Appendix A

('490 Patent)

Element	The '490 Patent	Presence of each limitation in JP11-212642
		("Ueno")
1[a]	A mobile robot comprising:	Ueno describes a method and device for
		controlling a self-propelled robot that can
		travel exhaustively over a given area in as
		short a time as possible. <i>See</i> Ueno at ¶ [0001]
		and Figs. 1, 2, and 3.
1[b]	means for moving the robot over	The robot 1 is moved forward, backward, and
	a surface;	stopped over a given area by the wheels 3, 4
		that are driven by separate motors. Id . at $\P\P$
		[0001], [0015], and Figs. 2 and 3.
1[c]	an obstacle detection sensor;	A plurality of infrared sensors for detecting
		boundaries and obstacles in a noncontact
		manner are included in the robot 1. For
		example, sensors 26R and 26L are disposed in
		front of the robot 1 in an advancing direction,
		sensors 26MR and 26ML are disposed in a
		slanted front direction, and sensors 26RR and
		26RL are respectively disposed in a rear
		direction. The letter R is for obstacle
		detection on the right side with respect to the
		travel direction and the letter L is for obstacle
		detection on the left side with respect to the
		travel direction. <i>Id.</i> at ¶ [0016] and Figs. 2
		and 3.
		Although the sensors are preferably infrared
		sensors, any type of sensor such as an
		ultrasonic sensor or other optical sensor can
		be used as a proximity sensor capable of
		detecting an obstacle within a planned short
		account an obstacle within a planned short

		distance. <i>Id.</i> at ¶ [0017].
1[d]	and a control system operatively	FIGs. 1 and 16 are block diagrams showing
	connected to said obstacle	hardware configurations of devices for
	detection sensor and said means	controlling a self-propelled robot. The
	for moving;	hardware configurations include a control
		device 7 including a CPU 8. <i>Id.</i> at ¶¶ [0007],
		[0018], and Figs. 1 and 16.
		The control device 7, as illustrated in Fig. 1, is
		connected to drive motors 14 and 15, left and
		right brakes 12 and 13 and sensors 25L and
		26. <i>Id.</i> at ¶¶ [0018],[0020], and Figs. 1 and
		16.
		CPU 8 controls the operations of the drive
		systems such as the right and left motors 14
		and 15 and right and left brakes 12 and 13.
		Specifically, based on contact information
		from the sensors 25L and 26 and the contact
		sensor 5A, the CPU 8 controls the drive
		system operations of the right and left motors
		14 and 15. <i>Id.</i> at ¶¶ [0007], [0019], and
		[0020].
1[e]	said control system configured to	"Based on the information from a pair of
	operate the robot in a plurality of	multiple ultrasonic sensors 6 positioned
	operational modes and to select	oriented toward front, right and left side
	from among the plurality of	surfaces and slanting -front direction etc,
	modes in real time in response to	contact sensor 5A positioned on front end
	signals generated by the obstacle	bumper etc, rotation number sensor 10 of right
	detection sensor	and left wheels, CPU 8 controls the operations
		of right and left wheel drive motors 14, 15,

right and left brakes 12, 13 etc, enabling the robot to execute each operation of moving forward, retreat, stopping and ultra-pivot turn, pivot turn, rapid turn and slow turn." *Id.* at ¶ [0007].

"[B]ased on the proximity and contact information from sensors 25L, 26 and a contact sensor 5A (hereinafter called [sensors] collectively), CPU 8 decides the drive system operations of left and right wheel drive motors 14, 15 etc." *Id.* at ¶ [0020].

Ueno discloses three travel modes: spiral, random, and border-following. *Id.* at \P [0014] and [0035].

These modes occur in real time because they occur in reaction to the sensors. For example, ¶ [0052] discloses that the travel mode and travel parameters to be executed are determined "based on the detection result of the proximity sensors provided on the front and side of the robot respectively." Ueno also discloses that border-following travel (following the wall to correspond to the claimed "obstacle following mode") starts when the side sensor 25L detects a boundary such as a wall during execution of the random travel or spiral travel modes (the claimed "bounce" and "spot-coverage" modes). *Id.* at

		@[0022] IIana al 4:1
		¶[0023]. Ueno also discloses that the spiral
		travel is switched to the random travel mode
		based on detecting an obstacle (wall or
		boundary). <i>Id.</i> at ¶¶[0005], [0028] and Fig. 6.
		Further, Ueno describes switching to a spiral
		travel mode after the robot 1 has turned back
		a preset number of times because of the
		detection of a wall surface during a random
		travel mode. $Id.$ at \P [0030].
1[f]	said plurality of operational	Fig. 6 illustrates a spiral travel mode. "Here,
	modes comprising: a spot-	in order not to make space in a travel
	coverage mode whereby the	trajectory, the speed of left and right wheels 3,
	robot operates in an isolated area,	4, that is, the rotation speed of each wheel
		drive motor 14, 15 is calculated and by
		updating these speeds, the rotation radius is
		gradually increased. A spiral gets bigger and
		based on the output of sensors 26 and 25L,
		when it is recognized that the robot 1
		approached within the planned distance with
		respect to the wall surface B, the spiral travel
		is stopped and a random travel is started to
		move to the next spiral travel start position[.]"
		<i>Id.</i> at ¶[0028]; <i>see also id</i> .at ¶ [0027] and Fig.
		6.
1[g]	an obstacle following mode	Ueno describes that the robot includes a
	whereby said robot travels	border-following travel pattern when a side
	adjacent to an obstacle,	sensor 25L detects a boundary such as a wall.
	, , , , , , , , , , , , , , , , , , , ,	<i>Id.</i> at ¶ [0023] and Fig. 4.
		[]
		Specifically, Ueno describes that when the
		~positionity, contract that when the

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

