
Expert Revie-w-s, Usability

Testing, Surveys, and

Continuing Assessinents

The test of what is real is that it is hard and rough .

. . . What is pleasant belongs in dreams.

Simone Weil, Gravity and Grace, 1947

Apple Inc.
Exhibit 1018

Page 142

Chapter 4

Introduction
Expert Reviews
Usability Testing and Laboratories

4.4 Surveys
4.5 Acceptance Tests
4.6 Evaluation During Active Use
4.7 Controlled Psychologically Oriented Experiments
4.8 Practitioner's Summary
4. 9 Researcher's Agenda

4.1 Introduction

Designers can become so entranced with their creations that they may fail to
evaluate those objects adequately. Experienced designers have attained the
wisdom and humility to know that extensive testing is a necessity. If feed
back is the "breakfast of champions," then testing is the "dinner of the gods."
However, careful choices must be made from the large menu of evaluation
possibilities to create a balanced meal.

The determinants of the evaluation plan include (Nielsen, 1993; Hix and
Hartson, 1993; Preece et al., 1994; Newman and Lamming, 1995)

• Stage of design (early, middle, late)

• Novelty of project (well defined versus exploratory)

• Number of expected users

Apple Inc.
Exhibit 1018

Page 143

4.2 Expert Reviews 125

• Criticality of the interface (for example, life-critical medical system
versus museum-exhibit support)

• Costs of product and finances allocated for testing

• Time available

• Experience of the design and evaluation team

The range of evaluation plans might be from an ambitious two-year test
with multiple phases for a new national air-traffic-control system to a three
day test with six users for a sm.all internal accounting system. The range of
costs might be from 10 percent of a project down to 1 percent.

A few years ago, it was just a good idea to get ahead of the competition by
focusing on usability and doing testing, but now the rapid growth of interest in
usability m.eans that failure to test is risky indeed. The dangers are not only that
the competition has strengthened, but also that customary engineering practice
now requires adequate testing. Failure to perform and document testing could
lead to failed contract proposals or malpractice lawsuits from users when errors
arise. At this point, it is irresponsible to bypass some form of usability testing.

One troubling aspect of testing is the uncertainty that remains even after
exhaustive testing by multiple methods. Perfection is not possible in com
plex human endeavors, so planning must include continuing methods to
assess and repair problems during the lifecycle of an interface. Second, even
though problems 1nay continue to be found, at some point a decision has to
be made about completing prototype testing and delivering the product.
Third, most testing methods will account appropriately for normal usage,
but performance with high levels of input such as in nuclear-reactor-control
or air-traffic-control emergencies is extremely difficult to test. Development
of testing methods to deal with stressful situations and even with partial
equipment failures will have to be undertaken as user interfaces are devel
oped for an increasing number of life-critical applications.

The Usability Professionals Association was founded in 1991 to exchange
information among workers in this arena. The annual conference focuses
attention on forms of usability evaluations and provides a forum for
exchanges of ideas among the more than 4000 members.

4.2 Expert Reviews

While informal demos to colleagues or customers can provide some useful
feedback, more formal expert reviews have proved to be effective (Nielsen
and Mack, 1994). These methods depend on having experts available on staff
or as consultants, whose expertise may be in the application or user-interface
domains. Expert reviews can be conducted on short notice and rapidly.

Apple Inc.
Exhibit 1018

Page 144

126 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

Expert reviews can occur early or late in the design phase, and the out
comes can be a fonnal report with problems identified or recomrnendations
for changes. Alternatively, the expert review could result in a discussion with
or presentation to designers or managers. Expert reviewers should be sensi
tive to the design team's ego involvement and professional skilt so sugges
tions should be made cautiously: It is difficult for someone just freshly
inspecting a system to understand all the design rationale and development
history. The reviewer notes possible problems for discussion with the
designers, but solutions generally should be left for the designers to pro
duce. Expert reviews usually entail half day to one week, although a lengthy
training period may be required to explain the task domain or operational
procedures. It may be useful to have the same as well as fresh expert review
ers as the project progresses. There are a variety of expert-review methods
from which to choose:

• Heuristic evaluation The expert reviewers critique an interface to deter
mine conformance with a short list of design heuristics such as the eight
golden rules (Chapter 2). It makes an enormous difference if the experts
are familiar with the rules and are able to interpret and apply the1n.

• Guidelines review The interface is checked for conformance with the
organizational or other guidelines document. Because guidelines docu
ments 1nay contain a thousand items, it may take the expert reviewers
some time to master the guidelines, and days or weeks to review a large
system.

• Consistency inspection The experts verify consistency across a family
of interfaces, checking for consistency of terminology, color, layout,
input and output formats, and so on within the interface as well as in
the training materials and online help.

• Cognitive walkthrough The experts simulate users walking through the
interface to carry out typical tasks. High-frequency tasks are a starting
point, but rare critical tasks, such as error recovery, also should be
walked through. Some form of simulating the day in the life of the user
should be part of expert-review process. Cognitive walkthroughs were
developed for interfaces that can be learned by exploratory browsing
(Wharton et al., 1994), but they are useful even for interfaces that require
substantial training. An expert might try the walkthrough privately and
explore, but then there also would be a group meeting with designers,
users, or managers to conduct the walkthrough and to provoke a discus
sion. This public walkthrough is based on the successful code walk
throughs promoted in software engineering (Yourdon, 1989).

• Formal usability inspection The experts hold courtroom-style meeting,
with a moderator or judge, to present the interface and to discuss its
merits and weaknesses. Design-team members may rebut the evidence
about problems in an adversarial format. Formal usability inspections

Apple Inc.
Exhibit 1018

Page 145

4.3 Usability Testing and Laboratories 127

can be educational experiences for novice designers and managers, but
they may take longer to prepare and more personnel to carry out than
do other types of review.

Expert reviews can be scheduled at several points in the develop1nent
process when experts are available and when the design team is ready for
feedback. The number of expert reviews will depend on the magnitude of
the project and on the amount of resources allocated.

Comparative evaluation of expert-review methods and usability-testing
1nethods is difficult because of the many uncontrollable variables; however,
the studies that have been conducted provide evidence for the benefits of
expert reviews (Jeffries et al., 1991; Karat et al. 1992). Different experts tend
to find different problems in an interface, so three to five expert reviewers
can be highly productive, as can complementary usability testing.

Expert reviewers should be placed in the situation 1nost si1nilar to the one
that intended users will experience. The expert reviewers should take train
ing courses, read manuals, take tutorials, and try the syste1n in as close as
possible to a realistic work environm_ent, complete with noise and distrac
tions. In addition, expert reviewers may also retreat to a quieter environment
for detailed review of each screen.

Getting a bird's-eye view of an interface by studying a full set of printed
screens laid out on the floor or pinned to walls has proved to be enormously
fruitful in detecting inconsistencies and spotting unusual patterns.

The dangers with expert reviews are that the experts may not have an
adequate understanding of the task domain or user com1nunities. Experts
come in many flavors, and conflicting advice can further confuse the situa
tion (cynics say, "For every PhD, there is an equal and opposite PhD"). To
strengthen the possibility of successful expert review, it helps to chose
knowledgeable experts who are familiar with the project situation and who
have a long-term relationship with the organization. These people can be
called back to see the results of their intervention, and they can be held
accountable. Moreover, even experienced expert reviewers have great diffi
culty knowing how typical users, especially first-time users, will behave.

4.3 Usability Testing and Laboratories

The emergence of usability testing and laboratories since the early 1980s is an
indicator of the profound shift in attention to user needs. Traditional man
agers and developers resisted at first, saying that usability testing seemed like

·a nice idea, but that time pressures or limited resources prevented them from
trying it. As experience grew and successful projects gave credit to the testing
process, demand swelled and design teams began to compete for the scarce

Apple Inc.
Exhibit 1018

Page 146

128 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

resource of the usability-laboratory staff. Managers came to realize that hav
ing a usability test on the schedule was a powerful incentive to complete a
design phase. The usability-test report provided supportive confirmation of
progress and specific recomn1.endations for changes. Designers sought the
bright light of evaluative feedback to guide their work, and managers saw
fewer disasters as projects approached delivery dates. The remarkable sur
prise was that usability testing not only sped up n1.any projects, but also pro
duced dramatic cost savings (Gould, 1988; Gould et al., 1991; Karat, 1994).

Usability-laboratory advocates split fron1. their academic roots as these
practitioners developed innovative approaches that were influenced by
advertising and 1narket research. While acade1nics were developing con
trolled experiments to test hypotheses and support theories, practitioners
developed usability-testing methods to refine user interfaces rapidly. Con
trolled experilnents have at least two treatments and seek to show statistically
significant differences; usability tests are designed to find flaws in user inter
faces. Both strategies use a carefully prepared set of tasks, but usability tests
have fewer subjects (maybe as few as three), and the outcome is a report with
rec01n1nended changes, as opposed to validation or rejection of hypotheses.
Of course, there is a useful spectru1n of possibilities between rigid controls and
informal testing, and sometimes a combination of approaches is appropriate.

The movanent toward usability testing stilnulated the construction of
usability laboratories (Dumas and Redish, 1993; Nielsen, 1993). Many orga
nizations spent modest sums to build a single usability laboratory, while
IBM built an elaborate facility in Boca Raton, Florida, with 16laboratories in
a circular arrangement with a centralized database for logging usage and
recording performance. Having a physical laboratory makes an organiza
tion's commitment to usability clear to employees, customers, and users
(Nielsen, 1994) (Fig. 4.1). A typical1nodest usability laboratory would have
two 10- by 10-foot areas, one for the participants to do their work and
another, divided by a half-silvered mirror, for the testers and observers
(designers, managers, and customers) (Fig. 4.2). IBM was an early leader in
developing usability laboratories, Microsoft started later, but e.mbraced the
idea forcefully, and hundreds of software-development companies have fol
lowed suit. A consulting community that will do usability testing for hire
also has emerged.

The usability laboratory is typically staffed by one or more people with
expertise in testing and user-interface design, who may serve 10 to 15 pro
jects per year throughout the organization. The laboratory staff meet with
the user-interface architect or manager at the start of the project to 1nake a
test plan with scheduled dates and budget allocations. Usability-laboratory
staff participate in early task analysis or design reviews, provide information
on software tools or literature references, ~nd help to develop the set of tasks
for the usability test. Two to six weeks before the usability test, the detailed
test plan is developed, comprising the list of tasks, plus subjective satisfac-

Apple Inc.
Exhibit 1018

Page 147

4.3 Usability Testing and Laboratories 129

Figure 4.1

Usability lab test, with subject and observer seated at a workstation. Video recorders
capture the user's actions and the contents of the screens, while n'licrophones cap
ture thinking-aloud comments. (Used with permission of Sun Microsystems, Moun
tain View, CA.)

tion and debriefing questions. The number, types, and source of participants
are identified-sources, for example, 1night be customer sites, temporary
personnel agencies, or advertisements placed in newspapers. A pilot test of
the procedures, tasks, and questionnaires, with one to three subjects is con
ducted one week ahead of time, while there is still time for changes. This
stereotypic preparation process can be modified in many ways to suit each
project's unique needs.

After changes are approved, participants are chosen to represent the
intended user com1nunities, with attention to background in cmnputing,
experience with the task, motivation, education, and ability with the natural
language used in the interface. Usability-laboratory staff also must control
for physical concerns (such as eyesight, left- versus right-handedness, age,
and gender), and for other experimental conditions (such as time of day, day
of week, physical surroundings, noise, room temperature, and level of dis
tractions).

Participants should always be treated with respect and should be
informed that it is not they who are being tested; rather, it is the software and
user interface that are under study. They should be told about what they will
be doing (for example, typing text into a computer, creating a drawing using
a mouse, or getting information from a touchscreen kiosk) and how long
they will be expected to stay. Participation should always be voluntary, and

Apple Inc.
Exhibit 1018

Page 148

130 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

Figure 4.2

Usability lab control room, with test controllers and observers watching the subject
through a half-silvered window. Video controls allow zoon1ing and panning to focus
on user actions. (Used with permission of Sun Microsystems, Mountain View, CA.)

informed consent should be obtained. Professional practice is to ask all sub
jects to read and sign a state1nent like this one:

• I have freely volunteered to participate in this experiment.

• I have been informed in advance what my task(s) will be and what pro
cedures will be followed.

• I have been given the opportunity to ask questions and have had 1ny
questions answered to my satisfaction.

• I am aware that I have the right to withdraw consent and to dis
continue participation at any time, without prejudice to my future
treatment.

• My signature below 1nay be taken as affirmation of all the above state
ments; it was given prior to my participation in this study.

An effective technique during usability testing is to invite users to think
aloud about what they are doing. The designer or tester should be supportive of
the participants, not taking over or giving instructions, but prompting and lis
tening for clues about how they are dealing with the interface. After a suitable

Apple Inc.
Exhibit 1018

Page 149

4.3 Usability Testing and Laboratories 131

time period for accomplishing the task list-usually one to three hours-the
participants can be invited to make general comments or suggestions, or to
respond to specific questions. The informal ahnosphere of a thinking-aloud
session is pleasant, and often leads to many spontaneous suggestions for
improvements. In their efforts to encourage thinking aloud, some usability lab
oratories found that having two participants working together produces 1nore
talking, as one participant explains procedures and decisions to the other.

Videotaping participants performing tasks is often valuable for later review
and for showing designers or 1nanagers the proble1ns that users encounter
(Lund, 1985). Reviewing videotapes is a tedious job, so careful logging and
annotation during the test is vital to reduce the time spent finding critical
incidents (Harrison, 1991). Participants may be anxious about the video cam
eras at the start of the test, but within minutes they usually focus on the tasks
and ignore the videotaping. The reactions of designers to seeing videotapes
of users failing with their system_ is s01netimes powerful and may be highly
motivating. When designers see subjects repeatedly picking the wrong menu
ite1n, they realize that the label or placement needs to be changed. Most
usability laboratories have acquired or developed software to facilitate log
ging of user activities (typing, mousing, reading screens, reading 1nanuals,
and so on) by observers with automatic time stamping.

At each design stage, the interface can be refined iteratively, and the
improved version can be tested. It is important to fix quickly even small
flaws, such as of spelling errors or inconsistent layout, since they influence
user expectations.

Many variant forms of usability testing have been tried. Nielsen's (1993)
discount usability engineering, which advocates quick and dirty approaches to
task analysis, prototype development, and testing, has been widely influen
tial because it lowered the barriers to newcomers.

Field tests attempt to put new interfaces to work in realistic environments
for a fixed trial period. Field tests can be made more fruitful if logging soft
ware is used to capture error, command, and help frequencies, plus produc
tivity measures. Portable usability laboratories with videotaping and
logging facilities have been developed to support more thorough field test
ing. A different kind of field testing supplies users with test versions of new
software. The largest field test of all time was probably the beta-testing of
Microsoft's Windows 95, in which reportedly 400,000 users internationally
received early versions and were asked to comment.

Early usability studies can be conducted using paper mockups of screen
displays to assess user reactions to wording, layout, and sequencing. A test
administrator plays the role of the computer by flipping the pages while ask
ing a participant user to carry out typical tasks. This informal testing is inex
pensive and rapid, and usually is productive.

Game designers pioneered the can-you-break-this approach to usability
testing by providing energetic teenagers with the challenge of trying to beat

Apple Inc.
Exhibit 1018

Page 150

132 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

new games. This destructive testing approach, in which the users try to find
fatal flaws in the system or otherwise to destroy it, has been used in other
projects and should be considered seriously. Software purchasers have little
patience with flawed products and the cost of sending out tens of thousands
of replacement disks is one that few companies can bear.

Competitive usability testing can be used to compare a new interface to pre
vious versions or to similar products from competitors. This approach is
close to a controlled experim.ental study, and staff 1nust be careful to con
struct parallel sets of tasks and to counterbalance the order of presentation of
the interfaces. Within subjects designs seem more powerful because partici
pants can make c01nparisons between the c01npeting interfaces, so fewer
participants are needed, although they will each be needed for a longer time
period.

For all its success, usability testing does have at least two serious limita
tions: It e1nphasizes first-time usage and has limited coverage of the interface
features. Since usability tests are usually two to four hours, it is difficult to
ascertain how performance will be after a week or a 1nonth of regular usage.
Within the typical two to four hours of a usability test, the participants may
get to use only a small fraction of the features, menus, dialog boxes, or help
screens. These and other concerns have led design temns to supplement
usability testing with the varied forms of expert reviews.

4.4 Surveys

Written user surveys are a familiar, inexpensive, and generally acceptable
companion for usability tests and expert reviews. Managers and users grasp
the notion of surveys, and the typically large nu1nbers of respondents (hun
dreds to thousands of users) offer a sense of authority compared to the poten
tially biased and highly variable results from small numbers of usability-test
participants or expert reviewers. The keys to successful surveys are clear
goals in advance and then development of focused items that help to attain
those goals. Experienced surveyors know that care is also needed during
administration and data analysis (Oppenheim, 1992).

A survey form should be prepared, reviewed among colleagues, and
tested with a small sample of users before a large-scale survey is conducted.
Similarly, statistical analyses (beyond means and standard deviations) and
presentations (histograms, scatterplots, and so on) should also be developed
before the final survey is distributed. In short, directed activities are more
successful than unplanned statistical-gathering expeditions (no wild goose
chases, please). My experience is that directed activities also seem to provide
the most fertile frameworks for unanticipated discoveries.

Apple Inc.
Exhibit 1018

Page 151

4.4 Surveys 133

Survey goals can be tied to the cmnponents of the OAI 1nodel of interface
design (see Section 2.3). Users could be asked for their subjective ilnpres
sions about specific aspects of the interface, such as the representation of

• Task domain objects and actions

• Interface dmnain metaphors and action handles

o Syntax of inputs and design of displays

Other goals would be to ascertain the user's

• Background (age, gender, origins, education, incmne)

• Experience with con1.puters (specific applications or software packages,
length of time, depth of knowledge)

• Job responsibilities (decision-1naking influence, managerial roles,
motivation)

• Personality style (introvert versus extravert, risk taking versus risk
averse, early versus late adopter, systematic versus opportunistic)

• Reasons for not using an interface (inadequate services, too complex, too
slow)

• Familiarity with features (printing, macros, shortcuts, tutorials)

• Feelings after using an interface (confused versus clear, frustrated ver
sus in control, bored versus excited)

Online surveys avoid the cost and effort of printing, distributing, and col
lecting paper forms. Many people prefer to answer a brief survey displayed
on a screen, instead of filling in and returning a printed form, although there
is a potential bias in the self-selected sample. One survey of World Wide Web
utilization generated more than 13,000 respondents. So that costs are kept
low, surveys might be administered to only a fraction of the user community.

In one survey, users were asked to respond to eight statements according
to the following commonly used scale:

1. Strongly agree

2. Agree

3. Neutral

4. Disagree

5. Strongly disagree

The items in the survey were these:

1. I find the system commands easy to use.

2. I feel competent with and knowledgeable about the system commands.

3. When writing a set of system commands for a new application, I am
confident that they will be correct on the first run.

Apple Inc.
Exhibit 1018

Page 152

134 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

4. When I get an error message, I find that it is helpful in identifying the
proble1n.

5. I think that there are too many options and special cases.

6. I believe that the com1nands could be substantially simplified.

7. I have trouble remembering the commands and options, and must con
sult the manual frequently.

8. When a problem arises, I ask for assistance fro1n someone who really
knows the system.

This list of questions can help designers to identify problems users are
having, and to demonstrate improvement to the interface as changes are
made in training, online assistance, com1nand structures, and so on; progress
is demonstrated by improved scores on subsequent surveys.

In a study of error messages in text-editor usage, users had to rate the
messages on 1-to-7 scales:

Hostile

Vague

Misleading

Discouraging

1234567

1234567

1234567

1234567

Friendly

Specific

Beneficial

Encouraging

If precise-as opposed to general-questions are used in surveys, then
there is a greater chance that the results will provide useful guidance for tak
ing action.

Coleman and Williges (1985) developed a set of bipolar semantically
anchored items (pleasing versus irritating, simple versus complicated, con
cise versus redundant) that asked users to describe their reactions to using a
word processor. Another approach is to ask users to evaluate aspects of the
interface design, such as the readability of characters, the meaningfulness of
command names, or the helpfulness of error messages. If users rate as poor
one aspect of the interactive system, the designers have a clear indication of
what needs to be redone.

The Questionnaire for User Interaction Satisfaction (QUIS) was developed by
Shneiderman and was refined by Norman and Chin (Chin et al., 1988)
(http:/ /www.lap.umd.edu/QUISFolder/quisHome.html). It was based on
the early versions of the OAI model and therefore covered interface details,
such as readability of characters and layout of displays; interface objects,
such as meaningfulness of icons; interface actions, such as shortcuts for fre
quent users; and task issues, such as appropriate terminology or screen
sequencing. It has proved useful in demonstrating the benefits of improve
ments to a videodisc-retrieval program, in.comparing two Pascal program
ming environments, in assessing word processors, and in setting
requirements for redesign of an online public-access library catalog. We have .

Apple Inc.
Exhibit 1018

Page 153

4.5 Acceptance Tests 135

since applied QUIS in many projects with thousands of users and have cre
ated new versions that include items relating to website design and video
conferencing. The University of Maryland Office of Technology Liaison
(College Park, Maryland 20742; (301) 405-4209) licenses QUIS in electronic
and paper forms to over a hundred organizations internationally, in addition
to granting free licenses to student researchers. The licensees have applied
QUIS in varied ways, sometimes using only parts of QUIS or adding
domain-specific ite1ns.

Table 4.1 contains the long fonn that was designed to have two levels of
questions: general and detailed. If participants are willing to respond to
every ite1n, then the long-form questionnaire can be used. If participants are
not likely to be patient, then only the general questions in the short form
need to be asked.

Other scales include the Post-Study System Usability Questionnaire,
developed by IBM, which has 48 ite1ns that focus on system usefulness, infor
mation quality, and interface quality (Lewis, 1995). The Software Usability
Measurement Inventory contains 50 items designed to measure users' per
ceptions of their effect, efficiency, and control (Kirakowski and Corbett, 1993).

4.5 Acceptance Tests

For large imple1nentation projects, the customer or manager usually sets
objective and measurable goals for hardware and software performance.
Many authors of requirements documents are even so bold as to specify
1nean time between failures, as well as the mean time to repair for hardware
and, in some cases, for software. More typically, a set of test cases is specified
for the software, with possible response-time requirements for the hardware
software combination. If the completed product fails to meet these accep
tance criteria, the system must be reworked until success is demonstrated.

These notions can be neatly extended to the hu1nan interface. Explicit
acceptance criteria should be established when the requirements document
is written or when a contract is offered.

Rather than the vague and misleading criterion of "user friendly," measur-
able criteria for the user interface can be established for the following:

• Time for users to learn specific functions

• Speed of task performance

• Rate of errors by users

• User retention of commands over tilne

• Subjective user satisfaction

Apple Inc.
Exhibit 1018

Page 154

136 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

Table 4.1

Questionaire for User Interaction Satisfaction(© University of Maryland, 1997)

Identification number: _______ System: __ Age: Gender: male female

PART 1: System Experience

1.1 How long have you worked on this system?

less than 1 hour
_1 hour to less than 1 day
_ 1 day to less than 1 week

1 week to less than 1 month

__ 6 months to less than 1 year
__ 1 year to less than 2 years
__ 2 years to less than 3 years
__ 3 years or 1nore

1 month to less than 6 months

1.2 On the average, how much time do you spend per week on this system?

less than one hour 4 to less than 10 hours
one to less than 4 hours over 10 hours

PART 2: Past Experience

2.1 How many operating systems have you worked with?

none
1

3-4
5-6

2 more than6

2.2 Of the following devices, software, and systems, check those that you have personally used
and are familiar with:

__ computer terminal
color monitor
CD-ROM drive
track ball

_graphics tablet
scanners

_ spreadsheet software
__ voice recognition
__ CAD computer aided design

PART 3: Overall User Reactions

_ personal computer
touch screen

_keyboard
_joystick
_head mounted display
_word processor

database software
video editing systems
rapid prototyping systems

__ lap top computer
_ floppy drive

mouse
__ pen based computing

modems
graphics software
computer games
internet
e-mail

Please circle the numbers which most appropriately reflect your impressions about using this
computer system. Not Applicable= NA.

3.1 Overall reactions to the system: terrible wonderful
1 2 3 4 5 6 7 8 9 NA

3.2 frustrating satisfying
1 2 3 4 5 6 7 8 9 NA

3.3 dull stimulating
1 2 3 4 5 6 7 8 9 NA

3.4 difficult easy
1 2 3 4 5 6 7 8 9 NA

3.5 inadequate power adequate power
1 2 3 4 5 6 7 8 9 NA

3.6 rigid flexible
1 2 3 4 5 6 7 8 9 NA

Apple Inc.
Exhibit 1018

Page 155

4.5 Acceptance Tests 137

Table 4.1 (continued)

PART 4: Screen

4.1 Characters on the computer screen hard to read easy to read
1 2 3 4 5 6 7 8 9 NA

4.1.1 Image of characters fuzzy sharp
1 2 3 4 5 6 7 8 9 NA

4.1.2 Character shapes (fonts) barely legible very legible
1 2 3 4 5 6 7 8 9 NA

4.2 Highlighting on the screen unhelpful helpful
1 2 3 4 5 6 7 8 9 NA

4.2.1 Use of reverse video unhelpful helpful
1 2 3 4 5 6 7 8 9 NA

4.2.2 Use of blinking unhelpful helpful
1 2 3 4 5 6 7 8 9 NA

4.2.3 Use of holding unhelpful helpful
1 2 3 4 5 6 7 8 9 NA

4.3 Screen layouts were helpful never always
1 2 3 4 5 6 7 8 9 NA

4.3.1 Amount of information that inadequate adequate
can be displayed on screen 1 2 3 4 5 6 7 8 9 NA

4.3.2 Arrangement of information illogical logical
can be displayed on screen 1 2 3 4 5 6 7 8 9 NA

4.4 Sequence of screens confusing clear
1 2 3 4 5 6 7 8 9 NA

4.4.1 Next screen in a sequence unpredictable predictable
1 2 3 4 5 6 7 8 9 NA

4.4.2 Going back to the previous screen impossible . easy
1 2 3 4 5 6 7 ·8 9 NA

4.4.3 Progression of work related tasks confusing clearly marked
1 2 3 4 5 6 7 8 9 NA

Please write your comments about the screens here:

PART 5: Terminology and System Information

5.1 Use of terminology throughout system inconsistent consistent
1 2 3 4 5 6 7 8 9 NA

5.1.2 Work related terminology inconsistent consistent
1 2 3 4 5 6 7 8 9 NA

5.2.3 Computer terminology inconsistent consistent
1 2 3 4 5 6 7 8 9 NA

Apple Inc.
Exhibit 1018

Page 156

138 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

Table 4.1 (continued)

5.2 Terminology relates well to the work never always
you are doing? 1 2 3 4 5 6 7 8 9 NA

5.2.1 Computer terminology is used too frequently appropriately
1 2 3 4 5 6 7 8 9 NA

5.2.2 Terminology on the screen ambiguous precise
1 2 3 4 5 6 7 8 9 NA

5.3 Messages which appear on screen inconsistent consistent
1 2 3 4 5 6 7 8 9 NA

5.3.1 Position of instructions on inconsistent consistent
the screen 1 2 3 4 5 6 7 8 9 NA

5.4 Messages which appear on screen confusing clear
1 2 3 4 5 6 7 8 9 NA

5.4.1 Instructions for cmnmands confusing clear
or functions 1 2 3 4 5 6 7 8 9 NA

5.4.2 Instructions for correcting errors confusing clear
1 2 3 4 5 6 7 8 9 NA

5.5 Computer keeps you informed about never always
what it is doing 1 2 3 4 5 6 7 8 9 NA

5.5.1 Animated cursors keep you never always
informed 1 2 3 4 5 6 7 8 9 NA

5.5.2 Performing an operation leads to a never always
predictable result 1 2 3 4 5 6 7 8 9 NA

5.5.3 Controlling amount of feedback impossible easy
1 2 3 4 5 6 7 8 9 NA

5.5.4 Length of delay between unacceptable acceptable
operations 1 2 3 4 5 6 7 8 9 NA

5.6 Error messages unhelpful helpful
1 2 3 4 5 6 7 8 9 NA

5.6.1 Error messages clarify the problem never always
1 2 3 4 5 6 7 8 9 NA

5.6.2 Phrasing of error messages unpleasant pleasant
1 2 3 4 5 6 7 8 9 NA

Please write your comments about terminology and system information here:

PART 6: Learning

6.1 Learning to operate the system difficult easy
1 2 3 4 5 6 7 8 9 NA

6.1.1 Getting started difficult easy
1 2 3 4 5 6 7 8 9 NA

Apple Inc.
Exhibit 1018

Page 157

4.5 Acceptance Tests 139

Table 4.1 (continued)

6.1.2 Learning advanced features difficult easy
1 2 3 4 5 6 7 8 9 NA

6.1.3 Time to learn to use the system difficult easy
1 2 3 4 5 6 7 8 9 NA

6.2 Exploration of features by trial discouraging encouraging
and error 1 2 3 4 5 6 7 8 9 NA

6.2.1 Exploration of features risky safe
1 2 3 4 5 6 7 8 9 NA

6.2.2 Discovering new features difficult easy
1 2 3 4 5 6 7 8 9 NA

6.3 Remembering names and use of difficult easy
co1nmands 1 2 3 4 5 6 7 8 9 NA

6.3.1 Remembering specific rules about difficult easy
entering commands 1 2 3 4 5 6 7 8 9 NA

6.4 Tasks can be perfonned in a straight- never always
forward 1nanner 1 2 3 4 5 6 7 8 9 NA

6.4.1 Number of steps per task too many just right
1 2 3 4 5 6 7 8 9 NA

6.4.2 Steps to complete a task follow never always
a logical sequence 1 2 3 4 5 6 7 8 9 NA

6.4.3 Feedback on the completion of unclear clear
sequence of steps 1 2 3 4 5 6 7 8 9 NA

Please write your comments about learning here:.

PART 7: System Capabilities

7.1 System speed too slow fast enough
1 2 3 4 5 6 7 8 9 NA

7.1.1 Response time for most operations too slow fast enough
1 2 3 4 5 6 7 8 9 NA

7.1.2 Rate information is displayed too slow fast enough
1 2 3 4 5 6 7 8 9 NA

7.2 The system is reliable never always
1 2 3 4 5 6 7 8 9 NA

7.2.1 Operations undependable dependable
1 2 3 4 5 6 7 8 9 NA

7.2.2 System failures occur frequently seldom
1 2 3 4 5 6 7 8 9 NA

7.2.3 System warns you about never always
potential problems 1 2 3 4 5 6 7 8 9 NA

Apple Inc.
Exhibit 1018

Page 158

140 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

Table 4.1 (continued)

7.3 System tends to be noisy quiet
1 2 3 4 5 6 7 8 9 NA

7.3.1 Mechanical devices such as noisy quiet
fans, disks, and printers 1 2 3 4 5 6 7 8 9 NA

7.3.2 Computer generated sounds annoying pleasant
1 2 3 4 5 6 7 8 9 NA

7.4 Correcting your mistakes difficult easy
1 2 3 4 5 6 7 8 9 NA

7.4.1 Correcting typos complex simple
1 2 3 4 5 6 7 8 9 NA

7.4.2 Ability to undo operations inadequate adequate
1 2 3 4 5 6 7 8 9 NA

7.5 Ease of operation depends on your never always
level of experience 1 2 3 4 5 6 7 8 9 NA

7.5.1 You can accomplish tasks with difficulty easily
knowing only a few commands 1 2 3 4 5 6 7 8 9 NA

7.5.2 You can use features/shortcuts with difficulty easily
1 2 3 4 5 6 7 8 9 NA

Please write your comments about system capabilities here:

PART 8: Technical Manuals and On-line help

8.1 Technical manuals are confusing clear
1 2 3 4 5 6 7 8 9 NA

8.1.1 The terminology used in the confusing clear
manual 1 2 3 4 5 6 7 8 9 NA

8.2 Information from the manual is never always
easily understood 1 2 3 4 5 6 7 8 9 NA

8.2.1 Finding a solution to a problem impossible easy
using the manual 1 2 3 4 5 6 7 8 9 NA

8.3 Amount of help given inadequate adequate
1 2 3 4 5 6 7 8 9 NA

8.3.1 Placement of help messages confusing clear
on the screen 1 2 3 4 5 6 7 8 9 NA

8.3.2 Accessing help messages difficult easy
1 2 3 4 5 6 7 8 9 NA

8.3.3 Content of on-line help messages confusing clear
1 2 3 4 5 6 7 8 9 NA

8.3.4 Amount of help given inadequate adequate
1 2 3 4 5 6 7 8 9 NA

Apple Inc.
Exhibit 1018

Page 159

4.5 Acceptance Tests 141

Table 4.1 (continued)

8·.3.5 Help defines specific aspects inadequately adequately
of the system 1 2 3 4 5 6 7 8 9 NA

8.3.6 Finding specific information difficult easy
using the on-line help 1 2 3 4 5 6 7 8 9 NA

8.3.7 On-line help useless helpful
1 2 3 4 5 6 7 8 9 NA

Please write your comments about technical manuals and on-line help here:

PART 9: On-line Tutorials

9.1 Tutorial was useless helpful
1 2 3 4 5 6 7 8 9 NA

9 .1.1 Accessing on-line tutorial difficult easy
1 2 3 4 5 6 7 8 9 NA

9.2 Maneuvering through the tutorial was difficult easy
1 2 3 4 5 6 7 8 9 NA

9.2.1 Tutorial is meaningfully structured never always
1 2 3 4 5 6 7 8 9 NA

9.2.2 The speed of presentation was unacceptable acceptable
1 2 3 4 5 6 7 8 9 NA

9.3 Tutorial content was useless helpful
1 2 3 4 5 6 7 8 9 NA

9.3.1 Information for specific aspects of never always
the system were complete and 1 2 3 4 5 6 7 8 9 NA
informative

9.3.2 Information was concise and to never always
the point 1 2 3 4 5 6 7 8 9 NA

9.4 Tasks can be completed with difficulty easily
1 2 3 4 5 6 7 8 9 NA

9.4.1 Instructions given for completing confusing clear
tasks 1 2 3 4 5 6 7 8 9 NA

9.4.2 Time given to perform tasks inadequate adequate
1 2 3 4 5 6 7 8 9 NA

9.5 Learning to operate the system difficult easy
using the tutorial was 1 2 3 4 5 6 7 8 9 NA

9.5.1 Completing system tasks after difficult easy
using only the tutorial 1 2 3 4 5 6 7 8 9 NA

Please write your comments about on-line tutorials here:

Apple Inc.
Exhibit 1018

Page 160

142 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

Table 4.1 (continued)

PART 10: Multimedia

10.1 Quality of still pictures/photographs bad good
1 2 3 4 5 6 7 8 9 NA

10.1.1 Pictures /Photos fuzzy clear
1 2 3 4 5 6 7 8 9 NA

10.1.2 Picture/Photo brightness dim bright
1 2 3 4 5 6 7 8 9 NA

10.2 Quality of movies bad good
1 2 3 4 5 6 7 8 9 NA

10.2.1 Focus of movie images fuzzy clear
1 2 3 4 5 6 7 8 9 NA

10.2.2 Brightness of movie images dim bright
1 2 3 4 5 6 7 8 9 NA

10.2.3 Movie window size is adequate never always
1 2 3 4 5 6 7 8 9 NA

10.3 Sound output inaudible audible
1 2 3 4 5 6 7 8 9 NA

10.3.1 Sound output choppy s1nooth
1 2 3 4 5 6 7 8 9 NA

10.3.2 Sound output garbled clear
1 2 3 4 5 6 7 8 9 NA

10.4 Colors used are unnatural natural
1 2 3 4 5 6 7 8 9 NA

10.4.1 Amount of colors available inadequate adequate
1 2 3 4 5 6 7 8 9 NA

Please write your comments about multimedia here:

PART 11: Teleconferencing

11.1 Setting up for conference difficult easy
1 2 3 4 5 6 7 8 9 NA

11.1.1 Time for establishing the too long just right
connections to others 1 2 3 4 5 6 7 8 9 NA

11.1.2 Number of connections possible too few enough
1 2 3 4 5 6 7 8 9 NA

11.2 Arrangement of windows showing confusing clear
connecting groups 1 2 3 4 5 6 7 8 9 NA

11.2.1 Window with view of your own never always
group is of appropriate size 1 2 3 4 5 6 7 8 9 NA

Apple Inc.
Exhibit 1018

Page 161

4.5 Acceptance Tests 143

Table 4.1 (continued)

11.2.2 Window(s) with view of connecting never always
group(s) is of appropriate size 1 2 3 4 5 6 7 8 9 NA

11.3 Determining the focus of attention confusing clear
during conference was 1 2 3 4 5 6 7 8 9 NA

11.3.1 Telling who is speaking difficult easy
1 2 3 4 5 6 7 8 9 NA

11.4 Video image flow choppy smooth
1 2 3 4 5 6 7 8 9 NA

11.4.1 Focus of video image fuzzy clear
1 2 3 4 5 6 7 8 9 NA

11.5 Audio output inaudible audible
1 2 3 4 5 6 7 8 9 NA

11.5.1 Audio is in sync with video images never always
1 2 3 4 5 6 7 8 9 NA

11.6 Exchanging data difficult easy
1 2 3 4 5 6 7 8 9 NA

11.6.1 Transmitting files difficult easy
1 2 3 4 5 6 7 8 9 NA

11.6.2 Retrieving files difficult easy
1 2 3 4 5 6 7 8 9 NA

11.6.3 Using on-line chat difficult easy
1 2 3 4 5 6 7 8 9 NA

11.6.4 Using shared workspace difficult easy
1 2 3 4 5 6 7 8 9 NA

Please write your comments about teleconferencing here:

PART 12: Software Installation

12.1 Speed of installation slow fast
1 2 3 4 5 6 7 8 9 NA

12.2 Customization difficult easy
1 2 3 4 5 6 7 8 9 NA

12.2.1 Installing only the software confusing clear
you want 1 2 3 4 5 6 7 8 9 NA

12.3 Informs you of its progress never always
1 2 3 4 5 6 7 8 9 NA

12.4 Gives a meaningful explanation never always
when failures occur 1 2 3 4 5 6 7 8 9 NA

Please write your comments about software installation here:

Apple Inc.
Exhibit 1018

Page 162

144 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

An acceptance test might specify the following:

The subjects will be 35 secretaries hired from an employment agency. They
have no word-processing experience, but have typing skills in the range of 35
to 50 words per minute. They will be given 45 minutes of training on the basic
features. At least 30 of the 35 secretaries should be able to complete, within 30
minutes, 80 percent of the typing and editing tasks in the enclosed benchmark
test correctly.

Another testable require1nent for the smne system 1night be this:

After four half-days of regular use of the system, 25 of these 35 secretaries
should be able to carry out, within 20 minutes, the advanced editing tasks in
the second benchmark test, and should n1ake fewer than six errors.

This second acceptance test captures performance after regular use. The
choice of the benchmark tests is critical and is highly syste1n dependent. The
test materials and procedures must also be refined by pilot testing before use.

A third item in the acceptance test plan 1night focus on retention:

After two weeks, at least 15 of the test subjects should be recalled and should
perform the third benchmark test. In 40 minutes, at least 10 of the subjects
should be able to complete 75 percent of the tasks correctly.

In a large system, there may be eight or 10 such tests to carry out on dif
ferent components of the interface and with different user communities.
Other criteria such as subjective satisfaction, output comprehensibility, sys
tem response time, installation procedures, printed documentation, or
graphics appeal may also be considered in acceptance tests of complete com
mercial products.

If they establish precise acceptance criteria, both the customer and the
interface developer can benefit. Argu1nents about the user friendliness are
avoided, and contractual fulfillment can be demonstrated objectively. Accep
tance tests differ from usability tests in that the atmosphere may be adver
sarial, so outside testing organizations are often appropriate to ensure
neutrality. The central goal of acceptance testing is not to detect flaws, but
rather to verify adherence to requirements.

Once acceptance testing has been successful, there may be a period of field
testing before national or international distribution. In addition to further refin
ing the user interface, field tests can improve training methods, tutorial materi
als, telephone-help procedures, marketing methods, and publicity strategies.

The goal of early expert reviews, usability testing, surveys, acceptance
testing, and field testing is to force as much as possible of the evolutionary

Apple Inc.
Exhibit 1018

Page 163

4.6 Evaluation During Active Use 145

developm.ent into the prerelease phase, when change is relatively easy and
inexpensive to accmnplish.

4.6 Evaluation During Active Use

A carefully designed and thoroughly tested system is a wonderful asset, but
successful active use requires constant attention frotn dedicated managers,
user-services personnel, and maintenance staff. Everyone involved in sup
porting the user cotntnunity can contribute to system refinements that pro
vide ever higher levels of service. You cannot please all of the users all of the
tilne, but earnest effort will be rewarded by the appreciation of a grateful
user comn1.unity. Perfection is not attainable, but percentage in1.prove1nents
are possible and are worth pursuing.

Gradual systetn dissetnination is useful so that problems can be repaired
with minilnal disruption. As more and n1.ore people use the system, major
changes should be limited to an annual or semiannual system revision that is
announced adequately. If system users can anticipate the change, then resis
tance will be reduced, especially if they have positive expectations of
ilnprovetnent. More frequent changes are expected in the rapidly developing
World Wide Web environment, but a balance between stable access to key
resources even as novel services are added may be the winning policy.

4.6.1 Interviews and focus-group discussions

Interviews with individual users can be productive because the inter
viewer can pursue specific issues of concern. After a series of individual
discussions, focus-group discussions are valuable to ascertain the universal
ity of comments. Interviewing can be costly and time consutning, so
usually only a small fraction of the user community is involved. On the
other hand, direct contact with users often leads to specific, constructive
suggestions.

A large corporation conducted 45-minute interviews with 66 of the 4300
users of an internal message system. The interviews revealed that the users
were happy with some aspects of the functionality, such as the capacity to
pick up messages at any site, the legibility of printed messages, and the con
venience of after-hours access. However, the interviews also revealed that
23.6 percent of the users had concerns about reliability, 20.2 percent thought
that using the system was confusing, and 18.2 percent said convenience and
accessibility could be improved, whereas only 16.0 percent expressed no

Apple Inc.
Exhibit 1018

Page 164

146 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

concerns. Later questions in the interview explored specific features. As a
result of this interview project, a set of 42 enhancements to the system was
proposed and implemented. The designers of the system had earlier pro
posed an alternate set of enhance1nents, but the results of the interviews led
to a changed set of priorities that more closely reflected the users' needs.

4.6.2 Continuous user-performance data logging

The software architecture should make it easy for syste1n Inanagers to collect
data about the patterns of syste1n usage, speed of user performance, rate of
errors, or frequency of requests for online assistance. Logging data provide
guidance in the acquisition of new hardware, changes in operating proce
dures, improvements to training, plans for system expansion, and so on.

For example, if the frequency of each error message is recorded, then the
highest-frequency error is a candidate for attention. The message could be
rewritten, training materials could be revised, the software could be changed
to provide 1nore specific information, or the command syntax could be sim
plified. Without specific logging data, the system-maintenance staff has no
way of knowing which of the many hundreds of error-1nessage situations is
the biggest problem for users. Similarly, staff should examine 1nessages that
never appear, to see whether there is an error in the code or whether users
are avoiding use of some facility.

If logging data are available for each command, each help screen, and
each database record, then changes to the human-cmnputer interface can be
made to simplify access to frequently used features. Managers also should
examine unused or rarely used facilities to understand why users are avoid
ing those features. Logging of the Thomas system for access to U.S. Congress
legislation revealed high-frequency terms, such as abortion, gun control, and
balanced budget that could be used in a browse list of hot topics (Croft et al,
1995). Logging in an educational database identified frequently used as well
and rarely used paths and features (Marchionini and Crane, 1994).

A major benefit of usage-frequency data is the guidance that they provide
to system maintainers in optimizing performance and in reducing costs for
all participants. This latter argument may yield the clearest advantage to
cost-conscious managers, whereas the increased quality of the interface is an
attraction to service-oriented managers.

Logging may be well intentioned, but users' rights to privacy deserve to
be protected. Links to specific user names should not be collected, unless
necessary. When logging aggregate performance crosses over to monitoring
individual activity, managers must inform users of what is being monitored
and how the information will be used. Although organizations may have a
right to ascertain worker performance, workers should be able to view the
results and to discuss the implications. If monitoring is surreptitious and is
later discovered, resulting worker mistrust of management could be more ·

Apple Inc.
Exhibit 1018

Page 165

4.6 Evaluation During Active Use 147

damaging than the benefits of the collected data. Manager and worker coop
eration to improve productivity, and worker participation in the process and
benefits, are advised.

4.6.3 Online or telephone consultants

Online or telephone consultants can provide extremely effective and personal
assistance to users who are experiencing difficulties. Many users feel reassured
if they know that there is a hun1.an being to whmn they can turn when prob
lenl.S arise. These consultants are an excellent source of infonnation about prob
lems users are having and can suggest improve1nents and potential extensions.

Many organizations offer a toll-free nu1nber via which the users can reach a
knowledgeable consultant; others charge for consultation by the minute. On
son1.e network systems, the consultants can 1nonitor the user's computer and
see the same displays that the user sees while maintaining telephone voice con
tact. This service can be extremely reassuring: Users know that smneone can
walk them through the correct sequence of screens to cmnplete their tasks.

America Online provides live (real-time) chat romns for discussion
of user problems. Users can type their questions and get responses
promptly. Many groups maintain a standard electronic-mail address of
staff@<organization> that allows users to get help from whomever is on
duty. My several successful experiences of getting quick help late at night
fro1n our departmental staff have re1nained firmly in my memory. On one
occasion, they helped me to unpack a file in an unfamiliar format; on
another, they recovered an inadvertently deleted file.

4.6.4 Online suggestion box or trouble reporting

Electronic mail can be employed to allow users to send messages to the
maintainers or designers. Such an online suggestion box encourages some
users to make productive comments, since writing a letter may be seen as
requiring too much effort.

A Library of Congress website that invites comments gets 10 to 20 per day,
including thoughtful ones such as this:

I find as I get searching through the various Web pages ... that I am left with an
unsatisfied feeling. I have been sitting in front of the PC for close to an hour ...
and have been stopped and/ or slowed due to items that can be directly related
to web server design.

First off, the entry pages are too big and disorganized. Those links that do exist
do not have adequate enough descriptions to direct a user to the information they
desire. In addition, the use of a search engine would greatly facilitate sifting
through the abundance of information that is thrown at the user with any one of
these links. Links should be short, sweet, and specific. Large amounts of material
should not be included in one document on a busy server

Apple Inc.
Exhibit 1018

Page 166

148 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

Breaking up these larger documents into s1naller, well organized docmnents
may seern to create an additional burden on programming. However, if intelli
gence is used in the creation of such systems, it would not take n1.uch ...

In fact, the search engine that this user wanted was available, but he could
not find it, and larger docum.ents were broken into smaller segn1.ents. A reply
helped to get this user what he was seeking, and his 1nessage also led to
design changes that n1.ade the interface features more visible. ·

An internet directory service for personal names, Knowbot Information
Service, offers a gripe command with the invitation "Place a complilnent or
cmnplaint in the KIS log file." Another service simply has a button labeled
"Tell us what you think."

A large corporation installed a full-screen, fill-in-the-blanks form for user
proble1n reports, and received 90 comments on a new internal syste1n within
three n1.onths. The user's identification number and nmne were entered auto
matically, and the user moved a cursor to indicate which subsystem was
causing a problem and what the proble1n's seriousness was (showstopper,
annoyance, improvement, other). Each problem report received a dated and
signed response that was stored on a file for public reading.

4.6.5 Online bulletin board or newsgroup

Some users may have a question about the suitability of a software package for
their application, or may be seeking someone who has had experience using an
interface feature. They do not have any individual in mind, so electronic mail
does not serve their needs. Many interface designers offer users an electronic
bulletin board or newsgroup (see Section 14.3) to permit posting of open messages
and questions. These newsgroups cover programming languages, software
tools, or task domains. There are also mailing lists for interface designers, such
as the one established on the internet by the Human Factors and Ergonomics
Society's Computer Systems Technical Group (send electronic 1nail to list
serv@listserv.vt.edu with this line: subscribe cstg-L <your full name>)

Smne professional societies offer bulletin boards by way of networks such
as America Online, Prodigy, and CompuServe. These bulletin boards may
offer information services or permit downloading of software.

Bulletin-board software systems usually offer a list of item headlines,
allowing users the opportunity to select items for display. New items can be
added by anyone, but usually someone monitors the bulletin board to ensure
that offensive, useless, or repetitious items are removed.

4.6.6 User newsletters and conferences

When there is a substantial number of users who are geographically dis
persed, managers may have to work harder to create a sense of community.
Newsletters that provide information about novel interface facilities, sugges-

Apple Inc.
Exhibit 1018

Page 167

4.7 Controlled Psychologically Oriented Experiments 149

tions for improved productivity, requests for assistance, case studies of suc
cessful applications, or stories about individual users can promote user satis
faction and knowledge. Printed newsletters are more traditional and have
the advantage that they can be carried away from the workstation. A printed
newsletter has an appealing air of respectability. Online newsletters are less
expensive and 1nore rapidly dissem_inated. World Wide Web or CD-ROM
newsletters are appealing if collections of images are included or large
datasets are anticipated.

Personal relationships established by face-to-face 1neetings also increase
the sense of co1n1nunity among users. Conferences allow workers to exchange
experiences with colleagues, prmnote novel approaches, stimulate greater
dedication, encourage higher productivity, and develop a deeper relation
ship of trust. Ultimately, it is the people who 1natter in an organization, and
hu1nan needs for social interaction should be satisfied. Every technical sys
tem is also a social syste1n that needs to be encouraged and nurtured.

By soliciting user feedback in any of these ways, managers can gauge user
attitudes and elicit useful suggestions. Furthermore, users may have 1nore
positive attitudes toward the interface if they see that the m.anagers gen
uinely desire cmnments and suggestions.

4. 7 Controlled Psychologically Oriented Experiments

Scientific and engineering progress is often stilnulated by improved tech
niques for precise measurement. Rapid progress in the designs of interfaces
will be stimulated as researchers and practitioners evolve suitable human
performance measures and techniques. We have come to expect that auto
mobiles will have miles-per-gallon reports pasted to the window, appliances
will have energy-efficiency ratings, and textbooks will be given grade-level
designations; soon, we will expect software packages to show learning-time
esti1nates and user-satisfaction indices from appropriate evaluation sources.

Academic and industrial researchers are discovering that the power of the
traditional scientific 1nethod can be fruitfully employed in the study of inter
faces (Barnard, 1991). They are conducting numerous experiments that are
uncovering basic design principles. The outline of the scientific method as
applied to human-cmnputer interaction m.ight include these tasks:

• Deal with a practical problem and consider the theoretical framework.

• State a lucid and testable hypothesis.

• Identify a small number of independent variables that are to be
manipulated.

• Carefully choose the dependent variables that will be measured.

Apple Inc.
Exhibit 1018

Page 168

150 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

• Judiciously select subjects, and carefully or randmnly assign subjects to
groups.

• Control for biasing factors (nonrepresentative sample of subjects or
selection of tasks, inconsistent testing procedures).

• Apply statistical methods to data analysis.

• Resolve the practical problem, refine the theory, and give advice to
future researchers.

The classic experimental methods of psychology are being enhanced to
deal with the cmnplex cognitive tasks of human perfonnance with infonna
tion and computer systems. The transformation from Aristotelian introspec
tion to Galilean experimentation that took two 1nillennia in physics is being
accomplished in two decades in the study of human-computer interaction.

The reductionist approach required for controlled experi1nentation yields
narrow but reliable results. Through multiple replications with similar tasks,
subjects, and experimental conditions, reliability and validity can be
enhanced. Each small experilnental result acts like a tile in the mosaic of
human performance with computer-based information systems.

Managers of actively used systems are also cmning to recognize the power
of controlled experiments in fine tuning the human-computer interface. As
proposals are 1nade for new menu structures, novel cursor-control devices,
and reorganized display formats, a carefully controlled experiment can pro
vide data to support a management decision. Fractions of the user population
could be given proposed improvements for a limited tilne, and then perfor
mance could be compared with the control group. Dependent measures
could include performance times, user-subjective satisfaction, error rates, and
user retention over time.

Experimental design and statistical analysis are complex topics (Hays,
1988; Cozby, 1996; Runyon and Haber, 1996; Winer et al., 1991.) Novice
experimenters would be well advised to collaborate with experienced social
scientists and statisticians.

4.8 Practitioner's Summary

Interface developers evaluate their designs by conducting expert reviews,
usability tests, surveys, and rigorous acceptance tests. Once systems are
released, developers perform continuous performance evaluations by inter
views or surveys, and by logging user performance in a way that respects the
privacy of users. If you are not measuring;you are not doing human factors!

Successful system managers understand that they must work hard to
establish a relationship of trust with the user community. In addition to pro-

Apple Inc.
Exhibit 1018

Page 169

4.9 Researcher's Agenda 151

viding a properly functioning system, computer service managers and infor
mation-systems directors recognize the need to create social mechanisms for
feedback, such as online surveys, interviews, discussions, consultants, sug
gestion boxes, bulletin boards, newsletters, and conferences.

4.9 Researcher's Agenda

Researchers can contribute their experience with experimentation to devel
oping techniques for system evaluation. Guidance in conducting pilot stud
ies, acceptance tests, surveys, interviews, and discussions would benefit
commercial development groups. Experts in constructing psychological tests
would be extremely helpful in preparing a validated and reliable test instru
ment for subjective evaluation of interactive systems. Such a standardized
test would allow independent groups to compare the acceptability of their
systems. In addition, assessment 1nethods for user skill levels with software
would be helpful in job-placement and training programs.

Clinical psychologists, psychotherapists, and social workers could con
tribute to training online or as telephone consultants-after all, helping trou
bled users is a human-relationship issue. Finally, 1nore input from
experimental, cognitive, and clinical psychologists would help computer
specialists to recognize the importance of the human aspects of cmnputer
use. What techniques can reduce novice user anxiety? How can life-critical
applications for experienced professionals be tested reliably?

World Wide Web Resources www
Prototyping and usability testing methods are covered with some
information on evaluation methods, such as surveys. The full text of
our QUIS is available online.

http:/ /www.aw.com/DTUI

References

Barnard, Phil, The contributions of applied cognitive psychology to the study of
human-computer interaction. In Shackel, B. and Richardson, S. (Editors), Human
Factors for Infonnatics Usability, Cambridge University Press, Cambridge, U.K.
(1991), 151-182.

Chin, John P., Diehl, Virginia A., and Norman, Kent L., Development of an instru
ment measuring user satisfaction of the human-computer interface, Proc. CHI
'88-Human Factors in Computing Systems, ACM, New York (1988), 213-218.

Apple Inc.
Exhibit 1018

Page 170

152 4 Expert Reviews, Usability Testing, Surveys, and Continuing Assessments

Coleman, William D. and Williges, Robert C., Collecting detailed user evaluations of
software interfaces, Proc. Human Factors Society-Twenty-Ninth Annual Meeting,
Santa Monica, CA (1985), 204-244.

Cozby, Paul C., Methods in Behavioral Research (Sixth Edition), Mayfield, Mountain
View, CA (1996).

Croft, W. Bruce, Cook, Robert, and Wilder, Dean, Providing government information
on the internet: Experiences with THOMAS, Proc. Digital Libraries '95 Conference,
ACM, New York (1995). Also available at
http:/ /www.csdl.tamu.edu/DL95/papers/croft/croft.html

Curtis, Bill, Defining a place for interface engineering, IEEE Software, 9, 2 (March
1992) 1 84-86.

Dumas, Joseph and Redish, Janice, A Practical Guide to Usability Testing, Ablex,
Norwood, NJ (1993).

Gould, John, How to design usable systems. In Helander, Martin (Editor), Handbook
of Human-Computer Interaction, North-Holland, Amsterdam, The Netherlands
(1988), 757-789.

Gould, John D., Boies, Stephen J., and Lewis, Clayton, Making usable, useful pro
ductivity-enhancing computer applications, Communications of the ACM, 34, 1
(January 1991), 75-85.

Harrison, Beverly L., Video annotation and multimedia interfaces: From theory to
practice, Proc. Human Factors Society Thirty-Fifth Annual Meeting (1991), 319-322.

Hays, William L., Statistics (Fourth Edition), Holt, Rinehart and Winston, New York
(1988).

Hix, Deborah and Hartson, H. Rex, Developing User Interfaces: Ensuring Usability
Through Product and Process, John Wiley and Sons, New York (1993).

Jeffries, R., Miller, J. R., Wharton, C., and Uyeda, K. M., User interface evaluation in
the real world: A comparison of four techniques, Proc. ACM CHI91 Conf. (1991),
119-124.

Karat, Claire-Marie, A business case approach to usability. In Bias, Randolph, and
Mayhew, Deborah (Editors), Cost-Justifying Usability, Academic Press, New York
(1994), 45-70.

Karat, Claire-Marie, Campbell, Robert, and Fiegel, T., Comparison of empirical testing
and walkthrough methods in user interface evaluation, Proc. CHI '92-Human Fac
tors in Computing Systems, ACM, New York (1992),397-404.

Kirakowski, J. and Corbett, M. SUMI: The Software Usability Measurement Inven
tory, British Journal of Educational Technology, 24, 3 (1993), 210-212.

Landauer, Thomas K., The Trouble with Computers: Usefulness, Usability, and Productiv
ity, MIT Press, Cambridge, MA (1995).

Lewis, James R., IBM computer usability satisfaction questionnaires: Psychometric
evaluation and instructions for use, International Journal of Human-Computer Inter
action, 7, 1 (1995), 57-78.

Lund, Michelle A., Evaluating the user interfaces: The candid camera approach,
Proc. CHI '85-Human Factors in Computing Systems, ACM, New York (1985),
93-97.

Apple Inc.
Exhibit 1018

Page 171

4.9 Researcher's Agenda 153

Marchionini, Gary and Crane, Gregory, Evaluating hypermedia and learning: Meth
ods and results from the Perseus Project, ACM Transactions on Information Systems,
12, 1 (1994), 5-34.

Newman, William M. and Lamming, Michael G., Interactive System Design, Addison
Wesley, Reading, MA (1995).

Nielsen, Jakob (Editor), Special Issue on Usability Laboratories, Behaviour & Informa
tion Technology, 13, 1 & 2 (January-April1994).

Nielsen, Jakob, Usability Engineering, Academic Press, New York (1993).

Nielsen, Jakob and Mack, Robert (Editors), Usability Inspection Methods, John Wiley
and Sons, New York (1994).

Oppenheim, Abraham N., Questionnaire Design, Interviewing, and Attitude Measure
ment, Pinter Publishers, New York (1992).

Preece, Jenny, Rogers, Yvonne, Sharp, Helen, Benyon, David, Holland, Simon, and
Carey, Tom, Human-Computer Interaction, Addison-Wesley, Reading, MA (1994).

Runyon, Richard P. and Haber, Audrey, Fundamentals of Behavioral Statistics (Eighth
Edition), McGraw-Hill, New York (1996).

Wharton, Cathleen, Rieman, John, Lewis, Clayton, and Polson, Peter, The cognitive
walkthrough method: A practitioner's guide. In Nielsen, Jakob and Mack, Robert
(Editors), Usability Inspection Methods, John Wiley and Sons, New York (1994).

Winer, B. J., Brown, Donald R., and Michels, Kenneth M., Statistical Principles in
Experimental Design, McGraw-Hill, New York (1991).

Yourdon, Edward, Structured Walkthroughs (Fourth Edition), Yourdon Press, Engle
wood Cliffs, NJ (1989).

Apple Inc.
Exhibit 1018

Page 172

Mark Kostabi, Automatic Painting, 1991

Apple Inc.
Exhibit 1018

Page 173

Soft"W"are Tools

There is great satisfaction in building good tools for other people to use.

Freeman Dyson, Disturbing the Universe, 1979

Apple Inc.
Exhibit 1018

Page 174

8

5.1 Introduction

8
ChapterS

.1 Introduction

Chapter 5

Specification Methods
nterface-Building Tools
valuation and Critiquing Tools
ractitioner's Summar

Introduction
Specification Methods
Interface-Building Tools
Evaluation and Critiquing Tools
Practitioner's Summary
Researcher's Agenda

CH7

Log cabins were often built by settlers for personal housing on the American
frontier, just as early user interfaces were built by programmers for their own
use. As housing needs changed, windows and rooms were added in a process
of iterative refinement, and dirt floors gave way to finished wood. Log cabins
are still being built according to personal taste by rugged individualists, but
modern private homes, apartment buildings, schools, hospitals, and offices
require specialist training, careful planning, and special equipment.

The emergence of user-interface architects, design and specification meth
ods, standard components, and automated tools for construction are indica
tors of the maturation of our field. There will always be room for the
innovator and the eccentric, but the demands of modern life require user-

Apple Inc.
Exhibit 1018

Page 175

5.2 Specification Methods 157

interface architects to build reliable, standard, safe, inexpensive, effective,
and widely acceptable user interfaces on a predictable schedule (Carey, 1988).

Building and user-interface architects must have simple and quick meth
ods of sketching to give their clients a way to identify needs and preferences.
Then, they need precise methods for working out the details with the clients
(detailed floorplans become transition diagrams, screen layouts, and menu
trees), for coordinating with specialized colleagues (plumbers and electri
cians become graphic designers and technical writers), and for telling the
builders (or software engineers) what to do.

Like building architects, successful user-interface architects know that it
1nakes good sense to complete the design before they start building, even
though they know that, in the process of construction, some changes will have
to be made. With large projects, multiple designers (structural engineers for
the steel framework, interior designers for space planning, and decorators for
the esthetics) will be necessary. The size and importance of each project will
determine the level of design effort and the number of participants. Just as
there are specialists for airports, hospitals, and schools, there are user-inter
faces specialists for air-traffic-control, medical, and educational applications.

This chapter begins with user-interface specification methods, moves to
software tools to support design and software engineering, and then closes
with evaluation and critiquing tools. These tools are increasingly graphical
in their user interfaces, enabling designers and programmers to build inter
faces rapidly by dragging components and linking functions together. User
interface building tools have matured rapidly in the past few years, and have
radically changed the nature of software development. Productivity gains of
50 to 500 percent above previous methods have been documented for many
standard GUis. But, even as the power tools for established styles improve
and gain acceptance, program1ners will always have to· handcraft novel
interface styles.

5.2 Specification Methods

The first asset in making designs is a good notation to record and discuss
alternate possibilities. The default language for specifications in any field is
the designer's natural language, such as English, and a sketchpad or black
board. But natural-language specifications tend to be lengthy, vague, and
ambiguous, and therefore often are difficult to prove correct, consistent, or
complete. Formal and semiformal languages have proved their value in many
areas, including mathematics, physics, circuit design, 1nusic, and even knit
ting. Formal languages have a specified grammar, and effective procedures
exist to determine whether a string adheres to the language's grammar.

Apple Inc.
Exhibit 1018

Page 176

158 Chapter 5 Software Tools

Grammars for cmnn1.and languages are effective, but for GUis the amount of
syntax is sn1.all. In GUis, a gra1nmar might be used to describe sequences of
actions, but these grammars tend to be short, making transition diagrams
and graphical specifications more appealing.

Menu-tree structures are popular, and therefore specifying menu trees by
simply drawing the tree and showing the menu layouts deserves attention.
The more general method of transition diagrams has wide applicability in
user-interface design. Improvements such as statecharts have features that are
attuned to the needs of interactive systems and for widget specification. New
approaches such as the user action notation (UAN) (Hartson et al., 1990; Chase
et al., 1994) are helpful in characterizing user behavior and some aspects of
system responses.

5.2.1 Grammars

In cmnputer programming, Backus-Naur form (BNF) also called (Backus nor
Jnal form) is often used to describe programming languages. High-level com
ponents are described by nonterminals, and specific strings are terminals.
Let us use the example of a telephone-book entry. The nonterminals describe
a person's name (composed of a last name followed by a comma and a first
name) and a telephone number (composed of an area code, exchange, and
local number). Names consist of strings of characters. The telephone number
has three components: a three-digit area code, a three-digit exchange, and a
four-digit local number.

<Telephone book entry> ::=<Name> <Telephone number>
<Name> : := <Last name>, <First name>
<Last name> : := <string>
<First name> ::=<string>
<string> ::= <character>l<character><string>
<character> : : =

AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ
<Telephone number> : := (<area code>) <exchange>-<local number>
<area code> : := <digit><digit><digit>
<exchange> : := <digit><digit><digit>
<local number> : := <digit><digit><digit><digit>
<digit>::= Ol112l3l4l5l6l718l9

The left-hand side of each specification line is a nonterminal (within angle
brackets) that is defined by the right-hand side. Vertical bars indicate alter
natives for nonterminals and terminals. Acceptable-telephone-book entries
include the following:

WASHINGTON, GEORGE (301) 555-1234
BEEF, STU (726) 768-7878
A, Z (999) 111-1111

Apple Inc.
Exhibit 1018

Page 177

5.2 Specification Methods 159

BNF notation is used widely, even though it is incomplete and must be
supplemented by ad hoc techniques for specifying the sernantics, such as
permissible names or area codes. The benefits are that some aspects can be
written down precisely, and that software tools can be employed to verify
some aspects of completeness and correctness of the grarnn1.ar and of strings
in the language. On the other hand, grammars are difficult to follow as they
grow and are confusing for rnany users.

Command languages are nicely specified by BNF-like grammars, such as
the task-action gramrnar (Section 2.2.4). Reisner (1981) expanded the idea of
BNF to sequences of actions, such as pushing a button, selecting a color, or
drawing a shape.

Variant forms of BNF have been created to accmnn1.odate specific situa
tions. For example, the Unix comn1.and for copyii'lg files or directories is
summarized by this extract from the online rnanual:

cp [-ip] filenamel filename2
cp -rR [-ip] directoryl directory2
cp [-iprR] filename . . . directory

where the square brackets indicate that zero or more options can be
included, and the -rR indicates that one of these options for recursive copy
ing is required for copying directories.

To accommodate the richness of interactive software, multiparty grammars
(Shneiderman, 1982) have nonterrninals that are labeled by the party that
produces the string (typically the user, U, or the computer, C). Nonterminals
acquire values during parsing for use by other parties, and therefore error
handling rules can be included easily. This grammar describes the opening
steps in a login process:

<Session>::= <U: Opening> <C: Responding>
<U: Opening> : := LOGIN <U: Name>
<U: Name> : := <U: string>
<C: Responding> ::=HELLO [<U: Name>]

Here, square brackets indicate that the value of the user's name should be
produced by the computer in responding to the login command.

Multiparty grammars are effective for text-oriented command sequences
that have repeated exchanges, such as a bank terminal. Unfortunately, two
dimensional styles, such as form fillin or direct manipulation and graphical
layouts, are more difficult to describe with multiparty grammars. Menu
selection can be described by multiparty grammars, but the central aspect of
tree structure and traversal is not shown conveniently in a grammar-based
approach.

Apple Inc.
Exhibit 1018

Page 178

160 Chapter 5 Software Tools

5.2.2 Menu-selection and dialog-box trees

For many applications a menu-selection tree is an excellent selection style
because of the simple structure that guides designers and users alike. Guide
lines for the contents of the m_enu trees are covered in Chapter 7. Specifica
tion 1nethods include online tools to help in the construction of menu trees
and simple drawing tools that enable designers and users to see the entire
tree at one time.

Menu trees are powerful as a specification tool since they show users,
managers, i1nple1nenters, and other interested parties the con1plete and
detailed coverage of the system. Like any 1nap, a 1nenu tree shows high-level
relationships and low-level details. With large syste1ns, the Inenu tree may
have to be laid out on a large wall or floor, but it is ilnportant to be able to see
the entire structure at once to check for consistency, completeness, and lack
of mnbiguity or redundancy.

Similar cmnments apply for dialog boxes. Printing out the dialog boxes
and showing their relationships by 1noLmting them on a wall is enormously
helpful in gaining an overview of the entire system to check for consistency
and cmnpleteness.

5.2.3 Transition diagrams

Menu trees are incomplete because they do not show the entire structure of
possible user actions, such as returns to the previous 1nenu, jumps to the
starting 1nenu, or detours to error handling or to help screens. However,
adding all these transitions would clutter the clean structure of a menu
tree. For so;ne aspects of the design process, more precise specification of
every possible transition is required. Also, for many nonmenu interaction
styles, there is a set of possible states and permissible transitions muong the
states that may not form a tree structure. For these and other circum
stances, a more general design notation known as transition diagrams has
been used widely.

Typically, a transition diagram has a set of nodes that represents system
states and a set of links between the nodes that represents possible transi
tions. Each link is labeled with the user action that selects that link and pos
sible computer responses. The simple transition diagram in Fig. 5.1
(Wasserman and Shewmake, 1985) represents a numbered menu-selection
system for restaurant reviews that shows what happens when the user
selects numbered choices: 1 (add a restaurant to the list), 2 (provide a review
of a restaurant), 3 (read a review), 4 (get help, also accessed by a?), 5 (quit),
or any other character (error message). Figure 5.2 shows its text form. Figure
5.3 shows another form of transition diagram that displays frequencies
along the links.

Many forms of transition diagrams have been created with special nota
tions to fit needs of application areas, such as air-traffic control or word pro:-

Apple Inc.
Exhibit 1018

Page 179

5.2 Specification Methods 161

+ -------------------------------

<add new>

,
1

, I <giverev>

'2'~
'3' II!IJ l,__<_r_e_a_d_r_e_v_> __ -;_ ____ 1

'4' '?'

·s·~··.........._

G
Figure 5.1

Transition diagram for a simple menu system. (Wasserman and Shewmake, 1985.)

cessing. Tools for creating and maintaining transition diagrams, dataflow
diagrams, and other graphical displays are part of most computer-assisted
software engineering (CASE) environments, such as the Software Through Pic
tures (Interactive Development Environments, Inc., http:/ /www.ide.com).
In 1nost systems, the diagram is created by direct-manipulation actions, but
designers can get a textual output of the transition diagram as well.

Unfortunately, transition diagrams get unwieldy as syste1n cmnplexity
grows, and too 1nany transitions can lead to complex spaghetti-like displays.
Improvements are to replace a state transition node with a screen print to
give readers a better sense of movement through the displays and dialog
boxes. Such overviews are helpful in design and in training.

Designs for interfaces with hundreds of dialog boxes, or for websites with
hundreds of screens, are easier to study when hung on the wall. In a lnemo
rable encounter, 350 screens of a satellite-control system were pasted on

. three walls of a conference room, quickly revealing the disparate styles of the
design teams of the six modules. Compressed overview diagrams may be
squeezed onto a single sheet of paper for user manuals, or printed as a poster
to hang on users' walls.

Apple Inc.
Exhibit 1018

Page 180

162 Chapter 5 Software Tools

node start
cs,
r6,
r+2,
r+2,
r+2,
r+2,

node help
CS,

r+l,
r+l,
r+l,
r+l,

r+2,

r2, rv, c_' Interactive Restaurant Guide', sv,
c5, 'Please make a choice:

c10, '1: Add new restaurant to database',
c10, '2:
c10, '3:
c10, '4:

Give review of a restaurant
Read reviews for a given restaurant',
Help', r+2, c10, '5: Quit', r+3,c5, 'Your choice:

r5, cO, 'This program stores and retrieves information on',
cO, 'restaurants, with emphasis on San Francisco.',
cO, 'You can add or update information about restaurants',
cO, 'already in the database, or obtain information about',
cO, 'restaurants, including the reviews of others.',
cO, 'To continue, type RETURN.'

node error
r$-1, rv, 'Illegal command.', sv,
r$, 'Press RETURN to continue.'

node clean
r$-1, cl,r$,cl

node wakeup

'Please type a number from 1 to 5.',

r$,cl,rv,'Please make a choice',sv, tomark_A
node quit

cs, 'Thank you very much. Please try this program again',
nl, 'and continue to add information on restaurants.'

arc start single_key
on '1' to <addnew>
on '2' to <giverev>
on \3 I to <readrev>
on '4'' \?I to help
on '5' to quit
alarm 30 to wakeup
else to error

arc error
else to start

arc help
skip to clean

arc clean
else to start

arc <addnew>
skip to start

arc <readrev>
skip to start

arc <giverev>
skip to start

Figure 5.2

mark_A

Text form of Fig. 5.1. Additional information is provided by the comment lines.

5.2.4 Statecharts

Although transition diagrams are effective for following flow or action and
for keeping track of the current state plus current options, they can rapidly
become large and confusing. Modularity is possible if nodes are included
with subgraphs, but this strategy works well with only orderly, one-in, one
out graphs. Transition diagrams also becom.e confusing when each node must
show links to a help state, jumps back to the previous or start state, and a quit

Apple Inc.
Exhibit 1018

Page 181

5.2 Specification Methods 163

OK

Start

Cancel J
Figure 5.3

Sample transition diagram for file-manipulation actions. Link labels indicate how
frequently each transition is made.

state. Concurrency and synchronization are poorly represented by transition
diagrams, although some variations such as petri-nets can help. An appealing
alternative is statecharts (Barel, 1988), which have several virtues in specify
ing interfaces. Because a grouping feature is offered through nested round
tangles (Fig. 5.4), repeated transitions can be factored out to the surrounding
roundtangle. Extensions to statecharts-such as concurrency, external inter
rupt events, and user actions-are represented in Statemaster, which is a
user-interface tool based on statecharts (Wellner, 1989).

Statecharts can also be extended with dataflow and constraint specifica
tion, plus embedded screen prints to show the visual states of graphical wid
gets (Carr, 1994). For example, in the si1nple case of a secure toggle switch,
there are five states, so showing the visual feedback on the statechart with
user-action notation (see Section 5.2.5) on the arcs helps readers to under
stand what is happening (Fig. 5.5).

5.2.5 User-action notation (UAN)

~he grammar or diagram approaches to specification are suited for menus,
commands, or form fillin, but they are clumsy with direct-manipulation inter
faces, because they cannot cope conveniently with the variety of permissible

Apple Inc.
Exhibit 1018

Page 182

164 Chapter 5 Software Tools

Bank transactions

ID # Help

Quit

Figure 5.4

Statechart of a simplified bank transaction system showing grouping of states.

Secure Switch

Static States

Figure 5.5

Interaction-object graphs extend statecharts with dataflow features and the user
action notation. This example shows a secure switch with bitmaps of the states at
each node. (Carr, 1994)

Apple Inc.
Exhibit 1018

Page 183

5.2 Specification Methods 165

actions and visual feedback that the system provides. In addition, direct
manipulation interfaces depend heavily on context to determine the meaning
of an input. For example, a mouse-button click can mean select a file, open a
window, or start an application, depending on where the cursor is when the
click is applied. Similarly, it is difficult to characterize the results of dragging
an icon, since they will depend on where the icon is dropped.

To cope with the rich world of direct-m.anipulation interfaces, high-level
notations that focus on the users' tasks, that deal with pointing, dragging,
and clicking, and that describe the interface feedback are more likely to be
helpful. For example, to select an icon, the user 1nust n1.ove the cursor to the
icon location and click and release on the 1nouse button. The movement to an
icon is represented by a - [icon] and the 1nouse-button n1.otion is repre
sented by Mv (mouse-button depress) followed by MA (mouse-button
release). The system response, which is to highlight the icon, is represented
by icon! The sequencing is shown by a complete user-action notation (UAN)
description (Hartson et al., 1990; Hix and Hartson, 1993):

TASK: Select an icon

User Actions

-[icon] Mv

M"

Interface Feedback

icon!

A more complex task might be to delete a file; that task requires user
actions of dragging a file icon around the display to a trash icon while hold
ing down the mouse button. The interface feedback is to highlight the file
that is selected and to dehighlight (file-! indicates dehighlight the file)
other files, then to drag an outline of the file icon to the trash icon
(outline (file) > - means that the outline is dragged by the cursor).
Then, the user drops the file-icon outline on the trash icon, the file icon is
erased, and the trash icon blinks. The selected file is shown in the interface
state column:

TASK: Select an icon

User Actions Interface Feedback

-[file] Mv file!, forall(file!): file-!

-[x,y]* outline(file) >-

-[trash]

M"

outline(file) > - trash!

erase(file), trash!!

Interface State

selected = file

selected = null

The UAN has interface-specific symbols for actions (such as moving the
cursor, pressing a button, entering a string, or setting a value), and for con
currency, interrupts, and feedback (such as highlighting, blinking, dragging,

Apple Inc.
Exhibit 1018

Page 184

166 Chapter 5 Software Tools

rubberbanding, and erasing). The symbols were chosen to mimic the
actions-such as v for button depress,"' for button release, and- for cursor
movement-but it still takes time to get used to this novel notation. Also,
UAN does not conveniently specify rich graphics, such as drawing pro
grams or anilnations, relationships across tasks, and interrupt behavior.
Nonetheless, UAN is a compact, powerful, and high-level approach to spec
ifying syste1n behavior and describing user actions (Chase et al., 1994).

5.3 Interface-Building Tools

Specification methods are important for the design of cmnponents of a sys
tem such as command languages, data-entry sequences, and widgets.
Screen-transition diagrams drawn or printed on paper are an excellent
means to provide an overview of the system. They allow user-interface archi
tects, designers, managers, users, and software engineers to sit around a
table, discuss the design, and prepare for the big job that lies ahead. Paper
based designs are a great way to start, but the detailed specification of com
plete user interfaces requires software tools.

The good news is that there has been a rapid and remarkable proliferation
of software tools to accmnmodate 1nost designers and software engineers in
accomplishing many design goals. These tools come in colorful shrink
wrapped boxes that emphasize convenient and rapid building of onscreen
prototypes. They generally allow visual editing, so designers can immedi
ately assess the "look" of the system and can easily change color, fonts, and
layout. These direct-1nanipulation design tools have enabled large numbers
of task-domain experts who have only modest technical training to become
user-interface designers.

Other tools are powerful programming languages that include extensive
toolkits that enable experienced software engineers to build a richer variety
of features, but that often require twice or 20 times as much code and work.
Of course, there will always be special designs that require progr~mming in
languages, such as C or C++, or even in assembly language to deal with pre
cise timing or special hardware features.

The terminology for products varies depending on the vendor. Popular
terms include Rapid Prototyper, User Interface Builder, User Interface Manage
ment System, User Interface Development Environment, Rapid Application
Developer. A key distinction is how extensively the system uses convenient
visual programming, a relatively simple scripting language (event or object ori
ented), or a more powerful general-purpose. programming language.

Use of these software tools brings great benefits (Box 5.1), and is spread
ing widely, even as the tools are rapidly improved in successive versions.

Apple Inc.
Exhibit 1018

Page 185

5.3 Interface-Building Tools 167

Box 5.1

Features of user-interface-building tools.

User-interface independence

• Separate interface design from internals

• Enable multiple user-interface strategies

• Enable multiple-platform support

• Establish role of user-interface architect

• Enforce standards

Methodology and notation

• Develop design procedures

• Find ways to talk about design

• Create project manage1nent

Rapid prototyping

• Try out ideas very early

• Test, revise, test, revise, ...

• Engage end users, 1nanagers, and customers

Software support

• Increase productivity

• Offer constraint and consistency checks

• Facilitate team approaches

• Ease maintenance
,

The central advantage stems from the notion of user-interface independence
decoupling of the user-interface design from the cmnplexities of program
ming. This decoupling allows the designers to lay out sequences of displays
in just a few hours, to make revisions in minutes, and to support the expert
review and usability-testing processes. The programming needed to com
plete the underlying system can be applied once the user-interface design
has been stabilized. The user-interface prototypes can serve as specifications
from which writers create user manuals, and frmn which software engineers
build the system using other tools. The latter are required to produce a sys
tem that works just like the prototype. In fact, prototypes can be the specifi
cation in government or commercial contracts for novel software.

Some early tools were limited to doing prototyping only, but most modern
tools allow for quick prototyping and then system development. The design
tools enable construction of complete systems but they may run slowly, lhnit

Apple Inc.
Exhibit 1018

Page 186

168 Chapter 5 Software Tools

the database size, or restrict users in rnany ways. The software-engineering
tools allow construction of rnore robust systerns, but the cmnplexity, cost, and
developrnent tilne are usually greater.

An important consideration in choosing tools is whether they support
cross-platform developrnent, a strategy in which the interface can run on
rnultiple environments such as Windows or Unix. There is a great benefit if
only one progrmn needs to be written and maintained, but the product is
available on rnultiple platfonns.

Another important consideration is whether the application allows the user
interface to run under a web browser such as Netscape Navigator or Microsoft
Internet Explorer. Since these browsers are written for nmltiple platforms, the
cross-platfonn goal is autornatically met. The World Wide Web is such a pow
erful force that web-oriented tools are likely to have the brightest future.

5.3.1 Design tools

User-interface architects recognize that creating quick sketches is important
during the early stages of design to explore rnultiple alternatives, to allow
comrnunication within the design tearn, and to convey to clients what the
product will look like. User-interface rnockups can be created with paper and
pencil, word processors, or slide-show presentation software (Adobe Persua
sion or Microsoft PowerPoint). Resourceful designers have also built user
interface prototypes with cornputer-assisted-instruction software, such as
Authorware, IconAuthor, or Quest, and with rn.ultimedia construction tools,
such as Apple Hypercard, MacroMind Director, or Asymetrix Toolbook.

In the simplest case, designers create a slide show of still images, which
are switched at a user-controlled pace. Most tools support more complete
prototyping that allows users to select from rnenus, click on buttons, use
scrolling lists, and even drag icons. Users can navigate through screens and
go back to previous screens. The prototype may not have a full database,
help, or other facilities, but it offers a carefully chosen path that gives a real
istic presentation of what the interface will do.

Visual editing tools usually permit designers to lay out displays with cur
sor movements or mouse clicks, and to mark regions for selection, highlight
ing, or data entry. Then, designers can specify which button selection is
linked to a related display or dialog box. Prototypes are excellent aids to
design discussions and are effective in winning contracts, because clients can
be given a rough idea of what the finished systern will be like.

The early success Apple's HyperCard stimulated many competitors.
These systems combine visual editing-by allowing designers to include
buttons and other fields-with simple interface actions provided automati
cally (for example, clicking on a back-arrow would take the user to the previ-

Apple Inc.
Exhibit 1018

Page 187

5.3 Interface-Building Tools 169

ous card). For more cmnplex actions, the innovative HyperTalk scripting lan
guage enables many users to create useful interfaces with only moderate
training. Designers can write programs with easy-to-understand terms:

on mouseUp
play "boing"
vvai t for 3 seconds
visual effect wipe left very fast to black
click at 150,100
type "goodbye"

end mouseUp

Of course, program1ning in such languages can becom.e cmnplex as the nuln
ber of short code segments grows and their interrelationships becmne diffi
cult to fathom.

Visual programming tools with direct rnanipulation, such as Prograph (Pic
torius Syste1ns), are an intriguing alternative. Prograph allows users to edit,
execute, debug, and 1nake changes during execution, with flowchart-like
visual-programn'ling tools that e1nphasize dataflow and have a deeply
nested modular structure (Fig. 5.6). Visual progrmnming for laboratory
instru1nents was the 1notivating influence for LabVIEW (National Instru
Inents) (Fig. 5.7), which has a flat structure of function boxes (arithmetic,
Boolean, and 1nore) linked with wires (Green and Petre, 1996).

Contemporary visual development tools such as Microsoft Visual Basic
(Fig. 5.8), Borland Delphi (Fig. 5.9), and Sy1nantec Cafe (Fig. 5.10) have easy
to-use design tools for dragging buttons, labels, data-entry fields, combo
boxes, and 1nore onto a workspace to assemble the visual interface. Then,
users write code in a scripting language that is an extension of Basic, object
oriented Pascal, or Java to implement the actions. The visual editors in these
products reduce design time for user interfaces dramatically, if designers are
content to use the supplied widgets, such as labels, data-entry boxes, scroll
bars, scrolling lists, or text-entry areas. Adding new widgets takes program
ming skill, but there are large libraries of widgets for sale. Delphi's compiled
Pascal code runs faster than the interpreted Basic, and Delphi also provides
good support for database access, but newer versions of each product are
likely to challenge each other.

5.3.2 Software-engineering tools

Experienced programmers often build user interfaces with general-purpose
programming languages such as Cor C++, but this approach is giving way

. to using facilities that are especially tuned to user-interface development and
web access (Olsen, 1991; Myers, 1995).

Apple Inc.
Exhibit 1018

Page 188

170 Chapter 5 Software Tools

Figure 5.6

Enter temperature

r'l.: k · ·:~<
I::Z:: ask~ 1.8

II 0
·~....-

........ _ .--·--
~Iii%] 32

'r' ________ .!.-•
I I

.. Celsius= .. W+:::< .. Fahrenheit-
1...1___ I I _....!-1

----) -----
;:.:~~:-:-;-;q ' . ,.!, .g;;,-
~show@

Prograph CPX, a visual language that uses object-oriented programming techniques,
including inheritance, encapsulation, and polymorphism. This simple example
shows a cmnmon programrnjng proble1n. (Used with permission of Pictorius Inc.,
Halifax, Nova Scotia, Canada.)

Some products provide user-interface program libraries, often called
toolkits, that offer common widgets, such as windows, scroll bars, pull-down
or pop-up menus, data-entry fields, buttons, and dialog boxes. Program
ming languages with accompanying libraries are familiar to experienced
programmers and afford great flexibility. However, toolkits can become
complex, and the programming environments for those, such as Microsoft
Windows Developer's Toolkit, Apple Macintosh MacApp, and Unix X-Win
dows toolkit (Xtk), require months of learning for programmers to gain pro
ficiency. Even then, the burden in creating applications is great, and
maintenance is difficult. The advantage is that the programmer has extensive
control and great flexibility in creating the interface. Toolkits have become
popular with programm_ers, but they provide only partial support for consis-

Apple Inc.
Exhibit 1018

Page 189

Temperature Limit
80.0

75.0_u~ 85.0

/

70.0 90.0

[I perate the knob to
adit~sl the T €.~rnper .::;tur:.::
Lirf1it.

Figure 5.7

Over Limit?

5.3 Interface-Building Tools 171

Ciic:k on the Uqht Bulb above bJ
turn on E:-:ecution Highlighting to
see hJ:3V-.1 the program e:..;ecute:s:.
Click again to run at full speed.

Digital
Thermometer. vi

Lab VIEW enables users to develop virtual instruments in a visual-programming
environment. In this simple demo program, the virtual instrument on the left is con
trolled by the program on the right, which can show an animation of its execution.
(Reprinted with permission of copyright owner, National Instruments Corporation
(Austin,TX). Lab VIEW is a registered trademark of National Instruments.)

tency, and designers and managers must still depend heavily on experienced
programmers. The Motif example in Fig. 5.11 conveys the challenge of pro
gramming user interfaces in X.

To lighten the burden of programming, Ousterhout developed a simpler
scripting language called Tel and an accompanying toolkit called Tk (Ouster
hout, 1994). Their great success was due to the relative ease of use of Tel and
the useful widgets in Tk, such as the text and canvas. Tel is interpreted, so
development is rapid, and its cross-platform capabilities are further attrac
tions. The absence of a visual editor discourages some users, but Tel's conve
nience in gluing together components has overcome the objections of most

· critics. This sample menu-construction program illustrates Tel scripting (Mart
land, 1994, http:/ /http2.brunel.ac.uk:8080/ ~csstddm/TCL2/TCL2.html):

Apple Inc.
Exhibit 1018

Page 190

172 Chapter 5 Software Tools

Private Sub Form

End Sub

Pr:·ivate ~3ub

End Sub

Private Sub sendButt

Figure 5.8

This Microsoft Visual Basic design shows a mock-up of a CelPhone interface with a
text box for the phone number and two action buttons. The palette of tools on the
left includes a Label, TextBox, Frame, CommandButton, CheckBox, RadioButton,
ComboBox, ListBox, and scroll bars. The code window is in the bottom center and
the properties window at the right allows users to set object properties. (Figures 5.8,
5.9 and 5.10 prepared by Stephan Greene, University of Maryland.) (Used with per
mission of Microsoft Corp., Redmond, WA.)

Apple Inc.
Exhibit 1018

Page 191

Figure 5.9

5.3 Interface-Building Tools 173

interface

uses
5ysUtils, WinTypes, WinProcs,
Forms, Dialogs, 5tdCtrls;

type
TCelPhone = class(TForm)

5endButton: TButton;
RecallButton: TButton;
Number: TLabel;
Edi U·Iurnl)er: TEcl.i t;
Action: TLabel;

private

{ Private dec2arationa
public

This Borland Delphi design shows the same mock-up of a CelPhone as in Fig. 5.8.
The palette of tools, which is across the top, includes MainMenu, PopupMenu,
Label, Edit, Men1.o Button, CheckBox, RadioButton, ListBox, ComboBox, ScrollBar,
Group Box, RadioGroup, and Panel. The Object Inspector window, which allows set
ting of properties, is at the left, and the code window is at the lower right. (Used
with permission of Borland International, Inc., Scotts Valley, CA)

Apple Inc.
Exhibit 1018

Page 192

174 Chapter 5 Software Tools

send Button
F8.ca:tft:hitio:r:;1
: ;
numb ertextFie ld 1

0 nlostF ocus
OnKeyAction
0 nKey.6.ctionR

OnKeyPress
0 nKeyR elease
OnMouseUp
OnMouseDown
OnMouseDrag
OnMouseEnter
OnMouseE~:it

0 nM ouset·ll ove
0 nV./indowD estory
0 n\.1/indov·!l conify
0 riv./indo 1ND eiconify
0 nV./indowM oved

Figure 5.10

impDrt java .. aT,;rt . *;

public cl.':f.ss CelPhCine

public CelPhCine() {

./ .. ··· { ·f IlHT CONTROIS
setLayCiut(null);
addNCitify();
resize(insets().lef
number-Label = new j, ..
number-Label. resha.pe'
add (number-La.bel) ;
act iDnL3.bel = neT,;r j
actiDnLabel.reshape
add (a.ct iDnLa.bel); ·
sendBu t tCin = ne':i' j
sendButtCin.reshape(
.':f.dd (sendBu t t Clll) ;

reca.llBu. t tCin =
recallButtCin.

This Symantec Visual Cafe design shows the same mock-up of a CelPhone as in Fig.
5.8. The palette of tools, which is across the top, includes Button, RadioButton,
CheckBox, Label, Panel, Choice, MenuBar, TextArea, TextField, List, Vertical Scroll
bar, and Horizontal Scrollbar. The object hierarchy in the form is at the upper left,
the code in the lower left, the properties window on the upper right, and the object
library on the lower right. (Used with permission of Symantec Corp., Cupertino,
CA.)

Apple Inc.
Exhibit 1018

Page 193

5.3 Interface-Building Tools 175

XI* Written by Dan Heller. Copyright 1991, O'Reilly & Associates.
X * This program is freely distributable without licensing fees and
X * is provided without guarantee or warrantee expressed or implied.
X * This program is -not- in the public domain.
===
X /* main window contains a MenuBar and a Label displaying a pixmap
*I
X main_w = XtVaCreateManagedWidget ("main_window",
X xMainWindowWidgetClass, toplevel,
X xmNscrollBarDisplayPolicy, xmAS_NEEDED,
X xmNscrollingPolicy, xmAUTOMATIC,
X NULL);
X
X /* Create a simple MenuBar that contains three menus */
X file XmStringCreateSimple ("File") ;
X edit= XmStringCreateSimple("Edit");
X help = XmStringCreateSimple ("Help") ;
X menubar = XmVaCreateSimpleMenuBar(main_w, "menubar",
X XmVaCASCADEBUTTON, file, 'F',
X
X

X

XmVaCASCADEBUTTON, edit, 'E'
XmVaCASCADEBUTTON, help, 'H',
NULL);

X XmStringFree(file);
X XmStringFree(edit);
X /* don't free "help" compound string yet- reuse it for later */
X
X /* Tell the menubar which button is the help menu */
X if (widget- XtNameToWidget(menubar, "button_2"))
X XtVaSetValues(menubar, xmNmenuHelpWidget, widget, NULL);

Figure 5.11

Programming of user interfaces in Motif.

#First make a menu button
menubutton .menul -text "Unix commands" -menu .menul.m
-underline 0

#Now make the menu, and add the lines one at a time
menu . menul . m
.menul.m add command -label "List Files" -command {ls}
.menul.m add command -label "Get date" -command {date}
.menul.m add command -label "Start calendar" -command {xcalendar}

pack .menul

A well-developed commercial alternative is Galaxy (Visix, Reston, VA),
which offers cross-platform capability by emulating GUis on Macintosh, Win
dows, Motif, and other platforms. The visual editor has rich functionality that

Apple Inc.
Exhibit 1018

Page 194

176 Chapter 5 Software Tools

allows users to specify layouts with springs and struts to preserve the
designer's intent even when screen sizes or widget sizes are changed (Hud
son and Mohamed, 1990). Galaxy has rich object-oriented libraries that can be
invoked from Cor C++ programs, plus tools for managing network services
and file directories. It requires software-engineering skills to use, but the
visual editor enables prmnpt construction of prototypes.

Sun Microsystems has created the largest tremors on the web with its
offerings of Java and Javascript. Java is a complete system-progrmnn1.ing lan
guage that is specially designed for the World Wide Web. It is compiled on
the server and is sent to clients as bytecodes that are interpreted by the
browser on whatever platform the browser resides, thereby obtaining cross
platform capability. Java can be used to create complete applications that are
distributed like any progrmn, but one of its charms is its capacity to create
"applets." These s1nall program frag1nents can be downloaded from a web
page and executed on the user's machine. This aspect enables programmers
easily to make web pages dynmnic and provide animations or error checking
on data-entry forms. This extreme form of modularity allows software pack
ages to be updated by way of the World Wide Web, and permits users to
acquire only the components that they use.

Java is object oriented but eliminates some of the complexity of C++, such
as operator overloading, multiple inheritance, pointers, and extensive auto
matic coercions. Automatic garbage collection and the absence of pointers
eliminate common sources of bugs. Security and robustness goals were
achieved by techniques such as strong typing, which requires explicit data
declarations, and static binding, which means that references must be made
during compilation. Software engineers have celebrated Java, because of its
features and its familiar programming-language style, as indicated in this
brief example from the online manual:

class Test {

}

public static void main(String[] args) {
for (int i = 0; i < args.length; i++)

System.out.print(i == 0 ? args[i]
System.out.println();

}

" " + args [i]) ;

Javascript is a much simpler scripting language that is embedded in the
Hypertext Markup Language (HTML) code that generates web pages. It
achieves the goals of network distribution and cross-platform capability,
since it is distributed within the HTML for a web page and is interpreted by
the client's browser on the local machine-Macintosh, Windows, or Unix. It
is relatively easy to learn, especially for someone who has learned HTML,
and it supplies common features. This example shows a script to square the

Apple Inc.
Exhibit 1018

Page 195

5.4 Evaluation and Critiquing Tools 177

value of a user-entered number:

<HEAD>
<SCRIPT LANGUAGE= 11 JavaScript 11 >
<!-- to hide script contents from old browsers

function square(i) {

}

document.write(11 The call passed", i ,"to
the function. 11 ,
)

return i * i

document. write ("The function returned II, square (5), II. II)
II end hiding contents from old browsers -->
</SCRIPT>
</HEAD>
<BODY>

All done.
</BODY>

On loading the web page, it produces this output:

The call passed 5 to the function.
The function returned 25.
All done.

Although the original Java and Javascript did not contain visual editors,
other developers will supply those tools. Security proble1ns have arisen, but
Java seems likely to provide adequate security to encourage develop1nent of
commercial processes, such as funds transfer, credit-card charges, or personal
data sharing. Execution speed of Java is a concern, because the bytecodes
must be interpreted, but compilation techniques are promised to support
rapid perfonnance, and even hardware changes have been suggested.

The rapid pace of change on the Internet is stimulated by the easy sharing
of code and the capacity to build quickly on top of the work of other pro
grammers. The frenzy is smnetimes alanning, but is usually irresistible. The
importance of the World Wide Web has led developers of many tools
including Tcl/Tk, Galaxy, MacroMind Director, and Visual Basic-to enable
their programs to run on the web.

5.4 Evaluation and Critiquing Tools

Software tools are natural environments in which to add procedures to eval
uate or critique user interfaces. Simple metrics that report numbers of dis
plays, widgets, or links between displays capture the size of a user-interface
project. But the inclusion of more sophisticated evaluation procedures can

Apple Inc.
Exhibit 1018

Page 196

178 Chapter 5 Software Tools

allow us to assess whether a menu tree is too deep or contains redundancies,
whether widget labels have been used consistently, whether all buttons have
proper transitions associated with then1., and so on (Olsen and Halversen,
1988). Even straightforward tools such as spell checkers or concordances of
tenns would be a benefit.

A second set of tools is run-time logging software, which captures the users'
patterns of activity. Simple reports-such as on the frequency of each error
message, menu-item selection, dialog-box appearance, help invocation, form
field usage, or web-page access-are of great benefit to maintenance personnel
and to revisers of the initial design. Experimental researchers can also capture
performance data for alternative designs to guide their decision making. Soft
ware to analyze and summarize the performance data will be welcome.

An early example is Tullis' Display Analysis Program, which takes
alphanumeric screen designs (no color, highlighting, separator lines, or
graphics) and produces Tullis's display-cmnplexity metrics plus smne
advice, such as this (Tullis, 1988):

Upper-case letters: 77% The percentage of upper-case letters
is high.

Consider using more lower-case letters, since text printed
in normal upper- and lower-case letters is read about 13%
faster than text in all upper case. Reserve all upper-case
for items that need to attract attention.

Maximum local density= 89.9% at row 9, column 8.
Average local density= 67.0%

The area with the highest local density is identified
... you can reduce local density by distributing the
characters as evenly as feasible over the entire
screen.

Total layout complexity= 8.02 bits
Layout complexity is high.

This means that the display items (labels and data) are
not well aligned with each other ... Horizontal complexity
can be reduced by starting items in fewer different
columns on the screen (that is, by aligning them verti
cally) .

The movement toward GUis with richer fonts and layout possibilities has
reduced interest in Tullis's metrics, but better analyses of layouts seem possi
ble (see Section 11.4). Evaluations based on formal user-task descriptions
using NGOMSL (Byrne et al., 1994) or simpler task sequences and frequen
cies (Sears, 1993; 1995) are possible. Task-dependent metrics are likely to be
more accurate, but the effort and uncertainty in collecting sequences and fre
quencies of tasks may discourage potential users.

Apple Inc.
Exhibit 1018

Page 197

5.5 Practitioner's Summary 179

Task-independent 1neasure1nent and evaluation tools can be easily applied
at low cost, early in the develop1nent process (Mahajan and Shneidern1.an,
1996). Simple n1.easures such as the nuinber of widgets per dialog box, widget
density, nonwidget areas, aspect ratio, and balance of top to bottom or left to
right are useful to gain smne idea of the designer's style, but they have lhn
ited value in detecting anmnalies. Reports on the top, bottom, left and right
1nargins, and the list of distinct colors and typefaces often produced unrea
sonable variations in four systen1.s developed using Visual Basic. Separate
tools to perform spell checking and to produce interface concordances were
helpful in revealing errors and inconsistencies. Software tools to check button
size, position, color, and wording also revealed inconsistencies that were pro
duced because 1nultiple Ine1nbers of design tean1.s failed to coordinate on a
co1nn1.on style. An e1npirical study with 60 users den1.onstrated that increased
variations in terminology-for exmnple, switching frorn search to browse to
query-slowed perfonnance thnes by 10 to 25 percent.

Web-page and web-site analyzers also offer designers sorne guidance.
Doctor HTML (http:/ /imagiware.cmn/RxHTML/)provides link and spell
checking; examines fonns, tables, and in<ages; and gives code evaluation
with comments such as this:

Did not find the required open and close HEAD tag. You should
open and close the HEAD tag in order to get consistent per
formance on all browsers. Found extra close STRONG tags in
this document. Please remove them.

5.5 Practitioner's Summary

There will always be a need to write some user interfaces with traditional
progra1nming tools, but the advantages of specialized user-interface soft
ware tools for designers and software engineers are large. They include an
order-of-1nagnitude increase in productivity, shorter development sched
ules, support for expert reviews and usability testing, ease in making
changes and ensuring consistency, better 1nanage1nent control, and reduced
training necessary for designers.

The profusion of current tools and the prmnises of improved tools
requires that managers, designers, and programmers stay infonned, and that
they make fresh choices for each project. This educational process can be
enlightening, since the benefits of in1.proved and appropriate tools are enor
mous if the right tools are selected (Hix and Schuhnan, 1991) (Box 5.2).

Fron1. the tool1naker' s viewpoint, there are still great opportunities to create
effective tools that handle more user-interface situations, that produce output
for multiple software and hardware platfonns, that are easier to learn, that are

Apple Inc.
Exhibit 1018

Page 198

180 Chapter 5 Software Tools

Box 5.2

Factors in choosing an:wng user-interface-building tools.

Widgets supported

• Windows and dialog boxes

• Pull-down or pop-up menus

• Buttons (rectangles, roundtangles, etc.)

• Radio buttons and switches

• Scroll bars (horizontal and vertical)

• Data-entry fields

• Field labels

• Boxes and separator lines

• Sliders, gauges, meters

Interface features

• Color, graphics, im.ages, anhnation, video

• Varying display size (low to high resolution)

• Sounds, music, voice input-output

• Mouse, arrow keys, touchscreen, stylus

Software architecture

• Prototype only, prototype plus application-programming support,
user-interface development environment

• Interface style (command language, menu, form fillin, or direct
manipulation)

• Levels and strength of user-interface independence

• Programming language (specialized, standard (C, Pascal, etc.), visual)

• Evaluation and documentation tools

• Easy interface with database, graphics, networking, spreadsheets, etc.

• Logging during testing and use

Managenrrentissues

• Number of satisfied users of the tool

• Supplier reliability and stability

• Cost

• Documentation, training, and technical support

• Project-management support

• Integration with existing tools and pro.cesses

Apple Inc.
Exhibit 1018

Page 199

5.6 Researcher's Agenda 181

1nore powerful, and that provide more useful and accurate evaluation. Exist
ing CASE tools could be expanded to include user-interface features.

5.6 Researcher's Agenda

The narrow focus of fonnal1nodels of user interfaces and specification lan
guages means that these 1nodels are beneficial for only s1nall components.
Scalable fonnal methods and autmn.atic checking of user-interface features
would be a major contribution. Innovative methods of specification involv
ing graphical constraints or visual progrmnming seem to be a natural1natch
for creating GUis. Improved software architectures are needed to ease the
burden during revision and maintenance of user interfaces. Cooperative
computing tools 1nay provide powerful authoring tools that enable multiple
designers to work together effectively on large projects. Other opportunities
exist to create tools for designers of interfaces in novel environ1nents using
sound, anilnation, video, and virtual reality, and 1nanipulating physical
devices as in flexible manufacturing systems or h01ne aut01nation. Other
challenges are to specify dynamic processes (gestural input), to handle con
tinuous input (datastreams from a sensor), and to synchronize activities (to
pop up a reminder box for 10 seconds, if a file has not been saved after 30
minutes of editing). As new interface styles emerge, there will always be a
need to develop new tools to facilitate their construction. Metrics and evalu
ation tools are still open topics for user-interface and website developers.
Specification by demonstration is an appealing notion (Myers, 1992), but
practical application remains elusive.

world Wide Web Resources www
User interface tools are widely promoted on the web by companies
and others. The World Wide Web is a great resource here because the
technology changes so rapidly that books are immediately out of
date. Online white papers, manuals, and tutorials are often effective
and enable contact with developers. An imaginative idea is to have
websites that will critique your website. Such online services are
likely to expand in the coming years.

http:/ /www.aw.com/DTUI

Apple Inc.
Exhibit 1018

Page 200

182 Chapter 5 Software Tools

References

Carey, Tom, The gift of good design tools. In Hartson, H. R. and Hix, D. (Editors),
Advances in Human-Computer Interaction, Volume II, Ablex, Norwood, NJ (1988),
175-213.

Byrne, Michael D., Wood, Scott D., Sukaviriya, Piyawadee "Noi,'' Foley, James D.,
and Kieras, David E., Automating interface evaluation, Proc. CHI '94 Conference
Human Factors in Computing Systems, ACM, New York (1994), 232-237.

Carr, David, Specification of interface interaction objects, Proc. CHI '94 Conference
Human Factors in Computing Systems, ACM, New York (1994), 372-378.

Chase, J.D., Schulman, RobertS., Hartson, H. Rex, and Hix, Deborah, Develop1nent
and evaluation of a taxonomical model of behavioral representation techniques,
Proc. CHI '94 Conference-Human Factors in Computing Systems, ACM, New York
(1994), 159-165.

Green, Thomas R. G. and Petre, Marian, Usability analysis of visual programming
environments: A "cognitive dimensions" framework, Journal of Visual Languages
and Computing, 7, (1996), 131-174.

Haret David, On visual formalisms, Communications of the ACM, 31,5 (May 1988),
514-530.

Hartson, H. Rex, Siochi, Antonio C., and Hix, Deborah, The UAN: User-oriented
representation for direct manipulation interface designs, ACM Transactions on
Information Systems, 8, 3 (July 1990), 181-203.

Hix, Deborah and Hartson, H. Rex, Developing User Interfaces: Ensuring Usability
Through Product and Process, John Wiley and Sons, New York (1993).

Hix, Deborah and Schulman, RobertS., Human-computer interface development
tools: A methodology for their evaluation, Communications of the ACM, 34, 3
(March 1991), 74-87.

Hudson, Scott E. and Mohamed, Shamim P., Interactive specification of flexible user
interface displays, ACM Transactions on Information Systems, 8, 3 (July 1990),
269-288.

Jacob, Robert J. K., An executable specification technique for describing
human-computer interaction. In Hartson, H. Rex (Editor), Advances in
Human-Computer Interaction, Volume I, Ablex, Norwood, NJ (1985), 211-242.

Mahajan, Rohit and Shneiderman, Ben, Visual and textual consistency checking
tools for graphical user interfaces, Dept. of Computer Science Tech Report
CS-TR-3639, University of Maryland, College Park, MD (1996). ·

Myers, Brad A., Demonstrational interfaces: A step beyond direct manipulation,
IEEE Computer, 25, 8 (August 1992), 61-73.

Myers, Brad A., User interface software tools, ACM Transactions on Computer-Human
Interaction, 2, 1 (March 1995), 64-103.

Olsen, Jr., Dan R., User Interface Management Systems: Models and Algorithms, Morgan
Kaufmann Publishers, San Mateo, CA (1991).

Olsen, Jr., Dan R. and Halversen, Bradley W., Interface usage measurement in a User
Interface Management System, Proc. ACM SIGGRAPH Symposium on User Inter
face Software and Technology, ACM Press, New York (1988), 102-108.

Apple Inc.
Exhibit 1018

Page 201

5.6 Researcher's Agenda 183

Ousterhout, John, Tel and the Tk Toolkit, Addison-Wesley, Reading, MA (1994).

Reisner, Phyllis, Formal grammar and design of an interactive system, IEEE Transac
tions on Software Engineering, SE-5, (1981), 229-240.

Shneiderman, Ben, Multi-party grammars and related features for defining interac
tive systems, IEEE Systems, Man, and Cybernetics, SMC-12, 2 (March-April1982),
148-154.

Sears, Andrew, Layout appropriateness: Guiding user interface design with simple
task descriptions, IEEE Transactions on Software Engineering, 19, 7 (1993), 707-719.

Sears, Andrew, AIDE: A step towards metrics-based interface development tools, Proc.
UIST '95 User Interface Software and Technology, ACM, New York (1995), 101-110.

Tullis, Thomas, A system for evaluating screen formats: research and application. In
Hartson, H. Rex and Hix, D. (Editors), Advances in Human-Computer Interaction,
Volume II, Ablex, Norwood, NJ (1988), 214-286.

Wasserman, Anthony I., and Shewmake, David T., The role of prototypes in the User
Software Engineering (USE) methodology. In Hartson, Rex (Editor), Advances in
Human-Computer Interaction, Volume I, Ablex, Norwood, NJ (1985), 191-210.

Wellner, Pierre D., Statemaster: A UIMS based on statecharts for prototyping and tar
get implementation, Proc. CHI '89 Conference-Human Factors in Computing Systems,
ACM, New York (1989), 177-182.

Apple Inc.
Exhibit 1018

Page 202

Mark Kostabi, Computer Cafe (Uploading the Future), 1996

L--

Apple Inc.
Exhibit 1018

Page 203

Direct Manipulation and
Virtual Environtnents

Leibniz sought to make the form of a sy1nbol reflect its content. "In signs," he wrote,
"one sees an advantage for discovery that is greatest when they express the exact
nature of a thing briefly and, as it were, picture it; then, indeed, the labor of thought is
wonderfully diminished."

Frederick Kreiling, "Leibniz,"
Scientific American, May 1968

Apple Inc.
Exhibit 1018

Page 204

LlLJ
r

r

r

~ Chapter 6 l

1
6.1 Introduction

1
6.2 Examples of Direct-Manipulation

Systems
6.3 Explanations of Direct Manipulation
6.4 Visual Thinking and Icons

1
6.5 Direct-Manipulation Programming 1
6.6 Home Automation
6.7 Remote Direct Manipulation
6.8 Virtual Environments

l6.9 Practitioner's Summary J
6.10 Researcher's Agenda

v v v

6.1 Introduction

Certain interactive systems generate a glowing enthusiasm among users that
is in marked contrast with the more com1non reaction of grudging accep
tance or outright hostility. The enthusiastic users report the following posi
tive feelings:

• Mastery of the interface

• Competence in performing tasks

• Ease in learning the system originally and in assimilating advanced
features

• Confidence in the capacity to retain mastery over time

Apple Inc.
Exhibit 1018

Page 205

6.2 Examples of Direct-Manipulation Systems 187

• Enjoyment in using the system

• Eagerness to show off the system to novices

• Desire to explore more powerful aspects of the system

These feelings convey an image of the truly pleased user. The central ideas in
the systems that inspire such delight are visibility of the objects and actions of
interest; rapid, reversible, incre1nental actions; and replacement of complex
command-language syntax by direct manipulation of the object of interest
(Shneiderman, 1983). The objects-actions interface (OAI) 1nodel provides a
sound foundation for understanding direct manipulation since it steers design
ers to represent the task domain objects and actions while 1ninimizing the inter
face concepts and the syntax-me1norization load. Direct-manipulation thinking
has spawned the new strategies of information visualization (see Chapter 15)
that present thousands of objects on the screen with dynamic user controls.

6.2 Examples of Direct-Manipulation Systems

No single system has every admirable attribute or design feature-such a
system might not be possible. Each of the following examples, however, has
sufficient nu1nbers of them to win the enthusiastic support of many users.

My favorite exmnple of using direct manipulation is driving an automo
bile. The scene is directly visible through the front window, and performance
of actions such as braking or steering has become common knowledge in our
culture. To turn left, the driver simply rotates the steering wheel to the left.
The response is immediate and the scene changes, providing feedback to
refine the turn. Imagine trying to turn by issuing a command LEFT 30
DEGREES and then another command to see the new scene; but that is the
level of operation of many office-automation tools of today! Another well
established example is air-traffic controt in which users see a representation
of the airspace with brief data blocks attached to each plane. Controllers
move a trackball to point at specific planes and to perform actions.

6.2.1 Command-line versus display editors versus word processors

It may be hard for new users of word processors to believe, but in the early
1980s, text editing was done with line-oriented command languages. Users
might see only one line at a time and typed commands were needed to move
the view window or to make any changes. The users of novel full-page display
editors were great advocates of their systems. A typical comment was, "Once
you've used a display editor, you will never want to go back to a line editor-

Apple Inc.
Exhibit 1018

Page 206

188 6 Direct Manipulation and Virtual Environments

Hope
'Hope' is the tiring with feathers
That perches in the soul
And sings the hmes without the \Vorcls
And never stops - at all.

Emily Dickinson, American poet, 1830-86.
Amherst, l'vlA

Figure 6.1

An example of a WYSIWYG (What You See Is What You Get) editor: Microsoft Word
for Office 97. (Used with permission of Microsoft Corp., Redmond, WA.)

you'll be spoiled." Similar comments came from users of early personal-com
puter word processors, such as WORDSTAR, or display editors such as emacs
or vi (for visual editor) on the Unix system. A beaming advocate called emacs
"the one true editor." In these systems users viewed up to a full screen of text
and could edit by using backspace or insert directly by typing.

Researchers found that performance was improved and training times
were reduced with display editors so there was evidence to support the
enthusiasm of display-editor devotees. Furthermore, office-automation eval
uations consistently favored full-page display editors for secretarial and exec
utive use. There are some advantages to command-language approaches,
such as that history keeping is easier, 1nore flexible markup languages are
available (for exan1ple, SGML), macros tend to be more powerful, and some
tasks are simpler to express (for example, change all italics to bold). Strategies
for accommodating these needs are finding their way into modern direct
manipulation word processors.

By the early 1990s, what you see is what you get (WYSIWYG) word proces
sors had become standard. Microsoft Word has become dominant on the
Macintosh and IBM PC compatibles, with Lotus Word Pro and Corel's
WordPerfect taking second place (Fig. 6.1). The advantages of WYSIWYG
word processors include the following:

Apple Inc.
Exhibit 1018

Page 207

6.2 Examples of Direct-Manipulation Systems 189

• Display a full page of text Showing 20 to 60 lines of text simultaneously
gives the reader a clearer sense of context for each sentence, while per
mitting simpler reading and scanning of the document. By contrast,
working with the one-line-at-a-tilne view offered by line editors is like
seeing the world through a narrow cardboard tube. Smn_e large dis
plays can support two full pages of text, set side by side.

• Display the document in the fonn that it will appear when the final printing is
done Eliminating the clutter of formatting com1nands also simplifies
reading and scanning of the document. Tables, lists, page breaks,
skipped lines, section headings, centered text, and figures can be
viewed in their final form. The annoyance and delay of debugging the
format con:nnands are ahnost elilninated because the errors are usually
apparent immediately.

• Show cursor action to the user Seeing an arrow, underscore, or blinking
box on the screen gives the operator a clear sense of where to focus
attention and to apply action.

• Control cursor motion through physically obvious and intuitively natural
means Arrow keys or cursor-1notion devices-such as a mouse, joy
stick, or graphic tablet-provide natural physical mechanisms for mov
ing the cursor. This setup is in marked contrast to commands, such as
UP 6, that require an operator to convert the physical action into a cor
rect syntactic form that may be difficult to learn and hard to recall, and
thus may be a source of frustrating errors.

• Use labeled icons for actions Most word processors have labeled icons in
a toolbar for frequent actions. These buttons act as a permanent menu
selection display to re1nind users of the features and to provide rapid
selection.

• Display the results of an action immediately When the user presses a but
ton to move the cursor or center text, the results are shown immedi
ately on the screen. Deletions are apparent immediately: the character,
word, or line is erased, and the remaining text is rearranged. Similarly,
insertions or text movements are shown after each keystroke or func
tion-key press. In contrast, with line editors, users must issue print or
display commands to see the results of changes.

• Provide rapid response and display Most display editors operate at high
speed; a full page of text appears in a fraction of a second. This high
display rate coupled with short response time produces a satisfying
sense of power and speed. Cursors can be moved quickly, large
amounts of text can be scanned rapidly, and the results of actions can
be shown almost instantaneously. Rapid response also reduces the
need for additional commands and thereby simplifies design and
learning. Line editors with slow display rates and long response times
bog down the user. Speeding up line editors would add to their attrac-

Apple Inc.
Exhibit 1018

Page 208

190 6 Direct Manipulation and Virtual Environments

tiveness, but they would still lack such features as direct overtyping,
deletion, and insertion.

• Offer easily reversible actions When users enter text, they repair an
incorrect keystroke by merely backspacing and overstriking. They can
make simple changes by moving the cursor to the problem area and
overstriking, inserting, or deleting characters, words, or lines. A useful
design strategy is to include natural inverse operations for each opera
tion (for example, to increase or decrease type sizes). An alternative
offered by many display editors is a simple UNDO command to return
the text to the state that it was in before the previous action or action
sequence. The easy reversibility reduces user anxiety about making a
mistake or destroying the file.

So many of these issues have been studied empirically that someone joked
that the word processor is the white rat for researchers in human-computer
interaction. Switching metaphors, for commercial developers, we might say
the word processor is the root for many technological sprouts:

• Integration of graphics, spreadsheets, animations, photographs, and so
on is done in the body of a document. Advanced designs, such as the
OpenDoc, even permit "hot links" so that, if the graphic or spreadsheet
is changed, the copy in the document also will be changed.

• Desktop-publishing software produces sophisticated printed formats with
multiple columns and allows output to high-resolution printers. Multi
ple fonts, grayscales, and color permit preparation of high-quality doc
uments, newsletters, reports, newspapers, or books. Examples include
Adobe PageMaker and QuarkXPress.

• Slide-presentation software produces color text and graphic layouts for
use as overhead transparencies, 35-millimeter slides, or directly from
the computer with a large-screen projector to allow animations.

• Hypermedia environments with selectable buttons or embedded menu
items allow users to jump from one article to another. Links among doc
uments, bookmarks, annotations, and tours can be added by readers.

• Improved macro facilities enable users to construct, save, . and edit
sequences of frequently used actions. A related feature is a style sheet
that allows users to specify and save a set of options for spacing, fonts,
margins, and so on. Another feature is the saving of templates that
allows users to take the formatting work of colleagues as a starting point
for their own documents. Most word processors come with dozens of
standard templates for business letters, newsletters, or brochures.

• Spell checkers and thesauri are standard on most full-featured word
processors. Spell checking can also be set to function while the user is

Apple Inc.
Exhibit 1018

Page 209

6.2 Examples of Direct-Manipulation Systems 191

typing, or to make automatic changes for com1non mistakes, such as
changing "teh" to "the."

• Grammar checkers offer users comments about potential proble1ns in
writing style, such as use of passive voice, excessive use of certain
words, or lack of parallel construction. Some writers-both novices
and professionals-appreciate the comments and know that they can
decide whether to apply the suggestions. Critics point out, however,
that the advice is often inappropriate and therefore wastes time.

111 Document assemblers allow users to compose complex documents, such
as contracts or wills, from standard paragraphs using appropriate lan
guage for 1nales or females; citizens or foreigners; high, 1nedium, or
low income earners; renters or ho1ne owners, and so on.

6.2.2 The VisiCalc spreadsheet and its descendants

The first electronic spreadsheet, VisiCalc, was the product of a Harvard Busi
ness School student, Dan Bricklin, who became frustrated when trying to
carry out repetitious calculations for a graduate course in business. He and a
friend, Bob Frankston, built an "instantly calculating electronic worksheet"
(as the user manual described it) that permitted computation and immediate
display of results across 254 rows and 63 columns.

The spreadsheet can be programmed so that column 4 displays the sum of
columns 1 through 3; then, every time a value in the first three colu1nns
changes, the fourth column changes as well. Complex dependencies among
manufacturing costs, distribution costs, sales revenue, com1nissions, and
profits can be stored for several sales districts and for various months, so that
the effects of changes on profits can be seen immediately.

This simulation of an accountant's spreadsheet makes it easy for
novices to comprehend the objects and permissible actions. Spreadsheet
users can try out alternate plans and see the effects on sales or profit. The
distributor of VisiCalc explained the syste1n' s appeal as "it jumps/' refer
ring to the user's delight in watching the propagation of changes across
the screen.

Cmnpetitors to VisiCalc emerged quickly; they made attractive improve
ments to the user interface and expanded the tasks that were supported.
LOTUS 1-2-3 dominated the market in the 1980s (Fig. 6.2), but the current
leader is Microsoft's Excel (Fig. 6.3), which has a large number of features
and specialized additions. Excel and other modern spreadsheets offer inte
gration with graphics, three-dimensional representations, multiple win
dows, and database features. The features are invoked easily with command
menus or toolbars, and can be used within powerful macro facilities.

Apple Inc.
Exhibit 1018

Page 210

192 6 Direct Manipulation and Virtual Environments

Figure 6.2

Early version of Lotus 1-2-3,
the spreadsheet program
that was dominant through
the 1980s. (Printed with
permission of Lotus
Develop1nent Corporation,
Cambridge, MA.)

6.2.3 Spatial data management

In geographic applications, it seems natural to give a spatial representation
in the fonn of a map that provides a fan1iliar Inodel of reality. The developers
of the prototype Spatial Data Management System (Herot, 1980; 1984)
attribute the basic idea to Nicholas Negroponte of MIT. In one early scenario,
the user was seated before a color-graphics display of the world and could

~---::::-----r-:~~~~----1,
1-1002 ' 1

1:2.310 .

1

.

+9~g~ .. , 4~~g •· , ' ' •
. 6~\!Elrti?illg 1-8752 , 1500 1500 1500 4500 4500 4500' 1

· '~mph;~;T;~;,
2
_
1
002 '~~,;?&ol;;;,~~~~~~,;~o~ ~~~~~6,%~1i~o;$~~i~~~'J

.. .. supplies 2~2316 .. 2bbi:F 2bcib 2bdi::i: 60obT .. 6o6o 6666! .
............... E:qiJiPI!.JElllt 2-2543 8000' 8000 BODO' 24000' 24000 24000:

Ad~::;i~i~~s 1~7~~ ~~~~: .. ~~~.~ .. ~~gg 2*~~gf 2~~gg 2;~g~,,~r
1ss~zooo7~--~-·~-------·---·'------··----·:c....·-·--·----·J:U. l ··f!Jp,

, . , , . , ,, I ,·r---:.y------'·--'-'· ·---
l ~ ···' r INwMr:=J '1

Figure 6.3

Microsoft Excel spreadsheet for Office 97. (Used. with permission of Microsoft Corp.,
Redmond, WA.)

Apple Inc.
Exhibit 1018

Page 211

6.2 Examples of Direct-Manipulation Systems 193

zoo1n in on the Pacific Ocean to see n'larkers for convoys of military ships
(Fig. 6.4). By 1noving a joystick, the user caused the screen to be filled with
silhouettes of individual ships; zooming displayed detailed data, such as,
ulthnately, a full-color picture of the captain.

In another scenario, icons representing such different aspects of a cor
poration as personnel, an organizational chart, travel information, pro
duction data, and schedules were shown on a screen. By moving the joystick
and zooming in on objects of interest, the user could travel through complex
information spaces (!-spaces) to locate the iten'l of interest. A building floorplan
showing departments might be displayed; when a departrnent was chosen,
individual offices beca1ne visible. As the cursor was moved into a romn,
details of the occupant appeared on the screen. If users chose the wrong romn,
they n'lerely backed out and tried another. The lost effort was miniinal, and
there was no stig1na attached to error. The recent Xerox PARC Information
Visualizer is an ensen'lble of tools that pennit three-di1nensional anilnated
explorations of buildings, cone-shaped file directories, organization charts, a
perspective wall that puts featured ite1ns up front and centered, and several
two- and three-dilnensional infonnation layouts (Robertson et al., 1993).

ArcView (ESRI, Inc.) is a widely used geographic-infonnation syste1n that
offers rich, layered databases of map-related infon-p.ation (Fig. 6.5). Users can
zoo1n in on areas of interest, select the kinds of infonnation they wish to
view (roads, population density, topography, rainfall, political boundaries,
and much 1nore), and do lilnited searches. Much silnpler but widely popular
highway maps are available for the entire United States on a single CD
ROM. Map servers on the World Wide Web are increasingly popular for tak
ing tours of cities, checking weather reports, or buying a hmne.

The success of a spatial data-manage1nent syste1n depends on the skill of
the designers in choosing icons, graphical representations, and data layouts
that are natural and comprehensible to the user. The joy of zooming in and
out, or of gliding over data with a joystick, entices even anxious users, who
quickly demand additional power and data.

6.2.4 Video games

For many people, the most exciting, well-engineered, and comn'lercially suc
cessful application of the concepts that we have been discussing lies in the
world of video games (Provenzo, 1991). The early but simple and popular
game PONG required the user to rotate a knob that 1noved a white rectangle
on the screen. A white spot acted as a ping-pong ball that ricocheted off the
wall and had to be hit back by the movable white rectangle. Users developed
speed and accuracy in placing the "paddle" to keep the increasingly speedy
ball from getting past, while the computer speaker e1nitted a ponging sound

Apple Inc.
Exhibit 1018

Page 212

194 6 Direct Manipulation and Virtual Environments

Figure 6.4

The Spatial Data Management System. Three displays to show multiple levels of
detail or related information. The user moves a joystick to traverse information
spaces or to zoom in on a map to see more details about ship convoys. (Courtesy of
the Computer Corporation of America, Cambridge, MA.)

Apple Inc.
Exhibit 1018

Page 213

6.2 Examples of Direct-Manipulation Systems 195

Figure 6.5

Arc View® geographic information system (GIS), which provides cmnprehensive
mapping functions and management of related data. This n1.ap of the northeast
United States shows color coding by population density for each zip code, ethnic
makeup of large cities, and a photo of New York City. (Graphic image supplied cour
tesy of Environmental Systems Research Institute, Inc., Redlands, CA. Copyright
1996.)

when the ball bounced. Watching someone else play for 30 seconds is all the
training that a person needs to become a competent novice, but 1nany hours
of practice are required to become a skilled expert.

Later games, such as Missile Com1nand, Donkey Kong, Pac Man, Teln
pest, TRON, Centipede, or Space Invaders, were much more sophisticated in
their rules, color graphics, and sound effects. Recent games include multi
person competitions in tennis or karate, three-dimensional graphics, still
higher resolution, and stereo sound. The designers of these games provide
stimulating entertainment, a challenge for novices and experts, and many
intriguing lessons in the human factors of interface design-somehow, they
have found a way to get people to put quarters in the sides of computers.
Forty-million Nintendo ga1ne players reside across 70 percent of those Amer
ican households that include 8 to 12 year olds. Brisk sales of the Mario series
testify to the games' strong attraction, in marked contrast to the anxiety
about and resistance to office-autmnation equipment that many users have

Apple Inc.
Exhibit 1018

Page 214

196 6 Direct Manipulation and Virtual Environments

Figure 6.6

Home videogames are a huge success and employ advanced graphics hardware for rapid
movement in rich three-dimensional worlds. The Nintendo 64 player can be used with a
variety of games including the popular Super Mario® series(© 1997 Nintendo. Images
courtesy of Nintendo of America Inc.)

shown (Fig. 6.6). The SEGA game player, Nintendo 64, and Sony Playstation
have brought powerful three-dimensional graphics hardware to the home
and have created a remarkable international market. Small hand-held game
devices, such as the Game Boy®, provide portable fun for kids on the street
or executives in their 30,000-foot-high offices.

These games provide a field of action that is visual and compelling. The
commands are physical actions-such as button presses, joystick motions, or
knob rotations-whose results are shown immediately on the screen. There
is no syntax to remember, and therefore there are no syntax-error messages.
If users move their spaceships too far left, then they merely use the natural
inverse operation of moving back to the right. Error messages are unneces
sary, because the results of actions are obvious and can be reversed easily.
These principles can be applied to office automation, personal computing, or
other interactive environments.

Most games continuously display a numeric score so that users can mea
sure their progress and compete with their previous performance, with
friends, or with the highest scorers. Typically, the 10 highest scorers get to
store their initials in the game for public display. This strategy provides
one form of positive reinforcement that encourages mastery. Malone's
(1981), Provenzo's (1991), and our studies with elementary-school children

Apple Inc.
Exhibit 1018

Page 215

6.2 Examples of Direct-Manipulation Systems 197

have shown that continuous display of scores is extremely valuable.
Machine-generated feedback-such as "Very good" or "You're doing
great!"-is not as effective, since the san1.e score carries different 1neanings
for different people. Most users prefer to make their own subjective judg
ments and perceive the machine-generated messages as an annoyance and
a deception.

Many educational gmnes use direct manipulation effectively. Elemen
tary- or high-school students can learn about urban planning by using Sim
City and its variants, which show urban environments visually and let
students build roads, airports, housing, and so on by direct-manipulation
actions.

The esthetically appealing MYST and its successor Riven (Broderbund)
have drawn widespread approval even in some literary circles, while the
more violent but wildly successful DOOM series has provoked controversy
over its psychological effects on teens. Studying game design is fun, but
there are limits to the applicability of the lessons. Garne players seek enter
tainment and focus on the challenge of 1nastery, whereas applications users
focus on their task and 1nay resent too many playful distractions. The ran
dOln events that occur in most games are 1neant to challenge the user; in
nongame designs, however, predictable syste1n behavior is preferred. Gan1.e
players are engaged in competition with the system or with other players,
whereas applications-systems users prefer a strong internal locus of control,
which gives them the sense of being in charge.

6.2.5 Computer-aided design

Many computer-aided design (CAD) systems for automobiles, electronic cir
cuitry, architecture, aircraft (see Fig. 1.3), or slide layout (Fig. 6.7) use princi
ples of direct manipulation. The operator may see a circuit sche1natic on the
screen and, with mouse clicks, be able to move resistors or capacitors into or
out of the proposed circuit. When the design is complete, the computer can
provide information about current, voltage drops, and fabrication costs, and
warnings about inconsistencies or manufacturing problems. Similarly, news
paper-layout artists or automobile-body designers can easily try multiple
designs in minutes, and can record promising approaches until they find
even better ones.

The pleasures in using these systems stem fr01n the capacity to manipu
late the object of interest directly and to generate multiple alternatives
rapidly. Some systems have complex c01nmand languages; most have
moved to using cursor action and graphics-oriented commands.

Related applications are computer-aided manufacturing (CAM) and process
control. Honeywell's process-control system provides the manager of an oil
refinery, paper 1nill, or power-utility plant with a colored schematic view of

Apple Inc.
Exhibit 1018

Page 216

198 6 Direct Manipulation and Virtual Environments

Figure 6.7

Presentation graphics or slide programs, such as Microsoft's PowerPoint for
Office 97, have multiple toolbars and palettes that support a direct-manipulation
style of selecting objects, moving them, and resizing them. (Used with permission
of Microsoft Corp., Redmond, WA.)

the plant. The schematic may be displayed on eight displays or on a large
wall-sized map, with red lines indicating a sensor value that is out of normal
range. With a single click, the operator can get a more detailed view of the
troubling component; with a second click, the operator can examine individ
ual sensors or can reset valves and circuits.

A basic strategy for this design is to eliminate the need for complex com
mands that the operator would need to recall during a once-a-year emer
gency. The visual overview provided by the schematic facilitates problem
solving by analogy, since the linkage between the screen representations and
the plant's temperatures or pressures is so close.

Apple Inc.
Exhibit 1018

Page 217

6.2 Examples of Direct-Manipulation Systems 199

6.2.6 Office automation

Designers of advanced office-automation systems used direct-manipulation
principles. The pioneering Xerox Star (Smith et al., 1982) offered sophisti
cated text-formatting options, graphics, multiple fonts, and a high-resolu
tion, cursor-based user interface (Fig. 6.8). Users could move (but not drag) a
document icon to a printer icon to generate a hardcopy printout. The Apple
Lisa system elegantly applied many of the principles of direct manipulation;
although it was not a commercial success, it laid the groundwork for the suc
cessful Macintosh. The Macintosh designers drew from the Star and Lisa
experiences, but made 1nany simplifying decisions while preserving ade
quate power for users (Fig. 6.9). The hardware and software designs sup
ported rapid and continuous graphical interaction for pull-down menus,
window manipulation, editing of graphics and text, and dragging of icons.
Variations on the Macintosh appeared soon afterward for other popular per
sonal computers, and by now Windows 95 dmninates the office-automation
market (Color Plate 1). The Windows 95 design is still a close relative of the
Macintosh design, and both are candidates for substantial improvements in
window management (Chapter 13), with simplifications for novices and
increased power for sophisticated users.

Studies of users of direct-manipulation interfaces have confirmed the
advantages for at least some users and tasks. In a study of 30 novices, MS
DOS commands for creating, copying, renaming, and erasing files were con
trasted with Macintosh direct-manipulation actions. After user training and
practice, average task times were 5.8 minutes versus 4.8 minutes, and aver
age errors were 2.0 versus 0.8 (Margono and Shneiderman, 1987). Subjective
preference also favored the direct-manipulation interface. In a study of a
command-line versus a direct-manipulation database interface, 55 "com
puter naive but keyboard literate" users made more than twice as many
errors with the com1nand-line format. No significant differences in time were
found (Morgan et al., 1991). These users preferred the direct-manipulation
interface overall, and rated it as more stimulating, easier, and more ade
quately powerful. Both reports caution about generalizing their results to
more experienced users. A study with novices and experienced users was
cosponsored by Microsoft and Zenith Data Systems (Temple, Barker, and
Sloane, Inc., 1990). Although details about subjects, interfaces, and tasks
were not reported, the results showed ilnproved productivity and reduced
fatigue for experienced users with a GUI, as compared with a character
based user interface. The benefits of direct manipulation were confirmed in
other studies (Benbasat and Todd, 1993); one such study also demonstrated
that the advantage was greater for experienced than for novice users (Ulich

· et al., 1991).

Apple Inc.
Exhibit 1018

Page 218

200 6 Direct Manipulation and Virtual Environments

:.u ·=· ~ "' '" ~

Figure 6.8

F?. •::>
:: -

0 1-:

i' ! :~

[J

C-:

·=> ·:•)
t

The Xerox Star 8010 with the ViewPoint system enables users to create documents
with multiple fonts and graphics. This session shows the Text Frame Properties
sheet over sample bar charts, with a document in the background and many desktop
icons available for selection. (Prepared by Steve Miller, University of Maryland.)

Apple Inc.
Exhibit 1018

Page 219

6.2 Examples of Direct-Manipulation Systems 201

lasso +- selection

scroll +-text §-oobocd"
+- spray paint line & border } width,, m~ltip"

brush-> +-pencil copy spacmg

lines-> -... g +- eraser

D ~

hollow
0 a

filled
shapes 0 ~ shapes

<::::?

Figure 6.9

The original Apple Macintosh MacPaint. This program offers a command menu on
the top, a menu of action icons on the left, a choice of line thicknesses on the lower
left, and a palette of texture on the bottom. All actions can be accomplished with
only the mouse. (Photo courtesy of Apple Computer, Inc., Cupertino, CA)

6.2.7 Further examples of direct manipulation

The trick in creating a direct-manipulation system is to come up with an
appropriate representation or 1nodel of reality. Some designers may find it
difficult to think about infonnation problems in a visual form; with practice,
however, they may find it more natural. With many applications, the jump
to visual language may be difficult; later, however, users and designers can
hardly imagine why anyone would want to use a complex syntactic notation
to describe an essentially visual process. In fact, it is hard to think of new
command languages developed after 1990. It is hard to conceive of learning
the commands for the vast nu1nber of features in modern word processors,
drawing programs, or spreadsheets, but the visual cues, icons, menus, and
dialog boxes make it possible for even intennittent users to succeed.

Several designers applied direct manipulation using the metaphor of a
stack of cards to portray a set of addresses, telephone numbers, events, and
so on. Clicking on a card brings it to the front, and the stack of cards moves to
preserve alphabetic ordering. This simple card-deck metaphor, combined
with other notions (Heckel, 1991) led to Bill Atkinson's innovative develop
ment of HyperCard stacks in 1987 (see Section 15.4). Billed as a way to "cre
ate your own applications for gathering, organizing, presenting, searching,

Apple Inc.
Exhibit 1018

Page 220

202 6 Direct Manipulation and Virtual Environments

and customizing information," HyperCard quickly spawned variants, such
as SuperCard and ToolBook. Each has a scripting langu.age to enable users to
create appealing graphics applications.

Direct-manipulation checkbook-maintenance and checkbook-searching
interfaces, such as Quicken (Intuit, Inc.) display a checkbook register with
labeled colu1nns for check nu1nber, date, payee, and amount. Changes can be
made in place, new entries can be n1.ade at the first blank line, and a check
Inark can be made to indicate verification against a Inonthly report or bank
statement. Users can search for a particular payee by filling in a blank payee
field and then typing a ? .

Why not have web-based airline-reservations syste1ns show the user a
n1.ap and proinpt for cursor Inotion to the departing and arriving cities? Then
the user can select the date frmn a calendar and a time from a clock. Showing
the seating plan of the plane on the screen, with a diagonal line to indicate an
already-reserved seat, would enable seat selection.

"Direct manipulation" is an accurate description of the program1ning of
certain industrial robot tools. The operator holds the robot "hand" and
guides it through a spray painting or welding task while the controlling cmn
puter records every action. The control computer can then operate the robot
autmnatically, repeating the precise action as 1nany tilnes as is necessary.

Why not teach students about polynomial equations by letting the1n 1nove
sliders to set values for the coefficients and watch how the graph changes,
where they-axis intercept occurs, or how the derivative equation reacts. Siln
ilarly, direct 1nanipulation of sliders for red, green, and blue is a satisfying
way to explore color space. Slider-based dynmnic queries are a powerful tool
for information exploration (see Section 15.4).

Direct manipulation has the power to attract users because it is compre
hensible, rapid, and even enjoyable. If actions are silnple, reversibility is
ensured, and retention is easy, then anxiety recedes, users feel in control, and
satisfaction flows in.

6.3 Explanations of Direct Manipulation

Several authors have attempted to describe the cmnponent principles of
direct manipulation. An imaginative and early interactive system designer,
Ted Nelson (1980), perceived user excitement when the interface was con
structed by what he calls the principle of virtuality-a representation of reality
that can be manipulated. Rutkowski (1982) conveyed a similar concept in his
principle of transparency: "The user is able t.o apply intellect directly to the
task; the tool itself seems to disappear." Heckel (1991) laments that "Our

Apple Inc.
Exhibit 1018

Page 221

6.3 Explanations of Direct Manipulation 203

instincts and training as engineers encourage us to think logically instead of
visually, and this is counterproductive to friendly design." His description is
in hannony with the popular notions of logical symbolic sequential left
brain and the visual artistic all-at-once right-brain problem.-solving styles.

Hutchins et al. (1986) review the concepts of direct manipulation and offer
a thoughtful decomposition of concerns. They describe the "feeling of
involvement directly with a world of objects rather than of cmnm.unicating
with an intermediary," and clarify how direct n1.anipulation breaches the gulf
of execution and the gulf of evaluation.

These writers and others (Ziegler and Fahnrich, 1988; Thiinbleb:ft 1990;
Phillips and Apperle:ft 1991; Frohlich, 1993) support the recognition that a new
fonn of interactive systen1. had en1.erged. Much credit also goes to the individual
designers who created systems that exe1nplify aspects of direct manipulation.

Another perspective on direct 1nanipulation con1.es fron1. the psychology
literature on problem-solving and learning research. Suitable representations of
proble1ns have been clearly shown to be critical to solution finding and to
learning. Polya (1957) suggests drawing a picture to represent mathematical
proble1ns. This approach is in hannony with Maria Montessori's teaching
1nethods for children (Montessori, 1964). She proposed use of physical
objects, such as beads or wooden sticks, to convey such n1.athematical princi
ples as addition, multiplication, or size cmnparison. The durable abacus is
appealing because it gives a direct-1nanipulation representation of numbers.

Bruner (1966) extended the physical-representation idea to cover polyno
lnial factoring and other 1nathen1.atical principles. Carroll, Thmnas, and Mal
hotra (1980) found that subjects given spatial representation were faster and
more successful in proble1n solving than were subjects given an isomorphic
problem with a te1nporal representation. Si1nilarly, Te'eni (1990) found that
the feedback in direct-manipulation designs was effective in reducing users'
logical errors in a task requiring statistical analysis of student grades. The
advantage appears to stem from having the data entry and display com
bined in a single location on the display.

Physical, spatial, or visual representations also appear to be easier to retain
and 1nanipulate than are textual or nu1neric representations (Arnheim, 1972;
McKim, 1980). Wertheimer (1959) found that subjects who 1nemorized the for
mula for the area of a parallelogram, A= h x b, rapidly succeeded in doing such
calculations. On the other hand, subjects who were given the structural under
standing of cutting off a triangle frmn one end and placing it on the other end
could more effectively retain the knowledge and generalize it to solve related
problems. In plane-geometry theorem proving, spatial representation facili
tates discovery of proof procedures over a strictly axiomatic representation of
Euclidean geometry. The diagram provides heuristics that are difficult to
extract frmn the aximns. Similarly, students are often encouraged to solve alge
braic word proble1ns by drawing pictures to represent those problems.

Apple Inc.
Exhibit 1018

Page 222

204 6 Direct Manipulation and Virtual Environments

Papert's (1980) LOGO language created a mathematical microworld in
which the principles of geometry are visible. Based on the Swiss psycholo
gist Jean Piaget' s theory of child developn1ent, LOGO offers students the
opportunity to create line drawings easily with an electronic turtle displayed
on a screen. In this environment, users derive rapid feedback about their pro
grams, can determine what has happened easily, can spot and repair errors
quickly, and can gain satisfaction from creative production of drawings.
These features are all characteristic of a direct-manipulation environn"lent.

6.3.1 Problems with direct manipulation

Spatial or visual representations are not necessarily an ilnprove1nent over
text, because they may be too spread out, causing off-page connectors on
paper or tedious scrolling on displays. In professional programming, use of
high-level flowcharts and database-sche1na diagrams can be helpful for
smne tasks, but there is a danger that they will be confusing. Silnilarly,
direct-manipulation designs may consume valuable screen space and thus
force valuable information offscreen, requiring scrolling or multiple actions.
Studies of graphical plots versus tabular business data and of flowcharts
versus program text de1nonstrate advantages for graphical approaches
when pattern-recognition tasks are relevant, but disadvantages when the
graphic gets too large and the tasks require detailed information. For experi
enced users, a tabular textual display of 50 document names may be more
appropriate than only 10 graphic document icons with the names abbrevi
ated to fit the icon size.

A second problem is that users must learn the meaning of components of
the visual representation. A graphic icon may be meaningful to the designer,
but may require as much or more learning tilne than a word. Some airports
that serve multilingual com1nunities use graphic icons extensively, but the
meanings of these icons may not be obvious. Similarly, some computer ter
minals designed for international use have icons in place of nmnes, but the
meaning is not always clear. Icons with titles that appear when the cursor is
over them offer only a partial solution.

A third problem is that the visual representation may be misleading.
Users may grasp the analogical representation rapidly, but then may draw
incorrect conclusions about permissible actions. Users may overestilnate or
underestimate the functions of the computer-based analogy. Ample testing
must be carried out to refine the displayed objects and actions and to mini
mize negative side effects.

A fourth problem is that, for experienced typists, taking your hand off the
keyboard to move a mouse or point with a finger 1nay be slower than typing
the relevant command. This problem is especially likely to occur if the user is
familiar with a compact notation, such as arithmetic expressions, that is easy

Apple Inc.
Exhibit 1018

Page 223

6.3 Explanations of Direct Manipulation 205

to enter fro1n a keyboard, but that 1nay be more difficult to select with a
mouse. The keyboard remains the 1nost effective direct-manipulation device
for certain tasks.

Choosing the right objects and actions is not necessarily an easy task. Sim
ple metaphors, analogies, or 1nodels with a minimal set of concepts are a
good starting point. Mixing 1netaphors frmn two sources may add cmnplex
ity that contributes to confusion. The e1notional tone of the 1netaphor should
be inviting rather than distasteful or inappropriate (Carroll and Thomas,
1982)-sewage-disposal systems are an inappropriate metaphor for elec
tronic-message systems. Since the users 1nay not share the m.etaphor, anal
ogy, or conceptual 1nodel with the designer, a1nple testing is required. For
help in training, an explicit statement of the n:wdet of the assumptions, and
of the limitations is necessary.

6.3.2 The OAI model explanation of direct manipulation

The attraction of direct manipulation is apparent in the enthusias1n of the
users. The designers of the examples in Section 6.2 had an innovative
inspiration and an intuitive grasp of what users would want. Each exmn
ple has features that we could criticize, but it will be 1nore productive for
us to construct an integrated portrait of direct manipulation with three
principles:

1. Continuous representation of the objects and actions of interest with
meaningful visual metaphors

2. Physical actions or presses of labeled buttons, instead of cmnplex syntax

3. Rapid incremental reversible operations whose effect on the object of
interest is visible immediately ·

Using these three principles, it is possible to design systems that have
these beneficial attributes:

• Novices can learn basic functionality quickly, usually through a
demonstration by a more experienced user.

• Experts can work rapidly to carry out a wide range of tasks, even defin-
ing new functions and features.

• Knowledgeable intermittent users can retain operational concepts.

• Error messages are rarely needed.

• Users can immediately see whether their actions are furthering their
goals, and, if the actions are counterproductive, they can simply change
the direction of their activity.

• Users experience less anxiety because the system is comprehensible
and because actions can be reversed easily.

Apple Inc.
Exhibit 1018

Page 224

206 6 Direct Manipulation and Virtual Environments

• Users gain confidence and mastery because they are the initiators of
action, they feel in control, and they can predict the system responses.

The success of direct manipulation is understandable in the context of the
OAI model. The object of interest is displayed so that interface actions are
close to the high-level task domain. There is little need for the mental decom
position of tasks into multiple interface commands with a complex syntactic
form. On the contrary, each action produces a comprehensible result in the
task domain that is visible in the interface immediately. The closeness of the
task domain to the interface domain reduces operator problem-solving load
and stress. This basic principle is related to stimulus-response compatibility,
as discussed in the hu1nan-factors literature. The task objects and actions
dominate the users' concerns, and the distraction of dealing with a tedious
interface is reduced (Fig. 6.10).

In contrast to textual descriptors, dealing with visual representations of
objects may be more "natural" and closer to innate human capabilities:
Action and visual skills emerged well before language in hu1nan evolu
tion. Psychologists have long known that people grasp spatial relation-

universe intention metaphor plan

atoms steps
pixels clicks

Objects Actions Objects Actions

Task Interface

Figure 6.10

Direct-manipulation systems may require users to learn substantial task knowledge.
However, users must acquire only a modest amount of interface knowledge and
syntactic details.

Apple Inc.
Exhibit 1018

Page 225

6.4 Visual Thinking and Icons 207

ships and actions more quickly when those people are given visual rather
than linguistic representations. Furthermore, intuition and discovery are
often promoted by suitable visual representations of formal mathematical
syste1ns.

The Swiss psychologist Jean Piaget described four stages of development:
sensorimotor (from birth to approximately 2 years), preoperational (2 to 7
years), concrete operational (7 to 11 years), and formal operations (begins at
approximately 11 years) (Copeland, 1979). According to this theory, physical
actions on an object are comprehensible during the concrete operational
stage, and children acquire the concept of conservation or invariance. At about
age 11, children enter the formal-operations stage, in which they use symbol
manipulation to represent actions on objects. Since mathematics and pro
gramming require abstract thinking, they are di:tficult for children, and
designers must link symbolic representations to actual objects. Direct Inanip
ulation brings activity to the concrete-operational stage, thus making certain
tasks easier for children and adults.

6.4 Visual Thinking and Icons

The concepts of a visual language and of visual thinking were promoted by
Arnheim (1972), and were embraced by commercial graphic designers (Ver
plank, 1988; Mullet and Sano, 1995), semiotically oriented academics
(semiotics is the study of signs and symbols), and data-visualization gurus.
The computer provides a remarkable visual environment for revealing struc
ture, showing relationships, and enabling interactivity that attracts users
who have artistic, right-brained, holistic, intuitive personalities. The increas
ingly visual nature of computer interfaces can sometimes challenge or even
threaten the logical, linear, text-oriented, left-brained, compulsive, rational
programmers who were the heart of the first generation of hackers.
Although these stereotypes-or caricatures-will not stand up to scientific
analysis, they do convey the dual paths that computing is following. The
new visual directions are sometimes scorned by the traditionalists as WIMP
(windows, icons, mouse, and pull-down menu) interfaces, whereas the com
mand-line devotees are seen as inflexible, or even stubborn.

There is evidence that different people have different cognitive styles, and
it is quite understandable that individual preferences may vary. Just as there
are multiple ice-cremn flavors or car models, so too there will be 1nultiple
interface styles. It may be that preferences will vary by user and by tasks. So
respect is due to each community, and the designer's goal is to provide the
best of each style and the means to cross over when desired.

Apple Inc.
Exhibit 1018

Page 226

208 6 Direct Manipulation and Virtual Environments

The conflict between text and graphics becomes most heated when the
issue of icons is raised. Maybe it is not surprising that the dictionary defin
itions of icon usually refer to religious images, but the central notion in
c01nputing is that an icon is an image, picture, or symbol representing a
concept (Rogers, 1989; Marcus, 1992). In the computer world, icons are
usually small (less than l-inch-square or 64- by 64-pixel) representations of
an object or action. Smaller icons are often used to save space or to be inte
grated within other objects, such as a window border or toolbar. It is not
surprising that icons are often used in painting progra1ns to represent the
tools or actions (lasso or scissors to cut out an image, brush for painting,
pencil for drawing, eraser to wipe clean), whereas word processors usually
have textual1nenus for their actions. This difference appears to reflect the
differing cognitive styles of visually and textually oriented users, or at
least differences in the tasks. Maybe, while you are working on visually
oriented tasks, it is helpful to "stay visual" by using icons, whereas, while
you are working on a text document, it is helpful to "stay textual" by using
textual menus.

For situations where both a visual icon or a textual ite1n are possible-for
exmnple, in a directory listing-designers face two interwoven issues: how
to decide between icons and text, and how to design icons. The well-estab
lished highway signs are a useful source of experience. Icons are unbeatable
for showing ideas such as a road curve, but sometin1es a phrase such as ONE
WAY!-DO NOT ENTER is 1nore c01nprehensible than an icon. Of course,
the s1norgasbord approach is to have a little of each (as with, for example,
the octagonal STOP sign), and there is evidence that icons plus words are
effective in computing situations (Nonnan, 1991). So the answer to the first
question (deciding between icons and text) depends not only on the users
and the tasks, but also on the quality of the icons or the words that are pro
posed. Textual menu choices are covered in Chapter 7; many of the princi
ples carry over. In addition, these icon-specific guidelines should be
considered:

• Represent the object or action in a fmniliar and recognizable manner.

• Limit the number of different icons.

• Make the icon stand out from its background.

• Consider three-dimensional icons; they are eye catching, but also can
be distracting.

• Ensure that a single selected icon is clearly visible when surrounded by
unselected icons.

• Make each icon distinctive from every other icon.

• Ensure the harmoniousness of each icon as a member of a family of icons.

Apple Inc.
Exhibit 1018

Page 227

6.4 Visual Thinking and Icons 209

• Design the movement animation: when dragging an icon, the user
might move the whole icon, just a frame, possibly a grayed-out or
transparent version, or a black box.

• Add detailed information, such as shading to show size of a file (larger
shadow indicates larger file), thickness to show breadth of a directory
folder (thicker means more files inside), color to show the age of a doc
ument (older might be yellower or grayer), or animation to show how
much of a document has been printed (a document folder is absorbed
progressively into the printer icon).

• Explore the use of combinations of icons to create new objects or
actions-for example, dragging a document icon to a folder, trashcan,
outbox, or printer icon has great utility. Can a .document be appended
or prepended to another document by pasting of adjacent icons? Can a
user set security levels by dragging a docu1nent or folder to a guard
dog, police car, or vault icon? Can two database icons be intersected by
overlapping of the icons?

Marcus (1992) applies semiotics as a guide to four levels of icon design:

1. Lexical qualities Machine-generated marks-pixel shape, color, bright
ness, blinking

2. Syntactics Appearance and movement-lines, patterns, modular parts,
size, shape

3. Semantics Objects represented-concrete versus abstract, part versus
whole

4. Pragmatics Overall legible, utility, identifiable, memorable, pleasing

He recommends starting by creating quick sketches, pushing for consistent
style, designing a layout grid, simplifying appearance, and evaluating the
designs by testing with users. We might consider a fifth level of icon design:

5. Dynamics Receptivity to clicks-highlighting, dragging, combining

The dyna1nics of icons might also include a rich set of gestures with a mouse,
touchscreen, or pen. The gestures might indicate copy (up and down), delete
(a cross), edit (a circle), and so on. Icons might also have associated sounds.
For example, if each document icon had associated with it a tone (the lower
the tone, the bigger the document), then, when a directory was opened, each
tone might be played simultaneously or sequentially. Users might get used
to the symphony played by each directory and could detect certain features
or anomalies, just as we often know telephone numbers by tune and can
detect misdialings as discordant tones.

Icon design becomes more interesting as computer hardware improves
and as designers become more creative. Animated icons that demonstrate

Apple Inc.
Exhibit 1018

Page 228

210 6 Direct Manipulation and Virtual Environments

their function i1nprove online help capabilities (see Section 12.4.2). Beyond
sin1ple icons, we are now seeing increasing numbers of visual progrmnming
languages (see Section 5.3.1) and specialized languages for 1nechanical engi
neering, circuit design, and database query.

6.5 Direct-Manipulation Programming

Performing tasks by direct manipulation is not the only goal. It should be
possible to do program1ning by direct manipulation as well, at least forcer
tain problems. People sometiines program robots by 1noving the robot ann
through a sequence of steps that are later replayed, possibly at higher speed.
This exa1nple seems to be a good candidate for generalization. How about
moving a drill press or a surgical tool through a cmnplex series of motions
that are then repeated exactly? In fact, these direct-Inanipulation-program
ming ideas are implemented in Inodest ways with auton1obile radios that
users preset by tuning to their desired station and then pressing and holding
a button. Later, when the button is pressed, the radio tunes to the preset fre
quency. Smne professional television-camera supports allow the operator to
progra1n a sequence of pans or zooms and then to replay it smoothly when
required.

Progra1nming of physical devices by direct manipulation seems quite nat
ural, and an adequate visual representation of information may Inake direct
manipulation progrmnming possible in other domains. Several word
processors allow users to create 1nacros by siinply performing a sequence of
co1n1nands and storing it for later use. WordPerfect enables the creation of
macros that are sequences of text, special function keys such as TAB, and
other WordPerfect commands. emacs allows its rich set of functions, includ
ing regular expression searching, to be recorded into macros. Macros can
invoke one another, leading to complex programming possibilities. These
and other systems allow users to create progrmns with nonvarying action
sequences using direct manipulation, but strategies for including loops and
conditionals vary. e1nacs allows macros to be encased in a loop with simple
repeat factors. e1nacs and WordPerfect also allow users to attach more gen
eral control structures by resorting to textual programming languages.

Spreadsheet packages, such as LOTUS 1-2-3 and Excel, have rich pro
gramining languages and allow users to create portions of programs by car
rying out standard spreadsheet operations. The result of the operations is
stored in another part of the spreadsheet and can be edited, printed, and
stored in a textual form.

Macro facilities in GUis are more challenging to design than are macro
facilities in traditional command interfaces. The MACRO command of Direct

Apple Inc.
Exhibit 1018

Page 229

6.5 Direct-Manipulation Programming 211

Manipulation Disk Operating System (DMDOS) (Iseki and Shneiderman,
1986) was an early attempt to support a limited form of programming for file
1novement, copying, and directory commands.

Smith (1977) inspired work in this area with his Pygmalion system that
allowed arithmetic programs to be specified visually with icons. A nu1nber
of early research projects have attempted to create direct-manipulation pro
gramming syste1ns (Rubin et al., 1985). Maulsby and Witten (1989) devel
oped a system that could induce or infer a program from examples,
questioning the users to resolve mnbiguities. In constrained domains, infer
ences become predictable and useful, but if the inference is occasionally
wrong, users will quickly distrust it.

Myers (1992) coined the phrase demonstrational programming to character
ize the technique of letting users create macros by simply doing their tasks
and having the system construct the proper generalization automatically.
Cypher (1991) built and ran a usability test with seven subjects for his
EAGER system that 1nonitored user actions within HyperCard. When
EAGER recognized two similar sequences, a s1nall smiling cat appeared on
the screen to offer the users help in carrying out further iterations. Cypher's
success with two specific tasks is encouraging, but it has proved to be diffi
cult to generalize this approach.

It would be helpful if the computer could recognize repeated patterns reli
ably and create useful macros automatically, while the user was engaged in
performing a repetitive interface task. Then, with the user's confirmation,
the computer could take over and could carry out the remainder of the task
automatically. This hope for automatic program1ning is appealing, but a
more effective approach may be to give users the visual tools to specify and
record their intentions. Rule-based programming with graphical conditions
and actions offers a fresh alternative that may be appealing to children and
adults (Fig. 6.11) (Smith et al., 1994). The screen is portrayed as a set of tiles,
and users specify graphical rewrite rules by showing before-and-after tile
exmnples. Another innovative environment conceived of initially for chil
dren is ToonTalk (Kahn, 1996), which offers anilnated cartoon characters
who carry out actions in buildings using a variety of fanciful tools.

To create a reliable tool that works in many situations without unpre
dictable automatic programming, designers must meet the five challenges of
programming in the user interface (PITUI) (Potter, 1993):

1. Sufficient computational generality (conditionals, iteration)

2. Access to the appropriate data structures (file structures for directories,
structural representations of graphical objects) and operators (selectors,
booleans, specialized operators of applications)

3. Ease in programming (by specification, by example, or by demonstration,
with modularity, argument passing, and so on) and in editing programs

Apple Inc.
Exhibit 1018

Page 230

212 6 Direct Manipulation and Virtual Environments

-··

Cloud

Ground

Figure 6.11

Bee

'vt.ater

.....
•

Rain

Weed Sun

Cocoa display showing the Flower Garden world, with the control panel, the garden
data types, and the graphical rules for the rain falling down and getting absorbed by
any object. (Used with permission of Apple Computers, Inc., Cupertino, CA.)

4. Simplicity in invocation and assignment of arguments (direct manipula
tion, simple library strategies with meaningful names or icons, in-con
text execution, and availability of results)

5. Low risk (high probability of bug-free programs, halt and resume facili
ties to permit partial executions, undo operations to enable repair of
unanticipated damage)

The goal of PITUI is to allow users easily and reliably to repeat automatically
the actions that they can perform manually in the user interface. Rather than
depending on unpredictable inferencing, users will be able to indicate their
intentions explicitly by manipulating objects and actions. The design of

Apple Inc.
Exhibit 1018

Page 231

6.6 Home Automation 213

direct-manipulation syste1ns will undoubtedly be influenced by the need to
support PITUI. This influence will be a positive step that will also facilitate
history keeping, undo, and online help.

The cognitive-dimensions framework may help us to analyze design issues of
visual-programming environments, such as those needed for PITUI (Green
and Petre, 1996). The framework provides a vocabulary to facilitate discus
sion of high-level design issues; for example, viscosity is used to describe the
difficulty of making changes in a program, and progressive evaluation
describes the capacity for execution of partial programs. Other dimensions
are consistency, diffuseness, hidden dependencies, pre1nature cmnmitment,
and visibility.

Direct-manipulation programming offers an alternative to the agent sce
narios (see Section 2.9). Agent promoters believe that the computer can
ascertain the users' intentions automatically, or can take action based on a
vague statements of goals. I doubt that user intentions are so easily deter
mined or that vague statements are usually effective. However, if users can
specify what they want with comprehensible actions selected from a visual
display, then they can often and rapidly accomplish their goals while pre
serving their sense of control and accomplishment.

6.6 Home Automation

Internationally, many companies predict a large market in extensive controls
in homes, but only if the user interfaces can be made simple. Remote control
of devices (either from one part of the home to another, froin outside, or by
programmed delays) is being extended to channel audio and video through
out the house, to schedule lawn watering as a function of ground moisture,
to offer video surveillance and burglar alarms, and to provide multiple-zone
environmental controls plus detailed maintenance records.

Some designers promote voice controls, but commercially successful sys
tems use traditional pushbuttons, remote controllers, telephone keypads, and
touchscreens, with the latter proving to be the most popular. Installations
with two to 10 touchscreens spread around the house should satisfy most
homeowners. Providing direct-manipulation controls with rich feedback is
vital in these applications. Users are willing to take training, but operation
must be rapid and easy to remember even if the option is used only once or
twice per year (such as spring and fall adjustments for daylight-savings time).

Studies of four touchscreen designs, all based on direct manipulation,
explored scheduling operations for VCR recording and light controls
(Plaisant et al., 1990; Plaisant and Shneiderman, 1991). The four designs were

Apple Inc.
Exhibit 1018

Page 232

214 6 Direct Manipulation and Virtual Environments

Figure 6.12

4 5 6 7 a
11 12 13

18 19 28

25 26 27

4 5 6 7 8

11 12 13 14 15

29 21 22

27 28 29

This scheduler shows two calendars for start and stop dates, plus two 12-hour circu
lar clocks with hands that the user can drag to set start and stop times. (Used with
permission of University of Maryland, College Park, MD.)

1. A digital clock that users set by pressing step keys (similar to onscreen
programming in current videocassette players)

2. A 24-hour circular clock whose hands users can drag with fingers

3. A 12-hour circular clock (plus A.M.-P.M. toggle) whose hands users can
drag with fingers (Fig. 6.12)

4. A 24-hour time line in which ON-OFF flags can be placed to indicate
start-stop times (Fig. 6.13)

The results indicated that the 24-hour time line was easiest to understand
and use. Direct-manipulation principles were central to this design; users
selected dates by touching a monthly calendar, and times by moving the ON
or OFF flags on to the 24-hour time line. The flags were an effective way of
representing the ON or OFF actions and of specifying times without use of a
keyboard. The capacity to adjust the flag locations incrementally, and the
ease of re1noving them, were additional benefits. We are extending the
design to accommodate more cmnplex tasks, such as scheduling and syn
chronization of multiple devices, searching through schedules to find dates
with specific events, scheduling repeated events (close curtains every night
at dusk, turn lights on every Friday night at 7 P.M., record status monthly),

Apple Inc.
Exhibit 1018

Page 233

6.6 Home Automation 215

Figure 6.13

This 24-hour time-line scheduler was most successful in our usability studies. The
users select a date by pointing on the calendar and then dragging ON and OFF flags
to the 24-hour time lines. The feedback is a red line on the calendar and the time
lines. (Used with permission of University of Maryland, College Park, MD.)

and long-duration events. A generalization of the flags-on-a-line idea was
applied to heating control, where users specified upper and lower bounds by
dragging flags on a thermometer.

Since so much of home control involves the room layouts and floorplans,
many direct-manipulation actions take place on a display of the floorplan
(Fig. 6.14), with selectable icons for each status indicator (such as burglar
alarm, heat sensor, or smoke detector), and for each activator (such as curtain
or shade closing and opening motors, airconditioning- or heating-vent con
trollers, or audio and video speaker or screen). People could route sound
from a CD player located in the living room to the bedroom and kitchen by
merely dragging the CD icon into those rooms. Sound-volume control
would be accomplished by having the user move a marker on a linear scale.

The simple act of turning a device ON or OFF proved to be an interesting
problem. Wall-mounted light switches typically show their status by up for
ON and down for OFF. Most people have learned this standard and can get
.what they want on the first try, if they know which switch to throw to turn
on a specific light. Laying out the switches to reflect the floorplan does solve

Apple Inc.
Exhibit 1018

Page 234

216 6 Direct Manipulation and Virtual Environments

Figure 6.14

Floorplan of a private home, used to set temperatures. Direct-manipulation designs
emphasize task-domain graphics. (Courtesy of Custom Command Systems, College
Park, MD.)

the problem nicely (Nonnan, 1988). Visitors may have problems because, in
some countries, ON and OFF are reversed or the up-down switches have
been replaced by push buttons. To explore possibilities, we constructed six
kinds of touchscreen ON-OFF buttons with three-dimensional animation
and sound (Fig. 6.15). There were significant differences in user preferences,
with high marks going to the simple button, the rocker, and multiple-level
pushbuttons. The multiple pushbuttons have a readily comprehensible

Figure 6.15

Varying designs for toggle button1
using three-dimensional graphic
characteristics. Designed by
Catherine Plaisant.

Apple Inc.
Exhibit 1018

Page 235

6.7 Remote Direct Manipulation 217

visual presentation, and they generalize nicely to multiple state devices
(OFF, LOW, MEDIUM, HIGH).

Controlling complex home equipment from a touchscreen by direct
manipulation reshapes how we think of homes and their residents. New
questions arise, such as whether residents will feel safer, be happier, save
more money, or experience more relaxation with these devices. Are there new
notations, such as petri-net variants or role-task diagrams, for describing
home automation and the social relations among residents? The benefits to
users who have disabilities or are elderly were often on our minds as we
designed these systems, since these people may be substantial beneficiaries
of this technology, even though initial implementations are designed for the
healthy and wealthy.

6.7 Remote Direct Manipulation

There are great opportunities for the teleoperation or remote control of
devices if acceptable user interfaces can be constructed. If designers can pro
vide adequate feedback in sufficient time to permit effective decision making,
then attractive applications in office automation, computer-supported collab
orative work, education, and information services may become viable.
Remote-controlled environments in medicine could enable specialists to pro
vide consultations more rapidly, or allow surgeons to conduct more complex
procedures during operations. Home-automation applications could extend
remote operation of telephone-answering machines to security and access
systems, energy control, and operation of appliances. Scientific applications
in space, underwater, or in hostile environments can enable new research pro
jects to be conducted economically and safely (Uttal, 1989; Sheridan, 1992).

In traditional direct-manipulation systems, the objects and actions of
interest are shown continuously; users generally point, click, or drag,
rather than type; and feedback, indicating change, is immediate. However,
when the devices being operated are remote, these goals may not be realiz
able, and designers must expend additional effort to help users to cope
with slower response, incomplete feedback, increased likelihood of break
downs, and more complex error recovery. The problems are strongly con
nected to the hardware, physical environment, network design, and the
task domain.

A typical remote application is telemedicine: medical care delivered over
. communication links (Satava and Jones, 1996). In one scenario, the physician
specialist being consulted and the patient's primary physician or a techni
cian are in different locations. Then, for example, an effective telepathology

Apple Inc.
Exhibit 1018

Page 236

218 6 Direct Manipulation and Virtual Environments

Control
Screen

ADD DO ODD
DO

Figure 6.16

\

High Res
Screen

Keypad

Satellite connection

t.-=-i!l=""hl ___________ .1~~ ----------~
Modem connection

Microscope

A simplified diagram of a telepathology system showing control actions sent by tele
phone and images sent by satellite.

system (Weinstein et al., 1989) allows a pathologist to examine tissue sam
ples or body fluids under a remotely located microscope (Figs. 6.16 and 6.17).
The transmitting workstation has a high-resolution camera mounted on a
motorized light microscope. The image is transmitted via broadband satel
lite, microwave, or cable. The consulting pathologist at the receiving work
station can manipulate the microscope using a keypad, and can see a
high-resolution image of the magnified smnple. The two care givers talk by
telephone to coordinate control and to request slides that are placed manu
ally under the microscope. Controls include

• Magnification (three or six objectives)

• Focus (coarse and fine bidirectional control)

• Illumination (bidirectional adjustment continuous or by step)

• Position (two-dimensional placement of the slide under the microscope
objective)

The architecture of remote environments introduces several complicating
factors:

• Time delays The network hardware and software cause delays in send
ing user actions and receiving feedback: a transmission delay, or the time
it takes for the command to reach the microscope (in our example,

Apple Inc.
Exhibit 1018

Page 237

6.7 Remote Direct Manipulation 219

Microscojiif

Figure 6.17

Telepathology components include a microscope with a camera attached to a work
station. This setup enables a pathologist to use remote control to examine the slides.
(Used with permission of William J. Chimiak and Robert 0. Rainer, The Bowman
Gray School of Medicine of Wake Forest University, Winston Salem, NC.)

transmitting the command through the modem), and operation delay, or
the time until the microscope responds (Van de Vegte et al., 1990).
These delays in the system prevent the operator from knowing the cur
rent status of the system. For example, if a positioning command has
been issued, it may take several seconds for the slide to start moving.
As the feedback appears showing the motion, the users may recognize
that they are going to overshoot their destination, but a few seconds
will pass before the stopping com1nand takes effect.

• Incomplete feedback Devices originally designed for direct control may not
have adequate sensors or status indicators. For instance, the microscope
can transmit its current position, but it operates so slowly that it cannot be
used continuously. Thus, it is not possible to indicate on the control screen
the exact current position relative to the start and desired positions.

• Feedback from multiple sources Incomplete feedback is different from
no feedback. The image received on the high-resolution screen is the

Apple Inc.
Exhibit 1018

Page 238

220 6 Direct Manipulation and Virtual Environments

main feedback to evaluate the result of an action. In addition, the
microscope can occasionally report its exact position, allowing recali
bration of the status display. It is also possible to indicate the esti
mated stage position during the execution of a 1novement. This
estimated feedback can be used as a progress indicator whose accu
racy depends on the variability of the time delays. To cmnply with the
physical incompatibility between the high-resolution feedback (ana
log image) and the rest of the system (digital), we spread the multiple
feedbacks over several screens. Thus, the pathologists are forced to
switch back and forth between multiple sources of feedback, increas
ing their cognitive load.

• Unanticipated interferences Since the devices operated are remote, and
may be also operated by other persons in this or another remote loca
tion, unanticipated interferences are more likely to occur than in tradi
tional direct-manipulation environments. For instance, if the slide
under the microscope were moved (accidentally) by a local operator,
the positions indicated n1.ight not be correct. A breakdown n1.ight also
occur during the execution of a remote operation, without a good indi
cation of this event being sent to the remote site. Such breakdowns
require increased status information for remote users and additional
actions that allow for correction.

One solution to these problems is to 1nake explicit the network delays and
breakdowns as part of the system. The user sees a 1nodel of the starting state of
the system, the action that has been initiated, and the current state of the syste1n
as it carries out the action. It may be preferable to provide spatially parameter
ized positioning actions (for example, move by a distance +x, +y, or move to a
fixed point (x, y) in a two-dimensional space), rather than providing temporal
commands (for example, start moving right at a 36° angle frmn the horizontal).
In other words, the users specify a destination (rather than a motion), and wait
until the action is completed before readjusting the destination if necessary.

Remote direct manipulation is rooted in two domains that, so far, have
been independent. The first root grows from direct manipulation in personal
computers and is often identified with the desktop metaphor and office
automation. The second root is in process control, where human operators
control physical processes in complex environments. Typical tasks are oper
ating power or chemical plants, controlling manufacturing, flying airplanes,
or steering vehicles. If the physical processes take place in a remote location,
we talk about teleoperation or remote control. To perform the control task, the
human operator may interact with a computer, which may carry out some of
the control tasks without any interference by the human operator. This idea
is captured by the notion of supervisory control (Sheridan, 1992). Although

Apple Inc.
Exhibit 1018

Page 239

6.8 Virtual Environments 221

supervisory control and direct manipulation stem from different problem
domains and are usually applied to different system architectures, they carry
a strong resemblance.

6.8 Virtual Environments

Flight-simulator designers use many tricks to create the most realistic experi
ence for fighter or airline pilots. The cockpit displays and controls are taken
frmn the same production line that create the real ones. Then, the windows
are replaced by high-resolution computer displays, and sounds are choreo
graphed to give the impression of engine start or reverse thrust. Finally, the
vibration and tilting during climbing or turning are created by hydraulic
jacks and intricate suspension systems. This elaborate tech:n.ology may cost
almost $100 1nillion, but even then it is a lot cheaper, safer, and more useful
for training than the $400-million jet that it simulates. Of course, home
videogame players have purchased millions of $30 flight simulators that run
on their personal cmnputers. Flying a plane is a complicated and specialized
skill, but simulators are available for more common-and for some surpris
ing-tasks under the alluring name of virtual reality or the more descriptive
virtual environments.

High above the office desktop, 1nuch beyond multimedia, and farther out
than the hype of hypermedia, the gurus and purveyors of virtuality are pro
moting immersive experiences (Fig. 6.18). Whether soaring over Seattle,
bending around bronchial tubes to find lung cancers, or grasping complex
molecules, the cyberspace explorers are moving past their initial fantasies to
create useful technologies. The imagery and personalities involved in virtual
reality are often colorful (Rheingold, 1991), but many researchers have tried
to present a balanced view by conveying enthusiasm while reporting on
problems (MacDonald and Vince, 1994; Bryson, 1996).

Architects have been using computers to draw three-dilnensional repre
sentations of buildings for two decades. Most of their design systems show
the building on a standard or slightly larger display, but adding a large
screen projector to create a wall-sized image gives prospective clients a more
realistic impression. Now add animation that allows clients to see what hap
pens if they move left or right, or approach the image. Then enable clients to
control the animation by walking on a treadmill (faster walking brings the
building closer more quickly), and allow them to walk through the doors or

. up the stairs. Finally, replace the large-screen projector with a head-mounted
display, and monitor head movement with Polhemus trackers. Each change

Apple Inc.
Exhibit 1018

Page 240

222 6 Direct Manipulation and Virtual Environments

Figure 6.18

In the goggles-and-gloves approach to vir
tual reality, the system tracks the user's hand
and head motions, plus finger gestures, to
control the scene's movement and manipula
tion. To enter this virtual environment you
need special gear. Any of several types of
stereoscopic devices transform otherwise
two-dimensional image data into three
dimensional images. Some three-dimen
sional viewers, called head-mounted
displays, resemble helmets with movie
screens where the visor would be. (NCSA/
University of Illinois.)

takes users a bit farther along the range from "looking at" to "being in."
Bumping into walls, falling (gently) down stairs, meeting other people, or
having to wait for an elevator could be the next variations.

The architectural application is a persuasive argument for "being in,"
because we are used to "being in" buildings and moving around them. On
the other hand, for many applications, "looking at" is often more effective,
which is why air-traffic-control workstations place the viewer above the sit
uation display. Similarly, seeing movies on the large wraparound screens
that put viewers "in" race cars or airplanes are special events compared to
the more common "looking at" television ~xperience. The Living Theater of
the 1960s created an involving theatrical experience and "be-ins" were popu-

Apple Inc.
Exhibit 1018

Page 241

6.8 Virtual Environments 223

lar, but most theatergoers prefer to take their "suspension of disbelief" expe
riences from the "looking at" perspective (Laurel, 1991).

It remains to be seen whether doctors, accustomed to "looking at" a patient,
really want to crawl through the patient's lungs or "be in" the patient's brains.
Modern surgical procedures and technology can benefit by "looking at" video
images from inside a patient's heart taken through fiber-optic cameras and
from use of re1note direct-manipulation devices that minimize the invasive
surgery. Surgery plam1.ing can also be done with three-dimensional "looking
at" visualizations shown on a traditional desktop display and guided by hand
held props (Hinckley et al., 1994). There are more mundane applications for
such video and fiberoptic magic; imagine the benefits to household plumbers
of being able to see lost wedding rings around the bends of a sink drain or to see
and grasp the child's toy that has fallen down the pipes of a now-clogged toilet.

Other concepts that were sources for the current excitement include
artificial reality, pioneered by Myron Krueger (1991). His VideoPlace and
VideoDesk installations with large-screen projectors and video sensors com
bined full-body movement with projected images of light creatures that
walked along a performer's arm or of multicolored patterns and sounds gen
erated by the performer's movement. Similarly, Vincent Vincent's demonstra
tions of the Mandala system carried performance art to a new level of
sophistication and fantasy. The CAVE, a room with several walls of high-reso
lution rear-projected displays with three-dimensional audio, can offer satisfy
ing experiences for several people at a time (Cruz-Neira et al., 1993) (Fig. 6.19).

The telepresence aspect of virtual reality breaks the physical limitations of
space and allows users to act as though they are somewhere else. Practical
thinkers immediately grasp the com1.ection to remote direct manipulation,
remote control, and remote vision, but the fantasists see the potential to
escape current reality and to visit science-fiction worlds, cartoonlands, previ
ous times in history, galaxies with different laws of physics, or unexplored
emotional territories. Virtual worlds can be used to treat patients with fear of
height by giving them an immersive experience with control over their view
point, while preserving their sense of physical safety (Fig. 6.20) (Hodges et
al., 1995).

The direct-manipulation principles and the OAI model may be helpful to
people who are designing and refining virtual environments. Users should
be able to select actions rapidly by pointing or gesturing, with incremental
and reversible control, and display feedback should occur immediately to
convey the sense of causality. Interface objects and actions should be simple,
so that users view and manipulate task-domain objects. The surgeon's
instruments should be readily available or easily called up by spoken com
mand or gesture. Similarly, an interior designer walking through a house
'with a client should be able to pick up a window-stretching tool or pull on a
handle to try out a larger window, or to use a room-painting tool to change

Apple Inc.
Exhibit 1018

Page 242

224 6 Direct Manipulation and Virtual Environments

Figure 6.19

The CAVE™, a multiperson, room-sized, high-resolution, 3D video and audio envi
ronment at the University of Illinois at Chicago. The CAVE is a 10- x 10- x 9-foot the
ater, made up of three rear-projection screens for walls and a down-projection screen
for the floor. Projectors throw full-color workstation fields (1024 x 768 stereo) onto
the screens at 96Hz.(© 1992. Image courtesy of Lewis Siegel and Kathy O'Keefe,
Electronic Visualization Laboratory, University of Illinois at Chicago.)

the wall colors while leaving the windows and furniture untouched. Naviga
tion in large virtual spaces presents further challenges, but overview maps
have been demonstrated to provide useful orientation information (Darken
and Sibert, 1996).

Alternatives to the immersive environment, often called desktop or fish tank
virtual environments (both references are to "looking at" standard displays),
are becoming more common and more accepted. The long-standing active
work on three-dimensional graphics has led to user interfaces that support
user-controlled exploration of real places, scientific visualizations, or fantasy
worlds. Many applications run on high-performance workstations capable
of rapid rendering, but some are appealing even over the web using the pop
ular Virtual Reality Modeling Language (VRML) (Goralski, 1996).

Graphics researchers have been perfecting image display to simulate
lighting effects, textured surfaces, reflections, and shadows. Data structures
and algorithms for zooming in or panning.across an object or room rapidly
and smoothly are becoming practical on common computers. In an innova-

Apple Inc.
Exhibit 1018

Page 243

6.8 Virtual Environments 225

Figure 6.20

Virtual-reality therapy for users who have acrophobia. These users can accommo
date to heights by going up in this virtual elevator with a guard rail located at waist
level. The controls for the elevator are located on the guard rail: a green up arrow, a
green down arrow, and a red stop square. (Hodges et al., 1995.) (Used with permis
sion of Larry F. Hodges, Rob Kooper, and Torn Meyer, Georgia Tech, Atlanta, GA.)

tion called "augmented reality," users see the real world with an overlay of
additional information; for example, while users are looking at the walls of a
building, their semitransparent eyeglasses show where the electrical wires or
plumbing are located. Augmented reality could show users where and how
to repair electrical equipment or automobile engines (Feiner et al., 1993).

Another variant, called situational awareness, uses a palmtop computer
with a location sensor to control the display. As the user moves the palmtop
around a map, museum, or a piece of machinery, the display shows informa
tion about the city neighborhoods, the paintings, or the history of repairs
(Fitzmaurice, 1993). Shopping carts with displays that advertise products as
you walk down the supermarket aisle have already been installed.

Successful virtual environments will depend on smooth integration of
multiple technologies:

Apple Inc.
Exhibit 1018

Page 244

226 6 Direct Manipulation and Virtual Environments

• Visual display The normal-size (12 to 15 inches diagonally) computer
display at a normal viewing distance (70 centimeters) subtends an
angle of about 5 degrees; large-screen (15- to 22-inch) displays can
cover a 20- to 30-degree field, and the head-mounted displays cover
100 degrees horizontally and 60 degrees vertically. The head-mounted
displays block other images, so the effect is more dramatic, and head
motion produces new images, so the users can get the impression of
360 degree coverage. Flight siinulators also block extraneous images,
but they do so without forcing the users to wear smnetimes-cumber
some head-mounted displays. Another approach is a boom-mounted
display that senses the users' positions without requiring that they
wear heavy goggles (Fig. 6.21).

As hardware technology improves, it will be possible to provide
m.ore rapid and higher-resolution ilnages. Most researchers agree that
the displays must approach real time (probably under 100 1nillisecond
delay) in presenting the i1nages to the users. Low-resolution displays
are acceptable while users or the objects are moving, but when users
stop to stare, higher resolution is necessary to preserve the sense of
"being in." hnproved hardware and algorithms are needed to display
rough shapes rapidly and then to fill in the details when the motion
stops. A further requirement is that m.otion be smooth; both incremen-

Figure 6.21

A full-color head-coupled stereoscopic display. The Fakespace BOOM3C (Binocular
Omni-Orientation Monitor) provides high-quality visual displays and tracking inte
grated with a counterbalanced articulated arm for full six-degree of freedom motion
(x, y, z, roll, pitch, yaw). Pictured here is a computer model of the Basilica of St. Fran
cis of Assisi, complete with fourteenth century frescoes by Giotto. (Composite photo
of BOOM3C® courtesy of Fakespace, Inc. (241 Polaris Avenue, Mountain View, CA
94043) and Infobyte.) ·

Apple Inc.
Exhibit 1018

Page 245

6.8 Virtual Environments 227

tal changes and continuous display of the objects of interest are
required (Hendrix and Barfield, 1996).

• Head-position sensing Head-mounted displays can provide differing
views depending on head position. Look to the right, and you see a for
est; look to the left, and the forest gives way to a city. The Polhemus
tracker requires mounting on the user's head, but other devices em.bed
ded in a hat or eyeglasses are possible. Video recognition of head posi
tion is possible. Sensor precision should be high (within 1 degree) and
rapid (within 100 milliseconds). Eye tracking to recognize the focus of
attention 1night be useful, but it is difficult to accomplish while the user
is moving and is wearing a head-mounted display.

• Hand-position sensing The DataGlove is a highly innovative invention;
it surely will be refined and im.proved beyond its current low resolu
tion. Bryson (1996) cmnplains that "the proble1ns with glove devices
include inaccuracies in measurement and lack of standard gestural
vocabulary." It 1nay turn out that accurate measurem.ent of finger posi
tion is required only for one or two fingers or for only one or two joints.
Hand orientation is provided by a Polhe1nus tracker 1nounted on the
glove or wrist. Sensors for other body parts such as knees, arms, or legs
may yet find uses. The potential for sensors and tactile feedback on
more erotic body parts has been referred to by more than one journalist.

• Force feedback Hand-operated remote-control devices for performing
experilnents in chemistry laboratories or for handling nuclear 1naterials
provide force feedback that gives users a good sense of when they grasp
an object or bump into one. Force feedback to car drivers and pilots is care
fully configured to provide realistic and useful tactile inJormation. Silnu
lated feedback frmn software was successful in speeding dockil1.g tasks
with complex 1nolecules (Brooks, 1988). It might be helpful for surgeons to
receive force feedback as they practice difficult operations. A palmtop dis
play mounted on a boom was shown to produce faster and more accurate
performance on a remote manipulation task when haptic (touch and force
feedback) feedback was added (Noma et al., 1996). Remote handshakil1.g
as part of a video conference has been suggested, but it is not clear that the
experience could be as satisfying as the real thing.

• Sound input and output Sound output adds realism to bouncing balls,
beating hearts, or dropping vases, as videogame designers found out long
ago. Making convincing sounds at the correct moment with full three
dimensional effect is possible, but it too is hard work. The digital sound
hardware is adequate, but the software tools are still inadequate. Music
output from virtual instruments is promising; early work simulates exist
ing instruments such as a violin, but novel instruments have emerged.
Speech recognition may complement hand gestures in some applications.

Apple Inc.
Exhibit 1018

Page 246

228 6 Direct Manipulation and Virtual Environments

• Other sensations The tilting and vibration of flight simulators might
provide an inspiration for some designers. Could a tilting and vibrat
ing virtual roller coaster become popular if users could travel at 60, 600,
or 6000 miles per hour and crash through mountains or go into orbit?
Other effects such as a throbbing disco sound and strobe lights could
also amplify son1.e virtual experiences. Why not include real gusts of
air, made hot or cold to convey the virtual weather? Finally, the power
of smells to evoke strong reactions has been understood by writers
from Proust to Gibson. Olfactory computing has been discussed, but
appropriate and practical applications have yet to be found.

• Cooperative and competitive virtual reality Computer-supported cooper
ative work (see Chapter 14) is a lively research area, as are cooperative
virtual environments, or as one developer called it, "virtuality built for
two." Two people at remote sites work together, seeing each other's
actions and sharing the experience. Competitive games such as virtual
racquetball have been built for two players. Software for training Army
tank crews took on a much more compelling atmosphere when the
designs shifted from playing against the computer to shooting at other
tank crews and worrying about their attacks. The realistic sounds cre
ated such a sense of engagement that crews experienced elevated heart
rates, more rapid breathing, and increased perspiration. Presumably,
virtual environments could also bring relaxation and pleasant encoun
ters with other people.

6.9 Practitioner's Summary

Among interactive systems that provide equivalent functionality and reliabil
ity, some systems emerge to dominate the competition. Often, the most appeal
ing systems have an enjoyable user interface that offers a natural representation
of the task objects and actions-hence the term direct manipulation (Box 6.1).
These systems are easy to leam, to use, and to retain over time. Novices can
acquire a simple subset of the commands, and then progress to more elaborate
operations. Actions are rapid, incremental, and reversible, and can be per
formed with physical actions instead of complex syntactic forms. The results of
operations are visible immediately, and error messages are needed less often.

Just because direct-manipulation principles have been used in a system
does not ensure that system's success. A poor design, slow implementation,
or inadequate functionality can undermine acceptance. For some applica
tions, menu selection, form fillin, or command languages may be more
appropriate. However, the potential for direct-manipulation programming,
remote direct manipulation, and virtual reality and its variants is great. Many
new products will certainly emerge. Iterative design (see Chapter 3) is espe~

Apple Inc.
Exhibit 1018

Page 247

6.10 Researcher's Agenda 229

Box 6.1

Definition, benefits, and drawbacks of direct manipulation

Definition

• Visual representation (metaphor) of the "world of action"

Objects and Actions are shown

Analogical reasoning is tapped

• Rapid, incremental, and reversible actions

• Replacement of typing with pointing and selecting

• Immediate visibility of results of actions

Benefits over commands

• Control-display compatibility

• Less syntax reduces error rates

• Errors are more preventable

• Faster learning and higher retention

• Encourages exploration

Concerns

• Increased system resources, possibly

• Some actions may be cumbersome

• Macro techniques are often weak

• History and other tracing may be difficult

• Visually impaired users may have more difficulty

cially important in testing direct-manipulation systems, because the novelty
of this approach may lead to unexpected problems for designers and users.

6.10 Researcher's Agenda

We need research to refine our understanding of the contribution of each fea
ture of direct manipulation: analogical representation, incremental opera
tion, reversibility, physical action instead of syntax, immediate visibility of
results, and graphic form. Reversibility is easily accomplished by a generic
UNDO command, but designing natural inverses for each action may be
nore attractive. Complex actions are well-represented with direct manipula

·. ion, but level-structured design strategies for graceful evolution from

Apple Inc.
Exhibit 1018

Page 248

230 6 Direct Manipulation and Virtual Environments

novice to expert usage would be a major contribution. For expert users,
direct-manipulation programming is still an opportunity, but good methods
of history keeping and editing of action sequences are needed. Software tools
to create direct-manipulation environments are sorely needed to encourage
exploratory development.

Beyond the desktops, and laptops, there is the allure of telepresence, vir
tual environments, augmented realities, and situationally aware devices. The
playful aspects will certainly be pursued, but the challenge is to find the
practical designs for being in and looking at three-dimensional worlds.
Novel devices for walking through museums or supermarkets and teleoper
ation for repair seem good candidates for entrepreneurs.

world Wide Web Resources I www I
Some creative direct manipulation services and tools are linked to,
but the majority of links cover direct manipulation programming,
teleoperation, and virtual environments. The web-based Virtual
Reality Modeling Language enables creation of three-dimensional
environments on web pages and there are numerous visually
appealing websites.

http://www.aw.com/DTUI

References

Arnheim, Rudolf, Visual Thinking, University of California Press, Berkeley, CA (1972).

Benbasat, Izak and Todd, P., An experimental investigation of interface design alter
natives: Icon versus text and direct manipulation versus menus, International Jour
nal of Man-Machine Studies, 38, 3 (1993), 369-402.

Brooks, Frederick, Grasping reality through illusion: Interactive graphics serving sci
ence, Proc. CHI '88 Conference-Human Factors in Computing Systems, ACM, New
York (1988), 1-11. ·

Bruner, James, Toward a Theory of Instruction, Harvard University Press, Cambridge,
MA(1966).

Bryson, Steve, Virtual reality in scientific visualization, Communications of the ACM,
39,5 (May 1996), 62-71.

Carroll, John M. and Thomas, John C., Metaphor and the cognitive representation of
computing systems, IEEE Transactions on Systems, Man, and Cybernetics, SMC-12, 2
(March-April1982), 107-116.

Carroll, J. M., Thomas, J. C., and Malhotra, A., Presentation and representation in
design problem-solving, British Journal of Psychology, 71, (1980), 143-153.

Copeland, Richard W., How Children Learn Mathematics (Third Edition), MacMillan,
New York (1979).

Apple Inc.
Exhibit 1018

Page 249

6.10 Researcher's Agenda 231

Cruz-Neira, C., Sandin, D. J., and DeFanti, T., Surround-screen projection-based vir
tual reality: The design and implementation of the CAVE, Proc. SIGGRAPH '93
Conference, ACM, New York (1993), 135-142.

Cypher, Allen, EAGER: Programming repetitive tasks by example, Proc. CHI '91
Conference-Human Factors in Computing Systems, ACM, New York (1991), 33-39.

Darken, Rudolph, P. and Sibert, John L., Navigating large virtual spaces, Interna
tional Journal of Human-Computer Interaction, 8, 1 (1996), 49-71.

Feiner, Steven, Macintyre, Blair, and Seligmann, Doree, Knowledge-based aug
mented reality, Communications of the ACM, 36, 7 (1993), 52-62.

Fitzmaurice, George, Situated information spaces and spatially aware palmtop com
puters, Communications of the ACM, 36, 7 (1993), 39-49.

Frohlich, David M., The history and future of direct manipulation, Behaviour and
Information Technology, 12,6 (1993), 315-329.

Goralski, Walter, VRML: Exploring Virtual Worlds on the Internet, Prentice Hall, Engle
wood Cliffs, NJ (1996).

Green, T. R. G. and Petre, M., Usability analysis of visual programming environ
ments: A "cognitive dimensions" framework, Journal of Visual Languages and Com
puting, 7, (1996), 131-174.

Heckel, Paul, The Elements of Friendly Software Design: The New Edition, SYBEX, San
Francisco (1991).

Hendrix, C., and Barfield, W., Presence within virtual environments as a function of
visual display parameters, Presence: Teleoperators and Virtual Environments, 5, 3
(1996), 274-289.

Herot, Christopher F., Spatial management of data, ACM Transactions on Database
Systems, 5, 4, (December 1980), 493-513.

Herot, Christopher, Graphical user interfaces. In Vassiliou, Yannis (Editor), Human
Factors and Interactive Computer Systems, Ablex, Norwood, NJ (1984), 83-104.

Hinckley, Ken, Pausch, Randy, Goble, John C., and Kassell, Neal F., Passive real
world props for neurosurgical visualization, Proc. CHI '94 Conference-Human
Factors in Computing Systems, ACM, New York (1994), 452-458.

Hodges, L.F., Rothbaum, B.O., Kooper, R., Opdyke, D., Meyer, T., North, M., de
Graff, J.J., and Williford, J., Virtual environments for treating the fear of heights,
IEEE Computer, 28, 7 (1995), 27-34.

Hutchins, Edwin L., Hollan, James D., and Norman, Don A., Direct manipulation
interfaces. In Norman, Don A. and Draper, Stephen W. (Editors), User Centered
System Design: New Perspectives on Human-Computer Interaction, Lawrence Erl
baum Associates, Hillsdale, NJ (1986), 87-124.

Iseki, Osamu and Shneiderman, Ben, Applying direct manipulation concepts: Direct
Manipulation Disk Operating System (DMDOS), Software Engineering Notes, 11, 2,
(March 1986), 22-26.

Krueger, Myron, Artificial Reality II, Addison-Wesley, Reading, MA (1991).

Laurel, Brenda, Computers as Theatre, Addison-Wesley, Reading, MA (1991).

MacDonald, Lindsay and Vince, John (Editors), Interacting with Virtual Environments,
John Wiley and Sons, New York (1994).

Apple Inc.
Exhibit 1018

Page 250

232 6 Direct Manipulation and Virtual Environments

McKim, Robert H., Experiences in Visual Thinking (Second Edition), Brooks/Cole,
Monterey, CA (1980).

Malone, Thomas W., What makes computer games fun? BYTE, 6, 12 (December
1981), 258-277.

Marcus, Aaron, Graphic Design for Electronic Documents and User Interfaces, ACM
Press, New York (1992).

Margono, Sepeedeh and Shneiderman, Ben, A study of file n1.anipulation by novices
using commands versus direct manipulation, Twenty-sixth Annual Technical Sym
posium, ACM, Washington, D.C. (June 1987), 154-159.

Maulsby, David L. and Witten, Ian H., Inducing programs in a direct-manipulation
environment, Proc. CHI '89 Conference-Human Factors in Computing Systems,
ACM, New York (1989), 57-62.

Montessori, Maria, The Montessori Method, Schocken, New York (1964).

Morgan, K., Morris, R. L., and Gibbs, S., When does a mouse bec01ne a rat? or ...
Comparing performance and preferences in direct 1nanipulation and command
line environment, The Computer Journal, 34, 3 (1991), 265-271.

Mullet, Kevin and Sano, Darrell, Designing Visual Interfaces: Communication Oriented
Techniques, Sunsoft Press, Englewood Cliffs, NJ (1995).

Myers, Brad A., Demonstrational interfaces: A step beyond direct manipulation,
IEEE Computer, 25, 8 (August 1992), 61-73.

Nelson, Ted, Interactive systems and the design of virtuality, Creative Computing, 6,
11, (November 1980), 56 ff., and G, 12 (December 1980), 94 ff.

Noma, Haruo, Miyasato, Tsutomu, and Kishino, Fumio, A palmtop display for dex
terous manipulation with haptic sensation, Proc. CHI '96 Conference-Human Fac
tors in Computing Systems, ACM, New York (1996), 126-133.

Norman, Donald A., The Psychology of Everyday Things, Basic Books, New York (1988).

Norman, Kent, The Psychology of Menu Selection: Designing Cognitive Control at the
Human/Computer Interface, Ablex, Norwood, NJ (1991).

Papert, Seymour, Mindstorms: Children, Computers, and Powe1jul Ideas, Basic Books,
New York (1980).

Phillips, C. H. E. and Apperley, M. D., Direct manipulation interaction tasks: A Mac
intosh-based analysis, Interacting with Computers, 3, 1 (1991), 9-26.

Plaisant, Catherine and Shneiderman, Ben, Scheduling ON-OFF home control
devices: Design issues and usability evaluation of four touchscreen interfaces,
International Journal for Man-Machine Studies, 36, (1992), 375-393.

Plaisant, C., Shneiderman, B., and Battaglia, J., Scheduling home-control devices: A
case study of the transition from the research project to a product, Human-Factors
in Practice, Computer Systems Technical Group, Human-Factors Society, Santa
Monica, CA (December 1990), 7-12.

Polya, G., How to Solve It, Doubleday, New York, (1957).

Potter, Richard, Just in Time programming. In Cypher, Allen (Editor), Watch What I
Do: Programming by Demonstration, MIT Press, Cambridge, MA (1993), 513-526.

Provenza, Jr., Eugene R., Video Kids: Making Sense ofNintendo, Harvard University
Press, Cambridge, MA (1991).

Apple Inc.
Exhibit 1018

Page 251

6.10 Researcher's Agenda 233

Rheingold, Howard, Virtual Reality, Simon and Schuster, New York (1991).

Robertson, George G., Card, Stuart K., and Mackinlay, Jock D., Information visual
ization using 3-D interactive animation, Communications of the ACM, 36, 4 (April
1993), 56-71.

Rogers, Yvonne, Icons at the interface: Their usefulness, Interacting with Computers, 1,
1 (1989), 105-117.

Rubin, Robert V., Golin, Eric Land Reiss, Steven P., Thinkpad: A graphics system for
programming by demonstrations, IEEE Software, 2, 2 (March 1985), 73-79.

Rutkowski, Chris, An introduction to the Human Applications Standard Computer
Interface, Part 1: Theory and principles, BYTE, 7, 11 (October 1982), 291-310.

Satava, R. M. and Jones, S. B., Virtual reality and telemedicine: Exploring advanced
concepts, Telemedicine Journal, 2, 3 (1996), 195-200.

Sheridan, T. B., Telerobotics, Automation, and Human Supervisory Control, The MIT
Press, Cambridge, MA (1992).

Shneiderman, Ben, Direct manipulation: A step beyond programming languages,
IEEE Computer, 16, 8, (August 1983), 57-69.

Smith, David Canfield, Pygmalion: A Computer Program to Model and Stimulate Cre
ative Thought, Birkhauser Verlag, Basel, Switzerland (1977).

Smith, D. Canfield, Irby, Charles, Kimball, Ralph, Verplank, Bilt and Harslem, Eric,
Designing the Star user interface, BYTE, 7, 4 (April1982), 242-282.

Stuart, Rory, The Design of Virtual Environments, McGraw-Hilt New York (1996).

Temple, Barker, and Sloane, Inc., The benefits of the graphical user interface, Multi
media Review (Winter 1990), 10-17.

Thimbleby, Harold, User Interface Design, ACM Press, New York (1990).

Ulich, E., Rauterberg, M., Molt T., Greutmann, T., and Strohm, 0., Task orientation
and user-orientated dialogue design, International Journal of Human-Computer
Interaction, 3, 2 (1991), 117-144.

Uttal, W. R., Teleoperators, Scientific Arnerican, 261, 6 (December 1989), 124-129.

Vince, John., Virtual Reality Systems, Addison-Wesley, Reading, MA (1995).

Van de Vegte, J. M. E., Milgram, P., Kwong, R. H., Teleoperator control models:
Effects of time delay and imperfect system knowledge, IEEE Transactions on Sys
tems, Man, and Cybernetics, 20, 6 (November-December 1990), 1258-1272.

Verplank, William L., Graphic challenges in designing object-oriented user inter
faces. In Helander, M. (Editor), Handbook of Human-Computer Interaction, Elsevier
Science Publishers, Amsterdam, The Netherlands (1988), 365-376.

Weinstein, R., Bloom, K., Rozek, S., Telepathology: Long distance diagnosis, Ameri
can Journal of Clinical Pathology, 91 (Suppl1) (1989), S39-S42.

Wertheimer, M., Productive Thinking, Harper and Row, New York (1959).

Ziegler, J. E. and Hihnrich, K.-P., Direct manipulation. In Helander, M. (Editor),
Handbook of Human-Computer Interaction, Elsevier Science Publishers, Amster
dam, The Netherlands (1988), 123-133.

Apple Inc.
Exhibit 1018

Page 252

