2/26/2018 7.2 socket -- Low-level networking interface

Previous: 7.1.1 Example Up: 7. Optional Operating System Next: 7.2.1 Socket Objects

7.2 socket -- Low-level networking interface

This module provides access to the BSD socket interface. It is available on all modern Unix systems, Windows,
MacOS, BeOS, 0S/2, and probably additional platforms.

For an introduction to socket programming (in C), see the following papers: An Introductory 4.3BSD
Interprocess Communication Tutorial, by Stuart Sechrest and An Advanced 4.3BSD Interprocess
Communication Tutorial, by Samuel J. Leffler et al, both in the Unix Programmer's Manual, Supplementary
Documents 1 (sections PS1:7 and PS1:8). The platform-specific reference material for the various socket-related
system calls are also a valuable source of information on the details of socket semantics. For Unix, refer to the
manual pages; for Windows, see the WinSock (or Winsock 2) specification.

The Python interface is a straightforward transliteration of the Unix system call and library interface for sockets
to Python's object-oriented style: the socket() function returns a socket object whose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interface: as with read()
and write() operations on Python files, buffer allocation on receive operations is automatic, and buffer length is
implicit on send operations.

Socket addresses are represented as a single string for the AF_UNIX address family and as a pair (host, port) for
the AF_INET address family, where /ost is a string representing either a hostname in Internet domain notation like
"daring.cwi.nl' or an IP address like '100.50.200.5', and port is an integral port number. Other address
families are currently not supported. The address format required by a particular socket object is automatically
selected based on the address family specified when the socket object was created.

For IP addresses, two special forms are accepted instead of a host address: the empty string represents
INADDR_ANY, and the string '<broadcast>' represents INADDR_BROADCAST.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can
be raised; errors related to socket or address semantics raise the error socket.error.

Non-blocking mode is supported through the setblocking() method.

The module socket exports the following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompanying value is either a string
telling what went wrong or a pair (errno, string) representing an error returned by a system call, similar
to the value accompanying os.error. See the module errno, which contains names for the error codes
defined by the underlying operating system.

AF_UNIX
AF_INET

These constants represent the address (and protocol) families, used for the first argument to socket(). If
the AF_UNIX constant is not defined then this protocol is unsupported.

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_RDM
SOCK_SEQPACKET

https://docs.python.org/release/2.0/lib/module-socket.html 1/4

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

2/26/2018 7.2 socket -- Low-level networking interface

These constants represent the socket types, used for the second argument to socket (). (Only SOCK_STREAM
and SOCK_DGRAM appear to be generally useful.)

S0_*

SOMAXCONN

MSG_*

SOL_*

IPPROTO_*

IPPORT_*

INADDR_*

Ip_*
Many constants of these forms, documented in the Unix documentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in arguments to the setsockopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined in the Unix
header files are defined; for a few symbols, default values are provided.

getfqdn ([name])
Return a fully qualified domain name for name. If name is omitted or empty, it is interpreted as the local
host. To find the fully qualified name, the hostname returned by gethostbyaddr() is checked, then aliases
for the host, if available. The first name which includes a period is selected. In case no fully qualified
domain name is available, the hostname is returned. New in version 2.0.

gethostbyname (hostname)
Translate a host name to IP address format. The IP address is returned as a string, e.g., '100.50.200.5". If
the host name is an [P address itself it is returned unchanged. See gethostbyname_ex() for a more
complete interface.

gethostbyname_ex (hostname)
Translate a host name to IP address format, extended interface. Return a triple (hostname, aliaslist,
ipaddrlist) where hostname is the primary host name responding to the given ip_address, aliaslist is a
(possibly empty) list of alternative host names for the same address, and ipaddrlist is a list of IP
addresses for the same interface on the same host (often but not always a single address).

gethostname ()
Return a string containing the hostname of the machine where the Python interpreter is currently
executing. If you want to know the current machine's [P address, use gethostbyname(gethostname()).
Note: gethostname() doesn't always return the fully qualified domain name; use
gethostbyaddr(gethostname()) (see below).

gethostbyaddr (ip_address)
Return a triple (hostname, aliaslist, ipaddrlist) where hostname is the primary host name responding to
the given ip_address, aliaslist is a (possibly empty) list of alternative host names for the same address, and
ipaddrlist is a list of IP addresses for the same interface on the same host (most likely containing only a
single address). To find the fully qualified domain name, use the function getfqdn().

getprotobyname (protocolname)
Translate an Internet protocol name (e.g. 'icmp') to a constant suitable for passing as the (optional) third
argument to the socket() function. This is usually only needed for sockets opened in *“raw" mode
(sock_Rraw); for the normal socket modes, the correct protocol is chosen automatically if the protocol is
omitted or zero.

getservbyname (servicename, protocolname)

Translate an Internet service name and protocol name to a port number for that service. The protocol name
should be "tcp’ or 'udp’.

socket (family, type|, proto])

https://docs.python.org/release/2.0/lib/module-socket.html 2/4

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

2/26/2018 7.2 socket -- Low-level networking interface

Create a new socket using the given address family, socket type and protocol number. The address family
should be AF_INET or AF_UNIX. The socket type should be SOCK_STREAM, SOCK_DGRAM or perhaps one of the
other "sock_" constants. The protocol number is usually zero and may be omitted in that case.

fromfd (fd, family, type|, proto])
Build a socket object from an existing file descriptor (an integer as returned by a file object's fileno()
method). Address family, socket type and protocol number are as for the socket() function above. The file
descriptor should refer to a socket, but this is not checked -- subsequent operations on the object may fail
if the file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options
on a socket passed to a program as standard input or output (e.g. a server started by the Unix inet daemon).

ntohl (x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order is the
same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs (x)
Convert 16-bit integers from network to host byte order. On machines where the host byte order is the
same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl (x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order is the
same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons (x)
Convert 16-bit integers from host to network byte order. On machines where the host byte order is the
same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

inet_aton (ip_string)
Convert an IP address from dotted-quad string format (e.g. '123.45.67.89") to 32-bit packed binary format,
as a string four characters in length.

Useful when conversing with a program that uses the standard C library and needs objects of type struct
in_addr, which is the C type for the 32-bit packed binary this function returns.

If the IP address string passed to this function is invalid, socket.error will be raised. Note that exactly
what is valid depends on the underlying C implementation of inet_aton().

inet_ntoa (packed ip)
Convert a 32-bit packed IP address (a string four characters in length) to its standard dotted-quad string
representation (e.g. '123.45.67.89").

Useful when conversing with a program that uses the standard C library and needs objects of type struct
in_addr, which is the C type for the 32-bit packed binary this function takes as an argument.

If the string passed to this function is not exactly 4 bytes in length, socket.error will be raised.

SocketType
This is a Python type object that represents the socket object type. It is the same as type(socket(...)).

See Also:

Module socketServer:
Classes that simplify writing network servers.

https://docs.python.org/release/2.0/lib/module-socket.html 3/4

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

2/26/2018 7.2 socket -- Low-level networking interface

Subsections

e 7.2.1 Socket Objects
e 7.2.2 Example

EEE Python Library Reference ﬁm

Previous: 7.1.1 Example Up: 7. Optional Operating System Next: 7.2.1 Socket Objects

See About this document... for information on suggesting changes.

https://docs.python.org/release/2.0/lib/module-socket.html 4/4

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

