
A New Two-Server Approach for Authentication with Short Secrets

(To appear in USENIX Security ’03)

John Brainard, Ari Juels, Burt Kaliski, and Michael Szydlo

RSA Laboratories

Bedford, MA 01730, USA

E-mail: {jbrainard,ajuels,bkaliski,mszydlo}@rsasecurity.com

April 9, 2003

Abstract

Passwords and PINs continue to remain the most
widespread forms of user authentication, despite
growing awareness of their security limitations. This
is because short secrets are convenient, particularly
for an increasingly mobile user population. Many
users are interested in employing a variety of com-
puting devices with different forms of connectivity
and different software platforms. Such users often
find it convenient to authenticate by means of pass-
words and short secrets, to recover lost passwords by
answering personal or “life” questions, and to make
similar use of relatively weak secrets.

In typical authentication methods based on short
secrets, the secrets (or related values) are stored in
a central database. Often overlooked is the vulner-
ability of the secrets to theft en bloc in the event
of server compromise. With this in mind, Ford and
Kaliski and others have proposed various password
“hardening” schemes involving multiple servers, with
password privacy assured provided that some servers
remain uncompromised.

In this paper, we describe a new, two-server se-
cure roaming system that benefits from an especially
lightweight new set of protocols. In contrast to pre-
vious ideas, ours can be implemented so as to require
essentially no intensive cryptographic computation by
clients. This and other design features render the sys-
tem, in our view, the most practical proposal to date
in this area. We describe in this paper the protocol
and implementation challenges and the design choices
underlying the system.

1 Introduction

In this paper, we consider a basic, pandemic security
problem: How is it possible to provide secure services
to users who can authenticate using only short secrets
or weak passwords?

This problem is of growing importance as Internet-
enabled computing devices become ever more preva-
lent and versatile. These devices now include among
their ranks an abundant variety of mobile phones,
personal digital assistants (PDAs), and game con-
soles, as well as laptop and desktop PCs. The avail-
ability of networks of computers to highly mobile user
populations, as in corporate environments, means
that a single user may regularly employ many differ-
ent points of remote access. The roaming user may
additionally employ any of a number of different de-
vices, not all of which necessarily possess the same
software or configuration.

While smartcards and similar key-storage devices
offer a secured, harmonized approach to authentica-
tion for the roaming user, they lack an adequately de-
veloped supporting infrastructure in many computing
environments. At present, for example, very few com-
puting devices contain smartcard readers – particu-
larly in the United States. Furthermore, many users
find physical authentication tokens inconvenient. An-
other point militating against a critical reliance on
hardware tokens is the common need to authenticate
roaming users who have lost or forgotten their to-
kens, or whose tokens have malfunctioned. Today,
this is usually achieved by asking users to provide
answers to a set of “life” questions, i.e., questions
regarding personal and private information. These

1

USR Exhibit 2116, Page 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

observations stress that roaming users must be able
to employ passwords or other short pieces of mem-
orable information as a form of authentication. In-
deed, short secrets like passwords and answers to life
questions are the predominant form of authentication
for most users today. They are the focus of our work
here.

To ensure usability by a large user population, it is
important that passwords be memorable. As a result,
those used in practice are often highly vulnerable to
brute-force guessing attacks [18]. Good credential-
server designs must therefore permit secure authen-
tication assuming a weak key (password) on the part
of the user.

1.1 SPAKA protocols

A basic tool for mutual authentication via pass-
words, and one well developed in the litera-
ture, is secure password-authenticated key agreement
(SPAKA). Most SPAKA protocols are descendants
of Bellovin and Merrit’s EKE protocol [3, 4], and are
predicated on either Diffie-Hellman key agreement or
key agreement using RSA. The client and server share
a password, which is used to achieve mutual assur-
ance that a cryptographically strong session key is
established privately by the two parties. To address
the problem of weak passwords, SPAKA protocols are
constructed so as to leak no password information,
even in the presence of an active attacker. When used
as a means of authentication to obtain credentials
from a trusted server, a SPAKA protocol is typically
supplemented with a throttling or lockout mechanism
to prevent on-line guessing attacks. Many roaming-
credentials proposals involve use of a SPAKA proto-
col as a leverage point for obtaining credentials, or
as a freestanding authentication protocol. A com-
prehensive, current bibliography of research papers
on the topic of SPAKA protocols (of which there are
dozens) is maintained by David Jablon, and may be
found at [15].

The design of most SPAKA protocols overlooks a
fundamental problem: The server itself represents a
serious vulnerability. As SPAKA protocols require
the verifying server to have cleartext access to user
passwords (or to derivative material), compromise of

the server leads potentially to exposure of the full
database of passwords. While many SPAKA proto-
cols store passwords in combination with salt or in
some exponentiated form, an attacker who compro-
mises the server still has the possibility of mounting
off-line dictionary attacks. Additionally, these sys-
tems offer no resistance to server corruption. An at-
tacker that gains control of the authenticating server
can spoof successful login attempts.

To address this problem, Ford and Kaliski [11] in-
troduced a system in which passwords are effectively
protected through distribution of trust across mul-
tiple servers. Mackenzie, Shrimpton, and Jakobsson
[21] extended this system, leading to more complex
protocols, but with rigorous security reductions in a
broadly inclusive attack model. Our work in this pa-
per may be regarded as a complement, rather than a
successor to the work of these authors. We propose a
rather different technical approach, and also achieve
some special benefits in our constructions, such as
a substantially reduced computational load on the
client. At the same time, we consider a different, and
in our view more pragmatic security model than that
of other distributed SPAKA protocols.

1.2 Previous work

The scheme of Ford and Kaliski reduces server vulner-
ability to password leakage by means of a mechanism
called password hardening. In their system, a client
parlays a weak password into a strong one through
interaction with one or multiple hardening servers,
each one of which blindly transforms the password
using a server secret. Ford and Kaliski describe sev-
eral ways of doing this. Roughly speaking, the client
in their protocol obtains what may be regarded as a
blind function evaluation σi of its password P from
each hardening server Si. (The function in ques-
tion is based on a secret unique to each server and
user account.) The client combines the set of shares
{σi} into a single secret σ, a strong key that the
user may then use to decrypt credentials, authen-
ticate herself, etc. Given an appropriate choice of
blind function evaluation scheme, servers in this pro-
tocol may learn no information, in an information-
theoretic sense, about the password P . An additional

2

USR Exhibit 2116, Page 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

element of the protocol involves the user authenticat-
ing by means of σ (or a key derived from it) to each
of the servers, thereby proving successful hardening.
The harderened password σ is then employed to de-
crypt downloaded credentials or authenticate to other
servers.

Mackenzie et al. extend the system of Ford and
Kaliski to a threshold setting. In particular, they
demonstrate a protocol such that a client commu-
nicating with any k out of n servers can establish
session keys with each by means of password-based
authentication; even if k − 1 servers conspire, the
password of the client remains private. Their system
can be straightforwardly leveraged to achieve secure
downloadable credentials. The Mackenzie et al. sys-
tem, however, imposes considerable overhead of sev-
eral types. First, servers must possess a shared global
key and local keys as well (for a total of 4n+1 public
keys). The client, additionally, must store n+1 (cer-
tified) public keys. The client must perform several
modular exponentiations per server for each session,
while the computational load on the servers is high
as well. Finally, the Mackenzie et al. protocol is
somewhat complex, both conceptually and in terms
of implementation. On the other hand, the protocol
is the first such provided with a rigorous proof of se-
curity under the Decision Diffie-Hellman assumption
[7] in the random oracle model [2].

Frykholm and Juels [13] adopt a rather different
approach, in which encrypted user credentials are
stored on a single server. In this system, no trust
in the server is required to assure user privacy un-
der appropriate cryptographic assumptions. Roughly
stated, user credentials are encrypted under a collec-
tion of short passwords or keys. Typically, these are
answers to life questions. While the Frykholm-Juels
system provides error tolerance, allowing the user to
answer some questions incorrectly, it is somewhat im-
practical for a general population of users, as it re-
quires use of a large number of questions. Indeed,
the authors recommend a suite of as many as fifteen
such questions to achieve strong security. The work
of Frykholm and Juels is an improvement on that of
Ellison et al. [10], which was found to have a seri-
ous security vulnerability [5]. This approach may be
thought of as an extension to that of protecting cre-

dentials with password-based encryption. The most
common basis for this in practice is the PKCS #5
standard [1].

1.3 Our work: a new, lightweight sys-

tem

It is our view that most SPAKA protocols are over-
engineered for real-world security environments. In
particular, we take the position that that mutual au-
thentication is often not a requirement for roaming
security protocols per se. Internet security is already
heavily dependent upon a trust model involving ex-
isting forms of server-side authentication, particu-
larly the well studied Secure Sockets Layer protocol
(SSL) [12]. SSL is present in nearly all existing Web
browsers. Provided that a browser verifies correct
binding between URLs and server-side certificates, as
most browsers do, the user achieves a high degree of
assurance of the identity of the server with which she
has initiated a given session. In other words, server
authentication is certainly important, but need not
be provided by the same secret as user authentica-
tion. Thus many SPAKA protocols may be viewed
as replicating functionality already provided in an ad-
equately strong form by SSL, rather than building on
such functionality.

Moreover, it may be argued that SPAKA proto-
cols carry a hidden assumption of trust in SSL or
similar mechanisms to begin with. SPAKA protocols
require the availability of special-purpose software on
the client side. Given that a mobile user cannot be
certain of the (correct) installation of such software
on her device, and that out-of-band distribution of
special-purpose software is rare, it is likely that a user
will need to download the SPAKA software itself from
a trusted source. This argues an a priori requirement
for user trust in the identity of a security server via
SSL or a related mechanism. In this paper, we as-
sume that the client has a pre-existing mechanism
for establishing private channels with server-side au-
thentication, such as SSL.

Our system represents an alternative to SPAKAs
in addressing “hardening” problem; it is a two-server
solution that is especially simple and practical. The
idea is roughly as follows. The client splits a user’s

3

USR Exhibit 2116, Page 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

password (or other short key) P into shares for the
two servers. On presenting a password P ′ for au-
thentication, the client provides the two servers with
a new, random sharing of P ′. The servers then com-
pare the two sharings of P and P ′ in such a way that
they learn whether P = P ′, but no additional infor-
mation. The client machine of the user need have no
involvement in this comparison process.

As we explain, it is beneficial to configure our sys-
tem such that users interact with only one server
on the front-end, and pass messages to a second,
back-end server via a protected tunnel. This per-
mits the second server to reference accounts by way
of pseudonyms, and thereby furnishes users with an
extra level of privacy. Such privacy is particularly
valuable in the case where the back-end server is ex-
ternally administered, as by a security-services or-
ganization. Much of our protocol design centers on
the management of pseudonyms and on protection
against the attacks that näıve use of pseudonyms
might give rise to.

1.4 Organization

In section 2, we describe the core cryptographic pro-
tocol our system for two-server comparison of secret-
shared values. We provide an overview of our ar-
chitecture in section 3, discussing the security mo-
tivations behind our choices. In section 4, we de-
scribe two specialized protocols in our system; these
are aimed at preventing false-identifier and replay at-
tacks. We provide some implementation details for
our system in section 5. We conclude in section 6
with a brief discussion of some future directions.

2 An Equality-Testing Proto-

col

Let us first reiterate and expand on the intuition be-
hind the core cryptographic algorithm in our system,
which we refer to as equality testing. The basic idea is
for the user to register her password P by providing
random shares to the two servers. On presenting her
password during login, she splits her password into
shares in a different, random way. The two servers

compare the two sharings using a protocol that de-
termines whether the new sharing specifies the same
password as the original sharing, without leaking any
additional information (even if one server tries to
cheat). For convenience, we label the two servers
“Blue” and “Red”. Where appropriate in subscripts,
we use the lower-case labels “blue” and “red”.

Registration: Let H be a large group (of, say, 160-
bit order), and + be the group operator. Let f be
a collision-free hash function f : {0, 1}∗ → H. To
share her password at registration, the user selects a
random group element R ∈U H. She computes the
share Pblue for Blue as Pblue = f(P) + R, while the
share Pred of Red is simply R. Observe that the share
of either server individually provides no information
about P .

Authentication: When the user furnishes pass-
word P ′ to authenticate herself, she computes a shar-
ing based on a new random group element R′ ∈U H.
In this sharing, the values P ′

blue = f(P ′) + R′ and
P ′

red = R′ are sent to Blue and Red respectively.

The servers combine the shares provided during
registration with those for authentication very sim-
ply as follows. Blue computes Qblue = Pblue−P ′

blue =
(f(P)− f(P ′)) + (R−R′), while Red similarly com-
putes Qred = Pred − P ′

red = R − R′. Observe
that if P = P ′, i.e., if the user has provided the
correct password, then f(P) and f(P ′) cancel, so
that Qblue = Qred. Otherwise, if the user provides
P 6= P ′, the result is that Qblue 6= Qred (barring
a collision in f). Thus, to test the user password
submitted for authentication, the two servers need
merely test whether Qblue = Qred, preferably with-
out revealing any additional information.

For this task of equality testing, we require a sec-
ond, large group G of order q, for which we let mul-
tiplication denote the group operation. The group G
should be one over which the discrete logarithm prob-
lem is hard. We assume that the two servers have
agreed upon this group in advance, and also have
agreed upon (and verified) a generator g for G. We
also require a collision-free mapping w : H → G. For
equality testing of the values Qred and Qblue, the idea

4

USR Exhibit 2116, Page 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

is for the two servers to perform a variant of Diffie-
Hellman key exchange. In this variant, however, the
values Qred and Qblue are “masked” by the Diffie-
Hellman keys. The resulting protocol is inspired by
and may be thought of as a technical simplification of
the PET protocol in [16]. Our protocol uses only one
component of an El Gamal ciphertext [14], instead
of the usual pair of components as in PET. Our pro-
tocol also shares similarities with SPAKA protocols
such as EKE. Indeed, one may think of the equal-
ity Qred = Qblue as resulting in a shared secret key,
and inequality as yielding different keys for the two
servers.

There are two basic differences, however, between
the goal of a SPAKA protocol and the equality-
testing protocol in our system. A SPAKA protocol,
as already noted, is designed for security over a po-
tentially unauthenticated channel. In contrast, our
intention is to operate over a private, mutually au-
thenticated channel between the two servers. More-
over, we do not seek to derive a shared key from the
protocol execution, but merely to test equality of two
secret values with a minimum of information leakage.
Our desired task of equality testing in our system is
known to cryptographers as the socialist millionaires’
problem. (The name derives from the idea that two
millionaires wish to know whether they enjoy equal fi-
nancial standing, but do not wish to reveal additional
information to one another.) Several approaches to
the socialist millionaires’ problem are described in
the literature. Often, researchers are also concerned
in addressing the problem to ensure the property of
fairness, namely that both parties should learn the
answer or neither. We do not treat this issue here,
as it does not have a major impact on the overall
system design. (A protocol unfairly terminated by
one server in our system is no worse than a password
guess initiated by an adversary, and will be immedi-
ately detected by the other server.)

Note that in this protocol, the client need perform
no cryptographic computation, but just a single (ad-
dition) operation in H. (The client performs some
cryptographic computation to establish secure con-
nections with Blue and Red in our system, but this
may occur via low-exponent RSA encryption – as in
SSL – and thus involves just a small number of mod-

ular multiplications.) Moreover, once the client has
submitted a sharing, it need have no further involve-
ment in the authentication process. Red and Blue
together decide on the correctness of the password
submitted for authentication. Given a successful au-
thentication, they can then perform any of a range
of functions providing privileges for the user: Each
server can send a share of a key for decrypting the
user’s downloadable credentials, or two servers can
jointly issue a signed assertion that the user has au-
thenticated, etc.

2.1 Protocol details

As we have already described the simple sharing pro-
tocols employed by the client in our system for regis-
tration and authentication, we present in detail only
the protocol used by the servers to test the equality
Qred = Qblue. We assume a private, mutually au-
thenticated channel between the two servers. Should
the initiating server (Blue) try to establish multiple,
concurrent authentication sessions for a given user
account, the other server (Red) will refuse. (In par-
ticular, in Figure 1, Red will reject the initiation of
a session in which the first flow specifies the same
user account as for a previously established, active
authentication session.) Alternative approaches per-
mitting concurrent login requests for a single account
are possible, but more complicated. If Blue initiates
an authentication request with Red for a user U for
which Red has received no corresponding authenti-
cation request from the user, then Red, after some
appropriate delay, will reject the authentication.

Let Qblue,U denote the current share combination
that Blue wishes to test for user U , and Qred,U the
analogous Red-server share combination for user U .
In this and any subsequently described protocols in
this paper, if a server fails to validate any mathemat-

ical relation denoted by
?
=,

?

6=,
?
>, or

?
∈, it determines

that a protocol failure has taken place; in this case,
the authentication session is terminated and the cor-
responding authentication request rejected.

We let ∈R denote uniform random selection from
a set. We indicate by square brackets those com-
putations that Red may perform prior to protocol

5

USR Exhibit 2116, Page 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

