
Silver Star Exhibit 1018 

Inspiration f0
lmplemenfan'on

JOSEPH L. JONES

ANITA M. FLYNN  
Silver Star Exhibit 1018

 



Silver Star Exhibit 1018 - 2

E=2—__=_==_____====__==_E:CZ-omm.uoo*
 

it 1018 - 2Silver Star Exhi



Mobile Robots 

Silver Star Exhibit 1018 - 3



Mobile Robots 
Inspiration to Implementation 

Joseph L. Jones 
IS Robotics 

Anita M. Flynn 
Artificial Intelligence Laboratory 
Massachusetts Institute of Technology 

A K Peters 
Wellesley, Massachusetts 

Silver Star Exhibit 1018 - 4



Editorial, Sales, and Customer Service Office 

A K Peters, Ltd. 
289 Linden Street 
Wellesley, MA 02181 

Copyright © 1993 A K Peters, Ltd. 

All rights reserved. No part of the material protected by this copyright 
notice may be reproduced or utilized in any form, electronic or mechani­
cal, including photocopying, recording, or by any information storage and 
retrieval system, without written permission from the copyright owner. 

Library of Congress Cataloging-in-Publication Data 

Jones, Joseph L., 1953-
Mobile robots : inspirations to implementation / Joseph L. Jones, 

Anita M. Flynn. 
p. em. 

Includes bibliographical references and index. 
ISBN 1-56881-011-3 
1. Mobile robots. I. Flynn, Anita M. II. Title. 

TJ211.415.J65 1993 
629.8'92-d20 93-1406 

CIP 

Many of the designations used by manufacturers and sellers to distinguish 
their products are claimed as trademarks. Where those designations appear 
in this book and A K Peters was aware of the trademark claim, the designa­
tions have been printed in caps or initial caps. Where designations have not 
been provided, every effort has been made to ensure accurate presentations 
of product names. 

Principal photographer: Bruce Frisch 

Printed in the United States of America 
97 96 95 94 93 10 9 8 7 6 5 4 3 2 

From Joseph L. "Joe Lee" Jones: 

To my mother, who read me science books when I was a kid 

From Anita M. Flynn: 

To my family and the Mobot Lab, for the big dreams 
(And all the little tiny ones, too!) 

Silver Star Exhibit 1018 - 5



Contents 

Preface 

Acknowledgments 

1 Introduction 
1.1 References 0 

2 TuteBot 
201 A Tutorial Robot 0 0 ••• 

201.1 TuteBot Behaviors 
202 Building TuteBot 0 0 0 0 0 

20201 Electronic Components 
20202 Electronic Construction 
20203 Operation 
202.4 Exercise 

203 References 0 0 0 0 

3 Computational Hardware 
301 Rug Warrior's Design Strategy 

301.1 Interactive C 0 0 0 
302 Microprocessors 0 0 0 0 0 0 
303 The Canonical Computer 

30301 The Processor 
30302 The Bus 0 
30303 Memory 0 0 
303.4 Ports 0 0 0 0 

3.4 Rug Warrior Logic 
30401 Power 0 0 0 
30402 The Clock 0 
3.403 Reset 0 0 0 
304.4 Mode Selection 
30405 Low-voltage Inhibit 

xiii 

xviii 

1 
9 

11 
11 
13 
16 
21 
25 
29 
35 
36 

37 
38 
39 
41 
42 
43 
45 
45 
47 
49 
49 
49 
50 
50 
50 

Silver Star Exhibit 1018 - 6



Contents Contents 

3A6 The Serial Line 50 5.2.2 Sensitivity and Range 99 
3.4.7 External Memory . 51 5.3 Light Sensors 101 
3.4.8 Battery Backup . 52 Ei.3.1 Photoresistors . 102 

3.5 Hardware-Software Interface . 52 5.3.2 Near-Infrared Proximity Detectors 106 
3.5.1 Representing Numbers 52 5.3.3 Pyroelectric Sensors 111 
3.5.2 An Example 53 5.3.4 Cameras. 114 
3.5.3 CPU Registers 56 5.4 Force Sensors 114 
3.5.4 Instructions and Operands 57 5.4.1 Microswitches . 114 
3.5.5 Arithmetic 60 5.4.2 Bend Sensors 117 
3.5.6 Control and Status Registers 60 5.4.3 Force-Sensing Resistors 117 
3.5.7 Jumps and Branches 61 5.5 Sound Sensors . 117 
3.5.8 Subroutines 62 5.5.1 Microphones 117 
3.5.9 The Stack 64 5.5.2 Piezoelectric Film Sensors 119 
3.5.10 Passing Arguments . 64 5.5.3 Sonar 119 

3.6 Real-Time Control 66 5.6 Position and Orientation . 121 
3.6.1 Polling. 66 5.6.1 Shaft Encoders 122 
3.6.2 Interrupts 68 5.6.2 131 
a.6.3 Capture 70 5.6.3 Tilt Sensors 132 
3.6.4 Traps 72 5.6.1 133 
3.6.5 Buffers 72 5.7 Proprioceptive Sensors 134 

3.7 Loading a Program . 73 5.7.1 Battery-Level Sensing 1:14 
3.7.1 The Assembly Program 73 5.7.2 Stall Current Sensing 135 
3.7.2 A Bootstrap Loader 75 5.7.3 Temperature 136 

3.8 Alternatives 76 5.8 Exercise 136 
3.9 References 77 5.9 References 137 

4 and Prototyping 79 6 Mechanics 139 
4.1 Practical Problems 79 6.1 Locomotion 139 

4.1.1 Attention to Detail . 80 6.1.1 Wheel Arrangements . 141 
4.1.2 Wire-\Vrap 80 6.1.2 Robot Kinematics 145 
4.1.3 Scotchfiex 81 6.1.3 Robot Shape 147 
4.1.4 Speed wire 83 6.2 Adapting Mobile Platforms 148 

4.2 Connectors 85 6.2.1 Identifying the Drive Type 148 
4.3 Printed Circuit Boards . 89 6.2.2 Electrical Modifications 150 
4.4 Debugging. 91 6.3 Legged Locomotion 151 

6.4 Construction Systems 152 
5 Sensors 93 6.5 Custom Construction . 153 

5.1 Achieving Perception . 93 6.5.1 Wheel Mounting 153 
5.1.1 Transducing versus Understanding 93 6.5.2 Sheet Metal 155 
5.1.2 Levels of Abstraction . 94 6.5.3 157 

5.2 Interfacing Sensors 94 6.6 Exercise 159 
5.2.1 Software Drivers 96 6.7 References L59 

viii IX 

Silver Star Exhibit 1018 - 7



Content~ 

7 Motors 
7.1 Variety Abounds 

7.2 How a DC Motor Works 

7.3 Sizing a DC Motor ... 

7.4 

7.3.1 Torque, Speed, Power, and Energy 

7.3.2 A Motor Model .... 

7.3.3 Speed-Torque Curves. 

Gears 

7.5 Motor Data Sheets ... 

7.6 Motors for Rug Warrior 

7.6.1 A Vehicle Model 
7.6.2 Selecting a Motor. 

7.7 

7.8 

7.9 

7.6.3 Converting Servo Motors 

7.6.4 Unmodified Servo Motors 

Interfacing Motors . . . . . . 
7.7.1 H-Bridges ..... . 

7.7.2 Switching Inductive Loads . 
7.7.3 Power Electronics 

7.7.4 Motor-Driver-Power ICs 

Software for Driving Motors ... 

7.8.1 Pulse-Width Modulation. 

7.8.2 Feedback-Control Loops 

References . 

8 Power 

X 

8.1 Batteries . . . . . . . . 

8.1.1 Chemistry ... 
8.1.2 Energy Density 

8.1.3 Voltage 

8.1.4 Capacity 

8.1. 5 Internal Resistance 

8.2 Recharging 

8.3 Power Regulation . 

8.3.1 Avoiding Regulation 

8.3.2 Linear Regulators 
8.3.3 DC-DC Converters 

8.4 Isolation . . 

8.5 References ....... . 

161 

161 

166 
170 

170 

171 

174 

177 

179 

183 

183 
185 

185 

189 
191 

191 

193 

195 

208 

210 

212 

218 

224 

227 

227 

228 

231 
231 

232 

233 
233 

234 

234 
235 

236 
238 
241 

Contents 

9 Robot Programming 
9.1 The Traditional Approach 

9.1.1 Computation 
9.1.2 Modeling .... . 
9.1.3 Time ....... . 

9.2 The Subsumption Approach 
9.2.1 Behavior Networks . 

9.3 Rug Warrior's Program .. 
9.4 Implementing Subsumption 

9.4.1 Processes and Schedulers 
9.4.2 Finite-State Machines 
9.4.3 A Subsumption Formalism 

9.5 Subsumption in IC . 
9.6 What Did We Do? 
9. 7 References 

10 Unsolved Problems 
10.1 Navigation. 
10.2 Recognition 
10. 3 Learning 
10.4 Gnat Robots 
10.5 Cooperation . 
10.6 Thoughts 
10.7 Exercise .. 
10.8 References 

A Schematics 

B Rug Warrior Program 

C Yellow Pages 
C.l Suppliers 
C.2 Products . 

D Trade Magazines 

E Data Books 

F Color and ASCII Codes 

Bibliography 

Index 

243 
243 
246 
246 
247 
247 
248 
251 
253 
253 
254 
255 
259 
266 
268 

271 
272 
272 
272 
273 
273 
274 
274 
275 

277 

287 

299 
300 
318 

321 

325 

335 

337 

343 

XI 

Silver Star Exhibit 1018 - 8



Preface 

The design and construction of mobile robots is as much an art as a science. 
The intent of Mobile Robots: Inspiration to Implementation is to explain the 
skills involved in a manner amenable to as broad an audience as possible. 
Our aim is to teach you, the reader, how to build a robot. With the recent 
wide availability of home computers and the tremendous reductions in costs 
for microelectronics, building mobile robots with an assortment of sensors 
and actuators is within the reach of nearly everyone. 

This book is designed to appeal to readers on a variety of levels. First, 
for novices and those eager to jump in and get their hands dirty, there 
are basic lessons on the tools of the trade and the craft of building things 
and long appendices of suppliers and distributors of interesting robot parts. 
Chapter 2 plunges right in and leads the reader through a tutorial design 
example of possibly the world's simplest robot, but nevertheless a complete 
system. This is TuteBot (for Tutorial Robot), an obstacle-avoiding robot 
comprised solely of two motors, two wheels, two bump switches, and a few 
discrete electronic components. The TuteBot exercise should conjure up a 
plethora of questions and incite the imagination for many ways to make the 
robot better and act more intelligently. 

With TuteBot as a warmup, we then introduce a more sophisticated 
robot based on software control, Rug Warrior. The remaining chapters 
after TuteBot are designed to convey basic knowledge about the building­
block technologies that make up a robot: sensors, actuators, a power sup­
ply, and an intelligence system. The progression of Chapters 3 through 8 
instructs you on how to put together the hardware subsystems of Rug War­
rior: microprocessor-controlled sensors and actuators, the mechanics of a 
locomotion system, and a capable battery supply. Rug Warrior has enough 
sensors and actuators to enable a richer class of behaviors than TuteBot 
(such as chasing people, avoiding obstacles, moving towards noises, hiding 
in the dark, and playing music). 

Our purpose is not to publish a cookbook but rather to put together an 
expose on enough basic skills so that a generation of enthusiasts will not 

Silver Star Exhibit 1018 - 9



Preface 

only widen their imaginations but also have the requisite tools to implement 
those dreams. This is, to us, the real excitement of robotics. 

Chapter 9 of the book is directed at just that issue: How can we put 
all the pieces together to build truly intelligent As we add more 
sensors, more actuators, and more software, how do we manage complexity? 
How do we coerce interesting behaviors to emerge? And in the end, how 
can such machines solve useful problems for us? We conclude our book in 
Chapter 10, with some discussion of new directions in artificial intelligence 
and arising technologies that may take these ideas to the next step. 

Although this book is intended to be an exposition on building mo­
bile robots rather than a literature review of the field, we have included 
some annotated references at the end of each chapter, pointing to sources 
of further reading or background of concepts mentioned. There is a full 
bibliography at the end of the book. 

Mobile Robots has grown out of research at the MIT Artificial Intelli­
gence (AI) Laboratory under Rodney Brooks and his mobile robot group. 
The half dozen years that the "mobot" lab has been in existence have seen 
the birth of a wide variety of artificial creatures: some avoid obstacles, some 
collect things, a few wander and build maps, several walk awi climb over 
rough terrain and a tiny one hides in dark corners. ·while the research has 
focused on the issue of how to organize the "insect-level" intelligence of 
these mobile robots, we have found that we have also had to do extensive 
engineering throughout several generations of newly available technology. 

In we staged a Robot Talent Show, transferring much of this 
technology to the AI Lab as a whole. Students were given kits of parts 
and computers and were encouraged to pick their own problems and solve 
them. Vacuum cleaners, laser tag-playing robots, autonomous blimps, and 
cross-country skiers were a few of the resulting mechanical participants in 
the talent show. Photographs from that night are included at the end of 
this section. We together a robot builder's manual before the event, 
outlining the basics of building autonomous creatures, and handed it out 
to all the students. The idea for this book sprang directly from that first 
manual. 

Our expectations and experiences in building mobile robots over the 
years have not always matched, but the lessons learned have been invalu­
able and we hope to share these with yon. Our method is to give general 
background in each chapter on how different robot subsvstems work and 
then to ground the discourse in specific examples with Ja robot we have 
designed solely for this book as a teaching aid. In this way, specific circuits 
and bits of code are sprinkled throughout, and readers who follow along 
can implement their own robots and see them evolve step step. The 
complete system is laid out in one place in the appendices at the end of 

xiv 

Preface 

the book. Appendix A gives the schematic for Rug Warrior's brain along 
with all the interface electronics to drive its sensors and actuators and 
pendix B lists a program that defines Rug Warrior's behaviors. T~e ent~re 
robot has been reduced to eight chips and six connectors, a very mmmmhst 

example of a mobile robot. . . 
Getting started in robotics involves not only learning how to bmld th~ngs 

but knowing where to get materials. The remaining appendices contam a 
compendium of parts, suppliers, and information that we have found help­
fuL Appendix C lists a yellow pages of over 150 suppliers and distributo~s 
for robot parts, such as motors, sensors, prototyping equipment, electromc 
components, and power supplies. Hopefully, this collection will help you 
overcome the inertia of getting started, whether it be in a basement work­

shop or in a university laboratory. 
Technology changes rapidly, and while a book such as this can provide a 

general foundation, it cannot be dynamic enough to provide up-to-date i~­
formation on new product announcements. Staying abreast of technology 1s 
crucial in making design decisions. We have discovered that systems we en­
gineered in house one day would often become commercially available the 
next, or that components we relied on for years would suddenly become 
discontinued, so in Appendix we have listed a number of 
trade journals, and electronic bulletin boards that we have found invalu­
able for staying current. (In fact, just as this book is going to press, _the 
microprocessor that we chose for Rug Warrior has gone out of productwn. 
Fortunately, however, the Motorola MC68HC811AO microprocessor men­
tioned throughout is upward compatible with the Motorola MC68HC11Al, 
so simply substitute that part into Rug Warrior.) 

Semiconductor manufacturers' data books are another source of current 
technology; we have annotated our collection in Appendix E. Appendix F 
adds a few more tables that are handy to have in one place, such as the 
resistor color code and the ASCII code for alphanumeric symbols. 

As technology marches on, a book that emphasizes specific hardware 
will quickly become outdated. But the art and the means and the basic 
concepts survive, and these we hope to share with you. 

Cambridge, MA 
April, 1993 

Anita M. Flynn 
Joseph L. Jones 

XV 

Silver Star Exhibit 1018 - 10



The photographs in this section are from the MIT AI Lab's Robot Talent 
Show, which was held in January, 1989. This book is an outgrowth of the 
Robot Bwldmg Manual written for that event. 

Here, Lee Tavrow displays his inchworm robot to an appreciative crowd at the 
Robot Olympics. 

Lukas Rueker urged on his robot vacuum cleaner. 

xvi 

Mikt> Caine and Christian built an autonomous blimp. 

Dave Barrett made a few last minute adjustments to his craft in the robot 
boat race. 

xvii 

Silver Star Exhibit 1018 - 11



Acknowledgments 

Many people have read early drafts of this book and offered helpful com­
ments. We would like to thank Colin Angle, Rodney Brooks, Roger Chen, 
Jill Crisman, CDR H.R. Everett, Dorothy Flynn, Kathleen Flynn, Richard 
Flynn, Douglas Gage, Mattew Good, Ken Good, Tina Kapur, Ken Liv­
ingston, Fred Martin, James McLurkin, Michael Noakes, Lynne Parker, 
Alison Reid, John Richardson, Rick Shafer, Wendy Taylor, William Wells, 
Masaki Yamamoto, and Holly Yanco. 

We appreciate the interest of Bruce Seiger and Don McAleer and their 
students at Wellesley High School, who beta-tested the material in this 
book. We would also like to acknowledge and thank Randy Sargent and 
Fred Martin of the MIT Media Laboratory, who were instrumental in mak­
ing this book possible, both through their efforts in creating new robot 
software development tools and in contributing to the actual manuscript. 
We were fortunate to have the help and encouragement of our publishers, 
Alice and Klaus Peters, who pushed this book to aim for as wide an audi­
ence as possible. We are grateful for the patience, love, and support of Sue 
and Kate during the many days that Daddy was off playing with robots. 

Finally, thanks to all those Robot Olympians whose enthusiasm and 
participation in the Robot Olympics inspired and instigated this book. 

Introduction 

The rise in popularity of the single-chip microcomputer and the drastic re­
ductions in size and cost of integrated circuits in recent years have opened 
up huge new arenas for creating intelligent systems. Building a robot, how­
ever, requires more expertise than simple programming. A robotici~t m~1st 
be a generalist. The robot designer must own a compendium of bas1c skills 
from fields such as mechanical engineering, electrical engineering, computer 
science and artificial intelligence (AI). Unfortunately, few people have the 
opport~nity to study so broadly. In this book, we attempt to outline a 
few basic ideas from each of those areas and, more importantly, to suggest 
strategies for putting the pieces together. Hopefully, with a little creativity, 
you will be able to later use this toolbox of techniques to design far more 
intriguing machines than those outlined in this book. 

Robotics is about building systems. Locomotion actuators, manipula­
tors, control systems, sensor suites, efficient power supplies, well-engine~red 
software~all of these subsystems have to be designed to fit together mto 
an appropriate package suitable for carrying out the robot's task. Where 

do we start? 
We think of a robot as an intelligent connection of perception to action. 

The implementation of that goal might take on a variety of "costume~," 
from mechanical logic to microprocessor control to networks of neuronhke 
gates. Our approach is to create abstraction barriers in terms of think­
ing about the intelligent capabilities our robot might possess and then to 
gradually break them down by explaining the specific hardware details th~t 
we might employ to create those competences. The them~ through~ut IS 

to build systems early and build systems often~to start w1th very s1mple 
systems that connect perception to action and to gradually move to more 
sophisticated machines. 

Silver Star Exhibit 1018 - 12



Chapter 1 Introduction 

Figure 1.1: TuteBot is a very simple robot, yet it can exhibit two distinct 
behaviors. Here it is trundling down a hallway, following walls. TuteBot's brain 
is an analog computer, which is programmed only by adjusting potentiometers. 

Vve start with a tutorial in the next chapter that describes how to build 
a robot, TuteBot, that is able to wander around a room and avoid obstacles. 
This example robot, pictured in Figure Ll, is implemented without recourse 
to a microprocessor. TuteBot is merely an agglomeration of switches, relays, 
motors, and discrete electronic components, all of which can be assembled 
rather easily. You will be able to adjust TuteBot's reflexes by tweaking two 
potentiometers. 

From this very simple example of a robot, we introduce the micropro­
cessor and the advantages of using software to manage the complexity of 
large numbers of sensors and actuators. The viewpoint from this moment 
on is to build systems with the intent of getting to software as soon as possi­
ble. To keep parts count, and costs down for our readers, we describe 
minimalist ways to interface sensors, motors, and power supplies in an­
other example robot, Rug Warrior. The microprocessor becomes the heart 
of Rug Warrior, and the following chapters describe the workings of me­
chanical and electrical components and the interface circuitry that enables 
them to be driven from a microprocessor. Software-primitive operations 
are threaded throughout the book as each new perception or locomotion 
system is introduced. 

Although this book describes the details involved in actually building 
robots, we hope also to raise some deeper points about models of intelli­
gence. \Vhat is Is it the contemplative thought involved in 

2 

Introduction 

playing chess? Is it the reflexive action that occurs as you try to keep the 
gnats out of your eyes while walking down the street on a hot, muggy sum­
mer night? Or is it the common-sense reasoning used in deciding what to 
make for breakfast? We will stick with the notion that mtelligence is the 
foundation for how people act most of the time. It will be interesting to keep 
some of these questions in mind as we investigate the sorts of mechanisms 
we can use to endow our example robots with low-level behaviors. 

Other features of intelligence have to do with the role the environment 
plays in our view of cleverness. How connected are sensing and actuation 
to intelligence? How much of what we acknowledge as complex behavior is 
merelv a reflection of simple behaviors off of a complex environment? For 
insta~ce, if we observe the behavior of ants scurrying around their anthills, 
we might begin to wonder whether their complex paths result from careful 
planning and contemplation, or perhaps merely from simple rules of 
behavior acted out in an enviroment full of uneven terrain, obstacles to 
climb over and other ants. 

TuteBot and Rug \Varrior will not answer many of these questions per­
taining to the structure of intelligence, but we hope that they can be the 
platforms for an easily attainable AI input/output device-a 
collection of sensors and actuators that provide a little bit of input, a lit­
tle bit of output, and a little bit of computation to readers interested in 
experimenting with some of these issues. 

Many of the modern theories in artificial intelligence grew from work 
in a number of other fields. Cybernetics, in the 1940s and 1950s, was a 
field of research that tried to understand intelligence through the study of 
the control of machines. developed in parallel with classical 
control theory. Its model of computation was analog, and it tried also to 
understand intelligence in animals by modeling them as machines. Our 
example of TuteBot is very much in the same spirit as the early work in 
cybernetics. 

For instance, Figure 1.2 illustrates the extent of TuteBot's talents. The 
long dashed lines at the bottom of the figure exemplify one initial behavior, 
where TuteBot moves forward in a straight line until it hits an obstacle. 
It then backs up, turning left for some period, and then proceeds forward 
again in a straightline motion. 

A number of mechanisms could be imagined necessary to achieve this 
behavior. We could suggest contemplative recognition of chair legs and 
walls and TuteBot making explicit decisions concerning when to back up 
and how far to turn, but TuteBot has no such model of the world. Instead, 
TuteBot has a simple analog electrical circuit for a control system, which 
directs TuteBot's two wheels to move it forward until a bump sensor on 
the front detects a collision. The signal from the bump sensor directs both 

3 

Silver Star Exhibit 1018 - 13



Chapter 1 Introduction 

I 
I 

I 
I 

I 
I 

I 
I 

!....._ 

I ' 
I ' ' ' ' ' ' ' 

---
--* 

' ' ' 

.... ____ ......... 

' 
' \----

I 
I 
I 
I 
I 
I 

' I 
'-z 

/ ' 
I 

I 
I 

I 
I 

I 

I 
I 
I 
I 

' \ 
" 1 ' 

I 

I 
\ 

I 

I 
I 

I 

1.2: Two TuteBots each displaying a different behavior. Dashed lines 
indicate the paths they have traveled. In one behavior (long dashed TuteBot 
moves along a straight path until it encounters an obstacle. It then backs up, turns 
left to change its heading, and proceeds forward again, performing straightline 
navigation. In the second behavior (short dashed lines), the robot's forward 
motion forms an arc to the left. When it bumps into an obstacle, the robot backs 
up and turns right; then it arcs to the left once again as it moves forward. vVith 
this strategy, TuteBot demonstrates a wall-following behavior. 

4 

Introduction 

motors to reverse direction, and ThteBot then backs up. What makes it 
turn is an element of state, or timing, in the system that is implemented 
with a resistor-capacitor circuit, one for each wheel. If the RC circuit 
on each wheel is set differently, one wheel will back up for a longer period 
of time than the other wheel, causing ThteBot to turn. When 'I'uteBot 
resumes forward motion, it no longer has the same heading and so avoids 
ramming the obstacle it first bumped into. 

A second behavior can be added to TuteBot using a similar strategy. 
during the forward motion, one wheel is allowed to turn faster than the 

other (for instance, by adding a resistor in series with one motor) TuteBot 
will move in an arc. The short dashed lines at the top of Figure 1.2 illus­
trate this behavior. As TuteBot moves forward, arcing to the left, it tends 
to bump into obstacles. When this happens, the initial obstacle-avoiding 
behavior just described is triggered and TuteBot backs up, turns toward 
the right, and forward in a new direction. However, the bias be­
tween the wheels causes the robot to veer off to the left again. The result 
of these two behaviors is that TuteBot tends to follow along the of 
clutter. We call this behavior wall following. 

In the 1960s after cybernetics, and with the rise of the digital computer, 
the field of artificial intelligence was born, and with it came computational 
models of intelligence. The contributions of AI to the understanding of 
intelligence were the notions of representation, search, and modularity. In­
formation could be explicitly represented in data structures inside a com­
puter, which could then be searched for the desired answer. Representa­
tions could be more easily formulated, as the model of computation was 
no longer time-varying analog signals, but bits and numbers. This capabil-

enabled modularity and led to increasingly sophisticated information­
processing systems. Chess-playing programs, expert systems, natural lan­
guage interpreters, and problem solvers were some of the demonstrations 
developed in this era of traditional AI. 

Unfortunately, some of the ideas involved with representation led to 
problems when intelligence systems were designed for machines that in­
teracted with the dynamically changing real world. Traditional AI had 
formulated the problem of robot intelligence as sensing, building a world­
model representation from the fusing of sensor data and then planning 
actions based upon that model. Computational bottlenecks, noisy sensors, 
and the complexity of reality led some researchers to look for new models 
of intelligence that would be robust and would work in real time. 

These new ideas have collectively come to be known as Nouvelle AI 
or behavior-based robotics. Rodney Brooks at the MIT Mobile Robot Lab 
proposed the architectltre which is a way of organizing the 
intelligence system by means of layering task-achieving behaviors without 

5 

Silver Star Exhibit 1018 - 14



Chapter 1 Introduction 

recourse to world models or sensor fusion. This book grew directly from 
that research, and Rug Warrior is our example robot that illustrates many 
of the ideas in a subsumption architecture. 

The word subsumption is used to describe the mechanism of arbitration 
between the layers of task-achieving behaviors. Arbitration is the process 
of deciding which behavior should take precedence when many conflicting 
behaviors are triggered. In a subsumption architecture, the designer of the 
intelligence system lays out the behaviors in such a way that higher-level 
behaviors subsume lower-level behaviors when the higher-level behaviors 
are triggered. 

For instance, if the lowest-level behavior enables a wandering action 
and the highest-level behavior initiates following light, then normally, the 
robot will wander around, moving along randomly chosen headings. How­
ever, should someone point a flashlight at Rug Warrior, the highest-level 
behavior would trigger, suppressing wandering for the duration of time that 
the flashlight is directed at the robot. Instead of random headings, Rug 
Warrior's wheels would be commanded to turn toward the point of highest 
light intensity and move forward in that direction. If the flashlight were 
turned of!·, the follow-light behavior would no longer be activated and wonkl 
cease subsuming the wandering behavior. Random wandering would then 
resume. 

In order to experiment with a richer set of behaviors than mere wan­
dering and following of lights, we have designed Rug ·warrior to have as 
many different kinds of sensors as possible, within the constraints of trying 
to keep it as simple, and inexpensive as we could. We have built several 
versions of Rug Warrior, each very different from the other. Two are shown 
in Figure 1.3. We think of Rug ·warriors as a class of robots rather than 
an instance. Basically, we will refer to a Rug Warrior as any robot that 
incorporates our electronics (illustrated in Appendix but where vehicle 
mechanics and software behaviors may vary widely. 

The Rug Warrior on the left in Figure 1.3 has two drive wheels, which 
enable the robot to spin around its center point, and a passive caster for 
three-point stability. The plexiglas ring around the robot is a skirt, 
which is mounted on three switches; this feature tells the robot it has 
bumped into an obstacle. The motors used in this robot came from a surplus 
dealer, and the chassis was made from plexiglas that was drilled, and 
punched in a machine shop. 

The Rug \Varrior on the right in the figure, running over this book, is 
a tank-drive robot made from LEGO bricks, gears, axles, and treads. The 
two motors used in this version of Rug Warrior are model airplane servo 
motors, ordered through a hobbyist catalog for each (although some 
standard servos are now as low as $10). 

6 

Introduction 

Figure 1.3: Rug Warriors I and Il, wandering around their environment, bump­

ing into chairs and driving over books. 

While the robots look and act rather differently, their electronics are 
the same. The board we have designed (which you can prototype your­
self using Speedwire or Scotchflex prototyping technology, as .discuss~d in 
Chapter 4 or alternatively buy in printed circuit board versiOn as hsted 
in Appendix is 3" x 4" in size and contains a Motorola MC68J1_C11AO 
microprocessor, 32K bytes of memory, a serial port, two motor dnvers, a 
piezoelectric buzzer. and a number of sensors. Three .bump sensors de­
tect collisions two near-infrared proximity detectors notice obstacles up to 
one foot awa;, two photoresistors sense light level, a microp~one listens for 
noises, and a pyroelectric sensor detects moving sources of heat (such as 
humans, cats, oops, sometimes even fireplaces). 

Figure 1.4 illustrates a day in the life of these Rug Warriors. . 
Warrior 1, the wheeled version, moves across the room m a straight hne 
until it bumps into the television set. As it turns left to a new heading, the 
microphone detects a loud noise from the TV, which t~iggers a behavior to 
play "Bicycle Built for Two" on the piezobuzzer. As 1t wanders on, ne.ar­
infrared proximity detectors see an imminent collision and a :vall-followmg 
behavior becomes active. Wall following times out after a few moments, 
and straightline motion resumes. A low-lying (but very in~er~sting) book 
on mobile robots is in the path, but the near-infrared prox1m1ty detectors 
are pointed upward and miss it. vVarrior I then drives into the book, 
but the bump skirt detects the collision, causing the robot to back up and 
turn away to a new heading. It catches a peak of light i~tensity fr~m 
the doorway, and a follow-light behavior becomes activated. Rug Warnor 

I then leaves the room. 

7 

Silver Star Exhibit 1018 - 15



Chapter 1 Introduction 

I 
I 

,, 
I '..., -""' 

1 Wall-following 
~ behavior is enabled 
\ by i11fnred sensors 

' I 
I 
I 

I 
I 

I 
I 
I 
I 
I 

I 
I 

\ 
\ 
I 
i 

I 

*~ , ___ # 

Sound from TV triggers 
microph<lfH! circuit -
piuo buzzE!t b.f!gins to 
play "Bicycle Built for Two" 

I Switch from wall-following 
I back to straightlinll! 
\ motion Rug Warrior switches 
\ 

\ 

' 

I 
I 

L 

/ 

to light following 
behavior-heads for door 

.... ----

Rug WarritH executes 
person-following behavior­
mistaking space heater 
for pers"n 

Rug- Warrior switches 
to hiding behavior; 
looks ror dark spot 

Swi~ch from straightline 
rnotwn to wall-following 

I 

/ 
I 

I 
I 
I 

I 
I 

t 
\ 

\ 
I 

Figure 1.4: Two versions of Rug \Varrior, wandering around their environ-
me~t., S~1b~~umptwn netwo~ks for the intelligence systems prescribe a of 
l.whav,ms chat become act1ve upon the proper· B l · h 
f · · . · · e 1avwrs sue as wall 
ollowm~, stra1ghtlme motion, obstacle avoidance, noticing sounds, playing mu-

hommg m on hght sources, and hiding in the dark are all possible with th 
sensors avaJlable on Rug Warriors. 8 

8 

1 References 

In the meantime, Warrior the tank, has been following walls 
outside the room and now comes maneuvering down the hallway. As it nears 
the open door, the wall-following behavior causes the robot to turn to the 
right, as if the wall were still there. As it does this, the cone of detection of 
the pyroelectric sensor sweeps past the space heater, mistakingly triggering 

people-following behavior. Rug Warrior II does not see its favorite book 
lying in the way and drives right over it. As it nears the space heater, the 
people-following behavior happens to time out and a hide-in-dark-corners 
behavior activates. This directs Rug Warrior II to veer off on a new heading, 
wandering around until it lands in a shadow, where it sits and hides under 
a chair. 

These illustrations are meant to give a flavor of a subsumption archi­
tecture intelligence system. The main idea is that there are no explicit 

representations of the world from which the robot plans its ac­
tions. Instead, there are a number of control loops granting a very tight 
coupling of perception to action, and from the interaction of many sim­
ple behaviors, complex seems to emerge. The following chapters 
will expand on these ideas and reveal the details involved in making things 
work. 

1.1 

A of research predates nouvelle AI. Some of the early ideas from 
cybernetics can be found in Weiner (1948, 1961) Grey Walter (1950, 1951) 
built several vacuum tube-based robots that could home in on goals and 
exhibit learning behaviors. Many years later, Braitenberg's work 
with imaginary vehicles containing simple connections between sensors and 
actuators nicely illustrated many of these ideas. 

Minsky proposed the notion of multiagent intelligence systems 
in which parallel processes interact to produce emergent behavior. The 
first work on subsumption architectures, incorporating the modularity of 

behaviors was presented in Brooks (1986). One influence during 
this time was work in the field of ethology, the study of animals in their 
environments. Wehner (1 987) underscored the fact that, in animals, many 
sensors are specifically matched to their environments. A recent paper 

Brooks gives a more thorough exposition on the prior work 
and contributing ideas that gave birth to behavior-based robotics. We will 
return again to this subject toward the end of this book. 

But enough of history and philosophy. Let's get started! 

9 

Silver Star Exhibit 1018 - 16



2 

TuteBot 

2.1 A Tutorial Robot 

Building a robot can be a lot of work. All the more so if the first plan 
is unnecessarily complex. This chapter is intended to help get you started 
with building robots while illustrating some key points about designing a 
robot's intelligence system. Our aim here is to keep you from getting too 
bemired in the myriad of details involved in creating a more sophisticated 
creature. We will show just how simple a robot can be and launch you on 
your way to building one. 

Before proceeding to the more sophisticated Rug Warrior described in 
the next seven chapters, we will begin here by constructing ThteBot-a 
robot that is simple yet complete. Do not underestimate the elegance of 
simplicity. Often, the simplest solution takes the longest to comprehend, yet 
the simplest solution often illustrates the main lessons with the most clarity. 
Experienced designers agree that the first way they design something is 
usually the most complex way. 

ThteBot will exemplify how a robot as a system (a collection of sensors, 
actuators, and computational elements) can be organized in such a way 
that intelligent actions result in response to certain stimuli. ThteBot will 
consist merely of a circuit, a chassis, a sensor, a battery, and two motors. 
It can be programmed by adjusting two potentiometers. The entire robot 
will be built from LEGO parts and a few electronic components that are 
readily available at Radio Shack and other electronic hobby stores. 

What will ThteBot be able to do? Its repertoire of behaviors will endow 
it with the capabilities to explore its world, escape from objects with which 
it collides, and follow along walls that it detects with its bumper. 

Silver Star Exhibit 1018 - 17



Chapter 2 TuteBot 

Figure 2.1: TuteBot is a robot that can explore its surroundings, escape from 
collisions with obstacles, and be programmed to follow walls. This front view of 
the robot shows the front bumper, mounted on two microswitches, for detecting 
collisions. The electronic breadboard containing the circuitry of TuteBot's brain 
is positioned on the chassis, just above the batteries. 

A completed ThteBot is shown in Figure 2.1. The front fender acts as a 
bump sensor and detects collisions with obstacles in its path. Two wheels 
driven by separate motors are used for propulsion. (Only one drive wheel 
is visible in this photograph.) A trailing caster wheel maintains stability. 
Above the chassis is the battery case, and mounted on top of the batteries 
is the breadboard, containing ThteBot's electronic circuitry. 

All the mechanical components used here are LEGO parts: motors, 
gears, axles, wheels, switches, and connectors. LEGO is a very good source 
of parts for building robots, as the designer can prototype mechanisms 
quickly without recourse to a machine shop. The LEGO Technics series 
kits come with even more advanced components, such as pistons, pumps, 
shock absorbers, differential gears, universal joints, battery cases, and even 
optical encoders. 

It is probably worthwhile to order catalogs directly from LEGO, as 
their mail order and educational divisions sell some components that are 
not in neighborhood toy stores. Addresses and phone numbers are listed 
in Appendix C. Other types of mechanical building-block kits are also 
available, such as Fischer-Technic and Meccano. 

ThteBot's brain is entirely analog circuitry. No integrated circuits are 
required, and all components, including the breadboard, can be found at 

12 

2.1 A Tutorial Robot 

Bump Sensor 

Adjustable 
Timer 

Adjustable 
Timer 

Motor 
Driver 

Motor 
Driver 

Left Motor 

Right Motor 

Figure 2.2: The essence of TuteBot. Two motors, two wheels, a bump sensor, 
two potentiometers for programming, and two motor drivers are enough to create 
a concrete example of a simple robot-an intelligent connection of perception to 
action. 

a Radio Shack store. The only tools required to put together ThteBot are 
wire cutters, wire strippers, and possibly a soldering iron for making con­
nectors. An oscilloscope is not necessary, although having one always makes 
debugging easier. A multimeter should suffice for debugging ThteBot. 

A block diagram of ThteBot, shown in Figure 2.2, illustrates how the 
bump sensor is connected to the actuators. The signal created when the 
bump sensor detects contact is sent to the motor-driver circuitry for each 
wheel, signaling the robot to back up. An adjustable timer associated with 
each motor driver determines how long each wheel should reverse. 

2.1.1 TuteBot Behaviors 

With a minimal amount of hardware, obstacle avoidance can be imple­
mented on ThteBot. Figure 2.3 depicts the sequence of actions that occur 
when ThteBot strikes an obstacle. The robot is initially moving directly 
forward, toward the shoe. As it strikes the shoe, both motors reverse and 
the robot backs straight up. However, one motor stays in reverse longer 
than the other, and the robot begins to turn; in this case, the right motor 
reverses longer, causing ThteBot to turn to the right. At some point, the 
right motor stops reversing and both motors go forward, leading ThteBot 
off in a new direction, hopefully, with a wide enough berth to avoid the 
shoe. If not, the robot bumps into the shoe again and the process repeats 
until ThteBot turns far enough to the right to avoid the shoe. 

13 

Silver Star Exhibit 1018 - 18



Chapter 2 TuteBot 

Forward Backward Turning 
in place 

Figure 2.3: TuteBot's basic operation. When the power is switched on, TuteBot 
moves forward until it encounters an obstacle. TuteBot then backs up, turns in 
place, and resumes its forward motion. The time spent backing up and turning 
in place is programmed by the user. 

A timing diag"Iam that graphs this sequence of events is shown in Fig­
ure 2.4. The top graph depicts the signal generated by the front fender's 
bump sensor. The bottom two graphs illustrate the signals sent to the right 
and left drive motors, respectively. 

Initially, both motors receive signals that direct them to go forward. 
The signal the bumper sends to the adjustable timers is binary-low for no 
contact, high when an obstacle is struck. The timers, in turn, provide binary 
signals to the motor drivers-high for forward rotation, low for reverse 
rotation. Once activated, each timer continues to supply the low signal for 
a characteristic time. The motor drivers interpret this high or low signal 
by providing forward or reverse current to the motors, respectively. 

Assume that the timers are set for delays of tr seconds and t 1 seconds for 
the right and left motors and that tr > t1. After encountering an obstacle, 
the robot will back up for time t1. It will then turn in place to the right (the 
left motor turns forward, the right motor stays in reverse) for time t r - t 1• 

It will then resume moving forward on a different heading, thus avoiding 
the obstacle. 

An additional behavior can be made to emerge from the robot. If we 
bias the motors so that, when going forward, one motor turns faster than 
the other, the robot will move in an arc. This slowdown in speed can be 

14 

2.1 A Tutorial Robot 

bump sensor 
Signal from I n 

L-----~~--------------------Collision 
detected 

Commandto~--------4-----------------~-----------

Forward I 
right motor 

Reverse 
Robot moving 
forward 

Robot 
backing up 

I I 
1 Robot turning 1 
I right I 
I I 

Robot moving 
forward 

Commandto~---------+--------~-------------------
Forward I 

left motor 

Reverse 

----------------------------~ time 

Figure 2.4: The timing sequence generating TuteBot's backup behavior. Both 
motors normally move in the forward direction, as shown in the bottom two 
graphs. When the bump sensor is activated, both motors reverse. The right 
motor stays in reverse longer than the left, causing the robot to turn to the right. 
When both motors resume forward motion, the robot moves on a new heading. 

implemented by adding a resistor in series with one motor. If, for instance, 
the left motor is forced to turn significantly more slowly than the right, 
the robot will arc to the left. By combining this forward arcing behavior 
with the earlier back-and-turn behavior, TuteBot can be coerced to follow 
a wall, as was illustrated in Figure 1.2. 

To demonstrate this, we would place the robot with a wall to its left 
and adjust the timers so that, after encountering a bump, the robot will 
back up and turn a bit to the right. Now, when going forward, the robot 
will arc to the left until it hits the wall; then it will back up, turn right, and 
head forward in an arc until it bumps the wall again. For suitable settings 
of the parameters, the robot should be able to turn through a doorway and 
negotiate either inside or outside corners. 

It is important to note that nowhere in TuteBot's simple brain does it 
have knowledge of what a wall is or what is required to follow a wall. Rather, 
the superposition of a simple set of reflex actions allows a more complex 
behavior to emerge. This idea of seemingly complex behaviors emerging 
from a collection of simple rules is the underlying notion of a subsump­
tion architecture, which was introduced earlier. We will see more complex 
examples when we get to the microprocessor-controlled Rug Warrior. 

15 

Silver Star Exhibit 1018 - 19



Chapter 2 ThteBot 

2 
1 
1 
1 
1 
2 
1 
2 
1 

Motor, 4.5 volts (part 9859, $18.00 each) 
Gear set (part 9853, $17.00) 
Brick set (part 9858, $22.25) 
Connectors and toggle (part 9851, $23.30) 
Tire and wheel set (part 9855, $13.25) 
Plate sets (part 9857, $19.10 each) 
Axle set (part 9856, $14.85) 
Touch sensors (part 9867, $9.55 each) 
Connecting lead set (part 9861, $18.00) 

Figure 2.5: ThteBot can be constructed from these or similar parts. Another 
possibility is to purchase LEGO sets 9605 ($196.20), 9851, and two 9867s. Technic 
Control 0 set ($161.00) with additional gears from set 9853 could also be used. 

2.2 Building ThteBot 

ThteBot senses the world through a front bumper mounted on two LEGO 
switches. It steers by individually changing the direction of its drive wheels 
while a trailing caster wheel supports the robot in a three-point stance. A 
simple relay, transistor, and capacitor circuit provide all the computational 
power and memory ThteBot needs. 

We will begin describing the construction of ThteBot by stepping through 
the mechanical layout of how to mount motors, attach wheels, and add 
gears. Figure 2.5 lists all the mechanical parts that will be needed. Except 
for the motors and switches, it is not necessary to follow the parts list ex­
actly. Much can be learned by making creative use of whatever parts are 
available, and many of these parts can be reused later in building a chassis 
for Rug Warrior. 

The chassis of ThteBot can be constructed by following the sequence of 
steps outlined in Figures 2.6 through 2.11. 

The motors need to have gears attached to them because direct current 
(DO) motors usually spin too quickly and have too little torque to drive the 
loads of the wheels. Attaching a gear stage to the motor shaft, or "gearing 
down a motor," causes the motor to spin more slowly but with more torque 
at the output of the gear stage. Thus, the wheel can push against the floor 
with more force. 

The first step is to start building the chassis and mount one of the 
motors with its associated geartrain. The geartrain connected to each motor 
is cor:npos~d of a series of three stages. Each stage has an 8-tooth gear 
mes?mg with a 24-tooth gear. That is, the shaft from the 24-tooth gear 
fits Into the 8-tooth gear of the second stage and so on. Figure 2.6 shows 

16 

2.2 Building TuteBot 

Figure 2.6: Begin the TuteBot by constructing the frame. The front of the 
robot is to the right in this photograph. In the LEGO motor shown, the output 
shaft is coupled to the right wheel (the nearer wheel in the photograph) through 
three stages of gears for a 27:1 geardown. This geartrain is needed to reduce the 
speed and increase the torque of the motor. 

how the motor that will drive the right wheel is mounted on the left side 
of the chassis, leaving space for the geartrain between the motor and the 
wheel. The geartrain for the left wheel is in place, but its motor has not 
yet been incorporated. LEGO motors are used on ThteBot, as they mount 
easily with the LEGO axles and bricks. 

The speed reduction provided by each stage is 8:24, or 3:1. Thus, the 
full-speed reduction of the three stages connected in series is 27:1. The 
torque the wheels can supply is correspondingly increased by a factor of 27, 
neglecting losses due to gear friction. If larger diameter wheels are chosen, 
the gear ratio must be increased. Gears and motors are explained in more 
detail in the later chapter on motors (see Chapter 7). 

As you construct the chassis, it is important to make sure that the 
gears mesh properly and that the shafts do not bind. Install the motors 
as a last step, testing beforehand that wheels and gears spin freely. Small 
misalignments in the chassis and warped gearshafts can cause unnecessary 
friction and degrade the performance of ThteBot. 

The next steps in building ThteBot's chassis are to add the left wheel's 
motor and then attach both wheels. After that, begin assembling the caster 
wheel. The caster is composed of two small wheels, mounted on spin freely 
on an L-shaped support as illustrated in Figure 2.7. 

17 

Silver Star Exhibit 1018 - 20



Chapter 2 TuteBot 

Figure 2. 7: The caster wheel assembly is visible in the foreground. One of the 
two LEGO bump sensor switches can be seen next to the drive wheel. 

In this figure, the front of the robot again points to the right. The 
caster support plate (the long black piece) has been attached to the rear. 
The caster support strut, a LEGO axle, will protrude upward through a 
hole in the support plate. This will allow the caster to swing freely as it 
follows the body of the robot. The castor's axle passes through a LEGO 
piston rod. The piston rod is connected at a right angle to a toggle joint, 
and the support strut is mounted in the toggle joint and separated from 
the support plate by spacers. Spacers on the vertical part of the L prevent 
the wheel from colliding with the horizontal support attached to the chassis 
when the wheel swings. 

Once the caster wheel has been assembled and attached to the rear of 
TuteBot, begin work on the front bumper. Figure 2.8 is a schematic of how 
the front fender is connected, both mechanically and electrically. Although 
two physical bump switches are mounted to the chassis in order to hold 
up the fender, electrically, they are wired in parallel and so only deliver a 
single bit of information to the control system-whether or not an obstacle 
has been struck. No information about which side, left or right, made the 
contact is passed on to TuteBot's brain. 

To build the front bumper, mount the two LEGO momentary contact 
switches on the front of the chassis, facing forward. The bumper, as shown 
in Figure 2.9, can be made from several long LEGO pieces. When connect­
ing the bumper, make sure that the switches do not bind or stick when the 

18 

2.2 Building TuteBot 

Figure 2.8: A schematic of the front bumper configuration. Two bump switches 
are required mechanically to hold the front bumper, but only one is required 
electrically to signal a bump, so the two switches are wired in parallel. 

fender is pressed. If they do, loosening the small retainer that holds the 
short shafts to the bumper may solve the problem. 

After the front bumper has been attached, most of the chassis has been 
completed. In the remaining steps, we will add a brick structure above the 
motors to fix them in place and to provide a level surface on which to place 

the batteries. 
Next we will make connectors for the motors and bump switches. 

LEGO p~ovides connectors that fit with their component motors and switch­
es. However, the other ends of these cables must be modified so that they 
can be plugged into TuteBot's breadboard. 

There are a number of options for making connections between the 
breadboard and the motors and bump sensors. One simple solution is 
shown in Figure 2.10, at the left in the photograph. Strip some 22-gauge 
solid hookup wire, and use a pair of pliers to force two small pieces into 
the plugs on the LEGO connector. These pins will then fit nicely into the 

sockets on the breadboard. 
Another possibility for making a suitable connector is to cut the cable or 

remove the screwed-on connector casing and then solder your own connec­
tors to the leads. This method is shown at the right in Figure 2.10, where a 
terminal strip connector has been attached to the end of the LEGO cable. 

After the cables have been connected to the motors and bumper, we still 
must make cables for connecting the battery pack to the breadboard. The 
battery holder wires can be stripped, twisted tightly, and inserted directl_Y 
into the breadboard. Coating the wires lightly with solder will make th1s 
step easier and the connections longer lasting. 

19 

Silver Star Exhibit 1018 - 21



Chapter 2 TuteBot 

Figure 2.9: The bumper panel in the foreground attaches to two LEGO bump 
switches on the front of TuteBot. The rear caster (shown at the left) has been 
attached to the caster support plate and capped by a small, round retainer. 

Figure 2.10: At the left is an example of inserting solid hook-up wire into 
the LEGO motor connector's plug. At the right is the other end of the LEGO 
motor cable, where the casing has been removed and a terminal strip, plug-type 
connector soldered on. 

20 

2.2 Building TuteBot 

Figure 2.11: TuteBot has motors and batteries wired up and connectorized. 
The battery case (containing four 1.5 V alkaline C cells) has been mounted above 
the motors. Wires from the two motors and the battery case are ready to be 
plugged into the breadboard. 

Now your TuteBot should look similar to that in Figure 2.11. Note that 
LEGO bricks have been added to secure the battery pack in place. Also 
note that the front bumper switches have been wired in parallel. Only one 
pair of wires goes from the two bump switches up to the breadboard, but 
using two switches rather than one made the mechanical mounting of the 
bumper simpler. 

The final step is to mount the breadboard on top of the battery pack. 
In the next section, we will discuss building the electronic circuitry for 

TuteBot's brain. Once this has been assembled, mounting it on top should 
produce a robot resembling that in Figure 2.1, shown at the beginning of 
this chapter. 

2.2.1 Electronic Components 

Before we get into the specifics of the control system for TuteBot, we will 
take a moment here to describe the basics of a few common electronic com­
ponents, such as relays, transistors, resistors, capacitors, diodes, and the 
like. Figure 2.12 illustrates the relationships between the physical compo­
nents we will use on TuteBot and their schematic symbols. (A schematic 

21 

Silver Star Exhibit 1018 - 22



Chapter 2 ThteBot 

diagram illustrates the topology of how all the electronic components are 
connected into a circuit.) 

First, the relay shown in the upper-left-hand corner of Figure 2.12, is 
a type of electrically controllable switch. TuteBot uses relays to switch 
the polarity of the voltage applied to its motors and thus reverse their 
directions. The idea behind a relay is that a small current flowing in the 
relay's coil can switch much larger currents flowing though its contacts. 
The way a relay works is that, when different voltages are applied to the 
two lines marked coil, the resulting current creates a magnetic field inside 
the device. This field attracts a metal lever to which the internal switch 
contacts are attached. Activation of the lever in turn disconnects one circuit 
and connects the other. (This is the meaning of SPDT-single-pole, double­
throw. The relay can connect a single circuit in either of two ways.) When 
no voltage is applied, the line marked com, or common, is connected to nc, 
the normally closed pin. When voltage is applied across the coil, com is 
disconnected from nc and connected to no, the normally open line. 

Next come bipolar transistors. A bipolar transistor has three terminals: 
a base, b; a collector, c; and an emitter, e. For a particular transistor case 
design, the correspondence between these symbols and the physical leads 
can be found in the manufacturer's data book. Transistors can be used as 
amplifiers or switches. TuteBot employs transistors to supply a current suf­
ficient to activate the relay. There are a great variety of transistors. Two of 
the important parameters that differentiate among them are amplification 
factor and maximum power-handling ability. 

A diode is a device that allows current to flow in one direction but not 
the other. If the+ end of a diode, the anode, is connected to the + ter inal 
~of a battery and the - en~ o t e 10 e, t e cat o e, is connected to the - _ 
terminal of the ba.ttm::x:., ~ large current will flow through the diode, eno~ 
to damage the djode or battery. Usually, a resistor is placed in series with 
a diode to limit current to a safe level. If the connection is reversed, no 
current will flow. Diodes are rated according to the amount of current 
they can handle without damage and the maximum reverse voltage they 
can sustain. A band on the diode usually marks the - end. The triangle 
on the diode's schematic points in the direction current is allowed to flow. 
TuteBot uses diodes to isolate parts of the circuit and short out induced 
voltages of the wrong polarity. 

A single-pole, single-throw (SPST) switch is shown at the left of the 
second row in Figure 2.12. Switches are characterized both by the number 
of connections that can be made or broken by moving the switch lever and 
by the number of different lever positions that make contact. An SPST 
switch is the simplest type of switch. With the switch lever in one position, 
connection between its two leads is broken. With the switch lever in the 

22 

2.2 Building ThteBot 

SPDT Relay 
(top view) 

_/.,_ 
SPST Switch 

~ 
~ 
--Momentary 

cotact switch 
(LEGO) 

4~~ 
Battery~ 

Transistor 
(npn) 

Capacitors 

11111111111111111111111 
~--------------------------, 
~--------------------------~ 

11111111111111111111111 

Breadboard (showing connections) 

+ ~I 
Diode 

-(1]1-

-w../'-
Resistor 

Potentiometer 
(trimmer) 

Figure 2.12: The relationships between schematic symbols and the physical 
components they represent. All of these components are used in TuteBot's brain. 
No other components are necessary, and the entire circuit will fit in a 6-inch-long 
breadboard mounted on top of ThteBot's chassis. 

23 

Silver Star Exhibit 1018 - 23



Chapter 2 TuteBot 

other position, connection is made. An SPST switch serves as the power 
switch for TuteBot. 

To detect collisions, TuteBot uses momentary contact switches. This 
type of switch has an internal spring that endeavors to keep the switch in 
one state. As long as the switch lever or push button is pressed, the switch 
circuit is closed. When the lever is released, the circuit opens. Momentary 
contact switches with the opposite sense (open when pressed, closed when 
not pressed) are also available. 

Resistors impede the flow of current. Their ability to do this is measured 
in ohms, !1; kilohms, KD; or megohms, MD; The current, I, that will 
flow through a resistor with resistance R, given an applied voltage, V, 
is I V/ R. This is known as Ohm's law. When current flows through a 
resistor, it must dissipate power. A resistor's capacity for dissipating power 
is measured in watts. In general, a resistor with a higher wattage rating 
will be physically larger than one with a smaller wattage rating. 

To block direct current but allow the passage of alternating current, we 
use a capacitor. Once connected to a voltage source, such as a battery, 
current flows into the capacitor until it has accepted as much charge as it 
can. This ability to accept charge is usually measured in units of micro- or 
picofarads (Jl,F or pF). If the voltage supply is removed from the capacitor, 
the stored charge keeps the voltage across the capacitor constant. Short­
ing the leads together causes a current to flow until the charge has been 
depleted and the voltage across the capacitor has gone to zero. TuteBot 
uses capacitors as memory cells. The presence or absence of stored charge 
represents the robot's recent history, or state. 

There are many different capacitor technologies. Most capacitors can 
be connected into a circuit without regard for polarity. One type for which 
polarity is important is the electrolytic capacitor. The leads on this type of 
capacitor are marked + and - so that it is clear which way they should be 
inserted into the circuit. Electrolytic capacitors can generally store more 
charge in a smaller volume than other types of capacitors. The maximum 
voltage that can be applied to a correctly connected capacitor before dam­
age occurs is listed as the WVDC (working voltage, direct current). 

A potentiometer is simply a resistor whose resistance is adjustable. As 
with fixed resistors, there are a large number of resistances and maximum 
power ratings to choose from. A potentiometer allows the user to manually 
alter some parameter of a circuit. We will use potentiometers in TuteBot 
to control its response to collisions-how long it backs up and how long it 
turns in place before proceeding forward again. 

The first item found in the third row of Figure 2.12 is the battery. Batter­
ies supply current as required at some characteristic voltage. The nominal 
voltage rating of a battery is normally stamped on its case. TuteBot, for 

24 

2.2 Building TuteBot 

instance, uses four 1.5 volt (V) alkaline batteries. Many toys and portable 
appliances use nickel cadmium (NiCd) batteries; NiCd batteries produce 
1.2 V per cell. 

Motors convert electrical energy to mechanical energy. LEGO motors 
were chosen for TuteBot because they are easy to integrate into the chassis 
and they happen to provide sufficient power for this application. 

The last component in Figure 2.12 is the electronic breadboard. Inter­
nal connections among its sockets are shown. A breadboard allows us to 
quickly connect components into a circuit and to make changes easily. Ver­
tical columns are connected, as are the top and bottom horizontal rows. 
Typically, we would connect these rows to power (the positive side of the 
battery pack, in this case) and ground (the negative side of the battery 
pack). The space between the columns in the center is the correct width to 
accommodate standard integrated circuit chips. In TuteBot's circuit, these 
center positions are occupied by relays. The relays are the same width as 
standard chips. 

Later on in this book, when we discuss Rug Warrior, we will intro­
duce a number of other components, such as power MOSFET transistors, 
crystals, operational amplifiers, photoresistors, light-emitting diodes, logic 
gates, microprocessors, memories, and so on. 

2.2.2 Electronic Construction 

With device descriptions as background, now let us look at the circuit 
for TuteBot's brain. Figure 2.13 gives the schematic. 

Transducers are typically connected on either side of the circuit for a 
robot's brain. For instance, on the input side, batteries and sensors act 
as input transducers. A battery converts chemical energy into electrical 
energy, and a sensor converts a physical phenomena from a mechanical 
form (say, the force acting on a bump switch) to an electrical form. On the 
output side, motors, speakers, lights, and so on act as output transducers. 
The motors on TuteBot convert electrical energy into mechanical energy. 
Between the input and output transducers is the electrical circuit, which 
does the information processing. The time variation in the signals, the 
voltages and currents in the circuit, provide information transfer. 

In describing a circuit's behavior, we usually speak of voltage across a 
device and current through a device. One bit of confusion can arise due 
to a verbal shorthand of speaking of such things as "the voltage at point 
A." What is meant and what would be more precise would be to speak of 
"the voltage across the network between points A and ground." The verbal 
shorthand comes about because ground is usually taken to be the reference, 
0 volts. 

25 

Silver Star Exhibit 1018 - 24



Chapter 2 TuteBot 

+6 v 

T 

l Power switch 
SP 

6v battery 

03 

04 

Left 
motor 

Relay 1.2 

Relay 3.4 

Right 
motor 

Figure 2.13: Schematic for TuteBot's brain. The two bump switches, Sl and 
82, are connected in parallel. One side of each switch is tied to +6 V, and the 
other, to both motor-driving circuits. The diodes act to separate the two halves. 
For instance, in the circuit driving the left motor, the resistor, capacitor, and 
potentiometer network (R1, R2, and C1) charges up when a bump switch is 
activated, turning on transistor Q1 and reversing the motor through the relay. 
Once the switches are no longer activated, charge on capacitor C1 drains away at 
a rate that depends on the setting of the potentiometer. Thus, after some time, 
the motor will no longer reverse and TuteBot will resume forward motion. 

26 

2.2 Building TuteBot 

1 Breadboard (at least 45 columns) (RS 276-174) 
1 SP SPST power switch (RS 275-645) 
4 Relay 1, 2, 3, 4 SPDT relay with 5 V coil (RS 275-243) 
2 Q1,Q2 2N2222A or MSP2222A transistors (RS 276-2009) 
2 C1,C2 lOOOp,F capacitors, 6.3 WVDC (or more) 
2 C3,C4 0.1p,F capacitors 
2 Rl,R3 lK potentiometers (RS 271-280) 
4 D1,D2,D3,D4 1N914 or 1N4001 diodes 
1 Battery Holder for 4 "C" cells (RS 270-390) 
2 R2,R4 82f.l, i watt resistors 
2 R5,R6 470!1, i watt resistors 
9 Resistor Bank 22f.l, i watt resistors 

3 ft. 22-gauge solid hookup wire 

Figure 2.14: Use these or similar parts to construct TuteBot's brain. A good 
understanding of how the circuit functions will allow the builder to make sub­
stitutions. Radio Shack part numbers are given in parentheses. Where no part 
number is given, any component with the listed parameters can be used. 

The basic idea of TuteBot's circuit is that the two front bump switches 
(marked Sl and 82 in Figure 2.13) which are wired in parallel, generate 
a signal that tells the robot to back up. This bump signal is sent to both 
halves of the circuit. The diodes Dl and D2 act to separate the circuit 
driving the left motor from the circuit driving the right motor so that 
they can have independent specifiable time constants for how long each 
wheel should back up. The time constants are implemented with resistor­
capacitor (RC) circuits that hold a voltage for a given amount of time, 
depending on the values of the resistor and capacitor. The timing signals 
from these RC networks then direct the motors to reverse directions for the 
specified amount of time. Some driver circuitry to condition the signal to 
provide enough current to drive the motor has to be added at this point. 
This motor-driver circuitry is implemented with transistors and relays. A 
bank of resistors is added in series, with one motor to regulate its speed in 
comparison to the other motor. 

There are two ways to proceed at this point. One is to go ahead and 
just build the circuit and not worry about understanding how it works. 
Simply build it, mount it on TuteBot's chassis, plug in the connectors, and 
start playing with various behaviors by tweaking potentiometers and adding 
resistors in series with the motors. The other way to proceed is to convince 
yourself that you understand every last detail of the circuit configuration 
before you start stripping wire. 

27 

Silver Star Exhibit 1018 - 25



Chapter 2 TuteBot 

+6 Volts 

Figure 2.15: One possible layout of the TuteBot circuit. The horizontal row on 
top is connected to +6 V through the power switch from the battery case, and the 
bottom horizontal row is connected to ground. Four relays straddle the middle 
section, and other components and jumper wires are interspersed throughout the 
breadboard. 

We recommend a quick skimming of the circuit description and then 
directly putting the circuit together. The parts list for the circuit is given 
in Figure 2.14. Because the purpose of this chapter is to overcome the 
inertia of getting started, an exact layout on a Radio Shack breadboard is 
given in Figure 2.15. Build the circuit just like this, and ThteBot should 
work. Later in this chapter, to achieve a better understanding, you can 
then go back through the circuit, observing voltage signals across various 
portions of the network with an oscilloscope to compare traces to graphs. 

A finished breadboard is shown in Figure 2.16. One detail to note in 
assembling this circuit is that the relays may have leads too short to make 
good contact when inserted into the breadboard. First plugging the relay 
into a 14-pin socket, and then plugging the socket into the breadboard may 
solve this problem. Use care when installing the diodes and the electrolytic 
capacitors. These devices are polarized. If they are installed the wrong 
way, they may be damaged. 

It is a good idea to test the circuit as you go. Build only half of it 
first, and check to see that it drives the motors as desired. With power 
applied and the motor not connected, check to see that pressing the bumper 
switches activates the relays. If the circuit is operating properly, a click will 
be heard. The bias resistors, R5 and R6, may need to be adjusted if relays 
or transistors other than the ones specified are used. If the relay does not 
operate, choose smaller resistors until it does (but don't go below about 
100ft) 

28 

2.2 Building TuteBot 

Figure 2.16: Details of the breadboard. Note that, in this example, the re~istor 
bank contains seven resistors. Because the bank consists of a number of resistors 
connected in parallel, the motor can be slowed down by removing some resistors. 

In general, it pays to be neat when breadboarding a circuit. Any time 
saved in quickly throwing together a sloppy circuit is usually more than 
wasted in debugging. Cut and strip wires to appropriate lengths so they 
lie fiat on the breadboard. Buy lots of different colors of hookup wire, and 
stick to conventions for power and ground. If you use red for +6 V and 
black for ground, then it becomes easy to visually check your breadboard; 
namely, all wires connected to the top horizontal row should be red and all 
wires connected to the bottom horizontal row should be black. 

Another important tip before turning on the power switch is to always 
"ohm out" power and ground-that is, check with an ohmmeter that power 
and ground have not been inadvertently connected on your breadboard. 
This prevents smoke from streaming out of your circuit. Never remove 
components with the power on. Power down first. If the circuit does not 
work first check with a voltmeter that all points in the circuit that should 
be c;nnected to power are actually at +6 V and that all points that should 
be at ground actually read 0 V. While this all sounds rather obvious, you 
would be surprised at how. many problems are caught through these few 
simple tips. 

2.2.3 Operation 

For a more detailed exposition of the ThteBot circuit of Figure 2.13, we 
break the system into modules and explain each piece. The circuit is divided 
into two nearly identical halves. For simplicity, we describe only one half, 
the upper half, which controls the left motor. 

29 

Silver Star Exhibit 1018 - 26



Chapter 2 TuteBot 

As soon as power has been applied by closing the power switch both 
motors will begin to turn forward and ThteBot will move straight ah~ad. If 
we look at the portion of the schematic showing the left motor's connection 
to its relays, we see that two lever arms can switch between normally open 
and normally closed connections. This type of relay topology is equivalent 
to a double-pole, double-throw (DPDT) relay, but actually, for ThteBot we 
use two single-pole, double-throw (SPDT) relays due to availability. We 
can see for the left motor that the normally closed connection applies 6 
V .across the motor. The motor should be installed on ThteBot so that 
this configuration initiates forward motion. The same is true for the right 
motor. 

Again, looking at the left motor portion of the circuit, if ThteBot strikes 
an obstacle and either or both of switches 81 and 82 are closed a current 
will fl~w through diode D1, charging capacitor Cl. Simultane~usly, cur­
rent will ~ow through resistor R5 into the base of transistor Ql. The base 
current will cause Q1 to conduct-pulling current though the coils of the re­
lays. When current is provided to the relays, they switch from the normally 
closed state to the n_ormally open state. The motor terminal, previously 
connected to +6 V, IS now connected to ground and the other terminal 
previously connected to ground is now connected ~o +6 V. This causes cur~ 
rent to pass in the opposite direction through the motor, making it spin in 
reverse. 

As the reversing motors cause ThteBot to back up, its bumper is no 
longer pre~sed again~t the obstacle and switches 81 and 82 are no longer 
closed. With the switches open, the RC circuit is no longer connected to 
+6 V. However, capacitor C1 continues to supply current for awhile to the 
base of the transistor and the motor continues its reverse rotation. The 
capacitor discharges at a rate controlled by resistors R1 and R2 (and R5 
through. the base-emitter junction of Q1). At some point, Q1 will cease 
conductmg, the relays will open, and the motor will resume its forward 
r~tation. Diodes D1 and D2 isolate the circuits so that the capacitors can 
diS~harge a~ the desired rates (so that current cannot drain off C1 and 
begm chargmg the right motor's RC circuit). 

Figure 2.17 illustrates how the voltage across the left motor's RC net­
work .cha~ges :Vith time. With the switch closed, the battery charges the 
RC c1rcmt (this voltage is taken as between point A and ground) up to V

0
• 

When 1'uteBot backs away from the obstacle and the switch is opened the 
vol:age across the cap~citor falls at a rate determined by the values of the 
resistor a~d the capacitor. To be precise, this relationship is v V

0
etf Rc, 

where Vo Is the power supply voltage. Figure 2.17b illustrates the RC net­
work connect~d to the right motor. The smaller resistance in (a) causes the 
current to dram away more quickly, keeping the robot's left wheel in reverse 

30 

2.2 Building TuteBot 

for a shorter time period than the right wheeL This causes the robot to 
turn to the right. 

The left motor turns in reverse for a period of time, which is determined 
by the following factors: 

• The size of capacitor Cl. 

• The value of bias resistor R5. 

• The amplification factor of transistor Ql. 

• The resistance of the potentiometer Rl. 

• The current level needed to activate relays 1 and 2. 

A very brief motor reversal may be selected by setting the potentiometer 
to its smallest value. A reversal longer than the one available in the circuit 
as designed may most easily be achieved by increasing the values of C1, as 
it is actually the product of Rand C, which sets the time constant. 

We can see how the changing currents set up by the RC network are 
able to activate and deactivate the transistor Q1 by referring to Figure 2.18. 
Depending on the characteristics of the particular transistors and associated 
circuit components, a transistor can be used either as an amplifying device 
or as a switch. 

The ThteBot circuit requires the transistor to act as a switch, as shown 
in (a). When base current is supplied, the switch closes and the load draws 
current because it is connected between power and ground. We will follow 
a very simple model of how a transistor switch operates: As long as the 
current flowing into the base of transistor Q1 is greater than or equal to 
ib t the switch will be on and current will flow through the load. When ,sa ' 
the transistor's base current falls below ib,sat, the transistor will switch off 
and no current will flow through the load. A small base current is able to 
control whether or not a large load current is allowed to flow. In (b), we 
see that a base resistor is needed to set the base current for the transistor 
switch. The timing signals of the current flowing through the base resistor 
are shown in (c). For the duration of time that ThteBot was contacting the 
obstacle and the RC circuit was charged up to Vo, the base current was 
large enough that the transistor was completely on and saturated~that is, 
the collector current had reached its maximum possible level, ic,sat· 

As ThteBot backs up from the obstacle, the bumper switches open, 
and the voltage drains off the RC network, the current through the base 
becomes smaller. Eventually, it falls to ib,sat, where the transistor begins 
to come out of saturation. The collector current falls to 0 and the load 
becomes open circuited. Actually, a small amount of current does continue 

31 

Silver Star Exhibit 1018 - 27



Chapter 2 TuteBot 

v, 

Voltage 
at A 

Switch 
pressed 

v, 

Switch 
released 

Time 

Lf- A JT-: 
"'=" (a) 

v, 

Voltage 
at B 

Switch 
pressed 

Switch 
released 

Time 

+ 

v 

Figure 2.1_7: As long as the mom.entary contact switch is pressed, the voltage 
between pomt A and ground or pomt B and ground will be equal to v.: Wl 
th . t h . l a. len 

~ sw1 c 1s re eased,. charge. begins to drain from the capacitor through the 
res1stor. The small res1stance m (a) drains the capacitor more quickly than the 
large resistance in (b). 

Current ib 

Time 
Current ( 

ic.Sat 

- - (.Cutoff 
I 

Switch Switch Time 
pressed released 

(a) (b) (c) 

Figure 2.18: (~) A transistor is modeled as an ideal switch. (b) In reality 
the ~ase current IS set by the base resistor's value for a given voltage applied to 
termmal A. (c) The base current must be large enough to put the transistor into 
saturation (turning it fully on). 

32 

2.2 Building TuteBot 

T nc 
~mon S.,., 

i. ~? 

(a) 

Current i,. 

Minimum relay 
activation current 

Voltage 
at common 

6 

Time 

Switch Switch Time 
pressed released 

(b) 

Figure 2.19: (a) The amount of current, iR, flowing through the coil of the relay 
determines whether its common terminal is connected to its nc, normally closed, or 
its no, normally open terminal. When iR falls below minimum activation current 
the state of the relay changes. (b) The "Extra reverse time" is the extra amount 
of time the motors run in reverse after the bumper switch has been released. 

to flow for awhile, even when the transistor is off. The transition from on 
to off is not quite as sharp as with a real switch. 

When the transistor switches on, it draws current, iR, through the coil 
of the relay, as shown in Figure 2.19(a). Current through the coil creates a 
magnetic field, which forces the relay lever to move. The relay lever then 
switches the common connection (attached to one terminal of the motor) 
from the normally closed pin of the relay to the normally open pin. This 
happens on each of the two relays associated with both motors, reversing 
the polarity of the voltages applied across each. For all the time that Ql 
is on, current is pulled through the relay, causing the motor to switch from 
forward motion to reverse motion. 

The essential difference between the left and right motors is the relative 
times at which they turn off their reversing behaviors. In Figure 2.19(b ), 
we can see the timing diagrams of the current through the relay and the 
resulting voltage applied between one motor terminal and ground. 

First, as the transistor Ql turns off, it causes load current to stop flow­
ing. This takes some amount of time after the bump switch is released due 
to the time delay set up by the RC circuit. When the current through the 
relay falls to a level that can no longer sustain the necessary magnetic field 

33 

Silver Star Exhibit 1018 - 28



Chapter 2 ThteBot 

to keep the lever attracted to the normally open pin, the relay switches 
back to its normally closed configuration. This occurs to both SPDT relays 
attached to each terminal of the left motor. 

The lower graph in Figure 2.19(b) shows the resulting voltage change 
over time for one of the left motor's terminals. The other motor terminal 

' normally at 0 V, switches to +6 V when the bump switch hits an obstacle 
and reverts to 0 V again (after the time lag set up hy the RC network) 
after the bumper is released. 

A similar mechanism is implemented on the right motor, except that its 
potentiometer, R3, is tuned to give a different time delay than for the left 
motor. The robot can thus be programmed to turn more or less sharply by 
adjusting the potentiometer setting for each wheel. 

Three other points are worth mentioning concerning the left motor cir­
cuit of Figure 2.13. The first is the appearance of diode D3 across the two 
SPDT relays. The reason for adding this device is that the diode protects 
the circuit from the large voltages that are induced by collapsing magnetic 
fields in the relay coils when the transistor turns off. If diode D3 were 
not there, the inductance of the coil would try to force the current flowing 
through it to keep flowing down through transistor Ql. Because Ql has 
been opened, current through the coil results in an increase in voltage at 
the collector of Ql. If this voltage exceeds the maximum rating that the 
cutoff transistor can withstand, it will be damaged or blow up. The diode 
alleviates this problem by providing a return path for the coil current when 
the transistor turns off. 

The second point to note in the final circuit is that the capacitor C3 has 
been placed across the terminals of the motor. This capacitor attenuates 
the voltage spikes produced by the motor. Typically, these capacitors are 
soldered directly to the motor terminals rather than placed back at the 
circuit board. 

Finally, note that a resistor bank is connected in series between the 
relay and the right motor in the schematic. The purpose of this bank is to 
match speeds between the two motors. Determining which motor should 
be connected to the resistor bank must be done by experiment. Although 
the motors and geartrains are supposedly identical, in reality, they are not. 

These differences manifest themselves as mismatches in the speed at 
which the wheels turn. To make the adjustment, first short out the resistor 
bank. Then turn ThteBot on, and allow it to roll across the floor. It will 
make a long arc in one direction or the other. If ThteBot turns to the left 
then the right motor is turning faster; attach the right motor to the resisto; 
bank. If the opposite occurs, attach the left motor. With n resistors wired 
in parallel, the total resistance, Rr, of the resistor bank increases as each 
resistor, R, is removed: Rr = *R. The more resistance we place in series 

34 

2.2 Building TuteBot 

Figure 2.20: This MIT robot, known as Photovore, perform~ an i.nterestin~ set 
of light seeking behaviors. It uses only analog circuitry to achieve 1ts behavwrs. 

with the motor, the less current will flow and the slower the motor will 
turn. Add or remove resistors until both motors rotate at the same speed. 

ThteBot is now complete and ready to go. Try running it in a few 
different environments. Try adding the wall-following behavior, discussed 
earlier, to bias the motor speeds so TuteBot travels forward in an arc by 
changing the resistor bank. If TuteBot goes too fast and falls apart when 
it crashes into things, electrical tape, double-sticky tape, and glue work 

wonders with LEGOs. 

Have fun! 

2.2.4 Exercise 

When the wall-following behavior has been implemented, as described above, 
TuteBot will simply turn in circles if it is set in motion far from a wall. As 
an exercise try to devise an additional behavior (possibly requiring an­
other com;onent or two) that will cause the robot to go straight until it 
encounters a wall and then begins to follow the wall. 

35 

Silver Star Exhibit 1018 - 29



Chapter 2 TuteBot 

2.3 References 

The TuteBot exercise in this chapter was designed to be a simple exam­
ple to get started. However, it might be the case that you feel more at 
home with a computer-controlled robot than with the analog electronics 
of TuteBot. If so, proceed to the next chapter, describing Rug Warrior's 
microcontroller brain. For background in electronics, the "bibles" for robot 
builders are Horowitz and Hill (1989) and the associated student manual 
(Hayes and Horowitz 1989), which give extensive practical information on 
analog electronics in very readable presentations. The ARRL Handbook for 
the Radio Amateur (Kleinschmidt 1990) is another very good source for 
beginners in electronics. 

For articles and reports on simple robots and how to build things, a few 
pieces have trickled out of the MIT Mobile Robot Lab over the years. Con­
nell (1988) describes Photovore, shown in Figure 2.20, a light-eating, dark­
avoiding, relay-driven robot using three photoresistors and a Radio Shack 
toy car base. Photovore is also described in The Olympic Robot Building 
Manual, (Flynn et al. 1988), from which this book grew. A picture book 
of the resulting talent show robots is contained in Flynn (1989). Another 
minimalist mobile robot is described in the August 1991 issue of Popular 
Electronics, (Connell 1991). Kits and printed circuit boards for building 
your own version of Photovore can be purchased from Johuco, Ltd. See 
Appendix C for addresses and phone numbers in the list of manufacturers. 

36 

3 

Computational Hardware 

The elementary circuit that controls TuteBot served its purpose well. Using 
only relays, potentiometers, bump switches, and some discrete components, 
TuteBot was able to avoid obstacles and follow walls. Adding a few more 
sensors and continuing in the same vein of using hardwired logic for the in­
telligence system, many other interesting behaviors could also be design~d. 
Rather than pursue this route, however, we now introduce a more sophis­
ticated control element, the microprocessor. It has a number of advantages 
over hardwired logic in terms of versatility, power consumption, size, and 

ease of use. 

Most importantly, however, the microprocessor introduces a significant 
new tool in solving the robot control problem: software. Unfortunately, to 
change the behavior of robots of TuteBot's nature, we must adjust p_oten­
tiometers, rewire circuits, and add or alter components. The behav10r of 
a software-based robot, in contrast, can be changed simply by typing at a 

keyboard. 

Hardware determines a robot's ultimate potential, but realizing that 
potential is the job of software. There is an intimate relationship betwe:n 
these two elements which we will try to make clear as we proceed. Orgamz­
ing the software in the proper way is also important for coercing intelligent 
behaviors to emerge. The low-level interface between hardware and soft­
ware will be the subject of this chapter; this discussion will continue in 
Chapters 5 and 7 pertaining to sensors and motors. The organization of 
higher-level software and intelligence will be addressed toward the end of 
this book in Chapter 9 on robot programming. 

Silver Star Exhibit 1018 - 30



Chapter 3 Computational Hardware 

3.1 Rug Warrior's Design Strategy 

We designed Rug Warrior as a teaching aid for this book in order to support 
generic discussions of subsystems with real examples of computer hardware, 
software, sensors, and actuators that fit together. Rug Warrior has many 
more subsystems than TuteBot, and complexity could easily have gotten 
out of hand. To avoid this, our approach has been to create a robot that 
was as simple as possible while still portraying the breadth of technologies 
we deemed important to understand. 

Our design strategy toward this end has been to choose one of the 
cheapest microcontrollers available (the MC68HC11AO from Motorola) and 
to essentially "max it out." By this, we mean using every pin of the chip 
to attach as many sensors and actuators as possible. Furthermore, we have 
endeavored to use all of the built-in hardware features of the MC68HC11AO, 
such as the timer-counter system and the analog-to-digital converters, to 
minimize any external interface circuitry to sensors and motors. In effect, 
our goal has been to strive for a single-board robot. 

Figure 3.1 illustrates the microprocessor board we have put together 
for Rug Warrior, sitting atop Rug Warrior's tank-tread base. This board 
contains all the computer hardware, peripheral circuitry, and sensors that 
we will use for Rug Warrior. Rug Warrior has not quite reached the goal 
of being a single-board robot, but we have managed to incorporate most 
of the computer electronics, interface circuitry, and sensors on this board, 
which keeps the number of connectors and cables manageably small. 

The point of this book, though, is not just to describe how to build 
Rug Warrior but to convey general knowledge about what it takes to build 
a robot so that our readers can go on to build bigger (or maybe smaller) 
and better machines. Consequently, in this chapter, we discuss microcon­
trollers: what's inside them, how they work, what features they have for 
handling peripherals, and how to program them. While we use the specific 
example of the Motorola MC68HC11AO throughout, the text is generally 
applicable to other microprocessors because while the instruction sets and 
particular hardware attributes for other microprocessors may be different, 
the underlying principles are the same as those described here. 

The specific example that we will explain in this chapter is illustrated 
in Figure 3.2. This circuit is the computational heart of Rug Warrior. 
When building Rug Warrior, the reader should try to acquire copies of 
the Motorola reference manuals for the MC68HC11AO, as these are the 
final source for documentation and are obviously more detailed than our 
discussion here. Motorola data books can be ordered from the Motorola 
sales office. The phone number is given in Appendix E. The complete 
schematic for Rug Warrior, which includes the sensors and actuators in 

38 

3.1 Rug Warrior's Design Strategy 

Figure 3.1: A top view of Rug Warrior, displaying its computer and sensors, 

which we will discuss in the next few chapters. 

addition to the microprocessor circuitry shown in Figure 3.2, is given in 

Appendix A. 

3.1.1 Interactive C 
In addition to choosing a specific piece of hardware for the microprocessor, 
we also had to pick some specific pieces of software in order to produce our 
examples, which are threaded throughout the book. 

Building a robot usually involves both some assembly language pro­
gramming and some higher-level language programming. Assembly lan­
guage programming consists of writing code in the machine-s~ecific in­
struction set designed for the microprocessor you choose. Typ1cally, the 
programmer writes code using a set of mnemonics for the machine instruc­
tions and then runs a program, called an assembler, which creates the bit­
level sequences that can be downloaded to the microprocessor. Although 
higher-level language programming is convenient for many tasks, assembly 
language is often necessary when building a robot in order to direct the 
microprocessor to read the robot's sensors or drive its motors. Because we 
have chosen the MC68HC11AO microprocessor for Rug Warrior, we use the 
MC68HC11 family's assembly language in our examples. 

39 

Silver Star Exhibit 1018 - 31



Chapter 3 Computational Hardware 

Motor Supply (Optional separate 
I 1 I 1 supply for motor) ,•-----1 I--, 

'As part of the battery backup-circuit 
power is supplied to the HC10 and 
62256 directly from the battery. 

' Jump.er I I I I -J.-

..,.._ ___ I-~ 47J>F 

+5 

MC68HC11AOFN 

Figure 3.2: The schematic for Rug Warrior's computational hardware Th 
MC68HC11AO i~ attached to 32K bytes of memory through a 74HC573.Jatch~ 
The MA_X2~3. ch1.p d~es the level conversion for the serial port, and the 8054 low­
voltage mhibit c1rcmt prevents problems by resetting the MC68HC11AO when 
battery voltage gets too low. 

40 

3.2 Microprocessors 

For creating robot behaviors, a higher-level language such as C or Lisp 
is often used. The user programs a higher-level language in its syntax, 
which is usually more concise than that of assembly language, and then 
translates that code to the assembly language for a specific machine using 
a program called a compiler. 

In the research laboratory, we often use Lisp, but for this book and 
for Rug Warrior, we have chosen to use C, as more readers will likely be 
familiar with its syntax. Specifically, the version of C we have chosen to 
use for creating code that will run on the MC68HC11AO is Interactive C 
(or simply IC). IC was developed by Randy Sargent and Fred Martin of 
the MIT Media Laboratory for an MIT undergraduate design course. IC 
runs on MC68HC11 microprocessors and includes such useful features as 
the ability to initiate and terminate processes and to execute C statements 
immediately-without the need to first compile, link, and load. The inter­
active nature of IC is extremely useful when debugging a robot program. 

Randy Sargent and Fred Martin have recently made their program 
(which is copyrighted) available to the general public, free of charge. IC 
runs on PCs, Macintoshes, and Unix machines. This development has 
helped make Mobile Robots tractable for a wide audience. We write exam­
ples throughout the book in both assembly language and C, and readers 
are free to acquire their own copies of IC. If you have access to Internet, 
this involves logging in anonymously to the MIT Media Laboratory server 
(cherupakha.media.mit.edu or Internet Address 18.85.0.47) and using the 
FTP file transfer protocol to download the IC compiler. 

Other C compilers are also available for the MC68HC11. Motorola has 
a freeware C compiler that is accessible via downloading through a modem 
from Motorola's dial-up bulletin board, (512) 891-3733. A number of com­
mercial products also exist. Dunfield Development Systems, for instance, 
sells a C compiler for the MC68HC11 that is likely to be more stable and 
better supported than the freeware software IC. 

Now let us turn our attention to a general discussion of microprocessors 
and everything you ever wanted to know about computers that might be 
helpful in designing your own robot. 

3.2 Microprocessors 

Programming an inexpensive, bare-bones microprocessor, such as the one 
we use in Rug Warrior, differs in some important ways from programming 
more familiar personal computers, workstations, and mainframe computers. 
The differences generally relate to the microprocessor's limited computa­
tional resources. Typically, such a microprocessor can utilize only a small 

41 

Silver Star Exhibit 1018 - 32



Chapter 3 Computational Hardware 

amount of memory, has no mass storage, and runs at a slower cycle time 
than its more capable counterparts. 

On a large computer, several layers of abstraction (such as the operating 
system, a high level programming language and an application program) 
stand between the user and the underlying machine. These layers are use­
ful because they obviate the need for the programmer to understand the 
details of the particular processor implementation and its low-level inter­
action with the peripheral hardware. Unfortunately, the computational 
overhead required to maintain such abstraction barriers is usually unac­
ceptable for the simplest microprocessors. In most cases, it is necessary for 
the programmer to fully understand the bit-level interaction between the 
processor and the devices it controls. The only abstractions available will 
be those constructed by the programmer. 

Recently, an important subclass of microprocessor has become available, 
the highly integrated microcontroller. A microcontroller combines the small 
size, low power consumption, and computational abilities of an inexpensive 
microprocessor with the signal-processing proficiency of discrete circuits. 
In particular, microcontrollers commonly include such built-in amenities as 
a serial line (for communicating directly with a terminal or host computer), 
analog-to-digital converters, timers (for capturing events or activating hard­
ware), and pulse counters. These features greatly simplify system design. 
Before the advent of the microcontroller, to achieve the sensing and ac­
tuation requirements of a robot, it was necessary to construct a system 
consisting of numerous printed circuit boards connected together. One or 
more cards were devoted to the processor and the memory; separate cards 
were required for each sensing and actuation function. Today, the size, 
complexity, power consumption, and cost of such a system can be reduced 
by using a microcontroller to perform all the processing tasks in one chip. 

In spite of a myriad of variations, computers are basically similar. Fig­
ure 3.3 shows the block diagram of a generic computer, reduced to its 
essential components. A computer consists of a processor which executes 
instructions; memory, which stores instructions and data; ports which inter­
face the computer to its peripherals ("the outside world"); and a bus which 
provides the communication pathway among processor, memory, and ports. 

3.3 The Canonical Computer 

It will be instructive as we go along to compare this abstract view of a 
computer (Figure 3.3) with two other illustrations. The first is the block 
diagram of the MC68HC11, shown in Figure 3.4, and the second is the 
schematic of Rug Warrior's logic board, shown earlier in Figure 3.2. 

42 

3.3 The Canonical Computer 

Processor Memory 

Bus 

Figure 3.3: The essential elements of a computer are its processor, memory, 
input/output ports, and bus. The bus provides a communication pathway by 
which the processor can access and control the peripherals. 

Most microprocessors come in families, and family members are desig­
nated with a similar numbering pattern. The MC68HC11 family of micro­
processors all come with the same basic features that make them convenient 
processors for controlling things. Individual members of a family may differ 
slightly in how much memory or what types of memory they have on the 
chip. All members would have the same instruction set and use the same as­
sembly language. For instance, the MC68HC11AO and the MC68HC811E2 
are two members of the MC68HC11 family. The MC68HC11AO, which we 
have chosen for Rug Warrior, is at the low end of the line. Individual mem­
bers of a family also have suffix designations that differentiate the package 
types available. The suffix FN on the MC68HC11AOFN designates a 52-
pin square version. This is the square chip situated in the center of Rug 
Warrior's board, illustrated in Figure 3.1. 

3.3.1 The Processor 

The processor, or central processing unit (CPU), is the controlling element 
of the computer. Its function is to execute instructions, one after another. 
The execution of an instruction effects some change in the state of the 
microprocessor. This may be reflected as an alteration of the value of a 
memory cell, the contents of an internal register, or the voltage on a line 
connected to a port. 

Instruction execution occurs at a rate fixed by and synchronized with 
the system clock. This internal clock is driven by an external circuit that in­
cludes a high-precision crystal oscillator. In the case of the MC68HC11AO, 
the output of an 8.000 megahertz (MHz) crystal, connected to lines XTAL 
and EXTAL (as shown in Figure 3.2), is divided by 4 to produce a clock fre­
quency of 2 MHz. The chip outputs this synchronizing signal on its E line 
to be used by external circuitry. The number of clock cycles required for an 

43 

Silver Star Exhibit 1018 - 33



Chapter 3 Computational Hardware 

(UR) (VsTBvl 
MODA MODB 

CPU CORE 

RAM 256 BYTES 

SCI 

SERIAL 

COMMUNICATION 

INTERFACE 

Figure 3.4: We saw how the MC68HC11AO's external pins were connected to 
the rest of Rug Warrior's circuits. This is the block diagram for the internals of 
the MC68HC11AO chip itself. It only comes with 256 bytes of memory, but has 
eight analog-to-digital converters attached to port E and a timer-counter system 
associated with port A. Copyright of Motorola, used by permission. (1989) 

44 

3.3 The Canonical Computer 

instruction to be completed is a characteristic of the particular instruction, 
but all MC68HC11 instructions require at least two cycles. Thus, each 
instruction takes a minimum of 1 microsecond. The longest instructions 
(which do division) take 20.5 microseconds. In order to execute an instruc­
tion, the microprocessor must first fetch the instruction and any required 
data over the bus from its memory. 

3.3.2 The Bus 

A binary value stored at a particular location in memory is accessed when 
the CPU places the address of the location on the bus. The range of 
addresses available, known as the address space, is fixed by the width of 
the bus. In this case, width refers to the number of bits (usually carried by 
parallel wires) in the address. 

The MC68HC11 has a 16-bit-wide address bus and is thus able to select 
any one of 216 , or 65,536, different locations (also known as 64K). At each of 
these locations an 8-bit ( =1 byte) data value is stored. The MC68HC11AO 
multiplexes data and address signals. When it wishes to read or write a 
value to memory, it must first assert the address on all 16 address lines; 
it must then write data to or read data from the 8 lines that previously 
corresponded to the low 8 bits of the address. Whether address or data is 
present on these lines is specified by the state of control signals on other 
lines. Figure 3.5 illustrates how the address lines, data lines and control 
lines are organized on the bus in order to enable the reading or writing of 
values to memory. 

Elements other than memory locations can be accessed via the bus. 
A port, which allows interaction between the microprocessor and external 
devices, may be present. Depending on its nature, the port appears to the 
microprocessor as a memory location that can be read from and/or written 
to. To the outside, the port consists of a set of lines to which a voltage can 
be applied and/or from which a voltage can be generated. 

3.3.3 Memory 

Computer memory is divided into classes based on whether or not the 
contents of the memory can be altered, and if so, and how that alteration 
occurs. The major classes of memory are: random access memory (RAM), 
read-only memory (ROM), and programmable read-only memory (PROM). 

The desirable characteristic of RAM is that it may be read or written 
at will; such operations are very fast. The contents of RAM, unfortunately, 
are usually volatile. That is, whatever data is stored vanishes when the 
power goes off. ROM, on the other hand, is nonvolatile but once encoded 

45 

Silver Star Exhibit 1018 - 34



Chapter 3 Computational Hardware 

Address Value 

0 0 0 1 1 1 0 1 0 0 0 1 
0 0 1 0 0 1 0 0 0 1 0 1 

Control 0 0 1 1 0 0 1 1 1 0 0 0 
Logic 0 1 0 0 0 1 0 0 0 1 0 1 

. . . . . . 

Control lines Address lines (16) Data lines (8) 

Bus 

Figure 3.5: A representation of memory. Depending on control signals, a value 
will be read from or written to the memory location whose address matches the 
signals on the address lines. The value read or written to that location will be 
the value that is presented on the data lines. The MC68HC11 has 16 address 
lines and 8 data lines. (Eight of the address lines are reused as the 8 data lines.) 

at the factory cannot be changed. Finally, PROM memory is nonvolatile 
and possesses a mechanism that allows the user to program it at least once 
and possibly to erase it. It is also possible to buy nonvolatile RAM which 
is simply normal RAM encased in a package that contains a battery. 

An important subclass of PROM is EEPROM (electrically erasable pro­
grammable read-only memory). EEPROM allows both read and write op­
erations but with some restrictions. The memory may fail if altered more 
than a specified (large) number of times, and writing may take much longer 
than with RAM (milliseconds as opposed to nanoseconds). 

A more common type of erasable PROM, called EPROM, (erasable 
programmable read-only memory) can be cleared using ultraviolet light. 
Such chips have small windows built in so that the physical memory cells 
can be exposed to an ultraviolet light source. 

An important feature of the MC68HC11 family of microprocessors is 
that versions are available with all three types of memory on the chip. This 
makes it possible to design applications that need almost no components 
other than the microprocessor chip itself. In particular, the MC68HC11AO 
chip employed by Rug Warrior has 256 bytes of on-chip RAM but no general 
purpose EEPROM or ROM. The MC68HC811E2 version has 256 bytes of 
RAM, 2K of EEPROM, and no ROM. And the MC68HC11E9 has 12K of 
ROM, 512 bytes of EEPROM, and 512 bytes of RAM. 

46 

3.3 The Canonical Computer 

3.3.4 Ports 

A port is the microcontroller's connection to the outside world. A computer 
for which a port is just a memory location is said to have memory-mapped 
input/output, (I/0). Other architectures are possible. One commo?ly en­
countered architecture uses special lines and instructions for accessmg pe­
ripherals. The venerable Z80 microprocessor uses such a scheme . 

Figure 3.6 illustrates how the memory-mapped I/0 is arranged for the 
MC68HC11AO used on Rug Warrior. The MC68HC11AO has five ports, 
labeled A through E. Typically, a microprocessor, as opposed to a micro­
controller, has either no ports or ports that support only digital inputs 
or outputs. Ports on the MC68HC11, however, perform a rich variety of 
functions. 

Port A has eight lines, three of which are dedicated to input, four to 
output, and one to either function. (Please refer to Figure 3.4 throughout 
this discussion of ports) A timer-counter system is associated with port A. 
The input lines, PAO through PA2, can be used to capture events. When 
the line changes state, the time of that occurrence is automatically latched 
into an internal counter. The output lines, PA4 through PA 7, can initiate 
external events. 

When the current time matches a preset time, the state of the line can 
automatically change. One port A line, P A 7, can be configured as a pulse 
accumulator. Each time an externally applied voltage changes state (from 
high to low or low to high), an internal counter is incremented. These op~r­
ations handled by the hardware of the microcontroller, are truly au tomatlc. 
Once ~he hardware has been set up in the proper way, no instructions need 
be executed to perform these functions. 

The MC68HC11 has four modes of operation. The actions of some ports 
depend on which mode has been selected. In the expanded multiplexed 
mode, the microcontroller uses ports B and C as a part of the bus. In 
single-chip mode on the other hand, the microcontroller assumes that no 
external memory is available, so the operation of an external bus is not 
supported. In this case, port B operates as a digital output port, where 
each line is a dedicated binary output, and port C operates as a digital I/0 
port, where each line may be individually configured as input or output. 

Port D has six lines. Each may be configured as either a binary input or 
output. The lines of this port serve two other important functions, as well. 
The low-order lines, PDO and PDl, are part of the communication system. 
Using these two lines, it is possible to connect the chip to a terminal or 
host computer. The high-order lines, PD2 through PD5, form a high­
speed synchronous data-exchange facility that can be used to network a 
number of MC68HC11s. 

47 

Silver Star Exhibit 1018 - 35



Chapter 3 Computational Hardware 

unused 

32K External 
memory 

Figure ~.6: A memory map describes the relationship among addresses an 
the f~nctwns a~so~iated with each address. Shown here is the rna used b Ru d 
Warnor. The$ mdicates that the address is given in hexidecimal (b~se 16) f:rmat~ 

Device to be 
monitored 

Control and data lines from bus 

Fig~re 3. 7: It is pos~ib.le to build ports as desired to enhance the capabilities of 
a microprocessor. This IS done by add· d' . c 

h' ) f dd . mg some Iscrete logic (integrated circuit c Ips or a ress decodmg. 

48 

3.4 Rug Warrior Logic 

Finally, portE can be used either as a general purpose 8-bit digital input 
port or as an 8-channel analog-to-digital (A/D) converter. Each channel has 
8 bits of resolution. When the A/D converter feature is activated, voltages 
in the range of 0.0 to 5.01 are converted to binary numbers in the range of 
0 to 255. Applying, say, 2.5 V to pin PEO and reading the associated A/D 
result register would return a value of 128. 

If the microprocessor of choice does not have enough ports or if the 
existing ports have the wrong functions for a particular application, it is 
possible to build a port of any desired type. We will not describe this in 
detail, but Figure 3. 7 shows how we would go about adding, in this case, an 
input port. First, design custom circuitry to perform the required interface 
to the sensor or actuator. Next, build a circuit to decode an address. Chips 
such as the MC74HC688, which can compare two sets of 8 lines, make it 
easy to build address decoders. Choose an address not currently mapped to 
any other d:vice. Finally, build a data buffer that will output its contents 
in response to signals on the select line and the control lines of the bus. 

3.4 Rug Warrior Logic 

Now that some of the inner mysteries of the MC68HC11 have been divulged, 
we can present more details of the logic components that run Rug Warrior 
(see Figure 3.2). 

3.4.1 Power 

The power switch on Rug Warrior turns on or off power to the microcon­
troller and sensor circuits while separately controlling the power going to 
the motor driver chip. It also selects run mode versus download mode. 
Power is supplied to the MC68HC11AO through its VDD pin. Ground is 
connected to Vss. 

A three-pole, three-position switch controls power to the circuit. The 
center position is off. In the down position, programs may be downloaded to 
the microprocessor from a host. In the up position, all circuit components 
receive power and a previously stored program will run. 

3.4.2 The Clock 

An 8.000 MHz crystal provides an accurate and stable time base for Rug 
Warrior. Such a circuit is critical to the proper functioning of any micro­
processor because every operation is synchronized by the clock. 

1 In fact, the range depends on the reference voltages at pins VRL and VRH. Most 
commonly these are set to 0.0 V and 5.0 V respectively. 

49 

Silver Star Exhibit 1018 - 36



Chapter 3 Computational Hardware 

3.4.3 Reset 

Pressing the reset button pulls the RESET line low. (A signal name writ­
ten with an overbar means that the signal is asserted when low.) When this 
happens, the microprocessor halts-it stops executing instructions. After 
the button is released and the RESET line goes high again, the micropro­
cessor restarts its program from the beginning. 

3.4.4 Mode Selection 

As stated above, the MC68HC11 has four operating modes: single-chip 
mode, expanded multiplexed mode, special bootstrap mode, and special test 
mode. Of these, only the special bootstrap and expanded multiplexed 
modes are of interest to us. 

A particular mode is selected according to the voltages placed on the 
MODA and MODB lines. When the power switch is in the Download 
position, MODA and MODB are both low. This places the chip in the 
special bootstrap mode, where it is possible to load a program via the serial 
line into the microcontroller's memory. With the power switch set to Run 
the program just loaded will begin to execute (after a reset). ' 

3.4.5 Low-voltage Inhibit 

The MC68HC11 is designed to operate at voltages no lower than 4.5 V. 
However, when the power is switched off, the voltage falls below this level 
through an illegal range before reaching 0.0 V. In this nether region be­
tween 4.5 and 0.0 V, the MC68HC11 exhibits some unmannerly behavior· 
namely, it may write random values into memory locations. The chip ca~ 
be inhibited from doing this if the RES~ line is held low as puwer is 
switched off. This is the purpose of the 8054 low-voltage inhibit chip. 

3.4.6 The Serial Line 

In order to program a microcontroller, we must communicate with it in 
some way. The MC68HC11 facilitates this with a built-in serial line. On 
a host computer, programs can be typed, edited, and assembled to a form 
understandable to the microprocessor. Then the machine language form of 
the program is downloaded to the MC68HC11 through its serial line. Unfor­
tu~ately, there is an incompatibility between the most common communi­
catwn standard, RS232, and the microcontroller's format. RS232 specifies 
that O's and 1 's are represented by voltage swings of -15 to + 15 V while 
t~e MC68HC11, a CMOS (complementary metal oxide semiconductor) de­
VIce, represents binary digits using 0.0 and 5.0 V. Fortunately, this common 

50 

3.4 Rug Warrior Logic 

problem has a ready solution: Several clever circuits will perform the in­
terface function. We have chosen to use a MAX233 chip for this purpose 
because it allows full-duplex operation (it can transmit and receive at the 
same time) and no components besides the chip itself are needed. 

3.4. 7 External Memory 

The HM62256LP-12 RAM chip holds Rug Warrior's 32K-byte external 
memory. This is exactly half the total memory that a MC68HC11 can 
directly address. The 32K block fills the upper half of memory, the address 
space from the addresses $8000 to $FFFF, as illustrated in Figure 3.6. 

In single-chip mode, the MC68HC11 assumes that no external memory 
is available and so it is free to configure ports B and C as general pur­
pose I/0 ports. In the expanded multiplexed mode that we use for Rug 
Warrior, however, the MC68HC11 must use ports B and C to implement 
the address and data lines needed to access external memory. In this case, 
these ports cannot be used for I/0. This is the design choice made for Rug 
Warrior. There is, however, a special chip called a port replacement unit, 
the MC68HC24. When added to the circuit, this chip makes ports B and 
C available even while operating in the expanded multiplexed mode. 

Each byte of the 32K memory space can be addressed by using only 15 
address lines. Together, ports B and C provide 16 lines, so one line, PB7, 
is left over. This line is used to select the memory chip itself. 

The high part of the 15-bit address is formed using port B lines PBO 
through PB6. Port Clines PCO through PC7 form the low part. Line PB7 
selects the HM62256LP-12 memory chip. Any address of $8000 or above 
has the highest-order line asserted; that is, PB7 outputs a 1. Thus, the 
memory chip is selected and will respond only when the microcontroller 
asserts an address of $8000 or more. Addresses below this number are 
ignored. The signals from PB7, the low-voltage inhibit chip, and theE pin 
of the MC68HC11 are combined in a triple-input NAND gate whose output 
goes to the memory chip's CE (chip enable) line. (The output of a NAND 
gate is the low, if, and only if, all its inputs are high.) The RAM chip is 
selected only when there is sufficient voltage to operate, when the system 
clock is in the proper part of its cycle, and when an address of $8000 or 
higher is specified. If we wished to expand Rug Warrior's memory by filling 
in the addresses below $8000, we could wire in a second 32K RAM chip. 
This chip would be selected by inverting the sense of PB7 and connecting 
it to the new RAM chip's CE line. The new chip would be selected only 
when PB7 output a 0. This would deselect the first memory chip. 

At the beginning of a memory read or write cycle, port C outputs the 
low part of the address (bits 0 through 7) and port B, the high part (bits 

51 

Silver Star Exhibit 1018 - 37



Chapter 3 Computational Hardware 

8 through 15). Control signals then cause the low part of the address to 
be latched by the 74HC573 chip. After latching has been enabled, the 
74HC573 chip will continue to output to the memory chip the signal first 
sent to it by port C, even when data on port C later changes. Thus, during 
the second part of the read/write cycle, the lines of port C are free to be 
used as data lines either to write data to or read data from the memory 
chip. (The AS and RW lines from the microprocessor determine this.) This 
dual use of the port C lines is known as multiplexing. 

3.4.8 Battery Backup 

As the contents of the external memory chip are volatile, some extra mech­
anism is required if we wish for the robot to remember its program after 
the power is turned off. We have chosen a scheme of battery backup for 
~he RAM chip. ~ very h~lpful property of chips using CMOS technology 
1s that they reqmre only tmy amounts of current to maintain their state. 

Thus, we have routed power from the battery directly to the supply pin, 
VDD, of the memory chip (bypassing the power switch). This chip continues 
~o be powered, even when the switch is off. This choice has essentially no 
1mpact on how long the batteries will last, however, as the current required 
to maintain the contents of the RAM is only about one microamp. The 
74HC10 triple NAND gate is part of the enabling circuitry for the memory 
chip. By always providing power to the NAND chip, we can make sure that 
RAM is disabled whenever the power in the main circuit is switched off. 

Another alternative is just to buy a nonvolatile RAM chip which is a 
normal RAM that has a small lithium battery in the case. A nonvolatile 
RAM chip is only a few dollars more expensive than a normal one. Dallas 
Semiconductor and Greenwich' Instruments sell nonvolatile RAMs. 

3.5 Hardware-Software Interface 

Software controls hardware and hardware supports software. The nature 
of this relationship is the topic of this section. In what follows, we will 
assume the reader has some familiarity with programming in a higher-level 
language. After an aside concerning number formatting, we will begin with 
an example of what actually goes on when a program runs. 

3.5.1 Representing Numbers 

When programming a microprocessor at the lowest level, it is useful to be 
able to easily refer to numbers in bases 2, 10, and 16 (known, respectively, 

52 

3.5 Hardware-Software Interface 

as binary, decimal, and hexadecimal, or hex). Unfortunately, every pro­
gramming language establishes its own standard for specifying the base. 
Unless the base is clear from the context, we will use the convention shown 
in the following table for representing numbers in assembly language pro­
grams and inC language programs. The decimal number 123 is used as an 
example. 

Base 
2 

10 
16 

Assembly language 
Prefix Example 

% %01111011 
123 

$ $7B 

IC language 
Prefix Example 

Ob Ob01111011 
123 

Ox Ox7B 

The base 2 representation for the decimal number 123 is 01111011. The 
syntax of our assembler requires us to specify this as %01111011 so that it 
understands that we mean the binary number 01111011 and not the decimal 
number 1,111,011. The syntax for IC would have us write 123 in binary 
form as Ob01111011. Similarly, hex numbers are specified using the$ prefix 
for our assembler and a Ox prefix for IC. The prefix Ob for representing 
binary numbers is part of IC but is not included in standard C. 

3.5.2 An Example 

The details of writing a workable program and loading it into the micro­
controller will be explained later. For the moment, we will assume that a 
simple three-instruction program has already been loaded. We will watch 
what happens as the program runs. 

Figure 3.8 illustrates the changes that take place in two of the micropro­
cessor's internal registers and an output port when the following fragment 
of a program runs: 

LDAA #7 
ADDA #13 
STAA $1008 

;Load 7 into accumulator A, # means immediate 
;Add 13 to accumulator A 
;Store contents of A to port D 

The left column of Figure 3.8 (labeled Program) shows the code written 
by a programmer. In this case, the program consists only of the names of 
instructions and arguments for those instructions. 

The second column, Memory, displays the contents of memory (in hex­
adecimal) after the program has been loaded. To translate the code supplied 
by a programmer into the internal representation (the machine code) used 
by the microprocessor, another program called an assembler is required. 

53 

Silver Star Exhibit 1018 - 38



Chapter 3 Computational Hardware 

The LDAA instruction has been converted into its machine language code, 
which happens to be the number $86. This LDAA instruction is stored at 
memory location $8000. The numbers into which the instruction mnemon­
ics are converted are also known as opcodes. Following $86 in memory is 7, 
the argument that will be used by this instruction. 

The third column reports the state of two special registers internal to 
the microprocessor. The program counter, or PC, is the microprocessor's 
way of keeping track of where it is; the value stored in the PC is the address 
in memory of the instruction the microprocessor is about to execute or the 
argument it is about to fetch. Note that the box representing the PC is 
twice as wide as those representing memory locations and other registers. 
This indicates that the PC holds a 16-bit address while the others hold 
8-bit data values. 

The MC68HC11, like many other microprocessors, requires nearly all 
computations to be performed in a special register called the accumulator. 
For example, it is not possible to directly add the contents of one memory 
cell to that of another. Rather, one value must be loaded into the accumu­
lator and then the next must be added to the contents of the accumulator. 
The MC68HC11's accumulator A, one of its two 8-bit accumulators, is 
shown beside the program counter Figure 3.8. 

Finally, port D, which resides at location $1008 in the memory map is 
shown in the last column. The purpose of the program is to change the 
value stored at memory location $1008 and thus the voltages on the lines 
connected to port D. 2 

Step 1 of Figure 3.8 shows the state of the microprocessor before any 
computation has taken place: The program has been loaded, the program 
counter is pointing to the first instruction, and the contents of accumulator 
A are arbitrary and unknown. When the program begins execution, the 
microprocessor uses the address stored in the PC to get the first instruction 
opcode, $86. It then increments the PC. Interpreting this instruction tells 
the microprocessor two things: how to find the instruction's operand and 
what to do with the operand. In this case, the value fetched from the 
memory location pointed to by the PC, location $8001, is the operand, 7. 
(An operand is a data value that is processed by an instruction in some 
way.) LDAA further instructs the microprocessor to place this value into 
accumulator A. 

By the beginning of Step 2, accumulator A holds 7 and the PC points at 
the next instruction, ADDA #13. Again, we use the PC to fetch the operand, 
13, but the ADDA instruction causes its operand to be added to the contents 
of accumulator A. Step 3 shows the result: 7 + 13 = 20 decimal or $14 hex. 

2
To simplify the example we assume that register DDRD, the data direction register 

for port D, has already been set correctly, enabling the lines of port D as outputs. 

54 

3.5 Hardware-Software Interface 

Program Memory Internal registers Port D 

LDA AIV 8000 86 ~I 8000 I PC c::::I:J A ace 1008 c::::I:J 
7 

ADD A 113 8002 8B 

Step 1 D 
A $1008 8004 B7 

10 
STA 

8006 08 

86 J' 8002 I PC 7 ace 1 AU 8000 
7 

A 113 8002 SB 

008 c::::I:J LDA 

ADD 

Step 2 D 
$1008 8004 B7 

10 
STAA 

8006 ....._Q,L_ 

CKJ ace A 1008 c::::I:J 8000 J' 
8004 I PC LDAA 17 

ADDA 113 8002 

STAA $1008 8004 
Step 3 

8006 

1008 CKJ 

Fi ure 3.8: The program counter (PC) keeps track of which instruction the ctu will execute next. As each instruction is processed, the ~ddress of the next 
· · · 1 d · the PC The contents of internal reg1sters and memory mstructwn lS p ace m · . 
cells are altered as a result of instruction executio.n. Here, three steps m ~program 
are shown. The final contents of address $1008 1s $14 (hex) or 20 (deCimal). 

(1 1 1 1 1 1 1\~ccumulator A ,/1 I I I I 1,~:1 Accumulator B 
.......... ............ ..,,... ,.,. ... 

' ' 15 '' , , 0 , 

, I I I I I I I I I I I I I I I I I Accumulator D 

I I I I I I I I I I I I I I I I I PC - Program counter 

I I I I I I I I I I I I I I I I I SP - Stack pointer 

I I I I I I I I I I I I I I I I IIX Index register x 
I I I I I I I I I I I I I I I I jiY - Index register y 

lslxiHIIINizlvlcl cc - Condition code register 

The internal registers of the MC68HC11 describe the processor's Figure 3.9: 
state. 

55 

Silver Star Exhibit 1018 - 39



Chapter 3 Computational Hardware 

The last statement, STAA $1008, finally effects a change in the world 
outside the microprocessor. This command causes the contents of accumu­
lator A to be transferred to port D. The argument of STAA is the address 
where the data is to be stored. The binary representation of $14 is %010100. 
This is interpreted by the hardware of port D as a set of voltages to be out­
put. In particular, pins PDO, PD1, PD3, and PD5 are set to 0 V, while 
pins PD2 and PD4 are set to 5 V. From the schematic of Rug Warrior's 
sensors and actuators (page 279), we observe that this will make LEDs 
(light emitting diodes) 1 and 3 glow. 

3.5.3 CPU Registers 

The MC68HC11 has several registers internal to its CPU, besides the two 
introduced in the preceding example. Figure 3.9 offers a graphical repre­
sentation of the register set we will describe more fully later. 

Accumulator A and its twin, accumulator B, are both 8-bit registers 
used for performing arithmetic computations. Some instructions treat these 
registers as if they were a single 16-bit accumulator. In this case, accu­
mulators A and B are referred to collectively as the double accumulator, 
accumulator D. 

The register known as the stack pointer (SP) is used to hold a 16-bit 
address. The operation of this register will be explained later in the context 
of the stack (see Section 3.5.9). 

Registers that hold 16-bit values IX and IY are known as index regis­
ters. They are used by the indexed-addressing mode to access instruction 
operands. Additionally, register IX is used by the division instructions. 

The condition code register (CC) is an 8-bit register that holds infor­
mation about recent CPU operations. Each bit of this register has a special 
purpose (described in the MC68HC11 documentation). For example, when 
the STAA instruction stores a 0 value to memory, the Z bit of the condition 
code register is set to 1. If any number other than 0 is stored, the Z bit 
is 0. If two numbers are summed to zero by, say, the ADDD instruction, the 
effect on the condition code register is the same. 

Other bits signify other conditions. If the most recently processed in­
struction produced a negative number, then theN bit is set. The occurrence 
of an arithmetic carry causes the C bit to be set. An arithmetic overflow 
affects the V bit. Branch instructions, which are discussed later, (see Sec­
tion 3.5.7), examine the state of the bits in the condition code register to 
determine whether or not to transfer control to another part of the program. 

We can think of these bits as flags. When some condition is met, the 
corresponding flag is raised-the bit is set to 1. When the condition is not 
met, the flag is lowered-the bit is cleared to 0. 

56 

3.5 Hardware-Software Interface 

None of the MC68HC11's registers appear in the memory map. This 
means that the only way to access these registers is through the use of spe­
cial instructions. Certain microprocessors do, however, map their internal 

registers to memory. 

3.5.4 Instructions and Operands 

The instruction set of a microprocessor is the set of primitive operations 
that it can carry out. Figure 3.10 lists a majority of the instructions in 
the MC68HC11 family's instructions set. Most instructions require one or 
more operands. In the above example, the operand of the LDAA instruction 
was 7. The instruction stored that number in accumulator A. The operand 
of the ADDA instruction was 13. Executing ADDA added this number to 

accumulator A. 
An instruction can locate its operand in several ways. In the example; 

LDAA and ADDA both used a form called immediate addressing. With this 
method, the operand itself is stored in memory following the instruction 
code. Figure 3.11 illustrates an example of immediate addressing. 

In an assembly program, the programmer specifies how the operan~ is 
to be found by the way the instruction's argument is written. The # s1gn 
in front of the numbers 7 and 13 in the program in Figure 3.8 indicates to 
the assembler program that these numbers should be referenced using i_m­
mediate addressing. The following list summarizes the operand-addressmg 

schemes used by the MC68HC11. 

Immediate: The operand itself follows the instruction code in the program 
stream. The argument is prefixed by #. Example: ADDA #$2F means 
that the hex value $2F should be added immediately to the value of 

accumulator A. 

Extended: The argument is the address of the operand. Two bytes are 
required to form the address (given the 64K address space of the 
MC68HC11). The argument has no prefix. Example: JSR subr_foo. 

Direct: Direct addressing is similar to extended addressing except that it 
takes one less byte to specify the operand. The first 256 bytes of_the 
address space are sometimes called the zero page. Because the high­
order byte is always 0, this portion of the memory (which corresponds 
to the MC68HC1l's on-chip RAM) can be addressed with only 1 byte. 
The argument again requires no prefix. Example: LDAA variable_1 

57 

Silver Star Exhibit 1018 - 40



Chapter 3 Computational Hardware 

Mnemonic Operation performed 
ADDA Add argument to ace A 
ADDD Add double; add argument to ace D 
BCLR Bit clear; clear specified bits of memory location 
BEQ Branch if result = 0 
BGT Branch if result is > 0 (signed) 
BHI Branch if higher (unsigned) 
BLO Branch if lower (unsigned) 
BLT Branch if result is < 0 (signed) 
BNE Branch if result f 0 
BRA Always branch 
BRCLR Branch if specified bits are clear 
BRSET Branch if specified bits are set 
BSET Bit set; set specified bits of memory location 
CLI Clear I flag of CC register, enable interrupts 
COMA Complement; bitwise negation of ace A, $FF argument 
IDIV Divide one 16-bit integer by another 
JMP Jump to an absolute address 
JSR Jump to subroutine 
LDAA Load a value into ace A 
LDAB Load a value into ace B 
LDD Load double; load argument into ace D 
MUL Multiply two 8-bit numbers, return 16-bit number 
NEG Two's complement argument, 0 - argument 
NOP No operation; this instruction makes no changes 
PSHA Push contents of ace A onto stack 
PULA Load ace A with value at top of stack 
RTI Return from interrupt 
RTS Return from subroutine 
SEI Set I flag of CC register; disable interrupts 
STAA Store ace A to memory 
STAB Store ace B to memory 
STD Store double; store ace D to memory 
SUBA Subtract argument from ace A 
SUBD Subtract double; subtract argument from ace D 
TSTA Test ace A; set condition codes accordingly 
TSX Transfer Stack pointer to IX register 

Figure 3.10: Selected instructions from the MC68HC11 instruction set. Code 
written using this instruction set, typed in and edited on a host computer would 
be assembled into machine code and then downloaded to the robot via ~ serial 
cable. 

58 

3.5 Hardware-Software Interface 

Immediate 

Instruction 
eran 

Indexed X or Y 

Extended 

..-----, 

$FFFF 

}~~Oceran 
$FFFF 

'----....1 $0000 
Memory 

f 
Operand 

Instruction IX or IY register '----....1 $0000 
Offset ~ + '-----'---....J Memory 

Figure 3.11: A graphic representation of several addressing schemes. Immediate 
addressing finds the operand itself stored following its instruction in memory. 
The extended and direct addressing schemes have the address of their operands 
stored in the memory location following the instruction. The operands are found 
by fetching from these locations. Indexed addressing computes the address of 
the operand by adding the number following the instruction to the contents of a 
special CPU register. The operand can be fetched once this calculation has been 
performed. 

Indexed: The argument is added to the contents of the IX or IY register to 
compute the address of the operand. This addressing scheme is useful 
for accessing items within blocks of data. If, for example, the address 
of the oth element of an array of values is loaded into the IX register, 
then any other element can be found by giving an instruction only 
the index of the desired element. Example: Suppose that the number 
$9000 has been loaded into the IX register. The instruction LDAA 3, X 
will then place the value stored at location $9003 into accumulator 
A. 

Relative: The argument is added to the program counter to compute the 
operand. This is the scheme used by branch instructions to pass 
control forward or backward in the program. The argument requires 
no prefix or other indicator. Example: BRA labeL!. 

Inherent: No explicit operand is required for instructions using inherent 
addressing. Example: The TSX instruction takes no argument. It 
transfers the contents of the stack pointer to the IX register. 

59 

Silver Star Exhibit 1018 - 41



Chapter 3 Computational Hardware 

3.5.5 Arithmetic 

In the discussion so far, you may have noticed the absence of numbers other 
than integers. This is no coincidence. Unless the microprocessor comes 
equipped with special hardware for dealing with floating-point numbers or 
numbers containing exponents, integer arithmetic is all the microprocessor 
is able to do. If floating point computations are required, the programmer 
must write routines that implement such computations entirely from the 
integer-based instructions native to the microprocessor. Floating-point op­
erations typically require much more time and storage space than integer 
operations. 

An integer represented by a binary value can be interpreted in one of 
two common ways. An 8-bit byte, for example, can be seen as an unsigned 
integer in the range of [0, 255] or as a signed integer in the range [-128, 127]. 
Sixteen-bit quantities can also be regarded as either signed or unsigned. 

The unsigned representation, in which each bit of the byte corresponds 
to a power of 2, is straightforward. If the bits of byte B are designated bn, 
where n ranges from 0 to 7, then the integer I represented by byte B is: 

For example, %00001011 = 23 + 21 + 2° = 11 decimal. 
Negative numbers are represented in 2's complement form. Suppose we 

wish to construct a byte that holds the 2's complement of, say, -5. First, 
take the 8-bit representation for 5, %00000101, and complement it, obtain­
ing %11111010. The 2's complement operation replaces every 0 bit with a 
1 and every 1 with a 0 and then adds 1 to get %11111011. This represen­
tation has the correct arithmetic property: If we add -5 and +5, we know 
we should get 0, and, properly, %11111011 + %00000101 %00000000. 
(This operation sets the carry bit, C, in the condition code register.) 

The value stored in a memory location is just a string of 1's and O's. 
Whether %11111011 is to be interpreted as -5 or +251 is left to the pro­
grammer. Different instructions of the MC68HC11 are used to select one 
interpretation or the other. It is also necessary to use different instructions 
depending on whether we want to manipulate 8-bit or 16-bit quantities. 

3.5.6 Control and Status Registers 

As stated earlier, several of the MC68HC11 's ports have multiple functions. 
How does the microprocessor select one function as opposed to another? 
The answer is that special memory-mapped registers (not to be confused 
with the CPU's internal registers) control these functions. 

60 

3.5 Hardware-Software Interface 

In the example program in Figure 3.8, we used port D to control son:e 
external devices, four LEDs. The instructions listed in that program w1ll 
not have the desired effect. That is, they will not turn on the LEDs unless 
we first configure the pins of port D as outputs. To effect this change, we 
must use the DDRD register. 

DDRD 
$1009 

1 1 

Bit 0 

Register DDRD will contain the value shown if we first execute these 
instructions: 

LDAA #'%111100 
STAA $1009 

;Set PD2,3,4,5 for output, PDO,l for input 
Btore data to memory-mapped register DDRD 
' 

The MC68HC11AO has a total of nearly 50 control registers, status 
registers, and ports. The purpose of each bit of each register and the default 
state of each bit (that is, whether the bit is a one or a zero after .a system 
reset has occurred) is specified in the MC68HC11AO documentat10n. 

3.5.7 Jumps and Branches 

Flow control in a microprocessor is implemented by branch and jump in­
structions. Consider the following program. Its purpose is to compute the 
absolute value of the 8-bit signed integer that has previously been loaded 
into accumulator A. 

ABS 
TSTA 
BLT ABS-NEG 
BRA ABS-END 

ABS-NEG 
NEGA 

ABS-END 

;ABS is the label of this section of code 
;Test value in ace A (maybe set CC register N flag) 
;If value is less than 0 branch to label ABS-NEG 
;If the above branch was not taken then go to ABS-END 
·The dash is not a minus sign, just a part of the name 
:·Negate the quantity in ace A 

ABS ABS-NEG and ABS-END are not instructions but rather symbolic 
labels c~eated for ~he convenience of the programmer. Such labels make it 
easy to refer to particular points in the instruction stream. 

The first instruction, TSTA, examines the contents of accumulator A. !t 
sets the condition code bits appropriately. In particular, if the number m 
accumulator A is negative, TSTA will set the N bit of the condition code 
register. The next instruction, BL T, is the "Branch if Less Than Zer~" 
instruction. If the N bit of the condition code register is set, then th1s 

61 

Silver Star Exhibit 1018 - 42



Chapter 3 Computational Hardware 

instruction will cause control to be passed to the instruction following the 
label ABS-NEG. If the N bit is clear, then control passes to the instruction 
following BLT. That is, control flow will pass to the BRA instruction. 

The BRA, or "BRanch Always," instruction, is an unconditional branch. 
It always forces program control to jump to the address specified by its 
argument. The effect of these branches is that if the contents of accumula­
tor A is positive, then flow control jumps to the end, leaving accumulator 
A unchanged. If accumulator A holds a negative number, the NEGA in­
struction following the ABS-NEG label is executed, negating the contents of 
accumulator A. The MC68HC11 offers many additional branch instructions 
for testing other arithmetic conditions. 

There is one subtlety to be aware of when using branches. The operand 
of each branch instruction is only 1 byte long. This means the instruction 
cannot specify the absolute address of the location to which it will pass 
control. Rather, a branch causes a jump forward or back in the instruction 
stream. The 1-byte operand can specify a displacement of 127 locations 
forward or 128 locations backward from the memory location in which the 
branch instruction is stored. To go further than that, we must use a JMP, 
or "JuMP," instruction. This instruction takes a 2-byte operand and can 
pass control to any location in the MC68HC11's memory space. 

3.5.8 Subroutines 

The previous example illustrated how we might implement an absolute 
value function by writing it directly into the instruction stream of the pro­
gram. If an absolute value were needed at another point in the program, 
the same code could be repeated. The labels ABS, ABS-NEG, and ABS-END 

would have to be changed (perhaps by calling them ABS-1, ABS-2, etc.) 
to eliminate ambiguity. 

We can make more efficient use of the available memory if we implement, 
as a subroutine any piece of code that is used repeatedly. This is also true 
with higher-level language programs. By adding one instruction to the 
previous example, we can turn the code fragment into a subroutine. 

ABS 

TSTA 

BLT ABS-NEG 

BRA ABS-END 

ABS-NEG 

NEGA 

ABS-END 

RTS 

62 

;Subroutine named ABS 
;Test value in ace A (set CC register flag) 
;If value is less than 0 branch to ABS-NEG 
;If the above branch was not taken go to ABS-END 

;Negate the quantity in ace A 

;Return to the place where the subroutine was called 

3.5 Hardware-Software Interface 

Data 1 

Data 2 

Datan-2 

Data 0.J 

Data 0 

Stack pointer- Free 

t Higher addresses 

Bottom of stack 

Top of stack 

t Lower addresses 

Figure 3.12: A value is added to the stack by storing it at the location pointed 
to by the stack pointer and then decrementing the pointer. A value is retrieved 
from the stack by incrementing the pointer and returning the item at that mem­
ory location. The stack illustrated here grows by inserting values at decreasing 
memory addresses. However, stacks that grow toward increasing addresses are 
also often implemented. In either case, the location indicated by the stack pointer 
is still considered the "top." 

The essential difference between this subroutine and the in-line code 
(code in the main body of the program) in the previous example is the 
inclusion of the RTS, "ReTurn from Subroutine," instruction. This instruc­
tion causes control to switch back to the point elsewhere in the program 
where the subroutine was called. 

Subroutine ABS assumes that the argument (the quantity whose absolute 
value is to be computed) has been stored in accumulator A. It also returns 
the result in accumulator A. To call ABS, we could say: 

LDAA Value 

JSR ABS 

STAA Value 

;Load ace A with some value 
;Jump to subroutine ABS 
;Store the result 

The assembler program replaces the label ABS with the address of the 
first instruction in the subroutine. This allows JSR, the "Jump to Sub­
Routine" instruction, to determine where to transfer program control. But 
how does the microprocessor find its way back to the instruction following 
the JSR ABS after the subroutine has been completed? The answer is that, 
before transferring control to subroutine ABS, the JSR instruction pushes 
the address of the next instruction, STAA Value, onto the stack. 

63 

Silver Star Exhibit 1018 - 43



Chapter 3 Computational Hardware 

data data 
SP 90 SP 90 

$8FFD LDAA Value 03 03 
$9000 JSR ABS SP free free 
$9003 STAA Value 

Stack before jump Stack during sub- Stack after return 
to subroutine routine execution from subroutine 

Figure 3.13: This sequence of steps shows how the stack is used to pass control to 
and from a subroutine. The values placed on the stack, the return address bytes, 
remain after subroutine ABS has been completed. However, the next number 
written to the stack will overwrite these values. 

3.5.9 The Stack 

Modern computers make use of a stack to transfer control to and from 
subroutines, to pass information, and to store local variables. Figure 3.12 
illustrates implementation of a stack. A stack is implemented as a contigu­
ous set of addresses in RAM memory. The stack pointer, or SP, (usually an 
internal register of the microprocessor) holds the address of the next free 
location. When a value is "pushed" onto the stack, that value is written to 
an address specified by the stack pointer. The stack pointer is then decre­
mented. To "pop" a value from the stack, the stack pointer is incremented. 
The value of the stack pointer is then used as the address of the operand 
to be fetched. 

The sequence shown in Figure 3.13 illustrates how the stack is used 
to transfer control between in-line code and a subroutine. When the JSR 

instruction is executed, the 2-byte address of the next instruction in the 
instruction stream, STAA Value, is placed on the stack. After ABS has 
finished, the RTS instruction loads the program counter with the top 2 
bytes on the stack. Control is thus returned to the instruction following 
the JSR instruction. 

Nothing prevents a programmer from "nesting" subroutines, that is, 
having one subroutine call another. Although there is no advantage to doing 
so in the simple example given here, it is even possible for a subroutine to 
call itself. This very powerful concept of subroutines calling themselves is 
known as recursion. 

3.5.10 Passing Arguments 

A key issue in using subroutines is determining how to pass arguments 
and results between the calling code and the subroutine. In the preceding 
example, this posed no problem. Since both the single argument and the 
result were only 1 byte long, each fit neatly into accumulator A. 

64 

3.5 Hardware-Software Interface 

Stack t Higher addresses 

Value-1 

Value-2 

Top 
X register t Lower addresses 

Figure 3.14: Data can be passed to a subroutine via the stack. VALUE-1 and 
VALUE-2 are pushed onto the stack and a Jump to SubRoutine (JSR) instruction 
is performed. One result of the JSR instruction is to leave the return address on 
the stack. 

One common way to pass large chunks of data to a subroutine is to 
send the address rather than the data itself. If the data to be processed are 
stored at a block of successive memory locations starting at DATA-ADR, we 
can enable the subroutine PRDC-DATA to access them by: 

LDX #DATA-ADR 
JSR PROC-DATA 

;Load the address of the data into the IX register 
;Jump to the data-processing subroutine 

The same subroutine can now be used to process any number of different 
blocks of data. The subroutine can, for example, look at the first item in a 
block by saying LDAA 0, X. It could acquire the third with LDAA 2, X. 

This procedure is adequate if it is possible to allocate storage for all 
data in advance and keep such storage space around indefinitely. There is, 
however, another more clever way to create a block of data "on the fly" and 
reclaim the memory space used when the data are no longer needed. We 
can create local variables by storing temporary data on the stack. Suppose, 
for example, we wish to pass two 8-bit values, Value-1 and Value-2, to a 
subroutine. The calling code might say: 

LDAA Value-1 

PSHA 
LDAA Value-2 

PSHA 

JSR SUBRTN 

;Get the first value 
;Push that value onto the stack 
;Get the second value 
;Push it onto the stack 
; Jump to the data-processing subroutine 

65 

Silver Star Exhibit 1018 - 44



Chapter 3 Computational Hardware 

Figure 3.14 shows the situation after the jump to the subroutine has oc­
curred. Notice that jumping to the subroutine has placed additional data 
on the stack. The two bytes that comprise the return address appear fol­
lowing the data of interest. In order for the subroutine to access the stored 
values, all it must do is point the IX register to the same address as the 
stack pointer (the TSX, Transfer SP to IX instruction will accomplish this) 
and bypass the return address bytes to access the data. To get Value-1, 
we can say LDAA 4,X; Value-2 is accessed with LDAA 3,X. 

Values can be passed back to the calling code by storing them on the 
stack, as well. If it is important not to overwrite the calling data already 
on the stack, then the calling code should push extra dummy values onto 
the stack so that the subroutine has space to store its results. 

Use great care when manipulating the stack in this way. If the re­
turn address stored there is accidentally overwritten, the microprocessor 
will almost certainly crash when the return from subroutine instruction is 
executed. 

3.6 Real-Time Control 

To this point, we have reviewed the fundamental components of micropro­
cessor software and described how they are supported by the hardware. 
Next, we discuss how to assemble these building blocks into strategies for 
real time control. 

There are three strategies for writing software that can respond to ex­
ternal events in real time. Polling is a method where the software loops, 
continuously checking an input pin. Polling ties up the processor, keeping 
it busy even when no external events are happening. Interrupt-driven soft­
ware is more efficient. In this method, the external event creates a signal 
that directs the processor to postpone whatever it is doing and respond to 
that event immediately. The third strategy, input capture, can be used if 
the processor has special hardware, known as input capture registers. By 
taking advantage of this special purpose hardware, the processor is never 
interrupted. Instead, event handling is taken care of in the background. 
We will expand on these concepts with some examples. 

3.6.1 Polling 

Suppose that we wish to monitor an input closely in order to take action 
immediately after some event of interest has occurred. We might, for ex­
ample, wish to measure the time of flight of a sonar pulse. Figure 3.15 
illustrates an example of sonar ranging. It is important to measure pre­
cisely the difference between the time the pulse was sent out and the time 

66 

3.6 Real-Time Control 

MC68HC11AO 

Amplifier Receiver 

Sound i 
intensity n 

Transmited signal L--'---'---~~,..,. 
ti?e' 

'"'"" . .,., t~-~---:--:---'uf--'-)o)o­ll.t I 

Figure 3.15: The time of flight of a sonar echo can be measured using polling, 
interrupts, or input capture. 

it returns. In the following example, we assume that the output of the 
ultrasonic receiver is connected to PAO. This line goes high when an echo 
is detected. 

The following subroutine will measure the time difference between ini­
tiation of the sonar ping and detection of the returning echo, with an ac­
curacy of a few microseconds. This subroutine must be called immediately 
after the ping starts. It will store the measured time in Sonar-tof. The 
timer-counter system associated with port A is used to measure the time 
of flight of the sonar pulse. The timer counter is a 16-bit register called 
TCNT, which is a free-running timer. With every clock cycle, the hardware 
automatically adds 1 to the contents of a 16-bit register called TCNT. The 
following TIME-SONAR code uses this feature to advantage: 

TIME-SONAR 
LDD TCNT 
STD Sonar-tof 

WAIT-FOR-ECHO 

;Measure the time of flight of a sonar echo 
;Get the starting time from the system timer 
;Save start time 

BRCLR PORTA, %00000001, WAIT-FOR-ECHO ;Keep checking PAO 
LDD TCNT ;Echo detected so get current time 
SUBD Sonar-tof ;Ace D now holds current time start time 
STD Sonar-tof ;Store the 16-bit time to location Sonar-to! 
RTS ;Return to the calling code 

TIME-SONAR begins by loading the value of TCNT into accumulator D. 
Next, it executes the BRCLR PORTA, %00000001, WAIT-FOR-ECHO instruc­
tion. This instruction tests the state of the lowest-order bit of port A-the 
bit corresponding to line PAO. If the value of this bit is 0, a branch is 
made to WAIT-FOR-ECHO; that is, the same instruction is executed again. 
Program control thus stays in a tight loop, repeatedly testing the state of 

67 

Silver Star Exhibit 1018 - 45



Chapter 3 Computational Hardware 

PAO. When an echo finally returns and PAO goes high, control passes to the 
next instruction. This instruction, LDD TCNT, and the one following it, SUBD 
Sonar-to£, compute the difference between the time the WAIT-FOR-ECHO 
routine started and the time the echo returned. Finally, this time-of-flight 
value is stored in the variable Sonar-to£. The main code that calls and 
responds to the TIME-SONAR subroutine could be written: 

JSR Turn-on-sonar 
JSR TIME-SONAR 
JSR Compute-distance 

; This subroutine initiates the sonar ping 
; Jump to the example code 
; Use the measured time to compute distance 

This strategy of repeatedly checking for a condition is known as polling. 
For the sake of simplicity, an important safeguard has been left out of this 
example. If it happens that the sonar ping fails to return, the:u control will 
never advance beyond the tight loop. The program will be stuck indefinitely. 
A robust program would include within the loop some sort of time-out 
feature to exit the routine should the echo take too long. 

3.6.2 Interrupts 

Polling offers an effective way to respond quickly to real-time events. The 
problem is that this method uses up all the microprocessor's resources, 
waiting for just one event. While the microprocessor waits, it cannot do 
anything else. Much more efficient use could be made of the micropro­
cessor's time if there were some automatic way of responding to an event. 
The microprocessor should only have to take action (execute instructions) 
when the event actually occurs. Such a mechanism exists and is called an 
interrupt. 

An interrupt is an event that triggers an automatic response in the 
microprocessor. The code that responds to that event is called the interrupt 
service routine. Interrupt service routines are quite similar to subroutines 
except that they are called by the occurrence of an event rather than by a 
JSR instruction. 

Interrupts are asynchronous; the microprocessor cannot anticipate when 
an interrupt will occur. Thus, when an interrupt does happen, the micro­
processor will be executing some piece of unrelated code. To respond to 
the interrupt, it will first have to stop executing the current code and save 
the state of the ongoing computation on the stack. Then it must locate the 
proper interrupt service routine and transfer control there. After servicing 
the interrupt, the microprocessor must be able to restore its pre-interrupt 
state and return control to the code that was running originally, before the 
interrupt. 

68 

3.6 Real-Time Control 

We will now rewrite the sonar-ranging example from the previous sec­
tion, demonstrating event handling using of an interrupt service routine: 

TIME-SONAR-ISR 
LDD TCNT 
SUBD Sonar-tof 
STD Sonar-tof 
LDAA #1 
STAA TFLG1 
RTI 

;Sonar timer interrupt service routine 
;Get the time at which the interrupt occurs 
;Difference is echo time of flight 
;Save difference 
;Clear interrupt flag 
; by writing 1 to register 
;Return control to the interrupted code 

This code assumes that, at the time the sonar ping was initiated, the 
current time was stored into Sonar-tof. When the returning echo triggers 
the interrupt, the difference between the time the ping was initiated and 
the time it returned will be stored in Sonar-tof. 

Writing the interrupt service routine is only one of the things we must 
do to make the interrupt happen. There are two others. 

The ultrasonic receiver is connected to pin PAO. This pin is associated 
with 1(3, the MC68HCll's input capture register number 3. Several reg­
isters must be initialized to have IC3 generate an interrupt when a signal 
appears on PAD. To enable 1(3 to generate an interrupt, we must set a 
mask register. (Mask registers enable certain microprocessor operations.) 

TMSKl Bit 7 Bit 0 
$1022 I OCll I OC21 I OC31 I OC41 I OC51 I ICU I IC21 I IC3 

X X X X X X X 1 
We want the interrupt action to occur when the state of pin PAO changes 

from 0 to 1. Following the MC68HC11 documentation, this choice is real­
ized by setting the lowest-order bits of register TCTL2 to %01: 

TCTL2 
$1021 

Bit 7 Bit 0 
jEDGlBjEDG 1AjEDG2BjEDG2AIEDG3BIEDG3Aj 

X X X X X X 0 1 

After an interrupt has been generated, a flag will be set in the TFLG1 
register. This flag must be cleared, once the interrupt service routine has 
been entered, or else, when action returns to the main code, it will think 
another interrupt is pending and service it again. The processor will do 
that forever if the flag is not cleared. To clear the flag, we must write a 1 
to the corresponding bit, IC3F, in the TFLG1 register: 

TFLGl 
$1023 

Bit 7 
I OClF I OC2F I OC3F I OC4F I OC5F I IClF 

X X X X X X 

Bit 0 
IC2F IC3F 

X 0 

69 

Silver Star Exhibit 1018 - 46



Chapter 3 Computational Hardware 

The following code implements these choices, enabling the interrupt to oc­
cur when P AO goes high: 

LDAA #%01 
STAA TCTL2 
LDAA #1 
STAA TFLG1 
LDAA #1 
STAA TMSK1 
CLI 
JSR Turn-on-sonar 
LDD TCNT 
STD Sonar-tof 

;Setup IC3 to generate an interrupt on rising edge 

;Clear IC3 flag 
;Clear the bits of this register by writing 1 's 
;Enable the IC3 interrupt 

;Global intrpt enable, intrpt system now ready 
;Initiate sonar ping 
;Get the time at which the sonar was turned on 
;Save turn on time 

; The microprocessor is free for other uses 
JSR Compute-distance ;At some later time compute the distance 

One more operation must be performed before the interrupt can be suc­
cessfully initiated. The microprocessor must be told how to find the inter­
rupt service routine code. For each interrupt facility that the MC68HC11AO 
provides (there are 21) a location is spco;cified in memory where the address 
of the associated interrupt service routine is stored. For the IC3 inter­
rupt, this address is $FFEA. When the program is loaded, it must fill this 
location with the address of TIME-SONAR-ISR. 

Setting up an interrupt is clearly much more complicated than setting 
up a simple polling operation. But the increased efficiency of an interrupt 
usually more than makes up for the increased complexity. Figure 3.16 shows 
how the microprocessor saves and restores the state of ongoing computa­
tions. The interrupt. service routine is free to use whatever CPU registers it 
needs. The values stored in these registers are automatically restored when 
the routine exits. 

3.6.3 Input Capture 

To illustrate the point in the previous section on interrupts, we actually did 
more work than was necessary. The input capture facility of the MC68HC11 
actually allows us to compute the time of flight of the sonar pulse without 
resorting to an interrupt routine. 

When properly set up, the timer-counter hardware can capture the time 
when PAO goes high. We must make use of one more built-in 16-bit register, 
TIC3: 

70 

3.6 Real-Time Control 

$8FFD 
$9000 
$9003 

LDAA Value 

~ 
SP~ 

ADDA 3.Y ? Stack before 
STA~ Value interrupt 

• Interrupt occurs 
during execution 
of this instruction 

SP 

Stack during 
interrupt 

(QO) 
(03) 

SP 

Stack after 
interrupt 

Figure 3.16: When an interrupt occurs, the instruction currently underway con­
tinues to completion. The state of the microprocessor is then saved. Preserving 
the state requires saving all of the CPU registers on the stack as well as the ad­
dress of the next instruction to be executed following the interrupted instruction. 
After the interrupt service routine completes, the preinterrupt state is restored. 
Using the data saved on the stack, all CPU registers are reloaded with the values 
they had before the interrupt occurred. 

TIC3 
$1014 

Now when input capture 1(3 occurs, the time of that event (the instan­
taneous value of TCNT) will automatically be latched into register TIC3. 
To set up this feature, the following code would be required: 

Setup-IC3 
LDAA #%01 
STAA TCTL2 

;Code to activate input capture 
;Trigger IC3 capture on rising edge. Each such 
;capture latches the time into register TIC3 

At any later time, when a sonar ping is initiated, the time of that event 
will be saved in Sonar-start: 

JSR Turn-on-sonar 
LDD TCNT 
STD Sonar-start 

;Initiate sonar ping 
;Get the time at which the sonar was turned on 
;Save turn on time 

At any point after the sonar echo has returned, the distance can be com­

puted from the elapsed time: 

LDD TIC3 
SUBD Sonar-start 

;Get the time the echo returned 
;Subtract the time ping started 

71 

Silver Star Exhibit 1018 - 47



Chapter 3 Computational Hardware 

STD Sonar-tof ;Store difference for distance computation 
JSR Compute-distance ;Compute the distance 

Built-in features like input capture and its counterpart, output compare, 
add greatly to the power of the micro controller. 

3.6.4 Traps 

What if something goes wrong? Perhaps an unexpected condition causes an 
attempt to divide by 0, or maybe a memory cell is accidently overwritten, 
causing the microprocessor to try to execute an opcode that doesn't exist. 
What will happen? 

The trap facility gives a computer an opportunity to recover from events 
that would otherwise cause a crash or an arbitrary response to an unex­
pected condition. A trap strongly resembles an interrupt. The user writes 
a trap service routine and stores its address as an interrupt vector. When 
the microprocessor detects the error condition, it jumps to the trap code. 

High-powered microprocessors and computers provide many different 
traps. The MC68HC11AO has just one, the illegal opcode trap. It does 
however, have another feature that can help it recover from a crash, the 
computer operating properly or COP, facility. When the COP feature is 
enabled, the user must provide a piece of code that causes a special lo­
cation to be written to every so often. If this operation fails to happen 
(presumably, because a crash has occurred or the program is hung), then 
the system automatically jumps to the address specified by the COP failure 
interrupt vector. The user should supply (at the chosen address) code that 
will restart the system. 

3.6.5 1/0 Buffers 

Frequently, it is more advantageous to move data through a buffer rather 
than directly from its source to destination. As an example, consider the 
problem of writing data to a serial line. Suppose a program must send a 
string of characters to a terminal. Ideally, the characters should be out­
put .as quickly as the microprocessor can move them from memory to the 
output port. However, terminals (or rather serial lines) typically operate 
much more slowly than the microprocessor itself. To accommodate a direct 
transfer, the microprocessor would be forced to output a character and then 
wait for an acknowledgment signal telling it that the terminal is ready for 
the next character. This would be slow. 

The solution is to send the characters using an interrupt routine. To do 
so, the function that wishes to output characters must move the string to a 

72 

3. 7 Loading a Program 

Memory locations 
Top of buffer 

Input pointer 

Output pointer 

1...--....l Bottom of buffer 

Figure 3.17: Values are added to the buffer by inserting at the place pointed to 
by the input pointer, then incrementing the input pointer. Values are removed 
from the point indicated by the output pointer. This pointer is then incremented. 
When input and output pointers point to the same location, output stops. When 
a pointer reaches the buffer's top, the next increment sends it to the bottom. 

buffer and activate the interrupt routine. Moving the individual characters 
out the serial port is then handled automatically. 

Figure 3.17 illustrates a buffer structure. In an empty buffer, the input 
and output pointers both point to the same location. To add characters to 
the buffer, write a character to the location indicated by the input pointer 
and then increment this pointer. (If the pointer reaches the top, the next 
character must move it to the bottom.) Whenever the serial line is ready 
for another character, it initiates an interrupt. The code that handles this 
interrupt then takes the character designated by the output pointer and 
moves it to the serial line. The output pointer is then incremented. As 
soon as the input and output pointers both point to the same value in the 
buffer, all characters have been sent and output can stop. 

3.7 Loading a Program 

So far, we have seen only fragments of assembly language programs. What 
do we have to do in order to write a complete program and run it on the 
microprocessor? 

3.7.1 The Assembly Program 

The first step in writing an effective program does not involve the micro­
processor at all. The first step is to work out the details of the algorithm 
on which the program will be based. Code is used to implement an algo­
rithm, but the algorithm itself, the method used to solve the problem, is 
independent of the particular code that supports it. 

73 

Silver Star Exhibit 1018 - 48



Chapter 3 Computational Hardware 

In the following examples, we will loosely follow the syntax of the Mo­
torola assembler, called ASll. This assembler allows the programmer to 
create symbolic labels such as the following: 

PORTA EQU $1000 

Here, the symbol PORTA has been assigned the value $1000. In any 
subsequent code, we may refer symbolically to port A rather than having 
to remember and write out its address. Symbolic labels make code easier 
to understand and debug. Use them liberally. 

We should point out that, in the examples in this book, we have used 
labels of arbitrary length. Some assemblers however, restrict the number 
of characters a label is allowed to have. We have also used the symbol - as 
a normal character when embedded in a label. Many assemblers treat the 
- as a special character, indicating that subtraction is to be performed. 

We have learned that Rug Warrior's memory space extends from $8000 
to $FFFF and that programs are stored in memory. How does the micro­
processor decide where, within this space, to put a particular instruction 
opcode or other data? The Motorola assembler uses the ORG directive to 
determine where instructions will be placed. Suppose our program begins: 

ORG $8000 
LDAA #my-value 

This construction will put the opcode for LDAA at location $8000 in 
memory. Subsequent opcodes and data values will follow. 

One important assembly function remains. After the code has been 
loaded into memory, how does the microprocessor know where to begin? 
When power has been turned off and then back on or the reset switch has 
been pressed, which address should be loaded into the program counter 
to begin program execution? In the MC68HC11, the last two locations in 
memory, $FFFE and $FFFF, hold the reset vector. Whenever the micro­
processor is restarted (by turning the power on or hitting the reset button), 
the address stored in the reset vector is loaded into the program counter. 
If the code fragment shown above is to be the beginning of our program, 
then, at some point in the instruction stream, we must say: 

74 

ORG $FFFE 
FDB $8000 

;Next data will be stored in the reset vector 
;Store location of start of program 

3.7 Loading a Program 

FDB like ORG is not an instruction but rather a directive. FDB instructs 
the ass~mbler to

1

use the next 2-bytes of memory to store the given number. 
That is, the reset vector at address $FFEE now has the number $800? sto~ed 
in it. Whenever the reset button is pushed, the program counter will po.mt 
to address $8000 and start executing the code that begins there. Dependmg 
on the sophistication of the assembler, many other useful directives and 
features may be available to aid in preparing an assembly language program. 

After the program code has been written, run the assem~ler to convert 
the code into machine language instructions. The next step IS to get these 
instructions from a file on the host computer into the memory space of the 
microprocessor. This is done using a downloader, a pro~ram that t~kes the 
assembled file the output of the assembler, and sends It to the micropro­
cessor. In the 'case of the MC68HCU, assembled code is usually loaded via 

the serial port. . . 
Somehow the microprocessor must intercept the machme code mstruc-

tions being s
1

ent to it over the serial line and store them in the righ~ lo­
cations. Servicing the serial line and moving data into mem~ry loca~10ns 
sounds like a job for an assembly language program. But how IS the micro­
processor able to accomplish this before the first program has been loaded 
into it? How can it load a program unless it already has a program to tell 

it how to do this? 

3. 7.2 A Bootstrap Loader 

The answer to these questions is to first load a bootstrap loader· pro?ram. 
Loading this initial program is assisted by a special mode of operatiOn of 
the MC68HC11. The MC68HC11 has four modes of operation selected by 
the two lines MODA and MODB. If both MODA and MODB are low, the 
microprocess~r enters a state of monit~ring the serial line. In this. st~te, the 
first 256 bytes sent over the serial line are intercepted and stored m mternal 
RAM (addresses $0000 to $OOFF). After receiving the last byte, con:rol 
jumps to the beginning of RAM, $0000, and execution of the pr.ogram JUst 
received begins. All of these operations are controlled by specml factory­

installed code in the MC68HC11's ROM. 
Thus one way to execute the user's program would be to load it in the 

way just 'described. If the program takes less than 256 byte~, ~he remainder 
can be filled with null operations (NOPs). However, this IS not a very 
useful method for loading a program, since the length is severely limit~d 
and each time the microcontroller is reset or switched off, the program _will 
be lost. More typically, we use this feature to load a loader .program ~nto 
internal RAM. The only function of the loader program then IS to load I~to 
memory the program that comes after it. When the loader program begms 

75 

Silver Star Exhibit 1018 - 49



Chapter 3 Computational Hardware 

execution, it loads the user's program-the next set of instructions and 
data ~hat come over the serial line. This code is presumably stored into 
on-chip EEPROM or external RAM. After switching the MC68HC11 back 
to single-chip or expanded mode, this new program will begin executing as 
soon as a reset occurs. 

The simplest way to program the MC68HC11 is to use a commercial or 
public domain development system that solves the problems of assembly 
and downloading for the user. So, rather than plunge into the peripheral 
issues of how to write assemblers, downloaders, and loaders, we will assume 
that the user has acquired the appropriate software. 

3.8 Alternatives 

There are any number of alternatives to the robot computational hard­
ware presented here. In particular, it is not necessary to build your own 
~oard from scratch. There are quite a number of commercially available 
smgle-board computers on the market that are suitable for use in robots 
New Micros manufactures a line of single-board computers based on th~ 
MC68HC11 microcontroller. Each board comes complete with the Forth 
language burn.ed into o~-chip ROM. Thus, all that is necessary to program 
such a .board IS a termmal. This does present the disadvantage, however, 
of makmg the development system a 2 MHz, 8-bit microcontroller. Putting 
t~e developmen~ system on a more powerful host computer can be a great 
~1d. P~ogrammmg the New Micros board in a language other than Forth 
IS possible. These boards also have the advantages of being small and in­
expensive. 

For those willing to do some fabrication and construction, the Mini 
Board developed by Fred Martin at the MIT Media Lab is a popular choice 
The Mini Board board uses an MC68HC811E2 and is compatible with th~ 
D~fie~d ~ c~mpiler. The design, which includes onboard motor-driver 
ch1~s, IS d1stnbuted free of charge. Plans for constructing the board are 
available over the Internet via anonymous file transfer protocol (FTP) from 
cherupakha.media.mit.edu (Internet Address 18.85.0.47). 

The workings of a microprocessor are sufficiently complex that you can­
not hope to get a full understanding of the subject by reading a chapter 
fro~ a book.. Each devi~e has its own set of special abilities and idiosyn­
crasies .. As With most thmgs, the only effective way to learn is to do. Hook 
up a microprocessor, and try to program it! 

76 

3.9 References 

3.9 References 

This chapter has given a very brief description of microprocessor basics 
along with some particulars of the Motorola MC68HC11AO which we will 
use in Rug Warrior. We chose the MC68HC11AO, because it was the lowest­
end member of the MC68HC11 family of 8-bit microcontrollers. In 1993, 
the single-quantity price for an MC68HC11AOFN chip was around $7. Even 
so, it allowed us to put the entire circuitry for Rug Warrior's brain (includ­
ing 10 sensors, 2 motor drivers, a music maker, and a serial port) on a 3" x 
4" board. All the details of the numerous capabilities of this chip cannot 
possibly be explained in a book of this scope, so we strongly recommend 
that, to follow along in the construction of Rug Warrior, the reader acquire 
the Motorola MC68HC11 data books (Motorola 1988, Motorola 1991) listed 
in the bibliography at the end of this book. The first of these data books, 
Microprocessor, Microcontroller and Peripheral Data, gives detailed hard­
ware descriptions and specifications for all Motorola microcontrollers. The 
MC68HC11AO takes up just two dozen or so pages of this set. The second 
data book, Motorola M68HC11 Reference Manual, is easier reading, goes 
into extended examples, and gives much more information on programming 
the MC68HC11. 

For readers looking for a more gentle introduction to microprocessors 
in general, Horowitz and Hill (1989) give a clear exposition on the subject. 
Textbooks on computer architecture, such as Ward and Halstead (1990) 
cover the complete field in great depth. For lighter fare and for additional 
expositions on digital circuits, glue logic, and support circuitry, Lancaster 
(1977) and Zaks (1986) are helpful. 

Another useful reference for the novice robot builder is The 6.270 Robot 
Builder's Guide (Martin 1992). This book is used in an undergraduate MIT 
LEGO Robot Design course developed by Fred Martin, Randy Sargent and 
Pankaj Oberoi. The course provides kits of LEGO parts, a microprocessor 
circuit board, motor drivers, and a collection of sensors. The 6.270 Robot 
Builder's Guide describes interfacing bend sensors, infrared proximity sen­
sors, touch sensors, and the like to the MC68HC11 board through software 
drivers provided with IC. 

77 

Silver Star Exhibit 1018 - 50



4 

Designing and 
Prototyping 

4.1 Practical Problems 

To turn a paper schematic into an actual circuit that can be mounted on 
your robot, a few basic pieces of prototyping equipment are required. There 
are a variety of routes to choose for constructing a circuit, but for a small 
mobile robot, it is important to use a technology that is light and compact, 
yet flexible enough to accept changes. 

There are several choices for prototyping: breadboards, wire wrap, 
Scotchflex, Speedwire, and printed circuit boards to name a few. Bread­
boards, illustrated in Figure 4.1, are commonly used by engineers for testing 
new designs and have the advantages that they are relatively inexpensive 
and easily changed. Debugging is simplified because wires and components 
are on the same side of the board. 

Breadboarding has several serious disadvantages, however, particularly 
if the breadboard will be permanently incorporated into the robot. The 
component density is necessarily low, and the resulting package is bulky. 
Stray capacitance between rows can also degrade the performance of high­
frequency circuits. Probably the least obvious aspect, though, is that the 
wiring sockets in breadboards are easily sprung, leading to intermittent 
connections. 

The problem is that the sockets are typically made to fit one size of 
solid wire (usually 22-gauge solid hook-up wire), and invariably, a prior 
user has jammed the next larger size wire into the hole, stretching the 
socket. Then when a subsequent designer attempts to prototype a circuit 
using correct-sized wire, the wire intermittently makes contact. 

Silver Star Exhibit 1018 - 51



Chapter 4 Designing and Prototyping 

""~--~~~«~ 

::~·~~"~ ~ "~····~~~. 
~ ... ~~~ ..... ,.~~-~·~·­

~~~ .. ~~, •. ~ ~·-~ .. ~~ .... 
""'~"~ .. ~~~~~"'"~ 

Figure 4.1: Breadboarding can be useful for initial testing. The 5 pins of each 
vertical row are connected together, as are each of the horizontal rows at the 
bottom. Discrete components and 22-gauge solid hookup wire can be pushed 
into the holes. 

4.1.1 Attention to Detail 

Intermittent connections are the most frustrating to debug. The way to 
avoid this problem is to build your circuit neatly and carefully the first 
time. When soldering, do not use globs of solder. Use heat-shrink tubing 
to cover exposed wires. Connectorize liberally for quick disassembly. Add 
strain reliefs to cable harnesses. Wire things carefully the first time. Keep 
in mind that a little quality goes a long way. 

4.1.2 Wire-Wrap 

Another widely used technology for prototyping circuits is wire-wrap. This 
method involves stripping 30 gauge solid wire-wrap wire inserting one end 
into a hand tool called a wire-wrap gun, and placing the ~ip of the gun over 
a long pin of a wire-wrap socket. Triggering the gun wraps the wire around 
the pin. A small wire-wrap board is shown in Figure 4.2. 

T~e final board is thick due to the length of the pins. Also, connecting 
?n: signa~ (say, g:ound) from pin to pin to pin (this is called daisychaining) 
IS Impossible. Wire-wrap is strictly a point-to-point technology, since each 
portion of wire must be cut and stripped to fit into the wire-wrap gun. 
Also, it is rather inconvenient to make changes, as you have to uncurl tlie 
wires. This is especially inconvenient when the wire you want to change is 
below another wire, which is frequently the case since the wiring is point 
to point. 

80 

4.1 Practical Problems 

Figure 4.2: Wire-wrap pins stick up a fair distance from the back of the board. 
The stripped end of 30-gauge wire-wrap wire is curled around a pin with a wire­
wrap gun. 

4.1.3 Scotchflex 

The 3M company sells a connector line called Scotchfiex which is convenient 
for quick prototyping. There are three components-sockets, plug strips, 
and the wiring tool. You will also need perfboard to mount the sockets. 
These components are shown in Figure 4.3. Gerber sells a glass-epoxy board 
with appropriately sized holes. See Appendix C for all suppliers mentioned 
in this section. 

Scotchflex sockets come in a variety of shapes corresponding to most in­
tegrated circuit dual-in-line packages (DIPs), such as 8-pin, 14-pin, 16-pin, 
and so forth. The plugs come in long strips and are broken off according 
to the number of pins that correspond to one line of the socket's recepta­
cles. The socket is placed on the top side of the perfboard, and the plug 
strips are pushed into the sockets from the bottom side through the holes 
in the perfboard. The wiring tool is double ended, with one end shaped 
for pushing the plug strips into the sockets and the other end shaped for 
pushing wires into the plug strips. Wiring is very simple, as it only requires 
laying 30-gauge insulated solid wire-wrap wire over a plug and then using 
the tool to push it between the two prongs of the plug's pin. The prongs 
slice through just the insulation, making contact with the wire. Daisy-

81 

Silver Star Exhibit 1018 - 52



Chapter 4 Designing and Prototyping 

Figure 4.3: Scotchfiex sockets (top) and plug strips (left) are mated through 
the ~oles in glass-e~oxy perfboard shown at center. The top end of the wiring 
tool Is used for matmg the plug strips into the sockets and the other end is used 
for pushing wires into plug strips on the backside of the board. 

chaining is then very convenient, as you just continue laying wires across 
prongs and pushing the wires onto them with the wiring tool. At most two 
wires can fit into the prongs of any plug, as the pins are fairly short. (You 
never need more than 2 wires per pin anyway, because of daisychaining.) 
?onsequently, the final boards are thin and can be stacked close together, 
If necessary. Also, making a change merely involves pulling the wire out 
and laying in a new one. 

. If you need to mount discrete components such as resistors and capac­
Itors, make headers by using 8-pin, 14-pin, or 16-pin component carriers 
and solder the discretes into them. Then just insert the component carriers 
into the matching sockets and wire in the same manner as for DIPs. 

Scotchflex is a very useful technology for quick prototyping. It is portable 
and c~m~act, as you can cut the perfboard to any shape you want or punch 
holes m It for other connectors. Do not use a band saw or a drill press on 
glass-epoxy materials. These materials will damage the cutting edges of 
the tools. Also, the dust produced by sawing or drilling may be harmful to 
breathe. Use a punch or a shear instead, and remember to leave room and 
extra holes for prototyping space on your board for future circuit additions. 

The disadvantages of Scotchflex are twofold. Scotchflex does not make 
sockets for all shapes of chips. In particular, there is no 52-pin-grid array 
socket of the type needed for an MC68HC11. Another problem involves in-

82 

4.1 Practical Problems 

Figure 4.4: Speed wire pins come in reels of one thousand (bottom left) and are 
broken off and inserted in perfboard (center). The wiring tool is used to push 30 
gauge wire-wrap wire through the backside prongs of the pins. 

termittent connections stemming from the way Scotchflex sockets are mated 
to their plugs through the perfboard. If chips must be frequently removed 
from their sockets (for instance, in debugging or reburning EPROMs), the 
sockets have a tendency to pull away from the plug strips. Eventually, they 
become loose and do not maintain good contact. For quick prototyping, 
Scotchflex is useful; for permanent circuits, other methods may be more 
appropriate. 

4.1.4 Speedwire 

The Bicc-Vero company markets wmng tools and equipment known as 
Speedwire. Speedwire has but two components: Speedwire pins and the 
Speedwire wiring tool, pictured in Figure 4.4. Again, perfboard provides 
the substrate, but with Speedwire, individual pins are pressed through the 
holes so that the top portion of the pin sticks through to the top of the 
perfboard and the bottom portion of the pin sticks through the back. To 
make a 14-pin DIP socket, for example, seven pins are inserted along one 
row of perfboard holes and seven pins are inserted along a parallel row three 
columns over. 

Speedwire involves more work than Scotchflex, but the advantages com­
plement the disadvantages of Scotchflex: It is possible to make a pattern for 
any arbitrary pin-grid array, and there are no mating connectors vulnerable 

83 

Silver Star Exhibit 1018 - 53



Chapter 4 Designing and Prototyping 

I 

(b) 888 
Figure 4.5: (a) Scotch flex technology uses sockets and plug strips that press in 
through the board and into the sockets. (b) Speed wire technology does not use 
sockets but rather individual pins that are pressed into the perfboard. Chips and 
discrete components fit into holes on the top side, and wiring is done on the back. 

to loosening when removing DIPs. Additionally, if discrete components are 
required, they can be pushed directly into Speedwire pins, without the need 
for component carriers. Thus, the final boards can be made relatively thin. 

Wiring is accomplished in the same manner as with Scotchflex. With 
Speedwire, you should take care to orient the pins uniformly at 45 a to 
facilitate laying wires diagonally to the rows and columns of perfboard 
holes. This alleviates the problem of having the end of a wire sticking 
directly into a pin of a neighboring hole (leading to intermittent shorting 
problems). The technique is outlined in detail in the instructions that come 
with the Speedwire wiring pins. 

For pushing pins, we have found that first reaming out the holes slightly 
with an X-ACTO knife makes things easier. Using a large Allen wrench 
that fits well in the palm of your hand is sufficient to push the pins. Just 
prop something underneath the perfboard (such as a slab of aluminum), 
and work at the edge of it to simplify inserting the pins. Another effec­
tive technique is to use long-nose pliers to hold the pin by its breakaway 
tab while pressing the pin into the perfboard. Figure 4.5 diagrams both 
Scotchflex and Speedwire technologies. 

Figure 4.6 shows a board that was prototyped using both Scotchflex 
and speedwire technologies. On the left are Scotchflex sockets holding a 14-
pin DIP and three 14-pin component carriers in which resistors have been 
soldered. Two empty sockets are shown above the Scotchflex label. Wiring 
is done on the backside. To the right are discrete or odd-sized components 

84 

4.2 Connectors 

Figure 4.6: This board shows Scotchflex technology on the left and Speedwire 
technology on the right. 

mounted in Speedwire pins (potentiometers, capacitors, and 4-pin DIPs). 
An empty row of Speedwire pins is shown below the Speedwire label. 

Remember that the more components you incorporate into your design, 
the more time you have to spend prototyping, wiring, and debugging con­
nectors. This is why we focus on using a microprocessor controller, keeping 
parts count down, and getting to software as soon as possible. 

4.2 Connectors 

Connecting sensors, motors, and power supplies to your electronics 
board usually requires making cabling harnesses. Connectors are a prob­
lem. It is not uncommon to design a sophisticated, compact, and elegant 
processor board yet have the connectors take up most of the space on t.he 
board. To avoid this result, we put most of the sensors for Rug Warnor 
directly on the board. 

One connector technology that we have found useful for prototyping 
uses terminal plug strips and terminal socket strips, as shown in Figure 4.7. 
They come in long lengths and can be broken off for the number of pins 
necessary for the corresponding number of wires needed. The pins on the 
terminal plug strips fit into Speedwire pins, also. 

A convenient way to use these terminal strips is to assemble them in a 
fashion that we call mobot connectors, for want of a better name. A mobot 
connector is shown in the lower part of Figure 4.8. The idea is to glue two 
terminal plug strips together and slightly trim the top-side pins. Then tin 

85 

Silver Star Exhibit 1018 - 54



Chapter 4 Designing and Prototyping 

Figure 4. 7: Terminal plug strips are shown on the left and terminal socket strips, 
on the right. The plug strips can fit into these socket strips or into Speedwire 
pins. Socket strips would be soldered into printed circuit boards, and Speedwire 
pin sockets would be used for perfboard prototype boards. 

Figure 4.8: A mobot connector made from two 3-pin-long terminal strips glued 
together is shown in the lower portion of this photograph. The top-side pins are 
trimmed slightly and wires are soldered on. Ribbon cable plug connectors from 
Samtec are also convenient; one is shown on the right. 

86 

4.2 Connectors 

Figure 4.9: On the right is an epoxy-glass perfboard prototyping board with four 
Speedwire pins inserted. On the left is a mobot connector. Two 2-pin lengths 
of terminal plug strips have been glued together to create a 3-wire connector. 
The connector is keyed by snipping off one of the four pins and filling the mating 
Speedwire pin with a glob of solder. 

each pin by adding a drop of solder. Strip each piece of wire and tin it. 
Always use stranded wire for cables, as stranded wire is less likely to break. 
Do not strip the insulation very far back. Solder each wire onto the pin so 
that the insulation reaches nearly to the top. Figure 4.9 diagrams a mobot 
connector (although it would be fine to use a touch more solder than is 
shown in the diagram). 

These types of connectors work well with Speedwire technology, as the 
pins on the terminal plug strips fit into Speedwire pins. Since you push 
the pins and you make the mobot connectors, the strategy grants flexibil­
ity. That is, you can make connectors for cables with any number wires 
without having to stockpile a vast assortment of different-sized connectors 
in your laboratory. Another very nice feature of this technique is that the 
connectors are fairly low profile, which help in keeping things small and 
elegant. 

It is good practice to always key all connectors that you make. Keying 
is a way of making sure that you cannot put the connector in backwards. 
Having one extra terminal on the mobot connector facilitates keying, as 
is shown in Figure 4.9. The strategy is to snip off the pin on the unused 
terminal and drop a glob of solder in the mating Speedwire pin. This 
prevents the connector from fitting into the Speedwire pins in any other 
way except the correct one. 

87 

Silver Star Exhibit 1018 - 55



Chapter 4 Designing and Prototyping 

Figure 4.10: An early prototype of Rug Warrior's board. Fifty-two Speedwire 
pins were inserted in perfboard to match the footprint of the MC68HC11AO pin­
grid array socket. The board was cut on a shear, and a large hole for the reset 
switch was made with a punch. Integrated circuits and discrete components fit 
directly into the Speedwire pins. 

Another possibility for making low-profile, compact connectors is to use 
cable plug assemblies, such as the one shown above the mobot connector 
in Figure 4.8. Cable plug assemblies come ready-made with multicolored 
ribbon cable and also fit into Speedwire pins. Samtec sells both terminal 
plugs and sockets and also cable plug assemblies. 

In Chapter 3 we learned how to design a microprocessor circuit. It is 
easy to prototype your own microprocessor circuit using the prototyping 
techniques we have described here. Figure 4.10 shows an early prototype of 
Rug Warrior's processor board using Speedwire technology. Speedwire pins 
were pushed into the perfboard (after the holes were reamed out slightly 
with an X-ACTO knife), the backside was wired up with an assortment of 
colored 30-gauge wire-wrap wire, and integrated circuits and discretes were 
inserted into the topside Speedwire pins. The board needs both a power 
connector and a serial cable for downloading code to the processor. Both 
of these can be made by pushing Speedwire pins into the perfboard and 
then making matching mobot connectors. Of course, then you also have to 
make the connectors on the other ends of the cables. For the downloader 
cable, it will probably be necessary to buy a connector that fits into the 
back of your host computer. 

88 

4.3 Printed Circuit Boards 

4.3 Printed Circuit Boards 

For stable, reliable hardware that will allow repeated programming of your 
robot over the long term, there is no better choice for circuit construction 
than printed circuit board technology. The trade-off is reliability for cost. 
Circuit-layout programs for personal computers are readily available. Mail 
in a floppy disk to your favorite circuit board house along with the nec­
essary fee. Typically, the setup cost is rather steep while follow-on small 
boards may cost a few dollars each. Appendix C lists some companies which 
provide circuit layout programs and some circuit board fabrication houses 
we are familiar with. However, you will likely find fabrication houses more 
conveniently located in your area. 

A typical printed circuit board factory consists of large process lines 
of etching and plating baths. For designers and people who prototype 
constantly, it would be nice to have a machine in house for prototyping 
printed circuit boards. No companies have solved this problem quite yet, 
but it would certainly be useful if you could send your layout to a special 
printer, from which would emerge an actual flexible printed circuit board. 

A few companies provide partial solutions; these are rather serious in­
vestments. T-Tech makes a circuit board routing machine that utilizes a 
desktop numerically controlled X-Y milling machine along with isolation 
software to mechanically carve your circuit from stock copper-clad fiber­
board (see Figure 4.11). The advantage of such a machine is that it enables 
prototyping with chips that come in surface-mount packages. This is nice 
when you want a small compact board or if you want to use a chip in your 
design that is available only in a surface-mount package. The disadvantage 
is that this machine cannot make plated-through holes, narrow lines, or 
solder masks. Sockets have to be soldered on both the front and back of 
the board, and connecting traces from one side of the board to the other 
requires inserting and soldering pins. 

Other companies are starting to market even more sophisticated ma­
chines. Direct Imaging offers an in-house machine that patterns conductive 
ink on a flexible substrate for multilayer and flexible printed circuit boards. 
This is movement in the right direction, but at the moment, these machines 
are expensive. 

If you end up sending your circuit out to a fabrication house to get a real 
printed circuit board made, then it is not necessary to use through-board 
DIP packages for chips. As long as you are making a printed circuit board, 
it is fine to use the smaller surface-mount packages. Figure 4.12 shows how 
dense consumer products can be, using surface-mount technology. The 
photograph is of a circuit board mounted on the inside of the lens of a 
Canon camera. The electronics include a DC-DC converter and motor-drive 

89 

Silver Star Exhibit 1018 - 56



Chapter 4 Designing and Prototyping 

Figure 4.11: On the right is the backside of a Speedwire board. AT-Tech board 
is on the left. The traces are isolated from each other on the copper sheet. 

Figure 4.12: Commercial products, such as this circuit board from inside a 
Canon camera lens, use printed circuit board technology with surface-mount com­
ponents. The outer diameter is 6 em. 

90 

4.4 Debugging 

electronics to drive a piezoelectric ultrasonic motor used for autofocusing 
the lens. 

4.4 Debugging 

Nothing ever works right the first time. Thus, debugging is one skill worth 
mastering. 

You can perhaps avoid errors if you enforce certain disciplines when 
wiring up your board. For instance, attach stick-urn labels to the back of 
the perfboard that name the chip and mark the position of pin 1. This 
alleviates having to juxtapose front to back in your head. Another trick 
is to make a copy of your circuit diagram and highlight each signal with a 
marker after adding each wire. Finally, buy lots of different colors of wire, 
use them liberally, and stick with a convention for power and ground. Pacer 
Electronics sells multitudes of different colors of wire. 

Once you have finished constructing your circuit (but before inserting 
chips in the sockets or applying power!), check with an ohmmeter if +5 V 
is shorted to ground. If it is okay, test that all points that should receive 
power are connected together and that all points that should be grounded 
are similarly connected. 

Next, insert chips and discrete components. Check +5 V and ground 
once more before pressing the "on" button. 

What happens if your circuit does not behave properly? The best way 
to proceed is to go back to square one and find something that does work. 
See if power is getting to all your chips. The batteries could need recharging 
or possibly an IC's pin was bent and missed mating with a hole in a socket. 
Check the power supply on an oscilloscope to make sure it is not corrupted 
with noise. It is good practice to add capacitors across the supply and 
across the power and ground pins of digital ICs. 

If you are debugging a MC68HC11 circuit, start by checking the clock. 
Pin 5, called E, should be a square wave at a frequency of one-fourth the 
crystal frequency. Next, check the reset pulse on pin 17 as you depress the 
reset button. It should rise cleanly without glitches. Check the interrupt 
pins to make sure that they are normally high. If they are left unconnected, 
they may float and initiate random interrupts. Check that the processor is 
set up in the correct mode by observing the signals on pins 2 and 3, MODA 
and MODB, while you press the reset button. These signals are valid and 
read by the processor for just a few cycles after reset. 

If other parts of your circuit are misbehaving, try the technique of "di­
vide and conquer." Remove any load from the pin and check again. Be 
systematic and thorough; always start by finding a point in your circuit 

91 

Silver Star Exhibit 1018 - 57



Chapter 4 Designing and Prototyping 

Figure 4.13: The wiring on this MIT robot has not been finished. Connector 
soup! 

that is behaving as designed and gradually debug subsequent portions of 
the circuit. 

Finally, think about connectors. The more subsystems you add to 
your robot, the more interconnecting is required. Complexity can increase 
quickly if many sensors and actuators are geographically scattered around 
the perimeter of the robot, as can be seen in Figure 4.13. (This is a pho­
tograph of work in progress on a vacuum cleaner robot built by Masaki 
Yamamoto at the MIT Mobile Robot Lab.) Make your first robot simple, 
and key your connectors so they cannot accidentally be inserted backward. 
One of the most common sources of problems are loose or flakey connec­
tions. Be neat, and build reliable connectors! 

92 

5 

Sensors 

5.1 Achieving Perception 

As humans, we often take for granted our amazing perceptual systems. We 
see a cup sitting on a table, automatically reach out to pick it up and think 
nothing of it. At least, we are not aware of thinking much of it. In fact, 
accomplishing the simple task of drinking from a cup requires a complex 
interplay of sensing, interpretation, cognition, and coordination, which we 
understand only minimally. 

Thus, instilling human-level performance in a robot has turned out to 
be tremendously difficult. Computer games that beat chess experts are 
fairly common these days, while a program that recognizes, say, a chair in 
an arbitrary scene still does not exist. The parallel computer inside each of 
our heads devotes large chunks of grey matter to the problems of perception 
and manipulation. 

5.1.1 Transducing versus Understanding 

While we would like our robot to understand and be aware of its envi­
ronment, in actuality, a robot is limited by the sensors we give it and the 
software we write for it. Sensing is not perceiving. Sensors are merely 
transducers that convert some physical phenomena into electrical signals 
that the microprocessor can read. This might be done by using an analog­
to-digital (A/D) converter onboard the microprocessor, by loading a value 
from an input/output (I/0) port, or by using an external interrupt. Typ­
ically, there needs to be some interface electronics between the sensor and 
the microprocessor to condition or amplify the signal. 

Silver Star Exhibit 1018 - 58



Chapter 5 Sensors 

5.1.2 Levels of Abstraction 

With software, we can create different levels of abstraction, or abstraction 
barriers, to help us as programmers think about sensor data in different 
ways. At the highest level, the intelligence system, in order to seem clever, 
needs to have some variables to juggle: Is it dark in this room? Did a 
person just walk in? Is there a wall to the left? 

However, the only questions the robot is able to ask are ones such as: Did 
the resistance fall in the photosensor? Did the voltage from the pyroelectric 
sensor connected to the fourth A/D channel go above threshold? Did the 
output of the near-infrared proximity detector change from low to high? 

Nevertheless, it is possible to instill many capabilities in a mobile robot. 
Figure 5.1 shows a five-foot-tall mobile sentry robot called Robart II, built 
at the Naval Ocean Systems Center. Robart II serves as a mobile sentry 
robot (patrolling a building, avoiding obstacles, watching for intruders) and 
is able to find its recharging station and plug itself in. This robot contains 
a very large number of sensors, such as near-infrared proximity detectors 
for obstacle avoidance, sonar rangefinders for localization, microwave sen­
sors for motion sensing, pyroelectric sensors for detecting intruders and 
temperature, and earthquake and flood sensors for disaster identification. 

Another mobile robot covered with sensors is Attila, shown in Figure 5.2. 
Attila is a shoebox-sized, six-legged robot designed as a rough-terrain ex­
plorer. Sensors on the legs are used for detecting obstacles and stepping 
over them. There are strain gauge force sensors along the shins for detect­
ing collisions, potentiometers on the joint motors for position calibration, 
and contact sensors on the feet for ascertaining stable footholds. A number 
of sensors are also mounted on the chassis. Whiskers protrude from the 
front for collision detection, a long-range, near-infrared sensor measures 
clear space, and a small camera gathers images. 

5.2 Interfacing Sensors 

In this chapter, we will focus on many types of simple sensors and how 
to interface them to a microprocessor. Threaded throughout the chapter 
are various examples of sensor-interface electronics and sensor-driver rou­
tines. A variety of sensors (such as photosensors, bump switches, micro­
phones, pyroelectric people sensors, near-infrared proximity sensors, sonar 
rangefinders, bend sensors, gyroscopes, accelerometers, force sensors, com­
passes, and cameras) can be inexpensively acquired and interfaced to a 
small mobile robot. 

By the end of this chapter, you will be able to understand most of the 
second half of Rug Warrior's "brain," which is illustrated in Figure 5.3. 

94 

5.2 Interfacing Sensors 

Figure 5.1: Robart II, from the Naval Ocean Systems C.enter, is a five-foot-tall 
mobile sentry robot laden with sensors~sonar sensors, mfrared sensors, bump 
sensors, microwave motion sensors, burglar alarms, a surveillance camera, even 
earthquake and flood sensors! 

Figure 5.2: Attila, an MIT robot, is a six-legged rough-terrain explorer robot 
with over 60 sensors, 23 motors and 11 computers. Sensors up and down the legs 
include force sensors, touch sensors, color sensors, and potentiometers for meas­
uring motor position. Other sensors are mounted on the cha.ssis, such as a force­
sensing whisker, a gyroscope, a pitch-and-roll sensor, a near-mfrared rangefinder, 
and a small camera. 

95 

Silver Star Exhibit 1018 - 59



Chapter 5 Sensors 

This brain constitutes the sensors and their interface electronics that fit 
(along with the computer described in Chapter 3) onto Rug Warrior's 3" x 
4" board. Part of Figure 5.3, the motor-driver circuitry, will be discussed 
later in the chapter on motors. 

Throughout this chapter, as each type of sensor is explained, partial 
schematics are given that assume the basic MC68HC11AO circuit is al­
ready built. The interface electronics are shown connected to a specific 
MC68HC11AO I/0 pin, analog-to-digital port, or counter-timer pin, and 
software fragments illustrate how to convert sensor readings into internal 
variables. If you would like to see the entire Rug Warrior schematic all in 
one place, refer to Appendix A. If you would like to see all of Rug Warrior's 
code in one place, the entire program is listed in Appendix B. 

Most of Rug Warrior's sensors are mounted directly onto the circuit 
board, which is left exposed. This is to circumvent the need to make con­
nectors and wiring harnesses to any outer cover of the robot. Many of the 
sensors can be seen in Figure 5.4. The pyroelectric sensor, with a cone­
shaped holder for its plastic fresnel lens, points upward in the center of the 
board. The square aluminum package just in front of it is a Sharp near­
infrared detector. Two near-infrared LED emitters are mounted on either 
side of the Sharp detector. Just to the outside of both LEDs are cadmium 
sulfide photoresistors for light detection. 

A few of Rug Warrior's sensors can be seen more clearly in Figure 5.5. 
The microphone on the left is available at Radio Shack. The microswitches 
in the center are of the type used on a bump skirt to detect collisions. 
Just to the right of the microswitches is a mercury tilt switch, which is 
not actually used on Rug Warrior. If the bulb is tilted, the mercury flows 
to cover two contacts, thus acting as a switch. Such a sensor is useful for 
detecting if your robot is climbing a ramp. At the far right is a Radio Shack 
cadmium sulfide photoresistor. 

5.2.1 Software Drivers 

Once a set of sensors has been selected and the proper interface circuitry 
has been designed to connect your sensors to a microprocessor, the micro­
processor has to be programmed to read the sensors. These pieces of code 
are often written in assembly language and are known as software drivers. 

Software drivers are pieces of code that provide a well-defined interface 
between a hardware device and a program that needs to use the device. We 
will describe here several examples of driver code that make the hardware 
simple to use. Where it is instructive to do so, we will implement our 
examples of software drivers in both assembly language and the C language. 
The syntax we use for our example assembly language programs follows 

96 

5.2 Interfacing Sensors 

~~ Piezo 
Buzzer ~ 

~ ~ 

P306201 

- Expansion 
Connector 

+5 

~~ 
[§)--<> 

~ LED2 ~ §--<> 

- - §--<> -

~~ 
§-<> 

~ ""'} [§--<> 

-
LEDs are HLMP-1700QT 

F . 5 3· In this chapter we will discuss the sensors illustrated on this 1gure . • d · •t 
schematic of Rug Warrior's sensors and actuators: the near-infrare proximi Y 
sensors at top left, the three bumper sensors at top right a~d the shaft encoders, 
microphone, photoresistors and pyroelectric sensor shown m the center. 

97 

Silver Star Exhibit 1018 - 60



Chapter 5 Sensors 

Figure 5.4: A front vi:w of Rug Warrior, which shows a number of the sensors. 
The extra board space m the front with holes in it is spare prototyping room. 

Figure 5.5: ~ few of the sensors incorporated in Rug Warrior. Left to right 
are shown a microphone, two microswitches, a mercury tilt switch sensor and a 
photocell. ' 

98 

5.2 Interfacing Sensors (f) 
closely Motorola's ASll assembly language. One notable exception is that, 
in our syntax, unless set off by spaces, we use - as a normal character rather 
than the subtraction operator. 

Software drivers deal with the hardware-software interface. These rou­
tines might constantly poll an A/D pin, waiting for the trigger from a 
pyroelectric sensor, or they might be implemented as interrupt handlers 
that are only called when the return signal from, say, a near-infrared prox­
imity sensor goes high. Sensor-driver code might take this data and store it 
in a memory location. Used in this way, the output from the sensor can be 
thought of as the value of a variable or as a flag. This data then becomes 
fodder for a higher-level abstraction. For instance, another part of the in­
telligence system might use such a flag or variable to trigger a behavior 
or perhaps combine it first with other information into a type of virtual 
sensor. Keep in mind the different levels of abstraction, as sensors seldom 
reach the degree of perfection we would like. 

5.2.2 Sensitivity and Range 

Two important concepts to understand when analyzing any sensor are sen­
sitivity and range. Sensitivity is a measure of the degree to which the output 
signal changes as the measured quantity changes. Let's call the sensor out­
put r and the measured physical quantity x. For example, a photodetector 
might output a voltage of say, 0.87 volts (r) when it is struck by 2.3 x 10 13 

photons per second ( x). The sensitivity of the sensor is defined by: 

b..r = sb..x 
r x 

Here, a small change in the measured quantity, b..x, is related to a small 
change in the sensor response, b..r, by the sensitivity, S. 

A sensing device reacts to varying levels of some physical stimulus by 
outputting a characteristic voltage (or current, frequency, etc.). Typically, 
the circuitry associated with the sensor then amplifies or otherwise trans­
forms this voltage and feeds it into an analog-to-digital converter connected 
to a microprocessor. The A/D converter is sensitive only to a limited range 
of voltages, often 0 to 5 V. In the case of the 8-bit A/D converter built 
into the MC68HCll, this voltage is then converted into one of 256 discrete 
levels. This, then, is the microprocessor's window on the world. No matter 
how complex and subtle, all phenomena are collapsed into a number, or set 
of numbers, with values between 0 and 255. 

It is, therefore, important to consider carefully how a physical quantity 
is transformed into a digital value accessible to the microprocessor. Figures 

99 

Silver Star Exhibit 1018 - 61



Chapter 5 Sensors 

A 

(a) 

Figure 5.6: The potentiometer in (a) is connected to the joint of a robot arm. 
The voltage across the network between point A and ground has a linear rela­
tionship to the angle to which the joint is set. The photodiode in (b) produces a 
linear response to a very wide range of illumination levels. After the signal from 
the diode has been amplified by the logarithmic amplifier however, the voltage at 
B is proportional to the logarithm of the illumination. 

(a) 

(b) 

Jt 
(c) 

0.01 
~I 

0.01 
~I 

0.0° 

0.1 
I 

0.1 

l 

22.5° 

0 64 

0 64 

0 64 

45.0° 67.5° 90.0° 

128 192 255 

10 100 1000 
I Jj'J')"' I 

128 192 255 

10 100 
I I 

128 192 255 

1000 
I 

10.000 
l)lo 

\ I I 

::o-:. 
/ ' 

10.000 
l)lo 

I I \ 

Figure 5. 7: It is always necessary to consider how the quantity measured by a 
sensor will be mapped into the range of digital values available to the micropro­
cessor. (a) The linear mapping illustrated here would map an arm joint angle of 
oo from the vertical to the number 0 and an angle of 90° to 255. (b) A linear 
mapping of illumination units to numbers would map 250 illumination units to 
the number 64 and 1,000 illumination units to 255. (c) A logarithmic mapping 
gives a larger dynamic range, from 0.1 illumination units to 1,000 illumination 
units for an 8-bit (0 to 255) A/D converter. 

100 

5.3 Light Sensors 

5.6 and 5.7 illustrate two options-both linear and logarithmic mappings 
of voltages to numbers. 

Suppose the motion of a robot arm is restricted to a well-defined range, 
0 to 90 degrees. We wish to know the position of the arm with equal 
sensitivity over all portions of its range. Under these circumstances, a 
linear mapping of joint angles to A/D readings, as provided by the simple 
potentiometer circuit shown in Figure 5.6(a), is appropriate. Figure 5. 7(a) 
shows the mapping. 

The situation for the photodiode is more complicated. The level of 
illumination provided by sunlight is several orders of magnitude greater 
than that typically produced by artificial lighting. Still, we would like 
for our robot to be able to sense varying light levels whether it is in a 
bright room or a dark room. The graph in Figure 5.7(b) illustrates the 
problem that occurs if we try to use a straightforward linear mapping from 
photodiode output to A/D levels. 

On a scale of arbitrary illumination units, suppose that illumination in 
a typical bright room varies from, say, 10 up to 1,000 units, while in a dark 
room, illumination takes on values from 10 down to 0.1 units. If we choose 
components for our sensor circuit such that illumination levels in the range 
0.1 to 1,000 are mapped linearly into A/D values 0 to 255, then the robot 
has good sensitivity in a bright room, as illustrated in Figure 5.7(b). How­
ever, any illumination level below about 2 units is mapped into 0 A/D units. 
Thus, the robot is practically unable to detect any differences between light 
levels in a dimly lit room. 

One way to fix this problem is with the circuit shown in Figure 5.6(b). 
Here, a logarithmic amplifier produces a voltage proportional to the loga­
rithm of the photodiode's output. This circuit has the effect of increasing 
the sensitivity to small changes in light intensity when the robot is in a dark 
room and decreasing the sensitivity in a bright room. The robot is then 
able to operate over a much wider range of illumination levels, as sketched 
in Figure 5.7(c). 

In general, the output of a sensor will be neither linear nor logarithmic 
in any strict sense. This usually presents no problem, however, as long as 
the robot builder has a clear understanding of the sensor's response and 
the conditions under which the robot must operate. 

5.3 Light Sensors 

Visible light sensors and infrared sensors span a broad spectrum of com­
plexity. Photocells are among the easiest of all sensors to interface to a 
microprocessor, and the interpretation of a photocell's output is straight-

101 

Silver Star Exhibit 1018 - 62



Chapter 5 Sensors 

+5 

MC68HC11AO 

+ 
v 

PEO 

~i~ure 5.8: Simp.le photoresistors (Radio Shack 276-1657) are shown in a voltage 
divider configuratiOn connected to port E, bits 0 and 1. Port E is used here in 
analog-to-digital converter mode. 

forward. Video cameras, on the other hand, require a good deal of special­
ized circuitry to make their outputs compatible with a microprocessor and 
the complex images cameras record are anything but easy to interpre~. 

5.3.1 Photoresistors 

Light ~ensors can enable robot behaviors such as hiding in the dark, playing 
tag With a flashlight, and moving toward a beacon. Simple light sensors 
can be purchased as photoresistors, photodiodes, or phototransistors. A 
photoresistor (or photocell) is easy to interface to a microprocessor. As 
shown in Figure 5.8, only one external component is needed. Photoresistors 
are simply v~riable resistors in many ways similar to potentiometers, except 
that the resistance change is caused by a change in light level rather than 
by turning a knob. 

Phototransistors provide greater sensitivity to light than do photoresis­
tors. A phototransistor is almost as easy to interface to a microprocessor 
as a photoresistor. Figure 5.9 illustrates a simple configuration using a 
phototransistor. 

. Photodiode~ possess great sensitivity, produce a linear signal over a very 
Wide range of light levels, and respond rapidly to changes in illumination. 
~his makes them useful in communication systems for detecting modulated 
light; the remote control receiver in almost every TV stereo and compact 
disk (CD) player on the market makes use of a phot;diode. The output of 
a p~otodiode does, however, require amplification before it can be used by 
a. microprocessor. 

Because the photoresistor is so useful and easy to incorporate, we will 
further analyze a pmctical circuit for connecting one to a microprocessor. 

102 

5.3 Light Sensors 

Figure 5.9: A common phototransistor circuit. 

Consider the circuit for the left photoresistor in Figure 5.8. Here, two re­
sistances form what is called a voltage divider. The total resistance in this 
circuit, Rr, is the sum of the individual resistances: Rr = R + RL. Ac­
cording to Ohm's law, the current, I, through the circuit is I V / Rr. In 
order for the A/D converter in the microcontroller to measure a voltage, 
some current must flow into pin PEl. However, because the MC68HC11 
has high-impedance inputs, the amount of current required is negligible 
compared to the currents in the rest of the circuit. In this case, the con­
nection to PEl can be ignored while analyzing the voltage divider. Thus, 
the voltage present on PEl is: 

The resistance of the photoresistor falls as the light level increases. This 
means that the voltage at PEl decreases. Substituting for I, we get: 

The 8-bit A/D converter in the MC68HC11 maps the variable voltage, 
VPEl, into the range 0 to 255. Although the mapping provided by the simple 
voltage-divider circuit is not logarithmic, as was recommended for light 
sensors in Subsection 5.2.2, a useful output can nevertheless be extracted. 
A good compromise between sensitivity and range will be achieved if the 
resistance, R, is set to the same value as the resistance exhibited by the 
photoresistor when exposed to the light level in the middle of the range of 
light levels in which the robot must operate. 

Typically, photoresistors are made from cadmium sulfide (CdS). Hama­
matsu and Clairex manufacture CdS photoresistors; often, photoresistors 
can be purchased at electronic hobbiest stores. In addition, most of the 

103 

Silver Star Exhibit 1018 - 63



Chapter 5 Sensors 

semiconductor manufacturers have optoelectronic divisions that fabricate 
silicon photodiodes and phototransistors. Try Hewlett-Packard, Motorola, 
Texas Instruments, National Semiconductor, NEC and Siemens. Ask for 
the optoelectronics data book for each company. Texas Instruments sells a 
TSL250 photodiode with integrated on-chip amplifier. Assemblies of LEDs 
and photodetectors for encoders or optical switches can be obtained from 
Omron, Optek, HEI, and Digi-Kcy. Some companies, such as Hamamatsu 
and Centronic, also sell photosensor array chips and imagers, although these 
can be somewhat more expensive. The Texas Instruments TSL214 is a low­
cost, 64-element photodiode array. 

A Software Driver for Photoresistors 

Here, we take a moment to explain in some detail how to configure the 
analog-to-digital converter and program a software driver for photoresis­
tors. These tasks encompass both the capabilities of the hardware and the 
responsibilities of the programmer. 

As was mentioned in Chapter 3, port E of the MC68HC11 can be con­
figured as either an 8-bit input port or an 8-channel analog-to-digital con­
verter. ~nternally, there is only one A/D circuit for the entire port and only 
four registers to store results from the eight channels. Thus, to achieve the 
full potential of the A/D port, a certain software protocol must be enforced. 

First, the volt~ge reference pins on the MC68HC11 (VRH and VRL) 
must be set to calibrate the hardware. If these pins are set to +5 V and 
GND, respectively, then A/D result values of 255 and 0 will correspond to 
those limits, respectively. Voltages between the limits are proportionately 
scaled. Two control registers, ADCTL and OPTION, are used to config­
ure the mode of conversion. Reference should be made to the MC68HC11 
Programmer's Manual to see which bits in these registers should be set to 
turn on the A/D and to select its various modes. Conversion sequences can 
be chosen that repeat on a single channel four times or on four channels 
once each. In this latter mode, the eight pins of port E can be converted 
in two banks of four: PEO-PE3 and PE4-PE7. The high bit of the AD­
CTL mode should be polled periodically because it denotes the conversion 
complete flag (CCF). Conversions are complete 34-clock cycles after the 
ADCTL register is written. After each conversion, results are posted in the 
internal result registers: ADR1, ADR2, ADR3, and ADR4. The converter 
can also be set up in either mode to convert continuously or just once. 

ADCTL 
$1030 

104 

5.3 Light Sensors 

Bits 4 and 5 of register ADCTL are MULT and SCAN, respectively. 
When SCAN= 0, four conversions are performed, once each, to fill the four 
result registers. When SCAN = 1, conversions continue in a round-robin 
fashion. When MULT = 0, four conversions are repeated on a single channel 
of port E. The selected channel is set by the lower four bits of ADCTL: 
CD, CC, CB, and CA. When MULT = 1, one bank of four channels is 
converted. The bank is specified by bits 2 and 3 of ADCTL. If bits 2 and 
3 are set to O, channels PEO·-PE3 are converted. If bits 2 and 3 are set to 

1, channels PE4-PE7 are converted. 
In the following example, written in both assembly language and C 

code, we create a very simple software driver for acquiring a reading from 
the photocells. The assembly code version might be written: 

ph-right equ $10 ;Create variable for right photocell 

ph-left equ $11 ;Create variable for left photocell 

option equ $1039 ;Address of OPTION register 

adctl equ $1030 ;Address of ADCTL register 

adr1 equ $1031 ;Result register for AID channel 1 

adr2 equ $1032 ;Result register for AID channel 2 

update-photo 
bset option #%10000000 
bset adctl #%00010000 

;Enable AID system 
;Begin AID conversion 

check-result 
brclr adctl #%10000000 
ldaa adr1 
staa ph-right 
ldaa adr1~ o.J..rv2 1_7 
staa ph-left 
rts 

check-result; Wait in tight loop 
;Get value from rt photocell 
;Save right value 
;Get value from lf photocell 
;Save left value 
;Return to calling code 

The C version of the photocell code is somewhat simpler: 

int ph_right = 0; 
int ph_left = 0; 

I* Variable for right photocell data *I 
I* Variable for left photocell data *I 

void update_photo() 
{ poke(option,Ob10000000); I* Enable AID system *I 

poke (adctl, Ob00010000); I* Begin conversion *I 
while( (peek(adctl) & Ob10000000) == 0 ) 
{} I* Wait until conversion finished *I 

poke(ph_right,peek(adr1)); I* Get and store AID channel1 *I 
poke (ph_left, peek (adr2)) ; } I* Get and store AID channel 2 *I 

105 

Silver Star Exhibit 1018 - 64



Chapter 5 Sensors 

Figure 5.10: The robot can be made to follow a wall using two detect/no-detect 
infrared sensors, A and B. When neither sensor detects an obstacle, the robot 
arcs to the right, searching for a wall. When only sensor B detects something, 
the robot moves forward. When sensor A detects an obstacle, either alone or 
with sensor B, the robot turns left. 

In both versions, we first designate locations where the results of the 
A/D conversions will be stored: ph-right, ph-left for the assembly ver­
sion and ph_right, ph_left for the C version. We enable the A/D system 
by writing the proper value to the OPTION register; then we begin a con­
version by writing to the ADCTL register. The next part of both programs 
polls the conversion-complete bit of the ADCTL register, remaining in a 
tight loop until the conversion flag is set by the internal hardware of the 
A/D. Finally, the results of the conversion are moved from the result reg­
isters, ADR1 and ADR2, to the designated locations. 

To learn the details of which registers and which. bits control the various 
functions of the A/D converter and the microprocessor's other systems, you 
should really consult the documentation for the MC68HC11AO. 

5.3.2 Near-Infrared Proximity Detectors 

Following behaviors are easy to implement on a mobile robot. Using a sonar 
rangefinder to measure range to a person and then staying within some tag­
along distance is one approach. A simpler strategy is to use a near-infrared 
proximity detectors. Although these sensors typically do not return actual 
distance to an object, they do signify whether or not something is present 
within the cone of detection. These types of sensors usually have much 
narrower beam widths than sonar rangefinders. Following along walls using 
two detectors (one pointed directly at the wall and one pointed 45 degrees 
more forward) is a common strategy, as sketched Figure 5.10. It is even 
possible to follow a wall using only one detector by tacking as a sailboat 

106 

5.3 Light Sensors 

. . be built from a Sharp detector Figure 5.11: A near-·infrared proximity sensor can 
(bottom) and a near-infrared LED (top). 

from the wall when its sensor 
does. In this case, the robot must arc a~~ywhen nothing is detected. 
detects something and_ ar:c toward the wa ft n called IRs for short, but 

N · frared proxrmrty detectors are o e l 
ear-m b . l d' These detectors are insensitive to the ong 

this term can e mrs ea mg. b. roelectric sensors; rather, they are sen­
infrared wavelengths detected y PY f d 880 nanometers 

l · 'bl 1· ·ht o ten aroun 't' 'n the range just be OW VrSr e rg ' h' l' ht 
sr rve r h h the human eye cannot see t rs rg ' (nm) wavelength. In fact, alt oug 't' e to r't and if you ever 

d d . (CCD) imagers are sensr rv ' 
charge couple evrce d 't wr'll look lit up like a 

. f b t using a camcor er, r 
take a vrdeo o your ro o 'l bl from Edmund Scientific and I d' t cards are avar a e 
Christmas tree. n rca or h , posed to radiation from an 
Radio Shack that become fluorescent w . en ex 

infrared LED. This can facilitate debuggr~g. . d . F' e 5 11. 
. d 'tt nd detector parr are rllustrate m rgur .. 

An mfrare em~ er a made from gallium arsenide, which emrts 
The emitter (top) rs an LED B th r'tters and near-infrared detec-. f' d at 880 nm. o em 
near-m rare energy . t ) be purchased from nearly any 
tors (photodiodes and photot~::s~: ~rsto~~::Ctronics division (Siemens, Mo­
semiconductor company that d' ~h k also carries both near-infrared 
torola Hewlett-Packard, etc.). Ra 10 ac . tl Sharp sells a 

' d near-infrared phototransistors. More convemen y, . 
LEDs an ka the GP1 U52X, that contains integrated amplifiers, filter~, 
detector pac ge, . . 5 11) This unit is distributed by Radro and a limiter (bottom m Frgure . . 
Shack and Sterling Electronics. 

107 

Silver Star Exhibit 1018 - 65



Chapter 5 Sensors 

IR emitters 

MC68HC11 

1000 

Figure 5.12: A Sharp G1U52X near-infrared proximity detector (Radio Shack 
276-1137) detects reflected power emitted from near-infrared LEDs such as a 
Siemens SFH 484 LED. ' 

The Sharp detector responds to a modulated carrier put out by the near­
infrared LED. This means that the programmer is responsible for blinking 
the LED in a certain pattern such that the detector will respond. This 
modulated carrier protocol increases the signal-to-noise ratio. A minimal­
ist circuit (only one IC is needed, a 7 4HC04 inverter), which achieves an 
interface of such a proximity sensor to a MC68HC11, is shown in Fig­
ure 5.12. 

The Sharp detector responds to a carrier frequency of 40 kHz. A 40 kHz 
frequency means the LED is blinked on and off with a period of 25 microsec­
onds (p,s). According to the device specification, this signal should then be 
modulated at a lower frequency. The blinking should be on for 600p,s and 
then off for 600p,s. Figure 5.13 gives the timing diagram and protocol for 
this emitter-detector pair. 

The 40 kHz oscillator portion of the infrared emitter circuit in Fig­
ure 5.12 is implemented using two inverters, a capacitor, a resistor, and a 
potentiometer. This 40 kHz oscillator runs constantly while Rug Warrior 
is on, but the LEDs blink only when pins PD2 and PD3 of port D are 
asserted. Thus, the programmer is responsible for turning these on and off 
for 600p,s each. The Sharp detector outputs a low signal when it detects 
reflected energy and a high signal when it detects nothing. Figure 5.13 
shows the low signal asserted by the Sharp detector when an object re­
flects energy from the emitter back to the detector. The output of the 
Sharp detector is a digital signal, either 0 or 5 V. Consequently, pin PE4 

108 

5.3 Light Sensors .r 
~~J(,v 

Signal from LED emitter 
40kHz 

600 microseconds 

[ 
Figure 5.13: The obstacle-detecting infrared beam has a 40 kilohertz (kHz) 
carrier modulated at 1667 Hertz (Hz). Note that the transmitted signal must be 
broadcast for several cycles before being acknowledged by the detector. Likewise, 
when transmission ceases, a few microseconds pass before the detector changes 
state. Both these delay times can depend on the signal strength. 

of the MC68HC11 can be used in the normal digital input mode. The A/D 
converter capability is not necessary here. 

The circuit that controls the emitters is a rather odd one. It is un­
common to have the outputs of inverters connected together. Normally, 
an AND gate would be used to allow signals PD2 and PD3 to modulate 
the oscillator output. (An AND gate outputs a high signal only when both 
inputs are high.) We chose instead the circuit shown here for practical rea­
sons: It provides the same functionality as an AND gate, and it does not 
require adding another chip to the circuit. 

The geometrical layout of the sensors has the detector mounted at the 
center-front of the robot and pointed straight ahead. The emitters are set 
one to each side and aimed slightly outward to the left and right. This 
saves having two detectors. Rug Warrior can get by with just one and yet 
still see to both llilft and right. 

An obstacle-detection program can be written very easily in C using 
the sleep function, as the following code fragment shows. PD2 is asserted 
and a sleep period begins. After 600p,s, PE4 is polled and its state is saved 
in the variable vaLon. Then PD2 is deasserted and the program waits 
another 600p,s. ·Next, we poll PE4 again and store its value in vaLoff. 
An obstacle is detected if the detector output is low when the emitter is 
on and high when the emitter is off. The function ir_detect 0 should be 
called as often as necessary to keep the variable ir _status updated. A 
similar loop is repeated for the other LED. 

109 

Silver Star Exhibit 1018 - 66



Chapter 5 Sensors 

MC68HC11 

+5 

SE307 

IR LED 

+5 

I47uF 

Figure 5.14: A Hamamatsu S3599 near-infrared receiver contains an on-chip 
frequency generator, which drives a near-infrared LED for correlated detection. 

int ir_status = 0; I* Global var for IR detection status *I 

void ir_detect () 

{ int vaLoff, vaLon; I* Intermediate vars for IR detection *I 
bit_set(port_D,Ob00000100); I* Turn on one emitter *I 

} 

sleep(0.000600); I* Wait for 600~-ts *I 
vaLon = peek(port_E); I* Get value of detector *I 
bit_clear(port_D,Ob00000100); I* Turn emitter off *I 
sleep(0.000600); I* Wait for 600~-t *I 
vaLoff = peek(port_E); I* Get value of detector *I 
if ((val_off & -val_on & Ob00000100) == Ob00000100 ) 

else 
ir _status 1; I* Obstacle detected *I 

ir_status 0· 
' I* No obstacle detected *I 

Common fluorescent lights put out a great deal of noise, to which the 
IR detector is sensitive. Using the turn-on, test, turn-off, test strategy just 
outlined will help to eliminate spurious obstacle detections due to noise. 

Hamamatsu makes some very convenient-to-use optical sensors, rang­
ing from photocells and near-infrared emitters and detectors to position­
sensitive devices, photodiode arrays, and triangulation-based near-infrared 

110 

5.3 Light Sensors 

Figure 5.15: Eltec sells a pyroelectric sensor. The 442-3 dual-element sensor is 
shown at the left. A fresnel lens with a paper-mounting cone that fits over the 
sensor is shown at the right. 

rangefinders. One very simple implementation of a near-infrared proxim­
ity detector uses the Hamamatsu 83599 light-modulation photo IC. This 
detector contains an on-chip oscillator to drive an accompanying LED and 
also an integrated correlating receiver. This means the entire system can be 
built in a very small package. (The discrete-component 40kHz oscillator of 
the previous example is extraneous here.) Figure 5.14 illustrates a sample 
circuit. 

5.3.3 Pyroelectric Sensors 

One of the most useful sensors for endowing your robot with a means of 
interacting with humans is a pyroelectric sensor. A pyroelectric sensor is the 
essential component in certain types of motion-detecting burglar alarms. 
The output of a pyroelectric sensor changes when small changes in the 
temperature of the sensor occur over time. The active element in such a 
sensor is typically a lithium tantalate crystal. Charge is induced as the 
crystal is heated. Inexpensive pyroelectric sensors are optimized to detect 
radiation in the 8-10 ttm range (the range of infrared energy emitted by 
humans) and require no cooling to produce a useful signal. This makes 
them suitable for use in motion sensors and security alarms. 

Pyroelectric sensors are sold by a number of companies. Figure 5.15 
depicts a dual-element sensor with integrated amplifier, the 442-3, sold by 
Eltec. The package is shown in the can with the window at the left. To the 

111 

Silver Star Exhibit 1018 - 67



Chapter 5 Sensors 

MC68HC11 

Pyro 
PE5t-----i 

+5 

Eltec 
442-3 

Figure 5.16: An Eltec 442-3 differential pyroelectric sensor with built-in ampli­
fier needs no external components. 

right is a construction-paper cone for holding a plastic fresnel lens (made 
by Fresnel Technologies) at the focal distance from the window. 

Other companies (such as Watlow, Mikron Instrument, Detection Sys­
tems, Microwatt Applications, Hunter Products, Linear, and Spiricon) also 
make pyroelectric sensors. Nippon Ceramic makes a low-cost version of 
the pyroelectric sensor shown in Figure 5.15 but without the integrated 
amplifier. 

Figure 5.16 illustrates the interface between the MC68HC11 and a py­
roelectric sensor. The Eltec 442-3 sensor shown incorporates two lithium 
tantalate crystals. The amplified difference of the voltage across the crystals 
is the output of the sensor. In the case that both crystals are at the same 
temperature, the sensor produces an output signal that remains steady at 
about 2.5 V (assuming a 5 V power supply). If a person walks in front 
of the sensor moving from left to right, the signal will rise above 2.5 V by 
about one volt and then fall below it, finally returning to the steady-state 
value. Should a person walk in front of the sensor moving from right to 
left, the reverse will happen. The signal will first fall, then rise, and then 
settle at 2.5 V. Figure 5.17 illustrates the time-varying output signal of the 
Eltec sensor. 

By taking advantage of the MC68HC11's A/D port, we can implement 
the interface with a minimum of components. The same "flavor" software 
driver as used in the photocell routines can gather pyroelectric data. A 
program to notice when the readings go above or below a preset threshold 
can trigger some robot behavior. More sophisticated software could look for 
trends and try to determine which way the person is moving and attempt 
to follow. 

It is worth pointing out here that most mobile robot building materials 
are opaque to the long-wavelength infrared radiation that the pyroelectric 
sensor detects. In particular, if you mount a pyroelectric sensor behind 
the clear acrylic body shell of your robot, the sensor will remain blissfully 
ignorant of any passing heat sources you might like it to detect. 

112 

5.3 Light Sensors \\ 

'\~ ' 

"'"" ~~ot 

5.0 v 

2.51-----

0.0 L_ __________ _ 

Figure 5.17: A typical signal from a pyroelectric sensor as a heat source passes. 

Figure 5.18: This small inexpensive camera is sold by Chinon. 

113 

Silver Star Exhibit 1018 - 68



Chapter 5 Sensors 

5.3.4 Cameras 

Video camera technology continues to become more compact and more 
inexpensive everyday. Small cameras from security systems are a good 
buy, as illustrated by the Chinon camera in Figure 5.18. Sony also sells 
small Watchcam cameras. 

While onboard vision computations with a MC68HC11 probably are not 
feasible (especially given all the other sensors connected to Rug Warrior's 
processor), transmitting to an offboard workstation can be viable. A ca­
ble may be used for this application, although a television transmitter is 
preferable. Some inexpensive and amazingly small (postage stamp sized!) 
video transmitters are now available. These transmitters operate on the 
experimental TV (ham radio) frequencies and require a license from the 
Federal Communications Commission. Contact Elktronics or Micro Video 
Products for information. 

5.4 Force Sensors 

In general, force sensors have proven the most reliable, exhibit the lowest 
noise, and produce the most easily interpreted signal of all sensors. Force 
sensors can be used to determine when the robot is in contact with another 
object and where that object is in relation to the robot. Such information 
allows the robot to maneuver away from collisions. 

5.4.1 Microswitches 

Microswitches, such as the two shown in Figure 5.5 (page 98), are small, 
momentary switches that can be attached to bumpers to signal when the 
robot has run into an obstacle. Such switches can be purchased from a 
number of suppliers, such as Gerber or Digi-Key. 

Figure 5.19 illustrates one method for using microswitches to detect col­
lisions between the robot and various obstacles. The switches are mounted 
in such a way that, when the robot contacts an object, one or two switches 
will close, thus revealing the relative positions of robot and object. 

Figure 5.20 show two ways to interface the bump switches to the micro­
processor. The circuit in Figure 5.20( a) is straightforward: One pin of port 
E is used for each switch. When the robot collides with an obstacle one 

' or two switches close, changing the state of the corresponding bit(s) from 
0 to 1. This approach has the advantage of being easy to understand and 
implement, but it uses up three of the MC68HC1l's input lines. 

There is another way to achieve the same functionality that uses only 
one MC68HC11 input pin. This second approach is shown in Figure 5.20(b), 

114 

5.4 Force Sensors 

Skirt 

Chassis 

Side view 

Figure 5.19: How a full-coverage, force-detecting bumper can be implemented 
on a cylindrical robot. Three microswitches are arranged symmetrically around 
the perimeter of the chassis so that the activating levers contact the skirt (Top 
view). The skirt "floats" relative to the chassis, held in place by three or more 
lengths of stiff steel wire (Side view). This wire, available at hobby shops, is 
sometimes called m'Usic wire or piano wire. 

where a network of resistors is used to create different voltages at the 
MC68HC11 input pin, depending on which switch is closed. (The A/D 
mode for port E must be used.) The bump switch software driver must 
read pin PE3, do a conversion, and then set one of eight flags. The correct 
flag signifies which switch or set of switches is closed; this is determined by 
in which of eight ranges the measured voltage falls. 

A careful analysis will show that the circuit in Figure 5.20(b) is es­
sentially a voltage adder. As long as the current flowing from the +5 V 
supply through the single 2.2 kilohm (Krl) resistor and two 1.2K resistors 
to ground is large compared to the current flowing through any other part 
of the circuit, this approximation will hold. If, as shown, the powering volt­
age divider has taps at 1/4, 1/2, and 1 times the supply voltage, then the 
voltage sum will be 1/3 x (A+ B +C) (where each of points A, B, and C 
is connected either to its corresponding tap or to ground). Since the A/D 
converter produces digital values between 0 and 255, the set of voltages it 
reads will be 1/3 of 255 times the sum of the voltages from the switches. 
For example, when only switch A is closed (connected to ground), the A/D 
output will be 1/3 x 255 x (0 + 1/2 + 1/4) ::::! 64. When switches B and C 
are closed, the output will be 85. 

Microswitches can be attached in a number of ways to enhance their 
applicability. They can be connected to one or more whiskers extending 
from the robot; deflecting the whisker causes switch closure. For grippers 
and hands, too, microswitches make very simple but effective touch sensors. 

115 

Silver Star Exhibit 1018 - 69



Chapter 5 Sensors 

+5 +5 
....L 

MC68HC11 PEl MC68HC11 

PE6 

(a) 

Figure 5.20: Two approaches to force detection. In (a), each switch goes to a 
separate pin of port E. A digital read of port E reveals the state of the bumper. 
Circuit (b) channels all bump switches to one pin of port E. Here, we must use 
the analog-to-digital converter to determine which set of switches is closed. 

Figure 5.21: This AGE, Inc. bend sensor is a variable resistor that can be 
used for bump detection. Depending on the amount of bending, conductive ink 
between two electrodes creates a larger or smaller resistance. 

116 

5.5 Sound Sensors 

5.4.2 Bend Sensors 

Another sensor useful in the domain of contact detection is the bend sensor. 
An example bend sensor, illustrated in Figure 5.21, is distributed by AGE, 
Inc. This device uses a conductive ink deposited between two electrodes 
to give a variable resistance, depending upon the degree of bending. This 
variable resistor can be interfaced to a MC68HC11 in much the same way 
as a photoresistor, that is, by using a voltage divider with the output signal 
connected to an A/D channel. Total resistance changes by a factor of about 
3 to 5 as the bend sensor goes from straight to maximum bend. Bend 
sensors are very inexpensive, under one dollar. 

5.4.3 Force-Sensing Resistors 

Interlink Electronics manufactures a line of force-sensing resistors that, like 
bend sensors, are based on conductive ink technology. The resistance of a 
force-sensing resistor can change by several orders of magnitude as force is 
applied. (This is a much greater change than the bend sensor exhibits.) 

Force-sensing products come in a variety of shapes and sizes, from 0.2 
inch diameter circles to strips 24 inches long. A linear potentiometer is also 
available, which can determine the position of a contact anywhere along its 
length. These sensors usually cost a few dollars each. 

5.5 Sound Sensors 

Sensors for sound in the audible range can allow the robot to interact 
with its operator. Ultrasonic transducers help the robot detect and avoid 
obstacles. 

5.5.1 Microphones 

A microphone can easily be interfaced to a microprocessor. Typical behav­
iors instigated on a robot are: moving toward or away from noise, listening 
for a specific pattern of sounds, and localizing a sound's position within 
a room. The microphone shown in Figure 5.5, (page 98) came from Ra­
dio Shack, but Digi-Key also sells microphones, as do a number of surplus 
stores. 

The signal from the microphone typically must be amplified before being 
read by the microprocessor. Figure 5.22 shows one approach, using an 
LM386 op-amp. Again, the output of the amplifier is connected to an A/D 
pin of port E and software driver routines similar to the previous examples 
can be used to read the data. 

117 

Silver Star Exhibit 1018 - 70



Chapter 5 Sensors 

+5 

Figure 5.22: A microphone circuit with simple amplifier uses an LM386 op-amp. 

One significant problem with using a microphone is the need to sample 
the signal very frequently. Figure 5.23 illustrates the type of signal output 
from a microphone. If the robot is trying to detect a hand clap or a whistle, 
for example, it must sample the signal from the microphone often enough 
so that is does not miss the event. (Instantaneously, the reading from the 
microphone is just a voltage between 0 V and 5 V.) The signal produced 
by a hand clap may last only a millisecond or so. This means that the mi­
croprocessor must check the output of the microphone at least that often. 1 

Thus, looking for very brief or high frequency signals can require all of the 
microprocessor's time. It may be necessary to dedicate a microprocessor or 
other custom hardware soley to the task of monitoring the microphone. 

Another important problem is that a microphone mounted on a robot 
is most likely to detect the sound made by the robot's own motors. It will 
usually be necessary to shield the microphone in some way to guard against 
this. 

More sophisticated acoustic sensors are available that can digitize and 
record voices for later playback. Other systems do rudimentary (usually 
speaker-dependent) voice recognition. Still, these systems see continuous 
improvement and lower prices as time goes on. Speech-synthesis boards are 
also available from suppliers such as RC Systems. Writing data strings to 
various registers signals the device to output an assortment of phonemes. 
The programmer can then create a number of sentences to give the robot 
simple language facilities. 

""''wmo to the well-known Nyquist theorem, the microprocessor must sample at 
twice the highest frequency it wants to detect. 

118 

5.5 Sound Sensors 

Output from 
microphone 

time 

Figure 5.23: The robot is to take some action when it detects a loud sound, that 
is, when the signal from the microphone goes above the upper dashed line or below 
the lower dashed line. Each vertical bar represents a sample, the moment when 
the microprocessor reads the A/D converter channel connected to the microphone. 
Unless samples are taken at very frequent intervals, the sound of interest can easily 
be missed. 

5.5.2 Piezoelectric Film Sensors 

Piezoelectric film is a remarkably versatile and inexpensive sensor material. 
Properly configured, the same material can be used to detect vibrations, 
changes in applied force, changes in temperature, and even far-infrared 
radiation. In each case, the sensing operation consists of measuring the 
voltage imposed on a pair of electrodes on opposite sides of a polyvinyli­
dene fluoride film. Piezoelectric film sensors produce a voltage only when 
subjected to changes in the sensed quantity. For example, when used as a 
collision detector, the piezoelectric sensor will generate a voltage spike at 
the moment the robot bumped into an object but will produce no signal 
while the robot is pressed against the object. Piezoelectric film allows the 
robot builder to construct highly customized sensors. Piezoelectric film, 
evaluation kits, and sensor components are available from Atochem. 

5.5.3 Sonar 

While a near-infrared detector only delivers proximity information (some­
thing is or is not there), a sonar transducer can actually provide distance 
information because it is possible to measure the time of flight between 
the initiation of a ping and the return of its echo. By measuring the time 
of flight and knowing the speed of sound in air, it is possible to calculate 
distance covered by the round-trip of the ping. 

Figure 5.24 shows the Polaroid sonar rangefinding system, which is one 
of the most commonly used sensors on mobile robots. These rangefinders 
were developed as autofocus mechanisms for cameras, but the units can be 

119 

Silver Star Exhibit 1018 - 71



Chapter 5 Sensors 

Figure 5.24: A Polaroid sonar transducer is shown on the left. On the right is 
its driver board. 

purchased separately. The driver board has a very simple protocol for inter­
facing to a microprocessor. Figure 5.25 illustrates the necessary interface 
electronics. 

The Polaroid driver board takes power and ground and has three digital 
control signals that interact with the microprocessor. One, VSW, is the sig­
nal that the driver board receives from the MC68HC11 when it is supposed 
to send a pulse out to the transducer (on pin Xdcr) There is some latency 
between the moment the transducer is commanded to ping and when the 
ping actually begins, so a return signal is provided to the MC68HC11, 
XLG, which indicates when the ping was initiated. The MC68HC11 can 
start timing from this instant. The analog circuitry on the Polaroid driver 
board encompasses the necessary electronics to create a 300 V pulse to be 
applied across the transducer when transmitting the ping, to put the trans­
ducer into a receive mode after an initial blanking period, and to filter, 
amplify, and signal the time of the returned echo. The time of the return 
is flagged and sent to the MC68HC11 on the FLG pin. At this instant, 
the MC68HC11 can cease counting and calculate the round-trip distance 
covered in the elapsed time. 

The transistor and buffers shown (see Figure 5.25) are needed to in­
terface the Polaroid driver board's VSW, XLG, and FLG signals to the 
MC68HC11. In order to facilitate measuring the time of flight of the pulse 
and also in order to enable initiating the pings at given periods, the timer­
counter capability of the MC68HC1l's port A is utilized. Pins PAl and 
PA2 are used for the XLG and FLG signals input to the MC68HC11, 
since they have input-capture registers that can initiate interrupts. Pin 

120 

5.6 Position and Orientation 

+5 

PA4 
MC68HC11 

PA21-------'--<~ 

PA1 

Polaroid 
Board 

Pwr 
Pwr 
Gnd 

1..---=-tvsw 
1------Q FLG 

.----aXLG a...;_;;:....;.. __ ...,.. ..... 

Figure 5.25: Interfacing the Polaroid sonar driver board to the MC68HC11 
requires a few transistors and resistors. 

PA4 is used to output the VSW signal to the Polaroid driver board, since 
it can act as an output-compare register, setting its level high whe.n the 
MC68HC1l's internal timer-counter has a value equal to that stored m the 

output-compare register. . . 
The software protocol for which the programmer IS responsible must 

t V SW Also the programmer must set up and initialize the hardware 
asser · , . . d' t' th 
for the timer-counter so that, when the XLG flag arnves m .Ica mg e 
onset of a ping, the input-capture register of PAl captures the. timer count. 
Similarly, when the FLG flag arrives, the input-capture register of PA2 
should capture the timer count again. The programmer can then calculate 
the difference between the two captured times and scale b~ the s~eed of 
sound to find round-trip distance traveled. Half that number IS the distance 

to the object. . . 
Sonar ranging is useful for obstacle detection, corndor followm~, loca~-

ization, and map building. However sophisticated the final.bel~avwr, this 
underlying primitive operation of calculating the range of a pmg IS the same 

in all cases. 

5.6 Position and Orientation 

For a robot to find its way about in the world, it often needs to make certain 
measurements. For example, it may be helpful for the robot to know the 
direction of gravity, the local compass heading, or h?w far. it has mo;ed 
or turned since it was in some known position. In thiS sectiOn, we review 
sensors that can provide such information. 

121 

Silver Star Exhibit 1018 - 72



Chapter 5 Sensors 

Figure 5.26: One very simple way of building a shaft encoder. Only two parts 
are needed: a striped pattern glued to a wheel, which is attached to the motor 
shaft, and a photorefiector. For Rug Warrior, we use the Hamamatsu P306201 
photorefiector, shown taped to the motor and mounted so as to be only a few 
millimeters from the rotating striped pattern on the wheel when the wheel is 
mounted on the motor shaft. 

5.6.1 Shaft Encoders 

A shaft encoder is a sensor that measures the position or rotation rate of a 
shaft. Typically, a shaft encoder is mounted on the output shaft of a drive 
motor or on an axle. The signal delivered by this sensor can be either a 
code that corresponds to a particular orientation of the shaft (such shaft 
encoders are called absolute encoders) or it may be a pulse train. Shaft 
encoders that produce a pulse train are called incremental encoders. Each 
time the shaft turns by a small amount, the state of its output changes 
from high to low or vice versa. Thus, the rate at which pulses are produced 
corresponds to the rate at which the shaft turns. 

A potentiometer can be used as an absolute position encoder. Each 
position of the shaft produces a unique resistance. Absolute encoders are 
commonly used for determining the positions of robot arms. 

122 

5.6 Position and Orientation 

Figure 5.27: A close-up of the Hamamatsu P306201 photorefiector, double­
sticky taped to the top of a servo motor. The servo motor's shaft is shown at the 
left, with the small, white pinion gear attached to it. 

One way for the robot to get feedback on how far its wheels have turned 
or on synchronizing two wheels' velocity is to connect an encoder to each 
motor shaft. Shaft encoders can be purchased as enclosed units or built in 
as an integral part of a motor. Some incremental shaft encoders contain 
a spinning disk that has slots cut in it. The disk attaches to the motor 
shaft and spins with it. A near-infrared LED is placed on one side of the 
disk's slots and a phototransistor on the other. As the disk spins, the light 
passing through the disk is interrupted by the moving slots, and a signal in 
the form of a pulse train is produced at the output of the phototransistor. 
By using a microprocessor to count these pulses, the robot can tell how far 
its wheels have rotated. The combination of such an infrared LED emitter 
and a photodetector, packaged for the purpose of being mounted on either 
side of a shaft encoder's disk, is called a photointerrupter. 

Another implementation of a shaft encoder is a photorefiector, which 
shines light from an infrared LED onto a striped wheel, which then reflects 
the light back to a phototransistor. A palette of radially alternating black 
and white stripes will alternately reflect or not reflect light to the photo­
transistor, yielding a similar pulse-train output. The photoreflector used by 
Rug Warrior is packaged with the two devices next to each other in a very 
compact unit. Figure 5.26 illustrates one of these small devices, attached to 
the side of a servo motor in such a way as to be within a few millimeters of 
and facing the striped pattern on the wheel. A closer view of the mounting 
scheme is shown in Figure 5.27. 

123 

Silver Star Exhibit 1018 - 73



Chapter 5 Sensors 

32 segments 64 Segments 

48 segments 

Figur~ 5.28: Alternating white and black stripes make reflecting and non­
reflectmg surfaces, respectively, for light emitted from a photoreflector's LED. 
More stripes give greater resolution to the output measurements, but the stripes 
cannot be narrower than the field of view of the photoreflector. 

Because the near-infrared energy emitted by the LED can penetrate 
thin, white paper, it is important to take into consideration what is behind 
the str~ped paper pattern. Two pieces of plain, white paper discs backing 
the stnped wheel should be enough to make the white segments adequately 
opaque so that the beam will be reflected back to the detector. Figure 5.28 
illustrates 32-, 48-, and 64-count encoder patterns. You can photocopy 
these patterns and use them to construct your own reflective shaft encoders. 

The photoreflectors we have chosen for Rug Warrior are the Hama­
~atsu P30~201s. We have chosen these devices because they have circuitry 
mtegrated m the package to amplify and condition the output of the pho­
totransistor. The only interface components required for connecting to the 
MC68HC11AO are two resistors: one for pulling up the phototransistor's 
open-collector output and one for limiting the current through the LED. 
For reading the shaft-encoder data into Rug Warrior's control system, we 
have chosen to take advantage of the timer-counter hardware connected to 
the MC68HC11AO's port A. Port A's 8 pins have various input capture 
and output compare registers associated with them, which are able either 
to mark the time that events happen on those pins or to initiate events at 
pre~rogrammed times. We use P A 7 and P AO as the port A pins to accept 
the mput from the left and right shaft encoders, respectively, as shown in 
Figure 5.29. 

124 

5.6 Position and Orientation 

PA7 
PA6 
PAS 

PA4 

PA3 
PA2 
PA1 
PAO 

Pulse Accumulator 1 

~~-=~---OC4 _._, 

OC5 --o 

IC1 
IC2 OC1 

IC3 Port A 
6811 

Figure 5.29: The interface between Harnamatsu photoreflectors for Rug War­
rior's shaft encoders and the MC68HC11AO port A pins PA 7 and PAO. Shaft­
encoder data from the left wheel are counted by the pulse accumulator hardware 
associated with PA 7. For the right wheel, interrupts are triggered by the input 
capture hardware (IC3) connected to PAO. Shaft-encoder pulses are counted in 
software in an interrupt-handler routine. 

A pulse accumulator function is associated with P A 7 making it easy to 
count the pulses produced by the left shaft encoder in software. It would 
have been convenient if the MC68HC11AO designers had included two of 
these features on their chip (newer versions of the MC68HC11 do have more 
features for reading shaft encoders and for pulse width modulating motors), 
but since we do not have that luxury, we connect the right shaft encoder 
to the P AO pin and use its input capture function to count the pulses. 

Figure 5.30 illustrates a simple open-loop control scheme, where a motor 
is given a speed command and the shaft encoders are used simply to monitor 
its velocity. Later, in Chapter 7, we will use other portions of port A's timer 
system, output pins P A5 and P A6, to drive the motors, and we will also 
discuss how to use shaft-encoder feedback data to implement in software a 
velocity controller. In this section, however, we concentrate on describing 
how to get the shaft-encoder sensor data into the microprocessor. 

Reading Shaft Encoders 

In order to use the shaft-encoder sensors in some sort of velocity control 
scheme for Rug Warrior, we must first interface the photoreflectors to the 

125 

Silver Star Exhibit 1018 - 74



Chapter 5 Sensors 

Open loop 
velocity command 

Motor 

Figure ~.30: In an open loop control scheme, a command is given to the motor 
to make 1t turn at a certain speed. Depending on the load, the motor might not 
actually go at that speed. Shaft encoders can be used to monitor the motor's 
true speed. 

microprocessor and store the ensuing counts for each wheel in two variables. 
One shaft encoder is fed into the pulse accumulator on port A pin p A 7, and 
the other shaft encoder is fed into PAO with its associated input capture 
three (IC3) register. Reference should be made to the Motorola MC68HC11 
data books for more complete descriptions of the timer-counter system than 
those undertaken here. 

The Pulse Accumulator 

The puls~ accumulator is an 8-bit counter register, PACNT, associated with 
por.t A Pin P ~ 7, that makes it very easy to count the number of rising or 
falhng edges mpu t to that pin. This register will overflow after 2 8 or 256 
counts: ' ' 

PACNT 
$1027 

In orde~ to config~re the system for our needs, we first have to assign pin 
PA 7 as an Input. Th1s can be done by setting the data-direction bit for pin 
PA 7 (which is in the pulse-accumulator control register PACTL) t 0 £ 

fi t' · . ' o or 
con gura Ion as m mput pin. Three other bits in the PACTL register must 
also be assigned. The pulse-accumulator enable bit, PAEN, must be set to 
1 to enable the pulse accumulator; the mode-select bit, PAMOD, must be 
set to 0 for event. counting; and the edge-select bit, PEDGE, must be set 
to 1 or 0, dependmg on whether it is desired to choose rising (PEDGE 
1) ?r fa~ling (PEDGE = 0) edges of the shaft encoder's output. We will 
arb1tranly select to count rising edges and so set the PEDGE bit to 1: 

PACTL 
$1026 

126 

Bit 7 

(DDRA7j PAEN /PAMODjPEDGE/ 
0 1 0 1 

0 

X 

Bit ci 
0 I RTR1 I RTRO I 

X X X 

5.6 Position and Orientation 

Once the PACTL register has been configured, the pulse accumulator 
will start counting the number of stripes passing in front of the photore­
flector. The main program running on Rug Warrior then simply needs to 
poll the PACNT register at certain intervals to see how fast the wheel is 
turning. 

Shaft-Encoder Pulse-Accumulator Software Driver 

Following is C code that initializes the pulse-accumulator system and re­
turns the number of pulses since the last reading. To activate the pulse­
counter system, call init_veloci ty () during system initialization. Veloc­
ity of the left wheel can be found by calling get_left_vel 0 at regular 
intervals. Velocity is in units of encoder clicks per time interval (where the 
time interval is the time between two successive calls to get_left_vel 0). 

int PACTL 
int PACNT 

Ox1026; I* Pulse accumulator control, 8-bit reg *I 
Ox1027; I* Pulse accumulator counter, 8-bit reg *I 

void init_velocityO I* Initialize hardware for vel monitoring *I 
{ poke (PACTL, Ob01010000); I* PA 7 input, ena pulse ace, rising edg *I 

poke (P ACNT, 0) ; } I* Start with 0 measured velocity *I 

float get_left_vel () I* Left vel from PA 7 using pulse counter *I 
{ float vel; 

vel= (float) peek(PACNT); 
poke (PACNT, 0) ; I* Reset for next call *I 
return(vel) ; } 

Once the pulse accumulator hardware has been initialized, it will run in 
the background, automatically incrementing the count every time a stripe 
on the encoder wheel moves past the photoreflector. The robot's main 
program does not have to keep track of this activity but is free to attend 
to other sensors and actuators. When it needs to know the encoder count, 
the main program calls the function get_left_vel 0. 

Although an assembly language routine to start the pulse accumulator 
would also be very simple, we use an example of C code here for a par­
ticular reason: Namely, later, in Chapter 7, we will describe how to use 
shaft-encoder data as the feedback in a velocity controller for Rug War­
rior's two motors. As that algorithm will require some multiplication and 
a fair amount of bookkeeping, it is easier to describe control algorithms by 
sticking solely to C. 

127 

Silver Star Exhibit 1018 - 75



Chapter 5 Sensors 

Input Capture Registers 

For the encoder wheel connected to port A pin P AO, more software com­
plexity is in store. Because the MC68HC11AO has only one pulse accumula­
tor, we must use an interrupt to count encoder clicks from the right wheel. 
We will use the I C3 register associated with P AO to generate an interrupt 
on every rising edge. The interrupt-handler routine, which automatically 
runs whenever a rising edge is detected, must increment a counter, clear 
the interrupt flag, and return from the interrupt. 

To configure IC3 for this operation, a few associated registers must be 
initialized in a way similar to setting up the pulse accumulator. In this 
case, we will be generating interrupts and writing an assembly language 
interrupt-handler routine that keeps track of the count. 

The TMSK1 register contains the bits that must be set to enable inter­
rupts associated with events on any input capture pin. We will set the bit 
associated with IC3I, enabling interrupts: 

TMSKl 
$1022 

X X 

The TFLG1 register contains a flag bit, IC3F, which is set whenever 
the interrupt condition is met. If IC3F is set while global interrupts are 
enabled (the I bit of the condition code register is clear), then the hard­
ware will automatically initiate an interrupt-the user's interrupt-service 
routine is called. Code in the interrupt-service routine must clear the IC3F 
flag; otherwise, when an attempt is made to return from the interrupt, the 
hardware will think the IC3 interrupt is pending and immediately service 
it again. Clearing the interrupt flag is accomplished by writing a 1 to the 
bit in the TFLG1 register that corresponds to that interrupt's flag. We will 
write the binary number %00000001 to TFLG1 to clear the IC3F flag. 

TFLGl 
$1023 

Bit 7 Bit 0 
I OC1F I OC2F I OC3F I 0C4F I OC5F I IC1F I IC2F I IC3F I 

X X X X X X X 1 

Another matter to take care of is assigning on which type of edge the 
input capture interrupt will trigger. Figure 5.31 gives the possibilities and 
the associated 2-bit code for assigning the desired trigger. We will trigger 
on rising edges, since that was the choice (arbitrary) made for the encoder 
connected to PA 7. 

These bits must be written to the TCTL2 register to configure it for 
rising edge-triggered interrupts. Storing %00000001 to TCTL2 will assign 
this properly: 

128 

5.6 Position and Orientation 

EDGxB EDGxA f Con lllJ:Urat•on 

0 0 Capture Disabled 
0 1 Capture on Rising Edge 
1 0 Capture on Falling Edge 
1 1 Capture on Any Edge 

Figure 5.31: The four actions possible by any input capture pin are to never 
capture, to capture on rising edges, to capture on falling .ed~es, or t~ capture on 

d T b't 1'n the TCTL2 register (the most s1gmficant btt, EDGxB, any e ges. wo 1 s f 
1 and the least significant bit, EDGxA) set the desired response for any success u 

input-event detection. 

Bit 7 Bit 0 TCTL2 
$1021 0 0 IEDG 1BJEDG 1AJEDG2BJEDG2AJEDG3BJEDG3AJ 

X X X X X X 0 1 

After these interrupts are configured, the main program loop mu~t e~­
able interrupts globally with the CLI instruction. Until t~i~ instructwn. 1s 
executed no interrupts can occur. Once this is done, any nsmg edge arnv­
. n pin PAO will trigger an interrupt. The vector address for the IC3 
mg 

0 
· 1 t' · th interrupt is $FFEA. The two byte address stored at th1s ?ca wn 1s e 

address at which the user's interrupt handler code must begm. 

Shaft-Encoder Input Capture Software Driver 

The interactive C compiler used on Rug Warrior, IC, has a means ~fin­
terfacing to MC68HC11AO assembly langua~e routines .. (It does th1s by 
following certain naming conventions for routmes and vanables and ~y us­
ing certain file-loading protocols.) We use these features he:e to wnte an 
interrupt-handler routine for input capture regis~er ~C3, wh1:h counts the 
shaft-encoder pulses and stores the running sum m rlght_cllcks, a global 
variable accessible by the main C program. 

TFLG1 EQU $1023 
ORG MAIN_START 

;Timer Flag 1, 8-bit reg 
;Origin for assembly module 

subroutine_initialize.Jllodule: ;This module runs on reset 
ldd #IC3_interrupt_handler ;16-bit addr of intrpt handler 
std $FFEA ;Store in IC3 intrpt vector 
eli ;Enable interrupts generally 
rts ;Return from subroutine 

129 

Silver Star Exhibit 1018 - 76



Chapter 5 Sensors 

variable_right_clicks: 
fdb 0 

IC3_interrupt-handler: 

;Create a C variable, right_clicks 
;Fill double byte, 16 bits. right_clicks 

ldd variable_right_clicks 

addd #1 ;Add one more encoder count 
std variable_right_clicks 

ldaa #%00000001 ;Clear the IC3 flag by writing a one 
staa TFLG1 ;Store in TFLG1 to clear IC3 flag 
rti ;Return from interrupt 

0 

These code fragments accomplish several goals. A code initializer mod­
ule, subroutine_ini tialize....module, is created, whose purpose is to store 
the address of the interrupt handler in the correct location. The IC system 
calls subrout ine_ini t ialize....module each time the reset button is pushed. 
A variable, variable..right_clicks, for storing the encoder counts from 
the right shaft encoder is also created. (C routines will reference this vari­
~ble using the name right_clicks.) Finally, IC3_interrupt_handler, an 
mterrupt-handler, is written, which increments the right-encoder counts 
variable each time the reflective photosensor sees the stripe it is looking at 
change from black to white. 

If we compare this example with the code for the other shaft encoder 
connected to P A 7, the contrast is clear. The pulse accumulator provided us 
with special purpose hardware to relieve the main program of the duty of 
incrementing a counter every time an event occurred. Here, the programmer 
must specifically set up an interrupt-handler routine to attend to this chore. 

Now we add a function, get_right_vel (), to our existing C code, which 
returns the value ofright_clicks (then resets it) whenever it is called. Our 
supervising C program must now also include the commands to initialize 
the appropriate registers for using the IC3 input capture interrupt. 

For instance, our C program might look like the following: 

int TCTL2 Ox1021; I* Timer Control 2, 8-bit reg, interrupt edge *I int TMSK1 Ox1022; I* Timer Interrupt Masks, 8-bit reg *I 
int TFLG1 Ox1023; I* Timer Flags, 8-bit reg *I 
int PACTL Ox1026; I* Pulse accumulator control, 8-bit reg *I 
int PACNT Ox1027; I* Pulse accumulator counter, 8-bit reg * 1 
void init_velocity() 
{ poke(PACTL, Ob01010000); 

poke(PACNT,O); 
bit_clear(TCTL2,0b00000010); 

I* Call to begin vel monitoring *I 
I* PA 7 in, ena pls ace, rising edg *I 
I* Start with 0 measured velocity *I 
I* IC3 interrupts on rising edges *I 

130 

5.6 Position and Orientation 

bi t_set (TCTL2, Ob00000001) ; I* IC3 interrupts on rising edges *I 
bit_set(TMSK1,0b00000001); } I* Enable only IC3 interrupts *I 

float get_left_vel () I* Left vel from PA 7, pulse ctr *I 
{ float vel; 

vel= (float) peek(PACNT); 
poke(PACNT,O); I* Reset for next call *I 
return(vel); } 

float get_right_velO I* Right vel PAO using interrupt *I 
{ float vel; 

vel = (float) right_clicks; 
right_clicks = 0; I* Reset for next call *I 
return (vel) ; } 

The functions get_left_vel () and get_right_vel 0 provide a uniform 
way to acquire each motor's shaft encoder data. This is the essence of 
an abstraction barrier. Even though the hardware interface to each shaft 
encoder is implemented differently, the programmer simply relies on the 
functions get_left_vel () and get_right_vel 0. The programmer need 
not worry about how these functions interface to the hardware. 

Later, we will use these primitive operators to create a higher-level 
program, a velocity controller, which will cause the two motors to always 
go at the same speed, enabling the robot to maintain a constant heading. 

5.6.2 Gyros 

Another sensor that is useful in monitoring how the robot moves is a rate 
gyroscope. Mechanical gyroscopes use the principle of conservation of an­
gular momentum to keep one or more internal axes pointed in the same 
direction as the exterior of the gyroscope, the gyroscope case, translates 
and rotates. Thus, a gyrosocpe attached to a robot makes it possible to 
determine either how rapidly the robot is rotating or how far it has rotated, 
relative to a fixed coordinated system. 

Humphrey, Columbia, and Murata sell small gyroscopes, as does Futaba. 
The inexpensive model from Futaba, shown in Figure 5.32, is a single­
axis rate gyro made for model helicopters. A rate gyro produces a signal 
proportional to the rate of rotation about an axis perpendicular to the 
axis of the gyro, but it does not provide absolute orientation information. 
The Futaba gyro takes a pulse-width-modulated signal provided by the 
MC68HC11 and modifies it (increasing or decreasing the pulse width) based 
on the rate of rotation of the gyroscope case. 

131 

Silver Star Exhibit 1018 - 77



Chapter 5 Sensors 

Figure 5.32: Futaba makes a small, rate gyro for model airplanes. The input 
is a pulse-width-modulated signal, and the output is an increased or decreased 
pulse width, depending on the rate of rotation. 

5.6.3 Tilt Sensors 

Determining whether your robot is level or tilted can mean the difference 
between negotiating rough train smoothly or tumbling over. Many types of 
sensors can provide information about the relative angle between the robot 
body and the gravity vector. The simplest and generally least expensive tilt 
sensor is the mercury switch, such as the one illustrated in Figure 5.33(a). 
This sensor consists of a small, glass bulb containing two or more contacts 
and a drop of mercury. Depending on which way the bulb is tilted, the 
bead of mercury will close or open the circuit. 

Such a sensor is easy to interface in a microcontroller. When mounted 
properly, it provides a digital signal, alerting the microprocessor that the 
robot has tilted too far in one direction. Several mercury switches fixed at 
different orientations can provide information about the degree and direc­
tion of tilt. Software conditioning of the signal from a mercury switch is 
almost always required, however. As the robot starts, stops, and bounces 
about, the bead of mercury frequently makes contact, even when the robot 
is not dangerously tilted. 

The electrolytic-tilt sensor, a type of inclinometer, offers an improve-· 
ment over the mercury switch in many applications. Figure 5.33(b) dia­
grams an inclinometer. This sensor has two or more electrodes immersed 
in a conductive fluid. The conduction between the electrodes is a function of 
the orientation of the sensor relative to gravity. The electrolytic-tilt sensor 
produces an analog signal proportional to the degree of tilt. Such sensors 

132 

5.6 Position and Orientation 

(a) 

Figure 5.33: Sensor (a) is a mercury switch. When this sensor is tilted, the drop 
of mercury closes the contact between the two electrodes. In an electrolytic-tilt 
sensor (b), the amount of conduction between the center electrode and each of 
the outer electrodes is determined by the degree to which the outer electrode is 
immersed in the electrolytic fluid. 

are typically much more expensive than mercury switches. Spectron offers 
a full line of electrolytic-tilt sensors. 

An exciting recent development in sensor technology is the microma­
chined accelerometer. This device is a chip with a tiny suspended mass 
machined into the silicon. Piezoresistors embedded in the structure are 
used to sense minute changes in position of the mass as the chip undergoes 
acceleration. Such devices can also be used to detect the direction of grav­
ity. Micromachined accelerometers offer an accurate, rugged, and reliable 
means for determining the direction of tilt of a mobile robot. IC Sensors 
and Lucas Novasensor are good sources for these sensors. 

5.6.4 Compasses 

A compass provides a way for your robot to acquire absolute information 
about its orientation. This can be very helpful when writing a navigation 
algorithm. In open areas, compasses are very reliable, and once calibrated 
to local magnetic north, they are also accurate. If your robot is to be used 
indoors, however, the serviceability of a compass becomes more problem­
atic. Magnetic fields from electrical wiring, structural steel in buildings, 
and even the metal components of the robot itself can all produce large 
errors in the compass reading. As long as errors of, say, ±45 degrees can 
be tolerated, the compass is a viable option. Certain electronic compasses 
intended for use in automobiles can, with sufficient modification, be em­
ployed by your robot. Zemco and ETAK manufacture digital compasses; 
Suncoast Technologies offers an inexpensive model. 

133 

Silver Star Exhibit 1018 - 78



Chapter 5 Sensors 

MC68HC11 

l l (b) 

Figure 5.34: Circuit (a) shows one way to construct a battery level monitor if the 
microprocessor is operated from a regulated supply. When using an unregulated 
supply, circuit (b), although tempting, will not work. Circuit (c) corrects the 
deficiency of (b) by using the diode voltage drop to provide a reference voltage. 

5. 7 Proprioceptive Sensors 

A proprioceptive sensor is any sensor used to measure the internal state 
of the robot. Monitoring these sorts of sensors can tell the robot when it 
is time to recharge its batteries, when a motor is overheating, or when a 
component has malfunctioned. 

5.7.1 Battery-Level Sensing 

By sensing its battery voltage, a robot can determine when it is time to re­
turn to the charging station or curtail power-draining operations. Designing 
a battery-level indicator is a simple matter when the microprocessor oper­
ates from a regulated supply, as in Figure 5.34(a). As shown, only a voltage 
divider is needed. 

In the circuit of Figure 5.34(a), when VRH has been connected to the 
regulated output voltage from an LM7805, VRL will go to ground. We wish 
to determine VB, the battery voltage. The voltage supplied by the batter­
ies must always be higher than the regulated voltage in order to achieve 
good regulation. In this case, suppose that the batteries are effectively 
exhausted when their voltage reaches 7.0 V. If we simply connected one 
of the A/D channels, say, PEO, to the positive battery terminal, it would 
not be possible to determine the battery voltage. Since the voltage at PEO 
would always be greater than that at VRL, the A/D converter would always 
report a value of 255 to the ADR1 result register. 

134 

5. 7 Proprioceptive Sensors 

We must engineer a circuit that will deliver a maximum of 5.0 V to 
PEO when the batteries are fully charged and a smaller voltage as the 
batteries discharge. This is the purpose of the voltage divider. We will 
choose resistors R1 and R2, such that the voltage at PEO begins at 5.0 
V and decreases as the batteries discharge. Suppose that, when fresh, the 
batteries supply a maximum voltage of VB,max· With the voltage divider 
connected as shown in Figure 5.34(a), the maximum voltage that can be 
present at PEO, V0 = Rl~1R2 VB,max· To compute R1 and R2 we choose Vo 
to be 5.0 V, since higher voltages cannot be measured. Given that we also 
know VB,max, we can now solve for R1 and R2 if we arbitrarily choose the 
sum R1 + R2. This sum should be high enough so that the drain on the 
battery due to the voltage divider is insignificant compared to that of the 
rest of the electronics; at the same time, the sum should be small compared 
to the internal impedance of the A/D converter. 

To complete the example, assume that R1+R2 = 47000 and that power 
is supplied by eight NiCd cells whose fresh voltage is 9.6 V. Now we have 
R1 = ~·~ x 4700 = 24470, R2 = 22520. By measuring the voltage at PEO, 

.d . v . v - 4700 Vr we can etermme B· B- 2447 x O· 

There is a complication if the microprocessor supply does not include a 
regulator, as in Figure 5.34(b) and (c). As we have seen, the A/D converter 
works by comparing the voltage at PEO with the reference voltages at 
VRH and VRL. If connected as shown in (b), the ratio of these voltages 
remains constant as battery voltage declines. Thus, the A/D converter 
always reports that the battery voltage equals VRH, and the result of the 
conversion is always 255. 

In Figure 5.34( c), we make use of the diode voltage drop to produce a 
reference to which we can compare the battery voltage. Whenever current 
through a diode exceeds a certain minimum, a characteristic voltage (usu­
ally about 0.6 V) develops across the diode. In the circuit in Figure 5.34(c), 
the A/D converter will compare the constant 3 x 0.6 = 1.8 V at pin PEO 
with the changing voltage at VRH. If the battery pack is fully charged at, 
say, 7.0 V and depleted at 4.5 V, then the result from the A/D converter 
will be 255 x ~:~ 66 and 255 x ~:~ = 102, respectively. 

5. 7.2 Stall Current Sensing 

One reliable way to determine if a robot is stuck is to monitor the current 
being used to drive the motors. If all other sensors fail to detect an im­
minent collision, the robot will, in short order, come to rest against the 
obstacle. In this situation, the wheels will stop rotating while current to 
the motors will go to a maximum. Thus, motor current serves as a collision 
detector of last resort. One way to detect motor current is to put a small 

135 

Silver Star Exhibit 1018 - 79



Chapter 5 Sensors 

resistance in series with the motor (typically, a fraction of an ohm), am­
plify the voltage across the resistor, and measure the voltage with one of the 
A/D channels. Some motor-driver chips have built-in circuitry to simplify 
this measurement. The L293E and IR8200 motor-driver chips have such 
features. 

The software that monitors motor current in order to detect a collision 
should not respond too quickly. Each time the robot accelerates from a 
dead stop, motor current will typically go to a maximum, then decrease as 
the robot speeds up. 

5.7.3 Temperature 

It is often a good idea to monitor certain temperatures within the robot. 
If the electronics get too warm, the microprocessor may crash. High tem­
peratures can also shorten the lives of motors, and NiCd batteries may be 
damaged by heat if high current charging continues after the batteries are 
already fully charged. Certain motor-driver chips, the IR8200 for example, 
have built-in, over-temperature sensors. For other applications, many com­
panies manufacture discrete temperature sensors including Murata, EDO 
Corporation, and RCD Components. 

5. 8 Exercise 

To this point, we have seen how to take a large number of simple sensors 
and interface them to a microprocesser. In Chapter 9, we will see how to 
arrange higher-level programs, using a subsumption architecture, to enable 
the robot to act in response to its sensor readings to create seemingly 
intelligent behaviors. As we have seen, sensors merely deliver voltages to 
the microprocessor. What the robot manages to achieve with these signals 
depends upon how clever the programmer can be with software. 

Many times, however, the programmer just does not have enough vari­
ables in her or his environment to juggle. The problem often dictates going 
back to hardware and inventing a new sensor for the job. For instance, in 
Figure 5.35, Rug Warrior is about to tumble off the edge of a step. All 
its sensors point upward and all its code implicitly assumes that it will al­
ways travel on level surfaces. Try to invent a sensor that will detect a step. 
Mount it on your Rug Warrior's chassis, and interface it using connectors 
we discussed earlier in some spare prototyping space you left open on your 
board for expansion features. Try programming a software driver, and see 
how it works! 

136 

5.9 References 

Figure 5.35: A photograph of Rug Warrior about to fall over the edge of a 
step. What kinds of sensors could be used to detect a drop-off? Whiskers? 
Microswitches? Bend sensors? Two near-infrared beams separated a few inches 
and aimed to cross at the level of the floor? Sonar? Invent your own! 

5. 9 References 

Whole volumes could be written about sensors for mobile robots, but here 
we have had the opportunity to touch only briefly on the few simple sensors 
that could be incorporated inexpensively in Rug Warrior. More sophisti­
cated robots, such as Robart II, from the Naval Ocean Systems Center 
shown in Figure 5.1 (Everett, Gilbreath, and Tran 1990), and Attila from 
the MIT Mobile Robot Lab, shown in Figure 5.2 (Angle and Brooks 1990) 
take advantage of redundant sensors to endow themselves with increased 
awareness of their surroundings. 

137 

Silver Star Exhibit 1018 - 80



Chapter 5 Sensors 

Robart II predated and influenced much of the hardware design later 
undertaken at the Mobile Robot Lab, especially in the realm of sensors. 
Everett and Stitz (1992) gives a complete exposition on the workings and 
wonders of a wide variety of sensors applicable to mobile robots. 

Angle (1991) describes how the six-legged Attila was designed to use its 
legs as sensors as the robot moved through its environment, and how vari­
ous sensors of increasing reliability were situated to trigger the lowest-level 
behaviors in a layered control system. Ferrell (1992) expands on that theme 
and discusses the notion of creating virtual sensors from combinations of 
concrete physical sensors to make Attila more reliable. 

For books on sensors and interfacing electronics, Beckwith and Maran­
goni (1990) detail making mechanical measurements from position sensors, 
force sensors, accelerometers, and the like, while Jung (1986) presents a 
"cookbook" of useful op-amp designs for amplifying and conditioning small 
sensor signals. Seipple (1983) is another useful sensor text. 

138 

6 

Mechanics 

6.1 Locomotion 

From slithering to hopping, there are a great variety of ways to move across 
a solid surface. Among robots, the three most common systems use wheels, 
tracks, and legs. 

Wheeled vehicles are by far the most popular for several practical rea­
sons. Wheeled robots are mechanically simple and easy to construct. The 
payload weight-to-mechanism ratio is also favorable. Both legged and 
tracked systems generally require more complex and heavier hardware than 
wheeled systems designed for carrying the same payload. Additionally, a 
wide variety of wheeled devices, such as toys, can be modified for robot use. 

The principal disadvantage of wheels is that, on uneven terrain, they 
may perform poorly. As a rule, a wheeled vehicle has trouble if the height 
of the object it must surmount approaches the radius of the wheels. One 
solution is simply to use wheels that are large compared to all likely ob­
structions. In many instances, however, this is impractical. 

For robots that must operate in a natural environment, tracks are an 
appealing option because tank treads allow the robot to negotiate relatively 
larger obstacles and are less susceptible than wheels to environmental haz­
ards, such as loose soil and rocks. The major disadvantage of tracks, how­
ever, is inefficiency. Friction within the tracks themselves dissipates power, 
and energy is wasted whenever the vehicle turns because the treads must 
slip against the ground. The dead-reckoning ability of tracked vehicles suf­
fers for the same reason. If the robot computes its position by counting 
the number of times the track-driving wheels have rotated, then the error 
in the robot's estimate of where it is grows whenever the vehicle turns. In 

Silver Star Exhibit 1018 - 81



Chapter 6 Mechanics 

Figure 6.1: Some clever arrangements of wheels can provide functionality similar 
to that of tracks. By mounting the wheels on pivoting outriggers, this Mars 
rover prototype, Rocky III, from the Jet Propulsion Laboratory, is able to climb 
obstacles three wheel radii high. 

fact, to a greater or lesser degree, the dead-reckoning ability of all robots 
suffers from this problem of wheel, track, or leg slippage. One robot that 
has wheels yet is able to maneuver through rough terrain is Rocky, a Jet 
Propulsion Laboratory all-terrain vehicle, shown in Figure 6.1. 

Walking robots can potentially overcome more of the problems of rugged 
terrain than either wheeled or tracked robots. Figure 6.2 shows Genghis, 
a six-legged robot built at the MIT Mobile Robot Lab. While there is 
great interest in the development of practical systems, legged robots face a 
number of challenges. Many of these challenges stem from the large number 
of degrees of freedom required by legged systems. Since each leg must have 
at least two motors, the cost of building the robot is higher relative to 
those with wheels or tracks; the walking mechanism is also more complex 
and thus more prone to failure. Furthermore, control algorithms become 
more involved, as there are more motions to coordinate. Optimal control 
of walking and running machines is still an active area of research. 

140 

6.1 Locomotion 

Figure 6.2: Genghis, built at MIT, is a shoebox-sized six-legged walking robot. 

6.1.1 Wheel Arrangements 

For a wheeled robot, the designer may choose among several significantly 
different arrangements of driven and steerable wheels. Among these ar­
rangements, as illustrated in Figure 6.3, are differential drive, synchro drive, 
tricycle drive, and car drive (also known as Ackerman steering). 

Differential Drive 

From both programming and construction standpoints, differential drive 
can be one of the least complicated locomotion systems. The ThteBot 
employs this type of drive, as does the robot illustrated in Figure 6.4. The 
differential scheme consists of two wheels on a common axis, each wheel 
driven independently. Such an arrangement gives the robot the ability to 
drive straight, to turn in place, and to move in an arc. 

An important design problem for a differential drive robot is how to 
ensure balance. Some additional support, besides the two drive wheels, 
must be provided to prevent the robot from tipping over. Usually, this is 
done by adding one or two caster wheels, arranged in a triangle or diamond 
pattern. Depending on the robot's weight distribution and the strength 

141 

Silver Star Exhibit 1018 - 82



Chapter 6 Mechanics 

f.zm 
optional 
caster 

(c) (d) 

Figure 6.3: Bo~tom views of several wheel arrangements. (a) Differential drive 
uses one or possib.ly two caster wheels. (b) Synchro drive rotates all the wheels 
to~ether. !he dnvejsteer wheels are shown in two different orientations. (c) 
Tr1cycle dnve has the steering motor on one wheel and th d · · t h b · · · e nvmg moor on t e 

ack pair of wheels. (d) Car-type drive rotates the front two wheels together. 

Figure 6.4: A differential drive robot (such as this floor-cleaning prototype 
from the Robot Talent Show) can pivot about its center. ' 

142 

6.1 Locomotion 

Figure 6.5: This side view of the chassis of a differential drive robot with two 
rigidly mounted caflter wheels illustrates how undulations in the terrain can break 
the contact between drive wheels and ground, thus leaving the robot unable to 
move. 

of its motors, a triangle pattern may still leave the robot vulnerable to 
tipping. If the robot shown in Figure 6.3(a) without the optional caster, 
moves forward (to the right) rapidly and then suddenly stops, it will tip in 
the direction of motion unless its center of gravity is well to the left. 

A diamond pattern solves this problem but may introduce another prob­
lem, as is illustrated in Figure 6.5. If the caster wheels are attached rigidly 
to the robot body, then small undulations in terrain can leave the robot 
supported only by the casters. The drive wheels lose contact with the sur­
face and become unable to move the robot. Mounting the caster wheels 
in such a diamond pattern thus requires some sort of suspension system so 
that the casters can move up and down relative to the drive wheels. 

Another design consideration for differentially driven robots is how to 
make the robot go straight. As we saw with the TuteBot, even when the 
same voltage is applied to the two motors, they will turn at different speeds 
and the robot will veer to one side or the other. To make the robot go 
straight, we must ensure that the wheels turn at the same velocity. 

When the motors encounter different loads (e.g., one wheel is on carpet 
and the other, on a hard floor) motor speeds will vary and the robot will 
turn even if it was initially adjusted to go straight. This means that motor 
velocity must be controlled dynamically---there must be a means to monitor 
and change motor speed while the robot is underway. One type of control 
scheme is discussed later in section 7.8.2 (page 218). The simplicity of 
differential drive is thus somewhat offset by the increased complexity of the 
system required to control it. However, decreasing mechanical complexity 
in favor of increasing electronic and software complexity is often the most 
reliable and cost-effective trade-off. 

143 

Silver Star Exhibit 1018 - 83



Chapter 6 Mechanics 

Figure 6.6: This Real World Interface base uses a synchro drive, which steers 
all three wheels together at the same time. 

Synchro Drive 

A mechanism known as synchro drive is illustrated in Figure 6.3(b). A 
photograph of the bottom of a synchro drive base is shown in Figure 6.6. 
With the synchro drive mechanism, all wheels (usually three) both steer 
and drive. The wheels are linked in such a way that all point in the same 
direction at all times. In order to change direction, the robot simultaneously 
rotates all wheels about a vertical axis, as shown in Figure 6.3(b). Thus, 
the robot's direction of motion changes but the chassis continues to point 
in the same direction. If the robot is to have a front (presumably where 
the sensors are concentrated), additional linkages must be provided to keep 
its body pointed in the same direction as its wheels. The synchro scheme 
overcomes many of the problems of differential, tricycle, and car-type drives 
at a cost of greater mechanical complexity. 

Car and Tricycle Drives 

Car-type drive (Ackerman steering), with its four points of suspension 
provides good stability. Tricycle drive has a similar feature, with the ad~ 
vantage of being mechanically simpler, since car drive requires some sort of 
link between the two steerable wheels. In general, for both tricycle drive 
and car drive, the two fixed wheels will be connected to a drive motor and 
the steerable wheel(s) will not be driven. On some robots however the 

. ' ' steenng wheels are also driven. With car and tricycle drive, it is not nee-

144 

6.1 Locomotion 

y-axis 

s _____ ,....::.::::.::.._ 
/ 

I 
I 

/ 
/ 

I 

/ 

x-axis I 

wL----------------------x~------------------~ 

Figure 6.7: The kinematics of a tricycle drive mobile robot. A wheeled robot 
has three degrees of freedom in the plane but only two controllable parameters. 

essary to monitor wheel velocity in order to make the robot go straight. 
Simply positioning the steerable wheel at its neutral position is sufficient. 
This simplicity, however, is purchased at a price, as we will see in the next 
section. 

6.1.2 Robot Kinematics 

Robot kinematics addresses how robots move. Given that steering is set to 
such and such an angle and that each wheel turns so many times, where 
will the robot end up and which way will it be pointed? 1 

Differential and synchro drive robots have a subtle advantage over car 
and tricycle drive types. The difference is their kinematics. Consider the 
robot shown in Figure 6.7, which has three degrees offreedom when moving 
on a flat surface. Precisely what we mean by this is the following: Relative 
to some global coordinate system (labeled Win the figure), the robot can 
be at any position specified by two coordinates, x and y, and pointed in 
any direction specified by a third coordinate, angle e. These three degrees 
of freedom (x, y, e) give us the distance to and the angle between the global 
frame, W, and a local reference frame, R, on the robot. (We could have ~ut 
frame R anywhere on the robot but because the robot's center of rotatwn 
is the point midway between its two drive wheels, we chose that point.) 

I In robotics the inverse problem is usually more interesting (and more difficult). 
Given that we 'want the robot to arrive at some position, pointed in some particular 
direction, the problem of inverse kinematics is to compute the set of robot operations 
which will achieve the goal. 

145 

Silver Star Exhibit 1018 - 84



Chapter 6 Mechanics 

a) 

'•, 
'\ 

\ 
\ 

Figure 6.8: A comparison of differential drive and car drive kinematics is made 
vivid by this parallel parking example. To achieve the desired goal of being 
positioned between the two rectangles and facing to the right, the differential 
drive robot (a) moves to position and rotates in place. The position of the caster 
wheel reveals the rotation that has just occurred. No similarly simple path will 
achieve this goal for the car drive robot (b). 

We would like the ability to position and orient our robot anywhere on 
the plane. That is, regardless of where it starts out, if we give it x, y, and 
e coordinates, the robot should be able to move to that location. There is 
a problem, however. To achieve these three degrees of freedom the robot 
has only two parameters that it can control: the steering angle, o:, and the 
total distance it travels, S. This means that the robot's orientation and 
its position are coupled: In order to turn, it must move forward or back­
ward. The robot cannot go directly from one position and/or orientation 
to another, even if nothing is in the way. In order to achieve a desired 
position and orientation simultaneously, the robot must follow some path, 
possibly complex. The details of such a path are greatly complicated by 
the presence of obstacles. This is the reason parallel parking is difficult. 
However, a robot based on differential or synchro drive can, by turning in 
place, effectively decouple its position from its orientation. 

These ideas are illustrated in Figure 6.8. In both parts of the figure, the 
goal is the same: for the robot to position itself between the two rectangles 
and to point to the right. The differential drive robot in (a) achieves this 
easily; it drives to position and then turns in place to attain the desired 
orientation. But for the car drive robot in (b), no simple procedure will 
yield the same results. Although it likely can achieve the goal, a long series 
of turns and forward and back motions will be required. Deciding exactly 
which motions are to take place can be a difficult problem. 

146 

6.1 Locomotion 

0 
(a) 

Figure 6.9: Robots of the same width but different shapes encounter a narrow 
passage. A simple turn-while-in-contact algorithm allows the round robot (a) to 
negotiate the passage. Success for the square robot (b) is problematic. 

6.1.3 Robot Shape 

A robot's shape can have a strong impact on how robustly it performs. A 
noncylindrical robot runs a greater risk of being trapped by an unfavorable 
arrangement of obstacles or of failing to find its way through a narrow or 

cluttered space. 
In Figure 6.9, a cylindrical robot (a) and a square robot (b) of identical 

width encounter a narrow passage while moving to the right. A simple al­
gorithm will allow the cylindrical robot to find its way through the passage. 
The robot will drive until its bumper detects a collision; then it will stop. 
Since the collision is on its right side, the robot will turn to the left until it 
is able to go forward again. It will then proceed through the passage. This 
scheme is simple because the robot is able to rotate while in contact with 

an obstacle. 
The square robot, by contrast, must both back up and rotate if it wishes 

to use the same tactic. However, it is not clear how far the robot should 
backup and what it should do if it suffers another collision while escaping 
from the first. Thus, an algorithm designed to navigate a square robot 
through a narrow passage requires more complexity than one for a cylin­
drical robot. To understand the reason for this, we must appeal to an 
advanced concept in robotics called configuration space (see Section 6.7). 
Configuration space analysis allows us to find a path for a robot of arbitrary 
shape in an arbitrary environment. The configuration space for the robot in 
Figure 6.9(a) collapses to a two-dimensional channel. A path through t?is 
channel can be easily found using only local methods. The configuratiOn 

147 

Silver Star Exhibit 1018 - 85



Chapter 6 Mechanics 

space of the situation shown in Figure 6.9(b), however, is a complex, three­
dimensional mathematical construct. Such an arrangement is necessarily 
more difficult to search. 

6.2 Adapting Mobile Platforms 

An abundance of inexpensive and readily available mobile platforms are 
adaptable for use as mobile robot bases. These include radio-controlled 
cars, wire-guided (tethered) vehicles, and other battery-powered toys. Most 
drive types except synchro are well represented in the toy store. 

A number of strong reasons recommend choosing the drive and sus­
pension system of a toy as the base of a mobile robot. Less design and 
construction are required, as a major portion of the robot has already been 
built and the problems of mechanical power transmission and component 
placement have largely been solved by the manufacturer. Also, it is often 
much less expensive to adapt a mass-produced toy than to purchase similar 
component parts separately. 

The robot designer, however, should be aware of some typical problems 
with this approach. Such a base is usually optimized for use as a particular 
toy, not as a robot. The motors in toys typically require high current and 
provide low efficiency, which means that the design of the drive electronics 
will be more complicated and robot running time will be reduced. 

In general, the motors and gearing used by toys are designed to make the 
toys fast. Thus, control problems are often encountered when the robot is 
required to move slowly in order to respond to sensors. Also, shaft encoders 
for measuring distance and implementing a velocity-control system are usu­
ally not present and can be difficult to add. Figure 6.10 illustrates one type 
of drive train that can be acquired from toys used as radio-controlled cars 
and sold at stores such as Radio Shack. This particular drive train came 
from an old model toy, no longer sold, called a Red Fox Racer. The inter­
esting feature of the Red Fox Racer drive train was that it came equipped 
with separate drive motors for left and right wheels, which meant it could 
be fairly easily adapted for the locomotion system for a mobile robot. 

6.2.1 Identifying the Drive Type 

The least expensive mobile toys have only one motor and maneuver using a 
sequence of forward and back-and-turn motions. When the motor spins in 
one direction, the toy moves straight forward. When the motor reverses, a 
simple clutch built into the back axle causes one wheel to slip and the robot 
to turn. That is, the toy turns only when backing up. It is possible to design 

148 

6.2 Adapting Mobile Platforms 

Figure 6.10: The differential steering mechanism from ~n ine~pensive Radio 
Shack wire guided car. Two motors connected to gear trams dnve the left and 

right wheels separately. 

a robot that operates in this simple manner (such as Squirt, illus:rated i.n 
Figure 6.11), but it may become stuck in situations where backmg u.p 1s 
not possible. It is easy to recognize a toy with a back-and-turn mechamsn:, 
as its remote control will usually have only one button. When the toy ~s 
switched on it begins moving forward. When the remote control button lS 

pressed, the toy backs up and turns. 

More generally useful toys have either differentially driven wheels or 
tracks or a separate drive motor and steering motor. In the latter case, the 
steering motor may often be a simple solenoid that allows the toy to steer 
in only a small number of preselected directions. 

One way to determine which type of drive me~hanism a toy possesse~ is 
to switch it on and observe its behavior. If the dnve w~eels .change. veloc1ty 
relative to each other as the remote steering mechamsm 1s mampulated, 
then the toy is probably a differential drive type. If t~~ toy ~as stee~able 
wheels that flip between only two or three different pos1t10ns, ~t most hkely 
uses a steering solenoid. If the steerable wheels chang~ di~ectwn smoothly 
as the remote steering mechanism is moved, then steenng 1s most probably 

accomplished with a servo motor. 

149 

Silver Star Exhibit 1018 - 86



Chapter 6 Mechanics 

Figure 6.11: Squirt (right) built at MIT, is slightly larger than 1 cubic inch 
and goes forward or backs-and-turns using one motor and a clutch in the rear 
axle. Goliath (left), another MIT robot, claims the title of the world's smallest 
autonomous robot, with two motors, six sensors, two batteries, and an onboard 
computer in just over 1 cubic inch of volume. Goliath uses tank-drive differential 
steering. 

6.2.2 Electrical Modifications 

The point of modifying a toy is to make possible microprocessor control. 
Often motors, servos, and gear trains can be used in situ while the toy's 
original electromechanical controls must be discarded. Thus, it will be nec­
essary to design new drive circuitry to replace the old manually controlled 
system. Before this is possible, however, information must be obtained 
about the characteristics of the motors. Some of this information can be 
most easily acquired by temporarily leaving the toy's motors and servos 
connected to the original circuitry while measurements are made. 

The first step, then, is to disassemble the toy to the point that the 
motors and steering actuators are exposed. Identify the drive motor or 
motors, which will be connected to the toy's drive wheels via a gear train. 
The voltage the motors and servos are designed to accept is most probably 
equal to the voltage supplied by the toy's batteries. For example, if the toy 
is powered by four 1.5 volt (V) alkaline batteries, then the motors probably 
are designed to run on 6.0 V. Sometimes, however, a split power supply is 
employed, which directs half the battery voltage to each motor. This split 
power supply setup is often seen because it is simpler to design a motor­
reversing circuit if different power supplies are used for forward and reverse. 
If the supply type cannot be determined from an analysis of the original 

150 

6.3 Legged Locomotion 

wiring, turn on the toy and measure the voltage across each motor while it 
is running. 

The drive motors in virtually all toys are connected to the rest of the 
circuit by only two wires. But often a capacitor will be soldered directly 
across the leads of the drive motors. The capacitor suppresses voltage 
spikes produced by the motors and should be left in place. Disconnect the 
motors from the toy's drive electronics, and attach a wire to each motor 
lead. Ultimately, these two wires will be connected to the microprocessor­
controlled motor-drive circuitry you will design. 

Measure the resistance across the terminals of the motor with the rotor 
in several different positions. Often, the measured resistance will change 
as the brushes contact different parts of the commutator. The maximum 
current that the motor-driving circuitry must provide is the supply voltage 
divided by the average resistance. See Chapter 7 for a thorough description 
of how to design motor-driver circuitry. 

Solenoids are generally two-state devices with two electrical terminals. 
When voltage is applied, the movable core of the solenoid moves to its 
activated position. When voltage is removed, the core returns to its normal 
position. The core is attached via a linkage to the steerable wheels of the 
toy. Some solenoids can assume either of two activated positions, depending 
on the polarity of the applied voltage. 

Servo motors used for steering adhere to some more or less general 
control standards. See Section 7.6.4 (page 189) for a description of how 
servo motors are used in velocity-control feedback systems. 

6.3 Legged Locomotion 

In general, legged locomotion systems are quite complicated. There are 
however, a few simple variations. An insectlike leg can be constructed 
using only two model airplane servos, as shown in Figure 6.12. This is the 
same construction used on the Genghis robot pictured in Figure 6.2 (page 
141). 

To take a step, servo 1 first swings the leg outward, away from the body. 
This is designed to raise the leg over any obstruction. Next, servo 2 rotates 
the servo pair so as to move the leg forward. Servo 1 then rotates the leg 
downward until it makes contact with the ground. Finally, servo 2 rotates 
back, pushing the robot forward. A coordinated motion of six such legs 
allows the robot to move forward or backward or to turn. 

151 

Silver Star Exhibit 1018 - 87



Chapter 6 Mechanics 

Figure 6.12: A simple two-degree-of-freedom leg can be constructed using a pair 
of model airplane servo motors. The servo motors are attached to each other, with 
their axes of rotation 90 degrees apart. 

6.4 Construction Systems 

There are also a number of readily available construction systems that may 
be ~dapted to mobile robots. Such systems have interlocking motors, gear 
trams, and other mechanical parts; some even include simple sensors and 
switches. LEGO, Fischer-Technic, Meccano, Capsella, Erector Set, and 
others offer products of this sort. LEGO, in particular, is the construction 
medium used in a popular mobile robot design course at MIT. These build­
ing setR make robot construction simple and quick because all mechanical 
components are available from a single source and all are guaranteed to 
interface easily with each other. 

The primary disadvantage of such systems is the constraint on compo­
nent placement: You must put things where they will fit rather than where 
you want them. Another problem is the unfavorable strength-to-weight ra­
tio typical of plastic components. This can make such systems unusable for 
the construction of large robots or robots that must carry heavy loads. N ev­
ertheless, LEGO and the other sets are good choices for prototyping new 
robots. Rug Warrior II, the tank, used LEGO parts for the mechanical 
structure of its base. 

152 

6.5 Custom Construction 

Figure 6.13: Rug Warrior I uses two motors to drive the left and right wheels 
in a differential manner. A nylon caster mounted on a nonrotatable axle slips on 
the ground when the robot turns. 

6.5 Custom Construction 

If the requirements of a proposed robot cannot be met by adapting an exist­
ing toy vehicle or by using a building set, it may be necessary to construct 
the robot base from scratch. Rug Warrior I, the cylindrical version of Rug 
Warrior shown in Figure 6.13, uses a differential drive mechanism that was 
constructed from scratch, using tools and materials from a workshop. 

6.5.1 Wheel Mounting 

When building your own robot base from scratch, one thing to consider 
is the attachment of the wheels to the motors. Rug Warrior I has wheels 
mounted directly on the shaft coming from the gearbox. This configuration 
is diagrammed in Figure 6.14(a). Although simple and straightforward, 
there are potential problems with this design. The gearbox of the motor 
is required to support the entire weight of the robot. If the robot weighs 
too much or bounces too violently as it moves over uneven terrain, the 
acceptable side load (force perpendicular to the output shaft) of the gearbox 

153 

Silver Star Exhibit 1018 - 88



Chapter 6 Mechanics 

Motor 

(a) 

Gear 
head Wheel 

Motor 

Mounting 
block 

Gear _ Pulley 
head 

Belt 

Wheel 

(b) 

Figure 6.14: Two common wheel-mounting systems are direct attachment and 
belt-and-pulley systems. (a) A wheel can be directly attached to a gearbox shaft. 
(b) Gears can also be isolated from shock and wheel load by a belt. 

can easily be exceeded. The manufacturer typically specifies the acceptable 
side load for a motor or gear output shaft in the motor data sheet. You 
should check carefully the gear specifications before making this design 
choice. If the side load is exceeded, the life of the motor or gearbox will be 
shortened. 

There are several ways to avoid this problem. A beefier, more expensive 
gearbox can be used, or the wheel can be supported at two points by running 
the gearshaft through the wheel and attaching the shaft to a mount on the 
other side. Another alternative is shown in Figure 6.14(b), where the motor 
and gearbox can be isolated from the side loads and shocks using a belt­
and-pulley system. 

As mentioned earlier, in order to be balanced, a differentially driven 
robot must have at least one supporting wheel in addition to its two drive 
wheels. Ideally this would be a caster-a wheel free to rotate and to swing. 
But there are several conflicting constraints on the design of this wheel, 
which is depicted in Figure 6.15. The caster must have a large diameter so 
that it can ride over obstacles as large as the drive wheels can surmount. 
It also must have a large trail so that it can swing freely when a side force 
is applied, and it must fit entirely beneath the force-sensing skirt so that it 
does not collide undetectably with obstacles. 

In order to simplify the mechanics, a compromise was made on Rug 
Warrior I in the design of the supporting wheel. The wheel is not a true 
caster at all; it is a ball with a fixed axle running through the center. As 

154 

6.5 Custom Construction 

~,:::·~,' 8 ~ 8 
I -

)i Trail K (b) 
(a) 

Figure 6.15: A caster wheel invokes a number of design considerations. (a) 
It should spin freely, so that the robot can turn easily, and be large enough to 
surmount obstacles. (b) A simpler solution is the caster used by Rug Warrior I, 
which is simply a nylon ball mounted on an axle. When the robot turns, the ball 

slides. 

such, the wheel must slide sideways when the robot turns in place. This is 
easily accomplished, however, because the wheel is spherical and made of 
nylon so that it slides easily. Also, the robot is balanced in such a way as 

to minimize weight on the rear wheel. 

6.5.2 Sheet Metal 

One of of the simplest yet most effective ways to build a robot is to design 
a body made of formed sheet metal, in particular, aluminum. There are 
different kinds of aluminum. Some are designed to be bent, while others are 
hard and brittle and will break rather than bend. Aluminum is easy to work 
with and can produce a lightweight, rugged chassis. Metal-working tools 
found in a machine shop, such as a shear and a brake, are convenient for 
forming aluminum pieces. (A shear is a tool that slices off strips of metal; 
see Figure 6.16. A brake is a machine for bending metal; see Figure 6.17.) 

An effective way to work with sheet metal is to lay out cuts, bends, 
and holes on a piece of paper (perhaps using a computer drawing program) 
and then tack this template directly to the aluminum sheet with rubber 
cement. This trick, illustrated in Figure 6.18, will save a great deal of work 
over transferring your markings to the metal. One caveat is in order here. 
Except for small parts, templates should be made with pen plotters rather 
than laser printers. Because of the uncertainties in the way paper feeds 
through a laser printer, the aspect ratio cannot be guaranteed and so, in 
general, a vertical inch will not equal a horizontal inch. 

155 

Silver Star Exhibit 1018 - 89



Chapter 6 Mechanics 

Figure 6.16: A shear machine is used for cutting sheet metal. This machine is 
operated with a foot pedal; when the pedal is pressed, a large knife edge moves 
down and slices the piece of aluminum placed underneath. 

Figure 6.17: Sheet metal can be bent into a wide variety of shapes using a 
brake. The brake has one arm that can clamp the aluminum onto the base table 
of the brake. The table can then be rotated up, which makes the aluminum fold. 

156 

6.5 Custom Construction 

Figure 6.18: A template produced by a pen plotter has been glued to an alu­
minum piece. Markings indicate all cuts, holes, and bends to be made. 

A punch is the fastest, most effective, and safest way to cut holes or other 
shapes in sheet metal. Although drills are commonly used for this purpose, 
they can be quite dangerous unless the metal is clamped or otherwise held 
in place. If the drill bit binds while a hole is being cut, the entire work piece 
may begin to spin. This can be almost as dangerous as using a circular saw 
from which the guard has been removed. 

6.5.3 Acrylic 

In addition to aluminum, another popular choice for robot body material is 
acrylic. Like aluminum, acrylic forms a strong lightweight body and can be 
worked with readily available tools; it also bends easily with the application 
of heat. Rug Warrior I was built from an acrylic chassis. 

The body of Rug Warrior I was constructed by first using a band saw 
to cut out the acrylic chassis and skirt pieces. A band saw is shown in 
Figure 6.19. The chassis was drawn using a computer drawing program, 
and the drawing was printed out and then attached to a piece of acrylic. The 
template of the mechanical base of Rug Warrior I is shown in Figure 6.20. 
Mounting holes were then drilled in the 1/16-inch thick acrylic sheet of the 
skirt and the 1/8-inch thick chassis pieces. To form the skirt, we heated 
the acrylic sheet in an oven at approximately 300 degrees Fahrenheit for 
several minutes. Then, using oven mitts, we wrapped the sheet around a 
cylindrical object with a diameter close to that of the robot and held the 
acrylic in place until it cooled. 

157 

Silver Star Exhibit 1018 - 90



Chapter 6 Mechanics 

Figure 6.19: A band saw is a useful tool for forming acrylic. Cuts can be made 
with accuracy and speed. 

Figure 6.20: The chassis of Rug Warrior I is essentially a disk of acrylic with 
notches cut to accommodate the wheels. Holes are drilled at the locations marked 
to mount the microswitches, circuit board, caster ball, and motors. 

158 

6.6 Exercise 

Readers who attempt a similar procedure should use great caution. 
Acrylic may catch fire if it comes into contact with hot electrical elements 
or flame. Touching the hot acrylic can also cause painful burns. As always, 
it is best to practice a new procedure with some scrap material. 

6. 6 Exercise 

Try building your own platform for a Rug Warrior. LEGOs or a toy car 
might be an easy starting point. Perhaps if you have access to a machine 
shop, you can create a more sophisticated base than the ones shown here. 
Because the Rug Warrior board is so small, your base will not have to carry 
much payload weight. Lots of interesting mechanisms can be created from 
LEGO and other construction kits. Don't hesitate to use double-sticky 
tape, glue, and Velcro. Try lots of ideas. Build a walking machine! 

6.7 References 

Many of the photographs illustrating the variety of possible mechanical 
platforms in this chapter were robots built at the MIT Mobile Robot Lab. 
A few were built at other research laboratories. 

Rocky III, in Figure 6.1, was built at the Jet Propulsion Laboratory in 
support of Mars rover development (Miller et al. 1992). Genghis, the six­
legged robot of Figure 6.2 was designed in a bachelor's thesis (Angle 1989) at 
the Mobile Robot Lab by Colin Angle and programmed by Rodney Brooks 
(1989). The floor-cleaning robot in Figure 6.4 was a product of the Robot 
Talent Show and built by Joe Jones. The synchro drive base pictured in 
Figure 6.6 was a product of Real World Interface. 

The world's smallest robot, Goliath (left in Figure 6.11) was an under­
graduate project at the Mobile Robot Lab designed by James McLurkin. 
Squirt (right in Figure 6.11), which once held the "tiny" title, was built in 
1988 by Anita Flynn, Rodney Brooks, William Wells, and David Barrett 
(Flynn et. al. 1989). 

The section on robot kinematics and configuration space stemmed largely 
from the work of Tomas Lozano-Perez. More in-depth discussion can be 
found in Lozano-Perez, Jones, Mazer, and O'Donnell (1992). 

159 

Silver Star Exhibit 1018 - 91



7 

Motors 

7.1 Variety Abounds 

A few years ago, a computer was the largest and most expensive component 
of a robot, while motors and batteries consumed only small percentages of 
the budget. These days, while motors and batteries have changed little, 
the relationship has flipped. Microelectronics have shrunk in size and cost 
so drastically that, for the types of mobile robots we describe in this book, 
the motors and gears will typically be the most costly items. 

An electric motor converts electrical energy to mechanical energy. Mo­
tors come in all manner of shapes and sizes. There are electromagnetic 
direct current (DC) motors and electromagnetic alternating current (AC) 
motors and a number of variations of each. AC motors are typically used 
for large machinery (such as machine tools, washers, dryers, and the like) 
and are powered from an AC power line. You might run across AC mo­
tors with titles such as single-phase, split-phase, capacitor start, permanent 
split-capacitor, shaded-pole and three-phase motors. AC motors are seldom 
used in mobile robots because a mobile robot's power supply is typically a 
DC battery. 

We will focus on DC motors in this book. DC motors are commonly used 
for smaller jobs and will suit our purposes well. They also appear in a large 
variety of shapes and sizes: permanent magnet iron core, permanent magnet 
ironless rotor, permanent magnet brushless, wound field series connected, 
wound field shunt connected, wound field compound connected, variable 
reluctance stepper, permanent magnet stepper, and hybrid stepper motors. 

For a robot's needs, a DC motor usually runs at too high a speed and 
too low a torque. In order to swap these characteristics, a DC motor must 

Silver Star Exhibit 1018 - 92



Chapter 7 Motors 

Figure 7.1: These DC gearhead motors manufactured by Escap are permanent 
magnet ironless rotor models with 54:1 and 27:1 geartrain ratios. The motor 
on the left has an attached printed circuit board, which interfaces to a position 
encoder encapsulated in the motor housing. 

be geared down. Connecting the shaft of a motor to a geartrain causes 
the output shaft from the geartrain to rotate much more slowly and to 
deliver significantly more torque than the input shaft. A geartrain can 
be assembled discretely and attached to the motor shaft, or a DC motor 
can be purchased with the geartrain already prepackaged inside the motor 
housing. 

These compact motors are termed DC gearhead motors and will be 
most useful in putting together a small robot. DC gearhead motors are 
normally based on permanent magnet ironless rotor motors in order to 
be as lightweight as possible. They can also be purchased with position 
encoders integrally connected. Figure 7.1 illustrates two conventional DC 
gearhead motors. 

Most DC motors have two electrical terminals. Applying a voltage 
across these two terminals will cause the motor to spin in one direction, 
while a reverse polarity voltage will cause the motor to spin in the other 
direction. The polarity of the voltage determines motor direction, while 
the amplitude of the voltage determines motor speed. 

However, some DC motors, such as stepper motors, have more than two 
electrical terminals, often up to six or eight. Signals are applied to these 
wires, which energize different coils inside the motor sequentially. The 
rotor is subsequently attracted to each portion and "stepped around" in a 

162 

7.1 Variety Abounds 

continuous fashion. Thus, the timing of these signals determines the motor 
speed, the phase between the signals determines the motor direction, and 
the number of commands determines the motor position. 

Another type of DC motor with more than two electrical terminals is 
an assembly known as a servo motor. Although the term servo motor 
is used in a variety of contexts, what we are talking about here is the 
three-wire DC servo motor that is often used for a control surface on a 
model airplane or for a steering motor on a radio-controlled car. This 
type of assembly incorporates a DC motor, a geartrain, limit stops beyond 
which the shaft cannot turn, a potentiometer for position feedback, and an 
integrated circuit for position control. Of the three wires protruding from 
the motor casing, one is for power, one is for ground, and one is a control 
input where a pulse-width signals to what position the motor should servo. 
When we speak about a motor servoing to a position, we mean that an 
electrical circuit directs the motor to rotate to the commanded position 
and keeps it there. If you try to grab the motor shaft while the servo 
loop is running, and forcibly rotate the shaft to a different position, the 
electrical circuit will read the angle of the potentiometer, realize that the 
shaft is no longer at its commanded position, and increase the current to 
the motor. This will increase the torque the motor puts out and the motor 
will push back against the torque you are applying with your hand. The 
servo motor will continue to do this until the shaft has rotated back to its 
commanded position. [A servo motor then is an assembly which consists 
of a DC gearhead motor, a position sensor on the shaft, and an integrated 
circuit for control, all packaged into the casing of the servo motor J 

The flaps and control surfaces on model airplanes do not have to rotate 
continuously, so limit stops are added to these motors and a single-turn 
potentiometer then suffices to provide position information back to the 
integrated circuit that controls the motor position. Servo motors can be 
extremely compact and easy to control, and because they are mass produced 
for the toy industry, they are often cheaper than other DC gear head motors. 
Although they rotate less than 360 degrees and hence are not suitable for 
wheeled robot propulsion, these model airplane servo motors often find 
their way into robot grippers, arms, and legs. Figure 7.2 shows both a 
servo motor and a stepper motor. 

If you want to skip ahead to building Rug Warrior's locomotion system, 
we will tell you right now that our choice was to take Royal Titan Maxi 
Servos, available from Tower Hobbies, strip out the controller chips and 
potentiometers and remove the limit stops, and use these motors as con­
tinuously revolvable DC gearhead motors to drive Rug Warrior's wheels. 
This is the cheapest, simplest solution we could find for this book's example 
robot. 

163 

Silver Star Exhibit 1018 - 93



Chapter 7 Motors 

Figure 7.2: Shown on the left is a Futaba servo motor and on the right, a stepper 
motor. Note the three-wire lead on the servo motor and the six wires protruding 
from the stepper motor. 

DC motors are also characterized another way: as either brush-type or 
brushless motors. These designations refer to the manner of commutation 
used that converts direct current from the battery into the alternating cur­
rent required to generate motor action. If the DC current is commutated 
mechanically with brushes, the commutator segments at the ends of the 
rotating rotor coil physically slide against the stationary brushes that are 
connected to the motor's terminals on the outside of the case. If the DC 
current is converted into AC current in the rotor electronically, with posi­
tion sensors and a microprocessor controller, then no brushes are needed. 
Brush-type motors are more common and cheaper. Brushless DC motors 
have an advantage over brush-type motors in that friction is reduced, lead­
ing to longer life and finer control for the motor. Also, brushless motors 
can produce less radio frequency interference. The trade-off is that brush­
less DC motors require more extensive control circuitry in order to do the 
commutation electronically. 

In addition to electromagnetic DC and AC motors, there are a few other 
types of motors that are not electromagnetic. Piezoelectric ultrasonic mo­
tors, which can be found in autofocus lenses in some new Japanese cameras, 
work on the principle of mechanical bending of a piezoelectric ceramic, us­
ing frictional coupling to a rotor. The Japanese have also introduced these 

164 

7.1 Variety Abounds 

Figure 7.3: This 8 millimeter (mm) diameter piezoelectric ultrasonic motor, 
built at the MIT Mobile Robot Lab, is composed of two pieces: the stator and 
the rotor. The stator, shown on the left, is a steel ring with piezoceramics bonded 
onto the bottom that causes a wave to travel around the ring. The top piece, the 
rotor, is made of brass and, when pressed against the stator, is dragged along and 
spins. The stator with a rotor on top is illustrated on the right. 

motors into headrest actuators in new luxury cars, paper pushing mech­
anisms in copiers, and in tinier versions in wristwatches for use as silent 
(vibrating) alarms. Ultrasonic motors, in contrast to conventional electro­
magnetic motors, spin at lower speeds and with higher torques, alleviating 
the need for geardown. This means they can be compact and lightweight, 
but the frictional coupling between rotor and stator results in problems of 
wear. A small piezoelectric ultrasonic motor is shown in Figure 7.3. 

Also, in research labs around the world, electrostatic motors are being 
micromachined out of silicon in dimensions on the scale of a human hair. 
Electrostatic motors work on the principle of charge attraction, where a 
force is created as two charged plates slide past each other. At small scales, 
electrostatic forces can be relatively strong, but for large motors, electro­
magnetic forces are more effective. Although micromotors have not reached 
the stage of practical use, they are intriguing. 

Shape memory alloys can also be used for robot actuation. A shape 
memory metal such as Nitinol changes shape reversibly on being heated 
and cooled. Mondo-tronics, Inc., sells a small, six-legged robot (shown in 
Figure 7.4) that is actuated by these materials. When the wire is heated by 
passing current through it, the wire changes shape and shrinks, causing a 
leg to lift. When the wire is cooled (i.e., when no current is passing through 
it) the wire changes back to its original longer shape and the leg goes back 
down. The wires are attached to the legs in such a way that, while three 
legs lift the others push backward. Alternating this pattern between the 
two sets of three legs causes the robot to propel itself forward. Plans and 
instructions for building a similar microrobot called Stiquito are available 
to the public. If you have access to the Internet, you may acquire this 

165 

Silver Star Exhibit 1018 - 94



Chapter 7 Motors 

Figure 7 .4: This 10 centimeter (em) robot from :\londo-tronics weighs 50 grams 
(g) and is actuated by shape memory wires which are wrapped around various 
screws mounted on the legs and body. Passing 200 milliamperes (rnA) of current 
through a sequence of wires causes alternating legs to lift up and move forward. 

information via anonymous FTP. Connect to site cs.indiana.edu, and look 
in the pub directory. 

Even more esoteric is a new class of actuators that are starting to appear 
in research laboratories around the world. These are cottonlike fibers that 
act similarly to artificial muscles. \Vith the alternating addition of acidic 
and basic solutions. these actuators can shrink and expand up to 1,000 
times their original volume with strength and speed equal to those of human 
muscle. While still a laboratory curiosity, these polymer gels may prove to 
be the technology of the future. 

7.2 How a DC Motor Works 

For the project at hand, let us focus on how permanent magnet DC gear­
head motors work. Understanding the mechanism behind the production 
of torque is helpful when trying to read a motor specification sheet for 
choosing the correct-sized motor. Such understanding will be helpful again 
later, when designing the power electronics for controlling the motor from 
a microprocessor. 

166 

This is ThteBot, a tutorial robot, a machine made from LEGOs with an ana­
log brain assembled from electronic parts available at Radio Shack. ThteBot 
is able to follow walls. yet is simple enough to help overcome the inertia of 
getting started in robotics. 

The Rug \Varrior class of robots are microprocessor-controlled and have 
ten sensors and two motor drivers onboard. Rug \Varrior I here has a 
cylindrical bump skirt for detecting collisions and is driven by two motors 
in a differential manner. 

Silver Star Exhibit 1018 - 95



Rug Warrior II, the tank, bas the same electronics and sensor suite, but its 
mechanical base is built from LEGO parts to make a tank-drive lor.omotion 
system. 

These photographs illustrate the internals of a Royal Titan :Maxi servo mo­
tor. At left, the top cover of the servo motor is removed, revealing the gear 
t rain. At right is a bottom view of the motor casing which shows the DC 
motor, the potentiometer, and the control circuit. 

7.2 How a DC Motor Works 

N s 

~motion 

~ f" 
Figure 7.5: A magnetic Oux field, B , is set up by the permanent magnets in 
the direction from north pole t~ south pole. A current-carrying conductor placed 
in such a field experiences a force acting on it. The resultant force is directed 
downward. 

Electromagnetic forces in DC motors come about when current-carrying 
conductors are placed in magnetic fields, as illustrated in Figure 7.5. Mag­
netic fields can be generated by permanent magnets. Flux lines across 
an air gap flow from one magnet's north pole to another magnet 's south 
pole. The Lorentz force law states that current-carrying conductors placed 
in magnetic fields create forces. The force, F , created is perpendicular to 
both the direction of the current, I , and the direction of the Bux field, B . 
The direction of F is determined by the right-hand rule, where the fingers 
curl from the direction of the current toward the direction of the Bux field 
and the thumb points in the direction in which the resultant force is created. 
In the case of Figure 7.5, the force produced is in the downward direction. 

Rotary motion requires a loop of wire. Figure 7.6(a) shows a loop of 
wire mounted on an axis of rotation and situated in the Bux field set up 
by the permanent magnets. Figure 7.6(b) illustrates the resulting forces. 
Because forces are created in a direction perpendicular to both the current's 
direction and the magnetic field 's direction, current going into the loop 
along the top generates, according to the right-hand rule, a force acting 
downward. Current coming out along the bottom portion of the loop creates 
a force acting upward. The force disparity, acting at a distance from the 

167 

Silver Star Exhibit 1018 - 96



Chapter 7 Motors 

] ----· ----------c .. 
8-~ F F - 5 

torque 

------------- ---

(b) 

Figure 7.6: (a) This loop of wire has current flowing into the page on the left 
side and out of the page on the right. (b) The resulting oppositely directed forces, 
acting at a distance from the center of rotation, cause the loop to rotate until it 
is vertical. 

center of rotation, causes the loop to experience a torque. The loop will 
rotate until a force disparity no longer exists. That point would be reached 
when the plane of the loop is vertical and the forces on the top and bottom 
portions of the loop would both act through the center of rotation, resulting 
in zero torque. 

Continuous rotary motion can be achieved by reversing the direction of 
the current just as this point is about to be reached. Ihe process of deriving 

Jhis necessary alternating current from a DC battery is called commutatiQn. 

Mechanical commutation requires a set of brushes that allow the ends of 
the loop of wire to slip across the contacts of the battery. The commutator 
setup is shown in Figure 7.7. 

A disassembled DC gearhead motor is shown in Figure 7.8. A large 
number of loops of wire are usually incorporated in order to increase the 
torque of the motor. These loops are wrapped around an armature that can 
contain an iron core for increased flux or be ironless for lighter weight. Two 
half cylindrically shaped permanent magnets are housed along the inside of 
a steel casing, which provides a flux return path. The wound armature is 
fitted between the magnets, leaving a small air gap. As the current through 
the armature alternates, a force is created, causing the armature and the 
shaft to rotate. 

168 

7.2 How a DC Motor Works 

Commutators 

Figure 7.7: A commutation system using brushes is one way to make a DC 
motor. The commutator segments are attached to the loop of wire and rot~te 
with it, while the brushes remain stationary as the commutator segments shde 

past. 

Figure 7.8: A permanent magnet DC gear head motor shown here has ~een re­
moved from its housing. Windings ofthe armature around a centr~l core w1th en~s 
connected to commutator segments can be seen at the right, wh1le the geartram 
is mounted on the shaft at the left. A cylindrical housing (not shown) fits around 
the armature and holds two permanent magnets along its inner shell. 

169 

Silver Star Exhibit 1018 - 97



Chapter 7 Motors 

7.3 Sizing a DC Motor 

Selecting an appropriate motor for your robot involves both understanding 
the loads that the robot will impose on the motor and the performance that 
the motor can deliver, as detailed in the manufacturer's data sheets. Some 
manufacturers present the pertinent characteristics in the form of a graph, 
while others list the specifications in table format. Sometimes, if the motor 
is obtained from a surplus dealer or extracted from a toy, it is not possible 
to obtain data sheets, in which case simple experiments can be performed 
to measure the pertinent characteristics. Whatever the case may be, it is 
useful to have a clear understanding of the motor language and to brush 
up on the conversions between various units of measurement. 

7.3.1 Torque, Speed, Power, and Energy 

Torque is the angular force that a motor can deliver at a certain distance 
from the shaft. For instance, 5 oz.-in. of torque means that, at a distance 
of 1 inch away from the shaft of a motor, the motor is strong enough to 
pull up a weight of 5 ounces through a pulley (see Figure 7.9). In metric 
units, motor torques are often specified in Newton-meters (Nm). (When 
you try to imagine how much force a Newton is, think of the weight of an 
apple. A force of 1 Newton is about equal to the force that gravity exerts on 
one apple's mass.) Alternatively, metric units for torque can also be found 
specified in terms of gram-force-centimeters (gf-cm), where a gram-force is 
meant to signify the force that gravity exerts on 1 gram of mass. We will 
stick to metric units in this book, but some conversions to keep handy are: 

kg-m lb 1 N=1 sec2 = 0.225 

1 kg=2.21lb (mass) and 1 in=2.54cm 

Also, when we begin to talk about electrical power being converted to 
mechanical power in a motor, it is useful to keep straight the relationships 
involving power (in watts) and energy (in joules). Power is the rate at 
which you are using up energy. The relationship between power and energy 
is expressed as: 

1 Watt-1 Joule - sec 

Figure 7.9 illustrates the electrical to mechanical power conversion of 
a DC motor. The electrical power supplied to the motor, Pe, equals the 
voltage, V, across the motor's terminals times the current, I, through the 
motor. The current, measured in units of amperes, is the amount of charge, 
in coulombs, passing through any cross-section of a conductor per second: 

170 

7.3 Sizing a DC Motor 

Pe =VI 

Coulomb 
1 Ampere = 1 sec 

1 Watt 
.,.r 1 Coulomb 

1 Volt· Ampere= 1 vo t · sec 

Mechanical power, Pm, equals the torque, T, output by the shaft times 
its angular speed, w, where the torque is .taken in Newton-meters and the 
angular speed is measured in units of rad1ans per second: 

Pm=Tw 

1 Nm 
1 Watt sec 

Since power is energy per unit time, this tells us that one joule of energy 
can be expressed in two ways: either as 1 Newton-meter or as 1 coulomb-

volt: 

1J=1Nm and 1J=1CV 

This is just reaffirming the fact that ene~gy is energ~, ':'hether it comes 
from a mechanical origin or an electrical origm. A motor 1s JUSt a transducer 
transforming energy from one form to another. 

7.3.2 A Motor Model 
These relationships, describing the conversion of electrical power to me­
chanical power in a permanent magnet DC motor, can be clea~ly seen by 
the equivalent circuit model shown in Figure 7.~. ~he mec~amcal output 
power (due to losses from friction, windage, heatmg m. the cmls, an~ so. on) 
will be some fraction of the electrical input power. Th1s percentage lS giVen 

as the efficiency, ry, where: 

Pm = 'T]Pe 

The rotor coil that we saw in Figure 7.6 is essentially an inductor w.it~l a 
resistance R. When the rotor is turning, the commutator segme~ts. shdmg 

ast the brushes create an alternating current in the armature wmd1?gs. A 
~hanging current, *' through an inductor induces a voltage across 1t: 

v Lili 
dt 

171 

Silver Star Exhibit 1018 - 98



Chapter 7 Motors 

T.w 

+ 

v 

Figure 7.9: A simple model of a DC motor is an equivalent circuit that models 
the motor windings as having a resistance, R, and generating (when running) 
a back-emf voltage, e. The electrical power input to the motor is the product 
Pe VI, and the mechanical power output is the product of torque and rotational 
speed, Pm = Tw. 

where Lis the proportionality constant called the inductance. As the motor 
turns, this voltage is induced and opposes the applied driving voltage. The 
faster the motor turns, the more often the current switches direction, and 
so the larger the induced voltage becomes. Since this voltage opposes the 
applied drive voltage, as it increases, it tends to limit the current through 
the resistance, R. As the current falls, less flux is created around the 
conductor and the torque also falls. In summary, as the speed goes up, the 
torque goes down. 

The rotating motor then can simply be modeled by the induced voltage, 
e, called the back-emf (emf stands for electromotive force) and the winding 
resistance, R. The applied voltage is related to the back-emf and the current 
through the motor by: 

V=IR+e 

Note that, when the motor is not rotating, e is 0 V and the current 
through the motor is just equal to the applied drive voltage divided by the 
resistance. This is the current required to start the motor from zero speed, 
called the starting current or stall current, Is: 

Is=* 

When the rotor is rotating, e increases proportionally with the speed of 
the armature: 

172 

7.3 Sizing a DC Motor 

where ke is called the back-emf constant. The applied voltage is then related 
to the current and the armature speed by: 

V = IR+kew 

The negative feedback provided by the back-emf causes the motor to 
settle to a steady-state operating point of speed and torque, as determined 
by the load and the applied voltage. The torque that the motor produces 
is dependent on the flux field around the loop of the conductor, and that 
flux is controlled only by the current. The torque increases linearly with 
current with a proportionality constant kt, known as the torque constant: 

Solving for I and plugging it into the equation above, we get: 

V = ~~ +kew 

It turns out that kt is actually equal to ke. We can see this from the fact 
that the mechanical power output by the shaft will be the electrical power 
input, minus the I 2 R losses due to heating in the resistor: 

Pm = Pe I 2R 

Plugging in forT and V, 

ktiw=(IR+kew)I I 2R 

gives 

kt = ke = k 

The applied voltage is then related to the torque and speed by the 

constant k: 

V = TkR + kw 

Rearranging, we find that the speed-torque relationship is linear with a 

negative slope: 

w= 

These relationships can be more clearly seen when plotted along with 
the motor performance curves. 

173 

Silver Star Exhibit 1018 - 99



Chapter 7 Motors 

T 

Figure 7.10: For a given voltage, a DC motor has the typical drooping char­
acteristics of speed, N, decreasing linearly with torque, T. As the current, I, is 
increased, the torque is increased, also linearly. Power output, P, is the prod­
uct of torque and speed and has a quadratic characteristic. Maximum efficiency, 
7)m""'' occurs at a lower torque than the maximum power output torque. 

7.3.3 Speed-Torque Curves 

The speed and torque characteristics for a DC motor depend on a variety 
of parameters that have to do with the geometry of the motor, the materials 
involved, the number of windings, and the voltage at which the motor 
is driven. Typically, a manufacturer provides a data sheet showing the 
pertinent characteristics. These are usually illustrated in a speed-torque 
graph for a given applied drive voltage. Efficiency, current, and power 
output are often plotted along with speed on the vertical axis against torque 
on the horizontal axis, as shown in Figure 7.10. 

We can see in Figure 7.10 that the speed-torque curve is linear, with 
a negative slope as we derived, and has a y-intercept dependent upon the 
applied voltage. Also, the current increases linearly with torque and is 
independent of applied voltage, as we showed earlier. The power curve has 
a negative quadratic form which is understood by remembering that: 

Pm=Tw 

and plugging in our equation for w: 

where we see the negative quadratic dependence of power on torque. 
You will find it useful to check a few points of interest on a motor data 

sheet in choosing the most appropriate motor for your robot. The no-load 

174 

7.3 Sizing a DC Motor 

speed, marked No in Figure 7.10, is the speed, at a given voltage, at which 
the torque is 0. ( N usually refers to the angular speed in units of rpm. 

Remember to convert to r:e1s when plugging into these equations for w.) 
This is the speed of the motor with nothing attached to the shaft. That is, 
the no-load speed, the value of w for T = 0, is just 

The current in this no-load condition, I 0 , is called the no-load current 
and is that required to overcome motor friction and windage. 

At the other end of the scale, the torque that the motor can deliver just 
as it stalls and can no longer rotate is known as the stall torque, T s. The 
current at this condition, I 8 , is the stall current. Since the motor is not 
moving when stalled, the back-emf is 0 and the maximum current, Is, is 
just the applied voltage divided by the coil resistance, as mentioned earlier. 
Torque being proportional to I, the maximum torque is: 

T 
_ kV 

S-7[' 

At any given point of operation of torque and speed, the mechanical 
power output is the product of the two. The torque at which the maximum 
power occurs can be found by taking the derivative of the power with respect 
to the torque, setting the result equal to 0, and solving forT: 

dPm _ 0 __ 2RT + .!:::_ 
dT - - k 2 k 

T- kV 
- 2R 

or 

Thus, the point of maximum power output is attained at half the stall 
torque. The corresponding speed at this operating point is then found to 

be: 

R kV V _ V 
W = - k2 2R + k - 2k 

or 

W = ~Wmax 

175 

Silver Star Exhibit 1018 - 100



Chapter 7 Motors 

N 

~-------.::>1----....::.&....T 

(a) 
T.' s Ts 

N 

Geardown=G 

,_) 
................. 

' ... 
~---~=----~~T 

T5 GT5 
(b) 

Figure 7.11: (a) Running the motor at a lower voltage causes it to slow down 
for all values of torque output. (b) Gearing down the motor reduces the speed 
by the gear ratio, G, and increases the torque by the same factor, G. 

The maximum power then is simply: 

The ratio of mechanical power output to electrical power input is the 
efficiency, TJ. Note that maximum efficiency cannot be achieved at maxi­
mum power output. In fact, the point of maximum efficiency, where you 
would like to drive your motor, is a low-torque, high-speed operating point. 
Consequently, we typically select an oversized motor so that it can run at 
an efficient operating point while supplying enough torque. 

It turns out that the maximum efficiency, for reasons we will not go into 
here, can be calculated from the measurements of the no-load current, I 0 , 

and the stall current, Is: 

T/max = (1- /Ji)2 

This can be useful for characterizing a motor for which you do not have 
data sheets. 

The data shown in Figure 7.10 are for one given value of applied voltage. 
If the motor is run at a lower voltage, the speed-torque line shifts downward 
as shown in Figure 7.1l(a). As the voltage is decreased, the speed and the 
torque are both decreased. Changing the voltage changes the speed of the 
motor. Another way to change the speed without having such an adverse 
effect on the torque (in fact, a method that has an advantageous effect 

176 

7.4 Gears 

(a) (b) (c) 

(d) (e) (f) 

Figure 7.12: (a) Spur gears mesh pairs of gears with different numbers of teeth 
to achieve speed reduction. (b) Planetary gears have several gears meshed in an 
outer ring for large reduction. (c) Worm gears produce rotary motion at right 
angles to the shaft. (d) A lead screw and nut can create linear motion as can (e) 
rack-and-pinion systems and (f) belt-and-pulley drives. 

on the torque) is to use a geardown. As shown in Figure 7.11(b), gearing 
down the motor by, say, a factor of 2, cuts the no-load speed in half while 
doubling the stall torque. Thus, power is maintained constant through 
a lossless (frictionless) geartrain. Typically though, there are losses both 
through the motor and again through the geartrain. Good motors these 
days might have efficiencies of 90% or better, but cheap toy motors (like the 
ones we will use in Rug Warrior) might be only 50% efficient, at maximum. 
Adding these losses to those through the geartrain and then taking into 
account the losses between wheels and the ground (from friction, slippage, 
etc.) results in a system that is not very efficienL For Rug Warrior, most of 
the energy from its battery pack goes into the propulsion system. Powering 
Rug Warrior's computers and sensors will be practically insignificant in 
comparison. 

7.4 Gears 

Geartrains and transmission systems come in a variety of forms, such 
as spur gears, planetary gears, rack-and-pinion systems, worm gears, lead 
screws and belt-and-pulley drives. Figure 7.12 illustrates a number of these 

177 

Silver Star Exhibit 1018 - 101



Chapter 7 Motors 

mechanisms. High-quality geartrains are usually metal, but plastic gears 
are often found in toys. 

The DC gear head motor shown earlier in Figure 7.8 had a spur gear set 
on the output shaft. Spur gears are the most common forms of gears found 
in DC gearhead motors. A schematic of a two-level spur geartrain is shown 
in Figure 7.12(a). The small gear, mounted directly on the motor shaft, is 
called a pinion and has to rotate many times to turn the gear it is meshed 
to once. Thus, even though the pinion may spin very quickly, the gear it 
is attached to spins very slowly. If A, B, C, and D denote the number of 
teeth on each corresponding gear in the figure, then the speed of the output 
shaft is related to the speed of the input shaft by: 

where the final speed has been decreased by the geardown ratio. 

Planetary gears are similar to spur gears but are less common in low-end 
gearhead motors and are slightly more expensive. The difference between 
planetary gears and spur gears is that planetary gears, as shown in Fig­
ure 7.12(b), fit a number of gears concentrically inside a toothed ring. This 
configuration produces greater efficiency and higher output torques in a 
smaller package. Planetary geartrains are sometimes found in portable 
battery-powered screwdrivers and drills. 

Worm gears are another means for achieving large geardown in a small 
space. Worm gears, shown in Figure 7.12(c), instead of having teeth, are 
threaded and match to a lead screw attached to the shaft of the motor. In 
this way, the output motion is turned to right angles from the motor shaft. 

For linear motion, a lead screw and threaded nut can be used. Fig­
ure 7.12(d) illustrates how the motor shaft turns the lead screw and a 
threaded nut moves linearly down the shaft, depending on the number of 
threads per inch on the lead screw. Lead screws can give very large gear­
down but are not very efficient. 

Rack-and-pinion systems, Figure 7.12(e), also turn rotary motion into 
linear motion. In this case, a small pinion gear on the motor shaft rotates 
against a straight length of rack having matching teeth, propelling the rack 
linearly back and forth. 

Another linear motion mechanism is the belt-and-pulley system, shown 
in Figure 7.12(f). This is the mechanism used to drive a tank-treaded 
vehicle, such as we will describe later for Rug Warrior. 

178 

7.5 Motor Data Sheets 

D.C. motor 
escap® 16M 11 

Standard types available from stock 

Av. no-load current 

Thermal resistance 

-210 -208 -207 -205 

Figure 7.13: The Escap model16Mll-210 DC motor is a 6 volt (V) motor with 
a no-load speed of 8,400 revolutions per minute (rpm) and a stall torque of 3 
milli-Newton-meters (mNm). (By courtesy Portescap, Inc.) 

7.5 Motor Data Sheets 

While it is possible to buy a plain DC motor and attach any number of 
gear-reduction mechanisms for propelling your robot, we will focus on DC 
gearhead motors here for Rug Warrior (typically with spur gears) because 
it makes life easier when geartrain and motor are packaged together. There 
is no need to find a machine shop and spend time making gearboxes. 

Picking an appropriate motor involves understanding a manufacturer's 
data sheets. A data sheet is usually given for the motor alone, and then 
another data sheet is supplied for the type of gearbox (with an assortment 
of reduction ratios) that will fit that motor. The gearbox specification can 
place constraints on the motor, such as for maximum allowable input speed 
or maximum deliverable output torque. 

Actual data sheets for the small Escap motors (shown in Figure 7.1 of 
this chapter) are given in Figure 7.13 and Figure 7.14. The data are given 
here in tabular form instead of graph form, but the reader can reconstruct 
the graphs that were discussed earlier, (as illustrated in Figure 7.10), since 
the major features, such as no-load speed, stall current and stall torque are 

179 

Silver Star Exhibit 1018 - 102



Chapter 7 Motors 

D.C. gearmotor 
escap® M1616 M11 

Standard types available from stock 

Figure 7.14: The Escap model M1616Mll-210 gearhead motor should be driven 
at 5 V (instead of 6 V) in order to keep the no-load speed of the motor within the 
maximum allowable input speed of the gearbox. (By courtesy of Portescap, Inc.) 

given in these tables. The torque constant given in the table can be used 
to find the slope of the I-T curve, and the back-emf constant can be used 
to determine the slope of the w-T curve. (Note that, if these constants are 
converted to the same units, they are equal.) 

For instance, Figure 7.13 describes the performance of the motor by 
itself without a gearhead. Four models of this motor are available each 
with a different winding and therefore intended to be run at a different 
voltage. The voltage for which the specifications are given is called the 
measuring voltage or sometimes the rated voltage. Thus, the 16Mll-210 
motor, when run at 6 V, will have a no-load speed of 8,400 rpm, a stall 
torque of 3 x 10-3 Nm, and a maximum possible output power of 0.7W. 

If the 16Mll motor is purcha.<Jed with an attached gearhead, the part 
n~mber for the gearmotor is M1616Mll; its specifications, as shown in 
F1gure 7.14, recommend that the -210 winding version be nm at 5 V so 
that the no-load speed of the motor stays within the allowable input speed 
of the gearbox. The gearmotor with the 54:1 reduction will weigh 29 g, be 
40 mm long, be 16 mm in diameter, and have an efficiency of 65%. The 
no-load speed will be: 

N _ 7ooorpm _ 130 o- 54 - rpm 

180 

7.5 Motor Data Sheets 

and the stall torque will be: 

Ts = (54)(2.5mNm)(0.65) = 88mNm 

Earlier, we showed that the maximum possible output power was: 

We can calculate this maximum power by converting the no-load speed 
and the stall torque to the appropriate units. If we want to know how many 
radians per second are equal to 130 revolutions per minute, the easiest way 
to keep all the conversions straight is to set up the question this way: 

7 rads _ 130 rev 
. sec - mm 

Since multiplying the righthand side by 1 does not change the equality, we 
can multiply 130 rpm by identity relationships, converting revolutions to 
radians and minutes to seconds in such a way that the old units cancel out: 

This gives: 

? rads 130 ~ . 27t"fads . 1 min = 13 6 rads 
· sec mm rev 60 sec · sec 

Pm,max ~TmaxWmax = ~(88 x 10-3 Nm)(13.6r:e1s)=0.3 W 

Escap motors are fairly high quality, and like many DC gearhead mo­
tors, can cost over $100 each. Escap (actually, Portescap is the name of the 
company) sells old-inventory motors (catalog motors but ones that have sat 
on the shelves for too long to be sold as new) for $25. Although the selec­
tion is limited, this source can be useful for hobbyists. Maxon, Micro Mo, 
Pittman, Inland, Globe, Canon, Copal, and Namiki are a few of the other 
numerous manufacturers that sell DC motors and have readily available 
catalogs with specification sheets. Surplus dealers often buy out remains 
of original equipment manufacturers' (OEMs) unused motors and sell them 
at significantly reduced costs. Dealers such as Burden's Surplus Center, 
Herbach and Rademan, America's Hobby Center, Edmund Scientific, Shel­
don's Hobbies, RAG Electronics, Stock Drive Products, and Tower Hobbies 
sell wide assortments of smaller, cheaper DC gearhead motors. 

Almost all of the low-cost permanent magnet DC motors, such as those 
found in toys, are made by one company-Mabuchi. Mabuchi produces over 
3 million motors a day and sells them in lots of 5,000 or more. They make 
strictly stand-alone motors, not gearhead motors, but sell them to OEM 
manufacturers (at prices as low as 50 cents per unit) who then incorporate 
motors into toys, model airplane servo motors, and the like. Typically, a 

181 

Silver Star Exhibit 1018 - 103



Chapter 7 Motors 

toy manufacturer will use the molding of the toy itself to be the gearbox for 
the plastic geartrain they add to the motor so it is not always convenient 
to extract the motor and build it into your robot. 

Model airplane servo motors, on the other hand, are very modular and 
convenient for this purpose. While most model airplane servos cost between 
$30 and $50, mass production of the most common models has led to prices 
recently going as low as $10 per servo motor. Futaba, Royal Product~:> 
Corporation and Airtronics are a few of the manufacturers of these servo 
motors. Catalogs from hobby stores, such as Tower Hobbies and Sheldon's 
Hobbies, list a wide range of models. Higher-quality servos with metal gears 
and ball bearings are available, also. 

Servo motor data sheets (which are typically printed on the backs of 
the packages) look different from the data sheets for DC gearhead motors. 
Servo motors usually run from a 5 V supply. For instance, for the Royal 
Titan Maxi Servo, the specifications are described this way: 

Royal Titan Maxi Servo 

Weight 
Output Torque 
Current Drain 
Transit Time 

3.7oz. 
112 oz.-in. 
8mA 
o.22sec 
~ 

A transit time (in ~) is given instead of a no-load speed (in rpm) ueg 
because the integrated circuit servos the motor to a specified position and 
it never spins all the way around. However, if the servo is stripped down to 
being just a DC gear head motor (potentiometer, limit stops, and integrated 
circuit removed), this transit time is equivalent to the no-load speed. The 
output torque listed above is simply the stall torque. Converting to proper 
units to find power output: 

7 rads 60° 21r rads 4 8 rads 46 
· sec = o.22sec · ~ = · sec = rpm 

?Nm 112 · lb. 1N 2 54Cm 1m oz.-m. · ~ · 1 lb · -'---,--- · -- = 0 79 Nm .1.u oz. 0.225 . 1m. 100 em · 

The maximum possible power then is: 

Pm,max = ~TmaxWmax = ~(0.79Nm)(4.8r:e1s) =0.95W 

which is 3.2 times as large as the earlier Escap motor- but then, this is a 
larger motor. To compare weights, we convert to grams: 

?g=3.7oz. ·{~f. = 104g 

182 

7.6 Motors for Rug Warrior 

_) 
mgsinf) 

Figure 7.15: This free-body diagram of a tracked-drive Rug Warrior illustrates 
the forces acting on the vehicle as it climbs a hill. Use of this diagram helps 
to determine the maximum torques that the robot's motors will be required to 
deliver. 

The Royal Titan servo motor then is about 3.6 times heavier than the 29 g 
Escap DC gearhead motor discussed previously. It turns out, however, that 
the Royal Titan with the potentiometer and circuit board removed, leaving 
essentially a comparable DC gearhead motor, weighs only 78g. This seems 
to make sense, as the Royal Titan gears are plastic and the Escap gears are 
metal. 

7.6 Motors for Rug Warrior 

7.6.1 A Vehicle Model 

In order to get a rough idea of how much power the motors for Rug Warrior 
must be able to deliver, we can sketch the scenario illustrated in Figure 7.15. 
Assume that Rug Warrior uses a differential drive mechanism (two motors) 
and needs to climb a ramp of angle() at constant velocity, v. The free-body 
diagram makes explicit the forces acting on the vehicle. 

Because the vehicle moves at constant velocity, there must be no net 
force on the car. That is, since: 

F=ma 

183 

Silver Star Exhibit 1018 - 104



Chapter 7 Motors 

and the acceleration, a, is 0 (the car moves at constant velocity), the net 
force F must be 0. This means that the applied force, Fapp' from the 
wheels acting in the direction up the hill must balance the forces down the 
hill resisting that force. These resisting forces are the friction force and the 
force that is the component of the vehicle's weight acting in the direction 
down the hill. Thus: 

Fapp = Ft + Fw 

where Ft is equal to the coefficient of friction, J-L, times the normal force, 
FN: 

and Fw is mgsinB (where mg, mass times the acceleration due to gravity, 
is just the weight of the robot). This leaves: 

Fapp = J-LmgcosB + mgsinB 

The power required from the motors is the product of the force that 
needs to be applied by the wheels times the velocity, v, the robot travels 
up the hill: 

where each motor must supply half that power, as Rug Warrior has two 
motors. 

The torque and speed requirements of each motor can be calculated 
from: 

f=Tw 

where r is the radius of the wheel. 

and w :!!. 
r 

The range and the running time of the robot are dependent upon the 
battery pack, since power is the rate of energy usage. If the battery has E 
joules of energy, then the battery lifetime, t, will be: 

The range of distance, D, the robot can travel will be: constrained by 

D = vt 

184 

7.6 Motors for Rug Warrior 

Typically, battery capacity is not given in joules but in units of ampere­
hours. To find the energy contained in a battery pack, we must multiply 
the capacity rating in ampere-hours by the nominal voltage rating of the 
battery. (Recall that 1 joule equals 1 coulomb-volt and 1 ampere equals 
1 coulomb per second.) For instance, suppose a 3 V battery has a 1,300 
milli-ampere-hours (mAh) capacity. How many joules does it contain? 

c 
?J=3V·1300 X 10-3 Ah . .Bf-. ~ = 14,040CV =14,040J 

7.6.2 Selecting a Motor 

The model we just described for Rug Warrior is hardly realistic. We cer­
tainly do not expect that our robot will be climbing up a ramp forever. 
Rather, because reality is so complicated (e.g., uneven terrain, stop-and-go 
crises, unknown coefficients of friction, accidents with chair legs, etc.), we 
use this model simply to attempt to size the peak power requirements. 

Let's say that our goal is for Rug Warrior to weigh under 1.5 pounds, 
which is roughly 650 g. Furthermore, assume that we would like our robot 
to climb a 30 degree grade at a steady half foot per second, which is 0·~~~. 
We will use two motors and a tank-drive locomotion system. Picking a 
value for J-L is a way of trying to account for slippage and friction from the 
treads and the like. It is not clear what this coefficient of friction will be, 
but we can make some assumption and pad our result by oversizing the 
motors at the end. Let's pick J-L to be 0.3. The power required then is: 

Pm FappV = mg(J-LcosB + sinB)v 

Pm = (0.65 kg· 9.8s~2 )(0.3 cos 30° +sin 30°)(0.15s~c) =0.73 W 

We want to oversize our motors quite a bit, both because there are so 
many unknowns and because the maximum efficiency point is at a much 
lower torque than the maximum power point. If we multiply our power 
requirement by a whopping factor of 3, that would give: 

Pm=2.1 W or 

7.6.3 Converting Servo Motors 

What we have chosen, as we mentioned earlier, is to use model airplane 
servo motors. We recommend these motors for the Rug Warrior project of 
this book because they are fairly inexpensive and easy enough to modify. 
Although servo motors are not as cheap as 50 cent toy motors, the fact that 

185 

Silver Star Exhibit 1018 - 105



Chapter 7 Motors 

Figure 7.16: The easiest way to build a Rug Warrior is to start with model 
airplane servo motors; add LEGO parts for bearings, axles, and treads; and then 
place the batteries, electronics, and sensors on top. 

they come with gearboxes already built in means that we need not bother 
with machining a custom gearbox. 

Figure 7.16 illustrates the tank-tread version of Rug Warrior that we 
built using two Royal Titan Max\ Servos, which cost $25 each, LEGO gears 
for wheels, LEGO tracks for tank treads, and LEGO axles and blocks for 
bearings and chassis. The PC board on top is 3" x4" and contains an 
MC68HC11AO, with the 10 sensors and the accompanying control elec­
tronics given in the schematic in Appendix A. 

The tank drive is made up of two motors, connected to the back wheels 
in a differential fashion. The front wheels are passive, each having its own 
axle and bearing. The tank treads are wrapped around from back wheels 
to front wheels, so the robot can pivot in place. 

Figure 7.17 is a view of Rug Warrior from the underside. The two black 
boxes are the servos. Attached to each is a LEGO gear for a wheel. The 
gear acts to mesh easily with tracks also supplied by LEGO. It is possible to 
build a sturdier and lighter-weight chassis, perhaps something made from 
aluminum sheet metal using a sheet metal bender and a punch for forming 
sides and placing holes. Real ball bearings and ground shafts could be 
used for the front wheels (obtainable from suppliers such as Berg, Small 
Parts Inc., etc.), but it turns out that ball bearings can cost as much as 

186 

7.6 Motors for Rug Warrior 

Figure 7.17: The underside of Rug Warrior contains two servo motors taped 
to the chassis, and LEGO gears mounted on the motor shafts for wheels. LEGO 
tracks are then used to make tank treads. 

the MC68HC11AO computer chip! Instead, we elected to use the LEGO 
building system, not just for gears and tracks but to continue with it for 
front wheel axles and bearings, as the axles that come with LEGO are made 
from hard plastic and spin nicely in the holes in the LEGO bricks that we 
use for the chassis. We used double-sticky tape or black electrical tape to 
hold the chassis together. 

To build this propulsion system for Rug Warrior, first modify the servos 
so that they can spin all the way around. Figure 7.18 shows the gearhead 
portion of the Maxi Servo; it has four stages of reduction for a 143:1 gear­
down. The motor shaft is at the right, the potentiometer shaft is at the 
left (the motor and potentiometer are below, inside the case), and the third 
shaft is in the middle. The output power is taken off at the potentiometer 
shaft. A plastic nib, molded onto the gear there, prevents the shaft from 
turning multiple revolutions. Above that nib is a metal ring, which is the 
ball bearing that supports the load. 

Next, cut that plastic nib off. A pair of dikes (i.e., diagonal wire cut­
ters) will work fine for the job. Then take that gear off and remove a 
plastic inset from its underside, which the potentiometer shaft's flat is held 
against. Not all servo motors have this feature of the removable inset. Some 
have the inset molded into the gear and have the gear turn directly on the 

187 

Silver Star Exhibit 1018 - 106



Chapter 7 Motors 

Figure 7.18: Some servo motors are easier to convert to continuous rotation 
than others. The gearhead of a Royal Titan Maxi Servo is shown here. The 
leftmost gear is above the potentiometer, and the ball bearing ring is mounted 
on its top for support of the output shaft. A plastic limit stop is molded onto the 
gear just below and to the left of the ball bearing. 

potentiometer's shaft, which means it is not possible to easily make it con­
tinuously revolvable. The Royal Titan servos have the removable inset and 
also have the gear resting on a bushing around the pot's shaft, which means 
you can actually remove the potentiometer completely. This brings us to 
the next step; removing the potentiometer. 

Figure 7.19 is a view from the underside of the servo motor, with the 
cover removed and the potentiometer and servo circuit pulled out. Clip 
the wires for your motor, removing the circuit board. Take out the po­
tentiometer by removing the screw holding it in place. Note the motor 
on the right. It is a Mabuchi motor and comes equipped with a capacitor 
across its leads and two resistors to ground to suppress noise spikes from 
the motor. Desolder the remains of the wires from the servo circuit, and 
solder on two new wires to the two terminals of the motor. Replace the 
cover over the gears, making sure the shafts sit properly in their holes. Try 
hooking a power supply or a battery pack up to two motor leads. The mo­
tor should spin continuously. Reversing the polarity of the applied voltage 
should reverse the direction of spin. 

Adding wheels to a servo motor is convenient because servo motors come 
with an assortment of attachments (plates, levers, star-shaped mounting 

188 

7.6 Motors for Rug Warrior 

Figure 7.19: A bottom view of the servo in the previous picture shows a Mabuchi 
motor is in the righthand portion of the casing. The lefthand portion holds the 
potentiometer and a small circuit board containing an integrated circuit for servo 
control. 

brackets, etc.) that are designed to fit snuggly onto the output shaft. Fig­
ure 7.20 illustrates a servo motor with the lever attachment. A simple way 
to mount the LEGO gear is to use the circular plate attachment (instead 
of the lever attachment), which is roughly the same size as the gear; sand 
off any small ridges on the plate and/or the gear and glue them together. 

It may seem odd to actually throw away a few components from a servo 
motor and still wind up with the lowest-cost route to a DC gearhead motor. 
Such are the benefits of mass markets. We will use a MC68HC11AO and 
some power electronics (in a form known as an H-bridge) to drive the motors 
for steering Rug Warrior's treads. However, first let us digress a moment 
to explain how and where an unmodified servo motor would normally be 
used. 

7.6.4 Unmodified Servo Motors 

Typically, a radio-controlled model airplane servo motor is used to adjust 
a control surface on a wing of a model airplane to a certain position. The 
integrated circuit and potentiometer are used to implement a closed-loop 
position control system. The radio sends what is known as a pulse-code 
modulated signal to a receiver on the model plane. As stated earlier, of 

189 

Silver Star Exhibit 1018 - 107



Chapter 7 Motors 

v 

~~--------------~----t 
-"" 0.7ms 

Figure 7.20: An unmodified servo is a three-wire device that takes power, 
ground, and a pulse-code modulated signal, such as the one shown above. Wider 
or thinner pulses tell the servo to move to a designated position, either clockwise 
or counterclockwise from center. 

the three wires emanating from the servo motor, one is for power, one 
is for ground, and one is connected to this pulse-code modulated signal. 
Figure 7.20 illustrates the protocol for commanding the servo to a given 
position. 

Basically, a servo motor expects a train of pulses of varying widths. 
These pulses are repeated at a given period, typically set to 20 ms. The 
width of the pulse is the code that signifies to what position the shaft should 
turn. The center position is usually attained with 1.3 ms wide pulses, while 
pulse widths varying from 0. 7 milliseconds ( ms) to 1. 7 ms will command 
positions all the way to the right and all the way to the left, respectively. 

These position servo motors can be very useful for robot accessories 
(such as fingers, grippers, legs, and squirt guns) where the range of mo­
tion does not require continuous revolution. For continuous motion we 

' described how to modify the servo and reduce it to a simple DC gearhead 
motor by throwing away the control circuit and power electronics that come 
with it and adding our own. However, there is a way to use these motors as 
continuous revolution DC gearhead motors without having to add our own 
H-bridges and control electronics. The trick is to remove the inset in the 
plastic gear as before, which affixes itself to the flat of the potentiometer's 
shaft, but do not actually remove the potentiometer. Set the potentiometer 
to its central position. Now the gears will turn continuously but the po­
tentiometer will never move. With this configuration, if we send the motor 
a pulse-code modulated signal to move all the way to the right, the mo-

190 

7. 7 Interfacing Motors 

tor will try to comply, never get any feedback, and never stop. Similarly, 
a pulse-code modulated signal to move to a position to the left will cause 
continuous rotation all the way to the left. This is an elegant trick (hack, to 
use the proper term) but we do not pursue it any further for Rug Warrior, 
because we want to explain how to attack the more common problem of 
driving a regular DC motor in general, and how to implement a servo loop. 

7. 7 Interfacing Motors 

A microprocessor cannot drive a motor directly, since it cannot supply 
enough current. Instead, there must be some interface circuitry so that the 
motor power is supplied from another power source and only the control 
signals derive from the microprocessor. This interface circuitry can be 
implemented in a variety of technologies, such as relays, bipolar transistors, 
power MOSFETs (metal oxide semiconductor field effect transistors), and 
motor-driver integrated circuits. In all technologies, however, the basic 
topology of the circuit is usually the same. This circuit is known as an 
H-bridge and merely consists of four switches connected in the topology 
of an H, where the motor terminals form the crossbar of the H, as shown 
in Figure 7.21. You can imagine the abstraction of each switch as being 
implemented by either relays or transistors, where the power is supplied by 
the battery and the control signals by the microprocessor. 

7.7.1 H-Bridg~ 

In an H-bridge, the switches are opened and closed in a manner so as to 
put a voltage of one polarity across the motor for current to flow through 
it in one direction (setting up magnetic fields and causing it to turn) or a 
voltage of the opposite polarity, causing current to flow through the motor 
in the opposite direction for reverse rotation. For example, if switches 51 
and 54 in Figure 7.21 are closed while switches 52 and 53 are open, current 
will flow from left to right in the motor. When switches 52 and 53 are 
closed and switches 51 and 54 are open, current will flow from right to left, 
reversing the motor. If the terminals are floating, the motor will freewheel, 
and if the terminals are shorted, the motor will brake. 

To control the speed of the motor, the switches are opened and closed at 
different rates in order to apply different average voltages across the motor. 
This technique, called pulse-width modulation, is illustrated in Figure 7.22, 
where V is the voltage across the motor and t is time. For instance, if 
switches 51 and 54 are used for pulse-width modulation while switches 52 
and 53 are left open, the voltage across the motor (as defined in Figure 7.21) 

191 

Silver Star Exhibit 1018 - 108



Chapter 7 Motors 

+ 
Supply 
voltage 

51 

52 

H-bridge 

53 

+ v 

54 

Figure _7.21: A circuit topology known as an H-bridge is used to control a motor. 
Fo~r switches ~re controlled by a microprocessor and determine the direction in 
which current Is allowed to pass through the motor. Changing the direction of 
the current changes the direction of the motor rotation. 

will be equal to and of the same polarity as the supply voltage when 51 
and 54 ar~ closed and 0 V when they are open. The speed of a DC motor 
can be adJusted by changing the pulse-width ratio: 

Pulse-Width Ratio = ~ 
tperiod ' 

of the voltage applied across its terminals. 

~ote that what we are describing here is different from pulse-code mod­
ulatiOn for servo motors, discussed earlier. There, some "intelligence" was 
added so that the pulse width was a code signifying to what position the 
s~rvo should move. Here, we are merely using varying pulse widths to create 
different average voltages across the motor to change its speed. 

We. mentioned before that the abstractions of switches in Figure 7.21 
can be Implemented in a number of ways. Relays can be used to turn motors 
on and off and reverse their ~irections as we saw in the TuteBot example, 
but relays are s~ldom used m pulse-width modulation speed controllers 
because they typically cannot switch quickly enough. Relays also tend to 
wear out. Solid-state switche~, such as power bipolar transistors and power 
MOS!ETs, are more convement for pulse-width modulation schemes, and 
we Will concentrate on these implementations here. 

192 

7. 7 Interfacing Motors 

vl[ Q -~ _[ 

v~0----0---R---R-. 
vtf--- -1l---tr ---- t1-- -. 

~ton~ I 
~tperiod~ Pulse Width Modulation 

Figure 7.22: Pulse-width modulation of the voltage, by turning switches in 
the H-bridges on and off for various lengths of time, creates a different average 
voltage across the motor. Solid lines represent voltages applied when the switches 
are closed. Dotted lines represent the resulting average voltage applied across the 
motor. 

It is possible to design your own solid-state H-bridge controller, but 
there are also a number of single-chip solutions on the market. We chose 
one of these for Rug Warrior, and the anxious reader can skip ahead to 
the section on motor-driver power integrated circuits (see 7.7.4). However, 
if your particular project has requirements not available in a commercial 
H-bridge chip or if you are simply curious, the following sections give a bit 
of background on what is inside a motor-driver integrated circuit. 

7.7.2 Switching Inductive Loads 

Whether using solid-state switches or relays, problems arise when switching 
inductive loads such as motors, as illustrated in Figure 7.23. We know that 
the voltage induced across an inductor is proportional to the rate of change 
of current through it: 

v- L1i - dt 

If the current through an inductor has reached a steady state and is 
not changing, the voltage across it is 0 V and the inductor behaves like a 
straight piece of wire. Figure 7.23(a) shows what happens if that steady­
state current is upset by the opening of a switch. Namely, the current 

193 

Silver Star Exhibit 1018 - 109



Chapter 7 Motors 

+Vee 

B 

I on 

A ~ 

1 
1" 

(a) (b) 

Fly back 
Diode 

(c) 

Figure 7.23: (a) The steady-state current through an inductor, Ion, cannot 
immediately go to 0 A when the switch is opened. The changing current induces 
a voltage across the inductor, making the potential at A greater than at B, causing 
the switch or relay to arc over. (b) Flyback diodes protect switches from blowing 
up. (c) Transistor switches must be protected in the same manner. 

cannot instantaneously go to 0 A so a voltage, v = L ;¥t, is induced in a 
direction opposing the flow of current. That is, the point marked A will be 
at a potential positive with respect to point B (which is at Vee). Although 
the current does not change instantaneously when the switch is opened, it 
does change very quickly, and the faster the rate of change, the larger the 
induced voltage spike. Depending on the size of the inductor, the magnitude 
of the current, and how quickly the switch is opened, these voltage spikes 
can temporarily reach several hundred volt::> or more, enough to cause the 
switch to arc over and blow up. 

The solution to this problem is to put what is known as a fiyback diode 
in the reverse direction across the inductive load (Figure 7.23[b]) so that 
the voltage spike will forward bias the diode, creating a return path for the 
current. In this way, the power will "fly back" to the power supply. 

Solid-state switches are just as susceptible to voltage spike destruction 
as mechanical switches, which is why transistor circuits switching inductive 
loads are usually shown with appropriate flyback diodes, as illustrated in 
Figure 7.23(c). 

194 

7. 7 Interfacing Motors 

7.7.3 Power Electronics 

As we discuss controlling motors from a microprocessor and the power 
electronics needed for the interface, we will talk about transistors used as 
switches. In Chapter 5 on sensors, we saw transistors, or collections of 
transistors in the form of op-amps, used as linear amplifiers to add gain to 
a circuit for amplifying small signals from sensors into larger signals under­
stood by a microprocessor. The microphone circuit and the sonar circuit 
were examples. In addition to transistors used as linear amplifiers, we have 
also seen transistors used in another way: as CMOS (complementary metal 
oxide semiconductor) logic-gate switches. All the circuitry making up the 
internals of the 6811, its associated RAM and various discrete NAND gates 
and inverters, are simply composed of low-power, n-channel and p-channel 
MOSFET transistors used as switches. MOSFETs are similar to bipolar 
junction transistors in some sense, yet different in many ways. We will give 
some comparisons and contrasts between MOSFETs and transistors in a 
moment. 

First, however, transistors can be classified another way, either as signal­
level devices or as power devices. Transistors used for linear amplification of 
sensor signals or for logical manipulation of bits are concerned with process­
ing information and are generally low-power devices. Power transistors, on 
the other hand, are capable of handling larger currents and voltages. They 
might be used as linear amplifiers in output stages of high-fidelity audio 
systems to drive speakers or they might be used as switches in H-bridges 
to pulse-width modulate motors requiring large currents. Power devices 
are typically larger than signal-level devices, as they require more silicon 
area for higher current-handling capability and larger packages for heat 
dissipation. 

Semiconductors and Charge Carriers 

Solid-state switches and power electronics are semiconductor devices. What 
is a semiconductor exactly, and why is silicon the material of choice for the 
semiconductor industry? 

In a normal conductor, for instance, a metal such as aluminum, free 
electrons act as charge carriers and move in a direction toward a positive 
potential. (Recall that positive current flows in the direction opposite to 
that of electron flow-so positive current moves away from a positive poten­
tial.) An ins'ulator such as glass is the complement of a conductor, has no 
free charge carriers, and does not conduct current. A semiconductor on the 
other hand, lies somewhere in between. It is neither a perfect insulator nor 
a perfect conductor. 

195 

Silver Star Exhibit 1018 - 110



Chapter 7 Motors 

-rn- Forward Bias Reverse Bias 
anode ~~ cathode + ~I ~I + 

holes electrons lo~ 10 =0 

~00001:. ~ + +-0 ....... 
0 ....... +-0 • 

p N p N p N 
(a) (b) (c) 

Figure 7.24: (a) A diode is simply a PN junction, where the p-type region is the 
anode and then-type region is the cathode. (b) When forward biased, holes and 
electrons cross the junction, causing current to flow. (c) When reverse biased, no 
current flows. 

Because silicon has four valence electrons in its outer ring, it loves to 
bond covalently with other silicon atoms and create a perfect crystal lattice, 
much like diamond. Silicon is a semiconductor, and by adding various 
levels of impurity atoms, such as phosphorus or boron, silicon can become 
increasingly conductive. The reason that silicon is the material of choice for 
the semiconductor industry is that it is the only semiconductor that grows 
a native oxide layer. That is, when exposed to air, the silicon at the surface 
combines with oxygen to form a thin layer of silicon dioxide, essentially, 
a glass. Thus, in silicon processing, it is very convenient to create both 
conductors and insulators, a feature useful for patterning devices. 

Another important characteristic of a semiconductor such as silicon is 
that two types of charge carriers are available to conduct current. Not only 
are electrons available to conduct current, but charge carriers called holes 
can also be developed. When impurity atoms of phosphorus are implanted 
in silicon, the five valence electrons in phosphorus's outer ring cause phos­
phorus atoms to bond into the crystal silicon lattice, giving up one free 
electron as a charge carrier. Since electrons carry negative charges, regions 
of silicon doped with phosphorus are called n-type regions. 

When impurity atoms of boron are added to single-crystal silicon, the 
three valence electrons of boron's outer ring cause boron atoms to bond 
into the silicon lattice, leaving a vacancy or hole. If electrons from other 
covalent bonds leave and fill these holes, the holes have essentially moved, 
creating a passage of positive charge carriers. Regions of silicon doped with 
boron are then termed p-type regions. 

196 

7. 7 Interfacing Motors 

c 

,,~ }'' 
c 

,,~ !'' ~ ~ B ~ VCE B s: VCE 
+ -

VBE VBE 

E E E E 

npn bipolar transistor pnp bipolar transistor 
(a) (b) 

Figure 7.25: Bipolar junction transistors are made up of two PN junctions, back 
to back. (a) In an npn bipolar transistor, the collector and emitter are n-type 
while the base is p-type. (b) In a pnp bipolar transistor, the collector and emitter 
are p-type while the base is n-type. 

All the interesting behavior in silicon devices comes about at junctions 
of n-type and p-type regions. In fact, a diode is nothing more than a 
single PN junction, a junction of p-type and n-type material. Figure 7.24 
illustrates how a diode works. When forward biased, holes and electrons 
each cross over the PN junction, attracted to the far terminals. They then 
mix and recombine, becoming neutral. New charge carriers are supplied 
by the terminals, and a continuous flow of both types of charge carriers 
is maintained, resulting in a steady-state current. When the PN junction 
is reverse biased, holes and electrons are each attracted to their nearby 
terminals and absorbed by them. The charge carriers move away from the 
junction, and the device becomes depleted of charge carriers. Thus, no 
current flows. This ability to allow current to flow or not flow, depending 
on the polarity of applied voltage, is the essential characteristic of a diode. 

Bipolar Transistors 

We saw that a diode is a single PN junction. A bipolar junction tran­
sistor is simply two PN junctions, back to back. There are two possible 
combinations of two PN junctions, npn or pnp, as shown in Figure 7.25. 

Although simply having two PN junctions instead of one would seem 
only a minor addition at first glance, the realization and implementation 
of this technology has changed the world, for the third terminal on this 
dual-charge-carrier device allows the current to be controlled. The current 
can be either amplified when used in an analog fashion or switched when 
used in a digital manner. 

197 

Silver Star Exhibit 1018 - 111



Chapter 7 Motors 

E B c 

p 

signal-level npn bipolar transistor 
(a) 

E B 

n 

n+ 

c 
power npn bipolar transistor 

(b) 

Figure 7.26: (a) In a signal-level device, all electrical terminals are on the top 
side of the silicon wafer and current flows along the surface, from collector to 
emitter. (b) In a power transistor, the backside is used for one of the electrical 
terminals and current flows vertically through the chip. 

We mentioned before that transistors can be either signal-level devices 
or power devices. It turns out that, while these two types of transistors arise 
from the same semiconductor physics, they are fabricated differently. Fig­
ure 7.26 illustrates silicon cross-sections through a signal-level npn bipolar 
junction transistor and a power npn bipolar junction transistor. Plus signs 
on the nand p regions designate heavily doped areas (very conductive). A 
minus sign would denote lightly doped areas (slightly conductive). 

In a signal-level bipolar device, all the terminals are patterned from the 
top side of the silicon wafer and the voltage between the base and emitter 
controls the flow of current from the collector to the emitter. For instance, 
in an npn device, when the base-emitter diode is forward biased, negative 
charge carriers "emitted" by the n-type emitter region travel toward the 
base but then are swept across into the collector region (before having 
a chance to get caught and recombine with any holes in the p-type base 
region) when a larger positive voltage is applied to the collector. Some 
small current must be supplied by the base to replenish any holes that did 
recombine with passing electrons, but this base current is much smaller 
than the collector current (which is why a bipolar transistor is a current 
amplifier). For signal-level devices, base, emitter, and collector all lie along 
the top surface of the silicon wafer and the backside is not connected to 
anything. By having all terminals on the top side, it is easy to fabricate 
many different signal-level devices and interconnect them, allowing for very­
large-scale integration (VLSI) for complex information-processing systems. 

198 

7. 7 Interfacing Motors 

In a power device, on the other hand, the backside of the silicon wafer 
is used for one of the electrical terminals (the collector) and current flows 
vertically through the chip. Since power devices must handle more current 
and more heat, they are typically larger, often use backside connections 
and seldom integrate large numbers of different devices. More often, the 
tendency is to fabricate hundreds or thousands of vertical power transistors 
in parallel on one chip, creating in effect one very big transistor. 

The cross-sections shown in Figure 7.26 are for npn bipolar transistors. 
The pnp bipolar transistors would have similar topologies but p regions 
would be replaced by n regions and vice versa. Since turning on a bipolar 
transistor requires forward biasing the base-emitter diode, turning on an 
npn version requires that the base be more positive than the emitter (at 
least 0.6 V more positive to be precise, as that is a diode's turn-on thresh­
old). Conversely then, turning on a pnp version of a bipolar transistor 
requires that the base be 0.6 V more negative than the emitter. 

MOSFETs 

Bipolar junction transistors rely on having two PN junctions in the main 
current path, which is why they are called bipolar devices. In contrast, 
a MOSFET has no PN junctions in the current path and is a monopolar 
device. Figure 7.27 illustrates symbols and cross-sections for n-channel and 
p-channel signal-level MOSFETs. 

In the monopolar device, MOSFET junctions are fabricated to maintain 
separate regions of charge carriers when the device is off, but when an 
electric field is applied to the gate to turn on the device, the channel region 
separating two regions of like charge carriers is inverted making it the same 
"flavor" of charge carrier. 

To be precise, we are speaking of enhancement-mode MOSFETs here 
(as opposed to depletion-mode MOSFETs) where, when the gate-source 
voltage is 0 V, the device is off. In this way, the entire current path is a 
region of the same type of majority carriers. 

The two types of MOSFETs are then called n-channel and p-channel 
MOSFETs, and the three electrical terminals that correspond in many ways 
to the base, emitter, and collector of bipolar transistors are called the gate, 
source, and drain, respectively. 

Notice that signal-level MOSFETs are similar to signal-level bipolar 
transistors in that the backside again is not used for any of the three elec­
trical terminals. However, in the schematic symbol for a MOSFET, the 
body terminal is explicitly drawn in, whereas in the bipolar schematic, it 
is omitted. 

199 

Silver Star Exhibit 1018 - 112



Chapter 7 Motors 

gate 

gate 

source 

drain 

n-channel signal-level MOSFETs 
(a) 

t'o G 

)~ •. ,, t, 
VGS 

source 
body 

p-channelsignal-level MOSFETs 

(b) 

body 

channel 

t 
body 

Figure 7.27: Signal-level MOSFETs also have all electrical terminals on the top 
side of the silicon wafer. (a) In ann-channel MOSFET, when the gate is positive 
with respect to the source, holes in the p-type body region move away from under 
the gate, leaving an n-type channel and allowing electron current to flow from 
drain to source. (b) In a p-channel MOSFET, when the gate is negative with 
respect to the source, electrons in the n-type body region move away from under 
the gate, leaving a p-type channel and allowing hole current to flow. 

One reason for this is that the body forms a PN junction with the chan­
nel when the MOSFET is on. The arrow on the body terminal connection 
is pointed in the direction that a diode's arrow points (from p to n), sig­
nifying the direction of the PN junction between the inverted channel and 
the body when the MOSFET is on. 

Because of the formation of a diode when the channel is inverted, the 
body must be held at a voltage that will not allow it to conduct. The body 
can be tied to the source (as is done in a power MOSFET) or to a more 
negative voltage in the circuit for an n-channel MOSFET. (For a p-channel 
MOSFET, the body can be tied to a voltage more positive than the source.) 
Sometimes, schematics leave the body connection out and we must assume 
that it is tied to a voltage that will keep the body-channel diode from 
conducting. Note, however, that the arrow on the body terminal is the 
only way to distinguish whether the MOSFET is n-channel or p-channel. 

The gate terminal in the schematic is drawn with a horizontal line ex­
tending from the source end of the gate. This is to clarify which end of the 
device is intended to act as the source and which end is intended to act as 

200 

7. 7 Interfacing Motors 

drain 

gate J$ 
source 

(a) n·channel power MOSFETs 0 

source 

Source 

f 
drain Drain 

(b) p-channel power MOSFETs D 

Figure 7.28: Power MOSFETs use the backside of the wafer as the drain. (a) 
When an n-channel power MOSFET is turned on, the p-type body region is 
inverted under the gate leaving a channel for electron current to flow vertically 
through the chip. (b) When a p-channel power MOSFET is turned on, hole 
current flows vertically through the chip. 

the drain. Actually, a signal-level MOSFET is symmetric and can be used 
reversibly (and often is used this way in analog multiplexors and pass tran­
sistors for memories). For this reason, some schematics use a symmetrical 
gate connection, where the gate terminal is midway between the drain and 
the source. 

Another reason the body terminal is drawn explicitly is that, if a power 
device is fabricated instead of a signal-level device, the backside connection 
is used as the drain. The central body region is then connected to the 
source, and this connection creates another device, a source-drain diode. 
A power MOSFET then is not symmetric. Symbols and cross-sections for 
n-channel and p-channel power MOSFETs are illustrated in Figure 7.28. 

Comparisons and Contrasts 

Bipolar transistors and MOSFETs are similar in many respects, but a num­
ber of differences are worthy of note. First, though, let's take a moment to 
point out the general differences between n-type and p-type devices. 

It turns out that the two types of charge carriers, holes and electrons, 
are not completely symmetric. Holes are not as mobile as electrons, and 
p-type devices, whether pnp bipolar transistors or p-channel MOSFETs, 
are never quite as good as n-type devices. In a bipolar transistor, a pnp de­
vice's high-frequency operation is poorer than a npn transistor's operation. 

201 

Silver Star Exhibit 1018 - 113



Chapter 7 Motors 

In a MOSFET, a p-channel device does not exhibit as low on-resistance 
as an nrchannel device. In fact, in the early days of MOSFETs, processes 
typically only gave the designer the option of having nrchannel MOSFETs 
(often abbreviated as NMOS transistors). Later, when p-channel MOS­
FETs, or PMOS transistors, were introduced into the same process, the 
process became known as CMOS (complementary metal oxide semicon­
ductor), since complementary n-type and p-type devices were then both 
available. Because p-type devices are poorer than nrtype devices, this lack 
of performance has repercussions in the design of H-bridges for driving 
motors. 

One of the main differences between a MOSFET and a bipolar transistor 
is that a MOSFET is essentially a voltage-controlled device while a bipolar 
transistor is a current-controlled device. In a MOSFET, the gate oxide 
creates a capacitor between the gate and the source, so the steady-state 
gate current is 0 (although some charging and discharging currents flow 
when turning-on and turning-off the device). Since very little gate current is 
required, MOSFETs are fairly easily driven from microprocessors or CMOS 
logic gates. 

In contrast, bipolar transistors are current-controlled devices. Instead 
of having a capacitor between the gate and source, as in a MOSFET, the 
bipolar transistor has a diode between the base and emitter. Once the base­
emitter diode is forward biased, the collector current is controlled by the 
base current. The ratio of collector current to base current is the current 
gain, (3: 

f3 !.a. 
Is 

For signal-level bipolar transistors, the current gain might be 100 or 200, 
but for power bipolar transistors carrying large numbers of amps, current 
gains are typically much lower, possibly on the order of 20 or 50. 

Data sheets for devices under consideration should be checked for more 
specific numbers, but even so, current gains can differ widely from piece to 
piece (for the same part number of transistor) due to process variations be­
tween manufacturers. In general, though, power bipolar transistors require 
significant amounts of base current. Since these magnitudes of base current 
cannot be delivered directly from microprocessors or logic gates, another 
level of interface circuitry is often needed to drive the H-bridges that are 
driving the motors. In addition to the added complexity involved in the 
bias network, the base current through the base resistor dissipates power 
(not to mention the power dissipated by the additional layer of interface 
circuitry). 

In order to compare the efficiencies of bipolar power transistors and 
power MOSFETs for driving motors, return once again to the illustration 

202 

7.7 Interfacing Motors 

of the H-bridge in Figure 7.21. For the ideal switches in that diagram, the 
voltage across the motor is always equal to the full magnitude of the supply 
voltage when opposite sets of switches (51 and 54, or 52 and 53) are closed. 
That is, there is no voltage drop across an ideal switch. 

Real solid-state switches, however, do have finite voltage drops. The 
voltage drops associated with bipolar power transistors and power MOS­
FETs carne about in different ways, however. In a power MOSFET, there 
are no PN junctions in the main current path from drain to source once 
the device has been turned on. Consequently, the only thing holding back 
charge carriers are factors such as their mobility, the width of the channel, 
and the like. These factors can be characterized as an effective resistance 
from drain to source. When the device is turned on as hard as possible, 
the channel becomes as wide as possible, giving the smallest on-resistance. 
This leads to the lowest voltage drop across the device, so this is the re­
gion where power MOSFETs should be run when switching motors. Fig­
ure 7.29(a) shows the Io vs. Vos characteristics for an nrchannel power 
MOSFET. 

The area to the left of the dotted line, where I 0 increases with V 05 , is 
known as the constant-resistance or linear region. Typical MOSFETs have 
a threshold voltage on the order of 3.0 V-5.0 V, below which the MOSFET 
is cut off. To the right of the dotted line, for larger drain-source voltages 
and depending on Vcs, the channel becomes maximally opened and the 
current, Io, reaches a saturation condition, where it remains constant even 
as Vos is increased. If the gate voltage is high enough, usually around 10.0 
V, the drain current stays in the constant-resistance region and the voltage 
drop from drain to source is minimal, as shown in the figure. This is the 
region in which a power MOSFET is run when switched to the "on" state, 
as the voltage drop, V os, across the switch is minimized. 

The inverse of the slope of an I o-V os curve in this linear region is the 
on-resistance (-1

- = v10 ) of a power MOSFET. The proper gate-to-source ros os 
voltage should be chosen given the drain-source voltage and the desired 
current, so as to maintain the device biased in the constant-resistance region 
for the most efficient utilization of the power MOSFET. 

The voltage drop across a turned-on bipolar power transistor comes 
about for a different reason. Whereas a turned-on power MOSFET has 
a continuous region of like charge carriers from drain to source, a bipo­
lar transistor has two PN junctions in the current path from collector to 
emitter, as was shown in Figure 7.25. In a turned-on bipolar transistor, 
the base-emitter diode is forward biased and the collector-emitter diode 
is reversed biased (at least, in the usual case of linear region operation). 
However, if the bipolar transistor is completely on, the collector poten­
tial should be close to that of the emitter potential (approaching the case 

203 

Silver Star Exhibit 1018 - 114



Chapter 7 Motors 

Constant Resistance Saturation 
Forward Active 

or 
or Region Linear Region 

Linear Region Saturation Region 

~ -t 
lo ~ 10V' f 'c : 90mA I I I 

I I 70mA 

'I' 
9V 

I SOmA 
I av 

I 
I 

7V VGS 30m A 's 
A 6V 

~ 
10m A 

sv 

4V V, 
VCE OS 

n-channel MOSFET npn bipolar transistor 
(a) (b) 

Figure 7.29: (a) Ann-channel MOSFET shows these typical lD-VDs character­
istics. When biased in the constant-resistance region, a MOSFET can be modeled 
as a resistor, where ID varies linearly with VDs. (b) An npn bipolar transistor is 
controlled by the value of the base current rather than the voltage as in case of a 
MOSFET. 

of an ideal switch where there would be 0 V between collector and emit­
ter). The closest a bipolar transistor can come is to have the collector-base 
diode no longer reverse biased but forward biased. With the base-emitter 
diode forward biased (transistor turned on) and the collector-base junction 
also forward biased, the bipolar transistor is in what is known as the sat­
uration region of operation, where VeE is almost constant and very small 
(VeE= VeE(SAT)) for any value of base current. Figure 7.29(b) illustrates 
the Ie versus VeE characteristics for an npn bipolar transistor. 

This saturation region is to the left of the dotted line in Figure 7.29(b) 
and is the region where a bipolar power transistor should be run when 
switched to the "on" state in order to provide the minimum voltage drop 
across the switch. The region to the right of the dotted line is known as 
the bipolar transistor's forward active region. The forward active or linear 
region is the region in which a bipolar transistor is used as a linear amplifier. 

In comparing the graphs in Figure 7.29(a) and (b), note that the MOS­
FET is a voltage-controlled device, where I v is determined by the value of 
Vas, and the bipolar transistor is a current-controlled device, where I e is 
determined by the value of lB. Note, too, that the MOSFET's saturation 
region looks like what is called the linear region for a bipolar transistor, 

204 

7.7 Interfacing Motors 

and the MOSFET's linear region looks like what is called the saturation 
region for the bipolar transistor. Again, this has to do with the MOSFET 
being a voltage-controlled device and the bipolar transistor being a current­
controlled device and what parameter in each is actually being saturated. 

Nevertheless, the point to be made is this: when transistors are used 
as switches, they should be biased in the regions to the left of the dotted 
lines in the figures so that they approach the function of ideal switches as 
closely as possible. That is, when an ideal switch is closed, it should have 
0 V dropped across it. Solid-state switches cannot completely meet this 
goal, but when turned on hard enough, they can come as close as possible. 

Any voltage drop appearing across a closed solid-state switch contributes 
to wasted power. For instance (referring again to Figure 7.21), if switches 
51 and 54 are on and are implemented with bipolar transistors each hav­
ing 0.3 V saturation voltage drop and if the supply voltage is 5.0 V, then 
only 4.4 V appears across the motor. Additionally, if the motors draws 500 
milliamps (rnA), then 2.2W is delivered to the motor while 300milliwatts 
(m W) is dissipated as heat in switches 51 and 54. 

Deciding whether to choose power MOSFETs or power bipolar transis­
tors when designing an H-bridge depends largely on which type of device 
will yield the most efficient solution. The answer depends on the power 
required by the motors and the choice of devices available. If MOSFET 
devices can be found that have low enough on-resistances and if, for there­
quired current, they produce voltage drops less than saturation voltages of 
comparable bipolar devices, then power MOSFETs may be the right choice 
for designing an H-bridge. 

When comparing and contrasting bipolar transistors and MOSFETs, 
another characteristic to take into consideration is how each type of transis­
tor responds to temperature increases, as running large amounts of current 
through a transistor causes it to heat up. 

Bipolar transistors are subject to a condition known as thermal run­
away. When current flows through the device, it gets warmer and the tem­
perature rise affects the bipolar transistor in such a way that more current 
flows. With additional flow of current, the device gets even warmer and 
the problem escalates. Thermal runaway means that bipolar transistors 
cannot share current when configured in parallel. If one bipolar transistor 
has slightly more current running through it, it will heat up, allowing more 
current to flow; it will eventually hog all the current, resulting in thermal 
runaway. 

In contrast, MOSFETs do not suffer from thermal runaway and lend 
themselves nicely to parallel configurations. The on-resistance of a MOS­
FET increases with temperature, providing a negative feedback effect. As 
more current flows through a MOSFET, its resistance increases and the cur-

205 

Silver Star Exhibit 1018 - 115



Chapter 7 Motors 

rent through the device decreases until a stable operating point is reached. 
Consequently, MOSFETs do not suffer from current hogging. 

This feature is often taken advantage of in motor drives for electric ve­
hicles and solar cars. Instead of purchasing one very large power MOSFET 
to switch current from an electric vehicle's battery to its engine, designers 
often buy the most economical power MOSFETs and place them in parallel. 
Up to 150 discrete devices are often paralleled in this way. 

For a small mobile robot, however, where space is a primary concern, 
power MOSFETs do have some disadvantages. Because typical power 
MOSFETs need 8 V to 10 V for full-on gate drive, it may be inconvenient 
to drive a power MOSFET from a battery-powered robot using a single 
battery pack. Alkaline batteries come in 1.5 V cells and nickel-cadmium 
batteries come in 1.2 V cells; many of the design decisions for a small mo­
bile robot revolve around the issues of battery pack selection, motors, and 
motor drivers, as the weight of the robot is primarily composed of these 
elements. If four alkaline cells are used as a 6 V power supply for the elec­
tronics, either more batteries or a charge pump must be provided to create 
the 8 V gate drive. 

One way around this problem is to use special low-threshold MOSFETs. 
These devices use very thin gate oxides to bring the turn-on voltages down 
to ranges from 1 V to 2 V. With threshold voltages that low, full-on gate 
drives can usually be achieved at 5 V. Such devices are called logic-level 
MOSFETs. Supertex makes a wide line of low-threshold MOSFETs. Mo­
torola and International Rectifier also carry a variety of MOSFET devices. 

H-Bridge Implementations 

Whether MOSFETs or bipolar transistors are chosen to implement the 
H-bridge, the topologies are very similar. One convenient way to set up 
an H-bridge is to use p-type devices for the high-side switches and n-type 
devices for the low-side switches. 

Figure 7.30 illustrates H-bridges in both bipolar and MOSFET tech­
nologies. If the gating signal on the left in each schematic is pulled low, the 
left-side bottom switches will be off and the left-side top switches will be 
on. If, at the same time, the right-side gating signals for each H-bridge are 
pulled high, the right-side bottom switches will be on and the right-side top 
switches will be off. This configuration is exactly the scenario described in 
Figure 7.21 when switches 51 and 54 were on and switches 52 and 53 were 
off, allowing current to flow from left to right through the motor. Note 
that, in a MOSFET version of an H-bridge, flyback diodes do not have to 
be added discretely, as the built-in source-drain diodes provide the flyback 
function. 

206 

7. 7 Interfacing Motors 

(a) (b) 

Figure 7.30: (a) A MOSFET implementation of an H-bridge, with p-channel 
devices on top and n-channel devices on bottom is shown here. (b) A bipolar 
transistor implementation of an H-bridge, with pnp devices on top and npn devices 
on bottom, requires more complex biasing circuitry to provide level shifting and 
base currents for the bipolar transistors. 

However, because p-type devices have higher on-resistances than n-type 
devices, it is possible to design more efficient H-bridges if n-type devices 
are also used for the high-side switches. The only problem with this design 
decision is that, if an n-type device is used for the high-side switch, the 
gating voltage to turn on the high-side switch must be pulled higher than 
that of the positive rail. For instance, in a MOSFET (see Figure 7.31), if 
an n-channel MOSFET is switching a load between the source and ground, 
the voltage at the source when the switch is on, should be very close to 
that of the positive supply rail. Since the gate turn-on voltage must be 
approximately 10 V higher than the source, the gate voltage must be Vee+ 
10 V. Even if low-threshold devices are used, the gate voltage must be 
Vee+ 5 V, still requiring a separate power supply. 

One solution to this problem is to add additional circuitry to the gate­
drive network in the form of a charge pump. Charge pumps use switched 
capacitors to create voltages higher than the supply voltage. This type of 
design adds extra complexity to the input of the MOSFET implementation 
of an H-bridge, but fortunately, many manufacturers solve this problem by 
integrating all the required subsystems on a single motor-driver chip. 

207 

Silver Star Exhibit 1018 - 116



Chapter 7 Motors 

vee+ 10V J 

Figure 7.31: An n-channel MOSFET used as a high-side switch must have its 
gate voltage pulled higher than that of the positive supply in order to be on hard 
enough that the voltage drop between drain and source approaches 0 V. 

7.7.4 Motor-Driver-Power ICs 

Motor-driver-power integrated circuits (ICs) make it very convenient to 
interface motors to microprocessors. Typically motor-driver-power ICs also 
have circuitry that provides current-limiting and overvoltage protection. 
One single-chip solution is the MPC1710A motor driver from Motorola. 
This chip, whose block diagram is shown in Figure 7.32, uses an H-bridge 
composed of four 'Tlrchannel MOSFETs. A level shifter and charge pump 
circuit are included on the chip to drive the high-side switches. 

The only external components required to interface an MPC1710A to 
Rug Warrior's MC68HC11AO are three capacitors and an inverter. We 
could use port D pin P D5 to set the forward or reverse direction of the 
motor and port A pin A5 to pulse-width modulate the enable input for 
speed control. The Motorola MPC1710A can deliver up to 1 A of current 
with a 0.4 0 on-resistance when sourcing current and 0.2 0 on-resistance 
when sinking current. 

For the two motors on Rug Warrior, two MPC1710A chips would be 
needed, one for each motor. One motor could be controlled by pins PD5 and 
PA5 and the other motor by pins PD4 and PA6. The MPC1710A comes 
in a small 16-pin surface-mount package, which makes it very compact 
when used in a printed circuit board design but rather difficult to use 
when prototyping with Speedwire or Scotchfl.ex wiring technologies. For 
this reason, on Rug Warrior, we chose to use a chip that would be more 
amenable for our readers, the SGS Thompson L293D. 

The L293D was chosen because it comes in a normal 16-pin dual-inline 
package (DIP). This selection, which has two H-bridges on board, minimizes 

208 

7. 7 Interfacing Motors 

MPC1710A 

Figure 7.32: Two Motorola MPC1710As can be used to drive Rug Warrior's 
two motors. One MPC1710A is needed for the left motor and one MPC1710A 
is needed for the right. This surface-mount integrated circuit motor driver chip 
uses an H-bridge made from n-channel power MOSFETs. 

the parts count and delivers enough power for Rug Warrior's motors. The 
L293D, shown in Figure 7.33, uses a bipolar H-bridge instead of a MOSFET 
H-bridge. Again, all switches are made from 'Tlrtype devices and a step-up 
circuit is incorporated on chip to drive the high-side switches. Flyback 
diodes are integrated on chip in this circuit. The L293D can deliver 600 rnA 
to the motor, with a saturation voltage drop of 1.4 V when sourcing current 
and 1.2 V when sinking current. 

Figure 7.34 illustrates how we have interfaced the L293D to Rug War­
rior's 6811. The L293D has some on-chip logic that provides an Enable 
signal. In this way, the Inputs to the H-bridge can be used to set th~ di­
rection of the motor and the Enable signal can be used for pulse-w1dth 
modulation. We use port D pin PD5 to set the direction for the right 
motor. An inverter is used to set one side of the H-bridge to the opposite 
polarity voltage of the gating signal of the other side. This ensures that if 
switches 51 and 54, for instance, are on, then switches 52 and 53 will be 
off and vice versa. Note that this means that the motor is never actively 
braked. The H-bridge is pulse-width modulated by tying the right motor 
driver's Enable pin to port A pin PA5. The output compare function of 
PA5 is used to facilitate timing. One advantage of the L293D is that two 

209 

Silver Star Exhibit 1018 - 117



Chapter 7 Motors 

Figure 7.33: One motor-driver-power IC is an SGS Thompson L293D Th. IC. . IS 
~ower mcorporates a motor driver using an H-bridge made from bipolar t _ 
s1stors. ~hile this illustration only shows one H-bridge, two full H-bridgesr:~ 
actually mcorporated in an L293D. 

~ull H-bridges ~re incorporated on chip, which means that only one L293D 
1s needed to dnve both of Rug Warrior's wheels. Port D pin PD4 is used 
to set t~e direction of the left motor, and port A pin PA6 is tied to the 
Enable s1gnal for pulse-width modulation. 

~any o~her motor-driver-power integrated circuits are available. As 
mentwned m Appendix E, the place to begin searching is the JC Master. 
~he IC. A{_ aster lists integrated circuits both by part number and by func­
twn. ~1stmgs .under "Motor Drivers" include a number of suppliers, such 
as Umtrode, S1emens, Motorola and International Rectifier, among others. 

Another avenue to pursue is to purchase motor controllers for radio­
cont.rolled cars. These are often called speed controllers, which is a bit of 
a m1snomer, since it is only the human who provides the speed control. 
H_owever spe~d controllers do incorporate the power MOSFETs or power 
b1polar transistors in discrete H-bridges for driving larger motors. They 
are sol~ by. Futa~a, Tower Hobbies, and Sheldon's Hobbies, and are often 
advertised m rad1o-control hobbyist magazines. 

7.8 Software for Driving Motors 

The software for controlling Rug Warrior's motors must do two th1· Y t h f ngs. 
1rs , t e so tware needs to control the speed of the robot in the manner 

210 

7.8 Software for Driving Motors 

L.ft 

+Vs 

,_[ 
Slw/t 

Encoder 

Pulse Accumulator 1 

~\-~ PA6 
PA5 

PM 0C4 ---a 

PA3 OC5 --<> 

PA2 ICI 

PAl IC2 OC! 

IC3 Port A 
6811 

Right 

Slw/t 
Encoder 

Figure 7.34: A single L293D chip is used to drive both of Rug Warrior's motors. 
The 68ll's port D pins PD4 and PD5 select forward and reverse for the left and 
right motors, respectively, while port A pins PA6 and PA5 pulse-width modulate 
the left and right enable pins. Note that OCl here is used to also control OC2 
and OC3. 

desired by the programmer. For instance, a higher pulse-width ratio of 
voltage across the motor is needed to keep the robot moving up a ramp at 
one foot per second than would be required to make it move along a flat 
tile floor at one foot per second. To maintain a desired speed, regardless 
of terrain, means that the robot needs to count the number of pulses from 
one of the shaft encoders to see how fast the wheels are turning and then 
update the pulse width accordingly. 

The second function that the software needs to perform is to make the 
two wheels actually revolve at the same speed so that the robot will move 
in a straight line. Recall that, in TuteBot, innate differences between the 
two motors caused TuteBot to move in an arc, even when the same voltage 
was applied to both motors. In that case, we simply added resistors in 
series with one motor until both motors went at the same speed. That 
analog solution was fine for TuteBot, but here, we implement a digital 
solution, since Rug Warrior has a microprocessor right at hand. In this 
way, the solution is general, and if many Rug Warriors are manufactured, 
they all do not have to be individually tweaked with resistor trials. Again, 
the solution is to read the shaft encoders from each wheel and increase or 
decrease the speed of the right motor, say, to match its speed with that of 
the left motor. 

211 

Silver Star Exhibit 1018 - 118



Chapter 7 Motors 

7.8.1 Pulse-Width Modulation 

The software we have configured for controlling Rug Warrior's motors takes 
advantage of timer-counter hardware associated with the MC68HC11AO's 
port A and succeeds in implementing a pulse-width modulation scheme 
wit~out recourse to either polling or interrupts. Port A's eight pins have 
vanous output compare and input capture registers, as shown in Figure 7.34. 
Refer to the Motorola data books on the MC68HC11 for a more complete 
discussion than we will attempt here. 

An output compare register can be set by the programmer so that 
for .inst~nce, when ~he timer-counter's value matches the output compar~ 
~egister s value, a pm can be set high or an interrupt can be initiated. An 
mput captur~ register has. the opposite function. When a signal on a pin 
g.oes low for mstance, the mput capture register can store the value of the 
~1mer-counter register at the time that the event happened or initiate an 
mterrupt. 

Output Compare Registers 

For. pulse-widt~ modulation, we will take advantage of the output compare 
r~gisters associated with port A pins PA3-PA 7, as shown in Figure 7.34. 
Pm PA 7 happens to hold a dual role as either a pulse accumulator or 
as output compare register 1 (OC1). For Rug Warrior's right wheel, we 
have chosen to use PA5, which is associated with output compare register 
3 (OC3) and for the left wheel, PA6, which is associated with output 
compare register 2 (OC2). We also take advantage of OC1 because it is a 
special output compare register in that it can control a given selection of 
the four other output compare registers. The closed connections between 
?C1 and OC2 and between OC1 and OC3 in Figure 7.34 illustrate how we 
I~tend to us~ the timer-counter capabilities to drive Rug Warrior's motors. 
Figure 7.35 Illustrates the timing sequences for our algorithm that will be 
generated on PA5 and PA6 to implement pulse-width modulation. 
. The timer-counter itself is a 16-bit register, TCNT, where the high byte 
Is at hex address $100E and the low byte is at $100F: 

TCNT 
$100E 

The timer-counter runs at a rate dependent upon Rug Warrior's crystal 
oscillator (and therefore the MC68HC11AO's E clock, which is on pin 5 of 
the MC6~HC11AO and can be checked with an oscilloscope). The E clock 
has a penod of one-fourth that of the crystal oscillator frequency. TCNT is 

212 

7.8 Software for Driving Motors 

v 
Right PA51 
Motor '[2s% ::re l t > t 

~I ----~~------------------------~~----~ 
OC1 OC3 OC1 

Left PA6vf 1 32.771ms 

Motor SO% duty 
_ cycle 
L~------------~~------------~~----~)ot 

OC1 OC2 OC1 
32.77ms 

Figure 7.35: Pulse-width modulation can be conveniently accomplished using 
the MC68HC11AO's port A output compare registers. Here, we use three different 
output compare registers, where output compare register OCl directs pins PA5 
and P A6 to both go high at the beginning of each period. Output compare 
registers OC3 and OC2 each tell pins PA5 and PA6 when to go low, giving a 
programmable duty cycle for each motor. 

a free-running counter that starts at 0 when the MC68HC11AO is reset and 
counts up to 2I6 , which is 65,536 counts. The counter then overflows and 
starts again from 0. We use an 8 megahertz (MHz) crystal for Rug Warrior, 
giving the E clock a frequency of 2 MHz and a period of 0.5 microseconds 
(ps). By default, the timer-counter counts at the same period as the E 
clock, but there is a way to prescale the timer-counter rate, which involves 
setting two bits in another register, TMSK2. The lowest two bits in the 
TMSK2 register, PR1 and PRO, are used to divide down the E clock for 
changing the rate at which the timer-counter runs. 

TMSK2 
$1024 

For our purposes, we will let the timer-counter run at its default setting 
and not bother with changing any values in TMSK2. This means that, af­
ter 216 counts at 0.5 ps per count, 32.77 milliseconds (ms) will have passed. 
We will use this standard overflow time as the period for pulse-width mod­
ulation, tperiod, as was illustrated earlier in Figure 7.22. 

Our plan is to create the pulse-width modulated signals for the left and 
right motors using waveforms generated by OC2 and OC3 associated with 

213 

Silver Star Exhibit 1018 - 119



Chapter 7 Motors 

OM OL X X c f on 'I.R"Uratlon 
0 0 OCx Does Not Affect Pin 

0 1 Toggle OCx Pin 

1 0 Clear OCx Pin 

1 1 Set OCx Pin 

Figure 7.36: The four actions possible by any output compare pin are to not 
change, to toggle, to go low, or to go high. Two bits in the TCT11 register, the 
most significant bit (OMx) and the least significant bit (01x), set the desired 
response for any successful output compare. 

pins PA6 and PA5, as shown in Figure 7.35. In this case, we will use OCl 
to set the bits high on both PA6 and PAS when the timer-counter is at 0. 
We will use the OC2 and OC3 registers to clear the bits on both PA6 
and PA5 when the value reached by the timer-counter matches the values 
stored in their 16-bit timer output compare registers, TOC2 and TOC3. 
So, for instance, if we want PA5 to have a 25% duty cycle, then we store 
65,536 + 4 = 16,348 in TOC3. If we want PA6 to have a 50% duty cycle, 
we store 65,536 + 2 = 32,768 in TOC2: 

TOC2 Bl5 BO 
$1018 I I I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOC3 Bl5 BO 
$lOlA I I I 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 

To specify what action should be taken on P A5 and P A6 when their 
corresponding output compare registers match the timer-counter, we must 
set some values in another register, TCTLl. The appropriate bit sequences 
are shown in Figure 7.36. For the way we designed our algorithm in Fig­
ure 7.35, we want PA5 and PA6 to be set to 0 when OC3 and OC2 have 
successful output comparisons. To set this up, we store the two bits, %10 
(which will make the pin go low), in TCTL1 in the locations associated 
with OC3 and OC2: 

TCT11 
$1020 

214 

Bit 7 
OM2 012 OM3 013 OM4 

1 0 1 0 X 

Bit 0 
014 OMS 015 

X X X 

7.8 Software for Driving Motors 

The x's in any bit position represent don't care's. With the falling edge 
of the pulse configured (the signal transitioning from high to low), now we 
just need to set up the OC1 rising-edge event (the transition of the signal 
from low to high). This is done by storing the value of time equal to 0 in 
TOC1, the 16-bit timer output compare 1 register: 

To configure the hardware so that OC1 will control PA5 and PA6, 
we set values in some auxiliary registers that control OCl. The output 
compare 1 mask (OC1M) register signifies which of the other four output 
compare registers OC1 will control. The high five bits in OC1M correspond 
bit for bit with a port A output pin. Therefore, we store the binary number 
%01100000 in OC1M to set up OC1 to control PA5 and PA6: 

OClM 
$100C 

Bit 7 
jOClM7jOClM6jOClM5jOClM4jOClM3j 

X 1 1 X X 

Bit 0 

X X X 

Once we have selected which pins will be active, we can program the 
action that we want to result when the timer-counter value matches the 
value of 0 in TOC1 by setting some values in the output compare 1 data 
(OC1D) register. By setting the bits corresponding to PA5 and PA6 to 1, 
whenever the timer-counter overflows and returns to the value 0, the P A5 
and P A6 pins will be set to 1, which forms the rising edge of each pulse. 

OClD 
$100D 

Bit 7 
jOC1D7JOClD6jOClD5jOC1D4jOClD3j 

X 1 1 X X X 

Bit 0 

X X 

By using these built-in hardware features of the 6811, no interrupts or 
polling sequences are required to implement pulse-width modulation. We 
simply write to some registers in the timer-counter system and all actions 
on pins P A5 and P A6 take place in the background of other programs being 
run on the robot. The programmer merely writes new values to TOC2 and 
TOC3 when the speed has to be changed. 

PWM Software Driver 

The program below illustrates the IC code that implements this scenario 
of a 25% duty cycle signal asserted by pin PA5 and a 50% duty cycle signal 

215 

Silver Star Exhibit 1018 - 120



Chapter 7 Motors 

asserted by pin PA6. This sequence will make one wheel rotate at half the 
speed of the other, causing Rug Warrior to move in an arc towards one side 
or the other. 

int DDRD Ox1009; I* Port D data direction *I 
int DC 1M Ox100C; I* Output Compare 1 Mask *I 
int OC1D Ox100D; I* Output Compare 1 Data *I 
int TOC1 Ox1016; I* Output Compare Timer 1, 16-bit reg *I 
int TOC2 Ox1018; I* Out Cmp Tmr 2, 16-bit reg (left motor) *I 
int TOC3 Ox101A; I* Out Cmp Tmr 3, 16-bit reg (right motor) *I 
int TCTL1 = Ox1020; I* Timer Control 1, 8-bit reg *I 

I* motor_index: 0 => Left motor, 
int TOCx[2] = {TOC2,TOC3}; 
int sign[2] = {1,1}; 

1 => Right motor *I 
I* Index for timer register *I 
I* Sign of rotation of motor *I 

Ob100000}; I* Port D direction bit *I int dirJnask[2] = {Ob010000, 

I* Utility functions *I 
float abs (arg) I* Absolute value function *I 
{ if (arg < 0.0) 

return (- arg); else return arg; } 

int get_sign(float val) 
{ if (val > 0.0) 

return 1; else return -1; } 

I* Limit range of val *I 

I* Find sign of argument *I 

float limit_range(float val, float low, float high) 
{ if (val < low) return low; 

else if (val > high) return high; 
else return val; } 

void ini t_pwm 0 I* Initialize Pulse- Width M adulation *I 
{ poke(DDRD,Ob110010); I* D dir: OUT S,4,1; IN 3,2,0 *I 

poke(OC1M,Ob01100000); I* Out Cmp 1 affects PAS and PA6 *I 
poke(OC1D,Ob01100000); I* Successful OC1 turns on PAS, PA6 *I 
bit_set(TCTL1,0b10100000); I* OC3 turns off PAS, OC2: PA6 *I 
pokeword(TOC1,0); I* When TCNT 0, OC1 fires *I 
pokeword (TOC2, 1) ; I* Minimum on time for OC2 *I 
pokeword(TOC3, 1); } I* Minimum on time for OC3 *I 

216 

7.8 Software for Driving Motors 

I* The sign is handled in a special way because *I 
I* we have only a 1 channel encoder *I 
void pwmJnotor(float vel, int motor_index) 
{ if (sign[motor_index] > 0) I* Choose the direction of rotation *I 

bit_set(port_d, dirJnask[motor_index]); 
else 

bit_clear(port_d, dirJnask[motor_index]); 
vel = limi t_range (vel, 1. 0, 99. 0) ; I* 1 ::; duty fctr ::; gg *I 
pokeword(TOCx[motor_index], (int) (655.36 *vel)); } 

I* Top-level open-loop PWM command *I 
void move(float Lvel, float r_vel) I* Vel range {-100.0, 100.0} *I 
{ sign [0] = get_sign(Lvel); I* Desired direction of rotation *I 

sign[1] = get_sign(r_vel); 
pwmJnotor(abs(Lvel), 0); I* Set pulse-width modulation cnst *I 
pwmJnotor(abs(r_vel), 1); } 

Now let's walk through this program. First, all the necessary registers 
are assigned and three data structures are created. The arrays TOCx[ ], 
sign[ ], and dir_mask[ 1 are all two-element arrays. TOCx[ 1 is an array 
whose first element is the address TOC2, where left-motor velocities are 
stored, and whose second element is the address TOC3, where right-motor 
velocities are stored. The array sign[ 1 is an array whose elements are bits 
representing which direction the left and right motors are commanded to 
go. The array dir _mask[ 1 is an array whose first element holds the mask for 
Port D, required to select the left motor, and whose second element holds 
the mask for Port D, required to select the right motor. 

The next three functions also just lay the groundwork for the main 
part of this program. The functions abs(), geLsign() and limiLrange() are 
functions that C does not happen to supply: abs() simply returns the abso­
lute value of its argument; get..sign() returns the sign of its argument; and 
limit_range() returns a maximum or minimum value for its argument if it is 
out of range. 

The actual pulse-width modulation of the motors is accomplished by the 
functions iniLpwm(), pwm_motor(), and move(). The timer-counter hard­
ware is set up and started by iniLpwm(). The three pokeword() commands 
set an initial (small) pulse width. 

To change the duty cycle, the calling routine uses the pwm_motor() 
function, which takes two arguments: a velocity command and a motor 
index. pwm_motor() then pokes the new velocity into the address, either 
TOC2 or TOC3, as specified by motor _index. 

217 

Silver Star Exhibit 1018 - 121



Chapter 7 Motors 

The function move() is the interface the programmer has for directing 
the robot. move() takes two arguments, a velocity for the left motor and a 
velocity for the right motor. These velocities should be given in the form 
of percentages of full speed. That is, they should be in the range [-100.0, 
100.0). A move(25.0, 50.0) command would make the left motor move at 
25% of full speed and make the right motor move at 50% of full speed, 
causing the robot to arc to the left. 

Setting up the pulse-width modulation scheme for each motor then 
merely means writing some values to a few registers. Once this has been 
done, the hardware associated with the timer-counter system will run by it­
self- always setting pins PA5 and PA6 high when the timer-counter reaches 
zero, always setting P A5 low when the timer-counter reaches 16348, and 
always setting P A6 low when the timer-counter reaches 32768. The central 
processing unit of the MC68HC11AO then is free to attend to other tasks, 
perhaps reading a sensor or calculating a new speed at which the robot 
should run. To change the speed, Rug Warrior's main program merely has 
to store new values in TOC2 and TOC3. 

7.8.2 Feedback-Control Loops 

The strategy we have just described for pulse-width modulating motors is 
known as an open-loop control scheme. In open-loop control, there is no 
feedback from the motors, telling the robot's program how fast the wheels 
are turning or how far the robot has gone. Rather, the motors are just given 
different commanded voltages. But depending on terrain, surface obstacles, 
slippage in wheel contacts, or load on the robot, the commanded voltages 
do not necessarily imply particular speeds. 

To implement a true velocity- or position-control algorithm, the robot 
needs sensors on the wheels, such as the shaft encoders mentioned earlier. 
Such feedback enables what are known as closed-loop control algorithms. 
Figure 7.37 illustrates the simple control loop we will use on Rug Warrior, 
called a P-I controller, for proportional-integral controller. 

The basic idea of a control loop is to take the desired velocity com­
mand (such as one created in the way just described for our pulse width 
modulation scheme), send that command to the motors, see how fast the 
motors actually spin, and then measure that speed and compare it to the 
commanded speed. The difference is called the error signal and it can be 
either positive or negative. There are three error signals (marked e 1 , e2 , 

and e3) in the P-I control loop of Figure 7.37. 
What makes a control loop a proportional controller or an integral con­

troller depends on what computation the loop performs on the error signal. 
For instance, if the loop multiplies the error by some constant to produce 

218 

7.8 Software for Driving Motors 

Desired 
Velocity + 

Right 
Velocity 

Figure 7.37: A simple proportional-integral control loop can be added in soft­
ware to control the speed of the robot and to synchronize Rug Warrior's two 
wheels so that the robot will travel in a straight line. 

a new command, then the controller is a proportional controller. In the 
controller shown in Figure 7.37, there are actually three separate feedback 
loops. 

Imagine for a moment that the central feedback path is not there. The 
top loop, producing the error signal e1 from the left motor, is identical in 
form to the bottom loop, producing the error signal e 2 from the right mo­
tor. Each of these loops is a proportional controller because the difference 
between the desired speed and the actual speed is multiplied by a constant, 
K_pro, and fed back to the motor to adjust the motor speed. If the actual 
speed is less than the desired speed, the difference is positive (as defined 
by the assignment of plus and minus signs on the feedback arrows), and 
if K_pro is also positive, a larger desired velocity is next sent to the mo­
tor. If the actual speed is greater than the desired speed, the error signal 
is negative and a smaller command is sent to the motor, slowing it down. 
This loop repeats until the error signal is small enough so that the motor 
is considered controlled at its desired speed. 

We mentioned earlier that the software controlling Rug Warrior's motors 
should implement two things. The first was that Rug Warrior should be 
able to maintain a desired velocity (whether climbing a ramp or traversing 
a flat space, for instance). The two separate proportional controllers just 

219 

Silver Star Exhibit 1018 - 122



Chapter 7 Motors 

described for each motor essentially fulfill that requirement. We said that 
the second responsibility of the software would be to oversee that the two 
wheels would be slaved to each other. That is, if the robot were commanded 
to go straight, the velocities of the two wheels would be synchronized so 
that the robot really would go straight. This feature is implemented via 
the central feedback path of Figure 7.37, the integral controller. 

The integral controller looks at the actual speeds of both motors and 
compares them. The difference between the two actual speeds is the error 
e3 , as can be seen at the right in Figure 7.37 where e 3 left velocity 
- right velocity + bias. The bias term is used for inputting the turn 
command. While the bias is 0, the error signal only changes over time if the 
robot is not going straight but swerving one way or the other. An integral 
controller integrates, or sums, the error signal over time, multiplies this 
sum by a constant, K_integral; and feeds that new command back into the 
proportional-control loops for each motor. In this way, one motor is sped 
up while the other is slowed down until they each reach speeds sufficiently 
close together. 

In Figure 7.38, we focus on just the upper third of the P-I controller 
diagram, the proportional-control loop for the left motor. We can imple­
ment the computation that this illustration conveys with a few simple IC 
routines. First, the data structure we will rely on for the input desired 
velocity is the function move() described earlier, which we constructed for 
our open-loop PWM controller. If the desired velocity was commanded by 
calling move(25.0, 50.0), this piece of the control system would try to servo 
the left motor such that every time geLiefLvel() was called, it would return 
25 counts. 

To assist in the computations necessary to control the motor, we will 
create a variable, K_pro, and the function alter _power(). The input to al­
ter _power is computed by lefLerror() which is the product of the difference 
between the desired velocity and the actual velocity (both in units of clicks 
per interval) and some constant, K_pro. alter _power() just calls pwm_motor() 
with this new velocity command. The main program then waits for a time 
interval, calls geLiefLvel() again, and repeats the adjustment continuously. 
In this way, if the robot is servoing along a flat floor at one speed but then 
approaches a ramp and begins to climb, more power will be supplied to the 
motor so as to keep the robot moving up the ramp at the same speed at 
which it was moving across the floor. 

The IC program below illustrates both the proportional-control com­
putation and the integral-control loop slaving the two wheels together: 

float controLinterval = 0. 250; /* Run servo loop this often * / 
float des_veLclicks = 0. 0; /*Desired vel, clicks/interval */ 

220 

7.8 Software for Driving Motors 

Desired 
Velocity + 

Velocities are in units of 
encoder clicks per interval 

Actual 
Velocity 

IPACNTj 

Figure 7.38: We focus on the top path of the P-I controller, which is the 
proportional-feedback control loop for the left wheel. The sequence of computa­
tions illustrated by this diagram are encoded in a few simple IC routines. 

float des_bias_clicks = 0.0; 
float power[2] = {0.0,0.0}; 
float integral = 0.0; 
float k_integral = 0.10; 
float k_pro = 1 . 0; 

/*Desired bias, clicks/interval */ 
/*Power command to motor */ 
/* Integral of velocity difference * / 
/* Integral error gain * / 
/*Proportional gain */ 

/* Set and remember power level * / 
void alter_power(float error, int motor_index) 
{ power[motor_index] = limit_range(power[motor_index] 

+error, 0.0, 100.0); 
pwmJnotor(power[motor_index], motor_index); } 

float integrate(float left_vel, float right_vel, float bias) 
{ integral = integral + left_vel + bias - right_vel; 

return integral; } 

void speed_control() 
{ float left_vel, right_vel, integral_error, 

left_error, right_error; 
while (1) 

{ left_ vel = get_left_vel () ; /* Get current vel * / 
right_vel = get_right_vel(); 
integral_error = 

k_integral * 
integrate(left_vel, right_vel, des_bias_clicks); 

left_error = 
k_pro * (des_vel_clicks- left_vel- integral_error); 

right_error = 
k_pro * (des_vel_clicks- right_vel + integral_error); 

alter_power(left_error, 0); 

221 

Silver Star Exhibit 1018 - 123



Chapter 7 Motors 7.8 Software for Driving Motors 

alter_power(right_error, 1); 
sleep (controLinterval); /*Run speed_control periodically * / 
}} 

void set_velocity(float vel, float bias) /* v,b: {-100.0, 100.0} */ 
{ des_veLclicks = k_clicks * vel; /* Convert from vel as % * / 

des_bias_clicks = k_clicks * bias; /* to vel as clicks/interval * / 
sign[O] get_sign(vel - bias); /*Sign of left vel */ 
sign(1] = get_sign(vel + bias); } /*Sign of right vel */ 

float k_clicks = 8.0 I 100.0; 

void start_speed_control() 
{ init_velocity(); 

ini t_pwm () ; 
start_process(speed_control()); } 

The integral controller works by representing the commanded robot 
velocity as two separate pieces of information, a common-mode desired 
velocity and a differential-bias velocity. That is, the desired velocity is the 
translational component and the bias velocity is the rotational component. 
Said another way, if the robot were commanded to go straight at 50% of 
full speed, its desired velocity would be [50.0, 50.0] and its bias velocity 
would be [0.0, 0.0]. This would coerce Rug Warrior to maintain a constant 
velocity of 50% of maximum speed, even as terrain or load on its wheels 
changed, as shown in Figure 7.39. 

If the robot were commanded to spin in place about its right wheel at 
35% of full speed, its desired velocity would be [0.0, 0.0] and its bias velocity 
would be [35.0, 0.0]. A command to arc forward and to the right would 
have both a desired velocity, say, [50.0, 50.0], and a bias velocity, say, [35.0, 
0.0]. 

With this data structure for input, the integral-control loop adds the 
left velocity and the bias and subtracts the right velocity from that sum 
to calculate the error signal, e3 . The function integrate() accumulates this 
error over time, adding the new error to itself on each iteration. This 
running sum is multiplied by some constant, K_integral, and added into 
each motor's proportional controller. In this way, the new commanded 
velocity to each motor takes into account not only its own shaft-encoder's 
error signal but also the error signal between the two motors as it changes 
over time. 

222 

Figure 7.39: Rug Warrior is climbing up a ramp. Implementing a proportional­
integral feedback controller keeps both wheels turning at the same speed and 
delivers more power to the motors as Rug Warrior begins to climb the ramp. 

It becomes interesting now to play with the robot. Grab one wheel 
while the P-I controller is running, and try to keep it from spinning. The 
proportional control will try to raise the power level, and you will feel an 
increase in the torque output by the motor. If you hold the wheel tightly 
though, after a few moments, the other wheel will stop! This is because 
the program was not able to speed up the motor you were holding, and so 
the only way it could keep the two motors running at the same speed was 
to slow the other one down. 

Try playing with the program in different ways. Change the values of 
the constants K_pro and K_integral. If these constants are made larger, the 
reaction time of the control loop will increase, but if you make them too 
large the system might become unstable and the motor will hunt, slowing 
down and speeding up but never converging on a steadily controlled speed. 

Play with the time interval, too. The function speed_control is imple­
mented as a process in IC that runs at a frequency specified by the variable 
controUnterval. Changing the control interval modifies Rug Warrior's re­
action time, also. 

What we have implemented here on Rug Warrior, with a very mini­
mal amount of hardware and an elegantly few lines of code, is a classical 

223 

Silver Star Exhibit 1018 - 124



Chapter 7 Motors 

feedback-control system. These types of techniques have been well studied 
and are useful for a large number of problems. In Chapter 9, we will look 
at a different kind of control paradigm, a subsumption-style control sys­
tem, which focuses on the problem of deciding which behaviors to select, 
given that many may be triggered from a large set of noisy and possible 
conflicting sensors. 

7. 9 References 

A number of books which motor design and performance in great depth. 
Electric Machinery, by Fitzgerald, Kingsley and Umans (1990) gives a thor­
ough treatment of the electromechanics of a wide variety of AC and DC 
motors. The three-volume set by Woodsen and Melcher (1985) Electrome­
chanical Dynamics, delves into the physics behind the generation of elec­
tromechanical forces. 

A comparative analysis of actuator technologies, spanning the range 
from electromagnetic motors to piezoelectrics and human muscle, can be 
found in the work of Hollerbach, Hunter, and Ballantyne (1991). They com­
pare these alternatives from the point of view of applicability to robotics. 

Our discussion of piezoelectric ultrasonic motors was rather brief. The 
piezoelectric ultrasonic motor of Figure 7.3 was made at the MIT Mobile 
Robot Lab by Anita Flynn. Further reading can be acquired in literature 
from a number of countries. Piezoelectric ultrasonic motors were invented 
by the Russians in the sixties (Ragulskis et al. 1988) and later commercial­
ized by the Japanese (Sashida 1982). Recently, these motors have appeared 
in Japanese autofocus lens actuators (Hosoe 1989), paper-pushing actua­
tors in copiers (Ohnishi et al. 1989) and as silent alarms in wristwatches 
(Kasuga et al. 1992). 

Shape memory metals and artificial muscles are somewhat new to mobile 
robots. An informative booklet describing how to work with shape memory 
metals for small robots can be obtained from Mondo-tronics (1991). Arti­
ficial muscles also hold great promise for compact robotic actuators. Much 
of the pioneering work was done by Tanaka. Nice overviews can be found 
in Tanaka (1981) and Brock (1991). 

For those interested in micromechanics, a review on silicon electrostatic 
microactuators can be found in the article by Howe, Muller, Gabriel, and 
Trimmer (1990). Progress in microfabricating ultrasonic motors and pumps 
can be found in papers by Moroney, White, and Howe (1989, 1990), Flynn 
et al. (1992) and Udayakumar et al. (1991). 

Literature on power electronics, power MOSFETs, and motor-driver 
integrated circuits is available in application notes and data books of man-

224 

7. 9 References 

ufacturers such as Motorola, Supertex, Siliconix, and International Recti­
fier. The texts Power MOSFETs, by Grant and Gowar (1989) and Power 
Electronics for the Microprocessor Age, by Kenjo (1990) give excellent back­
ground on driving motors. For a practical guide to servo loops and inter­
rupts, see Foster (1982). 

225 

Silver Star Exhibit 1018 - 125



8 

Power 

A mobile robot requires a power system that can meet several goals simul­
taneously. The power source must store energy sufficient to allow the robot 
to perform a useful amount of work. To ensure proper operation of the 
onboard electronic circuits, power must be provided at a constant voltage. 
Noise and power glitches produced by one circuit component must not be 
allowed to interfere with any other component. 

8.1 Batteries 

Batteries are by far the most common solution employed by mobile robots 
for the problem of energy storage. A battery converts chemical energy into 
electrical energy on demand. From the chemical nature of batteries stems a 
complex variety of properties. We begin with a synopsis of those properties 
and subsequently delve further into selected properties. 

Rechargeability A battery that cannot be recharged is a primary cell. 
One that can be is a secondary or storage battery. 

Energy density The maximum amount of energy per unit mass a partic­
ular battery technology is able to store is known as energy density. 
Energy density is usually measured in units of Watt-hours/kilogram 
(Wh/kg). Alternately, energy density can be measured in units of 
energy per unit volume. 

Capacity Battery capacity is the energy stored in a cell. Capacity is 
usually reported in practical units of amp-hours or milliamp-hours. 
Capacity is the product of energy density and the mass of the battery. 

Silver Star Exhibit 1018 - 126



Chapter 8 Power 8.1 Batteries 

Voltage The voltage produced by a single cell is characteristic of the par-
ticular chemical reaction occurring in the battery. Voltage also de-
pends on the state of charge of the cell. 

Internal resistance When short circuited, the current supplied by a bat- -d 
tery is limited by its internal resistance. The internal resistance in- 1:' u - z ~ 0 <Jl 0 creases as the battery discharges. .- Q,) 

"' "' ~ u "' ..0 ;:. .::; "' Q,) 
.2:! -5 .- .-

>. 'Vi Q,) 0 ~"'0 Q,) 

Discharge rate This is the rate (in units of current) at which a battery ~ u <Jl ti; c c >. ..Ov 0 > Q,) 
"'>. 

.- >t.'::! <Jl 
is discharged. Maximum discharge rate is limited by the internal .5 Q,) "'0 .-o: 'Vi .-::::: E ..0 

Q.. "'0 >. (/)"' c <Jl·- 0 

resistance of the battery. 'i ~ ·~ E Q,) o:- .- 00 "'0 Q,) • 
~ c <1.>.- ~ E "''~I.fl 4J 

0 "' "'(/) >. 
>.~ ;l:l 

..0 .~ 
E Q,) 0 r;o bO 

Q,) "' Shelf life Batteries lose charge even when no external load applied. (/) .5 .-u c ~ Q:; Q,) I:>Q- ·- > lS .- E ~- :....·- l/) "0 
c Q,) c.-

2:!~ "'> Q)~._ ·u; c 
Shelf life is a measure of how quickly this occurs. Q,) 0 ::c v·- <1.>._ 

~"' 0 
c: "' u -"' c:..o ~ <Jl Q,) E "' 0):> "' .- :':(f) u..<: ·-"' Q,) c: .c: >. Q,) Q.. 

~ 4J 
E (/) ;;::: .-<I.> 

I:>Q'6 ~ >< ·c 0 "'Q,) ~ .!:!l o"' --c.. Q,) 

Temperature dependence Most battery properties, in particular, avail- 0 > N Q,) >< ·-·-"' ~ "' u ::iE <( ·u; L.U..<: ...J~ r::ov ::c:s:~ -= .... 
.0 .., 

able capacity and shelf life are affected by temperature. u:> "' .0 
:; 

Q,) 0 u "0 
u 0 ·-e ~ 2 

An ideal battery would have very high energy density, maintain a con-
c ci 0'> "'~ u 

ra~~ 0.0 "' Q,) 0 wt> OJ 
stant voltage during discharge, have a low internal resistance, and there- E.~ E ....... N (") 0 0 0 £:.2 "' <I.><Jl..o:: ci 'Vi ci ....... ci ....... .... ., ... .-vo 0 fore be capable of rapid discharge. It should also withstand temperature .=cr.:- 0~ .s 

"'"' ..<:: :: ..c "' extremes, exhibit an unlimited shelf life, be rechargeable, and sell for a low ooo <( 000 0 00 0 0 0 0 0 "'u u 
ooo 000 0 ~"' +> 000 0'> 0 0 <X) "'·-o:I'L.n0 0 CX)OO ....... ...., <X) 0 ....... (") ....... 0 

...,..., 
"' unit cost. Unfortunately, no single battery technology exhibits all these >. .,......q-0 N ....... L.n o:j' ....... o:j' .,..... N u:> "'"' ·c -.-

~ ·-,-._ ....... ....... ....... .r:c: 4J 
uU..o:: <( 

~ .. +> 
characteristics. Thus, in practice, it is necessary to make trade-offs among ·o.. ~<( "' "' " . u 

~ua <"'! ·c; 
~uo ~s- ·c; 0 ~ "' 

these qualities, depending on the requirements of the task. The information >-"'E """' 
... 

1-u- ....... <(UO u u 0 c:~ "' ..~ ..c: 
in Figure 8.1 may serve as a guide when choosing the proper trade-off for 

o.w u 
Q,) 

we. .... "'E bO L.n 
"'" 

0 

your application. "' "1 ~ 0 "1 <"'! "1 ~ ~ "1 .,~ J:i -.- "' . vo ....... N <'i ....... ....... ....... ....... ....... ....... -"' 0 .. .. "' u> > ~ ·;:: ., "' 
"'"" "' 

8.1.1 Chemistry bi! 
·o v 0. ., ..... s ~o 

>. >...lC "-2l 0 
b.Q·t:.-- 0 0 0 0 <X) ,.._ 0 0 ...., ... u 

Choosing among the various battery chemistries may seem a daunting chal- :....1./)..C (") o:j' 0 N (") L.n (") ....... ,.._ .,_ 
~~s: ~"' ,:.; ....... (") ....... ....... (") "' e."' oci lenge. However, practical considerations dictate that most applications will L.UO-

·~i 4J 
use either alkaline cells, if primary batteries are required, or nickel-cadmium Q,) 

0.~ I< o."' = bO "'"" cells (NiCds) if rechargeables must be used. ~ ., ., bl) 

"' 0 
<Jl 

0 0 
<Jl (/) 

0 0 0 ~.r: r; ..<:: 
~ 

Q,) Q,) .. ~ 
Carbon-zinc batteries have been around for over 100 years, and although u z z z >- >- z z z ., " Q,) ~ 0 

0:: 
., 

they have the lowest unit cost of all the batteries listed, they also have the 
.<:"0 
.,ii; 
<>o. 

lowest primary-cell energy density. Voltage changes by a large amount as u t)<U 

1:' "' :.:::~ 

"0 N "'"' these batteries discharge, internal resistance is high and performance at low .- '<:i ~ ~" 
Q,) 1:' .: ""' >.<J> <( E <( .o-

temperatures is poor. o:;·E ·= -6 ~ ~ ::c ~ 0 E ~ 

~ 
u "'0 Q,) w -e "'" t:v 5 ~ ::iE "' Q,) u ..:: c: "E 

Alkaline manganese cells, commonly called alkalines, have higher energy <":l..<: 
<( Q,) 

::iE z (jj N "' =o r::ou ...J :::i z u <{(f) 

density than carbon-zinc batteries. Internal resistance is also much lower. 
The cost of alkaline batteries is moderate, and they are widely available. 
They do, however, have a sloping discharge curve. (The discharge curve 
relates battery voltage to time as the battery discharges.) 

228 229 

Silver Star Exhibit 1018 - 127



Chapter 8 Power 

The energy density of mercury and silver batteries is quite good, and 
they have other desirable properties as well. For example, they have very 
flat discharge curves. Their drawbacks are their generally higher prices and 
the fact that they are most readily available only in button or coin-sized 
cells. 

Lithium batteries have by far the highest energy density of commonly 
available batteries-this alone makes them indispensable for certain appli­
cations. Lithiums also have a flat discharge curve and great shelf life-as 
much as 10 years. Lithiums power many autowinding cameras and have 
become easy to obtain; most photo stores carry them. These batteries do, 
however, have a higher internal resistance than alkalines and are much more 
expensive. 

Sealed lead-acid cells are available in a variety of rectangular sizes. 
(Digi-Key has a good selection.) They are relatively inexpensive, have 
very low internal resistance, and can be recharged. Energy density is poor, 
however. Lead-acid cells have even less energy density than carbon-zinc 
cells. 

Nickel-cadmium, or NiCd, cells are available in common AA, C, D and 
so-called 9 volt sizes. As such, they can be directly substituted for alkaline 
cells in most portable equipment. Cell voltage is less, however. A 9 V NiCd 
typically supplies only 7.2 V. NiCds have very low internal resistance, but 
energy density is comparable to that of lead-acid batteries. The operational 
constraints that must be observed when using NiCds are probably more 
severe than with other batteries. If a battery pack containing several NiCds 
is deeply discharged, the polarity of the weakest cells may reverse. NiCds 
also suffer from "memory" effect. If a NiCd is repeatedly discharged by, 
say, 50% of its rated capacity and then recharged, it will eventually begin 
to act as if it has only 50% of its original capacity. This condition can 
sometimes be fixed by discharging the battery completely (perhaps more 
than once) and then recharging it. 

A new rechargeable battery technology, known as nickel-metal-hydride 
(NiMH), is now becoming widely available. NiMH batteries have many 
characteristics in common with NiCd cells. Although NiMH cells cannot 
supply surge currents quite as high as NiCd cells, the energy density of 
NiMH batteries is about 50% greater than that of NiCds. As NiMH bat­
teries are refined over the next few years, they will likely take over many 
of the applications that currently use NiCds. Significantly, NiMH cells, 
because they do not contain cadmium, pose much less environmental risk 
when they are disposed of than do NiCds. Currently, NiMH cells are about 
three times as costly as NiCds. Although voltage and charging characteris­
tics are similar to those of NiCds, NiMH batteries will not necessarily work 
with battery chargers designed for NiCds. 

230 

8.1 Batteries 

Nickle-Cadmium Lithium 
~ Zinc-Carbon~ Merc~ry ~Zinc-Air ad-Ac~ /.Aikahne 

00 1 I + I •. I I I I . I 

0 100 200 300 

Lithium Gasoline Fission of 235U 

I ·~II Ill•{ Ill Ill Ill 1•<111 
102 103 104 105 106 107 108 

Figure 8.2: A comparison of the energy densities of several storage technologies 
(at room temperature). Units are Watt-hours/kilogram. 

8.1.2 Energy Density 

The crucial parameter of any battery technology is energy density. Fig­
ure 8.2 graphs the energy density at room temperature of several commonly 
used batteries. To keep these figures in perspective, battery energy density 
is also compared with that of gasoline 1 and the fission of 235 Uranium. This 
graph demonstrates the degree to which batteries are at a disadvantage 
compared to combustible fuels and nuclear energy storage techniques. It is 
also the case that the cost per kWh of energy delivered by batteries is much 
higher than that of other chemical storage mechanisms. Electrical energy 
supplied by a battery can easily cost 1,000 times as much as the same en­
ergy from your local electric utility. The redeeming feature of batteries is 
that they are highly mobile and provide the energy in the desired form: 
electricity. Other energy storage techniques require mechanical means (for 
example engines and generators) to produce electricity. Thus, batteries can 
be cost effective despite the high absolute costs of the energy they supply. 

8.1.3 Voltage 

Although it is desirable for a battery under load to maintain a constant 
voltage, typically, that voltage changes with the state of charge. How 
the voltage varies with charge is a property of the particular technology 
involved. Figure 8.3 presents a detailed, although still approximate com­
parison of the discharge characteristics of the four most common battery 
technologies. For example, as a one-cell, lead-acid battery discharges, its 
output goes from 2.1 V when freshly charged down to about 1.8 V when its 

1The comparison is marginally more favorable to batteries than it appears. Gasoline 
and nuclear fission both require a heat cycle to produce electricity-a process that is 
typically no more than 20% efficient. 

231 

Silver Star Exhibit 1018 - 128



Chapter 8 Power 

Cell voltatg 
_ Lithium 3.0----, 

2.0 ~Le;d:Actd- - - - - - - - - - - - - - -- -.... .... 

1.5 

--- ---
---------------::=:~~. 

1.0 --....._. ... ::-:, ...... 

',' 
' ' ' \ 

r 0.2 0.4 0.6 0.8 1.0 Time Units 
0.0 I I I I I 

0 20% 40% 60% 80% 100% Capacity 

Figure 8.3: The discharge characteristics of the most common battery technolo­
gies are compared in two ways with those of a lithium battery. The figure assumes 
batteries of a similar size discharged at the same rate. The dashed lines show 
output voltage versus battery capacity consumed. The solid lines show voltage 
versus time. Time units are arbitrary, as we assume each battery discharges into 
the same load. 

capacity is effectively used up. A lithium battery, on the other hand, main­
tains a nearly constant voltage during discharge. The graph is normalized 
to the performance of the lithium battery. That is, if the lithium cell takes 
1.0 time units to exhaust its total capacity, the lead-acid battery is used up 
in about 0.1 time units. The dashed lines show more clearly how battery 
voltage changes as capacity is used up. 

8.1.4 Capacity 

Battery capacity, usually listed as some number of ampere-hours (infor­
mally, amp-hours) or milliamp-hours, can be misleading. Note that amp­
hours is a practical term, not a proper unit of energy. (Amp-hours are 
equivalent to coulombs, the unit for charge.) To get energy, multiply the 
amp-hour rating by the voltage of the cell. This gives Watt-hours, which 
is a unit of energy: 

(1 Watt= 1 J~~e ). 

232 

8.2 Recharging 

Figure 8.4: A battery may be modeled as an ideal battery, one able to supply 
any current at constant voltage, in series with an internal resistance, R;. 

In general, the amount of energy that can be extracted from a battery 
depends on the rate at which the battery is discharged. At higher rates, 
the effective capacity will be reduced. The capacity published by the man­
ufacturer assumes a favorable discharge rate-not necessarily a reasonable 
number for your project. Consult a battery data sheet for full information. 

8.1.5 Internal Resistance 

If the positive and negative terminals of a battery are shorted together, the 
current that flows is limited only by the internal resistance of the battery. 
A useful model of a real battery is a series circuit consisting of an ideal 
battery and a resistance, as shown in Figure 8.4. While the exact value of 
this resistance depends on a number of factors (such as battery age, charge, 
capacity, and temperature), different battery technologies have characteris­
tic internal resistances. A small fresh alkaline cell, for example, may exhibit 
a resistance 10 times that of a similar-sized NiCd. Despite its lower energy 
density, this can make the NiCd more suitable for applications that require 
high surge currents. It can also make the NiCd more hazardous to 
use. The current produced by a short-circuited NiCd may be 
enough to melt insulation and cause a fire. 

8.2 Recharging 

Secondary cells are of particular importance to robots. A recharging circuit 
built into your robot can make it truly autonomous. All it needs to do when 
the power is low is to find an outlet and plug itself in. NiCd batteries offer 
advantages in this regard because of the simplicity of the circuits required 
to charge them. Figure 8.5 shows such an example. This circuit may be 
safely used to charge a NiCd battery at a very slow rate; this is called trickle 
charging. If the capacity of the battery in amp-hours is C, then choose a 
resistor such that the current flowing into the battery is limited to C /20. 
Even if it is left connected to the charger indefinitely, the battery cannot 
become overcharged. Exactly this scheme is employed by many inexpensive 
rechargeable appliances. 

233 

Silver Star Exhibit 1018 - 129



Chapter 8 Power 

Figure 8.5: This figure shows a very simple charging circuit for a NiCd battery. 
Such a circuit is suitable for trickle charging. 

A significant disadvantage of trickle charging is that it takes a very 
long time (several hours) for the battery to regain a full charge. More so­
phisticated battery chargers charge batteries at much higher rates. Battery 
manufacturers often include detailed instructions for designing charging cir­
cuits in their technical literature. A few companies manufacture integrated 
circuit chips that supervise the charging process; this makes battery-charger 
design very easy. Benchmarq Microelectronics and Integrated Circuit Sys­
tems produce such chips. 

Stores and mail order companies that carry radio-controlled model cars 
and airplanes are a good source of both rechargeable battery packs and 
battery-charging equipment. Because of the mass market, prices are often 
lower for these items than for comparable generic batteries and chargers. 

8.3 Power Regulation 

As we saw in the previous section, the voltage supplied by a battery can 
change, sometimes by a large amount, as the battery discharges. One goal 
of any regulation scheme is to provide a constant output voltage, even if the 
input voltage varies over a wide range. Another goal of the regulator is to 
maintain a constant output voltage as the load changes. When motors and 
other actuators start up or reverse direction, they place a large transient 
demand for current on the power supply. The voltage supplied to the logic 
circuits must remain stable under these conditions. The requirements of 
the circuit may be such that several different voltages are necessary. It is 
generally desirable to supply all voltages from a single battery pack. 

8.3.1 A voiding Regulation 

The regulation method employed by Rug Warrior is the simplest possible: 
it uses only circuit components that can operate satisfactorily over a wide 
range of voltages. High-speed CMOS chips (the 74HC series of integrated 

234 

8.3 Power Regulation 

1 
5 volts 

in LM7805 1.:
0
;;:." =---o 

gnd 

Battery 
voltage 

time 

Figure 8.6: As long as the supply voltage is greater than. the re~uired out~ut 
voltage by a characteristic amount, the linear regulator provtdes a stmple solutwn 
to the problem of power regulation. 

circuits) are especially good in this regard. Such chips operate correctly 
when the positive voltage supply, V cc, is between 2 V and 6 V. Many 
analog chips, such as Rug Warrior's LM386 microphone amplifier, ca~ a~so 
accept a range of supply voltages. However, the operating charactensttcs 
of all chips (response times, for example) do vary with the voltage ~upply. 
Despite the choice made for Rug Warrior, it is good practice to mclude 
some form of voltage regulation in any circuit you design. 

8.3.2 Linear Regulators 

Because of its simplicity and low cost, the linear regulator is one of the most 
commonly used voltage regulators. A linear regulator, shown in Figure 8.6, 
is typically a three-terminal device: power-in, ground, and power-out. As 
long as the input voltage is higher than the required output voltage by 
a certain amount called the dropout voltage, the output voltage will be 
constant as the s~pply voltage changes. For example, the LM7805 is a 5.0 
V linear regulator capable of supplying 1.0 A of current. It has a dropout 
voltage of 2.0 V. As long as the input voltage is between a minimum of 7.0 
V and a maximum of 35.0 V, the output will be a constant 5.0 V. The cost 
of this device is typically under one dollar. 

The relatively high dropout voltage of the LM7805 can cause a problem. 
Suppose we wish to power our robot using, say, five alkaline cells. The tot~l 
voltage when the cells are fresh is 7.5 V. When exhausted, the ~olt~ge 1s 
about 5.0 V. However, when the LM7805's input falls below 7.0 V, 1t w1llno 
longer provide a regulated output. This occurs when only a small portion 
of battery capacity has been used up. 

235 

Silver Star Exhibit 1018 - 130



Chapter 8 Power 

To solve this problem, we could simply use seven alkaline cells rather 
than five. Such an arrangement would give the LM7805 the input voltage 
it requires all the way to cell exhaustion. This, however, brings up another 
problem of the simple linear regulator: power loss. 

If the supply voltage is Vin' the output voltage Voub and the current 
output I, then the power, P, dissipated by the linear regulator itself is 

P = I(Vout Vin)· 
In our example, the seven alkaline cells, when fresh, provide 10.5 V to 

the linear regulator. The regulator supplies 5.0 V to the robot's circuits, 
and 5.5 Vis dropped by the regulator. If the current drawn by the robot's 
circuits is I, then the power consumed by these circuits is 5.0I, and the 
power dissipated by the regulator is 5.5I. This means that more than 
half of the power taken from the batteries is simply thrown away by the 
regulator. 

Such waste poses no problem for a fixed installation, in which power 
comes from a cord plugged into a wall socket. But when batteries are used, 
we must take care to avoid wasting power whenever possible. 

One improvement we could make would be to use a linear regulator 
with a smaller dropout. The LM2940CT-5.0, for example, provides good 
regulation when the input voltage is between 5.5 V and 26.0 V. This device 
allows us to minimize the difference between the voltage supplied by the 
batteries and the voltage required by the robot's circuits, thus reducing 
power waste. Low-dropout regulators are somewhat more expensive than 
the standard ones. 

Power waste notwithstanding, a simple linear regulator is a good choice 
if the power requirement of the regulated circuit is only a small fraction 
of the total power the robot consumes. For example, if a 12.0 V battery 
supplies, say, 1 Ampere of unregulated current to the motors and maybe 
50 rnA at 5.0 volts to the microprocessor, the fact that 0.050 x (12-5) = 0.35 
watts of power is wasted in the regulator will scarcely be noticed when 
compared to the power (12 watts) consumed by the motors. 

8.3.3 DC-DC Converters 

Linear regulators are capable only of supplying constant voltages that fall 
between 0.0 V and the battery supply voltage (less dropout). If a voltage 
higher than the battery voltage or a voltage with a polarity opposite that of 
the battery is required, another device must be used. Typically, this means 
a DC-DC converter. 

Two distinct technologies are used to construct DC-DC converters. The 
flying capacitor, or charge pump-type converter, produces a voltage higher 
than or inverted with respect to the input voltage. It does this by charging 

236 

8.3 Power Regulation 

5 volts 

MAX631 I 1001-'F -
I LBI GND VFB 

Figure 8. 7: Maxim supplies a series of chips useful in building a simple DC-DC 

converter circuit. 

capacitors in parallel and then discharging them in series to achieve a higher 
voltage or by connecting the charged capacitor with the polarity inverted to 
produce a negative voltage from a positive supply. Charge pump converters 
can thus produce an output voltage that is an integer multiple of the input 
voltage. The charge pump, however, only converts the voltage to a different 
value. Actual regulation may still require a linear regulator. 

When current flowing through an inductor is interrupted, the collapsing 
magnetic field can induce a voltage much higher than that originally used 
to produce the steady-state current. With appropriate switching and filter­
ing, this transient voltage can be used to produce a constant output at _a 
wide range of voltages either higher or lower than the battery voltage. Th1s 
method is used in the other type of DC-DC converter, the switching reg­
ulator. By adjusting the switching parameters (how long current flows in 
the inductor versus how long the current is interrupted), the output voltage 

can be precisely regulated. 
Switching regulators offer much better efficiency (often over 80%) than 

linear regulators, even when the input voltage differs greatly from the out­
put voltage. The principle drawback of the switching regulator is cost. 
Although low-power devices (say, 20 to 100 rnA) are comparable in price to 
low-dropout linear regulators, higher powered converters capable of deliver­
ing an Amp or more can easily cost over 10 times as much. Also, switching 
regulators can produce more electrical radio frequency noise than linear 

regulators. 
There are two common ways to buy switching regulators: as discrete 

components or prepackaged units. Maxim produces a variety of integrated 
circuits that can simplify the construction of a switching regulator. The 
MAX631, for example, requires only two external components, an inductor 
and a capacitor, to produce a 40 rnA, 5.0 V regulated output from an 
unregulated 3.0 V input, as illustrated in Figure 8. 7. 

237 

Silver Star Exhibit 1018 - 131



Chapter 8 Power 

Figure 8.8: This photograph illustrates a number of types of regulators. On the 
left is an LM7805 5 V linear regulator. To its right is a Pico 5 V to 9 V DC-DC 
converter. Next is a Power Trends downconverting LMSX7805 DC-DC switching 
regulator. To the far right is a Pico IRE280, a dual 5 V to 28 V DC-DC converter. 

The second approach to switching regulators is to purchase a unit with 
the switching circuit, inductor, and capacitor mounted in a convenient en­
cased package. Such units are available from Digi-Key, Pico, Packaged 
Power, Vicor, and many other sources, as well. This format offers the same 
simplicity of design as is provided by a simple linear regulator (although at 
a much higher cost). A number of different types of regulators and DC-DC 
converters are shown in Figure 8.8. 

8.4 Isolation 

Power supplies can often become noisy. For instance, when digital chips 
change state, they place a very brief demand for large amounts of current 
on the power supply. Similarly, each time the brush of a motor slides past 
a section of the commutator, a voltage spike is generated, which can find 
its way into the power supply circuitry. Often times, robots operate in 
an environment of electrical noise and changing magnetic fields (generated 
either internally or by external equipment). 

All of these noise sources challenge the proper operation of the robot. 
The final goal of the power supply and distribution circuitry is, therefore, to 
isolate each component wired into the power supply from the interference 
produced by other components. 

To combat the transient drain posed by state changes in digital chips, 
designers often connect small capacitors, say, 0.1f1F, across the power and 

238 

8.4 Isolation 

Figure 8.9: A 0.1 J.LF ceramic disc capacitor is at left. In the middle is a 10 J.LF 
tantalum capacitor, and at right is a 10 J.LF electrolytic capacitor. Tantalum and 
electrolytic capacitors are polarized and can be inserted into the circuit in only 
one direction. 

Figure 8.10: The layout of the power distribution circuitry should not contain 
ground loops. 

ground connections of each chip. It is generally more important to do this 
for high-speed memory chips. Figure 8.9 illustrates some different types of 
capacitors. 

The threat posed by stray magnetic fields can be countered by using 
what is called a single-point ground. Power distribution wires or printed 
circuit board traces must be laid out in such a way that no ground loops are 
formed, as shown in Figure 8.10. Changing magnetic fields induce a voltage 
in any wire loop they encounter. This can mean that components connected 
to different parts of a ground loop will not see a common reference voltage. 
That is, the "ground" of one component may actually have an instantaneous 
voltage higher or lower than that of some other component. 

It is good practice to see that the power source separates the motor 
and logic components, as shown on the right side of Figure 8.10. This 
prevents any voltage drop in the distribution wires, caused by the high 
current demands of the motors, from affecting the logic components. Note 
also that, generally, it is not necessary to regulate the power going to the 

239 

Silver Star Exhibit 1018 - 132



Chapter 8 Power 

Figur~ 8.11: Some possible power supply configurations. (a) Logic power can 
b~ buffered from motor transients by a large capacitor. (b) The addition of a 
dwde protects the logic against brief voltage dips when the motors demand high 
surg~ currents. \c) Having completely separate power supplies makes the robot 
bulkier but alleviates noise problems. 

motors. To maintain a ~onstant velocity from the motors when the input 
~oltage falls,. the pulse-width modulation circuit controlling the motors will 
simply remam on longer. 

. Much more difficult .to solve than problems caused by switching digital 
chips and. stray magnetic fields are the power glitches, voltage spikes, and 
voltage d1ps caused by motors. Motors act as virtual short circuits when 
they ~re first ~wit?hed on. They try to feed power of the wrong polarity 
back mto ~he c1rcmt when their direction is reversed, and they can produce 
v~ltage spikes many times larger than the supply voltage each time a brush 
shdes p~t ~ commutator sect~on. Unless well isolated from the logic and 
sensor c1rcmts, these effects w1ll cause unreliable behavior. In general, the 
cheaper the motor, the more difficult the isolation problem. 

Se_veral resolutions are illustrated in Figure 8.11. In Figure 8.11(a) a 
c~paCitor. protects the other circuits from motor spikes. This will work with 
h1gh qua~1ty motors that produce little electrical noise. Figure 8.11(b) shows 
one possible V:ay to guard ~gainst the voltage dips caused by a reversing 
~oto~. Ev~n 1f the batte.ry IS unable to maintain a constant voltage under 
trans1~nt h1gh-load conditions, the voltage seen by the logic remains high. 
T~e d1~de prevents the capacitor, in parallel with the logic circuits, from 
~emg discharged by the motors. This scheme may be helpful if the batteries 
m you~ robot hav~ high internal resistance. If necessary, total isolation can 
~e a~h1eved by usmg separate power supplies for motors and logic, as shown 
m F1gure 8.11(c). 

240 

8.5 References 

Logic 
Components 

-
I 

logic 
-Supply 

--

-
Supply Moto:l 

Figure 8.12: An optoisolator can provide complete electrical isolation among 
different parts of a circuit. Here, the output computed by the logic components is 
sent to a light-emitting diode (LED) embedded in an optoisolator package. The 
emitted light from the LED is detected by the optoisolator's phototransistor. The 
signal from the phototransistor is used to activate the motor-control electronics. 
There is no electrical connection between logic and motor power supplies. 

For especially difficult isolation problems, the optoisolator offers an ef­
fective solution by making possible complete separation of the motor and 
logic power supplies. The optoisolator allows logic control circuits to be 
kept electrically isolated from the actuation circuits. Figure 8.12 illustrates 
the setup. The only connection between logic and power circuits is made 
by photons. 

Clearly, in designing a power system for a battery-operated mobile 
robot, we must consider carefully the capabilities of the available battery 
technologies, the need for high-efficiency circuits and components, and the 
problems of isolating electrically noisy motors from sensitive logic compo­
nents. 

8. 5 References 

Information on the types of batteries available, along with details pertaining 
to recharging circuits, discharge rates, and the like, are usually found in 
manufacturers' catalogs. Check Appendix C for listings of suppliers. 

Many of the power problems associated with mobile robots share the 
technology base with electric cars. Pratt (1992) gives an overview of issues 
and state-of-the-art electric vehicle design. Power supply and DC-DC con­
verter design is covered extensively in the text by Kassakian, Schlect, and 
Verghese (1991). In a special issue of Spectrum, Riezenman (1992) discusses 
electrical vehicle efficiency and the shortcomings of battery technology. 

241 

Silver Star Exhibit 1018 - 133



9 

Robot Programming 

Two recent advancements have brought mobile robots to the verge of what 
we believe will be a period of explosive growth. The first advance, the 
highly integrated microcontroller, was described in Chapter 3. The second 
advance, subsumption architecture, is the subject of this chapter. Sub­
sumption architecture allows us to tie together into a coherent whole all 
the elements of robot control we have discussed so far. An interesting side 
effect of the subsumption paradigm is that this method of integrating sens­
ing and actuation can be accomplished using only modest computational 
resources. 

The reason for this unforeseen benefit has to do with the way subsump­
tion architecture deals with sensors. The traditional approach to robot 
programming handles data in a manner known as sensor fusion, which 
turns out to be computationally intensive. A subsumption approach does 
not resort to sensor fusion but rather utilizes the notion of behavior fusion. 
In order to make these distinctions more clear, let us compare and contrast 
the two approaches. We begin with a historical perspective, the traditional 
approach to robot programming. 

9.1 The Traditional Approach 

A paradigm employed from the earliest days of robotics, and one that re­
mains an active topic of research, is based on the ideas of world modeling 
and planning. This approach decomposes a robot program into an ordered 
sequence of functional components as illustrated in Figure 9.1. 

First, data are collected from all sensors. Noise and conflicts in the 
data are resolved in such a manner that a consistent model of the world 

Silver Star Exhibit 1018 - 134



Chapter 9 Robot Programming 

c .g 
bO 

Inputs from sensors 

"" .5 
~ -;:; bO c 
e- "0 c .g 

~ 
0 '2 ~ 2l ::!: :::> c 

~ ..5 "" :E a: 0 ~ 
UJ 

Vl 
c 

Outputs to actuators 

<l.> 
fJ) 

Figure 9.1: A robot program employing the modeling/planning paradigm is 
composed of a sequence of steps. These functional units transform a snapshot of 
sensory data into a series of actions intended to achieve a specified goal. 

can be constructed. The world model must include the geometric details of 
all objects in the robot's world and their positions and orientations. Given 
a goal, usually provided by the programmer, the robot uses its model of 
the world to plan a series of actions that will achieve the goal. Finally, 
the plan formulated is executed by sending appropriate commands to the 
actuators. A sophisticated planner might even include sensory tests in the 
robot program it constructs. For example, "move gripper along the x-axis 
until a three oz. force is detected." 

We will illustrate the world-model approach with a brief example using 
a modeling/planning system called HANDEY, which was recently completed 
at the MIT Artificial Intelligence Laboratory. HANDEY is a task-level plan­
ning system for manipulator-type robots that can solve the pick-and-place 
problem. The pick-and-place problem takes as inputs a model of the world, 
a part at some location and orientation, and the desired final location and 
orientation for that part. The pick-and-place problem then is solved if the 
program can compute a detailed set of robot motions (and gripper open­
ings and closings) that will move the part from its origin to its destination. 
Thus, the robot should be able to pick up the correct part and place it in 
its proper destination in some assembly. 

Figure 9.2 illustrates a screen output from the HANDEY system as it di­
rects two robot arms to geometrically reason about a pick-and-place prob­
lem. The real robot system first uses a laser scanner to identify the position 
and orientation of the part to be moved. It then incorporates this infor­
mation into a geometric model of the world, provided by the programmer. 
The programmer also specifies the desired final position and orientation of 
the part. HANDEY then uses several sophisticated planners, first to plan 
how to grasp the part, and then to plan gross motions of the robot arm to 
move it into the vicinity close to the part. 

244 

9.1 The Traditional Approach 

Figure 9.2: This is a world model used by the HANDEY task-level planning 
system. In this complex modeled environment (generated at the Jet Propulsion 
Laboratory), three manipulator-type robots cooperate to perform an operation 

on a satellite mock-up. 

It may be the case that no initial grasp of the part exists that is com­
patible with the geometrical and kinematic constraints at both the pickup 
point and the putdown point. For instance, it could be that the only avail­
able initial set of grasps would have the jaws of the two-fingered hand bump 
into another piece of the assembly when placing the part at its destination. 
If this condition is discovered, HANDEY plans a sequence of placements and 
regrasping operations. HANDEY directs the robot arm, first to put the part 
down on a clear part of the work table and then, to pick up the part in 
a more amenable position. The HANDEY system then generates another 
plan to direct the manipulator to finish the placement. HANDEY can also 
coordinate the motions of two robots using the same workspace. 

Finally, after all plans have been formulated and all constraints satisfied, 
HANDEY executes the plan by sending a long series of commands to the 
robot. These commands specify precisely each small motion the robot must 
make and when to open and close the gripper. 

This modeling/planning approach has strong appeal, principally be­
cause of the guarantees and optimizations it makes possible. There are 
planning strategies that, in a finite amount of time, will compute a sequence 

245 

Silver Star Exhibit 1018 - 135



Chapter 9 Robot Programming 

of motions guaranteed to accomplish the task or prove that the proposed 
task is impossible. In addition, a successful plan can be optimized before 
the robot makes any motions. 

Such guarantees would also have appeal in the mobile robot domain. 
For instance, a mobile robot that used such global information about its 
world to formulate a plan would never fall into the trap of following a path 
to a dead end and then having to backtrack. Instead, it would always 
choose the most direct route from start to goal. 

Unfortunately, the modeling/planning approach has some disadvan­
tages. As the following sections will explain, these problems are accentuated 
for mobile robots that operate in natural or changing environments. 

9.1.1 Computation 

One drawback to world-model schemes is that they require large amounts 
of data storage and intense computation. This drawback is not necessarily 
a concern for a manipulator-type robot, but it can be for a mobile robot , 
which must carry its computational resources on its back. The HANDEY 

program is composed of over 100 high-level Lisp files and requires a pow­
erful computer with several megabytes of RAM to perform satisfactorily. 
Because the natural world is enormously rich in detail, schemes to represent 
it simply require a large number of bits. All world-model systems therefore 
simplify the world to make storage and manipulation of the model practi­
cal. HANDEY is restricted to dealing with polyhedra. Any curved surfaces 
in the world must be approximated by collections of flat surfaces. 

9.1.2 Modeling 

Many of the advantages of the modeling/planning approach come from its 
ability to use global information. A program that takes into account all 
relevant information can be expected to produce better results than one 

.that makes all decisions based on local (i.e., only some) information. 
It is the internal representation of the world that makes possible the use 

of global information-but problems occur in the construction of this model. 
For a plan to be reliable, the model on which it is based must be highly 
accurate. This requires high-precision sensors and careful calibration, both 
of which are expensive. Even the best available sensors suffer from several 
difficulties. Sensor data are unavoidably noisy. Sensors are subject to 
systematic errors, and different sensor technologies often produce conflicting 
results when measuring the same quantity. For example, sonar and infrared 
ranging systems may give different distance readings due to the surface 
properties of the objects at which they are aimed. 

246 

9.2 The Subsumption Approach 

Typically, a modeling/planning algorithm must devote considerable re­
sources to figuring out the most likely interpretation when presented with 
inconsistent data from a single sensor and conflicting data from multiple 
sensors. This general idea of combining data from multiple sensors into one 
data structure, the world model, is known as sensor fusion. 

Some planning programs (HANDEY, for example) rely on the program­
mer rather than sensors for building most or all of the world model. Syn­
thesizing a world model can reduce the burden of interpreting sensor data, 
but unfortunately doing so can also limit the robot's ability to respond 
autonomously to changes in its environment. 

9.1.3 Time 

The modeling/planning paradigm is by nature sequential. The approach 
first takes a snapshot of the world, then processes the acquired information, 
and then acts. If the world happens to change between snapshot and action, 
the plan may fail. 

Trying to make the actions of such a program more intelligent may 
produce undesired results. The more time the program devotes to resolving 
conflicting sensor data, to refining its model of the world, and to optimizing 
its plan, the longer will be the delay between sensing and acting. This delay 
increases the chance that a significant change will occur in the world, thus 
invalidating the plan. 

9.2 The Subsumption Approach 

As a result of work by Professor Rodney Brooks and the Mobile Robot 
Group at the MIT Artificial Intelligence Laboratory, a promising new al­
ternative to the modeling/planning paradigm has recently been proposed. 
Brooks' subsumption architecture provides a way of combining distributed 
real-time control with sensor-triggered behaviors. Subsumption architec­
ture, instead of making explicit judgments about sensor validity, uses a 
strategy in which sensors are dealt with only implicitly in that they initiate 
behaviors. 

Behaviors are simply layers of control systems that all run in parallel 
whenever appropriate sensors fire. The problem of conflicting sensor data 
then is handed off to the problem of conflicting behaviors. Htsion conse­
quently is performed at the output of behaviors (behavior fusion) rather 
than the output of sensors. A prioritized arbitration scheme is used to 
resolve the dominant behavior for a given scenario. 

Note that nowhere in this scheme is there a notion of one behavior 
calling another behavior as a subroutine. Instead, all behaviors actually 

247 

Silver Star Exhibit 1018 - 136



Chapter 9 Robot Programming 

( Sonar )1------....:)lo~~ Avoid 1-----~)lo~( Motors ) 

Figure 9.3: A block diagram of a simple subsumption program. Rounded boxes 
represent both the physical sensors or actuators and the software drivers that 
directly control them. The square-cornered box contains code that performs 
computations that transform sensor readings into actuator commands. Arrows 
can be thought of as wires that allow the components to communicate. 

run in parallel, but higher-level behaviors have the power to temporar­
ily suppress lower-level behaviors. When the higher-level behaviors are no 
longer triggered by a given sensor condition, however, they cease suppress­
ing the lower-level behaviors and the lower level behaviors resume control. 
Thus, the architecture is inherently parallel and sensors interject themselves 
throughout all layers of behaviors. There is no unified data structure or 
geometric world model. 

In order to understand these ideas more vividly, let us imagine some 
behaviors we could create on a mobile robot with a sensor and actuator 
suite similar to a suite we might implement on Rug Warrior. 

9.2.1 Behavior Networks 

Let's say our robot is equipped with a ring of sonar sensors, a top-mounted 
infrared detection system, and a low-powered microprocessor with a small 
amount of RAM. Let's also say that, at a minimum, we would like Rug 
Warrior to be able to avoid bumping into things. To achieve this goal we 
could create a subsumption program that consists of three parts as shown 
in Figure 9.3. 

In the figure, Sonar is a software driver that operates the sonar sen­
sors, continuously keeping track of the distance each measures. Motors is a 
software driver that sends the proper current to the motors in response to 
commands it receives. In between is a module called Avoid, which, based on 
the sonar data, constantly computes commands and sends them to Motors. 

The Avoid module contains code that implements a simple reflexive be­
havior. If the reading from the front-pointing sonar is too short, Avoid stops 
the robot's forward motion. If a sonar other than the rear one measures 
the shortest distance, Avoid turns the robot until the rear sonar points in 
the direction of the shortest reading. When the rear sonar does measure 
the smallest distance, the motors are commanded to move forward. If all 
sonar readings are larger than some threshold, Avoid does nothing. It sends 
no commands to the motors. 

248 

9.2 The Subsumption Approach 

IR Detector 

Sonar Motors 

Figure 9.4: Dock is a program that looks for an IR beacon located atop a 
charging stand and drives the robot toward it. Additionally, Dock monitors the 
sonar sensors and suppresses the obstacle-avoidance behavior when dose to the 

charger. 

These operations are simple enough that a processor no more powerful 
than an MC68HC11AO can execute all the code in this structure many 
times each second. The behavior that emerges is one in which the robot 
tends to maintain a minimum distance between itself and all objects visible 
to its sonar sensors. With this tight coupling of sensing to actuation, Rug 
Warrior can respond quickly to changes in the world. If someone walks up 
to Rug Warrior, it will turn and move away. 

Avoid is an example of a task-achieving behavior. Useful in and of 
itself, it provides the minimum level of competence we want Rug Warrior 
to exhibit. Next, we will illustrate how more sophisticated behaviors can 
be added on top without redesigning lower-level behaviors already in place. 

Suppose we write a second behavior, called Dock, whose purpose is to 
drive the robot into its charging stand when the batteries are low. In this 
case, Dock takes input from the robot's sonar sensors, infrared detector, and 
battery-level indicator. Let's assume that the charging stand is identified 
by a coded IR beacon placed on its top. When active, Dock computes 
motor commands that will steer the robot toward the charger, ultimately 
docking with it, while avoiding obstacles other than the charger. 

We now have two task-achieving behaviors, Avoid and Dock, which, 
under some circumstances, will contend with each other for control of the 
motors. Figure 9.4 shows one way to resolve this conflict. We have broken 
the wire connecting Avoid with Motors and inserted a suppressor node, 
which is represented by the "S" in the circle. 

A suppressor node allows messages from the original wire to pass through 
to the output, unless a message arrives at the same time from the new con­
nection, the arrowhead. Figure 9.5 shows the series of messages that might 
be produced by Dock and Avoid as Rug Warrior first moves about its space 

249 

Silver Star Exhibit 1018 - 137



Chapter 9 Robot Programming 

"E "0 "E "0 "0 
..... ... ... 

~ n:l n:l n:l n:l 0.. 

] 
..c::: 3 3 ~ 3 ~ 3 b(J 0 

0:: & & & & ..... 
...J ...J (f) 

I I I I 
"E ..... ..... ..... n:l 0.. 0.. ,::: ,::: 3 ..c::: ..c::: ..c::: 0.. 0.. 

b(J b(J b(J 0 0 0 0 .., .., 
& 0:: 0:: i:i2 ..... ..... ..... ..... 

...J ...J (f) (f) (f) (f) 

I I I I I 
"0 "E "E "0 "E "0 
~ ..... ..... ... ... 

n:l n:l n:l n:l n:l 
,::: ,::: 3 ..c::: 3 ..c::: 3 ] ,::: ] ..... 3 0.. 

b(J b(J - 0 .., .., 
& 0:: & 0:: & 

.., .., 
& Vi ...J ...J ...J ...J 

I I I 

Figure 9.5: Behaviors Dock and Avoid produce a stream of messages that join 
at a suppressor node. Messages entering through the dominant connection (the 
arrowhead) suppress messages from the inferior connection. That is, only the 
dominant messages appear at the output. When no messages are present at the 
dominant connection, those from the inferior connection pass through. 

and then approaches and docks with the charging stand. Note that mes­
sages sent to the inferior connection that are suppressed are not saved up 
and transmitted later. They are simply lost. 

With Avoid and Dock connected, as shown, Rug Warrior behaves in the 
desired way. As long as the batteries are fully charged, the robot will avoid 
collisions with all obstacles as it moves about its environment. When the 
charge falls, Dock will become active. It will direct Rug Warrior toward its 
charging stand, responding to some sonar measurements but suppressing 
Avoid's attempts to turn away from the charger. Thus, Dock subsumes the 
function of Avoid in order to produce a higher-level of competence. 

This style of robot programming, where the robot's control system is 
decomposed into a network of task-achieving behaviors, is the essence of 
subsumption architecture. 

The subsumption architecture has a number of significant implications 
for programming robots. The tight coupling of sensing to actuation means 
that most behavior modules can be thought of as simple reflexes. This is 
important because such a system needs no world model. Because there is 
no world model, the robot needs very little memory. Most computations 
are uncomplicated and can be performed by simple microprocessors. 

Another powerful feature of a subsumption-style organization of a robot's 
intelligence system is that it can be improved incrementally. New layers of 
competence, in the form of additional behaviors, can be written and then 

250 

9.3 Rug Warrior's Program 

simply wired into the existing structure. Basic capabilities are never lost 
as new ones are added . 

Finally, the robot need not get slower as it gets smarter. Because the 
subsumption paradigm is that all behaviors run in parallel, increased com­
putational requirements of an improved subsumption program can always 
be met by adding more processors to carry the load. The performance of 
the existing system need not be degraded. The robot designer is free to 
implement the subsumption controller in several ways: as a number of be­
haviors in a single computer, as a single processor devoted to each behavior 
or perhaps as a network of very large-scale integration (VLSI) gates. ' 

9.3 Rug Warrior's Program 

We will expand on the principles of subsumption further by using another 
example of how Rug Warrior might be endowed with a set of interesting 
behaviors. This time, let us assume that Rug Warrior has a richer set of 
sensors: three bump sensors on a surrounding bump skirt, two near-infrared 
proximity sensors, two photocells, and a microphone. Figure 9.6 illustrates 
a number of behaviors we could program into Rug Warrior. 

As implied by the diagram, the behaviors operate in parallel. Each 
module continuously examines its input and computes an output. The 
simplest module is Cruise, whose purpose is to make sure the robot always 
does something interesting. That is, Rug Warrior should always move. All 
that Cruise does is send messages to the motors, commanding them to go 
forward. 

The Follow behavior is a higher-level behavior that monitors the output 
of a pair of forward-pointing photocells. When Follow detects a difference in 
intensity between the two photocells, it will send commands to the motors 
to turn Rug Warrior in the direction of the brighter side. 

Commands from Follow fuse with those from Cruise via the dominant 
connection to a suppressor node. This means that, whenever Follow sends 
a command, it will take precedence over commands sent by Cruise. The 
behavior that will emerge from only this much network is that Rug Warrior 
will move forward until it senses a light and then will home in on the source 
of illumination. 

The next behavior we add is Avoid which looks at the output of the near­
infrared obstacle-detection system. When Avoid senses an obstruction to 
the left of the robot, it will command a turn to the right. When the obstacle 
is to the right, Avoid will turn Rug Warrior to the left. An obstacle straight 
ahead will cause Avoid to issue commands that will stop Rug Warrior, then 
turn it 90 degrees either to the right or the left. Again, commands from 

251 

Silver Star Exhibit 1018 - 138



Chapter 9 Robot Programming 

Microphone Piezo buzzer 

Bumper 

IR detector 

Photocells 

Figure 9.6: A possible subsumption architecture for Rug Warrior begins with a 
behavior called Cruise which merely causes Rug Warrior to move forward. Follow 
is triggered by photocells to move Rug Warrior towards light. Avoid suppresses 
Follow and Cruise when the near-infrared sensors detect an imminent collision 
and Escape also helps avoid obstacles if the near-infrared sensors were blind to an 
obstacle. The highest-level behavior, Detect-sound-pattern causes Rug Warrior to 
trigger on specific patterns of hand claps and then play a tune. 

Avoid suppress commands from the behaviors below it. With only these 
three layers implemented, Rug Warrior will follow a light until it detects 
an obstacle in its path. Rug Warrior will then turn away. 

If the infrared detectors fail, as they will for some objects, we add the 
Escape behavior. The Escape behavior will become activated when the 
bump skirt detects a collision. Escape reacts to collisions between obstacles 
and the robot's force-sensing skirt by commanding motions that will move 
Rug Warrior away from the obstacle. Messages from the Escape behavior 
are of the most immediate importance to Rug Warrior. The architecture of 
the subsumption control system thus allows Escape to suppress commands 
from Avoid, Follow, and Cruise. 

Lastly, we could implement a behavior that listens through the micro­
phone. The Detect-sound-pattern behavior is programmed to detect specific 
sequences of hand claps and pauses. When Detect-sound-pattern notices 
such a sequence, it will send a command to the piezoelectric buzzer to play 
a particular tune. Detect-sound-pattern will also send a message to the 
motors, directing them to stop. 

The overall effect of these five behaviors is that Rug Warrior will first 
speed forward, searching for the brightest source of illumination. As Rug 
Warrior heads toward the light, it will tend to avoid obstacles in its path. 

252 

9.4 Implementing Subsumption 

If Rug Warrior does collide with something, it will change direction and 
move away. When the designer claps his or her hands in a special sequence, 
Rug Warrior will stop, play a tune, and then resume wandering. 

9.4 Implementing Subsumption 

How do you implement a network of many behaviors, all running in parallel 
on a small microprocessor that is inherently a sequential machine? The 
answer is to multitask, or run a loop that, when repeated, gives a small 
amount of time to each behavior. In this way, we can simulate the effect of 
all behaviors running simultaneously. 

Before we jump into the details of explaining such a strategy, let us step 
back for a moment and understand more fully how we think of a subsump­
tion network. In this section, we will describe a formalism for specifying 
a subsumption architecture. Then later, in Section 9.5, we will explain 
in more practical terms how you can apply the principles of subsumption 
while programming a robot in a conventional language, IC. 

Before proceeding, though, we must first introduce three useful con­
cepts: processes, schedulers, and finite-state machines. 

9.4.1 Processes and Schedulers 

First, we illustrate the concept of a process with an example of a robot 
flashing some light-emitting diodes (LEDs). 

Suppose we have a software driver called flash_leds and a function 
called sleep. When activated, flash_leds turns on a set of LEDs briefly 
and then turns them off. The function sleep simply does nothing for some 
number of seconds. Using these tools, we could write the following IC 
function: 

void multi_flash() 
{ while (1) { 

flash_leds () ; 
sleep(i.O); }} 

I* while (1) means loop forever *I 

I* Do nothing for 1.0 second *I 

The operation of multLflash is easily understood. It will flash the 
LEDs, wait for one second, flash the LEDs again, and so on. There is a 
problem here, however. Once multLflash begins to run, the microproces­
sor can do nothing else; mul tLflash is the only code that can be executed. 
Since we would like Rug Warrior to do more than just flash its LEDs, we 
need to activate multLflash in such a way that it does not consume all 
the resources of the microprocessor. 

253 

Silver Star Exhibit 1018 - 139



Chapter 9 Robot Programming 

One way to do this is to make multLflash into a process. A process, 
or task, is a piece of code that can be thought of as running simultaneously 
with other processes or programs. While the computer can only do one 
thing at a time, it is, nevertheless, possible to give the appearance that 
different pieces of code are running in parallel. This requires a supervisory 
program called a scheduler. 

A scheduler is a master program that decides when all other programs 
are allowed to run. A scheduler gives exclusive control of the computer 
to one process for a brief period of time (typically, a small fraction of a 
second) and then gives control to the next process and so on. Each process 
is allowed to compute for a short time at regular intervals. This is known 
as multitasking. 

A moderate level of sophistication is required to construct a scheduler 
capable of interrupting a task after a given time and then loading and 
executing another task (preemptive multitasking). A simpler strategy for 
switching between processes is called cooperative multitasking. In cooper­
ative multitasking, it is the process that decides when to return control to 
the scheduler so that the next task may run. 

In cooperative multitasking, the scheduler is simpler but the processes 
are more complicated. The reason that the processes must be more compli­
cated is that each process must provide a way to resume computing at the 
place it left off when it last returned control to the scheduler. An effective 
approach for passing control between the processes and the scheduler (and 
the approach employed in Brooks' original subsumption implementation) 
is to implement each process as a finite-state machine. 

Next, we describe the concept of finite-state machines, as this mecha­
nism will be useful for understanding how to construct your own cooperative 
multitasker. Later, we will use IC's preemptive multitasker. (IC has its 
own scheduler for choosing when to run a process.) This makes it easy for 
us to describe behaviors, as each behavior then does not have to take care 
of the bookkeeping chores of releasing control back to the scheduler. 

9.4.2 Finite-State Machines 

In the absence of a sophisticated scheduler, it is possible to build a sub­
sumption program by implementing the behaviors as finite-state machines. 
Even if such a scheduler is available, it may be helpful to think of behaviors 
in this way. A finite-state machine (FSM) is an abstract computational 
element which is composed of a collection of states. Given a particular 
input, a finite state machine may change to a different state or stay in the 
same state. The specification of an FSM includes rules that determine the 
relationship between inputs and state changes. 

254 

9.4 Implementing Subsumption 

token 

token 

person 

Figure 9. 7: The finite-state machine diagram of a turnstile might consist of the 
states Locked and Unlocked, along with some conditions for transitions between 
the states. Here, circles in bold represent the states of the system, while labeled 
arrows indicate inputs and their corresponding effects on the system state. 

Figure 9.7 diagrams a possible finite-state machine representing the op­
eration of a turnstile. The turnstile finite-state machine has two states, 
locked and unlocked. The turnstile finite-state machine accepts two forms 
of input, tokens and people. While in the locked state, inputting a token 
will change the FSM to the unlocked state. In the unlocked state, the turn­
stile finite-state machine will accept any number of additional tokens and 
remain in the unlocked state. From the unlocked state, the turnstile FSM 
will also accept the input of a person. This input will change the FSM back 
to the locked state and no further person inputs will be allowed. 

9.4.3 A Subsumption Formalism 

The example of the turnstile gives us the general flavor of a finite state 
machine. To be more explicit, we can write a program that implements 
a finite-state machine. To do this, we begin by using pseudocode, which 
is not the syntax of any particular programming language. Pseudocode is 
used here to present a formal, explicit representation of how a finite-state 
machine should act. 

Behavior as a finite-state Machine 

Suppose we wish to construct a behavior that causes Rug Warrior to re­
spond appropriately when it strikes an object. Let's call this behavior 
Escape. Escape should monitor the bumper and cause Rug Warrior to 
back up and turn as required to move away from the object. We can imple­
ment this behavior as a finite-state machine. This behavior is illustrated in 
Figure 9.8 and described formally by the following structure: 

255 

Silver Star Exhibit 1018 - 140



Chapter 9 Robot Programming 

Figure 9.8: Rug Warrior's Escape behavior is diagrammed here as a finite-state 
machine (FSM). In State-1, the behavior waits for an input from the bumper. 
While in this state, the behavior issues no motor commands. When a bumper hit 
does occur, the FSM changes to State-2, 3, or 4, depending on which direction 
the bump came from. While in the backing up, turning left, or turning right 
states, motor commands are constantly issued. From any of these states, after a 
certain time has passed (Timeout-!, 2, or 3), the FSM switches states again. 

Escape 
Outputs: (Motor-command) 
State-1: If Bumper-Hit Nil 

Release 
else if Bumper-Hit =LEFT 

Switch to State-2 
else if Bumper-Hit = RIGHT 

Switch to State-4 
else Switch to State-3 

State-2: If time-in-this-state > timeont-1 
Switch to State-1 

else 
motor-command = turn-right 
Release 

State-3: If time-in-this-state > timeout-3 
Switch to State-2 

else 
motor-command = back up 
Release 

State-4: If time-in-this-state > timeout-2 
Switch to State-1 

256 

9.4 Implementing Subsumption 

else 
motor-command= turn-left 
Release 

When initially called by the scheduler, the finite-state machine Escape 
will be in State-1. The code that implements this FSM checks a software 
driver called Bumper-Hit to determine what sort of collision, if any, has 
occurred. If a bump did not occur the Release statement will return control 
to the scheduler without changing the state of Escape. This means that, 
the next time the scheduler runs Escape, it will still be in State-1 and the 
same sequence of operations will occur again. 

Eventually, Bumper-Hit will return a non-Nil value. When this happens, 
Escape will switch its state to one of the other states. For instance, if the 
left bumper hit, control would pass to State-2. The Escape FSM would 
then execute the body code associated with State-2. If State-2 were to 
keep control for an amount of time greater than Timeout-1, then control 
would switch back to State-1. Otherwise, the turn-right motor command 
would be issued, and control would be released back to the scheduler. 

State-4 is similar to State-2 except that State-4 commands a left turn 
and remains active for a different amount of time, Timeout-2. 

State-3 implements the back up phase of the Escape behavior. It com­
mands the robot to backup for a period equal to Timeout-3 and then 
switches to State-2. State-2 then responds just as it would if activated 
from State-1. It makes the robot turn right until the period Timeout-1 
expires. 1 

We can now represent the general format of a behavior module imple­
mented by a finite-state machine as follows: 

Behavior 
Inputs: T1, I2 ... In 
Outputs: 01, 02 ... 0n 
Local-variables: L1, L2 ... Ln 
State-1: {Body-code-1} 
State-2: {Body-code-2} 

State-N: {Body-code-N} 

1 Strictly speaking, these timed operations do not fit the definition of a finite-state ma­
chine. Rather, we must think of the structures described here as enhanced or augmented 
finite-state machines. 

257 

Silver Star Exhibit 1018 - 141



Chapter 9 Robot Programming 

That is, the body code may compute any arbitrary function and may 
read local inputs and compute local outputs. The body code must compute 
the next state and explicitly release control back to the scheduler. This 
strategy places a burden on the code in each FSM. The code in each FSM 
must release control fairly quickly. Any FSM that hogs too much time will 
lock out all the other finite-state machines. 

The Scheduler 

Once finite-state machines have been defined, how does the scheduler man­
age to run them all in parallel? The scheduler of a cooperative multitasker 
is quite simple, as the following format illustrates: 

Scheduler 
Call Behavior-1 
Call Behavior-2 

Call Behavior-N 
Call Arbitrate 

The scheduler for a cooperative multitasker simply loops indefinitely, 
calling each behavior in turn. The active behavior computes for a certain 
time and then returns control to the scheduler. Once during each loop 
(at least), the scheduler calls an Arbitrate function to pass messages and 
resolve conflicts between competing behaviors. 

Arbitration 

The connections between behavior modules in a subsumption network are 
specified by a wiring diagram. To connect our Escape finite-state machine 
to our Motor finite-state machine, the behavior module that directly con­
trols the motors, we might say: 

Connect 
Output: Escape, motor-command 
Input: Motor, command-in 

Escape and Motor both have inputs and outputs (called motor-command 
and command-in, respectively) which are stored locally. The Arbitrate 
function sees to it that, whenever Escape computes a new value for motor­
command, that value is transferred to the command-in variable of Motor. 

258 

9.5 Subsumption in IC 

The same output can be connected to any number of inputs, and we can 
implement suppression nodes by ordering the Connect statements. For ex­
ample, if we order Connect statements as shown below, the second Connect 
statement will be given higher priority: 

Connect 
Output: Behavior-1, B1-out 
Input: Behavior-2, B2-iu 

Connect 
Output: Behavior-3, B3-out 
Input: Behavior-2, B2-in 

If, on the same scheduler loop, Behavior-1 computes a value for Bl-out 
and Behavior-3 computes a value for B3-out, the arbitration code would 
make sure that only Behavior-3's value reached Behavior-2's B2-in input. 

An implicit characteristic time has now entered the picture. If one pas­
sage through the scheduler loop is thought of as a single tick of the system, 
then one message may suppress a second message if the second message 
arrives within one tick of the first message. A careful implementation of 
the subsumption architecture will make this characteristic time explicit. 
Values other than one tick may be chosen. 

There are other types of arbitration mechanisms than the suppression 
nodes described above. Brooks' subsumption implementation also uses in­
hibit nodes. An inhibit node functions as a switch. Messages that enter 
through the dominant connection do not replace messages from the inferior 
connection; rather, they prevent the inhibit node from transmitting the 
message from the inferior connection. 

We have now described the mechanism of a finite-state machine and the 
functioning of a cooperative rnultitasker. Next, we illustrate a preemptive 
multitasker and give an example implementation using IC. 

9.5 Subsumption in IC 

In the previous section, we used pseudocode to present a formalism for 
thinking about subsumption programs and for instantiating robot behav­
iors as finite-state machines. Thinking of behaviors as finite state machines 
gives us a more or less simple way to program our own cooperative multi­
tasking system on computers that lack true multitasking capability. With 
cooperative multitasking, the design of a task scheduler become effortless. 

259 

Silver Star Exhibit 1018 - 142



Chapter 9 Robot Programming 

The scheduler is simply a looping sequence of calls to the behaviors. The 
behaviors, although more difficult to program since they must cooperate 
with the scheduler, are still tractable. 

In this section, the multitasking feature built into IC will act as our 
task scheduler. The behaviors will then be easier to follow, as they need 
contain no bookkeeping code to handle giving up and resuming program 
control. Let's now walk through how we might implement a subsumption 
program for Rug Warrior using IC. 

Recall the earlier example of multLflash on page 253. We wish to ac­
tivate multLflash as an IC process so that we can use the microprocessor 
to run more than just that one program. IC gives each process a unique 
identification number so that we have a "handle" for use later to terminate 
the process, if desired. To start multLflash as a process in IC, we could 
say: 

int id; 
id = start_process(multi_flash()); 

Rug Warrior would then begin to flash its LEDs. While this process 
is running, we are free to type statements to the microprocessor to run a 
program or to start other processes. Through it all, the LEDs will continue 
to flash. 

If at any time, we say: 

kill_process(id); 

the flashing will stop. This command could also be issued by another 
process. 

Later, we will use the start_process function to turn on the Rug War­
rior behaviors outlined in Figure 9.9. But first, we must describe the code 
that implements those behaviors. 

The first behavior module we will implement is called Cruise. Like all the 
b~haviors we will build, it declares two global variables for each quantity it 
wishes to output. Here, cruise_command holds the value of the command 
Cruise wishes to send to the motor controller and cruise_output_flag is a 
flag specifying whether Cruise is currently trying to send that value. Each 
time a module computes a new output, it will set the associated flag to 
1. On. any iteration, when a module chooses to produce no output, the 
flag will be set to 0. Observing this protocol is an essential part of our 
subsumption implementation: 

260 

9.5 Subsumption in IC 

Figure 9.9: We implement this portion of Rug Warrior's subsumption network 

using IC and its process constructs. 

int cruise_command; 
int cruise_output_flag; 
void cruise() 
{ while(1) { 

cruise_output = FORWARD; 
cruise_output_flag = 1; } } 

/* Command to motors */ 

/*Rug Warrior goes forward */ 
/* Command is now active */ 

Cruise does nothing except output the FORWARD command and declare 
that this command is currently active as often as the scheduler will allow. 

The Follow module implements light-source following and is somewhat 

more complicated: 

int follow_command; 
int follow_output_flag; 

void follow() 
{int left_photo, 

while (1) { 

/*Follow a light */ 
right_photo, delta;/* Left and Right Photocells * / 

left_photo = analog(1); 
right_photo = analog(O); 

/*Read A/D channel 1 */ 
/* Read A/D channel 0 * / 

delta = right_photo-left_photo; 
if (abs(delta) > photo_dead_zone) 

{if (delta > 0) 
follow_command 

else 
follow_command 

follow_output_flag 

} 

LEFLTURN; /* Light on left, turn left * / 

RIGHLTURN ;/* Otherwise turn right */ 
= 1; /*Activate when detected */ 

261 

Silver Star Exhibit 1018 - 143



Chapter 9 Robot Programming 

else 
follow_output_flag 0; I* No difference, deactivate *I 

}} 

If Follow detects that the difference between what the left and right 
photocells measure is above the threshold, photo_dead_zone, it will turn the 
robot in the direction of the brighter side. Otherwise, Follow will compute 
no command. 

Next, we implement the Avoid behavior, which gets sensor inputs from 
the near-infrared proximity sensors: 

int avoid_command; 
int avoid_output_flag; 

void avoid() 
{ int val; 

while (1) { 
val= ir_detect(); 
if (val == Ob11) I* Both left and right see something *I 

{avoid_output_flag = T; 
avoid_command = LEFT_ARC; } 

else if (val == Ob10) I* Left IR sees something *I 
{avoid_output_flag = T; 
avoid_command = RIGHLARC; } 

else if (val == Ob01) I* Right IR sees something *I 
{avoid_output_flag = T; 
avoid_command = LEFT_ARC; } 

else I* Neither sees anything *I 
{avoid_output_flag = NIL; } 

}} 

The Escape behavior is designed to allow the robot to escape from col­
lisions with obstacles when Rug Warrior's bump sensors detect a collision: 

int escape_command; 
int escape_output_flag; 

void escape() 
{ while (1) { 

bump_checkO; 
if (bump_left && bump_right) 

262 

I* Get state of bumper *I 
I* Bumped from the front *I 

9.5 Subsumption in IC 

{escape_output_flag = 1; 
escape_command = BACKWARD; 
sleep(.2); 
escape_command = LEFT_TURN; 
sleep( .4);} 

else if (bump_left) 
{escape_output_flag = 1; 
escape_command = RIGHT_TURN; 
sleep(.4) ;} 

else if (bump_right) 
{escape_output_flag = 1; 
escape_command = LEFT_TURN; 
sleep(.4);} 

}} 

else if (bump_back) 
{escape_output_flag = 1; 
escape_command = LEFT_TURN; 
sleep (. 2) ; } 

else 
escape_output_flag 0; 

I* Backup for a while *I 
I* then turn LEFT *I 

I* Bumped on the left *I 

I* Turn right for a while *I 
I* Bumped on the right *I 

I* Turn left a while *I 
I* Bumped from behind *I 

I* Confront attacker *I 
I* No bumps so deactivate *I 

What we have so far is a collection of task-achieving behaviors. Each 
behavior may examine from none to several inputs and compute an output. 
The output of each of the behaviors above is what that behavior wants the 

robot to do. 
Next we must activate the behaviors as processes so that they will run 

simulta~eously. We must also establish an arbitration structure that will 
decide which behavior gets control of the motors when a conflict arises. 
The behaviors are initiated by calling the following program. IC uses main 
as a special name. Once loaded into the battery-backed RAM, the main 
program begins to run whenever the robot is switched on: 

void mainO 
{ start_process(motor_driver()); 

start_process(cruise()); 
start_process(follow()); 
start_process (avoid()) ; 
start_process(escape()); 
start_process(arbitrate()); 

} 

263 

Silver Star Exhibit 1018 - 144



Chapter 9 Robot Programming 

The motor _driver function is a simple software driver that looks at 
a global variable motor _input and outputs the appropriate values to the 
ports connected to the motors. 

The Arbitrate function implements message passing between the other 
processes. After the behaviors have been designed, a wiring diagram spec­
ifies how they are to be connected. Here, Arbitrate implements wiring 
instructions with an ordered list of statements. When multiple outputs are 
directed to the same input, those occurring later in the list of connections 
subsume (actually overwrite) earlier ones: 

void arbitrate() 
{ while (1) { 

if (cruise_output_flag == 1) 
{ motor_input = cruise_output; } 

if (follow_output_flag == 1) 

{ motor_input = follow_output; } 
if (avoid_output_flag == 1) 

{ motor_input = avoid_output; } 
if (escape_output_flag == 1) 

{ motor_input escape_output; } 
sleep(tick); /*Message controls for one tick */ 
}} 

Emerging from these seemingly distinct sets of processes is an overall 
behavior for Rug Warrior, which is illustrated in Figure 9.10. Figure 9.11 
shows a close up of one element of this behavior, namely a collision between 
Rug Warrior and a chair. 

It may seem pointless to go though the complicated exercise performed 
by arbitrate when the behaviors could have sent the messages to the motor 
driver themselves. When Behavior-1 computes an output for Behavior-2, 
why not just write it directly? 

There are two reasons. First, we wish to maintain modularity. Suppose 
a robot control system has been written and debugged and that it contains 
no formal message-passing scheme. All the behaviors simply write their 
outputs to the correct inputs directly. If we now want to add a new layer of 
complexity, it is not possible to simply write new modules and wire them in 
by adding statements to the connection diagram. Instead, we must have a 
detailed knowledge of which behaviors pass what messages to which other 
behaviors and in what order. This is easy to do for a small system, but it 
becomes intractable for a large one. 

Secondly, the relationship between the subsumption diagram and the 
code becomes difficult to understand. The connections, rather than being 

264 

9.5 Subsumption in IC 

(c)/ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 

\ 

(e~, 

\ (b) ------ ...... 

I 

/ 

I 

/ 

I 

-------
...... -...... 

( ) 
I ..... _ ........ , 

\ I 
- >--..;:}' 

(a) 

Figure 9.10: Rug Warrior executes the program described in the text. Initia:ly, 
the room is dark. At point (a), Rug Warrior is switched on, waits a short while, 
plays its "alert" tune, and then begins to move. Since the room is dark, the 
signals from both photocells are the same and the light-foll~wing behavio: issues 
no commands. Rug Warrior moves straight forward, as directed by Cru1se. At 
points (b) and (c), the near-infrared sensors sense the wall and Avoid commands 
right turns. Because the leg of the chair is too narrow or perhaps the wrong color, 
the near-infrared sensors fail to detect it, and Rug Warrior collides at point (d). 
This collision activates the Escape behavior, which causes the robot to back up 
and turn. At point (e), the room light is switched on and the robot begins to 
execute its Follow behavior. When Rug Warrior gets too near at (f), it no longer 
sees the lamp directly and turns toward a brighter spot in its field of view. 

265 

Silver Star Exhibit 1018 - 145



Chapter 9 Robot Programming 

Figure 9.11: When Rug Warrior's near-infrared detectors miss seeing an obsta­
cle and Rug Warrior collides into a chair, the bump sensors trigger the Escape 
behavior, which causes Rug Warrior to back up or turn. 

explicitly represented in the connection list, are now hidden in the code. If 
the order in which the behaviors are executed changes or new behaviors are 
added, the overall behavior of the robot may change in unexpected ways. 

By observing certain protocols as we programmed our robot in IC, 
we were able to build a network of finite-state machines that could pass 
messages to each other, running in (what appeared to be) parallel operation. 

9.6 What Did We Do? 

What we have described in the previous section is a style of programming 
that implements subsumption principles. But what does organizing an 
intelligence system in this manner really buy us? 

The approach of building networks of layered task-achieving behaviors 
that run concurrently has a number of advantages over the paradigm of 
sensing, world modeling, and planning. The first advantage is that a sub­
sumption architecture grants real-time robustness to events in a changing 

266 

9.6 What Did We Do? 

environment. Taking the traditional approach of building a map of the 
world and updating it with fused sensor data leads to a computational bot­
tleneck, which causes the robot to take a long time to plan a strategy about 
what to do. This common problem of artificial intelligence (AI) programs 
taking longer to run when more knowledge becomes involved was one of 
the original difficulties that subsumption architecture set out to solve. For 
instance, what if a robot were walking down the street and crossing a rail­
road track while contemplating "pawn-to-king-three" and a train began to 
come down the track? Should the robot finish searching the decision tree 
for possible moves or hustle off the track? Subsumption architecture offers 
a way for pressing concerns to assume precedence. 

Beyond the capability of real-time robustness, however, is the realization 
that, if the intelligence system is organized without a world model, then 
the hard problem of sensor fusion can be ignored. In fact, we can think of a 
subsumption architecture's manner of dealing with sensors as sensor fission, 
whereby different sensors interject themselves into the control system at 
various levels to trigger different behaviors. The problem of sensor fusion 
is then passed off to the problem of behavior fusion, which is much less 
computationally intensive. The problem of behavior fusion is arbitrated by 
the designer's prioritization scheme based upon his or her arrangement of 
suppressor nodes. Because no geometric world model is maintained, the 
robot requires less computational hardware. Rug Warrior does not have to 
haul a supercomputer around with it. 

Even more interesting than the speed and space advantages of subsump­
tion architecture are the possibilities of what this paradigm might hint to 
us about models of intelligence. Because seemingly complex behaviors can 
be seen to emerge from what we know are very simple reflexive behav­
iors, perhaps complex mechanisms that we hypothesize exist in what we 
acknowledge as intelligence might actually just be combinations of much 
simpler mechanisms. 

When we, as humans, look at the scene illustrated in Figure 9.10, we 
see Rug Warrior acting with interesting if not purposeful behavior. We 
also see walls, chairs, and table lamps. These images bring to mind the 
associations that people sit in chairs and that table lamps are useful for 
reading. Rug Warrior sees none of these things yet can operate effectively 
in this environment. 

Building robots has helped us to stay on track and to keep focused on 
solving the problems that need to be addressed in creating machines that 
we would consider clever. Before actually building your own robot, it is easy 
to ascribe all sorts of complex structures to the putative thought processes 
of robots; you can hypothesize complicated networks, special architectures, 
and the need for lots of "computrons" to connect perception to action. One 

267 

Silver Star Exhibit 1018 - 146



Chapter 9 Robot Programming 

of the great advantages to building things is that you can see exactly how 
much machinery is required. Oftentimes, a priori intuition about what will 
be needed is completely wrong. After building a machine of your own, you 
can look at an already built system (such as Nature's) with greater insight 
and the hope of being able to discern the extraneous from the essential. 

In our book, then, we have come full circle. From the myriad of details 
involved in learning about electronics, mechanics, motors, and software, we 
have seen that a robot can be much more than the sum of its parts. As 
a system, if organized in the proper way, intelligent behavior can seem to 
emerge from a collection of simple competences. 

9. 7 References 

There is a large body of work on robot intelligence systems in the artificial 
intelligence community. While we cannot go into all the threads here, we 
point to a few conferences and workshops whose proceedings encompass 
the broad field and then mention a few local pieces of work from which the 
robots of the Mobile Robot Lab, and later this book, evolved. 

Over the past 10 or 15 years, different notions have taken form about 
how to go about organizing intelligent behavior in computer programs. 
Much of this work was chronicled in proceedings of conferences of the Amer­
ican Association of Artificial Intelligence (AAAI) and the IEEE Robotics 
and Automation Society (IRAS). Early work in intelligent autonomous 
robots led to the development of planning strategies (Nilsson 1984) and 
visual map making (Moravec 1981). These directions later found applicabil­
ity, especially in fixed-base arm and manipulator-type robots for assembly 
(Lozano-Perez, Jones, Mazer, and O'Donnell 1992). 

During this time, new ideas were proposed, aimed at addressing issues 
that did not fit well with world-model paradigms. In an effort toward under­
standing common-sense reasoning, Minsky (1986) proposed The Society of 
Mind as the idea that the brain is composed of independent agents, collec­
tively interacting to produce intelligent behavior. Simultaneously, Brooks, 
pondering why simple insects could perform feats unimaginable to the su­
perest of computers, proposed subsumption architecture (Brooks 1986) for 
programming autonomous robots, where collections of simple behaviors and 
reflexive rules interact in such a way that seemingly more complex behaviors 
emerge. Connell (1990) extended this work, introducing a number of new 
ideas to the subsumption architecture approach. Brooks (1991a, 1991b) 
and Maes and Brooks (1990) discuss subsequent experiments in the Mobile 
Robot Lab with behavior-based robots that walk, climb, collect, wander, 
hide, and learn. 

268 

9. 7 References 

One fallout from the subsumption architecture approach was that the 
resulting intelligence system did not have to deal with sensor fusion a:nd 
world modeling and consequently compiled down to a very lean block of 
code. This breakthrough in software led to new opportunities in hardware. 
Brooks and Flynn (1989) outlined the possibilities. 

Powerful ideas coinciding with a ripening of technologies has created a 
new movement, nouvelle AI, where believers (there are skeptics) dabble in 
pursuing these distributed approaches to organizing intelligence systems. 
Maes (1991) is an edited collection of recent work along this avenue. 

269 

Silver Star Exhibit 1018 - 147



10 

Unsolved Problems 

Rug Warrior has been an exercise in both engineering and artificial in­
telligence (AI). We have seen that building a robot involves many issues. 
We have had to deal with bias in our circuits, bugs in our code, slip in 
our wheels, noise in our sensors, and transients in our power supplies. The 
process has forced us to take lessons from electrical engineering, mechanical 
engineering, computer science, and artificial intelligence. 

The fortunate part is that we have been able to demonstrate this system 
on a minimal budget with eight chips, a few connectors, a small amount of 
LEGOs and some inexpensive sensors and actuators. Using only this simple 
system, we have also been able to teach modern theories of AI, which preach 
combining simple behaviors in programs that are embodied in the real world 
with real sensor data for input and real actuators for output. Rug Warrior 
then is an input/output (I/0) device for those wishing to study the issues 
involving the interplay between intelligence and embodiment. 

We have seen some examples of the range of behaviors that Rug Warrior 
was able to achieve. Of course, if you expected that Rug Warrior would be 
as talented as R2D2 or C3PO, then perhaps you were disappointed. The 
gap between expectations and experiences for the beginning roboticist can 
be daunting. 

The crux of the problem is that humans are just very good. We take 
many things for granted in our own biological selves: the acuity of our 
eyesight, the fine dexterity of our fingertips, the amazing power-to-weight 
ratio of our muscles, and the efficiency of our energy conversion system, 
to name a few. Instilling human-level equivalence in a robot is quite a 
challenge! 

In fact, the disparity between expectations and experiences grows even 
wider if we think about the tiniest insects. Even their perceptual-motor 

Silver Star Exhibit 1018 - 148



Chapter 10 Unsolved Problems 

skills are amazing. Common houseflies can land upside down on ceilings, 
spiders can assemble the most intricate homes, and ants can carry loads 
many times their weight. 

Rug Warrior has a lot of catching up to do. 

10.1 Navigation 

There are a host of unsolved problems in mobile robotics. One open ques­
tion has to do with what is involved in endowing a robot with the ability 
to navigate its environment. Salmon can locate their spawning grounds 
from thousands of miles away, pigeons can find their destinations on either 
sunny or cloudy days, and bumblebees can make a beeline to a food source 
in quick response to another bee's dance. By contrast, few robots can make 
it down the hallway without recourse to humans modifying the environment 
with beacons and bar codes. 

The underlying issue here is one of representation. What sorts of com­
putational structures are required to grant competence in navigation? How 
far can reactive systems be stretched? Are world models and sensor fusion 
required at some point? 

10.2 Recognition 

Another problem that goes along with navigation is recognition. Landmark 
recognition in a generally unstructured environment is a very hard problem. 
Whether using cameras, pyroelectric sensors, force sensors, or microphones, 
recognizing patterns in the environment is not trivial. Recognition prob­
lems can be computationally intensive and subject to complexities due to 
lighting, occlusion, and noisy data. 

10.3 Learning 

As our mobile robots become more and more complex and as we attempt to 
make them more sophisticated, perhaps by incorporating more sensors for 
greater perceptual acuity or by adding more actuators for finer dexterity, 
the software can become severely strained in trying to deal with so many 
inputs and outputs. One area of research is to investigate how, when, and 
where learning algorithms can be incorporated into a robot's intelligence 
system to alleviate the programmer's burden. What are the right types of 

272 

10.4 Gnat Robots 

things to learn? Can a robot learn to calibrate its sensors? Can a mobile 
robot learn new and better behaviors? 

10.4 Gnat Robots 

The versions of Rug Warrior described in this book were rather small, 
simple machines. However, from another viewpoint, they were actually 
awfully big. Our Rug Warriors did not have any manipulators, did not 
do any assembly or heavy lift operations. They simply wandered around, 
looking, listening, and reacting. 

There was really no good reason that they had to be as big as they were. 
The sensors and the silicon on board actually took up a fairly small amount 
of space. The motors and batteries took up most of the heft and bulk. The 
motors used were picked because they offered the cheapest configuration 
available at a rating suitable to carry the weight of the chassis and batteries. 

With recent advances in hardware technology, we should be able to 
do much better in the future. The idea of gnat robots is to scale all the 
components of a robot down to a single piece of silicon, where motors, 
sensors, computers, and power supplies can all be printed in a single process 
very cheaply in a batch fabrication manner, much like integrated circuits. 

It may be quite awhile before a chip gets up and walks, but the tech­
nologies of microsensors, micromotors, and microbatteries are moving in 
that direction. 

10.5 Cooperation 

In the drive to make ever cheaper mobile platforms, both for useful robot 
applications and for wider availability of embodied machines for AI re­
search, single-chip gnat robots have provided one image for a future goal. 
Rug Warrior, a machine approaching the concept of single-board robot, is 
a step toward this goal but closer to today's technology. 

The process of contemplating the notion of a single-chip robot makes 
building single-board robots look easy. Indeed, we have shown this to be 
the case with Rug Warrior and have walked all our readers through it. Rug 
Warrior is not exactly a single-board robot. While we have managed to 
put all the computational hardware and almost all the sensors on a single 
board, we still required a few hand-assembled connectors to attach the two 
motors, two encoders, and two batteries to Rug Warrior's circuit board. 
It is not a single-board robot, but it is close, and it is fairly simple and 
inexpensive. 

273 

Silver Star Exhibit 1018 - 149



Chapter 10 Unsolved Problems 

Imagine, then, swarms of robots. What kind of intelligence systems 
could we build now? Again, intriguing questions arise from biology. How 
is it that colonies of small termites can work together to devour something 
as large as a house? How can a society of bees survive as an organization 
without (we presume) explicit detailed communication? What are the con­
straints that communication (or the lack thereof) imposes on the communal 
intelligence of a swarm of independent agents? How might collections of 
simple robots aid us in our human endeavors? 

10.6 Thoughts 

Twenty years ago, nobody would have believed a computer would be used 
as a fuel-injection controller in every car. Back then, when computers filled 
entire rooms, the people who built the first microprocessor were laughed 
at. They took a little bit of CPU, a little bit of memory, and a little 
bit of control logic and got a little bit of nothing, as far as most people 
were concerned-except that lots and lots of those tiny little computers 
eventually changed the way the world works. 

Single-board robots are not very different-a little bit of brain, a little 
bit of brawn, a little bit of battery, and a little bit of sensing creates a 
little-bitty robot. But lots and lots of little-bitty robots may just change 
the way we think about solving problems. 

The knowledge that surprising and novel unforeseen applications lie 
down the road makes the dream of building these mobile robots even more 
compelling. From inspiration to implementation, we hope our readers take 
their dreams to their limits. 

10.7 Exercise 

Many years ago, Issac Asimov listed three laws of robotics that declared how 
robots should behave. These behaviors fit well into the style of subsumption 
architecture (see Figure 10.1.) A robot's most basic behavior should be to 
protect its own existence, but given orders by a human, it should obey. Of 
highest priority is a behavior that prohibits a robot from harming a person 
or, through inaction, allows a human being to come to harm. 

We leave the details of the implementation as an exercise for our readers. 
A mere matter of programming! 

274 

10.8 References 

Sensors A robot must obey orders given 
it by a human being. 

A robot must protect its own 
existence. 

Figure 10.1: Asimov's familiar laws of robotics fit naturally into a subsumption 
architecture. 

10.8 References 

The problems of navigation and recognition are widely worked on, and 
many papers can be found in the IEEE journals Robotics and Automation, 
Computer Vision and Pattern Analysis and Machine Intelligence. Horn 
(1986) is a good text on the essentials of computer vision. 

Machine learning is also a popular research interest at the present time. 
McClelland and Rumelhart (1986) introduce many of the ideas involved in 
neural networks and parallel processing. 

Microfabrication technologies have expanded in the last few years from 
integrated circuits to microsensors and more recently to microactuators and 
micro batteries. A series of IEEE workshops on microelectromechanical sys­
tems [MEMS] was begun in 1987, and the proceedings from the ensuing 
years give broad coverage of this emerging field. Demonstrations of sub­
sumption architectures during a similar timeframe illustrated that control 
systems for mobile robots could compile straightforwardly to a small num­
ber of silicon gates. This realization led Flynn to the idea of gnat robots 
(1987), which was expanded on in Flynn, Brooks, and Tavrow (1989). A 
new journal, begun in 1992, the IEEE/ ASME Journal of Microelectrome­
chanical Systems, provides a forum for research results in this area of mi­
cromechanics and integrated systems. 

With possibilities for smaller, cheaper robots, many people have begun 
to contemplate the possibilities of swarm intelligence. New conferences, 
such as the International Conference on Simulation of Adaptive Behavior 
(SAB), have emerged to draw these people together. 

275 

Silver Star Exhibit 1018 - 150



Appendix A 

Schematics 

Throughout this book frequent reference is made to the example robot we 
call Rug Warrior. The following figures present a block diagram and a 
detailed schematic of the electronics. 

D 
Host 

r------------------~ 

I I Batteries I I 
I 

Memory I 
I External backup Memory 
I circuit 

I I I' 
I Bus 
I ' v 
I 
I 

Micro-Serial 
Interface processor 

I -
I 
I I I LEDs r-
I Motor 
I Driver 
I 
I 
l 1- Motors 

I 

Touch 
r-- Sensing 

- Pyro 
Sensor 

r- Light 
Sensors 

-
IR Obstacle 
Detection 

1----

U Sound 
I--

Sensing 

~ Piezo 
Beeper 

r- Shaft - Encoders 

I 
I 
I 
l 
I 

L------------------~ 
Robot 

Silver Star Exhibit 1018 - 151



Appendix A Schematics 

8054 
Low­

voltage 
inhibit 

LVI 

'As part of the battery backup-circuit 
power is supplied to the HC10 and 
62256 directly from the battery. 

Motor Supply (Optional separate 
I I I I supply for motor) 

:•---- -1 I I .- "1 
Jumper I I -.L-

.,.1...---I-l 47!1-F 

+5 

MC68HC11AOFN 

This schematic shows Rug Warrior's logic, power and serial line interface circuits. 
The Rev, Tx, and GND lines from the MAX233 chip can be connected to the 
user's host computer. Note that external memory is battery backed when power 

is off. 

278 

Shaft encoders 

+5 

P306201 

+5 

+5 

Reading the schematic 

~~ Piezo 
Buzzer ~ 

+5 

Expansion 
Connector 

~~ 
§-o 

l.!K !.2K 

~ LED2 ~ ~ 
[§)--<> 

~~ 
§-<> 

~K LED 4 ~ @2)-<> 

-
LEOs are HLMP-1700QT 

In an effort to make the schematic clear without cluttering the drawing 
with a great number of wires we have followed certain conventions. First, 

279 

Silver Star Exhibit 1018 - 152



Appendix A Schematics 

the collection of wires that forms the bus is shown as a bold line rather 
than as individual wires. There should be no ambiguity in the connection 
as wires labeled consecutively on the microprocessor go to similar consecu­
tively labeled pins on the 74HC573 latch chip and the memory chip. 

The origin of an input or output on the microprocessor (and low voltage 
inhibit chip) is shown as a labeled 'Y' shaped connection. The destination 
(or destinations) of the wire are indicated by an identically labeled angle­
ended box. 

Finally, one can determine whether crossing wires are connected or not 
by examining the following figure. 

+ + 1 
Wires not connected Wires are connected 

A general description of how Rug Warrior's microprocessor, memory, 
and serial line circuits work can be found in Section 3.4 starting on page 49. 
The functioning of its sensors is described throughout Chapter 5. 

Parts for Rug Warrior 

Here is the list of parts for Rug Warrior. We list the manufacturer and part 
number for integrated circuits and other components we have used, but any 
pin-compatible parts from other manufacturers are also fine. Some manu­
facturers sell directly to the public, others work only through distributors. 
Call the manufacturer (phone numbers are in Appendix Cor Appendix E) 
to find distributors nearest you. Oftentimes for small quantities, manufac­
turers are willing to give samples free of charge and it never hurts to ask. 
We have also listed in the next section some distributors which sell these 
Rug Warrior parts. You may want to shop around however to find the best 
prices. 

Microprocessor and related components 
1 Rug Warrior brain 
1 Motorola MC68HC11A1FN 
1 52-pin plastic leaded chip carrier 
1 MS62256L-10P 
1 74HC573AN 

280 

Printed circuit board 
Micro controller 
PLCC 6811 socket 
32Kx8 static RAM 
Latch 

1 74HC10E 
1 Motorola MC34064P-5 (or Seiko 8054) 
1 Augat MSS-3350 
1 Panasonic P8037S 

Clock circuit 
1 10 Mn resistor 
1 8.000 MHz crystal 

Battery backup capacitor 
1 47 [tF capacitor 

Power supply capacitor 
1 1000 [tF capacitor 
4 4. 7 Kn resistors 

Serial line interface 
1 Maxim MAX233ACPP 
1 Hirose H9072 

Motor Driver Chip 
1 SGS Thompson L293D 

Debugging LEDs 
5 Quality Tech. Corp. HLMP-1700-QT-ND 
1 Quality Tech. Corp. HLMP-1790-QT-ND 
6 2.2 Kn resistors 

Pyroelectric 
1 Eltec 442-3 

Shaft encoders 
2 Hamamatsu P3062-01 Photo IC 
2 6.8 Kn resistors 
2 680 n resistors 

Photocell circuit 
2 EG&G VT801 
2 10 Kn resistors 

Piezo buzzer 
1 Panasonic ERB-RD24C411 

Bumper circuit 
3 Omron SS5GLT 
3 4 7 Kn resistors 

Triple input NAND 
Low voltage inhibit 
3P3T power switch 
SPST reset switch 

i W resistor 
Clock 

Tantalum capacitor 

Electrolytic capacitor 
Use one 5-resistor SIP 

Serial port driver 
Phone jack 6-4 connector 

H-bridge 

High efficiency red LEDs 
High efficiency green LED 
1 4-res. SIP, 2 ~ W res. 

Pyroelectric sensor 

IR emitter/ detectors 
1 W resistors 

4 W resistors 

CdS photocells 
i W resistors 

Piezo buzzer 

Lever switches 
Use one 3-resistor SIP 

281 

Silver Star Exhibit 1018 - 153



Appendix A Schematics 

2 1. 2 KO resistors 
1 2.2 KO resistor 

Microphone circuit 
1 Panasonic WM-034CY195 
1 LM386N-1 
1 10 J-lF capacitor 
1 0.001 J-lF capacitor 
1 2.2 KO resistor 

IR emitters/detectors 
1 Sharp GP1U52X 
2 Siemens SFH486 
1 74HC04N 
1 100 KO resistor 
2 100 0 resistors 
1 5 KO potentiometer 
1 6.8 KO resistor 
1 0.001 f..tF capacitor 

Connectors 
5 Samtec IDMD2S12 
2 Samtec IDSD2Sl2 
4 Samtec SS132T2 
2 Samtec TS132T-AA 
1 Amp 2-640463-3 
2 Amp 2-640357-3 
1 Amp 2-640358-3 
2 Amp 2-640464-3 

i W resistors 

4 W resistors 

Microphone 
Op-amp 
Tantalum capacitor 
Disc capacitor 
i W resistor 

IR receiver unit 
IR LEDs 
Inverter t W resistor 

4 W resistor 
Cermet laydown style 
i W resistor 
Disc capacitor 

Cable plug strips 
Cable socket strips 
32-socket socket strips 
32-plug terminal strips 
8-pin IC socket 
14-pin IC socket 
16-pin IC socket 
20-pin IC socket 

Distributors for Rug Warrior Components 

Manufacturers usually work through a number of local distributors. If the 
distributors do not have parts in stock and the lead times are long, you 
can call the manufacturer and have them locate distributors for you which 
do have the parts in stock. Alternatively, the manufacturer may be willing 
to give you samples. Motorola has a special division, Motorola University 
Support, which assists universities and schools in acquiring parts which may 
have long lead times, such as the MC68HC11A1FN microcontroller. Here 
we list a number of distributors or manufacturers which sell components 
used in Rug Warrior. The list is not meant to be exclusive, just helpful in 
getting started. Distributors of semiconductors usually carry whole lines of 
semiconductor companies' products and specific chips listed below under 

282 

r1of~ ftni\ICA.>/7 .JU.ff8-tt ~,·, * 
1-5"12 ... ~1)5- ~836 !fu~>liH . 

one distributor can likely also be bought from another distributor. Call 
around to comparison shop and find out who has what in stock. The prices 
given below will quickly become dated. We list them here only to give yo.u 
a relative measure of how much various components cost (at least at th1s 

point in time). . 
In the list below, note that when discrete components such as resistors 

are necessary, while the schematic will show separate resistors, it is oftern 
easier to incorporate resistors into a design using reisistor single-in-line­
packages (SIP). Resistor SIPs come in two varieties, bussed an~ isolat~d. 
Isolated resistor SIPs have separate pins for each end of the res1stor while 
bussed resistor SIPs have one end of each resistor tied to a common pin. 
Bussed resistor SIPs are convenient for pullup resistors tied to the positive 

voltage supply. I _ 8 U'O -S 21 - b 2 7 Y. ~ f.fso.. · 
Motorola Unive·rsity Sttpport I- 20 I - l?o&- 2. Yf71J 'f602) 952-3855-

~ 1-to2- 'l'Y- 8DS7· 
Circuit Board Fabrications (Prepay or COD, no min.) (617) 890..1878 V 
1 Rug Warrior Board Printed circuit board tfp fa /l'- $12.00ea. 

Newark Electronics 
1 MC68HC11A1FN 
1 10F7807 
1 50F066 
1 44F7982 
2 44F983 
1 44F7984 
2 44F7986 

Marshall Electronics 
1 L293D 
1 74HC573N 

Maxim Small Orders Desk 
1 MAX233ACPP 

HamamatS'u 
2 P3062-01 

Allied Electronics 
2 980-2500 

Samtec 
5 IDMD2S12 
2 IDSD2Sl2 
4 SS132T2 

(Credit card OK, $25 min.) 
Microcontroller 
Augat MSSA-3350 3P3T switch 
1000 f..tF capacitor 
Amp 2-640463-3 S-pin IC socket 
Amp 2-640357-3 14-pin IC socket 
Amp 2-640358-3 16-pin IC socket 
Amp 2-640464-3 20-pin IC socket 

(Credit card OK, $50 min.) 
H-bridge 
Latch 

(Credit card OK, no min.) 
Serial port driver 

(Credit card OK, $50 min.) 
IR emitter/detector pairs 

(Credit card OK, $50 min.) 
EG&G VTSOl CdS photocells 

(Pre-pay or COD, no min.) 
4-pin plug cable assemblies 
4-pin socket cable assemblies 
32-socket socket strips 

(508) 683-0913 
$9.11 ea. 
$3.11 ea. 
$0.38 ea. 
$0.12 ea. 
$0.19 ea. 
$0.22 ea. 
$0.27 ea. 

(800) 522-0084 
$2.88 ea. 
$0.70 ea. 

( 408) 737-7600 
$7.80 ea. 

(908) 231-0960 
~.62 ea. 

·"'-,, 

(800) 433-5700 
$1.40 ea. 

(812) 944-6733 
$2.56 ea. 
$2.56 ea. 
$1.91 ea. 

283 

Silver Star Exhibit 1018 - 154



Appendix A Schematics 

2 TS132T-AA 

Hallmark Electronics 
1 MC34064P-5 
1 74HC10E 
1 74HC573AN 
1 74HC04N 
1 MS62256L-10PC 
2 SFH485 

Sterling Electronics 
1 Sharp GP1U52X 

Digi-Key 
1 H9072 
1 LM386N-1 
1 P8037S 
3 SW143-ND 
1 X056 
1 750-83-R-2.2K 
1 750-61-R-4. 7K 
1 750-63-R-47K 
5 HLMP-1700-QT-ND 
1 HLMP-1790-QT-ND 
1 P9924 
1 P9962 
1 100Q 
1 680Q 
1 1.2KQ 
1 2.2KQ 
1 6.8KQ 
1 10KQ 
1 100KQ 
1 lOMQ 
1 P4200 
1 P2030 
1 P2026 
1 36C53 
1 36C54 

Total 

284 

32-pin terminal strips 

(Credit card OK, no min.) 
Low voltage inhibit 
Triple NAND 
Latch 
Inverter 
32Kx8 static RAM 
IR LEDs 

(Credit card OK, $100 min.) 
IR detector module 

(Credit card OK) 
Phone jack 6-4 socket 
Op-amp 
SPST reset switch 
Omron SS5GLT bump switch 
8.000 MHz crystal 
2.2 KO (isolated) resistor SIP 
4. 7 KO (bussed) resistor SIP 
4 7 KO (isolated) resistor SIP 
2.0 rnA red LEDs 
2.0mA green LED 

$1.97 ea. 

(800) 487-4778 
$0.80 ea. 
$0.21 ea. 
$1.00 ea. 
$0.25 ea. 
$4.66 ea. 
$0.51 ea. 

(617) 938-6200 
$1.38 ea. 

(800) 344-4539 
$1.83 ea. 
$1.20 ea. 
$0.20 ea. 
$1.47 ea. 
$1.37 ea. 
$0.72 ea. 
$0.62 ea. 
$0.62 ea. 
$0.30 ea. 
$0.30 ea. 

ERB-RD24C411 piezo buzzer 
Panasonic WM-34CY195 microphone 
Pack of 5 100 0 resistors 

$1.30 ea. 
$2.15 ea. 
$0.26 ea. 

Pack of 5 680 0 resistors 
Pack of 5 1.2 KO resistors 
Pack of 5 2.2 KO resistors 
Pack of 5 6.8 KO resistors 
Pack of 5 10 KO resistors 
Pack of 5 100 KO resistors 
Pack of 5 10 MO resistors 
Pack of 10 0.001 J.LF disc capacitors 
10 J.LF tantalum capacitor 
47 J.LF tantalum cap 
5 KO potentiometer 
50 Kn potentiometer 

$0.26 ea. 
$0.26 ea. 
$0.26 ea. 
$0.26 ea. 
$0.26 ea. 
$0.26 ea. 
$0.26 ea. 
$0.59 ea. 
$0.21 ea. 
$0.42 ea. 
$0.47 ea. 
$0.47 ea. 

$112.56 

Accessories and Alternatives 

To download code to Rug Warrior from your personal computer, you will 
need a serial port cable to connect to the Rug Warrior board's modular 
phone jack connector which is similar to a telephone handset's socket. You 
will need a cable which has a matching modular phone jack plug on one 
end and the proper connector for your off-board computer on the other 
end. Oftentimes, a computer's serial port connector is a D-shaped female 
DB-25 connector. The easist thing to do is to buy a special male DB-25 
connector which has an attached modular phone socket on the back of the 
case with wires and plugs in between, which allows you to configure the 
pin-outs in whichever way you like. Then you can just use a normal phone 
cord for the cable running from this connector, which you plug onto the 
back of your workstation, to Rug Warrior. Kent Electronics and Digi-Key 
sell the necessary parts. 

Another suggestion is to use a non-volatile RAM in place of the static 
RAM listed above. While the battery-backup circuit on Rug Warrior will 
keep the program resident in RAM as long as the batteries are plugged in, 
you may find that in working on Rug Warrior, you tend to take it apart 
fairly often and disconnect the batteries. Non-volatile RAMs are more 
expensive than static RAMs, but have a battery inside the chip's package 
which keeps the memory backed up even when you remove it from Rug 
Warrior's board. Dallas Semiconductor and Greenwich Electronics both 
sell 32K x 8 non-volatile RAMs. Replacements for other components such 
as sensors and discrete electronics can also be found at Radio Shack as 
listed below. 

As the pyroelectric sensor that we specified (which has an on-chip am­
plifier) for Rug Warrior is also fairly expensive, we deleted it from the list 
above. You can add it as an accessory or buy a discrete pyroelectric sensor 
and add your own amplifier. You may also want to have prototyping tools 
and pins handy for adding circuitry to the Rug Warrior board. Speedwire 
tools and pins can be ordered from Bicc-Vera. 

Finally, at the last minute as this book was going to second printing, 
we added a liquid crystal display to the Rug Warrior Board available from 
Circuit Board Fabrications. The Optrex DMC-16249 16 x 2 LCD is avail­
able from Cronin Electronics. Documentation and schematic updates are 
available with the board. In addition, if you have Internet access, check 
cherupakha.media.mit.edu (Internet Address 18.85.0.47) for more recent 
updates and errata. 

Kent Electronics 
1 DBM-45M 

(Prepay or COD) 
Unicorn Male DB25 - phone jack 

(800) 733-1356 
$4.00 ea. 

285 

Silver Star Exhibit 1018 - 155



Appendix A Schematics 

oo66ooo 
'O 'o o o o o o d' o" 

toO 011' • 2 52 ''.,o o .. 
120 013 130 0<2 
uO Ots uO 010 
160 On 390 038 
180 019 310 036 

2-1 26 28 30 32 
2o0,0 0 0 0 0 0 0,

5
034 

0000000 
21 23 25 27 29 31 33 

Figure A.l: Pin configuration for the PLCC socket u~ed for the MC68HC11. 

Digi-Key (Credit card OK) (800) 344-4539 
1 H164107ND Phone cable assembly $2.46 ea. 

Dallas Semiconductor (Credit card OK) (214) 450-0400 
1 DS1230AB-120 32K Non-volatile static RAM $28.40ea. 

Greenwich Electronics (Credit card OK) (800) 476-4070 
1 GR3281-100 32K Non-volatile static RAM $32.00ea. 

Eltec (Pre-pay or COD, $100 min.) (800) 874-7780 
1 442-3 Pyroelectric sensor w /amplifier $35.00ea. 

Bicc- Vero (Credit card OK, $25 min.) (203) 288-8001 
1 244-26221G Reel of 250 Speedwire pins $62.00ea. 
1 244-26213E Speedwire wiring pen $37.60ea. 

Cronin Electronics (Credit card OK) ( 617) 449-5000 
1 DMC-16249 16 x 2 LCD $15.00ea. 

Samtec (Pre-pay or COD, no min.) (812) 944-6733 
1 ESW-136-34-T-S Spacer connector socket for LCD $2.46 ea. 
1 TSW-136-34-T-S Spacer connector plug for LCD $0.46 ea. 

Radio Shack 
2 276-143 SYIR53L IR LED $1.69 ea. 1 276-137 GP1U52X IR detector module $3.49 ea. 
1 276-099 Infrared sensor display card $5.95 ea. 
1 276-1657 Pack of 5 Cds photocells $1.98 ea. 
1 270-090 Microphone $1.79 ea. 

286 

Appendix B 

Rug Warrior Program 

The following code implements the subsumption example found in the text. 
It is written in IC, an interactive varient of the C language. This example 
makes use of several features from the IC library, including the following: 

analog(chan) Perform an A/D conversion on analog channel chan. Wait 
until conversion has completed before returning. 

defer() This function is used to tell the scheduler that the current process 
is ready to be suspended. defer has no effect other than to increase 
the efficiency of the code. 

msleep(msec) Sleep for msec milliseconds. 

peek(addr) Return the 8-bit byte stored at addr. 

poke (addr, value) Load an 8-bit value into the memeory location spec­
ified by addr. 

sleep(sec) Wait for sec seconds before returning. 

start_process (proc-name) Begin a process that will run in the back­
ground. (See Chapter 9 for more details.) 

tone (duration, freq) Activate the piezoelectric buzzer at a frequency of 
freq for duration seconds. 

Rug Warrior Program Alpha 

I* Constants and global variables *I 

Silver Star Exhibit 1018 - 156



Appendix B Rug Warrior Program 

int T = 1; 
int NIL O· 

' 

int STOP O· 
' I* Mnemonics for motion control *I 

int 
int 
int 
int 
int 
int 

int 
int 
int 
int 

FORWARD 1· 
' 

BACKWARD 2; 
LEFT_TURN 3; 
RIGHT_TURN 4; 
LEFT_ARC 5; 
RIGHT_ARC 6· 

' 

cruise_command = FORWARD; 
photo_command = STOP; 
ir_command = STOP; 
bump_command = STOP; 

I* Initialize behavior commands *I 

I* Timing constants *I 
int 
int 
int 

msec_per_rev = 1071; 
msec_per_rad = 170; 
rev_4 msec_per_rev 

I* mSeconds to make 1 revolution *I 
I* mSeconds to move 1 robot radius *I 
I 4; I* 90 degrees *I 

int rev_8 = msec_per_rev I 8; I* 45 degrees *I 

int back = Ob100; 
int left = Ob010; 
int right = Ob001; 

int bump_left 
int bump_right 
int bump_back 
int ir_left = 0; 
int ir_right = 0; 

0; 
0; 
0; 

int ir_detect_mask = Ob10000; 
int ir_mask_l = Ob1000; 
int ir_mask_r = Ob0100; 

I* Bumper status bits *I 

I* Bumper status vars *I 

I* Bit PE4 *I 
I* Bit PD3 *I 
I* Bit PD2 *I 

int ir_mask = ir_mask_l ir_mask_r; 

int cruise_active = T; 
int photo_active = NIL; 
int ir_active = NIL; 
int bump_active = NIL; 
int photo_cal = -8; 
int photo_dead_zone = 2; 
long tick = (long) 100; 
long tick2 (long) ((int) 
int port_e Ox100A; 

int m_mask_l 
int m_mask_r 

Ob100000; 
Ob010000; 

I* Photo cells aren't identical *I 
I* Basic servo time *I 

tick I 2); 
I* Mnemoic for port E *I 

I* Motor mask bits *I 

int m_mask = m_mask_l I m_mask_r; 

I* PA5,4 =>Enable Left, Right. 
PD5,4 => 0 - forward, 1 - backward *I 

int on = Oxff; 

288 

int off_ = 0; 
int fwd 0; 
int bkw = m_mask_l I m_mask_r; 

int sec(float sees) I* Convert seconds to milliseconds *I 
{ (int) (1000. *sees); } 

int abs(int arg) 
{ if (arg < 0) 

return (- arg); 
else 

return arg; } 

I* Absolute value *I 

void wait(int milli_seconds) 
{ long timer_a; 

I* Don't busy wait, check timer *I 

timer_a = mseconds() + (long) 
while( timer_a > mseconds() ) 

{ defer 0; }} 

milli_seconds; 

void init () 
{ poke(Ox1009, Ob00111110); 
} 

I* Set port D data direction *I 

I* Write certain bits in a byte without affecting others *I 
int write_port (int port, int value, int mask) 
{ poke(port,(value & mask) I (peek(port) & -mask)); } 

I* Turn each motor on or off, and choose direction *I 
void motor_cmd(int l_ena, int l_dir, int r_ena, int r_dir) 
{ write_port(port_a, (l_ena & m_mask_l) I 

(r_ena & m_mask_r), m_mask); 
write_port(port_d, (l_dir & m_mask_l) I 

(r_dir & m_mask_r), m_mask); 

} 

void move(int operation) 
{ if (operation == STOP) 

motor cmd(off_,O,off_,O); 
else if Coperation == FORWARD) 

motor cmd(on,fwd,on,fwd); 
else if Coperation == BACKWARD) 

motor_cmd(on,bkw,on,bkw); 
else if (operation == LEFT_TURN) 

motor_cmd(on,bkw,on,fwd); 
else if (operation == RIGHT_TURN) 

motor cmd(on,fwd,on,bkw); 
else if (operation == LEFT_ARC) 

motor cmd(off_,O,on,fwd); 
else if (operation == RIGHT_ARC) 

motor_cmd(on,fwd,off_,O); } 

I* 0 - Stop *I 

I* 1 - Forward *I 

I* 2 - Backward *I 

I* 3 Left Turn *I 

I* 4 - Right Turn *I 

I* 5 - Arc Left *I 

I* 6 - Arc Right *I 

289 

Silver Star Exhibit 1018 - 157



Appendix B Rug Warrior Program 

I• 
The arbitration scheme is as follows: Each behavior may compute an 
output for the motors. It if does it stores the value in a global 
and sets an active flag. The master motor controller sends the 
highest priorty command to the motor. 
•I 

void motor .. control () 
{ while (1) { 

if (bump_active) 
move(bump_command); 

else if (ir_active) 
move(ir_command); 

else if (photo_active) 
move(photo_command); 

else if (cruise_active) 
move(cruise_command); 

else 
move(STOP); 

defer(); 

I* List order establishes •I 
I* behavior priority *I 

I* No commands => STOP •I 

}} 
I* Update once per scheduler iteration •I 

BEHAVIORS 

int cruise() 
{ while(!) { 

I* Default activity •I 

}} 

cruise_command = FORWARD; 
cruise_active = 1; 
wait (1000); 

I* Robot forward •I 

I• Cruise once a second *I 

int photo() 
I* Brighter light => lower numbers •I 
I* Follow a light •I 

{ int lpc, rpc, delta; I* Left and Right Photo Cells *I 
while (1) { 

}} 

I• Read photocell, add cal constant •I 
lpc = analog(!) + photo_cal; 
rpc = analog(O); I• Read other 
delta = rpc - lpc; I• + => left 
if ( abs(delta) > photo_dead_zone ) 

{if (delta > 0) 

I* Left bright => turn left I* 
photo_command LEFT_ARC; 

else 

photocell *I 
bright, - => right •I 

} 

photo_ command 
photo_active = 1; 

RIGHT_ARC; I* Otherwise turn right *I 
I* Activate when detected *I 

else 
photo_active 

defer(); 
0; I• Deactivate when not detected *I 

I* Once per scheduler tick •I 

int a_bump() I* Read PE3 and classify type of bump *I 

290 

{ int val; 

} 

val= analog(3); I* Get bump value •I 
if (val > 74) 

{if (val > 116) 
{if (val > 137) 

return back I left I right; I• Impossible (?) *I 
else return back I left; } 

else 

else 

if (val > 95) 
return back I right; 

else return back; } 

{if (val > 31) 
{if (val > 52) 

return right left; 
else return left; } 

else 
if (val > 10) 

return right; 
else return 0; } I* There was no collision •I 

void bump_check() I• Check for current bumps *I 
{ int bump_stat; 

bump_stat = a_bump(); 
if (left & bump_stat) 

bump_left 1; 

I* Check the analog bump •I 

} 

else 
bump_left 0; 

if (right & bump_stat) 
bump_right 1; 

else 
bump_right 0; 

if (back & bump_stat) 
bump_back 1; 

else 
bump_back 0; 

void bump() I• What to do if a bump occurs •I 
{ while (1) { 

bump_check(); 
if (bump_left && bump_right) I* Bumped in front •I 

{ bump_active = 1; 
bump_command = BACKWARD; 
wait(msec_per_rad I 2); I* Move back a bit •I 
bump_command = LEFT_TURN; 
wait(rev_4); } 

else if (bump_left) I* Bumped on left side *I 
{ bump_active = 1; 

bump_command = RIGHT_TURN; I* Turn right *I 
wait(rev_8); } 

else if (bump_right) I* Bumped on rigt •I 

291 

Silver Star Exhibit 1018 - 158



Appendix B Rug Warrior Program 

}} 

{ bump_active ~ 1; 
bump_command = LEFT_TURN; I* Turn left *I 
wait(rev_S); } 

else if (bump_back) I* Bumped from behind *I 
{ bump_active = 1; 

bump_command = LEFT_TURN; I* Turn left *I 
wait(rev_4); } 

else 
bump_active = 0; 
defer(); 

I* Not bumped at all *I 

I* Ob1000 turns left emitter on, Ob0100 turns right emitter on 
I* ir_detect returns: 
I* 0 =>both off, Ob01 =>right on, 

OblO => left on, Obll => both on *I 

int ir _detect 0 
{ int vall, val2, val3; I* Detector is HI with no signal *I 

} 

vall = peek(port_e) & ir_detect_mask; I* Emitter off => HI *I 
write_port(port_d,ir_mask_l,ir_mask); I* Left IR emitter on *I 
msleep((long)l); I* Sleep while detector activates *I 
val2 = peek(port_e) & ir_detect_mask; I* Emitter on => LOW *I 
write_port(port_d,ir_mask_r,ir_mask); I* Right IR emitter ON *I 
msleep((long)l); I* Wait for it to settle *I 
val3 = peek(OxlOOA) & OblOOOO; 
write_port(port_d,O,ir_mask); I* Turn off both IR emitters *I 
return ((vall & -val2) >> 3) I ((vall & -val3) >> 4); 
I* HI -> LOW *I 

void irO I* What to do if the IR sensor detects something *I 
{ int val; 

while (1) { 

val= ir_detect(); 
if (val == Ob 11) 

{ ir_active = T; 
ir_command = LEFT_ARC; 

tone(.05,1500.); } 
else if (val == ObOl) 

{ ir_active = T; 
ir_command = RIGHT_ARC; 

tone(.05,2000.); } 
else if (val == OblO) 

{ ir_active = T; 
ir_command = LEFT_ARC; 

tone(.05,1000.); } 
else 

{ ir_active = NIL; } 
deferO; 

}} 

I* Obstacles left and right *I 

I* Arc to the left *I 

I* Obstacle on left *I 

I* Arc to the right *I 

I* Obstacle on right *I 

I* Arc to the left *I 

I* Path is clear *I 

void alert_tune() I* Tune that plays at startup *I 

292 

{ tone(0.200,1046.5); 
tone(0.200,1396.9); 
tone(0.200,1046.5); 
tone(0.200,698.5); } 

void kill() I* Stop everything *I 
{ move(STOP); 

beep(); } 

void main() I* Enable all sensing and behavior processes *I 
{ initO; 

sleep(0.5); 
alert_tune(); I* Show that processes are starting *I 
start_process(motor_control()); 
start_process(cruise()); 
start_process(photo()); 
start_process(ir()); 
start_process(bump());} 

293 

Silver Star Exhibit 1018 - 159



Appendix B Rug Warrior Program 

I* Components of robot velocity control: 

I* 

Velocity monitoring 
Open loop PWM 
Velocity control loop 

VELOCITY MONITORING 

int TCTL2 = Ox1021; I* Timer Control 2, interrupt edge *I 
int TMSK1 Ox1022; I* Timer Interrupt Masks, 8-bit reg *I 
int TFLG1 Ox1023; I* Timer Flags, 8-bit reg *I 
int PACTL Ox1026; I* Pulse accumulator control, 8-bit reg 
int PACNT Ox1027; I* Pulse accumulator counter, 8-bit reg 

void init_velocity () 

*I 

*I 
*I 

{ poke(PACTL, Ob01010000); I* DDRA7 in, pulse ace rising edges *I 
poke(PACNT,O); I* Start off with 0 measured velocity *I 
bit_set(TCTL2,0b00000001); I* Make IC3 interrupt on rising edges *I 
bit_set(TMSK1,0b00000001); I* Enable IC3 interrupts *I 

} 

I* Call get_left_vel and get_right_vel 
at regular intervals to get velocity *I 

float get_left_vel() I* Left vel from PA7 using pulse counter *I 
{ float vel; 

vel= (float) peek(PACNT); 
poke(PACNT,O); I* Reset for next time *I 
return(vel); } 

float get_right_vel() I* Right vel from PAO, interrupt routine *I 
{ float vel; 

vel = (float) right_clicks; 
right_clicks = 0; I* Reset for next time *I 
return (vel); } 

I* OPEN LOOP PWM *I 

int DDRD Ox1009; I* Port D data direction *I 
int OC1M Ox100C; I* Output Compare 1 Mask *I 
int OC1D Ox100D; I* Output Compare 1 Data *I 
int TOC1 Ox1016; I* Output Compare Tmr 1, *I 
int TOC2 Ox1018; I* Output Compare Tmr 2, (left motor) *I 

294 

int TOC3 = Ox101A; I* Output Compare Tmr 3, (right motor) *I 
int TCTL1 = Ox1020; I* Timer Control 1, 8-bit reg *I 

I* motor_index: 0 => Left motor, 1 => Right motor *I 
I* int TOCx[2] = {TOC2,TOC3}; I* Index for timer register *I 
int T0Cx[2] = {Ox1018, Ox101A}; I* Index for timer register *I 
int sign[2] = {1,1}; I* Sign of rotation of motor *I 
int dir_mask[2] = {Ob010000, Ob100000}; I* Port D direction bit *I 

I* Utility functions *I 

float abs(float arg) I* Absolute value function *I 
{ if (arg < 0.0) 

return(- arg); else return arg; } 

int get_sign(float val) I* Find the sign of the argument *I 
{ if (val > 0.0) 

return 1; else return -1; } 

I* Limit range of val *I 
float limit_range(float val, float low, float high) 
{ if (val < low) return low; 

else if (val > high) return high; 
else return val; } 

void init_pwm() I* Initialize Pulse Width Modulation *I 
{ poke(DDRD,Ob110010); I* Port D dir: OUT 5,4,3,1; IN 0 *I 

poke(OC1M,Ob01100000); I* Output Compare 1 affects PA5 and PA6 *I 
poke(OC1D,Ob01100000); I* OC1 compare turns on PA5 and PA6 *I 
bit_set(TCTL1,0b10100000); I*OC3 turns off PA5, OC2 turns off PA6*1 
pokeword(TOC1,0); I* When timer (TCNT) = 0, OC1 successful *I 
pokeword(TOC2,1); I* Minimum on time for OC2 *I 
pokeword(TOC3,1); } I* Minimum on time for OC3 *I 

I* The sign is handled in a special way -­
we have only a 1 channel encoder *I 

float pwm_motor(float vel, int motor_index) 
{ float vel_1; 

if (sign[motor_index] > 0) I* Choose the dir of rotation *I 
bit_set(port_d, dir_mask[motor_index]); 

else 
bit_clear(port_d, dir_mask[motor_index]); 

vel_1 = limit_range(vel, 1.0, 99.0);1* 1 < PWM-duty-factor 100 *I 
pokeword(TOCx[motor_index], (int) (655.36 * vel_1)); 
return vel_1;} 

295 

Silver Star Exhibit 1018 - 160



Appendix B Rug Warrior Program 

I* Top level open loop PWM command *I 
void move(float l_vel, float r_vel) I* R, L vel: [-100.0, 100.0] *I 
{ sign[O] = get_sign(l_vel); I* Desired direction of rotation *I 

sign[!] = get_sign(r_vel); 
pwrn_motor(abs(l_vel), 0); I* Set PWM constant *I 
pwm_motor(abs(r_vel), 1); } 

CONTROL LOOP 

float control_interval = 1.0; I* How often to run the servo loop *I 
float des_vel_clicks = 0.0; I* Des vel in clicks per interval *I 
float des_bias_clicks = 0.0; I* Des bias in clicks per interval *I 
float power[2] = {0.0,0.0}; I* Positive power command to motor *I 
float integral = 0.0; I* Integral of velocity difference *I 
float k_integral = 0.10; I* Integral error gain *I 
float k_pro = 1.0; I* Proportional gain *I 

void alter_power(float error, int motor_index) I* Set, save power *I 
{ power[motor_index] = limit_range(power[motor_index] 

+error, 0.0, 100.0); 
pwm_motor(power[motor_index], motor_index); } 

float integrate(float left_vel, float right_vel, float bias) 
{ integral= limit_range((integral + left_vel +bias- right_vel), 

-1000.0, 1000.0); 
return integral; } 

void speed_control() 
{float left_vel, right_vel, integral_error, left_error, right_error; 

while (1) 

{left_vel = get_left_vel(); 
right_vel = get_right_vel(); 
integral_error 

k_integral * integrate(left_vel, right_vel, des_bias_clicks); 
left_error 

k_pro * (des_vel_clicks - left_vel integral_error); 
right_error = 

k_pro * (des_vel_clicks- right_vel + integral_error); 
alter_power(left_error, 0); 
alter_power(right_error, 1); 
sleep(control_interval); 
}} 

float k_clicks s.o I 100.0; 

296 

void set_velocity(float vel, float bias) 
{ des_vel_clicks = k_clicks * vel; 

des_bias_clicks = k_clicks * bias; 
sign[O] get_sign(vel- bias); 
sign[1] = get_sign(vel +bias); } 

void start_speed_control() 
{ init_velocity(); 

ini t_pwrnO ; 
get_left_ vel 0; 
get_right_vel(); 
start_process(speed_control()); } 

void vel() 
{ while (1) 

{ 

} 

} 

left_vel = get_left_vel(); 
right_vel = get_right_vel(); 
sleep(control_interval); 

297 

Silver Star Exhibit 1018 - 161



Appendix C 

Yellow Pages 

One of the major roadblocks in building robots is not knowing where to 
get parts. Sensors, motors, electronics, batteries, prototyping equipment, 
connectors, and tools all come from a variety of vendors. After years of 
tracking things down, we have compiled a database of suppliers we com­
monly turn to for interesting robot parts. After the alphabetical listing 
of suppliers, Section C.1, is a cross-reference list by component category, 
Section C.2. The best thing to do is start calling these companies and 
collecting catalogs, which most suppliers will gladly send, free of charge. 

If you are searching for a type of component and have no idea how to 
find a supplier (i.e., none exist in our list below), the place to start is the 
Thomas Register. This is an index to the world. The Thomas Register is a 
set of over two-dozen very large books that lists manufacturers and suppliers 
of every type of product that you can imagine. We do not recommend that 
the hobbyist invest in such a purchase (approximately $250), but if you are 
in a bind, looking for a part, a trip to the library may be worthwhile. If 
you would like to acquire a set of these books, contact: 

Thomas Publishing Company 
Attn: Circulation Department 

One Penn Plaza 
New York, NY 10117-0138 

Silver Star Exhibit 1018 - 162



Appendix C Yellow Pages 

C.l Suppliers 

3M Electronic Products 
225-1N 3M Center 
St. Paul, MN 55144 
(800) 328-SPEC 

A. Cohen Company 
353 Washington Street 
Boston, MA 02108 
(617) 523-7440 

Active Electronics 
133 Flanders Road 
Westborough, MA 01581 
(508) 366-8899 

Advanced Design 
1101 East Rudsill Road 
Thcson, AZ 85718 
(602) 544-2390 
Fax: (602) 575-0703 

AGE 
244 W. 54th Street 
New York, NY 10019 
(212) 757-0700 
Fax: (212) 765-1987 

Airtronics 
11 Autry 
Irvine, CA 92718 
(714) 830-8769 

Alarm Supply 
PO Box 310 
Newtonville, MA 02160 
(800) 343-0552 

All Electronics Corporation 

Scotchfiex prototype wiring technology; distributed by 
Aztech Electronics 

Vigor watchmakers tools 

Retail dealer for electronic components 

This company makes a clever and inexpensive robot 
arm using airplane servos 

Variable resistance bend sensors 

Motors 

Pyroelectric sensors 

PO Box 567 Surplus dealer, surplus boards, components, and 
Van Nuys, CA 91408 assemblies 
(800) 826-5432 

Allied Electronics 
6 Cook Street 
Billerica, MA 01821 
(508) 667-7921 

America's Hobby Center 
146 West 22nd Street 
New York, NY 10001-2466 
(212) 675-8922 

300 

Electronic components 

Radio-control products, servos, motors 

C.l Suppliers 

American Control Technology 
825 Village Quarter Road LCD thumbwheel switches 
W. Dundee, IL 60118 
(708) 426-6780 

·2 American Design Components 
' PO Box 220 Surplus dealer, computer equipment, power supplies, 

815 Fairview Avenue motors, batteries, MOVIT robot kits 
Fairview, NJ 07022 
(800) 776-3700 

American Science and Surplus 
601 Linden Place Surplus dealer, wide assortment of electronic 
Evanston, IL 60202 
(708) 475-8440 

/Angelus Research 
6344 Sugar Pine Circle 
Angelus Oaks, CA 92305 
(909) 794-8325 

\,/'Animate Systems 
390 Wakara Way, Suite 56 
Salt Lake City, UT 84108 
(801) 581-1012 
Fax: (801) 581-0289 

Artificial Creatures 
Suite 6 
22 McGrath Highway 
Somerville, MA 02143 
(617) 629-0055 
Fax: (617) 629-0126 

Atochem Sensors 
PO Box 799 
Valley Forge, PA 19482 
(215) 666-3500 
Fax: (215) 666-3509 

Aztech Electronics 
8940-E Route 108 
Columbia, MD 21045 
(301) 995-6800 

Banner Engineering 
PO Box 9414 
Minneapolis, MN 55440 
(612) 544-3164 

BEl 
7230 Hollister A venue 
Goleta, CA 93117-2891 
(805) 968-0782 

components 

Whiskers: small, inexpensive mobile robot based on 
the MC68HC11 

Entertainment robots, small servo valves 

Small mobile robots for research and education. 
Artificial Creatures is a subsidiary of IS Robotics 

Thin film piezoelectric/pyroelectric material supplied 
by this company can be used to build custom-designed 
sensors 

Electronics distributor; carries 3M Scotchfiex wiring 
technology 

Infrared sensors 

Encoders 

301 

Silver Star Exhibit 1018 - 163



Appendix C Yellow Pages 

Benchmarq Microelectronics, Inc. 
2611 Westgrove Dr. Battery-charging !Cs 
Suite 101 
Carrolton, TX 75006 
(214) 407-0011 

Berg 
499 Ocean A venue Gears, linkages, pulleys, etc 
E. Rockaway, NY 11518 
(516) 599-5010 

Bicc-Vero 
Electronics Handbook Catalog Speedwire wiring equipment, pins, sockets 
1000 Sherman A venue 
Hamden, CT 06514 
(203) 288-8001 

Binsfeld Engineering 
8944 County Road 675 Strain gage telemetry system 
Maple City, MI 49665 
(616) 334-4383 

Bournes Precisions/ Controls 
2533 N. 1500 West Encoders, potentiometrs 
Ogden, WA 84404 
(714) 781-5050 

Brock Research 
134 Spruce Stree 
Watertown, MA 02172 
(617) 924-8171 

Mutli-axis force sensors 

BTL Division of Jannock Ltd. 
11 Dohme Avenue Laser machining of flexible circuits 
Toronto, Ontario 
M4B1Y7 Canada 
( 416) 752-2224 

Burden's Surplus Center 
1015 West 0 Street 
PO Box 82209 
Lincoln, NE 68501 
(800) 228-3407 

Cadillac Plastics 
130 Canal Street 
Malden, MA 68501 
(617) 324-8889 

Canon 
One Canon Plaza 
Lake Success, NY 11042 
(516) 488-6700 

302 

Mechanical parts 

Plastic stock 

Encoders, motors 

C.l Suppliers 

Capsella 
See MIT Museum Shop 

Centronic 
1829-B DeHavilland Drive Silicon photodetectors and linear arrays 
Newbury Park, CA 91320-1702 
(805) 499-5902 

Chinon America 
Industrial Products Division Small cameras 
PO Box 1248 
1065 Bristol Road 
Mountainside, NJ 07092-1248 
(908) 654-0404 

Circuit Board Fabrications 
179 Bear Hill Road Printed circuit board for Rug Warrior 
Waltham, MA 02254 
(617) 890-1878 

Circuit-Wise 
400 Sackett Point Road Molded boards for mechanical/electrical integration 
North Haven, CT 06473 
(203) 281-6511 

Clairex 
560 South Third Avenue. Cadmium sulfide photoresistors 
Mount Vernon, NY 10550 
(914) 664-6602 

Columbia Research Laboratories 
MacDade Boulevard Gyros 
and Bullen Lane 
Woodlyn, PA 19094 
(215) 872-3900 

Complex Systems Research 
46 Marion Street, Suite 002 Virtual reality goggles and microdisplays 
Somerville, MA 02143 
(617) 776-6013 

Co pal 
2291 205th Street 
Suite 105 
Torrance, CA 90501 
(213) 618-0225 

Cronin Electronics 
77 Fourth A venue 
Needham, MA 02194 
(617) 449-5000 

Motors 

Electronic components 

303 

Silver Star Exhibit 1018 - 164



Appendix C Yellow Pages 

Denning Mobile Robotics Inc. 
21 Concord Street Manufacturers of sentry and cleaning robots 
Wilmington, MA 01887 
( 508) 658-7800 
Fax: (508) 658-2492 

Detection Systems 
130 Perinton Parkway 
Fairport, NY 14450 
(716) 223-4060 

Digi-Key 
701 Brooks Avenue South 
PO Box 677 
Thief River Falls, MN 
56701-0677 
(800) 344-4539 

Direct Imaging 
2 Technology Drive 
Airport Industrial Park 
West Lebanon, NH 03784 
(603) 298-8383 

Pyroelectric sensors 

Digi-Key is a "hobbyist friendly" business; they accept 
small orders, ship products promptly, and have huge 
assortment of products in stock 

Inhouse printing system for multilayer boards 

Dunfield Development Systems 
PO Box 31044 Markets inexpensive C compiler compatible with the 
Nepean, Ontario MC68HC11 as well as several other popular 
K2B 8S8 Canada microprocessors 
(613) 256-5820 

Duracell 
Berkshire Industrial Park 
Bethel, CT 06801 
(800) 431-2656 

Edlie Electronics 
2700 Hempstead Turnpike 
Levittown, NY 11756-1443 
(516) 735-3330 

Edmund Scientific 
101 E. Gloucester Pike 
Barrington, N J 08007 
(609) 547-3488 

Batteries 

Surplus assortment of tools, test equipment, parts 

Optical components, science kits, surplus motors 

EDO Corporation/Barnes Engineering Division 
88 Long Hill Cross Road Temperature sensors 
PO Box 867 
Shelton, CT 06484-0867 
(203) 926-1777 

Electronic Supermarket 
PO Box 988 
Lynnfield, MA 01940 
(508) 532-2323 

304 

Surplus dealer of electronic components 

C.l Suppliers 

Elktronics 
12536 TR77 
Findlay OH 45840 
(419) 422-8206 

Elmec 
4127 Avenida De La Plata 
Oceanside, CA 92056 
(619) 631-0202 

Eltec Instruments 
PO Box 9610 
Central Business Park 
Daytona Beach, FL 32020 
(800) 874-7780 

Entran Devices 
10 Washington Avenue 
Fairfield, NJ 07004 
(800) 635-0650 

Erector Set 
See MIT Museum Shop 

ETAK 
1455 Adams Drive 
Menlo Park, CA 
( 415) 328-3825 

Fiber Metrics Corporation 

Provides extremely small yet inexpensive TV 
transmitter kit; broadcasts in the Ham band 

Flexible circuit design and fabrication 

Pyroelectric sensors, Fresnel lenses 

Accelerometers 

Navigation systems for cars 

4925 Dufferin Street Fiber optic strain gauges 
Downsview, Ontario CANADA 
M3H5T6 
( 416) 667-7730 

Fischer-Technic 
See MIT Museum Shop 

Fordham 
260 Motor Parkway 
Hauppauge, NY 11788 
(800) 645-9518 

Fresnel Technologies 
101 West Morningside Drive 
Fort Worth, TX 76110 
(817) 926-7474 

Futaba Corporation 
555 West Victoria Street 
Compton, CA 90220 
(213) 537-9610 

Tools, Test equipment 

Fresnel lenses 

Accessories for radio-controlled toys 

305 

Silver Star Exhibit 1018 - 165



Appendix C Yellow Pages 

Gates Energy Products 
1050 South Broadway 
PO Box 5887 
Denver, CO 80217 
(303) 744-4806 

Gerber Electronics 
128 Carnegie Row 
Norwood, MA 02062 
(800) 225-1800 

Globe Motors 
2275 Stanley A venue 
Dayton, OH 45404 
( 513) 228-3171 

Gordos 
1000 N. Second Street 
Rogers, AZ 72756 
(501) 636-5000 

Graymark International 
Box 5020 
Santa Ana, CA 92704 
(800) 854-7393 

Hallmark Electronics 
6 Hook Street 
Billerica, MA 01821 
(508) 667-0902 

Hamamatsu Photonics 
360 Foothill Road 
Bridgewater, NJ 08807-0910 
(908) 231-0960 

Hamilton-A vnet 
50 Tower Office Park 
Woburn, MA 01801 
( 508) 532-9682 

Harbor Tool 
20 Southwest Park 
Westwood, MA 02090 
(617) 329-4432 

Heathkit 
Heath Company 
Benton Harbor, MI 49022 
(616) 982-3417 

Manufacturer of batteries, especially lead acid 

Electronic components 

Motors 

Relays 

Robot kits 

Distributor of many semiconductor manufacturers. 
Carries Motorola MC68HC11A1FN 

Photoresistors, infrared detectors, rangers, color 
sensors, shaft encoder sensors 

Distributor for many semiconductor manufacturers 

Machine tools, hardware 

Many electronic products, including test equipment 

HEI Optoelectronic Division 
PO Box 5000 Optical switches 
1495 Steiger Lake Lane 
Victoria, MN 55386 
(612) 443-2500 

306 

C.l Suppliers 

Herbach and Rademan 
18 Canal Street Surplus dealer 
PO Box 122 
Bristol, PA 19007-0122 
( 800) 848-8001 

Hohner 
777 Cayuga Street Encoders 
Lewiston, NY 14092 
(716) 754-2627 

Household Data Services 
(703) 620-6200 Small cameras 

Humphrey 
9212 Balboa Avenue Gyros 
San Diego, CA 92123 
(619) 565-6631 

Hunter Products 
792 Partridge Drive Pyroelectric sensors 
Bridgewater, NJ 08807 
(201) .526-8440 

IC Sensors 
1701 McCarthy Blvd. Micromachined accelerometers, pressure sensors 

Milpitas, CA 905035-7416 
(800) 767-1888 
Fax: ( 408) 432-7322 

Inland Motor 
Kollmorgan Corporation Motors 
501 First Street 
Radford, VA 24141 
(703) 639-9045 

Instock Products 
11 Walkup Drive 
Westborough, MA 01581 
(508) 870-5750 

Sockets, connectors 

Integrated Circuit Systems . 
2626 Van Buren Avenue Battery-chargmg ICs 
Valley Forge, PA 19482 
(215) 666-1099 

Interlink Electronics 
PO Box 40760 
Santa Barbara, CA 93103 
(805) 684-2100 

Force-sensing resistors 

307 

Silver Star Exhibit 1018 - 166



Appenpix C Yellow Pages 

International Micro Electronics 
PO Box 170415 Small surplus dealer of transformers, switches, 
Arlington, TX 76003 speakers, connectors 
(817) 561-2244 

International Power Sources 
10 Cochituate Street Power converters, stepper motor controllers 
Natick, MA 01760 
(617) 651-1818 

IS Robotics 
Suite 6 
22 McGrath Highway 
Somerville, MA 02143 
(617) 629-0055 
Fax: (617) 629-0126 

Itek Measurement Systems 

Research robots and sensor systems 

27 Christina Street Encoders 
Newton, MA 02161 
(617) 969-7300 

ITT Cannon 
666 E. Dyer Road 
P.O. Box 929 
Santa Ana, CA 92702-0929 
(714) 557-4700 x2232 

Jameco 
1355 Shoreway Road 
Belmont, CA 94002 
(415) 592-8097 

Jenson Tools 
7815 S. 46th Street 
Phoeniz, AZ 85044-5399 
(602) 968-6231 

.Johuco Ltd. 
PO Box 390 
Vernon, CT 

Kaufman Tools 
llO Second Street 
Cambridge, MA 02141 
(617) 491-5500 

Khepera 

Microminiature connectors 

Electronic components 

Hand tools, test equipment 

Robots 

Machine tools, hand tools 

LAMI-EPFL Miniature mobile robots 
CH-1015 Lausanne, Switzerland 
(41) 21 693-5265 

Laser Services 
123 Oak Hill Road 
Westford, MA 01886 
(508) 692-6180 

308 

Laser job shop 

C.l Suppliers 

LEGO 
LEGO Educational Dept. 
PO Box 39 
Enfield, CT 06082 
(800) 527-8339 
LEGO Mail Order 
(800) 243-4870 

Linear Corporation 
2055 Corte del Nogal 
Carlsbad, CA 92008 
(619) 438-7000 

Lucas Ledex 
801 Scholz Drive 
PO Box 427 
Vandalia, OH 45377-0427 
(513) 898-3621 

Lucas Novasensor 
1055 Mission Court 
Fremont, CA 94539 
(510) 490-9100 

Lucas Schaevitz 
7905 N. Route 130 
Pennsauken, NJ 08110-1489 
(609) 662-8000 

Mabuchi 
475 Park Avenue South 
New York, NY 10016 
(212) 686-3622 

Mac Bearing 
(617) 933-2110 

Mandex Technology Inc. 
1235 Chicago Road 
Troy, MI 48083 
(313) 585-1165 

Marshall Electronics 
33 Upton Drive 
Wilmington, MA 01887 
(508) 658-0810 

Maxon Precision Motors 
838 Mitten Road 
Burlingame, CA 94010 
( 415) 697-9614 

All components needed for quickly building robot 
prototypes; educational department sells primarily to 
schools 

Burglar alarms 

Encoders 

Micromachined pressure sensors and accelerometers 

Force sensors, displacement sensors 

Motors 

Mechanical parts, gears, bearings, pulleys 

Vision systems, frame grabbers 

Electronic components 

Small high-quality motors 

309 

Silver Star Exhibit 1018 - 167



Appendix C Yellow Pages 

MCM Electronics 
650 Congress Park Drive 
Centerville, OH 45459-4072 
(800) 543-4330 

McMaster-Carr 

Tools, connectors, transistors 

PO Box 440 Machine tools, hardware 
New Brunswick, NJ 08903-0440 
(210) 329-3200 

Meccano 
See MIT Museum Shop 

Mendelson Electronics 
340 E. First Street 
Dayton, OH 45402 
(800) 422-3525 
Fax: (513) 461-3391 

Methode Electronics 
7444 W. Wilson Avenue 
Chicago, IL 60656 
(800) 323-6864 

Micro Gage 
9537 Telstar Avenue 
El Monte, CA 91731 
(818) 443-1741 

Micro Measurements 
PO Box 27777 
Raleigh, NC 27611 
(919) 365-3800 

Micro Miniature Bearing 
7 Jocama Boulevard 
Old Bridge, NJ 08857 
(800) 526-2353 

Micro Mint 
4 Part Street 
Vernon, CT 06066 
(800) 635-3355 

Micro Mo Electronics 
742 2nd Avenue South 
St. Petersburg, FL 33701 
(813) 822-2529 

Micro Video Products 
1224 South Shawnee Drive 
Santa Ana, CA 92704 
(800) 473-0538 
Fax: (714) 545-9041 

310 

Subassemblies of discontinued Heathkit HERO 2000 
robot 

Sockets and onnectors 

Force sensors 

Strain gauges 

Bearings 

Single-board computers 

Small motors 

Offers miniature, fully assembled TV transmitter and 
some small video cameras 

C.l Suppliers 

Microwatt Applications 
P.O. Box 202 
Sea Cliff, NY 11579-0202 
(516) 676-4655 

Pyroelectric sensors 

Mikron Instrument Company 
445 W. Main Street Pyroelectric sensors 
Wyckoff, NJ 07481 
(201) 891-7330 

Minco Products 
7300 Commerce Lane 
Minneapolis, MN 
(612) 571-3120 

Mini Tool 
1334/F Dell Avenue 
Campbell, CA 95008 
(408) 374-1585 

MIT Museum Shop 
Building N52 
MIT Student Center 
Cambridge, MA 02139 
(617) 253-4462 

Flexible coils 

Small tools 

Sells Fischer-Technic, Meccano, Capsella, Lego and 
Erector Set construction kits 

Mitsui-Pathtek Corporation 
250 Metro Park Molded boards for mechanical/electrical integration 
Rochester, NY 14623-2685 
(716) 272-3100 

Modern Jewelers Supply 
373 Washington Street 
Boston, MA 02108 
(800) 633-0098 

Mondo-tronics 
524 San Anselmo Avenue 
Suite 107 
San Anselmo, CA 94960 
(800) 374-5764 
Fax: ( 415) 455-9333 

Mouser Electronics 
PO Box 699 
Mansfield, TX 76063 
(800) 34-MOUSER 

MTI Instruments Division 
968 Albany-Shaker Road 
Lathan, NY 12110 
(518) 785-2211 

Vigor watchmakers tools 

, Shape memory metal, robots 

Wide selection of electronic components; will fax 
detailed specs; regional distribution centers; accepts 
small orders 

Fotonic sensor for displacement 

311 

Silver Star Exhibit 1018 - 168



Appendix C Yellow Pages 

Murata 
2200 Lake Park Drive 
Smyrna, GA 30080 
(404) 436-1300 

Namiki 
201 West Passaic Street 
Rochelle Park, NJ 07662 
(201) 368-0123 

New Micros Inc. 
1601 Chalk Hill Road 
Dallas, TX 75212 
(214) 339-2204 

Newark Electronics 
10 G. Roessler Road 
Woburn, MA 01801-6284 
(508) 683-0913 

Newport Corporation 
P.O. Box 8020 

Temperature sensors 

Very small motors 

Single-board computer uses MC68HC11 chip; Forth 
language in ROM 

Distributor of electronic components 

18235 Mt. Baldy Circle 
Fountain Valley, CA 92728-8020 
(714) 963-9811 

Optical stages and equipment 

Nippon Ceramic 
See Pace Electric Products 

Nomadic Technologies 
858 La Para A venue 
Palo Alto, CA 94306 
(415) 493-7700 
Fax: (415) 493-7064 

Omron Electronics 
1 East Commerce Drive 
Schaumburg, IL 60173 
(708) 843-7900 
Fax: (708) 843-8568 

Optek Technology 
1215 West Crosby Road 
Carrollon, TX 75006 
(214) 323-2200 

P-Q Controls 
95 Dolphin Road 
Bristol, CT 06010 
(203) 583-6994 

Pace Electric Products 
34 Foley Drive 
Solus, NY 14551-0067 
(315) 483-9122 

312 

Pyroelectric sensors 

Robots 

Photomicrosensors, relays, bump switches 

Photodiodes, phototransistors, photointerrupters 

Gyros 

Distributor for Nippon Ceramics; cheap pyros 

C.l Suppliers 

Pacer Electronics 
70 Holton Street 
Woburn, MA 01801 
(617) 935-8330 

Packaged Power 
2801 Gateway Drive 
Pompano Beach, FL 33060 
(305) 974-2442 

Penn Engineering 
5190 Old Easton Road 
Danboro, PA 18916 
(800) 342-5736 

Perception Software 
350 Washington Street 
Wellesley Hills, MA 02181 
(617) 253-0477 

Pico Electronics 
453 N. Macquesten Pkwy. 
Mt. Vernon, NY 10552 
(800) 431-1064 

Piezo Systems 
186 Massachusetts Avenue 
Cambridge, MA 02139 
(617) 547-1777 

Pioneer Electronics 
44 Hartwell Avenue 
Lexington, MA 02173 
(617) 861-9200 

Pittman 
P.O. Box 3 
Harleysville, PA 19438-0003 
(215) 256-6601 

Polaroid Corporation 
Commercial/Battery Division 
575 Technology Square 
Cambridge, MA 02139 
(617) 577-4681 

Portescap US 
36 Central Avenue 
Hauppauge, NY 11788 
(516) 234-3900 

R/C Cool Stuff 
311 Ross Road 
Paramus, N J 07652 
(201) 967-8598 

Electronic components 

DC-DC converters 

Fast-disconnect connectors 

Vision systems 

DC-DC converters 

Piezoelectric ceramics, sensors, actuators 

Distributor of many semiconductor manufacturers' 
lines. 

Motors 

Instrument-grade sonar transducer-604142; 
environmental transducer-607281; single-frequency 
driver board-607089; cable assembly-604 789 

High-quality DC gearhead motors 

Accessories for radio-controlled vehicles 

313 

Silver Star Exhibit 1018 - 169



Appendix C Yellow Pages 

Radio Shack 
National chain consult 
telephone directory for 
nearest distributor 

RAG Electronics 
21418 Parthenia Street 
Canoga Park, CA 91304-1597 
(800) 732-3457 

Ram Co 
45 Mason Street 
Salem, MA 01970 
(508) 741-8727 

RC Systems 
121 W. Winesap Road 
Bothell, WA 98012 
(206) 672-6909 

RCD Components 
330 Bedford Street 
Manchester, NH 03101 
(603) 669-0054 

Real World Interface 
PO Box 270, Main Street 
Dublin, NH 03444 
(603) 563-8871 

Redwood Microsystems 
959 Hamilton Ave. 
Menol Park, CA 94025 
(415) 326-1896 

Redzone Robotics 
2425 Liberty A venue 
Pittsburgh, PA 15222-4639 
(412) 765-3064 

Reliability Incorporated 
P.O. Box 218370 
Houston, TX 77218 
(713) 492-0550 

Rick's Micro Tool 
250 Nicks Rock Road 
Plymouth, MA 02360 
(508) 746-6900 

RMB Miniature Bearings 

Offers a variety of electronic components from local 
distributors; to mail order, see Tandy Electronics 

Used equipment, scopes, and meters 

Numerically-controlled machining services 

High-quality, inexpensive speech boards 

Temperature sensors 

Robots 

Micromachined miniature valves 

Hazardous waste robots, applications in nuclear 
energy, and mobile robots 

DC-DC converters 

Small tools 

29 Executive Parkway Bearings 
Ringwood, NJ 07456 
(201) 962-1111 

314 

C.l Suppliers 

Rogers Corporation 
One Technology Drive 
Rogers, CT 06263 
(203) 774-9605 

Bendflex flexible printed circuit boards 

Royal Products Corporation 
790 W. Tennessee Avenue Inexpensive model airplane servo motors 
Denver, CO 80223 
(303) 778-7711 

Samtec 
PO Box 1147 Distributor of electronic components 
New Albany, IN 47150 
(812) 944-6733 

Sanyo Electric Inc. 
200 Riser Road Batteries 
Little Ferry, N J 07643 
(201) 641-2333 

Sarcos Microsystems 
390 Wakara Way, Suite 65C Multi-axis strain sensors, rotary displacement 
Salt Lake City, UT 84108 transducers 
(801) 581-0156 
Fax: (801) 581-1151 

Sarcos Research Corp. 
390 Wakara Way, Suite 44 Highly dextrous robot manipulators, sensors, actuators 
Salt Lake City, UT 84108 
(801) 581-0155 
Fax: (801) 581-1151 

Schaal 
87 Terrace Hall Road Electronic components 
Burlington, MA 
(617) 272-7940 

Schaevitz Sensing Systems 
21640 N. 14th Avenue Gyros 
Phoeniz, AZ 85027-2839 
(800) 545-3243 

Schweber Electronics 
25 Wiggins Avenue Carries Motorola MC68HC811A1FN 
Bedford, MA 01730 
(508) 694-9100 

Sheldon's Hobbies 
2135 Old Oakland Road Radio-control products, servos, motors, gyros 
San Jose, CA 
(800) 228-3237 

315 

Silver Star Exhibit 1018 - 170



Appendix C Yellow Pages 

Small Parts 
6891 N.E. Third Avenue Supply of metal, plastics, tools, and hardware. 
PO Box 381736 
Miami, FL 33238-1736 
(305) 751-0856 

Southco 
237 Brinton Lake Road Mechanical fasteners 
Concordville, PA 19331 
(215) 459-4000 

Spectron 
595 Old Willets Path Inclinometers, mercury switches 
PO Box 13368 
Hauppauge, NY 11788 
(516) 582-5600 
Fax: (516) 582-5671 

Spiricon 
2600 North Main Sensors for laser systems 
Logan, UT 84321 
(801) 753-3729 

Sterling Electronics 
15D Constitution Way Distributor of electronic components 
Woburn, MA 01888 
(617) 938-6200 

Sterling Instrument 
55 South Denton A venue Mechanical parts 
New Hyde Park, NY 11040 
( 516) 328-3300 

Stock Drive Products 
55 South Deuton A venue Assortment of small parts 
New Hyde Park, NY 11040 
(516) 328-0200 

Suncoast Technologies 
PO Box 5835 Very inexpensive digital compass 
Spring Hill, FL 34606 
(904) 596-7599 

T-Tech 
5591-B New Peachtree Road Inhouse milling machine for fabbing PC boards 
Atlanta, GA 30341 
(404) 455-0676 

Tandy Electronics 
National Parts Division 
900 E. Northside Drive 
Fort Worth, TX 76102 
(800) 322-3690 
Fax: (817) 332-4216 

316 

Parent company of Radio Shack; distributes (by mail 
order) wider variety of parts than available in Radio 
Shack stores 

C.l Suppliers 

Teledyne Gurley 
514 Fulton Street 
PO Box 88 
Troy, NY 12181-0088 
(518) 272-6300 

Tower Hobbies 
PO Box 9078 
Champaign, IL 61826 
(800) 637-4989 

Transensory Devices 

Encoders 

Radio-control products, servos, motors, gyros 

44060 Old Warm Springs Road Strain gauges 
Fremont, CA 94538 
(415) 490-3333 

Vicor 
23 Frontage Road 
Andover, MA 01810 
( 508) 4 70-2900 

Vision Applications 
280 Lincoln Street 
Allston MA 02134 
(617) 789-4941 

Watlow 
12001 Lackland Road 
St. Louis, MO 63146 
(314) 878-4600 

Watson Industries 
3041 Melby Road 
Eau Claire, WI 54703 
(715) 839-0628 

Western Micro 
20 Blanchard Road 
Corporate Place 3 
Burlington, MA 01803 
(617) 273-2800 

Z-World Engineering 
1340 Covell Blvd., No. 101 
Davis, CA 95616 
(916) 753-3722 
Fax: (916) 753-5141 

Zemco 
Suite 201 
3401 Crow Canyon Road 
San Ramon, CA 94583 
( 415) 866-7266 

DC-DC converters 

Vision systems 

Pyroelectric sensors 

Gyros 

Electronic components 

C-hased single board computer 

Digital fiux-gate compass 

317 

Silver Star Exhibit 1018 - 171



Appendix C Yellow Pages 

C.2 Products 
Accelerometers 

Entran Devices, IC Sensors, 
Lucas Novasensor 

Batteries 
Duracell, Gates Energy Products, 
Sanyo Electric Inc. 

Battery-charging ICs 
Benchmarq Microelectronics, Inc., 
Integrated Circuit Systems 

Bearings 
Mac Bearing, Micro Miniature Bearing, 
RMB Miniature Bearings 

Bend sensors 
AGE 

Buzzers, piezoelectric 
Digi-Key 

C compilers 
Dunfield Development Systems 

Cameras 
Chinon America, 
Household Data Services, 
Micro Video Products 

Circuit boards 
BTL Division of Jannock Ltd., 

Displays 
Complex Systems Research 

Electronic components 
Active Electronics, 
All Electronics Corporation, 
Allied Electronics, 
American Science and Surplus, 
Aztech Electronics, Cronin Electronics, 
Electronic Supermarket, 
Gerber Electronics, Hallmark Electronics, 
Hamilton-Avnet, Jameco, 
Marshall Electronics, Mouser Electronics, 
Newark Electronics, Pacer Electronics, 
Pioneer Electronics, Radio Shack, Schaal, 
Schweber Electronics, 
Sterling Electronics, Tandy Electronics, 
Western Micro 

Encoders 
BEl, Bournes Precisions/Controls, 
Canon, Hohner, 
ltek Measurement Systems, Lucas Ledex, 
Sarcos Microsystems, Teledyne Gurley 

Force sensors 
Brock Research, Interlink Electronics, 
Lucas Schaevitz, Micro Gage, 
Sarcos Microsystems 

Circuit Board Fabrications, Circuit-Wise, Fresnel lenses 
Direct Imaging, Elmec, Minco Products, Eltec Instruments, Fresnel Technologies 
Mitsui-Pathtek Corporation, 
Rogers Corporation, T-Tech 

Compasses 
ETAK, Suncoast Technologies, Zemco 

Connectors 
Instock Products, ITT Cannon, 
MCM Electronics, Methode Electronics, 
Samtec 

Construction kits 
MIT Museum Shop 

DC-DC converters 
International Power Sources, 
Packaged Power, Pico Electronics, 
Reliability Incorporated, Vicar 

Displacement sensors 
Lucas Schaevitz 

318 

Gyros 
Columbia Research Laboratories, 
Futaba Corporation, Humphrey, 
P-Q Controls, 
Schaevitz Sensing Systems, 
Sheldon's Hobbies, Tower Hobbies, 
Watson Industries 

Inclinometers 
Spectron 

Infrared sensors 
Banner Engineering, 
Hamamatsu Photonics, 
Optek Technology 

Laser machining services 
Laser Services 

LCD thumbwheel switches 
American Control Technology 

Machining services 
Ram Co 

Mechanical fasteners 
Penn Engineering, Southco 

Mechanical parts 
Berg, Burden's Surplus Center, LEGO, 
Mac Bearing, Small Parts, 
Sterling Instrument, 
Stock Drive Products 

Microphones 
Digi-Key 

Motors 
Airtronics, America's Hobby Center, 
Canon, Copal, Edmund Scientific, 
Futaba Corporation, Globe Motors, 
Inland Motor, LEGO, Mabuchi, 
Maxon Precision Motors, 

Radio-control products 
America's Hobby Center, 
R/C Cool Stuff, Sheldon's Hobbies, 
Tower Hobbies 

Relays 
Gordos 

Robots 
Advanced Design, Angelus Research, 
Animate Systems, Artificial Creatures, 
Denning Mobile Robotics Inc., 
Edmund Scientific, 
Graymark International, IS Robotics, 
Johuco Ltd., Khepera, 
Mendelson Electronics, Mondo-tronics, 
Nomadic Technologies, 
Real World Interface, Redzone Robotics, 
Sarcos Research Corp. 

Shape memory metal 
Mondo-tronics Micro Mo Electronics, Namiki, Pittman, 

Portescap US, 
Royal Products Corporation, 
Sheldon's Hobbies, Tower Hobbies 

Single-board computers 
Micro Mint, New Micros Inc., 
Z-World Engineering 

Optical components 
Edmund Scientific, Newport Corporation Sonar sensors 

Photosensors 
Centronic, Clairex, 
Hamamatsu Photonics, 
HEI Optoelectronic Division, 
Omron Electronics, Optek Technology 

Piezoelectric materials 
Atochem Sensors, Piezo Systems 

Plastic stock 
Cadillac Plastics 

Pressure sensors 
IC Sensors, Lucas Novasensor 

Proximity sensors 
MTI Instruments Division 

Pyroelectric sensors 
Alarm Supply, Detection Systems, 
Eltec Instruments, Hunter Products, 
Linear Corporation, 
Microwatt Applications, 

Polaroid Corporation 

Speech products 
RC Systems 

Stepper motor controllers 
International Power Sources 

Strain gauges 
Binsfeld Engineering, 
Fiber Metrics Corporation, 
Micro Measurements, 
Transensory Devices 

Surplus dealers 
All Electronics Corporation, 
American Design Components, 
American Science and Surplus, 
Edlie Electronics, 
Electronic Supermarket, 
Herbach and Rademan, 
International Micro Electronics, 
RAG Electronics 

Mikron Instrument Company, Switches 
Nippon Ceramic, Pace Electric Products, Digi-Key, Ornron Electronics 
Spiricon, Watlow 

Temperature sensors 
EDO Corporation/Barnes Engineering Division, 
Murata, RCD Components 

319 

Silver Star Exhibit 1018 - 172



Appendix C Yellow Pages 

Test equipment 
Edlie Electronics, Fordham, Heathkit, 
Jenson Tools 

Tools 
Edlie Electronics, Fordham, Harbor Tool, 
Jenson Tools, Kaufman Tools, 
MCM Electronics, McMaster-Carr, 
Mini Tool, Rick's Micro Tool 

TV transmitters 
Elktronics, Micro Video Products 

Valves 
Animate Systems, 
Redwood Microsystems 

Vision systems 
Mandex Technology Inc., 
Perception Software, Vision Applications 

Watchmakers tools 
A. Cohen Company, 
Modern Jewelers Supply 

Wiring products 
3M Electronic Products, Bicc-Vera 

320 

Appendix D 

Trade Magazines 

Technology changes so quickly that a "how to build a robot" book can 
swiftly become outdated. We recommend that robot enthusiasts and en­
gineers make every effort to stay abreast of technology because a circuit 
that takes five chips and seven discrete components today might come out 
tomorrow in single-chip form (and at lower cost). 

The best way to remain aware of what new parts are available is to 
subscribe to the numerous trade magazines that advertise suppliers and 
their latest products. Most of these publications are free if you qualify when 
filling out their subscriber forms, either by working in a related profession 
or by being a student. In this appendix, we list the publications we have 
found helpful over the years. Again, most are free, but a few listed are of 
the pay-for-subscription variety. 

Another important source of information that has developed over the 
past few years are the electronic bulletin boards and online interest groups 
available through the various computer network services. In particular, 
a number of ideas and suggestions for this book have come from the 
comp.robotics news group available through Internet. By using such a 
network to offer a comment or pose a question, it is literally possible to 
reach, overnight, a large fraction of people throughout the world who have 
an interest in the subject. If you have direct access to Internet you should 
ask your system administrator how to read comp.robotics. Other networks 
may also have local robot interest groups; many allow you to connect to 
Internet. 

ASIC & EDA, Technologies 
for System Design 
5150 El Camino Real 
Suite C20 
Los Altos CA 94022-9873 

Silver Star Exhibit 1018 - 173



Appendix D 

Automatic ID News 
Advanstar Communications, Inc. 
PO Box 5040 
Pittsfield, MA 01203-9648 

Circuit Cellar INK: The Com­
puter Applications Journal 
Circuit Cellar Incorporated 
4 Park Street, Suite 20 
Vernon, CT 06066 
(203) 875-2751 

Designfax 
A Huebcore Publication 
PO Box 1151 
Skokie, IL 60076~9917 

EDN 
(Electronic Design l'\ews) 
Computer Center 
PO Box 5563 
Denver, CO 80217-5563 

EDN News Edition 
Computer Center 
PO Box 17844 
Denver, CO 80217-0844 

EE Product News 
PO Box 12982 
Overland Park, KS 66282-9818 

Electrical Manufacturing 
Lake Publishing 
PO Box 159 
Libertyville, IL 60048-9961 

Electronic Cornponent News 
Box 2011 
Radnor, PA 19080-9511 

Electronic Engineering Times 
Circulation Dept. 
Box 2010 
Manhasset, NY 11030 

Electronic Packaging and 
Production 
PO Box 5690 
Denver, CO 80217 

322 

Electronic Products 
Reader Service Management Dept. 
PO Box 5317 
Pittsfield, MA 01203-9899 

Electronics 
1100 Superior Avenue 
Cleveland, OH 14197-8118 

Embedded Systems 
PO Box 41094 
Nashville, TN 37204 
(800) 950-0523 

Evaluation Engineering 
2504 North Tamiami Road 
Nokomis, FL 34275-9987 

Fiber Optic Product News 
301 Gibralter Drive 
PO Box 61 
Morris Plains, N J 07950-9825 

Instrumentation and 
Automation News 
Box 2005 
Radnor, PA 19080-0405 

Journal of Electronic Engineering 
Dempa Publications, Inc. 
11-15, Higashi Gotanda 1-chome 
Shinagawa-ku 141 
Tokyo, Japan 

Lasers and Optronics 
301 Gibraltar Drive 
PO Box 601 
Morris Plains, NJ 07950-9827 

Machine Design 
Penton Publishing 
PO Box 95759 
Cleveland, OH 44101 

Measurement Science and 
Technology 
Order Processing Department 
lOP Publishing, Ltd. 
Techno House, Redcliffe Way 
Bristol BS1 6NX, 
United Kingdom 

Mechanical Engineering 
PO Box 5205 
Pittsfield, MA 01203-9969 

Medical Equipment Designer 
Subscriber Services 
Huebcore Communications 
29100 Aurora Road, Suite 200 
Cleveland, OH 44139 

Microsensor Research 
Tech Trends Associates 
PO Box 386 
Bel Air, MD 21014 

Microwaves and RF 
1100 Superior A venue 
Cleveland, OH 44197-8040 

Motion Control 
Attn: Circulation Dept. 
PO Box 7907 
Wheaton, IL 60189-9850 

NASA Tech Briefs 
NASA STI Facility 
Manager TU Division 
PO Box 8757 
Baltimore, MD 21240-9985 

Nuts and Volts Magazine 
430 Princeland Court 
Corona, CA 91719 

PCIM Power Conversion and 
Intelligent Motion 
PO Box 420374 
Palm Coast, FL 32142-0374 

I~J 
( I 
-~ 

Personal Engineering and 
Instrumentation News 
Circulation Department 
PO Box 430 
Rye, NH 03870-0430 

Power Transmission Design 
1100 Superior Avenue 
Cleveland, OH 44197-8038 

Product Design and Development 
PO Box 2001 
Radnor, PA 19080-9501 

Research and Development 
Magazine 
Reader Service Dept. 
Computer Center 
PO Box 5833 
Denver, CO 80217-9937 

Robot Explorer: The 
Newsletter of Motile Systems 
Appropriate Solutions, Inc. 
PO Box 458 
Peterborough, NH 03458-0458 
(603) 924-6079 

Security Magazine 
Reader Service Department 
Computer Center 
PO Box 5500 
Denver, CO 80217-9808 

Sensor Review 
MCB University Press 
62 Toller Lane, Bradford 
BD8 9BY, UNITED KINGDOM 

Sensor Technology 
Technical Insights 
PO Box 1304 
Fort Lee, NJ 07024-9967 

Sensors 
PO Box 1285 
Northbrook, IL 60065-1285 

323 

Silver Star Exhibit 1018 - 174



Appendix E 

Data Books 

Semiconductor companies publish a series of data books that give the spec­
ifications and pinouts of their chips. Often, chapters are included in each 
book that contain application notes and brief reviews of theory. A set of 
data books for a large semiconductor company might number a dozen or 
more volumes, while more specialized or newer companies might have only 
a single data book. Typically, data books will be sent free if you call the 
literature department of each manufacturer and ask for copies. 

The following list comes from the collection we have acquired over the 
years. Probably the most important reference to have, however (which is 
not free), is the first item on the list, the IC Master. This multivolume set 
lists all chips made by all manufacturers in the world and has an index by 
part number. That is, if you come across a chip marked with some part 
number but you have no idea what its function is, you can look it up in 
IC Master and find out all the companies that make that chip and what 
it is. Then you can go to the data book for one of the companies for the 
pinouts and electrical characteristics. We recommend buying a new copy of 
IC Master each year for staying up to date with the latest chips. Quarterly 
updates are sent, also. 

IC Master 
Hearst Business Communications 
645 Stewart A venue 
Garden City, NY 11530 
(516) 227-1300 

Index of all manufacturers' integrated circuits 

Silver Star Exhibit 1018 - 175



Appendix E Data Books 

Advanced Micro Devices 
901 Thompson Place 
PO Box 3453 
Sunnyvale, CA 94088 
(800) 538-8450 

Analog Devices 
One Technology Way 
PO Box 9106 
Norwood, MA 02062-9106 
(617) 329-4700 

AND 
Division of William J. Purdy 
Burlingame, CA 94010 
(415) 347-7701 

Apex 
5980 N. Shannon Road 
Tucson, AZ 85741 
(602) 742-8600 

AT&T 
Dept. 50AL203140 
555 Union Boulevard 
Allentown, PA 18103-9989 

Benchmarq Microelectronics 
2611 Westgrove Drive 
Suite 101 
Carrolton, TX 75006 
(214) 407-0011 

Brooktree 
9950 Barnes Canyon Road 
San Diego, CA 92121 
(619) 452-7580 

Burr-Brown Corporation 
1141 W. Grant Road, MS 131 
Tucson, AZ 85705 
(602) 746-1111 

Cherry Semiconductor 
2000 South County Trail 
East Greenwich, RI 02818 
( 401) 885-3600 

Cypress Semiconductor 
3901 North First Street 
San Jose, CA 95134 
(408) 943-2600 

326 

Memories, microprocessors, analog chips 

D /A and A/D converters, analog electronics 

LEDs and LCDs 

Power op-amps 

Linear and high-voltage integrated circuits 

Battery-charging ICs 

Video and graphics chips 

Instrumentation amplifiers, linear circuits 

Telecom circuits, motor control, power and 
automotive ICs 

Memories 

Dallas Semiconductor 
4350 Beltwood Parkway South 
Dallas, TX 75244 

Nonvolatile RAM, microprocessor and support 
circuits 

(214) 450-0400 

Data Delay Devices Inc. 
3 Mt. Prospect Avenue 
Clifton, N J 07013 
(201) 773c2299 

Date! 
11 Cabot Boulevard 
Mansfield, MA 02048 
(617) 339-9341 

Dense-Pac Microsystems 
7321 Lincoln Way 
Garden Grove, CA 92641-1428 
(714) 898-0007 

Delay lines 

Data-conversion components 

Memory modules 

EEM Electronic Engineers Master Catalog 
Hearst Businss Communications Suppliers of electronic components 
645 Stewart A venue 
Garden City, NY 11530 
(516) 227-1300 

EG&G Reticon 
345 Potrero A venue 
Sunnyvale, CA 94086 
(408) 738-4266 

Elantec 
1996 Tarob Court 
Milpitas, CA 95035 
(408) 945-1323 

Electronic Designs Inc. 
35 South Street 
Hopkinton, MA 017 48 
(617) 435-9077 

Exar Corporation 
750 Palomar Avenue 
Sunnyvale, CA 94086 
(408) 732-7970 

Image-sensing products 

Operational amplifiers 

Hybrid memory modules 

Telecommunications ICs 

Fairchild Semiconductor Corporation 
10400 Ridgeview Court Microprocessors, memories, linear, digital ICs 
Cupertino, CA 95014 
(800) 554-4443 

Fujitsu Microelectronics, Inc. 
3545 North First Street 
San Jose, CA 95134 
(408) 922-9000 

Memories 

327 

Silver Star Exhibit 1018 - 176



Appendix E Data Books 

General Electric Semiconductor 
One Micron Drive 
Research Triangle Park, NC 27709 
(919) 549-3100 

Power transistors, microcontrollers, peripheral 
ICs 

General Instrument Microelectronics 
50 Mall Road, Suite G18 EEPROMS, speech products, memories, 
Burlington, MA 01803 microcontrollers 
(617) 272-8030 

Gennum Corporation 
PO Box 489, Stn A 
Burlington, Ontario, 
Canada L 7R 3Y3 
(416) 632-2996 

Greenwich Instruments USA 
3401 Monroe Road 
Charlotte, NC 28205 
(800) 476-4070 

Harris Semiconductor 
PO Box 993, MS 53-035 
Melbourne, FL 32901 
(407) 724-7418 

Hewlett Packard 
3003 Scott Blvd. 
Santa Clara, CA 95054 
(408) 988-7000 

Hitachi America, Ltd. 
2210 O'Toole Avenue 
San Jose, CA 95131 
(408) 942-1500 

Hyundai Electronics America 

Video and power supply products 

Nonvolatile memories 

Digital and analog ICs, microprocessors 

Optoelectronics, microprocessors, 
radio-frequency ICs 

Microcontrollers, peripherals, LCDs, memories 

4401 Great America Parkway Memories, serial EEPROMs 
Santa Clara, CA 95054 
( 408) 986-9800 

lnmos Corporation 
PO Box 16000 Digital signal-processing chips 
Colorado Springs, CO 80935 
(719) 630-4000 

lntech Advanced Analog 
2270 Martin A venue A/D converters 
Santa Clara, CA 95050-2781 
(408) 988-4930 

Integrated Device Technology 
3236 Scott Boulevard CMOS microprocessors and peripherals 
Santa Clara, CA 95054-3090 
(408) 727-6116 

328 

Integrated Power Semiconductors, Ltd. 
2727 Walsh Avenue, Suite 201 Power ICs 
Santa Clara, CA 95051 
(408) 727-2772 

Intel Corporation 
21515 Vanowen Street 
Suite 116 
Canoga Park 91303 
(818) 704-8500 

Microprocessors and peripherals 

International CMOS Technology, Inc. 
2125 Lundy Avenue Electronically erasable PROMs and PLDs 

San Jose, CA 95131 
(408) 434-0678 

International Microelectronic Products, Inc. 
2830 N. First Street Communications components 
San Jose, CA 95134 
( 408) 432-9100 

International Rectifier 
233 Kansas Street 
El Segundo, CA 9024 
(213) 772-2000 

Intersil, Inc. 
10600 Ridgeview Court 
Cupertino, CA 95014 
( 408) 996-5000 

IXYS Corporation 
2355 Zanker Road 
San Jose, CA 95131-1109 
(408) 435-1900 

Lambda Semiconductors 
121 International Drive 
Corpus Christi, TX 78410 
(800) 255-9606 

Linear Technology 
1630 McCarthy Blvd. 
Milpitas, CA 95035 
(408) 434-0507 

Power MOSFETs 

Analog and digital ICs 

Stepper motor controllers, power ICs 

Power semiconductors 

Linear ICs 

Marktech International Corporation 
5 Northway Lane North Optoelectronics 
Latham, NY 12110 
(518) 783-1431 

Maxim Integrated Products 
120 San Gabriel Drive 
Sunnyvale, CA 94086 

Data converters, RS232 chips, video products, 
amplifiers 

( 408) 737-7600 x6380 

329 

Silver Star Exhibit 1018 - 177



Appendix E Data Books 

Micrel 
560 Oakmead Parkway 
Sunnyvale, CA 940 
(408) 245-2500 

Micro Linear 
2092 Concourse Drive 
San Jose, CA 95131 
( 408) 433-5200 

Micro Power Systems 
3151 Jay Street 
Santa Clara, CA 95054 
( 408) 727-5350 

Microchip 
2355 W. Chandler Blvd. 
Chandler, AZ 85224-6199 
(602) 963-7373 

Micron Technology, Inc. 
2805 East Columbia Road 
Boise, Idaho 83706 
(910) 970-5973 

Microsemi 
2830 S. Fairview Street 
Santa Ana, CA 92704 
(714) 979-8220 

MITEL 
2321 Morena Blvd., Suite M 
San Diego, CA 92110 
(619) 276-3421 

Smart-power ICs 

Data converters, communications, and power ICs 

Data-conversion products 

Memories, microcontrollers, and peripherals 

Memories 

Diodes, zeners, rectifiers 

Modem chips 

Motorola Literature Distribution 
PO Box 20912 
Phoenix, AZ 85036 
(800) 544-9497 

National Semiconductor 
2900 Semiconductor Drive 
PO Box 58090 
Santa Clara, CA 95052-8090 
(408) 721-5000 

NEC Electronics, Inc. 
401 Ellis Street 
PO Box 7241 
Mountain View, CA 94039 
( 415) 960-6000 

Oki Semiconductor 
785 North Mary Avenue 
Sunnyvale, CA 94086-2909 
(408) 720-1900 

330 

Digital, analog, and optical ICs. Dialup bulletin 
board (512) 891-3733 

Digital and analog ICs 

Linear and digital products 

Memories 

Opto-Diode Corporation 
914 Tourmaline Drive 
Newbury Park, CA 91320 
(805) 499-0335 

Optoelectronics 

Panasonic Electronic Components 
Two Panasonic Way, MS 7H-1 LEDs, optoelectronics 
Secaucus, NJ 07094 
(201) 392-4759 

Phillips Components 
2001 W. Blue Heron Blvd. 
Riviera Beach, FL 33404 
(407) 881-3200 

Plessey Semiconductors 
Sequoia Research Park 
1500 Green Hills Road 
Scotts Valley, CA 95066 
( 408) 438-2900 

Power Trends 
1101 N. Raddant Road 
Batavia, IL 60510 
(708) 406-0900 

Power ex 
Hillis Street 
Youngwood, PA 156 
( 412) 925-7272 

Qualcomm 
10555 Sorrento Valley Road 
San Diego, CA 921 
(619) 587-1121 

RCA Solid State 
3150 De La Cruz Blvd. 
Building D, Suite 206 
Santa Clara, CA 95054-2486 
(408) 748-0933 

Rohm Company, Ltd. 
8 Whatney 
Irvine, CA 92718 
(714) 855-2131 

Samsung 
3725 N. First Street 
San Jose, CA 95134-1708 
( 408) 434-5400 

Discrete semiconductors 

Digital signal processors 

Switching regulators for 78-series voltage 
regulators 

Power seminconductors 

Digital frequency synthesizers, signal-processing 
ICs 

Power MOSFETs, semiconductors 

Discrete semiconductors, LEDs, LCDs 

Digital, analog, optical electronics 

331 

Silver Star Exhibit 1018 - 178



Appendix E Data Books 

Saratoga Semiconductor 
686 W. Maude Avenue 
Sunnyvale, CA 94086 
( 408) 522-7500 

Seeq Technology Incorporated 

BiCMOS integrated circuits 

1849 Fortune Drive EEPROMs 
San Jose, CA 95131 
(800) 333-7766 

SenSym 
1255 Ream wood A venue Pressure sensors and accelerometers 
Sunnyvale, CA 94089 
( 408) 744-1500 

SGS-Thompson 
1000 East Bell Road 
Phoenix, AZ 85022 
(602) 867-6100 

Sharp Electronics Corporation 
10 Sharp Plaza 
Paramus, NJ 07652 
(201) 599-3750 

Siemens Components 
19000 Homestead Road 
Cupertino, CA 95014 
(408) 725-3586 

Signetics Company 
811 E. Arques Avenue 
PO Box 3409 
Sunnyvale, CA 94088-3409 
(408) 991-2000 

Siliconix 
2201 Laurelwood Road 
Santa Clara, CA 95054-1516 
( 408) 988-8000 

Sony Semiconductor 
10833 Valley View Street 
Cypress, CA 90630 
(714) 229-4195 

Sprague Electric Company 
70 Pembroke Road 
Concord, NH 03301 
(603) 224-1961 

Stanford Telecom 
2421 Mission College Blvd. 
Santa Clara, CA 95054-1298 
( 408) 980-1066 

332 

Analog, digital, motion control ICs 

Transistors, discretes, LEDs, LCDs, audio, video 
ICs 

Digital, linear electronics, microprocessors, 
optoelectronics 

Digital, linear ICs, microprocessors, peripherals 

Power MOSFETs, data converters 

Laser diodes, RF and microwave components, 
optoelectronics, D j A converters 

Motion control, hall-effect sensors, 
optoelectronics, discretes, analog ICs 

Digital frequency synthesizers 

Supertex, Inc. 
22726 lslamare 
El Toro, CA 92630 
(714) 533-0481 

Teledyne Semiconductor 
1300 Terra Bella A venue 
PO Box 7267 
Mountain View, CA 94039-7267 
(415) 968-9241 

Power MOSFETs, high-voltage ICs 

Data-acquisition ICs 

Telephonics Large Scale Integration, Inc. 
Farmington, NY Strain guage conditioner ICs 
(516) 755-7610 

Telmos Inc. 
740 Kifer Road 
Sunnyvale, CA 94086 
( 408) 732-4882 

Texas Instruments 
Literature Response Center 
PO Box 809066 
Dallas, TX 75380-9066 

Thomson-CSF 
550 Mount Pleasant Avenue 
PO Box 6500 
Dover, NJ 07801 
(201) 328-1400 

Toshiba America, Inc. 
2692 Dow Avenue 
Thstin, CA 92680 
( 714) 832-6300 

A/D converters 

Memories, microprocessors, analog, digital, 
optoelectronics 

CCD imagers 

CCD imagers, LCD displays, optoelectronics, 
memories 

TRW Electronic Components Group 
1215 W. Crosby Road Optoelectronics 
Carrollton, TX 75006 
(214) 323-2200 

Unitrode Integrated Circuits 
7 Continental Blvd. 
Merrimack, NH 03054 
(603) 424-2410 

Power-management ICs 

Varo Quality Semiconductor Inc. 
PO Box 469013 Rectifiers 
1000 North Shiloh Road 
Garland, TX 75046-9013 
(214) 487-4307 

Vitelic Corporation 
3910 North First Street 
San Jose, CA 95134-1501 
(408) 433-6000 

Memories 

333 

Silver Star Exhibit 1018 - 179



Appendix E Data Books 

VLSI Technology, Inc. 
2235 Qume Drive 
San Jose, CA 95131 
(408) 943-9792 

Waferscale Integration, Inc. 
4 7280 Kato Road 
Fremont, CA 94538-7333 
(800) 832-6974 

White Technology, Inc. 
4246 E. Wood Street 
Phoenix, AZ 85040 
(602) 437-1520 

Xicor, Inc. 
851 Buckeye Court 
Milpitas, CA 95035 
(408) 432-8888 

Xilinx, Inc. 
2100 Logic Drive 
San Jose, CA 95124-9920 
(408) 559-7778 

Zilog 
1315 Dell Avenue 
Campbell, CA 95008 
( 408) 370-8000 

334 

RISC microprocessors and peripherals 

Programmable system devices 

Memories 

Memories, EEPROMs, digital potentiometers 

Programmable gate arrays 

Microprocessors and peripherals 

Appendix F 

Color and ASCII Codes 

Resistor Color Code 
First digit 

Second digit 

Multiplier 

Tolerance 

Black 0 
Brown 1 
Red 2 
Orange 3 
Yellow 4 

Green 5 
Blue 6 
Violet 7 
Gray 8 
White 9 

The value of a resistor may be determined from its color bands. For 
example, if the bands on the above resistor, running from left to right, are 
red, yellow, and orange then the resistance would be: 24 x 103 = 24K ohms. 

The tolerance band tells how closely the resistance of a given resistor 
will match its color code. A silver band indicates that the actual resistance 
will be within 10% of the marked value; a gold band means 5%. 

The value of a small capacitor is sometimes indicated by a three-number 
code stamped on the body of the device. To get the capacitance in pico­
farads, multiply the first two digits by 10 to the power specified by the 
third digit. For example, the code 124 would indicate a value of 12 x 104 

picofarads, or 0.12 microfarads. 

Silver Star Exhibit 1018 - 180



Appendix F Color and ASCII Codes 

ASCII Code 
c c 

D H h D H h D 
e e a e e a e 
c X r c X r c 

00 00 NUL 32 20 64 
01 01 SOH 33 21 ! 65 
02 02 STX 34 22 " 66 
03 03 ETX 35 23 # 67 
04 04 EOT 36 24 $ 68 
05 05 ENQ 37 25 % 69 
06 06 ACK 38 26 & 70 
07 07 BEL 39 27 ' 71 
08 08 BS 40 28 ( 72 
09 09 HT 41 29 ) 73 
10 OA LF 42 2A * 74 
11 OB VT 43 2B + 75 
12 oc FF 44 2C 

' 
76 

13 OD CR 45 2D - 77 
14 OE so 46 2E 78 
15 OF SI 47 2F I 79 
16 10 DLE 48 30 0 80 
17 11 DC1 49 31 1 81 
18 12 DC2 50 32 2 82 
19 13 DC3 51 33 3 83 
20 14 DC4 52 34 4 84 
21 15 NAK 53 35 5 85 
22 16 SYN 54 36 6 86 
23 17 ETB 55 37 7 87 
24 18 CAN 56 38 8 88 
25 19 EM 57 39 9 89 
26 1A SUB 58 3A : 90 
27 1B ESC 59 3B ; 91 
28 1C FS 60 3C < 92 
29 1D GS 61 3D = 93 
30 1E RS 62 3E > 94 
31 1F us 63 3F ? 95 

336 

c 
H h D 
e a e 
X r c 

40 @ 96 
41 A 97 
42 B 98 
43 c 99 
44 D 100 
45 E 101 
46 F 102 
47 G 103 
48 H 104 
49 I 105 
4A J 106 
4B K 107 
4C L 108 
4D M 109 
4E N 110 
4F 0 111 
50 p 112 
51 Q 113 
52 R 114 
53 s 115 
54 T 116 
55 u 117 
56 v 118 
57 w 119 
58 X 120 
59 y 121 
SA z 122 
5B [ 123 
sc \ 124 
SD l 125 
5E ~ 126 
SF - 127 

c 
H h 
e a 
X r 
60 ' 
61 a 
62 b 
63 c 
64 d 
65 e 
66 f 
67 g 
68 h 
69 i 
6A j 
6B k 
6C 1 
6D m 
6E n 
6F 0 

70 p 
71 q 
72 r 
73 s 
74 t 
75 u 
76 v 
77 w 
78 X 

79 y 
7A z 
7B { 
7C I 
7D } 
7E -
7F DEL 

Bibliography 

Some of the references listed here may be hard to find for the general reader. 
A number of the papers listed came out of work at the Mobile Robot Group 
at the MIT Artificial Intelligence Laboratory. While often published in 
journals or conference proceedings, these papers are usually also published 
internally as AI Laboratory Memos. AI Memos can be acquired for a small 
copying fee by writing or calling the MIT Artificial Intelligence Laboratory 

Publications Office: 

Publications Office 
MIT AI Lab, Room 818 
545 Technology Square 
Cambridge, MA 02139 

(617) 253-6773 

While journal articles can often be found in a university library, con­
ference proceedings can be difficult to locate. If the journal or conference 
papers were published by the Institute of Electrical and Electronics Engi­
neers, they can be ordered directly from the IEEE: 

IEEE Publishing Services 
345 47th St. 

New York, NY 10017 
(212) 705-7900 

(AAAI Proceedings) MIT Press, Cambridge, MA. 

(Angle and Brooks 90) Colin M. Angle and Rodney A. Brooks. Small Planetary Rovers. 
Proceedings of the IEEE International Workshop on Intelligent Robots and Systems. 

Tokyo, Japan, July. 

(Artificial Life) Addison-Wesley Publishing Co, Redwood City, CA. 

(Angle 89) Colin M. Angle. Genghis, A Six Legged Autonomous Walking Robot. S.B. 
Thesis, MIT Dept. of Electrical Engineering and Computer Science. March. 

(Angle 91) Colin M. Angle. Design of an Artificial Creature. Master's Thesis, MIT 
Electrical Engineering and Computer Science Department. June. 

Silver Star Exhibit 1018 - 181



(Beckwith and Marangoni) Thomas G. Beckwith and Roy D. Marangoni. Mechanical 
Measurements. Addison-Wesley Publishing Co., MA. Reading, MA, 1990. 

(Braitenberg) Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. 
MIT Press. Cambridge, :viA, 1984. 

(Brock 91) David L. Brock. Review of Artificial Muscle Based on Contractile Polymers. 
MIT AI Lab Memo 1330. November. 

(Brooks 86) Rodney A. Brooks. A Robust Layered Control System for a Mobile Robot. 
IEEE Journal of Robotics and Automation. RA-2, 14-23 April, also appears as MIT AI 
Memo 864, September, 1985. 

(Brooks and Flynn 89) Rodney A. Brooks and Anita M. Flynn. Fast, Cheap and Out of 
Control: A Robot Invasion of the Solar System. Journa'l of the British Interplanetary 
Society. Vol. 42, pp. 478-485, also appears as MIT AI Memo 1182, December, 1989. 

(Brooks 89) Rodney A. Brooks. A Robot that Walks; Emergent Behavior from a Care­
fully Evolved Network. Neural Computation 1:2. pp. 253-262, also appears as MIT AI 
Memo 1091, February, 1989. 

(Brooks 91a) Rodney A. Brooks. New Approaches to Robotics. Science. Vol. 253, pp. 
1227-1232, September 13. 

(Brooks 91b) Rodney A. Brooks. Intelligence Without Reason. Prepared for Computers 
and Thought, IJCAI-91, MIT AI Laboratory Memo 1293. April. 

(Connell 88) Jonathan H. Connell. The Omni Photovore: How to Build a Robot that 
Thinks like a Roach. Omni Magazine. October. 

(Connell) Jonathan H. Connell. Minimalist Mobile Robotics: A Colony-Style Architec­
ture for an Artificial Creature. Academic Press. Boston, MA, 1990. 

(Connell 91) Jonathan H. Connell. Design Your Own Robot. Popular Electronics. 
August. 

(Everett, Gilbreath and Tran 90) H.R. Everett, G.A. Gilbreath and T. Tran. Mod­
eling the Environment of a Mobile Security Robot. Technical Document 1835, Naval 
Command Control and Ocean Surveillance Center, San Diego, CA, 92152-5000. June. 

(Everett and Stitz 92) H.R. Everett and E.H. Stitz. Survey of Collision Avoidance and 
Ranging Sensors for Mobile Robots. Technical Report 1194, Update 1, Naval Command 
Control and Ocean Snrveillance Center, San Diego, CA, 92152-5000. December. 

~(Ferrell 92) Cynthia Ferrell. Multiple Sensors, Virtual Sensors and Robustness. Sensors 
Expo. Chicago, IL, September 29-0ctober 1. 

(Fitzgerald, Kingsley and Umans) A.E. Fitzgerald, Charles Kingsley and Stephen D. 
Umans. Electric Machinery. McGraw-Hill. New York, NY, 1990. 

(Flynn 87) Anita M. Flynn. Gnat Robots (and How They Will Change Robotics). 
Proceedings of the IEEE Micro Robots and Teleoperators Workshop. Hyannis, MA, 
November. Also appears in AI Expert, December 1987. 

338 

(Flynn et al. 88) Edited by Anita Flynn, with contributions fr~m Colin An~le, Rodney 
Brooks Jon Connell, Anita Flynn, Ian Horswill, Maja Matanc, Henry Mmsky, Peter 
Ning, Paul Viola and William Wells. The Olympic Robot Building Manual. MIT AI 

Lab Memo 1230. December. 

(Flynn 89) Anita M. Flynn. The Official Photograph Album of the 1989 Robot Olympics. 

MIT AI Lab Manual. April. 

(Flynn Brooks and Tavrow 89) Anita M. Flynn, Rodney A. Brooks and LeeS. Tavrow. 
Twilight Zones and Cornerstones: A Gnat Robot Double Feature. MIT AI Memo 1126. 

July. 

(Flynn, Brooks, Wells and Barrett 89) Anita M. Flynn, Rodney A. Brooks, William M. 
Wells III and David S. Barrett. Intelligence for Miniature Robots. Journal .of Sensors 
and Actuators. Vol. 20, pp. 187-196, also appears as Squirt: The Prototyp~cal Mob~le 
Robot for Autonomous Graduate Students, MIT AI Memo 1120, July, 1989. 

(Flynn, et. al. 92) Anita M. Flynn, LeeS. Tavrow, Stephen .F. Bart, ~od~ey A. Brooks, 
Daniel J. Ehrlich, K.R. Udayakumar and L. Eric Cross. Ptezoelectnc Mtcromotors for 
Microrobots. IEEE Journal of Microelectromechanical Systems, Vol. 1, No. 1, PP· 
44-51. March, also appears as MIT AI Memo 1269, February, 1991. 

(Foster) Caxton C. Foster. Real Time Programming- Neglected Topics. Addison-Wesley. 

Reading, MA, 1982. 

(Grant and Gowar) Duncan A. Grant and John Gowar. Power MOSFETs. John Wiley 

& Sons. New York, NY, 1989. 

(Hayes and Horowitz) Thomas C. Hayes and Paul Horowit~. The Student Manual for 
the Art of Electronics. Cambridge University Press. Cambndge, UK, 1989. 

(Hollerbach, Hunter and Ballantyne) John M. Hollerbach; Ian W. Htmter and Jo~n 
Ballantyne. A Comparative Analysis of Actuator Technologws for Robottcs. In Robottcs 
Review 2, MIT Press. Edited by Khatib, Craig and Lozano-Perez, 1991. 

(Horn) Berthold K.P. Horn. Robot Vision. MIT Press. Cambridge, MA, 1986. 

(Horowitz and Hill) Paul Horowitz and Winfeld Hill. The Art of ElectTOnics. Cambridge """" 

University Press. Cambridge, UK, 1989. 

(Hosoe 89) Kazuya Hosoe. An Ultrasonic Motor for Use in Autofocus Lens Assemblies. 

Techno. pp. 36-41, in Japanese. 

(Howe Muller Gabriel and Trimmer 90) Roger T. Howe, RichardS. Muller, Kaigham 
J. Gabriel and' WilliamS. N. Trimmer. Silicon Micromechanics: Sensors and Actuators 

on a Chip. IEEE Spectrum. July 19. 

(Inaba et al. 87) R. Inaba, A. Tokushima, 0. Kawasaki, Y .. Ise and H. Yoneno. Piezoelec­
tric Ultrasonic Motor. Proceedings of the IEEE Ultrasomcs Sympostum. pp. 747-756. 

(IRAS) IEEE Robotics and Automation Proceedings, IEEE Computer Society Press, Los 

Alamitos, CA. 

(Jung) Walter G. Jung. IC Op-Amp Cookbook. Howard W. Sams & Company. Indi­

anapolis, IN, 1986. 

339 

Silver Star Exhibit 1018 - 182



(Kassakian, Schlect and Verghese) John C. Kassakian, Martin F. Schlect and George C. 
Verghese. Principles of Power Electronics. Addison-Wesley. Reading, MA, 1991. 

(Kasuga et a!. 92) Masao Kasuga, Takashi Satoh, Jun Hirotomi and Masayuki Kawata. 
Development of Ultrasonic Motor and Application to Silent Alarm Analog Quartz Watch. 
4th Congres Europeen de Chronometrie. Lausanne, Switzerland, 29-30 October, pp. 53-
56. 

~ (Kenjo) Takashi Kenjo. Power Electronics for the Microprocessor Age. Oxford Univer­
sity Press. New York, NY, 1990. 

(Kleinschmidt) Kirk A. Kleinschmidt, Editor. The ARRL Handbook for the Radio Am­
ateur. American Radio Relay League. Newington, CT, 1990. 

(Lancaster) Don Lancaster. CMOS Cookbook. Howard W. Sams & Company. Indi­
anapolis, IN, 1977. 

(Latombe) J. C. Latombe. Robot Motion Planning. Kluwer Academic Press. Norwell, 
MA, 1991. 

(Lozano-Perez, Jones, Mazer and O'Donnell) Tomas Lozano-Perez, Joseph L. Jones, 
Emmanuel Mazer and Patrick A. O'Donnell. Handey - A Robot Task Planner. MIT 
Press. Cambridge, MA, 1992. 

(Maes and Brooks 90) Pattie Maes and Rodney A. Brooks. Learning to Coordinate 
Behaviors. AAAI-90. August. 

(Maes) Pattie Maes. Designing Autonomous Agents: Theory and Practice from Biology 
to Engineering and Back. MIT Press. Cambridge, MA, 1991. 

(Martin) Fred Martin. The 6.210 Robot Builder's Guide. MIT Media Laboratory. Cam­
bridge, MA, 1992. 

(McClelland and Rumelhart) James L. McClelland and David E. Rumelhart. Parallel 
Distributed Processing, Vols. I and II. MIT Press. Cambridge, MA, 1986. 

(MEMS) Proceedings of the IEEE Micro Electro Mechanical Systems Workshops, IEEE, 
47th St., New York, NY. 

(Miller, Desai, Gat, Ivlev and Loch 92) D.P.Miller, R.S.Desai, E.Gat, R. Ivlev and 
J.Loch. Reactive Navigation through Rough Terrain: Experimental Results. Proceedings 
of the 1992 AAAI Conference. pp. 823-828, San Jose CA. 

(Minsky) Marvin Minsky. The Society of Mind. Simon and Schuster. New York, NY, 
1986. 

(Mondo-tronics 91) Mondo-tronics Inc. Biometal Robot DH-101. 1014 Morse Avenue, 
Suite 11. Sunnyvale, CA 94089. 

(Moravec) Hans P. Moravec. Robot Rover Visual Navigation. UMI Research Press. Ann 
Arbor, MI, 1981. 

(Moroney, White and Howe 89) R.M. Moroney, R.M. White and R.T. Howe. Ultrasonic 
Micromutors. IEEE Ultrasonics Symposium, Montreal, Canada. October. 

340 

(Moroney, White and Howe 90) R.M. Moroney, R.M. White and R.T. Howe. Fluid 
Motion Produced By Ultrasonic Lamb Waves. IEEE Ultrasonics Symposium. Honolulu, 
Hawaii, Dec. 4-7. 

(Motorola 88) Volumes I and II. Microprocessor, Microcontroller and Peripheral Data. 
Motorola Inc., Microprocessor Product Group, Microcontroller Division. Oak Hill, Texas 
78735, 1988. 

(Motorola 91) Motorola Inc., Microprocessor Product Group. Motorola M68HC11 Ref­
erence Manual. Microcontroller Division. Oak Hill, Texas 78735, 1991. 

(Nilsson 84) Nils Nilsson. Shakey the Robot. Artificial Intelligence Center, SRI Inter­
national Technical Note 323. Menlo Park, CA, April. 

(Ohnishi, Myohga, Uchikawa, Inoue, Takahashi and Tomikawa 89) Osamu Ohnishi, Os­
amu Myohga, Tadao Uchikawa, Takeshi Inoue, Sadayuki Takahashi and Yoshiro Tomikawa. 
Paper Transport Device Using a Flat Plate Piezoelectric Vibrator . .Japanese Journal of 
Applied Physics. Vol. 28., Suppl. 28-1, pp. 167-169. 

(Pratt 92) Gill Andrews Pratt. EVs: On the Road Again. Technology Review. pp. 
51-59, August/September. 

(Ragulskis, Bansevicius, Barauskas and Kulvietis) K. Ragulskis, R. Bansevicius, R. Ba­
rauskas and G. Kulvietis. Vibromotors for Precision Microrobots. Hemisphere Publish­
ing Co. New York, 1988. 

(Riezenman 92) Michael J. Riezenman. Electric Vehicles. Spectrum. Vol. 29, No. 11, 
pp. 18-21. 

(SAB ) From Animals to Animats. International Conference on Simulation of Adaptive 
Behavior. MIT Press. Cambridge, MA. 

(Sashida) T. Sashida. 'I'rial Construction and Operation of an Ultrasonic Vibration 
Drive Motor. Oyo Butsuri. Vol. 51, No. 6, pp. 713-720, in Japanese, 1982. 

(Seippel) Robert G. Seippel. Transducers, Sensors, & Detectors. Reston Publishing 
Company, Inc .. Reston, VA, 1983. 

(Tanaka 81) T. Tanaka. Gels. Scientific American, pp. 124-138. January. 

(Udaykumar, Chen, Brooks, Cross, Flynn and Ehrlich 91) K.R. Udayakumar, J. Chen, 
K.G. Brooks, L.E. Cross, A.M. Flynn and D.J. Ehrlich. Piezoelectric Thin Film Ultra­
sonic Micromotors. 1991 MRS Fall Symposium on Ferroelectric Thin Films. Boston, 
MA, Dec. 1-4. 

(Walter 50) W. Grey Walter. An Imitation of Life. Scientific American. 182(5), pp. 
42-45, May. 

(Walter 51) W. Grey Walter. A Machine That Learns. Scientific American. 185(2), pp. 
60--63, August. 

(Ward and Halstead) Stephen A. Ward and Robert H. Halstead, Jr. Computation Struc­
tures. MIT Press. Cambridge, MA, 1990. 

(Wehner 87) Rudiger Wehner. 'Matched Filters' - Neural Models of the External World. 
J. Camp. Physiol. A 161. pp. 511-531. 

341 

Silver Star Exhibit 1018 - 183



(Weiner 48) Norbert Weiner. Cybernetics. John Wiley and Sons. New York, NY, 1948. 

(Weiner 61) Norbert Weiner. Cybernetics. Second Edition, MIT Press. New York, NY, 
1961. 

(Woodson and Melcher) Herbert H. Woodson and James R. Melcher. Electromechanical 
Dynamics, Part II Fields, Forces and Motion. Krieger Publishing Co. Malabar, FL, 
1985. 

(Zaks) Rodney A. Zak~. From Chips to Systems: An Introduction to Microprocessors. 
Sybex, Inc. Berkeley, CA, 1986. 

342 

Index 

A 

A/D, 49, 99 
abstraction barrier, 94, 131 
acceleration, 184 
accelerometer, 133 
accumulator, 54 

A, 54 
B, 56 
D, 56 

Ackerman steering, 141, 144 
acrylic, 157 
address space, 45 
addressing mode, 

direct, 57 
extended, 57 
immediate, 57 
indexed, 57 
relative, 59 

ampere, 170 
ampere-hour, 185, 232 
analog-to-digital, 49 
AND, 109 
angular force, 170 
angular speed, 171 
anode, 22 
arbitration, 6, 258 
arguments, 53 
arithmetic, 

integer, 60 
artificial intelligence, 267, 271 
ASll, 99 

Asimov's laws of robotics, 27 4 
assembler, 39, 53 
augmented finite-state machines, 

257 

B 

back-emf, 172 
base, 22 
battery, 24 

alkaline, 228 
carbon zinc, 228 
level, 134 
nickel-metal-hydride, 230 
primary, 227 
secondary, 227 
storage, 227 

behavior, 24 7 
fusion, 243, 247, 267 
task-achieving, 249 

behavior-based robotics, 5 
bend sensor, 117 
beta, 202 
bias resistor, 28 
binary, 53 
bipolar device, 199 
bipolar junction transistor, 197 
bootstrap loader, 75 
brake, 155 
branch, 61 
breadboard, 25, 79 
brush, 151, 164 
bus, 42, 45 

Silver Star Exhibit 1018 - 184



INDEX 

c 

c, 96 
C3PO, 271 
capacitor, 24 
capacity, 185, 232 
carry bit, 60 
caster, 16 
cathode, 22 
cc, 56 
charge carrier, 195 
charge pump, 207 
circuit, 

equivalent, 171 
clock, 43 

cycles, 43 
CMOS, 50, 52, 195 
collector, 22 
commutator, 151, 164, 168 
comp.robotics, 323 
compass, 

digital, 133 
compiler, 41 
computer network, 323 
computer operating properly, 72 
condition code register, 56 
conductor, 195 
configuration space, 147 
control, 

closed loop, 218 
open loop, 218 
proportional-integral, 219 

cooperation, 273 
coulomb, 170, 232 
crystal, 43 
current, 

344 

electron, 200 
gain, 202 
hogging, 206 
hole, 200 
no-load, 175, 176 

stall, 172, 176 
starting, 172 

data sheets, 
Escap 16M11-210, 179 
Escap M16M11-210, 180 

DC gearhead motors, 162 
decimal, 53 
differential drive, 141 
diode, 22 

flyback, 194 
forward biased, 197 
reverse biased, 197 
voltage drop, 135 

discharge, 
curve, 228 
rate, 228 

downloader, 75 
dropout, 235 

EEPROM, 46 
efficiency, 17 4, 176 
electromotive force, 172 
electron, 195 

mobility, 201 
valence, 196 

emf, 172 
emitter, 22 
encoders, 

absolute, 122 
incremental, 122 

energy, 170 
density, 231 

energy density, 227 
EPROM, 46 
error signal, 218 
expanded multiplexed mode, 50 

INDEX 

feedback, 218 
finite-state machine, 254 
flags, 56 
flux, 167 
flyback diode, 194 
force, 

applied, 184 
net, 184 

force-sensing, 114 
resistor, 117 

free-body diagram, 183 
friction, 184 

coefficient of, 184 
FTP, 41, 166 
full-duplex, 51 

G 

gear, 161 
belt-and-pulley drive, 177 
lead screw, 177 
pinion, 178 
planetary, 177 
rack-and-pinion, 177 
spur, 177 
worm, 177 

geardown, 178 
gnat robots, 273 
gram-force, 170 
ground loops, 239 
gyroscope, 

rate, 131 

H-bridge, 189, 191, 192 
hack, 191 
Handey, 244 
hexadecimal, 53 
holes, 196 

I 

IC, 41, 253 
IC Master, 210, 327 
illegal opcode trap, 72 
immediate addressing, 57 
impurity atoms, 196 
in-line code, 63 
inclinometer, 132 
index registers, 56 
inductor, 

switching, 193 
inhibit node, 259 
input capture, 66, 70, 212 

registers, 128 
input/output, 47 
insulator, 195 
integrated circuit chip, 

74HC10, 52 
8054, 50 
HM62256LP-12, 51 
IR8200, 136 
L293E, 136 
LM386, 117 
LM7805, 134 
MAX233, 51 
MC68HC24, 51 
MC7 4HC688, 49 

intelligence, 2, 267 
internal resistance, 228, 233 
Internet, 165, 323 
interrupt, 66, 68 

handler, 128 
service routine, 68 

IR, 107 
isolation, 238 
IX, 56 
IY, 56 

joule, 170 

345 

Silver Star Exhibit 1018 - 185



INDEX 

jump, 61 

K 

keying, 87 
kinematics, 145 

inverse, 145 

L 

latch, 52 
learning, 272 
linear regulator, 235 
local variables, 65 
locomotion, 139 
logarithmic amplifier, 101 
Lorentz force law, 167 

M 

machine code, 53 
mask register, 69 
memory, 42, 45 

map, 47 
mercury switch, 132 
microcontroller, 42 
microphone, 117 
microprocessor, 37, 41 
microswitches, 114 
Mini Board, 76 
monopolar device, 199 
MOSFET, 195, 199 

346 

body, 199 
constant-resistance region, 203 
depletion-mode, 199 
drain, 199 
enhancement mode, 199 
gate, 199 
gate drive, 206 
gate-source voltage, 199 
linear region, 203 
logic-level, 206 
low threshold, 206 
on-resistance, 202 

power, 191, 201 
source, 199 
source-drain diode, 201 
voltage control, 204 

motor, 
AC, 161 
artificial muscles, 166 
attachments, 188 
data sheets, 179 
DC, 161 

brush, 164 
gearhead, 162 
rushless, 164 

driver, 191 
L293D, 208 
MPC1710A, 208 

electromagnetic, 161 
electrostatic, 165 
Escap, 179 
Futaba, 164 
manufacturers, 181 
oversized, 176 
permanent magnet, 166 
piezoelectric ultrasonic, 164 
Royal Titan, 163, 182 
selection, 185 
servo, 164 
servo dealers, 182 
shape memory, 166 
stepper, 162 
surplus dealers, 181 

multiplexing, 52 
multitasking, 253, 254 

cooperative, 254 
preemptive, 254 

music wire, 115 

N 

NAND gate, 51 
navigation, 272 
nested subroutines, 64 

INDEX 

Newton-meter, 170 
NiCd, 136 
nouvelle AI, 269 
Nyquist theorem, 118 

0 

OEM, 181 
opcodes, 54 
operand, 54 
operating modes, 

expanded multiplexed, 51 
single chip, 51 

optoisolator, 241 
ounce-inch, 170 
output compare, 72, 212 

registers, 212 
overbar, 50 
oxide, 196 

p 

p-type regions, 196 
PC, 54 
photodiodes, 102 
photo interrupter, 123 
photoreflector, 123 

Hamamatsu, 124 
photoresistors, 102 
phototransistors, 102 
piano wire, 115 
pick-and-place problem, 244 
piezoelectric film, 119 
PN junction, 197 
polling, 66, 68 
port, 42 

A, 47, 208 
B, 47 
c, 47 
D, 47, 54, 209 
E, 49 
I/0, 47 
replacement unit, 51 

potentiometer, 24 
power, 25, 170, 227 

electrical, 170 
electronics, 195 
integrated circuits, 208 
mechanical, 170 
regulation, 234 
supply, 234 

split, 150 
printed circuit board, 89 
process, 254 
processor, 42, 43 
program counter, 54 
PROM, 45 
proprioceptive sensor, 134 
proximity detector, 

near-infrared, 106 
pseudocode, 255 
pulse accumulator, 126 
pulse-code modulation, 189 
pulse-width modulation, 191 
pyroelectric sensor, Ill 

R 

R2D2, 271 
radian, 171 
RAM, 45 
random access memory, 45 
range, 99 
rate gyro, 131 
read-only memory, 45 
recharging, 233 
recognition, 272 
recursion, 64 
relay, 22, 191 
representation, 272 
reset, 50 

vector, 74 
resistor, 24 
robot programming, 243 
Robot Talent Show, xiv, 142, 159 

347 

Silver Star Exhibit 1018 - 186



INDEX 

ROM, 45 
rotor, 165 

sampling, 118 
scheduler, 254 
schematic, 22, 25 
Scotchflex, 81 
semiconductor, 195 
sensitivity, 99 
sensor, 

fusion, 243, 247, 267 
sensor fission, 267 
servo loop, 191 
servo motor, 163 
shaft encoder, 122 
shear, 155 
sheet metal, 155 
shelf life, 228 
side load, 153 
single-board computers, 76 
single-board robot, 38, 273 
single-chip mode, 50 
single-chip robot, 273 
single-point ground, 239 
software drivers, 96 
solenoid, 151 
sonar, 119 
SP, 56 
special bootstrap mode, 50 
special test mode, 50 
speech synthesis, 118 
speed, 174 

armature, 173 
no-load, 175 
speed-torque relationship, 173 

speed controller, 210 
stack, 56, 64 
stack pointer, 56 
stall current, 135 
stator, 165 

348 

Stiquito, 165 
subroutine, 62 
subsumption, 5, 15, 243, 247, 253 
suppressor node, 249 
switch, 

high-side, 206 
ideal, 203 
in H-bridge, 191 
low-side, 206 
momentary contact, 24 
real, 203 
solid state, 192 

switching regulator, 237 
synchro drive, 144 

task, 254 
temperature, 136 
thermal runaway, 205 
Thomas Register, 301 
tilt sensor, 132 
timer-counter, 212 
torque, 170 

constant, 173 
stall, 175 

transducer, 25, 93 
transistor, 22 

base, 197 
base current, 198, 202 
base-emitter diode, 198 
biasing, 207 
bipolar, 191 
collector, 197 
current amplifier, 198 
emitter, 197 
forward active region, 204 
linear region, 204 
MOSFET, 199 
power, 198 
saturation region, 204 
signal-level, 198 

INDEX 

temperature effects, 205 
transit time, 182 
trap, 72 
trickle charging, 233 
tricycle drive, 144 
TuteBot, 11 

vehicle, 
electric, 206 
model, 183 

video transmitters, 114 
VLSI, 198 
voltage, 228, 231 

divider, 103, 134 
induced, 194 
measuring, 180 
rated, 180 
spike, 194 

wall following, 5 
watt, 170 
wire-wrap, 80 
world modeling, 243 
world-modeling, 244 

zero page, 57 

349 

Silver Star Exhibit 1018 - 187



/t;h-t~ 
H(ad Ojf~ 

K·J'. 

Silver Star Exhibit 1018 - 188

ffflfhlét /" 3W - JZI-‘KZ77/ flag/ma
Hun} O/Cfiu

AMT.

Silver Star Exhibit 1018 - 188



Silver Star Exhibit 1018 - 189

 

 
   

  
 

 

  
 

  

  

   

   
 

  
  

 

 
 

 

  
 

 
 

 

    
   

   
 

   

      
     

            
 

 
    

 

 
   

 

 

  
 

  
  

   
 

 

  
 

    
 

  

 

      

 

  
   

 

  

 

 

 

 

 

 

 
 

   

 

 

 

 

 
    

  

 

 

 
 

 

 
 

    

 

 

 
 
 

 
 

  
 

 
 

   
  

 

        
   

 

   

 

 

  
 

 

 

 
 

 
 

 

 

        

  

 

 

   
 

  

 
  

 

 

 

    
  

  
Silver Star Exhibit 1018 - 189



ISBN 1-56881-011-3 

Silver Star Exhibit 1018 - 190


