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Foreword

Welcome to the second book from RSA Press, RSA Security’s Official

Guide to Cryptography!

As the Internet becomes a more pervasive part of daily life, the need

for e—security becomes even more critical. Any organization engaged in

online activity must assess and manage the e-security risks associated

with this activity. Effective use of cryptographic techniques is at the core

of many of these risk-management strategies. This book provides a prac~

tical guide for the use of cryptographic e—security technologies to provide

for privacy, security, and integrity of an organization’s most precious
asset: data.

It is an exciting time for cryptography, with important technical, busi-

ness, and legal events occurring in quick succession. This book can help

the reader better understand the technology behind these events.

In January 2000, the United States Government announced a signifi-

cant relaxation in restrictions on the export of strong cryptography. This

decision has permitted US. companies to now compete for cryptographic

business on a worldwide basis. Previously, many of the algorithms dis-

cussed in this book were treated as munitions and were subject to severe

restrictions on their export from the'U.S.

In September 2000, the patent on the RSA algorithm, arguably the

most important patent in cryptography, expired. Now any firm or indi-

vidual can create implementations of this algorithm, further increasing

the pervasiveness of one of the most Widespread technologies in the his-

tory of computing.

In October 2000, the United States National Institute of Standards and

Technology announced its selection of the winner of theAducmced Encryp-

tion Standard (AES) selection process, an algorithm called Rijndael devel-

oped by two Belgian researchers. The AES algorithm is intended to

replace the venerable, and increasingly vulnerable Data Encryption Stan--

dord (DES) algorithm. AES is expected to become the most widely used

algorithm of its type in a short time.

The security technology industry has undergone explosive growth in a

short period of time, with many new options emerging for the dep10yment

of e-security techniques based on cryptography. Ranging from new devel-

opments in cryptographic hardware to the use of personal smart cards in

public key infrastructures, the industry continues to increase the range

of choices available to address e-security risks. This book provides the
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reader with a solid foundation in the core cryptographic techniques of

e—security—including RSA, AES, and DES mentioned previously, and

many others—and then builds on this foundation to discuss the use of
these techniques in practical applications and cutting-edge technologies.

While this book does discuss the underlying mathematics of cryptog-

raphy, its primary focus is on the use of these technologies in familiar,
real-world settings. It takes a systems approach to the problems of using

cryptographic techniques for e-security, reflecting the fact that the degree

of protection provided by an e—security deployment is only as strong as the
weakest link in the chain of protection.

We hope that you will enjoy this hook and the other titles from RSA

Press. We welcome your comments as well as your suggestions for future

RSA Press books. For more information on RSA Security, please visit our

web site at www . rsasecurity . com; more information on RSA Press can

be found at www . rsapress . com.

Burt Kaliskj

Director and Chief Scientist

RSA Laboratories

bkal iskiersasecurity . com  
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Preface

Application developers never used to add security to their products

because the buying public didn’t care. To add security meant spending

money to include features that did not help sales. Today, customers

demand security for many applications. The Federal Bureau of Investi—

gation published the following Congressional Statement on February 16,
2000:

“There were over 100 million Internet users in the United States in 1999.

That number is projected to reach 177 million in United States and 502 mil-

lion worldwide by the end of 2003. Electronic commerce has emerged as a

new sector of the American economy, accounting for over it 100 billion in sales

during 1999; by 2003 electronic commerce is projected to exceed $1 trillion.”

At the same time, the Computer Security Institute (CSI) reported an

increase in cybercrime, “55% of the respondents to our survey reported

malicious activity by insiders.” Knowing this, you can be sure growing cor-

porations need security products.

The most important seCurity tool is cryptography. Developers and engi-

neers need to understand crypto in order to effectively build it into their

products. Sales and marketing people need to understand crypto in order

to prove the products they are selling are secure. The customers buying

those products, whether end users or corporate purchasing agents, need

to understand crypto in order to make well-informed choices and then to

use those products correctly. IT professionals need to understand crypto

in order to deploy it properly in their systems. Even lawyers need to

understand crypto because governments at the local, state, and national

level are enacting new laws defining the responsibilities of entities hold-

ing the public’s private information.

This book is an introduction to crypto. It is not about the history of

crypto (although you will find some historical stories). It is not a guide to

writing code, nor a math book listing all the theorems and proofs of the

underpinnings of crypto. It does not describe everything there is to know

about crypto; rather, it describes the basic concepts of the most widely

used crypto in the world today. After reading this book, you will know
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what computer cryptography does and how it’s used today For example,

you will

I Understand the difference between a block cipher and a stream

cipher and know when to use each (if someone tries to sell you an

application that reuses a stream cipher’s key, you will know why you

shouldn’t buy it).

I Know why you should not implement key recovery on a signing-only

key.

I Understand what SSL does and why it is not the security magic

bullet solving all problems, which some e-ccmmerce sites seem to

imply.

I Learn how some companies have effectively implemented crypts in

their products.

I Learn how some companies have used crypto poorly (smart people

learn from their own mistakes; brilliant people learn from other

people’s mistakes).

There are, of course, many more things you will learn in this book.

Chapter 1 delves into why cryptography is needed today; Chapters 2

through 5 describe the basic building blocks of crypto, such as symmetric

keys and public keys, password-based encryption, and digital signatures.

In Chapters 6 through 8, you will see how these building blocks are used

to create an infrastructure through certificates and protocols. In Chapter

9, you will learn how specialized hardware devices can enhance your secu-

rity. Chapter 10 explores the legal issues around digital signatures.

Finally, Chapters 11 and 12 show you some real-world examples of com-

panies doing it wrong and doing it right.

Throughout this book we use some standard computer hexadecimal

notation. For instance, we might show a cryptographic key such as the fol-

lowing: '

0x14060839 623179086

Many of you probably know what that means, but if you don’t, read

Appendix A. It’s all about how the computer industry displays bits and

bytes in hexadecimal. It also describes ASCII, the standard way letters,

numerals, and symbols are expressed in computers.
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In Chapter 6, you’ll find a brief description of ASN.1 and BERIDER

encoding. If you want to drill down further into this topic, read

Appendix B.

In Appendix C, you will find further detailed information about many

of the topics discussed in the book. These details are not crucial to under—

standing the concepts presented in the main body of the book; but for

those who wish to learn more about the way crypto is used today, this

appendix will offer interesting reading.

Finally, the accompanying CD contains the RSA Labs Frequently

Asked Questions (FAQ) about cryptography. The FAQ contains more

detailed information about many of the concepts presented in this book.

For instance, the FAQ describes much of the underlying math of crypto

and the political issues surrounding export, and it offers a glossary and

bibliography. Our goal in writing this book was to explain the crypto that

the vast majority of you need to know. If you want more detail, start with

the FAQ.
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‘illccording to the afiidavit in support of the criminal complaint, the Secret
Service began investigating this matter when it learned that there had

been unauthorized access to [online brokerage] accounts ofseveral [anony-

mous company] employees. One [anonymous company] employee told

authorities that approximately $285, 000 had been drained from his

[online brokerage] account when an unknown person was able to access his

account by calling the online broker and providing a name and social secu«

rity number. It was later determined that at least eight [anonymous com-

pany] employees had been victimized this past spring, and that these eight

had lost a total of$700, 000 from their stock accounts . . . [anonymous com~

pany] officials revealed that while working in the financial department,

[the accomplice] had access to confidential employee information such as

social security numbers and home addresses. ”""

If someone tells you, “I don’t need security. I have no secrets, nothing

to hide,” respond by saying, “OK, let me see your medical files. How

about your paycheck, bank statements, investment portfolio, and credit

card Hills? Will you let me write down your Social Security number,

  

*Source: US. Department ofJustice, July 20, 2000



2 Chapter 1

credit card numbers, and bank account numbers? What’s the PIN for

your ATM, credit card, or phone card? What’s your password to log on to
the network at work? Where do you keep your spare house key?”

The point is that we all have information we want kept private. Some-
times the reason is simply our natural desire for privacy; we would feel

uncomfortable if the whole world knew our medical history or financial

details. Another good reason is self-protection—thieves could use some

kinds of information to rob us. In other words, the motives for keeping a

secret are not automatically nefarious.

Corporations also have secrets—strategy reports, sales forecasts, tech-

nical product details, research results, personnel files, and so on.

Although dishonest companies might try to hide villainous activities from

the public, most firms simply want to hide valuable information from dis-

honest people. These people may be working for competitors, they might

be larcenous employees, or they could be hackers and. crackers: people who

break into computer networks to steal information, commit vandalism,

disrupt service, or simply to show what they can do.

Security Provided by Computer

Operating Systems

In the past, security was simply a matter of locking the door or storing

files in a locked filing cabinet or safe. Today, paper is no longer the only

medium of choice for housing information. Files are stored in computer

databases as well as file cabinets. Hard drives and floppy disks hold many

of our secrets. How do you lock a hard drive?

How Operating Systems Work

Before we talk about how computer data is protected, let‘s take a brief

look at how computers get and store information. The usual way to access

data on a computer or network is to go through the operating system (OS),

such as DOS, Windows, Windows 95, Windows NT, MacOS, UNIX, Linux,

Solaris, or HP/UX. The OS works like an application, taking input, per-

forming operations based on the input, and returning output. Whereas, for
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example, a spreadsheet application takes the numbers you type into it,
inserts them into cells, and possibly performs calculations such as adding

columns, an OS takes your commands in the form of mouse clicks, joy-

sticks, touch screens, or keyboard input-commands such as “Show a listing

of the files in this directory”—and performs the request, such as printing

to the screen a list of files. You can also ask the OS to launch a particular

applicationwsay, a text editor. You then tell the text editor to Open a file.

Behind the scenes, the editor actually asks the OS to find the file and

make its contents available to the editor.

Virtually all computers built today include some form of protection

courtesy of the OS. Let’s take a look at how such protection works.

Default OS Security: Permissions

Virtually all operating systems have some built-in permissions, which

allow only certain people access to the computer (its hard drive, memory,

disk space, and network connection). Such access is implemented via a

login procedure. If the user does not present the appropriate credentials

(perhaps a user name and password), the US will not allow that individ-

ual to use the computer. But even after a user is logged in, certain files

may still be off-limits. If someone asks to see a file, the OS checks to see

whether that requester is on the list of approved users; if not, the OS does

not disclose the contents (see Figure 1-1).

Access to most business computers and networks is controlled by some-

one known as a superuser or system administrator (often shortened to sys

admin). This system administrator is the person charged with creating

and closing user accounts and maintaining the systems and network. A

typical task of this superuser account is to override protections. Someone

forgot a password? A file is read-protected (meaning that it cannot be

opened and read)? The superuser has permission to circumvent the OS

permissions to respond to these problems. (This is where the name “super-

user” comes from; this individual can do anything.)

How does the OS know that the person requesting such system over—

rides is the superuser? The OS grants this access by user name and pass-

word. The superuser user name is usually “so” or “me ” or “administrator.”

Unfortunately, techniques for circumventing these default defenses are

widely known.
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Figure 1—1

(a) In Windows

NT, a file’s
permission is

given in its
Properties screen.
(b) In UNIX, you

type ls -l to see a
file’s permission
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Attacks on Passwords

Many computers or operating systems come with a preset superuser
account and password. In many cases, several passwords are used for var-
ious superuser functions. The superuser may have a password to create
accounts, a different password to control network functionality, another to
conduct or access nightly backups, and so on.
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For a cracker, logging on to a system as the superuser is possibly the

best way to collect data or do damage. If the superuser has not changed an

operating system’s preprogrammed passwords, the network is vulnerable

to attack. Most crackers know these passwords, and their first attempt to

break into a network is simply to try them.

If an attacker cannot log on as the superuser, the next best thing might

be to figure out the user name and password of a regular user. It used to

be standard practice in most colleges and universities, and in some com-

mercial companies, to assign every student or employee an account with

a user name and an initial passwordhthe password being the user name.

Everyone was instructed to log on and change the password, but often,

hackers and crackers logged on before legitimate users had a chance. In

other cases, some people never actually used their accounts. Either way,

intruders were able to gain access. This “user name as passwor ” system

is still used on many campuses and corporate settings to this day.

If the password of a particular user name is not the user name itself,

crackers may try to guess the correct password. Guessing a password

might be easy for an insider (such as a fellow employee), who probably

knows everyone’s user name. It’s common for people to use a spouse’s

name or a birthday as a password. Others write down their passwords,

and a quick search of a desk might yield the valuable information. Some

systems have guest accounts, with a user name of“guest” and a password

of “guest.” ‘

But even if the intruder is not very good at guessing passwords, appli-

catiOns are available that automate exhaustive password searches. These

applications, called password cracking software, are made by a variety of

people for various reasons—some legitimate and others not so legitimate.

To use one of these tools, the intruder needs access to your computer (net-

work access may be sufficient). Once connected, the hacker simply runs

the password cracking application. If the password is weak, within min-

utes the hacker will have privileged access.

Figure 1-2 shows a papular application known as lOphtCrack. This

application is designed to allow systems administrators to test the pass-

words in use by their users. The idea is that if a sys admin can crack a

password, so can crackers.
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Figure 1-2

lOphtCrack is
used to test

passwords for
vulnerability
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Attacks That Bypass Operating Systems

An operating system tags certain files and prevents unapproved people

from seeing the contents. Although a cracker or thief might be able to gain

access to such files by posing as the superuser or a regular user, another

possibility is to ignore the OS altogether and get the contents in some

other way.

Data Recovery Attack

One function of a computer’s operating system is to help users find and

use the specific data or application they want. In this way, an OS works
like the index of a book. Just as an index directs you to the specific page

where you’ll find the piece of information you want out of all the pages in

a book, the OS organizes data under a directory file structure and uses file

extensions to direct you to the data you want on the hard disk. But as far

as the computer is concerned, the data is simply so many electronic bits.
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Figure 1-3

Inspector Copier

from Reynolds

Data Recovery

(courtesy of Mark
Tessin of

Reynolds Data

Recovery)

If you don’t care what order they’re in, it’s possible to read those hits as

bits and not as files of text or numbers. Human beings can’t read hits in

this way, but software and hardware devices are available that can scan

storage media and read the bits. These tools bypass the OS and grab the

raw bits of data, which can then be reconstructed into the original files.

In fact, an entire industry has been built on the concept of reading hits

as bits, a process called data recovery. When you have a system crash or

some kind of physical damage to a hard drive, you can take your computer

to a data recovery expert, who often can reconstruct the files on the disk.

These companies provide a valuable service, helping to prevent total

losses in the event of a natural disaster or computer failure.

Reynolds Data Recovery of Longmont, Colorado, performs data recov-

ery and also sells software that allows you to perform your own recovery

(see Figure 1—3). According to the company’s advertising, one of its prod-

ucts, Inspector Copier, “does not reference the OS installed on the devices,

[and] this allows copies of different systems such as NT, Novell, UNIX,

Linux or Windows 2000!”
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Figure 1-4

Setting network
permissions on a
local drive using

Windows NT

 

But the techniques of data recovery can also be used by attackers to cir-

cumvent OS protections. To extend Inspector Copier, Reynolds sells a net-

work backup service that remotely backs up data on hard drives. It uses

Inspector Copier to extract the bits so that even if a hard drive is dam—
aged, a clean backup can be made. Although this service can be valuable

to many companies, it also means that the data recovery program can be
run remotely. Mark Tessin of Reynolds points out that the service can

even circumvent Windows NT security. Suppose your PC is connected to a

network but you don’t want the outside world to see your C: drive. You can

set the permissions on your drive so that Only you have read or write per-

mission to it (see Figure 1—4). The Reynolds network backup service can

circumvent that permission and read the files anyway. This is not to imply

that Reynolds Data Recovery will steal your data, only to illustrate that it

is possible.
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M

For serious disk drive failures (such as fire damage), data recovery

might be possible Only through specialized hardware devices. But an

attacker is not trying to steal your data from a damaged drive. Data recov—

ery software is so sephisticated and effective that it’s all anyone needs to

extract bits from a healthy storage medium.

To ensure the security ofyour data, you must assume that even though

some protections may be sufficient against some opponents, there will

likely be someone out there with the resources to mount a successful

attack. Only ifsuch an individual never comes after your data are you safe.

Memory Reconstruction Attack

Often, sensitive material is not stored on hard drives but does appear in

a computer’s memory. For example, when the program you’re running

allocates some of the computer’s memory, the 08 tags that area of mem-

ory as unavailable, and no one else can use it or see it. When you're fin-

ished with that area of memory, though, many operating systems and

programs simply “free” it—marking it as available—without overwriting

it. This means that anything you put into that memory area, even if you

later “deleted” it, is still there. A memory reconstruction attack involves

trying to examine all possible areas of memory. The attacker simply allo—

cates the memory you just freed and sees what’s left there.

A similar problem is related to what is called “virtual memory.” The

memory managers in many operating systems use the hard drive as vir-

tual memory, temporarily copying to the hard drive any data from mem—

ory that has been allocated but is momentarily not being used. When that

information is needed again, the memory manager swaps the current vir-

tual memory for the real memory. In August 1997, The New York Times

published a report about an individual using simple tools to scan his hard

drive. In the swap Space, he found the password he used for a popular

security application.

On UNIX systems, the OS “dumps core” in response to certain system

errors. Core dump has become almost synonymous with a program exiting

ungracefully. But on UNIX, the core file that results from a core dump is

actually a snapshot of memory at the time the error occurred. An attacker
who wants to read memory may be able to induce a core dump and peruse
the core file.
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Figure 1-5 illustrates how memory reconstruction attacks work.
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Added Protection Through Cryptography

For your secrets to be secure, it may be necessary to add protections not

provided by your computer system’s OS. The built-in protections may be
adequate in some'cases. If no one ever tries to break into or steal data

from a particular computer, its data will be safe. Or if the intruder has not

learned how to get around the simple default mechanisms, they’re suffi-

cient. But many attackers do have the skills and resources to break vari-

ous security systems. If you decide to do nothing and hope that no skilled

cracker targets your information, you may get lucky, and nothing bad will

happen. But most people aren’t willing to take that risk.

As you’ll learn in the chapters to come, one of the most important tools

for protecting data is cryptography, any of various methods that are used

to turn readable files into gibberish. For example, suppose your sensitive
material looks like this:

do not believe that the competition can match the new feature set,
yet their support, services, and consulting offerings pose a

serious threat to our eelehility. We must invest more money in our

Here is what the data looks like when it’s encrypted:

casein/4125.511: qmcn¢[<_b:vn"_6 UG6>e‘¢_9s‘ ,<_1o;‘tiuo_"s
ri§6§iq¥_fi-fifi_a1m1“=‘6_ . . . AARB'» filo. . . . o-

25?i -goaquvén] . i; . (r) <fi_uén ‘ gs I«tissue - a _>roma66_cea31/2scam (G
[gh_1>fi[EOadtn* 'bsiujwm/as—JLEgi/uniacin: .m‘hr_

Even if an attacker obtains the contents of the file, it is gibberish. It does

not matter whether or not the OS protections worked. The secret is still
secret. -

In addition to keeping secrets, cryptography can add security to the

process of authenticating people’s identity. Because the password method

used in almost all commercial operating systems is probably not very

strong against a sophisticated (or even an unsophisticated) attacker, it’s

important to add protection. The cryptographic techniques for providing

data secrecy can be adapted to create strong digital identities. Ifattackers

want to pose as someone else, it’s not a matter simply of guessing a pass-

word. Attackers must also solve an intractable mathematical problem (see

Figure 1-6).
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Figure 1-6

To pose as Steve
Burnett of RSA

Security, you’d
have to factor this

number (see also

Chapter 4)
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The Role of Cryptography in Data Security

In the physical world, security is a fairly simple concept. If the locks on

your house’s doors and windows are so strong that a thief cannot break in
to steal your belongings, the house is secure. For further protection

against intruders breaking through the locks, you might have security
alarms. Similarly, if someone tries to fraudulently withdraw money from

your bank account but the teller asks for identification and does not trust
the thief’3 story, your money is secure. When you sign a contract with

another person, the signatures are the legal driving force that impels both

parties to honor their word.

In the digital world, security works in a similar way. One concept is pri-

vacy, meaning that no one can break into files to read your sensitive data
(such as medical records) or steal money (by, for example, obtaining credit

card numbers or online brokerage account information). Privacy is the

lock on the door. Another concept, data integrity, refers to a mechanism

that tells us when something has been altered. That’s the alarm. By

applying the practice of authentication, we can verify identities. That’s

comparable to the ID required to withdraw money from a bank account
(or conduct a transaction with an online broker). And finally, nonrepudia-

tion is a legal driving force that impels people to honor their word.
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Cryptography is by no means the only tool needed to ensure data secu-

rity, nor will it solve all security problems. It is one instrument among

many. Moreover, cryptography is not foolproof. All crypto can be broken.

and, more importantly, if it’s implemented incorrectly, it adds no real secu-

rity. This book provides an introdriction to cryptography with a focus on

the proper use of this tool. It is not intended as a complete survey of all

there is to know about cryptography. Rather, this book describes the most

widely used crypto techniques in the world today.





 
Cryptography converts readable data into gibberish, with the ability to

recover the original data from that gibberish. The first flavor of crypto is

called symmetric-key. In this approach, an algorithm uses a key to convert

information into what looks like random bits. Then the same algorithm

uses the same key to recover the original data.

Pao-Chi is a sales rep for a company that makes printing machinery. He

sells to neWSpapers, magazines, independent printing houses large and

small, and even universities. His product line includes presses, tools,

replacement parts, repair services, and training. The end of the quarter is

coming up in a couple ofweeks, and he’s just received a memo from Gwen,

the vice president of sales. The company is having difficulty “making its

numbers,” the memo says. Then it outlines a new, complex pricing policy.

This new policy lists the asking prices for all their products and also

indicates the lowest prices sales reps are allowed to negotiate. In the past,

they’ve based the amount of the discounts they give on the size of the

order, expectations of future sales with a given client, and other factors.

But now, the memo states, sales reps have the authority to give even big-

ger discounts.

Pao-Chi wants to closely limit who has access to this information. If

potential customers linew how far he was willing to go in discounting,

they would have the edge in negotiations. Existing customers might

demand rebates, and competitors would gain knowledge that could aid,
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Figure 2-1

If you feed your
sensitive files to

an encryption

program, you get
What looks like

gibberish

them in winning contracts. In addition, stock analysts or business

reporters could report the company’s slow sales this quarter, affecting its

reputation.

How can Pas-Chi and Gwen keep this memo secret? They could choose

not to let it leave the office, or maybe Pao-Chi could simply memorize it.

But it’s more than 20 pages long and too complex to memorize, and he’ll

need to consult it while trying to make a sale.

So Pao-Chi keeps an electronic copy of the memo on his laptop, and

takes steps to protect the file. In Chapter 1, we saw that typical protection

techniques are not sufficient. Pas-Chi can lose his laptop, or someone

might steal it or simply look through the files while he’s at lunch. To pro-

tect the file, he decides to encrypt it.

Let’s say Pas-Chi buys a computer program to encrypt sensitive files.

When running the program, he simply flips the switch to “Encrypt” and

feeds the file to the program (see Figure 2-1). When the file comes out of

the program, it looks like gibberish. If intruders get their hands on it, they
will have no idea what it means.
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Figure 2-2

To get encrypted

gibberish, you
feed sensitive

data and a secret
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encryption
machine. To

recover the file,

you flip the
switch to

“Decrypt” and
then feed it the

gibberish and the
secret number
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The problem is that as long as the file is gibberish Pao—Chi won’t be

able to read it either. To read it, he must somehow convert it back to its

original form. The program has just such a feature: he flips the switch to

“Decrypt,” feeds in the gibberish, and out comes the file in its former con—
dition.

But there’s one problem with this scenario. If intruders are able to

obtain the encrypted file, surely they can obtain the program that con-

verts it back. Even if they can’t, where can Pan—Chi safely store the pro-

gram? If he can keep the program out of the hands of attackers, why not
store his file there as well?

No, he doesn’t have a place where he can keep the encrypting and

decrypting program safe. And if Pao~Chi has access to it, he must assume

that attackers can gain access. That’s why he uses encryption in the first

place. By itself, an encryption machine cannot protect secrets. Pee-Chi

needs additional protection.

That additional protection is a secret number. Ifhe feeds the file and a

secret number to the program, the program will encrypt the file. Until the

program has a secret number, it will not run. To decrypt the file, Pan-Chi

must present the gibberish and the same secret number (see Figure 2—2).
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Figure 2-3

If attackers try
numbers other

than the secret

value, they get
only more

gibberish

If an attacker somehow obtains a copy of the gibberish and feeds it to

the program for recovery, it won’t work. The program asks for the number,

which the attacker does not know. It’s possible to try numbers at random

(or to try all possible numbers systematically), but every time a wrong

number is inserted, the application simply spits out difi'erent gibberish

(See Figure 2-3).
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Even though someone can use the same program Pan—Chi used, it never

re-creates the original file without the secret number. Even if the attacker

guesses a number close to the original number, even if it is off by only 1,

the program will not produce anything close to the correct encrypted file.

Some Crypto Jargon

The system we’ve just described is known as symmetric—key cryptography.

Some people call it secret-key cryptography. Here are some official terms.
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When you want to convert sensitive information to gibberish, you

encrypt the data. To convert it back, you decrypt it.

To do this, you use an algorithm. The word “algorithm” is a scientific

term for a recipe or step-by-step procedure. It is a list of instructions or

things to do in a particular order. An algorithm might have a rigid list of

commands to follow, or it might contain a series of questions and depend-

ing on the answers, describe the appropriate steps to follow. A mathemat-

ical algorithm might list the operations to perform in a particular order to

“find it.” For example, an automobile diagnostic algorithm may ask ques-

tions about oil pressure, torque, fluid levels, temperature, and so on, to

determine what’s wrong. A computer program can also implement an

algorithm, meaning the program converts the algorithm’s list of com-

mands, questions, and operations into the computer’s language, enabling

it to perform the steps in the appropriate order. In computer cryptography,

algorithms are sometimes complex mathematical operations or simply bit

manipulations. Many encryption algorithms exist, and each one has its

own particular list of commands or steps. Just as you can have a program

that plays Solitaire or one that computes the trajectory of satellites, you

can have a program that implements an encryption algorithm that takes

your data and converts it to gibberish.

The data that you want to keep secret is called plotntext (some call it

clear-text). Your plaintext could be a human-readable text file, such as the

memo. Or it could be a binary file, which looks like nonsense to human

eyes but makes perfect sense to a computer program. For example, if you

open a PowerPoint file using Windows’ Edit text editor, the file looks like

gibberish because the program can’t convert the PowerPoint formatting

information; but if you open the same file in PowerPoint, it appears as

intended. Whether or not your information is readable by a human or a

given program, it’s called plaintext.

After the data is encrypted, it’s known as ciphertext.

The algorithm encrypts your plaintext into ciphertext, but it needs one

more thing—a key. In our sales rep example, the secret number used to

encrypt the pricing memo was its key. In computer crypto, the key is

always a number or a set of numbers.

We’ve also met the attacker, someone trying to steal information. Actu-

ally, an attacker may try to do more than simply uncover someone else’s

secrets. Some attackers try to pose as people they are not, disable Web

sites, delete someone else’s information, prevent customers from buying at

a particular online merchant, slow down systems, and on and on and on.

The term “attacker” is simply a catchall for the individual from whom you

must protect your digital assets.
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The study of breaking cryptographic systems is known as of cryptonaly»

sis. Similar to the attacker, the cryptanalyst looks for weaknesses in algo—

rithms. All algorithms can be “broken,” the good ones are simply the

algorithms strong enough to withstand an attack for so long the break

comes “too late.” So a cryptanalyst’s job is to find weaknesses that may help

someone break the algorithm faster. Attackers may use myptanalytic tech—

niques to do damage, but they may also use other tools.

The cryptographer develops crypto systems; the cryptanalyst looks for

weaknesses. It’s important for the crypto community to know about

the weaknesses because attackers are looking for them as well. Attackers

are almost certainly not going to announce their discoveries to the world,

so cryptanalysts perform a service, letting us all know what attackers

probably know but won’t tell us.

What Is a Key?

The term “key” comes from the fact that the secret number you choose

works in the same way that a conventional key works. To protect the con-

tents of your house, you install a lock on the door. To operate the lock, you

insert the key and turn it. The lock’s tumblers and mechanisms work with

the key in a prescribed way to activate a barrier that prevents the door

from being opened. To unlock the door, you insert the key and turn it in

the opposite direction. The tumblers and mechanisms work with the key

to reverse the process and allow the door to be opened.

In cryptography, to protect the contents of your files, you install a lock

(an encryption algorithm) on your door (the computer). To operate the lock

(encrypt the data), you insert the key (the secret number) and execute it

(instead of turning this key, you Operate the program by double-clicking,

clicking OK, or pressing ENTER). The algorithm performs its steps using the

key to alter the plaintext and convert it to ciphertext. To unlock the

encrypted file, you insert the same key and execute. The algorithm reverses

the steps and converts the ciphertext back to the original plaintext.

Just as only the correct house key can open your front door, only the

correct encryption key can decrypt data. In symmetric-key cryptography,

the key that is used to encrypt data is the same key that is used to decrypt

it. “Symmetric” essentially means “the same on two sides,” and that’s what

we have here: the same key on two sides of the encryption process. Fig-

ure 2-4, a picture you’ll see quite a bit in this book, is the image we use to

visualize cryptography.
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Figure 2-4
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In this book we talk about some of the many different encryption algo-

rithms you have to choose from, but remember that keys are not inter-

changeable among algorithms. For example, suppose that you encrypt

data using the Triple Digital Encryption Standard (DES) algorithm (dis-

cussed later in the section titled “Triple DES”). If you try to decrypt the

data using the Advanced Encryption Standard (AE8) cipher (discussed

later in the section titled “Advanced Encryption Standard”), even if you

use the same key, you will not get the correct result.
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Why Is a Key Necessary?

All computer crypto operates with keys. Why is a key necessary? Why not

create an algorithm that doesn’t need a key?

As you saw in the memo example, if attackers can understand the algo-

rithm, they can recover secret data simply by executing the algorithm.

That’s like installing a deadbolt on your front door with the lock on the

outside. It’s true that when the deadbolt is in place, the door cannot be

opened. But anyone can open the door simply by turning the lock.

It might seem that the solution is to keep the algorithm secret, but that

approach has several problems. First, attackers always crack the algo-

rithm (see “Historical Note: They Always Figure Out The Algorithm,” later

in this chapter). What’s more, suppose you do manage to keep the algo-

rithm secret. Unless you are a cryptography expert and develop your own

algorithms, you also must trust the company that wrote your algorithm

never to reveal it deliberately or accidentally. Does anyone have that

much trust in a corporate entity?

Here’s the real question: Which would you trust more to keep secrets—

an algorithm that must be kept secret, or an algorithm that can do its job

even if everyone in the world knows exactly how it works? That’s where

keys come in.

Keys relieve you of the need to worry about the algorithm used in your

encryption scheme. If you protect your data with a key, you need protect

only the key, something that’s easier to do than protecting an algorithm.

in this book you’ll learn a lot about key protection. Also, ifyou use keys to

protect your secrets, you can use different keys to protect different secrets.

This means that if someone breaks one ofyour keys, your other secrets are

still safe. if you’re depending on a secret algorithm, an attacker who

breaks that one secret gets access to all your secrets.

Generating a Key

In a symmetric-key cryptographic system, the key is only a number: It can

be any number as long as it’s the right size, so you simply pick a number

at random. Then, the next time you need a key, you pick another number at

random. The question is, how do you pick a number at random?
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Historical Note: They Always Figure
Out the Algorithm

Cryptographers are often asked a key question: “Can’t I just encrypt

my data and simply not tell the attackers what algorithm I used and

how big the key is? How can they break my message then?” There

are three answers.

Answer I: They Always Figure It Out Anyway

Attackers can deduce your algorithm without any help from you.

Eventually, they always figure it out. Always. Without exception.

Never in the history of cryptography has semeone been able to keep

an algorithm secret.

In war, Spies have always found ways of discovering the algo-

rithm, whether it originates in a mathematical operation or a

machine. They steal it or get someone to reveal it, maybe through

blackmail, extortion, or the time-tested cryptanalytic technique

known as “the rubber-hose attack.” Agents have always uncovered

the algorithm or gotten a copy of the machine. For example, in World

War II, Polish soldiers captured the German Enigma machine early

in the war. Enigma was the crypto machine the German military

used. The allies (namely the British) were able to crack the code

more easily because they had the machine in their possession.

Alternatively, the cryptanalysts simply figure out the algorithm.

In World War II, US. codebreakers were able to determine the inner

workings of the Japanese code machines without having one of the

machines in their possession.

In modern times, a company called Gemstar Development created

a code that converted date, time, and channel indicators into a sin-

gle code number. These code numbers were published in TV listings

as “VCR+ .” People who bought a GemStar control box could program

their VCRs simply by punching in the numbers, simplifying the

process and thus benefiting people who owned the product. Only the

Gemstar box knew how to decrypt the code numbers. But Ken

Shirriii', Curt Welch, and Andrew Kinsman broke the Gemstar algo-

rithm, and they published it in the July 1992 issue of Cryptologia, a

trade journal. Now, anyone who wants to decode those numbers
continues
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(such as VCR manufacturers) can do it without buying a Gemstar

control box.

Another example is R04, an algorithm invented in 1987 but never

published. Cryptanalysts and other experts studied it and deter-

mined that RC4 was a good way to keep data secret. But the com-

pany that created it, RSA Data Security, never made the inner

Workings of the RC4 algorithm public. This secrecy was for monetary

and not security reasons; the company hoped that by keeping it

secret no one else would implement and sell it. In 1994, anonymous

hackers posted the algorithm on the Internet. How did they figure it

out? It was probably by stepping through a copy of the object code

with an assembly language debugger. Incidentally, RC4 is now used

as part of Secure Socket Layer (SSL), the World Wide Web’s secure

communication protocol (see Chapter 7). RC4 is arguably the most

commonly used symmetric cipher, even more so than DES, discussed

later in this chapter in the section “Digital Encryption Standard.”

If a cryptographic system is hardware-based, engineers open it

and look at the internals. In 1998, David Wagner and Ian Goldberg,

at the time graduate students at the University of California at

Berkeley, opened a supposedly secure digital cell phone and cracked
its code.

Sometimes it is possible to keep an algorithm secret long enough

to be effective, but eventually the enemy figures it out. For example,

in World War II, the US. Army used Navajo soldiers to communicate.

They simply spoke in Navajo. The Japanese military did not have

anyone in its employ who spoke Navajo, nor did it have dictionaries

or other reference material. The encryption worked because the

algorithm (the Navajo language itself) was kept secret.

Now, ofcourse, any large military has linguists on staffwho either

know or can easily learn any language used to encrypt secrets.

Answer 2: You Can’t Make Money Developing

Secret Algorithms

Gemstar did make money for a while using a secret algorithm, but

only until someone cracked it. The ultimate problem, though, goes

deeper. Think about it this way: How can you sell something without

letting buyers see what they’re buying?

continues
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Suppose, for example, that you sell a software cryptographic sys-

tem to an e-mail vendor, enabling it to encrypt messages. How could

you prevent this client, or anyone else, from looking at your code?

There are plenty of ways to reverse-engineer software, as shown in

the RC4 story.

“Fine,” you may counter, “I won’t sell my algorithm to just anyone.

I’ll make sure that only people I trust can use it.” Is it possible to

trust enough people to make money that way? And how are your

trusted clients going to use your algorithm? About the only thing

they could do so is store their data and talk to each other. But people

want to communicate with others who do not purchase their algo-

rithm from the same vendor. As a result, the algorithms must be

standardized, and that means they must be public.

The other problem with trying to sell algorithms arises on the

buyer’s side of the arrangement. If you want to use cryptography,

you must employ a hardware device or a software program. The

problem is this: Just as you have access to the product, so do attack-

ers. Where did you get your hardware or software—a retail software

store, a business-to-business vendor? Attackers can go to the same

source and get their own copies.

In short, ifyou use your own algorithm and want to keep it secret,

you can’t sell it. As a result, you can’t make any money.

Answer 3: Publicly Known Algorithms
Are More Secure

Let’s say you’re the purchasing agent for your company and it’s up to

you to decide which cryptographic algorithm to buy. Your company will

use this algorithm to store data and communicate securely. Two sales

reps offer their products. One warns, “This algorithm is secure as long

as the attacker does not know its inner workings.” The other proclaims,

“You can tell attackers what the algorithm is and how long the key is,

but they can never retrieve your sensitive data without the key.”

Which one would you buy?

If it is possible to build a cryptographic system in which the algo-

rithm is completely known, and if attackers still can’t break it with-

out the key, isn’t that system more secure than one that can be

broken if the algorithm is uncovered? Well, it is possible to build

such cryptographic systems.

continues
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When algorithms are made public, cryptanalysts and computer

engineers get a chance to examine them for weaknesses. If an algo-

rithm is vulnerable, you can choose not to use it. Otherwise, you can

be confident that your data is safe. If an algorithm is kept secret, on

the other hand, analysts will not be able to find any weaknesses it

may have. Does that mean it has no weaknesses? Not necessarily; it

simply means that you don’t know whether or not it is vulnerable.

Maybe a cracker, lurking somewhere in a basement, has obtained a

copy of the algorithm (remember, they always do) and has already

found a successful attack. But this cracker has decided not to share

the information. If you use the secret algorithm, all your data is com-

prOmised but you don’t know it.

When an algorithm is made public, however, that’s no guarantee

that it is secure. Maybe analysts have not yet found the weakness,

and the basement-dwelling cracker has found it. But great minds

thrive on finding flaws in public cryptographic systems. There’s

prestige (and sometimes a little money) in finding chinks in the

armor. If the cryptographic community cannot find something wrong

with an algorithm, there’s a good chance that no one else will.

Sources: See David Kahn’s The CodeBreakers for the histories of the Enigma, Purple,

and Navajo codetalkers. See Cecil Adams” Return of the Straight Dope for the Gem-

Star story.

To answer that question, let’s consider what the word “random” means.

You probably have an intuitive idea of randomness, and most likely it’s

correct. To be more formal than intuition, we could put it this way: “If

someone knows what the current numbers are, is it possible to predict the

next numbers?” To put it the way cryptographers prefer, random values

are simply sets of numbers that pass statistical tests of randomness and

are unrepeatahle. .

Suppose that you choose a few thousand numbers and ask a mathe-

matician, “Are these numbers random?” To simplify things and to conform

to computer conventions, you make the numbers binary, meaning that

they are sequences of 1's and 0’s. The mathlete will draw on a set of tests
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that examine the numbers. Among these tests (see Figure 2-5) are ques-

tions such as these: Are there roughly the same count of 1’s and 0’s? Do

some patterns of 1’s and 0’s appear “too often”? Do some patterns of 1’s

and 0’s appear “not often enough”? If the numbers pass the tests, we say

that the numbers are probably random. “Probably” randmn? Can’t we say

“definitely” random? No, we can’t, and in a few paragraphs you’ll see why.

A Random Number Generator

If you have a few thousand numbers, you can test them for randomness.

But where do you get those few thousand numbers in the first place? One

source is a random. number generator (RNG). These devices work by gath-

ering numbers from various kinds of unpredictable inputs, such as by

measuring radioactive decay, examining atmospheric conditions in the

vicinity, or calculating minute variances in electrical current. These num-

bers pass the tests of randomness.

Ifyou ask the machine for a second group of numbers, you will virtually

never receive the same sequence again. That’s because the output is based

on input that’s always changing. The numbers are unrepeatable.

So to return to our original definition, we can ask, “Can anyone predict

what the next numbers will be?” To do that, someone would have to predict

the minor variations in the radioactive decay, atmospheric conditions, or

electricity of the current. These are things we assaume that no one can do.

Intel produces an RNG that uses system thermal noise as its variable

and unpredictable input. Currently, this device does not ship automatically
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with every Pentium-based PC, although maybe in the future it will. Other

companies (such as nCipher, Chrysalis, and Rainbow) sell devices known

as cryptographic accelerators (discussed in Chapters 3 and 9). These
devices come with RNGS.

A Pseudo—Random Number Generator

Where can you get random numbers if you don’t have an RNG? It turns

out there are algorithms called pseudo-random number generators

(PRNGs). Just as there are algorithms that convert plaintext into cipher-

text, there are algorithms that produce what are called “pseudo-random”

numbers.

Ifyou use one of these algorithms to generate a few thousand numbers

and apply the statistical tests, the numbers pass. What makes these num-

bers pseudo-random and not random is that they are repeatable. If you

install the same PRNG on another computer, you get the same results. If

you run the program two weeks later, you get the same results.

This is one reason we say that numbers that pass statistical tests of

randomness are “probably” random. Even if they pass, do we know

whether they are repeatable? The math tests give us only part of the
answer.

If the numbers are repeatable, what good is a PRNG? The answer is

that you can change the output by using what is known as a seed. Just as

RNGs take input (radioactive decay, atmospheric conditions, electrical

variances), a PRNG takes input (the seed). If you change the input, you

change the output. With RNGs, the input is constantly changing on its

own, unpredictably. With a PRNG, it’s up to you to make sure the input

changes each time you want to generate new numbers.

What is this seed? In the real world, a seed can be lots of things: the

time of day down to the millisecond, various constantly changing com—

puter state measurements, user input, and other values. Maybe you’ve

seen a user-input seed collector. An application may ask you to move the

mouse around. At selected intervals, the program looks at where, on the

screen, the arrow is located. This value is a pair of numbers: how many

pixels up from the bottom of the screen and how many pixels over from

the left. Any one input is not sufficient, but if you put them all together

you have unpredictability (see Figure 2-6).

You may be thinking, “Why use a PRNG to generate the numbers? Why

not just use the seed?” There are two main reasons. The first reason is the

need for speed. Seed collection is often time-consuming. Suppose you need
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only a few thousand bits of random data. A seed collector may take several

minutes to gather the necessary numbers. When was the last time you

waited several minutes for a program to do something without getting

frustrated? To save time, you can gather 160 or so bits of seed (which may

take little time), feed it to the PRNG, and get the required thousands of

bits in a few milliseconds.

The second reason to use a PRNG is entropy, a term that describes

chaos. The greater the entropy, the greater the chaos. To put it another

way, the more entropy, the more random the output. Suppose you want

128 bits of entropy. A seed may have that, but it is Spread over 2,400 bits.

For example, the time of day down to the millisecond is represented in

64 bits. But the year, the month, the date, and maybe even the hour and

minute might be easy to guess. The millisecond—two or three hits of the

time of day—is where the entropy is. This means that out of 64 bits of

seed, you have 2 bits of entropy. Similarly, your other seed data may sufs

fer the same condition. A PRNG will take that 2,400 hits of seed and com-

press it to 128 bits.

Well, then, why not take the seed and throw away the low-entropy bits?

In a sense, that’s what a PRNG does. You can do it, or you can have a

PRNG do it, and the latter means less work for you.
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By the way, most PRNGs use message digests to do the bulk of the

work. We talk about the details of digests in Chapter 5, but for now, let’s

just say that they are the “blenders” of cryptography. Just as a blender

takes recognizable food and purses it into a random, unrecognizable blob,

a message digest takes recognizable bits and bytes and mixes them up

into a random, unrecognizable blob. That sounds like what we look for in

a PRNG.

A good PRNG always produces pseudo-random numbers, regardless of

the seed. Do you have a “good” seed (one with lots of entropy)? The PRNG

will produce numbers that pass tests of randomness. Do you have a “bad”

seed (or no seed at all)? The PRNG will still produce good numbers that

pass the tests.

Then why do you need a good seed? The answer is given in the next section.

Attacks on Encrypted Data

Someone wants to read the data you’ve encrypted. This person, known as

the attacker, must first decrypt the data. To do that, the attacker must

either identify the key or break the algorithm.

Attacking the Key

If attackers can figure out what your key is, they can decrypt your data.

One approach, the brute-force attack, is to try every possible key until the

right one is identified. It works this way. Let’s say your key is a number

between 0 and 100,000,000,000 (one hundred billion). The attacker takes

your ciphertext (perhaps only 8 or 16 bytes’ worth) and feeds it to the

decryption algorithm along with the “alleged key” of 0. The algorithm does

its job and produces a result. If the resulting data appears reasonable, 0

is probably the correct key. If it’s gibberish, 0 is not the true key. In that

case, you try 1, and then 2, 3, 4, and so on (see Figure 2-7).

Remember, an algorithm simply performs its steps, regardless of the

input. It has no way of knowing whether the result it produces is the cor-

rect one. Even if the value is close to the key, maybe off by only 1, the

result is gibberish. So it’s necessary to look at the result to tell whether it

might be the key. Smart attackers write programs to examine the result.

Is it a series of letters of the alphabet? Yes? Pass this key to the attacker.

No? Try the next key.
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Figure 2-7
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It usually takes very little time to try a key. The attacker can probably

write a program that tries many keys per second. Eventually, the attacker

could try every possible number between 0 and 100 billion, but that may

not be necessary. Once the correct key is found, there’s no need to search

any more. On average, the attacker will try half of all possible keys—4n

our example, 50 billion keys—before finding the correct one. Sometimes it

takes more time, sometimes less, but, on average, about half the possible

keys must be tried.
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Figure 2-8
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How long would it take an attacker to try 50 billion keys? Three years?

Three days? Three minutes? Suppose you want to keep your secret safe for
at least three years, but it takes an attacker Only three minutes to try

50 billion values. Then what do you do? You choose a bigger range. Instead

offinding a number between 0 and 100 billion, you find a number between

0 and 100 billion billion billion billion. Now the attacker will have to try,

on average, many more keys before finding the right one.

This concept of the range of possible keys is known as key size. Gold is

measured in troy ounces, atoms are measured in moles, and cryptographic

keys are measured in bits. If someone asks, “How big is that key?” the

answer might be 40 bits, 56 bits, 128 bits. and so on. A 40-bit key means

that the range of possible values is from 0 to about 1 trillion. A 56-bit key

is 0 to about 72 quadrillion. The range of a 128-bit key is so large that it’s

easier just to say it’s a 128—bit key (see Figure 2—8).

40-bit keys

(in hex)

64-bit keys

00 00 00 00 00 (in hex)
0000000001

0000000002

0000000000000000

0000000000000001

0000000000000002

6F 55 all D2 0c 59 C6 1'1 D1534 E4 40 92

FFFFFFFFFF FFFFFFFFFFFFFFFF
  

128-bit keys
(inhex) 00000000000000000000000000000000

00000000000000000000000000000001

00000000000000000000000000000002

20 1486AE 18345Ac15's98093 132443c 11 D2 
WWWWWWWWWWWWWWWW

Each bit of key Size you add doubles the time required for a brute-force

attack. If a 40-bit key takes 3 hours to break, a 41-bit key would take 6

hours, a 42-bit key, 12 hours, and so on. Why? Each additional bit doubles

the number of possible keys. For example, there are eight possible num-

bers of size 3 bits:

000 001 010 011 100 101 110 111
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0000

These are the numbers from zero to seven. Now add one more hit:

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Every number possible with 3 bits is possible with 4 bits, but each of

those numbers is possible “twice”: once with the first bit not set, and again

with it set. 80 if you add a bit, you double the number of possible keys. If

you double the number of possible keys, you double the average time it

takes for brute-force attack to find the right key.

In short, if you want to make the attacker’s job tougher, you choose a

bigger key. Longer keys mean greater security. How big should a key be?

Over the years, RSA Laboratories has nFFered challenges. The first person

or organization to crack a particular message wins a money prize. Some of

the challenges have been tests of brute-force time. In 1997, a 40-bit key

fell in 3 hours, and a 48-bit key lasted 280 hours. In 1999, the Electronic

Frontier Foundation found a 56-bit key in 24 hours. In each case, a little

more than 50 percent of the key space was searched before the key was

found. In January 1997, a 64-bit challenge was issued. As of December

2000, it has still not been solved.

In all these situations, hundreds or even thousands of computers were

operating cooperatively to break the keys. In fact, with the 56-bit DES

challenge that the Electronic Frontier Foundation broke in 24 hours, one

of those computers was a custom-built DES cracker. This kind ofcomputer

does only one thing: check DES keys. An attacker working secretly would

probably not be able to harness the power of hundreds of computers and

might not possess a machine built specifically to crack a particolar algo-

rithm. That’s why, for most attackers, the time it takes to break the key

would almost certainly be dramatically higher. On the other hand, if the

attacker were a government intelligence agency with enormous resources,

the situation would be different.

We can devise worst-case scenarios. Let’s use as our baseline an exag-

gerated worst-case scenario: examining 1 percent of the key space of a

56-bit key takes 1 second, and examining 50 percent takes 1 minute (see

Table 2-1). Each time that we add a bit to the key size, we double the

search time.

Currently, 128 bits is the most commonly used symmetric-key size. If

technology advances and brute-force attackers can improve on these num-

bers (maybe they can reduce the 128-bit times to a few years), then we

would need to use a 256-bit key.

You may be thinking, “Technology is always advancing, so I’ll have to

keep increasing key sizes again and again. Won’t there come a time when

I’ll need a key so big it becomes too unwieldy to handle?” The answer is
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Table 2-1

A Worse Than

Worst-Case

Scenario: How

Long a Brute-
Force Attack Will

Take for Various

Key Sizes

 

Bits 1 percent of Key Space 50 percent of Key Space

56 1 second 1 minute

57 2 seconds 2 minutes

58 4 seconds 4 minutes

64 4.2 minutes 4.2 hours

'72 17.9 hours 44.8 days

80 190.9 clays 31.4 years

90 535 years 321 centuries

108 140,000 millennia 8 million millennia

128 146 billion millennia 8 trillion millennia

that you’ll almost certainly never need a key longer than 512 bits

(64 bytes). Suppose that every atom in the known universe (there are

about 23°“ of them) were a computer and that each of these computers

could check 23““ keys per second. It would take about 2162 millennia to

search 1 percent of the key space of a 512—bit key. According to the Big

Bang theory, the amount of time that has passed since the universe came

into existence is less than 23“ millennia. In other words, it is highly

unlikely that technology will ever advance far enough to force y0u to use

a key that’s “too big.”

That may not matter, though, because there’s another attack on the

key. Instead of trying to reproduce the key, attackers can try to reproduce

the PRNG and seed that were used to produce the key. It works like this.

Attackers know the particular PRNG and seed-collection method you

used. (Remember, as discussed earlier in this chapter in “Historical Note:

They Always Figure Out the Algorithm,” the attacker will always know

your algorithms and methods.) If attackers can guess your seed, they can

seed the PRNG and produce the same key. If you used a small seed,

attackers will try every possible value until they find the correct one. This

happened to Netscape, as described in “Historical Note: Netscape’s Seed.”

Your defense against this kind of attack is to use a good seed. A PRNG

will always produce good pseudo-random numbers regardless of seed. But

the seed must also be strong enough to withstand a brute~force attack.
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Historical Note: Netscape's Seed

Symmetric-key cryptography is one component of SSL (see Chap-

ter 7), which was invented by researchers at Netscape. Not surpris-

ingly, Netscape offered an implementation of SSL that is part of all

Netscape browsers (after version 1.0).

At some point in an SSL session, the code must generate a key. To

do so, Netscape’s implementation uses a PRNG. In version 1.1

(released in 1995), the code collected the time of day, the process ID,

and the parent process ID as the seed for the PRNG.

Ian Goldberg and David Wagner (remember them from the earlier

historical note?) decided to test how good a seed these three sources

would produce. They discovered that the process IDs were easy to

capture if one had access to the computer. If one did not have access

to the computer, all it took was a little brute-force testing because

each ID was only 15 bits. The time of day? Well, the year, the month,

the date, and even the hour and minute were known; an attacker

simply had to look at when the SSL session occurred. The second?

There were only 60 possible values (Netscape used time of day only

down to the second and not the millisecond).

On September 17, 1995, Goldberg and Wagner reported to the

Cypherpunks newsgroup that they could find the seed, and hence

the key, in less than a minute. Whether the key was 40 bits or

128 hits, it took only one minute.

Netscape fixed the problem in version 2.0 by adding more seed.

Each platform (Windows, Mac, and UNIX) has different seed

sources, but among the many platform-dependent seeds Netscape

now uses are cursor or mouse position, memory status, last key

pressed, audio volume, and many others.

Sources: Gary McGraw and John Viega, “Make Your Software Behave: Playing The

Numbers,” Reliable Software fichnologies, April 4, 2000.

Keith Dawson, “Tasty Bits from the Technology Front,” http:!!www.tbtf.com, Sept. 20.
1995. '

Taber El Gamal, letter to the Internet community posted on many Web sites, Sept. 25,

1995. El Gamal was, at the time, director of security for Netscape.
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Breaking the Algorithm

Figure 2-9
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reconstructing
most or all of

the message

Suppose that someone figured out that with a given algorithm, every 14th

bit of a given ciphertext is the same as every 12th bit of its plaintext. In

other words, if the 14th bit of ciphertext is 1, the 12th bit of plaintext is 1,

the 28th bit of ciphertext is 0, the 24th of plaintext is 0, and so on, no mat-

ter what the key. Furthermore, the attacker sees that if certain combina—

tions of bits appear in certain locations in the ciphertext, a corresponding

portion of the plaintext must be another pattern.

If an algorithm had such weaknesses, an attacker could look at the

ciphertext and decipher parts of the plaintcxt even without knowing the

key. This knowledge might be enough to enable the attacker to recover

enough of the original message to do damage (see Figure 2-9).

Ciphertexl: j9%BS"th &MO#’14~hlp$dMU(a#7

Maybe the attacker can figure out some of the

plaintcxt just by looking at the ciphertext

 

 

 

 
 Plaintext: ??TEA?????ps???????VP??????ri????

Add educated guesses to fill in

some of the blanks (“If this is a memo, there’s

a ‘To:’ and ‘Fnomf; does that fit?")

Plaintext: To: SA?????ps?From: VP?RE: ?ri???? 
“Yes, that fits.”

Plaintcxt: To: Sales RepSTme: VP?RE: Pricing 

Here’s another possible weakness. Suppose the attacker knows what

some of the plaintext and its corresponding ciphertext is. And suppose

this attacker is able to therefore deduce the key. But if the attacker

knows what the plaintext is, why bother figuring out the key? The

answer is that the attacker might know, or be able to guess, only a por-

tion of the plaintext. Recall the memo at the beginning of the chapter.

An attacker might see the ciphertext, realize it’s a Word for Windows

document, and guess some of the control characters at the beginning.
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Furthermore, the attacker guesses the document is a memo from the con-

ventional “'I‘O:”, “FROM2”, and, “RE:” In short, if someone can compute

the key from a chunk of ciphertext and its correSponding plaintext, the

rest of the message will follow. This is known as a known-plaintext

attack. Obviously, you don’t want to use an algorithm that might be sus-

ceptible to such an attack.

Measuring the Time It Takes to Break Your Message

How long will your secret remain secret? The answer is, as long as it takes

the attacker to break it. The attacker has two kinds of tools: the brute-

force attack and attacks that exploit weaknesses in your algorithm.

In analyzing the security of your message, a key question is how long

would a successful brute-force attack take. There’s no rigid, specified time,

since the attacker may get lucky and find it early or may get unlucky and

find it later, but as shown in Table 2-1, you can estimate the variables

based on worst-case scenarios. In general, the bigger the key, the longer a

brute-force attack will take. But if the algorithm is weak, it doesn’t mat—

ter how long the key is. The statement “Longer keys mean more security”

doesn’t apply to a weak algorithm. The point is this: If you pick a weak

algorithm, you have no control over how strongly your secret is protected.

So the best strategy is to pick an algorithm that is not weak and further

deter an attacker by using a longer key.

That statement may seem so obvious that it's not worthwhile even to

mention it. If you’re curious about what happens when people overlook

these obvious protections, however, read “Crypto Blunders” in the

accompanying CD for a couple of stories on using weak algorithms and

small keys.

Symmetric Algorithms: The Key Table

Virtually all symmetric ciphers use the key to build a key table, which is

usually a pseudo—random array of a particular size in a particular format.

This process is known as key setup, or initialization. It’s the key table that

does the encryption.

Why have a key table? One reason is that you might want to use keys

of varying lengths depending on the application. The algorithm needs a
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key value that is the same size from one use to the next, but your key

might vary from 64 bits to 128 to 192 or even 256 bits. For that reason, you

build a key table (which is bigger than the biggest possible key size) from

the key. It’s easier to create a constant—sized key table at the beginning of

your encryption session than to do it repeatedly while encrypting data.

Another reason to use a key table is to prevent attacks on the algorithm.

Recall that there are two ways to break security: a brute-force attack and

attacks on an algorithm’s weaknesses. Ifyou use a big, pseudo-randOm key

table, it’s easier to do serious scrambling. With good scrambling, the

ciphertext looks nothing like the plaintext. If the algorithm cannot do a

good job of creating gibberish unless it has a good key, that is be an algo-

rithmic weakness. A good algorithm will simply expand the key into a big-

ger value and make sure that no matter what key it’s given, the key table

is random. An attacker could try a brute-force attack on the key table, but

that would he more time-consuming than an attack on the key.

The user should give the algorithm a good key. But even with a bad key,

it is possible to create a good key table. Just as a PRNG produces good

numbers no matter what the seed is, a good encryption algorithm pro-

duces a good key table no matter what the key is. With a good key table,

the algorithm produces a good scramble, the resulting ciphertext is not at

all close to the plaintext, and the attacker cannot exploit an algorithm’s

weakness

Symmetric Algorithms: Block Versus

Stream Ciphers

Block Ciphers

If you’re using symmetric-key cryptography, how do you choose a good

algorithm? There are two types of symmetric-key algorithms: block and

stream ciphers. What are they, and which is better?

A block cipher operates on blocks of data. When you give the algorithm a

chunk of data to encrypt or decrypt, it breaks the plaintext into blocks and

operates on each block independently (see Figure 2—10). Usually, blocks

are 8 or 16 bytes long.



 

Figure 2-10

A block cipher

grabs each block
of the input data

(usually 8 or 16

bytes) and uses
the key table to

produce a unique
block of output,

continuing until
all the blocks are

encrypted
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4; 4-

TO: Sales Reps
FROM: VP

RE: Pricing
—> passes

We ’re having a

slow quarter...

 
 

~ *

F

0

Suppose that your plaintext is 227 bytes long and the cipher you’re

using operams on 16-byte blocks. The algorithm grabs the first 16 bytes of

data, encrypts them using the key table, and produces 16 bytes of cipher-

text. Then it starts over, encrypting the next 16 bytes of plaintext. No mat—

ter which block it is working with, the cipher encrypts it by starting over

from scratch. The key table does not change from block to block.

After encrypting 14 blocks (224 bytes), the algorithm is left with 3 more

bytes. But your block cipher cannot operate on 3 bytes; it needs 16 bytes.

To encrypt the last 3 bytes, you must pad the data: add extra bytes to an

incomplete block to make it complete. Whoever decrypts the ciphertext

must be able to recognize (and ignore) the padding.

The most popular padding scheme determines the number ofbytes to be

padded and repeats that value in the final bytes in the data. In our exam-

ple, the padding scheme must add 13 bytes to the plaintext so that it has

a full block. So it repeats the byte “13” in each of the final 13 otherwise

empty spaces. During decryption, you look at the last byte of decrypted
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Figure 2-11

When the last

block of plaintext
ends in blank

bytes, use

padding to bring
it up to size

 
 

data; this byte, a number from 1 to 16, indicates how many pad bytes have

been added. In this example, after decrypting, we would know that the last

13 bytes ofdata should be discarded (see Figure 2-11). (Each of the last 13

bytes should be the number 13, so as an extra check, we make sure that

each of them is 13.) If the length of the plaintext had been a multiple of 16,

there would have been no need to pad. Nevertheless, it makes sense to

always pad your data. Then, when decrypting, you know that the last byte

decrypted is indeed a pad byte. To do that, you tack on 16 bytes, each of

them the number 16.

mas-“105E“- 44E}? es!13131313131313131313131313 ->  

Remember the known-plaintext attack? If an algorithm is susceptible,

that doesn’t mean an attacker will automatically be able to break a mes-

sage; it’s necessary to find a plaintext/ciphertext pair first. The last block

of data might be that known plaintext, because it contains padding. Of

course, it’s easy to simply use an algorithm that is not susceptible to the

known-plaintext attack.

One problem with block ciphers is that if the same block of plaintext

appears in two places, it encrypts to the same ciphertext. In our printing

machinery company memo, for example, the phrase “slow third quarter”

may show up a number of times. Each time the first 16 bytes of that

phrase is encrypted, it will produce the same ciphertext, and an attacker

might identify this repeated pattern. To avoid having these kinds ofcopies

in the ciphertext, you can use feedback modes. A number of these modes

are discussed in the FAQ contained in the accompanying CD.

The most common feedback mode is cipher block chaining (CBC),

shown in Figure 2-12. In this scheme, you XOR the current block of plain-

text with the preceding block of ciphertext (see “Technical Note: XOR”

later in this chapter). For the first block of plaintext, there is no preceding

block of ciphertext, so you XOR with an initialization vector (IV). When

you decrypt the data, you copy a block of ciphertext, decrypt it, and XOR



 

Figure 2-12

Cipher block
chaining. The

first block of

plaintext is
XOR’d with the

IV and then

encrypted. Each
successive block

is XOR’d with the

preceding block
of ciphertext
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the result with the preceding block of ciphertext (which you saved right

before you decrypted it). This technique ensures that any duplicate block

in the plaintext does not encrypt to the same ciphertext. That’s all it does.

It adds no other security. The encryption algorithm provides the security.

Stream Ciphers

To understand stream ciphers, the second type of symmetric-key algo-

rithm, you need to first understand the cryptographic teehnique called a

one-time pad, which is popular with spies. In one variation of this tach-

nique, you generate a bunch of random numbers, each from 0 to 25. Then

you print two copies of the series. That’s the “pad.” One copy stays at your

headquarters, and the spy takes the other copy out into the field.

To send a message back home, the spy encrypts each letter of the mes-

sage With a number on the pad. The first letter of the message is encrypted

with the first number on the pad, the second letter with the second number,

and so on. Encryption is simply a matter of adding a numeric value

assigned to the letter plus the number. Here’s how the numeric value is

assigned. If the plaintext letter is G and the number on the pad is 11, the

ciphertext letter is R (R is the eleventh letter after G, or G + 11 = R). If the

plaintext letter is Yand the number is 4, the ciphertext letter is C, or Y + 4

(Y, Z, A, B, C; when you reach the end of the alphabet, you start over at A).
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Technical Note: XOR

The term XOR stands for “exclusive OR,” a type of bit manipulation.

The first concept to understand is an OR. An OR is a bit manipula-

tion that says, “Look at two bits. If one OR the other is set, set the
result.”

0 {zero on zero equals 0}
1 (zero OR one equals 1)
1 { one OR zero equals 1)
1 ( one on one equals 1]

An exclusive OR says, “Look at two bits. If one is exclusively set,

OR if the other is exclusively set, set the result.” If both bits are set,

then there’s no exclusivity, so the result bit is not set.

0 (zero KOR zero equals 0)

1 (zero xon one equals 1)
1 ( one xoa zero equals 1)

0 ( one XOR one equals 0)

XOR is a useful bit manipulation in cryptography because half of

the time the result is l, and the other halfof the time it’s 0. If one bit

is plaintext, and one bit is key stream, then the key stream some-

times changes the bit and sometimes doesn’t change the bit.

In grade school, we learned how to add, subtract, and multiply

using columns:

1,482 77 204
+ 319 - 5 1__fi

1,801 72 1632

Similarly, we can perform XOR operations on longer numbers.

Computers, of course, see all numbers as binary values.

values as binary text values as hex text
0111 0100 0110 0101 0111 1000 0111 0100 0x74 65 7a 74

XOR 100; 1911 0010 1100 0110 0011 1000 0100 0x93 c 63 84
1110 1111 0100 1001 0001 1011 1111 0000 0x2! 49 13 F0

continues
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The first row (the row that begins 0111 0100) in the preceding

table is the ASCII bit formation of the word “text.” ASCII gives us a

standard way to map characters to numbers. For example, lowercase

t is represented as the number 0x74 (binary 0111 0100), which is

decimal 116. Punctuation marks are also included; a comma, for

example, is 0x2C, which is decimal 44. You see 0111 0100 and so on,

but the computer sees the word “text.” Suppose that word “text”

is our plaintext. To encrypt it, we perform the steps the algorithm

prescribes, namely XOR it with the key stream. If the second row

(the row with the binary values beginning 1001 1011) is the key

stream and we perform the XOR operation, what do we get? We get

the bottom row (the row beginning 1110 HID—that would be the

ciphertext.

What does this ciphertext say? It says “?9??” As it happens, the

first, third, and fourth characters are not standard characters (they

are numbers outside the ASCII range). The second is the character

9. So the algorithm converted the “e” in “text” to a “9”, but what

about the other characters? Because the numbers are not standard

character numbers, each computer or software package gets to

decide what they mean. One computer or software package might

print the ciphertext as “1194—5”. Another computer or software pack-

age might print it as “USED". Whichever you use, it looks like gib—

berish; it’s nothing like the plaintext.

If you start with the ciphertext and XOR it with the key stream,

what do you get? You get the plaintext.

values as binary text values as hex text
1110 1111 0100 1001 0001 1011 1111 0000 OxEF 49 in F0

XOR 1001 1011 0010 1100 0110 0011 1000 0100 0533 2C! 6; 35
0111 0100 0110 0101 0111 1000 0111 0100 0x74 65 70 74

That’s another reason that the XOR operation is popular in cryp-

tography: It’s symmetric.
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Figure 2-13

A one-time pad

Figure 2.14

A stream cipher

 

When the home office gets the encrypted message, the translator sim-

ply reverses the algorithm. If the ciphertext is R and the associated num-
ber in the pad is 11, compute R~11 = G. As long as the spy and the home

office use the same pad, the communication will be successful. Figure 2-13

shows an example of the one—time pad. Where does the pad come from?

Probably an RNG.

Ciphcrtext

317 940
51322115

211217 314

82015

VATROJ

JLYYVOB 
A stream cipher is similar to a one-time pad. To encrypt data, the algo-

rithm generates a pad based on the key. The pad can be as big as it needs

to be. The algorithm will XOR the plaintext with the pad (see Figure 2-14

and the technical note on the XOR function). With the one-time pad, the

Spy and the home office generate a pad (actually, probably many pads) in

advance. The stream cipher generates its pad on-the-fly, only when

needed. In cryptography circles, the “pad” is called a key stream. A true

pad would be random; a stream cipher produces pseudo-random values

and technically can’t be called a pad.

4’? 28119 3

187120 72141

60 244 155 99 
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Most stream ciphers work this way. First, you use the key to build a key

table. Then to encrypt the data, you take one byte of plaintext, go to the

key table, somehow get a byte of key stream, and XOR it with the plain”

text byte. Next, you throw away the key stream byte and remix the key

table. Then you get the next byte of data and continue. The key table, and

hence the key stream, does not depend on the input data.

In the example of the one-time pad, the spy added numbers to letters to

encrypt the data and the home office subtracted them to decrypt. A

stream cipher uses the XOR operation because encrypting and decrypting

are the same operation. Only one program and not two exist.

Block Versus Stream: Which Is Better?

Stream ciphers are almost always faster and generally use far less code

than do block ciphers. The most common stream cipher, RC4, is probably

at least twice as fast as the fastest block cipher. RC4 can be written in per-

haps 30 lines of code. Most block ciphers need hundreds of lines of code.

On the other hand, with a block cipher, you can reuse keys. Remember

that the stream cipher is rather like a one-time pad. “One-time” implies

that you should use a pad only once (see “Crypto Blunders” on the accom-

panying CD for a story of multiple uses of one-time pads). Similarly, you

should use a stream cipher key only once. Generally, that’s not a problem,

but sometimes it will be necessary to encrypt many things using the same

key. For example, an e-commerce company may have a database of cus-

temer information, including credit card numbers. Rather than encrypt

each entry with a different key (and hence manage hundreds or even

thousands of keys), the company can encrypt all of them with one key.

When one entry is needed, decrypt it with the one key. Key management

is much easier when there’s only one key to manage.

Another factor is standardization. Everyone has two algorithms—DES

and AES—both of which are block ciphers. For reasons of interoperability,

you may want an algorithm that is widely used. The entity on the

other end of your data link may or may not have RC4, but it’s almost a

guarantee that it has DES and AES. You choose a block cipher because it’s
a standard.

In other words, neither type is “better.” Ifyou need to reuse keys, use a

block cipher. If you must guarantee interoperability, it’s best to use AES.

Otherwise, use a stream cipher. Table 2-2 lists some applications and the

type of cipher you might want to use with each one.
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Table 2-2

Choosing an

Algorithm by

Application

Application Cipher to Use Comments

Database Block Interoperability with other where
is not an issue, but you will need to

reuse keys.

E-mail AES Although each e—mail message has its
own key and you could use a stream

cipher, you gain interoperability with
all e-mail packages by using the
standard ABS.

SSL (secure RC4 Speed is extremely important, each
connections on (stream cipher) connection can have a new key, and
the Web) virtually all Web browsers and servers

possess RC4.

File encryption Block Interoperability is not an insane, but
(storing your you can encrypt each file with the
files securely) same key and then protect that key

(see Chapter 3). 

Digital Encryption Standard

A computer can be programmed to perform any encryption algorithm. By

the 1970s, though, it was known that the old algorithms were not very

strong. They had weaknesses and were difficult to implement.

The advent of computers made it possible to throw out the old rules of

cryptography and create a new paradigm. Researchers at IBM decided to

develop a new algorithm for the computer age, and built on a scheme

called Lucifer, an algorithm invented by cryptographer Horst Feistel.

They also enlisted the help of the National Security Agency (NBA), the

agency charged with protecting the US. government’s secret data, a duty

that includes cryptography. The fruit of the group’s labor was DES.

DES is a block cipher that uses a 56-bit key—no more, no less—to build

a key table. Using the key table, DES performs hit manipulations on

plaintext. To decrypt ciphertext, it simply does everything in reverse.
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Triple DES

After its introduction, DES became freely available and widely studied.

Throughout the 19805, the consensus among cryptographers was that it

had no weaknesses. This meant that the fastest way to break a message

encrypted with DES was to use the brute-force attack. Because a 56-bit

key is a number between 0 and about 72 quadrillion, even the fastest com-

puters took years to break a single message.

By the 19903, though, cryptographers knew that DES couldn’t last.

Computers were becoming faster and eventually would be fast enough to

mount a brute-force attack on a 56-bit key in a reasonable amount of time.

In addition, researchers discovered potential weaknesses that led them to

conclude that someday it might be possible to break the algorithm. The

brute-force attack was still the fastest attack, but those potential weak-

nesses were troubling.

In 1999, at the RSA Conference, the Electronic Frontier Foundatiou

broke a DES key in less than 24 hours. The world needed a replacement.

One widely used replacement for DES is Triple DES. The name says it

all: Triple DES performs the DES algorithm three times. That’s it. You

run your block of data through DES using a key, and then you encrypt

that result with another DES key. Then you do it a third time (see Fig-

ure 2-15).

You use three keys, each 56 bits. That’s essentially the same as using

one 168-bit key. You may be thinking, “If it takes 24 hours to break one

key, then shouldn’t it take 72 hours to break three keys?” Here’s the

answer. It takes 24 hours to break one key if you know you’ve broken it.

But with Triple DES, you don’t know you’ve stumbled onto the first key

until you combine it with the other two correct keys.

Think of it this way. Suppose that the three keys are called A, B, and

C, and each possible key value is numbered from 0 to 72 quadrillion.

Suppose also that the correct key combination is A = 1, B = 33,717, and

C = 1,419,222. An attacker could try value 0 with key A, value 0 with key

B, and value 0 with key C. That doesn’t produce the correct answer, so try

A = 1, B = 0, C = 0. As shown in Figure 2-16, the first key is correct. But

the value the attacker got from trying the three-key combination is not

the right value. The correct plaintext appears only when all three keys are

correct. So how can the attacker know that the first key is correct?
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Key 1
Figure 2-15

Triple DES is

simply DES run . __

a“+—DES j
on the data three

times Plaintext  

  fl—-
DES

Triple DES, however, presents two problems. First, cryptanalysts have

figured out a way to streamline the brute-force attack. You’d think it

would require a “168-bit” brute-force attack, but there are clever ways to

reduce it to the equivalent of a 108-bit brute—force attack. A key that is

equivalent to 108 bits is still secure (see Table 2-1 for worst-case estimates

of a 108-bit brute-force attack), but this “weakness” is troubling. Will more

research expose more cryptanalytic weaknesses? Will the security of

Triple DES be compromised even further?

The second problem is speed. DES takes a long time to encrypt or

decrypt data, and Triple DES is three times as slow. Some applications.

need high-speed throughput of many megabytes worth of information.

Triple DES reduces the performance so much that some applications can-
not function.

For these two reasons, people needed a new algorithm.
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Figure 2-16

To break Triple

DES, you must
know all three

keys

Correct
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Commercial DES Replacements

In response to the key size and performance problems of Triple DES,

many cryptographers and commercial companies developed new block

ciphers. The most popular offerings were RC2 and R05 from RSA Data

Security, IDEA from Ascom, Cast from Entrust, Safer from Cylink, and

Blowfish from Counterpane Systems.

All these algorithms were faster than Triple DES, and they were able

to operate with variable-sized and bigger keys. Whereas DES and Triple

DES keys require fixed-length keys, the new algorithms coold be

made stronger. Recall that you can choose a key size that is big enough to

make your cryptographic system immune to the brute-force attack or at
least to make the brute-force attack unfeasible. At one time, a 56-bit key

was big enough. But when that was no longer secure enough, 64 bits was



50 Chapter 2 

a popular key size. Even though DES cannot increase its key size, the

commercial replacements can.

The various commercial DES replacements caught on to some degree,

and companies built products using the algorithms. But none became a

worldwide standard comparable to DES and Triple DES.

In response, the US. government, through the National Institute of

Standards and Technology (NIST), set about creating a new standard. The

idea was to name a particular algorithm as the U. S. government standard.

Once the US. government adopted a standard, the thinking went, the rest

of the world would almost certainly follow.

Advanced Encryption Standard

The NIS'I‘ plan was formally announced on January 2, 1997, when the

agency invited anyone to submit an algorithm as the new standard, to be

known as AES. As a condition for entry into the AES process, developers

promised to give up any intellectual property rights to the selected algo-

rithm. Many individuals and companies responded, and on August 20,

1998, NIST named 15 candidates.

The next step was for the world to analyze the algorithms. The crite-

ria were security (no algorithmic weaknesses), performance (it had to be

fast on many platforms), and size (it couldn’t take up much space or use

much memory). Many of the original 15 algorithms did not last long.

Weaknesses were discovered, and some were shown to be simply too big

or too slow.

In August 1999, NIST trimmed the list to five candidates. For the next

year, researchers, cryptanalysts, and vendors of computer hardware and

software tested the algorithms to decide which they liked best. Many

papers were published, and volumes of statistics were released comparing

the finalists. Each had its strengths and weaknesses.

Finally, on October 2, 2000, NIST announced the winner: an algorithm

called Rijndael (commonly pronounced “Rhine-doll”) invented by two Bel-

gian researchers: Vincent Rijmen and Joan Daemen.

From now on, the AES algorithm is free for anyone to develop, use, or

sell. As with DES, it is expected that AES will become a worldwide stan-

dard. You can expect that within a short time, if someone has cryptogra-

phy, he or she has AES.
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Summary

If you want to encrypt something, follow these steps.

1.

1.

2.

Select a symmetric algorithm and a PRNG. You should choose an

encryption scheme that is not susceptible to attacks on the

algorithm. It-should also allow key sizes big enough to thwart a

brute—force attack. If you need to reuse your cryptographic keys,

choose a block cipher. If you need to guarantee interoperability with

other cryptographic programs or products, choose AES. Otherwise,

you might want to choose a stream cipher for performance reasons.

Collect your seed value and feed it to the PRNG. Make sure that your

seed contains enough entropy to thwart a brute-force attack. It’s best

to combine several seeds, including user input.

. Using the PRNG, generate a key. Choose a key size that requires a

brute-force attack that is so time-consuming that it is unfeasible.

Currently, the most popular key size is 128 bits.

. Apply the symmetric algorithm, which will work with the key to

encrypt your plaintext.

Save and protect your key. The next chapter talks about how to

protect keys.

To recover the data you encrypted, follow these steps.

Retrieve your key.

Apply the symmetric algorithm, which will work with the key to

decrypt your plaintext.

Real-World Example: Oracle Databases

How do peeple and companies use symmetric-key cryptography today?

Here is one example.

Most companies store volumes of sensitive information in databases.

A database is a software package that stores data in a systematic way

and enables users to easily and quickly find what they’re looking

for. For example, a company may have personnel files containing names,

addresses, salaries, and Social Security numbers of all employees.
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A hospital may keep medical records of hundreds of patients. An e-com-

merce company might store credit card numbers and customers’ purchas-

ing histories.

The owners of the databases may want to make sure that only the

appropriate people have access to the information. One way to protect the

data is to encrypt it. If attackers break into the database, they still can’t

read the sensitive material.

Oracle sells a database product, Oracle Si, release 8.1.6, that comes

with an encryption package. If you are a developer using the database,

and you want to encrypt the elements before storing them, you generate

some random or pseudo-random bytes to be used as the key and then call

on the package to perform the encryption. The calls to the encryption

function are PL/SQL, which are standard database language conventions.

For instance, to encrypt the data, you would add a line of code that looks

something like this.

dbms_ob£usca.tion_toolkit.DESE1-icrypt{input_string => plaintext,
key -> keynote, encrypted_string => ciphertext):

And that’s it. Well, you also need to save the key somewhere (not in the

same location). The next chapter talks about how to do that. If your appli-

cation was using SQL, it would now have the opportunity to store the data

in the clear (plaintext) or encrypted (ciphertext). This line shows that you

are using DES, but Triple DES is also available. When your program

needs to retrieve data, you recall it from the database, recover your key,

and make something like the following call:

dbms_ob£uscat ion_toolkit.DESDac:.-ypt {input_string => ciphartaxt,
key => keynote, dacrypted_string => plaintext);

Thanks to Mary Ann Davidson and Kristy Browder of Oracle for pro-

viding this example.
 



 
Symmetric-hey encryption can keep your secrets safe, but because you need

your keys to recover encrypted data, you must also keep them safe. The

process ofkeeping ali your keys safe and available for use is known as key

management. This chapter is aboutL managing symmetric keys.

In Chapter 2, “Symmetric-Key Cryptography,” Pan-Chi generated a

random or pseudo-random key, and used it to encrypt data. If he wants to

decrypt the data, he must use the same key. This means he has to either

memorize the key or store it somewhere. Memorizing it isn’t practical, so

he must store it so that he can recall it when he wants to, but no one else

can. Right now you’re probably asking, “If there’s some place Pao-Chi can

keep his key safe, why doesn’t he just put his sensitive information there

as well?” The answer is that it’s easier to protect a small key than many

megabytes worth of information. In fact, some of the key storage solu-

tions you’ll see in this chapter are small devices designed in part to pro-

tect keys. So the idea is to use symmetric-key crypto to protect the

megabytes of information and some other technique to protect the 16

bytes (or so) of keys.
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Password-Based Encryption

The key used to encrypt the megabytes of information, or bulk data, is

generally known as the session key. A session is simply an instance of

encryption, possibly during an email exchange, a World Wide Web con-

nection, or a database storage. In Pao-Chi’s case, a session involves

encrypting a file before storing it on his hard drive. Some systems gener-

ate a new key for each session; others use the same key from session to

session. One way to store the session key securely is to encrypt it using a

symmetric-key algorithm. Someone who finds the session key has really

found the encrypted key. I"lf‘he attacker would have to break the encryption

to get the key that protects the megabytes of information. Of course, the

process of encrypting the session key itself needs a key. That is, the key

needs a key. There’s the session key and then the key encryption key, as

shown in Figure 3-1. In the crypto literature, not surprisingly, the latter is

often known as the KEK.

You may be thinking that if Pao-Chi uses a KEK, he now has to store

and protect it as well. Actually, he does not store the KEK, and therefore

does not need to protect it. When he needs a KEK to encrypt, Pao—Chi will

generate it, use it, and then throw it away. When he needs to decrypt the

data, he generates the KEK again, uses it, and throws it away. He is able

to generate the KEK a second time and produce the same value as before

because it is based on a password. Pan-Chi uses an RNG or PRNG to gen-
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erate a session key, he uses password—based encryption (PBE) to build the

KEK. It usually works like this (see Figure 3-2).

1. Enter the password.

2. Use an RNG or PRNG to generate a salt.

NOTE:

What’s a salt? We describe the salt and its purpose in. a few paragraphs.

3. Using a mixing algorithm, blend the salt and password together. In

most cases, the mixing algorithm is a message digest. And that’s the

second time we’ve mentioned this tool—the message digest. The first

time was in discussing PRNGs. Remember, a digest is a blender,

taking recognizable data and mixing it up into an unrecognizable

blob. We’ll talk more about message digests in Chapter 5.

4. The result of step 3 is a bunch of bits that look random. Take as many

of those hits as needed for the KEK and use it with a symmetric-key

algorithm to encrypt the session key. When the session key has been

encrypted, throw away the KEK and the password. Save the salt.

5. When storing the now encrypted session key, be sure to store the salt

along with it. It is necessary to decrypt.

When it comes time to decrypt the data, here’s the process.

1. Enter the password.

2. Collect the salt. The same salt used to encrypt is required (that’s why

you saved it with the encrypted session key).

3. Using the same mixing algorithm used to encrypt, blend the salt and

password together. If one or more of the salt, password, or mixing

algorithm is different, the result will be a KEK; however, it will be the

wrong KEK. If all three elements are the same, the result is the
correct KEK.

4. Use this KEK from step 3 along with the appropriate symmetric-key

algorithm to decrypt the session key.

You probably have four questions.
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Figure 3-2
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Mixing Algorithms and KEK

Why use a mixing algorithm? Why not just use the password as the KEK?

A password does not have much entrepy. Recall from Chapter 2 that

entropy is the measure of randomness. But a password is made up

entirely of keystrokes (characters associated with the keys on a key-

board), which are not sufficiently chaotic. Using a mixing algorithm on the

password (and salt) ensures that the KEK looks random.



Symmetric—Key Management 5 7______,..__————-—-——-—‘—‘——‘__“——‘—-——-————._

The Necessity of Salt

Why is a salt needed in the first place?

The salt is there to prevent precomputations. If the password were the

only thing used to generate the KEK, an attacker could create a dictionary

of common passwords and their associated keys. Then a brute force attack

would not be necessary; the attacker would try only the precomputed keys

(logically enough, this is called a dictionary attack). With a salt, the

attacker must wait until seeing the salt before finding the KEK any par-

ticular password produces (see Figure 3—3).

FT 8 3_3 No Salt was: Salt

Using a salt foils
a dictionary

attack

 
The same passwords don't produce the same keys

eagle #273131 148% eagle + salt[l]—b3B442CEA1A

leg‘édr‘gjggigg eagle + salt[2]—>8’?OQB¢15CD5

eagle + salt[l,000,00D]—DSBIOISZCA4

f
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Storing Salt with Ciphertext

If the salt is stored with the ciphertext, then won’t the attacker be able to

see it? Wouldn’t it be safer to keep the salt secret?

As just explained, a salt’s Only purpose is to prevent precomputations.

That’s worth repeating: the salt does not add security; it only prevents a

dictionary attack. Even though the salt is not secret, it achieves that goal.

Besides, if the salt is secret, how is it recovered when needed?

Reasons for Using Two Keys, a Session Key, and KEK

Wouldn’t it be easier to simply use PBE to encrypt the bulk data? Why is

it necessary to have two keys (the session key and the KEK)?

There are a couple of reasons to use a session key and a KEK. First,

suppose you need to share the data with other people and you want to

keep it stored encrypted. In that case, you generate one session key, and

everyone gets a copy of it. Then everyone protects his or her copy of the

session key using PBE. So rather than share a password (something

everyone would need for decrypting if you had used PBE to encrypt the

bulk data), you share the key (see Figure 3-4).

The second reason for using both keys is that it’s easier to break a pass-

word than to break a key (more on this soon), and attackers might have

easier access to the encrypted data than to the encrypted key. For

instance, suppose Pao-Chi’s data is on the network and the encrypted ses-

sion key (the value encrypted by PBE using the KEK) is on his own per-

sonal computer (or other storage facility). Suppose Ray, an attacker,

breaks into the network and steals the encrypted bulk data. To decrypt,

Ray would have to break the session key or else perform a second break

in (possibly into a more secure locatiori) to find the encrypted session key

and then break the password. Alternatively, if Pao-Chi used PBE to pro-

tect the data, Ray can recover the information by breaking the password

(see Figure 3-5).

Of course, it is possible to use PBE to do the bulk encryption. In this

book we don’t discuss that option. From a programming point of view, it’s

not much more difficult to use a session key and then PBE to encrypt the

session key, so you might as well because of the reasons given.



Symmetric—Key Management 5 9 

 

Figure 3-4
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Pao-Chj‘s password

Gwen's password

Programming Convenience

A PBE program will do its work, even with the wrong password. Suppose

the wrong password were entered, the program would have no way of

knowing it was an incorrect password. It would simply mix the “bad” value

with the salt and produce a KEK. It wouldn’t be the correct KEK, but the
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Figure 3-5
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program wouldn’t know that; it just blindly follows instructions. It would

then use that KEK to decrypt the session key. That would work; some

value would come out as a result. It would be the wrong value, but there

would be something there. Then the program would use this supposed ses-

sion key to decrypt the ciphertext. The resulting data would be gibberish,

but only then would it be possible to see that something went wrong.
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For this reason, it would have been more convenient if, when entering

the password, there were some way to know immediately whether it’s the

correct password or not. That would be better than decrypting the entire

bulk data before finding that out.

One solution is to use the KEK to encrypt the session key along with

something else, the “something else” being some recognizable value, such

as the salt. Then when decrypting, the program checks this recognizable

value first. If it’s correct, continue using the session key to decrypt the bulk

data. If not, the password was wrong and the process should start over.

The overall process looks like this. To encrypt bulk data:

1. Generate a random or pseudo-random session key. Use this key to

encrypt the data.

2. Enter the password, generate a salt, and mix the two together to

produce the KEK.

3. Encrypt the salt and session key using the KEK. Store the encrypted

data with the salt.

4. Store the encrypted session key, which is actually the session key and

the salt ( see Figure 3-6).

To decrypt the data, follow these steps.

1. Collect the salt and password and mix the two together to produce

what is presumably the KEK.

2. Using this KEK, decrypt the session key. The result is really the

session key and the salt.

3. Check the decrypted salt. Is it correct?

a. If it is not correct, don’t bother using the generated session key to

decrypt the data; it’s not the correct value. The user probably

entered the wrong password. Go back to step 1.

b. If it is correct, use the session key to decrypt the data.

Instead of the salt, you can use a number of things as a check. For

example, it could be an eight-byte number, the first four bytes being a ran-

dom value and the second four, that random value plus 1. When decrypt-

ing, check the first eight bytes; if the second four bytes is the first four plus

1, it’s the correct password. This may be more palatable than the salt,

since if the salt is the check, there is now some known plaintext. Presum-

ably, the cipher is immune to a known—plaintext attack, but nonetheless,
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Figure 3-6
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some people might feel it is more secure without any known plaintext. Of

course, it is possible to use the wrong password and get a KEK that

decrypts the check into a different eight-byte value that by sheer coinci-

dence passes the test. The chances of this happening are so small, it will

probably never happen in a million years.

Another _check could be an algorithm identifier. This would be some i
sequence of bytes that represents the algorithm being used. Or it could be

a combination of smile of these values. In the real world, you’ll probably

find that engineers come up with complex procedures that include mul-

tiple checks. In these schemes, maybe one check accidentally passes, but

not all of them.
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Breaking PBE

Our attacker (who we’re calling Ray) has two ways to break PBE. First, he

could break it like any symmetric-key encryption and use brute-force on

the KEK. Second, he could figure out what the password is.

Although the KEK is the result of mixing together the password and

salt, Ray doesn’t have to bother with those things; he could simply perform

a brute-force attack on the KEK, use it to decrypt the session key, and then

decrypt the data. This might be plausible if the session key is larger than

the KEK. in Chapter 2, though, we saw that ifa key is large enough, that’s

not going to happen. Hence, Ray will probably try the second way, which

is to figure out what the password is. Once he has the password, he can

reconstruct the key-generating process and have the EEK.

How can Ray figure out what the password is? One way would be to try

every possible keystroke combination. This would be another flavor of the

brute-force attack. If Pao-Chi entered the password from the keyboard,

Ray could try every possible one-character password. Then he would try

every two-character combination (AA, AB, AC, AD, . . . ), then three-char-

acter values, and so on. In this way, eight-character or less passwords (on

a keyboard with 96 possible values) would be approximately equivalent to

a 52-bit key. Ten-character passwords are equivalent to about 65-bit keys.

Another attack is for Ray to build up a dictionary of likely passwords,

such as every word in the English, German, French, and Spanish lan-

guages, along with common names, easy-to-type letter combinations, such

as “qwertyuiop.” He could add to that dictionary lists of common pass-

words that are available from hacker sites and bulletin boards (if you’ve

thought of a password, someone else probably thought of it also). When

confronted with PBE, he runs through the dictionary. For each entry, he

mixes it with the salt and generates an alleged KEK. He tries that KEK

on the chunk of PB-encrypted data. Did it produce the session key?

Because the original PBE probably has a check in it (such as the salt

encrypted along with the session key), it’s probably easy to determine. If

the check passes, that was the correct password and it produced the cor—

rect KEK, which in turn will properly decrypt the session key, which will

then decrypt the bulk data.

This dictionary attack tries fewer passwords than does the brute force

attack. Any password the dictionary attack tries, the brute force attack

also tries, but the brute-force attack tries many additional passwmds that

the dictionary attack does not. As a result, the dictionary attack is faster

than the brute force attack.
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Of course, if Pao—Chi comes up with a password not in Ray's dictionary,

it will never succeed. If Ray is smart, he'll probably start with a dictionary

attack and if that fails, move on to a modified brute-force attack.

Slowing Down an Attack on a Password

To check a password, Ray has to mix the salt and password the same way

Pao-Chi did. Pao-Chi can slow Ray down by making that a lengthy task.

His goal will be to make the process quick enough that it doesn’t make his

own encryption or decryption process too expensive, but slow enough to be

a drain on Ray. He can do this by repeating the mixing over and over.

First, mix the salt and password together. Then take the result of that

and run it through the blender again. Then take the result of that and run

it through the blender. And on and on, say 1,000 times.

The blender is probably pretty fast, the mixing is almost certainly

done with a message digest, and these algorithms are generally very fast,

so for Pao-Chi to do 1,000 iterations of the mixing process won’t be too

time-consuming. In fact entering a password is going to be far more time-

consuming than 1,000 mixings. So relatively speaking, for Pao-Chi, the

mixing takes up a very small portion of the total time. But Ray is going

to have to do 1,000 mixings for every password he tries. That can add up.

Let’s say Pao—Chi has an eight-character password. In an earlier section

we said that an eight-character password is equivalent to a 52-bit key. But

actually, Ray cannot try one password as quickly as one key. If he tries the

brute—force attack on a key, here’s the process (BFK stands for “brute-force

on the key”):

BFKl Get a candidate key.

BFK2 Do key setup (recall the key table from Chapter 2).

BFK3 Decrypt some ciphertext, yielding some purported

plaintext.

BFK4 Check the plaintext.

But for each password Ray checks, on the other hand, here’s the process

(BFP stands for “brute—force on the password”):

BFPl Get a candidate password.

BFP2 Perform the mixing to build the candidate key.

BFP3 Do key setup.
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BFB4 Decrypt the ciphertext, yielding the purported check and

session key.

BFB5 Perform the check.

How long it takes to do one BFK depends on four things. How long it

takes to do one BFP depends on those same four things, plus one more. If

step BFP2 is as long as the other four steps combined, that’s going to dou-

his the amount of time to check one password. That’s like adding one bit

to your password. The eight-character password which was equivalent to

a 52—bit key is now more like a 53-bit key.

In our experiments, performing 1,000 iterations (doing step BFPZ 1,000

times) is about 136 times slower than the other steps combined (more or

less, depending on the encryption algorithm; we used RC4, a very fast

algorithm). On one Pentium-based PC, step BFP2 took 4.36 milliseconds,

whereas checking one key took 0.032 milliseconds (a millisecond is “one

one-thousandth” of a second; Pao-Chi is going to pay this 4 millisecond

penalty when he encrypts or decrypts). Although Ray could check 31,000

keys per second, he could check only 230 passwords per second. The eight-

character password is now equivalent to a 59-bit key. The 10-character

password is more like a 72-bit key.

Incidentally, you may be thinking, “In a lot of places I’ve used pass-

words, there’s a limit to how many times I can enter the wrong password

before the program won’t work. So if I try too many wrong passwords even

if I later on do enter the correct password, the application won’t run. Can‘t

I just make PBE work the same?”

It’s possible to write such a program, but the attacker will simply use a

different PBE program that mimics the original. That is, Pao-Chi used his

program to encrypt. Ray would simply obtain a copy of the ciphertext and

run it through another program that looks like Pao-Chi’s, except Ray’s

program puts no limits on the number of passwords allowed.

Good Passwords

In choosing a password, your goal is to choose one that doesn’t appear in

a dictionary and would thwart a brute-force attack. For example, the fol-

lowing password probably does not appear in a password dictionary:

14G:c*%3 <wM*-16g]_Bnp?-i (186
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Editorial: The “Three-Try" Password

Limit, A Pain in the Neck

by Steve Burnett

Many programs, especially login programs, place a limit on the

number ofwrong password tries they will accept before locking up.

Usually, the limit is three. Enforcing a limit is a good security

measure, but it’s very annoying that the limit is so low. Further-

more, a low limit does not add any significant security compared

to a larger limit.

Suppose you enter a password and the program denies access. You

check and see that you accidentally have the CAPS LOCK on. You fix

that and type in a password again. But this one didn’t work either.

What happened? Did you forget the password? Or did you simply

misspell (for instance, how many times have I typed in “teh” for “the”

or even “Bunrett” and that’s my own name!)? Did you accidentally

press a stray key? There’s no way to know since you can’t see what

you typed. You've made two tries and gotten it wrong both times; are

you going to try a third time? Probably not, because if you get it

wrong, you’ll be locked out. So it really isn’t it a “three-try” password

but a “two-try.”

Now what about attackers? If the password is so weak that you

need to limit intruders to no more than three tries, it’s too weak. The

security department should be talking to the employees about using

better passwords. What’s more, attackers may not even be trying the

password through the user interface. Instead, they’re probably grab-

bing information and trying the attack offline.

Given this, why not set the limit of password tries to, say, 10? That

would make things easier for the user and most likely wouldn’t give

attackers any significant assistance. “Three tries and you’re out” is

just a pain in the neck.

 
 

It’s a possible password, but attackers probably won’t get around to try-

ing it for a very long time. The problem with this password, of course, is

that it’s not easy to remember, and even if you could remember it (maybe

you have a photographic memory), it’s easy to mistype.
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If you’re using PBE, you need a good password. What makes a good

password? The following list comes from an RSA Security manual. Other

sources might offer other guidelines, but this is a good start.

1. Use at least 10 characters.

2. Mix in uppercase and lowercase letters, numbers, spaces,

punctuation, and other symbols.

3. Avoid using a character more than twice.

4. Avoid using actual words.

5. Avoid using personal information, such as the name of a spouse, child,

parent, or friend, or your phone number, Social Security number,

license plate number, or birthday.

6. Do not write it down. Instead, memorize it.

Number 6 is the hardest if you follow recommendations 1 through 5. In

addition, if you have several applications, security experts recommend

that you use a different password for each one. What’s more, some appli-

cations enforce a policy that requires you to change your password peri—

odically.

Given all that, what’s the average user to do? So far, there are no easy

answers to the password dilemma. Later sections describe some alterna-

tives to passwords, along with ways to use passwords more effectively

Unfortunately, these techniques require new hardware, and for some of

them the technology is years away from perfection or public acceptance.

Password Generators

Programs are available that will generate passwords for you. These pro-

grams work like PRNGs but produce keystrokes instead of numbers. For

example, the program may collect some seed bytes, including your mouse

movement and keystrokes. Then it spits out a password that probably

looks random. Most programs allow you to specify how long the password

will be, whether the password combines uppercase and lowercase letters,

or whether it should contain punctuation or other marks. You might get

results like this:

tiFXFCZcZS

K6($XV] lhl

M?a84zQW,g
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Technical Note: You Never Know

Where Attackers Will Look Next

Do you think that you can choose a key or password that will force a

brute force attack to run to completion? For example, if the brute

force attack on the password begins with A, then B, and then so on

through the alphabet to AA, AB, and so on, you might think it would

be clever to choose ZZZZZZZZZZZZ as your password. After all,

that’s a long way away from the beginning of the list.

Unfortunately, brute force attacks usually don’t work that way.

First, most brute force attacks use more than One computer, and

each computer works with some of the possible key or password

space.

Here’s how it works. A computer that wants to be part of the

cracking process applies to a central “bureaucrat” computer. This

central computer keeps track of the keys or passwords that have

been searched. It generates a range of keys or passwords for the

“worker” computer to check, which then searches all the values in

that range. If the worker computer finds the key or password, it

reports the good news to the bureaucrat. But if the worker searches

its entire allotted range with no success, it goes back to the bureau-

crat to get another range.

How is a range determined? Probably not systematically. In other

words, the first range is not going to be A to ZZZ, the second range

from AAAA to ZZZZ, and so on. Instead, the ranges are probably

parceled out randomly. The first applicant gets something like

EVQABLGP to FBMAlllG, the second applicant gets WGMWCOO to

ARH7ZD2F, and so on.

Even if only one computer is involved in the brute force attack, it

operates as both a bureaucrat and a worker, As a result, you never

know which part of the space will be searched next.
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These passwords were generated using the JavaScript Source password

generator (see http://javascript.internet.coml).

They are good passwords, but they’re harder to memorize. Still, if you

want a “random” password, one that will withstand a dictionary attack, a

program such as this one might be a good choice.

Make sure that you trust the program you choose. Imagine a malicious

password generator programmer. Suppose our attacker Ray creates a pro—

gram that produces what looks like random passwords. But actually the

program is limited to how many it can really create, say 10 million. Now

Ray simply looks at who buys the product, and then has a leg up on crack-

ing that customer’s passwords.

Hardware-Based Key Storage

Tbkens

We’ve just examined PBE as a possible way to store cryptographic keys.

Another storage place is on a hardware device. Some devices are tiny com-

puters called tokens. Others are larger, tamperproof boxes, generally

called crjypto accelerators.

A token is not a cell phone or a personal digital assistant (PDA) such as

Palm, iPaq, and so on, but rather is something even smaller that fits

inside your wallet or shirt pocket: 3 plastic “smart” card, a plastic “key,” a

small USB port attachment, or even a ring you wear on your finger.

(Smart cards and USB port attachments, the most common types of

tokens, are discussed in the following two sections.) A token contains a

small chip with a processor, an operating system of sorts, and limited

input/output, memory, and hard drive storage space. Some tokens are very

small or thin, are slow, have very little storage space, and do very little.

Others may have more power and can store as much information as a

1970s era PC. Figure 3-7 shows some tokens.
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Figure 3-7
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The advantage ofusing tokens is that the attacker does not have access

to them. If our attacker Ray is in Elbonia, he can probably use the inter-

net to access Pao-Chi’s computers’ hard drives and does not need to be in

his office to break in. (As you may know, Elbonia is a fictional country fea-

tured in the Dilbert comic strip by Scott Adams.) But Pao-Chi’s token is

not connected to the network (it’s in his wallet or on his key chain or fin-

ger), so it’s not visible. This arrangement thwarts a remote attack. When

Pao-Chi uses his token, it’s connected to his computer, which is ultimately

connected to the world, so for a briefwhile, his secrets are vulnerable. But

a few seconds of vulnerability is not as dangerous as the 24 hours a day
the network is vulnerable.

Even if Ray obtains Pao—Chi’s token, further protections are built—in.

Generally, a token performs functions (such as retrieving stored keys)

only when a correct password or personal identification number (PIN)

activates it. Often, a token locks itself if too many incorrect passwords are

entered. If someone tries to physically get at the storage Space (as in

Chapter 1 with data recovery techniques), the token will erase itselfmsort

of a “scorched earth” policy. This scorched earth thwarts an offline attack

on the password.

The problem with tokens is that they need a way to communicate with

the computer; once they can communicate with the computer, they can

communicate with users through the computer. For example, you commu-

nicate with the computer by using the keyboard and mouse. Sound sys-

tems communicate using a sound card. A token might use the serial or

USB port, or even the floppy drive. Some tokens use a reader to one of the

ports. It’s the reader that communicates with the computer. To use the

token, you insert it into the reader, something that’s generally easier than

inserting it into a port. Of course, this means that you must buy the

reader as well as the token and then install it.

Smart Cards

A smart card is simply a plastic card, similar to a credit card, that con-

tains a microprocessor. One of the goals of smart card vendors is to replace

the current version of the credit card. Just as credit cards with magnetic

strips replaced simpler embossed cards, the hope is that smart cards will

replace credit cards. But because smart cards contain small computers,

they will be able to do more than serve as credit cards.

We’ll talk more about smart cards throughout this book, but for now,

one of the things you can do with them is to store keys. When you need to



7 2 Chapter 3  

use a symmetric key, for example, you transfer it to the computer, which

uses it to encrypt or decrypt data. To transfer the key between card and

computer, though, you need a smart card reader. Several PC manufactur—
ers have announced that future laptops and keyboards will come with

built-in smart card readers.

The International Organization fbr Standardization (ISO) has published

several standards Outlining the physical characteristics of smart cards,

including the dimensions and locations of the contacts, signals and trans-

mission, and more. Virtually all smart cards look alike because they are

built to standard. The idea is that all smart cards will be usable with a wide

variety of readers. So far, however, many smart cards and readers simply

don’t work together. Often, to use a particular manufacturer’s smart card,

you must use that firm’s reader. As more PC manufacturers release prod-
ucts with readers built in, this situation should change.

USB Tokens

The Universal Serial Bus port is an industry standard for attaching plug

and play devices. Other ports have such functionality (such as PCMCIA),

but the USB port is probably the most popular. Since 1998 or 1999, most

new PCs and laptOpS have come with USB ports as standard equipment.

Ifyou have a device that connects to your computer through the USB port

(such as a camera downloading pictures or a printer), there’s no need to

attach and reboot. So long as the software to run the device is installed,

you simply insert the device and run it. When you’re done with one USB

device, take it out and insert a new one, or most likely, you can have sev-

eral attached to the same port.

Several companies have introduced cryptographic tokens that attach to

the USB port. Other companies with tokens that are not USB-ready have

made adapters to USB ports. These tokens are approximately 21/2 by

1[2 inches in size (about the size of a house key but a little thicker), They

have quite a bit more computing power and storage space than smart

cards. Hence, they will almost always be much faster, do more work, and

store more keys than a smart card.

 
Tokens as Password Storage Devices

In addition to your keys. tokens can hold passwords. Suppose you have

several places to log in: your network account, e-mail, various computer

accounts, electronic commerce accounts (such as an account with an
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online travel agent or bookstore), and so on. For each account, you’d like a

different password. In that way, if someone figures out one password (for

example, the online travel agent might know your password for that

account), he or she won’t have them all.

The solution is to use a token to generate big random passwords and

store those passwords. When you need to log in to an account, you hook up

the token and have it send the password. You don’t have to remember the

password, so it can be random and very long, perhaps 20 or 30 characters,

You probably have access to the token through a password, so if attack-

ers obtain your token and figure out that password, they’ve got all your

passwords. That is a danger, but using a token does help thwart a remote

attack. For example, suppose Ray, the attacker, goes to your online bank

account and logs in as you. Although he need not be at your computer to

do this—he can be in Elbonia—he does need to enter your password. A

long, random password is much more diffiwlt to crack than passwords

you might otherwise use for your various accounts because they’re easier

to remember.

Crypto Accelerators

The larger hardware crypto devices are generally called crypto accelerators

(see Figure 3-8) because they usually have specialized chips that perform

cryptographic operations faster than general-purpose microprocessors.

Crypto accelerators can also store data more securely than can a regular

computer. The problem with, for example, your desktop PC is that the hard

drive is visible to the outside world. As you saw in Chapter 1, attackers can

probably read your computer’s hard drive, and even if you have firewalls

around your sensitive information, attackers can use tools, such as data

recovery software, to read that data as well. But a crypto accelerator is

built so that its storage space is not visible. There is very limited access to

it using normal channels, and if attackers try to pry open the cover to phys—

ically access the hard drive, the device erases itself. Ifyou store your key on

such a box, it’s extremely unlikely that someone will be able to extract it.

Many crypto accelerators do not let the key leave the device. With a

token, ifyou want to encrypt 10 megabytes (MB) of data, you must get the

key from the token and let your PC do the encrypting. While the key is in

memoryfiand afterward, as you saw in Chapter 1 with memory recon-

struction attacks—it is vulnerable. With a crypto accelerator, you send the
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plaintext to the device, and it encrypts and returns the ciphertext. This

arrangement further limits the key’s vulnerability.

One problem with crypto accelerators is that they are connected to your

computer 24 hours a day. This is in contrast to tokens, which are con-

nected only for a few seconds at a time, limiting their vulnerability. Pre-

sumably, the crypto accelerator 1/0 is secure so that if attackers have

remote access to your computer, they still cannot get access to the accel-

erator. “Presumably,” however, may not be adequate security in some sit-

uations. That’s why most crypto accelerators work in conjunction with

tokens—that is, they don’t operate without a token inserted.

If you store your keys on the box, you can recover them by presenting

the correct token and entering the correct password. For attackers to

access your keys, they must somehow obtain your token (another token by

the same manufacturer won’t work, just as two credit cards don’t refer to

the same account) and the ability to use that token (usually a password).

And, of course, they must have physical contact with the accelerator (to

insert the token), again thwarting a remote attack.

Hardware Devices and Random Numbers

Biometrics

Tokens and crypto accelerators usually come with an RNG (see Chapter 2

for details about RNGs and PRNGs). You must be careful, though, because

some tokens don’t have true RNGs. Rather, they have PRNGs seeded at

the factory Even ifyour device constantly collects seed material each time

it is used—a better approach than a PRNG seeded at the factory—it’s still

a PRNG.

A hardware device stores yOur keys securely, but it usually relinquishes

them when someone enters a password. Good passwords can be strong,

but in real life, not everyone uses good passwords.

Another way to authorize a device to unleash the key is through bio-

metrics, which uses your unique physical characteristic to verify your

identity. The most well-known biometric is the fingerprint. It’s common

knowledge that everyone, even an identical twin, has unique fingerprints.

If a machine could read fingerprints, it could determine whether the
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Summary

appropriate person is requesting an operation. Such machines exist. (It’s

macabre, but some of these machines can even tell whether the finger

being used is actually attached to the body and whether the body is alive.)

Other biometrics include retina scans, voicepiints, and even DNA. Biomet-

rics companies are attempting to build hardware that can be prograrmned to

identify you by scanning your eye, voice, or DNA and then appropriately

release secure information or perform a cryptographic function.

Biometric devices are not currently in wideSpread use for a couple of

reasons. One is the cost of the devices, and the other is their reliability. A

number of concerns have been raised. Will the device return an erroneous

“positive ID” on someone who isn’t the identified subject? Will it always

return a positive ID on the subject? What if the subject has cut his or her

right thumb—will the fingerprint reader still function? Can it instead use

the left thumb? Another finger? For a voiceprint reader, what if the person

has a cold—will it still work? And so on. A password works virtually 100

percent of the time. If you enter the wrong password, access is denied.

With the correct password, you always get access. With bismetrics, there

may be some errors.

The technology is advancing, and companies are building better and

cheaper readers. Someday, maybe a smart card will contain not only a chip

but also a fingerprint reader. Maybe your cell phone will have builtsin

voice recognition.

After you've generated a symmetric key and used it to encrypt data, how

do you protect the key? One of the most common techniques is password—

based encryption. In PBE, you use a password and a salt to build the key

encryption key. You then use the KEK to encrypt the sessiori key. Another

method of protecting your session key is to store it on a hardware device,

such as a token or crypto accelerator.

Real-World Examples

How do companies protect keys in the real world? One class of products

for protecting session keys is file encryption applications. These products
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Keon Desktop

Figure 3-9

Registering a

directory with
Keen. Once

registered, all
files in this

directory will be

automatically

encrypted when
not in use, and

decrypted when
accessed

encrypt the files on your hard drive using symmetric-key cryptography.

Protecting bulk data keys can be done in several ways.

RSA Secmity makes a family of products called Keen. One component is

Keen Desktop. Among the features of this product is file encryption. You

register directories with Keon, and it will encrypt all files in those direc—

tories (see Figures 3-9 and 3-10}. When you open one of those files, Kean

will decrypt it. When you close it, Keon will encrypt it again. That means

if the file is on your hard drive, it is encrypted. It is decrypted only when

you want to see it.
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Keen uses R05 at 128 bits or DES at 56 bits to encrypt. It uses a PRNG

to generate the key. The seed is various machine states and user input.

Once the key has been used to encrypt the files, it’s necessary to store that

key. Keen stores it in the user’s Credential Store. If the user has a smart

card, Keen will use it as the Credential Store. If not, Keen will create a

virtual smart card on the user’s hard drive or on a floppy disk or both. The

keys on this virtual smart card are protected using PBE.

If you keep your Credential Store on a mobile medium (the smart card

or floppy), you can use Keen to encrypt or decrypt files from any computer

you work on (as long as it has Keen Desktop installed), whether it is your

office computer, home computer (for telecommuting), er a laptop on a busi~

ness trip.

To read your encrypted file, an attacker will have to either break the

encryption algorithm, create a substitute Credential Store (which would

entail finding the session key through a brute—force attack) or break your

Credential Store to obtain the bulk data key. The first two are highly

unlikely, so an attack, if it occurs, will probably be mounted against your

Credential Store. Ifyou keep it on a smart card or floppy, the attacker will

have to steal it. And then it will still be necessary to either break the

smart card or break your password.
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Other Products

If you search the Web, you will find dozens or even hundreds of applica—

tions out there that offer file encryption. Some are freeware, others are

shareware, and some are regular products.

One of the most commonly used file encryption programs is PGP. The

letters stand for Pretty Good Privacy. PGP was originally a freeware pro

gram written by Phil Zimmerman using RSAREF, the cryptographic ref-

erence library produced by RSA Data Security. According to the

documentation, it has file encryption through PBE (it does not generate a

key and protect the key with PBE; it encrypts the file using PBE). It also

offers an advanced “enveloping” file encryption that uses a key on your

“key ring.” Once again, your key ring can be a number of devices, includ-

ing a FEE-protected file.





 
Symmetric-hey encryption can keep your secrets safe, but if you need to

share secret information with other people, you must also share the keys.

How can you securely send keys to other individuals? This chapter

describes some solutions, including the revolutionary concept ofpublic-key

cryptography.

Chapters 2 and 3 describe how Pan-Chi (the sales rep on the road) can

keep secrets by encrypting his data and then safely storing the encrypting

key. But suppose he wants to share some of his secrets with other people?

For example, let’s say Pao-Chi has just met with Satomi, a potential cus-

tomer, and wants to discuss strategy with Gwen, the VP of sales and Pao—

Chi’s boss. Normally, Pao-Chi and Gwen could handle the conversation by

phone, but they need to send complex documents back and forth, and they

figure the best way to do that is through e-mail. Being a little paranoid,

they want to ensure the security of this exchange of sensitive data. After

all, Pao-Chi will likely be hooking up his laptop to Satomi’s phone lines or

Internet connection, and who knows what sort 'of sniffers are attached to

her company’s wires?

The simple solution is for Pan-Chi to encrypt any files he sends to

Gwen. In that way, if Satomi intercepts the message, all she sees is gib-

berish. The problem is that when the message gets to Gwen, she also sees
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Figure 4-1
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only gibberish. To decrypt the message, Gwen needs the key. Pao—Chi has

the key, but how can he send it to Gwen? He can’t send it in another mes-

sage; if Satomi can intercept the data message, she can also intercept the

key message. And if Pao-Chi could find a channel to send the key securely,

he could simply send the secret via that route.

The problem facing Pao—Chi and Gwen is known as the key distribution

problem—namely, how can two or more people securely send keys over

unsecure lines? In more general terms, how can people securely send any

sensitive information over unsecure lines? Because we can encrypt the

data, though, we can reduce the general problem to the smaller problem

of securely sending the key. If you have 10MB of sensitive material, you

could try to figure out a way to send that bulk data securely, or you could

encrypt it using a 128-bit symmetric key and then try to come up with a

way to securely send the key. If you solve the key distribution problem,

you also solve the bulk data distribution problem (Figure 4-1).

 

  
encrypted data 
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Sharing Keys in Advance

In Chapter 3, you saw how Pao-Chj can encrypt bulk data with a session

key and then store that key securely. He can store that key using, for

example, PBE or a token. To solve the key distribution problem, Pao—Chi

and Gwen can get together in advance to generate a key, and then each of

them can store the key. To send secure messages to each other, they use

the key to encrypt the data.

So before Pan-Chi leaves on his trip, he stops by Gwen’s office with his

laptop. He generates a 128-bit key and stores it somehow—maybe using

PBE, maybe on a token. He then puts a copy of the key onto a floppy disk

and hands Gwen the disk. She inserts the disk into her computer, copies

the key, and stores it securely. Now the two parties share a key that they

can use whenever they want to send sensitive material. This key, by the

way, likely will not be the same key Pao-Chi uses to encrypt the files on

his hard drive. If it were, Gwen oeuld read all his sensitive data. If that’s

not OK with Pao«Chi_. he has the option ofencrypting his data using a key

only he can access.

If the two of them had chosen to exchange the key online, Pan-Chi

would not have had to go to Gwen’s office in person. But their goal is to

send no sensitive data in the clear over unsecure lines, and that includes

the company network. Even if the network is secure from outsiders, that

doesn’t eliminate the possibility of an inside job. Another employee—

maybe the system administrator or simply someone who is adept at hack-

ing—might be able to intercept such a key exchange. So the safest way to

exchange the encrypting key in advance is to do so in person.

Another possibility is for Pao-Chj to generate the key, encrypt it using

PBE, and send the encrypted key to Gwen. Anyone intercepting the mes-

sage would not be able to decrypt it without the password. Of course,

Gwen needs the password, so Pao-Chi can give it to her by phone. In this

way, the sensitive data (the password) is never sent over the network

lines. But is the phone line secure? Maybe, maybe not. Still, whoever

wants to steal the key will have to break into both the network and the

phone system. Although this makes the attacker’s job more difficult, it

still means sending sensitive data over unsecure lines.
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Problems With This Scheme

Pao-Chi and Gwen now share a key. This scheme will work; if attackers

try to intercept their messages encrypted using that key, the attackers

will not be able to recover the information. But this solution does have its

problems.

Suppose the parties want to share keys with more than one person.

Fae-Chi is not the company’s only sales rep, and he may want to securely

send information to his sales colleagues as well as people in the engi—

neering, accounting, and shipping departments. To communicate securely

with all these people, Poo-Chi will have to visit their offices and perform

the key exchange. What’s more, Gwen will have to make similar visits (or

her colleagues will have to visit hermafter all, she is the VP). Everyone

will have to exchange keys in person with everyone with whom they share

confidential information.

The logistics quickly become burdensome. Some colleagues may have

offices in other parts of the country or even in other countries. The com—

pany can’t send everyone on all the trips required to exchange keys.

Maybe the solution would be to gather all the employees at one location

and have a giant key exchange party. But what happens when the com-

pany hires someone new? Does it have yet another key exchange party?

Send the new employee on a worldwide trip to exchange keys?

Furthermore, as more people need to share keys, the number of

required meetings grows dramatically. When two people share a key,

there’s one meeting. When three people share keys, there are two meet;-

ings; with four people, six meetings, and so on. In general, It people, must

make 1/207.2 - n) key exchanges. If your company has 10 employees

involved in secure data sharing, that’s 1/2(100 — 10) key exchanges, or

1/2630) = 45. For 20 employees, it’s 190 meetings. A company with 1,000

employees would need to perform 499,500 key exchanges.

One solution is for everyone in the company to share the same key. You

could have a “key master” who gives the key to all employees. The draw-

back is what happens when someone leaves the company. If the company

does not change the key, an unauthorized individual can now decrypt sen-

sitive materials. If, on the other hand, the company changes keys, the key

master will have to revisit everyone in the company.

A second problem with the shared secret key is that if attackers crack

one message, they crack them all. Because all messages between two peo-

ple are encrypted with the same key, finding the key for one message

means finding the key for all messages. It’s not likely that attackers will
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find the key if the correspondents use a 128-bit key and an algorithm with

no weaknesses. On the other hand, if it is possible to easily use a separate

key for each message, why not take that extra measure of precaution?

Although this is a drawback of the shared key approach, it’s trivial com-

pared with the pitfalls of trying to exchange keys in person.

Using a Trusted Third Party

If sharing keys in advance is not an option, Pao—Chi and Gwen can try

using a trusted third party (TTP). This is a variation on the key master

solution. In this scheme, the trusted third party—let’s call her Michelle—

shares a key with each individual in the company. Actually, the keys are

key-encrypting keys, or KEKS. Pao-Chi visits Michelle and asks for a KEK.

She generates one, stores it securely, and gives a copy to Pao-Chi. The two

of them now share a KEK. Gwen also visits Michelle, and the two of them

share a different KEK (see Figure 4-2).

When Pao-Chi wants to communicate with Gwen, he sends a message

to Michelle, requesting a session key he can use in his messages with

Gwen. To fulfill the request, Michelle generates a new session key and

sends it to Pao-Chi. She encrypts the new session key using the KEK she

shares with him, so anyone intercepting that message cannot identify this

new key. Michelle also sends this same new session key to Gwen, encrypt-

ing it using the KEK those two share (see Figure 4-2).

Pao-Chi and Gwen now share a key, and neither had to make a trip to

the other’s office. Anyone else wanting to share a key with any other

employee simply establishes a KEK with Michelle, who distributes the

key. In a trusted third party scheme, the correspondents are the first two

parties. In our example, Michelle is the third party. Just as important,

Michelle must be trusted because she has everyone’s keys. When Pao—Chi

and Gwen exchange encrypted messages, normally they are the only peo—

ple who can decrypt them. But now Michelle also has their session key, so

she can decrypt their messages. Pao-Chi and Gwen must trust Michelle

not to read their sensitive material or release their key to anyone else.

The trusted third party still has to exchange keys with all the employ-

ees in person. As you saw in the preceding section, that’s a daunting task.

Tn make things easier, you can create a hierarchy of trusted third parties.

Everyone goes to a local TTP, each of whom has established a key with

every other TTP, For all the TTPs to exchange keys is still a formidable
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Figure 4-2
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project, but it is more manageable than having a single companywide

TTP. If two correSpondents are in the same office, they can use the ser-

vices of a shared TTP. If they are in separate offices, each one communi»

cates with his or her own TTP. Then the two TTPs communicate with each

other to bridge the gap (see Figure 4—3).

Problems With This Scheme

The first problem is that the TTP can read all the messages. The whole

idea of encrypting messages is to limit their exposure to only the corre—
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Figure 4-3
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spondents. Now a third person has access. If the correspondents can live

with that, this scheme will work. Otherwise, they’d better look for another

solution.

The second problem is that when the TTP leaves the company it must

hire a new TTP and start the process over from the ground up. Otherwise,

the outgoing TTP can gain access to all sensitive materials.

An alternative is to contract the job of TTP to an outside company. In

this arrangement, the TTP is not an individual but a corporate entity. In

this case, you must trust that the company has checks in place that pre-

vent its employees from gaining access to the keys.
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Public-Key Cryptography and the

Digital Envelope

In the 19705, researchers invented asymmetric-key cryptography, a new

way to securely send keys. This scheme uses two different keys. Although

they are related to each other—they are partners—athey are significantly

different. The relationship is mathematical, and what one key encrypts

the other key decrypts. In symmetric crypto, the same key is used to

encrypt and decrypt (hence the word “symmetric”——the same on both

sides); ifyou use any other key to decrypt, the result is gibberish. But with

asymmetric crypto (see Figure 4-4), the key that’s used to encrypt the data

does not decrypt it; only its partner does (hence the word “asymmetric,”~—

each side different).

An analogy is the asymmetric lockers often found in airports, train sta-

tions, skating rinks, and many other public places. To securely store your

belongings, you put them into the locker and lock it by inserting money.

Just as your house key locks your front door, the money locks the locker—

in a sense, your money is the key. After you lock the door, you receive

another key—perhaps an actual key that looks like your house key or car

key, or perhaps a piece of paper that contains a number. To reopen the

locker, you use the key or enter the number on a key pad (sort of like using

a temporary personal identification number or PIN).

Suppose thieves want to steal your belongings. To open the locker, they

need a key. The key you used to lock it was money. But if the thieves insert

more money into the locker, it won’t open. They can stuff money into it all

day long, and it still won’t open. The key that was used to lock the locker

will not unlock it. Only the second, different key will unlock the door.

Similarly, it’s possible to create a cryptographic algorithm in which one

key encrypts data and the other key decrypts it. Another term for this

model (the term we use in this book) is public-key cryptography. Because

both keys are needed to lock and unlock the data, one of them can be

made public without jeopardizing security. This key is known as the pub-

lic key. Its partner is called the private key. You encrypt data with the

public key and decrypt it with the private key. Just as thieves can know

what key was used to lock the asymmetric locker—can even have access

to that key—and still not be able to open the door, an attacker can have

access to a cryptographic public key and still not be able to decrypt the

data. Only the private key can be used to decrypt it, and if the owner of
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that key keeps it private (as the name implies), plaintext encrypted with

the public key will remain secure.

Let’s return to our sales rep example. If Gwen has a public and pri-

vate key pair, she makes the public key publicly available (what else are

you going to do with a key called “public”). She is the only one who has

access to the private key. Pao-Chi uses a symmetric algorithm with a

session key to encrypt his e-mail, and then he uses Gwen’s public key to
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Figure 4-5
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encrypt the session key. Then he sends both the encrypted message and

the encrypted session key (see Figure 4-5). This arrangement is similar

to password-based encryption, in which the session key is used to

encrypt the bulk data, and the KEK (based on the password) is used

to encrypt the session key. In PBE, only the owner of the password can

recover the sessiou key and consequently decrypt the bulk data. In pub-

lic-key cryptography, only the owner of the private key can recover the

session key and decrypt the bulk data.

Public key

 
. Encrypted

session key

  
Now you’re probably asking, “Why does Pao-Chi use a session key with

a symmetric algorithm to encrypt the bulk data and then encrypt the ses-

sion key with the public key? Why doesn’t he simply encrypt the bulk data

with the public key?” The answer has to do with performance: Public-key

algorithms are slow, whereas symmetric-key crypto can encrypt bulk data

very quickly. Depending on the platform, some symmetric algorithms can

operate at speeds of 10MB, 20MB, 50MB (or even more) per second. In

contrast, a public-key algorithm operates at probably 20KB to 200KB per

second, depending on the algorithm, platform, and other factors. That’s too

slow for processing bulk data, but encrypting 128 bits (the probable size of

a symmetric key) would not take much time. So if Pao~Chi’s c—mail (the

plaintext) is a few megabytes, it’s more efficient to use this combination of

symmetric-key and public-key crypto.
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You may ask, “Why not simply develop a public-key algorithm that can

encrypt as fast as the symmetric algorithms?” You’re welcome to try.

This process of encrypting bulk data using symmetric-key crypto, and

encrypting the symmetric key with a public-key algorithm, is called a dig-

ital envelope. The idea is that the symmetric key is wrapping the data in

an envelope of encryption, and the public key is wrapping the symmetric

key in an envelope (see Figure 4-6).

 Plaintexr

 SeSSion key 

Notice the huge advantage of this method compared with a shared

secret (discussed in the section “Sharing Keys in Advance”). With a shared

secret scheme, Pan-Chi and Gwen have a key they use each time they

communicate. Each of them must have separate session keys to use when

communicating with anyone else. And they must keep all these keys

secure. Using a digital envelope, Pao—Chi and Gwen still have to keep a

separate key for each individual, but this time it’s a public key, which

doesn’t need to be protected. Furthermore, they probably don’t need to

store the public keys themselves; directories of public keys are readily

available. We talk about these directories in Chapter 6. For now, it’s suffi~

cient to know that you can leave the task of managing all those public

keys to someone else.

Security Issues

Suppose Pao—Chi sends an e-mail to Gwen using a digital envelope, and

Satomi indeed intercepts the message. Will Satomi be able to read it? The
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bulk data was encrypted using a symmetric algorithm, so she needs the

session key. To decrypt the data she could try a brute force attack, but if

the key is 128 bits, that would take billions or even trillions of millennia

(as you saw in Chapter 2). But because the session key is right there, part

of the message itself, it seems she doesn’t need to try this attack—except

the session key is also encrypted. To decrypt the session key, she needs the

partner to the public key that was used to encrypt it because that’s the

only key that will decrypt it. That’s the private key, but only Gwen has
that.

Maybe Satomi can break the public-key algorithm or perform a brute

force attack to find the private key. Recall that there were two ways to

recover messages encrypted using a symmetric-key crypto: break the algo-

rithm or find the key using brute force. The same is true for public-key

crypto. If Satomi can figure out what the private key is by breaking the

algorithm or using brute force, she can decrypt the session key and use it

to decrypt the bulk data.

To determine the private key, Satomi must finds a 160-bit to 510—bit (or

possibly higher) number. If a brute force attack on a 128-bit value (the

symmetric key) is outside the realm of feasibility, then so is such an attack
on a 160-bit number. So a brute force attack on the 160-bit or 510—bit num-

ber is not a realistic option.

What about the algorithm? Can a public-key algorithm be broken? It

turns out that all public—key algorithms can be broken by determining

what the private key is, based on the public key. Remember that the pub-

lic and private keys are partners, that they’re related, and that this rela-

tionship is mathematical. Math computations can be used to derive the

private key fiom the public key.

Luckily, these math computations are time-consuming. As with sym-

metric—key crypto, the longer the public key, the longer it will take to

derive the private key from it. If the keys are long enough, solving the

math problem would take as much time as a brute force attack on a 96-bit

to 128-bit key. In the section titled “Key Sizes,” we talk about key sizes for

public-key algorithms.

Breaking a Public—Key Algorithm

In Chapter 2, we say that you should use only symmetric algorithms with

no weaknesses that the fastest way to break them should be a brute force

attack. Why, then, are we now telling you to use public-key algorithms
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that can be broken? For these algorithms, the brute force attack is not the

fastest attack. Why the change of heart?

The answer is simple: No one has been able to develop a public-key

algorithm that has no weaknesses. For all public-key algorithms, there

are techniques that will break them faster than brute force. Think of these

techniques as shortcuts. But most users are willing to live with the short—

cuts for two reasons. First, cryptographers have performed a tremendous

amount of research quantifying the time required by the shortcuts. Even

though an algorithm is susceptible to an attack faster than brute force,

the research shows it still takes a long time. For most people, that amount

of time is sufficient security. Second, people are Willing to use algorithms

that suffer from shortcuts because these algorithms are the best way to

solve the key distribution problem.

For people who don’t trust public-key cryptography, the only recourse is

to use a shared secret scheme for key distribution. Otherwise, until some-

one comes up with a public—key algorithm with no shortcuts, we’ll have to
live with them.

Actually, though, having the shortcuts is not too bad. Using brute force,

an attacker might get lucky and find the key in one of the first few tries,

theoretically reducing the time of a successful attack to almost zero. In

contrast, cryptographers know how long they can expect it will take to

break a public-key algorithm using a shortcut. These attacks usually

must run their entire course before coming up with the answer, almost

never hitting on a lucky early answer, so researchers have established a

more concrete minimum attack time.

Some History of Public-Key Cryptography

In the mid-1970s, Stanford University graduate student Whitfield Diffie

and professor Martin Hellman investigated cryptography in general and

the key distribution problem in particular. The two came up with a

scheme whereby two people could create a shared secret key by exchang-

ing public information. They could communicate over public lines, sending

information back and forth in a form readable by eavesdroppers, at the

same time generating a secret value not made public. The two correSpon-

dents would then be able to use that secret value as a symmetric session

key (discussed in more detail soon). The name given to this scheme is

[lithe-Hellman, or DH.
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DH solves a problem-sharing a key—but it’s not encryption. That does

not make it unusable; in fact, DH is in use to this day. But it was not the

“ultimate” algorithm, one that could be used for encryption. Diffie and

Hellman published their result in 1976. That paper outlined the idea of

public-key cryptography (one key encrypts, the other decrypts), pointed

out that the authors did not yet have such an algorithm, and described

what they had so far.

Ron Rivest, a professor at MIT, was intrigued by Diffie and Hellman’s

idea of public-key cryptography and decided to create the ultimate algo-

rithm. He recruited two colleaguesHAdi Shamir and Len Adlcman to

work on the problem. In 1977, the trio developed an algorithm that could

indeed encrypt data. They published the algorithm in 1978, and it became

known as RSA, the initials of its inventors.

In 1985, working independently, two men—Neal Koblitz of the Univer-

sity of Washington and Victor Miller of IBM’s Watson Research Center——

proposed that an obscure branch of math called elliptic curves could be

used to perform public—key cryptography. By the late 19903, this class of

algorithms had begun to gain momentum.

Since 1977 (and 1985), many researchers have invented many public—

key algorithms. To this day, however, the most commonly used public-key

algorithm for solving the key distribution problem is RSA. In second place

is DH, followed by elliptic curves. We talk about these algorithms in the

following sections.

How Public—Key Cryptography \X/orks

It’s easy to imagine symmetric—key crypto. Using the key, you follow a

step-by-step procedure to scramble the outgoing data. To decrypt it, you

perform the steps in reverse. If the last thing the encryptor did was to

rotate a word, the first thing the decryptor does is to rotate the ciphertext

word in the other direction by the same amount (see Figure 4-7). If the key

used to encrypt the data is the key used to decrypt it, the rotation number

will be the same. (If the key is wrong, there is a chance that particular

rotation may still be correct, but almost all the rest of the operations down

the line, maybe an XOR here or an AND there, will be wrong.)

But with public-key cryptography, such a procedure won’t work. You

can’t simply reverse the steps. Why not? The quick answer has to do with

math. Whereas symmetric-key crypto simply operates on the data as hits
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Who Invented Public-Key

Cryptography?

Because they published the first papers on the subject, Whitfield

Diffie and Martin Hellman, along with Ron Rivest, Adi Shamir, and

Len Adleman, are generally credited with inventing public-key cryp-

tography in the mid 19703. Another researcher, Ralph Merkle, also

deserves credit for his pioneering work.

Yet British and US. information security organizations claim that

they developed these techniques in the 1960s and 19703. Did they?

The Code Book, Simon Singh’s history of crypto, gives ample evi-

dence that James Ellis of the British Communications Electronic

Security Group (CESG) proposed the idea of asymmetric encryption

in the 19605. Apparently, he was inspired after reading an anony-

mous paper written at Bell Labs during World War II. Ellis had

difficulty finding an algorithm that would work. In 1973, mathe-

matician Clifford Cocks joined the CESG. Ellis described the concept

to him, and within a few minutes Cocks had devised a solution that

was essentially the algorithm known today as RSA. 'In 1974, Mal-

colm Williamson, another Ellis colleague, described yet another algo-

rithm, this one similar to the one we call Difiie-Hellman. Because

this work was secret (the CESG is a secret organization, called by

some people a spy group), it was never published, and the authors

did not receive credit until years later.

The US. National Security Agency (NSA) also claims to have

invented public-key crypto in the 19603. Whitfield Diflie has

remarked that part ofhis inspiration for public-key crypto was hear-

ing about the secure phone system at the NSA. Although Diffie did

not know how the NSA had solved the key distribution problem, he

explains that because he knew it was possible, he figured he could

come up with the solution. The NSA system—which, it was later

learned, used public-key crypts—was up and running by the mid-

19703, perhaps indicating that years of study preceded deployment.

In addition to the NSA phone system, a document with the exciting

title “National Security Action Memorandum 160” outlines a pro-

posal for installing “permissive links” onto nuclear weapons. Appar—

ently, this memo was submitted to President John F. Kennedy; it

continued
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Figure 4-7
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bears his signature. Along with NSAM 160 is the “Weisner Memos

randum,” which includes more details about permissive links. It can

be inferred that the authors proposed equipping nuclear arms with

cryptographic switches. Bombs could be activated only with the cor-

rect codes, with a form of public-key crypto guaranteeing correct

codes (two principles referred to as authentication and nonrepudia—

tion; see Chapter 5).

What about the former Soviet Union or the People’s Republic of

China? Did these nations have public-key algorithms before 1976'?

Or how about Hungary or Japan—or any other government? If they

did, they’re not saying.
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and manipulates them using computer operations, public—key crypto oper—

ates on the data as numbers and plays with the numbers (see Figure 4-8).

And the math is one~way: It’s easy in one direction but not in the other

direction. In fact, the foundation of any good public-key algorithm is a one—

wtty function, the class of math problems on which public-key crypto is

built. Actually, public~key one-way functions are more accurately

described as one-way with a trap door. To the rest of the world the func-

tions are one—way, but the private key operates as a trap door that allows

the owner to recover the original data (see Figure 4-9). There are true one-

way functions, and we talk about some of them in Chapter 5.
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Figure 4-8
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In this book, we don’t describe the full details of the math behind the

various algorithms; you can find that in the RSA Labs FAQ on the accom-

panying CD. But in the following sections we talk about the three most

widely used algorithms for solving the key distribution problem: RSA,

DH, and ECDH (Elliptic Curve Diffie—Hellman). We tell you the names of

the one-way functions and outline the problems.
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Figure 4-9
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The RSA Algorithm

The RSA algorithm encrypts data. If you feed your plaintext to the algo-

rithm along with the public key, you get ciphertext as a result. With the

digital envelope, the plaintext is the session key. It’s certainly possible to

use RSA to encrypt data other than a session key, but RSA is not as fast

as the symmetric algorithms. For example, RC4 (probably the fastest sym-

metric algorithm in wide use today) Will encrypt data at a rate 700 times

faster than 1,024-bit RSA (1,024 bits is the most commonly used RSA key

size). R05 (one of the fastest block ciphers} is about 500 times faster.
 

NOTE:

IncidentalZy, the R in. RC4 and RC5 is the same R as in. RSA.

So the best way to use RSA is to create a digital envelope. For example,

Pao-Chi can generate a random or pseudo—random 128-bit R04 key, use it

to encrypt his e—mail message to Gwen, and then use Gwen’s RSA public

key to encrypt the RC4 key. Encrypting the RC4 key (16 bytes) will take

only a few milliseconds on most platforms. Pao-Chi’s message to Gwen

consists of two parts: the encrypted session key and the encrypted bulk

data (see Figure 4-10). Gwen separates the two components, uses her RSA

private key to decrypt the session key, and then uses that decrypted RC4

key to decrypt the bulk data.
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Figure 4-10
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An RSA public key consists of two numbers: a modulus and a public

exponent. The private key is made up of the same modulus and a private

exponent (see Figure 4—11). The modulus, incidentally, is the product of

two very large prime numbers. (A prime number, or prime, cannot be

evenly divided; for example, 3, 5, 7, 13, and 17 are primes.) In the crypto-

graphic literature, these numbers are usually given the romantic names

it, e, and d, where n is the modulus, e is the public exponent, and d is the

private exponent. Equally poetic are the names for the two primes that

make up the modulus: p and (1.

When you generate an RSA key pair (or rather, when the program

you’re running generates an RSA key pair), you decide on a public expo-

nent 3, find two large primes p and q that work with the e you’ve chosen,

multiply p and q to get the modulus n, and finally compute your private
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exponent d based on e, p, and q. Then you throw away p and q (see Figure
4—12). Incidentally, finding large primes is easy using the Fermat test (in

the 16003, Pierre de Fermat discovered interesting things about numbers,

one of which led to a test of primality). Furthermore, researchers have

shown in the Prime Number Theorem that there are more primes of 512

bits or fewer than there are atoms in the known universe. This means

that we’ll never “run out” of primes, and the probability that two people

will pick the same prime are so small that we can safely assume it will

never happen.

Suppose that Satomi, our attacker, wants to determine Gwen’s private

key. If Satomi knows the key, she can open Pao-Chi’s digital envelope. She

must figure out n and 0!. Because the public key is, well, public, she knows
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Figure 4-12
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n because it’s part of the public key. So really, all she has to do is figure out

d. It turns out that d is simply the inverse ofe modulo (ism). Satomi knows

what e is, so all she has to do is find (Mn) and perform a modular inverse

function. That’s very easy to do using the Extended Euclidean Algorithm.

NOTE:

Here’s an interesting bit of history. Euclid published his algorithm in

about 400 BCE, but researchers have concluded that he didn’t invent it.

It’s believed that the algorithm had been around for about 200 years

before Euclid presented it. Who was the true inventor? No one knows, but

there is a lesson to be learned from this anonymous mathematician: If

you get a good idea, publish! 

By the way, (Mn) is known as Euler’s phi-function (d) is the Greek letter

phi, pronounced “fee”). Leonhard Euler (pronounced “Oiler”) was an 18th-

century mathematician who noticed some interesting things about num-

bers. For example, if n is the product of those two primes p and q, then

(Mn) is (p ~ 1)(q — 1). That’s “the quantity p minus 1 times the quantity q

minus 1" (see the FAQ on the accompanying CD for more details).
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So Satomi’s problem, which began as “find 0!” and was reduced to “find

¢(n),” has now been further reduced to “find p and q.” She knows n. and
knows that p X q = n, so all she has to do is factor n, which is the hard

problem at the foundation of the RSA algorithm.

In other words, in RSA, the one—way function is multiplication. That’s

right, multiplication. You’re probably thinking, “That’s not one-way. To
reverse multiplication, all yOu have to do is divide.” That’s true—if you

know what to divide by. But if someone multiplies two numbers and tells

you the result, can you determine the original two numbers? That’s known

as factoring, and it happens to be difficult.

Suppose n. is 35. What are p and q? That’s easy—they’re 5 and 7
because 5 X 7 = 35. The numbers 5 and 7 are the prime factors of 35.

When you break 35 into its prime factors, you’re factoring.

Now suppose n is 893. Factor that. (The answer is given in the next

paragraph.) If you factored 893, you probably discovered that it was a lit-
tle more time-consuming than factoring 35. The longer the number, the

more time it takes to factor it. Researchers have written computer pro-

grams to factor numbers. For those programs, factoring 893 would be triv-

ial. But just as with humans, it takes these programs longer to factor

bigger numbers. You can pick a number so big that the amount of time it

would take to factor, even for the fastest computers, would be prohibitive.

Remember Satomi’s problem? Ifshe finds p and q, she can compute (1301).

With (Mn) and e, she can determine d. When she has d, she can open Pao»

Chj’s digital envelope. Because p X q = n. and because she knows what :1. is

(remember, that’s part of the public key), all she has to do is factor n—and

that’s how factoring can break BSA. (The answer from the preceding para-

graph is 19 and 47 ._) Because the modulus (that’s 11.) is the number Satomi

needs to factor, we’ll say that the size of the modulus is the size of the RSA

key. Hence, an RSA key that uses a modulus of 1,024 bits is a 1,024-bit key.
No one has been able to factor big numbers in a reasonable amount of

time. How big is big? Currently, the most commonly used RSA key size is

1,024 hits. The record for factoring (as of December 2000) is 512 bits. In

that case, p and q were each 256 bits long. It took a team using 292 off-the-

shelf computers a little more than five months to do the job. With a brute

force attack, each time you add a bit to the key size, you double the time

it takes to break. But with the technique used by the current factoring

champions, each time you add a bit to the number, you don’t quite double

the time to factor. Each added bit makes the program run about 1.035 to

1.036 times longer. So if a 512-bit key is broken in five months, a 1,024—bit

key can be broken in about 3 to 30 million years (see Figure 4-13).
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Figure 4-13
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You may wonder why the modulus has to be the product of two primes.

Why can’t the modulus itself be a prime number? The reason is that for a

prime number p, dip) is (p - 1), Because your modulus is public, if the

modulus were p, a prime number, any attacker would be able to find (Mp);

it’s simple subtraction. Armed with (blp), an attacker can easily find d.

Incidentally, Satomi has a couple of brute force Opportunities. First, she

could try to find (:1 by trying every value it could possibly be. Fortunately,

d is a number as big as the modulus. For a 1,024-bit RSA private key, (.1! is

1,024 hits long (maybe a bit or two smaller). No, brute force on d is not an

option. A second possibility is to find p or q. Satomi could get a number I)

(call it b for brute force candidate) and then compute n. + b (1: divided by

b). If that doesn’t work (I) does not divide n evenly; there is a remainder),

she tries another b. She keeps trying until she finds a b that works (one

that divides n evenly). That b will be one of the factors of 11. And the

answer to n. + b is the other factor. Satomi would then have p and q. But

the factors of n are half the size of the modulus (see “Technical Note: Mul-

tiPrime BSA”). For a 1,024-bit RSA key, ,0 and q are 512 bits each. So

Satomi would be trying a brute force attack on a 512-bit number, and
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Technical Note: MultiPrime RSA

Faster performance is always a goal of programmers, so anything

that would speed up the RSA algorithm would be welcome. The first

speed improvement came in 1982 from Belgian researchers Jean-

Jacques Quisquater and C. Couvreur. They showed that it’s possible

to make private key operations (opening a digital envelope) faster if

you keep the p and q around, by using what is known as the Chinese

Remainder Theorem (CRT). This theorem dates to the fourth century

and originated in, as the name implies, China. It’s a result of

research into how to count columns and columns of soldiers more

quickly.

Remember that an RSA private key is made up of the two num-

bers n and d, where n is built by multiplying two primes, p and q.

When you have your d, you throw away ,0 and q. According to the

theorem, if you don’t throw away your p and q, and if, while gener-

ating your key pair, you make a few other calculations and save a

few more values, the private key operations you perform can run

almost three times faster. The fundamental reason is that p and q

are Smaller than n (_there’s more to it than that, but at its founda-

tion, that is the reason). Because p and q must be kept private, this

technique will not help public key operations. But, as you’ll see in

the section “Perfonnance,” RSA public key operations are already

rather fast. Recently, people have been looking into using three or

more primes to make up n. Here’s why.

When you multiply two numbers, if you add the sizes of those two

numbers you get the size of the result. For example, if you multiply

a 512—bit number by a 512-bit number, you get a 1,024-bit number

because 512 + 512 = 1,024 (it could end up being 1,023 hits, but let’s

not quibble). Actually, you could multiply a 612-bit number by a 412-

bit number to get a 1,024-bit result, but for security reasons, it’s bet—

ter to have the numbers the same size or very close. Virtually all

programs that generate RSA key pairs find two 512-bit primes and

multiply them to make n.

If you want a 1,024—bit number as a result of multiplying three

smaller numbers, how big should they be? One possibility is 341,

341, and 342 bits. If p and q are each 512 bits, and if private key

operations are faster because they are smaller than n (which is
continued
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1,024 hits), will operations improve even more ifp, q, and :- (let’s call

our third prime r) are smaller still?

The answer is yes. The more primes that make up the modulus,

the faster the private key operations run. It’s all because of the Chi-

nese Remainder Theorem.

The problem is that the more primes that make up the modulus,

the easier it is to factor. More precisely, if “too many” primes make

up the modulus, it’s easier. How many is too many? That depends on

the size of the modulus. The bigger the modulus, the safer it is to

use more primes. Using three primes to build a 1,024—bit modulus

will not help an attacker; it will take just as long to factor as does a

two-prime number. But should you use four primes to generate a

1,024-bit modulus? That may be too dangerous. If your modulus is

2,048 hits, four primes is safe, but five might not be.

Actually, that issue is still under contention. How many primes is

it safe to use at various sizes of moduli? Although there is disagree-

ment in some areas, it is widely believed that using three primes is

safe for a 1,024-bit modulus. Research continues on the topic.

So ifyou hear about MultiPrime BSA, you’ll know that it has to do

with making private key operations faster by using more than two

primes to build a modulus.

 
that’s out of the question. Actually, because ,0 and q are primes, they are

odd, so the least significant bit is set; and because they are 512 bits long,

the most significant bit is also set, so Satomi would know at least 2 of the

512 bits. So it’s not brute force on 512 bits but rather on 510—but that’s

not much better.

The DH Algorithm

The Diffie-Hellman algorithm is not used for encryption, so how can it

solve the key distribution problem? After all, don’t you have to encrypt the

session key to create a digital envelope?

With DH, you don’t generate a symmetric session key and distribute it

using public-key technology; instead, you use public-key technology to
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generate the symmetric session key. Each corresponding party possesses

a secret value and a public value. If you combine a private value with the

other public value, each individual will generate the same secret value

(see Figure 4-14).

Figure 4-14

With Diffie-

Hellman, you

combine your

private value
with the other

party’s public

value to create a PUbliC Willie I: EPublic value
secret. The other

party combines Private value E
his or her private

value with your
public value and
creates the same

secret a_ 6
DH machine DH machine

  
Private value

Here’s how Pao-Chi and Gwen would make it work. Gwen has a DH key

pair; the public key is (obviously) publicly available, and she keeps her

private key someplace where only she has access. Inside Gwen’s public

key is enough information for Pao-Chi to generate his own temporary DH

key pair. Now both of them have a DH key pair (see Figure 4-15). For each

of the key pairs, the public and private keys are related. But Pao~Chi’s and

Gwen’s key pairs themselves are also related. Pao-Chi uses his private

key and Gwen’s public key together to generate a number, called a secret
value.

To encrypt the bulk data1 Pao—Chi needs a session key. Instead of using

an RNG or PRNG to generate the key, he uses the secret value result from

the DH computations. For Gwen to read the message, though, she needs
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Figure 4-15 a”

Pao-Chi W Gwen’s public DH key
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related key pairs, DH machine

and each can / \
create the same

secret D!!! “a

Pao-Chi’s temporary

DH keypair

the session key. Since Pao-Chi used the DH secret value as his session key,

that means Gwen needs the secret value. She can generate the secret

value using her private key and Pao—Chi’s temporary public key, which he

sends along with the message (see Figure 4-16).

Figure 4-16 VfivfifimBONfiYm_LA£ Pao-Chi's temporary DH public key
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bulk data. '£UAOUI§1WUARBYC
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The Dime-Hellman algorithm does not encrypt data; instead, it gener-

ates a secret. Two parties can generate the same secret and then use it to

build a session key for use in a symmetric algorithm. This procedure is

called key agreement. Two parties are agreeing on a key to use. Another

name found in the literature is key exchange. That description is not as

accurate, but some people use it. It means that two parties perform an

exchange, the result of which is a shared key.

But if Pao-Chi and Gwen can generate the secret, why can’t Satomi?

Satomi knows Gwen’s public key and, if she’s eavesdropping, Pao-Chi’s

temporary public key. If she puts those two keys together, what does she

have? Nothing useful. The secret appears only when combining a public

and a private value (each from a different person). Satomi needs one of the

private keys—not both, just one.

A DH public key consists of a generator, a modulus, and public value.

The private key is the same modulus along with a private value. As with

RSA, cryptographers exercise their creativity to give these numbers more

melodious names: g, p, y, and x. The generator is g, the modulus is p, the

public value is y, and the private value is x (see Figure 4—17). Here, p is a

prime number; note that it’s not the product of two or more prime num-

bers but rather is itself a prime. You generate a key pair by finding the

prime ,0 first, then a generator ,5; that works well with your p, and then a

random or pseudo-random x. If you combine those numbers using modu-

lar exponentiation (see Figure 4-18), you get y.

yig‘modp

We have said that there is a way to break all public-key algorithms.

That includes DH. Satomi can break DH by deriving one of the private

keys from its public partner. Because Satomi needs only one of the pri-

vate keys, she’ll probably go after Gwen’s, which has been out there

longer (remember, Pao—Chi generates his temporary private key only

when he sends the message). Gwen’s public key consists ofy, g, and p. All

Satomi has to do is find at. In the preceding equation, Satomi knows all

the values except one. High school algebra describes this as “one equation

in one unknown.” That’s solvable, right?

Yes, it’s solvable. It’s known as the discrete log problem (finally, a more

interesting name), and computer programs will solve it. But the longer the

p, the more time the computer programs will take—in fact, the same time

as it would take to factor. As it happens, the factoring problem and the dis—

crete log problem are related. It’s commonly believed that if you solve one

you solve them both. So in use, p should be 1,024 bits long.



 

Figure 4-17
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Figure 4-18

Generating a DH

public and
private key pair

 

(1) Generate a prime Erma!

P

(2) Generate a generator
that works well with p .—’g

(3) Generate a private

exponent

(4') Compute the public =
value y y gxmod p

With RSA, you find two 512-bit primes and multiply them to get a

1,024—bit modulus. With DH, you find one 1,024-bit prime and use it as the
modulus.

NOTE:

“Discrete log” doesn’t refer to a fetled tree that’s good at keeping secrets

(that would be a “discreet log”). The word “discrete” means that we’re

working with the math of integers only—no fractions or decimal points—

and the word “log” is short for “logarithm.”

With RSA, you can’t use a single prime as the modulus; you must mule

tiply two primes. But with DH, you use a single prime as the modulus.

Why is it that single-prime RSA can be broken but single-prime DH can-

not? The answer is that the two algorithms do different things. RSA

encrypts data, whereas DH performs key agreement. With RSA, you use

a value called d that is dependent on (Mn). With DH, you don’t use d, and

you don’t mess around with (MR).

So Satomi will need a few million years to break Gwen’s private key by

going the discrete log route. What about brute force—would that work?

The private key is really just x, a random or pseudo-random number that

can be as long as Gwen wants it to be. If she wants it to be 160 bits, she can

make it 160 bits. Then Satomi won’t be able to mount a brute force attack

on it. Gwen could make at even longer, but the longer it is, the longer it will
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take her to perform her calculations. 80 for performance reasons, she

wants it as short as possible, and for security reasons, she wants it as long

as possible. Today, 160 bits is probably the most common size ofx.

The ECDH Algorithm

The first thing to know about Elliptic Curve Diffie-Hellman is what an

elliptic curve (EC) is, and that’s shown in Figure 4—19. This curve is not the

only form an EC can take. but it’s a common one. Actually, it’s not even a

cryptographic EC, but when cryptographers talk about EC, they generally

Show a picture similar to Figure 4-19.

Figure 4-19

An elliptic curve.
This also shows

EC addition
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Figure 4-20

Classes of elliptic

curves used by

cryptographers

Elliptic curves date to the 1800s. They are actually a form of the Weier-

strass equation (a “smooth” Weierstrass equation, to be a little more pre-

cise). Karl Weierstrass was a 19th-century mathematician who did

pioneering work on number theory. Elliptic curves played a role in the

proof of Fermat’s Last Theorem and are also involved in factoring.

Cryptographers use only a few of the many flavors of ECs. The curves

used by cryptographers fall into two main categories, generally called

“odd” and “even.” Another way to categorize the types of curves used in

crypto is Fp, F2 Polynomial, and F2 Optimal Normal (see Figure 4-20).

These latter categories can be broken down to even more classes ofcurves.

Elliptic
curves

 
F2 Optimal Normal

F2 Polymonial

A cryptographic EC is discrete {only integers; no fractions or decimal

points). All numbers fall within a certain range. The bigger the range, the

more secure the curve; the smaller the range, the faster the computations.

An elliptic curve has points; a point is an x,y-coordinate. For example,

in Figure 4-19, the point labeled P3 could also be described as (3,8). The x-

coordinate is 3, so you start at the origin and go to the right 3 units (the

unitwinches, millimeters, or something else—depends on the scale). Then
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you use the y-coordinate to go up 8 units. The point P2 could be (—6, 1):

left 6 units (the negative in —6 means left) and up 1 unit. As the figure
shows, you can add points on an EC. Notice that it’s not an intuitive sense

of “adding.” You find two points you want to add, draw a line through

them, and see where that line intersects the EC. That point is not the solu-

tion; the negative of that point is the solution. Why isn’t P3 the sum ofP1

and P2? Here’s why. If you added P1 and P2 and got P3, then what would

P3 — P2 be? It would be P1. But what would P3 + P2 be? It would also be

P1. You can’t have P3 + P2 = P3 — P2 (unless P2 were zero, and it’s not).
So there’s a different set of rules for addition.

The. graphical form of' elliptic curves (the curve itself; the points, the

addition rules, and more) can be described with mathematical equations.

You don’t deal with pictures; instead you deal only with numbers and

equations. And ifyou’re dealing with only numbers and equations, you can

write computer programs to do the work. If you have programs that

manipulate numbers, maybe you can get crypto. All you need now is a one-

Way function (with a trap door).

The one-way function is called scalar multiplication: You add a point to

itself some number of times. We have a point, generally called P0 (that’s a

capital P and a zero; the point is “P — zero”). Add it to itself: P0 + P0. Fig—

ure 4-19 shows the addition of two distinct points, but there is a way, via

another strange rule, to add a point to itself. The special thing about ellip-

tic curves is that if you add a point on the curve to another (or the same)

point on the curve, the result is also a point on the curve. If you have an

elliptic curve and a point or two on that curve, when you add a point fol—

lowing the special rules you will get another point on that curve—guar-

anteed. If you have a curve and one or two points on that curve, and the

result of adding is not on the curve, it is not an elliptic curve.

So the answer to P0 + P0 is another point; let’s call it P1. Now add P0

to that result; let’s call it P2. P1 + P0 = P2. What you’ve actually done is

to find P0 + P0 + P0. Another way of saying that is 3 X P0. You’re multi-

plying 3, a scalar (the mathematical term for a single number), by P0, a

point (a point cannot be described using a single number; you need two

numbers: the x-coordinate and the y-coordinate). You could compute any

such scalar multiplication. What’s 120 X P0? Why, that’s P0 added to itself

120 times. What’s 0! X P0? That’s PO added to itself d times. The result of

any scalar multiplication is another point on the curve.

There are shortcuts. If you want to find 120 X P0, you don’t actually

have to do 120 additions; instead, you can use a multiplication program.

We just wanted to show you how scalar multiplication is defined.
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We said that scalar multiplication is a one—way function. Here’s how it

works. Suppose you find an elliptic curve (that’s not hard to do) and a point

on that curve. Cryptographers have again demonstrated their lyrical side by

calling the curve E and the point P. You now generate a random or pseudo-

random scalar called 0!. Now you multiply, finding d X P. The answer is

some point on the curve; let’s call it Q. Now you show the world your curve

and those two points; E, P, and Q are publicly available, so the challenge is

to find (1’. That is, if (11’ = Q inside E, and ifyou know E, R and Q, your task

is to find d. As with Diffie-Hellman, you have one equation in one unknown.

This is known as the elliptic curve discrete log problem, and, as long as

the curve is big enough, no one has found a way to solve it in a reasonable

amount of time. Recall that in cryptography, elliptic curves are defined

over a specific range. The technical term for this range is field. In the

three kinds of curves we’ve mentioned—Fp, F2 polynomial, and F2 opti-

mal normal—the F stands for “field.” The p in Fp stands for “prime num-

ber.” That’s a lowercase p, not to be confused with the uppercase P used as

the point in the description of the EC discrete log problem (cryptogra-

phers sure know how to choose names, don’t they?). The 2 in F2 is indeed

2. Actually, it would be more accurate to say F2“.

If you want to work with an Fp curve, you find 'a big prime p, and all

your calculations will use integers from 0 to p — 1. If you want to work in

F2“, choose a size m and all your calculations will use integers from 0 to

2m — 1. For more security, you should use a bigger range. But the bigger

the range, the slower your computations will be. The most common size is

160 bits to 170 bits.

Here’s how Pao—Chi and Gwen would use elliptic curve cryptography

(ECO). Gwen generates an EC called E. She finds a point, P, on that curve.

Then she generates a random or pseudo-random scalar d and finds Q = d

X P. Her public key is E, P, and Q (see Figure 4-21). Her private key is the

same curve E coupled with the random or pseudo-random d, which is most

likely the same size as the range of the curve.

To send Gwen a message, Pan-Chi gets her public key. It contains

enough information for Pao-Chi to generate his own temporary ECDH key

pair. Now both correspondents have an ECDH key pair. For each of the key

pairs, the public and private keys are related. But Pao-Chi’s and Gwen’s

key pairs themselves are related as well. Pao-Chi uses his private key and

Gwen’s public key together to generate a secret point on the curve. He uses

that secret value somehow as a session key. Because a point is a pair of

numbers at and y, the two correspondents will have to decide in advance

which hits from those numbers to use as the key. The most common ECDH

applications use at), so they just throw away the y (see Figure 4-22).
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Figure 4-21 “5'3“ 1‘3?
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Figure 4-22

Pao-Chi combines

his temporary

private key with
Gwen’s public

key to get a

secret point  
Pao-Chi’s temporary

ECDH kcypair

Gwen’s public key

'E’:\ Secret =
72 1B 55 3E 

To read the message, Gwen needs the session key. She gets it by com-

bining her private key with Pao-Chi’s temporary public key (he sends his

temporary public key along with the encrypted message).

This sounds just like Diffie-Hellman. In that scheme, two people com-

bine public and private keys in a special way to generate a shared secret.

In this scheme, the same thing is happening. The difference is the under-

lying math, and that explains the name Elliptic Curve Diffie-l-Iellman.

To read Pao-Chi’s intercepted message, Satomi needs one of the private

keys, knowing both of the public keys will not do the trick. To break

Gwen's private key (probably Satomi’s first choice), Satomi must figure

out d. That would require her to solve the EC discrete log problem, some-

thing that would take a few million years, so Satomi might try a brute

force attack. The problem is that d is the same size as the underlying field.

Gwen probably chose a 160-bit or 170-bit EC, meaning that d is also 160

bits to 170 bits, so brute force won’t work either.

Remember that RSA and DH were based on related problems, and

that’s why the key sizes are the same. But with ECC, you use a different
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key size because the underlying problems are different. And solving the

EC discrete log problem is harder than solving the factoring or discrete

log problem.

By the way, it’s possible to use ECU to do encryption. However, in the

real world, it’s not used very much for security and performance reasons.

Recall that as you increase the key size, you slow down the computations.

And for ECES (elliptic curve encryption scheme) or ECRSA to achieve the

level of security of regular RSA, you must use bigger keys. The keys need

to be so big that you take too big a hit in performance.

Comparing the Algorithms

Security

The three algorithms we’ve discussed can be used to solve the key distribu-

tion problem. Which one is the best? There’s probably no answer to that

question because each has its advantages and disadvantages. A more apprd

priate question might be, “Which algorithm works best in which situation?”

When you’re evaluating each approach, it’s a good idea to look at five areas:

security, key size, performance, transmission size, and interoperability.

Is one of the algorithms more secure than the others? There’s no truly

objectiVe answer. It depends on what you think is important.

ECC is based on the EC discrete log problem, which is “harder”; does

this mean it’s more secure than RSA, which is based on factoring, or DH,

which is based on the discrete log problem? Not necessarily.

Thousands of mathematicians have been studying the factoring prob-

lem for many years (most intently since 1978). Some of them think that if

a solutiou could have been found, it would have been found by now. On the

other hand, it took about 300 years to come up with a proof of Fermat’s

Last Theorem, so maybe the ultimate factoring solution simply has not

yet been found. Considering the enormous bank of research available to

build on, finding a solution may become easier over time.

ECC is newer and less well understood. Far fewer researchers have

been attacking it, and for a shorter time. Some people think that more

time and effort are needed to develop a better sense of security. Further—

more, despite the “lag” in research, some classes of curves have been found
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to be susceptible to cryptanalysis. Of the many flavors ofelliptic curves,

not all of them are used in crypto. For same flavors, it was known early

that they contained more weaknesses than others and that there were

ways to break them faster than security requirements allowed. Such

curves have never been proposed for use in crypto. Other flavors that were

proposed for such use were later shown to possess weaknesses. All the

weaknesses found so far lie in the F2 area. At this point, it’s believed that

no application has ever been deployed in the real world with a weak EC.

But because some curves have fallen, some cryptographers are not confi-

dent in F2 ECG, and others do not trust any curve at all——Fp or F2.

Some people prefer RSA because DH and ECDH are susceptible to the

man-in-the-middle attack. In our sales rep example, the potential

attacker is a woman in the middle, Satomi. She could intercept all mes-

sages between Pao—Chi and Gwen, establishing D11 or ECDH keys with

each of them. Pao-Chi would think he’s computing a shared secret key

with Gwen but would really be computing one with Satomi. Similarly,

Gwen would compute a shared secret key with Satomi, thinking she was

talking with Pao—Chi. Then if Pao—Chi sent a message to Gwen, only

Satomi would be able to decrypt it. She would decrypt it, store the mes-

sage, reencrypt it with the key she established with Gwen, and send it on

(see Figure 4-23). The man-in-the-middle attack is easily thwarted by

using authentication along with the key exchange (Chapter 5 discusses

authentication), and most protocols include authentication anyway. So for

some people, this attack is no real disadvantage.

Another issue is each correspondent’s ability to contribute to the key.

With RSA, only the initiator of the contact has any say in what the session

key will be. With DH or ECDH, both parties contribute to generating the

session key. Each correspondent performs some operations and sends the

result to the other; the final secret depends on each individual’s contribu-

tion. For some people, this arrangement sounds better than trusting

someone else entirely to generate a good key. For others, it’s not a great

feature. After all, they argue, another party who would do a bad job ofgen-

erating a session key probably wouldn’t do any better with the key

exchange.

So, the choice of algorithm is a matter ofyour own feeling ofsecurity. At

this time, no honest cryptographer can make a definitive statement about

which algorithm is more secure.
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Figure 4-23
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The bigger the key, the greater the level of security and the slower any

public-key algorithm will run. You want the algorithm to run as fast as

possible but maintain a particular level of security. The question is, how

low can you go before you jeopardize security? The conventional wisdom is

that a 1,024-bit RSA or DH key is equivalent in security to a 160-bit ECC

key. There is a little contention on that issue, but research continues. In

this book, when making comparisons, we look at 1,024—bit RSA or DH, and

160—bit ECC. With RSA, the modulus is made up of three primes; with DH,

the private value is 160 bits.

In April 2000, RSA Labs published a paper that analyzed how long it

would take to break the RSA algorithm at various key sizes if an attacker

had $10 million to throw at the problem. Table 4-1 summarizes the

research; the symmetric key and ECG key columns are there for compar~

ison. With ECC, you could probably get the same results with smaller key
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Table 4-1

Time to Break

Keys ofVarious

Sizes with $10

Million to Spend

Performance

Symmetric ECG BSA

Key Key Key Time Number Amount

(Size (Size (Size to of of

in Bits) in Bits) in Bits) Break 'Maehines Memory

56 112 430 Less than 105 Trivial
5 minutes

80 160 760 600 months 4,300 4GB

96 192 1,020 3 million years 114 170GB

128 256 1,620 1015 years 0.16 120TB 

sizes. However, the assumption in the report is that the public key algo-

rithm should use a key size at least twice as long as the symmetric key

(regardless of performance) for security reasons.

The table says that with $10 million, an attacker could buy 105 spe-

cially made computers to crack a 56-bit symmetric key, a 112-bit ECG key,

or a 430—bit RSA key in a few minutes. Actually, that $10 million would

probably buy more than 105 machines, but 105 is all it would take. With

the same amount of money, at the next key level the attacker could buy

4,300 machines specially built to solve the problem; at the next key level,

114, and at the next level, 0.16.

Why does the money buy fewer machines as the key size increases? The

reason is that the amount of required memory increases. The base com—

puter is the same, but to break bigger keys, the attacker needs more mem-

ory (120 terabytes, or about 120 trillion bytes, in the case of a 1,620-bit

RSA key), and buying memory would eat up the budget. In fact, the

attacker will probably need more than $10 million to break a 1,620—bit

RSA key because that amount of money would only buy 0.16, or about 1/6,
of a machine.

Ifno algorithm wins on security, you might think that you should choose

the fastest one. But there is no simple answer there. Comparing the per—
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Table 4-2

Estimated

Relative

Performance of

the Public-Key

Algorithms

formance of the public key operations (initiating the contact, or creating

the digital envelope) shows that RSA is significantly faster than ECG,

which in turn is faster than DH. For the private key operations (receiving

the contact or opening the digital envelope), ECC is somewhat faster than

DH, and both are faster than RSA.

For many machines, though, the difi‘erence in performance is negligible.

The two times might be 0.5 milliseconds and 9 milliseconds- Even though

one algorithm may be 18 times faster, there’s no discernible difference

between times that are that fast. But if the processor performing the

action is a slow device, such as a smart card, a Palm device, or other hand-

held device, the difference might be 0.5 seconds versus 9 seconds. 01‘

maybe one of the correspondents is a server that must make many con-

nections, maybe several per second. Then the comparison might be 111

per second versus 2,000 per second,

Another factor with ECG is whether you use acceleration tables to

speed the private key operations. Hyeu do, yen must store extra values in

addition to your key. Those extra values amount to about 20,000 bytes. If

the device is a server, that’s no problem—but will a smart card or hand-

held device have that kind of storage space?

So the most suitable algorithm depends on which is more important—

public—key or private—key operations—in your application. Table 4—2 lists

estimates from RSA Security Engineering on the relative performance of

the two algorithms. The baseline is an RSA public-key operation, which is

1 unit. As shown in the table, if a particular computer can create an RSA

digital envelope in 1 millisecond, it would take that same computer

13 milliseconds to open it. Or it would take that same computer 18 mil—

liseconds to initiate an ECDH exchange and 2 milliseconds to receive one

using acceleration tables.

 

ECG with

RSA DH ECC Acceleration

Public key (initiate contact) 1 32 18

Private key (receive message) 13 16 6 2

Combined 14 48 24 20 
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Transmission Size

What if the amount of money it costs or the time it takes to transmit bits

across the wire (or in the air) is significant? It turns out that the algo-

rithms differ in the size of the transmission. With RSA and DH, trans-

mission size is the same as the key size. With ECC, you send twice the key

size. So using a 1,024-bit RSA or DH key pair means that each time you

send a digital envelope, you’re adding 1,024 hits to the message. With a

160-bit ECC key, you’re adding 320 bits.

Interoperability

Protecting

With symmetric-key crypto, if you want to make sure that someone else

can decrypt your ciphertext, you should use DES, Triple DES, or AES. Any

correspondents who have crypto will have those algorithms. You may

want to use RC4 or R05 because they’re faster, but to ensure interoper-

ability, yOu might choose the algorithm you know everyone has.

Can the same be said in the public-key world? For the most part, yes.

RSA is almost ubiquitous and has become the de facto standard. If you

send an RSA digital envelope, the recipient will almost certainly be able

to read it, whether or not your correspondent uses the same application

you do. With DH, there’s a good chance that the other party will have the

necessary code, but it’s not as wideSpread. ECC is even less prevalent

than DH. Most applications using ECC today are closed, meaning that

they talk only to themselves. The vast majority of those are in the United

States. You will find very little ECC used in Europe.

Another problem with ECG and interoperability is that the flavors of

curves (Fp and F2) are not interoperable. If you have code that does Fp

and your correspondent has code that does F2, you can’t talk to each other.

In the future, the interoperability issue may go away for ECG if more

people adopt it and the world settles on a single class. But until that time,

your best bet is to use RSA.

Private Keys

Throughout this chapter, we emphasize the importance of keeping a pri~

vate key private. How do you do that? The quick answer is that most of the
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techniques mentioned in Chapter 3 for protecting session keys apply to

private keys.

For example, suppose you want a key pair. You’ll most likely run a pro-

gram that generates it for you. You make the public key available to the

world, and you store the private key on your computer. Of course, simply

storing data on your computer is not safe, so you’ll probably store it

encrypted, using password-based encryption. When you run the program

that uses the private key (for example, when you receive some encrypted

e-mail), it loads the data. You enter your password, the program uses it to

decrypt the. key, and now you can open the envelope.

You can also store the private key on a smart card or other token. The

card will generate the key pair and return the public key for you to dis-

tribute, but it probably won’t allow the private key to leave the device. To

open an envelope, you give the token the encrypted session key (if you’re

using RSA) or the sender’s temporary public key (if you’re using DH or

ECDH). The token performs the private key operation and returns the

session key to you. For servers, crypto accelerators might be used. They

behave the same way as tokens except that they’re much faster.

Using the Digital Envelope for Key Recovery

If you lose your car key, you can often call a dealer in the area who can

make a new one. If you lose your house key, you can call a locksmith who

can create a new one. Ifyou lose a cryptographic key, there’s no one to call.

It’s gone. That’s why many companies implement a key recovery plan.

When Pan-Chi generates a symmetric key to encrypt his files or gener-

ates a public!private key pair to he used for key distribution, he stores the

symmetric and private keys in such a way that only he can recover them.

If he has a key recovery plan, though, he also creates copies of the keys

and stores them in such a way that someone else can recover them. In
addition, it is possible to store them so that it takes more than one person

to recover the keys. In that way, no one single individual can surrepti-

tiously recover the keys and examine Pao—Chi’s secret information.

The most common form ofkey recovery is the RSA digital envelope. Pao-

Chi has a software program that encrypts his files. It generates a sym-

metric session key and uses that key to encrypt each file. He then stores

that key securely, possibly using PBE or a token. At the time the session

key is generated, he also encrypts it using the key recovery RSA public key
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Figure 4-24

Pao—Chi encrypts

his session key

with the key

recovery public

key, storing that

digital envelope
for emergencies

(see Figure 4-24). This arrangement is essentially a digital envelope. If
Pao-Chi loses his key, the owner of the key recovery private key can open

the digital envelope and retrieve Pao-Chi’s encrypting session key.

There are three basic entities that can act as a key recovery agent:

I A trusted third party

I A group of trustees, each holding a portion of the key

I A group of trustees using a threshold scheme

Session key

Key recovary public key
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Con-e

Encrypt machine Digital Envelope
 

Key Recovery via a Trusted Third Party

Earlier in this chapter in the section titled “Using a Trusted Third Party,”

you met Michelle, a TTP who creates session keys for Gwen and Pan-Chi.

Now Michelle is going to be their key recovery agent. Michelle generates

her RSA key pair and distributes the public key to each individual who

will participate in the key recovery program. Pao—Chi’s software, for exam-

ple, can have that public key built-in. When he generates his keys (the ses-

sion key or public/private key pair), he encrypts them with this public key.

He could send this digital envelope to Michelle, but he probably prefers to

keep it himself. In that way, Michelle cannot open the envelope without

his knowledge. Michelle is a trusted third party, but Pao—Chi’s trust in her

has sonie limit. Hence, he will probably store the digital envelope on a

floppy disk and keep the disk in his locked desk drawer. Then if Pan-Chi

forgets a password, loses his smart card, has a hard drive failure, and so

on, and needs to recover a key, he takes the digital envelope to Michelle.

She opens it using her RSA private key and gives Pao-Chi the output,

namely his key. After he uses the key, Pao-Clii again protects the key.

 
J

I
!
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The Difference Between Key

Recovery and Key Escrow

Many elements of cryptography go by different names. There’s “sym-

metric-key” crypto, which is also known as "secret—key” crypto.

“Asymmetric-key” crypto also goes by the name of “public-key”

crypto, and the terms “message digest” and “hash” (see Chapter 5)

are often interchangeable. Now we come to an area of crypto-key

recovery and key escrow—in which two terms appear to describe the

same thing but are actually significantly different.

Key recovery and key escrow are not the same thing. Key recovery

is a method that’s implemented to restore keys that get lost. Key

escrow is the practice ofgiving keys to a third party so that the third

party can read sensitive material on demand. “Key escrow” is almost

always used to describe a way for governments to obtain keys in

order to collect evidence for investigations.

Consider the analogy of your house key. With key recovery, if you

lose your key, You hire a locksmith to create a new one. With key

escrow, the day you buy the house, you surrender a copy of the key

to the police so that they can enter your house when they want to,

possibly without your knowledge.

This book is not concerned with the political or practical implica-

tions ofkey escrow. It is our intention only to point out the difference

between the two terms. The actual techniques used to implement

key recovery and proposed key escrow plans are often the same. So

for the rest of this chapter, we describe key recovery schemes.

 
The advantage of this system is that recovering the key is easy. The dis-

advantage is that Michelle has access to all the keys. It is possible for her

to recover keys without anyone’s knowledge. Another disadvantage is that

Pao-Chi must depend on Michelle. What does he do when she is away on

vacation? What does the company do if she leaves for another job? In that

case, the company will have to get a new TTP, generate a new key recov-

ery key pair, distribute the new public key, and have everyone create new

digital envelopes with all their keys.
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Key Recovery via a Group of Trustees

Some companies and individuals do not like the idea ofone person having

access to all keys. In such situations, a better scheme is to break the key

into parts and distribute them among several individuals. Suppose those

individuals are the company’s TTPsfiMichelle and Alexander—and

Gwen, the VP of sales. Now Pao-Chi’s software comes preloaded with

three public keys. Each of his keys is broken into three parts, and three

digital envelopes are created. For example, Pan—Chi has a 128-bit sym-

metric key that he uses to encrypt the files on his hard drive; this key is

separated into three blocks of five bytes, five bytes, and six bytes.

Michelle’s public key protects five of the bytes, Alexander’s protects

another five, and Gwen’s protects the last six. Now if Pao-Chi needs to

recover his key, all three trustees must gather to reconstruct the data.

The advantage here is that no one individual can recover keys secretly.

For keys to be recovered surreptitiously, all three trustees would have to

agree to subvert the system, a scenario less likely to occur than if only one

individual possessed the ability to recover keys.

The scheme as described here has a problem. Because each trustee has

a portion of the key, it would be possible for an individual to recover the

known portion and then perform a brute force attack on the rest. Gwen

has the largest portion—six bytes (48 bits)flso her task would be equiva-

lent to breaking an 80-bit key. Such an attack is not likely, but it would be
better if that avenue were closed.

One way around this problem is to create a 384-bit value and Split that

into three 128-bit components. Each trustee knows 128 bits but is missing

256 bits of the total value. The 384-bit value is actually used to derive the

key. That is, Pan-Chi generates a 384—bit value and uses it as a seed for a

PRNG. The PRNG produces the session key. Each trustee gets a portion of

the 384—bit value. To recover the key, you must put all three of the

trustees’ components together and re-create the PRNG (see Figure 4—25).

This splitting of the secret into multiple digital envelopes has the

advantage of preventing one individual from wielding too much power.

But it has the disadvantage of being more difficult to implement and also

carries all the disadvantages of the TTP approach: If one trustee is on

vacation, the key is still lost. Furthermore, if one trustee leaves the com-

pany, the key recovery process must start over from scratch, new pub-

lic/private key pairs have to be generated and public keys distributed, and

all employees must create new digital envelopes.
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Figure 4-25
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Key Recovery via Threshold Schemes

Probably the most common key recovery method involves threshold

schemes, also called secret sharing or secret splitting. A secret, such as a

key, is split into several shares, some number of which must be combined

to recover the secret. For example, a secret can be split into 6 shares, any

3 of which can be combined to reproduce the value. Or the secret can be

split among 10 shares, any 4 of which can recover the item, or 12 shares

with a threshold of 11, or 5 shares with a threshold of 5, or 100 shares with

a threshold of 2. Almost any reasonable share and recovery count is possi-

ble (as long as the threshold is less than or equal to the share count). For

key recovery, the secret is an RSA private key.

If Pao-Chi’s company implements a threshold scheme, it might work

like this. The company decides how many shares there will be, how many

are needed to implement key recovery, and who the trustees will be. Sup-

pose the policy is for six trustees and three shares needed. The trustees

are a system or network administrator, the HR director, and representa-

tives from several departments. Say the sys admin is Warren, the HR
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Figure 4—26

An RSA key pair
is generated, and

each trustee gets
one share of the

private key, which
is then destroyed

 

director is Maria, Gwen represents sales and marketing, the shipping

department sends Daniel, Julia comes from engineering, and Michelle is

the key recovery administrator.

To start the process, all the trustees gather to generate and collect

shares. First, an RSA key pair is generated. I'li'hen the threshold program

splits the private key into six shares, with each trustee getting one share

(see Figure 4-26). The program generating the shares takes as input the

private key, the number of shares (six), and the threshold count (three)

and produces as output six shares. It’s up to the trustees to protect their

shares, although the company probably has a policy that defines the pro-

cedure. They can simply use PBE on the shares and store them on floppy

disks, or they can store them on smart cards or other tokens. After the

shares are generated and distributed, the public key is distributed and

the private key is destroyed.

Key Recovery via Threshold Schemes

Public key Private kc

use 1.5.

   
'7 S 30

213 11

CF 3F

Michelle’s Warren’s Maria‘s Daniel’s Julia‘s Swan’s

share share share share share share

New employees can copy their keys (symmetric encryption keys, key

exchange or digital enveloping keys) and encrypt them using the key

recovery public key.

Suppose Pao-Chi encrypts sensitive files on his hard drive and keeps

the key on a token. Furthermore, suppose he participates in the key recov-

ery and has created a digital envelope of his session key using the key

recovery public key. He keeps that digital envelope on a floppy in his desk

drawer. Now suppose he loses his token. How can he recover his data?
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Figure 4-27
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To recover the data, Pas-Chi takes the floppy containing the digital

envelope to Michelle, the key recovery administrator. IfMichelle is out that

day, he could take it to Warren, the system administrator, or Gwen, the VP

of sales, or any of the other trustees. The trustee he visits must then find

two other trustees. The combination of trustees might be Warren, Daniel

and Julia, or Maria, Daniel, and Julia. Maybe it would be Warren,

Maria, and Gwen, or if Michelle were there that day it could be Michelle,

Gwen and Daniel. It doesn’t matter; the scheme needs three trustees.

The three trustees give their shares to the program running the

threshold algorithm, and the program combines them to produce the

secret, which in this case is an RSA private key. Now that the private

key is reconstructed, Pao-Chi’s digital envelope can be opened. The

result is the session key he needs to decrypt the data on his hard drive

(see Figure 4-27).

    
Warren’s Maria‘s Daniel’s

share share share share
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The threshold scheme has many advantages over the key recovery pro-

grams described earlier, and it eliminates some of the disadvantages.

First, no one person can recover keys; it takes a group acting together.

Anyone attempting to be dishonest must find some co-conspirators. Sec-

ond, if one of the trustees is unavailable, it’s still possible to perform the

operation. Third, if one of the trustees leaves the company, the secret is

still safe, and there’s no need to restart the key recovery process from the

beginning.

A disadvantage is that if one trustee leaves the company, his or her

share is still valid. By itself, this share can’t do anything, but if a thresh-

old number of people leave the company, this group of unauthorized peo-

ple would have the power to recover the company’s secrets. For example,

suppose that Warren, Maria, and Julia leave the company, either all at

once or over a period of time. They might form their own company, start

working for another firm, or work for different companies. If the three of

them decide to steal their former employer’s secrets, they could re—create

the key recovery private key.

Of course, that private key won’t do them any good without the digital

envelopes protecting the session keys of all the employees. So if they want

to steal secrets, they still have to find the floppy disks or tokens storing

the encrypted session keys. But a company that wants to eliminate such

an attack would generate a new key pair and restart the key recovery pro-

gram from scratch. Fortunately, with a threshold scheme, this step is not

necessary every time a trustee leaves but only when several of them leave.

How 2! Threshold Scheme Works

One of the first threshold algorithms was developed in 1979 by Adi

Shamir (the S in RSA). It’s probably the easiest to understand.

Consider the case of a key recovery scheme that uses three shares with

a threshold of twowthat is, three shares are created, any two ofwhich can

recover the secret. You can think of the secret as a point on an (x, y) graph.

Any point on the graph can be represented by two numbers: the x-coordi-

nate and the y-coordinate. In Figure 4-28, the secret is the point (0, S). For

the Shamir algorithm, the secret is always a point on the y-axis. So let’s

consider the secret a number, call it S, and then use the point (0, S).

Now you generate a random or pseudo-random line that runs through

that point. Next, you find three random or pseudo-random points on that

line. In Figure 4-28, these points—the shares—are labeled 81, S2, and SS.
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Figure 4-28

The Shamir

threshold scheme 

 
To recover the secret, you take two of the points and find the line that

runs through them. You might recall from high school algebra that any

two points uniquely define a line. With the line just created, you next

determine Where it crosses the y-axis. That’s the Secret. It doesn’t matter

which points are used: 81 and 82, or 81 and S3, or S2 and S3. Each pair

of points generates the same line. If your scheme uses more than three

shares, you simply find additioual random or pseudo-random points on

the line. To create a line, however, you need at least two points. One point

is not enough because an infinite number of lines can run through any

single point. Which one is the correct line? It’s impossible to tell, and that’s

why one share alone won’t recover the secret.

If you use a threshold of three, instead of a line, the algorithm gener—

ates a parabola (a curve of degree 2) that intersects the y-axis at the

secret. Any three points on a parabola uniquely define it, so any three

shares (points on the parabola) can re-create the curve. With the curve, if

you find the point where it intersects the y-axis, yOu find the secret. For

any threshold count, then, you simply generate a random curve of the

appropriate degree (the degree of the curve will be 1 less than the thresh-

old count) that intersects the y-axis at the secret. Each share will be a ran-

dom point on that curve. Of course, a program executing the Shamir

algorithm will not do this graphically; instead, it will do all the work using

math equations.
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Summary

To solve the key distribution problem, you can use public-key cryptogra-

phy. With the RSA algorithm, the data encrypted by the public key can be

decrypted only by the private key. To securely transmit the session key,

you can use a digital envelope. With Diffie-Hellman or Elliptic Curve

Dime-Hellman, you can use public-key technology to generate a shared

secret. Only the correspondents can create this secret value, which can

then be used as a session key.

Each of the three algorithms has its advantages and disadvantages, so

it’s not really possible to say that one or the other is better. But any one

algorithm may be better suited for a specific application.

It’s possible to lose cryptographic keys by forgetting 3 FEB password,

losing the token where they’re stored, and so on. In addition, a company

may want to be able to recover material encrypted by an employee who,

for example, has left the firm. For these reasons, many organizations

implement a key recovery plan. Generally, key recovery involves the use

of an RSA digital envelope, encrypting keys with a recovery agent’s pub-

lic key. The key recovery agent might be an individual or a group of

trustees. Threshold schemes offer an attractive means of implementing

key recovery with checks and balances. With a threshold algorithm (also

known as secret sharing or secret splitting), a secret such as an RSA pri—

vate key is split into a number of shares. To recover the secret, a minimum

number of shares must be collected. This method prevents one individual

from obtaining keys surreptitiously, while making it possible to recon—

struct the keys even if one or more trustees is absent.  
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Real—World Example

The S/MIME (Secure/Multipurpose Internet Mail Extensions) standard

specifies a way to encrypt e—mail. MIME is a widely adopted e-mail stan-

dard, and S/MIME is an extension that adds encryption.

SIMIME solves the key distribution problem by using RSA digital

envelopes. If your e-mail package is S/MIME-enabled, you can create a

digital envelope. All you need to do is get your correspondent’s public key

and flip the switch to encrypt the message.

If you send e-mail through Netscape Communicator, for example, you

can use SIMIME. Here’s how. First, launch the Netscape browser. Click

the Security button and then click Messenger (along the left-hand col-

umn). You’ll get a window that looks like the one in Figure 4-29. Click the

option Encrypt Mail Messages, When It Is Possible. (The signing options

are the topic of Chapter 5.) To encrypt a message, you need to select your

correspondent’s public key, which you’ll find inside a certificate. If you

don’t already have the certificate, you can search for it in a directory (see

Figure 4-30). To get to this menu, click Security Info. Under Certificates

(along the left-hand column in the resulting window), click People. Then

click Search Directory. After you select the public key, any e-mail you send

to that individual will be encrypted using a digital envelope.

If you use Microsoft Outlook 98, click Tools, then Options, and then the

Security tab. You’ll see a window that looks like the one in Figure 4-31. As

with the Communicator program, there is an option to encrypt outgoing

messages. Again, you’ll need the other party’s public key to do that.

Chapter 6 talks about certificates and their directories. For now, you

can see that applications today are using public key cryptography to solve

the key distribution problem.
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Public-hey cryptography helps to solve the key distribution problem. It also

addresses two other cryptography issues: authentication and nonrepudia-

tion. Authentication allows someone in the electronic world to confirm data

and identities, and nonrepudiation prevents people from going back on

their electronic word. One way to implement these features is to use a dig-

ital signature.

When you use the RSA algorithm, it means that anything encrypted

with the public key can be decrypted only with the private key. What

would happen if you encrypted plaintext with a private key? Is that pos-

sible? And ifso, which key would you use to decrypt? It turns out that RSA

works from private to public as well as public to private. So you can

encrypt data using the private key, and in that case, only the public key

can be used to decrypt the data (see Figure 5-1).

You may ask, “What good is that?” After all, if you encrypt data with

your private key, anyone can read it because your public key, which is pub—

licly available, can be used to decrypt it. It’s true that using BSA in this

direction does not let you keep secrets, but it is a way to vouch for the con-

tents of a message. If a public key properly decrypts data, then it must

have been encrypted with the private key. In the crypto community, this

technique is conventionally called a digital signature. If we didn't “all"

agree to call it a digital signature, it wouldn’t be, it would be just an inter-

esting exercise in math and computer science. But the crypto community
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Private key
Figure 5-1
 

If you encrypt

plaintext with an
RSA private key,

you can use the

public key to Plaintext
decrypt it  

Ciphertext 

called it such, the rest of the computer community (hardware and soft-

ware vendors) have agreed to this nomenclature, and governments are

starting to come on board. At the state and national level, laws are being

passed that declare a digital signature as a legally binding way tesign

documents. This means that anything you encrypt with your private key

is a digital signature. So you shouldn’t go around encrypting things with

your private key unless you’re willing to vouch for them.

The Uniqueness of a Digital Signature

Suppose Fae-Chi sells four printing presses to Satemi and must now corn-

municate the sale to the home office. He sends a message to Daniel in the

shipping office:

Daniel, I sold 4 presses to Satomi. Ship immediately.
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Figure 5-2

If Pao-Chi’s

public key

produces

gibberish, it
means the

ciphertext was

not encrypted
with his

private key

 

Pao-Chi can send this e-mail using a digital envelope (see Chapter 4),

and only Daniel can read it. But how can Daniel know that this message

really came from Pao-Chi and not someone posing as him? For all Daniel

knows, Satomi sent that message, maybe she’s trying to get four printing

presses shipped to her for free. In the paper world, you can look at the sig-

nature on a document. Generally, everyone has a unique way of writing

his or her name, a way that is supposed to be hard to forge. If Pan-Chi and

Daniel have corresponded by paper in the past, Daniel can probably spot

the difference between Pao-Chi’s signature and a fake, but with e-mail,

there’s no such signature.

Pan-Chi could encrypt the plain text (his e-mail) using his BSA private

key, producing ciphertext. Daniel could then use Pao-Chi’s public key on

the ciphertext. If the result of that decryption were gibberish, Daniel

would know it was not encrypted using Pao-Chi’s private key and would

figure Pan-Chi did not send it (see Figure 5-2). Sure, it’s possible that the

message came from Pas—Chi and that he actually encrypted it using some

key other than his private key. But why would he do that? What would he

accomplish? No—he’s trying to prove to Daniel that he did indeed send

the e—mail and that the contents have not been altered along the way.

Daniel can safely conclude that Pan-Chi did not send that message.

Pao—Chi’s

Which key? public key

  
 

  

If, on the other hand, using Pao-Chi’s public key produces a reasonable

message, it must be that his private key was used to encrypt the plaintext.

Is it possible that someone other than Pao-Chi produced a chunk of data

that looks like ciphertext and, when “decrypted” with Pao—Chi’s public key,

produces a reasonable message (see Figure 5-3)? As far as we know, no one

has yet been able to do that. So we say there is only one way to produce
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Figure 5-3
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the ciphertext: Start with the plaintext, and encrypt it with the private

key. Because the message was encrypted using Pao-Chi’s private key and

because we’re assuming that Pao-Chi is the only person with access to his

private key, it must have come from him. Because it must have come from

him, we can call the ciphertext a digital signature. A signature is a way of

vouching for the contents of a message—of saying, “Yes, I’m the one who

wrote it.” In addition, a digital signature lets you check that the data has

not been altered.

Digital signatures depend on two fundamental assumptions: first, that

the private key is safe and only the owner of the key has access to it, and

second, that the only way to produce a digital signature is to use the pri-

vate key. The first assumption has no technical answer except that keys

must be protected (for details, see Chapter 3). But the second assumption

can be examined from a mathematical point of view. Is it possible to show

that a signature is unique?

Figure 5-33 shows the path that data takes to become a digital signa—

ture and to be verified. Is it possible to send data on another path that

ends up at the same place? An attacker might want to start with the

plaintext, encrypt it with a key other than the true private key, and still

produce the correct ciphertext (Figure 5-3b). Or maybe the attacker would

try to perform some other operation on the plaintext (not regular RSA

encryption), possibly using the public key as a guide, and still produce the

correct ciphertext (Figure 5-3c). If that were possible, a digital signature

would not be unique. If it were not unique, it would not be possible to

claim that the owner of the private key is vouching for the plaintext.

The best that cryptographers can say is that no one knows of any such

successful attack. The literature contains phrases such as “computation-

ally infeasible,” “it is believed to be true,” and “for some classes of signa-

tures, it is possible to prove certain security properties.” But no one has

completely proven signature uniqueness for any signature scheme.

Researchers have spent countless hours trying to come up with alterna-

tive paths to break uniqueness, and no one has yet come close.

Message Digests

Because public-key crypto is slow (see Chapter 4), it’s not a good idea to

encrypt the entire plaintext. Imagine creating an e-majl message,

encrypting it using the sender’s private key, then encrypting the result
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with a session key (so that eavesdroppers cannot read it), and then

encrypting the session key with the recipient’s public key. Such a proce-
dure wouldn’t be very efficient, and performanCe would suffer. So instead

of encrypting the entire plaintext with the private key, the best method is

to encrypt a representative of the data.

The representative of data in cryptography is a message digest, a con—

cept. we’ve mentioned in earlier chapters without defining in detail. We
said we would talk about it later, and this is finally the time to describe

the details. So for the moment, we’re going to take a detour from digital

signatures to explain message digests.

Probably the best way to begin a description of what a message digest

is would be to give two examples. Here are two messages and their asso-

ciated SHA—l digests (SHA—l is generally pronounced “shaw one”).

message 1:

Daniel, I sold 4 presses to Sscami. Ship immediately.
SEA-1 digest:

46 73 e5 85 89 he 36 58 44 ac 5b 68 68 7: cd 12
63 £8 c1 5s

 
message 2:

Daniel. I sold 5 presses to Satomi. Ship immediately.

SEA-1 digest:
2c db 7B 38 37 7e d3 16 29 18 49 BO 61 b7 61 81
3: b6 90 7a

The first thing you notice about these digest samples is that even i

though the messages are 53 bytes long (each character, including spaces 1_

and punctuation marks, is 1 byte), the digests are only 20 bytes. The word

“digest” means to condense or to reduce and sure enough, we’ve taken a

53—character message and condensed it to 20 bytes. No matter what you

give to SHA-l, the result will be 20 bytes. Is your data 10,000 characters?
The result of SHA-l will be 20 bytes. Do you have a 200MB message?

SHA—l will produce a 20-byte digest. Even ifyour message is smaller than

20 bytes, the result of SHA—l will be 20 bytes.

The second thing to notice about the digests is that they “look random.” .

The bytes appear to be gibberish—a bunch of bits thrown together hap- i

hazardly. In fact, you could test the results of digests for randomness i
(recall that discussion in Chapter 2). Tests of randomness need plenty of

input, so you could digest lots of different things, string them all together,

and see what the tests say. It turns out that the product of message digests

passes tests of randomness. Of course, a digest is not truly random. Ifyou

digest the same thing twice using the same algorithm, even 011 two differ-

ent computers using two different software packages (assuming they’ve
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both implemented the algorithm correctly), you’ll always get the same

result. So the output of a message digest algorithm is pseudo-random. This

is why message digests are often the foundation of PRNGs and PBE.

The third thing about the digests is that even though our sample mes-

sage 2 is almost identical to message 1 (there’s really only a 1-bit differ—

ence between the two), the digests are dramatically different. That’s a

quality of a good digest algorithm: Ifyou change the input, you change the

output. Two messages that are very similar will produce two digests that
are not even close.

So what is a message digest? It’s an algorithm that takes any length of

input and mixes the input to produce a fixed-length, pseudo-random out-

put. Another word you’ll often see used for message digest is hush. In fact,

the algorithm name SHA-l stands for Secure Hash Algorithm. (The orig-

inal SHA was shown to be weak, so the designers improved it and called

the updated version SI-IA-l or SHAl.) The word “hash” can mean a jum-

ble or hodgepodge, which aptly describes the result of a message digest.

Other properties of good digest algorithms aren’t as easy to see. First,

you can’t reconstruct the message from the digest. Here’s a suggestion.

Have a friend create a message, digest it, and give you the result. Now try

to figure out the message. If your friend used a good digest algorithm, that

won’t be possible. Sure, you could do a brute force attack by trying every

possible message, digesting it, and seeing whether it matches. If you did

that, you would eventually find it. But your friend’s message is one of a

virtually infinite number ofpossible messages. In Chapter 2, you saw how

long it would take to find a 128-bit value; imagine how long it would take

to find a message that could be of any possible length? For good algo-

rithms, no one has yet been able to figure out the message from only the

digest. In other words, it’s a one-way function. Remember that Chapter 4

talked about one-way functions with trap doors. A message digest has no

trap door.

Another property of a good digest algorithm is that you can’t find any

message that produces a particular digest. You’ve seen that you can’t find

the message your friend used to produce the digest, but can you find any

message that will produce the value? No one has yet come up with a

method that can find a message that will produce a given digest.

The last property is that you can’t find two messages that produce the

same digest. Here, you’re not looking for a particular digest but rather two

messages that produce the same result, whatever that result may be.

Again, with good algorithms, no one has yet been able to do that. The

brute force attack would be to digest a message, save the message and
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Figure 5-4

Can you find the

message we used

to produce this

digest (or any

message that will
produce it)? If so,

you will have
found a collision

in SHA-l

result in a table, digest another message, compare it to the first one, and

save the result in the table, and then digest another message, compare it

to all previously saved values, and so on. Figure 5—4 illustrates these prep-

erties with a challenge: Find the message, or any message, and produce

the given digest.

Our message Any message
_., .r

   

 
SHA-l digest SHA-l digest

da 39 a3 ee Se 61) 4b 0d 32 55 bf ef 95 60 18 90

af d8 0'? 09

NOTE:

By the way, you probably already know this, but for the sake ofcomplete-

ness, let’s say it. A “message” is not necessarily a communication between

two people. Any data you give to a digest algorithm is a message, even if

it’s not in human-readable form. Each byte of input is simply a byte of

input, whether or not the byte is an ASCII character:
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Collisions

When an algorithm violates one of the last two properties discussed in the

preceding section, the result is a collision, the technical term to describe

a situation in which two messages produce the same digest. A collision

occurs when a second message produces the same digest as a previous

message, or when two messages—any two messages#produee the same

digest whatever that digest is. If two messages collide, they meet at the

digest.

Although the number ofpossible messages is virtually infinite, the num-

ber ofpossible digests is finite. With SHA— 1, the number of possible digests

is 215°, Clearly, there will be many messages that produce any one digest.

To show that, let’s use the time-honored mathematical tool known as the

pigeonhole principle. Suppose you had a cabinet of pigeonholes (see Figure

5-5). Each pigeonhole corresponds to a digest. The zeroth pigeonhole is for

the digest 00 DO . . . 00, the first is for 00 00 . . . 01, and so on,

until you reach the last pigeonhole, the place for FF FF . . . FF.

Now you start digesting messages. After you digest a message, place

the message into the pigeonhole of the digest it produces. For example, the

digest of the 1-byte message 00 is

5b as 3c 9d b0 at £9 3f 52 b5 21 d7 42 Us 43 is
ad a2 78 4f

So you place message 00 into pigeonhole 513 A9 . . . 4F. The digest of

message 01 is

bf 8h 45 30 d8 62 46 dd 74 an 53 a1 34 71 bb 31
79 ‘1 at £7

Message 01 goes into pigeonhole BF BB . . . F7.

Suppose you keep digesting messages, the next message being the

preceding message plus 1. The sequence of messages is 00 , 01,

02. . . ., FF, 01 00, 01 01, . . ., FF FF, 01 00 00,andso

on. Suppose you did this for 21““ messages. The last message in the

sequence would be

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF
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Figure 5-5

The pigeonhole

principle says
that sooner or

later some

messages will
collide in the

same digest

 

Message:

“6—> BF F3
Digest All pigeonholes

are now

occupied

a“—P 46 73
Digest

 
 Daniel,

I sold all 4

presses to
Satomi . . . 

Now suppose that each message produced a different digest. (For all we

know, there were messages that produced the same digest, but for the

sake of argument, let’s say each message produced a different digest.) You

had 215” pigeonholes and 2160 messages, each message going into a differ—

ent pigeonhole. This means that all pigeonholes are now occupied. Now

consider Pao-Chi’s message to Daniel (ordering four presses for Satomi).

This 424-bit message is not a message you’ve already examined. So far in

this pigeonhole exercise, if you’ve operated on a message, it’s been 160 or

fewer bits. To place Pao—Chi’s message into a pigeonhole, you would place
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Figure 5-6

If a digest

algorithm were

predictable
enough that an
attacker could

change a message

slightly and

produce the same
digest, the

algorithm would
be broken

it into 46 73 . . . 5a. But that pigeonhole, like all the others, is

already occupied. Which message it contains doesn’t matter; you simply

know it’s occupied. You have a collision.

Now consider that “all possible messages” includes messages of any

size.

Collisions exist, but no one can find a collision on demand (for some

digest algorithms, no one has found any collision, even by accident). The

worst possible scenario for a digest algorithm would be if someone could

take any message and produce a similar message that produces the same

digest. Figure 5-6 shows an example of that. One message mentions

$1,000,000, and the second message mentions $1,500,000. If someone

changes only the 5, the digests will not match. But what if someone could

change the 5, change a few other things here and there, maybe add a

phrase or two, and get the same digest?

Message: . .

buy the

preperty for

$1,500,000

It's great doing

business with you 
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The Three Important Digest Algorithms

There are many digest algorithms, but three have dominated the market:

MD2, MD5, and SHA-l.

MDZ

Ron Rivest created a digest algorithm and named it MD. Then he thought

he could do better and so developed the next generation, MDZ. Because

MD2 produces a 128-bit (16-byte) digest, it has 2123 possible digest values.

MD2 has been widely used, but over the years, analysts found flaws with

it. Eventually, a few collisions were discovered. Nobody was able to find

collisions on demand with any arbitrary message, but certain classes of

messages produced collisions. Hence, MD2 isn’t used very much anymore

except on old certificates created before MD2 lost favor (Chapter 6

describes certificates). Most of those old certificates have probably expired

or will expire soon. N0 good cryptographer would recommend using MD2

in new applications.

MD5

Rivest wanted a faster digest, and when MD2 began to show weaknesses,

he also wanted one that was stronger. He started creating new digests.

MD3 was a bust, and when he showed MD4 to the world it was quickly

shown to be weak. (Despite that weakness, at least one application used

it. See “Crypto Blunders” on the accompanying CD for that story.) MD5
was more successful.

MD5, a lot faster and much stronger than MD2, became the dominant

algorithm and is still in common use. Like MDZ, MD5 is a Iii-byte digest.

Over the years, research has led to potential weaknesses. MD5 isn’t bro-

ken, and no one has found collisions; rather, some of the internals of the

algorithm are vulnerable. If a component or two were missing from the

algorithm, it would be broken. But because those components are there,

the algorithm survives.

Some people say that it doesn’t matter that the algorithm would be

weak if certain pieces were missing; the pieces are there, so it’s not weak.

Others say that you don’t break an algorithm all at once; you break it

piece by piece. Now that there are only a few pieces (maybe one or two)

preventing a total collapse, they argue, it would be better to move on to

another algorithm.
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SHA— I

The SHA-l algorithm looks a lot like MD5 (Ron Rivest played a role in the

design of SHA—l). SHA-l contains stronger internals than MD5, and it

produces a longer digest (160 bits compared with 128 bits). Size alone

makes it stronger. SHA—l has survived cryptanalysis and comes highly

recommended by the crypto community. In development are SHA-l vari-

ants that produce 192—bit and 256-bit digests.

A Representative of Larger Data

If you’re looking for something to produce a representative of a larger

amount of data, it’s easy to see that a message digest does that job fairly

well. First, the output of a digest algorithm is usually smaller than the

data itself, and no matter how big the data gets, the digest as a represen-

tative will always be the same size. If someone tries to surreptitiously

change the original message, the new, fake message will not produce the

same digest. If the digest produced by the algorithm does not represent

the data, you know that something went wrong (see Figure 5-7). Maybe

the data has been altered, maybe the digest is wrong. You might not know

what exactly happened, but you do know something happened.

Here’s how an application can check a digest. Pao-Chi is sending Daniel

some data, such as an e—mail or a contract; for this example, it’s the mes-

sage about selling four units to Satomi. Before Pao-Chi sends the mes-

sage, he digests it. Now he sends the data and the digest. When Daniel

gets the data, he also digests it. If his digest matches Pao-Chi’s, he knows

the data has not been changed in transit. If Satomi had intercepted and

altered the message, the digest that Daniel produced would not have

matched the digest Pao-Chi produced. Daniel would know that SOmething

happened and would not trust the data.

YOur immediate response might be, “If Satomi could alter the data, she

could alter the digest.” That’s true, but there are two ways to prevent that.

One is to use a digital signature, a tOpic we’ll return to shortly. For now,

let’s look at the second way: a keyed digest. The most common keyed

digest is called HMAC.

HMAC

MAC stands for message authentication checksum (or message authenti-

cation code), and H stands for hash or hash-based function, so an HMAC
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Figure 5-7
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  46 73 A5...SA
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The Digital Signature 1 5 1 

(pronounced “aitch mac”) is a hash-based message authentication algo.

rithm. A checksum is an algorithm that checks data by summing it. Sup-
pose you had a column of numbers (say, in an accountant’s ledger). If the

correct numbers are there, the sum of the column is a specific value. Later,

to check that the ledger is still correct, you don’t compare each number

individually; rather, you find the sum of the column. If the second sum

matches the first sum, the check passes. Of course, if someone can change

one number, it’s easy also to change the sum at the bottom ofthe ledger so

that it matches the change in the single number. It would also be easy to

change another number in the column to offset the first change. A MAC is

a way to detect changes in the data or in the sum. To detect changes in the

data, a MAC can be based on a digest, block cipher, or stream cipher (see

Chapter 2). To detect changes in the actual checksum, the MAC uses a key.

Most HMACs work this way. Two parties share a secret key (Chapter 4

shows how that’s done), and then each digest the key and message. The

digest depends on the message and the key, so an attacker would have to

know what the key is to alter the message and attach a correct checksum.

For example, suppose Pan-Chi sends Daniel message 1 shown earlier (the

message instructing him to ship four units to Satomi). Pao-Chi uses an

HMAC so that Daniel can verify that the data did not change. Using a key

exchange algorithm (BSA, DH, ECDH), the two agree on a 128—bit key.

Pao-Chj uses SHA—l to digest the key and message as one chunk of data.

The result is as follows. (The two vertical lines I | indicate concatenation;

see also Figure 5-8.)

Pao—Chi's me result (am—1 digest of key I! message 1):
60 Cd. 65 53 3.4 9d 35 6a. 58 36 f8 50 56 3d (12 7f
Te 26 35 132

NOTE:

We haven’t told you what the key is, so you can’t verifl that the result we

present is the actual result of an. HMAC. Ifyou wont to know what the

key is, you can figure it out. Put together a chunk ofdate—a key candi-

date followed by the message—and then digest it. Is it the same result

given here? No? Try another key, and another, and so on until you find

the correct one. It’s a; 128-bit key.
 

Now Pao-Chi sends Daniel the message and the HMAC result together.

Suppose that Satomi intercepts the transmission and tries to get Daniel
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Figure 5-8

The HMAC
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the key and the
data (in that

order) to produce
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Figure 5-9
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(2)

 
 HMAC: 60 C4 65...B2

to ship five presses instead of four by substituting message 2 for Pao-

Chi’s. After replacing the message, she sends it to Daniel. If she failed to

replace the HMAC result, Daniel would digest the key and fake message

and get the following (see Figure 5-9).

Daniel's me result: (53111 digest of key |[ message 2):
33 32 3b 86 f3 61:) 36 e1 03 1313 61') 013 £0 CC ES 513
26 di (11 41

correct Key
{J

  
  

  
 

  

 
  

  

 Daniel, I sold

5 presses to

Satomi. Ship

immediately.

True I-IMAC: 60 C4 65...]32

HMAC: A8 32 3B...41



 
The Digital Signature 1 53

-__________—————-————-—-—+

Data Integrity

The digested message is not the same as Pao-Chi’s. (Daniel knows what

Pao-Chi got for an HMAC; that’s part of the message.) So Daniel knows

that what Pao-Chi digested and what he digested are not the same. Some~

thing—maybe the key, maybe the actual message, maybe even the HMAC

value—was changed. Daniel doesn’t know exactly what was changed, but

that doesn’t matter. He knows something went wrong. He contacts Pao-

Chi again, and they start over.

Another possibility is for Satomi to substitute message 2 for message 1

and substitute the HMAC. But the problem is that Satomi can’t know

what the correct HMAC value should be. To demonstrate this, suppose

Satnmi substitutes six presses for four presses. Here’s the SEA-1 digest.

Daniel, I sold 6 presses to Satomi. Ship immediately.
sun-1 digest:

66 05 ‘0 8c 26 Se 05 f8 00 20 f4 72 14 03 hr: 22
53 1.12 ab 62

If Satomi substitutes this digest, Daniel will still know something is

wrong because that’s not the value he’s going to get. He’s not digesting the

message; rather, he’s digesting the key and the message. So what should
Satomi use?

We’ve described a message digest as the foundation of a pseudo-random

number generator or password-based encryption, and now as a represen-

tative of a larger message. Another use for a message digest is to check

data integrity, which is the term used to describe what the HMAC does. If

you’re COncerned that the information may be altered, you send the data

along with a check. If the message was altered, the check will also be dif-

ferent. Of course, you must ensure that the check value cannot be altered

to match any changes in the message.

If the check value shows no alterations, the data has been shown to

have integrity. “Integrity” is a word for honest, sound, and steadfast. When

used in relationship to data, it may seem pretentious, but it does describe

data that you can count on, at least in terms of its authenticity.
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Back to Digital Signatures

In our example, the HMAC seems to serve as a signature. Daniel can

know that the data came from Pao-Chi and that no one tampered with it

in transit. But HMAC has some shortcomings. The first is the statement,

“Daniel can know that the data came from Pao—Chi.” Maybe he can know

it came from Pao—Chi, but can anyone else? After all, to verify that the

data came from Pao-Clii, the recipient must know What the key is to cre-

ate the appropriate HMAC. Daniel knows What the shared secret key is,

but no one else does. Daniel could write a bogus message (say, setting the

number of presses to eight) and create the correct IIMAC. So from anyone

else’s point of view, the message may have come from Pao-Chi or Daniel;

no one else can know for sure who “signed” it. The second drawback is that

for someone other than Pao—Chi or Daniel to verify the “signature,” the

correspondents must reveal the secret key. Now this third party has

access to the key and can also create messages that appear genuine.

Usually, HMACs are used only to verify that contents have not been

altered in transit. They are meant to be used as an on-the-fly check and

not as a permanent record. For that reason, you need another way to cre-

ate unique, verifiable signatures, and that way is to encrypt the digest

with the signer’s private RSA key.

It works like this. Pao-Chi digests the message and then encrypts the

digest with his private key. He sends Daniel the message along with the

encrypted digest, which serves as the signature. Daniel separates the two

components and digests the message he received. He has a message in his

possession and knows the digest that will produce it (he just computed it).

He must determine whether the message he now has is the same message

Pao-Chi sent. If Daniel knew what Pao-Chi computed as a digest, he could

make that determination. Well, he has Pao-Chi’s digest—it's the signa-

ture. So Daniel uses Pao-Chi’s public key to decrypt the signature. That’s

the value Pao-Chi signed (see Figure 5-10). Is it the same answer Daniel

got? If it is, he knows that the data was not altered in transit and that

Pao-Chi is vouching for the contents.

Notice something powerful about the digital signature: Each chunk of

data has its own signature. This means that no single digital signature is

associated with an individual or key pair. Each signature is unique to the

data signed and the keys used. When an individual signs two messages

with the same key, the signatures will be different. Moreover, when two

people with different keys sign the same data, they will produce difi‘erent

signatures. As a result, someone cannot take a valid signature and append
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Figure 5-10
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Public key Are they the same?

it to the bottom of a different message, something that makes it much

more difficult to forge a signature.

Think of it this way. Two peeple (a sender and a receiver) each have a

copy of a message. Are they really cepies or was the receiver’s cepy altered

in transit? To find out, they digest the two messages and compare them.

If the digests are the same, both parties know that the two versions

match. If the digests don’t match, something went wrong. How do you

know that the sender’s digest was not altered? You know that because it
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was encrypted with the sender’s private key. How do you know that it was

encrypted with the sender’s private key? You know it because the public

key decrypts it.

In addition, you can make a couple of other checks. In the real world,

there will almost certainly be some digest algorithm identifier bytes (dis-

cussed in the next paragraph) and some pad bytes in addition to the

digest. A signer will encrypt a block of data that is the padding, the digest

algorithm identifier, and the digest. That encrypted value is the signature.

Figure 5-11 shows an example. Using the appropriate public key, that sig-

nature decrypts to the padded value. The verifier checks not only for the

digest but also the pad bytes and the SHA-l algorithm identifier. (Techni-

cally, the program the verifier runs will make these checks.) Having three

checks makes it harder to spoof.

The algorithm identifier bytes prevent an attacker from substituting an

alternative digest algorithm. Suppose that Satomi looks at Pao—Chi’s mes-

sage and its correct digest. She then finds a second message and digests it

using a different algorithm. Further suppose that this second algorithm on

the second message produces the same digest as the first algorithm on the

first message. If the signature were the encryption of the digest only, that

one signature would look as if it also came from the second algorithm. But

if you tie a signature to a digest and the algorithm, you thwart such an

attack. On the one hand, it doesn’t seem likely that someone would ever be

able to generate the same digest from a difi‘erent algorithm. On the other

hand, might MD2 be broken completely someday? It doesn’t cost anything

to make the second check, so you might as well use it.

Trying to Cheat

Two people-Satomi and Pao-Chi-might try to cheat. Here’s how they can

try.

First, suppose that Satomi intercepts the message and replaces “4”

with “5.” She figures she’ll pay Pao-Chi for four units but Daniel will send

her five, and she’ll get an extra press for free. In this scheme, when Daniel

gets the e-mail, he digests it and gets the following value. (Using the same

algorithm Pao-Chi used-SHA—l-that information is part of the e-mail

although not part of the message digested.)

2c db 78 38 8? ’19 63 1e 29 18 49 no 61 b7 41 81
3:: b6 90 73
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Figure 5-1 1
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Daniel must find out whether that value is the same one Pao-Chi got

when he digested the message he sent. To find out, Daniel uses Pao—Chi’s

public key to decrypt the signature. After decryption, he gets a chunk of
data. Does this data have the correct padding? He sees that the padding

is correct, so he just throws that away. The next bytes are the identifying
marks indicating that the algorithm is SHA-l; that’s correct. Finally, he

has the digest.

46 73 a5 85 89 be 86 58 44 ac 5b as 48 73 ca 12
63 EB c1 Sn

Daniel compares the digest value in the decrypted signature to his

digest value (the value he just computed from the purported message) and
sees that they are different. Something’s not right. What went wrong?

Daniel doesn’t know exactly what caused the discrepancy, but he knows

that the message he received is not the same message Pao-Chi sent.

Because Daniel doesn’t trust the message, he ignores it, asking Pao—Chi to

try again. Meanwhile, Daniel doesn’t send Satomi anything and she
doesn’t get her extra unit.

Now let’s look at Pao-Chi’s attempt at cheating. Suppose he made a

mistake and quoted Satomi a price for two units. He got paid for two but

told Daniel to ship four. He doesn’t want to take the heat for the error, so

he claims he wrote “2” instead of “4” in his e-mail. He figures he can shift

the blame to Daniel or maybe just technology—some gremlin on the Inter-

net that garbled the message.

Daniel points out that the signature attached to his e-mail matches the

message with the number of presses to ship at four. Because that’s Pao-

Chi’s signature and because each signature is unique to a message and

private key, Daniel claims that Pao-Chi vouched for the information and
can’t back out now.

To counter this, Pao—Chi could claim that the signature was forged. To

forge a signature would mean that someone was able to create a blob of

data, through other means, that was the same as a signature. This would
mean that some unknown forger had broken the RSA algorithm. That is

highly unlikely (see Chapter 4). No, Pao-Chi signed the message, and he
can’t claim otherwise.

Or Pan-Chi could try another approach, claiming that someone stole his

private key. Maybe it was protected on his hard drive using PBE, and
someone cracked his password. Maybe it was stored on a smart card or

other token, and someone broke that device or was able to log on as Pao-

Chi (possibly by breaking a password). If that really is the case, Pas—Chi
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did a poor job of protecting his private key, and he will still be in trouble.

We return to this subject later in this chapter in the section “Protecting

Private Keys.”

Implementing Authentication, Data Integrity, and

Nonrepudiation

When Daniel checks to make sure that the data has come from Pao—Chi

and not someone posing as him, it’s called authentication. He authenti—

cates Pao—Chi’s identity. When Daniel examines the message to make sure

it has not been altered in transit, that’s called data integrity checking. And

when Pao-Chi can’t go back on his signature, that’s called nonrepudiation.

In addition to privacy, these are the main areas in which cryptography

benefits those who use it.

Symmetric-key encryption provides privacy in that the sensitive data

looks like gibberish to unauthorized eyes. Public—key technology solves the

key distribution problem. A message digest—either a keyed digest such as

HMAC or a digital signature—ensures data integrity in that what the

sender sends is what the receiver receives. A digital signature also offers

authentication in that the other entity in the data exchange is shown to

be the entity it claims to be and the data is verified to have come from that

entity. A digital signature also provides nonrepudiation in that a signer

cannot later disavow any knowledge of the message.

Understanding the Algorithms

You can use the RSA algorithm to sign, but Diffie-Hellman can be used

only to perform key exchange and not digital signatures. As discussed in

Chapter 4, Diffie and Hellman proposed the idea of the ultimate public

key algorithm. It would be one that could be used to encrypt data. The digs

ital signature is the reason that such an algorithm would be the ultimate

algorithm. In an interview, Whitfield Diffie explained that when he heard

about the NSA’s secure phone system, he was less concerned with the key

exchange problem than with authentication—that is, verifying that you

are talking to the person you think you are talking to.
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At Stanford, cryptographer Taher El Gama] came up with a way to

extend DH so that it could be used to sign as well as encrypt. But his idea

never really caught on, possibly because RSA existed, and possibly

because David Kravitz invented a digital signature algorithm for the U.S.

government, and with the backing of an entity as powerful as the U.S. gov-

ernment, his algorithm became popular. Kravitz (or someone in the U.S.

government) gave the new algorithm the lyrical name “Digital Signature

Algorithm,” known to this day as DSA. Like DH, DSA is based on the dis-

crete log problem. It became the official U.S. government signature algo-

rithm and probably is second only to BSA in use today. Kravitz was

working for the NSA when he developed USA, and it is based on work by

El Gamal and Claus Schnorr, another cryptographer.

Finally, just as elliptic curve math can be adapted to solve the key dis—

tribution problem, it can be adapted to create signatures. There are a

number of possibilities, but the most common way to use ECC to create

signatures is called ECDSA. This approach does essentially the same

thing as DSA but with elliptic curves.

NOTE:

Kravitz received a patent for DSA, but the U.S. government owns it

because the inventor was working for the NSA at the time. The patent is

in the public domain and can be used freely. Claus Schnorr invented a

signature algorithm that is very similar to BSA. His patent on that algo-

rithm predates Kravitz’s. Ifyou want the whole story, consult a patent

attorney.

Many signature algorithms have been proposed over the years, but only

BSA, DSA, and ECDSA have shown any long-lasting success in finding

adopters. Let’s look at these three algorithms in more detail.

RSA

We show BSA in detail in Chapter 4. It’s the algorithm that is used to

encrypt a digest with a private key to produce a digital signature. To forge

an RSA signature, someone must find the private key. Lacking a private

key, no one has been able to produce a chunk of data, call it a digital sig-

nature, and have it be verified.
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DSA

To this point, we’ve described a digital signature as the private—key

encryption of a digest. Now we conic to BSA, which does not encrypt data.

Although DSA uses the digest of the data, it does not encrypt the digest.

Your first thought is likely to be, “If it can’t encrypt data, how can it pro—

duce a digital signature?” Remember that DH cannot be used to encrypt

data but can be used to solve the key distribution problem. Similarly. even

though DSA cannot be used to encrypt data, it can be used to create a dig-

ital signature. A digital signature is a chunk of data that comes from the

message and the private key. Only that particular message coupled with

that particular private key will produce that particular signature. If you

accomplish that by encrypting the digest, great. If you accomplish that in

some other way, that’s fine, too.

With DSA, the signer digests the message with SHA-l and treats that

digest as a number (it’s a big number: 160 bits long). Another number sent

to the algorithm is a random or pseudo-random value, usually called it.

The last input is the private key. The algorithm then performs some math-

ematical operations, one of which is modular exponentiation, the same

function at the heart of DH and BSA. The output is two numbers, usually

called r and 3. These two numbers are the signature.

The verifier computes the SHA-l digest of the message. Is it the same

digest that the signer produced? The verifier does not have that digest

available but does have r and 5. Using the digest as a number, along with

the public key and the s, the verifier performs some mathematical opera-

tions. The result of the computations is a number called 0. If v is the same

as r, the signature is verified (see Figure 5-12).

At its most basic, DSA computes the same number in two different

ways. In Billie-Hellman, two parties can generate the same secret value

even though each one is using different input. The same thing is happen~

ing here with BSA. Two parties produce the same number using different

input. The two sets of input are related. Well, they should be related; if

something breaks down, the final answers will differ.

Each side has three inputs. The signer has the digest, k, and the private

key. The verifier has the digest, s, and the public key. The digests are

related; they should be the same thing. If that relationship breaks down-

say, the signed data is not the same as the data being verified and the two

parties produce different digests—tho final answer from each individual

will differ. The k and s are related (they’re not the same number, but

they’re related). If the Signature is wrong, the s will be wrong and the two
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Figure 5-12
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ECDSA

players will produce different final answers. The private key and the pub-

lic key are also related; they are partners related mathematically. If that

relationship is not there—if the public key used to verify is not the part-

ner to the private key used to sign—the two agents will produce different

final answers.

The security of BSA lies in the discrete log problem, the same problem

that gives DH its security. So the size of BSA keys will be the same as that

of DH keys. As always, you can find more detailed information in the RSA

Labs FAQ on the accompanying CD.

This algorithm looks a lot like BSA. The signer has three inputs: the

digest, k, and the private key. The output is r and s. The verifier has the

digest, s, and the public key. The output is v. If v and r are the same, the

signature is verified; if they’re not the same, something went wrong. What

went wrong? Was it the wrong digest? The wrong public key? Was the sig-

nature mangled in transmission? You probably can’t know exactly what

happened, but you do know that something went wrong. The math under-

lying ECDSA is elliptic curves, 80 key size is the same as with ECDH.

Comparing the Algorithms

Security

0f the three algorithms that produce digital signatures, which one is

the best? As we say in Chapter 4 regarding the key distribution prob-

lem, there’s probably no single answer to that question. Each has its

advantages and disadvantages. A more appropriate question might be,

“Which algorithm works best in which situation?” Remember that all

three of them are in use today because different problems call for dif—

ferent solutions.

Everything we say in Chapter 4 on the security of the three algorithms

applies here as well (the security of Diffie-Hellman and USA are pretty
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Performance

much the same). There’s no objective answer to the question ofwhich algo-

rithm is the most secure. It depends on what each individual feels is

important.

One other factor with digital signatures, though, may be the concept of

message recovery. With RSA, a signature verification recovers the message,

but with BSA and ECDSA, a signature verification simply compares two

numbers. Technically, RSA recovers the digest of the message instead of

the message itself; that’s really one level of indirection. DSA and ECDSA

find a number based on the digest; that's two levels of indirection. Earlier

in this chapter in “The Uniqueness of a Digital Signature,” we mention

that the crypto literature on digital signatures contains statements such

as, “For some classes of signatures it is possible to prove certain security

properties.” Message recovery is one of those security properties. When you

perform an RSA verification operation, you get to see what the signer pro-

duced; you recover the message digest because you’re decrypting it. With

DSA and ECDSA, you don’t see what the signer produced. Instead, you

generate a number, and if that number is equal to another number, you fig-

ure you produced the same thing that the signer produced.

Think of it this way. DSA and ECDSA produce surrogate numbers, let’s

call them the signer’s surrogate and the verifier’s surrogate. If the two

numbers match, the signature is verified. With RSA, there is no surrogate;

the verifier actually compares the signer’s value.

Because DSA and ECDSA compare surrogates and not originals, it

opens an avenue of attack not possible with RSA. An attacker could try to

produce the appropriate surrogate number without the correct original

key or data. That is, an attacker does not have to find a digest collision to

substitute messages, but can try to find a DSA collision. But before you

think that makes RSA much stronger than the other two, remember that

no onehas been able to create such an attack or even to come close. Still,

although the probability of such an attack on DSA or ECUSA is extremely

low, it’s lower still with RSA.

In Chapter 4, you saw that no algorithm wins the performance race

hands-clown. Of the several factors, each algorithm compares favorably

with the others in one way but unfavorably in another. The same is true

with signatures. RSA performance does not change, but DSA and ECDSA

are slightly more time-consuming than their DH counterparts.
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Table 5-1

Estimated

Relative

Performance of

the Public-Key

Algorithms (in
Relative Time

Units)

If you want a faster signature scheme, you should go with ECU. But

often, making a connection means that each party has to do two or more

verifications; each one must verify a signature and then verify one or

more certificates (Chapter 6 talks about certificates). If you have a fast

signer (a server, for example) but a slow verifier (a hand-held device or

smart card for example), you may get bogged down in verification. Again,

each application may have different needs, and even though one algo-

rithm may satisfy one application’s needs better than another algorithm,

the next application may find a different algorithm more suitable.

Table 5—1 shows some performance comparisons. The numbers are rel-

ative; if RSA public-key operations (such as verification) take one unit of

time (whatever that unit may be) on a particular machine, the other oper-
ations will take the amounts of time shown.

RSA DSA E00 E00 with Acceleration

Private key (sign) 13 17 7 2

Public key (verifiy) 1 33 19

Combined 14 50 26 21 

Transmission Size

DSA and ECDSA signatures are about 340 bits, regardless of key size. An

BSA signature is the same size as the key. 80 if you use a 1,024-hit RSA

key pair, each time you send a digital signature you add 1,024 hits to the

message. Again, if transmission size is important, you may want to look at
DSA or ECDSA

Intemperability

The story’s the same with signatures as with key distribution. RSA is

almost ubiquitous and has become the de facto standard. BSA was pro—

mated by the US. government and has become a part of most crypto—

graphic packages. So if you sign using RSA or DSA, other parties will
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Protecting

almost certainly be able to verify it, whether or not they use the same

application you do. ECC is less prevalent.

Private Keys

Chapter 3 shows how to protect symmetric keys, and Chapter 4 explains

that you protect a private key in a similar way. Tokens such as smart

cards add a dimension to protection, but for the most part, the way you

protect one key is the way you protect any key. Many protocols (discussed

in Chapters 7 and 8) require that you have two keys: a digital envelope (or

key exchange key) and a separate signing key. So you’ll likely have to pro-

tect two private keys.

But ifyou lose your private key, there are ways to revoke, or cancel, the

public key affiliated with it. If Pao—Chi claims that someone obtained his
private key and is signing under his name, he can have his public key
revoked. After the effective date of the revocation, any signatures verified

with Pao-Chi’s public key are invalid because the public key is invalid.

Now Pao-Chi has to generate a new key pair, this time protecting the pri—

vate key more diligently. Chapter 6 talks about revoking keys,

For now, note that if attackers steal your signing key, they can do a lot

more damage than if they steal other types of keys because your signing

key lets them pose as you. By stealing your digital envelope or key

exchange private key, attackers can get at secrets, but they cannot act on

your behalf. If you don’t protect your signing key or don’t protect it well

enough, you’re making yourself much more vulnerable.

Introduction to Certificates

Throughout Chapters 4 and 5, we’ve talked about other individuals using

someone else’s public key. To send a secure message to Gwen, Pao-Chi

found her public key and created a digital envelope. To verify Pao-Chi’s

message, Daniel acquired Pao—Chi’s public key and verified the digital sig-

nature. But how can anyone truly know whether a public key belongs to

the purported individual?

Pao—Chi has in his possession a public key, which is purportedly

Gwen’s. The key works; he is able to create a digital envelope. But What if
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Satomi somehow substituted her public key for Gwen’s? While Pan-Chi

was out to lunch, Satomi may have broken into his laptop, found a file

called “Gwen’s public key” and edited it so that this file contained her pub-

lic key, not Gwen’s. Then when Pan—Chi sends the digital envelope, Satomi

will be able to intercept and read it. Gwen won’t be able to open it because

she does not have access to the private key partner to the public key used.

Suppose the company Pao—Chi and Daniel work for has a centralized

directory where everyone’s public key is stored. When Daniel wants to ver-

ify Pao—Chi’s signature, he goes to the directory and find’s Pao-Chi’s key.

But what if Satomi broke into that directory and replaced Pao-Chi’s pub-

lic key with hers? Now she can send a fake message to Daniel with a valid

digital signature. Daniel will think it came from Pan-Chi because he ver-

ifies the signature against what he thinks is Pao-Chi’s public key.

The most common way to know whether or not a public key does belong

to the purported entity is through a digital certificate. A digital certificate

binds a name to a public key. An analogy would be a passport, which binds

a photo to a name and number. A passport is supposed to be produced in

such a way that it is detectable if someone takes an existing passport and

replaces the true photo with an imposter’s photo. It may be a valid pass—

port, but not for the person in the photo. Immigration officials will not

honor that passport.

A digital certificate is produced in such a way that it is detectable if

someone takes an existing certificate and replaces the public key or name

with an imposter’s. Anyone examining that certificate will know that

something is wrong. Maybe the name or public key is wrong , so you don’t

trust that name/key pair combination.

Here’s how it works. Take a name and public key. Consider these two

things to be a message, and sign the message. The certificate is the name,

public key, and signature (see Figure 5-13}. The only thing left to deter-

mine is who will sign the certificate. Signing is almost always done by a

certificate authority, also known as a CA. More on that later.

Gwen originally generated her key pair, protected the private key, and

contacted her CA requesting a certificate. Depending on the CA’s policy,

Gwen may be required to show up in person. The CA verifies Gwen is who

she claims to be by examining her passport, driver’s license, company ID

badge, or whatever method the CA uses to determine identity. Then Gwen

uses her private key to sign something (the certificate request, probably).

In that way, the CA knows that Gwen does indeed have access to the pri-

vate key partner to the public key presented, and that the public key has

not been replaced. The CA combines Gwen’s name and public key into a
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Figure 5-13
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message and signs that message using its private key. Gwen now has a

certificate and distributes it. So when Pao-Chi collects Gwen’s public key,

what he’s really collecting is her certificate.

Now suppose Satomi tries to replace Gwen’s public key with her own.

She finds the file on Pao—Chi’s laptop holding Gwen’s public key and sub-

stitutes the keys. But when Pao—Chi loads the key, he’s not loading just the

key, he’s loading the certificate. He can extract the public key from the cer-

tificate ifhe wants, but before he does that, he verifies that the certificate

is valid using the CA’s public key. Because the message has been altered,

the signature does not verify and Pao—Chi does not trust that public key.

Therefore, he will not create a digital envelope using that public key, and

Satomi will not be able to read any private communications.

Of course, that scenario assumes that Pao-Chi has the CA’s public key

and that he can trust no one has replaced it with an imposter’s. Because

he can extract it from the CNS certificate, Pao-Chi knows he has the true

CA public key. Just as Gwen’s public key can be wrapped in a certificate,

so can the CNS. Who signed the CA’s certificate? Probably another CA.

This could go on forever.
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But it has to stop somewhere and that somewhere is the root. A root

will sign a CA’s certificate, and the root key is distributed outside the cer—

tificate hierarchy. Maybe the root is built into software; maybe Pan-Chi

will have to enter it himself. Of course, if Satomi is able to substitute the

root public key with one of her own, she can subvert the whole system. So

Pas-Chi needs to protect the root key as he does his symmetric key and his

own private keys.

Key Recovery

Summary

As discussed in Chapter 4, it’s possible to set up a scheme to restore keys

that someone loses by forgetting a password or losing a token. However,

it’s probably not a' good idea to apply a key recovery plan to signing keys.

If a signing key can be obtained by someone other than the owner (even if

that is a trusted third party or a committee of trustees), that would make

it possible to nullify nonrepudiation. Anyway, if someone loses a signing

key, it’s no great problem; any existing signatures are still valid because

only the public key is needed to verify. For new signatures, you simply

generate a new key pair and distribute the new public key. For this rea—

son, many protocols specify that participants have separate signing and

key exchange keys. As you will see in Chapters 6 and 7, it is possible to

define a key as signing only or key encrypting (with the RSA digital enve-

lope) or as key exchange only (with the Diffie~Hellman protocol).

To verify that a message came from the purported sender, you can use

public-key cryptography. A private key is used to sign the data, and the

public key is used to verify it. The only known way to produce a valid sig-

nature is to use the private key. Also, a signature is unique to a message;

each message and private key combination will produce a different signa—

ture. So if a public key verifies a message, it must be that the associated

private key signed that message. Three main algorithms are used as sig-

nature schemes: RSA, DSA, and ECDSA. Each algorithm has its advan-

tages and disadvantages, and it’s not really possible to say that one or the
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other is better. Each algorithm may be better suited for different applica-

tions.

For performance reasons, you don’t sign the data but rather sign a rep-

resentative of the data called a message digest. Also known as a hash, a

message digest is the foundation of most PRNGs and PBE implementa-

tions. A keyed digest, such as HMAC, is also used to check data integrity.

Real-World Example

As discussed in Chapter 4, SIMIME uses public~key cryptography to solve

the key distribution problem. As you’ve probably already surmised,

S/MIME uses digital signatures as well. To implement a digital signature,

follow these steps. First, launch Netscape Navigator, click the Security

button, and then click Messenger (along the left-hand side of the security

I window). In Chapter 4, you saw the Encrypt choice checked. Notice the

two Sign choices as well. Ifyou select these menu items, when you send e-

mail or post to newsgroups your message will be signed using yOur private

key.

Before you can sign, you need a key pair. The browser has a module

that generates a key pair for you, or, if you have a token (such as a smart

card), you can specify that it be used to generate the key pair and store the

private key. In the seCurity window, click Yours under Certificates. The

resulting window displays a button labeled Get A Certificate. This is the

starting point for generating a key pair and getting a certificate. (Chapter
6 discusses certificates.)

With Microsoft Outlook, click Tools and then Options. In the resulting

window, click the Security tab. You saw the Encrypt choice in Chapter 4.

Here, notice the Sign option. Again, you need a key pair and a certificate.

Start the process by clicking the Get A Digital ID button at the bottom of

the window.

 
l



 
As you learned in Chapter 4, public-key cryptography gives you not only a

powerful mechanism for encryption but also a way to identify and authen-

ticate other individuals and devices. Before you can use this technology

effectively, however, you must deal with one drawback. Just as with sym-

metric~key cryptography, key management and distribution are an issue

with public-key crypto. Instead of confidentiality, the paramount issue for

public-hey crypto is the integrity and ownership ofa public key.

For end users and relying parties (relying parties are those who verify

the authenticity of an end user’s certificate) to use this technology, they

must provide their public keys to one another. The problem is that, like

any other data, a public key is susceptible to manipulation while it is in

transit. Ifan unknown third party can substitute a different public key for

the valid one, the attacker could forge digital signatures and allow

encrypted messages to be disclosed to unintended parties. That’s why it’s

crucial to assure users that the key is authentic and that it came from (or

was received by) the intended party.

Within a small population of trusted users, this task is not very diffi-

cult. An end user could distribute the public key by simply hand-deliver-

ing it on disk to a recipient, an approach known as manual public-key
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distribution. For larger groups of individuals, however, this task is much

more difficult, especially when the people are geographically dispersed.

Manual distribution becomes impractical and leaves room for security

holes. For that reason, a better solution has been developed: public-key

certificates. Public-key certificates provide a systematic, scalable, uni-

form, and easily controllable approach to public-key distribution.

A public-key certificate (PKG) is a tamperproof set of data that attests

to the binding of a public key to an end user. To provide this binding, a set

of trusted third parties vouches for the user’s identity. The third parties,

called certificatibn authorities (GAS), issue certificates to the user that

contain the user’s name, public key, and other identifying information.

Digitally signed by the CA, these certificates can now be‘ transferred and

stored.

This chapter covers the necessary technology needed to understand

and use a public-key infrastructure (PKI). First, we describe the X509

standard and the structure of an X509 public-key certificate. Then we

explain how the PKI components work as a collaborative process to let

you create, distribute, manage, and revoke certificates.

 
Public-Key Certificates

Public-key certificates are a secure means of distributing public keys to

relying parties within a network. In many ways, PKCs are analogous to a

driver’s license. Both a driver’s license and a PKC are certified by a

trusted third party, which affirms the user’s identity and privileges. In its

most basic form, a certificate contains a public key, the identity of the indi~

vidual it belongs to, and the name of the party that is attesting to the

validity of these facts.

Various certificates are in use. Some of them, such as Pretty Good Pri-

vacy (PGP), are proprietary. Other pepular certificates are application—

specific, such as SET and Internet Protocol Security (IPSec) certificates.

The most widely accepted certificate format is the International Telecom-

munication Union’s X509 Version 3. The original X.509 standard was

published in 1988 as part of the X500 directory recommendations. Since

then, it has been revised twice—in 1993 and again in 1995. RFC2459, a

profile for the X509 standard, was published in 1999 by the Internet Engi-

neering Task Force (IETF). Although RFCZ459 is targeted to the Internet

community, a number of its useful components can be applied in an enter-
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prise environment. Therefore, we provide references to some of its recom-

mendations where appropriate. Figure 6-1 illustrates the structure of an

X.509 certificate.

 

  

  
 

Figure 6-1

X509 certificate

structure
v.1

 

 
 
 
 

 

v.3

 
 
 All

tVersions

All versions of X.509 certificates contain the following fields:

I Version This field differentiates among successive versions of the

certificate, such as Version 1, Version 2, and Version 3. The Version

field also allows for possible future versions.

I Certificate Serial Number This field contains an integer value

unique to each certificate; it is generated by the CA.

I Signature Algorithm Identifier This field indicates the identifier

of the algorithm used to sign the certificate along with any associated

parameters.

l Issuer Name This field identifies the distinguished name (DN) of

the CA that created and signed this certificate.
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I Validity (Not BeforelAfter) This field contains two date/time

values—Not Valid Before and Not Valid After—which define the

period that this certificate can be considered valid unless otherwise

revoked. The entry can use the following formats: UTC time

(vymmddhhmmssz) or generalized time (ywymmddhhmmssz).

I Subject Name This field identifies the DN of the end entity to

whom this certificate refers, that is, the subject who holds the

corresponding private key. This field must have an entry unless an

alternative name is used in the Version 3' extensions.

I Subject Public Key Information This field contains the value of

the subject’s public key as well as the algorithm identifier and any

associated parameters of the algorithm for which this key is used.

This field must always have an entry.

Unique Identifiers

Version 2 and 3 certificates may contain unique identifiers that pertain to

the subject and issuer. These fields are designed to handle the possibility

of reuse of these names over time. RFCZ459 recommends that names not

be reused for different entities and that Internet certificates not use

unique identifiers. This means that GAS conforming to this profile should

not generate certificates with unique identifiers. Nevertheless, applica-

tions conforming to this profile should be capable of parsing unique iden-

tifiers and making comparisons.

I Issuer Unique Identifier This optional field contains a unique

identifier that is used to render unambiguous the X.500 name of the

CA in cases when the same name has been reused by different

entities over time. This field can be used only in Version 2 and

Version 3 certificates, and its use is not recommended according to

RFC2459.

I Subject Unique Identifier This optional field contains a unique

identifier that is used to render unambiguous the X.500 name of the

certificate owner when the same name has been reused by different

entities over time. This field can be used only in Version 2 and Version

3 certificates, and its use. is not recommended according to RFC2459.
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Standard Version 3 Certificate Extensions

After the release of Version 2, it was apparent that the certificate profile

still contained deficiencies. For this reason, a set of extensions was created

to append to the Version 3 format of the certificate. These extensions cover

key and policy information, subject and issuer attributes, and certification

path constraints.

The information centained in extension fields can be marked as either

Critical or noncritical. An extension field has three parts: extension type,

extension criticality, and extension value. The extension criticolity tells a

certificate-using application whether it can ignore an extension type. If

this extension is set to critical and the application does not recognize the

extension type, the application should reject the certificate. On the other

hand, if the extension criticality is set to noncritical and the application

does not recognize the extension type, it is safe for the application to

ignore the extension and to use the certificate.

The following standard certificate extension fields are available only in
Versiou 3 certificates:

I Authority Key Identifier This extension is used to differentiate

between multiple certificate signing keys of the same CA. The CA

provides a unique key identifier or provides a pointer to another

certificate, which can certify the issuer’s key. The RFCZ459 mandates

the use of this field for any certificate that is not self-signed.

I Subject Key Identifier This extension is used to differentiate

between multiple certificate signing keys of the same certificate

owner. The owner provides a unique key identifier or provides a

pointer to another certificate that can certify the issuer’s key.

RF02459 mandates the use of this field for any CA signing certificate

and also recommends it for end entities.

I Key Usage This extension is used to define restrictions on the

operations that can be performed by the public key within this

certificate. Such operations include digital signature, certificate

signing, certificate revocation list (CRL) signing, key enciphering, data

enciphering, and Dime-Hellman key agreement. This field can also be

flagged as critical or noncritical. If it is flagged critical, it can be used

only for its intended use; otherwise, it will be considered in violation

of the CA’s policy. RFCZ459 recommends a flag of critical when this
field is used.
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I Extended Key Usage This extension can be used in addition to or

in place of the Key Usage extension to define one or more uses of the

public key that is certified Within this certificate. This extension

enables the certificate to intemperate with various protocols and

applications (such as, Tl'ansport Layer Security [TLS] server

authentication, client authentication, time stamping, and others).

RFC2459 states that this field may be flagged critical or noncritical.

II CRL Distribution Point This extension indicates a uniform

resource identifier (URI) to locate the CRL structure where revocation

information associated with this certificate resides. RF02459

recommends that this field be flagged noncritical, although it

also recommends that CAs and applications support this extension.

I Private Key Usage Period Similar to the Validity field of the

certificate, this extension indicates the time frame of use for the

private key associated with the public key in this certificate. In the

absence of this extension, the validity period of use for the private key

is that of the associated public key. RFC2459 recommends against the
use of this extension.

I Certificate Policies This extension identifies the policies and

optional qualifier information that the CA associates with the

certificate. If this extension is marked critical, the processing

application must adhere to at least one of the policies indicated, or

the certificate is not to be used. To promote interoperability, RFC2459

recommends against the use of policy identifiers, but it does Specify

two possible qualifiers: the certification practice statement (CPS)

qualifier and the user notice qualifier. The CPS qualifier contains a

pointer to a CPS that applies to this certificate. The notice reference

qualifier can be made up of a notice reference or an explicit notice (or

both), which can in turn provide a text message of the policy required
for this certificate.

I Policy Mappings This extension is used only when the subject of

the certificate is also a CA. It indicates one or more policy object

identifiers (OIDs) within the issuing CA’s domain that are considered

to be equivalent to another policy within the subject CA’s domain.

I Subject Alternative Name This extension indicates one or more

alternative name forms associated with the owner of this certificate.

Use of this field enables support within various applications that

employ their own name forms, such as various e-mail products,

electronic data interchange (EDI), and IPSec. RFCZ459 specifies that
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Entity Names

if no DN is specified in the subject field of a certificate, it must have

one or more alternative names and this extension must be flagged

critical.

I Issuer Alternative Name This extension indicates one or more

alternative name forms associated with the issuer of this certificate.

As with the Subject Alternative Name extension, use of this field

enables support within various applications.

I Subject Directory Attributes This extension can be used to

convey any X500 directory attribute values for the subject of this

certificate. It provides additional identifying information about the

subject that is not conveyed in the name fields (that is, the subject’s

phone number or position within a company). RFCZ459 recommends

against the use of this extension at this time. However, if it is used,

RFC2459 mandates the use of a noncritical flag to maintain

interoperability.

I Basic Constraints This extension indicates whether the subject

may act as a CA, providing a way to restrict end users from acting as

CAs. If this field is present, a certification path length may also be

specified. The certification path length limits the certifying powers of

the new authority (for example, whether Verisign could allow RSA

Inc. to act as a CA but at the same time not allow RSA Inc. to create

new CA5). RFC2459 mandates that this extension be present and

marked critical for all CA certificates.

I Name Constraints This extension, to be used only within CA

certificates, specifies the namespace within which all subject names

must be located for any subsequent certificate that is part of this

certificate path. RFCZ459 mandates that this extension be marked

critical.

I Policy Constraints This extension, to be used only within CA

certificates, specifies policy path validation by requiring policy

identifiers or prohibiting policy mappings (or both). RF02459 simply

states that this extension may be marked critical or noncritical.

In a public-key certificate, entity names for both the issuer and the sub-

ject must be unique. Version 1 and 2 certificates use the X500 DN nam-

ing convention.
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Distinguished names were originally intended to identify entities

within an X500 directory tree. A relative distinguished name (RDN) is the

path from one node to a subordinate node. The entire DN traverses a path

from the root of the tree to an end node that represents a particular entity.

A goal of the directory is to provide an infrastructure to uniquely name

every communications entity everywhere (hence the “distinguished” in

“distinguished name”). As a result of the directory’s goals, names in X509

certificates are perhaps more complex than one might like (compared

with, for example, e-mail addresses). Nevertheless, for business applica-

tions, DNs are worth the complexity because they are closely coupled with

legal name registration procedures, something not offered by simple

names such as e-mail addresses. A distinguished name is composed ofone

or more RDNs, and each RDN is composed of one or more attribute-value

assertions (AVAs). Each AVA consists of an attribute identifier and its cor-

responding value information, for example, “CountryName = US” or

“CommonName = Jeff Hamilton”.

X509 Version 3 certificates grant greater flexibility with names, no

longer restricting us solely to X500 name forms. Entities can be identified

by one or more names using various name forms. The following name

forms are recognized by the X509 standard:

I Internet e-mail address

I Internet domain name (any official DNS name)

I X400 e-mail address

I K500 directory name

I EDI party name

I Web URI, of which a uniform resource locator (URL) is a subtype

I Internet IP address (for use in associating public-key pairs with

Internet connection endpoints).

Alternative names provide more flexibility to relying parties and appli-

cations that may not have any connections to the end user’s X500 direc-

tory. For example, a standard e-mail application could use a certificate

that provides not only an X500 name form but also a standard e-mail

address.
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ASN.1 Notation and Encoding

Most encrypted data ends up being transferred to other entities, so it is

crucial that the data follow a standard format, syntax, and encoding so

that it makes sense to other users or applications. We’ve talked about how

the X509 standard provides such a format. In this section we explain the

X509 rules for data syntax and encoding.

The syntax for all certificates that conform to the X509 standard are

expressed using a special notation known as Abstract Syntax Notation I

(ASN.1), which was originally created by Open Systems Interconnection.

(081) for use with various X500 protocols. ASN.1 describes the syntax for

various data structures, providing well—defined primitive objects as well

as a means to define complex combinations of those primitives.

ASN.1 has two sets of rules that govern encoding. Basic Encoding Rules

(BER, defined in X.690) are a way of representing ASN.1—specified objects

as strings of 1’s and 0’s. Distinguished Encoding Rules (DER), a subset of

BER, provide a means to uniquely encode each ASN.1 value.

NOTE:

For more information about these rules, see Appendix B, which includes a.

copy ofRSA Loboratories’ ‘fA Loymon’s Guide to a Subset ofASN. 1, BER,

and DER.”

The Components of a PKI

As we’ve mentioned, CAs serve as trusted third parties to bind an indi-

vidual’s identity to his or her public key. CAs issue certificates that con—

tain the user’s name, public key, and other identifying information. Signed

by the CA, these certificates are stored in public directories and can be

retrieved to verify signatures or encrypt documents. A public—key infra-

structure involves a collaborative process between several entities: the

CA, a registration authority (RA), a certificate repository, a key recovery

server, and the end user. In this section we discuss each of these compo-

nents in detail.
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Certification Authority

If we think of a certificate as being similar to a driver’s license, the CA

operates as a kind of licensing bureau analogous to a state’s Department

of Motor Vehicles or similar agency. In a PKI, a CA issues, manages, and

revokes certificates for a community of end users. The CA takes on the

tasks of authenticating its end users and then digitally signing the cer-

tificate information before disseminating it. The CA is ultimately respon-

sible for the authenticity of its end users.

In providing these services, the CA must provide its own public key to

all the certified and users as well as all relying parties who may use the

certified information. Like end users, the CA provides its public key in the

form of a digitally signed certificate. However, the CA’s certificate is

slightly different in that the Subject and Issuer fields contain the same

information. Thus, CA certificates are considered selfisigned.

CA3 fall into to two categories: public and private. Public CAs operate

via the Internet, providing certification services to the general public.

These CAs certify not only users but also organizations. Private CAs, on

the other hand, are usually found within a corporation or other closed net-

work. These CAs tend to license only to end users within their own popu-

lation, providing their network with stronger authentication and access

controls.

Registration Authority

Although an RA can be considered an extended component of a PKI,

administrators are discovering that it is a necessity. As the number of end

entities increases within a given PKI community, so does the workload

placed on a CA. An RA can serve as an intermediate entity between the CA

and its end users, assisting the CA in its day-to—day certificate—processing
functions.

An RA commonly provides these functions:

I Accepting and verifying registration information about new registers

I Generating keys on behalf of end users

I Accepting and authorizing requests for key backup and recovery

I Accepting and authorizing requests for certificate revocation

I Distributing or recovering hardware devices, such as tokens, as

needed
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RAs are also commonly used for the convenience of end users. As the

number of end users increases within a PKI domain, it’s likely that they

will become more geographically dispersed. CA5 can delegate the author-

ity to accept registration information to a local RA. In this way, the CA can

be operated as an offline entity, making it less susceptible to attacks by

outsiders. '

Certificate Directory

After a certificate is generated, it must be stored for later use. To relieve

end users of the need to store the certificate on local machines, CAs often

use a certificate directory, or central storage location. An important com-

ponent of a PKL a certificate directory provides a single point for certifi-

cate administration and distribution. There is no one required directory

standard. Lotus Notes and Microsoft Exchange use proprietary directo-

ries, and directories based on the X500 standard are also gaining pepu-

larity.

X500 directories are becoming more widely accepted because in addi—

tion to acting as a certificate repository, they give administrators a central

location for entry of personal attribute information. Entries might include

network resources such as file servers, printers, and URLs. User informa-

tion, such as e-mail address, telephone privileges, and certificates, is

accessible from numerous clients in a controlled fashion. Directory clients

can locate entries and their attributes using a directory access protocol

such as Lightweight Directory Access Protocol (LDAP).

LDAP, defined by RFCs 1777 and 1778, was designed to give applica-

tions a means to access X.500 directories. It has been widely adopted

because it is simpler and easier to use than the X500 standard protocols.

Because it is not directory-specific, LDAP has also found its way into var-

ious environments, enhancing its interoperability.

NOTE:

Because of the selfiverifying nature ofcertificates, certificate directories

themselves do not necessariiy have to be trusted. Should a directory be

compromised, certificates can still be validated through the standard

process ofchecking the certificate chain through the CA. If the directory

server contains personal or corporate data, however; it may be necessary

to provide security and access control to it. I
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Key Recovery Server

In a PKI population of any size, one thing is sure to happen: End users

will lose their private keys. Whether the loss results from hardware fail-

ure or a forgotten password, it can create a significant burden on all par-

ties in the PKI. With the loss of a private key, for example, the CA must

revoke the corresponding PKC; in addition, a new key pair must be gen-

erated, and a new corresponding PKC must be created. As a resolt, all

data encrypted before the incident becomes unrecoverable.

One solution is to provide a key recovery server (or, more accurately, a

key backup and recovery server). As the name implies, the key recovery

server gives the CA a simple way of backing up private keys at the time

of creation and recovering them later.

Although key recovery servers can save considerable time and money,

problems can arise. For example, the key used to decrypt data could be the

same key used to sign messages (that is, the user’s private key). In this

case, an attacker could access the user’s private key and forge messages in

the user's name. For that reason, some CA5 support two key pairs: one for

encryption and decryption and another one for signature and verification.

We discuss the storage of multiple key pairs later in this chapter in the

section titled “Managing Multiple Key Pairs.”

NOTE:

The term “escrow” is sometimes used interchangeably with “recovery.”

There is, however; a clear distinction between the two. A key recovery

server is implemented in a given PKI by its administrators to provide

recovery functions for end users. In key escrow, on the other hand, a third

party {such as a federal or local law enforcement agency) is given keys

needed as evidence in an investigation.

Management Protocols

Management protocols assist in the online communication between end

users and management within a PKI. For example, a management proto-

col might be used to communicate between an RA and an end user or

between two CAs that cross-certify each other. Examples of PKI manage-

ment protocols include Certificate Management Protocol (CMP) and mes-
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sage formats such as Certificate Management Message Format (CMMF)

and PKCS #10.

Management protocols should support the following functions:

I Registration This is the process whereby a user first makes

herself or himself known to a CA (directly or through an RA).

I Initialization Before an end user system can operate securely, it

is necessary to install key materials that have the appropriate

relationship with keys stored elsewhere in the infrastructure. For

example, the end-user system must be securely initialized with the

public key and other assured information of the trusted CAis), to

be used in validating certificate paths. Furthermore, a client typically

must be initialized with its own key pair(s).

I Certification This is the process in which a CA issues a certificate

for a user’s public key and then either returns the certificate to the

end user’s client system or posts the certificate in a repository (or

both).

I Key recovery As an option, end user client key materials (for

example, a user’s private key used for encryption purposes) can be

backed up by a CA or a key backup system. If a user needs to recover

these backed-up key materials (for example, as a result of a forgotten

password or a lost key chain file), an online protocol exchange maybe

needed to support such recovery.

I Key update All key pairs must be updated regularly. In this

process, key pairs are replaced and new certificates are issued.

I Revocation This process is invoked when an authorized person

advises a CA of an abnormal situation requiring certificate

revocation.

I Cross-certification Two CA8 exchange information used in

establishing a cross-certificate. A cross-certificate is a certificate

issued by one CA to another CA that contains a CA signature key

used for issuing certificates.

NOTE:

Oniine protocols are not the only way to implement these functions.

Offline methods can also be used.
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Operational Protocols

Figure 6-2

The interaction

between the

various PKI

components

Operational protocols are those protocols that enable the transfer of cer-

tificates and revocation status information between directories, end users,

and relying parties. The X509 standard does not specify any single pro-

tocol for use within a PKI domain. Instead, the standard specifies how the

data should be structured for transport. The following protocols are com-

monly used within an environment: HTTP, FTP, e-mail, and LDAP.

Figure 6-2 illustrates the ways in which the various components ofPKI

interact.

 

 
 Key recovery
server

Registering and Issuing Certificates

CA5 can register end users in various ways, often depending greatly on

the environment. Many end users simply register with the CA or RA via

the Internet using a Web browser. A private corporate PKI may use an

automated system to register newly hired employees.

In either case, registration is one of the most important processes in a

PK}. It is at this point that the end user and the CA establish trust.
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Depending on the type of certificate being issued, each party may go to

great lengths to validate the other. For its part, the end user may review

the CA’s published certificate policies and certification practice state-

ments. For the CA to establish trust with the end user, the CA may

require financial documentation and proof of identity through in-person
communications.

After registration is complete and a relationship of trust has been

established between the CA and the end user, a certificate request can be

initiated. One of two approaches can be used. The end user generates a

key pair and provides the public key in the form of a standard PKCS #10

certificate-signing request (CSR), or the CA can generate a key pair on
behalf of the end user.

Revoking a Certificate

Certificates are created in the belief that they will be valid and usable

throughout the expected lifetime indicated in the Validity field. In some

cases, however, an unexpired certificate should no longer be used. For

example, the corresponding private key may have been compromised, the

CA has discovered that it has made a mistake, or the holder of the key is

no longer employed at a company. As a result, CAs need a way to revoke

an unexpired certificate and notify relying parties of the revocation.

The most common method is the use of a certificate revocation list.

(CRL). Simply stated, a CRL is a signed data structure containing a time-

stamped list of revoked certificates. The signer of the CRL is typically the

same entity that originally issued it (the CA). After a CRL is created and

digitally signed, it can be freely distributed across a network or stored in

a directory in the same way that certificates are handled.

CAs issue CRLs periodically on schedules ranging from every few hours

to every few weeks. A new CRL is issued whether or not it contains any

new revocations; in this way, relying parties always know that the most

recently received CRL is current. A PKI’s certificate policy governs its

CRL time interval. Latency between CRLs is one of the major drawbacks

of their use. For example, a reported revocation may not be received by the

relying party until the next CRL issue, perhaps several hours or several

weeks later.
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NOTE:

Currently, most applications (such as Wei) browsers and email readers)

do not use the various revocation mechanisms that are in place. However;

this is beginning to change as PKls are becoming more widespread.
 
 

 
 

Certificate Revocation Lists

As stated previously, a CRL is nothing more than a time-stamped, digi-

tally signed list of revoked certificates. The following section describes, in

detail, the various fields that make up a CRL. Figure 6—3 illustrates these

 

  
  
  
  

 
  

  
  

fields.

Figure 6-3 Version.

The standard Signature Algorithm Identifier
structure of a

Issuer Name
CRL

______ This Update (Date/Time)

Next Update (Date/Time)

User Certificate Serial Number / Revocation Date

CRL Entry Extensions

User Certificate Serial Number / Revocation Date

CRL Entry Extensions 
CRL Extensions

Signature

I Version This field indicates the version of the CRL. (This field is

optional for Version 1 CRLs but must be present for Version 2.)

II Signature Algorithm Identifier This field contains the identifier

of the algorithm used to sign the CRL. For example, if this field
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contains the object identifier for SHA—l with RSA , it means that

the digital signature is a SHA-l hash (see Chapter 5) encrypted using

RSA (see Chapter 4).

Issuer Name This field identifies the DN, in X500 format, of the

entity that issued the CRL.

This Update (Date/Time) This field contains a date/time value

indicating when the CRL was issued.

Next Update (Date/Time) This optional field contains a dateftime

value indicating when the next CRL will be issued. (Although this

field is optional, RFC2459 mandates its use.)

User Certificate Serial NumberlRevocation Date This field

contains the list of certificates that have been revoked or suspended.

The list contains the certificate’s serial number and the date and time

it was revoked.

CRL Entry Extensions These fields are discussed in the following

section.

CRL Extensions These fields are discussed in the section “.CRL

Extensions.”

Signature This field contains the CA signature.

CRL Entry Extensions

Just as an X509 Version 3 certificate can be enhanced through the use of

extensions, Version 2 CRLs are provided a set of extensions that enable

CA5 to convey additional information with each individual revocation. The.

X509 standard defines the following four extensions for use with a Ver-

sion 2 CRL:

Reason Code This extension specifies the reason for certificate

revocation. Valid entries include the following: unspecified, key

compromise, CA compromise, superseded, certificate hold, and others.

(For valid reasons, RFCZ459 recommends the use of this field.)

Hold Instruction Code This noncritical extension supports the

temporary suspension of a certificate. It contains an OID that

describes the action to be taken if the extension exists.

Certificate Issuers This extension identifies the name of the

certificate issuer associated with an indirect CRL (discussed later in

the section titled “Indirect CRLs”). If this extension is present,

RFC2459 mandates that it be marked critical.
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I Invalidity Date This noucritical extension contains a date/time

value showing when a suspected or known compromise of the private

key occurred.

CRL Extensions

The following CRL extensions have been defined on a per-CRL basis:

I Authority Key Identifier This extension can be used to

differentiate between multiple CRL signing keys held by this CA.

This field contains a unique key identifier (the subject key identifier

in the CRL signer’s certificate). The use of this field is mandated by
RFC2459.

I Issuer Alternative Name This extension associates one or more

alternative name forms with the CRL issuer. RFC2459 specifies that

if no DN is specified in the subject field of a certificate, it must have

one or more alternative names, and this extension must be flagged

critical. RF02459 recommends the use of this extension when

alternative name forms are available but mandates that it not be

marked critical.

I CRL Number This noncritical extension provides a means of easily

recognizing whether a given CRL has been superseded. It contains a

unique serial number relative to the issuer of this CRL. Although this

extension is noncritical, RFC2459 mandates its use.

I Delta CRL Indicator This critical extension identifies the CRL as

a delta CRL and not a base CRL (see later section, “Delta CRLs”). If

this extension is present, RF02459 mandates that it be marked

critical.

l Issuing Distribution Point This critical extension identifies the

name of the CRL distribution point for a given CRL (see next section).

It also indicates whether the CRL covers revocation of end user

certificates only or of CA certificates only, and it specifies whether the

certificate was revoked for a set reason. This extension can also be

used to indicate that the CRL is an indirect CRL. If this extension is

present, RFC2459 mandates that it be marked critical.

CRL Distribution Points

What happens when the CRL for a given PKI domain becomes too large?

CRL distribution points (sometimes referred to as CRL partitions) provide a

simple solution. The idea is that instead of a single large CRL, several

 



Public-Key infrastructures and the X509 Standard 1 89 

smaller CRLs are created for distribution. Relying servers retrieve and

process these smaller CRIB more easily, saving time, money, and bandwidth.

To use CRL distribution points, the CA supplies a pointer to a location

within the Issuing Distribution Point extension. Examples of such point-

ers are a DNS name, an IP address, or the specific filename on a Web

server. The pointer enables relying parties to locate the CRL distribution

point.

Delta CRLs

A delta CRL lists only incremental changes that have occurred since the

preceding CRL. In this way, delta CRLs provide a way to significantly

improve processing time for applications that store revocation informa-

tion in a format other than the CRL structure. With this approach, such

applications can add new changes to their local database while ignoring

unchanged information already stored there. After an initial full CRL

(base CRL) posting, an accurate list of revoked certificates is maintained

through delta CRLs. As a result, delta CRLs can be issued much more
often than can base CRLs.

CA5 use the Delta CRL Indicator extension to indicate the use of delta

CRLS. In addition, a special value, the “Remove from CRL” value, can be

used in the Reason Code extension to specify that an entry in the base

CRL may now be removed. An entry might be removed because certificate

validity has expired or the certificate is no longer suspended.

Indirect CRLs

Indirect CRLs are another alternative for improving the distribution of

CRLs. As the name implies, an indirect CRL is provided to the relying

party by a third party that did not necessarily issue the certificate. In this

way, URLs that otherwise would be supplied by numerous CAs (or other

revoking authorities) can be consolidated into a single CRL for distribu—

tion. For example, suppose that a private PKI is served by multiple CA5.

By using indirect CRLs, the PKI can receive one CRL issued by one CA (or

other trusted third party) on behalf of the other CAs.

Two CRL extensions enable the use of indirect CRLs. To indicate that

a CRL contains revocation information from multiple CA3, the Indirect

CRL attribute is set to True. It’s also important to provide the relying

party with additional information concerning revocation of each entry. A

CRL entry for each certificate is used to identify its CA. If there is no CRL

entry, the certificate is assumed to have been issued by the CA listed on
the first line of the CRL.
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Suspending a Certificate

At times, a CA needs to limit the use of a certificate temporarily but does

not require that it be revoked. For example, a corporate end user may be

going on vacation. In such cases, the certificate can be suspended, dis-

abling the use of PKI-enabled applications that should not be accessed in

the employee’s absence. When the employee returns, the CA removes the

suspension. This approach saves the CA time by not requiring it to revoke

and then reissue the certificate. To suspend a certificate, the CA uses the

value Certificate Hold in the Reason Code extension of the CRL.

Authority Revocation Lists

Like end users, CAs themselves are identified by certificates. Just as end

user certificates may require revocation, so do CA certificates. An author-

ity revocation list (ARL) provides a means of disseminating this revoca-

tion information for CAs. ARLs are distinguished from CRLs via the

Issuing Distribution Point field within the revocation list.

Online Certificate Status Protocol

Depending on the size of the PKI population, CRLs can become unwieldy.

Even if you use the CRL techniques we’ve discussed (CRL distribution

points, indirect URLs, and delta CRLS), the workload associated with

CRLs can become burdensome. On the other end, relying parties must

spend considerable resources obtaining the most current CRL.

A newer protocol, the Online Certificate Status Protocol (0081?), can be

used to check whether a digital certificate is valid at the time of a given

transaction. OCSP enables relying parties to conduct these checks in real

time, providing a faster, easier, and more dependable way of validating

digital certificates than the traditional method of downloading and pro-

cessing URLs. Figure 6-4 illustrates the interaction between various

()0SP components.

Here’s how it works. The CA provides a server, known as an OCSP

teaponder; that contains current revocation information. Relying parties

can query the OCSP responder to determine the status of a given certifi-

cate. The best way to obtain the information is to have the CA feed it

directly into the reSponder. Depending on the relationship between the CA

and the OCSP responder, the CA can forward immediate notification of a

certificate’s revocation, making it instantly available to users.
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The relying party sends a simple request to the OCSP responder, sus-

pending the use of the certificate in question until a reSponse is received.

The OCSP request contains the protocol version, the service requested,

and one or more certificate identifiers. The certificate identifier consists of

a hash of the issuer’s name, a hash of the issuer’s public key, and the cer-

tificate serial number.

The OCSP responder provides a digitally signed response for each of the

certificates in the original request. Replies consist of a certificate identi-

fier, one of three status values (Good, Revoked, or Unknown), and a valid-

ity interval (This Update and, optionally, Next Update). The response may

also include the time of revocation as well as the reason for revocation.

 

NOTE:

RFC2560 states that an OCSP request must be protocol-independent,

although HTTP is the most common approach in use.

Trust Models

Trust models are used to describe the relationship between end users,

relying parties, and the CA. Various models can be found in today’s PKls.

The following describes the two most widely used and well known: certifi-

cate hierarchies and cross—certification models.
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It should be noted, however, that each of these can be used not only

alone but in conjunction with one another as well.

Certificate Hierarchies

Figure 6-5

This simple
certificate

hierarchy might

occur in a large

corporation

As a PKI population begins to increase, it becomes difficult for a CA to

effectively track the identities of all the parties it has certified. As the

number of certificates grows, a single authority may become a bottleneck

in the certification process. One solution is to use a certificate hierarchy, in

which the CA delegates its authority to one or more subsidiary authori-

ties. These authorities, in turn, designate their own subsidiaries, and the

process travels down the hierarchy until an authority actually issues a

certificate. Figure 6-5 illustrates the concept of certificate hierarchies.
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A powerful feature of certificate hierarchies is that not all parties must

automatically trust all the certificate authorities. Indeed, the only author-

ity whose trust must be established throughout the enterprise is the high-

est CA. Because of its position in the hierarchy, this authority is generally

known as the root authority. Examples of current public root CAs include

Verisign, Thawte, and the US. Postal Service’s root CA.

Cross-Certification

The concept of a single, monolithic PKI serving every user in the world is

unlikely to become a reality. Instead, we will continue to see PKls estab-

lished between nations, political organizations, and businesses. One rea-

son for this practice is the policy that each CA should operate

independently and follow its own rules. Cross-certification enables CAs

and end users from different PKI domains to interact. Figure 6—6 illus-

trates the concept of cross-certification.

Cross-certification certificates are issued by CAs to form a nonhierar-

chical trust path. A mutual trust relationship requires two certificates,

which cover the relationship in each direction These certificates must be

supported by a cross-certification agreement between the CA5. This agree-

ment governs the liability of the partners in the event that a certificate

turns out to be false or misleading.

After two CA5 have established a trust path, relying parties within

a PKI domain are able to trust the end users of the other domain. This

capability is especially useful in Web-based business-to—business communi«

cations. Cross-certification also proves useful for intradomain communica-

tions when a single domain has several CA3.

NOTE:

The use ofcross-certification instead ofor in conjunction with certificate

hierarchies can prove to be more secure than a pure hierarchy model. In. a

hierarchy, for example, if the private key of the root CA is compromised,

all subordinates are rendered untrustworthy. In contrast, with cross-cer-

tification, the compromising ofone CA does not necessarily invalidate the
entire PKI.
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Figure 6-6
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x509 Certificate Chain

A certificate chain is the most common method used to verify the binding

between an entity and its public key. To gain trust in a certificate, 3 rely-

ing party must verify three things about each certificate until it reaches

a trusted root. First, the relying party must check that each certificate in

the chain is signed by the public key of the next certificate in the chain. It

must also ensure that each certificate is not expired or revoked and that

each certificate conforms to a set of criteria defined by certificates higher

up in the chain. By verifying the trusted root for the certificate, 3 certifi—

cate-using application that trusts the certificate can develop trust in the

entity’s public key. Figure 6-7 illustrates certificate chains and how they

may be used.
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Figure 6‘7 Issuer:
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chain ‘ ‘ ‘."""

Subject:

I . Metro Motorsssuer.

Metro Motors

  Issuer:

Subject:

Manufacturing Marketing
  

To see this process in action, consider what happens when a client

application in the marketing department verifies the identity of the mar-

keting department’s Web server. The server presents its certificate, which

was issued by authority of the manufacturing department. The marketing

client does not trust the manufacturing authority, however, so it asks to

see that authority’s certificate. When the client receives the manufactur-

ing authority’s certificate, it can verify that the manufacturing authority

was certified by the corporation’s root CA. Because the marketing client

trusts the root CA, it knows that it can trust the Web server.

The Push Model Versus the Pull Model

The chaining described here relies on individuals having access to all the

certificates in the chain. How does the relying party get these certificates?

One way is for the issuer to send an entire chain of certificates when send-

ing one certificate (see Figure 6-8). This is the push model, in which the

sender pushes the entire chain of certificates to the recipient, and the

recipient can immediately verify all the certificates. Thepull model sends

only the sender’s certificate and leaves it up to the recipient to pull in the

CA’s certificate. Because each certificate contains the issuer’s name, the

recipient knows where to go to verify the certificate. (To make searches

easier, Version 3 certificates offer more fields to hold information.) Even

with the push model, however, some recipient chaining may be necessary.
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Managing Key Pairs

The management of key pairs—the policies whereby they are generated

and protected—is important in any PKI. As described in this section, such

policy decisious depend greatly on the intended purpose of the keys. For

example, keys that enable nonrepudiation for e-commerce transactions

are more likely to be handled with greater care than those used to provide

for secure e-mail.
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Generating Key Pairs

Keys can be generated in one of two ways. In the first option, key pairs are

generated on the end user’s system. The second option requires that a

trusted third party (Such as the CA or its delegated RA) generate the key

pair. Which of these options is more appropriate is a matter of debate.

Each approach has advantages and disadvantages.

End-user generation of keys can be effective, especially for generating

keys 'for the purpose of nonrepudiation. This option enables the user to

build greater confidence in the trust shared with relying parties because

the key value is never exposed to another entity. One problem is that the

end user must provide software or hardware to generate strong keys.

Even though most browsers incorporate this functionality, it tends to be

CPU-intensive and slow. In addition, end users face the task of securely

transporting the public key to the CA (or corresponding RA) for certifica-
tion.

The second method, in which a central system such as the CA or one of

its RAs generates key pairs, also has its advantages. A central system

commonly has greater resources to provide for faster key generation. Fur-

thermore, an end user may require cryptographically strong keys that

have been generated by a trusted and independently evaluated crypto-

graphic module. In other cases, an end user may need private key backup,

and this service can be easily accommodated without unnecessary trans-

fer of the private key.

Because each approach offers benefits, many CAs support both options.

Yet another option is the use of multiple key pairs. Here. end users gen-

erate keys used to provide nonrepudiation, and the central system pro-

vides the keys for encryption.

Protecting Private Keys

The strength of public—key cryptographic systems and their associated

certificates relies greatly on the security of private keys. It is crucial that

only the certified owner—the person or organization identified in the cer-

tificate—use the corresponding private key. The following mechanisms

are used to safeguard and limit access to private keys:

I Password protection This is the most common form of protection

employed by PKIs. A password or persona! identification number

(PIN) is used to encrypt the private key, which is stored on the local
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hard disk. However, if the key can be obtained from the hard disk,

the problem of accessing the key is reduced to simple password

guessing. As a result, this is considered the least secure method and

is generally not thought to be a long-term solution.

I PCMCIA cards (Personal Computer Memory Card International

Association) To reduce the risk of a key being stolen from the user’s

hard disk, many vendors have begun to offer the option of storing

keys on chip cards. Because the key must still leave the card and

enter the system’s memory, however, it remains vulnerable to theft.

Chip cards are discussed in Chapter 9.

l Tokens With tokens, the private key is stored in an encrypted

format in a hardware device and can be unlocked only through the

use of a one-time passcode provided by the token. Although this

technique is more secure than those mentioned so far, the token still

must be available to the end user whenever the private key is needed,

and it can be lost.

I Biometrics The key is associated with a unique identifying quality

of an individual user (for example, a fingerprint, a retinal scan, or a

voice match). The idea is that biometrics can provide the same level of

security as tokens while alleviating the need for the user to carry a
device that can be lost.

I Smart cards In a true smart card (see Chapter 3), the key is stored

in a tamperproof card that contains a computer chip, enabling it to

perform signature and decryption operations. Thus, the key never

leaves the card, and the possibility of compromise is greatly reduced.

However, the user must carry a device, and if the card was used for

encryption and is lost, the encrypted data may be unrecoverable.

NOTE:

Most users take few or no precautions to protect their private keys from

theft. As public—key technology becomes more widely used, organizations

will probably devote more time to awareness programs and education.

Managing Multiple Key Pairs

As stated throughout this chapter, it is not uncommon for end users to

have more than one certificate for various purposes, and therefore they
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may have various key-pair types. For example, a key used to digitally sign

a document for purposes of nonrepudiation is not necessarily the same

one that would be used for the encryption of files. For this reason, it is cru-

cial that end users as well as PKI administrators be aware of the various

management techniques used to secure these keys.

A private key that is used to provide digital signatures for the purposes

of nonrepudiation requires secure storage for the lifetime of the key. Durs

ing its lifetime, there is no requirement for backup; if the key is lost, a new

key pair should be generated. Alter the lifetime of the key has expired, the

key should not be archived. Instead, it should be securely destroyed. This

practiCe ensures against unauthorized use that may occur years after the

key is considered expired. The use of secure time-stamping can also help

reduce fraud. To authenticate data signed by these private keys, it is nec-

essary to maintain the corresponding PKC.

NOTE:

For private keys used for nonrepudiotion, the ANSI X957 standard

requires that they be created, used, and destroyed within one secure
module.
 

Conversely, a private key used to support encryption should be backed

up during its lifetime to enable recovery of encrypted information. After

the private key is considered expired, it should be archived to support

later decryption of encrypted legacy data. Whether and how correspond—

ing public keys should be backed up and archived greatly depends on the

algorithm in use. With RSA, the public key does not require backup or

archiving. If Diffie-Hellman key agreement was used, on the other hand,

the public key will be required to recover data at a later time.

Updating Key Pairs

As mentioned earlier in this chapter in the section titled “Management

Protocols,” good security practices dictate that key pairs should be

updated periodically. One reason is that, over time, keys become suscepti-

ble to compromise through cryptanalytic attacks. After a certificate has

expired, one of two things can occur: rThe CA can reissue a new certificate

based on the original key pair, or a new key pair can be generated and a
new certificate issued.
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Key pairs can be updated in one of two ways. In a manual update, it is

left to the end user to recognize that the certificate is about to expire and

request an update. This approach places a considerable burden on users to

keep track of a certificate’s expiration date. Failing to request a timely

update will put the user out of service and unable to communicate

securely. As a result, the end user must perform an off-line exchange with
the CA.

A better solution is an automated update, in which a system is in place

to check the validity of the certificate each time it is used. As the certifi-

cate approaches expiration, the automated system initiates a request for

key update with the appropriate CA. When the new certificate is created,

the system automatically replaces the old certificate. In this way, the end

user is free to carry out secure operations uninterrupted.

Keeping a History of Key Pairs

A CA’s published policy states the time period during which a given cer-

tificate can be considered valid (typically, one year). As a result, it’s not

uncommon for a user to accumulate three or more key pairs within three

years. A key history mechanism provides a way of archiving keys and cer-

tificates for later use. The other alternatives, such as decrypting and reen—

crypting data as new keys are generated, would be impractical in most
environments.

Such a history is of great importance to any PKI. For example, suppose

that a data file was signed with my private signing key three years ago.

How does a relying party get a copy of the corresponding PKC to verify the

signature? Similarly, what if the public key from my certificate was used

to encrypt some data or another symmetric key to perform a digital

enveloping process five years ago? Where can the corresponding private

decryption key be found? If a key history has been kept, the necessary

keys for both scenarios will be available.

NOTE:

As stated earlier, similar keys can. be used for various purposes (for exam-

ple, private keys can. be used not only for decryption but also for signing).

Because a key’s purpose dictates the method ofstorage, it may be neces-

sary to have two or more separate key pairs. 
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Deploying a PKI

As organizations plan for deploying PKIs, they have three basic options:

outsourcing, insourcing, or running their own. With outsourcing, a third

party runs a CA on behalf of the organization. This option requires the

organization to have a great deal of trust in the third party and its poli-

cies and practices. The advantage of outsourcing is that the organization

can leverage outside expertise and resources that it may not have in-

house.

With insourcing, an organization provides its own resources, but the

administrative staff is leveraged from outside. This option enables an

organization to maintain control over its own CA policies while taking

advantage of outside expertise. Many PKI vendors, including Entrust

Technologies and Verisign, include this service in their standard offerings.

Finally, it is possible for an organization to run its own CA. By using

PKI-enabling products or building its own, an organization manages

every aspect of the PKI. This option greatly benefits organizations that

have in-house expertise, affording them the most flexibility and control

over the system.

The Future of PKI

PKIs have grown considerably in the past decade as increasing numbers

of organizations have become dependent on them. However, many

improvements are in the works, not only by noncommercial organizations

such as the International Organization for Standardization (ISO) and

Internet Engineering Tbsk Force (IETF) but also by many PKI vendors.

Two such improvements are roaming certificates and attribute certifi-

cates, discussed in the next two sections.

Roaming Certificates

As you’ve seen, standard certificates do a great job of binding an individ-

ual to a public key, but a new problem has arisen: the need for portability.

It is not uncommon for a user to move among several computers within an

organization. A certificate can be placed on every possible machine, but in

order to be effective, the private key also must be present.
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Figure 6-9

Roaming
certificates

Until recently, only two real solutions have provided the mobility of cer-

tificates and their corresponding private keys. The first is smart card tech-

nology, in which the public/private key pair is stored on the card. However,

this option has drawbacks, such as the inconvenience of carrying an item

that can be lost or damaged. In addition, smart cards are usable only on

systems that have a smart card reader. The second option, which is not

much better, is to copy the certificate and private key onto a floppy for

later use. Again, the user is forced to carry an item that can be lost or dam—

aged, and a floppy is not as cryptographically secure as a smart card.

A new solution is the use of roaming certificates (perhaps better stated

as roaming certificates and private keys), which are provided through

third-party software. Properly configured on any system, the software (or

plug-in) enables a user access to his or her public/plivate key pairs. The

concept is simple. Users’ certificates and private keys are placed in a

secure central server. When the user logs into a local system, the pub»

lie/private key pair is securely retrieved from the server and placed in the

local system’s memory for use. When the user has completed work and

logs off of the local system, the software (or plug-in) scrubs the user’s cer-

tificate and private key from memory.

To date, this technology has been limited mainly to private PKIs, such

as corporations, because of scalability issues. However, as roaming appli-

cations and users become more prevalent, it’s conceivable that roaming

certificate technology will be developed into a cost—effective way of pro-

viding virtual PKIs worldwide. Figure 6-9 illustrates the interaction of

common roaming certificate systems.

l-Iost Credential Credential

system server direetory

 
I
I

l — — — Secure transport . —
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NOTE:

Although the concept ofroaming certificates has proven quite useful,

some standards do not support this technology. One such standard is

ANSI X957, which requires that private keys used for the purposes of

nonrepudiation be created, used, and destroyed within one secure

module.

Attribute Certificates

Another popular emerging standard is the attribute certificate (AC).

Although ACs are similar in structure to public-key certificates, ACs pro—

vide different functionality. ACs do not contain a public key for an indi-

vidual. Instead, they are used to bind an entity to a set of attributes that

specify membership, role, security clearance, or other authorization infor-

mation. Attribute certificates, like public-key certificates, are digitally

signed to prevent changes after the fact.

In conjunction with current authentication services, ACs can provide a

means to transport authorization information securely. Applications that

can use this technology include those that provide remote access to net-

work resources (such as Web servers _and databases) and those that con-

trol physical access to buildings and facilities. For example, after a user

signs on, his or her identity can be verified through the use of the current

public-key certificate. After the user has logged in, his or her public key

can be used to create a secure session with an access control server, and

the user’s attribute certificate can be checked against a list of valid users.

Figure 6-10 illustrates a standard attribute certificate.

NOTE:

ISO has defined the basic attribute certificate, and IETF is currently pro-

fiting these definitions for use in Internet environments.



204 Chapter 6 

 
   

 
 

Figure 6-10 Version (VJ or v.2)
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Certificate Policies and Certification

Practice Statements

Certification authorities act as trusted third parties, vouching for the con-

tents of the certificates they issue. But what exactly does a CA certify?

What makes one CA more trusted than another? Two mechanisms are

used by CAs to establish trust among end users and relying parties. These

are certificate policies and certification practice statements.

The X509 standard defines a certificate policy as “a named set of rules

that indicates the applicability of a certificate to a particular community

and/or class of application with common security requirements.” One or

more certificate policies can be identified in the standard extensions of an

X509 Version 3 certificate. As relying parties obtain a certificate for pro-

cessing, they can use the policies specified in that certificate to make a

decision of trust.

A more detailed description of practices is made available through the

use of a certification practice statement, a concept originated by the Amer—

ican Bar Association (ABA). According to the ABA’s “Digital Signature

Guidelines,” a CPS is “a statement of the practices which the certification
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authority employs in issuing certificates.” A CPS gives relying parties a

basis for making a trust decision concerning a CA.

The relationship between certificate policies and CPSs is not entirely

clear. Each kind of document was created for unique reasons by different

sources. CPSs tend to provide a detailed statement about a CA’s practices,

whereas certificate policies tend to provide a broader definition of prac-

tices.

RFCZ527 outlines the key cemponents of a CPS as follows:

I Introduction This part of a CPS provides a general overview of

the certificate policy definition, indicating any applicable names or

other identifiers (for example, ASN.1 object identifiers) that are used

in the statement. It should also provide all contact information

(name, phone number, address, and so on) of the responsible

authority.

I General Provisions This section describes the various obligations,

rights, and liabilities of the CA or RA, end users, and relying parties.
It also includes information about how and how often certificates and

URLs will be published.

I Identification and Authentication This section describes the

procedures used by the CA or RA to authenticate an end user

applicant. It also describes how end users should request certificate

revocations and key updates.

I Operational Requirements This section describes the

requirements for certificate enrollment, issuance, and acceptance. It

also addresses suspension, revocation, and the frequency of CRLs.

Various security concerns are also covered, such as audit procedures,

compromise and disaster recovery, and procedures for CA

termination.

I Physical, Procedural, and Personnel Security Controls This

section defines the nontechnical controls that are in place to provide

for secure key generation, subject authentication, certificate issuance,

certificate revocation, audit, and archiving. Such controls, for

example, might include off-site record storage and background

investigations of employees who fill trusted roles.

I Technical Security Controls This section describes the security

measures taken by a CA to protect its private keys. Examples include

where and how private keys are stored and who can activate and

deactivate a private key.
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I Certificate and CRL Profile This section specifies the format to

be used for certificates and CRLs, the current versions supported, and

the name forms used by the CA, the RA, and the end user. Also

identified here are the supported certificate and CRL extensions and

their criticality.

l Specification Administration This section specifies how this

certificate policy definition or CPS‘will be maintained. Covered are

change procedures for updating this statement, how it will be

distributed, and the approval procedures for this and any new
statement.

Although public-key technology solves many of the problems associated

with symmetric—key technology, it presents a new set ofdistribution prob-

lems. The most widely accepted standard for public-key technology is the

X509 standard, which describes the format of public-key certificates to

assist in the secure distributiou of these keys. X509 Version 3 certificates,

for example, contain various fields and extensions that help govern their
use.

A public-key infrastructure (PKI) plays an important role in the oper-

ation of public-key certificates. A PKI manages the collaboration between

end users and relying parties, enabling the secure issuance and operation

of these certificates. Certificate revocation and status checking are sup-

ported through the use of a CRL or the Online Certificate Status Protocol

(OCSP), or both.

Certificate policies and certification practice statements provide end

users and relying parties with information on which to base a decision to

trust a given CA.

Real-World Examples

Various products are available that provide public-key infrastructure sup--

port, including developer toolkits, which assist individuals in creating their

own public—key infrastructures, and companies, such as Verisign, that have
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based their business on providing certificates as a service. The following is

a description of two PKI products developed by RSA Security, Inc.

Keon Certificate Server

The Keen certificate server is a fully Functional -CA\ RA with all of the nec—

essary tools to run a full CA. This server provides useful functionality,

such as the One Step function. The One Step function actually allows the

CA administrator to set up Keon programmatically so that as new

employees are added to a human resource database, a certificate is gen-

erated and stored for use. This functionality takes a lot of the burden off

end users and administrators.

Keon Web PassPort

Another advancement in the PKI arena is the new Keen Web PassPort.

The Web PassPort provides roaming-certificate technology, which is simi-

lar to certificates discussed in the “Roaming Certificates” section earlier in

this chapter. Through the use of a browser plug-in, a user can download

the necessary private and public information to make use of PKI—enabled

applications. A user may now, through the use of strong authentication

and one small plug-in, make use of any computer system anywhere in the

world.




