Exhibit 1005 App'x A-N

1.4 SPACEDECOMPOSITION METHODS II 31

by the appropriate scale factor. The number of nodes in a sector tree is dependent on

its orientation—that is, on the points chosen as the origin and the contact point chosen

to serve as (p,0). Rotation is not so simple; it cannot be implemented by simply rear-

ranging pointers (but see Exercise 1.40). Translation is computationally expensive

since the change in the relative position of the object with respect to the origin means
that the entire sector tree must be reconstructed.

1.30.

1.31.

1.32.

1.33.

1.34.

1.35.

1.36.

1.37.

1.38.

1.39.

1.40.

1.41.

1.42.

Exercises

Prove that for an isosceles right triangle represented by a region quadtree, the ratio of the

approximated perimeter to the true perimeter is 4/ (2 + V2).
Repeat Exercise 1.30 for a circle (i.e., find the ratio).

When the objects have linear sides, polygonal tiles are superior. How would you use the

sector tree decomposition method with polygonal tiles?

In the discussion of the situation arising when the boundary of the object intersects a sec—

tor at two successive contact points, say P and Q, that lie on the same side, say S, of the

sector, we assumed that the region bounded by S and PQ was inside the object. Suppose

that this region is outside the object. How does this affect the inner and outer approxima-
tions?

Can you traverse the boundary of an object represented by a sector tree by visiting each

leaf node just once?

When using a sector tree, how would you handle the situation that the boundary of the

object just touches the side of a sector without crossing it (i.e., a tangent if the boundary

is differentiable)?

How would you use a sector tree to represent an object that does not contain the origin of

the polar plane?

The outer approximation used in building a sector tree always yields a three-sided region.

Two of the sides are arcs of spirals with respect to a common origin. This implies a sharp

discontinuity of the derivative at the point at which they meet. Can you devise a way to

smoothe this discontinuity?

Does the inner approximation used in building a sector tree always underestimate the

area? Similarly does the outer approximation always overestimate the area?

Compare the inner and outer approximations used in building a sector tree. Is there ever

a reason for the outer approximation to be preferred over the inner approximations (or

vice-versa)?

Define a complete sector tree in an analogous manner to a complete binary tree—that is,

all leaf nodes are at the same level, say n. Prove that a complete sector tree is invariant

under rotation in multiples of 27t/2".

Write an algorithm to trace the boundary of an object represented by a sector tree.

Suppose that it is desired to decompose space into nonpolygonal shapes. Develop a

quadtree-like data structure based on polar coordinates (i.e., p and 9). Investigate dif—

ferent splitting rules for polar quadtrees. In particular, you do not need to altcmalc the

splits—~that is, you could split on p several times in a row, and so on. This technique is

used in the adaptive k—d tree [Frie77] (see Section 2.4.1) by decomposing the quarlcring

process into two splitting operations—~one for the x coordinate and one for the y coordi—

nate. What are the possible shapes for the quadrants of such trees (e.g.. 11 lorus,

doughnut, wheels with spokes)?

Page 45 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 46 of 448 Unified Patents Exhibit 1005 App'x A-N

32 II 1 INTRODUCTION

1.5 SPACE REQUIREMENTS

The primary motivation for the development of the quadtree was the desire to reduce

the amount of space necessary to store data through the use of aggregation of homo-

geneous blocks. As we will see in subsequent chapters, an important by-product of

this aggregation is the reduction of the execution time of a number of operations (e.g.,

connected component labeling, component counting). However, a quadtree imple-

mentation does have overhead in terms of the nonleaf nodes. For an image with B and

W black and white blocks. respectively, 4 - (B + W)/3 nodes are required. In contrast, a

binary array representation of a 2" X 2" image requires only 22” bits; however, this

quantity grows quite quickly. Furthermore, if the amount of aggregation is minimal

(e.g., a checkerboard image), the quadtree is not very efficient.

The overhead for the nonleaf nodes can be reduced at times by using a pointer-

less representation. Pointer-less representations can be grouped into two categories.

The first, termed a DF—expression, represents the quadtree as a traversal of its consti-

tuent nodes [Kawa80a]. For example, letting ‘B’, ‘W’, and ‘6’ correspond to black,

white, and gray nodes, respectively, and assuming a traversal in the order NW, NE, SW,

and SE, the quadtree of Figure 1.1 would be represented by GWGWWBBGWGW
BBBWBGBBGBBBWW.

The second approach treats the quadtree as a collection of the leaf nodes

comprising it. Each node is represented by a pair of numbers [Garg82c]. The first
number is the level of the tree at which the node is located. The second number is

termed a locational code. It is formed by a concatenation of base 4 digits correspond-

ing to directional codes that locate the node along a path from the root of the quadtree.

The directional codes take on the values 0, l, 2, 3 corresponding to quadrants NW, NE,

SW, SE, respectively. For example, node 15 in Figure 1.1 is represented by the pair of

numbers (0,320), which is decoded as follows. The base 4 locational code is 320.

The pair denotes a node at level 0 that is reached by a sequence of transitions, SE, SW,

and NW, starting at the root. A quadtree representation based on the use of locational

codes is called linear quadtree by Gargantini [Garg82a, Garg82c] (because the

addresses are keys in a linear list of nodes). Pointer-less representations are discussed

in greater detail in Chapter 2 of [Same90b].

The worst case for a quadtree of a given depth in terms of storage requirements

occurs when the region corresponds to a checkerboard pattern as in Figure 1.25. The

amount of space required is obviously a function of the resolution (i.e., the number of

levels in the quadtree), the size of the image (i.e., its perimeter), and its positioning in

the grid within which it is embedded. As a simple example, Dyer [Dyer82] has shown

that arbitrarily placing a square of size 2”' X 2”' at any position in a 2" X 2" image

requires an average of 0 (2”'+2 + n—m) quadtree nodes. An alternative characteriza-

tion of this result is that the average amount of space necessary is 0 (p+n) where p is

the perimeter (in pixel widths) of the block.

Dyer’s 0(p+n) result for a square image is merely an instance of the earlier

work of Hunter and Steiglitz [Hunt78, Hunt79a] who proved some fundamental

theorems on the space requirements of images represented by quadtrees. In their

Page 46 of 448 Unified Patents Exhibit 1005 App'x A-N

1.5 SPACEREOUIREMENTS II 33

F- G -H -14- K- L M N- o- 'P -o R s- -T -u

I3519|I ISIS l7l9 2'232521293l 33363739043‘5‘1l95l 5355 51596163
2‘ ‘8IDIZHISI820222426283332M3‘3840424‘“48505254“5l606264

Figure 1.25 A checkerboard and its quadtree

studies, Hunter and Steiglitz used simple polygons (polygons with nonintersecting

edges and without holes); however, these theorems have been observed to hold in

arbitrary images (see [Rose82b] for empirical results in a cartographic environment).

In Hunter and Steiglitz’s formulation, a polygon is represented by a three-color

variant of the quadtree. In essence, there are three types of nodes: interior, boundary,

and exterior. A node is said to be of type boundary if an edge of the polygon passes

through it. Interior and exterior nodes correspond to areas within, and outside,

respectively, the polygon and can be merged to yield larger nodes. The resulting

quadtree is analogous to the MX quadtree representation of point data described below

(for more details, see Section 2.6!), and this term will be used to describe it. In par

ticular, boundary nodes are analogous to black nodes, while interior and exterior

nodes are analogous to white nodes.

Figure 1.26 illustrates a sample polygon and its Mx quadtree. One disadvantage

of the MX quadtree representation for polygonal lines is that a width is associated with

them, whereas in a purely technical sense these lines have a width of zero. Also shift-

ing operations may result in information loss. (For more appropriate representations

of polygonal lines, see Chapter 4.)

An upper bound on the number of nodes in such a representation of a polygon

can be obtained in the following manner. First, we observe that a curve of length

d +£(e >0) can intersect at most six squares of side width d. Now consider a

polygon, say G, having perimeter p, that is embedded in a grid of squares each of side

width d. Mark the points at which G enters and exits each square. Choose one of

these points, say P, as a starting point for a decomposition of G into a sequence of

curves. Define the first curve in G to be the one extending from P until six squares

have been intersected and a crossing is made into a different seventh square. This is

the starting point for another curve in G that intersects six new squares, not counting

those intersected by any previous curve.

Page 47 of 448 Unified Patents Exhibit 1005 App'x A-N

34 II 1 INTRODUCTION

fifillll
.Eififl'fiII-I

Ba- ENI-

IIF§:SWI.$§ “WI.. a..-
Ifififiak‘l-IIlfifi

:aaeaggllgggfi
l=§5§-l-IE£II
I-EJI.55:-

IRISH

Figure 1.26 Hunter and Steig/itz's quadtree representa-

tion of a polygon

We now decompose G into a series of such curves. Since each curve adds at

most six new squares and has length of at least d, we see that a polygon with perimeter

p cannot intersect more than 6 - [p/dl squares. Given a quadtree with a root at level n

(i.e., the grid of squares is of width 2"). at level 1' each square is of width 2‘. Therefore
polygon 0 cannot intersect more than B (i) = 6 . [p/2’] quadrants at level 1'. Recall that
our goal is to derive an upper bound on the total number of nodes. This bound is

attained when each boundary node at level i has three brother nodes that are not inter-

sected. Of course. only boundary nodes can have sons, and thus no more than

80') nodes at level i have sons. Since each node at level i is a son of a node at level

i+ 1, there are at most 4 -B(i+ 1) nodes at level 1'. Summing up over n levels

(accounting for a root node at level n and four sons), we find that the total number of

nodes in the tree is bounded by

l+4+’E4-B(i+l)
i=0

”-2

<5+24 ,£[2’+']
"—2

ss+24.§)(1+ 2f“)

<5+24 (n—l)+24--p 22,1“

SZ4-n—l9+24-p.

Page 48 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 49 of 448 Unified Patents Exhibit 1005 App'x A-N

1.5 SPACE REQUIREMENTS II 35

Therefore, we have proved:

Theorem 1.1 The quadtree corresponding to a polygon with perimeter

p embedded in a 2" X2" image has a maximum of 24 . n — 19 +24 -p

(i.e., 0(p +n)) nodes. 13

The proof of Theorem 1.1 is based on a dec0mposition of the polygon into a

sequence of curves, each of which intersects at most six squares. This bound can be

tightened by examining patterns of squares to obtain minimum lengths and

corresponding ratios of possible squares per unit length. For example, observe that

once a curve intersects six squares, the next curve of length d in the sequence can

intersect at most two new squares. In contrast, it is easy to construct a sequence of

curves of length d + 8 (e > 0) such that almost each curve intersects two squares of

side length d. Such a construction leads to an upper bound of the form

a - n + b + 8 -p where a and b are constants (see Exercise 1.48). Hunter and Steiglitz

use a slightly different construction to obtain a bound of 16 - n — l l + 16 -p (see Exer—

cise 1.49).

Nevertheless, the bound of Theorem 1.1 is attainable as demonstrated by the fol—

lowing examples. First, consider a square of side width 2 that consists of the central

four squares in a 2" X 2" image (see Figure 1.27). Its quadtree has 16 - n — 11 nodes

(see Exercise 1.50). Second, consider a curve that follows a vertical line through the

center of a 2" X 2" image. Now, make it a bit longer by making it intersect all of the

pixels on either side of the vertical line (see Figure 1.28). As 11 increases, the total

number of nodes in the quadtree approaches 8 - p where p = 2" (see Exercise 1.51). A

polygon having a number of nodes approaching 8 -p can be constructed in a similar

manner by approximating a square in the center of the image whose side is one-fourth

the side of the image (see Exercise 1.52). In fact, it has been shown by Hunter

[l-lunt78] that 0(p+n) is a least upper bound on the number of nodes in a quadtree

corresponding to a polygon (see Exercise 1.53).

Figure 1.27 Example quadtree with 16 - n— 11 nodes

Page 49 of 448 Unified Patents Exhibit 1005 App'x A-N

36 II 1 INTRODUCTION

Figure 1.28 Example quadtree with approximately 8 - p
nodes

Theorem 1.1 can be recast by measuring the perimeter p in terms of the length

of a side of the image in which the polygon is embedded—Le, for a 2" x 2” image

p = p’ - 2". Thus the value of the perimeter no longer depends on the resolution of

the image. Restating Theorem 1.] in terms of p’ results in a quadtree having

0 (p’ - 2” + n) nodes. This leads to the following important corollary:

Corollary 1 .1 The maximum number of nodes in a quadtree

corresponding to an image is directly proportional to the resolution of the

image. E]

The significance of Corollary 1.1 is that when using quadtrees, increasing the

image resolution leads to a linear growth in the number of nodes. This is in contrast to

the binary array representation where doubling the resolution leads to a quadrupling of

the number of pixels.

Since in most practical cases the perimeter, p, dominates the resolution, It, the

results of Theorem 1.1 are usually interpreted as stating that the number of nodes in a

quadtree is proportional to the perimeter of the regions contained therein.” Meagher

[Meag80] has shown that this theorem also holds for three-dimensional data (i.e., for

polyhedra represented by octrees) when the perimeter is replaced by the surface area.

The perimeter and the surface area correspond to the size of the boundary of the

polygon and polyhedron—that is, in two and three dimensions, respectively. In d
dimensions this result can be stated as follows:

Theorem 1 .2: The size of a d—dimensional quadtree of a d—dimensional

polyhedron is proportional to the sum of the resolution and the size of the

boundary of the object. [3

'0 Of course, the storage used by runlength codes is also proportional to the perimeter of the regions.
However. runlength codes do not facilitate access to different pans of the regions (i.e.. they have poor spatial

indexing properties).

Page 50 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 51 of 448 Unified Patents Exhibit 1005 App'x A-N

1.5 SPACEREQUIREMENTS || 37

Aside from their implications on the storage requirements, Theorems 1.1 and 1.2

also directly affect the analysis of the execution time of algorithms. In particular,

most algorithms that execute on a quadtree representation of an image instead of an

array representation have an execution time proportional to the number of blocks in

the image rather than the number of pixels. In its most general case, this means that

the application of a quadtree algorithm to a problem in d-dimensional space executes

in time proportional to the analogous array-based algorithm in the (d —1)-dimensional

space of the surface of the original d-dimensional image. Thus quadtrees are some-

what like dimension-reducing devices.

Theorem 1.2 assumes that the image consists of a polyhedron. Walsh [Wals85]

lifts this restriction and obtains a weaker complexity bound. Assuming an image of

resolution 11 and measuring the perimeter, say p, in terms of the number of border pix—

els, he proves that the total number of nodes in a d—dimensional quadtree is less than

or equal to 4 . n - p. Furthermore he shows that the number of black nodes is less than

orequal to (2"— 1)-n .p/d. ‘

The complexity measures discussed above do not explicitly reflect the fact that

the amount of space occupied by a quadtree corresponding to a region is extremely

sensitive to its orientation (i.e., where it is partitioned). For example, in Dyer’s exper-

iment, the number of nodes required for the arbitrary placement of a square of size

2’" X 2’” at any position in a 2” X 2" image ranged between 4 . (n —m) + 1 and

4-p +16-(n—m)—27, with the average being 0(p+n—m). Clearly shifting the

image within the space in which it is embedded can reduce the total number of nodes.

The problem of finding the optimal position for a quadtree can be decomposed into

two parts. First, we must determine the optimal grid resolution and, second, the

partition points.

Grosky and Jain [Gros83] have shown that for a region such that w is the max-

imum of its horizontal and vertical extent (measured in pixel widths) and

2""1 < w S 2”, the optimal grid resolution is either 11 or n+1. In other words embed-

ding the region in a larger area than 2’”1 X 2’”1 and shifting it around will not result

in fewer nodes. Using similar reasoning, it can be shown that translating a region by

2" pixels in any direction does not change the number of black or white blocks of size
less than 2" x 2" [Li82].

Armed with the above results, Li, Grosky, and Jain [Li82] developed the follow-

ing algorithm that treats the image as a binary array and finds the configuration of the

region in the image so that its quadtree requires a minimum number of nodes. First,

enlarge the image to be 2’”1 X 2’”1 , and place the region within it so that the region’s

northernmost and westernmost pixels are adjacent to the northern and western bord-

ers, respectively, of the image. Next apply successive translations to the image of

magnitude power of two in the vertical, horizontal, and comer directions and keep

count of the number of leaf nodes required. Initially 22’”2 leaf nodes are necessary.
The following is a more precise statement of the algorithm:

1. Attempt to translate the image by (x,y) where x and y correspond to unit

translations in the horizontal and vertical directions, respectively. Each of

x and y takes on the values 0 or 1.

Page 51 of 448 Unified Patents Exhibit 1005 App'x A-N

38 II 1 INTRODUCTION

2. For the result of each translation in step 1, construct a new array at one-half

the resolution. Each entry in the new array corresponds to a 2 x 2 block in

the translated array. For each entry in the new array that Corresponds to a

single color (not gray) 2 X 2 block in the translated array. decrement the

leaf node count by 3.

3. Recursively apply steps 1 and 2 to each result of steps 1 and 2. This pro—

cess stops when no single-color 2 x 2 block is found in step 2 (i.e., they are

all gray) or if the new array is a 1 x 1 block. Record the total translation
and the minimum leaf node count.

Step 2 makes use of the property that for a translation of 2‘, there is a need to
check only if single-color blocks of size 2" X 2" or more are formed. In fact, because

of the recursion. at each step we check only for the formation of blocks of size

2"“ x 2"“. Note that the algorithm tries every possible translation since any integer
can be decomposed into a summation of powers of two (i.e., use its binary representa-

tion). In fact this is why a translation of (0,0) is part of step 1. Although the algo-

rithm computes the positioning of the quadtree with the minimum number of leaf

nodes, it is also the positioning of the quadtree with the minimum total number of

nodes since the number of nonleaf nodes in a quadtree of T leaf nodes is (T—l)/3.

As an example of the algorithm, consider the region given in Figure 1.29a

whose block decomposition is shown in Figure 12%. Its quadtree requires 52 leaf

nodes. The first step is to enlarge the image, place the region in the upper left comer.

and form the array (Figure 1.30). The optimal positioning is such that Figure 1.30 is
shifted 7 units in the horizontal direction and 3 units in the vertical direction. This

corresponds to a sequence of translations (1,1), (1,1), and (1,0). The intermediate

translated arrays are shown in Figure 1.31. A11 gray nodes in the translated arrays are

labeled with a ‘0’ while black nodes are shaded. The optimal quadtree contains 46

leaf nodes and is given in Figure 1.32.

Now let us trace the algorithm as it applies the optimal sequence of translations.

in more detail. Initially the leaf node count is 256. A translation of (1.1) leads to Fig-

ure 1.313 where 58 of the array entries correspond to single-color 2 x 2 blocks in the

translated array. The leaf node count is decremented by 58-3 = 174. resulting in

a

Figure 1.29 Example (a) image and (b) its block decom-

position used to demonstrate the optimal positioning
process

Page 52 of 448 Unified Patents Exhibit 1005 App'x A-N

1.5 SPACEREOUIREMENTS II 39

Figure 1.30 The array corresponding to the image in Fig—
ure 1.29 prior to the start of the optimal positioning process

82. The next translation of (1,!) leads to Figure 1.3lb, where 11 of the array entries

correspond to single—color 2 x 2 blocks. Therefore 11 - 3 = 33 is subtracted from 82,

and the leaf node count is now 49. The final translation of (1,0) leads to Figure 1.3lc,

where only one of the array entries corresponds to a single-color 2 x 2 block in the

translated array. Decrementing the leaf node count results in 46 nodes, and the pro-

cess terminates. Of course, we have failed to describe the remaining 4" — 3 transla-

tions that were also attempted.

Despite trying all possible translations, the algorithm is quite efficient. The key

is that for each translation, only the blocks whose motion can lead to space saving

need to be considered. This is a direct consequence of the property that a translation

of 2" does not change the number of blocks of size less than 2" x 2". For an image
that has been enlarged to fit in a 2"+l >< 2"+1 array, the algorithm will have a maximum

depth of recursion of 22. Since at each level of recursion we need an array at half the

resolution of the previous level, the total amount of space required is (4/3) - 22"”.

Figure 1.31 The successive translated arrays at half-

reso/ution after application of (a) (1,1) and (b) (1,1), and

(c) (1,0) to the original image array of Figure 1.30

Page 53 of 448 Unified Patents Exhibit 1005 App'x A-N

40 II 1 INTRODUCTION

Figure 1.32 Optimal positioning of the quadtree of Figure
1.29

The basic computational task of the algorithm is to count 2 x 2 blocks of a single

color. It can be shown that 4 - n -22"+2 array elements are examined in this process
(see Exercise 1.63). Thus the algorithm uses 0 (22") space and takes 0 (n - 22") time.

Nevertheless experiments with typical images show that the algorithm has little effect

(e.g., [Same84c]}.

Exercises

1.43. Consider the arbitrary placement of a square of size 2"’ X 2“ at any position in a 2" x 2"

image. Prove that in the best case 4 - (n -m) + 1 nodes are required, while the worst case

requires 4 ~ p + 16 - (n -m)— 27 nodes. How many of these nodes are black and white,

assuming that the square is black? Prove that on the average. the number of nodes that is

required is 0 (p+n —m).

1.44. What are the worst-case storage requirements of storing an arbitrary rectangle in a quad-

tree corresponding to a 2" x2” image? Give an example of the worst case and the

number of nodes it requires.

1.45 Assume that the probability of a particular pixel’s being black is one-half and likewise for

being white. Given a 2" x 2" image represented by a quadtree, what is the expected

number of nodes, say E(n), in the quadtree? Also compute the expected number of black,

white. and gray nodes.

1.46 Suppose that instead of knowing the probability a particular pixel is black or white, we

know the percentage of the total pixels in the image that are black. Given a 2" x 2”

image represented by a quadtree, what is the expected number of nodes in the quadtree?

1.47. The proof of Theorem 1.1 and the subsequent discussion raise the question of how N

squares should be arranged so that each is intersected by a curve of minimum length

extending to the outside of the squares on each end. Such a configuration leads to a

minimal curve in the sense that it has a maximal ratio of squares to length. For which
value ofN is this ratio the smallest?

1.48. Try to prove that the upper bound of Theorem 1.1 can be tightened to be a - n + b + 8 -p
where a and b are constants.

Page 54 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 55 of 448 Unified Patents Exhibit 1005 App'x A-N

1.49.

1.50.

1.51.

1.52.

1.53.

1.54.

1.55.

1.56.

1.57.

1.58.

1.59.

1.60.

1.61.

1.62.

1.63.

1.64.

1.5 SPACEREQUIREMENTS II 41

Decompose the polygon used in the proof of Theorem 1.1 into a sequence of curves in

the following manner. Mark the points where G enters and exits each square of side

width d. Choose one of these points, say P, and define the first curve in G as extending

from P until four squares have been intersected and a crossing is made into a different

fifth square. This is the starting point for another curve in G that intersects four new

squares, not counting those intersected by any previous curve. Prove that all of the

curves, except for the last one, must be at least of length d. Using this result, prove that

the upper bound on the number of nodes in the quadtree is 16 - n - 11 + 16 - p.

Prove that the quadtree corresponding to a square of side width 2 consisting of the central

four squares in a 2" x 2” image has 16 - n —— l 1 nodes (see Figure 1.27).

Take a curve that follows a vertical line through the center of a 2” x 2” image and

lengthen it slightly by making it intersect all of the pixels on either side of the vertical

line (see Figure 1.28). Prove that as n increases, the total number of nodes in the quad-

tree approaches 8 - p where p = 2”.

Using a technique analogous to that used in Exercise 15], construct a polygon of perime-

ter p by approximating a square in the center of the image whose side is one—fourth the

side of the image. Prove that its quadtree has approximately 8 - p nodes.

Prove that 0(p+n) is a least upper bound on the number of nodes in a quadtree

corresponding to a polygon. Assume that p S22” (i.e., the number of pixels in the

image). Equivalently the polygon boundary can touch all of the pixels in the most trivial

way but can be no longer. Decompose your proof into two parts depending on whether p

is greater than 4 - n.

Can you prove that for an arbitrary quadtree (not necessarily a polygon), the number of
nodes doubles as the resolution is doubled?

Derive a result analogous to Theorem 1.1 for a three—dimensional polyhedron represented

as an octree. In this case the perimeter corresponds to the surface area.
Prove Theorem 1.2.

Assuming an image of resolution n and measuring the perimeter, say p, in terms of the

number of border pixels, prove that the total number of nodes in a d—dimensional quad-

tree is less than or equal to 4 - n - p.

Assuming an image of resolution n and measuring the perimeter, say p, in terms of the

number of border pixels, prove that the total number of black nodes in a d—dimensional

quadtree is less than or equal to (2d —- 1) - n ~p/d.

How tight are the bounds obtained in Exercises 1.57 and 1.58 for the number of nodes in

a d—dimensional quadtree for an arbitrary region? Are they realizable?

Prove that for a region such that w is the maximum of its horizontal and vertical extent

(measured in pixel widths) and 2”‘1 < w S 2", the optimal grid resolution is either n or
n+1.

Prove that translating a region by 2" pixels in any direction does not change the number
of black or white blocks of size less than 2" x 2".

Can you formally prove that the method described in the text does indeed yield the

optimal quadtree?

Prove that 4 - n - 22”"2 array elements are examined in the process of constructing the

optimal quadtree.

How would you find the optimal bintree?

Page 55 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 56 of 448 Unified Patents Exhibit 1005 App'x A-N

||||||IIIIIIIIIllII
United States Patent [19]

DeAguiar et a1. [45] Date of Patent: Nov. 16, 1993

[54]

[75]

[73]

[21]

[22]

[51]
[52]
[58]

SYSTEM FOR MANAGING TILED IMAGES
USING MULTIPLE RESOLUTIONS

Inventors: John R. DeAguiar, Sebastopol; Ross
M. Larkin, Rollings Hills, both of
Calif.

Assignee: Optigraphics Corporation, San
Diego, Calif.

App1.No.: 694,416

Filed: ‘ Apr. 30, 1991

Int. Cl.5 .. G06F 15/20

US. Cl. 395/164; 345/201
Field of Search 395/162, 164, 166, 128—130;

340/798, 799; 358/452, 455

[56] References Cited
U.S. PATENT DOCUMENTS

Re. 31,200 4/1983 Sukonick et al. 395/162
4,873,183 10/1989 Ewart 395/128 X
4,920,504 4/1990 Sawada et a1. 395/166
4,951,230 8/1990 Dalrymple et a1. 395/166

U8005263136A

[11] Patent Number: 5,263,136

5,020,003 5/1991 Moshenberg
5,150,462 9/1992 Takeda et al.

Primary Examiner—Dale M. Shaw
Assistant Examiner—Koo M. Tung '
Attorney, Agent. or Finn—Knobbe, Martens, Olson &
Bear

[57] ABSTRACT

An image memory management system for tiled images.
The system defines an address space for a virtual mem-
ory that includes an image data cache and a disk. An
image stack for each source image is stored as a full
resolution image and a set of lower-resolution subim-
ages. Each tile of an image may exist in one or more of
five different states as follows: uncompressed and resi-
dent in the image data cache, compressed and resident
in the image data cache, uncompressed and resident on
disk, compressed and resident on disk and not loaded
but re-creatable using data from higher-reso1ution
image tiles.

...... 395/164

17 Claims, 39 Drawing Sheets

t
GRAPHICS

I DISPLAY

CONTROLLER

174I
I82

MPROCESSOR

KEYBOARD AND
FLOPPY DISK

Page 56 of 448

156 I58

FLUI’PY

MOUSE KEYBOARD 19111“:IV

: 1150
I

I

I

I
I

l
I

I'lOI

umx .IMAGE l/OBUS I
COMFATIBLE' PROCESSING INTERFACE I

or? SYSTEM I fELLCAIIQL AND I
I

I

|
I

{"u-Isa
I

I622 14,4

I60 HARD
DISK ETHERNET
DRIVE
-

Unified Patents Exhibit 1005 App'x A-N

Page 57 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 1 of 39 5,263,136

SUBIMAGE

INDEXID FULL RESOLUTION IMAGE

I IIOb

SUBII’IAGE

INDEX 1 -—J HALF RESOLUTION IMAGE

I04

SUBIMAGE

INDEX 2 QUARTER RESOLUTION IMAGE

IIOc IO(o

IIod
SUBII’IAGE

INDEX 5 EIGHTH RESOLUTION IMAGE

I08

Page 57 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 58 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 2 of 39 5,263,136

29.2

IOZ

 120a

ET?” 1295
iZOd

Page 58 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 59 of 448 Unified Patents Exhibit 1005 App'x A-N

cg

:6: ways

$5353%w3

Maze:
5

s

mezzo:

III-IlllllllllIIIIIl-IIIIIIIIIIllll'lllllllllillll
6

B-39mass655%:£5
2

5,m5Q.92:E.No:

my..m3m$

M55528

2:5.55%_EEGmo3ENE;2.259:33.528mNEE52:
m

m.N

$449.2852515

US. Patent

man3209.:82$549.28«5592:

”.388me152«£55.28.2:8éaum

Mommmuoyai

NE

5:3.sz22%;.85mg

Unified Patents Exhibit 1005 App'x A-NPage 59 of 448

Page 60 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 4 of 39 5,263,136

222a ZZZb I94
ZZZc ’f

COMPRESSED ‘IILES

(VARIABLE SIZE)

222d

2228

ZZZF

RESERVE

(UNUSED MEMORY)
224 O

22%

UNCOMPRESSED

TILES

(FIXED SIZE)

2240

224d

LON ADDRESS

222

224

HIGH ADDRESS

2’50

25¢ / 260

252 254

UNCOMI’KESSED COMPRESSED

m CACHE IH CACHE

 LOAD UHCOMP FROM DISK LOAD COMP FROM DISK

RES/IMPLE

COMI’ DATA

ZOO 274 276

NOT LOADED

(LON-RES SUBIMAGES ONLY)

272

£176

 COMPRESSED

0N DISK

262

RESAMPLE

UI‘ICMP WA

Page 60 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 61 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 5 of 39 5,263,136

Fig. 24 DocumenI Informah’on SIrucIure

SELP‘REEERENCE T0 302 'OVERVIENS INVALID" fl CACHE IMAGE 1013
DOCUMENT HANDLE — PLAG COMPRESSION ALGORITHM

IMAGE COLOR fl DITS PER _S_Q TILE SIZE §_I_Z_
TYPE IMAGE PIXEL INFORMATION

NUMBER OF S151 INPUT FILE INFO SL6; OUTPUT PILE INTO jig

SUBIMAGES IN DOC

2QLIST or SUBIMAGE HEADERS

Fig. 9B

POINTER TO flfi. POINTER TO 1‘1 SUBIMAGE NIDTH _3_Z_é
TILE HEADERS TILE DIRECTORY AND HEIGHT

NUMBER OF TILE RONS 12g IMAGE STACK INDEX m PIXEL RESOLUTION _§_5_z_
& COLS IN SUDIMAGE OF THIS SUBII‘IAGE OF THIS SUBIMAGE

IO Ti Ie Header

/550

POINTER TO DOCUMENT fl INDEX OE SUOII’IAGE fl RON AND COLUMN fl
CONTAINING THIS TILE CONTAINING THIS TILE INDICES OP TILE

STATUS INFORMATION fl PRESERVE COUNT 3_é_C_>

LOCATION OF UNCOMPRESSED 512 LOCATION OF COMPRESSED id
IMAGE DATA IN CACHE MEMORY IMAGE DATA IN CACHE MEMORY

LOCATION OP UNCOMPRESSED 2% LOCATION OF COMPRESSED 16g
IMAGE DATA ON DISK IMAGE DATA ON DISK

LINK TO NEXT LESS 570 LINK TO NEXT MORE 372

RECENTLY USED TILE RECENTLY USED TILE

NUMBER OF DYTES OF EXPANDED 171 NUMBER OF DYTES OF 179;
DATA IN TILE ' COMPRESSED DATA IN TILE

Page 61 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 62 of 448 Unified Patents Exhibit 1005 App'x A-N

6

fl,siege22:32:
a:.mxux

2aomv3?523:53::vvv.2}waesfiiégmovva?N3wE€322225323
b

s§§,”ESE;€53?E03253::m.o2.8v3“.3..9,xficiis£20:szssésggwsavingsm2v2? .xvNoa? “$829855again—E.magmas—SEE35523833aéfiégcz£83225k:33N:§$3”3§\N:%

US. Patent

SEEEEEE
2v

Unified Patents Exhibit 1005 App'x A-NPage 62 of 448

Page 63 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 7 of 39 5,263,136

470 Main 402
f

404

472 4m

IIIITI CHAUZE 0‘ EMA‘W’EK LOAD TILED BEGIN UHDOABLE
RASTEK IMAGES RASTER OPERATION

m (IFIIRIIIIIGTOIMAG:

CREME IMAGE ACCESS MT

474 LOO? 476

FORKONS/COLS READ/WRITE

IN REGION KONS/COLS

418

CLOSE IMAGE Access CONTEXT 420 478
mm PREVIOUS UNLOAD

RASTER OPERATION KASTER IMAGE

QUIT CACHE

MANAGER 422

480 .

END 35 ,2

Page 63 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 64 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 A Sheet 8 of 39 5,263,136

404 Im’rCaChe Manager [29.13
K

490

498

492

494

4%

Memorg Block Siaie Diagram £9.14

FREE (NO MEMORY ALLOCATED)

. ALLOCATE HANDLE

, 505

UNLOCKED (M EMORY ALLOCATED

BUT NOT CURRENTLY IN USE) YES

LOCK COUNT

LOCK HANDLE DECKEMENTED TO ZERO?

‘ LOCKED (MEMORY ALLOCATED
AND CURRENTLY LN use) UNLOCK HANDLE

Page 64 of 448 Unified Patents Exhibit 1005 App'x A-N

 510

‘5l8

Page 65 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16,1993 Sheet 9 of 39 5,263,136

InII Image Access [29.1514

4IZ 550
1

VALIDATE INPUT PARAMETERS

LOCK DOC HANDLE

552 534
ERROR

540

INITIALIZE ACCESS

NITH ROTATION

NON

ORTHOGONAL

ROTATION _

YES

INO

ALLOCATE MEMORY 542
FOR ACCESS_CONTEXT

STRUCT URE

544

SUBIMAGE LO“ RES SELECT APPROI’RIATE REDUCED
CHOICE? RESOLUTTON SUBIMAGE

sEIECT FULL REs ADJUST TRANSFORMATION

SUBIMAGE MATRIX SCALE FACTORS

COMPUTE PIXEL + TILE 552
LIMITS OF AFFECTED

IMAGE REGION

TO STATE 554 IN FIG. I55

Page 65 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 66 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136

ALLOCATE EU FFERS FOR

SCALING IF NEEDED

US. Patent Nov. 16, 1993 Sheet 10 of 39

FROM STATE 552 '
In FIG. ISA £9 ’53

CREATE TEMPORARY 554
DIRECTORY OF TILES

IN AFFECTED REGION

INITIALIZE IMAfiE 556
SCALING FUNCTIONS

558 560
POLYGONAL YES

. INIT POLYGONAL

CI‘I’I’ING? “EGO CLIPPING FUNCTIONS

NO

562

564

SAVE _ YES 426

FOR ’IPJNDO SAVE REGION FORUNDO

56:8 570
UPDATE

"PRESERVE“ AFFECTED TILES
IN AFFECTED SUBIMAGES

YES SET "UPDATE

SUBlfiggEgDWG OVERVIEN" FLAG
no

572

TO STATE 574

IN FI6.ISC

Page 66 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 67 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 11 of 39 5,263,136

FROM STATE 572 ‘

m FIGJSB fig. [5C

“LOCK" THE FIRST RON 0R COLUMN 574

Of TILES IN THE REGION

ERROR ?

NO

lHlTlALIZE THE RON/

COLUMN ACCESS FUNCTIONS

THVALIDATE AFFECTED SUBTMAGE TILES

IF NRTTIHG TO FILL RES SUBTMAGE ONLY

RETURN. YOINTER T0 HEN ACCESS_COHTEXT

575

Page 67 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 68 of 448 Unified Patents Exhibit 1005 App'x A-N

Sheet 12 of 39 5,263,136Nov. 16, 1993US. Patent

5E:zezéemzé$32 data.23.23325ME;222232;:Ein $52925:3sz$16«8hateEN3was"5E2203MES:852.8$55:«Efig3%i:99;88%z.5:5%.UsmzaSta.0:Lo5222«S52%248429.SE.m5:883bagsI 22,536%z.98i 1525a:mateto2:38a23.N3awzaEEOfigs:GE5«Ea$5,:8&8In 205$.$52I: 765%28%:29;$82L0asSEERES«5L8659:232:fl2230:23#52695882ma8223858825a:[85853523%2.<5WEa2335,:5:mg75.8“8E28$3835:2:0552.25.22%?ozssn.ll€55.82.2&3«was.E$2.8VS2858EMaia855:.2:389%20M3%..Easing???z_8%Wm.do“.$29555crabs5.5%“.£828E28[1 Emacs:mm8h;232%88%1:565Mob«3was.«5%35¢E22$5Mm:mza75m"55%85%1|A38ES:1... 5.3:a15.21E5“EBohmeSEEtaSH865:;onc3c3”.:92ona22595mswas,:2on35.5.533%..a:53%282528:5382%29%.1 29%8aBEE3523,9.Nola8“Egg.~68938Sf81‘+*u<

Unified Patents Exhibit 1005 App'x A-NPage 68 of 448

Page 69 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 13 of 39 5,263,136

4261 SaveRegIon ForUndO. fig. 17/!
680

START

682

CLIPREGIOH REGION N0 UHLOEK
LOCK one To IMAGE OVERLAPS DocHAHDLE

HAHDLE OOOHDARLEs IMAGE?

MAKE UHDO ALLOC MEM FOR ALLoc MEM FOR END
TILE . DHDO REGION UHDO REOLOH

DIRECTORY TILE HEADERS HEADER

LOOP LOOP

702

FOR EACH FOR EACH “00 YES
TILE RON TILE COLUMN TILE LOADED

IH REGION IN REGION ,

704

LINK HEH UNDO DOC MARK

HEADER LHTO TILE BLANK OHDO TLLE

DHDO REOLOH LIST 7 "LOADED"

740 08 ”0 7I2

UHLOLK DOEHLHDLE MARK MARK OHDO COMP no
742 UHDO TILE TILE HOT DOCTILE

"OLAHK" uOLAHK" DH DISK?

EHO

COPY COMP TLLE DISK

Loc AHD SIZE FROM

DOC TLLE To OHOO TILE

COPY UNCOMI’ TILE UHCOMP

DISK LOC AND SIZE DOC TILE

FROM Doc TILE TO OH DISK ?

UHDO TILE NO

FROM STATE 7% III FIG. IT?) TO STATE 720 IN FIG. I7E>

Page 69 of 448 Unified Patents Exhibit IOOS App'x A-N

Page 70 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 14 of 39 , 5,263,136

TO STATE 700 IN FIGUA FROM STATE 7I6 [H FIG.l7A

720 ‘

722 724 726

LOCK COMP VERSION - YES UNLOCK Doc

0F DOC FILE ERROR? HANDLE END

725 ALLOC &LOCK CACHE
MEM FOR UNDO COPY

OP COMP DATA

 750

ERROR?

732 ”0'

COPY COMP DATA PROM

DOC TlLE TO UNDO TILE

UNLOCK COMP VERSION

OF DOC TILE

UNLOCK COMP VERSION

OF UHDO TILE

5y. I75

Page 70 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 71 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 15 of 39 5,263,136

LoadTIff 1:19. I8

ERROR
OPEN INPUT FILE PRINT ERROR MESSAOE

758 RR
CHECK FOR TIFF HEADER STRUCTURE E OR

COUNT NUMBER OF SUDIMAGES IN FILE

 READ FULL REs SUBINAGE INFORMATION

(IMAGE NIDTI-I, HEIGHT,TI LE SIZE, cmmESSIon,
RESOLUHON, ETC.)

 , 764

CREATE SKELETON DOCUMENTAND LOCK DOC HANDLE

766

 LOAD TIFF FULL RES SUBIMAGE

TILE INFO INTO TILE HEADERS

768 LOAD TIFF

FOK REMAINING @ws SUBIMAGELOWER-RESOLUTION TILE INFO
SUEIMAEEE mm TILE

HEADERS

756

Page 71 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 72 of 448 Unified Patents Exhibit 1005 App'x A-N

U.S. Patent Nov. 16, 1993 Sheet 16 of 39 5,263,136

LoadTifFTilesS’rd £17.19

780

START I424

782

READ NUMBER OF TILES IN SUBIMAGE

784

ALLOCATE TEMP BUFFERS FOR TILE MODE, ERROR
OFFSET AND bYTE coum was

788

READ TTLE OFFSET AND BYTE COUNT

INFO FROM FILE INTO BUFFERS

790

FILL IN TILE STORAGE MoDE LIST

(BLANK, COMP, UNCOMP)

 425

STORE mm m SUBIMAGE
TILE HEADERS

786

Page '72 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 73 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 17 of 39 5,263,136

LoadSubimDiskCache E 20
800 '

I425

804
802

LOCK DOC HANDLE

6
832

HUM TILES TN

ELLE MATCHES

mTERNAL COUNT?

SET

"LOADED"

FLAG

YES LOOP 812

FOR EACH FOR EACH SET "BLANK“ FLAG

TILE RON TILE COLUMN AS APPROPRTATE

834 LOOP

STORE FILE OFFSET

UNLOCK DOC HANDLE & BYTE COUNT INTILE DATA

COMPRESSED?

TILE DATA

UNCOMPKESSED?

TILE ALL

TOREGROUND?

TILE ALL

BACKGROUND?

”0 830

com TILE HANDLE

STORE INFO m

UNCOMPTTLE HANDLE

8

CREATE AN ALL '
fOREGRDUND TILE

82

am

826

Page 73 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 74 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 18 of 39 5,263,136

'BeginUndoableRasOp liq. 2]
840

START

LOOP 844

FOR EACH UNDO FREE MEMORY ASSOCIATED

REG‘ON IN LIST NITH UHDO REGION

END

842

8%

Page 74 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 75 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 19 of 39 5,263,136

850 Read RowTo Row fig. 22A

55g 554 /
REGION YES REPORT

OVERRUH ERROR
' no ‘

858 OLD

RESULTS CARRIED

(NER T0 NEH

STRIP?

ND

864

 YES

COMPUTENUM BLANK LINES

YES TO GENERATE BEFORE NEXT

NON-BLANK LINE

NO

HRITE BLANK LINES T0 GJTI’UT STRIP BUFFER

OUTPUT

5T RIF BUFFER

870

FROM STATE

8%

FIG. 225 856 .
EN

.872 874 D
SET SCALER " FLU SH

BUFFER" FLAG

876 878

OUTSIDE IMAGE SUBSTITUTE BLANK TO STATE 894
DOUNDARIES LINE FOR INPUT IN FIG. 225

i ?

NO

TO STATE 880

IN FIG. 225

Page 75 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 76 of 448 Unified Patents Exhibit 1005 App'x A-N

U.S.’ Patent Nov. 16, 1993 Sheet 20 of 39 5,263,136

FROM STATE 876 IN FIG.ZZA Fig. 225
450

. 23
RON 8° UNPREsERVE 428

CONTAINED IN No AND UNLOCK LOCK NEXT
CURRENTLY LOCKED CURRENTLY TILE RON

TILE RON LOCKED (EXPANDED PORN)

882

YEs

884

SUBSTITUTE

POINTER T0

COMMON

BLANK TILE

COPY PIXELS FROM

IMAGE TILES TO

INPUT RON BUFFER

LOOP

890

7
PROI’I STATES 847 DONE FOR EACH COPY PIXELS FROM IMAGE
WIG- ZZA CLIP PAIR TILEs T0 INPUT RON BUFFER

RUN INPUT RON 894
THROUGH SCALER

IE NECESSARY

8%

COPY SCALED

PIIIELs To OUTPUT TO STATE 870
STRIP BUFFER IN FIB. 22A

Page 76 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 77 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 21 of 39 5,263,136

IAII’IIEROLUID ROLL) fit]. 25A
900

fl

9oz

REGIOR yes REPORT
OVEKRUN ? ERROR

H0
908 9I0

FOR EACH INPUT SCALE INPUT MIA

RON IN I/O BUFFER TOTEM? BUFFER

12940 9

cm

RON PIIfPODUCED
YES

954,
9'4 FROM STATE 938

FOR EACHCOI’YOI‘ "me-Z55
SCALED Row T0 IIRIIE

L00?

9%

920 -
DESTINATI I

UNPRESERVEAHD Row INDEX OUTSIDE

IIIILOIK OLD TILEIION CU? BOgMDLKIES

9'8 TO STATE 930
IN FIG.255

055T
RON III CURREHTL

LOCKED TILE

'N ?

 YES

Onrnrsewe
LOIRI RES TILES

NO LONGER NEEDED
LOCK HEN

TILE ROW

72 8 906

Page 77 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 78 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 22 of 39 5,263,136

FROM STATE 918, 928 'TH FIG. 25A _/:l_l] 23B

930

POLYGONAL

CLIP?F|N6 932
COMPUTE CLIP POTNTS

FOR CURRENT RON

938

COFY FTXELS FROM

SCATFR OUTPUT SUFFEK

TO TMAGE RON

934

FOR EACH PAIR

OF CLIP POINTS

COPY FTXELS FROM

SCALEK OUTPUT BUFFER

T0 IMAGE RON BETWEEN

CUP POINTS

LOOP

 TO STATE 914

TH FTG.Z3A

Page 78 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 79 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 23 of 39 5,263,136

End ImageAccess 129.24
418 1 950

START

952

CLEAN~UP AFTER RON/COL '
ACCESS Funcnous

954

"UNLOCK" LAST RON/COL

OF TILES ACCESSED

956

"UNPRESERVE" ANY TLLES

IN REGION THAT

ARE STLLL PRESERVED

958

CLEAN-UP AFTER POLYEJONAL

CLIPPING ROUTINES IF NECESSARY

960

FREE SEALER DUEFERS,

TEMP TILE DLRECTORY, ETC.

‘ u I, 962
UNLOCK DOC HANDLE

964
FREE MEMORY USED FOR

ACCESS__CONTEXT lTSELF

END 7%

Page 79 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 80 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 24 of 39 5,263,136

UndoPreviousRasin jig. 25A

970 [420.
972

UNDO ' 974

REGIONS

mSTy':8-YES ‘
FROM

STATE I016 FOKEACH UNOO LOCK AFFECTED SAVE CURRENT Doc

FLGZSA 9REG|ON IN UST DOCHANDLE REGION FOR" ONOO--ONDO“
FOR EACH TILE . FOR EACH TTLE LHVALLOATEATFECTEOTHES
COL IN AEGLON Row LN REGION IN LONEK—KES SUBIMAGES

1014

DISCARD DoanE UNLOCK Doc

IMAGEDATA HANDLE

1016

MAR UNDO FREE MEM

TILE“NOT THE LOADED ASSOCIATED

LOADED" NTTH UNDO

HEADER

MARK DOC

DEE “LOADED"

FROM STATE778,|002,|006, T0 STATE 9% TOSTATE776

FIGZSB l010,l0l2 mass ELG.25A

Page 80 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 81 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 25 of 39 5,263,136

fig.255

mm STATE 774 TOSTATE986
macs. 25A m FIG.25A

UNDO

TILE BLANK

UNDO

TILE COMP DATA

ON DISK ?

COPY COMP DATA DISK

LOC AND SIZE INFO

TO DOC TILE

I006

COPY UNCOM? DATA

DISK LDC AND SIZE

INTO T0 DOC TILE

STORE POINTER T0 unoo

UNCDMI’ DATA IN Doc

TILE HEADER

TILE UNCOMI’ INA

IN CACHE ?

STOKE POINTER T0

UNDO COM? DATA IN

DOC 'ITLE HEADER

Page 81 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 82 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 26 of 39 5,263,136

End Cache Manager fig. 26
1020

IOZZ

COMPRESSION

BUFFER

[024

IOZé

FREE

TILE CACHE

MEMORY

1028

Page 82 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 83 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 27 of 39 5,263,136

ExpTiIeLock [LL/.27
I040

 I044 LOOP

[042 L00?

FOR EACH TILE

RDNTO BE

LOCKED

FOR EACH

TILE COLUMN TO

BE LOCKED

434
 N0

ACTION LOCK

UNCONPRESSED

VERSION OF TILE

ERROR ?

, YES

UNLOCK PREVIOUSLY

LOCKED TILES

450

Page 83 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 84 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 28 of 39 5,263,136

Lock EpoandIe fly. 28
1060

 I062

TILE

ILOADED"
uncoM-

I’RESSED VERSION

OF TILE III

CACHE

YES

I070

CREATE TILE FROM

:074 COMPRESSEDVERSIOII

ERROR? YES

I080

UNCOMP no ‘
VERSION VALID

INVALIDATE

IBLANKII

STATUSFLAfi

I082 I084

INCREMENT unconp LOCKED fOK YES

LOCKCOUNT meno?

no

I090

MOVEIDFIIONTOFUIICOMP

IILEMOSI mam USED LIST

 INVALIDATE

DISK‘KESIDEHT

UIICOM? VERSION

 INVALIDATEE. FREE

(DMI’RESSED VERSION

Page 84 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 85 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 29 of 39 5,263,136

~ExpTileUnlock fig. 29

”00 [450

”oz LOOP n04 L00?

fDK EACH RON FOR EACH TILE UNLOCK UHCOMPRESSED

T0 UNBLOCK COLUMN TO UHBLOCK VERSION OF TILE

H08

Page 85 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 86 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov.16, 1993 Sheet 30 of 39 5,263,136

Unlock Epoand\e _ fit]. 50

mo X452
m2

 UHCOMP

VERS|0H7L0CKED
YES

‘ DECREMEHT

LOCK COUNT

“18

UPDATE YES UPDATE CORRESPONDING

OVERYPIENS- LON-RES TILES I
H22 “24

TILE “

LOCKCQ§JHT=O YES CLEAR CACHE COLLECTIONDELAY ELAG"

H0

H0

FREE

UHCOMP YES

TILE

VERSION

Page 86 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 87 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 31 of 39 5,263,136

LoadSubImTiIe £795:
”40

HIGHER

RESOLUTION SUB'

IMAGEIPEXISTS

LOCATE THE FOUR

HIGHER'RES TILES

THAT RBUCE TOTHIS TILE

CREATEHI-RES

TILE FROM

HIGHER-RES

TILES

(RECURSIOH)

IISZ

ALLOCATE I’EMY

TOR IMCOI‘IP

LON-RESTILE

TOREACH OF FOUR COI’Y.HI'KES TIIE

HI-KES TILES T0 LON‘KES TILE

CREATE CMI’KESSED LON-RES

TILE DIRECTLY TRON (MPKESSED

HI‘KES TILES

Page 87 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 88 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent

AI Ioc Exp HandIe

IIOO

YES

AVAILABLE IN CACHE

RESER¥E LIST

EIND EREE BLOCK UNLINIL EREE OLDER INITIALIZE PRINT l’CACHE

NITH HIGHEST EROM LINKED LIST EREE BLOCKTO OVERELOITERROR

MEMORY ADDRESS ALL ZEROS MESSAGE

IZIb IZI4

STORE MEMORY UPDATE TOTAL MOVE TO ERONT OF

ADDRESS IN UNCOMP CACHE "MOST RECENTLY

TILE HEADER MEMORY USAGE USED“ BLOCK

Page 88 of 448

Nov. 16, 1993

UNCOMPRESSED YES

CACHE USAGE LIMIT MEIIEIEFIHGDY
EXCEEDED? . UNCOMP TILES

SET "CACHE

COLLECTION

DELAY ELAG"

Sheet 32 of 39 5,263,136

Fig. 32

4 58

f ”86

 EREECACHE

 UNCOMPRESSEO

CACHE USAGE LIMIT STILL

EXCEEDED?

YES

PRINT

NARNING

MESSAGE

“95 I200

MEMORY

AVAILABLE IN CACHE

RESERgE LIST

COLLECT EREE CACHE

MEMORY DY EREEING

COMPRESSED AND

UNCOMP TILES

N0

1204

Unified Patents Exhibit 1005 App'x A-N

Page 89 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 33 of 39 5,263,136

ExpandTile 1:19.35

IZZO ’7'440

L224

 HMO

COMPRESSED no COMPRESSED
VERSION m CACHE VERSION

? FROM DISK
Ho

mso

~ LOCK THE COMPRESSED

THEHHOEOMA

ALLOCATE A LOCR CACHE MEMORY FOR

THE OMCOMPRESSEO THE DATA

[234

UNLOCK COMPRESSED

TILE WA

UNCOMFRESS THE TILE

WA INTO THE NEWLY

ALLOCATED MEMORY BLOCK

|Z44

UNLOCK COMPRESSEDAND

UNCOMPRESSED OLE DATA

1242

Page 89 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 90 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 34 of 39 5,263,136

Comp CopgToOvieuJ 1:19.34
1250 [44.7.

LOOP

LOOP

'EOK EACH OF FOUR UNLOCK COMP

Hl—KES TILES VEKSLON OE TILE

ALLOCATE & LOCK SPACE FOR

COMPRESSED LON~KES TlLE VEKSLON

IZGO

COPY COMPRESSED DATA TO

ALLOCATED SPACE

I272

UNLOCK COMPRESSED

VERSION OF LON'KES OLE

Page 90 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 91 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent

Copg TiIeTo Oviem

I284

ERROR ?

ND

UNLOLK LAST

LON-RES TILE

YES

RESOLUTION TILES

AFFECTED DY

MODIFICATION

I286

END

Page 91 of 448

Nov. 16, 1993

INVALIDATE ALL LONER-

Sheet 35 of 39 5,263,136

I260

r444
1282 ,

LOCK UNCOMP VERSION

OF HI- RES TLLE

I286

FOR NUMBER DE SUDIMAGE

LEVELS To UPDATE

DETERMINE TTLE INDEX AT THIS

SUBIMAGE LEVEL To DE UPDATED

I292

LO-RES

TILE LOADED .7

YES

LOCK UNCOMP VERSION

OFLON-RESTILE

SCALE MODIFIED REGION

TRON LII—RES TD LON-RES TILE

UNLOCK

I-II-RES TILE

[304

L0- RES TILE DECOMES HI-RES

TILE FOR NEXT ITERATION

Unified Patents Exhibit 1005 App'x A-N

DONE

Page 92 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent - Nov. 16, 1993 Sheet 36 of 39 5,263,136

CoIIecI Free Cache E36A

mo

ISIZ

4%
/

 YES COLLECTION

IN PROGRESS

I TO STATE

I I358
camw

nmawcmm I INFIGSbB

mousmosmsw I326 :
REQUEST? REDUCE TOTAL I

CACHE USAGE I
I_______ J

I356 TO STATE I342

REQUEST IN FIG. 365

SATISFIED

?

N0 I338 “0
B40

FREE UNLOCKED UNI’RESERVED UNCONI’RESSED REQUEST

SATlgflEDTILES THAT HAVE VALID COMPRESSED VERSIONS IN

CACHEDR 0N DISK OR VALID UNCOI'IP VERSION ONDISK

YES

END

Page 92 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 93 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 V Sheet 37 of 39 5,263,136

FROM STATE l340 Il‘l FI6.36A [79.363
1542 B44

COMPRESSJHEN FREE UNLOCKED,

UHPRESERVED UHGOMP TTEEs THAT Sfig‘ég? YES
DDR'T HAVE VAUDCOMF VERSTONS '

B48

FREE UNLOCKED, PRESERVED UHCOMP REQUEST
TTEEs THAT HAVE VATTD COMPRESSED sATTsnED 7

. 0R DISK-BASED unconr COPIES '

I352 '

COMPRESS, TTTEn EREE UNLOCKED REQUEST
PRESERVED unconv TTLEs THAT 5mm?
DON’THAVE VALIDCOMPVERSIONS -

ERDM STATE T528 '35"

m FIG. 56A YES REDUCE
TOTALCACHE

B58 USAGE?
EREE & COMPRESSED TTLES TH
CACHE THAT HAVE VALID DISK-

RESIDENT COPIES

T360

REQUEST

SATTsETED?

1562

PRINT ERROR MESSAGE

END

Page 93 of 448 Unified Patents Exhibit 1095 App'x A-N

Page 94 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent

448K

Page 94 of 448

Nov. 16, 1993 Sheet 38 of 39

Free EpoandIe [59.
I580

I384

PRINT

WARNING

MESSAGE

IIIICMP

VERSION STILL

LOCKED 7

UHCOI’IP.

ALREADY mm

?

N 13900

UHLIMK FROM MOST-RECENTLY-

USED LIST

I592

UPDATE TOTAL UNCOMP

MEMORY USAGE COUNTER

MOVE MEMORY BLOCK TO

UNCOMI’RESSED TREE LIST

SORTED bY OECREASING ADDRESS

SET POINTER m TILE HEADER

To “NULL" AND RESET unconP

TILE STATUS mes

5,263,136

57

Unified Patents Exhibit 1005 App'x A-N

Page 95 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 16, 1993 Sheet 39 of 39 5,263,136

CompressTiIe fig.38

I400

x450

I402 I404

I406

unconv no LOAD unconp YES

TILEDAIAIIICACIIE DATA I‘ROM DISK ERROR? .

I4I0
LOCK UNCOMP

TILE DATA

I4I4 m4,- I4I8

, COMPRESS IMAGE DATA ERROR? UNLOCK UNCOHP
INTO COMMON BUFFER ' TILE

I420

ALLOCATE BI LOCK

CACHE SPACE FOR

COMP TILE DATA

COPY COMP DATA

TRON COMMON BUFFER

T0 HEN CACHE HEM BLOCK

UNLOCK COMP &UNCOMP

TILE DATA

EI’ID

Page 95 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 96 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
1

SYSTEM FOR MANAGING TILED IMAGES USING
MULTIPLE RESOLUTIONS

MICROFICHE APPENDIX

A microfiche appendix containing computer source
code is attached. The microfiche appendix comprises
one (1) sheet of microfiche having 74 frames.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to memory manage-
ment systems and, more particularly, to the memory
management of large digital images.

2. Description of the Prior Art
The present invention comprises a memory manage-

ment system for large digital images. These digital, or
raster, images are made up of a matrix of individually
addressable pixels, which are ultimately represented
inside of a computer as bit-maps. Large digital images,
such as those associated with engineering drawings,
topographic maps, satellite images, and the like, are
often manipulated by a computer for the purpose of
viewing or editing by a user. The size of, such images
are often on the order of tens and even hundreds of

Megabytes. .Given the current cost of semiconductor
memory it is economically impracticable to dedicate a
random access memory (RAM) to storing even a single
large digital image (hereinafter just referred to as a
“digital image”). Thus, the image is usually stored on a
slower, secondary storage medium such as a magnetic
disk, and only the sections being used are copied into
main memory (also called RAM memory).

However, as is well known by users of computer
aided design (“CAD”) systems, a simplistic memory
transfer scheme will cause degraded performance dur-
ing many typical operations, including zooming or pan-
ning. Essentially, during such operations, the computer
cannot transfer data between disk and main memory
fast enough so that the user must wait for a video dis-
play to be refreshed. Clearly, these periods of waiting
on memory transfers are wasteful of engineering time.

Presently, to enhance main memory storage of only
relevant sections of a digital image, the image is logi-
cally segmented into rectangular regions called “tiles”.
Two currently preferred standards for segmenting an
image into tiles are promulgated by the Computer
Aided Logistics Support (CALS) organization of the
United States government (termed the “CALS stan-
dard” herein) and by Aldus Corporation of Seattle,
Washington, as defined in the Tagged Image Format
File (TIFF) definition (e.g., “TIFF Specification, Revi-
sion 5.0, Appendix L). Among other tile sizes, both
standards define a square tile having dimensions of
512x 512 pixels. Thus, if each pixel requires one byte of
storage, the storage of one such tile would require a
minimum of 256 kilobytes of memory.

Others, such as Thayer, et al. (US. Pat. No.
4,965,751) and Sawada, et al. (US. Pat. No. 4,920,504)
have discussed tiling or blocking a memory. However,
such computer hardware is generally associated with a
graphics board for improving the speed of pixel trans-
fers between a frame buffer and a video display by
addressing a group of pixels simultaneously. These sys-
tems have no relationship to tiling of the image itself
and thus do not require knowledge of image size. Tiling
has also been used to refer to polygon filling as in Dal-

Page 96 of 448

10

15

20

25

30

35

40

45

50

55

60

65

2

rymple, et al. (US. Pat. No. 4,951,230), which is unre-
lated to the notion of tiling discussed herein.

The patent to Ewart (US. Pat. No. 4,878,183) dis-
cusses interlaced cells, each cell containing one or more
pixels, for storing continuous tone images such as pho-
tographs. The variable size cells are used to vary the
resolution of an image according to a distance which is
to be perceived by a user. However, the Ewart disclo-
sure does not discuss rasterized binary images contain-
ing line drawings, nor does Ewart discuss virtual mem-
ory management for modifying or editing images, as
will be more fully discussed below.

Even when stored in a mass storage system, an image
library, containing a number of digital images, will con-
sume disk space very quickly. Furthermore, “raw”
digital images are generally too large to transfer from
mass storage to portable floppy disks, or between com-
puter systems (by telephone, for example), in a timely
and inexpensive manner unless some means is used to
reduce the size of the image. Hence, users of binary
images employ image compression techniques to im-
prove storage and transfer efficiencies. One existing
compression standard applicable to facsimile transmis-
sion, CCITT Group IV, or T6 compression, is now
being used for digital images. Like many other compres-
sion techniques, however, the CCITT standard uses
statistical techniques to compress data and, hence, it
does not always produce a compressed image that is
smaller than the original, uncompressed image. That
means that image libraries will often contain a mix of
compressed and uncompressed binary images. Similar
compression standards exist for color and gray-scale
images such as those promulgated by the JPEG (Joint
Photog. Exp. Group) Standards Committee of the
CCITT as SGV III Draft Standard.

At the present time, digital images are typically
viewed and modified with an image editor using an
off-the-shelf computer workstation. These workstations
usually come with a sophisticated operating system,
such as UNIX, that employs a virtual memory to effec-
tively manage memory accesses in secondary and main
memories. In an operating system having virtual mem-
ory, the data that represents the executable instructions
for a program or the variables used by that program do
not need to reside entirely in main memory. Instead, the
operating system brings portions of the program into
main memory only as needed. (The data that is not
stored in main memory being stored on magnetic disk or
other like nonvolatile memory.) The address space that
is available to any one application program is generally
managed in blocks ofconvenient sizes called “pages” or
“segments”.

In general, a virtual memory system allows applica-
tion programs to be written and executed without con-
cern for the management of virtual memory carried out
by the operating system. Thus, independence of the size
of main memory is achieved by creating a “virtua ”
address space for the program. The operating system
translates virtual addresses into physical addresses (in a
main or cache memory) with the aid of an “address
translation table”. This table contains one entry per
virtual memory segment of status information. For in-
stance, segment status will commonly include informa-
tion about whether a segment is currently in main mem-
ory, when a segment was last used, a disk address at
which the disk copy of the segment resides, and a RAM
address at which the segment resides (only valid if the
segment is currently loaded in main memory).

Unified Patents Exhibit 1005 App'x A-N

Page 97 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
3

When the program attempts to access data in a seg-
ment that is not currently resident in main memory, the
operating system reads the segment from disk into main
memory. The operating system may need to discard
another segment to make room for the new one (by
overwriting the area of main memory occupied by the
old segment), so some method of determining which
segment to discard is required. Usually the method is to
discard the least recently used segment. If the discarded
segment was modified then it must be written back to
disk. The operating system completes the “swap” oper-
ation by updating the address translation table entries of
the new and discarded segments.

In summary, the conventional memory management
schemes consider data to be in one of two states: resi-

dent or not resident in main memory. Which segments
are stored in main memory at any given time is gener-
ally determined only by past usage, with no way of
predicting future memory demands. For instance, just
because a segment is the least recently used does not
mean that it will not be used at the very next memory
access.

However, the management of virtual memory for
images departs significantly from conventional virtual
memory schemes because images and computer pro-
grams are accessed in very different ways. Computer
programs tend to access one small neighborhood of
virtual address, and then jump to some distant, essen-
tially random, location. However, during normal image
processing operations an image is accessed in one of a
finite set of predictable patterns. It is not Surprising then
that conventional memory management systems can
significantly degrade performance when used in image
processing applications by applying inappropriate, mem-
ory management rules. Rules which should be abided
by a memory management system for large digital im-
ages are the following:

1. Image memory must be managed as rectangular
image regions (called “tiles”), not as linear memory
address ranges.

2. An image tile can exist in five forms: uncompressed
memory-resident, compressed memory-resident, un-
compressed disk-resident, compressed disk-resident and
“can be derived from other available image tiles”, in
contrast to the two basic forms of memory-resident and
disk-resident available in conventional virtual memory
schemes.

3. The image region that will be affected by a particu-
lar image processing operation is known before the
operation begins, and that information can be conveyed
to the memory manager.

4. An image memory manager must be tunable to
different system capabilities and image types. For exam-
ple, many computers can decompress a tile of binary
data much faster that they can retrieve the uncom-
pressed version of the same tile from disk. On the other
hand, some images cannot be compressed at all.

5. An image memory management system should
support the capability to “undo” editing operations
which is built into the memory manager for optimal
performance and ease of use. Thus, the memory man-
ager could easily save copies of the compressed tiles in
the affected region, and quickly restore the image to the
original state by simply modifying the tile directory
entries to point to the old version.

Reader, et a1., (“Address Generation and Memory
Management for Memory Centered Image Processing
Systems”, SPIE, Vol. 757, Methods for Handling and

Page 97 of 448

10

15

20

25

3O

35

45

50

55

65

4

Processing Imagery, 1987) discuss a primitive memory
management system for images. However, in that sys-
tem, image tiles are only stored in memory and not on
disk. Furthermore, in the Reader, et al., system, there is
no capability to handle images in compressed form, nor
is there any discussion of “undoing” editing operations.

Consequently, a need exists for an image memory
management system that provides: linkages with a ras-
ter image editor which includes modify and undo opera-
tions, true virtual memory for large images specifying
locations on disk and in memory, simultaneous handling
of compressed and uncompressed images, and a method
for rapidly constructing reduced resolution views of the
image for display. The latter need is particularly impor-
tant when viewing a large image reduced to fit on a
video display.

SUMMARY OF THE INVENTION

The above-mentioned needs are satisfied by the pres-
ent invention which includes a memory management
system for tiled images. The memory management sys-
tem includes a tile manager for maintaining a virtual
memory comprising a main memory and a secondary
memory such as a disk. The tiled images may include
tiles in compressed or uncompressed form.

The tile manager selects the form of image tile that
most appropriately matches a request. Each tile of an
image may exist in one or more of five different forms,
or states, as follows: uncompressed and resident in the
image data cache, compressed and resident in the image
data cache, uncompressed and resident on disk, com-
pressed and resident on disk and not loaded but re-creat-
able using data from higher-resolution image tiles.

An image stack having successively lower-resolution
subimages is constructed from a full resolution source
image. The lower-resolution images in the image stack
may be used to enhance such standard image accesses as
zooming and panning where high speed image reduc-
tion is advantageous.

The image memory management system provides
linkages with image processing applications that facili-
tate image modifications. The tile manager need only
store compressed tiles that relate to so-called undoable
operations.

These and other objects and features of the present
invention will become more fully apparent from the
following description and appended claims taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an image stack com-
prising full, half, quarter and eighth resolution tiled
images;

FIG. 2 is a full resolution image of a mechanical part;
FIG. 3 is a half resolution image of the mechanical

part shown in FIG. 2; '
FIG. 4 is a quarter resolution image of the mechanical

part shown in FIG. 2;
FIG. 5 is an eighth resolution image of the mechani-

cal part shown in FIG. 2;
FIG. 6 is a block diagram showing one preferred

embodiment of a computer system that includes the
present invention;

FIG. 7 is a memory map showing the general ar-
rangement of cache memory according to the present
invention;

Unified Patents Exhibit 1005 App'x A-N

Page 98 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
5

FIG. 8 is a state diagram defining the flow of tile data
between different storage states according to the pres-
ent invention;

FIGS. 9A and B are a diagram of one preferred data
structure defining document information according to
the present invention;

FIG. 10 is a diagram of one preferred data structure
defining a tile header for maintaining the status of com-
pressed or uncompressed tiles;

FIG. 11 is a diagram of a partial calling hierarchy for
the various functions of the presently preferred embodi-
ment of the tile manager of the present invention;

FIG. 12 is a flow diagram of one preferred embodi~
ment of the tile manager;

FIG. 13 is a flow diagram defining the "initialize
cache manager” function referred to in the flow dia-
gram of FIG. 12;

FIG. 14 is a state diagram of the locking and unlock

10

15

ing of a memory, state, according to the present inven- .
tion;

FIGS. 15A, 15B, and 150 are a flow diagram defining
the “create image access context” function referred to
in FIG. 12;

FIG. 16 is a diagram, of a data structure defining the
access context referred to in FIGS. 15A,B;

FIGS. 17A and 17B are a flow diagram defining the
“save region for undo” function referred to in FIG.
15B;

FIG. 18 is a flow diagram defining the “load tiled
raster image” function referred to in FIG. 12;

FIG. 19 is a flow diagram defining the “load TIFF
subimage tile information into tile headers” function
referred to in FIG. 18;

FIG. 20 is a flow diagram defining a “store tile info in
tile headers” function referred to in FIG. 12;

FIG. 21 is a flow diagram defining the “begin undoa-
ble raster operation” function referred to in FIG. 12;

FIGS. 22A and 22B are a flow diagram defining the
“read rows from region” function referred to in FIG.
12;

FIGS. 23A and 23B are a flow diagram defining the
“write rows to region" function referred to in FIG. 12;

FIG. 24 is a flow diagram defining the “close image
access context” function referred to in FIG. 12;

FIGS. 25A and 25B are a flow diagram defining the
“undo previous raster operations” function referred to
in FIG. 12;

FIG. 26 is a flow diagram defining the “quit cache
manager” function referred to in FIG. 12;

FIG. 27 is a flow diagram defining the “lock ex-
panded image tile group" function referred to in FIG.
22A;

FIG. 28 is a flow diagram defining the “lock ex-
panded tile” function referred to in FIG. 27; ,

FIG. 29 is a flow diagram defining the “unlock ex-
panded image tile group” function referred to in FIG.
27;

FIG. 30 is a flow diagram defining the “unlock ex-
panded tile” function referred to in FIG. 29;

FIG. 31 is a flow diagram defining the “create tile
from higher-resolution tiles” function referred to in
FIG. 28;

FIG. 32 is a flow diagram defining the “allocate space
for uncompressed version of tile” function referred to in
FIG. 28;

FIG. 33 is a flow diagram defining the “create un-
compressed version of tile from compressed version”
function referred to in FIG. 28; ‘

Page 98 of 448

20

25

30

35

45

50

55

6

’ FIG. 34 is a flow diagram defining the “create com-
pressed low resolution tile from compressed higher-
resolution tiles” function referred to in FIG. 31;

FIG. 35 is a flow diagram defining the “copy uncom-
pressed high resolution tile to uncompressed low reso-
lution tiles” function referred to in FIG. 31;

FIGS. 36A and 36B are a flow diagram defining the
“collect freeable cache memory” function referred to in
FIG. 32;.

FIG. 37 is a flow diagram defining the “free uncom-
pressed version of tile” function referred to in FIGS.
36A,B; and

FIG. 38 is a flow diagram defining the “create com-
pressed version of tile from uncompressed version”
functionreferred to in FIG. 17B.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference is now made to the drawings wherein like
parts are designated with like numerals throughout.

FIG. 1 illustrates an image stack, generally indicated
at 100. The design of the image stack 100 is based on the
idea that image memory can be managed as small square
regions, called tiles, that are mostly independent of one
another. In general, a tile may be either uncompressed
(also termed expanded) or compressed. While the basic
uncompressed tile size could be a variable, it is presently
preferred to be fixed at 32 kilobytes, or 512 pixels by 512
pixels to conform with the Computer Aided Logistics
Support (CALS) raster file format standard for binary
images. (Note that the present invention allows binary
and color images to coexist in a common image memory
management system.)

In order to compensate for lower performance ex-
pected with a virtual memory management system for
images, particularly when reducing large portions (by
combining pixels) of the image for display, the present
invention automatically maintains a series of reduced
resolution copies, called subimages, of the full resolu-
tion image. Preferably, the resolution (i.e., pixels per
inch) of each subimage is reduced by exactly half rela-
tive to the next higher-resolution subimage. Thus, the
image stack 100 can be visualizing as an inverted
pyramid, wherein the images can be stacked beginning
with a full resolution subimage (or image) 102 at the
top, followed by a half resolution subimage 104, then a
quarter resolution subimage 106, and an eighth resolu-
tion subimage 108. (In FIG. 1, the subimages 102—108
are outlined by bolded lines.)

The subimages 102, 104, 106, 108 are superimposed
on a set of tiled subimages 110a, 110b, 110e, 1100’, re-
spectively, defining sets of tiles. The extent of the image
stack 100 ends at the resolution that allows the entire

subimage to be stored within a single tile 108 (prefera-
bly 512x512 pixels square). Each lower-resolution
subimage 104—108 is a faithful representation of the full
resolution subimage 102 at all times, with the exception
of certain times during operations that modify the ap-
pearance of the full resolution subimage 102.

FIG. 2 illustrates an 8i">< 11", A-size mechanical

drawing (to scale) as the full resolution subimage 102
showing a mechanical part 120a. Ofcourse, other larger
drawings such as, for example, D-size and E-size may be
used by the present invention. Also, other image pro-
cessing applications besides mechanical drawings may
be used with the present invention including electrical
schematics, topographical maps, satellite images, hea-

Unified Patents Exhibit 1005 App'x A-N

Page 99 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
7

ting/ventilating/air conditioning (HVAC) drawings,
and the like.

FIG. 3 illustrates the corresponding half resolution
subimage 104 showing the half resolution part 12%.
FIG. 4 illustrates the corresponding quarter resolution
subimage 106 showing the quarter resolution part 120v.
Lastly, FIG. 5 illustrates an eighth resolution subimage
108 showing the eighth resolution part 120d. In the
preferred embodiment, reduced resolution subimages
can be used any time that a reduction factor of 2:1 or
higher would be used to scale a region of interest in the
full resolution subimage 102 for display, plotting or
sowing-

The subimages 102-108 can be loaded from a source
image file, if they exist, or they can be created on de-
mand by the image memory management system of the
present invention. The present invention includes edit-
ing capabilities that allow a user to trade off between
“quick flas ” pan/zoom performance and file size as
measured by the number of reduced resolution subim-
ages stored with each image. Depending on the applica-
tion, the user will normally opt to store one or more
reduced resolution subimages with each source image
file.

The lower-resolution subimages, for example, subim-
ages 104—108, are utilized by the image memory man-
agement system to produce the illusion of instant access
to any region of the image at any scale factor (not just
the scale factor of the overview subimage). Increasing
the number of lower-resolution subimages gives a
higher quality “first flash” image during panning and
zooming and reduces the time to get the final version of
the image to the screen.

FIG. 6 illustrates a computer workstation generally
indicated at 150 which is representative of the type of
computer that is used with the present invention. The
workstation 150 comprises a computer 152, a color
monitor 154, a mouse 156, a keyboard 158, a floppy disk
drive 160, a hard disk drive 162 and an Ethernet com-

munications port 164. The computer 152 includes a
motherboard bus 166 and an I/O bus 168. The I/O bus

168, in one preferred embodiment, is an IBM PC/AT ®
bus, also known as an Industry Standard Architecture
(ISA) bus. The two buses 166, 168 are electrically con-
nected by an I/O bus interface and controller 170.

The I/O bus 168 provides an electromechanical com-
munication path for a number of I/O circuits. For exam-
ple, a graphics display controller 172 connects the mon-
itor 154 to the I/O bus 168. In the presently preferred
embodiment, the monitor 154 is a 19-inch color monitor

having a 1,024x 768 pixel resolution. A serial communi-
cations controller 174 connects the mouse 156 to the

I/O bus 168. The mouse 156 is used to “pick” an image
entity displayed on the monitor 154.

The I/O bus 168 also supports the hard disk drive
162, and the Ethernet communications port 164. A hard
disk controller 176 connects the hard disk drive 162 to

the I/O bus 168. The hard disk drive 162, in one possible
configuration of the workstation generally indicated at
150, stores 60 megabytes of data. An Ethernet commu-
nications controller 178 connects an Ethernet communi-

cations port 164 with the I/O bus 168. The Ethernet
communications controller 178 supports the industry
standard communications protocol TCP/IP which in-
cludes FTP and Telnet functions. The Ethernet com-

munications port 164 of the preferred embodiment al-
lows the Workstation 150 to be connected to a network

Page 99 of 448

10

15

20

25

30

35

4s

50

55

65

8

which may include, among other things, a document
scanner (not shown) and a print server (not shown).

The motherboard bus 166 also supports certain basic
I/O peripherals. For example, the motherboard bus 166
is connected to a keyboard and floppy disk controller
180 which supports the keyboard 158 and the floppy
disk drive 160. The floppy disk drive 160, in one present
configuration, can access floppy disks which store up to
1.2 megabytes of data.

The fundamental processing components of the com-
puter 152 are a microprocessor 182 such as, for example,
an 80386 microprocessor manufactured by Intel, a math
coprocessor 184 such as, for example, a 80387 math
coprocessor also manufactured by Intel and a main
memory generally indicated at 186 comprising, for ex-
ample, 4 megabytes of random access memory (RAM).
The main memory 186 is used to store certain computer
software including a Unix compatible operating system
188 such as, for example, SCO Xenix licensed by Santa
Cruz Operation of Santa Cruz, California, a subsidiary
of Microsoft Corporation, an image processing applica-
tion 190, a tile manager 192, and an image data cache
194. The image processing application 190 includes
editing functions such as zoom and pan.

Another presently preferred computer workstation
150 having somewhat different processing components
from those just described is available from Sun Mi-
crosystems, Inc. of Mountain View, California, under
the tradename “SPARCstation 1”. In such an embodi-

ment, the UNIX compatible operating system would be
licensed directly from Sun.

Although a representative workstation has been
shown and described, one skilled in the applicable tech-
nology will understand that many other computer and
workstation configurations are available to support the
present invention.

FIG. 7 illustrates a representative configuration of
the image data cache 194 some time after the tile man-
ager 192 (FIG. 6) begins operation. A set of compressed
tiles 222 are kept at the low addresses of the image data
cache 194, and a set ofuncompressed (or expanded) tiles
224 at the high addresses of the image data cache 194.
The terms expanded or uncompressed are used inter-
changeably. In between the two sets of tiles 222, 224 is
a reserved area 226 (free cache memory). As the opera-
tion of the tile manager 192 continues, the image data
cache 194 becomes more unordered. As the cache re-

quirement for compressed or uncompressed tiles in-
creases, each set of tiles 222, 224 approach the reserve
area 226 from each end. In fact, the reserve area 226 can
become completely exhausted.

Since the memory management schemes that apply to
compressed data allocation are very different from that
of uncompressed data, it is desirable to keep the two sets
of tiles 222, 224 separate. Compressed tiles are variable
sized tiles (blocks of memory) 222a, b, c,d,e,fwhereas the
uncompressed tiles are all fixed sized tiles 224a,b,c,d and
therefore the locations of the fixed sized tiles 224 are

interchangeable. Linked lists of allocated memory are
kept sorted according to size and address for com-
pressed tiles. The number of linked lists is a variable
number but presently there are about 64 different size
categories for compressed tiles and only one size cate-
gory for uncompressed tiles (for binary images).

To use the image data cache 194, the memory man-
agement functions begin by determining how much fast
memory (RAM) and slow memory (disk or host mem-
ory) is available for image memory uses. When an image

Unified Patents Exhibit 1005 App'x A-N

Page 100 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
9

is loaded, the system allocates memory for image infor-
mation and related tile directory structures. Cache man-
agement parameters are modified as necessary to bal-
ance the requirements for expanded tile and compressed
tile cache memory. The expanded tile cache memory
pool and the compressed tile cache memory pool allow
tiles from different images to intermingle. Expanded
and compressed tiles are kept in separate areas as much
as possible so that memory allocation can be optimized
for each of two different situations (i.e., fixed allocation
block size versus variable size). However, the storage
ranges of compressed and expanded tiles are allowed to
mingle so as to maximize the flexibility of the cache
usage.

FIG. 8 is a state diagram illustrating the flow ofimage
data or tiles between different storage states 250. A tile
can contain data in one or more of five states or forms

as illustrated by ovals in FIG. 8. The possible forms are:
uncompressed and resident in cache memory (state
252); compressed and resident in cache memory (state
256); uncompressed and resident on disk (state 268);
compressed and resident on disk (state 262); “not
loaded” but re-creatable using information from higher-
resolution image tiles (state 272).

For most image access operations, the image data
must be uncompressed and resident in cache memory
252. HoweVer, that form consumes the most cache
memory of any of the five forms. Therefore, a primary
function of the tile manager 192 is to transform image
tile data between state 252 and the other states which

consume less (in the case of state 256) or no cache mem-
ory whatsoever (in the cases of states 268, 262 and 272).

The eight transformation operations, shown in square
boxes in FIG. 8, constitute the main computational
operations associated with managing image memory.
The operation. “load compressed tile image data from
disk into cache memory” 264 is typically the first opera—
tion performed on a tile because most pre-scanned im-
ages are stored in compressed form in disk files. (A
discussion of this “virtual loading” is provided herein-
below.) The load operation 264 is performed by the
Load CompFromDisk function which simply copies
data from the disk into cache memory. The disk loca-
tion and number of bytes to read is stored in the tile
header fields 368 and 376 shown in FIG. 10.

The function LoadCompFromDisk is normally used
by the function LockCompHandle when the tile man-
ager 192 needs to access the compressed form of data
associated with a tile. LockCompHandle is analogous to
LockEpoandle, described in FIG. 28. The LockCom-
pI-Iandle function is also included in source code form in
the Microfiche Appendix, in the file tilealloc.c.

Compressed data in cache 256 can be written back to
the disk by the operation 260. This is the reverse of the
LoadCompFromDisk function. The present embodi~
ment is capable of writing to disk in a wide variety of
file formats. One skilled in the art can easily create a
function to perform this task.

Compressed data in cache can be uncompressed (also
termed “expanded") into another region of cache mem-
ory by the expand operation 258. The expand operation
258 is controlled by the “Expand Tile” function 440
which is described with respect to FIG. 33. The method
of image compression varies according to image type
(e.g. binary, 8-bit color, 24-bit color). Commonly used
compression techniques include CCITT T.6 for binary
images and CCITT SGVIII (draft standard) for color
and gray-scale images. The ExpandTile function 440

Page 100 of 448

10

15

20

25

30

35

45

50

55

65

10

selects the appropriate compression algorithm by refer-
ring to field 306 ofthe Document Information Structure
shown in FIG. 9.

Uncompressed data in cache 252 can be compressed
and written to a separate region of cache memory by
the compress operation 254. The compress operation
254 is controlled by the CompressTile function 450
described with respect to FIG. 38. Like ExpandTile,
the CompressTile function 450 uses an image compres-
sion algorithm appropriate to the image type.

Uncompressed data on disk 268 can also be read di-
rectly into cache memory by the load operation 270.
The load operation 270 is performed by the LoadEx-
pFromDisk function, which appears in source code
form in the Microfiche Appendix, in file diskcach.c.
The LoadEprromDisk function is analogous to Load-
CompFromDisk. The LoadEprromDisk function re-
fers to the fields 362 and 374 of the tile header 350

shown in FIG. 10, for the location and number of bytes
of the expanded file data on the disk.

Uncompressed data in cache 252 can be written back
to the disk by the save to disk operation 266. This opera- .
tion is analogous to the save to disk operation 260 which
operates on compressed data. The present embodiment
can write compressed or uncompressed tile data to disk
in a variety of formats. One skilled in the art can easily
implement an equivalent function.

Image data for tiles in the “not loaded” state 272 must
be constructed by resampling higher-resolution tiles.
(During normal operation, only lower-resolution tiles
can exist in this state—the full resolution subimage tiles
are always “loaded”.) The present embodiment pro-
vides two operations from the “not loaded" state 272 to
the “loaded” state 252, 256. Uncompressed higher-reso—
lution tile data is resampled to create uncompressed
data in cache 252 by the resample Operation 274. Simi-
larly, in the resample operation 276, compressed data in
cache 256 can be created from compressed higher-reso-
lution tile data.

In both resampling operations, extensive advantage is
taken of the fact that the resolutions of adjacent subim-
ages in the subimage stack are related by a power of 2.
This greatly simplifies and speeds the resampling opera-
tion. Basic resampling techniques are well-known (See,
for example, A. Rosenfeld and A. C. Kab, Digital Pic—
ture Processing, Academic Press, 1976). The resampling
operation 274 and 276 are controlled by the function
LoadSubImTile 436 described with respect to FIG. 31.

In summary, FIG. 8 shows that a great part of the tile
manager’s utility derives from its ability to coordinate a
variety of forms of image data in the course of complex
image processing operations.

Generally, the way data starts out on the disk 162 is
by loading a tiled image file into an application 190 via
the tile manager 192. An image file, like a Tagged
Image File Format (TIFF) or CALS tiled image file,
for example, can be loaded instantaneously, in a virtual
sense. In the tiled formats, there are tiled image data
that is stored in the image file and at the beginning of
the file there is a directory with entries that locate the
tiles (for example, the disk file version of tile 0 in subim-
age 0, (0,0), is located at one address in the file and the
disk file version of tile 1, subimage 0 (0,1) is located at
another address in the file). When an image file is
loaded, the tile manager 192 gets the tile offsets and
stores them in the tile directory and does nothing else.
Hence, the image file is basically loaded without copy-
ing any data from the disk 162 into the image data cache

Unified Patents Exhibit 1005 App'x A-N

Page 101 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
11

194, and a directory is created that maps the tiles in the
virtual image memory space onto the disk 162.

FIG. 9A illustrates a document information structure

300. Each image, or document, in the system is associ-
ated with (and described by) a document information
structure (called “docinfo”, defined in FIG. 9). The
docinfo structure contains information about the image
as a whole, such as color and pixel organization, etc. It
also contains a list of subimages contained in the image.
Each subimage entry in the docinfo structure contains
information about that subimage, such as width and
height, etc. The intention is to make this data visible
only to cache management functions and low-level
access functions. The overall docinfo data structure 300

contains the following information:
302 Self-reference to document handle. Handle value

assigned to this document by the host procedure
which created the document. This value is unique
over the entire system.

304 “Overviews Invalid” flag. This flag is true if the
document is in the middle of a write operation.

306 Cache image compression algorithm. Compres-
sion algorithm used by the memory manager for
this image.

308 Image color type. How the image is displayed.
310 Bits per image pixel. Number of bits per image

pixel. '
312 Tile size information. Size of expanded tile in

pixels. The tiles are assumed to be square.
314 Number of subimages in doc. Number of subim-

ages maintained in this document. The minimum
value is one (the full resolution subimage).

316 Input file info. Input raster file information.
318 Output file info. Output raster file information.
320 List of subimage headers. Array of pointers to

subimage header structures 321. The first entry in
the array is always the full resolution image. Each
position thereafter corresponds to a 2X resolution
reduction from the previous subimage.

The subimage header structure 321 is illustrated in
FIG. 9B. Each subimage has its own entry with each
field as follows:

312 Pointer to tile headers.

314 Pointer to tile directory. Pointer to array of
pointers to tile header records. This two-dimen-
sional table provides an easy way to access individ-
ual tile headers on a (row,col) basis.

326 Subimage width and height. The width (x extent)
and height (y extent) of the document measured in
pixels.

328 Number of tile rows & cols in subimage. Number
of tile rows in the image and the number of tile
columns (i.e., the number of tiles needed to span the
height and width of the image).

330 Image stack index of this subimage. This is the
position of the subimage in the docinfo structure
subimage list. It can also be used to determine the
factor by which the subimage resolution is reduced
relative to the full resolution subimage.

332 Pixel resolution of this subimage. Scan resolution
in pixels per millimeter.

FIG. 10 illustrates the tile header 350. The tile man-

ager’s analog to the conventional address translation
table is the tile directory. The tile directory is a two-di-
mensional array of entries corresponding to the two-di-
mensional array of tiles that form the image. Each full
and reduced resolution image has its own tile directory.
The tile directory record contains a list of pointers to

Page 101 of448

10

15

20

25

30

35

45

50

55

65

12
lists of individual tile headers. The list in the tile direc-

tory record has one entry for each row of tiles. Each of
those entries points to a tile header record list with as
many elements as tile columns. Thus, there is one tile
directory record per subimage and one tile header re-
cord per tile. The tile header record defines the current
state of the tile and contains information used by the
cache management functions. The tile header contains
the following information:

352 Pointer to document containing this tile. Pointer
to the document to which this tile belongs.

354 Index of subimage containing this tile. Index of
the subimage (i.e., image stack layer) that contains
this tile.

356 Row and column indices of tile. Tile row and

column position of this tile within the subimage.
358 Status information. Defines the current state of

the tile. This includes lock counts for expanded and
compressed tiles.

360 Preserve count. Value greater than zero means
the tile is desired for future operation, so the tile
should be preserved in cache if possible.

362 Location of uncompressed image data in cache
memory. Location of uncompressed (expanded)
image data for this tile (if it exists). Status flag
“ExpCached” will be true to indicate that the data
is currently in expanded tile cache memory.

364 Location of compressed image data in cache
memory. Location of compressed image data for
this tile (if it exists). 'Status flag “CompCached”
will be true to indicate that the data is currently in
compressed tile cache memory.

366 Location of uncompressed image data on disk.
Location of uncompressed (expanded) image data
for this tile (if it exists). Status flag “ExpOnDisk”
will be true to indicate that the data is currently on
disk.

368 Location of compressed image data on disk. Lo-
cation of compressed image data for this tile (if it
exists). Status flag “CompOnDisk” will be true to
indicate that the data is currently on disk.

370 Link to next less recently used tile. Pointer to
next older (less recently used) tile, not necessarily a
tile in this image.

372 Link to next more recently used tile. Pointer to
next newer (more recently used) tile, not necessar-
ily a tile in this image.

374 Number of bytes of expanded data in tile.
376 Number of bytes of compressed data in tile.
FIG. 11 illustrates a calling hierarchy 400 for the

constituent functions. Further discussions relating to
flow diagrams, herein, will include names which corre-
spond to source code modules written in the “C” pro-
gramming language. The object code is presently gen-
erated from the source code using a “C” compiler li-
censed by Sun Microsystems, Inc. However, one skilled
in the technology will recognize that the steps of the
accompanying flow diagrams can be implemented by
using a number of different compilers and/or program-
ming languages.

The top level in the program hierarchy is Main 402.
Main initiates the functions calls to the lower level

functions. Main embodies the top level control flow of
the present invention.

The first function called by Main is Initialize Cache
Manager 404 (InitCacheManager). InitCacheManager
allocates the RAM and disk swap space needed for a

Unified Patents Exhibit 1005 App'x A-N

Page 102 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
13

particular raster image. It must be called before at-
tempting to load any image tiles into memory.

The next function Main may call is Load Tiled Raster
Image 408 (LoadTIFF). LoadTIFF manages the load-
ing of tiled images. This is the process where an existing
image file on disk is mapped into memory.

Main will then call the function Begin Undoable
Raster Operation 410 (BeginUndoableRasOp). Begi-
nUndoableRasOp marks the beginning of a distinct,
“undoable” raster image operation. This function does
not save any region of image memory but only creates
a new entry on the undo stack. The current version of
the tiles in the affected region are saved by InitIma-
geAccess.

The following function called by Main is Create
Image Access Context 412 (InitImageAccess). InitIma-
geAccess prepares the tile cache manager for upcoming
accesses to a particular region of the specified image.

10

15

This function creates a data structure called an “access -

context” (defined in FIG. 16) that is used by the sequen-
tial access functions.

Main optionally calls the function Read Rows From
Region 414 (ReadRowToRow) next according to the
operation performed by the user. ReadRowToRow
causes one input/output buffer row or strip to be read
and transformed from tiled image memory as specified
in the associated InitImageAccess call and the resulting
access context.

The next optional function called by Main is Write
Rows To Region 416 (WriteRowToRow), again ac-
cording to the operation performed by the user. Write-
RowToRow causes one input/output buffer row or
strip to be transformed and written to tiled image mem-
ory as specified in the associated InitImageAccess call
and the resulting access context.

It should be understood that other access functions,

such as random pixel accesses, may optionally be called
by Main.

Main then calls the function Close Image Access
Context 418 (EndlmageAccess). EndlmageAccess ter-
minates and discards an image access context. The
memory allocated for the access context structure is
freed. The tile manager is informed that the specified
region of image memory is no longer needed by this
operator.

The next function, Undo Previous Raster Operations
420 (UndoPreviousRasOp), is optionally called by
Main. UndoPreviousRasOp restores the specified re-
gion to its original state using information from the
undo stack.

The last function Main calls is Quit Cache Manager
422 (EndCacheManager). EndCacheManager frees the
RAM and disk swap space. This function basically re-
verses what InitCacheManager does.

The second level of functions on the calling hierar-
chy 400 is shown starting with Load TIFF Subimage
Tile Information into Tile Headers 424 (LoadTiff-
TilesStd) which is called by function LoadTIFF 408.
LoadTiffTilesStd manages the loading of TIFF images
with strip structure.

The LoadTifiTilesStd function 424 calls a function

Store Tile Information in Tile Headers 425 (Load-
SubImDiskCache). LoadSubImDiskCache loads the
tile directory of the specified subimage with informa-
tion about the location, size and format of individual

image tiles contained in a disk-resident tiled image file.
It is the low-level interface for the “indirect file load”

Page 102 of 448

20

25

30

35

45

50

55

65

14

capability. The tile headers are assumed to be com-
pletely zeroed when this function is called.

The InitImageAccess function 412 calls a function
Save Region For Undo 426 (SaveRegionForUndo).
SaveRegionForUndo saves the specified region on the
undo stack. It is called from within InitImageAccess if
the SaveForUndo flag is true. It can also be used for
low level operations that do not go through InitIma-
geAccess. SaveRegionForUndo can then be called mul-
tiple times for different documents and different regions
within a document so that arbitrarily complex editing
operations can be easily undone.

The ReadRowToRow function 414 calls a function

Lock Expanded Image Tile Group 428 (ExpTileLock).
ExpTileLock “locks” memory handles referring to
expanded image tiles. (The notion of locking and un-
locking memory blocks is further discussed below with
reference to FIG. 14.) It also updates the associated tile
header structure as appropriate for the operating sys-
tem.

The ReadRowToRow function 414 also calls a func-

tion Unlock Expanded Image Tile Group,430 (Exp-
TileUnlock). ExpTileUnlock unlocks memory handles
referring to expanded image tiles. It also updates the
associated tile header structure as appropriate for the
operating system.

The function ExpTileUnlock 430 calls a function
Unlock Expanded Tile 432 (UnlockEpr-Iandle). Un-
lockExpl-Iandle unlocks an individual expanded tile
handle. The lock count is decremented as appropriate.
The tile is not actually swapped out of cache at this
point but it becomes a candidate for swapping.

The function ExpTileLock 428 calls a function Lock
Expanded Tile 434 (LockEpoandle). LockEpoandle
locks an individual expanded tile handle. The lock
count is incremented and the status flags are set as ap-
propriate.

The LockEpr-Iandle function calls a function Create
Tile From Higher-Resolution Tiles 436 (LoadSublm-
Tile). LoadSublmTile creates a valid expanded version
of the specified tile by sealing down from the next high-
er-resolution subimage. This function is called recur-
sively as necessary to get to a higher-resolution subim-
age where there is valid data. (Note: the tiles in the
full-resolution subimage are always valid and loaded
although not necessarily present in the cache memory.)

The function LockEpoandle 434 next calls a func-
tion Allocate Space for Uncompressed Version of Tile
438 (AllocEpoandle). AllocEpoandle allocates
space in cache memory for a single expanded tile.

The function LockEpoandle 434 also calls a func-
tion Create Uncompressed Version of Tile From Com—
pressed Version 440 (ExpandTile). ExpandTile uses a
tile that exists in compressed form but not expanded
form, allocates space for an expanded tile and decom-
presses the image data into that space.

The function LoadSublmTile 436 calls a function

Create Compressed Lower-Resolution Tile From Com-
pressed Higher-Resolution Tiles 442 (Comp-
CopyToOview). CompCopyToOview creates a valid
compressed version of the specified tile by sealing down
from compressed or expanded version of the given
higher-resolution subimage tiles. The function Load-
SublmTile 436 also calls a function Copy Uncom-
pressed High-Resolution Tiles to Uncompressed Low-
Resolution Tile 444 (CopyTileToOview).
CopyTileToOview updates the region of the next low-

Unified Patents Exhibit 1005 App'x A-N

Page 103 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
15

er-resolution overview corresponding to the specified
tile.

The Function CompCopyToOview 442 calls a func-
tion Collect Freeable Cache Memory 446 (CollectFre-
eCache). CollectFreeCache collects freed memory
states or enlarges the cache file and adds the new mem-
ory capacity to the reserve list. This function is called
when the cache manager usage exceeds preset limits.
Therefore it makes sense to take time to free up as much
memory as is convenient at this opportunity.

The function CollectFreeCache calls a function Free

Uncompressed Version of Tile 448 (FreeEpoandle).
FreeEpoandle frees space used for storage of ex-
panded image tiles.

The function CollectFreeCache 446 also calls a func-

tion Create Compressed Version of Tile From Uncom-
pressed Version 450 (CompressTile). CompressTile
uses a tile that exists in expanded form but not com-
pressed form, allocates space for a compressed tile and
compresses the image data into that space.

FIG. 12 is the top-level control flow for the tile man-
ager 192 (also called “Main"). The tile manager 192 can
be executed on a number of operating systems or with-
out an operating system. However, the workstation 150
(FIG. 6) preferably includes the Unix compatible oper-
ating system 188. Another preferred operating system is
Microsoft MS-DOS running with or without Microsoft
Windows 3.0.

Moving from a start state 470 to an initialization State

10

15

20

25

404, the tile manager 192 performs an initialization of 30
the image data cache 194 to determine the available
memory space, or the amount of physical RAM and
disk space available for a cache “file". At this point, the
cache appears to the tile manager 192 as one contiguous
range of physical addresses in memory. If the tile cache
has already been initialized, this step is skipped. The
possibility of multiple image access contexts (discussed
below) allows multiple simultaneous requests.

The tile manager 192 has another parameter which is
called the fast memory portion of the image data cache
194. This parameter is particularly relevant when work-
ing on top of another virtual operating system such as
Unix. The fast memory limit specifies approximately
how much of the image cache file is actually kept in
RAM memory at any moment by the native operating
system (e.g., Unix). The balance of data (the less re-
cently used portion) is likely to have been swapped out
to the disk. The tile manager attempts to limit the
amount of cache space used to store expanded tiles to
less than the fast memory limit, but the limit can be
exceeded if necessary with some degradation in perfor-
mance. However, the total cache size limit is never
exceeded. In operating systems without virtual memory
capabilities built in (e.g., MS-DOS), the fast memory
limit is the same as the total cache size limit.

Then the tile manager 192 moves to a function 472
wherein the tile manager 192 loads a tiled raster image
file. The function 472 (comprising the function 408, for
example) loads any type of image file, and preferably a
tiled image, into the memory address space configured
by the tile manager 192. If the image to be modified is
already loaded, this step is skipped. Then the tile man-
ager 192 moves to a function 410 where the tile manager
192 marks the beginning of an undoable raster operation
if the tile manager 192 is writing to the image. The
function 410 is an optional state and it is only used if the
user wants to be able to undo the operation that modi-
fies the image.

Page 103 of 448

35

4O

45

50

55

60

65

16

Any time that a region of the image needs to be ac-
cessed (for reading or writing) an image access context
is created. This image access context is used to define
the region for use by the tile manager. The creation is
performed automatically by the file manager without
effort by the user. For example, an image access context
is created when the user draws a line in a region of the
image.

Referring back to FIG. 12, the tile manager 192 tran-
sitions to a function 412 to create the image access con-
text. The image access context contains all of the state
information about the access operation. It is possible to
have multiple access contexts opened simultaneously
with each access having stored state information con-
tained in the access context. Thus, the tile manager 192
is re-entered and re-used by interleaved operations
without confusion due to the unique access contexts of
each image operation;

The tile manager 192 proceeds to a loop state 474
wherein the tile manager 192 begins a FOR-loop for all
of the rows or columns in the region. The FOR-loop is
executed multiple times if the operation specified by the
user is a row or column strip oriented access. Strips are
composed of one or more rows or one or more columns
of data. For each of the strips, the tile manager 192
reads or writes the rows or columns of data in the strip
in a function 476. The function 476 actually comprises a
set of functions including ReadRowtoRow 414 (FIG.
11) and WriteRowtoRow 416.

When the tile manager 192 has processed all the row
and columns in the region, the tile manager 192 moves
to a function (EndImageAccess) 418 where the tile
manager 192 closes the image access context which
frees all of the temporary buffers that were allocated for
the image access context.

The tile manager 192 transitions to an undo previous
raster operation function (UndoPreviousRasOp) 420.
This causes a modified image to revert to its previous
state. The image tiles that had been modified are re-
placed by their original versions. This again is an op-
tional step that the user initiates, if a mistake is made.

If the raster image is required for future operations,
the tile manager moves to state 422. Otherwise, moving
to a state 478, the tile manager 192 unloads the raster
image. Unloading the raster image simply frees the
memory that had been associated with that particular
raster image. This is not a save raster image operation
which would be slightly more complicated, but a save
operation could be executed here. Of course, the image
processing application 190 supports loading and saving
raster images.

Ifmore operations will be performed the tile manager
moves to state 480. Otherwise, from state 478, tile man-
ager 192 moves to a quit cache manager function (End-
CacheManager) 422. Herein, the tile manager 192 frees
the image data cache 194 (FIG. 6). Presumably, all of
the images have been unloaded as in the state 478 so that
this operation frees the image data cache memory and
prepares the system for shut down. Lastly, the tile man-
ager 192 terminates at an end state 480.

FIG. 13 illustrates the initializing of the cache man-
ager function 404. The function 404 is entered by the
task manager 192 at a state 488. Then, moving to a state
490, the task manager 192 initializes the cache usage
variables. Of course, in the beginning, all of the cache
space is available for use, in what is called the free-mem-
ory reserve list. That is, no cache memory is being used
for expanded or compressed image data.

Unified Patents Exhibit 1005 App'x A-N

Page 104 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
17

At state 492, the task manager 192 allocates tile cache
memory by requesting a portion of the address space
fromthe memory space owned by the operating system.
In a virtual memory system such as Unix, the request is
handled by memory mapping a large file. The operating
system does not allocate any memory, but it reserves an
address space. Moving to a state 494, the task manager
192 allocates a common blank tile. When dealing with
binary images, space is reserved for one blank tile,
which is kept around at all times for common usage by
any number of operations, or access contexts.

At state 496 a compression buffer is allocated to be
used as a scratch buffer when compressing data since, in
general, the size of the resulting compressed data is
unknown before a tile of image data is compressed.
Hence, compressed data blocks will be variable sized.
The tile manager 192 then exits the InitCacheManager
function 404 at an end state 498.

FIG. 14 illustrates a general memory state diagram
with reference to a block of memory being “locked” or
“unlocked”. In the diagram, ovals are states and rectan-
gular blocks are operations.

The state diagram is entered at a start state 502 by a
new memory block. There are three basics states.
“FREE” is a state 504 where there is no memory allo-
cated. Actually, a block of memory is considered free if
it is in one of the memory free lists, i.e., the “reserve free
list”, the “compressed free list” or the “expanded tile
free list”. It should be understood that the free list for

the compressed tiles are actually composed of many
lists based on the varying sizes of memory blocks.

Within a tile header (FIG. 10) the tile manager 192
controls a memory handle which is a structure that has
a pointer to (or location of) image data in the cache and
a lock count (not shown) for both compressed and ex-
panded versions of a tile.

A memory block transitions from the free state to
unlocked, but allocated is through a state 506 for allo-
cating the memory handle, which moves the block out
of the free list and into use by a tile. As opposed to free,
unlocked means that the memory block containsvalid
data and that it is associated with a tile but not currently
being accessed. That is, the block is not being read or
written at the time.

Now, the tile is unlocked at a state 508 but it contains

valid data. Therefore, the next step is to lock the block,
or lock the memory handle at a state 512 and then it
becomes a locked memory state at a state 514. That
means it contains valid data and it is currently in use.
The block can be locked more than once, each time just
incrementing the lock count.

The lock count may be incremented multiple times,
for example, when two access contexts (operations) are
accessing the same region of memory. Hence, both
contexts lock the block of memory or tile by increment-
ing the lock count. When the first access context is done
it decrements the lock count. But the tile manager 192
knows that that tile is. still in use by an access because
the locked count is still non-zero.

The inverse operation is to unlock the handle at a
state 516 and as long as the lock count is not decre-
mented to zero at state 518, it stays locked. Once the
lock count is decremented to zero, it becomes unlocked

again at the state 508. '
An unlocked tile is fair game for the tile manager 192

when the memory manager needs to find some space to
lock a new tile. Therefore, when the tile manager 192 is

Page 104 of 448

10

15

20

25

30

35

45

50

55

65

18

looking for space, unlocked memory blocks may be
freed and returned to the free memory lists.

The way to go from the unlocked state 508 to the free
state 504 is by freeing the handle in which case the
memory block is moved onto the free memory list.

Referring now to FIG. 15, the flow diagram for the
InitImageAccess function 412 shows the operation
where the tile manager 192 creates the image access
context starting at a state 530. At a state 532 the input
parameters are validated. If there is an error with the
input parameters, the function ends immediately at an
end state 534.

Input parameters include a document handle indicat-
ing which image that the user wants to read or write
from. Thus, the document handle must be validated.
Another parameter is whether the user wants to read or
write to the image. A transformation matrix, also input,
basically directs how to scale, rotate, shear, etc., the
image data.

If the input parameters are valid, the tile manager 192
locks the document handle at a state 536. The document

handle locks and unlocks just like other structures and
resources in the tile manager and it prevents one user of
a particular document or image from modifying or
deleting that image while another operation or another
access context is still using that document.

Then, at a state 538, the tile manager 192 tests
whether a non-orthogonal rotation has been specified.
For example, a rotation of 30° causes the tile manager
192 go into a special operation that initializes the access
with rotation. That also creates an access context but

after a more involved process. Then the tile manager
192 ends the function 412 at a state 534 with a valid
access context for rotations.

If an orthogonal rotation is specified then the tile
manager 192, allocates a conventional access context at
a state 542. Then the tile manager 192 continues to a
decision state 544 wherein the subimage selection crite-
rion is specified. For instance, the user may request the
“low resolution” option which selects the lowest reso-
lution subimage in the document’s image stack. (In the
context of an image editor, this may be the best solution
during zooming or panning.) The user may also specify
“most available”—i.e., whatever subimage has tiles
currently in cache memory, regardless of the resolution.
In either case, the tile manager 192 proceeds to a state
546 to select the reduced resolution subimage that is
appropriate to that particular choice, i.e., either the one
that has the resolution just greater than what was re-
quested or a subimage whose tiles covering the access
region are currently in cache. Now, at a state 548, the
tile manager 192 adjusts the transformation matrix so as
to now refer to the reduced resolution subimage rather
than the full resolution subimage by adjusting scale
factors.

Alternatively, if the state 544 determines that the full
resolution subimage is selected then the transformation
matrix is unchanged. Proceeding to a state 552, the pixel
and tile limits of the affected image region are calcu-
lated. Knowing these limits, in a state 554, the tile man-
ager 192 creates a temporary directory for the tiles in
that region. This directory is a two-dimensional array
that references the tiles that contains the affected pixels.
Later on the tile manager 192 refers to the region tile
directory because it is specific to tiles that are inside the
affected region.

The tile manager 192 then initializes the image scaling
functions in a state 556. Such scaling functions presently

Unified Patents Exhibit 1005 App'x A-N

Page 105 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
19

used are the subject of applicant’s concurrent applica-
tion entitled “Process for High Speed Rescaling of
Binary Images” (U.S. Ser. No. 08/014,085, filed Feb. 4,
1993, which is a continuation of Ser. No. 07/949,761

filed Sep. 23,1992, now abandoned, which is a continua-
tion of Ser. No. 07/693,010 filed Apr. 30, 1991 now
abandoned.

Moving on, the tile manager 192 tests whether polyg-
onal clipping is required at a state 558. For example, a
request may be made to only read from within a specific
polygonal region. If that is the case, the tile manager
192 initializes the polygonal region clipping functions in
the tile manager 192 by passing in the boundary lists.
The polygonal clipping function translates the bound-
ary lists into edge lists that are used to very efficiently
read out the rows or columns of data.

For example, suppose a “flood” request is made to
turn all of the pixels black within an octagonal region.
One way to accomplish the operation is to specify the
points of the corners of the octagon in image coordi-
nates and pass that in with the initialization of access
context request, which would pass those vertices of the
polygon into the polygonal clipping function set up
function.

Then the tile manager 192 comes to a state 562, where
the tile manager 192 allocates buffers for sealing, if
necessary. This is the situation where intermediate cop-
ies of the rows or columns of data may need to be kept
during the process of scaling. Then the tile manager 192
tests whether the user specified that the region needed
to be saved for undoing, at a decision state 564.

An important feature of the present invention is an
“undo” operation that is integrated with the image
memory management so that only compressed tiles
need to be saved after an undoable edit operation. In
this way, a user can easily and quickly retract an edit
operation that is no longer desired. For example, in
mapping applications, e.g., USGS Quadrangle maps,
the impression of a very large map is desired, but it is
really composed of smaller map quadrants that were
separately scanned, trimmed, adjusted and fit together.
The smaller maps can be visually and logically joined
into a single, large image. Using the present invention, a
user can add a feature, such as a new sub-division, town,

or road, that crosses a map boundary, specifying that
the feature is undoable. Later, the user can remove the

feature modification to the image by Specifying the
undo operation.

Now at a decision state 568, the question is whether
to update the subimages during the operation. If this is
a write operation the tile manager 192 always writes
into the full resolution subimage and the changes
“trickle down” into the low resolution subimages. But
the tile manager 192 has an option as to whether the
lower-resolution tiles are updated during the modifica-
tion operation or later when the tiles are requested for
viewing operations. There are advantages in doing
them both ways.

For example, if the affected region is small, it is more
efficient to update the subimages while progressing
through the operation. In this mode, when the tile is
unlocked, the manager 192 immediately copies the data
down into the next lower subimage tile but only one of
the corners of the tile is affected. Thus, only portions of
the low resolution subimage tiles need to be modified.

If, however, the subimages are not updated during
the operation, then as soon as the image access context
is created all of the subimage tiles that overlap the af-

Page 105 of 448

10

15

20

25

30

35

45

50

55

65

20

fected region are invalidated (they become “not
loaded”). Hence, when the memory manager goes to
access them again at some later time, it has to recon-
struct them from the higher-resolution tiles. The advan-
tage of that is that the memory requirement at any one
moment is half of that of if the tile manager 192 was
updating all of the tiles simultaneously. In this way, the
tile manager 192 sets a flag at a state 570.

In state 572 the tile manager 192 “preserves” the
affected tiles in the affected subimages. Again, it relates
to whether the tile manager 192 is updating subimages
or not. If the tile manager 192 is reading, then it pre-
serves only the tiles in the region of the subimage that
will be accessed.

The ability to “preserve”, or preferentially retain tiles
that will be accessed in the course of the operation, is an
important feature of the present invention that can yield
significantly higher performance in certain situations
where memory capacity limitations are encountered.
When a tile is “preserved” for a particular access opera-
tion, it’s preserve count 360 is incremented. The cache
manager treats tiles with non-zero preserve counts dif-
ferently from tiles with zero preserve count. The cache
manager will discard unlocked unpreserved tiles before
discarding older preserved tiles. (The cache manager
normally discards older or less recently used tiles before
discarding newer or more recently used tiles.)

Then, within the creation of the access context, the
tile manager 192 actually locks down the first row or
column of tiles in the region to establish the cache mem-
ory requirement for this operation, at a state 574. If this
succeeds, then the caller is assured that there will be
sufficient cache space for the entire operation.

The tile manager 192 can perform row or column
accesses. However, the following discussion only refers
to a row access.

Then, at a decision state 576, if the tile manager 192
cannot satisfy the request to lock down that first row of
tiles, the function 412 terminates at the end state 578.
Otherwise, at state 580 the tile manager 192 initializes
the row access functions.

Now, once the tile manager 192 has initialized the
row access function in state 580 the tile manager 192
invalidates the affected subimage tiles if the tile man-
ager 192 is writing to the full resolution subimage at a
state 582. Finally, in a state 584 the tile manager 192
returns the handle or a pointer to this access context to
the user. From then on the user just uses this pointer to
the access context and pointers to input and output
buffers to get the next row or column of data.

FIG. 16 illustrates the access context structure 600.

The structure 600 operates on a high level to hide the
low level operation from the user and contains book-
keeping information along with some memory manage-
ment information. The access context 600 contains the

following information:
602 Pointer to affected doc. Pointer to the document

being accessed.
604 “Subimage Choice” option value. Specifies how

to choose which of the subimages will be read from
or written to.

606 Index of affected subimage. Index of the specific
subimage directly affected by this access context.

608 Access quantum. Specifies “granularity” of
image access.

610 Read/write option. Specifies what type of image
memory accesses to prepare for (e.g., read or
write).

Unified Patents Exhibit 1005 App'x A-N

Page 106 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
21

612 Basic orthogonal rotation value. Specifies the
image rotation in terms of how the bits in each
buffer row are read from or written to the image
(e.g., write buffer row to image column with in-
creasing “y” coordinate).

614 Pixel combination operation. Specifies the pixel
operation performed when combining the buffer
contents and image contents. The results of the
operation are stored in the output buffer when

» reading. The results go into image memory when
writing.

616 Sealer type operation. Specifies the type of sealer
preferred. In other embodiments, this may include
fast low-accuracy scaling and line width-preserv-
ing scaling.

618 “Update overviews” flag. True flag indicates
overview subimages should be updated in the
course of this modification of the full resolution

image. This causes the overviews to be correct
when the access is complete.

620 [/0 buffer width & height. Width (i.e., row
length), total number of rows to process and pitch
in pixels of the input/output bitmap.

622 1/0 buffer pitch (bytes/row). Pitch of the input-
/output buffer in bytes used for multi-row accesses.
The input/output buffer is assumed to be a contigu-
ous memory bitmap at least as large as the access
quanta. It is always read or written in the natural
order (by rows, low address to high). Flipping and

rotation is always done on the image memory side.
624 1/0 buffer bit offset to start of run. Indicates

where the buffer’s x=0 pixel lies within the first
long word of the buffer’s storage space. It must be
between 0 and 31 inclusive. This parameter allows
the caller to match up with arbitrary bit align-
ments.

626 Rows per strip (for AQ_STRIP access quan-
tum). When operating in the AQ._STRIP mode,
this specifies the maximum number of rows per
input/output strip. Fewer rows may be written into
the last strip if the end of the access region is hit
before the strip is filled. ~

628 Number of I/O buffer rows yet to be processed.
This variable is used in the access routines to keep
track of the number of input/output rows remain-
ing for the access operation.

630 Pointer to access function used in “Seq~
BuflmageAccess”. Pointer to the image access
function that is tailored to the specific access mode
requested.

632 Stepping directions for image row and column
indices. The stepping increment each time the in-
put/output buffer is advanced one row and one
pixel. The allowed values are +1, 0, and — l.

634 Pointer to polygon clipping information. Refers
to an edge table structure for controlling polygonal
boundary clipping.

636 Pointer to raster scaling information. Tile level
access information used by lower level modules in
the course of the operation.

638 Pointer to uncompressed data in currently locked
tiles. Pointer to an array of pointers directly into
expanded tile image data. This list is used to accel-
erate sequential access into image memory. As
each new tile row or column is encountered in a

sequential access, this array is set to point directly
into the affected tiles, which have been brought
into cache memory and locked down. In other

10

15

20

25

30

35

45

50

55

65

22

embodiments this could also be used to point to
compressed tiles.

640 Pointer to region tile directory. Pointer to a 2-
dimensional array of pointers to the tiles in the
affected region of the subimage.

642 Next image row & column to be accessed. The
index of the next image row and column to be
accessed in sequential row and column operations.

644 Terminal row & column of access region. Stop-
ping values for sequential row and column opera-
tions.

646 Unclipped extent of access region. Defines the
image region that will be accessed over the course
of the operation.

648 Clipped extent of access region. Defines the por-
tion of the requested image region that actually
falls within the boundaries of the image. Pixels
outside of this rectangle are treated as background
pixels.

650 Clipped image buffer bit offset and length. These
values specify where, in the intermediate image
row or column buffer, the first bit from the clipped
image region is located and how many bits are to be
read from or written to tiled image memory.

652 Number of tile rows & cols in access region.
Number of tile columns and rows in the affected

region.
654 Row & column of currently locked tiles. Column

and/or row index of the currently locked tile or
tiles.

656 Image row & col at origin of first tile in access
region. Pixel coordinates of the upper-left pixel in
the upper-left tile of the affected region.

658 Number of I/O buffer rows held over for next

strip. Number of rows ofoutput data that did not fit
into the previous row and must be returned in the
next and subsequent rows when expanding while
reading image data.

660 Pointer to image tiling/untiling buffer. Points to
a temporary buffer to hold data extracted from
tiled memory prior to scaling when reading from
image memory.

662 Number of bytes in tiling/untiling buffer. Size of
buffer in bytes.

664 Bit offset for tiling/untiling buffer. Bit offset to
the first valid pixel in tiling/untiling buffer.

666 Access transformation matrix. The transforma-

tion matrix mapping input/output buffer pixels
onto the pixels of this subimage.

FIG. 17 illustrates the flow diagram for the “Save
Region for Undo” function 426 as referenced in FIG.
15. The tile manager 192 starts at a state 680, moves to
682 where the tile manager 192 locks the document
handle of the affected document that contains the re-

gion to save for undo. The tile manager 192 can save
multiple regions from multiple documents sequentially
and then undo them all in one operation later. Thus, the
application programmer is allowed to easily undo multi-
ple.region operations with a single undo call at a. later
point.

Moving to a state 684, the tile manager 192 clips the
modified region to the image boundaries since there is
no information to save outside of the image. Then the
tile manager 192 moves to a decision state 686 wherein
the tile manager 192 tests whether the affected region
overlaps the image. If there is no overlap, that is to say,
there is no image data to save, then the tile manager 192
moves to a state 688 where the tile manager 192 unlocks

Page 106 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 107 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
23

the document handle and terminates the function 426 at
an end state 690.

If, however at state 686, the modified region does
overlap the image, the tile manager 192 moves to a state
692 wherein the tile manager 192 allocate memory for
an “undo region header". The undo region header is
similar to a document header, but reduced compara-
tively in the amount of data conveyed therein. The
undo region header will be associated with tile header
information, etc.

The tile manager 192 then moves to a state 694 where
the tile manager 192 allocates memory for “undo region
tile headers”. These tile headers will be used to store

copies of the original versions of the tiles in the affected
region. The tile manager 192 then proceeds to a state
696 wherein the tile manager 192 makes an “undo tile
directory”.

Then the tile manager 192 moves to a loop state 698
where the tile manager 192 loops for each tile row in the
region. The tile manager 192 then transitions to a loop
state 700 wherein the tile manager 192 loops again for
each tile column in the region (Thus, there is a two-di-
mensional loop.)

The tile manager 192 moves from the state 700 to a
decision state 702 where the tile manager 192 checks to
see if that particular tile in the document is loaded in the
image cache memory. If the tile is not loaded, the tile
manager 192 skips to the next tile in the region by re-
turning to the loop state 700. OtherWise, if the tile is
loaded, the tile manager 192 marks the undo copy of the
tile as loaded in a state 704.

Note that there are two tiles. One is the original ver-
sion of the tile that is still associated with the document

and the second is the copy that the tile manager 192 is
going to make and associate with the undo region
header.

At a decision state 706, a test determines whether the
document tile is blank. If the tile is blank (i.e., all back-
ground color), then the tile manager 192 moves to a
state 708 and simply marks the undo tile as “blank” and
returns to the FOR-loop at 700. If the document tile is
not blank, then the tile manager 192 moves to a state 710
and the tile manager 192 marks the undo tile as “not
blank” and moves to a state 712 Wherein the tile man-

ager 192 tests whether the document tile has a valid
copy of compressed data on the disk.

If a valid copy of compressed data does reside on
disk, the tile manager 192 moves to a state 714 and
simply copies the compressed tile disk location and size
information from the document tile header to the undo

tile header. Note that it is possible for a particular tile to
have multiple representations of the same data. That is,
a compressed version and an expanded version of the
tile may exist in cache simultaneously. And a tile may
have a compressed version in cache as well as on the
disk. For undo, the strategy is to store the most compact
version possible. The most compact version with regard
to cache memory usage is to have a copy of the com-
pressed tile on the disk.

If there is no compressed copy of the tile on the disk,
the tile manager 192 proceeds to a decision state 716
wherein the tile manager 192 determines whether an
uncompressed copy of the document tile resides on the
disk. If the test succeeds, the tile manager 192 enters a
state 718 and copies the uncompressed tile disk location
and size information from the document tile to the undo

tile and then returns to the inner FOR-loop at a loop
state 700.

Page 107 of 448

10

15

20

25

30

35

45

SO

55

65

24

If, at state 716, there is no uncompressed tile informa-
tion on the disk, the tile manager 192 continues execu-
tion to a state 720 in FIG. 178 wherein the tile manager
19210cks the compressed version of the document tile.
This locking of the compressed version of the document
tile may cause an expanded version of the document tile
to be compressed and a compressed version created.
Therefore, there is a possibility of an error and that is
checked at the decision state 722.

If there is an error than the tile manager 192 unlocks
the document handle at a state 724 and terminates with
an error condition at the end state 726. If there was no

error in locking the compressed version of the tile then
the tile manager 192 moves from the state 722 to a state
728 wherein the tile manager 192 allocates and locks
down cache memory for a copy of the compressed data
to be associated with the undo header. There is another

error possibility at this point and the tile manager 192
checks for an error at a decision state 730. If there is an

error then the tile manager 192 returns to a state 724 and
thereafter terminates the function 426.

If there was no error in locking cache memory at the
state 730, the tile manager 192 moves to a state 732 and
copies the compressed data from the document tile to
the undo tile. The tile manager 192 actually copies the
data that is stored within the tile—i.e., the compressed
image data is copied from the document version to the
undo version. Then the tile manager 192 moves to a
state 734 and unlocks the compressed version of the
document tile. Now, at a state 736, the tile manager 192
unlocks the compressed version of the undo tile and the
tile manager 192 returns to the inner FOR-loop at state
700 on FIG. 17A where the tile manager 192 loops back
to continue the loop for all of the tiles in the affected
region.

When the tile manager 192 is done with all of the tiles
in the affected region, the tile manager 192 moves to a
state 738 where the tile manager 192 links the new undo
header into the undo region list. Thus, multiple regions
can be saved in the undo list and then in one operation,
by calling undo previous raster operation, all of the
operations that had been accumulated, can be undone.
Then the tile manager 192 moves to a state 742 wherein
the tile manager 192 unlocks the document handle and
terminates the function 426 normally.

FIG. 18 shows the load tile to raster image function
(LoadTifi). FIG. 18 is a flow diagram for the part of
LoadTiff that loads tiled images only. In reference to
FIG. 18, the overall process may be understood
whereby an existing file on the disk, i.e., an image file on
disk, is mapped into memory. As described below, the
overall process permits loading large images in a short
time period relative to how long it would take to actu-
ally copy all of the image data into the computer’s mem-
ory. In accordance with the present invention, the pro-
cess shown in FIG. 18 is called the indirect loading
capability. As shown in FIG. 18, the tile manager 192
begins the LoadTIFF function 408 at a start state 750
and moves to a state 752 where the tile manager 192
opens the input file that is on the disk. If there is an error
on the disk, the tile manager 192 prints an error message
at a state 754 and terminates at an end state 756. If no

error exists, then the tile manager 192 moves to a state
758 and checks for the TIFF header structure that iden-

tifies that the input file is in fact a TIFF file. While the
disclosure below discusses a TIFF file, it is to be under-
stood that the process shown in FIG. 18 may be per-

Unified Patents Exhibit 1005 App'x A-N

Page 108 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
25

formed on all types of tiled files, such as a MIL-R~
28002A Type II file or an IBM IOCA tiled file.

Still referring to FIG. 18, if the tile manager 192 finds
something other than TIFF header structure at state
758, the tile manager 192 moves to state 754 to indicate
an error, and then exits at the end state 756. If the tile
manager 192 finds a TIFF header structure while at
state 758, the tile manager 192 move to a state 760,
wherein the tile manager 192 counts the number of
subimages in the TIFF file, one or more of which may
exist in a TIFF file.

Next, the tile manager 192 moves to a state 762 and
reads the full resolution subimage information which
constitutes the basic information about the image, e.g.,
the image width and height, the size of the tiles, the
compression format that is used, and the resolution. If
the basic image information is not present and in proper
form, the tile manager 192 moves to the state 754 to
indicate an error. 0n the other hand, if no error is indi-
cated at state 762, the tile manager 192 moves to state
764, wherein the tile manager 192 creates a skeleton
document and locks that document. The skeleton docu-

ment at this point contains no cache memory but only
tile directory and tile headers that represent in a virtual
sense the tiles that compose the image.

The tile manager 192 next moves to a state 766 where
the TIFF full resolution subimage tile information is
loaded into the tile headers for the full resolution subim-

age, as more fully disclosed below in reference to FIG.
19. Next, the tile manager 192 moves to a loop state 768
where there is a loop for each of the remaining lower
resolution subimages. While in this loop, the tile man-
ager 192 accesses a decision state 770, wherein the tile
manager 192 determines whether

fr/Ir= 2n (1)

where

fr is the full resolution subimage resolution in pixels
per inch; and .

lr is the particular low resolution subimage resolution
in pixels per inch.

If the ratio of fr to lr is a power of two, then a success-
ful test is indicated, and the tile manager 192 moves to
a function 424 and loads the TIFF subimage tile infor-
mation into the tile headers for that particular subimage
level. On the other hand, if the ratio of fr to lr is not a
power of two, as indicated at the decision state 770, then
the file manager 192 ignores the particular subimage
under test and returns to the state 768 until all of the

subimages in the file are processed. When all subimages
have been processed, the tile manager 192 moves to a
state 772 and unlocks the document handle of the newly
created document and terminates normally at an end
state 756.

Now referring to FIG. 19, the function 424 whereby
the tile manager 192 loads the TIFF subimage tile infor-
mation into tile headers is shown. More particularly, the
tile manager 192 begins at a start state 780 and moves to
a state 782 wherein the tile manager 192 reads the num-
ber of tiles in the subimage. Then the tile manager 192
moves to a state 784 wherein the tile manager 192 allo-
cates temporary buffers for the tile mode offset and byte
count lists. These three lists have one entry each per tile
in the subimage. If the tile manager 192 cannot properly
allocate the temporary buffers, then the tile manager
192 exits with an error condition at an end state 786.

Upon successful allocation of the buffers, the tile
manager 192 moves to a state 788 where the tile man-

Page 108 0f448

10

15

20

25

30

35

40

45

50

55

65

26

ager 192 reads the tile offset and byte count information
from the disk file into the allocated buffers. In the TIFF

file standard, all tiles are stored in the same mode (e.g.,
compressed). However, other tiled file formats (e.g.,
MIL-R-28002A Type II) specify the storage mode for
each tile. The tile mode simply states whether a particu-
lar tile is stored in compressed form, in uncompressed
form, or whether the tile is all foreground or back-
ground color. The tile manager 192 next moves to a
state 790 where the tile manager 192 fills in the tile
storage mode list. At state 790, the tile manager 192
synthesizes the tile mode information that the TIFF file
does not contain itself. Then the tile manager 192 moves
to the function 425 wherein the tile manager 192 stores
the information in the subimage tile headers (FIG. 10),
and terminates at an end state 786.

Now referring to FIG. 20, the function 425 whereby
the tile manager 192 stores file information in tile head-
ers is shown. The tile manager 192 begins this process at
a start state 800 and moves to a state 802 where the tile

manager 192 locks the document handle of the docu-
ment for which the tile manager 192 is loading the
subimage for. This function is performed once per
subimage in the file and there may be multiple subim-
ages in the file. Consequently, the locking of the docu-
ment handle function can be performed several times in
the process of loading a single document.

As shown in FIG. 20, in the event that an error oc-
curs in locking the document handle the tile manager
192 terminates at an end state 804. On the other hand, if
the tile manager 192 successfully locks the document
handle at state 802, the tile manager 192 moves to a state
806 where the tile manager 192 determines whether the
number of tiles in the file matches the number of tiles

expected for the particular subimage in the particular
file or document. If a mismatch exists between the ac-

tual and expected number of tiles, the tile manager 192
moves to a state 808 to print an error message and then
terminates at the end state 804. On the other hand, in the
event that the number of actual tiles matches the num-

ber of expected tiles, the tile manager 192 moves to a
loop state 810 where the tile manager 192 enters the first
part of a FOR-loop for each tile row. Still referring to
FIG. 20, the tile manager 192 moves from state 810 to
state 812 for each tile column. Accordingly, it will be
understood that the tile manager 192 is processing a
two-dimensional array at the states 810, 812.

In accordance with the present invention, the tile
manager 192 processes, at states 810, 812, all of the tiles
required to cover the particular subimage. Next, the tile
manager 192 moves to a decision state 814 wherein the
tile manager checks the value in the tile mode entry to
determine whether the tile data is compressed. If the tile
data is compressed, the tile manager 192 moves to a
state 816 and stores the file offset and byte count in the
compressed tile handle. The compressed tile handle is a
part of the tile header structure, and the file offset is the
location of the compressed data for the particular tile
within the file as measured by a byte offset from the
start of the file. The byte count represents the number of
bytes of compressed data associated with the particular
file starting at the offset that is provided at the tile.
From state 816, the tile manager moves to state 828,
wherein the tile manager sets a flag to indicate that the
particular tile is not blank.

In the event that the tile manager determines at state
814 that the tile data is not compressed, the tile manager

Unified Patents Exhibit 1005 App'x A-N

Page 109 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
27

192 moves to a decision state 818 where the tile man-

ager 192 checks to see if the data is uncompressed. If the
data is uncompressed on the disk, the tile manager 192
stores the file offset byte count information in the un-
compressed tile handle in state 820. From state 818, the
tile manager moves to state 828, wherein the tile man-
ager sets a flag to indicate that the particular tile is not
blank.

If the tile manager 192 determines at state 818 that the
tile data is not uncompressed, then the tile manager 192
moves to state 822, wherein the tile manager 192 checks
to see whether the tile is all foreground at a state 822.
For example, in a black and white drawing engineering
document, foreground color is black, so the tile man-
ager 192 treats a foreground as a black tile. If the tile is
determined to be a foreground tile, the tile manager 192
proceeds to state 824, wherein the tile manager 192
creates an all foreground tile, and then sets the flag as
not blank at state 828. As an example, if the image being
processed is a color image, the tile manager 192 could
fill the tile with the foreground color at the state 824.

On the other hand, if the tile is not all foreground, the
tile manager proceeds to state 826 to determine whether
the tile is all background. As discussed above, binary
images usually have background pixels which are white
or zero value. If a particular tile is blank, the tile man-
ager 192 moves to a state 828 where the tile manager
192 sets the blank flag to indicate that the tile is indeed
a blank tile. If at the state 826 the tile manager 192
determines that the tile is not all background, the tile
manager 192 terminates with an error at an end state
830. In other words, having determined at state 822 that
the particular tile was not all foreground, the only possi-
bility left at state 826 is that the tile is all background.
Consequently, a determination at state 826 that the tile
is not all background indicates an error.

From state 828, the tile manager 192 moves to a state
832 and sets the loaded flag to true indicating that a
valid image information set has been associated with the
particular tile. The tile manager 192 completes the loop
described above for each tile. After having processed
each tile in the particular image, the tile manager 192
exits the two FOR-loops and moves to a state 834 where
the tile manager 192 unlocks the document handle and
then terminates normally at the end state 830.

Now referring to FIG. 21, the tile manager 192 per-
forms a function which for purposes of the present
invention will be termed “Undoable Raster Operation”.
The function shown in FIG. 21 is performed by the tile
master 192 in the function “Begin Undoable Ras-Op”,
and is a relatively simple function, the purpose of which
is to clear the undo region list. More particularly, in the
process shown in FIG. 21, the tile manager 192 frees all
of the undo regions associated with the previous opera-
tion to prepare for a new undo operation. Indeed, the
present invention could be configured to have multiple
level undo, i.e., the system of the present invention
could undo two or three or more operations going into
the past and also to be able toredo all of those opera-
tions at the user’s choice. For example, the last three
operations could be undone and then the oldest of those
operations redone.

In specific reference to FIG. 21, the tile manager 192
begins at a start state 840 and then proceeds to loop state
842, in which the tile manager 192 executes a FOR-loop
for each undo region in the current list. The tile man-
ager 192 loops to a state 844 where the tile manager 192
frees all of the memory associated with that undo re-

Page 109 of 448

10

15

20

25

30

35

45

50

55

65

28

gion. This may include freeing compressed data that is
stored in cache or expanded data that is stored in cache
and associated with the undo region. When the tile
manager 192 finishes all of the regions, the tile manager
192 terminates at an end state 846.

Now referring to FIGS. 22A and 22B, there is shown
the control flow for the ReadRowToRow function 414

which produces one or more rows of scaled image data
each time it is performed. It is one of the basic image
access functions. It should be understood that the tile

manager 192 can also read columns of an image, etc., so
as to produce a rotated output.

The tile manager 192 enters the function 414 by mov-
ing to a start state 850 and proceeds to a decision state
852 where the tile manager 192 checks for a region
overrun. In other words, when the access context is

created, the region that is going to be read in the course
of the overall operation is specified, and in the event
that the read row to row subfunction is accessed too

many times, the region will be overrun. Any such over-
run is detected by the tile manager 192 at state 852 and
reported at state 854. In the event of an overrun, the tile
manager 192 terminates at an end state 856.

If, on the other hand, no region overrun has oc-
curred, the tile manager 192 moves to a decision state
858 where the tile manager 192 checks to see whether
old results are carried over to the new strip. Such a
carryover could occur when, for example, raster data is
being enlarged by expanding one or more lines from the
image. For example, when raster data is being enlarged
by 4X, each line of input generates four (4) lines of
output. Accordingly, three (3) output rows could be
carried over for later strips. With this eventuality in
mind, the tile manager 192 ascertains whether any data
is being carried over and if so, the tile manager 192 uses
the carried-over data before generating a new row.
Consequently, if there is new data carried over, the tile
manager 192 moves to a state 860 where new rows are
generated from the carried over data.

Next, the tile manager 192 moves to a state 862 where
the tile manager 192 checks to see if a particular strip is
full. For purposes of the present invention, a strip is a
collection of rows, i.e., a set of numbers arranged in
rows As indicated at state 862, if the strip is full, then
the tile manager 192 ends at the end state 856.

If the strip is not full and the tile manager 192 has
used up all the carried over data, then the tile manager
192 moves to a decision state 864 where the tile man-

ager 192 checks for ghosting, i.e., the skipping of some
rows of data in order to produce a low quality image
while panning or zooming. If ghosting is in effect, the
tile manager 192 moves to state 866, wherein the tile
manager 192 calculates the number of blank lines to
create. The system then moves to a state 868 where the
tile manager 192 writes the blank lines to the output
strip buffer.

From state 864, if no ghosting was detected, or state
868, if ghosting is not in effect, the system moves to
state 870 where the tile manager 192 again checks to see
if the strip buffer is full. If it is, the tile manager 192 exits
at the end state 856. If it is not, the tile manager 192
checks to see that there are still input rows to read in a
decision state 872. If there aren’t, the tile manager 192
has reached the end of the specified image region, and
proceeds to state 874 to obtain another row of output
data by flushing the sealer buffers. In accordance with
the present invention, in the state 874 the tile manager
192 sets a flag that is subsequently passed down to the

Unified Patents Exhibit 1005 App'x A-N

Page 110 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
29

sealer functions to flush intermediate results from the

sealer functions. This is the case when for reducing
data, i.e., if a plurality of rows is being combined into
one output row. That is how the last output row is
produced.

From state 874, the system moves to state 894, shown
in FIG. 228. On the other hand, in the event that there
are no unread image rows at state 872, the system moves
to decision state 876, where the system determines
whether the row is outside of the valid image bound-
aries. If yes, the system moves to a state 878, where the
tile manager 192 substitutes blank lines for the input.
The tile manager proceeds from state 878 to a state 894,
shown in FIG. 22B. If the answer to the decision at state

876 is no, the, system moves to a decision state 880,
shown in FIG. 223, to check whether the row is con-
tained in the currently locked tile row.

At state 880, the tile manager 192 moves down the
image, and the system sequentially passes through suc-
cessive tile rows. Each tile contains, e.g., 512 rows, so
when a particular tile row is locked it stays locked until
all 512 image rows in that tile row have been read. Each
time the system arrives at a new row it tests to see that
the row is contained in the currently locked tile row. If
it is not, the system moves to the state 430 (function
ExpTileUnlock) to unlock the old tile row and lock
down the new tile row (at state 428). In addition, the tile
manager 192 has to unpreserve the row of tiles that was
just unlocked. Unpreserving them tells the memory
manager that those tiles are no longer needed for this
access operation and it can do what it wishes with them.

Next, the system proceeds to a decision state 882 to
determine whether any tiles are blank. If they are, the
tile manager 192 substitutes a reference to a “common
blank tile” and that common blank tile is used, as indi-

cated at state 884. All tiles that are blank are mapped
onto this common blank tile. Consequently, the tile
manager 192 uses less image memory.

From state 884, 882, or 880, as appropriate, tile man-
ager 192 proceeds to a decision state 886 to check for
polygonal clipping. If the tile manager 192 is doing
polygonal clipping then each input row of data is
clipped as appropriate for that polygon in states 888 and
890. The loop allows multiple clipped regions within
each row. If there is no clipping, then the tile manager
192 simply copies the entire input row from the image
into the input row buffer in a state 892. Then the tile
manager 192 move to a state 894 where the tile manager
192 passes these input rows through the sealer if the tile
manager 192 is scaling the data. Finally, the tile man-
ager 192 takes the results of the sealers and copies that
information to the output strip buffer if necessary at a
state 896. The tile manager 192 then returns to the state
870 (shown in FIG. 22A) where the tile manager 192
continues the process of retrieving input rows and seal-
ing them until the tile manager 192 has filled the output
strip buffer. The system then moves to the termination
condition at the end state 856.

Now referring to FIG. 23A, a process which will be
referred to as “Write Rows to Region” will be de-
scribed. The tile manager 192 starts at state 900 and
moves to state 902 where the tile manager 192 tests for
region overrun. Region overrun can occur when the
calling function attempts to write more rows to the

image than was specified when the access context was
created. If the region was overrun, the tile manager 192
reports an error at state 904 and terminates with an
error at state 906. If there is no region overrun, the tile

Page 110 of 448

10

15

20

25

30

35

45

50

55

65

30

manager 192 moves to the FOR-loop in state 908 where
the tile manager 192 loops for each input row in the
input buffer, which is the buffer that is passed in by the
calling function. It contains the data that is to be pro-
cessed and written to the image. The loop is executed
for each row and moves to state 910 where the input
data is passed through the sealer functions and put into
a temporary buffer. If the sealer does not always pro-
duce an output row, as is the case when reducing the
resolution, a plurality of input rows may have to be
combined to produce a single output row. So, at the
state 912, the tile manager 192 determines whether an
output row was produced after the input row is scaled.
Ifnot, the tile manager 192 goes back to the loop at state
908 and continues the process as described. On the
other hand, when the tile manager determines at state
912 that an output row was produced, the tile manager
192 moves to state 914 which is a FOR-loop for each
copy of the scale row to write to the image. It may be
the case that more than one copy of the scaled row
needs to be written into image memory. This is the case
when the tile manager 192 is expanding the input image
data. It may be that one input row is replicated four
times to get a 4X expansion factor.

Next, the tile manager 192 moves to state 916 where
the tile manager 192 checks to see if the destination row
index is outside of the image’s clipping boundaries. If so,
the tile manager 192 simply ignores it and moves back
to state 914. If it is within the clip boundaries the tile
manager 192 moves to state 918 where the tile manager
192 determines whether the destination row is in the

currently locked tile row. If it is not, the tile manager
192 moves to state 920 where the tile manager 192 un-
preserves and unlocks the old tile row that is currently
locked. The tile manager 192 then moves to state 922 to
determine whether the update overview flag is true.
This is an option that is specified in the lo access context
and it determines how lower-resolution tiles are up-
dated when the full resolution subimage is modified. If
the update overview flag is true, then the tile manager
192 moves to state 924 where the tile manager 192 un-
preserves the low resolution tiles that will no longer be
needed.

After the system has unpreserved the low resolution
tiles that are no longer needed at state 924, the system
moves to state 926 and locks down the new tile row.

Only the full resolution tile row is locked at this level.
The low resolution tiles are actually updated when the
call to unlock the old tile row is made.

Next, the tile manager 192 moves to state 928 to de-
termine whether an error was detected when the new

tile row was locked. If so, the system terminates with an
error condition at state 906. If there is no error or if in

state 918 the tile manager 192 finds that the destination
row is currently in the locked tile row, the tile manager
192 moves to state 930 in FIG. 233. At state 930, the tile
manager 192 determines whether polygonal clipping is
activated. If it is, the tile manager 192 computes the clip
points for the current image row, as indicated at state
932, which results in a list of clip point pairs.

The tile manager 192 then moves to state 934,
wherein the tile manager 192 conducts a FOR-loop for
each of the clip point pairs that the tile manager 192
computed in state 930. As shown in FIG. 23B, the tile
manager 192 loops to state 936 where the tile manager
192 copies pixels from a sealer output buffer to the
image row between each pair of clip points. When that
loop terminates, the tile manager 192 returns to state

Unified Patents Exhibit 1005 App'x A-N

Page 111 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
. 31

914 in FIG. 22A. 0n the other hand, if the tile manager
determines at state 930 that polygonal clipping is not
active, the tile manager 192 moves to state 938, wherein
the tile manager 192 copies the sealer output buffer
pixels to the image row without clipping. The tile man-
ager 192 then proceeds to state 914.

Now referring to FIG. 24, the tile manager starts at
state 950 in the end access function shown in FIG. 24

and proceeds to state 952. At state 952, the system
cleans up after row or column access functions by free-
ing buffers used by the row or column access functions.

Next, at state 954, the tile manager 192 unlocks the
last row or column of tiles accessed. Then, the system
moves to state 956 where the tile manager 192 un-
preserves any tiles in the region that are still preserved.
The system may perform the functions at states 954, 956
when an operation was aborted in mid-progress and it
cleans up after those partially completed operations.

At state 958, the tile manager 192 cleans up after the
polygonal clipping function. If there was polygonal
clipping involved in this access context the tile manager
192 has to free the buffers that contain the polygon edge
information.

Next, the system moves to state 960, where the tile
manager 192 frees scaler buffers, the temporary tile
directory, etc.. From state 960, the system moves to
state 962, wherein the tile manager 192 unlocks the
document handle to indicate to the memory manager
that the access context no longer is referring to the
particular document associated with the document han-
die.

The tile manager 192 next moves to state 964 where
the memory that was used to store the data for the
access context is freed. Then, the system ends the clean
up function at state 966.

Referring now to FIGS. 25A,B, a function is shown
which, for purposes of the present invention, will be
termed the “Undo Previous Raster Operations”. The
tile manager 192 starts at state 970 and moves to state
972, wherein the tile manager determines whether any
undo regions exist in the list or if the list is empty. If no
regions exist then the tile manager 192 moves to end
state 974 and terminates normally.

If the tile manager 192 determines at state 972 that
“undo” regions do exist, the tile manager 192 moves to
state 976, where the tile manager 192 enters a loop for
each undo region in the list. In this loop, the tile man-
ager 192 moves to state 978 where the tile manager 192
locks the affected document handle. The document
handle that is locked is the one that was stored in the

undo region header that tells where that particular undo
region came from. The tile manager 192 moves from
state 978 to state 980 where the tile manager 192 saves
the current document region to support redo (i.e. an
“undo” operation following by another “undo” opera-
tion). Then the tile manager 192 moves to state 982 to
invalidate the affected tiles in, the lower-resolution
subimages. The strategy represented by states 980, 982
in FIG. 25A is to save the minimum amount of informa-

tion that is needed to reconstruct the image, which
means the tile manager 192 saves only the affected tiles
in the full res subimage.

Next, the system moves to a loop indicated by the
states 984, 986. In this loop, for each tile, the tile man-
ager 192 moves to state 988, discarding the document
tile image data. Then the tile manager 192 moves to
state 990 to determine whether the undo tile is loaded. If

it is not loaded, the tile manager 192 moves to state 992

Page 111 of 448

10

15

20

25

30

35

45

50

55

65

32

where the tile manager 192 marks the document tile as
“not loaded”. If the tile is determined to be loaded at

state 990, the tile manager 192 moves to state 994 to
mark the document tile as “loaded”. From state 994, the

system moves to state 996 in FIG. 25B.
At state 996, shown in FIG. 25B, the tile manager 192

determines whether the undo tile is marked as blank. If

it is, the tile manager 192 moves to state 998, wherein
the tile manager marks the document tile as blank, and
then the system loops back to state 986. If the undo tile
is determined to be not blank at state 996, the tile man-

ager 192 move to state 1000. At state 1000, the tile man-
ager 192 checks to see if the undo tile points to com-
pressed data on the disk. If it does, the tile manager 192
moves to state 1002 and copies the disk location and size
information about the compressed data into the docu-
ment tile header and loops back around. If there is no
compressed data on the disk, then the tile manager 192
moves from state 1000 to state 1004, wherein the tile

manager 192 determines whether uncompressed data
exists on the disk associated with the undo tile.

If so,the tile manager 192 moves to state 1006,
wherein the file manager 192 copies the disk location
and size information about the uncompressed data into
the document tile header and loops back to state 986. If
the system determines at state 1004 that there is no
uncompressed data on the disk, the tile manager 192
proceeds to state 1008, wherein the tile manager 192
determines whether the undo tile “points" to uncom-
pressed data in cache memory. If it does, the tile man-
ager 192 moves to state 1010, wherein the tile manager
192 copies the pointer to the uncompressed data from
the undo header to the document tile header.

From state 1010, the system returns to state 986. If no
uncompressed data exists in the cache, however, as
determined in state 1008, the tile manager 192 stores a
pointer to the compressed data in cache in the docu-
ment tile header and returns to state 986.

Referring back to FIG. 25A, when the tile manager
192 has completed the loop described above, the system
moves to state 1014, unlocking the document handle.
From state 1014, the tile manager 192 proceeds to state
1016, wherein the tile manager 192 frees the memory
associated with the undo header. The tile manager 192
then moves to state 976. Thus, the system returns to
state 976 for each undo region in the list. As intended by
the present invention, the tile manager 192 continues
the loop for all of the regions in the list. The undo re-
gions are restored in “last-in-first-out” order. At the
completion of the looping process described above, the
system moves to state 974.

Now referring to FIG. 26, when the tile manager 192
ends the cache management, the tile manager 192 starts
the process shown in FIG. 26 at state 1020 and proceeds
to state 1022 wherein the system frees the compression
buffer. From state 1022, the system proceeds to state
1024, wherein the system frees the common blank tile.
Next, the system moves to state 1026 to free the tile
cache memory. The system then ends the process
shown in FIG. 26 at state 1028.

FIG. 27 provides an explanation of the function exp
tile lock. The tile manager 192 starts at state 1040 and
moves to state 1042 where the tile manager 192 enters a
FOR-loop for each tile row to be locked. In accordance
with the present invention, the system in the exp tile
lock function is capable of locking down all the tiles in
a two dimensional region.

Unified Patents Exhibit 1005 App'X A-N

Page 112 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
33

For each tile in the specified region, the system
moves to state 1046, wherein the tile manager 192 deter-
mines whether the particular tile is blank. To make this
determination, the system examines flags in the tile
header itself or checks the image data for that tile to
determine if there are any non-background pixels. If it is
not a blank tile, the tile manager 192 move to state 434
where the tile manager 192 locks the uncompressed
version of the tile. Then the tile manager 192 proceeds
to state 1050, wherein the tile manager 192 determines
whether an error had occurred in the process of creat-
ing the uncompressed version of the tile. If no error is
found at state 1050, the tile manager 192 continues to
loop to the next tile in the region by returning to state
1044. If an error did occur, as determined at state 1050,
the system proceeds to state 430 to unlock previously
locked tiles, and then ends at state 1056.

In the event that the tile manager 192 at state 1046
detected that the particular tile was a virtual blank tile,
i.e., a tile that exists only by virtue of the fact that there
is a tile directory entry for that tile, the tile manager 192
take no action, other than to loop back to state 1044 for
further processing.

FIG. 28 illustrates the control flow for the “lock

expanded tile” function 434 wherein the tile manager
192 takes a single tile and locks the expanded version of
the tile in the image data cache 194. The tile manager
192 enters the function 434 at a start state 1060, and
proceeds to a decision state 1062 wherein the tile man-
ager 192 tests whether the tile is marked as “loaded”. As
already mentioned, a loaded tile is one that either con.
tains or references valid image data, is either uncom-
pressed or compressed image data, and it either resides
in cache memory or on the disk. If the tile is not loaded,
the tile manager 192 moves to a function 436 wherein
the tile must be created from higher resolution tiles
which are loaded. Afterwards, the tile manager 192
determines if there was an error in a decision state 1066.

If there was an error, the tile manager 192 terminates
the function 434 at an end state 1068 and reports the
error condition. Otherwise, if there was no error in

creating the tile, the tile manager 192 continues, moving
from the state 1066 to a decision state 1070.

The tile to be locked is now loaded so the tile man-

ager 192 tests whether the uncompressed version of the
tile is in cache memory. The objective of the function
434 is to guarantee that there is an uncompressed ver-
sion of the tile in cache memory. Now, if the uncom-
pressed version is not in the cache, the tile manager 192
proceeds to a decision state 1072 to determine whether
the selected tile is a blank tile.

If the tile is blank, the tile manager 192 proceeds to a
state 438 to create a blank tile. Note here that the func-

tion ExpTileLock 428 (FIG. 27) will detect a blank tile
before calling the function 434 if it can take advantage
of using a common blank tile at a higher level. In other
words, if the tiles are locked for reading only, i.e., the
image data will not be modified in any way, then all
blank tiles can refer to the same section of blank mem-

ory. However, if the tiles are locked for writing, all tiles
must have their own memory because different image
data can be written to the different tiles.

At this point, state 438, memory has presumably been
allocated for a blank tile. Moving to a state 1074, the tile
manager 192 tests whether there was an error and
moves to the end state 1068 if there was an error.

Returning in the discussion to the decision state 1072,
if the tile is not blank, then the tile manager 192 transi-

Page 112 of 448

10

15

20

25

30

35

45

50

55

65

34
tions to a decision state 1076 and tests whether there is

a uncompressed version of that tile on the disk. If the
uncompressed version is on disk, then the tile manager
192 reads that uncompressed version from the disk into
cache memory at a state 1078. Then the tile manager
192 moves to the state 1074 to test for errors.

If, at the state 1076, there is not an uncompressed
version on the disk, the tile manager 192 moves to the
function 440 so as to create the tile from the compressed
version. The compressed version can be either in cache
memory or on the disk, and this is handled by the func-
tion 440. Again, the tile manager 192 checks for an error
at the state 1074.

Now, assuming that there was no error found at the
state 1074, the result is that the tile manager 192 has an
uncompressed version of the tile in cache. Therefore,
the tile manager 192 proceeds to a decision state 1080 to
verify that the uncompressed version is valid. It is some-
times the case that the uncompressed version of a tile is
locked by one access context and then for come reason
it is invalidated by another access context. This happens
when the first access context is reading an uncom-
pressed version of a tile from a lower resolution image,
and another access context is actively modifying the full
resolution subimage with a particular setting ofparame-
ters. If the tile not valid, the function 434 is terminated
at the end state 1068.

Alternatively, a valid tile that was determined at the
state 1080 causes the tile manager 192 to increment the
uncompressed data lock count for that tile at a state
1082. The lock count starts out at zero for an unlocked

tile and can increment as high as necessary. However,
the lock count will be decremented once for each un-

locking operation. It is important to match the number
of times a tile is locked with the number of times the tile

is unlocked. Otherwise, the tile would end up in a per-
manently allocated (unfreeable), locked state.

Proceeding to a decision state 1084, the tile manager
192 tests whether the tile is locked for writing or for
reading. If the tile manager 192 locked the tile for writ-
ing, the execution of the function 434 continues to a
state 1086 wherein the “blank” status flag is invalidated.
The blank status flag is actually a combination of two
flags. One that says that the tile is blank or not blank and
the second flag that says if the first flag is valid or not.
The reason for two flags is that the way to detect that a
tile is blank is by searching through all the pixels in that
tile. To do so every time the file is accessed would be
wasteful so occasionally, truly blank tiles won't be han-
dled as blank tiles. Hence, there is a second flag that is
set, in the state 1086, when the first flag is invalid. The
second flag indicates that the tile must later be examined
to determine whether it is still blank.

The tile manager 192 next moves to a state 1088 to
invalidate the disk-resident, uncompressed version of
the tile, if one exists. This is because the tile manager
192 will modify the cache-resident version of the tile.
To synchronize the cache-resident and disk-resident
versions, the disk-resident version is invalidated. Then,
at a state 1090, the tile manager 192 invalidates and frees
the compressed versions if they exist.

A compressed version of the tile may be in cache or
on the disk and, at the state 1090, the tile manager 192
cleans both out of memory. Thus, at the end of the
“lock for writing” operation, the only valid version of
the tile is the expanded version in cache, which at this
point is locked. Then the tile manager 192 continues to
a state 1092 to move the newly locked, expanded ver-

Unified Patents Exhibit 1005 App'x A-N

Page 113 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
35

sion of the tile to the front of the “most recently used
(MRU)” list of uncompressed tiles.

The MRU list is a doubly-linked list wherein, starting
at the beginning, the tile is found that was most recently
used, then the next most recently used, and so on, the
last tile was used the longest time ago. That list is used
by the cache manager to determine which tiles are least
likely to be used again as a second level of criteria.

Finally, the tile manager 192 terminates the LockEx-
pHandle at the end state 1068.

FIG. 29 illustrates the control flow for the “unlock-

ing expanded image tile group” function 430. The func—
tion 430 is just the reverse of lock expanded image tile
group. In other words, there is a region of locked tiles
which must be unlocked because the access to the tiles

is complete. Generally, the two functions, ExpTileLock
and ExpTileUnlock are called for a row or column of
image data rather than a region but an entire region
lock/unlock is possible.

The tile manager 192 enters the function 430 at a start
state 1110. The loop states 1102 and 1104 represent the
beginning of nested FOR-loops. That is, the outer loop,
beginning at the state 1102, unlocks a row of tiles, and
the inner loop, beginning at the state 1104 unlocks a
column of tiles. Moving from the state 1102, to the state
1104, and then to the function 432, the tile manager 192
unlocks the uncompressed version of the tile. When all
the tiles in the region are unlocked, the tile manager 192
terminates the function 430 at an end state 1108.

Now referring to FIG. 30, the tile manager 192 enters
the UnlockEpoandle function 432, referred to in FIG.
29, at a start state 1110. The tile manager 192 proceeds
to a decision state 1112 to test whether the uncom-

pressed version of the currently selected tile is in fact
locked, i.e., whether the lock count is non-zero. If the

tile is not locked, the tile manager 192 exits the function
432 at an end state 1114.

If, at the state 1112, the tile is found to be locked, the
tile manager 192 moves to a state 1116 to decrement the
lock count. Thereafter, the execution continues to a

decision state 1118 wherein the tile manager 192 tests
whether the “update overview” flag is set true. If the
flag is set, the tile manager 192 moves to a state 1120 to
update the corresponding lower-resolution tiles. In the
process of modifying tiles, the tile manager 192 locks a
tile down in the image data cache to write to it. When
the tile is unlocked, that is a signal to the memory man-
ager to update the lower resolution tiles that correspond
to the higher resolution tile. Thus, the image data in the
high resolution tile being unlocked is copied down into
the lower resolution tiles, all the way down to the bot-
tom of the image stack. '

Once the lower resolution images are modified, or if
the overviews are not being updated, the tile manager
192 proceeds to a decision state 1122 to test whether the
lock count is exactly zero. If the lock count is not zero,
the tile manager 192 terminates the function 432 at the
end state 1114.

Otherwise, the tile manager 192 moves to a state 1124
to clear the “cache" collection delay” flag. The cache
collection delay flag is set by the tile manager after
unsuccessfully trying to reduce the expanded memory
usage of the cache file. It is cleared in the function 432
because there is now the possibility of freeing the tile
that was just unlocked. In other words, the tile can be
removed from the cache to create some space. This flag
prevents the’tile manager or the cache manager from
making repeated, unsuccessful attempts to create space.

Page 113 0f448

10

15

20

25

30

35

45

50

55

65

36

After the tile manager 192 clears the flag, execution
proceeds to a decision state 1126 to determine whether
the uncompressed version of the tile is invalid. As ex-
plained hereinabove, it is possible for one access context
to have the expanded version of the tile locked down
and another access context to invalidate the data in that

tile. The tile must remain in memory until the first ac-
cess context unlocks the tile. Once it is unlocked and the

lock count is decremented to zero, if the tile is invalid,

the tile manager 192 moves to a state 1128 to free the
uncompressed tile version, or remove the tile from the
image data cache. In either case, the tile manager 192
terminates the function 432 at the end state 1114.

FIG. 31 illustrates the control flow for the “create tile

from higher-resolution tiles” function 436 referred to in
FIG. 28. The tile manager 192 begins the function 436 at
a start state 1140 and proceeds to a decision state 1142 to
determine whether the tile is in fact already loaded, in
which case no further processing is needed and the tile
manager 192 terminates the function 436 at an end state
1144. Assuming that the tile is not loaded, the tile man-
ager 192 moves to a decision state 1146 to test whether
a higher resolution subimage exists.

This function is called only for lower resolution
subimages where the tile manager 192 can create the
lower-resolution tiles from higher-resolution tiles.
Hence, higher-resolution subimages must exist for the
function to succeed. If no higher-resolution subimages
exist, the tile manager 192 reports the error and tenni-
nates the function 436 at the end state 1144.

If the higher-resolution subimage does exist, the tile
manager 192 proceeds to a state 1150 to calculate the
indices of, or locate, the four higher-resolution tiles that
reduce to this tile. There are four tiles involved because

the preferred resolution step between subimage levels is
two in the presently preferred embodiment. Thus, since
there are two dimensions, four higher-resolution tiles
are required to produce each next lower resolution tile.

Thereafter, the tile manager 192 enters a FOR-loop at
a loop state 1152. For each of the four higher-resolution
tiles, the tile manager 192 tests whether the tile is loaded
in the image data cache, at a decision state 1154. If the
tile is not loaded, then the tile manager 192 moves to a
state 1156 wherein a recursive call is made to the “load

subimage tile” function to create the corresponding
higher-resolution tile from yet higher-resolution tiles.
This case occurs if a the tile is a few layers down in the
image stack and the tiles in all but the full resolution
subimage had been invalidated. Therefore, the function
436 invokes itself to work all the way back up to the top
level, recreate the higher-resolution tiles and then work
back down to the tile of interest. Only higher-resolution
tiles that map to the particular lower-resolution tile
need be loaded

Assuming that all the higher-resolution tiles have
been loaded, the FOR-loop terminates and the tile man-
ager 192 proceeds to test whether all of the higher-reso-
lution tiles are blank. If all four of the high resolution
tiles mapped to this low resolution are blank, the tile
manager 192 transitions to a state 1160 to mark the low
resolution tile as blank. The tile manager 192 does not
create any image data for the blank, lower-resolution
tile. The tile manager 192 and terminates the function
436 at the end state 1144.

If, however, one or more of the higher-resolution
tiles is not blank, the tile manager 192 moves to a state
1162 to make a determination as to whether it is faster to

create the lower-resolution tile by scaling the com-

Unified Patents Exhibit 1005 App'x A-N

Page 114 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
37

pressed version of the higher-resolution tiles or the
expanded version of the higher-resolution tiles. An al-
gorithm is used at the state 1162 to decide which is
faster and depends on the machine that the program is
running on, and other considerations. If it is faster to
scale the compressed data the tile manager 192 moves to
the function 442 to create the compressed, lower-reso-
lution tile directly from the compressed higher-resolu-
tion tiles. ,

Now, if it is determined that it is faster to scale the

expanded version of the data, the tile manager 192
moves from the state 1162 to a state 1166 to allocate

memory for the uncompressed version of the lower-
resolution tile. From the state 1166, the tile manager 192
moves to the beginning of a FOR-loop at a loop state
1168 wherein for each of the higher-resolution tiles the
tile manager 192 scales the expanded version of the
higher-resolution tile directly into the proper position in
the lower-resolution tile using the function 444. When
the tile manager 192 has scaled each of the four high
resolution tiles, the tile manager 192 has completed the
creation of the expanded version of the low resolution
tile.

The tile manager 192 then proceeds, from either of
the states 1168 or 442 to a decision state 256 wherein the

tile manager 192 determines if an error was incurred in
that process. If there was an error, the tile manager 192
moves to a state 1172 to report the error. From either of
the states 1170 (if no error) or 1172, the tile manager
terminates the function 436 at the end state 1144.

FIG. 32 contains the flow diagram for the “allocate
space for uncompressed version of tile" function 438
referred to in FIG. 28. The tile manager 192 enters the
function 438 at a start state 1180 and moves to a decision

state 1182 to test whether the “soft” uncompressed
cache usage limit is exceeded. The soft uncompressed
cache limit is a number that is cast into the tile manager
192 during initialization and it basically sets a guideline
for how much of the image data cache is to be devoted
to uncompressed image data. If the cache manager gets
a request for uncompressed cache space and finds that
this soft limit has been exceeded, it attempts to reduce
the amount of expanded image data that is held in cache
either by compressing expanded tiles or by discarding
expanded tiles that have valid compressed versions or
some other way to recreate them.

If the tile manager 192 finds that the soft limit is ex-
ceeded, the tile manager 192 moves to a state 1184 to
first check whether the “cache collection delay” flag is
set. This flag is set after an unsuccessful attempt to
reduce cache memory usage and prevents repeated
unsuccessful calls to collect free cache at a state 1186.

Thus, the tile manager 192 will not try to reduce the
expanded memory usage until the flag is cleared in the
“unlock expanded tile handle” function 432 (FIG. 30).

If the cache collection delay flag is not set, the tile
manager moves to a state 1186 to collect free cache
memory by freeing uncompressed tiles. After that, the
tile manager 192 moves to a decision state 1188 to test
whether the soft uncompressed cache usage limit is still
exceeded after an attempt to reduce the memory usage.
If the usage is still exceeded, the tile manager 192 prints
a warning message on the video display 154 (FIG. 6) at
a state 1190 and then sets the cache collection delay flag
at a state 1192.

Returning in the discussion to the state 1182, if the
soft limit was not exceeded, or if it was not exceeded at
the state 1188, the tile manager 192 moves to a decision

Page 114 of 448

10

l5

20

25

30

35

4s

50

55

65

38

state 1194 to determine whether there is memory avail-
able in the uncompressed tile free list. If there is not
memory available in the uncompressed tile free list, then
the tile manager 192 moves to a decision state 1196 to
determine whether there is memory available in the
cache reserve list. If there is no memory available there,
the tile manager 192 moves to a state 329 wherein the
tile manager 192 again tries to collect free cache space
by unlocking or freeing both uncompressed and com-
pressed tiles. At this point, the tile manager 192 must
free space in order to allocate space for this uncom-
pressed tile. The tile manager 192 moves to a state 1200
to determine whether memory is now available in the
cache reserve list. In the state 1198, when the cache

memory space is freed, it is placed into the cache re-
serve list. If memory is not available, then the tile man-
ager 192 moves to a state 1202 and prints a “cache
overflow” error message and terminates the function
438 with an error condition at the end state 1204.

Now, taking an alternate path from the states 1194,
1196 and 1200, if the tile manager 192 can successfully
get space for the uncompressed tile data, then the tile
manager 192 moves to a state 1206 where the tile man-
ager 192 finds the free block with the highest memory
address. If there is a choice between two or more free

memory blocks, the tile manager 192 chooses the one
with the highest address to try to keep all of the ex-
panded image data at the high address end of the cache
file. Once the tile manager 192 finds the highest address
block, it moves to a state 1208 to unlink the free block
from the free memory link list.

There are actually two possibilities for the free mem-
ory link list when the tile manager 192 is looking for
expanded memory. One is the uncompressed tile free
list and the other is the cache reserve list. In either case,

the tile manager 192 unlinks the block of memory that
the tile manager 192 is interested in from the free list
and relinks the remaining memory blocks of the affected
free list.

The tile manager 192 then transitions to a state 1210
to initialize the newly allocated block to all background
color. Then the tile manager 192 moves to a state 1212
to move the description of the memory block (a pointer
to the tile header) to the front of the most recently used
tile list. Moving to a state 1214, the tile manager 192
updates the soft uncompressed cache memory usage
counter that was checked at the state 1182. The tile

manager 192 continues to a state 1216 to store the mem-
ory address in the tile header. The memory block that
the tile manager 192 has just allocated is a pointer that
is stored in the tile header data structure. That is how

the memory block is associated with the tile. Then the
tile manager 192 terminates normally from the function
438 at the end state 1204.

FIG. 33 illustrates the process by which the present
invention expands the compressed version of a tile to
create an uncompressed version. Specifically, as shown
in FIG. 33, the tile manager 192 starts at a start state
1220 and moves to a test function at state 1222, where

the tile manager 192 determines whether the com-
pressed version of the tile, or the compressed tile data,
is in cache memory. If it is not, then the tile manager 192
moves to state 1224, wherein the system loads the nec-
essary data from the disk. If there is an error detected at
state 1224, the tile manager 192 moves to state 1228 to
terminate the process.

From state 1226, if compressed data was successfully
loaded from the disk or from state 1222 if it was in cache

Unified Patents Exhibit 1005 App'x A-N

Page 115 of 448 Unified Patents Exhibit 1005 App'x A-N

5,263,136
39

to begin with, the tile manager 192 moves to state 1230,
wherein the tile manager 192 locks the compressed tile
image data. This step simply increments the lock count
on the compressed memory state. From state 1230, the
system moves to state 1232, wherein the tile manager
192 allocates and locks the uncompressed tile memory
block. The system then moves to state 1234 to deter-
mine whether an error occurred at state 1232. If so, the

tile manager 192 moves to state 1236 and unlocks the
compressed tile data. From state 1236, the system
moves to state 1238 to report the error. The system then
terminates at end state 1228.

On the other hand, if no error existed as determined

at state 1234, the system moves to state 1240, wherein
the tile manager 192 uncompresses the compressed data.
Next, the tile manager 192 moves to state 1242 to deter-
mine whether an error occurred at state 1240. If an

error occurred at state 1240, the tile manager 192 moves
to state 1236 and functions as described previously.
Otherwise, the tile manager 192 moves to stat 1244 to
unlock the compressed and uncompressed data, and
then terminates at end state 1228.

FIG. 34 illustrates a process for creating compressed
low resolution tiles from compressed higher resolution
tiles. The tile manager 192 starts at start state 1250 and
proceeds to state 1252, wherein the system enters a loop
which is followed by the system for each of the four
high resolution tiles required to produce a single low
resolution tile. More specifically, at state 1252 the tile
manager 192 locks the compressed version of the high
resolution tile. The system then proceeds to state 1256,
wherein the tile manager 192 determines whether an
error occurred at state 1254. In the event that an error

occurred, the tile manager proceeds to end state 1258
and terminates. If no error occurred, the tile manager
192 returns to state 1252 and continues the loop de-
scribed above for each of the four high resolution tiles.

After processing all four high resolution tiles as de-
scribed, the system proceeds to state 1260 where the tile
manager 192 scales the compressed data to half resolu-
tion. The process performed at state 1260 results in a
compressed version of the low resolution tile. Then the
tile manager 192 moves to a loop represented by states
1262, 1264, wherein for each of the high resolution tiles
the tile manage 192 unlocks the compressed version of
the tile.

Next, the tile manager 192 moves to state 1266 where
the tile manager 192 allocates and locks memory for the
compressed version of the low resolution tile. At state
1266, the tile manager 192 actually puts the compressed
version of the low resolution tile in a general, common
buffer that is large enough to hold the maximum possi-
ble size of the compressed results. The actual valid data
is usually much less than that than the maximum possi-
ble size, so the tile manager 192 only saves the valid
amount of data.

From state 1266, the system moves to state 1268 to
determine whether an error occurred at state 1266. If an

error occurred, the system moves to end state 1258 and
terminates. Otherwise, the system moves to state 1270
where the tile manager 192 copies the compressed data
out of the temporary compressed data buffer into the
newly allocated space in the cache. Then the tile man-
ager 192 moves to state 1272 where the tile manager 192
unlocks the compressed version of the low resolution
tile that now contains valid data. The system then termi-
nates normally at state 1258.

Page 115 0f448

10

15

20

25

30

35

4s

50

55

65

40

Now referring to FIG. 35, a process is shown
whereby the system resamples uncompressed high reso-
lution tiles to an uncompressed low resolution tile. The
tile manager 192 starts at start state 1280 and moves to
state 1282, wherein the tile manager 192 locks the un-
compressed version of a single high resolution tile. This
function scales a single high resolution tile to update
one quarter of a tile in the half-resolution subimage.
That quarter tile is rescaled to update one-sixteenth of a
tile in the quarter-resolution subimage. This continues
to the lowest resolution subimage. Next, the tile man-
ager 192 proceeds to state 1284 to determine whether an
error occurred in locking the uncompressed version of
the high resolution tile. If there Was an error, then the
tile manager 192 proceeds to state 1286 and terminates
with an error condition. Otherwise, the tile manager
192 moves to state 1288 where the tile manager 192
determines how many levels of the subimage are to be
updated. This function can be used to update a subset of
subimages or the entire image stack in the case where a
single tile is modified in the full resolution subimage. It
will propagate that change all the way down to the
lowest-resolution subimage in the image stack.

Next, the tile manager 192 proceeds to state 1290
where the tile manage 192 determines the tile index that
is to be updated. In accordance with the present inven-
tion, when a change is propagated from the higher
resolution down to the low resolution of tiles, the sys-
tem calculates which tile corresponds to the affected
area. Then the tile manager 192 moves to state 1290
where the tile manager 192 determines whether the low
resolution tile that the tile manager 192 is about to up-
date is marked as loaded or not. This step is intended for
the situation in which not all of the low resolution sub-

states are populated during the loading of a raster im-
age.

If the system determines that one or more low resolu-
tion tiles are not loaded, the system proceeds to state
1294, wherein the tile manager 192 invalidates all of the
low resolution tiles that would otherwise be affected by
the change. The system then exits normally at end state
1286. If the low resolution tile is about to be modified is

loaded, as determined at state 1292, the tile manager 192
moves to state 1296, wherein the system locks the un-
compressed version of the low resolution tile. The tile
manager 192 then moves to state 1298 to determine
whether an error occurred at state 1296 and, if so, the
system moves to end state 1286 to terminate. Otherwise,
the system moves to state 1300. wherein the tile man-
ager 192 scales the raster data from the high resolution
tile down to the low resolution tile. Then the tile man-

ager 192 moves to state 1302 where the tile manager 192
unlocks the high resolution tile.

Next, the system moves to state 1304, wherein the tile
manager 192 recursively modifies the loop variables
such that the low resolution tiles that the tile manager
192 just finished updating become the high resolution
tiles for the next succeeding iteration. Once all the
subimages have been updated as described, the system
exits at end state 1286.

Now referring to FIGS. 36A and 36B, a process to
collect free cache is shown. This process can be called
from several other processes. The tile manager 192
begins at start state 1310 in FIG. 36A and moves to state
1312 to determine whether a cache collection operation
is in process. If so, the system exits at end state 1314.
This prevents recursive calls to collect free cache
which might otherwise occur. If the system at state

Unified Patents Exhibit 1005 App'x A-N

Page 116 of 448 Unified Patents Exhibit 1005 App'x A-N

41

1312 determines that no collection is in progress, then
the tile manager 192 moves to state 1316 where the tile
manager 192 sets a flag indicating that a collection is in
progress.

From state 1316, the system moves to state 1320,
where the tile manager 192 estimates the number of
memory blocks to free in this operation. The reason for
freeing a number ofblocks instead ofjust one block is to
reduce the computational overhead associated with the
cache collection operations. The tile manager 192 typi-
cally estimates the amount of memory required to equal
the number of tiles in a single row of the full resolution
subimage of the document associated with the most
recently used tile.

Once this estimate has been made, the system pro-
ceeds to state 1322 wherein the tile manager 192 con-
siders the options that the tile manager 192 passed into
this function. There are three options. One, as indicated
at state 1324, is to reduce the uncompressed cache usage ‘
only while not affecting the compressed data that is
currently held in cache. The second option, indicated at
state 1328, is to reduce the compressed cache memory
usage only. The third option, indicated at state 1326, is
to reduce the total cache memory usage including both
compressed and uncompressed data.

From state 1324 or state 1326, the tile manager 192
moves to state 1330, where the tile manager 192 stores
all of the free states currently in the uncompressed free
list into the cache reserve list. As the tile manager 192
performs the process in state 1330, the tile manager 192
attempts to consolidate the memory blocks. That is, if
there are two free blocks that are adjacent to one an-
other, the system automatically turns them into a single,
larger contiguous block. From state 1328, on theother
hand, the system moves to state 1358, shown in FIG.
36B and discussed below.

From state 1330, the tile manager 192 moves to state
1332, wherein the tile manager 192 determines whether
the tile manager 192 has created a memory block large
enough to satisfy the initial request. If so, the tile man-
ager 192 terminates normally at end state 1314. Other-
wise, the tile manager 192 moves to state 1334 where
the tile manager 192 frees any unlocked, uncompressed
tiles which are blank. The tile manager 192 then moves
to state 1336 where the tile manager 192 determines
whether the tile manager 192 has free sufficient mem-
ory. If so, the tile manager 192 exits at end state 1314.
Otherwise, the tile manager 192 moves to state 1338
where the tile manager 192 frees unlocked, unpreserved
uncompressed tiles that have valid compressed versions
in cache or are on a disk, or that have valid, uncom-

pressed versions on the disk beginning with the least
recently used tile. After having freed that particular
class of tiles, if the tile manager 192 determines, at state
1340, that the memory request has been satisfied, the tile
manager 192 moves to state 1314 and terminates. Other-
wise, the tile manager 192 moves to state 1342, shown in
FIG. 3613. .

Now referring to FIG. 36B, the tile manager 192
begins at state 1342, wherein the tile manager 192 com-
presses the free unlocked, unpreserved uncompressed
tiles that don’t have a valid compressed version or other
source from which the tile can be recreated. To do this

the tile manager 192 processes expanded tile data
through a compression algorithm. The tile manager 192
then creates a compressed version of that tile so that the
uncompressed version of the tile can be discarded.

Page 116 of 448

5,263,136

5

10

15

20

25

30

35

45

55

65

42

Next, the tile manager 192 moves to state 1344,
wherein the system determines whether the request
made at state 1342 has been satisfied. If so, the system
terminates at end state 1346. Otherwise, the system
moves to state 1348, wherein the tile manager 192 frees
unlocked, but preserved uncompressed tiles that have
valid compressed or uncompressed copies. The tile
manager 192 preferentially frees the oldest such tiles.

From the state 1348, the tile manager 192 proceeds to
a decision state 1350 to test whether the request made at
the state 1348 was satisfied. If so, the function 446 is
terminated at the end state 1346. Otherwise, the tile

manager 192 moves to a state 1352 to compress and then
free unlocked, but preserved, uncompressed tiles that
do not have valid compressed versions.

Next, the tile manager 192 moves to state 1354,
wherein the system determines whether the request
made at state 1352 has been satisfied. If so, the system
terminates at end state 1346. Otherwise, the system
moves to state 1356, wherein the tile manager 192 deter-
mines whether to free data memory blocks. If not, the
system terminates at state 1346. Otherwise, the system
moves to state 1358, to free unlocked preserved, uncom-
pressed tiles that don’t have valid compressed versions
already.

The system next moves to state 1360 to determine
whether the request has been satisfied. If so, the system
terminates at state 1346. Otherwise, the system moves to
state 1362 to print an error message, and then terminate
at state 1346.

Now referring to FIG. 37, the tile manager 192 starts
at state 1380 and moves to state 1382 where the tile

manager 192 determines whether the uncompressed
version is in fact still locked—that is if the lock count

for uncompressed version of that tile is non-zero. If the
tile is still locked then the tile manager 192 moves to
state 1384 and prints a warning message. Then the tile
manager 192 terminates at end state 1386.

If, at state 1382, the system determined that the un-
compressed version is not locked, then the tile manager
192 moves to state 1388 where the tile manager 192
determines whether the uncompressed data has already
been freed. If it has then the tile manager 192 terminates
at end state 1386. Otherwise, the tile manager 192
moves to state 1390 where the tile manager 192 unlinks
the uncompressed memory state from the most recently
used list.

From state 1390, the tile manager 192 moves to state
1392 where the tile manager 192 updates and decre-
ments the total uncompressed memory usage counter
by the appropriate amount. The tile manager 192 then
moves to state 1394 where the tile manager 192 moves
the memory block to the uncompressed memory free
list. In accordance with the present invention, the tile
manager 192 keeps the list sorted by decreasing address.
Consequently, when the tile manager 192 allocates ex-
panded memory blocks, the tile manager 192 tends to
choose the preferred blocks that have higher addresses
because they are at the front of the free list.

Next, the tile manager 192 moves to state 1396,
wherein the tile manager 192 sets a pointer in the tile
header to null and the tile manager 192 sets the uncom-
pressed tile status flags. This ensures that the tile header
reflects the fact that it no longer has an uncompressed
data associated with it. Then the tile manager 192 termi-
nates at end state 1386.

Now referring to FIG. 38, a process by which the
system compresses a tile is shown. The system begins at

Unified Patents Exhibit 1005 App'x A-N

Page 117 of 448 Unified Patents Exhibit 1005 App'x A-N

/

5,263,136
43

start state 1400, and moves to state 1402, wherein the

tile manager 192 determines whether the uncompressed
tile data is in cache memory. If it is not, the tile manager
192 moves to state 1404 and loads the uncompressed
data into cache memory from the disk. The system then
moves to state 1406, to determine whether an error
occurred at state 1404. If so, the system terminates at
end state 1408. Otherwise, the system proceeds to state
1410.

At state 1410, the tile manager 192 locks the uncom-
pressed tile data, and then moves to state 1412, to deter-
mine whether an error occurred at state 1410. If an

error occurred, the system terminates at end state 1408.
Otherwise, the system moves to state 1414, wherein the
tile manager 192 compresses the image data into a com-
mon buffer. For binary images of text and line draw-
ings, the tile manager 192 uses a CCITT group 4 encod-
mg.

From state 1414, the tile manager 192 moves to state
1416 to determine whether an error occurred at state

1414. If an error indeed occurred, the system moves to»
state 1418 to unlock the uncompressed tiles, and then
exits at end state 1408. Otherwise, the system proceeds
to state 1420, wherein the tile manager 192 allocates and
locks cache memory space for the compressed tile data.

From state 1420, the system proceeds to state 1422 to
determine whether an error occurred at state 1420. If an

error occurred, the system moves to state 1418 and

proceeds as described above. Otherwise, the system
moves to state 1424, wherein the tile manager 192 cop-
ies the compressed data from the common buffer into
the newly allocated cache memory state. The system
moves from state 1424 to state 1426, wherein the tile

manager 192 unlocks the compressed and uncom-
pressed tile data and then terminates at end state 1408.

While the above detailed description has shown, de-
scribed and pointed out the fundamental novel features
of the invention as applied to various embodiments, it
will be understood that various omissions and substitu-

tions and changes in the form and details of the device
illustrated may be made by those skilled in the art, with-
out departing from the spirit of the invention.

What is claimed is:

1. An image memory management system, compris-
mg:

a computer having a processor and an image mem-
ory, the image memory comprising a main memory
and a secondary memory;

an image stack, located in the image memory, com-
prising a plurality of similar digital images, each
digital image having a plurality of pixels grouped
into at least one tile, and each digital image having
a resolution different from the other digital images;

means for accessing a selected one of the tiles in the
image stack;

first means for transferring a selected one of the tiles
from the secondary memory to the main memory
when the tile is accessed by the accessing means
and the tile is absent from the main memory; and

second means for transferring a selected one of the
tiles from the main memory to the secondary mem-
ory when the main memory is full.

2. The system defined in claim 1, additionally com-
prising means for modifying a selected one of the tiles.

Page 117 of 448

10

15

20

25

30

35

45

50

55

65

44

3. The system defined in claim 2, wherein the second
transferring means only transfer tiles that have been
modified by the modifying means.

4. The system defined in claim 1, wherein the main
memory is semiconductor memory.

5. The system defined in claim 1, wherein the second-
ary memory is a magnetic disk.

6. The system defined in claim 1, wherein each tile is
square.

7. The system defined in claim 1, wherein a lowest
resolution digital image comprises one tile.

8. The system defined in claim 1, wherein a prese-
lected digital image in the image stack is resampled to
obtain another digital image in the image stack.

9. The system defined in claim 1, wherein at least one
of the digital images is compressed.

10. The system defined in claim 1, wherein the access-
ing means is responsive to an image access operation
selected by a user.

11. The system defined in claim 10, wherein the
image access operation is zooming or panning the im-
age.

12. The system defined in claim 10, wherein the
image access operation is reversible.

13. A method of managing images in a computer
having a processor and an image memory comprising a
slower access memory and a faster access memory,
comprising the steps of:

creating a digital image;
resampling the digital image so as to form an image

stack comprising the digital image and one or more
lower resolution digital images;

dividing each image into equal sized, rectangular
tiles; and

evaluating a location in the image memory of tiles in
each digital image of the image stack in a given
region of interest.

14. The method defined in claim 13, additionally
comprising updating modified regions of all images
when an edit operation is completed.

15. The method defined in claim 13, wherein the
evaluating step includes the following order of decreas-
ing availability:

exists in the faster access memory in uncompressed
form;

exists in the slower access memory in uncompressed
form;

exists in the faster access memory in compressed
form;

exists in the slower access memory in compressed
form; and

must be constructed from higher resolution tiles.
16. The method defined in claim 13, wherein the

evaluating step includes the following order of decreas-
ing availability:

exists in the faster access memory in uncompressed
form;

exists in the slower access memory in uncompressed
form;

exists in the slower access memory in compressed
form; and

must be constructed from higher resolution tiles.
17. The method defined in claim 13, wherein the

evaluating step includes selecting the digital image with
the lowest resolution higher than a requested resolution
at a given view scale.. t t t #

Unified Patents Exhibit 1005 App'x A-N

Page 118 of 448 Unified Patents Exhibit 1005 App'x A-N

United States Patent [19]

Delorme

[54] ELECTRONIC GLOBAL MAP GENERATING
SYSTEM

[76] Inventor: David M. Delorine, 356 Range Rd.,
Cumberland, Me. 04021

[21] Appl, No.: 101,315

[22] Filed: Sep. 25, 1987

[51] Int. c1.s .. 00913 29/00
[52] us. c1. 364/419; 434/150;

340/990

[58] Field of Search 364/419, 449; 434/150,
434/130; 340/990

[56] References Cited

U.S. PATENT DOCUMENTS
400,642 4/1889 Beaumont 283/34

751,226 10/1899 Van Der Grintcn . 283/34
752,957 2/1904 Colas 283/34

1,050,596 1/1913 Bacon 283/34
1,610,413 12/1924 Balch 283/34
2,094,543 9/1937 Lackey et . 353/11
2,354,785 8/1944 Von Rohl 434/150
2,431,847 12/1947 Dusen 353/11
2,650,517 9/1953 Falk 355/77
3,248,806 5/1966 Schrader 434/150
3,724,079 4/1973 Jaspcrson et a1. 33/15 B
4,3 15,747 2/1982 McBryde 434/150
4,673,197 6/1987 Stipelman et al. 434/150
4,689,747 - 8/1987 Krouse et al. 364/449
4,737,927 4/1988 Hanabusa ct a1. 340/990

OTHER PUBLICATIONS

“Equal—Area Projections for World Statistical Maps",

[11] Patent Number:

[45] Date of Patent:

4,972,319

Nov. 20, 1990

McBryde and Thomas, US. Dept. of Commerce, Coast
and Geodetic Survey, Spec. Pub. 245, 1949.
“The Quadtree and Related Hierarchical Data Struc-
tures”, Hanan Samet, Computer Surveys, vol. 16, No. 2,
Jun. 1984.

Primary Examiner—Jerry Smith
Assistant Examiner—Kim T. Bui

Attorney, Agent, or Firm—Sughrue, Mion, Zinn,
Macpeak & Seas

[57] ABSTRACT

A global mapping system which organizes mapping
data into a hierarchy of successive magnitudes or levels
for presentation of the mapping data with variable reso-
lution, starting from a first or highest magnitude with
lowest resolution and progressing to a last or lowest
magnitude with highest resolution. The idea of this
hierarchical structure can be likened to a pyramid with
fewer stones or “tiles” at the top, and where each suc-
cessive descending horizontal level or magnitude con-
tains four times as many “tiles” as the level or magni-
tude directly above it. The top or first level of the
pyramid contains 4 tiles, the second levle contains 16
tiles, the third contains 64 tiles and so on, such that the
base of a 16 magnitude or level pyramid would contain
4 to the 16th power or 4,294,967,296 tiles. This total
includes “hyperspace” which is later clipped or ig-
nored. Digital data corresponding to each of the sepa-
rate data base tiles is stored in the database under a

unique filename.

33 Claims, 9 Drawing Sheets

\ \

Page 118 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 119 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 20, 1990 Sheet 1 of9 4,972,319

Page 119 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 120 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov.20, 1990 Sheet 2 of 9 4,972,319,

FIG.3A ' FIG.38

Page 120 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 121 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent

I'

Page 121 0f448

. Nov. 20, 1990 Sheet 3 of 9

FIG.4

4,972,319

FIG.5A FIG.SB

'-.'.-.....'..1 .“““““““-‘

 "'=="-IIIII

x IIIIIIII

a E:

Unified Patents Exhibit 1005 App'x A-N

Page 122 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 20, 1990 Sheet 4 of 9 4,972,319

 \m‘wm‘nn“
mwnulm‘— .
m‘wm‘m‘
mwmml‘“
p“‘““
\I“““‘
\‘“““‘
n““‘“

Page 122 of 448 Unified Patents Exhibit 1005 App'x A?N

Page 123 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 20, 1990 Sheet 5 of 9 4,972,319

FIG.|IA
FIG.||B

I

|fiM
|““““\
III“““\

Page 123 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 124 of 448 Unified Patents Exhibit 1005 App'x A-N

- US. Patent Nov. 20, 1990 Sheet 6 0:9 ' 4,972,319

2560 2560

256°

256° 00 0d ob

Eflfll
rmsm
LEEE

Iflfll

256°

FIG.|5

oc bd

CO

cc dd

256°

Page 124 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 125 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent

FIG.”

Page 125 0f448

4,972,319Nov. 20, 1990 Sheet 7 of9

Iilfiflflm-

Illfllwflfl
IIII'IL'IIIIII

256°

IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIIII
llllllllllllllll

Illl!!!!fl!!!_ .. I
llriiiummniil-i-i 9° I

llll'iIl’llflljldIlll
Illllfii'lll-ramgd_fll
llllllll'lll‘lllllflllll
IIIIIIIWIIIIIINIIII
.lglI-ll-l-I-IMI

256°

256°

256°

Unified Patents Exhibit 1005 App'x A-N

Page 126 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 20, 1990 Sheet 8 of 9 4,972,319
256° 0° 256°

I-Il—II-Il-I-II-m-I— .
IIIII-I-IIIII-III-III-
III--II-IIIII---IIIIIII
III-I-Illllfl—IIIII-
I_-I-IIIII--III—

—I--I-IIIII-—-III-
II—III-IIIII-—IIIII—
l-l-l-IIIII-—IIII- -

_Il-l-I-IIIIIIII— -

--I-__IE!II-__180°
—---——- -—-—----— O

I'85‘--I-'VI----r--.'--'.m." 90
uni-Imam”zfll-—I

unau-aunliuII-II-:1ga-—
III-‘I-IIIIE!mil-l-flllll-

III-L“Ea-III.IIEEI-_:"EIII-S‘lllIlfili!

III-I-IIInIIIIIn-IssgII.—ll-I-II'III[III-Inh‘l.—
III-I-Itl'AIIIIFAI--|!"1II—
IIIln-HIIIIIII-—-III-

Illl-III-IIIII-_l III

II-II-—IIIIIIIIIIIIII—IIIIII
II-I_-II—IIIIIIIIIIII-IIIII

---I—III-II-II-II-I-II-II
III—II--II-lI-IIIII-IIII-I
-III-III-IIIIII-II-IIIII-II-II
-IIII—I-IIIII-IIIIII-I-I-I-I
-IIII-I-IIIIIIIIII-IIII-Il-Il
-IIII-IIII-IIII-IIIIIIIII_II
-IIII-III-IIII-IIIIIIII-I-IIII

III-II—IIIIIIIIIIIIIIIIIII-IIII 256°

FIG.|8

E.

FIG. |9

256°

Page 126 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 127 of 448 Unified Patents Exhibit 1005 App'x A-N

US. Patent Nov. 20, 1990 Sheet_9 of9 4,972,319

FIG .20 A '
ILLUSTRATION 0F POLAR COMPRESSION

AT THE Blh MAGNITUDE

I60

Page 127 of 448 Unified Patents Exhibit 1005 App'x A-N

Page 128 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
1

ELECTRONIC GLOBAL MAP GENERATING
SYSTEM

BACKGROUND OF THE INVENTION

1. Technical Field
This invention relates to a new variable resolution

global map generating system for structuring digital
mapping data in a new data base structure. managing
and controlling the digital mapping data according to
new mapping data access strategies, and displaying the
mapping data in a new map projection of the earth.

2. Background Art
Numerous approaches have been forwarded to pro-

vide improved geographical maps, for example:
U.S. Pat. No. 4,315,747, issued to McBryde on Feb.

16, 1982, describes a new map “projection” and inter-
secting array of coordinate lines known as the “grati-
cule”, which is a composite of two previously known
forms of projection. In particular, the equatorial por-
tions of the world are represented by a fusiform equal
area projection in which the meridian curves, if ex-
tended, would meet at points at the respective poles,
referred to as “pointed poles”. In contrast, the polar
regions of the world map are represented by a flat polar
equal area projection in which the poles are depicted as
straight horizontal lines with the meridians intersecting
along its length. Thus, in a flat polar projection the
meridian curves converge toward the poles but do not
meet at a point and, instead, intersect a horizontal linear
pole. The two component portions of the flat world
map are joined where the parallels are of equal length.
The composite is said to be “homolinear” because all of
the meridian curves are similar curves, for example,
sine, cosine or tangent curves, which merge where the
two forms of projection are joined where the respective
parallels are equal. The flat polar projections in the
polar portions of the map provide a compromise with
the Mercator cylinder projections, thereby greatly re-
ducing distortion.

U.S. Pat. No. 1,050,596, issued to Bacon on Jan. 14,
1913, describes another composite projection for world
maps and charts which uses a Mercator or cylindrical
projection for the central latitudes of the earth and a
convergent projection at the respective poles. In the
central latitudes, the grids of the Mercator projection
net or graticule are rectangular. In the polar regions, the
converging meridians may be either straight or curved.

U.S. Pat. No 1,620,413, issued to Balch on Dec. 14,
1926, discusses gnomic projections from a conformal
sphere to a tangent plane and Mercator or cylindrical
projections from the conformal sphere to a tangent
cylinder. Balch is concerned with taking into account
the non-spherical shape of the earth, and therefore,
devises the so-called “conformal sphere” which repre-
sents the coordinates from the earth whose shape is
actually that of a spheroid or ellipsoid of revolution,
without material distortion.

U.S. Pat. No. 752,957, issued to Colas on Feb. 23,
1904, describes a map projection in which a map of the
entire world is plotted or transcribed on an oval con-
structed from two adjacent side by side circles with arcs
joining the two circles. The meridians are smooth
curves equally spaced at the equator, while the latitude
lines are non-parallel curves.

U.S. Pat. No. 400,642 issued to Beaumont on Apr. 2,
1889, describes a map of the earth on two intersecting

Page 128 0f448

5

10

15

20

25

30

35

45

50

55

65

2

spheres, on which the coordinate lines of latitude and
longitude are all arcs of circles.

U.S. Pat. No. 751,226, issued to Grinten on Feb. 2,

1904, represents the whole world upon the plane sur-
face of a single circle with twice the diameter of the
corresponding globe, the circle being delineated by a
graticule of coordinates of latitude and longitude which
are also arcs of circles.

U.S. Pat. No. 3,248,806, issued to Schrader on May 3,
1966, discloses a subdivision of the earth into a system
of pivotally mounted flat maps, each map segment rep-
resenting only a portion of the earth’s surface in spheri-
cal projection on an equilateral spherical triangle to
minimize distortion. '

U.S. Pat. No. 2,094,543, issued to Lackey et al on
Sept. 28, 1937, describes a projector for optically pro-
ducing a variety of different map projections, including
orthographic, stereographic and globular projections
onto flat translucent screens and a variety of other pro-
jections on shaped screens.

U.S. Pat. No. 2,650,517, issued to Falk on Sept. 1,
1953, describes a photographic method for making geo-
graphical maps.

U.S. Pat. No. 2,354,785, issued to Rohl on Aug. 1,
1944, discloses two circular maps which are mounted
side by side, and an arrangement for rotating the two
maps in unison so that corresponding portions of the
earth’s surface are at all times in proper relationship.

U.S. Pat. No. 3,724,079, issued to Jasperson et al on
Apr. 3, 1973, discloses a navigational chart display de-
vice which is adapted to display a portion of a map and
enable a pilot to fix his position, to plot courses and to
measure distances.

U.S. Pat. No. 2,431,847 issued to Van Dusen on Dec.
2, 1947, discloses a projection arrangement, in which a
portion of the surface of a spherical or curved map may
be projected in exact scale and in exact proportional
relationship.

McBryde and Thomas, Equal Area Projections for
World Statistical Maps, Special Publication No. 245,
Coast & Geodetic Survey 1949.

In addition to the above further teachings as to geo-
graphical mapping can be found in the Elements ofCar-
tooraphy, 4th edition which was written by Arthur Rob-
inson, Randall Sale and Joel Morrison, and published by
John Wiley & Sons (1978).

The present invention seeks to provide a low cost and
efficient mapping system which allows the quick and
easy manipulation of and access to an extraordinary
amount of mapping information, i.e., a mapping system
which allows a user to quickly and easily access a de-
tailed map of any geographical area of the world.

Map information can be stored using at least three
different approaches, i.e., paper, analog storage and
digital storage, each approach having its own advan-
tages and disadvantages as detailed below.

The paper mapping approach has been around since
papyrus and will probably exist for the next thousand
years.

Advantages of paper storage:
inexpensive.
once printed, no further processing is required to

access the map information, so not subject to processing
breakdown.

Disadvantages of paper storage:
can become bulky and unwieldy when dealing with a

large geographical area, or a large amount of maps.

Unified Patents Exhibit 1005 App'x A-N

Page 129 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
3

paper does not have the processing capabilities or
“intelligence” of computers, and therefore does not
support automated search or data processing capabili-
ties.

cannot be updated cheaply and easily.
The analog mapping approach is used to provide

what is commonly known as videodisc maps. The infor-
mation is stored as still frames under N.T.S.C. (National
Television Standards Committee) conventions. To
make maps, a television camera moves across a paper
map lying on a workbench. Every few inches a frame is
recorded on videotape. After one row of the map is
completely recorded, the camera is moved down to the
next row of frames to be recorded. This process is re-
peated until frames representing a checkerboard pattern
of the entire map are recorded. The recorded videotape
could be used to view the map: however, access time to
scan to different areas of the recorded map is usually
excessive. As a result, a videodisc, with its quicker ac-
cess time, is typically used as the medium for analog
map storage. The recorded videotape is sent to a pro-
duction house which “stamps” out 8 inch or 12 inch
diameter, videodiscs.

Advantages of the analog storage approach:
one side of a 12 inch videodisc can hold 54.000

“frames” of a paper map. A frame is typically equal to
2; X 3 inches of the paper map.

access time to any frame can be fast usually under 5
seconds.

once located on the videodisc, the recorded analog
map information will be used to control the raster scan
of a monitor and to produce a reproduction of the map
in 1/30th of a second.

through additional hardware and software, mapping
symbols, text and/or patterhsn can be overlaid on top of
the recorded frame.

Disadvantages of the analog storage approach:
the “frames” are photographed from paper maps,

which, as mentioned above, cannot be updated cheaply
or easily.

due to paper map projections, mechanical camera
movements, lens distortions and analog recording elec—
tronics, the videodisc image which is reproduced is not
as accurate as the original paper map.

as a result of the immediately above phenomena,
latitude and longitude information which is extracted
from the reproduced image cannot be fully trusted.

if a major error is made in recording any one of the
54,000 frames, it usually requires redoing and re-stamp-
mg.

since frames cannot be scrolled, most implementa-
tions employ a 50% overlap technique. This allows the
viewer to jump around the database with a degree of
visual continuity: however, this is at a sacrifice of stor-
age capacity. If the frame originally covered 2; X 3
inches or approximately 8 square inches of the paper
map, the redundant overlap information is 6 square
inches, leaving only 2 square inches of new information
in the centroid of each frame.

as a result of the immediately above deficiency, a
2x3 foot map containing 864 square inches would
require 432 frames; thus, only 125 paper maps could be
stored on one side of a 12 inch videodisc. .

must take hundreds of video screen dumps to make a
hard copy of a map area of interest and, even then, the
screens do not immediately splice together because of
the overlap areas.

Page 129 of448

10

15

20

25

30

35

45

50

55

65

4

the biggest disadvantage is that, since frames have to
be arranged in a checkerboard fashion, there is no way
to jump in directions other that north, south, east or
west and maintain visual continuity. As an example, the
visual discontinuity in viewing a “great circle” route
from Alaska to New York would be unbearable for all

but the most hearty.
The digital mapping approach has been around for at

least 20 years and is much more frequently used than the
analog approach. Digital data bases are stored in com-
puters in a format similar to text of other databases.
Unlike map information on a videodisc, the outstanding
map features are stored as a list of objects to be drawn,
each object being defined by a plurality of vector “dot”
coordinates which define the crude outline of the ob-

ject. As one example, a road is drawn by connecting a
series of dots which were chosen to define the path (i.e.,
the “outline”) of the road. Once drawn, further data and
processing can be used to smooth the crude outline of
the object, place text, such as the name or description of
the object in a manner similar to what happens when
drawing on a paper map.

Advantages of the digital approach:
digital maps are the purest form of geographical map-

ping data: from them, paper and analog maps can be
produced. '

digital maps can be quickly and easily updated in near
real-time, and this updating can be in response to data
input from external sources (e.g., geographical monitor-
ing devices such as satellite photography).

digital maps can be easily modified to effect desirable
mapping treatments such as uncluttering, enhancing,‘
coloring, etc.

digital maps can be easily and accurately scaled, ro-
tated and drawn at any perspective view point.

digital maps can be caused to reproduce maps in 3-D.
digital maps can drive pen-plotters (for easy paper

reproductions), robots, etc.
digital maps can be stored on any mass storage de-

vice.

Disadvantages of the digital approach:
digital maps require the use or creation of a digital

database: this is a very time-consuming and expensive
process, but once it is made, the data base can be very
easily copied and used for many different projects.

The digital approach is utilized with the present in-
vention, as this approach provides overwhelming ad-
vantages over the above-described paper and analog
approaches.

In designing any mapping system, several features are
highly desirable:

First, it is highly desirable that the mapping system be
of low cost.

Second, and probably most important, is access time.
Not only is it generally desirable that the desired map
section be accessible and displayed within a reasonable
amount of time, but in some instances, this access time is
critical.

In addition to the above, the present invention (as
mentioned above), seeks to provide a third important
feature,——a mapping system which allows the manipula-
tion of and access to an extraordinary amount of map-
ping information, i.e., a mapping system which allows a
user to quickly and easily access a detailed map of any
geographical area of the world.

A tremendous barrier is encountered in any attempt
to provide this third feature. In utilizing the digital
approach to map a large geographical area in detail

Unified Patents Exhibit 1005 App'x A-N

Page 130 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
5

(e.g., the earth), one should be able to appreciate that
the storage of mapping data sufficient to accurately
define all the geographical features would represent a
tremendous data base.

While there have been digital mapping implementa~
tions which have successfully been able to manipulate a
tremendous data base, these implementations involve
tremendous cost (i.e., for the operation and maintenance
of massive mainframe computer and data storage facili-
ties). Furthermore, there is much room for improve-
ment in terms of access time as these mainframe imple-
mentations result in access times which are only as
quick as 20 seconds. Thus, there still exists a need for a
low-cost digital mapping system which can allow the
storage, manipulation and quick (i.e., “real time”) access
and visual display of a desired map section from a tre-
mendous mapping data base.

There are several additional mapping system features
which are attractive.

It is highly desirable that a mapping system be sensi-
tive to and compensate for distortions caused by map-
ping curved geographical (i.e., earth) surfaces onto a
flat, two-dimensional representation. While prior art
approaches have provided numerous methods with
varying degrees of success, there is a need for further
improvements which are particularly applicable to the
digital mapping system of the present invention.

It is additionally attractive for a mapping system to
easily allow a user to change his/her “relative viewing
position”, and that in changing this relative position, the
change in the map display should reflect a feeling of
continuity. Note that the “relative viewing position
should be able to be changed in a number of different
ways. First, the mapping system should allow a user to
selectively cause the map display to scroll or “fly”
along the geographical map ’to view a different (i.e.,
“lateral") position of the geographical map while main-
taining the same degree of resolution as the starting
position. Second, the mapping system should allow a
user to selectively vary the size of the geographical area
being displayed (i.e., “zoom”) while still maintaining an
appropriate degree of resolution, i.e., allow a user to
selectively zoom to a higher “relative viewing position”
to view a larger geographical area with lower resolu-
tion regarding geographical, political and cultural char-
acteristics, or zoom to a lower “relative viewing posi-
tion” to view a smaller geographical area with higher
resolution. (Note that maintaining the appropriate
amount of resolution is important to avoid map displays
which are effectively barren or are cluttered with geo-
graphical, political and cultural features.) Again, while
prior art approaches have provided numerous methods
with varying degrees of success, there is a need for
further improvements which are particularly applicable
to the digital mapping system of the present invention.

The final feature concerns compatibility with existing
mapping formats. As mentioned above, the creation of a
digital database is a very tedious, time-consuming and
expensive process. Tremendous bodies of mapping data
are available from many important mapping authorities,
for example, the US. Geological Survey (USGS), De-
fense Mapping Agency (DMA), National Aeronautics
and Space Administration (NASA), etc. In terms of
both being able to easily utilize the mapping data pro-
duced by these agencies, and represent an attractive
mapping system to these mapping agencies, it would be
highly desirable for a mapping system to be compatible
with all of the mapping formats used by these respective

Page 130 0f448

10

15

20

25

30

35

45

50

55

65

6

agencies. Prior art mapping systems have been deficient
in this regard; hence, there still exists a need for such a
mapping system.

SUMMARY OF THE INVENTION

The present invention provides a digital mapping
method and system of a unique implementation to sat-
isfy the aforementioned needs.

The present invention provides a computer imple-
mented method and system for manipulating and ac-
cessing digital mapping data in a tremendous data base,
and for the reproduction and display of electronic dis-
play maps which are representative of the geographical,
political and cultural features of a selected geographical
area. The system includes a digital computer, a mass
storage device (optical or magnetic), a graphics moni-
tor, a graphics controller, a pointing device, such as a
mouse, and a unique approach for structuring, manag-
ing, controlling and displaying the digital map data.

The global map generating system organizes the map-
ping data into a hierarchy of successive magnitudes or
levels for presentation of the mapping data with vari-
able resolution, starting from a first or highest magni-
tude with lowest resolution and progressing to a last or
lowest magnitude with highest resolution. The idea of
this hierarchical structure can be likened to a pyramid
with fewer stones or “tiles” at the top, and where each
successive descending horizontal level or magnitude
contains four times as many “tiles” as the level or mag-
nitude directly above it. The top or first level of the
pyramid contains 4 tiles, the second level contains 16
tiles, the third contains 64 tiles and so on, such that the
base of a 16 magnitude or level pyramid would contain
4 to the 16th power or 4,294,967,296 tiles. This total
includes “hyperspace” which is later clipped or ig-
nored. Hyperspace is that excess imaginary space left
over from mapping of 360 deg, space to a zero magni-
tude virtual or imaginary space of 512 deg, square.

A first object of the present invention is to provide a
digital mapping method and system which are of low
cost.

A second and more important object of the present
invention is to provide a unique digital mapping method
and system which allow access to a display of the geo-
graphical, political and cultural features of a selected
geographical area within a minimum amount of time.

A third object of the present invention is to provide a
digital mapping method and system which allow the
manipulation of and access to an extraordinary amount
of mapping information, i.e., a mapping method and
system which allow a user to quickly and easily access
a detailed map of any geographical area of the world.

Another object of the present invention is to provide
a digital mapping method and system which recognize
and compensate for distortion introduced by the repre-
sentation of curved (i.e., earth) surfaces onto a flat two-
dimensional display.

Still a further object of the present invention is to
provide a digital mapping method and system which
allow a user to selectively change his/her “relative
viewing position”, i.e., to cause the display monitor to
scroll or “fly” to display a different “lateral” mapping
position of the same resolution, and to cause the display
monitor to “zoom” to a higher or lower position to
display a greater or smaller geographical area, with an
appropriate degree of resolution.

A fifth object of the present invention is to provide a
digital mapping method and system utilizing a unique

Unified Patents Exhibit 1005 App'x A-N

Page 131 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
7

mapping graticule system which allows mapping data
to be compatibly adopted from several widely utilized
mapping graticule systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, structures and fea-
tures of the present invention will become more appar-
ent from the following detailed description of the pre-
ferred mode for carrying out the invention; in the de-
scription to follow, reference will be made to the ac-
companying drawings in which:

FIG. 1 is an illustration corresponding to a flat pro-
jection of the earth’s surface.

FIG. 2 is an illustration of a digital computer and
mass storage devices which can be utilized in imple-
menting the present invention.

FIGS. 3A—3F are illustrations of monitor displays
showing the ability of the present invention to display
varying sizes of geographical areas at varying degrees
of resolution.

FIG. 4 is a cross-sectional diagram of a simple build-
ing example explaining the operation of the present
invention.

FIG. 5A and B are plan view representations of a
paper 450 as it is viewed from the relative viewing
position A shown in FIG. 4.

FIG. 6 is a plan view representation of a paper 450 as
it is viewed from the relative viewing position B shown
in FIG. 4.

FIG. 7 is a plan View representation of a paper 450 as
it is viewed from the relative viewing position C shown
in FIG. 4.

FIG. 8 is a pyramidal hierarchy of the data base file
structure showing an example of the ancestry which
exits between files.

FIG. 9A is a plan view representation of a paper 450,
with the paper being divided into a first level of quad-rant areas.

FIG. 9B is an illustration of a monitor displaying a
digital map of the area enclosed by the dashed portions
in FIG. 9A.

FIG. 10A is a plan view representation of a paper
450, with the upper—left and lower-right paper quadrant
areas being further divided into quadrants.

FIG. 10B is an illustration of a monitor displaying a
digital map of the area enclosed by the upper-left
dashed portion in FIG. 10A.

FIG. 11A is a plan view representation of a paper
450, with several sections of the second level of quad-
rants being further divided into additional quadrants.

FIG. 11B is a higher resolution display of the area
enclosed within the dashed portion in FIG. 11A.

FIG. 12 is a plan view illustration of a quadrant area
division, with a two-bit naming protocol being assigned
to each of the quadrant areas.

FIG. 13 is a pyramidal hierarchy of the data base files
using the two-bit naming protocol of FIG. 12, and
showing an example of the ancestry which exits be-
tween files.

FIG. 14 is a plan view illustration of a 360° >< 180° flat
projection of the earth being impressed in the
512° X 512° mapping area of the present invention, with
a first quadrant division dividing the mapping area into
four equal 250°><256° mapping areas.

FIG. 15 is the same plan view illustration of FIG. 14,
with a second quadrant division dividing the mapping
area into 16 equal 126°>< 128° mapping areas.

Page 131 of448

10

15

20

25

30

35

45

50

55

65

8 .

FIG. 16 is the same plan view illustration of FIG. 15,
with a third quadrant division dividing the mapping
area into 64 equal 64°><64° mapping areas.

FIG. 17 is the same plan view illustration of FIG. 16,
with a fourth quadrant division dividing the mapping
area into 256 equal 32°><32° mapping, areas.

FIG. 18 is the same plan view illustration of FIG. 17,
with a fifth quadrant division dividing the mapping area
into 1024 equal 16°>< 16° mapping areas.

FIG. 19 is the same plan view illustration of FIG. 18,
with a sixth quadrant division dividing the mapping
area into 4096 equal 8° >< 8° mapping areas.

FIG. 20 is an illustration showing the application of
polar compression at the 8th level or magnitude of reso-
lution.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS OF THE

INVENTION

Before turning to the detailed description of the pre—
ferred embodiments of the invention, it should be noted

that the map illustrations used throughout the drawings
are only crude approximations which are only being
used to illustrate important features and aspects and the
operation of the present invention; therefore. the geo-
graphical political and cultural outlines may very well
differ from actual outlines.

FIG. 1 is a crude representation of what the earth’s
surface would look like if it were laid flat and viewed

from a “relative viewing position” which is a great
distance in space. Shown as vertical lines are: 10, corre-
sponding to the 0° meridian extending through Green-
wich, England; 20, corresponding to the 180° west me-
ridian: and, 30, corresponding to the 180° east meridian.
Shown as horizontal lines are: 40, corresponding to the
equator: 50, corresponding to 90° north (i.e.. the north
pole): and 60, corresponding to 90° south (i.e.. the south
pole).

Note that at this “relative viewing position”, not
much detail as to cultural features is seen; i.e., all that is
seen is the general outline of the main geographical
masses of the continents.

The present invention seeks to provide a low cost and
efficient computer-based mapping method and system
having a unique approach for arranging and accessing a
digital mapping database of unlimited size, i.e., a map-
ping method and system which can manipulate and
access a data base having sufficient data to allow the
mapping system to reproduce digital maps of any geo-
graphical area with different degrees of resolution. This
can be most easily understood by viewing FIG. 2 and
FIGS. 3A—F.

Because of the overwhelming advantages over the
paper and analog mapping approaches, the digital map-
ping approach is utilized with the present invention;
thus, there is shown in FIG. 2, a digital computer 200,
having a disk or hard drive 280, a monitor 210, a key-
board 220 (having a cursor control portion 230), and a
mouse device 240. As mentioned previously, in a digital
mapping approach, mapping information is stored in a
format similar to the text of other databases, i.e., the
outstanding map features are stored as a list of objects to
be drawn, each object being defined by a plurality of
vector “dot” coordinates which define the crude out-

line of the object. (Note: the reproduction of a digital
map from a list of objects and “dot” vectors is well

known the art, and is not the subject matter of the pres-
ent invention; instead, the invention relates to a unique

Unified Patents Exhibit 1005 App'x A-N

Page 132 of 448 Unified Patents Exhibit 1005 App'x A-N

9

method and system for storing and accessing the list of
objects and “dot” vectors contained in a tremendous
digital data base.)

Once a geographical map has been “digitized”,—i.e.,
converted to a list of objects to be drawn and a plurality 5
of vector “dot" coordinates which define the crude

outline of the object —, the mapping database must be
stored in the memory of a mass storage device. Thus,
the digital computer 200, which is to be used with the
mapping method and system of the the present inven-
tion, is shown associated with the magnetic disk 260
(which represents any well-known magnetic mass stor-
age medium, e.g., floppy disks, hard disks. magnetic
tape, etc.), and the CD-ROM 270 (which represents any
well-known optical storage medium, e.g. a laser-read
compact disk). Alternatively, the digital mapping data-
base can be stored on, and the digital computer can be
associated with any well known electronic mass storage
memory medium (e.g., ROM, RAM, etc.). Because of
every increasing availability. reductions in cost, and 20
tremendous storage capacities, the preferred memory
mass storage medium is the CD-ROM, i.e., a laser-read
compact disk.

The discussion now turns to FIGS. 3A-F, showing
illustrations of monitor displays which provide a brief 25
illustration of the operation of the present invention.
Although the digital nature of the maps of FIGS.
3A-3F can easily be detected due to the jagged outlines,
it should be understood that these geographical outlines
could easily be smoothed using any of a number of 30
“smoothing" techniques which are well-known to those
skilled in the digital mapping art.

In FIG. 3A. the digital computer has retrieved rele-
vant mapping information from the digital mapping
database, and has produced a monitor display of a digi-
tal map substantially corresponding to the flat projec-
tion of the earth’s surface which was shown in FIG. 1.

In FIG. 3A, the monitor display reflects a “relative
viewing position” which is a great distance in space,
and hence, only the crude geographical outline of the 40
continents is shown with sparse detail.

Suppose a user wishes to view a map of the states of
Virginia and Maryland in greater detail. By entering the
appropriate commands using the keyboard 220 or the
mouse device 240, a user can cause the monitor display 45
to “zoom” to a lower “relative viewing position”, such
that the monitor displays a digital map of a smaller
geographical area which is shown at a higher degree of
resolution. Thus, in FIG. 3B the a digital map of the
continents of the western hemisphere is displayed in
greater detail.

By entering additional commands, a user can cause
the monitor display to further “zoom” to the following
displays: FIG. 3C showing North America in greater
detail; FIG. 3D showing the eastern half of the United
States in greater detail: FIG. 3E showing the east coast
of the United States in greater detail; and. FIG. 3F
showing Virginia and Maryland in greater detail.

Although in this example, the monitor display was
caused to “zoom” to Virginia and Maryland, it should,
be appreciated that the present invention allowed a user
to selectively zoom into any geographical area of the
earth, and once a user has reached the desired degree of
mapping resolution, the mapping system of the present
invention also allows the user to “scroll” or “fly” to a 65
different lateral position on the map.

Furthermore, although the drawings illustrate the
monitor display zooming to display state boundaries,

10

15

35

50

55

Page 132 of448

4,972,319 ,
10

and features, it should be further appreciated that the
present invention is by no means limited to this degree
of resolution. In fact, the degree of resolution capable
with the present invention will be shown to be limited
only by the operating system of the digital computer
200 with which the present invention is used. In one
demonstration, the monitor display has been shown to
be able to zoom to resolution where the outlines of

streets were displayed. Even further degrees of resolu-
tion are possible as will be more fully understood after
the discussions below.

In digitally mapping a large geographical area (e.g.,
the earth) in detail, —especially in the degree of resolu-
tion mentioned above —4, one should be able to appreci-
ate that the storage of digital mapping data sufficient to
accurately define all the geographical, political and
cultural features would represent a tremendous digital
mapping database. In order to provide a low cost map-
ping system having quick access time and allowing a
high degree of resolution, what is needed is a mapping
system having an effective approach for arranging an
accessing the digital database. Prior art mapping sys-
tems have been deficient in this regard.

The mapping system of the present invention utilizes
a new and extremely effective approach, which can be
most easily understood using the following simplified
example.

In FIG. 4, there is shown the cross-section of a build-

ing 400, with a square hole 410 (shown in cross-section)
cut through the third level floor 420. with a larger
square hole 430 (shown in cross-section) cut in the sec-

- ond level floor 440, and with a large square piece of
paper 450 (shown in cross-section) laid out on the first
level floor 460. Suppose it was desired to build up a
digital data base which could be used to reproduce a
digital map of the paper 450 with varying degrees of
resolution.

First, one would take the “relative viewing position”
A, and view the paper 450 through the square hole 410
in the third level floor 420. At this level. the paper 450
appears small (FIG. 5A), and the degree of resolution is
such that the message appears only as a series of dots. In
order to build up a digital mapping database, the visual
perception (FIG. 5A) is imagined to be divided into
four equal quadrants a, b, c, d (FIG. 5B), and visual
features appearing in each respective area is digitized
and stored in a separate database file. Thus, four sepa-
rate database files can be utilized to reproduce a digital
map of the paper 450 as viewed from position A (FIG.
4).

In order to digitize and record data corresponding to
a second (or higher) degree of resolution, the next “rela-
tive viewing position” B (FIG. 4) is taken to view the
paper 450 through the square hole 430. At this level, the
paper 450 appears larger (FIG. 6), and the degree of
resolution is such that the message now appears as a
series of lines. At this second level, the map is imagined
as being divided into four times as many areas as the
first imaginary division, and then, the visual information
contained within each area is digitized and stored in a
separate database file. Thus, 16 files can be used to
reproduce a digital map of the paper 450, as viewed
from the relative viewing position B (FIG. 4).

In order to digitize and record data corresponding to
a third (or higher) degree of resolution. the next “rela-
tive viewing position” C (FIG. 4) is taken to view the
paper 450. At this level, paper 450 now appears larger
(FIG. 7) and has visual features of higher resolution.

Unified Patents Exhibit 1005 App'x A-N

Page 133 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
11

The paper 450 is imagined as being divided into four
times as many areas as the second imaginary division,
and the visual information is digitized and stored. Thus,
64 files could be used to reproduce a digital map of the
paper 450, as viewed from the relative viewing position
C (FIG. 4).

Once digital data has been entered for the above three
“relative viewing positions” A, B, C (FIG. 4), the digi-
tal mapping database contains 4+ 16+64 or 84 files
which can be conceptually envisioned as being ar-
ranged in a pyramid structure as shown in FIG. 8. In
order to allow a user to selectively display any desired
map section at the desired degree of resolution, the
digital computer 200 must be able to know which of the
84 files to access such that the appropriate mapping data
can be obtained. The present invention accomplishes
this by conceptually arranging the files in a pyramidal
structure, and assigning a file name to each file which is
related both to the file’s position and ancestry within the
pyramidal structure. This can be more specifically de-
scribed as follows:

A file’s ancestry can be explained using the illustra-
tions of FIGS. 5B, 6 and 7. In FIG. 5B, the paper 450,
as viewed from “relative viewing position” A (FIG. 4),
is subjected to an imaginary division into four quadrants
a, b, c, and d. Quadrants a, b, c, d are related to one
another in the sense that it takes all four areas to repre-
sent the paper 450: hence quadrants a, b, c, d can be
termed as brothers and sisters.

FIG. 6 is an illustration of the paper 450 as it appears
from the relative viewing position B (FIG. 4). with the
paper 450 being subjected to an imaginary division into
16 areas. Note that the areas e, f, g, h (FIG. 6) represent
the same area of paper 450 as the quadrant a (FIG. 5B).
In effect, quadrant a has been enlarged (to show a
higher degree of resolution) and divided into quadrants
e, f, g, h. Thus, it can be said that quadrant a (FIG. 5B)
is the parent, and that quadrants e, f, g, h (FIG. 6) are
brothers and sisters and the offspring of ancestor a.
Similar discussions can be made for quadrants b, c and
d and the remaining area of FIG. 6.

FIG. 7 is an illustration of the paper 450 as it appears
from the relative viewing position C (FIG. 4). with the
paper 450 being subjected to an imaginary division into
64 areas. In a manner similar to the discussion above,
note that areas 3, t, w, x (FIG. 7) represent the same area
of paper 450 as the quadrant h (FIG. 6). In effect, quad—
rant h has been enlarged (to show a higher degree of
resolution) and divided into quadrants s, t, w, x. Thus, it
can be said that quadrant a (FIG. 5B) is the grandpar-
ent, quadrant h (FIG. 6) is the parent, and quadrants s,
t, w, x (FIG. 7) are the brothers and sisters and offspring
of ancestors a and h.

As described previously, once FIGS. 5B, 6 and 7 are
subjected to the imaginary divisions, the visual informa-
tion in each area (or quadrant) is digitized and stored in
a separate file. The 84 resulting files can be conceptually
envisioned as the pyramidal structure shown in FIG. 8.
In FIG. 8, dashed lines are utilized to show the lineage
of the files just discussed.

FIG. 8 is further exemplary of one file naming opera-
tion which can be utilized with the present invention.

At the top of the pyramidal structure (FIG. 8). each
of the four quadrant files is arbitrarily assigned a differ-
ent character. A, B, C, D, (Note: The characters as-
signed are not critical with regard to the invention and
hence it should be noted that any characters can be
assigned, e.g., 0,1,2,3, etc.)

Page 133 of448

10

15

20

25

30

35

45

50

55

65

12

In moving down one level in the pyramidal struc-
ture,, the filenames for each of the respective files on the
second level is increased to two characters.

In calculating the filenames, it is convenient to first
divide the second level files into groups of four, accord-
ing to parentage. To maintain a record of ancestry, the
ancestor filename of each file is maintained as the first

part of the filename. In determining the second part, the
naming protocol which was utilized to name the quad-
rant files of the top level, is also utilized in naming the
respective quadrant files on the second level. Thus,
parent file A is shown as being related to descendent
(i.e., brother and sister) files AA, AB, AC, AD. Similar
discussion can be made for the remaining files along
these two level.

A similar process can be utilized in providing the
unique filenames to the third level files. At this level, the
filenames consist of three characters. Again, the ances-
tor filename of each file would be maintained as a first

filename part, in order to maintain a record of ancestry.
In the example illustrated (FIG. 8), parent file AD is
shown as being related to descendent (i.e., brother and
sister) files ADA, ADB, ADC, ADD. Similar discus-
sions can be made for the remaining files along these
two levels, and furthermore, similar discussions can be
made each time a pyramidal level is added.

From the above discussion, one should be able to
realize that the aboveedescribed naming convention is
particularly useful in programming a digital computer
to move through the pyramidal file structure to access
the appropriate data corresponding to varying degrees
of resolution. More particularly, one should be able to
realize that, since file names increase one character in
length each time there is a downward movement
through the pyramidal structure and the protocol for
naming descendent files is known, the digital computer
can be programmed to quickly and easily access the
appropriate files for a smaller mapping area with a
greater degree of resolution. Similarly, one should be
able to realize that, since the filenames decrease one

character in length each time there is. an upward move-
ment through the pyramidal structure, the digital com-
puter can be programmed to quickly and easily access
the appropriate files for a greater mapping area with a
smaller degree of resolution.

The following example is believed to provide an
increase in the understanding of the present invention.

In the example, it is assumed that the digital database
corresponding to the three resolutions of the paper 450
(as shown in FIGS. 4, 5A—B, 6, 7) have been loaded to
be accessible from the memory mass storage device, and
furthermore, it is assumed that the mapping system is
programmed to initially access and display a digital map
corresponding to the digital mapping data in the files A,
B, C, D (FIG. 8). Thus, the monitor (FIG. 9B) would
display (in low resolution) the entire area enclosed
within dashed portion 900 illustrated on the paper 450
(FIG. 9A). (Note: The reproduction of a digital map
from digital data from several different files or sources
is well-known in the art and is not the subject matter of
the present invention.)

Suppose the user notices the dotted area on the low
resolution map and wishes to investigate this area fur-
ther. By using the appropriate keys (e.g. \ , , 1' , \)
and/or a mouse device, a user can give the mapping
system an indication that he/she wishes to see the

smaller area (i.e., quadrant A) at a higher degree of
resolution. Upon receiving this preference, the mapping

Unified Patents Exhibit 1005 App'x A-N

Page 134 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
13 ‘

system can use its knowledge of the file naming opera-
tions to quickly determine the names of the files which
must be accessed. More specifically, using A as the
parent file name and following the existing quadrant
naming protocol the mapping system is quickly and
easily able to calculate that it is files AA, AB. AC, AD
which it needs to access. Once these files are accessed,
the monitor in FIG. 10B displays (in higher resolution)
the area enclosed within the dashed portion 1000 as
illustrated on the paper 450 (FIG. 10A).

If a user is still not satisfied with the degree of map-
ping resolution, the user can again use the appropriate
keys or mouse device to indicate that he/she wishes to
see the smaller area (e.g., quadrant D; FIG. 10A) in a
higher degree of resolution. In using AD as the parent
filename and following the existing quadrant naming
protocol, the mapping system is quickly and easily able
to calculate that it is files ADA, ADB, ADC, ADD
which it needs to access. Once these files are accessed,
the monitor (FIG. 11B) displays (in higher resolution),
the area enclosed within the dashed portion 1100 as
illustrated on the paper 450 (FIG. 11A).

One skilled in the digital mapping and computer pro-
gramming art should recognize that “scrolling” or “fly-
ing” to different lateral “relative viewing positions” to
display a different lateral portion of the map is also
provided by the present invention. Instead of adding or
removing filename characters as in a change of resolu-
tion, in this instance, the mapping system must be pro-
grammed to keep track of the filenames of the current
position and also, the orderly arrangement of filenames
so that the appropriate filenames corresponding to the
desired lateral position can be determined. As an exam-
ple if the user desired to scroll to the right border of the
paper 450, the mapping system would respond by ac-
cessing and causing the monitor to display the digital
maps corresponding to the following sequence of files:
(Note: In this example, it is assumed that it takes 4 files
to provide sufficient digital data to display a full digital
map on a monitor) ADA, ADB, ADC, ADD; ADB,
ADD, BCA, BCC; BCA, BCB, BCC, BCD; BCB,
BCD, BDA, BDC; and BDA, BDB, BDC, BDD. If the
user, then desired to scroll to the bottom (right corner)
of the paper 450, the mapping system would respond by
accessing and causing the monitor to display the digital
maps corresponding to the following files: BDA, BDB,
BDC, BDD; BDC, BDD, DBA, DBB; DBA, DBB,
DBC. DBD; DBC, DBD, DDH, DDB; DDA, DDB,
DDC, DDD. In effect as all of the files in the above
example correspond to the same level of resolution all
these files (and any group of files which exist on the
same level of resolution) can be taken as being related as
cousins.

FIGS. 9A, 10A, 11A can also be used to illustrate the

operation of moving toward the display of a larger
mapping area with a lower degree of resolution.

Assume that after lateral “scrolling” or “flying”, that
the monitor is now displaying (not shown) a digital map
corresponding to the enclosed area 1110 shown in FIG.
11A. (Note: at this position the mapping system is ac-
cessing and display a digital map corresponding to the
digital data in the files DCA, DCB, DCC, DCD). Sup-
pose the user now wishes to cause the “relative viewing
position” to zoom upward, such that the monitor will
display a larger portion of the paper 450 at a lower
degree of resolution. By using the appropriate keys or a
mouse device, the user indicates his/her preference to
the mapping system. Upon receiving this preference,

Page 134 of448

10

15

20

25

30

35

45

50

55

65

14

the mapping system is programmed to quickly deter-
mine the names of the files which must be accessed.

More specifically, the mapping system is able to look at
the first portion of the filenames currently being used
(i.e., DCA, DCB, DCC, DCD), to immediately deter-
mine that these files have the ancestry DC, i.e., have a
grandfather D and a parent DC. The mapping system
then immediately determines brother and sister files of
parent file DC as being DA, DB and DD. The mapping
system then accesses these files and causes the monitor
to display a digital map (not shown) corresponding to
the enclosed portion 1010 (FIG. 10A) of the paper 450.

Suppose the user again indicate a preference to cause
the “relative viewing position” zoom upward. Upon
receiving this preference, the mapping system again
goes through a process similar to that discussed immedi-
ately above. However, this time the mapping system
looks at the filenames currently being used (i.e., DA,
DB, DC, DD) and determines that parent file D has
brother and sister files A, B and C. The mapping system
then immediately accesses these files and cauSes the
monitor to display a digital map (FIG. 9B) correspond-
ing to the enclosed portion 900 (FIG. 9A) of the paper
450.

The text now turns to a description of the operation
for assigning unique filenames in the currently preferred
embodiment, i.e., in a digital mapping system which is
implemented in a DOS operating system.

As anyone skilled in the computer art will know.
every computer operating system has its own unique set
of rules which must be followed. In an implementation
of the present invention in a DOS operating system. the
DOS rules must be followed. Since a critical feature of

the present invention is the division of the digital map-
ping database into a plurality of files (each having a
unique filename), of particular concern with the present
invention is the DOS rules regarding the naming of
filenames.

A DOS filename may be up to eight (8) characters
long, and furthermore. may contain three (3) additional
trailing characters which can represent a file specifica-
tion. Thus, a valid DOS filename can be represented by
the following form:

where can be replaced by any ASCII character
(including blanks), except for the following ASCII
characters:

a n

.“/\ [1:1 < > +;,
and ASCII characters below 20H. The currently pre-
ferred embodiment stays within these DOS filename
rules by using the file naming operations which are
detailed below.

Because the assigned filenames will be seen to be
related to hexadecimals, a useful chart containing the
hexadecimal base and also a conversion list (which will
be shown to be convenient ahead), is reproduced below:

 Column 1 Column 2 Column 3

0000 0 G
0001 1 H
0010 2 I
0011 3 J
0100 4 K
0101 5 L
0110 6 M

Unified Patents Exhibit 1005 App'x A-N

Page 135 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319

15

-continued

Column 1 Column 2 Column 3

0111 7 N
1000 8 O
1001 9 P
1010 A Q
1011 B R
1100 C S
1101 D T
1110 E U
1111 F V

The first column contains a list of all the possible 4-bit
binary combinations: the second column contains the
hexadecimal equivalent of these binary numbers: and
the third column concerns a “mutant-hex” conversions

which will be shown to be important in the discussion to
follow. In the operatidns to assign unique filenames for
use in a DOS operating system, the present invention
looks at each of the eight DOS filename characters as
hexadecimal characters rather than ASCII characters.

Hence, while the following discussion will center
around determining unique filenames using hexadecimal
(and “mutant-hexadecimal”) characters, it should be
understood in an actual DOS implementation, the hexa-
decimal filenames must be further converted into the

equivalent ASCII characters such that the appropriate
DOS file naming rules are followed.

At this point, it is also useful to note that the file
naming operation of the preferred embodiment is not
concerned with the trailing three character filename
extension. However, it should be further noted that this
three character filename extension may prove useful in
specifying data from different sources, and allowing the
different types of data to reside in the same database. As
examples, the filename extension “.spm” might specify
data from scanned paper maps, the filename extension
“.si” might specify data from satellite imagery, the file-
name extension “.ged” might specify gridded elevation
data, etc.

As a result of the foregoing and following discus-
sions, it will be seen that the naming operation of the
preferred embodiment is concerned only with a file-
name of the following form:

n

where each “— represents a character which is a hexa-
decimal character within the character set of “0—9” and
“A—F”, or is a “mutant-hexadecimal” character within
the character set of “G-V”.

Several more important file naming details should be
discussed.

First, it should be pointed out that the first four (4)
filename characters is designated as corresponding to
the “x” coordinate characters, and the last four (4) file-
name characters are designated as corresponding to the
“y” coordinate characters.

Second, during the file naming operations, often it is
necessary to convert the filename characters into the
equivalent binary representation. As each hexadecimal
character can be converted into a four bit binary num-
ber, it can be seen that the first four (4) filename charac-
ters (designated as “x” coordinate characters) can be
converted into sixteen (16) binary bits designated as “x”
bits, and similarly, that the last four (4) filename charac-
ters (designated as “y” coordinate characters) can be
converted into sixteen (16) binary bits designated as “y”
bits. As will become more apparent ahead, each of these

Page 135 of448

10

15

20

25

30

35

45

50

55

65

16

sixteen (16) “x” and “y” bits corresponds to a filename
bit which can be manipulated when assigning filenames
at a corresponding magnitude or level of mapping reso-
lution, e.g., the first “x” and first “y” bits correspond to
filename bits which can be manipulated when assigning
unique filenames at the first magnitude, the second “x”
and second “y” bits correspond to filename bits which
can be manipulated when assigning unique filenames at
the second magnitude, etc.

Third, FIG. 12 corresponds to the naming protocols
which are utilized to modify and relate a parent file-
name to four (4) quadrant filenames. Note that there is
a two-bit naming protocol in each of the quadrant files.
As will become more clear ahead, the first bit of each
protocol determines whether the current “x” filename

bit will be modified (i.e., if the first protocol bit is a “l”,
the current “x” filename bit is changed to a “1”, and if
first protocol bit is a “0”, the current “x” filename bit is
maintained as a “0”), and the second bit determines
whether the current “y” filename bit will be modified
(in a similar manner).

The text now turns to a file naming example which is
believed to provide further teachings and clarity to the
currently preferred file naming operation.

FIG. 13 is an illustration of a portion of the preferred
digital data base, with the plurality of files (partially
shown) being arranged in a conceptual pyramidal man-
ner in a manner similar to that which was described

with reference to FIG. 8. More specifically, there are
shown four files 1300 having digital data corresponding
to a first level or magnitude of mapping resolution,
sixteen files 1310 having digital data corresponding to a
second level or magnitude of mapping resolution, sixty-
four files 1320 having digital data corresponding to a
third level or magnitude of mapping resolution, and a
partial cut-away of a plurality of files 1330 having data
corresponding to a fourth level or magnitude of map-
ping resolution. Although not shown, it is to be under-
stood that, in the preferred embodiment, additional
pyramidal structure corresponding to levles magnitudes
five through sixteen similarly exist. As examples of the
file naming operation, filenames will now be calculated
for the files which essentially occupy the same positions
as the files which were outlined in FIG. 8.

We begin with the initializing eight (8) character
filename:

which can be converted to the binary equivalent:

00000000000000000000000000000000

This binary representation is the basic foundation which
will be used to calculate all of the filenames for the files

on the first level (1300). Note, that the first and last four
filename characters, and the first and last sixteen bits are

slightly separated in order to conveniently distinguish
the “x” and “y” coordinate characters and bits. Both the

first (leftmost) “x” bit and the first (leftmost) “y” bit are
the bits which can be manipulated in assigning a unique
filename to the files on the first level.

File naming begins with the first (upper-rightmost)
file on the first level 1300. The naming protocol as-
signed to this quadrant file is the two-bit protocol “10”.

Unified Patents Exhibit 1005 App'x A-N

Page 136 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
17

As the first protocol bit is a “1”, this means that the
current “x” bit must be changed to a “1”. As the second
protocol bit is a “0”, this means that the current “y” bit
is maintained as a “0”. As a result of the foregoing, the
first (upper-rightmost) file is assigned the filename hav- 5
ing the binary equivalent of:

10(X)00000000 0000 0000 0000 0000 (1)00

10

which can be converted to the hex characters:

15

In proceeding clockwise, next is the second (lower-
rightmost) file on the first level 1300. The naming pro-
tocol assigned to this quadrant file is the two-bit proto-
col “11”. As the first protocol bit is a “1”, the current
“x” bit is changed to a “l”: similarly, as the second
protocol bit is a “l”, the current “y” bit is changed to a
“1”. As a result of the foregoing, the second (lower-
rightmost) file is assigned the filename having the bi-
nary equivalent of:

20

25

10000000(XXX) 00001000 0000 0000 0000

which can be converted to the hex characters:
30

Continuing clockwise, next is the third (lower-left-
most) file on the first level 1300. The naming protocol
assigned to this quadrant file is the two-bit protocol
“01”. As the first protocol bit is a “0”, the current “x”
bit is maintained at 0. As the second protocol bit is a
“1”, the current “y” bit is changed to a “1”. As a result
of the foregoing. the third (lower-leftmost) file is as- 40
signed the filename having the binary equivalent of:

35

1000 (D00 0000 0000

oooooooooooooooo

which can be converted to the hex characters: 45

Finally, there is the fourth (upper-leftmost) file on the 50
first level 1300. The naming protocol assigned to this
quadrant is the two-bit protocol “00”. As neither of the
protocol bits is a “1”, it can be easily seen that neither of
the current “x” and “y” bits changes, and hence, the
fourth (upper-leftmost) file is assigned the filename 55
having the binary equivalent of:

000000000000(X)00000000000(X)00000

which can be converted to the hex characters:

65

In further discussions of the example, it is important
to note that the initializing (8) character filename of
0000 0000 (which was utilized to calculate the filenames

Page 136 0f448

18

of the files on the first level 1300) is not utilized in as-
signing filenames on subsequent levels. In naming files
from the second level or magnitude downward, the
binary equivalent of the parent file’s name is utilized as
the foundation from which the descendent file’s name is

derived. It is only coincidental that the filename of the
parent file 00000000 (located in the user-left most cor-
ner of the first level 1300) is the same as the initializing
filename. Use of the parent’s filename to calculate the
descendent’s filename will become more readily appar-
ent ahead in the example.

In continuing the file naming example, the fourth
(upper-leftmost) file (having filename 00000000) in the
first level 1300 can be viewed as being the parent file of
the four (highlighted) quadrant files in the second level
1310. As stated above, the binary equivalent of parent
file’s 00000000 name is utilized as the foundation for

calculating the descendent file’s filenames. At this sec-
ond level or magnitude, the second “x” and “y” bits
from the left in the parent’s binary filename are taken as
the “current” bits which can be manipulated to provide
a unique filename for the descendent files.

As the calculation of the filename for the fourth (up-
per-leftmost) file of the second level 1310 illustrates a
very important modification in the file naming opera-
tion, the example will first continue with discussions
corresponding to this file. ,

As the naming protocol assigned to the fourth (upper-
leftmost) file of the second level 1310 is two-bit proto-
col “00”, it can be seen that neither of the current “x”

and “y” bit would be changed. Hence the parent’s file-
name 00000000 is unchanged, and is attempted to be
adopted as the descendent’s filename. However, note
that this is extremely undesirable as the operation of the
present invention is based on assigning each data file a
unique filename, and furthermore, a DOS operation
system will not allow the same filename to be assigned
to two different files. To avoid this clash. the preferred
file naming operation of the present invention incor-
prates a further step which can be detailed as follows:

First calculate the filename as explained above. Once
the binary filename is obtained, convert to the eight
character hexadecimal equivalent.

Next, take the decimal number of the current level or
magnitude and subtract one (1) to result in a decimal
magnitude modifier. Convert the decimal magnitude
modifier into a four-bit binary magnitude modifier, and
line these four bits up with the four hexadecimal “x”
filename characters. Whenever a “1” appears in the
binary magnitude modifier. the corresponding aligned
“x” filename character is converted to a “mutant-hex-

adecimal” character. Le, a decimal 16 value is added to

convert the aligned filename character into a one of the
“mutant-hexadecimal” characters in the character set of
6‘G_V!,'

Conversions from a hexadecimal character to a “mu-

tant-hexadecimal” character can be most readily made
using the chart detailed above. As an example, if deci-
mal 16 is added to the hex character “0” (Column 2),
there is a conversion to the “mutant-hexadecimal” char-

acter “G” (Column 3). Similarly, if decimal 16 is added
to the hex character “1” (Column 2), there is a conver-
sion to the “mutant-hexadecimal” character “H” (Col-
umn 3). Similar discussion can be made for the remain-
ing hex and “mutant-hexadecimal characters in the
chart.

Once correspondingly aligned filename characters
are converted to “mutant-hexadecimal”, the resultant

Unified Patents Exhibit 1005 App'x A-N

Page 137 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
19

eight (8) characters correspond to the file’s unique file-name.

The above processing will now be applied to the
fourth (upper—rightmost) file of the second level 1310
(which was recently discussed above). The resultant 5
binary filename:

00000000000000000000000000000000

10

is converted to the hex characters:

15

The level or magnitude two (2) minus one (1) results in
a decimal magnitude modifier of one (1). The decimal
magnitude modifier is converted to the four-bit binary
equivalent and is aligned with the “x” filename charac-
ters above, as follows: 20

Only the fourth bit of the binary magnitude modifier is 25
a “1”, so only the fourth “x” filename character needs
to be converted to “mutant-hexadecimal”. From the

chart, the hexadecimal character “0” is shown to con-
vert to a “mutant-hexadecimal” character “G”. Thus.

the unique filename which is assigned to the fourth 3O
(upper-leftmost) file of the second level 1310, is:

G 0 0 0 0.

35

In continuing the example to calculate the filename
for the first (upper-right-quadrant) file of the second
level 1310. it can be seen that this file is assigned the
two-bit naming protocol “10”. The first protocol bit is a
“1” which indicates that the current (second from the
left) “1;” bit of the parent file’s binary filename must be
changed to a “1”, In contrast, the second protocol bit is
a “0”, which indicates that the current (second from the
left) “y” bit is maintained as “0” Thus the parent file-
name: 45

00000000000000000000000000000000

is converted to: 50

010000000000 0000 0000 0000 0000 0000

which results in the hex characters: 55

The level or magnitude two (2) minus one (1) results in 60
a decimal magnitude modifier of one (1). The decimal
magnitude modifier is converted to the four-bit binary
equivalent and is aligned with the “x” filename charac-
ters above, as follows:

65

Page 137 0f448

20

Only the fourth bit of the binary magnitude modifier is
a “1”, so only the fourth “x” filename character needs
to be converted to “mutant-hexadecimal”. From the

chart, the hexadecimal character “0” is shown to con-
vert to a “mutant-hexadecimal” character “G”. Thus,

the unique filename which is assigned to the first (upper-
right-quadrant) file of the second level 1310, is:

G 0 0 0 0.

Turning now to the second (lower-right-quadrant) file,
this file is assigned the two-bit naming protocol “11”.
The first protocol bit is a “1” which indicates that the
current (second from the left) “x” bit of the parent file’s
binary filename must be changed to a “1”, and similarly,
the second protocol bit is a “l”, which indicates that the
current (second from the left) “y” bit of the parent file’s
binary filename must be changed to a “1” Thus the
parent filename:

0000000000(X)00000000000000000000

is converted to:

0100 0000 0000 0000 0100 0000 0000 0000

which results in the hex characters:

The level or magnitude two (2) minus one (1) results in
a decimal magnitude modifier of one (1). The decimal
magnitude modifier is converted to the four-bit binary
equivalent and is aligned with the “x” filename charac-
ters above, as follows:

Only the fourth bit of the binary magnitude modifier is
a “1”, so only the fourth “x” filename character needs
to be converted to “mutant-hexadecimal”. From the

chart, the hexadecimal character “0” is shown to con-
vert to a “mutant-hexadecimal” character “G”. Thus,
the unique filename which is assigned to the second
(lower-right quadrant) file of the second level 1310, is:

G 4 0 0 0.

In applying the above operations to the third (lower-
left-quadrant) file of the second level 1310, it can be
easily calculated that the resultant filename is:

G 4 0 0 0.

The example of the file naming operation is further
extended to the third level or magnitude. as this exam-
ple is illustrative of both the use of the parent file’s
binary filename to calculate the descendent’s filename,
and the removal of “mutant-hexadecimal” conversions

before calculating the descendent’s filename.

Unified Patents Exhibit 1005 App'x A-N

Page 138 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
21

In FIG. 13. the third (lower-right-quadrant) file of
the second level 1310 is shown as being the parent of the
four (4) quadrant files highlighted in the third level or
magnitude 1320.

The discussion centers on the calculation of the

unique filename for the second (lower-right—quadrant)
file in the third level 1320. Before the parent filename
can be used as the foundation for calculating the descen-
dent’s filename. all “mutant-hexadecimal” conversions

must be removed. Thus the parent filename:

4 o o G 4 0 o o

is converted back to:

4 0 0 0 4 0 o 0

which is further converted to the binary equivalent:

0100 (XXX) (XXX) 0(XX) 0100 ONO 0000 0000

In continuing the calculation, this second (lower-
right—quadrant) file is assigned the two-bit naming pro-
tocol “11”. The first protocol bit is a “l” which indi-
cates that the current (third from the left) “x” bit of the
parent file’s binary filename must be changed to a “1”,
and similarly, the second protocol bit is a “l”, which
indicates that the current (third from the left) “y” bit of
the parent file’s binary filename must be changed to a
“1”. Thus the parent filename:

01(X) 0000 0000 (XXX) 0100 0000 0(XX) 0000

is converted to:

0110 0WD (XXJO 0(X)0 0110 0000 0000 0000

which results in the hex characters:

The level or magnitude three (3) minus one (1) results in
a decimal magnitude modifier of two (2). The decimal
magnitude modifier is converted to the four-bit binary
equivalent and is aligned with the “x” filename charac-
ters above, as follows:

Only the third bit of the binary magnitude modifier is a
“1”, so only the third “x” filename character needs to be
converted to “mutant-hexadecimal”. From the chart,
the hexadecimal character “0” is shown to convert to a
“mutant-hexadecimal” character “G”. Thus, the unique
filename which is assigned to the second (lower-right-
quadrant) file of the third level 1320, is:

Page 138 of448

10

15

20

25

30

35

45

50

55

65

22
The filenames for several additional third level files

will be given to give the patent reader further practice.
In applying the above operations to the first (upper-

right-quadrant) file of the third level 1320, it can be
easily calculated that the resultant filename is:

G 0 4 0 O 0.

In applying the above operations to the third (lower-
left-quadrant) file of the third level 1320, it can be easily
calculated that the resultant filename is:

G 0 6 0 0 0.

Finally, in applying the above operations to the
fourth (upper-left-quadrant) file of the third level 1320,
it can be easily calculated that the resultant filename is:

As a result of all of the foregoing teachings, one
skilled in the art should now be able to calculate the

filename of any other of the 1.4 billion files which
would be required to provide digital maps correspond-
ing to sixteen (16) resolutions of any geographical area
on earth. Furthermore, once a file is being accessed, by
understanding the rules and operations of the file nam-
ing operation one skilled in the are should be able to
calculate any other related files, i.e., parent files. and
brother/sister/cousin files.

While the unique approach for storing and accessing
files in the pyramidal file structure has been particularly
pointed out. further discussion is needed as to an addi-
tional advantageous feature of the present invention.

As mentioned previously, the creation of a digital
database is a very tedious, time consuming and expen-
sive process. Tremendous bodies of mapping data are
available from many important mapping authorities, for
example, the U.S. Geological Survey (USGS), Defense
Mapping Agency (DMA), National Aeronautics and
Space Administration (NASA), etc.

The maps and mapping information produced by the
above recited agencies, is always based on well estab-
lished mapping area divisions. As a few examples, the
Defense Mapping Agency (DMA) produces maps and
mapping information based on the following mapping
areas: GNC maps which are 2°X2°z JNC maps which
are 1°>< 1°; ONC maps which are 30’X30’: TPC maps
which are 15’X15'; and JOG maps which are 7.5'X7.5’.
As a further example, the U.S. Geological Survey
(USGS) also produces maps and utilizes mapping infor-
mation based on 15’X 15’ and 7.5’X7.5’.

In terms of both being able to easily utilize the map-
ping data produced by these agencies, and represent an
attractive mapping system to these mapping agencies, it
would be highly desirable for the mapping system of the
present invention to be compatible with all of the map-
ping formats used by these respective agencies. Such is
not the case when the mapping database is based on a
graticule system corresponding to 360'

If one were to apply multiple quadrant divisions to
the 360° >< 180° flat map projection of the earth (FIG. 1).
one would result in the following mapping area subdivi-srons:

Unified Patents Exhibit 1005 App'x A-N

Page 139 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319

23

Level of quadrant div.: Resultant mapping area:

1 (4) 180° X 90“
2 (16) 90' X 45"
3 (64) 45" X 225'
4 (256) 22.5° X 11.25°
5 (1024) 11.25° X 5.625“

etc.

Note that these mapping area subdivisions are very
awkward, and do not match any of the well settled
mapping area subdivisions. (It should be further noted
that no better results are obtained if the initial map
projection is imagined as. being a 360°X360° square
instead of a rectangle.)

In order to avoid these awkward mapping subdivi-
sions, and result in quadrant divisions which precisely
match widely used mapping area subdivisions, the pres-
ent invention utilizes a unique initial map projection.

More specifically, as can be seen in FIG. 14, the pres-
ent invention initially begins with a unique 512° X512°
initial map projection. Shown centered in the
512°X512° map projection is the now familiar
360°X 180° flat projection of the surface of the earth.
Although the 512°X512° projection initially appears
awkward and a waste ofmap projection space, the great
advantages which are resultant from the use of this
projection will become more apparent in the discussions
to follow.

To aid in this discussion, provided on the next page is
a chart which details these important advantages as well
as other useful information regarding the use of this map
projection.

10

15

20

25

3O

24

less complicated, the non-DOS file naming operation
will be used in the discussion.

The digital mapping of the earth surfaces begins in
FIG. 14. The visual perception of the earth surfaces is
experienced as being centered, and occupying only a
portion of the 512°X512° projection. A first quadrant
division is applied to result in four equal 256°X256°
mapping areas. The visual information in each of the
areas is digitized, and stored in a separate file, Thus, it
can be seen that one would have to access four files a, b,

c, d in order to reproduce a digital map corresponding
to the earth surfaces as viewed from this “relative view-

ing position.”
One skilled in the art, might, at this point, wonder if

the massive blank portions of the 512°X512° projec-
tions result in large blank portions on the digital map
display. The preferred embodiment avoid this phenom-
ena, through a simple watchdog operation, i.e., the
computer is programmed to keep track of longitudinal
and latitudinal movements from an initial position of 0°
longitude and 0° latitude, and the computer does not
allow scrolling of the monitor display beyond 90° north
or south.

As to side to side movements, the computer allows
scrolling beyond 180° east or west by patching the ap-
propriate data files together to perform a “wrap
around” operation. Note that, with the knowledge of
the logical file naming operation, the computer can
quickly and easily calculate the appropriate files toaccess.

Before moving to the next level or magnitude of
mapping resolution, it is beneficial to note the corre-
spondence between our findings and the enties in the

MAGNITUDE EQUIVALENCY CHART FOR DELORME PROJECTION
Chart assumes 69 statute miles per degree at eguator

Ht of
MAG- window Ht of #

NI- Window Size statute window Windows
TUDE without overlap miles kilometers per MAG———————-—-—————————_——.——_——___——_

1 256° X 256° 17664 28421 4
2 128° X 128° 8832 14211 8
3 64° X 64° 4416 7105 24
4 32° X 32° 2208 3553 72
5 16° X 16° 1104 1776 288
6 8° X 8° 552 888 1152
7 4° X 4° 276 444 4232
8 2° X 2° 138 222 16200
9 1' X 1° 69 111 64800

10 30' X 30’ ' 34.5 55.5 259000
11 15' X 15’ 17.25 27.8 1036800
12 7.5’ X 7.5’ 8.625 13.9 4147200
13 3.75' X 3.75’ 4.312 6.9 16588800

14 1.875' X 1.875’ 2.156 3.5 66355200

15 0.9375' X 0.9375’ 1.078 1.7 265420800

16 0.46875’ X 0.46875' 0.539 0.9 1016683200

#
Windcws/

MAG Pixel Data reso- Size of
w/polar resolution lution (ft) Equivalent paper map

com- 480 monitor 1024-based Paper Map image at
pression (ft) window Scales equator (in)

4 91080
8 45540

24 48576 22770 1:100 million 2.8 X 2.8
72 24288 11385 1:50 million 2.8 X 2.8

288 12144 5693 1:30 million 2.3 X 2.3
858 6072 2846 1:16 million 2.2 X 2.2

3432 3036 1423 1:10 million 1.7 X 1.7
12808 1518 712 1:5 million 1.7 X 1.7
51210 759 356 1:2 million 2.2 X 2.2

204840 380 178 1:1 million 2.2 X 2.2
813600 190 89 1:500,000 2.2 X 2.2

3277440 95 44 1:250,000 2.2 X 2.2
13109760 47.4 22 1:125,000 2.2 X 2.2

. 1:100,000 2.73 X 2.73
1280,000 3.4 X 3.4

52439040 23.7 11.1 1:62.500 2.2 X 2.2
1:50,000 2.73 X 2.73
1:40,000 3.4 X 3.4

209756160 11.9 5.6 l:24,000 2.8 X 2.8
1220,000 3.4 X 3.4

839024640 5.9 2.8 1:12,000 2.8 X 2.8

The best way to see the advantages of the 512° X 512°
mapping projection, is to use it with the previously,
taught, quadrant division and pyrimidal file structure to
show how this unique mapping projection can provide
digital maps of any geographical areas of the earth, with
16 levels or magnitudes of resolution. As it is slightly

Page 139 0f448

65

above-indicated chart.

In looking at the left-most column, and tracing down
to magnitude 1, note that the 256°X256° window size
exactly matches our determination. Furthermore, note
that our findings is also in agreement with the number '
of widows i.e., 4. It is also interesting to note from the
third column, that the height or “relative viewing posi-

Unified Patents Exhibit 1005 App'x A-N

Page 140 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
25

tion” of this magnitude or level would be 17, 664 statute
miles above the earth’s surface.

Turning now to the second level or magnitude of
resolution (FIG. 15). a further quadrant division is ap-
plied, resulting in sixteen (16) mapping areas of
128° X 128‘. The respective filenames which are as-
signed to each of the mapping areas is shown. In view-
ing FIG. 15, note that there are eight (8) mapping areas
which are not intersected by the earth’s surface. In
order to save valuable memory space, the preferred
embodiment will ignore, and in fact will never create
these files. Note that there is no use for these files as

they do not contain any digital mapping data nor will
they ever have any descendents which hold mapping
data. In order to implement this “file selectivity”, the
preferred embodiment again utilizes a watchdog ap-
proach. More specifically, as the computer already
knows the degree (°) size of the earth’s surface and the
degree (°) size of each of the mapping areas (i.e., at each
level or magnitude of resolution), it can be seen that the
computer can easily calculate the filenames which will
not intersect the earth’s surface.

Again it is useful to correspond our findings with the
entries in the chart.

Our findings are substantiated, as, at a magnitude of 2,
the window size is shown as being 128'X128’, and
there are shown to be eight (8) pertinent windows or
files at this magnitude. Again, it is interesting to note
that the height or “relative viewing position” of this
window would be 8,832 statute miles above the earths
earth’s surface.

It is important to note that, although the “relative
viewing position” of each level or magnitude is moving
closer to the earth, the visual perception of the earth (as
seen in FIGS. 14—19 is not illustrated as getting larger
with a greater degree of detail. This is because or the
paper size limitations.

In the third level or magnitude of resolution (FIG.
16). a further quadrant division is applied, resulting in
sixty-four (64) mapping areas of of 64°><64°. As the
projection is beginning to represent a large plurality of
mapping areas, the filenames have been ommitted.
However, it should be understood that the filename
assigned to a respective file in this and subsequent de-
grees of resolution, can easily be calculated by follow-
ing the previously described file naming operation. In
this projection, it can be seen that 40 mapping areas or
files are not used, resulting in 24 files which contain the
digital mapping data of this resolution. Note that the
observed window, and used files again correlates to the
entries in the chart. Furthermore, it can be seen that the

height or “relative viewing position” is at 4,416 statute
miles above the earth.

Further quadrant divisions and the corresponding
data can be seen in the FIGS. 17—19 and the chart. From

the foregoing discussions, prior teachings, and data
from the chart, one skilled in the art should be able to
quickly appreciate that a mapping system can be con-
structed which can provide digital maps corresponding
to a plurality of resolutions, of any geographical area of
the world.

The chart can now be used to observe the tremen-

dous advantage provided by the 512’ X 512° projection.
In the second column of the chart, one can view the

sizes of the mapping area divisions which are produced
as a result of the continued quadrant division of the
512°x512° projection. One skilled in the mapping art
will be able to fully appreciate that the resultant map-

Page 140 of 448

10

15

20

25

30

35

40

45

50

55

60

65

26

ping area divisions exactly correspond to well settled
and widely used mapping area formats.

Having described all of the important operations of
the present invention, the following further conclu-
sions, cements and teachings can be made.

With the mapping system of the present invention,
the mapping data are structured at each magnitude or
level into windows, frames or tiles representing subdivi-
sions or partitions of the surface area at the specified
magnitude. The windows, frames or tiles of all magni-
tudes for whatever resolution are structured to receive

substantially the same amount or quantity of mapping
data for segmented visual presentation of the mapping
data by window.

As a further improvement, the lapping system of the
present invention can further store and organize map-
ping data into attributed or coded geographical and
cultural features according to the classification and
level or resolution or magnitude for presentation on the
map display. Several examples of this was previously
discussed with regard to the use of the filename exten-
sion. If this further improvement is used, the computer
can be programmed and arranged for managing and
accessing the mapping data, and excluding or including
coded features in tiles of a particular magnitude accord-
ing to the resolution and density of mapping data appro-
priate to the particular magnitude of the window. The
selective display of attributed geographical and cultural
features according to resolution maintains or limits the
mapping data entered in each tile to no greater than a
specified full complement of mapping data for whatever
magnitude. '

In reviewing the file naming operations which were
described, one can see that the global map generating
system data base structure relates tiles of the same mag-
nitude by tile position coordinates that are keyed to the
control comer of each tile and maintained in the name

of the “tile-file”. Continuity of same scale tiles is main-
tained during scrolling between adjacent or neighbor-
ing tiles in any direction. The new data base structure
also relates tiles of different magnitudes by vertical
lineage through successive magnitudes. Each tile of a
higher magnitude and lower resolutionis an “ancestor
tile” encompassing a lineage of “descendant tiles” of
lower magnitude and high resolution in the next lower
magnitude. Thus the present invention permits access-
ing, displaying and presenting the structured mapping
data by tile, by scrolling between adjacent or neighbor-
ing tiles of different magnitude in the same vertical
lineage for varying the resolution.

In its simplest form the coordinate system is Carte-
sian, but the invention contemplates a variety of virtual .
tile manifestations of windowing the mapping data at
each magnitude: for example: tilting the axes; scaling
one axis relative to another; having one or both axes
logarithmic; or rendering the coordinate space as non-
Euclidean all together.

When dealing with vector or point information and
gridded data, the most common method is to describe
individual points as an x-y offset from the control cor-
ner of the tile. In this way the mapping data exist as
pre-processed relative points on a spherical surface in a
de-projected space. The mapping data can then be pro-
jected at the user interface with an application program.
When projected, all data ultimately represent points of
latitude and longitude. Tiles may also contain mapping
data as variable offsets of arc in the x and y directions.
The tile header may carry an internal descriptor defm-

Unified Patents Exhibit 1005 App'x A-N

Page 141 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
27

ing what type of mapping data is contained. The appli-
cation or display program may then decode and project
the data to the appropriate latitude or longitude posi-
tions.

The map generating system contemplates storing 5
analog mapping data in electronic mapping frames in
which the raw analog data would be scanned and con-
verted digitally to the tile structure and then later ac-
cessed and projected for the purpose of displaying con-
tinuous analog mapping data.

In the preferred example embodiment, the digital
mapping data are structured by window or tile in a
substantially rectangular configuration encompassing
defined widths and heights in degrees of latitude and
longitude for each magnitude. The mapping data repre-
senting each magnitude or level are stored in a de-
projected format according to mapping on an imaginary
cylindrical surface. For display of the maps, however,
the data base manager accesses and presents the tiles in
a projected form, according to the real configuration of 20
the mapped surface, by varying the aspect ratio of lati-
tude to longitude dimensions of the tiles according to
the absolute position of the window on the surface area.

For example, for a spherical or spheroidal globe hav-
ing an equator and poles, such as the earth, the mapping
data are accessed and displayed by aspecting or narrow-
ing the width in the west-east dimension of the tiles of
the same magnitude, while scrolling from the equator to

the poles. This is accomplished by altering the width of 3
the tile relative to the height. In the graphics display of
each window or tile on the monitor, the tiles are pres-
ented essentially as rectangles having an aspect ratio
substantially equal to the center latitude encompassed
by the tile. Thus, the width of the visual display win-
dows is corrected in two respects. First, the overall
width is corrected by aspecting to a narrower width,
during scrolling in the direction of the poles, and to a
wider width during scrolling in the direction of the
equator. Second, the width of the tile is averaged to the
center latitude width encompassed by the tile through-
out the tile height to conserve the rectangular configu-
ration. Alternatively, or in addition, further compensa-
tion may be provided by increasing the number of de-
grees of longitude encompassed by the tiles during
scrolling from the equator to the poles to compensate
for the compound curvature of the globe.

A feature and advantage of this new method and new
system of map projection are that the dramatic and
perverse distortion of the globe near the poles, intro-
duced by the traditional and conventional Mercator
projection is substantially eliminated. According to the
invention, the compensating aspect ratio of latitudinal
to longitudinal dimension of aspecting is a function of
the distance from the equator, where the aspect ratio is 55
one, to the poles where the aspect ratio approaches
zero, all as described for example in Elements of Car-
tography, 4th edition. John Wiley & Sons (1978) by
Arthur Robinson, Randall Sale and Joel Morrison.

The new system contemplates “polar compression”
(FIG. 20) in the following manner. Starting at 64 de-
grees latitude, the width of each tile doubles for every
eight degrees of latitude. From 72 degrees to 80 degrees
latitude, there are 4 degrees of longitude for 1 degree of
latitude. From 80 degrees to 88 degrees latitude, it be- 65
comes eight to one, and from 88 degrees to the pole (90
degrees) it becomes 16 to one (see illustration of polar
compression). (FIG. 20)

10

15

25

O

35

45

50

Page 141 0f448

28

Another feature and advantage of the way in which
the new map system and new projection handle polar
mapping data are in the speed required to access and
display polar data. The new polar compression method
drastically minimizes tile or window seeks and standard
I/O time. Also, without compressing the poles, the
Creation/Edit Software would have to work on in-

creasingly narrow tiles as the aspect ratio approached
zero at the poles.

The invention embodies an entirely new cartographic
organization for an automated atlas of the earth or other
generally spherical or spheroidal globe with 360 de-
grees of longitude and 180 degrees of latitude, an equa-
tor and poles. The digital mapping data for the earth is
structured on an imaginary surface space having 512
degrees of latitude and longitude. The imaginary 512
degree square surface represents the zero magnitude or
root node at the highest level above the earth for a
hierarchial type quadtree data base structure. In fact,
the 512 degree square plane at the zero magnitude en-
compasses the entire earth in a single tile. The map of
the earth, of course, fills only a portion of the root node
window of 512 degrees square, and the remainder may
be deemed imaginary space or “hyperspace”.

In the preferred example embodiment from a zero
magnitude virtual or imaginary space 512 degrees
square, the data base structure of the global map gener-
ating system descends to a first magnitude of mapping
data in four tiles, windows or quadrants, each compris-
ing 256 degrees of latitude and longitude. Each quad-
rant represents mapping data for one-quarter of the
earth thereby mapping 180 degrees of longitude and 90
degrees of latitude in the imaginary surface of the tile or
frame comprising 256 degrees square, leaving excess
imaginary space or “hyperspace”. In the second magni-
tude, the digital mapping data are virtually mapped and
stored in an organization of 16 tiles or windows each
comprising 128 degrees of latitude and longitude.

The map generating system supports two windowing
formats, one based on the binary system of the 512
degree square zero magnitude root node with hyper-
space and the other based on a system of a 360 degree
square root node without hyperspace. A feature and
advantage of the virtual 512 degree data base structure
with hyperspace are that the tiles or windows to be
displayed at respective magnitudes are consistent with
conventional mapping scale divisions, for example,
those followed by the US. Geological Survey (USGS).
Defense Mapping Agency (DMA). National Aeronau-
tics and Space Administration (NASA) and other gov-
ernment mapping agencies. Thus, typical mapping scale
divisions of the USGS and military mapping agencies
include scale divisions in the same range of 1 deg, 30
minutes. 15 minutes. 7.5 minutes of arc on the earth s

surface. This common subdivision of mapping space
does not exist in a data structure based on a 360 degree
model without hyperspace (see chart).

Thus, according to the present invention, the world is
represented in an assemblage of magnitudes, with each
magnitude divided into adjacent tiles or windows on a
virtual or imaginary two-dimensional plane or cylinder.
At higher magnitudes the quadtree tiles of mapping data
do not fill the imaginary projection space. However,
from the seventh magnitude down, the mapping data
fills a virtual closed cylinder, and no hyperspace exists
at these levels.

In the preferred example embodiment the invention
(running on a 16 bit computer) has sixteen magnitudes

Unified Patents Exhibit 1005 App'x A-N

Page 142 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
29

or levels (with extensions to 20 levels) representing
sixteen altitudes or distances above the surface of the

earth. At the lowest (16th) magnitude of highest resolu-
tion and closest to the earth, the data base structure

contains over one billion tiles or windows (excluding
hyperspace), each encompassing a tile height of approx-
imately one half statute mile. At this level of resolution,
one pixel on a monitor of 480 pixels in height represents
approximately 6 feet on the ground. Mapping data are
positioned within each tile using a O to 1023 offset coor-
dinate structure, resulting in a data resolution of approx-
imately 3 feet at this level of magnitude (see chart). The
contemplated 20th magnitude tile or window height is
approximately 175 feet, which results in a pixel resolu-
tion of about 4 inches on a monitor of 480 pixels in
height and a data resolution of about 2 inches, when
utilizing the O to 1023 offset coordinate structure. Alter-

natively, the map-generating system contemplates an
extended offset from 10 bits (0 to 1023) to an offset of 16
bits (0 to 65,535). In this case, the extended 20th magni-
tude results in a data resolution of 3 hundredths of an
inch.

For still more resolution, the map generating system
contemplates 32 magnitudes on a 32 bit computer and
representing 32 altitudes or distances about the surface
of the earth. Each level of magnitude may define map-
ping data within each tile using a 32 bit offset coordinate
structure, thereby giving relative mathematical accu-
racy to a billionth of an inch. In all practicality, 20
separate magnitudes or levels are more than sufficient to
carry the necessary levels of resolution and accuracy.

The new invention provides users with the ability
graphically to view mapping data from any part of the
world-wide data base graphically on a monitor, either
by entering coordinates and a level of zoom (or magni-
tude) on the keyboard, or by “flying” to that location in
the “step-zoom” mode using consecutive clicks of the
mouse or other pointing device. Once a location has
been chosen (this point becomes the user-defined screen
center). the mapping software accesses all adjacent tiles
needed to fill the entire view window of the monitor

and, then, projects the data to the screen. Same scale
scrolling is accomplished by simply choosing a new
screen center and maintaining the same magnitude.

Vertical zooming up or down is accomplished by
choosing another magnitude or level from the menu
area with the pointing device or by directly entering
location and magnitude on the keyboard. An advantage
of this vertical lineage of tiles organized in a quadtree
structure is that it affords the efficient and easily fol-
lowed zooming continuity inherent in the present in-
vention. Further discussion of such quadtree data orga-
nization is found in the article. “The Quadtree and Re-
lated Hierarchical Data Structures”, by Hannan Samet,
Computer Surveys. Volume 16 , No. 2, (June 1984),
Pages 187 et seq.

The map~generating system also supports many types
of descriptive information such as that contained in
tabular or relational data bases. This descriptive infor-
mation can be linked to the mapping data with a latitude
and longitude coordinate position but may need to be
displayed in alternate ways. Descriptive information is
better suited for storage in a relational format and can
be linked to the map with a “spatial hook”.

In summary, the present invention provides a new
automated world atlas and global map generating sys-
tem having a multi-level hierarchial quadtree data base
structure and a data base manager or controller which

Page 142 of 448

10

15

20

25

30

35

45

50

55

65

30

permits scrolling, through mapping tiles or windows of
a particular magnitude, and zooming between magni-
tudes for varying resolution. While the data base orga-
nization is hierarchial between levels or magnitudes, it is
relational within each level, resulting in a three dimen-
sional network of mapping and descriptive information.
The present invention also provides a new mapping
projection that has similarities to the Mercator projec-
tion but eliminates drastic distortions near the poles for
the purpose of presentation through a method of “as-
pecting” tile widths as a function of the latitudinal dis-
tance from the equator.

While the invention has been particularly shown and
described with reference to the preferred embodiment
thereof, it will be understood by those skilled in the art
that various changes in form and details of the device
and the method may be made therein without departing
from the spirit and scope of the invention.

What is claimed is:

l. A computer implemented method for generating,
displaying and presenting an electronic map from digi-
tal mapping data for a surface area having geographical
and cultural features, said method comprising the steps
of:

organizing the mapping data into a hierarchy of a
plurality of successive magnitudes or levels for
presentation of said mapping data with variable
degrees of mapping resolution, each magnitude for
presentation of said mapping data with a different
degree of mapping resolution from a first or highest
magnitude with lowest resolution to a last or low-
est magnitude with highest resolution;

structuring said mapping data at each magnitude into
a plurality of windows, frames or files representing
subdivisions or partitions of said surface area, said
windows of a respective magnitude including map-
ping data which are appropriate to a degree of
mapping resolution being afforded at said magni- .
tude while excluding mapping data which are not
appropriate to said degree of mapping resolution,
and at least a portion of said windows of each mag-
nitude being structured to receive substantially a
same predetermined amount or quantity of map-
ping data for segmented presentation of the map-
ping data by window;

organizing said mapping data into records of geo-
graphical or cultural features for presentation
within said windows, and coding said features;

managing said mapping data for each window by
excluding or including coded features appropriate
to the degree of mapping resolution and density
being afforded by said window, such that a quan~
tity of mapping data entered in each window is no
greater than said predetermined amount;

relating windows of a same magnitude by window
position coordinates or names and structuring said
windows with overlap or mapping data between
adjacent or neighboring windows of a magnitude
or achieve display continuity during generation,
display and presentation of an electronic map;

relating windows of different magnitude by vertical
lineage through successive magnitudes, each win-
dow of a higher magnitude and lower resolution
being an ancestor window being related to a plural-
ity of descendant windows of lower magnitude and
higher resolution in a next lower magnitude;

accessing and displaying or presenting mapping data
for different positions of a selected magnitude by

Unified Patents Exhibit 1005 App'x A-N

Page 143 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
31

scrolling between adjacent or neighboring win-
dows of a same magnitude in predetermined north,
south, each and west directions;

and accessing and displaying or presenting mapping
data for different selected magnitudes having dif-
ferent resolutions by zooming between windows of
different magnitudes in a same vertical lineage.

2. The method of claim 1 further comprising:
organizing said mapping data of said surface area by

degrees of latitude and longitude;
structuring each said window of mapping data to

represent a substantially rectangular surface area
configuration encompassing defined degrees of
latitude and longitude for each magnitude, and
storing the mapping data for each magnitude in a
vertical Mercator projection format;

accessing and presenting said windows of mapping
data in a corrected or compensated projection for-
mat departing from said Mercator projection for-
mat according to a real configuration of said sur-
face area, by varying an aspect ratio of latitude to
longitudinal dimensions of each window according
to a coordinate position of said window with re-
spect to a coordinate layout of said surface area.

3. The method of claim 2 wherein said surface area

comprises a spherical or spheroidal globe having an
equator and poles, said method comprising the further
steps of:

accessing and presenting mapping data in a corrected
projection format by aspecting or narrowing, in a
direction from an equator to pole, the width or
latitudinal dimension of windows, of a same magni-
tude, which encompass the same number of de-
grees of latitude and longitude; '

and periodically increasing a number of degrees of
longitude encompassed by said windows in said
direction from equator to pole to compensate for
compound curvature of said globe.

4. The method of claim 1 wherein said surface area

comprises a generally spherical or spheroidal globe
with 360 degrees of longitudinal, 180 degrees of latitude.
and an equator and poles, said method comprising the
further steps of:

relating windows of different magnitudes by vertical
lineage in a hierarchical quadtree database struc-
ture, by successively partitioning or subdividing
ancestor windows of a vertical lineage into four
descent windows or quadrants at a next lower mag—
nitude or level, and incorporating additional re-
cords of features in said descendant windows to

incorporate mapping data for a next higher resolu-
tion.

5. The method of claim 4 wherein said hierarchical

quadtree database structure comprises at least sixteen
degrees of magnitudes or levels.

6. The method of claim 4 comprising the further steps
of: .

mapping and storing mapping data for said globe in a
virtual Mercator projection format representing an
imaginary surface having 512 degrees of longitude
and latitude comprising a zero magnitude or root
node of said hierarchical quadtree database struc-
ture;

mapping and storing a first degree or highest magni-
tude of mapping data in four windows or quadrants
each comprising 256 degrees of longitude and lati-
tude, each window of said first degree of magni-
tude comprising mapping data for one quarter of

Page 143 of448

5

10

15

20

25

30

35

45

50

55

65

32

said globe thereby mapping 180 degrees of surface
area longitude and 90 degrees of surface area lati-
tude in said imaginary surface of 256 degrees of
longitude and latitude and leaving excess imagi-
nary space;

mapping and storing a second degree of magnitude of
mapping data in sixteen windows each comprising
128 degrees of longitude and latitude of said imagi-
nary surface, each window of said second degree of
magnitude comprising mapping data for a further
subdivision or partition of said globe;

and mapping and storing third through twelfth de-
grees of magnitude thereby forming additional
levels of a hierarchical quadtree database structure
so that an eleventh magnitude comprises windows
encompassing 15 seconds of latitude and a twelfth
magnitude comprises windows encompassing
seven and a half seconds of latitude;

whereby, as a result of the foregoing, windows of said
electronic map at respective magnitudes or levels
are consistent with conventional mapping scale
divisions.

7. The method of claim 6 wherein said hierarchical

quadtree database structure comprises sixteen degree of
magnitudes or levels including a sixteenth magnitude
comprising over 1.4 billion windows, each encompass-
ing approximately a fraction of a minute of a degree of
latitude.

8. The method of claim 6 wherein each said window

corresponds to a trapezoidal surface area configuration.
9. The method of claim 6 comprising the step of float-

ing mapping data records of selected features from a
window of one magnitude to a window of the same
vertical lineage in another magnitude.

10. The method of claim 6 comprising the further
steps of: generating analog mapping data, structuring
said analog mapping data according to a same format as
digital mapping data, and overlaying and presenting
said digital mapping data and analog mapping data dur-
ing generation, display and presentation of an electronic
map.

11. The method of claim 6 comprising the further step
of selectively filling said windows with mapping data so
that some windows contain a full complement of map-
ping data appropriate to a degree of mapping resolution
being afforded at said magnitude, and other windows,
each of which correspond to a subdivision of surface
area containing few or no geographical or cultural fea-
tures, contain less than a full complement of mapping
data.

12. The method of claim 6 comprising the further
steps of:

accessing and presenting mapping data in a corrected
projection format by aspecting or narrowing, in a
direction from an equator to pole, a width or latitu-
dinal dimension of windows, of a same magnitude,
which encompass the same number of degrees of
latitude and longitude;

and periodically increasing a number of degrees of
longitude encompassed by said windows in said
direction from equator to pole to compensate for a
compound curvature of said globe.

13. The method of claim 12 comprising the further
steps of accessing and presenting mapping data in cor-
rected projection format, with each window having a
width substantially equal to a center latitude width of
said window throughout said window, so that said win-
dow is of rectangular configuration.

Unified Patents Exhibit 1005 App'x A-N

Page 144 of 448 Unified Patents Exhibit 1005 App'x A-N

33

14. An electronic map generating system including a
digital computer, a mass storage device, a display moni-
tor, graphics controller, and system software for struc-
turing, managing, controlling and displaying digital
mapping data for a surface area having cultural and
geographical features, said system comprising:

a database structure comprising a hierarchical data-
base structure programmed and arranged for orga-
nizing said digital mapping data into a hierarchy of
a plurality of successive magnitudes or levels for
presentation of mapping data with variable resolu-
tion, each magnitude for presentation of said map-
ping data with a different degree of mapping reso-
lution from a first or highest magnitude of lowest
resolution to a last or lowest magnitude of lowest
resolution to a last or lowest magnitude of highest
resolution, and for structuring said digital mapping
data at each magnitude into a plurality of windows,
frames or files representing subdivisions or parti-
tions of said surface area, said windows of a respec-
tive magnitude including mapping data which are
appropriate to a degree of mapping resolution
being afforded at said magnitude while excluding
mapping data which are not appropriate to said
degree of mapping resolution, at least a portion of
said windows of all magnitudes being structured to
receive substantially a same predetermined amount
of mapping data for segmented presentation of said
mapping data by window, said mapping data being
organized into coded records of geographical and
cultural features within each window;

a database manager or controller programmed and
arranged for managing said mapping data by mag-
nitude or level by excluding or including coded
records of features in-each window of a particular
magnitude according to a resolution and density of
mapping data appropriate to the particular magni-
tude of said each window, and maintaining a quan-
tity of mapping data entered in each window to no
greater than a specified full complement whatever
the magnitude of the window;

said database structure being programmed to relate
windows of a same magnitude by position coordi-
nates or names, and to structure windows of a same
magnitude with overlap of mapping data between
adjacent or neighboring windows of a magnitude
to achieve display continuity during generation,
display and presentation of an electronic map, and
to relate windows of different magnitude by verti-
cal lineage through successive magnitudes, each
window of a higher magnitude and lower resolu-
tion being an ancestor window of a plurality of
descendant windows of lower magnitude and
higher resolution in a next lower magnitude;

said database manager being programmed to access
and display or present mapping data for different
positions of a selected magnitude by scrolling be-
tween adjacent or neighboring windows of a same
magnitude in predetermined north, south, east and
west directions, and being programmed to access
and display or present mapping data for different
magnitudes having different resolutions by zoom-
ing between windows of different magnitudes in a
same vertical lineage.

15. The system of claim 14 wherein said hierarchical
database structure is programmed to organize said map-
ping data by degrees of latitude and longitude and to
structure each window of mapping data to represent a

Page 144 of 448

4,972,319

10

15

20

25

30

35

45

50

55

65

34

substantially rectangular surface area configuration
encompassing predetermined degrees of latitude and
longitude, said windows for each magnitude being
stored in virtual Mercator projection format, said data-
base manager being programmed to access and present
windows of mapping data in a corrected or compen-
sated projection format departing from Mercator pro-
jection format according to a real configuration of said
surface area by varying an aspect ratio of latitude and
longitude dimensions of each window according to a
coordinate position of said each window with respect to
a coordinate layout of said surface area.

16. The system of claim 15 wherein said surface area
comprises a spherical or spheroidal globe having an
equator and poles, and wherein said database manager is
programmed to access and present mapping data in a
corrected projection format by aspecting or narrowing,
in a direction from an equator to pole, the width or
latitudinal dimension of windows, of a same magnitude,
which encompass the same number of degrees of longi-
tude, said database manager being further programmed
to periodically increase a number of degrees of longi-
tude encompassed by said windows in said direction
from equator to pole to compensate for compound cur-
vature of said globe.

17. The system of claim 16 wherein said hierarchical
database structure comprises a hierarchical quadtree
database structure successively partitioning or subdivid-
ing ancestor windows of a vertical lineage into four
descendant windows or quadrants at a next lower mag-
nitude or level, and incorporating additional coded
records of features in said descendant windows to incor-

porate mapping data for a next higher resolution.
18. The system of claim 17 wherein said database

structure is programmed and arranged to store the map-
ping data in a virtual Mercator projection representing
an imaginary surface having 512 degrees of longitude
and latitude comprising a zero magnitude or root node
of said hierarchical quadtree database structure,
wherein a first degree or first magnitude of mapping
data comprises four windows, each window of said first
magnitude comprising mapping data for one quarter of
said globe on an imaginary surface area of 256 degrees
of longitude and latitude, said hierarchical quadtree
database structure comprising, in addition to first
through tenth magnitudes each having windows which
are predetermined subdivisions of said imaginary sur-
face having 512 degrees of longitude and latitude, at
least an eleventh magnitude having windows encom-
passing 15 minutes of latitude, and a twelfth magnitude
having windows encompassing 7.5 minutes of latitude,
so that windows of a resultant electronic map at respec-
tive said eleventh and twelfth magnitudes or levels are
consistent with conventional mapping scale divisions.

19. The system of claim 18 wherein said hierarchical
quadtree database structure comprises at least 16 de-
grees of magnitudes or levels, said sixteenth magnitude
comprising over 1.4 billion windows, each encompass-
ing degrees of latitude of approximately a fraction of a
second of a degree.

20. The system of claim 19 further comprising a data-
base of digital mapping data selectively entered in said
database structure, such that some of said windows

contain a full complement of mapping data appropriate
to a degree of mapping resolution being afforded at said
magnitude, and other windows, each of which corre-
spond to a subdivision of surface area containing few or

Unified Patents Exhibit 1005 App'x A-N

Page 145 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
35

no geographical or cultural features, contain less than a
full complement of mapping data.

21. The system of claim 19 further comprising a data-
base of analog data structured according to a same
format as said digital data, and means for overlaying
said digital and analog data for electronic map presenta-
tion.

22. An electronic map generating system for generat-
ing reproductions of a map with selectable degrees of
mapping resolution, said map generating system com-
prising:

database means storing a plurality of computer files
containing mapping data corresponding to respec-
tive surface areas of a mapping surface, wherein
said plurality of computer files is organized into a
plurality of successive magnitudes, each magnitude
for presentation of said mapping data with a differ-
ent degree of mapping resolution from a first or
highest magnitude with lowest resolution to a last
or lowest magnitude with highest resolution, files
of a respective magnitude including mapping data
which are appropriate to a degree of mapping reso-
lution being afforded at said respective magnitude
while excluding mapping data which are not ap-
propriate to said degree of mapping resolution, and
wherein a predetermined file naming procedure is
utilized to assign, to each respective computer file,
a unique filename which:
relates said respective computer file to all other

computer files having mapping data correspond-
ing to a same magnitude or degree of mapping
resolution; and

relates said respective computer file to any com-
puter file comprising mapping data correspond-
ing to a same surface area ofa mapping surface as
said respective computer file; and

database manager means for accessing said plurality
of computer files using said predetermined file
naming procedure, to generate a reproduction of a
selected area of a map at a selected degree of map-
ping resolution.

23. An electronic map generating system as claimed
in claim 22,

wherein each said unique filename is represented by a
value contained in a plurality of bits, and

wherein said predetermined file naming procedure:
utilizes a first predetermined subset of said plurality

of bits to relate said respective files having map-
ping data corresponding to a same magnitude or
degree of mapping resolution; and

utilizes a second predetermined subset of said plu-
rality of bits to relate said respective computer
file to any computer file comprising mapping
data corresponding to a same surface area of a
mapping surface as said respective computer file.

24. An electronic map generating system as claimed
in claim 23, wherein said unique filename also includes
geographical information which can be used to relate a

geographical coordinate position of a respective com-
puter file with respect to a coordinate layout of surface
areas of said mapping surface.

25. An electronic map generating system as claimed
in claim 22,

wherein an assignment of said unique filenames using
said predetermined file naming procedure results in
said respective computer files of said plurality to be
related in a quadtree database structure.

Page 145 0f448

10

15

20

25

30

35

45

50

55

65

36

26. An electronic map generating system as claimed
in claim 25, wherein the respective area of a mapping
surface covered within the computer files of consecu-
tive magnitudes or degrees of mapping resolution
changes at a predetermined rate in that, when a com-

puter file at a reference magnitude or degree of mapping
resolution contains mapping data corresponding to an
N><N area of a mapping surface (where N is a real
number, and is associated with one of the conventional

degree °, minute ’, or second " mapping scale divisions),
then a computer file at a next consecutive magnitude
having a higher degree of mapping resolution contains
mapping data corresponding to an (N/2) X (N/2) area of
said mapping surface.

27. An electronic map generating system as claimed
in claim 26, wherein the value of N at said reference

magnitude or degree of mapping resolution, corre-
sponds to one of the following values: 512°, 256°, 128°,
64°, 32°, 16°, 8°, 4°, 2°, 1°, 30’, 15’, 7.5’, 3.75’, 1.875’,
0.9375’ and 0.46875’.

28. A method for providing an electronic map gener-
ating system for generating reproductions of a map with
selectable degrees of mapping resolution, said method
comprising the steps of:

storing a plurality of computer files containing map-
ping data corresponding to respective surface areas
of a mapping surface, wherein said plurality of
computer files is organized into a plurality of suc-
cessive magnitudes, each magnitude for presenta-
tion of said mapping data with a different degree of
mapping resolution from a first or highest magni-
tude with lowest resolution to a last or lowest mag-
nitude with highest resolution, files of a respective
magnitude including mapping data which are ap-
propriate to a degree of mapping resolution being
afforded at said respective magnitude while ex-
cluding mapping data which are not appropriate to
said degree of mapping resolution, and wherein a
predetermined file naming procedure is utilized to
assign, to each respective computer file, a unique
filename which:

relates said respective computer file to all other
computer files having mapping data correspond-
ing to a same magnitude or degree of mapping
resolution; and

relates said respective computer file to any com-
puter file comprising mapping data correspond-
ing to a same surface area of a mapping surface as
said respective computer file; and

aCcessing said plurality of computer files using said
predetermined file naming procedure, to generate a
reproduction of a selected area of a map at a se-
lected degree of mapping resolution.

29. A method as claimed in claim 28,

wherein each said unique filename is represented by a
value contained in a plurality of bits, and

wherein said predetermined file naming procedure;
utilizes a first predetermined subset of said plurality

of bits to relate said respective computer file to
all other computer files having mapping data
corresponding to a same magnitude or degree of
mapping resolution; and

utilizes a second predetermined subset of said plu-
rality of bits to relate said respective computer
file to any computer file comprising mapping
data corresponding to a same surface area of a

mapping surface as said respective computer file.

Unified Patents Exhibit 1005 App'x A-N

Page 146 of 448 Unified Patents Exhibit 1005 App'x A-N

4,972,319
37

30. A method as claimed in claim 29, wherein said
unique filename also includes geographical information
which can be used to relate a geographical coordinate
position of a respective computer file with respect to a
coordinate layout of surface areas of said mapping sur-
face.

31. A method as claimed in claim 28,

wherein an assignment of said unique filenames using
said predetermined file naming procedure results in
said respective computer files of said plurality to be
related in a quadtree database structure.

32. A method as claimed in claim 31, wherein the
respective area of a mapping surface covered within the
computer files of consecutive magnitudes or degrees of
mapping resolution changes at a predetermined rate in

Page 146 0f448

10

15

20

25

30

35

45

50

55

65

38

that, when a computer file at a reference magnitude or
degree of mapping resolution contains mapping data
corresponding to an NxN area of a mapping surface
(where N is a real number, and is associated with one of
the conventional degree ', minute ’, or second " map-
ping scale divisions), then a computer file at a next
consecutive magnitude having a higher degree of map-
ping resolution contains mapping data corresponding to
an (N/2)><(N/2) area of said mapping surface.

33. A method as claimed in claim 32, wherein the
value of N at said reference magnitude or degree of
mapping resolution, corresponds to one of the follow-
ing values: 512°, 256°, 128°, 64", 32°, 16°, 8°, 4°, 2°, 1°,
30’, 15’, 7.5’, 3.75’, 1.875’, 0.9375’ and 0.46875'.1 t ’ t t

Unified Patents Exhibit 1005 App'x A-N

