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Foreword

Welcome to the second book from RSA Press, RSA Security’s Official
Guide to Cryptography!

As the Internet becomes a more pervasive part of daily life, the need
for e-security becomes even morecritical. Any organization engaged in
online activity must assess and manage the e-security risks associated
with this activity. Effective use of cryptographic techniquesis at the core
of many of these risk-managementstrategies. This book provides a prac-
tical guide for the use of cryptographic ¢-security technologies to provide

for privacy, security, and integrity of an organization’s most precious
asset: data.

It is an exciting time for cryptography, with important technical, busi-
ness, and legal events occurring in quick succession. This book can help
the reader better understand the technology behind these events.

In January 2000, the United States Government announcedasignifi-
cant relaxation in restrictions on the export of strong cryptography. This
decision has permitted U.S. companies to now competefor cryptographic
business on a worldwide basis. Previously, many of the algorithms dis-
cussed in this book were treated as munitions and were subject to severe
restrictions on their export from the U.S.

In September 2000, the patent on the RSA algorithm, arguably the
most important patent in cryptography, expired. Now anyfirm or indi-
vidual can create implementations of this algorithm, further increasing
the pervasiveness of one of the most widespread technologies in the his-
tory of computing.

In October 2000, the United States National Institute of Standards and

Technology announcedits selection of the winneroftheAdvanced Encryp-
tion Standard (AEBS)selection process, an algorithm called Rijndael devel-
oped by two Belgian researchers. The AES algorithm is intended to
replace the venerable, and increasingly vulnerable Data Encryption Stan-
dard (DES)algorithm. AES is expected to become the most widely used
algorithm of its type in a short time.

The security technology industry has undergone explosive growth in a
short period of time, with many new options emergingfor the deployment
of e-security techniques based on cryptography. Ranging from new devel-
upments in cryptographic hardware to the use of personal smart cards in
public key infrastructures, the industry continues to increase the range
of choices available to address e-security risks. This book provides the
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XV[ Foreword 

reader with a solid foundation in the core cryptographic techniques of

e-security—including RSA, AES, and DES mentioned previously, and
many others—and then builds on this foundation to discuss the use of
these techniques in practical applications and cutting-edge technologies.

While this book does discuss the underlying mathematics of cryptog-

raphy, its primary focus is on the use of these technologies in familiar,
real-world settings. It takes a systems approach to the problemsof using
cryptographic techniquesfor e-security, reflecting the fact that the degree
of protection provided by an e-security deploymentis only as strong as the
weakest link in the chain of protection.

We hope that you will enjoy this hook and the othertitles from RSA
Press. We welcome your comments as well as your suggestions for future
RSAPress books. For more information on RSA Security, please visit our
website at www. rsasecurity.com; more information on RSA Press can
be found at www. rsapress.com.

Burt Kaliski

Director and Chief Scientist

RSA Laboratories

bkaliski@rsasecurity.com
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Preface

Application developers never used to add security to their products
because the buying public didn’t care, To add security meant spending
money to include features that did not help sales. Today, customers
demand security for many applications. The Federal Bureau of Investi-
gation published the following Congressional Statement on February 16,
2000:

“There were over 100 million Internet users in the United States in 1999.

That numberis projected to reach 177 million in United States and 502 mil-

lion worldwide by the end of 2003. Electronic commerce has emerged as a
new sector of the American economy, accounting for over $100 billion in sales

during 1999; by 2003 electronic commerceis projected to exceed $1 trillion.”

At the same time, the Computer Security Institute (CSI) reported an
increase in cybercrime, “55% of the respondents to our survey reported
malicious activity by insiders.” Knowingthis, you can be sure growingcor-

porations need security products.
The most importantsecurity tool is cryptography. Developers and engi-

neers need to understand crypto in order to effectively build it into their
products. Sales and marketing people need to understandcrypto in order
to prove the products they are selling are secure. The customers buying
those products, whether end users or corporate purchasing agents, need
to understand crypto in order to make well-informed choices and then to
use those products correctly. IT professionals need to understand crypto
in order to deploy it properly in their systems. Even lawyers need to
understand crypto because governmentsat the local, state, and national
level are enacting new laws defining the responsibilities of entities hold-
ing the public’s private information.

This book is an introduction to crypto. It is not about the history of
crypto (although you will find somehistorical stories). It is not a guide to
writing code, nor a math booklisting all the theorems and proofs of the
underpinningsof crypto. It does not describe everything there is to know
about crypto; rather, it describes the basic concepts of the most widely
used crypto in the world today. After reading this book, you will know
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what computer cryptography does and howit’s used today. For example,
you will

mw Understandthe difference between a block cipher and a stream

cipher and know whento use each(if someonetries to sell you an
application that reuses a stream cipher’s key, you will know why you
shouldn’t buyit).

m Know why you should not implement key recovery on a signing-only
key.

w Understand what SSL does and whyit is not the securily magic
bullet solving all problems, which sume e-commerce sites seem to
imply.

mw Learn how some companies haveeffectively implemented crypto in
their products.

m Learn how some companies have used crypto poorly (smart people
learn from their own mistakes;brilliant people learn from other

people’s mistakes).

There are, of course, many more things you will learn in this book.
Chapter 1 delves into why cryptography is needed today; Chapters 2

through 5 describe the basic building blocks ofcrypto, such as symmetric
keys and public keys, password-based encryption, and digital signatures.
In Chapters 6 through 8, you will see how these building blocks are used
to create an infrastructure throughcertificates and protocols. In Chapter
9, you will learn how specialized hardware devices can enhance your secu-
rity. Chapter 10 explores the legal issues around digital signatures.
Finally, Chapters 11 and 12 show you somereal-world examples of com-
panies doing it wrong and doingit right.

Throughout this book we use some standard computer hexadecimal
notation. For instance, we might show a cryptographic key suchasthefol-
lowing: .

Ox14C608B9 62AF9086

Many of you probably know what that means, but if you don’t, read
Appendix A.It’s all about how the computer industry displays bits and
bytes in hexadecimal. It also describes ASCII, the standard wayletters,
numerals, and symbols are expressed in computers.
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In Chapter 6, you'll find a brief description of ASN.1 and BER/DER
encoding. If you want to drill down further into this topic, read
Appendix B.

In Appendix C, you will find further detailed information about many
of the topics discussed in the book. These details are not crucial to under-
standing the concepts presented in the main body of the book; but for
those who wish to learn more about the way crypto is used today, this
appendix will offer interesting reading.

Finally, the accompanying CD contains the RSA Labs Frequently
Asked Questions (FAQ) about cryptography. The FAQ contains more
detailed information about many of the concepts presented in this book.
For instance, the FAQ describes much of the underlying math of crypto
and thepolitical issues surrounding export, and it offers a glossary and
bibliography. Our goal in writing this book wasto explain the crypto that
the vast majority of you need to know.Ifyou want more detail, start with
the FAQ.
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“Accordingto the affidavit in supportofthe criminal complaint, the Secret
Service began investigating this matter when it learned that there had
been unauthorized access to [online brokerage] accounts ofseveral [anony-
mous company] employees. One [anonymous company] employee told
authorities that approximately $285,000 had been drained from his
[online brokerage] account when an unknown person was able to access his
account by calling the online broker and providing a name andsocial secu-
rity number. It was later determined that at least eight [anonymous com-
pany] employees had been victimized this past spring, and that these eight
had lost a total of$700,000 from their stock accounts . . . [anonymous com-
pany] officials revealed that while working in the financial department,
[the accomplice] had access to confidential employee information such as
social security numbers and home addresses.”*

If someonetells you, “I don’t need security. I have no secrets, nothing
to hide,” respond by saying, “OK, let me see your medicalfiles. How
about your paycheck, bank statements, investment portfolio, and credit
card bills? Will you let me write down your Social Security number,

  

*Source: U.S. DepartmentofJustice, July 20, 2000
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credit card numbers, and bank account numbers? What's the PIN for
your ATM,credit card, or phone card? What’s your passwordto log on to
the network at work? Where do you keep your spare house key?”

The point is that we all have information we want kept private. Some-
times the reason is simply our natural desire for privacy; we would feel
uncomfortable if the whole world knew our medicalhistory or financial
details. Another good reason is self-protection—thieves could use some
kinds of information to rob us. In other words, the motives for keeping a

secret are not automatically nefarious.
Corporations also have secrets—strategy reports, sales forecasts, tech-

nical product details, research results, personnel files, and so on.
Although dishonest companies mighttry to hide villainous activities from
the public, most firms simply want to hide valuable information from dis-
honest people. These people may be working for competitors, they might
be larcenous employees, or they could be hackers andcrackers: people who
break into computer networks to steal information, commit vandalism,
disrupt service, or simply to show what they can do.

Security Provided by Computer
Operating Systems

In the past, security was simply a matter of locking the door or storing
files in a locked filing cabinet or safe. Today, paper is no longer the only
medium of choice for housing information. Files are stored in computer
databasesas well as file cabinets. Hard drives and floppy disks hold many
of our secrets. How do you lock a hard drive?

How Operating Systems Work

Before we talk about how computer data is protected, let’s take a brief
look at how computers get and store information. The usual way to access
data on a computeror networkis to go through the operating system (OS),
such as DOS, Windows, Windows 95, Windows NT, MacOS, UNIX,Linux,
Solaris, or HP/UX, The OS workslike an application, taking input, per-
forming operations based on the input, and returning output. Whereas,for

65



66

Why Cryptography? 3

example, a spreadsheet application takes the numbers you type into it,
inserts them into cells, and possibly performs calculations such as adding
columns, an OS takes your commandsin the form of mouseclicks,joy-
sticks, touch screens, or keyboard input-commandssuch as “showa listing
of the files in this directory’—and performs the request, such as printing
to the screenalist offiles. You can also ask the OSto launch a particular
application—say, a text editor. You then tell the text editor to openafile.
Behind the scenes, the editor actually asks the OS to find thefile and
makeits contents available to the editor.

Virtually all computers built today include some form of protection
courtesy of the OS,Let’s take a look at how such protection works.

Default OS Security: Permissions

Virtually all operating systems have some built-in permissions, which
allow only certain people access to the computer(its hard drive, memory,
disk space, and network connection), Such access is implemented via a
login procedure. If the user does not present the appropriate credentials
(perhaps a user name and password), the OS will not allow that individ-
ual to use the computer. But even after a user is logged in, certain files
may still be off-limits. If someone asks to see a file, the OS checks to see
whetherthat requesteris on thelist of approved users;ifnot, the OS does
not disclose the contents (see Figure 1-1).

Access to most business computers and networksis controlled by some-

one known as a superuser or system administrator (often shortened to sys
admin). This system administrator is the person charged with creating
and closing user accounts and maintaining the systems and network. A

typical task of this superuser accountis to override protections. Someone
forgot a password? A file is read-protected (meaning that it cannot be
opened and read)? The superuser has permission to circumvent the OS
permissions to respondto these problems.(This is where the name “super-
user” comes from; this individual can do anything.)

How does the OS know that the person requesting such system over-
rides is the superuser? The OS grants this access by user name and pass-
word. The superuser user nameis usually “su”or “root” or “administrator.”
Unfortunately, techniques for circumventing these default defenses are
widely known.
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Figure 1-1

(a) In Windows
NT,a file’s
permission is
given in its
Properties screen.
(b) In UNIX, you
type Is -I to see a
file’s permission
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Many computers or operating systems come with a preset superuser
account and password. In manycases, several passwords are used for var-
ious superuser functions. The superuser may have a password to create
accounts, a different password to control network functionality, anotherto
conduct or access nightly backups, and so on,
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For a cracker, logging on to a system as the superuseris possibly the
best wayto collect data or do damage.If the superuser has not changed an
operating system’s preprogrammed passwords, the networkis vulnerable
to attack. Most crackers know these passwords, and their first attempt to
break into a network is simply to try them.

If an attacker cannotlog on as the superuser, the next best thing might
be to figure out the user name and password of a regular user. It used to
be standard practice in most colleges and universities, and in some com-
mercial companies, to assign every student or employee an account with
a user nameand aninitial password—the password being the user name.
Everyone wasinstructed to log on and change the password,butoften,
hackers and crackers logged on before legitimate users hud a chance. In
other cases, some people never actually used their accounts. Either way,
intruders were able to gain access. This “user name as password”system
is still used on many campusesandcorporate settings to this day.

If the password of a particular user name is not the user nameitself,

crackers may try to guess the correct password. Guessing a password
might be easy for an insider (such as a fellow employee), who probably
knows everyone’s user name. It’s common for people to use a spouse’s
nameor a birthday as a password. Others write down their passwords,
and a quick search of a desk mightyield the valuable information. Some

systems have guest accounts, with a user nameof“guest” and a password
of “guest.” *

But even if the intruder is not very good at guessing passwords, appli-
cations are available that automate exhaustive password searches. These
applications, called password cracking software, are made by a variety of
people for various reasons—somelegitimate and others notso legitimate.
To use oneofthese tools, the intruder needs access to your computer(net-
work access may be sufficient). Once connected, the hacker simply runs
the password cracking application. If the password is weak, within min-
utes the hacker will have privileged access.

Figure 1-2 shows a popular application known as l0phtCrack. This
application is designed to allow systems administrators to test the pass-
words in use by their users. The idea is that if a sys admin can crack a
password, so can crackers,
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Figure 1-2
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Attacks That Bypass Operating Systems

An operating system tags certain files and prevents unapproved people
from seeing the contents. Although a crackeror thief might be able to gain
access to such files by posing as the superuseror a regular user, another
possibility is to ignore the OS altogether and get the contents in some
other way.

Data Recovery Attack

One function of a computer’s operating system is to help users find and
use the specific data or application they want. In this way, an OS works
like the index of a book. Just as an index directs you to the specific page
where you'll find the piece of information you want out ofall the pages in
a book, the OS organizes data undera directory file structure and usesfile
extensions to direct you to the data you want on the hard disk. But as far
as the computer is concerned, the data is simply so manyelectronicbits.
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Figure 1-3

Inspector Copier
from Reynolds
Data Recovery
(courtesy of Mark
Tessin of

Reynolds Data
Recovery)

Why Cryptography? 7

If you don’t care what order they’re in, it’s possible to read those bits as
bits and not asfiles of text or numbers. Human beings can’t read bits in
this way, but software and hardware devices are available that can scan

storage media and read the bits. These tools bypass the OS and grab the
raw bits of data, which can then be reconstructed into the originalfiles,

In fact, an entire industry has been built on the conceptof readingbits
as bits, a process called data recovery. When you have a system crash or

some kind of physical damageto a hard drive, you can take your computer
to a data recovery expert, who often can reconstruct the files on the disk.
These companies provide a valuable service, helping to prevent total
losses in the event of a natural disaster or computerfailure.

Reynolds Data Recovery of Longmont, Colorado, performs data recoy-
ery and also sells software that, allows you to perform your ownrecovery
(see Figure 1-3). According to the company’s advertising, one of its prod-
ucts, Inspector Copier, “does not reference the OS installed on the devices,
[and] this allows copies of different systems such as NT, Novell, UNIX,
Linux or Windows 2000!”
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Figure 1-4

Setting network
permissions on a
local drive using
Windows NT

 

But the techniques of data recovery can also be used by attackersto cir-
cumventOS protections. To extend Inspector Copier, Reynoldssells a net-
work backup service that remotely backs up data on hard drives. It uses
Inspector Copier to extract the bits so that even if a hard drive is dam-
aged, a clean backup can be made. Although this service can be valuable
to many companies, it also means that the data recovery program can he
run remotely, Mark Tessin of Reynolds points out that the service can
even circumvent Windows NTsecurity. Suppose your PC is connected to a
network but you don’t want the outside world to see your C: drive. You can
set the permissions on your drive so that only you haveread or write per-
mission to it (see Figure 1-4). The Reynolds network backup service can
circumvent that permission and readthefiles anyway. Thisis not to imply
that Reynolds Data Recoverywill steal your data, only to illustrate that it
is possible.
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For serious disk drive failures (such as fire damage), data recovery
might be possible only through specialized hardware devices. But an
attackeris not trying to steal your data from a damaged drive. Data recov-
ery software is so sophisticated and effective that it’s all anyone needs to
extract bits from a healthy storage medium.

To ensure the security ofyour data, you must assumethat even though
some protections may be sufficient against some opponents, there will
likely be someone out there with the resources to mount a successful
attack. Only ifsuch an individual never comes after your data are you safe,

Memory Reconstruction Attack

Often, sensitive material is not stored on hard drives but does appear in
a computer’s memory. For example, when the program you're running

allocates some of the computer’s memory, the OS tags that area of mem-
ory as unavailable, and no oneelse can use it or see it. When your'efin-
ished with that area of memory, though, many operating systems and
programs simply “free” it—markingit as available—without overwriting
it. This means that anything you put into that memory area, even if you
later “deleted” it, is still there. A memory reconstruction attack involves

trying to examineall possible areas of memory. The attacker simply allo-
cates the memory youjust freed and sees what's left there.

A similar problem is related to what is called “virtual memory.” The
memory managers in many operating systems use the hard drive asvir-
tual memory, temporarily copying to the hard drive any data from mem-
ory that has been allocated but is momentarily not being used. When that
information is needed again, the memory manager swaps the currentvir-
tual memory for the real memory. In August 1997, The New York Times
published a report about an individual using simple tools to scan his hard
drive. In the swap space, he found the password he used for a popular
security application.

On UNIX systems, the OS “dumpscore” in response to certain system

errors. Core dumphas becomealmost synonymous with a program exiting
ungracefully. But on UNIX,the core file that results from a core dumpis
actually a snapshot of memoryat the time the error occurred. An attacker
who wants to read memory maybe able to induce a core dump and peruse
the corefile.
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Figure 1-5 illustrates how memoryreconstruction attacks work.
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 Figure 1-5
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Added Protection Through Cryptography

For your secrets to be secure, it may be necessary to add protections not
provided by your computer system’s OS. Thebuilt-in protections may be
adequate in somecases. If no one ever tries to break into or steal data
from a particular computer, its data will be safe. Or if the intruder has not

learned how to get around the simple default mechanisms, they’re suffi-
cient. But many attackers do havethe skills and resources to break vari-

ous security systems. If you decide to do nothing and hope that no skilled
cracker targets your information, you may get lucky, and nothing badwill
happen. But most people aren’t willing to take that risk.

As you'll learn in the chapters to come, one of the most importanttools
for protecting data is cryptography, any of various methods that are used
to turn readablefiles into gibberish. For example, suppose your sensitive
material looks like this:

do not believe that the competition can match the new feature set,
yet their support, services, and consulting offerings pose a
serious threat to our salability. We must invest more money in our

Here is what the data looks like whenit’s encrypted:

w?Ssdi:1/41vi6é°]¥ omicAt[<_b:vH”_6 UGO>e’e%,<_lo; iii@_"G
rigSééiqyBeiK_e@7AFTI=6_.. . A®R8’»> Yah . . . o-
287 I-cO(tm)¢véR] *T_7'(r)<N_vu6éR* q3/4¥0_A+AUE-] _>F6mE66_c&aB1/28#0hE (GC
[gh_!>7=Oadtn* “b61/4jWM1/4B-A_=71/4<"-iEvyab(=.AtH__

Even if an attacker obtains the contentsofthefile, it is gibberish. It does
not matter whether or not the OS protections worked, Thesecret isstill
secret.

In addition to keeping secrets, cryptography can add security to the
process of authenticating people’s identity. Because the password method
used in almost all commercial operating systems is probably not very
strong against a sophisticated (or even an unsophisticated) attacker, it’s
important to add protection. The cryptographic techniques for providing
data secrecy can be adapted to create strong digital identities. Ifattackers
want to pose as someoneelse,it’s not a matter simply of guessing a pass-
word. Attackers must also solve an intractable mathematical problem (see
Figure 1-6).

74



75

12 Chapter 1

Figure 1-6

To pose as Steve
Burnett of RSA

Security, you'd
have to factor this

number(see also
Chapter 4)

 

111,103,906,294,152,860,689,339,03 1,055,865,718,
797,834, 178,049,634,993,529,562,676,343,628,611,
324,998,912,180,711,483,651,242,218,389,147,835,
598,353,467,199, 134,664,870,577,824,583,579,439,
533,042,724,963,790,890,892,988,756, 173,576,982,
820,529,088,558, 175,928,394, 148,986,383,304,407,
218,632,861,415,573,872,050,375,072,884,180,285,
838,244,342,451,974,820,729,610,630,901,524,541,
854,611,490,009,870,503,127
 

The Role of Cryptography in Data Security
In the physical world, security is a fairly simple concept. If the locks on
your house’s doors and windowsareso strong that a thief cannotbreak in
to steal your belongings, the house is secure. For further protection
against intruders breaking through the locks, you might have security
alarms, Similarly, if someonetries to fraudulently withdraw money from
your bank accountbut theteller asks for identification and doesnot trust
the thief’s story, your money is secure. When you sign a contract with
anotherperson, the signatures are the legal driving force that impels both
parties to honor their word.

In the digital world, security worksin a similar way. One conceptis pri-
vacy, meaning that no one can breakinto files to read your sensitive data
(such as medical records) or steal money(by, for example, obtaining credit
card numbers or online brokerage account information). Privacy is the
lock on the door, Another concept, data integrity, refers to a mechanism
that tells us when something has been altered. That’s the alarm. By
applying the practice of authentication, we can verify identities. That's
comparable to the ID required to withdraw money from a bank account
(or conduct a transaction with an online broker). Andfinally, nonrepudia-
tion is a legal driving force that impels people to honortheir word.
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Cryptographyis by no meanstheonly tool needed to ensure data secu-
rity, nor will it solve all security problems.It is one instrument among
many. Moreover, cryptographyis not foolproof. All crypto can be broken,
and, more importantly,if it’s implementedincorrectly, it adds no real secu-
rity. This book provides an introduction to cryptography with a focus on

the proper use of this tool. It is not intended as a complete surveyofall
there is to know about cryptography. Rather, this book describes the most
widely used crypto techniques in the world today.
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Cryptography converts readable data into gibberish, with the ability to
recover the original data from that gibberish. Thefirst flavor of crypto is
called symmetric-key. In this approach, an algorithm uses a key to convert
information into what looks like random bits. Then the same algorithm
uses the same key to recover the original data.

Pao-Chi is a sales rep for a company that makes printing machinery. He
sells to newspapers, magazines, independent printing houses large and
small, and even universities. His product line includes presses, tools,

replacementparts, repair services, and training. The end of the quarteris
coming up in a couple ofweeks, and he’s just received a memo from Gwen,
the vice president of sales. The companyis havingdifficulty “makingits
numbers,” the memosays. Then it outlines a new, complex pricing policy.

This newpolicy lists the asking prices for all their products and also
indicates the lowest prices sales reps are allowed to negotiate. In the past,
they've based the amountof the discounts they give on thesize of the
order, expectations of future sales with a given client, and other factors.
But now, the memostates, sales reps have the authority to give even big-
ger discounts.

Pao-Chi wants to closely limit who has access to this information.If
potential customers knew how far he was willing to go in discounting,
they would have the edge in negotiations. Existing customers might
demandrebates, and competitors would gain knowledge that could aid.
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Figure 2-1

If you feed your
sensitive files to

an encryption
program, you get
what looks like

gibberish

them in winning contracts. In addition, stock analysts or business
reporters could report the company’s slow sales this quarter, affecting its
reputation.

How can Pao-Chi and Gwen keep this memosecret? They could choose
not to let it leave the office, or maybe Pao-Chi could simply memorizeit.
But it’s more than 20 pages long and too complex to memorize, and he'll
need to consult it while trying to make a sale.

So Pao-Chi keeps an electronic copy of the memo on his laptop, and
takes steps to protect thefile. In Chapter 1, we saw that typical protection
techniques are not sufficient. Pao-Chi can lose his laptop, or someone
might steal it or simply look through the files while he’s at lunch. To pro-
tect the file, he decides to encryptit.

Let’s say Pao-Chi buys a computer program to encrypt sensitivefiles.
When running the program, he simply flips the switch to “Encrypt” and
feeds the file to the program (see Figure 2-1), When thefile comes out of
the program,it looks like gibberish. If intruders get their handsonit, they
will have no idea what it means.
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Symmetric-Key Cryptography 17

The problem is that as long as thefile is gibberish Pao-Chi won’t be
able to read it either. To read it, he must somehow convert it back to its
original form. The program has just such a feature:he flips the switch to
“Decrypt,” feeds in the gibberish, and out comes thefile in its former con-
dition.

But there’s one problem with this scenario. If intruders are able to
obtain the encrypted file, surely they can obtain the program that con-
verts it back. Even if they can’t, where can Pao-Chi safely store the pro-
gram? If he can keep the program out of the hands of attackers, why not
store his file there as well?

No, he doesn’t have a place where he can keep the encrypting and
decrypting program safe. And if Pao-Chi has access to it, he must assume
that attackers can gain access. That’s why he uses encryption in thefirst
place. By itself, an encryption machine cannot protect secrets. Pao-Chi
needs additional protection.

That additional protection is a secret number.If he feeds thefile and a
secret number to the program, the program will encrypt the file. Until the
program has a secret number, it will not run. To decrypt the file, Pao-Chi
must present the gibberish and the same secret number(see Figure 2-2).
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Figure 2-3

If attackers try
numbers other
than the secret

value, they get
only more
gibberish

If an attacker somehow obtains a copy of the gibberish and feedsit to
the program for recovery, it won’t work, The program asks for the number,
which the attacker does not know.It’s possible to try numbers at random
(or to try all possible numbers systematically), but every time a wrong
number is inserted, the application simply spits out different gibberish
(see Figure 2-3).
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Even though someone can use the same program Pao-Chi used,it never

re-creates the original file without the secret number. Even if the attacker
guesses a numberclose to the original number, even if it is off by only 1,
the program will not produce anythingclose to the correct encrypted file,

Some Crypto Jargon

The system we've just described is known as symmetric-key cryptography,
Somepeople call it secret-key cryptography. Here are someofficial terms,
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When you want to convert sensitive information to gibberish, you
encrypt the data. To convert it back, you decryptit.

To do this, you use an algorithm. The word “algorithm”is a scientific
term for a recipe or step-by-step procedure.It is a list of instructions or
things to do in a particular order. An algorithm might havea rigidlist of
commandsto follow, or it might contain a series of questions and depend-
ing on the answers, describe the appropriate steps to follow. A mathemat-
ical algorithm mightlist the operations to perform in a particular orderto
“find x.” For example, an automobile diagnostic algorithm may ask ques-
tions about oil pressure, torque, fluid levels, temperature, and so on, to
determine what’s wrong. A computer program can also implement an
algorithm, meaning the program converts the algorithm’s list of com-
mands, questions, and operations into the computer's language, enabling
it to perform the steps in the appropriate order. In computer cryptography,
algorithms are sometimes complex mathematical operationsor simply bit
manipulations. Many encryption algorithms exist, and each one hasits
own particular list of commandsorsteps. Just as you can have a program
that plays Solitaire or one that computes the trajectory of satellites, you
can have a program that implements an encryption algorithm that takes
your data and converts it to gibberish.

The data that you want to keep secret is called plaintext (somecallit
cleartext). Your plaintext could be a human-readabletext file, such as the
memo, Or it could be a binary file, which looks like nonsense to human
eyes but makes perfect sense to a computer program. For example,ifyou
open a PowerPointfile using Windows’ Edit text editor, the file looks like
gibberish because the program can’t convert the PowerPoint formatting
information; but if you open the samefile in PowerPoint, it appears as
intended. Whetheror not your information is readable by a human or a

given program,it’s called plaintext.
After the data is encrypted, it’s known asciphertext.
The algorithm encrypts your plaintext into ciphertext, but it needs one

more thing—a key. In our sales rep example, the secret number used to
encrypt the pricing memo wasits key. In computer crypto, the key is
always a numberor a set of numbers.

We've also met the attacker, someone trying to steal information. Actu-
ally, an attacker may try to do more than simply uncover someoneelse’s
secrets. Some attackers try to pose as people they are nat, disable Weh
sites, delete someoneelse’s information, prevent customers from buying at
a particular online merchant, slow down systems, and on and on and on.
The term “attacker”is simply a catchall for the individual from whom you
must protect your digital assets.
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The study of breaking cryptographic systems is knownas of cryptanaly-
sis. Similar to the attacker, the cryptanalyst looks for weaknessesin algo-
rithms. All algorithms can be “broken;” the good ones are simply the
algorithms strong enough to withstand an attack for so long the break
comes“too late.” So a cryptanalyst’s job is to find weaknesses that may help
someone break the algorithm faster. Attackers may use cryptanalytic tech-
niques to do damage, but they mayalso use othertools.

The cryptographer develops crypto systems; the cryptanalyst looks for
weaknesses. It’s important for the crypto community to know about
the weaknesses because attackers are looking for them as well, Attackers

are almost certainly not going to announce their discoveries to the world,
so cryptanalysts perform a service, letting us all know what attackers
probably know but won’ttell us.

What Is a Key?

The term “key” comes from the fact that the secret number you choose
works in the same way that a conventional key works.To protect the con-
tents of your house, you install a lock on the door. To operate the lock, you
insert the key and turn it. The lock’s tumblers and mechanisms work with
the key in a prescribed way to activate a barrier that prevents the door
from being opened. To unlock the door, you insert the key and turn it in
the opposite direction. The tumblers and mechanisms work with the key
to reverse the process and allow the door to be opened.

In cryptography, to protect the contents of your files, you install a lock
(an encryption algorithm) on your door (the computer). To operate the lock
(encrypt the data), you insert the key (the secret number) and execute it
(instead of turning this key, you operate the program by double-clicking,
clicking OK, or pressing Enter). The algorithm performsits steps using the
key to alter the plaintext and convert it to ciphertext. To unlock the
encrypted file, you insert the same key and execute, The algorithm reverses
the steps and converts the ciphertext back to the original plaintext.

Just as only the correct house key can open yourfront door, only the
correct encryption key can decrypt data. In symmetric-key cryptography,
the key that is used to encrypt data is the samekey that is used to decrypt
it. “Symmetric” essentially means “the same on twosides,” and that’s what
we have here: the same key on two sides of the encryption process. Fig-
ure 2-4, a picture you'll see quite a bit in this book, is the image weuseto
visualize cryptography.
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Figure 2-4  
This encryption
algorithm uses
the key to convert
plaintext to
ciphertext. In
symmetric-key
cryptography, the
key used for Plaintext —+——>|Ciphertext
encryption is also
necessary for
decryption Algorithm
SS encrypt

  

 
In this book we talk about some of the manydifferent encryption algo-

rithms you have to choose from, but remember that keys are not inter-
changeable among algorithms. For example, suppose that you encrypt
data using the Triple Digital Encryption Standard (DES) algorithm (dis-
cussed later in the section titled “Triple DES”). If you try to decrypt the
data using the Advanced Encryption Standard (ABS) cipher (discussed
later in the section titled “Advanced Encryption Standard”), even if you
use the samekey, you will not get the correct result.
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Why Is a Key Necessary?

All computer crypto operates with keys. Why is a key necessary? Whynot
create an algorithm that doesn’t need a key?

As you saw in the memo example,if attackers can understandthe algo-
rithm, they can recover secret data simply by executing the algorithm.
That’s like installing a deadbolt on your front door with the lock on the
outside. It’s true that when the deadbolt is in place, the door cannot be

opened. But anyone can open the door simply by turningthe lock.
It might seem that the solutionis to keep the algorithm secret, but that

approach has several problems. First, attackers always crack the algo-
rithm (see “Historical Note: They Always Figure Out The Algorithm,”later
in this chapter). What’s more, suppose you do manage to keep the algo-
rithm secret. Unless you are a cryptography expert and develop your own
algorithms, you also must trust the company that wrote your algorithm
never to reveal it deliberately or accidentally. Does anyone have that

muchtrust in a corporate entity?
Here’s the real question: Which would you trust more to keep secrets—

an algorithm that must be kept secret, or an algorithm that can doits job
even if everyone in the world knows exactly how it works? That’s where
keys comein.

Keysrelieve you of the need to worry about the algorithm used in your
encryption scheme.If you protect your data with a key, you need protect
only the key, something that’s easier to do than protecting an algorithm.
In this book you’ll learn a lot about key protection. Also, ifyou use keys to
protect your secrets, you can use different keys to protect different secrets.
This meansthat if someone breaks one ofyour keys, your othersecrets are
still safe. If you’re depending on a secret algorithm, an attacker who
breaksthat one secret gets access to all your secrets.

Generating a Key

In a symmetric-key cryptographic system, the key is only a number. It can
be any numberaslongasit’s the right size, so you simply pick a number
al random, Then, the next Lime you need a key, you pick another numberat
random. The question is, how do you pick a number at random?
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Historical Note: They Always Figure
Out the Algorithm

Cryptographersare often asked a key question: “Can't I just encrypt
my data and simply nottell the attackers what algorithm I used and
how big the key is? How can they break my message then?” There
are three answers.

Answer 1: They Always Figure It Out Anyway

Attackers can deduce your algorithm without any help from you.
Eventually, they always figure it out, Always. Without exception.
Neverin the history of cryptography has someone beenable to keep
an algorithm secret.

In war, spies have always found ways of discovering the algo-
rithm, whether it originates in a mathematical operation or a
machine. Theysteal it or get someone to reveal it, maybe through
blackmail, extortion, or the time-tested eryptanalytic technique
known as “the rubber-hose attack.” Agents have always uncovered
the algorithm or gotten a copy of the machine. For example, in World
WarII, Polish soldiers captured the German Enigma machineearly
in the war. Enigma was the crypto machine the German military
used. The allies (namely the British) were able to crack the code
more easily because they had the machinein their possession.

Alternatively, the cryptanalysts simply figure out the algorithm.
In World WarII, U.S. codebreakers were able to determine the inner

workings of the Japanese code machines without having one of the
machines in their possession.

In modern times, a company called Gemstar Development created
a code that converted date, time, and channel indicators into a sin-

gle code number. These code numbers were published in TV listings
as “VCR+.” People who bought a GemStarcontrol box could program
their VCRs simply by punching in the numbers, simplifying the
process and thus benefiting people who ownedtheproduct. Only the
Gemstar box knew how to decrypt the code numbers. But Ken
Shirriff, Curt Welch, and Andrew Kinsman broke the Gemstar algo-
rithm, and they published it in the July 1992 issuc of Cryptologia, a
trade journal. Now, anyone who wants to decode those numbers

continues
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(such as VCR manufacturers) can do it without buying a Gemstar
control box.

Another example is RC4, an algorithm invented in 1987 but never
published, Cryptanalysts and other experts studied it and deter-
mined that RC4 was a good way to keep data secret. But the com-
pany that created it, RSA Data Security, never made the inner
workings of the RC4 algorithm public. This secrecy was for monetary
and not security reasons; the company hoped that by keeping it
secret no one else would implementandsell it. In 1994, anonymous
hackers posted the algorithm on the Internet. How did theyfigureit
out? It was probably by stepping through a copy of the object code
with an assembly language debugger. Incidentally, RC4 is now used
as part of Secure Socket Layer (SSL), the World Wide Web’s secure
communication protocol (see Chapter 7). RC4 is arguably the most
commonly used symmetric cipher, even more so than DES,discussed
later in this chapterin the section “Digital Encryption Standard.”

If a cryptographic system is hardware-based, engineers open it
and look at the internals. In 1998, David Wagner and Ian Goldberg,
at the time graduate students at the University of California at
Berkeley, opened a supposedly secure digital cell phone and cracked
its code.

Sometimesit is possible to keep an algorithm secret long enough
to be effective, but eventually the enemyfiguresit out, For example,
in World WarII, the U.S. Army used Navajo soldiers to communicate.
They simply spoke in Navajo. The Japanese military did not have
anyonein its employ who spoke Navajo, nor did it have dictionaries
or other reference material. The encryption worked because the

algorithm (the Navajo languageitself) was kept secret.
Now,ofcourse, any large military has linguists on staffwho either

knowor can easily learn any language used to encrypt secrets.

Answer 2: You Can't Make Money Developing
Secret Algorithms

Gemstar did make money for a while using a secret algorithm, but
only until someone cracked it. The ultimate problem, though, goes
deeper. Think aboutit this way: How can yousell something without
letting buyers see what they're buying?

continues

 
87

 



88

SymmetricKey Cryptography 25 

Suppose, for example, that you sell a software cryptographic sys-
tem to an e-mail vendor, enabling it to encrypt messages. How could
you preventthis client, or anyoneelse, from looking at your code?
There are plenty of ways to revérse-engineer software, as shown in
the RC4 story.

“Fine,” you may counter, “I won’t sell my algorithm to just anyone.
I'll make sure that only people I trust can useit.” Is it possible to
trust enough people to make money that way? And how are your
trusted clients going to use your algorithm? About the only thing
they could do so is store their data and talk to each other. But people
want to communicate with others who do not purchase their algo-
rithm from the same vendor. As a result, the algorithms must be
standardized, and that means they must be public.

The other problem with trying to sell algorithms arises on the
buyer’s side of the arrangement. If you want to use cryptography,
you must employ a hardware device or a software program. The
problem is this: Just as you haveaccess to the product, so do attack-
ers. Where did you get your hardwareor software—aretail software
store, a business-to-business vendor? Attackers can go to the same
source and get their own copies.

In short, ifyou use your own algorithm and wantto keepit secret,
you can’t sell it. As a result, you can’t make any money.

Answer3: Publicly Known Algorithms
Are More Secure

Let’s say you’re the purchasing agent for your company andit’s up to
you to decide which cryptographic algorithm to buy. Your companywill
use this algorithm to store data and communicate securely. Two sales
reps offer their products. One warns, “This algorithm is secure as long
as the attacker does not know its inner workings.” The other proclaims,
“You can tell attackers what the algorithm is and how longthe keyis,
but they can neverretrieve your sensitive data without the key.”

Which one would you buy?

If it is possible to build a cryptographic system in whichthe algo-
rithm is completely known,andifattackersstill can’t break it with-
out the key, isn’t that system more secure than one that can be
broken if the algorithm is uncovered? Well, it is possible to build
such cryptographic systems.

continues
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Whenalgorithms are made public, cryptanalysts and computer
engineers get a chance to examine them for weaknesses.If an algo-
rithm is vulnerable, you can choose notto use it. Otherwise, you can
be confident that your datais safe. If an algorithm is kept secret, on
the other hand, analysts will not be able to find any weaknessesit
may have. Does that mean it has no weaknesses? Not necessarily;it
simply means that you don’t know whetheror not it is vulnerable.
Maybea cracker, lurking somewhere in a basement, has obtained a
copy of the algorithm (remember, they always dn) and has already
found a successful attack. But. this cracker has decided not to share

the information.Ifyou use the secret algorithm,all your data is com-
promised but you don’t knowit.

Whenan algorithm is made public, however, that’s no guarantee
that it is secure. Maybe analysts have not yet found the weakness,
and the basement-dwelling cracker has found it. But great minds
thrive on finding flaws in public cryptographic systems. There’s
prestige (and sometimes a little money) in finding chinks in the
armor.If the cryptographic community cannot find something wrong
with an algorithm, there’s a good chance that nooneelsewill.

Sources: See David Kahn’s The CodeBreakersfor the histories of the Enigma, Purple,
and Navajo codetalkers. See Cecil Adams’ Return of the Straight Dope for the Gem-
Starstory.

 
To answerthat question,let’s consider what the word “random” means.

You probably have an intuitive idea of randomness, and mostlikelyit’s
correct. To be more formal than intuition, we could put it this way: “If
someone knows what the current numbersare,is it possible to predict the

next numbers?” To put it the way cryptographersprefer, random values
are simply sets of numbersthat pass statistical tests of randomness and
are unrepeatahle. .

Suppose that you choose a few thousand numbers and ask a mathe-
matician, “Are these numbers random?”To simplify things and to conform
to computer conventions, you make the numbers binary, meaning that
they are sequencesof1’s and 0’s. The mathlete will draw on a setoftests
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Figure 2-5

Testing numbers
for randomness.
Here, the pattern
110 appears too
often, so it fails 
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0110110110110100

00110110110110001

that examine the numbers. Among these tests (see Figure 2-5) are ques-
tions such as these: Are there roughly the same countof 1’s and 0’s? Do

some patterns of 1’s and 0’s appear “too often”? Do somepatterns of1’s
and 0’s appear “not often enough”? If the numbers pass the tests, we say
that the numbersare probably random. “Probably” random? Can’t we say

“definitely” random? No, we can’t, and in a few paragraphsyou'll see why,

A Random Number Generator

If you have a few thousand numbers, you can test them for randomness.
But where do you get those few thousand numbersin thefirst place? One
source is a random number generator (RNG). These devices work by gath-
ering numbers from various kinds of unpredictable inputs, such as by
measuring radioactive decay, examining atmospheric conditions in the
vicinity, or calculating minute variancesin electrical current. These num-
bers pass the tests of randomness.

Ifyou ask the machinefor a second group of numbers, you will virtually
neverreceive the same sequenceagain. That’s because the output is based
on input that’s always changing. The numbers are unrepeatable.

So to return to our original definition, we can ask, “Can anyone predict
whatthe next numberswill be?” To do that, someone would haveto predict
the minor variations in the radioactive decay, atmospheric conditions, or
electricity of the current. These are things we assumethat no one cando,

Intel produces an RNG that uses system thermal noise as its variable
and unpredictable input. Currently, this device does not ship automatically
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with every Pentium-based PC, although maybein the futureit will. Other
companies (such as nCipher, Chrysalis, and Rainbow)sell devices known
as cryptographic accelerators (discussed in Chapters 3 and 9). These
devices come with RNGs.

A Pseudo-Random Number Generator

Where can you get random numbers if you don’t have an RNG?It turns
out there are algorithms called pseudo-random number generators
(PRNGs). Just as there are algorithms that convert plaintext into cipher-
text, there are algorithms that produce whatare called “pseudo-random”
numbers.

Ifyou use oneof these algorithms to generate a few thousand numbers
and apply the statistical tests, the numbers pass. What makes these num-
bers pseudo-random and not random is that they are repeatable. If you
install the same PRNG on another computer, you get the sameresults. If

you run the program two weekslater, you get the sameresults.
This is one reason we say that numbers that passstatistical tests of

randomness are “probably” random. Even if they pass, do we know
whether they are repeatable? The math tests give us only part of the
answer.

If the numbers are repeatable, what good is a PRNG? The answeris
that you can change the output by using what is known asa seed. Just as
RNGs take input (radioactive decay, atmospheric conditions, electrical
variances), a PRNG takes input (the seed). If you change the input, you
change the output. With RNGs, the input is constantly changing onits
own, unpredictably. With a PRNG,it’s up to you to makesure the input
changes each time you want to generate new numbers.

Whatis this seed? In the real world, a seed can be lots of things: the
time of day down to the millisecond, various constantly changing com-
puter state measurements, user input, and other values. Maybe you’ve
seen a user-input seed collector. An application may ask you to move the
mouse around, At selected intervals, the program looks at where, on the
screen, the arrow is located. This value is a pair of numbers: how many
pixels up from the bottom of the screen and how manypixels over from
the left. Any one inputis not sufficient, but if you put them all together

you have unpredictability (see Figure 2-6),
You may be thinking, “Why use a PRNGto generate the numbers? Why

not just use the seed?” There are two main reasons. Thefirst reason is the
need for speed, Seed collection is often time-consuming. Suppose you need
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Figure 2-6

A random

numbergenerator
(left) collects
unpredictable
information and
converts it into
random numbers.

A pseudo-random
numbergenerator
(right) collects
seed information
and convertsit
into numbers that

passstatistical
tests of random-
ness but can be

repeated
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Seed information:

Timeof day to the
millisecond, thread info on

“hidden”registers, user
mouse movements, user

typing timings, more

Electrical currents are

perfect. With a good
measuring device, you can
see there are slight
variations from millisecond

to millisecond
 

PRNG wy

11101110100100001100111001

110110100001111 10110010000
0011101100100110011010100

10011011101100001100110011

only a few thousandbits of random data. A seed collector may take several
minutes to gather the necessary numbers. When wasthe last time you
waited several minutes for a program to do something without getting
frustrated? To save time, you can gather 160or so bits of seed (which may
take little time), feed it to the PRNG, and get the required thousands of
bits in a few milliseconds.

The second reason to use a PRNGis entropy, a term that describes
chaos. The greater the entropy, the greater the chaos. To put it another
way, the more entropy, the more random the output. Suppose you want
128 bits of entropy. A seed may havethat, but it is spread over 2,400 bits.
For example, the time of day down to the millisecond is represented in
64 bits. But the year, the month, the date, and maybe even the hour and
minute might be easy to guess. The millisecond—twoorthree bits of the
time of day—is where the entropy is. This means that out of 64 bits of
seed, you have 2 bits of entropy. Similarly, your other seed data may suf-
fer the same condition. A PRNG will take that 2,400 bits of seed and com-
press it to 128 bits.

Well, then, why not take the seed and throw awaythe low-entropy bits?
In a sense, that’s what a PRNG does. You can do it, or you can have a
PRNGdoit, and the latter meansless workfor you.
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By the way, most PRNGs use message digests to do the bulk of the
work. We talk about the details of digests in Chapter 5, but for now,let’s
just say that they are the “blenders” of cryptography. Just as a blender
takes recognizable food and pureesit into a random, unrecognizable blob,
a message digest takes recognizable bits and bytes and mixes them up
into a random, unrecognizable blob. That sounds like what we look for in
a PRNG.

A good PRNGalways produces pseudo-random numbers,regardless of
the seed. Do you have a “good”seed (one with lots of entropy)? The PRNG
will produce numbers that pass tests of randomness. Do you have a “bad”
seed (ar no seed at all)? The PRNG will still produce good numhers that,
passthetests.

Then why do you need a good seed? The answeris givenin the next section.

Attacks on Encrypted Data

Someone wants to read the data you’ve encrypted. This person, known as
the attacker, must first decrypt the data. To do that, the attacker must
either identify the key or break the algorithm.

Attacking the Key

If attackers can figure out what your key is, they can decrypt your data.
One approach,the brute-force attack, is to try every possible key until the
right one is identified. It works this way. Let’s say your key is a number
between 0 and 100,000,000,000 (one hundredbillion). The attacker takes
your ciphertext (perhaps only 8 or 16 bytes’ worth) and feeds it to the
decryption algorithm along with the “alleged key” of 0. The algorithm does
its job and produces a result. If the resulting data appears reasonable,0
is probably the correct key. If it’s gibberish, 0 is not the true key. In that
case, you try 1, and then 2, 3, 4, and so on (see Figure 2-7).

Remember, an algorithm simply performsits steps, regardless of the
input. [t has no way of knowing whetherthe result it producesis the cor-
rect one. Even if the value is close to the key, maybe off by only 1, the
result is gibberish. So it’s necessary to look at the result to tell whetherit
might be the key. Smart attackers write programs to examine the result.
Is it a series of letters of the alphabet? Yes? Pass this key to the attacker.
No? Try the next key.
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Figure 2-7 [o>
The brute force |
attack. If you Ciphertext
know that the key
is a number t&MO#14~h|—>
between 1 and
100,000,000,000,
you try each
number in turn
until a number

produces
something that’s
not gibberish

 

 aaa,

 

Ciphertext

t&MO#14h 
Ciphertext

t&MO#'14~h|—> 
It usually takes verylittle time to try a key. The attacker can probably

write a program that tries many keys per second. Eventually, the attacker
could try every possible number between 0 and 100billion, but that may
not he necessary. Once the correct key is found, there’s no need to search
any more. On average, the attacker will try half of all possible keys—in
our example, 50 billion keys—before finding the correct one. Sometimesit
takes more time, sometimesless, but, on average, about half the possible
keys mustbe tried.
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Figure 2-8

The larger the
key size, the
greater the range
of possible values
a key can be.
Eachbit in each

position, whether
0 or 1, is
important

 

How long wouldit take an attackerto try 50 billion keys? Three years?
Three days? Three minutes? Suppose you wantto keep yoursecretsafe for
at least three years, but it takes an attacker only three minutes to try
50 billion values. Then what do you do? You choose a bigger range. Instead

offinding a number between 0 and 100 billion, you find a number between
0 and 100billion billion billion billion. Now the attacker will havetotry,

on average, many morekeys before findingtheright one.
This concept of the range of possible keys is known as key size. Goldis

measuredin troy ounces, atoms are measured in moles, and cryptographic
keys are measured in bits. If someone asks, “How big is that key?” the
answer mightbe 40 bits, 56 bits, 128 bits, and so on. A 40-bit key means
that the rangeofpossible values is from 0 to about 1 trillion. A 56-bit key
is 0 to about 72 quadrillion. The range of a 128-bit key is so large thatit’s
easier just to say it’s a 128-bit key (see Figure 2-8).

40-bit keys
(in hex)

64-bit keys
00 00 00 00 00 (in hex)
00 00 00 00 01

00 00 00 00 02

00 00 00 00 00 00.00 00

00 00 00 00 00 00.00 01

00 00 00 00 00.00 00 02

6F 55 81 D20C 59 C671 DD54 B4 40 92

FP FF FP FF FF FF FF FF FF FF FF FP FP
 

128-bit keys
(in hex) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02

20 14 86 AE 18 84 5A CFE9 80 98 B2 44 3C 11 D2

FE FF FF FF FF FF FF FF FF FF FF FF FF FE FF FF
 

Eachbit of key size you add doubles the time required for a brute-force
attack. If a 40-bit key takes 3 hours to break, a 41-bit key would take 6
hours, a 42-bit key, 12 hours, and so on. Why? Each additional bit doubles
the numberof possible keys. For example, there are eight possible num-
bers of size 3 bits:

000 001 010 O11 #100 #101 110 «111
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These are the numbers from zero to seven. Now add one morebit:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Every numberpossible with 3 bits is possible with 4 bits, but each of
those numbersis possible “twice”: once with the first bit not set, and again
with it set. So if you add a bit, you double the numberofpossible keys. If
you double the numberof possible keys, you double the average timeit
takes for brute-force attack to find the right key.

In short, if you want to make the attacker's job tougher, you choose a
bigger key. Longer keys mean greater security. How big should a key be?
Over the years, RSA Tahoratories has offered challenges. Thefirst person
or organization to crack a particular message wins a money prize, Some of
the challenges have been tests of brute-force time. In 1997, a 40-bit key
fell in 3 hours, and a 48-bit key lasted 280 hours. In 1999, the Electronic
Frontier Foundation found a 56-bit key in 24 hours,In eachcase,a little
more than 50 percent of the key space was searched before the key was
found. In January 1997, a 64-bit challenge was issued. As of December
2000,it has still not been solved.

In all these situations, hundreds or even thousands of computers were
operating cooperatively to break the keys, In fact, with the 56-bit DES
challenge that the Electronic Frontier Foundation broke in 24 hours, one
of those computers was a custom-built DES cracker. This kind ofcomputer
does only one thing: check DESkeys. An attacker working secretly would
probably not be able to harness the power of hundreds of computers and
might not possess a machine built specifically to crack a particular algo-
rithm. That’s why, for most attackers, the time it takes to break the key
would almostcertainly be dramatically higher. On the other hand,if the
attacker were a governmentintelligence agency with enormous resources,
the situation would bedifferent.

We can devise worst-case scenarios. Let’s use as our baseline an exag-
gerated worst-case scenario: examining 1 percent of the key space of a
56-bit key takes 1 second, and examining 50 percent takes 1 minute (see
Table 2-1), Each time that we add a bit to the key size, we double the
search time.

Currently, 128 bits is the most commonly used symmetric-keysize.If
technology advances andbrute-force attackers can improve on these num-
bers (maybe they can reduce the 128-bit times to a few years), then we
would need to use a 256-hit. key.

You may be thinking, “Technology is always advancing,so I'll have to
keep increasing key sizes again and again. Won't there come a time when
T’ll need a key so big it becomes too unwieldy to handle?” The answeris
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Table 2-1 Bits

A Worse Than 56

Worst-Case 57
Scenario: How

Long a Brute- 58
Force Attack Will

Take for Various

Key Sizes 72
80

90

108

128

 

1 percent of Key Space

1 second

2 seconds

4 seconds

4.2, minutes

17,9 hours

190.9 days

535 years

140,000 millennia

146 billion millennia

50 percent of Key Space

1 minute

2 minutes

4 minutes

4,2 hours

44.8 days

31.4 years

321 centuries

8 million millennia

8 trillion millennia

that you'll almost certainly never need a key longer than 512 bits
(64 bytes). Suppose that every atom in the known universe (there are
about 25° of them) were a computer and that each of these computers
could check 2°keys per second. It would take about 2" millennia to
search 1 percent of the key space of a 512-bit key. According to the Big
Bangtheory, the amountof time that has passed since the universe came
into existence is less than 2”* millennia. In other words, it is highly
unlikely that technology will ever advance far enough to force you to use
a key that’s “too big.”

That may not matter, though, because there’s another attack on the
key. Instead of trying to reproduce the key, attackers can try to reproduce
the PRNG and seed that were used to produce the key. It workslike this.
Attackers know the particular PRNG and seed-collection method you
used. (Remember, as discussed earlier in this chapter in “Historical Note:
They Always Figure Out the Algorithm,” the attacker will always know
your algorithms and methods.) If attackers can guess your seed, they can
seed the PRNG and produce the same key, If you used a small seed,
attackers will try every possible value until they find the correct one. This
happened to Netscape, as described in “Historical Note: Netscape’s Seed.”

Your defense against this kind of attack is to use a good seed. A PRNG
will always produce good pseudo-random numbers regardlessof seed. But
the seed mustalso be strong enough to withstand a brute-force attack.
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Historical Note: Netscape'’s Seed

Symmetric-key cryptography is one component of SSL (see Chap-
ter 7), which was invented by researchers at Netscape. Not surpris-
ingly, Netscape offered an implementation of SSL thatis part ofall
Netscape browsers (after version 1.0).

At some point in an SSLsession, the code must generate a key. To
do so, Netscape’s implementation uses a PRNG., In version 1.1
(released in 1995), the code collected the time ofday, the process ID,
and the parent process ID as the seed for the PRNG.

Ian Goldberg and David Wagner (remember them from theearlier
historical note?) decided to test how good a seed these three sources
would produce. They discovered that the process IDs were easy to
captureifone had access to the computer. If one did not have access

to the computer, all it took wasalittle brute-force testing because
each ID wasonly 15 bits. The time of day? Well, the year, the month,
the date, and even the hour and minute were known; an attacker
simply had to look at when the SSL session occurred. The second?
There were only 60 possible values (Netscape used time of day only
down to the second and not the millisecond).

On September 17, 1995, Goldberg and Wagner reported to the
Cypherpunks newsgroup that they could find the seed, and hence

the key, in less than a minute. Whether the key was 40 bits or
128 bits, it took only one minute.

Netscape fixed the problem in version 2.0 by adding more seed.
Each platform (Windows, Mac, and UNIX) has different seed

sources, but among the many platform-dependent seeds Netscape
now uses are cursor or mouse position, memory status, last key
pressed, audio volume, and manyothers.

Sources: Gary McGraw and John Viega, “Make Your Software Behave: Playing The
Numbers,” Reliable Software Technologies, April 4, 2000.
Keith Dawson,“Tasty Bits from the Technology Front,” http://www.tbtf.com, Sept. 20,
1995.

Taher El Gamal, letter to the Internet community posted on many Websites, Sept. 25,
1995. El Gamal was, at the time, director of security for Netscape.
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Breaking the Algorithm

Figure 2-9

If an algorithm
has a weakness,
an attacker

mightfigure
out portions
of plaintext
without the key,
reconstructing
mostor all of

the message

Suppose that someonefigured out that with a given algorithm,every 14th
bit of a given ciphertext is the same as every 12th bit of its plaintext. In
other words,if the 14th bit of ciphertext is 1, the 12th bit of plaintext is 1,
the 28th bit of ciphertext is 0, the 24th of plaintext is 0, and so on, no mat-
ter what the key. Furthermore, the attacker sees that if certain combina-
tions of bits appear in certain locations in the ciphertext, a corresponding
portion of the plaintext must be another pattern.

If an algorithm lad such weaknesses, an attacker could look at the
ciphertext and decipher parts of the plaintext even without knowing the
key. This knowledge might be enough to enable the attacker to recover
enoughofthe original message to do damage(see Figure 2-9).

Ciphertext: j9%B8cBt &M0#’ 14~hlp$dMU(a#7

Maybethe attacker can figure out some ofthe
plaintext just by looking atthe ciphertext

 

 

 
 
 Plaintext: 77779SA.27777ps7277722VP277277182277?

Add educated guesses to fill in
some of the blanks (“If this is a memo,there’s
a “To;’ and ‘From:’; does that fit?”’)

Plaintext: To: SA?????ps?From: VP?RE: ?ri???? 
“Yes, thatfits.”

Plaintext: To: Sales Reps?From: VP?RE:Pricing 

Here’s another possible weakness. Suppose the attacker knows what
some of the plaintext and its corresponding ciphertext is. And suppose
this attacker is able to therefore deduce the key. But if the attacker
knows what the plaintext is, why bother figuring out the key? The
answer is that the attacker might know, or be able to guess, only a por-
tion of the plaintext. Recall the memo at the beginning of the chapter.
An attacker might see the ciphertext, realize it’s a Word for Windows
document, and guess some of the control characters at the beginning.
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Furthermore, the attacker guesses the document is a memofrom the con-
ventional “TO:”, “FROM:”, and, “RE:” In short, if someone can compute
the key from a chunk of ciphertext and its correspondingplaintext, the
rest of the message will follow. This is known as a known-plaintext
attack. Obviously, you don’t want to use an algorithm that mightbe sus-
ceptible to such an attack.

Measuring the TimeIt Takes to Break Your Message

Howlong will your secret remain secret? The answeris, as long as it takes
the attacker to break it. The attacker has two kinds of tools: the brute-

force attack and attacks that exploit weaknesses in youralgorithm.
In analyzing the security of your message, a key question is how long

would a successful brute-force attack take. There’s norigid, specified time,
since the attacker may get lucky andfind it early or may get unlucky and
find it later, but as shown in Table 2-1, you can estimate the variables
based on worst-case scenarios. In general, the bigger the key, the longer a
brute-force attack will take. But if the algorithm is weak, it doesn’t mat-
ter how long the key is. The statement “Longer keys mean more security”
doesn’t apply to a weak algorithm. Thepointis this: If you pick a weak
algorithm, you have no control over how strongly yoursecretis protected.

So the best strategy is to pick an algorithm that is not weak and further
deter an attacker by using a longerkey.

That statement may seem so obvious that it’s not worthwhile even to
mention it. If you’re curious about what happens when people overlook
these obvious protections, however, read “Crypto Blunders” in the
accompanying CD for a couple of stories on using weak algorithms and
small keys.

Symmetric Algorithms: The Key Table

Virtually all symmetric ciphers use the key to build a key table, which is
usually a pseudo-random arrayofa particular size in a particular format.
This process is known as key setup, or initialization. It’s the key table that
does the encryption.

Whyhaye a key table? One reason is that you might want to use keys
of varying lengths depending on the application. The algorithm needs a
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key value that is the same size from one use to the next, but your key
might vary from 64 bits to 128 to 192 or even 256bits, For that reason, you
build a key table (which is bigger than the biggest possible key size) from
the key. It’s easier to create a constant-sized key table at the beginning of
your encryption session than to do it repeatedly while encrypting data.

Anotherreason to use a key table is to prevent attacks on the algorithm.
Recall that there are two ways to break security: a brute-force attack and
attacks on an algorithm’s weaknesses.Ifyou use a big, pseudo-random key
table, it’s easier to do serious scrambling. With good scrambling, the
ciphertext looks nothinglike the plaintext. If the algorithm cannot do a
good job of creating gibberish unless it has a good key, that is be an algo-
rithmic weakness, A good algorithm will simply expand the keyinto a big-
ger value and makesure that no matter what keyit’s given, the key table
is random.An attacker could try a brute-force attack on the keytable, but
that would be more time-consuming than an attack on the key.

The user should give the algorithm a good key. But even with a bad key,
it is possible to create a good key table. Just as a PRNG produces good
numbers no matter what the seed is, a good encryption algorithm pro-
duces a good key table no matter what the key is. With a good key table,
the algorithm produces a good scramble, the resulting ciphertext is not at
all close to the plaintext, and the attacker cannot exploit an algorithm’s
weakness.

Symmetric Algorithms: Block Versus
Stream Ciphers

Block Ciphers

If you’re using symmetric-key cryptography, how do you choose a good
algorithm? There are two types of symmetric-key algorithms: block and
stream ciphers. What are they, and which is better?

A block cipher operates on blocks of data. When you give the algorithm a
chunkofdata to encrypt or decrypt, it breaks the plaintext into blocks and

operates on each block independently (see Figure 2-10), Usually, blocks
are 8 or 16 bytes long.
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Figure 2-10

A block cipher
grabs each block
of the input data
(usually 8 or 16
bytes) and uses
the key table to
produce a unique
block of output,
continuing until
all the blucks are
encrypted
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LOH

TO: Sales Reps
FROM: VP

RE:Pricing TO: Sale —>=|j9%B8*cB
We're having a
slow quarter...
 

 

hehe
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Suppose that your plaintext is 227 bytes long and the cipher you're
using operates on 16-byte blocks. The algorithm grabsthefirst 16 bytes of
data, encrypts them using the key table, and produces 16 bytesofcipher-
text. Then it starts over, encrypting the next 16 bytes of plaintext. No mat-

ter which block it is working with, the cipher encrypts it by starting over
from scratch, The key table does not change from block to block.

After encrypting 14 blocks (224 bytes), the algorithm is left with 3 more

bytes, But your block cipher cannot operate on 3 bytes; it needs 16 bytes.
To encrypt the last 3 bytes, you must pad the data: add extra bytes to an
incomplete block to make it complete. Whoever decrypts the ciphertext
must be able to recognize (and ignore) the padding.

The most popular padding scheme determines the numberofbytes to be
padded andrepeats that value in the final bytes in the data. In our exam-
ple, the padding scheme must add 13 bytes to the plaintext so that it has
a full block. So it repeats the byte “13” in each of the final 13 otherwise
empty spaces. During decryption, you look at the last byte of decrypted
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Figure 2-11

Whenthelast

block of plaintext
ends in blank

bytes, use
paddingto bring
it up to size

 
 

data; this byte, a numberfrom 1 to 16, indicates how many pad bytes have
been added.In this example, after decrypting, we would know that the last
13 bytes ofdata should be discarded (see Figure 2-11). (Hach of the last 13
bytes should be the number 13, so as an extra check, we make sure that
each of them is 13.) If the length of the plaintext had been a multiple of 16,
there would have been no need to pad. Nevertheless, it makes sense to
always pad your data. Then, when decrypting, you know that the last byte
decrypted is indeed a pad byte. To do that, you tack on 16 bytes, each of
them the number16.
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Remember the known-plaintext attack? If an algorithm is susceptible,
that doesn’t mean an attacker will automatically be able to break a mes-

sage; it’s necessary to find a plaintext/ciphertext pairfirst. The last block
of data might be that knownplaintext, because it contains padding, Of
course,it’s easy to simply use an algorithm that is not susceptible to the
known-plaintext attack.

One problem with block ciphersis that if the same block of plaintext
appearsin twoplaces, it encrypts to the sameciphertext. In our printing
machinery company memo,for example, the phrase “slow third quarter”
may show up a numberof times. Each time thefirst 16 bytes of that
phrase is encrypted,it will produce the sameciphertext, and an attacker
might identify this repeated pattern. To avoid having these kindsofcopies
in the ciphertext, you can use feedback modes. A numberof these modes
are discussed in the FAQ contained in the accompanying CD.

The most common feedback mode is cipher block chaining (CBC),
shown in Figure 2-12. In this scheme, you XORthecurrentblock of plain-
text with the preceding block of ciphertext (see “Technical Note: XOR”
later in this chapter). For the first block of plaintext, there is no preceding
block of ciphertext, so you XOR with an initialization vector (IV). When
you decrypt the data, you copy a block of ciphertext, decrypt it, and XOR
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Figure 2-12

Cipher block
chaining. The
first block of
plaintext is
XOR’d with the
IV and then

encrypted. Hach
successive block
is XOR’d with the

preceding block
of ciphertext
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the result with the preceding block of ciphertext (which you saved right
before you decrypted it). This technique ensures that any duplicate block
in the plaintext does not encrypt to the sameciphertext. That’s all it does.
It adds no other security. The encryption algorithm providesthe security.

Stream Ciphers

To understand stream ciphers, the second type of symmetric-key algo-
rithm, you needto first understand the cryptographic technique called a
one-time pad, which is popular with spies. In one variation of this tech-
nique, you generate a bunch of random numbers, each from 0 to 25, Then
you print two copiesof the series. That’s the “pad.” One copy stays at your
headquarters, and the spy takes the other copy out into thefield.

To send a message back home, the spy encrypts each letter of the mes-
sage with a numberonthe pad.Thefirst letter of the message is encrypted
with the first numberon the pad, the secondletter with the second number,
and so on. Encryption is simply a matter of adding a numeric value
assigned to the letter plus the number. Here’s how the numeric valueis
assigned.If the plaintext letter is G and the numberon the pad is 11, the
ciphertext letter is R (R is the eleventh letter after G, or G + 11 = R). Ifthe
plaintext letter is Y and the numberis 4, the ciphertext letter is C, or Y + 4
(Y, Z, A, B, C; when you reach the endof the alphabet, you start over at A).
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Technical Note: XOR

The term XORstandsfor “exclusive OR,” a type of bit manipulation.
The first concept to understandis an OR. An ORis a bit manipula-
tion that says, “Look at two bits. If one OR the otheris set, set the
result.”

0 (zero OR zero equals 0)
1 (zero OR one equals 1)
1 ( one OR zero equals 1)
1 ( one OR one equals 1)

An exclusive OR says, “Look at twobits. If one is exclusively set,
ORifthe otheris exclusively set, set the result.” If both bits are set,
then there’s no exclusivity, so the result bit is not set.

0 (zero XOR zero equals 0)

1 (zero XOR one equals 1)
1 ( one XOR zero equals 1)

0 ( one XOR one equals 0)

XORis a useful bit manipulation in cryptography becausehalf of
the time the result is 1, and the other halfof the timeit’s 0. If one bit
is plaintext, and one bit is key stream, then the key stream some-
times changesthe bit and sometimes doesn’t changethe bit.

In grade school, we learned how to add, subtract, and multiply
using columns:

1,482 204
+ 319 *8

1,801 1632

Similarly, we can perform XOR operations on longer numbers.
Computers, of course, see all numbersas binary values.

values as binary text values as hex text
0111 0100 0110 0101 0111 1000 0111 0100 Ox74 65 78 74

XOR_ 1001 1011 0010 1100 0110 0011 1000 0100 Ox9B 2C 63 84
1110 1111 0100 1001 0001 1011 1111 0000 OxEF 49 1B FO

continues
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The first row (the row that begins 0111 0100) in the preceding
table is the ASCII bit formation of the word “text.” ASCII gives us a
standard way to map characters to numbers. For example, lowercase
t is represented as the number 0x74 (binary 0111 0100), which is
decimal 116. Punctuation marks are also included; a comma, for
example, is 0x2C, which is decimal 44. You see 0111 0100 and so on,

but the computer sees the word “text.” Suppose that word “text”
is our plaintext. To encrypt it, we perform the steps the algorithm
prescribes, namely XOR it with the key stream. If the second row
(the row with the binary values beginning 1001 1011) is the key
stream and we perform the XOR operation, what do we get? We get
the bottom row (the row beginning 1110 1111)—that would be the
ciphertext.

Whatdoes this ciphertext say? It says “?9??” As it happens, the
first, third, and fourth characters are not standard characters (they
are numbers outside the ASCII range). The second is the character
9. So the algorithm converted the “e” in “text” to a “9”, but what
about the other characters? Because the numbersare not standard

character numbers, each computer or software package gets to
decide what they mean. One computer or software package might
print the ciphertext as “1~9<-=”. Another computeror software pack-
age mightprint it as “(_]9(_]_]”. Whichever you use,it looks like gib-
berish;it’s nothing like the plaintext.

If you start with the ciphertext and XORit with the key stream,
whatdo you get? You get the plaintext.

values as binary text values as hex text
1110 1111 0100 1001 0001 1011 1111 0000 OxEF 49 1B FO

XOR_ 1001 1011 0010 1100 0110 0011 1000 0100 Ox9B 2c 63 84
0111 0100 0110 0101 0111 1000 0111 0100 Ox74 65 78 74

That’s another reason that the XOR operation is popularin cryp-
tography:It’s symmetric.
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Figure 2-13

A one-time pad

Figure 2-14

A stream cipher

Whenthe homeoffice gets the encrypted message, the translator sim-
ply reverses the algorithm.If the ciphertext is R and the associated num-
ber in the pad is 11, compute R-11 = G. As long as the spy and the home
office use the same pad, the communication will be successful. Figure 2-13
shows an example of the one-time pad. Where does the pad come from?
Probably an RNG.

Plaintext Pad Ciphertext
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A stream cipheris similar to a one-time pad. To encrypt data, the algo-

rithm generates a pad based on the key. The pad canbe as big as it needs
to be. The algorithm will XORtheplaintext with the pad (see Figure 2-14
and the technical note on the XOR function). With the one-time pad,the

spy and the homeoffice generate a pad (actually, probably many pads)in
advance. The stream cipher generates its pad on-the-fly, only when
needed. In cryptographycircles, the “pad”is called a key stream. A true
pad would be random; a stream cipher produces pseudo-random values
and technically can’t be called a pad.

 
 

  
 

Plaintext Ciphertext

 47 28119 3

187 120 72 141

60 244 155 99
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Most stream ciphers workthis way. First, you use the key to build a key
table. Then to encrypt the data, you take onebyte of plaintext, go to the
key table, somehow get a byte of key stream, and XOR it with the plain-
text byte. Next, you throw away the key stream byte and remix the key
table, Then you get the next byte of data and continue. The key table, and
hence the key stream, does not depend on the input data.

In the exampleofthe one-time pad, the spy added numbersto lettersto
encrypt the data and the home office subtracted them to decrypt. A
stream cipher uses the XOR operation because encrypting and decrypting
are the same operation. Only one program and not twoexist.

Block Versus Stream: Which Is Better?

Stream ciphers are almost always faster and generally use far less code
than do block ciphers. The most common stream cipher, RC4,is probably
at least twice as fast as the fastest block cipher. RC4 can be written in per-
haps 30 lines of code. Most block ciphers need hundredsoflinesof code.

On the other hand,with a block cipher, you can reuse keys. Remember
that the stream cipher is rather like a one-time pad. “One-time” implies
that you should use a pad only once (see “Crypto Blunders” on the accom-
panying CD for a story of multiple uses of one-time pads). Similarly, you
should use a stream cipher key only once. Generally, that’s not a problem,
but sometimesit will be necessary to encrypt many things using the same
key. For example, an e-commerce company may have a databaseof cus-
tomer information, including credit card numbers. Rather than encrypt
each entry with a different key (and hence manage hundreds or even
thousands of keys), the company can encrypt all of them with one key.

Whenone entry is needed, decrypt it with the one key. Key management
is much easier when there’s only one key to manage.

Anotherfactor is standardization. Everyone has two algorithms—DES
and AES-both of which are block ciphers. For reasons of interoperability,

you may want an algorithm that is widely used. The entity on the
other end of your data link may or may not have RC4, butit’s almost a
guarantee that it has DES and AES. You choose a block cipher becauseit’s
a standard.

In other words, neither type is “better.” Ifyou need to reuse keys, use a
block cipher. If you must guarantee interoperability, it’s best to use AES.
Otherwise, use a stream cipher. Table 2-2 lists some applications and the
type of cipher you might want to use with each one.
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Table 2-2

Choosing an
Algorithm by
Application

Application Cipher to Use Comments

Database Block Interoperability with other software
is not an issue, but you will need to
reuse keys.

E-mail AES Although each e-mail message has its
own key and you could use a stream
cipher, you gain interoperability with
all e-mail packages by using the
standard ABS,

SSL (secure RC4 Speed is extremely important, each
connections on (stream cipher) connection can have a new key, and
the Web) virtually all Web browsers and servers

possess RC4.

File encryption Block Interoperability is not anissue, but
(storing your
files securely)

you can encrypt eachfile with the
same key and then protect that key
(see Chapter 3), 

Digital Encryption Standard

A computer can be programmed to perform any encryption algorithm. By
the 1970s, though, it was known that the old algorithms were not very
strong. They had weaknesses and were difficult to implement.

The advent of computers madeit possible to throw out the old rules of
cryptography and create a new paradigm. Researchers at IBM decided to
develop a new algorithm for the computer age, and built on a scheme
called Lucifer, an algorithm invented by cryptographer Horst Feistel.
They also enlisted the help of the National Security Agency (NSA), the
agency charged with protecting the U.S. government’s secret data, a duty
that includes cryptography. Thefruit of the group’s labor was DES.

DESis a block cipher that uses a 56-bit key—no more, no less—to build
a key table. Using the key table, DES performs bit manipulations on
plaintext. To decrypt ciphertext, it simply does everything in reverse,
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After its introduction, DES becamefreely available and widely studied.
Throughout the 1980s, the consensus among cryptographers was thatit
had no weaknesses. This meant that the fastest way to break a message
encrypted with DES wasto use the brute-force attack. Because a 56-bit
key is a number between 0 and about 72 quadrillion, even the fastest com-
puters took years to break a single message.

By the 1990s, though, cryptographers knew that DES couldn’t last.
Computers were becoming faster and eventually would be fast enough to
mount a brute-force attack on a 56-bit key in a reasonable amountoftime.

In addition, researchers discovered potential weaknesses that led them to
conclude that someday it might be possible to break the algorithm. The
brute-force attack wasstill the fastest attack, but those potential weak-
nesses were troubling.

In 1999, at the RSA Conference, the Electronic Frontier Foundation
broke a DES keyin less than 24 hours. The world needed a replacement.

One widely used replacement for DES is Triple DES. The namesaysit
all: Triple DES performs the DES algorithm three times. That's it. You
run your block of data through DES using a key, and then you encrypt
that result with another DES key, Then you do it a third time (see Fig-
ure 2-15).

You use three keys, each 56 bits. That’s essentially the same as using
one 168-bit key. You may be thinking, “If it takes 24 hours to break one
key, then shouldn’t it take 72 hours to break three keys?” Here’s the
answer. It takes 24 hours to break one key if you know you’ve brokenit.

But with Triple DES, you don’t know you’ve stumbled onto the first key
until you combineit with the other two correct keys.

Think of it this way. Suppose that the three keys are called A, B, and
C, and each possible key value is numbered from 0 to 72 quadrillion.
Suppose also that the correct key combination is A = 1, B = 33,717, and
C = 1,419,222. An attacker could try value 0 with key A, value 0 with key
B, and value 0 with key C. That doesn’t produce the correct answer, so try
A=1,B=0,C = 0. As shownin Figure 2-16, the first key is correct. But
the value the attacker got from trying the three-key combination is not
the right value. The correct plaintext appears only whenall three keys are
correct. So how can the attacker know that thefirst key is correct?
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Figure 2-15

Triple DESis
simply DES run
on the data three

times Plaintext

a 
es 

Triple DES, however, presents two problems.First, cryptanalysts have
figured out a way to streamline the brute-force attack. You'd thinkit
would require a “168-bit” brute-force attack, but there are clever ways to
reduce it to the equivalent of a 108-bit brute-force attack. A key that is
equivalent to 108bitsis still secure (see Table 2-1 for worst-case estimates
of a 108-bit brute-force attack), but this “weakness”is troubling, Will more
research expose more cryptanalytic weaknesses? Will the security of
Triple DES be compromised even further?

The second problem is speed. DES takes a long time to encrypt or
decrypt data, and Triple DES is three times as slow. Some applications.
need high-speed throughput of many megabytes worth of information.
Triple DES reduces the performance so much that some applications can-
not function.

For these two reasons, people needed a new algorithm.
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Figure 2-16

To break Triple
DES, you must
know all three

keys
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Commercial DES Replacements

In response to the key size and performance problems of Triple DES,
many cryptographers and commercial companies developed new block
ciphers. The most popular offerings were RC2 and RC5 from RSA Data
Security, IDEA from Ascom, Cast from Entrust, Safer from Cylink, and
Blowfish from Counterpane Systems.

All these algorithms were faster than Triple DES, and they were able
to operate with variable-sized and bigger keys. Whereas DES andTriple
DES keys require fixed-length keys, the new algorithms could be
madestronger. Recall that you can choose a keysize that is big envughto
muke your cryptographic system immuneto the brute-force attack or at
least to make the brute-force attack unfeasible. At one time, a 56-bit key

was big enough. But when that was no longer secure enough,64 bits was
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a popular key size. Even though DES cannotincrease its key size, the
commercial replacements can.

The various commercial DES replacements caught on to some degree,
and companies built products using the algorithms. But none became a
worldwide standard comparable to DES and Triple DES.

In response, the U.S. government, through the National Institute of
Standards and Technology (NIST), set about creating a new standard. The
idea was to name a particular algorithm as the U.S. government standard.
Once the U.S. governmentadopted a standard,the thinking went,the rest
of the world would almost certainly follow.

Advanced Encryption Standard

The NIST plan was formally announced on January 2, 1997, when the
agency invited anyone to submit an algorithm as the new standard, to be
known as AES.As a condition for entry into the AES process, developers
promised to give up anyintellectual property rights to the selected algo-
rithm. Many individuals and companies responded, and on August 20,
1998, NIST named 15 candidates.

The next step was for the world to analyze the algorithms. Thecrite-
ria were security (no algorithmic weaknesses), performance(it had to be
fast on manyplatforms), and size (it couldn’t take up much space or use
much memory). Many of the original 15 algorithms did not last long.
Weaknesses were discovered, and some were shownto be simply too big
or too slow.

In August 1999, NIST trimmedthelist to five candidates. For the next
year, researchers, cryptanalysts, and vendors of computer hardware and
software tested the algorithms to decide which they liked best. Many
papers were published, and volumesofstatistics were released comparing
the finalists. Each had its strengths and weaknesses.

Finally, on October 2, 2000, NIST announced the winner:an algorithm
called Rijndael (commonly pronounced “Rhine-doll”) invented by two Bel-
gian researchers: Vincent Rijmen and Joan Daemen.

From now on, the AESalgorithm is free for anyone to develop, use, or
sell. As with DES,it is expected that AES will become a worldwide stan-
dard. You can expect that within a short time, if someone has eryptogra-
phy, he or she has ABS.
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If you want to encrypt something,follow these steps.

1.

1,

2.

Select a symmetric algorithm and a PRNG.You should choose an
encryption scheme that is not susceptible to attacks on the
algorithm. It should also allow key sizes big enough to thwart a
brute-force attack. If you need to reuse your cryptographic keys,
choose a block cipher. If you need to guarantee interoperability with

other cryptographic programsor products, choose AES. Otherwise,
you might want to choose a stream cipher for performance reasons.

. Collect your seed value and feed it to the PRNG. Makesure that your
seed contains enough entropy to thwart a brute-force attack. It’s best
to combine several seeds, including user input.

. Using the PRNG,generate a key. Choose a key size that requires a
brute-force attack that is so time-consumingthatit is unfeasible.
Currently, the most popular key size is 128 bits.

. Apply the symmetric algorithm, which will work with the key to
encrypt yourplaintext.

. Save and protect your key. The next chapter talks about how to
protect keys.

To recover the data you encrypted, follow these steps.

Retrieve yourkey.

Apply the symmetric algorithm, which will work with the key to
decrypt your plaintext.

Real-W/orld Example: Oracle Databases

How do people and companies use symmetric-key cryptography today?
Here is one example,

Most companies store volumes of sensitive information in databases.
A database is a software package that stores data in a systematic way
and enables users to easily and quickly find what they’re looking
for. Fur example, a company may have personnelfiles containing names,
addresses, salaries, and Social Security numbers of all employees.
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A hospital may keep medical records of hundreds of patients. An e-com-
merce company might store credit card numbers and customers’ purchas-
ing histories.

The owners of the databases may want to make sure that only the

appropriate people have access to the information. One wayto protect the
data is to encryptit. If attackers break into the database, they still can’t
read the sensitive material.

Oracle sells a database product, Oracle 8i, release 8.1.6, that comes
with an encryption package. If you are a developer using the database,
and you want to encrypt the elements before storing them, you generate
some random or pseudo-random bytes to be used as the key and thencall
on the package to perform the encryption. The calls to the encryption
function are PL/SQL, which are standard database language conventions.
For instance, to encrypt the data, you would add a line of code that looks
somethinglike this.

dbms_obfuscation_toolkit.DESEncrypt (input_string => plaintext,
key => keyData, encrypted_string => ciphertext);

And that’s it. Well, you also need to save the key somewhere(not in the
samelocation). The next chapter talks about how to do that. If your appli-
cation was using SQL,it would now havethe opportunity to store the data
in the clear (plaintext) or encrypted (ciphertext), This line shows that you
are using DES, but Triple DES is also available. When your program
needs to retrieve data, you recall it from the database, recover your key,
and make somethinglike the followingcall:

dbms_obfuscation_toolkit.DESDecrypt (input_string => ciphertext,
key => keyData, decrypted_string => plaintext);

Thanks to Mary Ann Davidson and Kristy Browderof Oracle for pro-
viding this example.
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Symmetric-key encryption can keep your secrets safe, but because you need
your keys to recover encrypted data, you must also keep them safe. The
process ofkeeping all your keys safe and available for use is known as key
management. This chapter is about managing symmetric keys.

In Chapter 2, “Symmetric-Key Cryptography,” Pao-Chi generated a
random or pseudo-random key, and usedit to encrypt data. If he wants to
decrypt the data, he must use the same key. This meanshehasto either
memorize the key or store it somewhere. Memorizingit isn’t practical, so
he muststore it so that he can recall it when he wantsto, but no oneelse

can. Right now you’re probably asking,“If there’s some place Pao-Chi can
keep his key safe, why doesn’t he just put his sensitive information there
as well?” The answeris thatit’s easier to protect a small key than many
megabytes worth of information. In fact, some of the key storage solu-
tions you'll see in this chapter are small devices designedin part to pro-
tect keys. So the idea is to use symmetric-key crypto to protect the
megabytes of information and some other technique to protect the 16
bytes (or so) of keys.
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Password-Based Encryption

Figure 3-1

A session key
protects data, and
a key encryption
key (KEK)
protects the
session key

The key used to encrypt the megabytes of information, or bulk data,is
generally known as the session key. A session is simply an instance of
encryption, possibly during an email exchange, a World Wide Web con-
nection, or a database storage. In Pao-Chi’s case, a session involves
encrypting a file before storing it on his hard drive. Some systems gener-
ate a new key for each session; others use the same key from session to
session. One way to store the session key securely is to encrypt it using a
symmetric-key algorithm. Someone whofindsthe session key has really
found the encrypted key. The attacker would have to break the encryption
to get the key that protects the megabytes of information. Of course, the
process of encrypting the session key itself needs a key. Thatis, the key
needs a key. There’s the session key and then the key encryption key, as
shownin Figure 3-1. In the crypto literature, not surprisingly, the latteris
often known as the KEK.

You may be thinking that if Pao-Chi uses a KEK, he now has to store
and protect it as well. Actually, he does not store the KEK, and therefore
does not need to protect it. When he needs a KEK to encrypt, Pao-Chiwill
generate it, use it, and then throw it away. When heneeds to decrypt the
data, he generates the KEK again, uses it, and throws it away. Heis able
to generate the KEK a second time and produce the same value as before
because it is based on a password. Pao-Chi uses an RNG or PRNGtogen-
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erate a session key, he uses password-based encryption (PBE)to build the
KEK.It usually works like this (see Figure 3-2).

1. Enter the password.

2. Use an RNG or PRNGto generate a salt.

NOTE:

What's a salt? We describe the salt and its purpose in a few paragraphs.

3. Using a mixing algorithm, blend the salt and password together. In
most cases, the mixing algorithm is a message digest. And that’s the
second time we’ve mentioned this tool—the message digest. Thefirst
time was in discussing PRNGs. Remember, a digest is a blender,
taking recognizable data and mixing it up into an unrecognizable
blob. We'll talk more about message digests in Chapter 5.

4, The result of step 3 is a bunch of bits that look random. Take as many
of those bits as needed for the KEK and use it with a symmetric-key

algorithm to encrypt the session key. When thesession key has been
encrypted, throw away the KEK and the password. Save thesalt.

5. When storing the now encryptedsession key, be sure to store the salt
along withit. It is necessary to decrypt.

Whenit comes time to decrypt the data, here’s the process.

1. Enter the password.

2. Collect the salt. The same salt used to encrypt is required (that’s why
you savedit with the encrypted session key).

3. Using the same mixing algorithm used to encrypt, blend the salt and
password together. If one or more of the salt, password, or mixing
algorithm is different, the result will be a KEK; however,it will be the
wrong KEK.If all three elements are the same,the result is the
correct KEK.

4, Use this KEK from step 3 along with the appropriate symmetric-key
algorithm to decrypt the session key.

You probably have four questions.
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Figure 3-2
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Mixing Algorithms and KEK

Whyuse a mixing algorithm? Whynot just use the password as the KEK?
A password does not have much entropy. Recall from Chapter 2 that

entropy is the measure of randomness. But a password is made up
entirely of keystrokes (characters associated with the keys on a key-
board), which are not sufficiently chaotic. Using a mixing algorithm on the
password(and salt) ensures that the KEK looks random.
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Figure 3-3

Using a salt foils
a dictionary
attack

The Necessity of Salt

Whyis a salt neededin thefirst place?
Thesalt is there to prevent precomputations. If the password werethe

only thing used to generate the KEK,an attacker could create a dictionary
of common passwordsandtheir associated keys. Then a bruteforce attack
would not be necessary; the attacker would try only the precomputed keys
(logically enough, this is called a dictionary attack). With a salt, the
attacker must wait until seeing the salt before finding the KEK anypar-
ticular password produces(see Figure 3-3).

NoSalt With Salt

 
The same passwords don't produce the same keys

eagle—»273D1 148F6 eagle + salt{1]|—»3B442CEA1A

GNcoeae eagle + salt[2] —>8702B45CD5

eagle + salt{1,000,000]—»5B10182CA4

*.
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Storing Salt with Ciphertext

If the salt is stored with the ciphertext, then won’t the attacker be able to
see it? Wouldn’t it be safer to keep the salt secret?

As just explained, a salt’s only purpose is to prevent precomputations.
That’s worth repeating: the salt does not add security; it only prevents a
dictionary attack. Even thoughthesalt is not secret, it achieves that goal.
Besides,if the salt is secret, how is it recovered when needed?

Reasons for Using Two Keys, a Session Key, and KEK

Wouldn’t it be easier to simply use PBE to encrypt the bulk data? Whyis
it necessary to have two keys (the session key and the KEK)?

There are a couple of reasons to use a session key and a KEK.First,
suppose you need to share the data with other people and you want to
keep it stored encrypted. In that case, you generate one session key, and
everyone gets a copy of it. Then everyoneprotects his or her copy of the
session key using PBE. So rather than share a password (something
everyone would need for decrypting if you had used PBE to encrypt the
bulk data), you share the key (see Figure 3-4).

The secondreasonfor using both keysis that it’s easier to break a pass-
word than to break a key (more on this soon), and attackers might have
easier access to the encrypted data than to the encrypted key. For
instance, suppose Pao-Chi’s data is on the network and the encrypted ses-
sion key (the value encrypted by PBE using the KEK)is on his own per-
sonal computer (or other storage facility). Suppose Ray, an attacker,
breaks into the network and steals the encrypted bulk data. To decrypt,
Ray would have to break the session keyor else perform a second break

in (possibly into a more secure location) to find the encrypted session key
and then break the password. Alternatively, if Pao-Chi used PBEto pro-
tect the data, Ray can recover the information by breaking the password
(see Figure 3-5).

Of course, it is possible to use PBE to do the bulk encryption. In this
book we don’t discuss that option. From a programmingpointofview,it’s
not much more difficult to use a session key and then PBEto encrypt the
session key, so you might as well because of the reasons given.
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Figure 3-4

Using a session
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Programming Convenience

A PBEprogram will do its work, even with the wrong password. Suppose
the wrong password were entered, the program would have no way of
knowing it was an incorrect password. It would simply mix the “bad” value
with the salt and produce a KEK.It wouldn’t be the correct KEK, but the
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Figure 3-5 ee)ithe
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program wouldn’t know that; it just blindly follows instructions. It would
then use that KEK to decrypt the session key. That would work; some
value would come out as a result. It would be the wrong value, but there
would be something there. Then the program would use this supposedses-
sion key to decrypt the ciphertext. The resulting data would be gibberish,
but only then would il be pussible lo see thal something went wrong.
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For this reason, it would have been more convenientif, when entering
the password, there were some way to know immediately whetherit’s the
correct password or not. That would be better than decrypting the entire
bulk data before finding that out.

Onesolution is to use the KEK to encrypt the session key along with
somethingelse, the “something else” being some recognizable value, such
as the salt. Then when decrypting, the program checks this recognizable
valuefirst. [f it’s correct, continue using the session key to decrypt the bulk

data. If not, the password was wrong andtheprocess should start over.
The overall process looks like this. To encrypt bulk data:

1. Generate a random or pseudo-random session key. Use this key to
encrypt the data.

2. Enter the password, generate a salt, and mix the two togetherto
produce the KEK.

Encrypt the salt and session key using the KEK. Store the encrypted
data with the salt.

4, Store the encrypted session key, which 1s actually the session key and
the salt (see Figure 3-6).

9

To decrypt the data, follow these steps.

1. Collect the salt and password and mix the two together to produce
whatis presumably the KEK.

2. Using this KEK, decrypt the session key. The result is really the
session key and thesalt.

3. Check the decrypted salt. Is it correct?

a. Ifitis not correct, don’t bother using the generated session key to

decrypt the data; it’s not the correct value. The user probably
entered the wrong password. Go backto step 1.

b. Ifit is correct, use the session key to decrypt the data.

Instead of the salt, you can use a numberof things as a check. For
example, it could be an eight-byte number, thefirst four bytes being a ran-
dom value and the secondfour, that random value plus 1. When decrypt-
ing, check thefirst eight bytes; if the second four bytesis the first four plus
1, it’s the correct password. This may be more palatable than thesalt,
since if the salt is the check, there is now some known plaintext. Presum-
ably, the cipher is immune to a known-plaintext attack, but nonetheless,
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Figure 3-6
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some people mightfeel it is more secure without any knownplaintext. Of
course, it is possible to use the wrong password and get a KEKthat
decrypts the check into a different eight-byte value that by sheer coinci-
dence passes the test. The chances of this happeningare so small, it will
probably never happen in a million years.

Another check could be an algorithm identifier. This would be some
sequenceofbytes that represents the algorithm being used. Orit could be
a vummbination of some of these values. Ina the real world, you'll probably
find that engineers come up with complex procedures that include mul-
tiple checks. In these schemes, maybe one check accidentally passes, but
not all of them.
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Breaking PBE

Our attacker (who we’re calling Ray) has two ways to break PBE.First, he
could break it like any symmetric-key encryption and use brute-force on
the KEK. Second, he could figure out what the passwordis.

Although the KEK is the result of mixing together the password and
salt, Ray doesn’t have to bother with those things; he could simply perform
a brute-force attack on the KEK,useit to decrypt the session key, and then
decrypt the data. This mightbe plausible if the session keyis larger than
the KEK. In Chapter 2, though, we saw thatifa key is large enough,that’s
not going to happen. Hence, Ray will probably try the second way, which
is to figure out what the password is. Once he has the password, he can
reconstruct the key-generating process and have the KEK.

How can Rayfigure out what the password is? One way would beto try
every possible keystroke combination. This would be anotherflavor of the
brute-force attack. If Pao-Chi entered the password from the keyboard,

Ray could try every possible one-character password. Then he would try
every two-character combination (AA, AB, AC, AD, .. . ), then three-char-

acter values, and so on.In this way, eight-character or less passwords (on
a keyboard with 96 possible values) would be approximately equivalentto
a 52-bit key. Ten-character passwords are equivalent to about 65-bit keys.

Another attack is for Ray to build up a dictionaryof likely passwords,
such as every word in the English, German, French, and Spanish lan-
guages, along with common names, easy-to-type letter combinations, such

as “qwertyuiop.” He could add to that dictionary lists of common pass-
words that are available from hacker sites and bulletin boards (if you’ve
thought of a password, someone else probably thought of it also). When
confronted with PBE, he runs through the dictionary. For each entry, he
mixes it with the salt and generates an alleged KEK.Hetries that KEK
on the chunk of PB-encrypted data. Did it produce the session key?
Because the original PBE probably has a check in it (such as thesalt

encrypted along with the session key), it’s probably easy to determine.If
the check passes, that was the correct password and it produced the cor-
rect KEK, which in turn will properly decrypt the session key, which will
then decrypt the bulk data.

This dictionary attack tries fewer passwords than does the brute force
attack. Any password the dictionary attack tries, the brute force attack
also tries, but the brute-force attack tries many additional passwordsthat
the dictionary attack does not. As a result, the dictionary attack is faster
than the brute force attack.
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Ofcourse, if Pao-Chi comes up with a password not in Ray’s dictionary,
it will never succeed. If Ray is smart, he’ll probably start with a dictionary
attack and if that fails, move on to a modified brute-force attack.

Slowing Downan Attack on a Password

To check a password, Ray has to mix the salt and password the same way
Pao-Chi did. Pao-Chi can slow Ray down by makingthat a lengthy task.
His goal will be to make the process quick enough that it doesn’t makehis
own encryption or decryption process tuu expensive, but slow enough to be

a drain on Ray. He can do this by repeating the mixing over and over.
First, mix the salt and password together. Then take the result of that

and runit through the blender again, Then take the result of that and run
it through the blender. And on andon,say 1,000 times.

The blender is probably pretty fast, the mixing is almost certainly
done with a message digest, and these algorithms are generally very fast,
so for Pao-Chi to do 1,000 iterations of the mixing process won’t be too
time-consuming.In fact entering a passwordis goingto be far more time-
consuming than 1,000 mixings. So relatively speaking, for Pao-Chi, the
mixing takes up a very small portion of the total time. But Ray is going
to have to do 1,000 mixings for every password hetries. That can addup.

Let’s say Pao-Chi has an eight-character password.In an earlier section
wesaid that an eight-character password is equivalentto a 52-bit key. But
actually, Ray cannot try one password as quickly as one key.If hetries the
brute-force attack on a key, here’s the process (BFK standsfor “brute-force
on the key”):

BFK1 Get a candidate key.

BFK2 Dokey setup(recall the key table from Chapter2),

BFK3 Decrypt some ciphertext, yielding some purported
plaintext.

BFK4 Check the plaintext.

But for each password Ray checks, on the other hand, here’s the process
(BFP stands for “brute-force on the password”):

BFP1 Get a candidate password.

BFP2 Perform the mixingto build the candidatekey.

BFP3 Do key setup.
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BFB4 Decrypt the ciphertext, yielding the purported check and
session key.

BFB5 Perform the check.

How long it takes to do one BFK depends on four things. How long it
takes to do one BFP depends on those samefour things, plus one more.If
step BFP2 is as long as the other four steps combined, that’s going to dou-
ble the amount of time to check one password. That’s like adding one bit
to your password. Theeight-character password which was equivalent to
a 52-bit key is now morelike a 53-bit key.

In our experiments, performing 1,000 iterations (doing step BFP2 1,000
times) is about 136 times slower than the other steps combined (more or

less, depending on the encryption algorithm; we used RC4,a very fast
algorithm). On one Pentium-based PC, step BFP2 took 4.36 milliseconds,
whereas checking one key took 0.032 milliseconds (a millisecond is “one
one-thousandth” of a second; Pao-Chi is going to pay this 4 millisecond

penalty when heencrypts or decrypts). Although Ray could check 31,000
keys per second, he could check only 230 passwords per second. Theeight-
character password is now equivalent to a 59-bit key. The 10-character
passwordis more like a 72-bit key.

Incidentally, you may be thinking, “In a lot of places ’ve used pass-
words, there’s a limit to how many times I can enter the wrong password
before the program won’t work.So ifI try too many wrong passwords even
if I later on do enter the correct password, the application won’t run. Can't

J just make PBE work the same?”
It’s possible to write such a program,but the attacker will simply use a

different PBE program that mimics the original. That is, Pao-Chi used his
program to encrypt. Ray would simply obtain a copy of the ciphertext and
run it through another program that looks like Pao-Chi’s, except Ray’s
program puts no limits on the numberof passwordsallowed.

Good Passwords

In choosing a password, your goal is to choose one that doesn’t appear in
a dictionary and would thwart a brute-force attack. For example, thefol-
lowing password probably does not appear in a password dictionary:

14G:c*%3<wM*-l6g]_Bnp?-: d86
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Editorial: The “Three-Try” Password
Limit, A Pain in the Neck

by Steve Burnett
Many programs,especially login programs,place a limit on the

number ofwrong passwordtries they will accept before locking up.
Usually, the limit is three. Enforcing a limit is a good security
measure, but it’s very annoying that. the limit is so law, Further-
more, a low limit does not add anysignificant security compared
to a larger limit.

Suppose you enter a password andthe program deniesaccess. You
check and see that you accidentally have the caps Lock on. You fix
that and type in a password again. But this one didn’t work either.
What happened? Did you forget the password? Or did you simply
misspell (for instance, how manytimes haveI typed in “teh”for “the”
or even “Bunrett” and that’s my own name!)? Did you accidentally
press a stray key? There’s no way to know since you can’t see what
you typed. You’ve made twotries and gotten it wrong both times; are
you going to try a third time? Probably not, because if you get it
wrong, you'll be locked out. So it really isn’t it a “three-try” password
but a “two-try.”

Now what about attackers? If the password is so weak that you
need to limit intruders to no more thanthreetries, it’s too weak. The

security department should be talking to the employees about using
better passwords. What’s more, attackers may not even be trying the
password throughthe user interface. Instead, they're probably grab-
bing information and trying the attack offline.

Given this, why not set the limit of passwordtriesto, say, 10? That
would make things easier for the user and mostlikely wouldn’t give
attackers any significant assistance. “Three tries and you're out”is
just a pain in the neck.

 
 

It’s a possible password, but attackers probably won’t get aroundtotry-
ing it for a very long time. The problem with this password, of course,is
thatit’s not easy to remember, and even if you could rememberit (maybe
you have a photographic memory), it’s easy to mistype.
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If you’re using PBE, you need a good password. What makes a good
password? The followinglist comes from an RSA Security manual. Other
sources might offer other guidelines, but this is a good start.

1. Use at least 10 characters.

2. Mix in uppercase and lowercase letters, numbers, spaces,
punctuation, and other symbols.

3. Avoid using a character more than twice.

4, Avoid using actual words.

5. Avoid using personal information, such as the nameofa spouse, child,
parent, or friend, or your phone number, Social Security number,
license plate number,or birthday.

6. Do not write it down. Instead, memorizeit.

Number6 is the hardestifyou follow recommendations 1 through 5. In
addition, if you have several applications, security experts recommend
that you use a different password for each one. What’s more, some appli-
cations enforce a policy that requires you to change your password peri-
odically.

Givenall that, what’s the average user to do? So far, there are no easy
answers to the password dilemma. Later sections describe some alterna-
tives to passwords, along with ways to use passwords moreeffectively.
Unfortunately, these techniques require new hardware, and for some of

them the technology is years away from perfection or public acceptance.

Password Generators

Programsare available that will generate passwordsfor you. These pro-
grams work like PRNGs but produce keystrokes instead of numbers. For

example, the program may collect some seed bytes, including your mouse
movement and keystrokes. Then it spits out a password that probably
looks random. Most programsallow you to specify how long the password
will be, whether the password combines uppercase and lowercaseletters,
or whether it should contain punctuation or other marks. You might get
results like this:

tiFXFCZcZ6

K6($xV]th1

M?a84z9W,g¢
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Technical Note: You Never Know

Where Attackers Will Look Next

Do you think that you can choose a key or passwordthatwill force a
brute force attack to run to completion? For example, if the brute
force attack on the password begins with A, then B, and then so on
through the alphabet to AA, AB, and so on, you might think it would
be clever to choose ZAZAZZZ7ZZZZZZ as your password. After all,
that’s a long way away from the beginningofthelist.

Unfortunately, brute force attacks usually don’t work that way.
First, most brute force attacks use more than one computer, and

each computer works with some of the possible key or password
space.

Here’s how it works. A computer that wants to be part of the

cracking process applies to a central “bureaucrat” computer. This
central computer keeps track of the keys or passwords that have
been searched. It generates a range of keys or passwordsfor the
“worker” computer to check, which then searches all the values in
that range. If the worker computer finds the key or password,it
reports the good newsto the bureaucrat. But if the worker searches
its entire allotted range with no success,it goes back to the bureau-
crat to get anotherrange.

Howis a range determined? Probably not systematically. In other
words,the first range is not going to be A to ZZZ, the second range
from AAAA to ZZZZ, and so on. Instead, the ranges are probably
parceled out randomly. The first applicant gets something like
EV9A3LGPto FBMA111G,the second applicant gets W6MWCOOto
ARH7ZD2F,and so on.

Even if only one computeris involved in the brute force attack,it

operates as both a bureaucrat and a worker. As a result, you never
know which part of the space will be searched next.
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These passwords were generated using the JavaScript Source password
generator(see http://javascript.internet.com/).

They are good passwords, but they’re harder to memorize. Still, if you
want a “random” password, one that will withstand a dictionary attack, a
program suchas this one might be a good choice.

Make sure that you trust the program you choose. Imagine a malicious
password generator programmer. Supposeour attacker Raycreates a pro-
gram that produces what looks like random passwords. But actually the
program is limited to how manyit can really create, say 10 million. Now
Ray simply looks at who buys the product, and then has a leg up on crack-
ing that customer’s passwords.

Hardware-Based Key Storage

Tokens

We’ve just examined PBE as a possible way to store cryptographic keys.
Anotherstorage place is on a hardware device. Somedevices are tiny com-
puters called tokens. Others are larger, tamperproof boxes, generally
called crypto accelerators.

A tokenis not a cell phone or a personal digital assistant (PDA) such as

Palm, iPaq, and so on, but rather is something even smaller that fits
inside your wallet or shirt pocket: a plastic “smart”card, a plastic “key,” a
small USB port attachment, or even a ring you wear on yourfinger.
(Smart cards and USB port attachments, the most common types of
tokens, are discussed in the following two sections.) A token contains a
small chip with a processor, an operating system of sorts, and limited
input/output, memory, and hard drive storage space. Some tokens are very
small or thin, are slow, have very little storage space, and do verylittle.
Others may have more power and can store as much information as a
1970s era PC. Figure 3-7 shows some tokens.
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Figure 3-7

Some tokens 

 
 

RSA SecurID 3100 smart card
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The advantage ofusing tokensis that the attacker does not have access
to them. If our attacker Ray is in Elbonia, he can probably use the inter-
net to access Pao-Chi’s computers’ hard drives and does not need to be in

his office to break in, (As you may know, Elboniais a fictional country fea-
tured in the Dilbert comic strip by Scott Adams.) But Pao-Chi’s token is
not connected to the network(it’s in his wallet or on his key chain orfin-
ger), so it’s not visible. This arrangement thwarts a remote attack. When
Pao-Chiuses his token,it’s connected to his computer, which is ultimately
connected to the world, so for a briefwhile, his secrets are vulnerable. But

a few seconds of vulnerability is not as dangerous as the 24 hours a day
the network is vulnerable.

Even if Ray obtains Pao-Chi’s token, further protections are built-in.
Generally, a token performs functions (such as retrieving stored keys)
only when a correct password or personal identification number (PIN)
activates it, Often, a token locks itself if too many incorrect passwords are
entered. If someone tries to physically get at the storage space (as in
Chapter 1 with data recovery techniques), the token will erase itself—sort
of a “scorched earth”policy. This scorched earth thwarts an offline attack
on the password.

The problem with tokensis that they need a way to communicate with
the computer; once they can communicate with the computer, they can
communicate with users through the computer, For example, you commu-
nicate with the computer by using the keyboard and mouse. Sound sys-
tems communicate using a sound card. A token might use the serial or
USBport, or even the floppy drive. Some tokensuse a reader to one of the
ports. It’s the reader that communicates with the computer. To use the
token, you insert it into the reader, something that’s generally easier than
inserting it into a port. Of course, this means that you must buy the
reader as well as the token and theninstall it.

Smart Cards

A smart card is simply a plastic card, similar to a credit card, that con-
tains a microprocessor. Oneofthe goals of smart card vendorsis to replace
the current version of the credit card. Just as credit cards with magnetic
strips replaced simpler embossed cards, the hope is that smart cards will
replace credit cards. But because smart cards contain small computers,
they will be able to do more than serve as credit cards.

We'll talk more about smart cards throughout this book, but for now,
oneof the things you can do with themis to store keys. When you need to
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use a symmetric key, for example, you transfer it to the computer, which
uses it to encrypt or decrypt data. To transfer the key between card and
computer, though, you need a smart card reader. Several PC manufactur-
ers have announced that future laptops and keyboards will come with
built-in smart card readers.

The International Organization for Standardization (ISO) has published
several standards outlining the physical characteristics of smart cards,
including the dimensions andlocations of the contacts, signals and trans-
mission, and more. Virtually all smart cards look alike because they are
built to standard.Theidea is that all smart cardswill be usable with a wide

variety of readers. So far, however, many smart cards and readers simply
don’t work together. Often, to use a particular manufacturer's smart card,
you must use that firm’s reader. As more PC manufacturers release prod-
ucts with readers built in, this situation should change.

USB Tokens

The Universal Serial Bus port is an industry standard for attaching plug
and play devices. Other ports have such functionality (such as PCMCIA),
but the USBport is probably the most popular. Since 1998 or 1999, most
new PCs and laptops have come with USB ports as standard equipment.
Ifyou have a device that connects to your computer through the USB port
(such as a camera downloadingpictures or a printer), there’s no need to
attach and reboot. So long as the software to run the device is installed,
you simply insert the device and run it. When you’re done with one USB
device, take it out and insert a new one,or mostlikely, you can have sev-
eral attached to the sameport.

Several companies have introduced cryptographic tokens that attach to
the USB port. Other companies with tokens that are not USB-ready have
made adapters to USB ports. These tokens are approximately 2/2 by
'/s inches in size (about the size of a house key buta little thicker). They
have quite a bit more computing power and storage space than smart
cards. Hence, they will almost always be much faster, do more work, and
store more keys than a smart card.

 
Tokens as Password Storage Devices

In addition to your keys, tokens can hold passwords, Suppose you have
several places to log in: your network account, e-mail, various computer
accounts, electronic commerce accounts (such as an account with an
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online travel agent or bookstore), and so on. For each account, you'd like a
different password. In that way, if someone figures out one password(for
example, the online travel agent might know your password for that
account), he or she won’t have themall.

Thesolution is to use a token to generate big random passwords and
store those passwords. When you needto log in to an account, you hook up
the token and have it send the password. You don’t have to rememberthe
password, so it can be random and very long, perhaps 20 or 30 characters,

You probably have access to the token through a password,so if attack-
ers obtain your token andfigure out that password, they’ve got all your
passwords. That is a danger, but using a token does help thwart a remote
attack, For example, suppose Ray, the attacker, goes to your online bank
account and logs in as you. Although he need not be at your computer to
do this—he can be in Elbonia—he does need to enter your password, A
long, random password is much moredifficult to crack than passwords
you might otherwise use for your various accounts because they’re easier
to remember.

Crypto Accelerators

The larger hardware crypto devices are generally called crypto accelerators
(see Figure 3-8) because they usually have specialized chips that perform
cryptographic operations faster than general-purpose microprocessors.
Crypto accelerators can also store data more securely than can a regular
computer. The problem with, for example, your desktop PC is that the hard
drive is visible to the outside world. As you saw in Chapter1, attackers can
probably read your computer’s hard drive, and even if you havefirewalls
around your sensitive information, attackers can use tools, such as data

recovery software, to read that data as well. But a crypto accelerator is
built so that its storage spaceis not visible. There is very limited access to
it using normal channels, andifattackers try to pry open the cover to phys-
ically access the hard drive, the device erasesitself. Ifyou store your key on
such a box, it’s extremely unlikely that someone will be able to extractit.

Many crypto accelerators do not let the key leave the device. With a
token, ifyou want to encrypt 10 megabytes (MB)ofdata, you must get the
key from the token andlet your PC do the encrypting. While the key is in
memory—and afterward, as you saw in Chapter 1 with memory recon-
struction attacks—it is vulnerable. With a crypto accelerator, you send the
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Figure 3-8 nShield key management and
acceleration

Some crypto
accelerators

 Cryptoswift PCI E-Commerce Accelerator
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plaintext to the device, and it encrypts and returns the ciphertext. This
arrangement furtherlimits the key’s vulnerability.

One problem with crypto accelerators is that they are connected to your
computer 24 hours a day. This is in contrast to tokens, which are con-
nected only for a few secondsat a time, limiting their vulnerability. Pre-
sumably, the crypto accelerator I/O is secure so that if attackers have
remote access to your computer, they still cannot get access to the accel-
erator. “Presumably,” however, may not be adequate security in somesit-
uations. That’s why most crypto accelerators work in conjunction with
tokens—thatis, they don’t operate without a token inserted.

If you store your keys on the box, you can recover them by presenting
the correct token and entering the correct password. For attackers to

access your keys, they must somehow obtain your token (another token by
the same manufacturer won’t work, just as two credit cards don't refer to
the same account) and theability to use that token (usually a password).
And,of course, they must have physical contact with the accelerator (to
insert the token), again thwarting a remoteattack.

Hardware Devices and Random Numbers

Biometrics

Tokensand crypto accelerators usually come with an RNG (see Chapter 2
for details about RNGs and PRNGs). You must be careful, though, because
some tokens don’t have true RNGs. Rather, they have PRNGs seeded at

the factory. Even ifyour device constantly collects seed material each time
it is used—a better approach than a PRNGseededatthe factory—it’sstill
a PRNG.

A hardware device stores your keys securely, but it usually relinquishes
them when someone enters a password. Good passwordscan be strong,
but in real life, not everyone uses good passwords,

Another way to authorize a device to unleash the key is through bio-
metrics, which uses your unique physical characteristic to verify your
identity. The most well-known biometric is the fingerprint. It’s common
knowledge that everyone, even an identical twin, has uniquefingerprints.
If a machine could read fingerprints, it could determine whether the
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Summary

appropriate person is requesting an operation. Such machines exist.(It’s
macabre, but some of these machines can even tell whether the finger
being used is actually attached to the body and whetherthebodyis alive.)

Other biometrics include retina scans, voiceprints, and even DNA.Biomet-
rics companies are attempting to build hardware that can be programmed to
identify you by scanning your eye, voice, or DNA and then appropriately
release secure information or perform a cryptographic function.

Biometric devices are not currently in widespread use for a couple of
reasons, Oneis the cost of the devices, and the otheris their reliability. A
numberofconcerns havebeen raised. Will the device return an erroneous

“positive ID” on someone whoisn’t the identified subject? Will it always
return a positive ID on the subject? What if the subject has cut his or her
right thumb—will the fingerprint readerstill function? Can it instead use
the left thumb? Anotherfinger? For a voiceprint reader, what if the person
has a cold—will it still work? And so on. A password worksvirtually 100
percent of the time. If you enter the wrong password, access is denied.
With the correct password, you always get access. With biometrics, there
may be someerrors.

The technology is advancing, and companies are building better and
cheaperreaders. Someday, maybe a smart card will contain not only a chip
but also a fingerprint reader. Maybe yourcell phone will have built-in
voice recognition.

After you've generated a symmetric key and usedit to encrypt data, how
do you protect the key? Oneof the most common techniques is password-
based encryption. In PBE, you use a password anda salt to build the key
encryption key. You then use the KEKto encrypt the session key. Another
method of protecting your session key is to store it on a hardware device,
such as a token or crypto accelerator.

Real-World Examples

How do companies protect keys in the real world? Oneclass of products
for protecting session keysis file encryption applications. These products
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Keon Desktop

Figure 3-9

Registering a
directory with
Keon. Once

registered,all
files in this

directory will be
automatically
encrypted when
not in use, and
decrypted when
accessed

encrypt the files on your hard drive using symmetric-key cryptography.
Protecting bulk data keys can be done in several ways.

RSA Security makes a family of products called Keon, One componentis
Keon Desktop. Among the features of this product is file encryption. You
register directories with Keon, and it will encrypt all files in those direc-
tories (see Figures 3-9 and 3-10). When you open oneof those files, Keon
will decrypt it. When you close it, Keon will encrypt it again. That means
if the file is on your hard drive,it is encrypted. It is decrypted only when
you wantto seeit,
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Figure 3-10
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Keon uses RC5 at 128 bits or DES at 56 bits to encrypt. It uses a PRNG
to generate the key. The seed is various machine states and user input.
Once the key has been used to encryptthe files, it’s necessary to store that,
key. Keon stores it in the user’s Credential Store. If the user has a smart
card, Keon will use it as the Credential Store. If not, Keon will create a

virtual smart card on the user’s hard drive or on a floppy disk or both. The
keys on this virtual smart card are protected using PBE.

If you keep your Credential Store on a mobile medium (the smart card
or floppy), you can use Keon to encrypt or decryptfiles from any computer
you work on (as long as it has Keon Desktop installed), whetherit is your
office computer, home computer (for telecommuting), or a laptop on a busi-
ness trip.

To read your encrypted file, an attacker will have to either break the
encryption algorithm, create a substitute Credential Store (which would
entail finding the session key through a brute-force attack) or break your
Credential Store to obtain the bulk data key. The first two are highly
unlikely, so an attack, if it occurs, will probably be mounted against your
Credential Store. Ifyou keep it on a smart cardorfloppy, the attacker will
have to steal it. And then it will still be necessary to either break the
smart card or break your password.
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Other Products

If you search the Web, you will find dozens or even hundredsof applica-
tions out there that offer file encryption. Some are freeware, others are
shareware, and some are regular products.

One of the most commonly usedfile encryption programs is PGP. The
letters stand for Pretty Good Privacy. PGP wasoriginally a freeware pro-
gram written by Phil Zimmerman using RSAREF, the cryptographicref-
erence library produced by RSA Data Security. According to the
documentation,it has file encryption through PBE (it does not generate a
key and protect the key with PRR; it encrypts the file using PRE). It also

offers an advanced “enveloping”file encryption that uses a key on your
“key ring.” Once again, your key ring can be a numberof devices, includ-
ing a PBE-protectedfile.
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Symmetric-key encryption can keep your secrets safe, but if you need to
share secret information with other people, you must also share the keys.

How can you securely send keys to other individuals? This chapter
describes some solutions, including the revolutionary concept ofpublic-key
cryptography.

Chapters 2 and 3 describe how Pao-Chi(the sales rep on the road) can
keep secrets by encrypting his data and thensafely storing the encrypting
key. But suppose he wants to share someofhis secrets with other people?
For example, let’s say Pao-Chi has just met with Satomi, a potential cus-
tomer, and wantsto discuss strategy with Gwen,the VP of sales and Pao-
Chi’s boss. Normally, Pao-Chi and Gwen could handle the conversation by
phone, but they need to send complex documents back and forth, and they
figure the best way to do that is through e-mail. Beinga little paranoid,
they want to ensure the security of this exchangeofsensitive data. After
all, Pao-Chi will likely be hooking up his laptop to Satomi’s phonelinesor
Internet connection, and who knows whatsort of sniffers are attached to
her company’s wires?

The simple solution is for Pao-Chi to encrypt any files he sends to
Gwen.In that way, if Satomi intercepts the message,all she sees is gib-
berish. The problem is that when the message gets to Gwen,she also sees
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Figure 4-1

The key
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only gibberish. To decrypt the message, Gwen needs the key. Pao-Chi has
the key, but how can he send it to Gwen? He can’t send it in another mes-
sage; if Satomi can intercept the data message, she can also intercept the
key message. And if Pao-Chi could find a channelto send the keysecurely,
he could simply send the secret via that route.

The problem facing Pao-Chi and Gwen is knownasthe key distribution
problem—namely, how can two or more people securely send keys over
unsecure lines? In more general terms, how can people securely send any
sensitive information over unsecure lines? Because we can encrypt the
data, though, we can reduce the general problem to the smaller problem
of securely sending the key. If you have 10MBof sensitive material, you
could try to figure out a way to send that bulk data securely, or you could
encrypt it using a 128-bit symmetric key and then try to come up witha
way to securely send the key. If you solve the key distribution problem,
you also solve the bulk data distribution problem (Figure 4-1).

 
Pao-Chi’s Satomi
bulk data

 
encrypted data

Satomi
Session key
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Sharing Keys in Advance

In Chapter 3, you saw how Pao-Chi can encrypt bulk data with a session
key and then store that key securely. He can store that key using, for
example, PBE or a token. To solve the key distribution problem, Pao-Chi
and Gwen can get together in advance to generate a key, and then each of
them can store the key. To send secure messages to each other, they use
the key to encrypt the data.

So before Pao-Chi leaves on his trip, he stops by Gwen’soffice with his
laptop. He generates a 128-bit key and stores it somehow—maybe using
PBE, maybe on a token. He then puts a copyof the key onto a floppy disk
and hands Gwenthe disk. She inserts the disk into her computer, copies
the key, and stores it securely. Now the two parties share a key that they
can use whenever they want to send sensitive material. This key, by the
way, likely will not be the same key Pao-Chi uses to encrypt the files on
his hard drive. If it were, Gwen could read all his sensitive data. If that’s

not OK with Pao-Chi, he has the option ofencrypting his data using a key
only he can access.

If the two of them had chosen to exchange the key online, Pao-Chi
would not have had to go to Gwen’s office in person. But their goal is to
send no sensitive data in the clear over unsecure lines, and that includes

the company network. Even if the network is secure from outsiders, that
doesn’t eliminate the possibility of an inside job. Another employee—
maybe the system administrator or simply someone whois adept at hack-
ing—might be able to intercept such a key exchange. So the safest way to
exchange the encrypting key in advanceis to do so in person.

Anotherpossibility is for Pao-Chi to generate the key, encrypt it using
PBE,and send the encrypted key to Gwen. Anyone intercepting the mes-
sage would not be able to decrypt it without the password. Of course,
Gwen needs the password, so Pao-Chi can give it to her by phone.In this
way, the sensitive data (the password) is never sent over the network
lines. But is the phone line secure? Maybe, maybe not. Still, whoever
wants to steal the key will have to break into both the network and the

phone system. Although this makes the attacker’s job moredifficult, it
still means sending sensitive data over unsecurelines,

146



147

84 Chapter 4

Problems With This Scheme

Pao-Chi and Gwen now share a key. This scheme will work; if attackers
try to intercept their messages encrypted using that key, the attackers
will not be able to recover the information. But this solution does haveits

problems.
Suppose the parties want to share keys with more than one person.

Pao-Chiis not the company’s only sales rep, and he may want to securely
send information to his sales colleagues as well as people in the engi-
neering, accounting, and shipping departments. To communicate securely
with all these people, Pao-Chi will have to visit their offices and perform
the key exchange. What’s more, Gwen will have to makesimilarvisits (or
her colleagues will have to visit her—after all, she is the VP), Everyone

will have to exchange keys in person with everyone with whom they share
confidential information.

The logistics quickly become burdensome. Some colleagues may have
offices in other parts of the country or even in other countries. The com-
pany can’t send everyone on all the trips required to exchange keys.
Maybethe solution would be to gather all the employees at one location
and have a giant key exchange party. But what happens when the com-
pany hires someone new? Doesit have yet another key exchange party?
Send the new employee on a worldwidetrip to exchange keys?

Furthermore, as more people need to share keys, the number of
required meetings grows dramatically. When two people share a key,
there’s one meeting. When three people share keys, there are two meet-

ings; with four people, six meetings, and so on. In general, n people, must
make 1/2(n? — n) key exchanges. If your company has 10 employees
involved in secure data sharing, that’s 1/2(100 — 10) key exchanges,or
1/2(90) = 45. For 20 employees,it’s 190 meetings. A company with 1,000
employees would need to perform 499,500 key exchanges.

One solution is for everyone in the companyto share the same key. You
could have a “key master” who gives the key to all employees. The draw-
back is what happens when someone leaves the company. If the company
does not change the key, an unauthorized individual can now decrypt sen-
sitive materials. If, on the other hand, the company changes keys, the key
master will have to revisit everyone in the company.

A second problem with the shared secret key is that if attackers crack

one message, they crack them all. Because all messages between two pco-
ple are encrypted with the same key, finding the key for one message
meansfinding the key for all messages.It’s not likely that attackers will
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find the key if the correspondents use a 128-bit key and an algorithm with
no weaknesses, On the other hand,if it is possible to easily use a separate
key for each message, why not take that extra measure of precaution?
Although this is a drawback of the shared key approach,it’s trivial com-
pared with the pitfalls of trying to exchange keys in person.

Using a Trusted Third Party

If sharing keys in advance is not an option, Pao-Chi and Gwen can try
using a trusted third party (TTP). This is a variation on the key master
solution. In this scheme, the trusted third party—let’s call her Michelle—
shares a key with each individual in the company. Actually, the keys are
key-encrypting keys, or KEKs. Pao-Chi visits Michelle and asks for a KEK.
She generates one, stores it securely, and gives a copy to Pao-Chi. The two
of them now share a KEK. Gwenalso visits Michelle, and the two of them

share a different KEK (see Figure 4-2).
When Pao-Chi wants to communicate with Gwen, he sends a message

to Michelle, requesting a session key he can use in his messages with
Gwen. To fulfill the request, Michelle generates a new session key and
sends it to Pao-Chi. She encrypts the new session key using the KEK she
shares with him, so anyoneintercepting that message cannotidentify this
new key. Michelle also sends this same new session key to Gwen, encrypt-
ing it using the KEK those two share (see Figure 4-2).

Pao-Chi and Gwen now share a key, and neither had to make a trip to
the other’s office. Anyone else wanting to share a key with any other
employee simply establishes a KEK with Michelle, who distributes the
key. In a trusted third party scheme, the correspondents are thefirst two
parties. In our example, Michelle is the third party. Just as important,
Michelle must be trusted because she has everyone’s keys. When Pao-Chi
and Gwen exchange encrypted messages, normally they are the only peo-

ple who can decrypt them. But now Michelle also has their session key, so
she can decrypt their messages. Pao-Chi and Gwen must trust Michelle
not to read their sensitive material or release their key to anyoneelse.

Thetrusted third partystill has to exchange keys with all the employ-
ees in person. As you saw in the precedingsection, that’s a daunting task.
Ta makethings easier, you can create a hierarchy of trusted third parties.
Everyone goes to a local TTP, each of whom hasestablished a key with
every other TTP. For all the TTPs to exchange keysis still a formidable

148



149

86 Chapter 4 

Figure 4-2
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project, but it is more manageable than having a single companywide
TTP. If two correspondents are in the sameoffice, they can use the ser-
vices of a shared TTP. If they are in separate offices, each one communi-
cates with his or her own TTP. Then the two TTPs communicate with each

other to bridge the gap (see Figure 4-3).

Problems With This Scheme

The first problem is that the TTP can read all the messages. The whole
idea of encrypting messagesis to limit their exposure to only the corre-
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Figure 4-3
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spondents. Now a third person hasaccess. If the correspondents can live
with that, this scheme will work. Otherwise, they’d better look for another
solution.

The second problem is that when the TTP leaves the company it must
hire a new TTP andstart the process over from the ground up. Otherwise,
the outgoing TTP can gain accessto all sensitive materials.

An alternative is to contract the job of TTP to an outside company. In
this arrangement, the TTP is not an individual but a corporate entity. In
this case, you must trust that the company has checks in place that pre-
vent its employees from gaining access to the keys.
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Public-Key Cryptography and the
Digital Envelope

In the 1970s, researchers invented asymmetric-key cryptography, a new

way to securely send keys. This scheme uses twodifferent keys. Although
they are related to each other—they are partners—theyaresignificantly
different. The relationship is mathematical, and what one key encrypts
the other key decrypts. In symmetric crypto, the same key is used to
encrypt and decrypt (hence the word “symmetric”’—the same on both
sides); ifyou use any otherkey to decrypt, the result is gibberish. But with
asymmetric crypto (see Figure 4-4), the key that’s used to encrypt the data
does not decrypt it; only its partner does (hence the word “asymmetric,’—
each side different),

An analogy is the asymmetric lockers often found in airports, train sta-
tions, skating rinks, and many other public places. To securely store your
belongings, you put them into the locker and lock it by inserting money.
Just as your house key locks your front door, the money locks the locker—
in a sense, your moneyis the key. After you lock the door, you receive
another key—perhapsan actual key that looks like your house keyor car
key, or perhaps a piece of paper that contains a number. To reopen the
locker, you use the key or enter the numberon a key pad(sortof like using
a temporary personalidentification number or PIN).

Suppose thieves want to steal your belongings. To open the locker, they
need a key. The key you used to lock it was money. But if the thieves insert
more money into the locker, it won’t open. They can stuff moneyintoit all
day long, andit still won’t open. The key that was used to lock the locker
will not unlock it. Only the second, different key will unlock the door.

Similarly, it’s possible to create a cryptographic algorithm in which one
key encrypts data and the other key decrypts it. Another term for this
model (the term weusein this book) is public-key cryptography. Because
both keys are needed to lock and unlock the data, one of them can be
made public without jeopardizing security. This key is known as the pub-
lic key. Its partner is called the private key, You encrypt data with the
public key and decrypt it with the private key. Just as thieves can know
what key was used to lock the asymmetric locker—can even have access
to that key—and still not be able to open the door, an attacker can have

access to a cryptographic public key and still not be able to decrypt the
data. Only the private key can be used to decrypt it, and if the ownerof
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that key keeps it private (as the name implies), plaintext encrypted with
the public key will remain secure.

Let’s return to our sales rep example. If Gwen has a public and pri-
vate key pair, she makesthe public key publicly available (what else are
you going to do with a key called “public”). She is the only one who has
access to the private key. Pao-Chi uses a symmetric algorithm with a
session key to encrypt his e-mail, and then he uses Gwen’s public key to
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Figure 4-5
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encrypt the session key. Then he sends both the encrypted message and
the encrypted session key (see Figure 4-5). This arrangementis similar
to password-based encryption, in which the session key is used to
encrypt the bulk data, and the KEK (based on the password) is used
to encrypt the session key, In PBE, only the ownerof the password can
recover the session key and consequently decrypt the bulk data. In pub-
lic-key cryptography, only the ownerof the private key can recover the
session key and decrypt the bulk data.

Public key

 
: Encrypted

session key

 
Now you’re probably asking, “Why does Pao-Chi use a session key with

asymmetric algorithm to encrypt the bulk data and then encrypt the ses-
sion key with the public key? Why doesn’t he simply encrypt the bulk data
with the public key?” The answerhas to do with performance: Public-key
algorithms are slow, whereas symmetric-key crypto can encrypt bulk data
very quickly. Depending on the platform, some symmetric algorithms can
operate at speeds of 10MB, 20MB, 50MB (or even more) per second. In
contrast, a public-key algorithm operates at probably 20KB to 200KB per
second, depending on the algorithm,platform, and other factors. That’s too
slow for processing bulk data, but encrypting 128 bits (the probable size of
a symmetric key) would not take much time. So if Pao-Chi’s e-mail (the
plaintext) is a few megabytes,it’s more efficient to use this combination of
symmetric-key and public-key crypto.
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You may ask, “Why not simply develop a public-key algorithm that can
encrypt as fast as the symmetric algorithms?” You’re welcometo try.

This process of encrypting bulk data using symmetric-key crypto, and
encrypting the symmetric key with a public-key algorithm,is called a dig-
ital envelope. The idea is that the symmetric key is wrapping the data in
an envelope of encryption, and the public key is wrapping the symmetric
key in an envelope(see Figure 4-6).

 Piaintext

 Session key Public key 

Notice the huge advantage of this method compared with a shared
secret (discussed in the section “Sharing Keys in Advance”). With a shared
secret scheme, Pao-Chi and Gwen have a key they use each time they
communicate. Each of them must have separate session keys to use when
communicating with anyone else. And they must keep all these keys
secure. Using a digital envelope, Pao-Chi and Gwenstill have to keep a
separate key for each individual, but this timeit’s a public key, which
doesn’t need to be protected. Furthermore, they probably don’t need to
store the public keys themselves; directories of public keys are readily
available. We talk about these directories in Chapter6. For now,it’s suffi-
cient to know that you can leave the task of managing all those public
keys to someoneelse.

Security Issues

Suppose Pao-Chi sends an e-mail to Gwen using a digital envelope, and
Satomi indeed intercepts the message. Will Satomibe able to read it? The
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bulk data was encrypted using a symmetric algorithm, so she needs the
session key. To decrypt the data she could try a brute force attack, but if
the key is 128 bits, that would takebillions or eventrillions of millennia
(as you saw in Chapter 2). But because the session keyis right there, part
of the messageitself, it seems she doesn’t need to try this attack—except
the session key is also encrypted. To decrypt the session key, she needs the
partner to the public key that was used to encrypt it because that’s the
only key that will decrypt it. That’s the private key, but only Gwen has
that.

Maybe Satomi can break the public-key algorithm or perform a brute
force attack to find the private key. Recall that there were two ways to
recover messages encrypted using a symmetric-key crypto: break the algo-
rithm or find the key using brute force. The sameis true for public-key
erypto. If Satomi can figure out what the private key is by breaking the
algorithm or using brute force, she can decrypt the session key and useit
to decrypt the bulk data.

To determinethe private key, Satomi mustfinds a 160-bit to 510-bit (or
possibly higher) number. If a brute force attack on a 128-bit value (the
symmetric key) is outside the realm offeasibility, then so is such an attack
on a 160-bit number. So a brute force attack on the 160-bit or 510-bit num-

ber is not a realistic option.
What about the algorithm? Can a public-key algorithm be broken? It

turns out that all public-key algorithms can be broken by determining
whatthe private key is, based on the public key. Remember that the pub-
lic and private keys are partners, that they’re related, and that this rela-
tionship is mathematical. Math computations can be used to derive the
private key from the public key.

Luckily, these math computations are time-consuming. As with sym-
metric-key crypto, the longer the public key, the longer it will take to
derive the private key from it. If the keys are long enough, solving the
math problem would take as muchtimeasa brute force attack on a 96-bit
to 128-bit key. In the section titled “Key Sizes,” we talk about key sizes for
public-key algorithms.

Breaking a Public-Key Algorithm

In Chapter 2, we say that you should use only symmetric algorithms with
no weaknessesthat the fastest way to break them should be a brute force
attack. Why, then, are we nowtelling you to use public-key algorithms
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that can be broken? For these algorithms, the brute force attack is not the
fastest attack. Why the changeofheart?

The answer is simple: No one has been able to develop a public-key
algorithm that has no weaknesses. For all public-key algorithms, there
are techniques thatwill break them faster than brute force. Think of these
techniques as shortcuts. But most users are willing to live with the short-
cuts for two reasons.First, cryptographers have performed a tremendous
amountof research quantifying the time required by the shortcuts. Even
though an algorithm is susceptible to an attack faster than brute force,
the research showsitstill takes a long time. For most people, that amount
of timeis sufficient security. Second, people are willing ta use algorithms
that suffer from shortcuts because these algorithms are the best way to
solve the key distribution problem.

For people who don’t trust public-key cryptography, the only recourse is
to use a shared secret schemefor key distribution. Otherwise, until some-
one comes up with a public-key algorithm with no shortcuts, we'll have to
live with them.

Actually, though, having the shortcuts is not too bad. Using brute force,
an attacker might get lucky and find the key in oneofthefirst few tries,
theoretically reducing the time of a successful attack to almost zero. In
contrast, cryptographers know how long they can expect it will take to
break a public-key algorithm using a shortcut. These attacks usually
must run their entire course before coming up with the answer, almost
never hitting on a lucky early answer, so researchers have established a
more concrete minimum attack time.

SomeHistory of Public-Key Cryptography

In the mid-1970s, Stanford University graduate student Whitfield Diffie

and professor Martin Hellman investigated cryptography in general and
the key distribution problem in particular. The two came up with a
scheme whereby two people could create a shared secret key by exchang-
ing public information. They could communicate over public lines, sending
information back and forth in a form readable by eavesdroppers, at the
same time generating a secret value not made public. The two correspon-
dents would then be able to use that secret value as a symmetric session
key (discussed in more detail soon). The name given to this schemeis
Diffie-Hellman, or DH.
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DHsolves a problem-sharing a key—butit’s not encryption, That does
not make it unusable; in fact, DH is in use to this day. But it was not the
“ultimate” algorithm, one that could be used for encryption. Diffie and
Hellman published their result in 1976. That paper outlined the idea of
public-key cryptography (one key encrypts, the other decrypts), pointed
out that the authors did not yet have such an algorithm, and described
whatthey had sofar.

Ron Rivest, a professor at MIT, was intrigued by Diffie and Hellman’s
idea of public-key cryptography and decided to create the ultimate algo-
rithm. He recruited two colleagues—Adi Shamir and Len Adleman_ to
work on the problem. In 1977, the trio developed an algorithm that could
indeed encrypt data. They published the algorithm in 1978, and it became
knownas RSA,theinitials of its inventors.

In 1985, working independently, two men—Neal Koblitz of the Univer-
sity of Washington and Victor Miller of IBM’s Watson Research Center—
proposed that an obscure branch of math called elliptic curves could be
used to perform public-key cryptography. By the late 1990s, this class of
algorithms had begun to gain momentum.

Since 1977 (and 1985), many researchers have invented many public-

key algorithms. To this day, however, the most commonly used public-key
algorithm for solving the key distribution problem is RSA. In second place
is DH,followed byelliptic curves, We talk about these algorithms in the
following sections.

How Public-Key Cryptography Works

It’s easy to imagine symmetric-key crypto. Using the key, you follow a
step-by-step procedure to scramble the outgoing data. To decrypt it, you
perform the steps in reverse. If the last thing the encryptor did wasto
rotate a word, thefirst thing the decryptor doesis to rotate the ciphertext
word in the other direction by the same amount(see Figure 4-7). If the key
used to encrypt the data is the key used to decryptit, the rotation number
will be the same, (If the key is wrong, there is a chance that particular
rotation maystill be correct, but almost all the rest of the operations down
the line, maybe an XOR here or an AND there,will be wrong.)

But with public-key cryptography, such a procedure won't work. You
can’t simply reverse the steps. Why not? The quick answerhasto do with
math. Whereas symmetric-key crypto simply operates on the data asbits
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Who Invented Public-Key
Cryptography?

Because they published the first papers on the subject, Whitfield
Diffie and Martin Hellman, along with Ron Rivest, Adi Shamir, and

Len Adleman,are generally credited with inventing public-key cryp-
tography in the mid 1970s. Another researcher, Ralph Merkle, also
deserves credit for his pioneering work,

Yet British and U.S. information security organizations claim that.
they developed these techniques in the 1960s and 1970s. Did they?

The Code Book, Simon Singh’s history of crypto, gives ample evi-
dence that James Ellis of the British Communications Electronic

Security Group (CESG)proposed the idea of asymmetric encryption
in the 1960s. Apparently, he was inspired after reading an anony-
mous paper written at Bell Labs during World War II. Ellis had
difficulty finding an algorithm that would work. In 1973, mathe-
matician Clifford Cocks joined the CESG. Ellis described the concept
to him, and within a few minutes Cocks had devised a solution that
was essentially the algorithm known today as RSA. In 1974, Mal-
colm Williamson, another Ellis colleague, described yet another algo-
rithm, this one similar to the one wecall Diffie-Hellman. Because
this work wassecret (the CESGis a secret organization, called by
some people a spy group), it was never published, and the authors
did not receive credit until years later.

The U.S. National Security Agency (NSA) also claims to have
invented public-key crypto in the 1960s. Whitfield Diffie has

remarkedthat part ofhis inspiration for public-key crypto was hear-
ing about the secure phone system at the NSA. Although Diffie did
not know how the NSA hadsolved the key distribution problem, he
explains that because he knew it was possible, he figured he could
come up with the solution. The NSA system—which,it was later
learned, used public-key crypto—was up and running by the mid-
1970s, perhaps indicating that years of study preceded deployment.
In addition to the NSA phone system, a document with the exciting
title “National Security Action Memorandum 160” outlines a pro-
posalfor installing “permissive links” onto nuclear weapons. Appar-
ently, this memo was submitted to President John F. Kennedy;it

continued
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—

bears his signature. Along with NSAM 160 is the “Weisner Memo-
randum,” which includes more details about permissive links. It can
be inferred that the authors proposed equipping nuclear arms with
cryptographic switches. Bombs could be activated only with the cor-
rect codes, with a form of public-key crypto guaranteeing correct
codes (two principles referred to as authentication and nonrepudia-
tion; see Chapter 5).

What about the former Soviet Union or the People’s Republic of
China? Did these nations have public-key algorithms before 19'76?
Or how about Hungary or Japan—or any other government? If they
did, they're not saying.

 
 

  Figure 4-7

In symmetric-key 2
crypto, generally

the last thing sa \ ff Decryptdone in

encrypting is the Last step First step

first thing done Rotate tight 7 Rotateleft 7
(in reverse) in

decrypting 14 2F 38 86

and manipulates them using computer operations, publie-key crypto oper-
ates on the data as numbers and plays with the numbers(see Figure 4-8),
And the mathis one-way:It’s easy in one direction but not in the other
direction. In fact, the foundation of any good public-key algorithm is a one-
way function, the class of math problems on which public-key crypto is
built. Actually, publie-key one-way functions are more accurately
described as one-way with a trap door. To the rest of the world the func-
tions are one-way, but the private key operates as a trap door that allows
the ownerto recover the original data (see Figure 4-9). There are true one-
way functions, and we talk about some of them in Chapter5.
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Figure 4-8
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Four bytes
0x14 Ox2F 0x38 0x86

A number

338,638,982

Algorithm

A number

1,963,012,242

Four bytes
0x75 Ox01 0x30 0x92

Fourletters

Goal

|
ASCII

Ox47 Ox6F 0x61 0x6C

A number

1,198,481,772

A number

2,652,352,547

Four bytes
Ox9E 0x17 OxBO 0x23

ASCH

Rt a#

In this book, we don’t describe the full details of the math behind the

various algorithms; you can find that in the RSA Labs FAQ on the accom-
panying CD. But in the following sections we talk about the three most
widely used algorithms for solving the key distribution problem: RSA,
DH, and ECDH(Elliptic Curve Diffie-Hellman). We tell you the namesof
the one-way functions and outline the problems.
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Figure 4-9
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The RSA Algorithm

The RSA algorithm encrypts data. If you feed your plaintext to the algo-
rithm along with the public key, you get ciphertext as a result. With the
digital envelope, the plaintext is the session key.It’s certainly possible to
use RSA to encrypt data other than a session key, but RSA is not as fast
as the symmetric algorithms. For example, RC4 (probably the fastest sym-
metric algorithm in wide use today) will encrypt data at a rate 700 times
faster than 1,024-bit RSA (1,024 bits is the most commonly used RSA key
size), RC5 (one of the fastest block ciphers) is about 500 times faster.
 

NOTE:

Incidentally, the R in RC4 and RC5is the same Ras in RSA.

So the best way to use RSAis to create a digital envelope. For example,
Pao-Chi can generate a random or pseudo-random 128-bit RC4 key, use it
to encrypt his e-mail message to Gwen, and then use Gwen’s RSA public
key to encrypt the RC4 key. Enerypting the RC4 key (16 bytes) will take
only a few milliseconds on most platforms. Pao-Chi’s message to Gwen
consists of two parts: the encrypted session key and the encrypted bullc
data (see Figure 4-10). Gwen separates the two components, uses her RSA
private key to decrypt the session key, and then uses that decrypted RC4
key to decrypt the bulk data.
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Figure 4-10
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Encrypted bulk data
 

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  

 

An RSA public key consists of two numbers: a modulus and a public
exponent. The private key is made up of the same modulus anda private
exponent (see Figure 4-11). The modulus, incidentally, is the product of
two very large prime numbers. (A prime number, or prime, cannot be
evenly divided; for example, 3, 5, 7, 13, and 17 are primes.) In the crypto-
graphic literature, these numbers are usually given the romantic names
n, e, and d, where n is the modulus,e is the public exponent, and d is the
private exponent. Equally poetic are the names for the two primes that
make up the modulus: p and q.

When you generate an RSA key pair (or rather, when the program
you're running generates an RSA keypair), you decide on a public expo-
nent e, find two large primes p and q that work with the e you've chosen,
multiply p and qg to get the modulus n, andfinally compute your private
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Figure 4-11

A 1,024-bit RSA
key pair. The
number7 is the

modulus,e is the
public exponent,
and d is the

private exponent
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Be

Public Key:
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af lc Ob 3e ba 33 e3 34 08 24 f3 b9 51 20

ee a4 e3 e7 42 71 90 a6 20 5e 2e de 2b 4c
 
exponent d based one,p, and q. Then you throw awayp and q (see Figure
4-12). Incidentally, finding large primes is easy using the Fermattest (in
the 1600s, Pierre de Fermat discovered interesting things about numbers,
one of which led to a test of primality). Furthermore, researchers have
shown in the Prime Number Theorem that there are more primes of 512
bits or fewer than there are atoms in the known universe. This means
that we'll never “run out” of primes, and the probability that two people
will pick the same prime are so small that we can safely assumeit will
never happen.

Suppose that Satomi, our attacker, wants to determine Gwen's private
key. If Satomi knowsthe key, she can open Pao-Chi’s digital envelope. She
mustfigure out n and d. Becausethe public keyis, well, public, she knows
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Figure 4-12

Generating an
RSApublic and
private key pair 
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(1) Choose a public 3 17 65,537
exponent

Notall primes work with
the public exponent you

(2) Find p,q (PRNG) choose; you may have to
reject some primes

Pp. before finding two
compatible numbers

(3) Multiply to get n n= pXxq

‘ Extended
(4) Find d Buclid

(5) Destroy p, g 
n becauseit’s part of the public key. So really, all she has to dois figure out
d, It turns out that d is simply the inverse ofe modulo b(n). Satomi knows
whate is, so all she has to dois find (nm) and perform a modular inverse
function. That’s very easy to do using the Extended Euclidean Algorithm.

NOTE:

Here’s an interesting bit of history. Euclid published his algorithm in
about 400 BCE, but researchers have concluded that he didn’t inventit.

It’s believed that the algorithm had been around for about 200 years
before Euclid presented it. Who was the true inventor? No one knows, but
there is a lesson to be learned from this anonymous mathematician: If
you get a good idea, publish!
 

By the way, ¢(n) is known as Euler’s phi-function (¢ is the Greek letter
phi, pronounced “fee”). Leonhard Euler (pronounced “Oiler”) was an 18th-
century mathematician who noticed some interesting things about num-
bers. For example, if n is the product of those two primes p and q, then
b(n) is (p — 1g — 1). That’s “the quantity p minus 1 times the quantity q
minus 1” (see the FAQ on the accompanying CD for more details).
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So Satomi’s problem, which began as “find d” and was reduced to“find
(n),” has now been further reduced to “find p and q.” She knows n and
knows that p X gq = n, so all she has to dois factor n, which is the hard
problem at the foundation of the RSA algorithm.

In other words, in RSA, the one-way function is multiplication. That's
right, multiplication. You’re probably thinking, “That's not one-way. To
reverse multiplication, all you have to do is divide.” That’s true—if you
know whatto divide by. But if someone multiplies two numbersandtells
you the result, can you determine the original two numbers? That's known
as factoring, and it happensto he difficult.

Suppose 7 is 35. What are p and gq? That’s easy—they’re 5 and 7
because 5 X 7 = 35. The numbers5 and 7 are the prime factors of 35.

When you break 35 into its prime factors, you're factoring.
Now suppose 1 is 893. Factor that. (The answeris given in the next

paragraph.) If you factored 893, you probably discovered that it wasa lit-
tle more time-consuming than factoring 35. The longer the number, the
more time it takes to factor it. Researchers have written computer pro-

grams to factor numbers. For those programs,factoring 893 would be triv-
ial. But just as with humans, it takes these programs longer to factor
bigger numbers. You can pick a numberso big that the amountof timeit
would taketo factor, even for the fastest computers, would be prohibitive.

RememberSatomi’s problem? Ifshe finds p and g, she can compute (72).
With b(n) and e, she can determine d. Whenshe has d, she can open Pao-
Chi’s digital envelope. Because p X g = n and because she knows whatn is
(remember, that’s part of the public key), all she has to do is factor n—and
that’s how factoring can break RSA.(The answerfrom the preceding para-
graph is 19 and 47.) Because the modulus(that’s n) is the number Satomi
needs to factor, we'll say that the size of the modulusis the size of the RSA
key. Hence, an RSA key that uses a modulusof1,024bits is a 1,024-bit key.

No one has been able to factor big numbers in a reasonable amountof
time. Howbig is big? Currently, the most commonly used RSA keysize is
1,024 bits. The record for factoring (as of December 2000) is 512 bits. In
that case, p and q were each 256bits long.It took a team using 292 off-the-
shelf computersa little more than five monthsto do the job. With a brute
force attack, each time you add a bit to the key size, you double the time
it takes to break. But with the technique used by the current factoring
champions, each time you add a bit to the number, you don’t quite double
the time to factor. Each added bit makes the program run about 1.035 to
1.036 times longer. So if a 512-bit key is broken in five months, a 1,024-bit
key can be broken in about 3 to 30 million years (see Figure 4-13).
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Figure 4-13

In a popular
1,024-bit RSA
key, the modulus
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by multiplying
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You may wonder why the modulushasto be the product of two primes.
Whycan’t the modulusitself be a prime number? Thereasonis thatfor a
prime numberp, ¢(p) is (p — 1). Because your modulusis public, if the
modulus were p, a prime number, any attacker would be ableto find ¢(p);
it’s simple subtraction. Armed with $(p), an attacker can easily find d.

Incidentally, Satomi has a couple of brute force opportunities, First, she

could try to find d by trying every valueit could possibly be. Fortunately,
dis anumberas big as the modulus.For a 1,024-bit RSA private key,d is
1,024 bits long (maybea bit or two smaller). No, brute force on d is not an
option. A second possibility is to find p or g. Satomi could get a number6
(call it b for brute force candidate) and then compute n + 6 (n divided by
b). If that doesn’t work (6 does not divide n evenly; there is a remainder),
she tries another 6. She keeps trying until she finds a b that works (one
that divides n evenly). That 6 will be one of the factors of n. And the
answer ton + 6 is the other factor, Satomi would then have p and q. But
the factors of 7 are half the size of the modulus(see “Technical Note: Mul-

tiPrime RSA”). For a 1,024-bit RSA key, p and g are 512 bits each. So
Satomi would be trying a brute force attack on a 512-bit number, and
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Technical Note: MultiPrime RSA

Faster performance is always a goal of programmers, so anything
that would speed up the RSA algorithm would be welcome.Thefirst
speed improvement came in 1982 from Belgian researchers Jean-
Jacques Quisquater and C. Couvreur. They showedthatit’s possible
to make private key operations (opening a digital envelope)faster if
you keep the p and q around,by using what is known as the Chinese
Remainder Thevrern (CRT). This theorem dates to the fourth century

and originated in, as the name implics, China. It’s a result of
research into how to count columns and columnsof soldiers more

quickly.
Remember that an RSA private key is made up of the two num-

bers n and d, where n is built by multiplying two primes, p and gq.
When you have your d, you throw away p and q. According to the
theorem,if you don’t throw away your p and gq, andif, while gener-
ating your key pair, you make a few other calculations and save a
few more values, the private key operations you perform can run
almost three times faster. The fundamental reason is that p and q
are smaller than n (there’s moreto it than that, but at its founda-

tion, that is the reason). Because p and g must be kept private, this
technique will not help public key operations. But, as you'll see in
the section “Performance,” RSA public key operations are already
rather fast. Recently, people have been looking into using three or
more primes to make up 7. Here’s why.

When you multiply two numbers,ifyou add thesizes of those two
numbers you get thesize of the result. For example, if you multiply
a §12-bit number by a 512-bit number, you get a 1,024-bit number
because 512 + 512 = 1,024 (it could end up being 1,023 bits, butlet’s

not quibble). Actually, you could multiply a 612-bit numberby a 412-
bit numberto get a 1,024-bit result, but for security reasons,it’s bet-
ter to have the numbers the samesize or very close. Virtually all
programs that generate RSA keypairs find two 512-bit primes and
multiply them to make n.

If you want a 1,024-bit numberas a result of multiplying three
smaller numbers, how big should they be? One possibility is 341,
341, and 342 bits. If p and q are cach 512 bits, and if private key
operations are faster because they are smaller than n (which is

continued
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1,024 bits), will operations improve even moreifp, g, andr(let’s call
our third prime r) are smallerstill?

The answeris yes. The more primes that make up the modulus,
the faster the private key operations run.It’s all because of the Chi-
nese Remainder Theorem.

The problem is that the more primes that make up the modulus,
the easier it is to factor. More precisely, if “too many” primes make
up the modulus, it’s easier. How manyis too many? That depends on
the size of the modulus. The bigger the modulus, the saferit is to

use more primes. Using three primes to build a 1,024-bit modulus
will not help an attacker; it will take just as long to factor as does a
two-prime number. But should you use four primes to generate a
1,024-bit modulus? That may be too dangerous.If your modulusis
2,048 bits, four primesis safe, but five might not be.

Actually, that issueis still under contention. How manyprimesis
it safe to use at various sizes of moduli? Althoughthereis disagree-
ment in some areas,it is widely believed that using three primesis
safe for a 1,024-bit modulus. Research continues on the topic.

So ifyou hear about MultiPrime RSA,you'll know thatit has to do
with making private key operations faster by using more than two
primes to build a modulus.

 
that’s out of the question. Actually, because p and q are primes, they are
odd, so the least significant bit is set; and because they are 512 bits long,
the mostsignificant bit is also set, so Satomi would knowatleast 2 of the
512 bits. So it’s not brute force on 512 bits but rather on 510—butthat’s

not muchbetter.

The DH Algorithm

The Diffie-Hellman algorithm is not used for encryption, so how can it
solve the key distribution problem? Afterall, don’t you have to encrypt the
session key to create a digital envelope?

With DH, you don’t generate a symmetric session key and distribute it
using public-key technology; instead, you use public-key technology to
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Figure 4-14
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generate the symmetric session key. Each corresponding party possesses
a secret value and a public value. If you combinea private value with the
other public value, each individual will generate the samesecret value
(see Figure 4-14).

  
Public value

Private value aa

DH machine

LL Private ‘value

DH machine

Here’s how Pao-Chi and Gwen would makeit work. Gwen has a DH key
pair; the public key is (obviously) publicly available, and she keeps her
private key someplace where only she has access. Inside Gwen’s public
key is enough information for Pao-Chi to generate his own temporary DH
key pair. Now both of them have a DH keypair (see Figure 4-15). For each
of the key pairs, the public and private keys are related. But Pao-Chi’s and
Gwen’s key pairs themselves are also related. Pao-Chi uses his private
key and Gwen’s public key together to generate a number,called a secret
value.

To encrypt the bulk data, Pao-Chi needsa session key. Instead of using
an RNG or PRNGto generate the key, he uses the secret valueresult from
the DH computations. For Gwen to read the message, though, she needs
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Figure 4-15

Pao-Chi

generates a
temporary DH
key pair using the
information from
Gwen’s public
key. Now both
parties have
related key pairs,
and each can
create the same
secret

Figure 4-16

Pao-Chi’s

message has
his public value
first followed by
the encrypted
bulk data  
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Pao-Chi

i= Gwen’s public DH key

= |
So

DH machine

 \s
Pao-Chi’s temporary

DH keypair

the session key. Since Pao-Chi used the DH secret value as his session key,
that means Gwen needs the secret value. She can generate the secret,

value using her private key and Pao-Chi’s temporary public key, which he
sends along with the message (see Figure 4-16).

 

VUvadeBONAYm_LA£ Pao-Chi's temporary DH public key
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Ce°=Mpiid*q¢A Encrypted bulk data
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&®L—TIXAE $9,é¢«i

170



171

108 Chapter 4

The Diffie-Hellman algorithm does not encrypt data; instead, it gener-
ates a secret. Two parties can generate the same secret and then useit to
build a session key for use in a symmetric algorithm. This procedureis
called key agreement. Two parties are agreeing on a key to use, Another
name found in theliterature is key exchange. That description is not as
accurate, but some people use it. It means that two parties perform an
exchange, the result of which is a shared key.

But if Pao-Chi and Gwen can generate the secret, why can’t Satomi?
Satomi knows Gwen’s public key and, if she’s eavesdropping, Pao-Chi’s
temporary public key. If she puts those two keys together, what does she
have? Nothing useful. The secret appears only when combining a public
and a private value (each from a different person). Satomi needs one of the
private keys—not both,just one.

A DHpublic key consists of a generator, a modulus, and public value.
The private key is the same modulusalong with a private value. As with
RSA, cryptographers exercise their creativity to give these numbers more
melodious names:g, p, y, and x. The generatoris g, the modulusis p, the
public valueis y, and the private value is x (see Figure 4-17). Here, p is a
prime number;note that it’s not the product of two or more prime num-

bers but ratheris itself a prime. You generate a key pair by finding the
prime p first, then a generator g that works well with yourp, and then a
random or pseudo-random x. If you combine those numbers using modu-
lar exponentiation (see Figure 4-18), you get y,

y = g* mod p

We havesaid that there is a way to break all public-key algorithms.
That includes DH. Satomi can break DH by deriving oneofthe private
keys from its public partner. Because Satomi needsonly oneof the pri-
vate keys, she'll probably go after Gwen’s, which has been out there
longer (remember, Pao-Chi generates his temporary private key only
whenhe sends the message). Gwen’s public key consists ofy, g, and p.All
Satomi has to do is find x. In the preceding equation, Satomi knowsall
the values except one. High school algebra describes this as “one equation
in one unknown.” That’s solvable, right?

Yes, it’s solvable. It’s knownasthe discrete log problem (finally, a more
interesting name), and computer programswill solve it. But the longer the
p, the more time the computer programswill take—in fact, the same time
as it would taketo factor. As it happens, the factoring problem andthedis-
crete log problem arerelated. It’s commonlybelievedthat if you solve one
you solve them both. So in use, p should be 1,024 bits long.
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Figure 4-17

A 1,024-bit DH p=
key pair. The
numberp is the
modulus,g is the
generator,y is the
public value, and
x is the private
value 
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Figure 4-18

Generating a DH
public and
private key pair

 

(1) Generate a prime

(2) Generate a generatorthat works well with p @RNG)+s

(3) Generate a privateexponent ERND)+«

(4) Compute the public =value y y=g'mod p

With RSA, you find two 512-bit primes and multiply them to get a
1,024-bit modulus. With DH,youfind one 1,024-bit prime anduseit as the
modulus.

NOTE:

“Discrete log” doesn’t refer to a felled tree that’s good at keeping secrets
(that would be a “discreet log”). The word “discrete” means that we’re

working with the math of integers only—nofractions or decimal points—
and the word “log”is short for “logarithm.”

With RSA,you can’t use a single prime as the modulus; you must mul-
tiply two primes. But with DH, you use a single prime as the modulus.
Whyis it that single-prime RSA can be broken but single-prime DH can-
not? The answer is that the two algorithms do different things. RSA
encrypts data, whereas DH performs key agreement. With RSA, you use
a value called d that is dependent on (7). With DH, you don’t use d, and
you don’t mess around with (7).

So Satomiwill need a few million years to break Gwen’s private key by
going the discrete log route. What about brute force—would that work?
The private key is really just x, a random or pseudo-random numberthat
can be as long as Gwen wantsit to be. If she wantsit to be 160bits, she can
makeit 160 bits. Then Satomi won’t be able to mounta brute force attack

on it. Gwen could make x even longer, but the longeritis, the longerit will
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take her to perform her calculations. So for performance reasons, she
wants it as short as possible, and for security reasons, she wantsit as long
as possible. Today, 160 bits is probably the most commonsize ofx.

The ECDH Algorithm

Figure 4-19

An elliptic curve.
This also shows
EC addition

The first thing to know about Elliptic Curve Diffie-Hellman is what an
elliptic curve (EC)is, and that’s shown in Figure 4-19. This curve is not the
only form an EC can take, but it’s a common one.Actually, it’s not even a
cryptographic KC, but when cryptographerstalk about EC, they generally
show a picture similar to Figure 4-19.
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Figure 4-20

Classesofelliptic
curves used by
cryptographers

Elliptic curves date to the 1800s. They are actually a form of the Weier-
strass equation (a “smooth” Weierstrass equation,to be a little more pre-
cise). Karl Weierstrass was a 19th-century mathematician who did
pioneering work on numbertheory. Elliptic curves played a role in the
proof of Fermat’s Last Theorem and arealso involvedin factoring.

Cryptographers use only a few of the many flavors of ECs. The curves
used by cryptographersfall into two main categories, generally called
“odd” and “even.” Another way to categorize the types of curves used in
crypto is Fp, F2 Polynomial, and F2 Optimal Normal (see Figure 4-20).
These latter categories can be broken down to even more classes ofcurves.

 
F2 Polymonial

A cryptographic EC is discrete (only integers; no fractions or decimal
points). All numbersfall within a certain range. The bigger the range, the
more secure the curve; the smaller the range,the faster the computations,

An elliptic curve has points; a point is an x,y-coordinate. For example,
in Figure 4-19, the point labeled P3 could also be described as(3,8). The x-
coordinate is 3, so you start at the origin and goto the right 3 units (the
unit—inches,millimeters, or something else—dependson the scale). Then
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you use the y-coordinate to go up 8 units. The point P2 could be (—6, 1):
left 6 units (the negative in —6 meansleft) and up 1 unit. As the figure
shows,you can add points on an EC. Notice thatit’s not an intuitive sense

of “adding.” You find two points you want to add, drawaline through
them, and see wherethatline intersects the EC. Thatpointis not the solu-
tion; the negative of that point is the solution. Why isn’t P3 the sum ofP1
and P2? Here’s why. If you added P1 and P2 and got P3, then what would
P3 — P2 be? It would be P1. But what would P3 + P2 be? It would also be

P1. You can’t have P3 + P2 = P3 — P2 (unless P2 were zero,andit’s not).
So there’s a different set of rules for addition.

The graphical form of elliptic enrves (the curve itself, the points, the
addition rules, and more) can be described with mathematical equations.
You don’t deal with pictures; instead you deal only with numbers and

equations. And ifyou’re dealing with only numbers and equations, you can
write computer programs to do the work. If you have programs that
manipulate numbers, maybe you can get crypto. All you need nowis a one-
way function (with a trap door).

The one-way function is called scalar multiplication: You add a pointto
itself some numberof times. We have a point, generally called PO (that’s a

capital P and a zero; the point is “P — zero”), Addit to itself: PO + PO. Fig-
ure 4-19 shows the addition of two distinct points, but there is a way, via
anotherstrangerule, to add a pointto itself. The special thing aboutellip-
tic curves is that if you add a point on the curve to another(or the same)
point on the curve, the result is also a point on the curve. If you have an
elliptic curve and a point or two on that curve, when you add a pointfol-
lowing the special rules you will get another point on that curve—guar-
anteed. If you have a curve and oneor two points on that curve, and the
result of adding is not on the curve,it is not an elliptic curve.

So the answer to PO + PO is another point; let’s call it P1. Now add PO
to that result; let’s call it P2. P1 + PO = P2. What you've actually doneis
to find PO + PO + PO. Another way of saying that is 3 x PO. You’re multi-
plying 3, a scalar (the mathematical termfor a single number), by PO, a
point (a point cannot be described using a single number; you need two
numbers: the x-coordinate and the y-coordinate). You could compute any
such scalar multiplication. What’s 120 x PO? Why, that’s PO addedtoitself
120 times. What’s d X PO? That’s PO addedto itself d times. The result of

any scalar multiplication is another point on the curve.

There are shortcuts. If you want to find 120 x PO, you don’t actually
have to do 120 additions; instead, you can use a multiplication program.
We just wanted to show you how scalar multiplication is defined.
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We said that scalar multiplication is a one-way function. Here’s how it
works. Suppose you find anelliptic curve (that’s not hard to do) and a point
on that curve. Cryptographers have again demonstratedtheirlyrical side by
calling the curve E and the point P. You now generate a random or pseudo-
random scalar called d. Now you multiply, finding d x P. The answeris
some point on the curve;let’s call it @. Now you show the world yourcurve
and those two points; E, P. and Q are publicly available, so the challengeis
to find d. Thatis, ifdP = @ inside E, and ifyou know E, P. and Q,your task
is to find d. As with Diffie-Hellman, you have one equation in one unknown.

This is known as theelliptic curve diserete log problem,and, as long as
the curveis big enough, no one has found a wayto solve it in a reasonable

amount of time. Recall that in cryptography, elliptic curves are defined
over a specific range. The technical term for this range is field. In the
three kinds of curves we’ve mentioned—Fp, F2 polynomial, and F2 opti-
mal normal—the F standsfor “field.” The p in Fp stands for “prime num-
ber.” That’s a lowercase p, not to be confused with the uppercase P used as
the point in the description of the EC discrete log problem (cryptogra-
phers sure know how to choose names, don’t they?). The 2 in F2 is indeed
2. Actually, it would be more accurate to say F2”.

If you want to work with an Fp curve, you find a big prime p,andall
your calculations will use integers from 0 to p — 1. If you want to work in
F2”, choose a size m and all yourcalculations will use integers from 0 to
2” — 1. For more security, you should use a bigger range. But the bigger
the range, the slower your computations will be. The most commonsize is
160 bits to 170 bits.

Here’s how Pao-Chi and Gwen would use elliptic curve cryptography
(ECC). Gwen generates an EC called E. She finds a point, P, on that curve.
Then she generates a random or pseudo-random scalar d and finds Q = d
x P. Her public key is E, B and Q (see Figure 4-21). Her private key is the
same curve £ coupled with the random or pseudo-random d, which is most
likely the samesize as the range of the curve.

To send Gwen a message, Pao-Chi gets her public key. It contains
enough information for Pao-Chi to generate his own temporary ECDHkey
pair. Now both correspondents have an ECDHkeypair. For each of the key
pairs, the public and private keys are related. But Pao-Chi’s and Gwen’s
key pairs themselves are related as well. Pao-Chi uses his private key and
Gwen’s public key together to generate a secret point on the curve. He uses
that secret value somehow as a session key. Because a point is a pair of
numbers x and y, the two correspondents will have to decide in advance
which bits from those numbersto use as the key. The most common ECDH
applications use x), so they just throw away the y (see Figure 4-22).

177



178

Figure 4-21

A 160-bit F2 EC
key pair. The
numbers under E
describe an
elliptic curve
(composedof 2”
field, a, b, order,
and cofactor), and
P and @ are two
points on the
curve related by
d, a scalar
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Public key

E=

2” field =

01 00 00 00 00 00 20 00 00 00 00 00 00 00 00 00

00 00 00 00 07

b=\0d a9 e3 58 04 7f 39 7a 9d 7a 01 e4 60 67 80 37

e2 38 44 de

order —

Od a9 e3 58 04 7f 39 7a 9d 7a O01 e4 60 67 80 37

e2 38 44 de

cofactor =

x-coordinate:

52 2f 38 09 b9 4e de 39 23 f5 23 60 Oe 3b Ob 59

7e cd c8 35

y-coordinate:
3c b3 ff 5d 20 40 c5 38 11 4b 73 fa 82 74 f8 b7

92 26 6a e5

g= x-coordinate:

ea f6 59 3c Od 9d el de 4b 91 f9 95 e5 26 09 a6

93 23 92 8d

y-coordinate:
df 84 76 34 5a b5 69 3b ba 91 d2 f8 f5 38 Ge 07

68 39 f4 49

Private key:
(use the same E as the public key)

4=!39 83 65 87 cc e7 {6 1c 50 la 72 7d 75 e8 16 d3
be b2 cb 4e
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Figure 4-22

Pao-Chi combines

his temporary
private key with
Gwen’s public
key to get a
secret point  

 
Pao-Chi’s temporary

ECDHkeypair

Gwen’s public key

=~
ns i

Pao-Chi’s private key EC machine

Secret =

72 1B 55 3E 
To read the message, Gwen needs the session key. She gets it by com-

bining her private key with Pao-Chi’s temporary public key (he sends his
temporary public key along with the encrypted message).

This soundsjust like Diffie-Hellman. In that scheme, two people com-
bine public and private keys in a special way to generate a shared secret.
In this scheme, the same thing is happening. The difference is the under-

lying math, and that explains the nameElliptic Curve Diffie-Hellman.
To read Pao-Chi’s intercepted message, Satomi needsoneofthe private

keys, knowing both of the public keys will not do the trick. To break
Gwen’s private key (probably Satomi’s first choice), Satomi must figure
out d. That would require her to solve the EC discrete log problem, some-
thing that would take a few million years, so Satomi might try a brute
force attack. The problemis that d is the samesize as the underlyingfield,
Gwen probably chose a 160-bit or 170-bit EC, meaning that d is also 160
bits to 170 bits, so brute force won’t work either.

Remember that RSA and DH were based on related problems, and
that’s whythe key sizes are the same. But with ECC, you use a different
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key size because the underlying problemsare different. And solving the
EC discrete log problem is harder than solving the factoring or discrete
log problem.

By the way,it’s possible to use ECC to do encryption. However, in the
real world,it’s not used very muchfor security and performancereasons.
Recall that as you increase the key size, you slow down the computations.
And for ECES(elliptic curve encryption scheme) or ECRSAto achieve the
level of security of regular RSA, you must use bigger keys. The keys need
to be so big that you take too big a hit in performance.

Comparing the Algorithms

Security

The three algorithms we've discussed can be used to solve the key distribu-
tion problem. Which oneis the best? There’s probably no answer to that
question because each has its advantages and disadvantages. A more appro-
priate question might be, “Which algorithm works best in which situation?”
Whenyou're evaluating each approach,it’s a good ideato look at five areas:
security, key size, performance, transmission size, and interoperability.

Is one of the algorithms more secure than the others? There’s no truly
objective answer. It depends on whatyou think is important.

ECCis based on the EC discrete log problem, which is “harder”; does
this mean it’s more secure than RSA,whichis based on factoring, or DH,

whichis based on the discrete log problem? Not necessarily.
Thousands of mathematicians have been studying the factoring prob-

lem for many years (most intently since 1978). Someofthem think that if
a solution could have been found,it would have been found by now. On the
other hand, it took about 300 years to come up with a proof of Fermat’s
Last Theorem, so maybe the ultimate factoring solution simply has not
yet been found. Considering the enormous bankof research available to
build on,finding a solution may becomeeasier over time.

ECC is newer and less well understood. Far fewer researchers have

been attacking it, and for a shorter time. Some people think that more
time and effort are needed to develop a better sense of security. Further-
more, despite the “lag” in research, some classes of curves have been found
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to be susceptible to cryptanalysis. Of the many flavors ofelliptic curves,
not all of them are used in crypto. For someflavors, it was known early
that they contained more weaknesses than others and that there were
ways to break them faster than security requirements allowed. Such
curves have never been proposed for use in crypto. Other flavors that were
proposed for such use were later shown to possess weaknesses. All the
weaknesses found so farlie in the F2 area. At this point,it’s believed that

no application has ever been deployed in the real world with a weak EC.
But because some curveshave fallen, some cryptographers are not confi-
dent in F2 ECC, and others do not trust any curve at all—Fp or F2.

Some people prefer RSA because DH and ECDHare susceptible to the
man-in-the-middle attack. In our sales rep example, the potential |
attacker is a womanin the middle, Satomi. She could intercept all mes-
sages between Pao-Chi and Gwen, establishing DIT or ECDH keys with
each of them. Pao-Chi would think he’s computing a shared secret key
with Gwen but would really be computing one with Satomi. Similarly,
Gwen would compute a shared secret key with Satomi, thinking she was
talking with Pao-Chi. Then if Pao-Chi sent a message to Gwen, only
Satomi would be able to decrypt it. She would decrypt it, store the mes-
sage, reencrypt it with the key she established with Gwen,and send it on

(see Figure 4-23). The man-in-the-middle attack is easily thwarted by
using authentication along with the key exchange (Chapter 5 discusses
authentication), and most protocols include authentication anyway. So for
some people, this attack is no real disadvantage.

Anotherissue is each correspondent’s ability to contribute to the key.
With RSA,only the initiator of the contact has any say in what the session
key will be. With DH or ECDH,both parties contribute to generating the
session key. Each correspondent performs some operations and sends the
result to the other; the final secret depends on each individual’s contribu-
tion. For some people, this arrangement sounds better than trusting
someoneelse entirely to generate a good key. For others,it’s not a great
feature. After all, they argue, another party who would do a badjob ofgen-
erating a session key probably wouldn’t do any better with the key
exchange.

So, the choice of algorithm is a matter ofyour ownfeeling ofsecurity. At
this time, no honest cryptographer can makea definitive statement about
which algorithm is more secure.
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Figure 4-23
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Key Sizes

The bigger the key, the greater the level of security and the slower any
public-key algorithm will run. You want the algorithm to run as fast as
possible but maintain a particular level of security. The question is, how
low can you go before you jeopardize security? The conventional wisdom is
that a 1,024-bit RSA or DH keyis equivalent in security to a 160-bit ECC
key. There is a little contention on that issue, but research continues. In
this book, when making comparisons, we look at 1,024-bit RSA or DH, and
160-bit ECC. With RSA, the modulus is made upof three primes; with DH,
the private value is 160bits.

In April 2000, RSA Labs published a paper that analyzed how longit
would take to break the RSA algorithm at various key sizes if an allacker
had $10 million to throw at the problem. Table 4-1 summarizes the
research; the symmetric key and ECC key columnsare there for compar-
ison. With ECC,you could probably get the same results with smaller key
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Table 4-1

Time to Break

Keys ofVarious
Sizes with $10
Million to Spend

Performance

Symmetric ECC RSA

Key Key Key Time Number Amount
(Size. (Size (Size to of of

in Bits) in Bits) in Bits) Break Machines Memory

56 112 430 Less than 105 Trivial
5 minutes

80 160 760 600 months 4,300 4GB

96 192 1,020 3million years 114 170GB

128 256 1,620 101° years 0.16 120TB 

sizes. However, the assumption in the report is that the public key algo-
rithm should use a key size at least twice as long as the symmetric key
(regardless of performance) for security reasons.

The table says that with $10 million, an attacker could buy 105 spe-
cially made computers to crack a 56-bit symmetric key, a 112-bit ECC key,
or a 430-bit RSA key in a few minutes. Actually, that $10 million would
probably buy more than 105 machines, but 105 is all it would take, With
the same amount of money, at the next key level the attacker could buy
4,300 machines specially built to solve the problem; at the next key level,
114, and at the nextlevel, 0,16.

Whydoes the money buy fewer machines as the key size increases? The
reason is that the amount of required memory increases. The base com-
puteris the same, but to break bigger keys, the attacker needs more mem-
ory (120 terabytes, or about 120 trillion bytes, in the case of a 1,620-bit
RSA key), and buying memory would eat up the budget. In fact, the
attacker will probably need more than $10 million to break a 1,620-bit
RSAkey because that amount of money would only buy 0,16, or about 1/6,
of a machine,

If no algorithm wins on security, you might think that you should choose
the fastest one. But there is no simple answer there. Comparing the per-
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Table 4-2

Estimated
Relative

Performance of

the Public-Key
Algorithms

formanceof the public key operations (initiating the contact, or creating
the digital envelope) shows that RSA is significantly faster than ECC,
which in turn is faster than DH.For the private key operations (receiving
the contact or opening the digital envelope), HCC is somewhatfaster than
DH,and both are faster than RSA,

For many machines, though, the difference in performanceis negligible.
The two times might be 0.5 milliseconds and 9 milliseconds. Even though
one algorithm may be 18 times faster, there’s no discernible difference
between times that are that fast. But if the processor performing the
action is a slow device, such as a smart card, a Palm device, or other hand-
held device, the difference might be 0.5 seconds versus 9 seconds. Or
maybe one of the correspondents is a server that must make many con-
nections, maybe several per second, Then the comparison might be 111
per second versus 2,000 per second.

Another factor with ECC is whether you use acceleration tables to
speed the private key operations. If you do, you must store extra values in
addition to your key. Those extra values amount to about 20,000 bytes, If
the device is a server, that’s no problem—but will a smart card or hand-
held device have that kind of storage space?

So the most suitable algorithm depends on which is more important—
public-key or private-key operations—in your application. Table 4-2 lists
estimates from RSA Security Engineering on the relative performance of
the two algorithms. The baseline is an RSA public-key operation, whichis
1 unit. As shownin thetable, if a particular computer can create an RSA
digital envelope in 1 millisecond, it would take that same computer
13 milliseconds to open it. Or it would take that same computer 18 mil-
liseconds to initiate an ECDH exchange and 2 milliseconds to receive one
using acceleration tables.

 

ECC with

RSA DH ECC Acceleration

Public key (initiate contact) 1 32 18

Private key (receive message) 13 16 6 a

Combined 14 48 24 20 
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Transmission Size

What if the amount of moneyit costs or the time it takes to transmit bits
across the wire(or in theair) is significant? It turns out that the algo-
rithms differ in the size of the transmission. With RSA and DH,trans-

mission size is the sameas the key size. With ECC, you send twice the key
size. So using a 1,024-bit RSA or DH key pair meansthat each time you
send a digital envelope, you’re adding 1,024 bits to the message. With a
160-bit ECC key, you’re adding 320 bits.

Interoperability

Protecting

With symmetric-key crypto, if you want to make sure that someoneelse
can decrypt your ciphertext, you should use DES, Triple DES, or AES. Any
correspondents who have crypto will have those algorithms. You may
want to use RC4 or RC5 because they're faster, but to ensure interoper-

ability, you might choose the algorithm you know everyone has.
Can the same besaid in the public-key world? For the most part, yes.

RSAis almost ubiquitous and has becomethe de facto standard. If you
send an RSA digital envelope, the recipient will almost certainly be able
to read it, whether or not your correspondent uses the same application
you do. With DH,there’s a good chancethatthe other party will have the
necessary code, but it’s not as widespread. ECC is even less prevalent
than DH, Most applications using ECC today are closed, meaning that
they talk only to themselves. The vast majority of those are in the United
States. You will find very little ECC used in Europe.

Another problem with ECC andinteroperability is that the flavors of
curves (Fp and F2) are not interoperable. If you have code that does Fp
and your correspondent has code that does F2, you can’t talk to each other.
In the future, the interoperability issue may go away for ECC if more
people adopt it and the world settles on a single class. But until that time,
your best bet is to use RSA.

Private Keys

Throughout this chapter, we emphasize the importance of keeping a pri-
vate key private. How do you do that? The quick answeris that most ofthe

185

 
 



186

The Key Distribution Problem and Public-Key Cryptography 123

techniques mentioned in Chapter 3 for protecting session keys apply to
private keys.

For example, suppose you want a key pair. You'll most likely run a pro-
gram that generates it for you. You make the public key available to the
world, and you store the private key on your computer. Of course, simply
storing data on your computer is not safe, so you'll probably store it
encrypted, using password-based encryption. When you run the program
that uses the private key (for example, when you receive some encrypted
e-mail), it loads the data. You enter your password,the program usesit to
decrypt the key, and now you ean open the envelope.

You can also store the private key on a smart card or other token. The
card will generate the key pair and return the public key for you to dis-
tribute, but it probably won’t allow the private key to leave the device. To
open an envelope, you give the token the encrypted session key (if you’re
using RSA) or the sender’s temporary public key (if you’re using DH or
ECDH). The token performs the private key operation and returns the
session key to you. For servers, crypto accelerators might be used. They
behave the same way as tokens except that they’re much faster.

Using the Digital Envelope for Key Recovery

If you lose your car key, you can often call a dealer in the area who can
make a new one. If you lose your house key, you can call a locksmith who
can create a new one.Ifyou lose a cryptographic key, there’s no onetocall.
It’s gone. That’s why many companies implement a key recovery plan.

When Pao-Chi generates a symmetric key to encrypthis files or gener-
ates a public/private key pair to be used for key distribution, he stores the
symmetric and private keys in such a way that only he can recover them.
If he has a key recovery plan, though, he also creates copies of the keys

and stores them in such a way that someoneelse can recover them. In
addition,it is possible to store them so that it takes more than one person
to recover the keys. In that way, no one single individual can surrepti-
tiously recover the keys and examine Pao-Chi’s secret information.

The most commonform ofkey recovery is the RSA digital envelope. Pao-
Chi has a software program that encrypts his files. It generates a sym-
metric session key and uses that key to encrypt each file. He then stores
that key securely, possibly using PBE or a token. At the time the session
key is generated, he also encrypts it using the key recovery RSA public key

186



187

124 Chapter 4

Figure 4-24

Pao-Chi encrypts
his session key
with the key
recovery public
key, storing that
digital envelope
for emergencies

(see Figure 4-24). This arrangementis essentially a digital envelope. If
Pao-Chi loses his key, the ownerof the key recovery private key can open
the digital envelope and retrieve Pao-Chi’s encrypting session key.

There are three basic entities that can act as a key recovery agent:

gs A trusted third party

w A groupoftrustees, each holding a portion of the key

= A group of trustees using a threshold scheme

Session key

(=
Key recovery public key

 

 OQg—-F=I-
Encrypt machine Digital Envelope

 
Key Recovery via a Trusted Third Party

Earlier in this chapterin the section titled “Using a Trusted Third Party,”
you met Michelle, a TTP whocreates session keys for Gwen and Pao-Chi.
Now Michelle is going to be their key recovery agent. Michelle generates
her RSAkey pair and distributes the public key to each individual who
will participate in the key recovery program, Pao-Chi’s software, for exam-
ple, can have that public key built-in. When he generateshis keys (the ses-
sion key or public/private key pair), he encrypts them withthis publickey.
He could sendthis digital envelope to Michelle, but he probably prefers to
keep it himself. In that way, Michelle cannot open the envelope without
his knowledge. Michelle is a trusted third party, but Pao-Chi’s trust in her
has some limit. Hence, he will probably store the digital envelope on a
floppy disk and keep the disk in his locked desk drawer. Then if Pao-Chi
forgets a password,loses his smart card, has a hard drive failure, and so
on, and needsto recover a key, he takesthe digital envelope to Michelle.
She opensit using her RSA private key and gives Pao-Chi the output,
namely his key. After he uses the key, Pao-Chi again protects the key.
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The Difference Between Key
Recovery and Key Escrow

Many elementsofcryptography go by different names. There’s “sym-
metric-key” crypto, which is also known as “secret-key” crypto.
“Asymmetric-key” crypto also goes by the name of “public-key”
crypto, and the terms “message digest” and “hash” (see Chapter 5)
are often interchangeable. Now we cometo an area of crypto-key
recovery and key escrow—in which two terms appear to describe the
same thing but are actually significantly different.

Key recovery and key escrow are not the samething. Key recovery
is a method that’s implemented to restore keys that get lost. Key
escrow is the practice ofgiving keys to a third party so that the third
party can read sensitive material on demand. “Key escrow”is almost
always used to describe a way for governments to obtain keys in
order to collect evidence for investigations.

Consider the analogy of your house key. With key recovery, if you
lose your key, you hire a locksmith to create a new one. With key
escrow, the day you buy the house, you surrendera copy of the key
to the police so that they can enter your house when they wantto,
possibly without your knowledge.

This book is not concerned with thepolitical or practical implica-
tions ofkey escrow.It is our intention only to point out the difference
between the two terms. The actual techniques used to implement
key recovery and proposed key escrow plans are often the same, So
for the rest of this chapter, we describe key recovery schemes.

 
The advantageofthis system is that recovering the key is easy. Thedis-

advantageis that Michelle has accesstoall the keys.It is possible for her
to recover keys without anyone’s knowledge. Anotherdisadvantageis that
Pao-Chi must depend on Michelle. What does he do when she is away on
vacation? What does the companydoif she leaves for anotherjob? In that
case, the companywill have to get a new TTP, generate a new key recov-
ery key pair, distribute the new public key, and have everyone create new
digital envelopes withall their keys.
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Key Recovery via a Group of Trustees

Some companiesandindividuals do notlike the idea ofone person having
access to all keys. In such situations, a better scheme is to break the key
into parts and distribute them amongseveralindividuals. Suppose those
individuals are the company’s TTPs—Michelle and Alexander—and
Gwen, the VP of sales. Now Pao-Chi’s software comes preloaded with
three public keys. Each of his keys is broken into three parts, and three
digital envelopes are created. For example, Pao-Chi has a 128-bit sym-
metric key that he uses to encrypt the files on his hard drive; this key is

separated into three blocks of five bytes, five bytes, and six bytes.
Michelle’s public key protects five of the bytes, Alexander’s protects
anotherfive, and Gwen’s protects the last six. Now if Pao-Chi needs to
recoverhis key, all three trustees must gather to reconstruct the data.

The advantage hereis that no one individual can recover keys secretly.
For keys to be recovered surreptitiously, all three trustees would have to
agree to subvert the system, a scenario less likely to occur thanifonly one
individual possessed the ability to recover keys.

The schemeas described here has a problem. Because each trustee has
a portion of the key, it would be possible for an individual to recover the
known portion and then perform a brute force attack on the rest. Gwen
has the largest portion—six bytes (48 bits)—so her task would be equiva-
lent to breaking an 80-bit key. Such an attackis notlikely, but it would be
better if that avenue wereclosed.

One way aroundthis problem is to create a 384-bit value and split that
into three 128-bit components. Each trustee knows 128 bits but is missing
256 bits of the total value. The 384-bit value is actually used to derive the
key. That is, Pao-Chi generates a 384-bit value and uses it as a seed for a
PRNG. The PRNGproducesthesession key. Each trustee gets a portion of
the 384-bit value. To recover the key, you must put all three of the
trustees’ components together and re-create the PRNG(see Figure 4-25),

This splitting of the secret into multiple digital envelopes has the
advantage of preventing one individual from wielding too much power.
Butit has the disadvantage of being moredifficult to implement and also
carries all the disadvantages of the TTP approach: If one trustee is on
vacation, the key is still lost. Furthermore,if one trustee leaves the com-

pany, the key recovery process must start over from scratch, new pub-
lic/private key pairs have to be generated and public keysdistributed, and
all employees must create new digital envelopes.
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Key Recovery via a Group of Trustees
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Key Recovery via Threshold Schemes

Probably the most common key recovery method involves threshold
schemes, also called secret sharing or secret splitting. A secret, such as a
key, is split into several shares, some numberof which must be combined
to recover the secret. For example, a secret can be split into 6 shares, any
3 of which can be combined to reproduce the value. Or the secret can be
split among 10 shares, any 4 of which can recover the item, or 12 shares
with a threshold of 11, or 5 shares with a threshold of 5, or 100 shares with

a threshold of 2. Almost any reasonable share and recovery countis possi-
ble (as long as the threshold is less than or equal to the share count). For
key recovery, the secret is an RSA private key.

If Pao-Chi’s company implements a threshold scheme,it might work
like this, The company decides how manyshares there will be, how many
are needed to implement key recovery, and whothetrustees will be. Sup-
pose the policy is for six trustees and three shares needed. Thetrustees
are a system or network administrator, the HR director, and representa-
tives from several departments. Say the sys admin is Warren, the HR
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Figure 4-26

An RSAkeypair
is generated, and
each trustee gets
one share of the

private key, which
is then destroyed

director is Maria, Gwen represents sales and marketing, the shipping
department sends Daniel, Julia comes from engineering, and Michelleis
the key recovery administrator.

To start the process, all the trustees gather to generate and collect
shares. First, an RSA key pair is generated, Then the threshold program
splits the private key into six shares, with each trustee getting one share
(see Figure 4-26). The program generating the shares takes as input the
private key, the numberof shares (six), and the threshold count (three)
and produces as output six shares.It’s up to the trustees to protect their
shares, although the company probably has a policy that defines the pro-
cedure. They can simply use PBE on the shares andstore them on floppy
disks, or they can store them on smart cards or other tokens. After the
shares are generated and distributed, the public key is distributed and
the private key is destroyed.

Key Recovery via Threshold Schemes

Public key Private key
—— i

 
 

00 12 7530

2B 11

CP. BB ... 8F...

Michelle’s Warren's Maria's Daniel’s Julia's Gwen's

share share share share share share

Now employees can copy their keys (symmetric encryption keys, key
exchange or digital enveloping keys) and encrypt them using the key
recovery public key.

Suppose Pao-Chi encrypts sensitive files on his hard drive and keeps
the key on a token. Furthermore, supposehe participates in the key recov-
ery and has created a digital envelope of his session key using the key
recovery public key. He keeps that digital envelope on a floppyin his desk
drawer. Now supposeheloses his token. How can herecoverhis data?
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Figure 4-27
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To recover the data, Pao-Chi takes the floppy containing the digital
envelope to Michelle, the key recovery administrator. IfMichelle is out that
day, he could take it to Warren, the system administrator, or Gwen, the VP
of sales, or any of the other trustees. The trustee he visits must then find
two other trustees. The combination of trustees might be Warren, Daniel
and Julia, or Maria, Daniel, and Julia. Maybe it would be Warren,
Maria, and Gwen,or if Michelle were there that day it could be Michelle,
Gwen and Daniel. It doesn’t matter; the scheme needs threetrustees.

The three trustees give their shares to the program running the
threshold algorithm, and the program combines them to produce the
secret, which in this case is an RSA private key. Now that the private
key is reconstructed, Pao-Chi’s digital envelope can be opened. The
result is the session key he needs to decrypt the data on his hard drive
(see Figure 4-27).
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share share share share
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Threshold Schemes
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The threshold scheme has many advantagesoverthe key recovery pro-
grams described earlier, and it eliminates some of the disadvantages.
First, no one person can recover keys; it takes a group acting together,
Anyone attempting to be dishonest must find someco-conspirators. Sec-
ond,if one of the trustees is unavailable, it’s still possible to perform the
operation. Third, if one of the trustees leaves the company, the secretis
still safe, and there’s no need to restart the key recovery process from the

beginning.
A disadvantage is that if one trustee leaves the company, his or her

shareis still valid. By itself, this share can’t do anything,butif a thresh-

old numberof people leave the company, this group of unauthorized peo-
ple would have the power to recover the company’s secrets. For example,
suppose that Warren, Maria, and Julia leave the company, eitherall at
once or over a period of time. They might form their own company,start
working for another firm, or work for different companies. If the three of
them decide to steal their former employer's secrets, they could re-create
the key recovery private key.

Of course, that private key won't do them any good without the digital
envelopes protecting the session keysofall the employees.So if they want
to steal secrets, they still have to find the floppy disks or tokens storing
the encrypted session keys. But a company that wants to eliminate such
an attack would generate a new key pair and restart the key recovery pro-
gram from scratch. Fortunately, with a threshold scheme,this step is not
necessary every time a trustee leaves but only when severalof them leave.

How a Threshold Scheme Works

One of the first threshold algorithms was developed in 1979 by Adi
Shamir (the S in RSA). It’s probably the easiest to understand.

Consider the case of a key recovery scheme that uses three shares with
a threshold of two—thatis, three shares are created, any two ofwhich can
recover the secret. You can think of the secret as a point on an (x, y) graph.
Any point on the graph can be represented by two numbers: the x-coordi-

nate and the y-coordinate. In Figure 4-28, the secret is the point (0, 8). For
the Shamir algorithm, the secret is always a point on the y-axis. Solet’s
consider the secret a number,call it S, and then use the point(0, 8).

Now you generate a random or pseudo-random line that runs through
that point. Next, you find three random or pseudo-random points on that
line. In Figure 4-28, these points—the shares—arelabeled $1, S2, and S3.
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S1

S2 = (x2, y2)

 
To recover the secret, you take two of the points and find the line that

runs through them, You might recall from high school algebra that any
two points uniquely define a line. With the line just created, you next
determine whereit crosses the y-axis. That’s the secret. It doesn’t matter
which points are used: S1 and S82, or S1 and S3, or $2 and S3. Each pair
of points generates the sameline. If your scheme uses more than three
shares, you simply find additional random or pseudo-random points on
the line. To create a line, however, you needat least two points. One point
is not enough because an infinite numberof lines can run through any
single point. Which oneis the correct line? It’s impossible to tell, and that’s
why one share alone won’t recover the secret.

If you use a threshold of three, instead ofa line, the algorithm gener-
ates a parabola (a curve of degree 2) that intersects the y-axis at the
secret. Any three points on a parabola uniquely define it, so any three
shares (points on the parabola) can re-create the curve. With the curve,if
you find the point whereit intersects the y-axis, you find the secret. For
any threshold count, then, you simply generate a random curve of the
appropriate degree (the degree ofthe curve will be 1 less than the thresh-
old count) that intersects the y-axis at the secret. Each share will be a ran-
dom point on that curve, Of course, a program executing the Shamir
algorithm will not do this graphically; instead, it will do all the work using
math equations.
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Summary

To solve the key distribution problem, you can use public-key cryptogra-
phy. With the RSA algorithm, the data encrypted by the public key can be
decrypted only by the private key. To securely transmit the session key,
you can use a digital envelope. With Diffie-Hellman or Elliptic Curve
Diffie-Hellman, you can use public-key technology to generate a shared
secret. Only the correspondents can create this secret value, which can

then be used as a session key.
Eachof the three algorithms has its advantages and disadvantages,so

it’s not really possible to say that one or the otheris better. But any one
algorithm maybebetter suited for a specific application.

It’s possible to lose cryptographic keys by forgetting a PBE password,
losing the token where they’re stored, and so on. In addition, a company
may wantto be able to recover material encrypted by an employee who,
for example, has left the firm. For these reasons, many organizations
implement a key recovery plan. Generally, key recovery involves the use
of an RSAdigital envelope, encrypting keys with a recovery agent’s pub-
lic key. The key recovery agent might be an individual or a group of

trustees. Threshold schemesoffer an attractive means of implementing
key recovery with checks and balances, With a threshold algorithm (also
known assecret sharing or secret splitting), a secret such as an RSApri-
vate key is split into a numberofshares. To recover the secret, a minimum
number of shares must be collected. This method prevents one individual
from obtaining keys surreptitiously, while making it possible to recon-
struct the keys even if one or more trustees is absent.
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Real-World Example

The S/MIME (Secure/Multipurpose Internet Mail Extensions) standard
specifies a way to encrypt e-mail. MIMEis a widely adopted e-mail stan-
dard, and S/MIMEis an extension that adds encryption.

S/MIME solves the key distribution problem by using RSA digital
envelopes. If your e-mail package is S/MIME-enabled, you can create a
digital envelope. All you need to do is get your correspondent’s public key
and flip the switch to encrypt the message.

If you send e-mail through Netscape Communicator, for example, you
can use S/MIME.Here’s how.First, launch the Netscape bruwser. Click
the Security button and then click Messenger (along the left-hand col-
umn). You'll get a window that looks like the one in Figure 4-29. Click the
option Encrypt Mail Messages, WhenIt Is Possible. (The signing options
are the topic of Chapter 5.) To encrypt a message, you need to select your
correspondent’s public key, which you'll find inside a certificate. If you
don’t already havethecertificate, you can search for it in a directory (see
Figure 4-30). To get to this menu,click Security Info. Under Certificates
(along the left-hand column in the resulting window),click People. Then
click Search Directory. After you select the public key, any e-mail you send
to that individualwill be encrypted using a digital envelope.

If you use Microsoft Outlook 98, click Tools, then Options, and then the
Security tab. You'll see a window thatlooks like the one in Figure 4-31. As
with the Communicator program, there is an option to encrypt outgoing
messages. Again, you'll need the other party’s public key to do that.

Chapter 6 talks about certificates and their directories. For now, you
can see that applications today are using public key cryptography to solve
the key distribution problem.
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These settings allow you to control Messengersecuritysettings.

Messenger Security warnings can let you know before you do something that nught be
unsafe.

Sending Signed/Enerypted Mail:
Encrypt mail messages, when it is possible
[Sign rnailmessages, when it is possible
Sign news messages, when itis possible

Certificate for your Signed and Encrypted Messages:

[Steven D Burnett's RSA ID *|
This certificateis included with every email message you sign. When other people
receiveit, it makes it possible for them to send you encrypted mail Other people could
also obtain your certificate from a Directory:

Send Certificate To Directory |

Advanced S/MIME Configuration:

Gipher Preferences: Select S/MIME Ciphers |

OK| Cancel | Help|

 
Se Search Directory for Certificates - Netscape

Communicator will search network Directories for the Security Certificates that are
used to send other people encrypted mail messages.

Enter the exact E-mail addresses of the people you are looking for and press Search,

[Netcenter Member Directory |
Netcenter Member Directary
InfoSpace Director

Directory:

E-mail
Addresses:  SEAM isen|

+
Search | Cancel |
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Preferences | Mail Services | Mail Format | Spelling Security | other | Delegates |
Secure e-mail

Iv Enerynkcontentsandattachmentsforoutaoingmessages:
T~ Add digital signature to outgoing messages

I~ Send clear text signed message

Default Security Setting: liny S/MIME Settings *]
Change Settings... |

Secure content

Security zones allow you to customize whetherscripts and active
content can be run in HTML messages. Select the Internet Explorer
security zone to use,

Zone: ea Internet ¥ Zone Settings... |
Attachment Security... |

Digital 10s (Certificates)

Digital IDs or Certificates are documents that allow you to prove your[=3] identity in electronic transactions.
Import/Export Digital ID... | Get a Digital ID... |

Cancel | Spply | 
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Public-key cryptography helpsto solve the key distribution problem.It also
addresses two other cryptography issues: authentication and nonrepudia-
tion. Authentication allows someonein the electronic world to confirm data
and identities, and nonrepudiation prevents people from going back on
their electronic word. One way to implement these features is to use a dig-
ital signature.

When you use the RSA algorithm, it means that anything encrypted
with the public key can be decrypted only with the private key. What
would happenif you encrypted plaintext with a private key? Is that pos-
sible? And ifso, which key would you use to decrypt? It turns out that RSA
works from private to public as well as public to private. So you can
encrypt data using the private key, and in that case, only the public key
can be used to decrypt the data (see Figure 5-1).

You may ask, “What good is that?” After all, if you encrypt data with
yourprivate key, anyone can read it because your public key, which is pub-
licly available, can be used to decryptit. It’s true that using RSAin this
direction does not let you keep secrets, but it is a way to vouch for the con-
tents of a message. If a public key properly decrypts data, then it must
have been encrypted with the private key. In the crypto community, this
technique is conventionally called a digitul signature. If we didn’t “all”
agree to call it a digital signature, it wouldn't be, it would be just an inter-
esting exercise in math and computerscience. But the crypto community
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called it such, the rest of the computer community (hardware andsoft-
ware vendors) have agreed to this nomenclature, and governments are
starting to come on board. At the state and national level, laws are being
passed that declare a digital signature as a legally binding way to sign
documents. This means that anything you encrypt with your private key
is a digital signature. So you shouldn’t go around encrypting things with
your private key unless you’re willing to vouch for them.

The Uniqueness of a Digital Signature

Suppose Pao-Chisells four printing presses to Satomi and must now com-
municate the sale to the homeoffice. He sends a message to Daniel in the
shippingoffice:

Daniel, I sold 4 presses to Satomi. Ship immediately.
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Pao-Chi can send this e-mail using a digital envelope (see Chapter4),
and only Daniel can read it. But how can Daniel knowthatthis message
really came from Pao-Chi and not someoneposing as him? Forall Daniel
knows, Satomi sent that message, maybe she’s trying to get four printing
presses shippedto herfor free. In the paper world, you can look at thesig-
nature on a document. Generally, everyone has a unique wayof writing
his or her name, a way that is supposedto be hardto forge. If Pao-Chi and
Daniel have corresponded by paperin the past, Daniel can probably spot
the difference between Pao-Chi’s signature and a fake, but with e-mail,
there’s no such signature.

Pao-Chi could enerypt the plaintext (his e-mail) using his RSA private
key, producing ciphertext. Daniel could then use Pao-Chi’s public key on
the ciphertext. If the result of that decryption were gibberish, Daniel

would know it was not encrypted using Pao-Chi’s private key and would
figure Pao-Chi did not sendit (see Figure 5-2). Sure,it’s possible that the
message came from Pao-Chi and that he actually encrypted it using some
key other than his private key. But why would he do that? What would he
accomplish? No—he’s trying to prove to Daniel that he did indeed send

the e-mail and that the contents have not been altered along the way.
Daniel can safely conclude that Pao-Chi did not send that message.

Pao-Chi’s

Which key? public key

 

Plaintext|— (oy —»|Ciphertext|—+> (| —-+|Gibberish
Encrypt Decrypt

  
If, on the other hand, using Pao-Chi’s public key produces a reasonable

message, it must be that his private key was used to encrypt the plaintext.
Is it possible that someone other than Pao-Chi produced a chunk of data
that looks like ciphertext and, when “decrypted” with Pao-Chi’s public key,
produces a reasonable message (see Figure 5-3)? As far as we know,no one
has yet been able to do that. So we say there is only one way to produce
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Figure 5-3 Private key
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the ciphertext: Start with the plaintext, and encrypt it with the private
key. Because the message was encrypted using Pao-Chi’s private key and
because we're assuming that Pao-Chi is the only person with access to his

private key, it must have come from him. Because it must have come from
him, we can call the ciphertext a digital signature. A signature is a way of
vouching for the contents of a message—of saying, “Yes, I’m the one who
wroteit.” In addition, a digital signature lets you check that the data has
not been altered.

Digital signatures depend on two fundamental assumptions:first, that
the private key is safe and only the ownerof the key has accessto it, and
second, that the only way to producea digital signature is to use the pri-
vate key. The first assumption has no technical answer except that keys
must be protected (for details, see Chapter 3), But the second assumption
can be examined from a mathematical point of view.Is it possible to show

that a signature is unique?
Figure 5-3a shows the path that data takes to becomea digital signa-

ture andto be verified. Is it possible to send data on another path that
ends up at the same place? An attacker might want to start with the
plaintext, encrypt it with a key other than the true private key, andstill
produce the correct ciphertext (Figure 5-3b). Or maybe the attacker would
try to perform some other operation on the plaintext (not regular RSA
encryption), possibly using the public key as a guide,andstill produce the
correct ciphertext (Figure 5-3c). If that were possible, a digital signature
would not be unique. If it were not unique, it would not be possible to
claim that the ownerof the private key is vouchingfor the plaintext.

The best that cryptographers can say is that no one knowsofany such
successful attack. The literature contains phrases such as “computation-

ally infeasible,” “it is believed to be true,” and “for some classes of signa-
tures, it is possible to prove certain security properties.” But no one has
completely proven signature uniqueness for any signature scheme.
Researchers have spent countless hours trying to come up with alterna-
tive paths to break uniqueness, and no one hasyet comeclose.

Message Digests

Because public-key crypto is slow (see Chapter4), it’s not a good idea to
encrypt the entire plaintext. Imagine creating an e-mail message,
encrypting it using the sender’s private key, then encrypting the result
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with a session key (so that eavesdroppers cannot read it), and then
encrypting the session key with the recipient’s public key. Such a proce-
dure wouldn’t be very efficient, and performance would suffer. So instead
of encrypting the entire plaintext with the private key, the best method is
to encrypt a representative of the data.

The representative of data in cryptography is a message digest, a con-
cept we've mentioned in earlier chapters without defining in detail. We
said we would talk about it later, and this is finally the time to describe
the details. So for the moment, we're going to take a detour from digital
signatures to explain messagedigests.

Probably the best way to begin a description of what a messagedigest
is would be to give two examples. Here are two messages and their asso-
ciated SHA-1 digests (SHA-1 is generally pronounced “shaw one”).

message 1:

Daniel, I sold 4 presses to Satomi. Ship immediately.
SHA-1 digest:

46 73 a5 85 89 ba 86 58 44 ac 5b e8 48 Ja cd 12
63 £8 cl 5a

 
message 2:

Daniel, I sold 5 presses to Satomi. Ship immediately.
SHA-1 digest:

2c db 78 38 87 7e d3 le 29 18 49 ad 61 b7 41 81
3c b6 90 Ta

The first thing you notice about these digest samples is that even ‘
though the messages are 53 bytes long (each character, including spaces {
and punctuation marks,is 1 byte), the digests are only 20 bytes. The word
“digest” means to condense or to reduce and sure enough, we've taken a
53-character message and condensedit to 20 bytes. No matter what you
give to SHA-1, the result will be 20 bytes. Is your data 10,000 characters?
The result of SHA-1 will be 20 bytes. Do you have a 200MB message?
SHA-1will produce a 20-byte digest. Even ifyour message is smaller than
20 bytes, the result of SHA-1 will be 20 bytes.

The second thing to notice about the digests is that they “look random.” |
The bytes appear to be gibberish—a bunchof bits thrown together hap- |
hazardly. In fact, you could test the results of digests for randomness |
(recall that discussion in Chapter 2). Tests of randomness need plenty of
input, so you could digestlots of different things, string them all together,
and see whatthe tests say. It turns out that the product of message digests
passes tests of randomness.Ofcourse, a digest is not truly random.Ifyou
digest the same thing twice using the samealgorithm, even on twodiffer-
ent computers using two different software packages (assuming they've
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both implemented the algorithm correctly), you'll always get the same
result. So the output of a messagedigest algorithm is pseudo-random.This
is why messagedigests are often the foundation of PRNGs and PBE.

The third thing about the digests is that even though our sample mes-
sage 2 is almost identical to message 1 (there’s really only a 1-bit differ-
ence between the two), the digests are dramatically different. That’s a
quality of a good digest algorithm:Ifyou change the input, you change the
output. Two messages that are very similar will produce two digests that
are not even close.

So what is a message digest? It’s an algorithm that takes any length of
input and mixes the input to produce a fixed-length, pseudo-random out-
put. Another word you'll often see used for message digest is hash.In fact,
the algorithm name SHA-1 stands for Secure Hash Algorithm. (Theorig-
inal SHA was shown to be weak, so the designers improvedit and called
the updated version SHA-1 or SHA1.) The word “hash” can mean a jum-
ble or hodgepodge, which aptly describes the result of a message digest,

Other properties of good digest algorithms aren’t as easy to see. First,
you can’t reconstruct the message from the digest. Here’s a suggestion.
Havea friend create a message, digest it, and give you the result. Now try
to figure out the message.If yourfriend used a good digest algorithm,that
won't be possible. Sure, you could do a brute force attack by trying every
possible message, digesting it, and seeing whether it matches. If you did
that, you would eventually find it. But your friend’s messageis one of a
virtually infinite numberofpossible messages. In Chapter 2, you saw how
long it would taketo find a 128-bit value; imagine how long it would take
to find a message that could be of any possible length? For good algo-
rithms, no one has yet been able to figure out the message from only the
digest. In other words,it’s a one-way function. Remember that Chapter 4
talked about one-way functions with trap doors. A message digest has no
trap door.

Another property of a good digest algorithm is that you can’t find any
message that produces a particular digest. You’ve seen that you can’t find
the message your friend used to produce the digest, but can you find any
message that will produce the value? No one has yet come up with a
method that can find a message that will producea given digest.

The last property is that you can’t find two messages that produce the
same digest. Here, you're not looking for a particular digest but rather two
messages that produce the same result, whateverthat result may be.
Again, with good algorithms, no one has yet been able to do that. The

brute force attack would be to digest a message, save the message and
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Figure 5-4

Can you find the
message we used
to producethis
digest (or any
messagethat will
produceit)? If so,
you will have
found a collision
in SHA-1

result in a table, digest another message, compareit to thefirst one, and
save the result in the table, and then digest another message, compareit
to all previously saved values, and so on. Figure 5-4 illustrates these prop-
erties with a challenge: Find the message, or any message, and produce
the given digest.

Our message Any message

  

 
a5
SHA-1 digest SHA-1 digest

da 39 a3 ee 5e 6b 4b Od 32 55 bE ef 95 60 18 90

af d8 07 09

NOTE:

By the way, you probably already knowthis, but for the sake ofcomplete-
ness, let’s say it. A “message”is not necessarily a communication between
two people. Any data you give to a digest algorithm is a message, even if
it’s not in human-readable form. Each byte of input is simply a byte of
input, whether or not the byte is an ASCII character.

 

207



208

The DigitalSignature 145
NeeneeneencneeEEERaneeeeeee

Collisions

Whenanalgorithm violates one of the last two properties discussed in the
preceding section, the result is a collision, the technical term to describe
a situation in which two messages produce the samedigest. A collision

occurs when a second message produces the same digest as a previous
message, or when two messages—any two messages—produce the same
digest whatever that digest is. If two messages collide, they meet at the
digest.

Although the numberofpossible messagesis virtually infinite, the num-
ber ofpossible digests is finite. With SHA-1, the numberofpossible digests
is 2'°°. Clearly, there will be many messages that produce any onedigest.
To show that, let’s use the time-honored mathematical tool known as the
pigeonhole principle. Suppose you had a cabinetofpigeonholes(see Figure
5-5). Each pigeonhole correspondsto a digest. The zeroth pigeonholeis for
the digest 00 00 . . . 00,thefirstisfor00 00 . . . 01,and soon,
until you reach the last pigeonhole, the placeforFF FF . . . FF.

Now you start digesting messages. After you digest a message, place
the message into the pigeonholeof the digest it produces. For example, the
digest of the 1-byte message 00 is

5b a9 3c 9d bO cf £9 3£ 52 b5 21 47 42 Oe 43 £6
ed a2 78 4£

So you place message 00 into pigeonhole 5B A9 . . . 4F.The digest of
message 01 is

bE 8b 45 30 d8 d2 46 dd 74 ac 53 al 34 71 bb al
79 41 df £7

Message 01 goes into pigeonhole BF 8B . . . F7.
Suppose you keep digesting messages, the next message being the

preceding message plus 1. The sequence of messages is 00, 01,
02, ..., FF, 01 00, 0101, . . ., FF FF, 01 00 00,andso
on. Suppose you did this for 2! messages. The last message in the
sequence would be

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF
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Message:
Figure 5-5

The pigeonhole
principle says
that sooner or

later some

messageswill
collide in the

samedigest

  
 

hyEF F3
Digest All pigeonholes

are now

occupied

 
  Daniel,
I sold all 4

presses to
Satomi... 

Now supposethat each messageproduced a different digest. (For all we
know, there were messages that produced the same digest, but for the
sake of argument,let’s say each message produceda different digest.) You
had 21° pigeonholes and 2'°° messages, each message goinginto a differ-
ent pigeonhole. This means that all pigeonholes are now occupied. Now
consider Pao-Chi’s message to Daniel (ordering four presses for Satomi).
This 424-bit message is not a message you’ve already examined. So far in
this pigeonhole exercise, if you’ve operated on a message,it’s been 160 or
fewer bits. To place Pao-Chi’s message into a pigeonhole, you would place
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If a digest
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digest, the
algorithm would
be broken
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it into 46 73 5a. But that pigeonhole, like all the others,is
already occupied. Which message it contains doesn’t matter; you simply
knowit’s occupied. You havea collision.

Now consider that “all possible messages” includes messages of any
size.

Collisions exist, but no one can find a collision on demand (for some
digest algorithms, no one has found anycollision, even by accident). The
worst possible scenario for a digest algorithm would be if someone could
take any message and produce a similar message that produces the same
digest. Figure 5-6 shows an example of that. One message mentions
$1,000,000, and the second message mentions $1,500,000. If someone
changes only the 5, the digests will not match. But whatif someone could
change the 5, change a few other things here and there, maybe add a
phrase or two, and get the samedigest?

Message: =
buy the
property for
$1,500,000

It’s great doing
business with you 

Digest Digest

86 14 2B... 
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The Three Important Digest Algorithms

There are manydigest algorithms, but three have dominated the market:
MD2, MD5, and SHA-1.

MD2

Ron Rivest created a digest algorithm and named it MD. Then he thought
he could do better and so developed the next generation, MD2. Because
MD2 produces a 128-bit (16-byte) digest, it has 2!** possible digest values.
MD2 has been widely used, but over the years, analysts found flaws with
it. Eventually, a few collisions were discovered. Nobody was able to find
collisions on demand with any arbitrary message, but certain classes of
messages produced collisions. Hence, MD2 isn’t used very much anymore
except on old certificates created before MD2 lost favor (Chapter 6
describescertificates). Most of those old certificates have probably expired
or will expire soon, No good cryptographer would recommend using MD2
in new applications,

MD5

Rivest wanted a faster digest, and when MD2 began to show weaknesses,
he also wanted one that was stronger. He started creating new digests.
MD8 wasa bust, and when he showed MD4to the world it was quickly
shown to be weak. (Despite that. weakness, at least one application used
it. See “Crypto Blunders” on the accompanying CD for that story.) MD5
was more successful.

MD5,a lot faster and much stronger than MD2, became the dominant
algorithm andisstill in common use. Like MD2, MD5 is a 16-byte digest.
Over the years, research has led to potential weaknesses. MD5isn’t bro-
ken, and no one has found collisions; rather, some of the internals of the

algorithm are vulnerable. If a component or two were missing from the
algorithm,it would be broken. But because those componentsare there,
the algorithm survives.

Some people say that it doesn’t matter that the algorithm would be
weak if certain pieces were missing; the pieces are there,so it’s not weak.
Others say that you don’t break an algorithm all at once; you break it
piece by piece. Now that there are only a few pieces (maybe onc or two)
preventing a total collapse, they argue, it would be better to move on to
another algorithm.
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SHA-1

The SHA-1algorithm looksa lot like MD5 (Ron Rivest played a role in the
design of SHA-1). SHA-1 contains stronger internals than MD5,andit
produces a longer digest (160 bits compared with 128 bits). Size alone
makes it stronger. SHA-1 has survived cryptanalysis and comes highly
recommended by the crypto community. In development are SHA-1 vari-
ants that produce 192-bit and 256-bit digests.

A Representative of Larger Data

If you’re looking for something to produce a representative of a larger
amountof data,it’s easy to see that a message digest does that job fairly
well. First, the output of a digest algorithm is usually smaller than the
data itself, and no matter how big the datagets, the digest as a represen-
tative will always be the samesize. If someonetries to surreptitiously
change the original message, the new, fake messagewill not produce the
same digest. If the digest produced by the algorithm does not represent
the data, you know that something went wrong(see Figure 5-7). Maybe
the data has been altered, maybe the digest is wrong. You might not know
what exactly happened, but you do know something happened.

Here’s how an application can check a digest. Pao-Chi is sending Daniel
some data, such as an e-mail or a contract; for this example, it’s the mes-

sage about selling four units to Satomi. Before Pao-Chi sends the mes-
sage, he digests it. Now he sends the data and the digest. When Daniel
gets the data, he also digests it. If his digest matches Pao-Chi’s, he knows
the data has not been changedintransit. If Satomi had intercepted and
altered the message, the digest that Daniel produced would not have
matched the digest Pao-Chi produced. Daniel would know that something
happened and would not trust the data.

Your immediate response mightbe, “If Satomi could alter the data, she
could alter the digest.” That’s true, but there are two ways to prevent that.
Oneis to use a digital signature, a topic we'll return to shortly. For now,
let’s look at the second way: a keyed digest. The most common keyed
digest is called HMAC.

HMAC

MACstands for message authentication checksum (or message authenti-
cation code), and H stands for hash or hash-based function, so an HMAC
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Figure 5-7 Date
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(pronounced “aitch mac”) is a hash-based message authentication algo-
rithm. A checksumis an algorithm that checks data by summingit. Sup-
pose you had a column of numbers(say, in an accountant’s ledger). If the
correct numbersare there, the sum of the columnis a specific value. Later,
to check that the ledgeris still correct, you don’t compare each number
individually; rather, you find the sum of the column.If the second sum

matches the first sum, the check passes. Of course, if someone can change
one number,it’s easy also to change the sum at the bottom ofthe ledger so
that it matches the change in the single number. It would also be easy to
change another numberin the columnto offset the first change. A MACis
a way to detect changesin the data or in the sum. To detect changes in the
data, a MAC can bebased on a digest, block cipher, or stream cipher(see
Chapter 2). To detect changes in the actual checksum, the MAC uses a key.

Most HMACswork this way. Two parties share a secret key (Chapter 4
shows how that’s done), and then each digest the key and message. The
digest depends on the message and the key, so an attacker would have to
know what the key is to alter the message and attach a correct checksum.
For example, suppose Pao-Chi sends Daniel message 1 shownearlier (the
message instructing him to ship four units to Satomi). Pao-Chi uses an
HMACsothat Daniel can verify that the data did not change. Using a key
exchange algorithm (RSA, DH, ECDH), the two agree on a 128-bit key.
Pao-Chi uses SHA-1 to digest the key and message as one chunk ofdata.
The result is as follows. (The twovertical lines | | indicate concatenation;
see also Figure 5-8.)

Pao-Chi’s HMAC result (SHA-1 digest of key || message 1):
60 c4 65 a8 ad 9d 35 6a 68 36 £8 £O 56 3d d2 TE
Je 26 35 b2

NOTE:

We haven't told you what the key is, so you can't verify that the result we
presentis the actual result of an HMAC.Ifyou want to know what the
key is, you can figure it out. Put together a chunk ofdata—a key candi-
date followed by the message—andthen digest it. Is it the same result
given here? No? Try another key, and another, and so on until you find
the correct one. It’s a 128-bit key.
 

Now Pao-Chi sends Daniel the message and the HMACresult together.
Suppose that Satomi intercepts the transmission andtries to get Daniel
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 Figure 5-8

The HMAC

algorithm digests
the key and the
data (in that
order) to produce (2)
a value  
 HMAC;60 C4 65...B2

to ship five presses instead of four by substituting message 2 for Pao-
Chi’s. After replacing the message, she sendsit to Daniel. If she failed to

replace the HMACresult, Daniel would digest the key and fake message
and get the following (see Figure 5-9).

Daniel’s HMAC result (SHA1 digest of key || message 2):
a8 32 3b 8d £3 6b 3e el O8 bb 6b Ob £0 cc a5 5b
26 a4 dl 41

Fi 5-9 ase Key
Daniel digests the
correct key but
the wrong
message, so he
knowsthat

somethingis
wrong

 
 

 
 

  

 Daniel, I sold

5 presses to
Satomi. Ship
immediately,

True HMAC:60 C4 65...B2

 
  
 

 

HMAC: A8 32 3B...41

 

215



216

 
The Digital Signature 153

a

Data Integrity

The digested messageis not the same as Pao-Chi's. (Daniel knows what
Pao-Chi got for an HMAC;that’s part of the message.) So Daniel knows
that what Pao-Chi digested and whathe digested are not the same. Some-
thing—maybethe key, maybe the actual message, maybe even the HMAC
value—was changed. Daniel doesn’t know exactly what was changed, but
that doesn’t matter. He knows something went wrong. He contacts Pao-
Chi again, and theystart over.

Anotherpossibility is for Satomi to substitute message 2 for message 1
and substitute the HMAC. But the problem is that Satomi can’t know
what the correct HMAC value should be. To demonstrate this, suppose
Satomisubstitutes six presses for four presses. Here’s the SHA-1 digest.

Daniel, I sold 6 presses to Satomi. Ship immediately.
SHA-1 digest:

66 05 40 8c 24 6e O5 £8 00 20 £4 72 14 08 be 22
53 b2 eb d2

If Satomi substitutes this digest, Daniel will still know somethingis
wrong because that’s not the value he’s goingto get. He’s not digesting the
message; rather, he’s digesting the key and the message. So what should
Satomi use?

We've described a message digest as the foundation of a pseudo-random
number generator or password-based encryption, and now as a represen-
tative of a larger message. Another use for a message digest is to check
data integrity, which is the term used to describe what the HMACdoes.If
you're concerned that the information maybealtered, you send the data
along with a check. If the message wasaltered, the check will also be dif-
ferent. Of course, you must ensure that the check value cannot be altered
to match any changes in the message.

If the check value shows noalterations, the data has been shownto

haveintegrity. “Integrity” is a word for honest, sound, and steadfast. When
used in relationship to data, it may seem pretentious, but it does describe
data that you can count on, at least in termsof its authenticity.
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Back to Digital Signatures

In our example, the HMAC seemsto serve as a signature. Daniel can
know that the data came from Pao-Chi and that no one tamperedwith it
in transit. But HMAC has someshortcomings. Thefirst is the statement,
“Daniel can know that the data came from Pao-Chi.” Maybe he can know
it came from Pao-Chi, but can anyone else? After all, to verify that the
data came from Pao-Chi, the recipient must know whatthe keyis to cre-
ate the appropriate HMAC. Daniel knows what the shared secretkey is,
but no one else does. Daniel could write a bogus message(say, setting the
numberufpresses lo eight) and creale Lhe correct IMAC.So from anyone
else’s point of view, the message may have comefrom Pao-Chi or Daniel;
no oneelse can know for sure who“signed”it. The second drawbackis that
for someone other than Pao-Chi or Daniel to verify the “signature,” the
correspondents must reveal the secret key. Now this third party has
access to the key and can also create messages that appear genuine.

Usually, HMACs are used only to verify that contents have not been
altered in transit. They are meant to be used as an on-the-fly check and
not as a permanent record. For that reason, you need another way to cre-
ate unique, verifiable signatures, and that way is to encrypt the digest
with the signer’s private RSA key.

It works like this. Pao-Chi digests the message and then encrypts the
digest with his private key. He sends Daniel the message along with the
encrypted digest, which serves as the signature. Daniel separates the two
components and digests the message he received. He has a messagein his
possession and knowsthedigest that will produceit (he just computedit).
He must determine whether the message he now has is the same message
Pao-Chi sent. If Daniel knew what Pao-Chi computedas a digest, he could
make that determination. Well, he has Pao-Chi’s digest—it’s the signa-
ture. So Daniel uses Pao-Chi’s public key to decrypt the signature. That’s
the value Pao-Chi signed (see Figure 5-10). Is it the same answer Daniel
got? If it is, he knows that the data was not altered in transit and that
Pao-Chiis vouching for the contents.

Notice something powerful about the digital signature: Each chunk of
data has its own signature. This means that no single digital signature is
associated with an individual or key pair. Each signature is unique to the
data signed and the keys used. When an individual signs two messages
with the same key, the signatures will be different, Moreover, when two
people with different keys sign the same data, they will produce different
signatures, As a result, someone cannot take a valid signature and append
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it to the bottom of a different message, something that makes it much
more difficult to forge a signature.

Think of it this way. Two people (a senderand a receiver) each have a
copy of a message. Are they really copies or was the receiver’s copy altered
in transit? To find out, they digest the two messages and compare them.
If the digests are the same, both parties know that the two versions
match. If the digests don’t match, something went wrong. How do you
know that the sender’s digest was not altered? You know that becauseit
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was encrypted with the sender’s private key. How do you know that it was
encrypted with the sender’s private key? You know it because the public
key decrypts it.

In addition, you can make a couple of other checks. In the real world,
there will almost certainly be some digest algorithm identifier bytes (dis-
cussed in the next paragraph) and some pad bytes in addition to the
digest. A signer will encrypt a block of data that is the padding, the digest
algorithm identifier, and the digest. That encrypted value is the signature.
Figure 5-11 shows an example. Using the appropriate public key, thatsig-
nature decrypts to the padded value. The verifier checks not only for the
digest but also the pad bytes and the SHA-1 algorithm identifier.(Techni-
cally, the program the verifier runs will make these checks.) Having three
checks makesit harder to spoof.

The algorithm identifier bytes prevent an attacker from substituting an
alternative digest algorithm. Suppose that Satomi looks at Pao-Chi’s mes-
sage andits correct digest. She then finds a second messageanddigests it
using a different algorithm. Further suppose that this second algorithm on
the second message produces the same digestas thefirst algorithm on the
first message. If the signature were the encryption of the digest only, that
one signature would look as if it also came from the secondalgorithm. But
if you tie a signature to a digest and the algorithm, you thwart such an
attack. On the one hand, it doesn’t seem likely that someone would ever be
able to generate the same digest from a different algorithm. On the other
hand, might MD2 be broken completely someday? It doesn’t cost anything
to makethe second check, so you might as well useit.

Trying to Cheat

Two people-Satomi and Pao-Chi-might try to cheat. Here’s how they can
try.

First, suppose that Satomi intercepts the message and replaces “4”
with “5.” Shefigures she'll pay Pao-Chifor four units but Daniel will send
herfive, and she'll get an extra pressfor free. In this scheme, when Daniel
gets the e-mail, he digests it and gets the following value. (Using the same
algorithm Pao-Chi used-SHA-1-that information is part of the e-mail
although not part of the messagedigested.)

2c db 78 38 87 Je G3 le 29 18 49 ad 61 b7 41 81
3c b6 90 Ta
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Figure 5-11

A digested
message andthe
RSAsignature.
The private key
used for this
exampleis listed
in Chapter 4

Message:
Daniel, I sold

4 presses to
Satomi. Ship
immediately. 

Padded plaintext:

 
 
 
 ; RSA machine

Signature:
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Daniel must find out whether that value is the same one Pao-Chi got

whenhedigested the messagehesent. To find out, Daniel uses Pao-Chi's
public key to decrypt the signature. After decryption, he gets a chunk of
data. Does this data have the correct padding? Hesees that the padding
is correct, so he just throws that away. The next bytes are the identifying
marks indicating that the algorithm is SHA-1; that’s correct. Finally, he
has the digest.

46 73 a5 85 89 ba 86 58 44 ac 5b 08 48 Ja cd 12
63 £8 cl 5a

Daniel compares the digest value in the decrypted signature to his
digest value (the value he just computed from the purported message) and
sees that they are different. Something’s not right. What went wrong?
Daniel doesn’t know exactly what caused the discrepancy, but he knows
that the message he received is not the same message Pao-Chi sent.
Because Daniel doesn’t trust the message, he ignores it, asking Pao-Chi to
try again. Meanwhile, Daniel doesn’t send Satomi anything and she
doesn’t get her extra unit.

Now let’s look at Pao-Chi’s attempt at cheating. Suppose he made a
mistake and quoted Satomi a price for two units. He got paid for two but
told Daniel to ship four. He doesn’t want to take the heat for the error, so
he claims he wrote “2” instead of “4”in his e-mail. He figures he can shift
the blame to Daniel or maybe just technology—somegremlin on the Inter-
net that garbled the message.

Daniel points out that the signature attached to his e-mail matches the
message with the numberof presses to ship at four. Because that’s Pao-
Chi’s signature and because each signature is unique to a message and
private key, Daniel claims that Pao-Chi vouched for the information and
can’t back out now.

To counter this, Pao-Chi could claim that the signature was forged. To
forge a signature would mean that someone wasable to create a blob of
data, through other means, that was the sameas a signature. This would
mean that some unknown forger had broken the RSA algorithm. Thatis
highly unlikely (see Chapter 4). No, Pao-Chi signed the message, and he
can’t claim otherwise.

Or Pao-Chi could try another approach, claiming that someonestole his
private key. Maybe it was protected on his hard drive using PBE, and
someone cracked his password. Maybe it was stored on a smart card or
other token, and someone broke that device or was able to log on as Pao-
Chi (possibly by breaking a password). If that really is the case, Pao-Chi
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did a poorjob of protecting his private key, and hewill still be in trouble.
Wereturn to this subject later in this chapter in the section “Protecting
Private Keys.”

Implementing Authentication, Data Integrity, and
Nonrepudiation

When Daniel checks to make sure that the data has come from Pao-Chi

and not someone posing as him,it’s called authentication. He authenti-

cates Pao-Chi’s identity. When Daniel examines the message to make sure
it has not been altered in transit, that’s called data integrity checking. And
when Pao-Chi can’t go back on his signature, that’s called nonrepudiation.
In addition to privacy, these are the main areas in which cryptography
benefits those whouseit.

Symmetric-key encryption provides privacy in that the sensitive data
looks like gibberish to unauthorized eyes. Public-key technology solves the
key distribution problem. A message digest—either a keyed digest such as
HMACora digital signature—ensures data integrity in that what the
sendersends is what the receiverreceives. A digital signature also offers
authentication in that the other entity in the data exchange is shown to
be the entity it claims to be and the data is verified to have come from that
entity. A digital signature also provides nonrepudiation in that a signer
cannot later disavow any knowledgeof the message.

Understanding the Algorithms

You can use the RSA algorithm to sign, but Diffie-Hellman can be used
only to perform key exchange and not digital signatures. As discussed in
Chapter 4, Diffie and Hellman proposed the idea of the ultimate public
key algorithm. It would be one that could be used to encrypt data. The dig-
ital signature is the reason that such an algorithm would be the ultimate
algorithm. In an interview, Whitfield Diffie explained that when he heard
about the NSA’s secure phone system, he wasless concerned with the key
exchange problem than with authentication—thatis, verifying that you
are talking to the person you think you are talkingto.
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At Stanford, cryptographer Taher El Gamal came up with a way to
extend DH so that it could be used to sign as well as encrypt. But his idea
never really caught on, possibly because RSA existed, and possibly
because David Kravitz invented a digital signature algorithm for the U.S.
government, and with the backingofan entity as powerful as the U.S.gov-
ernment, his algorithm became popular. Kravitz (or someonein the U.S.
government) gave the new algorithm the lyrical name “Digital Signature
Algorithm,” knownto this day as DSA. Like DH, DSAis based on thedis-
crete log problem. It becamethe official U.S. governmentsignature algo-
rithm and probably is second only to RSA in use today. Kravitz was
working for the NSA when he developed NSA, and it is hased on work hy
El Gamal and Claus Schnorr, another cryptographer.

Finally, just as elliptic curve math can be adapted to solve the key dis-
tribution problem, it can be adapted to create signatures. There are a
numberof possibilities, but the most common way to use ECC to create
signatures is called ECDSA. This approach does essentially the same
thing as DSA but with elliptic curves.

NOTE:

Kravitz received a patent for DSA, but the U.S. government ownsit
because the inventor was working for the NSA atthe time. The patentis
in the public domain and can be used freely. Claus Schnorr invented a
signature algorithm that is very similar to DSA. His patent on that algo-
rithm predates Kravitz’s. Ifyou want the whole story, consult a patent
attorney.

Manysignature algorithms have been proposedoverthe years, but only
RSA, DSA, and ECDSAhave shown anylong-lasting successin finding
adopters. Let’s look at these three algorithms in moredetail.

RSA

We show RSAin detail in Chapter 4. It’s the algorithm that is used to
encrypt a digest with a private key to producea digital signature. To forge
an RSA signature, someone mustfind the private key. Lacking a private
key, no one has been able to produce a chunk ofdata,call it a digital sig-
nature, and haveit be verified.
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DSA

To this point, we’ve described a digital signature as the private-key
encryption of a digest. Now we come to DSA,which doesnot encryptdata.
Although DSA usesthe digest of the data, it does not encrypt the digest.
Your first thoughtis likely to be, “If it can’t encrypt data, how can it pro-
duce a digital signature?” Remember that DH cannot be used to encrypt
data but can be usedto solve the key distribution problem. Similarly, even
though DSA cannot be used to encrypt data,it can be used to create a dig-
ital signature. A digital signature is a chunk of dala that comes from the
message andtheprivate key. Only that particular message coupled with
that particular private key will produce that particular signature. If you
accomplish that by encrypting the digest, great. If you accomplish that in
some other way, that’s fine, too.

With DSA,the signer digests the message with SHA-1 andtreats that
digest as a number(it’s a big number:160 bits long). Another numbersent
to the algorithm is a random or pseudo-random value, usually called k.
The last input is the private key. The algorithm then performs some math-
ematical operations, one of which is modular exponentiation, the same
function at the heart of DH and RSA.Theoutput is two numbers, usually
called r and s. These two numbersare the signature.

The verifier computes the SHA-1 digest of the message.Is it the same
digest that the signer produced? The verifier does not have that digest
available but does have r and s. Using the digest as a number, along with
the public key and thes, the verifier performs some mathematical opera-
tions. The result of the computations is a numbercalled v. If v is the same
as r, the signatureis verified (see Figure 5-12).

At its most basic, DSA computes the same number in two different

ways.In Diffie-Hellman, two parties can generate the samesecret value
even though each oneis using different input. The same thing is happen-
ing here with DSA. Two parties produce the same numberusing different
input. The twosets of input are related. Well, they should be related;if
something breaks down,the final answers will differ.

Eachside has three inputs. The signerhas the digest, k, and the private
key. The verifier has the digest, s, and the public key. The digests are
related; they should be the samething.If that relationship breaks down-
say, the signed datais not the sameas the data beiny verified and the two
parties produce different digests—the final answer from each individual
will differ. The & and s are related (they’re not the same number, but
they’re related). If the signature is wrong, the s will be wrong and the two
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Figure 5-12
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players will produce different final answers. The private key and the pub-
lic key are also related; they are partners related mathematically. If that
relationship is not there—if the public key used to verify is not the part-
ner to the private key used to sign—the two agents will produce different
final answers.

The security of DSAlies in the discrete log problem, the same problem
that gives DHits security. So the size of DSA keys will be the sameas that
of DH keys. As always, you can find more detailed information in the RSA
Labs FAQ on the accompanying CD,

This algorithm looks a lot like DSA. Thesigner has three inputs: the
digest, k, and the private key. The output is r and s. The verifier has the
digest, s, and the public key. The output is v. If v andr are the same,the
signatureis verified; if theyre not the same, something went wrong. What
went wrong? Wasit the wrong digest? The wrong public key? Wasthesig-
nature mangled in transmission? You probably can’t know exactly what
happened,but you do know that something went wrong. The math under-
lying ECDSAiselliptic curves, so key size is the same as with ECDH.

Comparing the Algorithms

Security

Of the three algorithms that produce digital signatures, which one is
the best? As we say in Chapter 4 regarding the key distribution prob-
lem, there’s probably no single answer to that question. Each hasits
advantages and disadvantages. A more appropriate question mightbe,
“Which algorithm works best in which situation?” Rememberthatall
three of them are in use today because different problemscall for dif-
ferent solutions.

Everything we say in Chapter 4 on the security of the three algorithms
applies here as well (the security of Diffie-Hellman and DSA are pretty
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Performance

much the same). There’s no objective answerto the question ofwhich algo-
rithm is the most secure. It depends on what each individual feels is

important,
One other factor with digital signatures, though, may be the concept of

message recovery. With RSA,a signature verification recovers the message,
but with DSA and ECDSA,a signature verification simply compares two
numbers. Technically, RSA recovers the digest of the message instead of
the messageitself; that’s really one level of indirection. DSA and ECDSA
find a numberbased onthedigest; that’s two levels of indirection. Earlier
in this chapter in “The Uniqueness of a Digital Signature,” we mention
that the crypto literature on digital signatures contains statements such
as, “For someclasses of signatures it is possible to prove certain security
properties.” Message recovery is one of those security properties. When you
perform an RSAverification operation, you get to see what the signerpro-
duced; you recover the message digest because you're decrypting it. With
DSA and ECDSA,you don’t see what the signer produced. Instead, you
generate a number, and if that numberis equal to another number, youfig-
ure you produced the samething that the signer produced.

Thinkofit this way. DSA and ECDSAproduce surrogate numbers,let’s
call them the signer’s surrogate and the verifier’s surrogate. If the two
numbers match, the signatureis verified. With RSA,there is no surrogate;
the verifier actually compares the signer’s value.

Because DSA and ECDSA compare surrogates and notoriginals, it
opens an avenueof attack not possible with RSA. An attacker could try to
produce the appropriate surrogate number without the correct original
key or data. That is, an attacker does not haveto find a digest collision to
substitute messages, but can try to find a DSAcollision. But before you
think that makes RSA muchstronger than the other two, rememberthat
no onehas been able to create such an attack or even to comeclose. Still,
although the probability of such an attack on DSA or ECDSAis extremely
low, it’s lowerstill with RSA.

In Chapter 4, you saw that no algorithm wins the performance race
hands-down. Of the several factors, cach algorithm compares favorably
with the others in one way but unfavorably in another. The sameis true

with signatures. RSA performance does not change, but DSA and ECDSA
are slightly more time-consuming than their DH counterparts.
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If you want a faster signature scheme, you should go with ECC, But
often, making a connection means that each party has to do two or more
verifications; each one must verify a signature and then verify one or
more certificates (Chapter 6 talks about certificates). If you have a fast
signer (a server, for example) but a slow verifier (a hand-held device or

smart card for example), you may get bogged down in verification, Again,
each application may have different needs, and even though one algo-
rithm may satisfy one application’s needs better than another algorithm,
the next application mayfind a different algorithm more suitable.

Table 5-1 shows some performance comparisons. The numbersarerel-
ative; if RSA public-key operations (such as verification) take one unit of

time (whatever that unit may be) on a particular machine,the other oper-
ations will take the amounts of time shown.

RSA DSA ECC ECC with Acceleration

Private key (sign) 13 17 1 2

Public key (verify) 1 33 19

Combined 14 50 26 21 

Transmission Size

DSA and ECDSAsignatures are about 340 bits, regardless of key size. An
RSAsignature is the same size as the key. So if you use a 1,024-bit RSA
key pair, each time you send a digital signature you add 1,024 bits to the
message. Again, if transmission size is important, you may want, to look at
DSA or ECDSA.

Interoperability

The story’s the same with signatures as with key distribution. RSA is
almost ubiquitous and has become the de facto standard. DSA was pro-
moted by the U.S. government and has become a part of most crypto-
graphic packages, So if you sign using RSA or DSA, other parties will
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almost certainly be able to verify it, whether or not they use the same
application you do. ECCis less prevalent.

Protecting Private Keys

Chapter 3 shows how to protect symmetric keys, and Chapter 4 explains
that you protect a private key in a similar way. Tokens such as smart
cards add a dimension to protection, but for the most part, the way you
protect one key is the way you protect any key. Many protocols (discussed
in Chapters 7 and 8) require that you have two keys:a digital envelope (or
key exchange key) and a separate signing key. So you'll likely haveto pro-
tect two private keys.

Butifyou lose your private key, there are ways to revoke, or cancel, the
public keyaffiliated with it. If Pao-Chi claims that someoneobtainedhis
private key and is signing under his name, he can have his public key
revoked. After the effective date of the revocation, any signatures verified

with Pao-Chi’s public key are invalid because the public key is invalid.
Now Pao-Chi has to generate a new keypair, this time protecting the pri-
vate key more diligently. Chapter 6 talks about revoking keys.

For now,note that if attackers steal your signing key, they can doa lot
more damage than if they steal other types of keys because your signing
key lets them pose as you. By stealing your digital envelope or key
exchangeprivate key, attackers can get at secrets, but they cannot act on
your behalf. If you don’t protect your signing key or don’t protect it well
enough, you’re making yourself much more vulnerable.

 
Introduction to Certificates

Throughout Chapters 4 and 5, we've talked aboutother individuals using
someone else’s public key. To send a secure message to Gwen, Pao-Chi
found her public key and created a digital envelope. To verify Pao-Chi’s
message, Daniel acquired Pao-Chi’s public key and verified the digital sig-
nature. But how can anyone truly know whethera public key belongs to
the purported individual?

Pao-Chi has in his possession a public key, which is purportedly
Gwen’s. The key works;heis able to create a digital envelope. But whatif
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Satomi somehow substituted her public key for Gwen’s? While Pao-Chi
was out to lunch, Satomi may have broken into his laptop, foundafile
called “Gwen’s public key” and editedit so thatthis file contained her pub-
lic key, not Gwen’s. Then when Pao-Chi sendsthe digital envelope, Satomi
will be able to intercept and read it. Gwen won’t be able to open it because
she does not have accessto the private key partnerto the public key used.

Suppose the company Pao-Chi and Daniel workfor has a centralized
directory where everyone’s public key is stored. When Daniel wantsto ver-
ify Pao-Chi’s signature, he goes to the directory and find’s Pao-Chi’s key.
But whatif Satomi broke into that directory and replaced Pao-Chi’s pub-
lic key with hers? Now she can send a fake message to Daniel with a valid
digital signature. Daniel will think it came from Pao-Chi because hever-
ifies the signature against what he thinks is Pao-Chi’s public key.

The most common way to know whetheror not a public key does belong
to the purported entity is through a digital certificate. A digital certificate
binds a name to a public key. An analogy would be a passport, which binds
a photo to a name and number. A passport is supposed to be producedin
such a waythatit is detectable if someone takes an existing passport and
replaces the true photo with an imposter’s photo. It may be a valid pass-
port, but not for the person in the photo. Immigration officials will not
honor that passport.

A digital certificate is produced in such a way that it is detectable if

someonetakes an existing certificate and replaces the public key or name
with an imposter’s, Anyone examining that certificate will know that
something is wrong. Maybe the nameor public key is wrong , so you don’t
trust that name/key pair combination.

Here’s how it works. Take a name and public key. Consider those two
things to be a message, and sign the message. Thecertificate is the name,
public key, and signature (see Figure 5-13). The only thing left to deter-
mine is who will sign the certificate. Signing is almost always done by a
certificate authority, also known as a CA. Moreon thatlater.

Gwenoriginally generated her key pair, protected the private key, and
contacted her CA requesting a certificate. Depending on the CA’s policy,
Gwen may be required to show upin person. The CAverifies Gwen is who
she claims to be by examining her passport, driver’s license, company ID
badge, or whatever method the CAuses to determineidentity. Then Gwen
uses herprivate key to sign something(the certificate request, probably),
In that way, the CA knows that Gwen does indeed have accessto the pri-
vate key partner to the public key presented, and that the public key has
not been replaced. The CA combines Gwen’s nameand public key into a
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Figure 5-13

A certificate is

the name,public
key and signature

 
 

Message

Certificate

message and signs that message using its private key. Gwen now has a
certificate and distributes it. So when Pao-Chi collects Gwen’s public key,
what he’s really collecting is her certificate.

Now suppose Satomi tries to replace Gwen’s public key with her own.
Shefinds the file on Pao-Chi’s laptop holding Gwen’s public key and sub-
stitutes the keys. But when Pao-Chiloads the key, he’s not loading just the
key, he’s loading the certificate. He can extract the public key from thecer-
tificate ifhe wants, but before he does that, he verifies that the certificate
is valid using the CA’s public key. Because the message has been altered,
the signature does not verify and Pao-Chidoes not trust that public key.
Therefore, he will not create a digital envelope using that public key, and
Satomiwill not be able to read any private communications.

Of course, that scenario assumes that Pao-Chi has the CA’s public key
and that he can trust no one has replaced it with an imposter’s. Because
he can extract it from the CA’s certificate, Pao-Chi knowshe has the true
CA public key. Just as Gwen’s public key can he wrapped in a certificate,
so can the CA’s. Who signed the CA's certificate? Probably another CA.
This could go on forever.
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But it has to stop somewhere and that somewhereis the root. A root
will sign a CA’s certificate, and the root key is distributed outside the cer-
tificate hierarchy. Maybethe root is built into software; maybe Pao-Chi
will have to enter it himself. Of course, if Satomi is able to substitute the

root public key with one of her own, she can subvert the whole system. So
Pao-Chi needsto protect the root key as he does his symmetric key and his
own private keys.

Key Recovery

Summary

As discussed in Chapter4, it’s possible to set up a schemeto restore keys
that someoneloses by forgetting a passwordor losing a token. However,
it’s probably not agood idea to apply a key recovery plan to signing keys.
If a signing key can be obtained by someoneother than the owner(evenif
that is a trusted third party or a committee of trustees), that would make

it possible to nullify nonrepudiation. Anyway, if someone loses a signing
key, it’s no great problem; any existing signaturesarestill valid because
only the public key is needed to verify. For new signatures, you simply
generate a new key pair and distribute the new public key. For this rea-
son, many protocols specify that participants have separate signing and
key exchange keys. As you will see in Chapters 6 and7, it is possible to
define a key as signing only or key encrypting (with the RSAdigital enve-
lope) or as key exchange only (with the Diffie-Hellman protocol).

To verify that a message came from the purported sender, you can use
public-key cryptography. A private key is used to sign the data, and the
public key is used to verify it. The only known wayto producea valid sig-
natureis to use the private key. Also, a signature is unique to a message;
each message andprivate key combination will produce a different signa-
ture. So if a public key verifies a message, it must be that the associated
private key signed that message. Three main algorithmsare usedassig-
nature schemes: RSA, DSA, and ECDSA.Each algorithm has its advan-

tages and disadvantages,andit’s not really possible to say that one or the
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other is better. Each algorithm maybe better suited for different applica-
tions.

For performance reasons, you don’t sign the data but rather sign a rep-
resentative of the data called a message digest. Also knownas a hash, a
message digest is the foundation of most PRNGs and PBE implementa-
tions. A keyed digest, such as HMAC,is also used to check data integrity.

Real-World Example

As discussed in Chapter 4, S/MIMEuses public-key cryptographyto solve
the key distribution problem. As you’ve probably already surmised,
S/MIME usesdigital signatures as well. To implementa digital signature,
follow these steps. First, launch Netscape Navigator, click the Security
button, and then click Messenger(along the left-handside ofthe security

window). In Chapter 4, you saw the Encrypt choice checked. Notice the
two Sign choices as well. Ifyou select these menu items, when you send e-
mail or post to newsgroups your messagewill be signed using your private
key.

Before you can sign, you need a key pair, The browser has a module
that generates a key pair for you,or, if you have a token (such as a smart
card), you can specify that it be used to generate the key pair and store the
private key. In the security window, click Yours under Certificates. The |
resulting window displays a button labeled Get A Certificate, This is the |
starting point for generating a key pair and gettinga certificate. (Chapter |
6 discussescertificates.)

With Microsoft Outlook, click Tools and then Options. In the resulting
window,click the Security tab. You saw the Encrypt choice in Chapter 4.
Here, notice the Sign option. Again, you need a key pair anda certificate.
Start the process by clicking the Get A Digital ID button at the bottom of
the window.
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As you learned in Chapter 4, public-key cryptography gives you not only a
powerful mechanism for encryption but also a way to identify and authen-
ticate other individuals and devices. Before you can use this technology
effectively, however, you must deal with one drawback. Just as with sym-
metric-key cryptography, key management and distribution are an issue
with public-key crypto. Instead of confidentiality, the paramountissuefor
public-key crypto is the integrity and ownership ofa public key.

For end users andrelying parties (relying parties are those whoverify
the authenticity of an end user’s certificate) to use this technology, they
must provide their public keys to one another. The problemis that, like
any other data, a public key is susceptible to manipulation while it is in
transit. Ifan unknownthird party can substitute a different public key for
the valid one, the attacker could forge digital signatures and allow
encrypted messages to be disclosed to unintended parties. That’s whyit’s
crucial to assure users that the key is authentic and that it came from (or
wasreceived by) the intendedparty.

Within a small population of trusted users, this task is not very diffi-
cult. An end user could distribute the public key by simply hand-deliver-
ing it on disk to a recipient, an approach known as manual public-key
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Public-Key

distribution. For larger groups of individuals, however, this task is much
more difficult, especially when the people are geographically dispersed.
Manual distribution becomes impractical and leaves room for security
holes. For that reason, a better solution has been developed: public-key
certificates. Public-key certificates provide a systematic, scalable, uni-
form, and easily controllable approach to public-key distribution.

A public-key certificate (PKC) is a tamperproofset of data that attests
to the binding of a public key to an end user. To provide this binding, a set
of trusted third parties vouchesfor the user’s identity. The third parties,
called certification authorities (CAs), issue certificates to the user that
contain the user’s name, public key, and other identifying information.
Digitally signed by the CA,these certificates can now betransferred and
stored.

This chapter covers the necessary technology needed to understand
and use a public-key infrastructure (PKI). First, we describe the X.509
standard and the structure of an X.509 public-key certificate. Then we

explain how the PKI components work as a collaborative processto let
you create, distribute, manage, and revokecertificates.

Certificates

Public-key certificates are a secure meansof distributing public keys to
relying parties within a network. In many ways, PKCs are analogousto a
driver’s license. Both a driver’s license and a PKC are certified by a
trusted third party, which affirms the user’s identity and privileges.In its
mostbasic form, a certificate contains a public key,the identity of the indi-
vidual it belongs to, and the name of the party that is attesting to the
validity of these facts.

Various certificates are in use. Some of them, such as Pretty Good Pri-
vacy (PGP), are proprietary. Other popular certificates are application-
specific, such as SET and Internet Protocol Security (IPSec) certificates.
The most widely accepted certificate formatis the International Telecom-
munication Union’s X.509 Version 3. The original X.509 standard was

published in 1988 as part of the X.500 directory recommendations. Since
then, it has been revised twice—in 1993 and again in 1995. RFC2459, a
profile for the X.509 standard, was published in 1999 by the Jnternet Engi-
neering Task Force (IETF). Although RFC2459 is targeted to the Internet
community, a numberofits useful components can be applied in an enter-
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Figure 6-1

X.509 certificate
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prise environment, Therefore, we provide references to someofits recom-
mendations where appropriate. Figure 6-1 illustrates the structure of an
X.509 certificate.

  
 
 
 

Versiona

 
  

  
   
  
  

  All

{ Versions 

All versions of X.509 certificates contain the followingfields:

m Version This field differentiates among successive versions of the
certificate, such as Version 1, Version 2, and Version 3. The Version

field also allows for possible future versions.

a Certificate Serial Number This field contains an integer value

unique to each certificate; it is generated by the CA.

a Signature Algorithm Identifier This field indicates the identifier
of the algorithm used to sign the certificate along with any associated
parameters.

w Issuer Name Thisfield identifies the distinguished name (DN)of
the CA that created and signed this certificate.
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a Validity (Not Before/After) This field contains two date/time
values—Not Valid Before and Not Valid After—which define the

period that this certificate can be considered valid unless otherwise
revoked. The entry can use the following formats: UTC time
(vymmddhhmmssz) or generalized time (yyyymmddhhmmssz).

@ Subject Name This field identifies the DN of the end entity to
whomthiscertificate refers, that is, the subject who holds the
corresponding private key. This field must have an entry unless an
alternative nameis used in the Version 3extensions.

m Subject Public Key Information This field contains the value of
the subject’s public. key as well as the algorithm identifier and any
associated parameters of the algorithm for which this key is used.
This field must always have an entry.

UniqueIdentifiers

Version 2 and 3 certificates may contain unique identifiers that pertain to
the subject and issuer. Thesefields are designed to handle the possibility
of reuse of these namesover time. RFC2459 recommends that names not

be reused for different entities and that Internet certificates not use

unique identifiers. This means that CAs conformingto this profile should
not generate certificates with unique identifiers. Nevertheless, applica-
tions conforming to this profile should be capable of parsing unique iden-
tifiers and making comparisons.

= Issuer Unique Identifier This optional field contains a unique
identifier that is used to render unambiguous the X.500 name ofthe
CA in cases when the same namehas been reusedbydifferent
entities over time. This field can be used only in Version 2 and
Version 3 certificates, and its use is not recommendedaccording to
RFC2459.

gs Subject Unique Identifier This optional field contains a unique
identifier that is used to render unambiguous the X.500 name of the
certificate owner when the same namehas been reusedbydifferent
entities over time. This field can be used only in Version 2 and Version
3 certificates, and its use is not recommendedaccording to RFC2459.
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Standard Version 3 Certificate Extensions

After the release of Version 2, it was apparent that the certificate profile
still contained deficiencies. For this reason, a set of extensions was created
to append to the Version 3 formatofthe certificate. These extensions cover
key and policy information, subject and issuer attributes, and certification
path constraints.

The information contained in extension fields can be marked as either

critical or noncritical. An extension field has three parts: extension type,
extension criticality, and extension value. The extensioncriticality tells a

certificate-using application whether it can ignore an extension type. If
this extension is set to critical and the application does not recognize the

extension type, the application should reject the certificate. On the other
hand,if the extension criticality is set to noncritical and the application
does not recognize the extension type, it is safe for the application to
ignore the extension and to use thecertificate.

The following standard certificate extension fields are available only in
Version 3 certificates:

m Authority Key Identifier This extension is used to differentiate
between multiple certificate signing keys of the same CA. The CA
provides a unique key identifier or provides a pointer to another
certificate, which can certify the issuer’s key. The RFC2459 mandates
the use of this field for any certificate that is not self-signed.

gs Subject Key Identifier This extensionis usedto differentiate
between multiple certificate signing keys of the samecertificate
owner. The owner provides a unique key identifier or provides a

pointer to anothercertificate that can certify the issuer’s key.
RFC2459 mandates the useofthis field for any CA signing certificate
and also recommendsit for end entities.

mg Key Usage This extension is used to define restrictions on the
operations that can be performed by the public key within this
certificate. Such operations include digital signature, certificate
signing,certificate revocation list (CRL) signing, key enciphering, data
enciphering, and Diffie-Hellman key agreement. This field can also be
flagged ascritical or noncritical. If it is flagged critical, it can be used
only for its intended use; otherwise, it will be considered in violation
of the CA’s policy. RFC2459 recommendsa flag ofcritical when this
field is used.
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a Extended Key Usage This extension can be used in addition to or
in place of the Key Usage extension to define one or moreuses of the
public key that is certified within this certificate. This extension
enables the certificate to interoperate with various protocols and

applications (such as, Transport Layer Security |TLS] server
authentication, client authentication, time stamping, andothers).

RFC2459 states that this field may be flagged critical or noncritical.

a CRL Distribution Point This extension indicates a uniform
resource identifier (URI) to locate the CRL structure where revocation
information associated with this certificate resides. RFC2459

recommendsthatthis field be flagged noncritical, although it
also recommends that CAs and applications support this extension.

a Private Key Usage Period Similar to the Validity field of the
certificate, this extension indicates the time frameof use for the
private key associated with the public key in this certificate. In the
absence of this extension, the validity period of use for the private key
is that of the associated public key, RFC2459 recommends against the
use of this extension.

mw Certificate Policies This extension identifies the policies and
optional qualifier information that the CA associates with the
certificate. If this extension is markedcritical, the processing
application must adhere to at least one of the policies indicated, or
the certificate is not to be used. To promote interoperability, RFC2459
recommends against the use of policy identifiers, but it does specify
two possible qualifiers: the certification practice statement (CPS)
qualifier and the user notice qualifier. The CPS qualifier contains a
pointer to a CPS that applies to this certificate. The notice reference

qualifier can be made upof a notice reference or an explicit notice (or
both), which can in turn provide a text messageof the policy required
for this certificate.

@ Policy Mappings This extension is used only when the subject of
the certificate is also a CA. It indicates one or more policy object
identifiers (OIDs) within the issuing CA’s domain that are considered
to be equivalent to another policy within the subject CA’s domain.

a Subject Alternative Name ‘This extension indicates one or more
alternative name forms associated with the ownerofthis certificate.

Useof this field enables support within various applications that
employ their own nameforms, such as various e-mail products,
electronic data interchange (EDI), and IPSec. RFC2459 specifies that
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Entity Names

if no DN is specified in the subject field of a certificate, it must have
one or more alternative names and this extension mustbe flagged
critical.

Issuer Alternative Name This extension indicates one or more

alternative name forms associated with the issuerof this certificate.

As with the Subject Alternative Name extension,useofthisfield
enables support within variousapplications.

Subject Directory Attributes This extension can be used to

convey any X.500 directory attribute values for the subjectof this
certificate. It provides additional identifying information about the
subject that is not conveyed in the namefields (thatis, the subject’s
phone numberorposition within a company). RFC2459 recommends

against the use of this extension at this time. However,if it is used,
RFC2459 mandates the use of a noncritical flag to maintain
interoperability.

Basic Constraints This extension indicates whether the subject
may act as a CA,providing a way to restrict end users from acting as
CAs.If this field is present, a certification path length may also be
specified. The certification path length limits the certifying powers of
the new authority (for example, whether Verisign could allow RSA
Inc. to act as a CA but at the same time not allow RSAInc.to create

new CAs). RFC2459 mandatesthat this extension be present and
marked critical for al] CA certificates.

Name Constraints This extension, to be used only within CA
certificates, specifies the namespace within whichall subject names
must be located for any subsequentcertificate that is part of this
certificate path. RFC2459 mandates that this extension be marked
critical.

Policy Constraints This extension, to be used only within CA
certificates, specifies policy path validation by requiring policy
identifiers or prohibiting policy mappings (or both), RFC2459 simply
states that this extension may be markedcritical or noncritical.

In a public-keycertificate, entity names for both the issuer and the sub-
ject must be unique. Version 1 and 2 certificates use the X.500 DN nam-
ing convention.
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Distinguished names were originally intended to identify entities
within an X.500 directory tree. A relative distinguished name (RDN)is the

path from one nodeto a subordinate node. The entire DN traverses a path
from the root of the tree to an end nodethat represents a particularentity.
A goal of the directory is to provide an infrastructure to uniquely name
every communications entity everywhere (hence the “distinguished” in
“distinguished name”). As a result of the directory’s goals, names in X.509
certificates are perhaps more complex than one might like (compared
with, for example, e-mail addresses). Nevertheless, for business applica-
tions, DNs are worth the complexity because they are closely coupled with
legal name registration procedures, something not offered by simple
namessuch as e-mail addresses. A distinguished name is composed ofone
or more RDNs, and each RDNis composed of one or more aitribute-value
assertions (AVAs). Each AVAconsists of an attribute identifier andits cor-

responding value information, for example, “CountryName = US” or
“CommonName = Jeff Hamilton”.

X.509 Version 3 certificates grant greater flexibility with names, no
longer restricting us solely to X.500 nameforms.Entities can be identified

by one or more names using various name forms. The following name
forms are recognized by the X.509 standard:

w@ Internet e-mail address

= Internet domain name(anyofficial DNS name)

= X.400 e-mail address

gs X.500 directory name

a EDI party name

g Web URI, of which a uniform resource locator (URL) is a subtype

m Internet IP address(for use in associating public-key pairs with
Internet connection endpoints).

Alternative names provide moreflexibility to relying parties and appli-
cations that may not have any connections to the end user’s X.500 direc-
tory. For example, a standard e-mail application could use a certificate
that provides not only an X.500 name form but also a standard e-mail
address.
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ASN.1 Notation and Encoding

Most encrypted data ends up being transferred to other entities, so it is
crucial that the data follow a standard format, syntax, and encoding so
that it makes sense to other usersor applications, We’ve talked about how

the X.509 standard provides such a format.In this section we explain the
X.509 rules for data syntax and encoding.

The syntax for all certificates that conform to the X.509 standard are
expressed using a special notation known as Abstract Syntax Notation 1
(ASN.1), which was originally ereated by Open Systems Interconnection
(OSI) for use with various X.500 protocols. ASN.1 describes the syntax for
various data structures, providing well-defined primitive objects as well
as a meansto define complex combinations of those primitives.

ASN.1 has twosets of rules that govern encoding. Basic Encoding Rules
(BER,defined in X.690) are a way of representing ASN.1-specified objects
as strings of 1’s and 0’s. Distinguished Encoding Rules (DER), a subset of
BER,provide a means to uniquely encode each ASN.1 value.

NOTE:

For more information about these rules, see Appendix B, which includes a
copy ofRSA Laboratories’ “A Layman’s Guide to a Subset ofASN.1, BER,
and DER.”

The Components of a PKI

As we’ve mentioned, CAs serve as trusted third parties to bind an indi-
vidual’s identity to his or her public key. CAs issue certificates that con-
tain the user’s name, public key, and otheridentifying information. Signed
by the CA,these certificates are stored in public directories and can be
retrieved to verify signatures or encrypt documents. A public-key infra-
structure involves a collaborative process between several entities: the
CA, a registration authority (RA), a certificate repository, a key recovery
server, and the end user. In this section we discuss each of these compo-
nents in detail.
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Certification Authority

If we think of a certificate as being similar to a driver’s license, the CA
operates as a kind of licensing bureau analogous to a state’s Department
of Motor Vehicles or similar agency. In a PKI, a CA issues, manages, and
revokes certificates for a community of end users. The CA takes on the

tasks of authenticating its end users and then digitally signing the cer-
tificate information before disseminating it. The CAis ultimately respon-
sible for the authenticity of its end users.

In providing these services, the CA must provide its own public key to
all the certified end users as well as all relying parties who may use the
certified information. Like end users, the CA providesits public key in the
form of a digitally signed certificate. However, the CA's certificate is
slightly different in that the Subject and Issuer fields contain the same
information. Thus, CA certificates are considered self-signed.

CAs fall into to two categories: public and private. Public CAs operate
via the Internet, providing certification services to the general public.
These CAs certify not only users but also organizations. Private CAs, on
the other hand,are usually found within a corporation or other closed net-
work. These CAs tend to license only to end users within their own popu-
lation, providing their network with stronger authentication and access
controls.

Registration Authority

Although an RA can be considered an extended component of a PKI,
administrators are discoveringthatit is a necessity. As the numberofend
entities increases within a given PKI community, so does the workload
placed on a CA. An RA canserve as an intermediate entity between the CA
and its end users, assisting the CA in its day-to-day certificate-processing
functions.

An RA commonly provides these functions:

gs Accepting and verifying registration information about new registers

m Generating keys on behalf of end users

m Accepting and authorizing requests for key backup and recovery

@ Accepting and authorizing requests for certificate revocation

m Distributing or recovering hardware devices, such as tokens, as
needed
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RAs are also commonly used for the convenience of end users. As the

numberof end users increases within a PKI domain,it’s likely that they
will become more geographically dispersed. CAs can delegate the author-
ity to accept registration information to a local RA.In this way, the CA can
be operated as an offline entity, making it less susceptible to attacks by
outsiders.

Certificate Directory

After a certificate is generated, it must be stored for later use. To relieve
end usersof the need to store the certificate on local machines, CAs often

use a certificate directory, or central storage location. An important com-
ponent of a PKI, a certificate directory provides a single point for certifi-
cate administration and distribution. There is no one required directory
standard. Lotus Notes and Microsoft Exchange use proprietary directo-
ries, and directories based on the X.500 standard are also gaining popu-
larity.

X.500 directories are becoming more widely accepted because in addi-
tion to acting as a certificate repository, they give administrators a central
location for entry of personal attribute information. Entries might include
network resources suchas file servers, printers, and URLs. User informa-
tion, such as e-mail address, telephone privileges, and certificates, is

accessible from numerous clients in a controlled fashion. Directory clients
can locate entries and their attributes using a directory access protocol
such as Lightweight Directory Access Protocol (LDAP).

LDAP, defined by RFCs 1777 and 1778, was designed to give applica-
tions a means to access X.500 directories, It has been widely adopted
because it is simpler and easier to use than the X.500 standard protocols.
Becauseit is not directory-specific, LDAP hasalso found its way into var-
ious environments, enhancing its interoperability.

NOTE:

Becauseof the self-verifying nature ofcertificates, certificate directories
themselves do not necessarily have to be trusted. Should a directory be
compromised, certificates can still be validated through the standard
process ofchecking the certificate chain through the CA. If the directory
server contains personal or corporate data, however, it may be necessary
to provide security and access control to it.
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Key Recovery Server

In a PKI population of any size, one thing is sure to happen: End users
will lose their private keys. Whetherthe loss results from hardwarefail-
ure or a forgotten password, it can create a significant burden on all par-
ties in the PKI. With the loss of a private key, for example, the CA must
revoke the corresponding PKC;in addition, a new key pair must be gen-
erated, and a new corresponding PKC must be created. As a result, all
data encrypted before the incident becomes unrecoverable.

Onesolution is to provide a key recovery server (or, more accurately, a
key backup and recovery server). As the name implies, the key recovery
server gives the CA a simple way of backing up private keys at the time
of creation and recovering them later.

Although key recovery servers can save considerable time and money,
problemscanarise. For example, the key used to decrypt data could be the
same key used to sign messages(that is, the user’s private key). In this
case, an attacker could access the user’s private key and forge messages in
the user’s name. For that reason, some CAs support two keypairs:one for
encryption and decryption and anotheronefor signature and verification.
Wediscuss the storage of multiple key pairs later in this chapter in the
section titled “Managing Multiple Key Pairs.”

NOTE:

The term “escrow”is sometimes used interchangeably with “recovery.”
There is, however, a clear distinction between the two. A key recovery
server is implemented in a given PKI by its administrators to provide
recovery functions for end users. In key escrow, on the other hand, a third
party (such as a federalor local law enforcement agency) is given keys
needed as evidence in an investigation.

ManagementProtocols

Managementprotocols assist in the online communication between end
users and management within a PKI. For example, a managementproto-
col might, he used ta communicate between an RA and an end user or
between two CAsthat cross-certify each other. Examples of PKI manage-
ment protocols include Certificate Management Protocol (CMP) and mes-
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sage formats such as Certificate Management Message Format (CMMF)
and PKCS #10.

Managementprotocols should support the following functions:

Registration This is the process whereby a userfirst makes

herself or himself known to a CA (directly or through an RA).

Initialization Before an end user system can operate securely, it
is necessary to install key materials that have the appropriate
relationship with keys stored elsewherein the infrastructure. For
example, the end-user system must be securely initialized with the

public key and other assured informationofthe trusted CA(s), to
be used in validatingcertificate paths. Furthermore,a client typically
must be initialized with its own key pair(s).

Certification This is the process in which a CA issuesa certificate
for a user’s public key and theneither returns thecertificate to the
end user's client system or posts the certificate in a repository (or
both).

Key recovery As an option, end user client key materials (for
example, a user’s private key used for encryption purposes) can be
backed up by a CA or a key backup system.Ifa user needs to recover
these backed-up key materials (for example, as a result of a forgotten
password or a lost key chain file), an online protocol exchange maybe
needed to support such recovery.

Key update All key pairs must be updated regularly. In this
process, key pairs are replaced and new certificates are issued.

Revocation ‘This process is invoked when an authorized person
advises a CA of an abnormalsituation requiring certificate
revocation.

Cross-certification Two CAs exchange information used in
establishing a cross-certificate. A cross-certificate is a certificate
issued by one CA to another CA that contains a CA signature key
used for issuing certificates.

NOTE:

Online protocols are not the only way to implement these functions.
Offline methods can. also be used.
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Operational Protocols

Figure 6-2

The interaction

between the

various PKI

components

Operational protocols are those protocols that enable the transfer of cer-
tificates and revocation status information betweendirectories, end users,

andrelying parties. The X.509 standard does not specify any single pro-
tocol for use within a PKI domain.Instead, the standard specifies how the
data should be structured for transport. The following protocols are com-
monly used within an environment: HTTP, FTP, e-mail, and LDAP.

Figure 6-2 illustrates the ways in which the various components ofPKI
interact,

 

 
 Key recovery
server

Registering and Issuing Certificates

CAs can register end users in various ways, often depending greatly on
the environment. Many end users simply register with the CA or RA via
the Internet using a Web browser. A private corporate PKI may use an
automated system to register newly hired employees.

In either case, registration is one of the most important processes in a
PKI. It is at this point that the end user and the CA establish trust.
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Depending on the type of certificate being issued, each party maygo to
great lengths to validate the other. Forits part, the end user may review
the CA’s published certificate policies and certification practice state-
ments. For the CA to establish trust with the end user, the CA may
require financial documentation and proofof identity through in-person
communications.

After registration is complete and a relationship of trust has been
established between the CA and the end user, a certificate request can be
initiated. One of two approaches can be used. The end user generates a
key pair and provides the public key in the form of a standard PKCS #10
certificate-signing request (CSR), or the CA can generate a key pair on
behalf of the end user.

Revoking a Certificate

Certificates are created in the belief that they will be valid and usable
throughout the expected lifetime indicated in the Validity field. In some
cases, however, an unexpired certificate should no longer be used. For
example, the corresponding private key may have been compromised, the
CA has discovered that it has made a mistake, or the holderof the keyis
no longer employed at a company. As a result, CAs need a way to revoke
an unexpiredcertificate and notify relying parties of the revocation.

The most common method is the use of a certificate revocation list

(CRL), Simply stated, a CRL is a signed data structure containing a time-
stampedlist of revoked certificates. The signer of the CRLis typically the
sameentity that originally issued it (the CA). After a CRL is created and
digitally signed, it can be freely distributed across a networkor stored in
a directory in the same waythat certificates are handled.

CAs issue CRLsperiodically on schedules ranging from every few hours
to every few weeks. A new CRL is issued whetheror not it contains any
new revocations; in this way, relying parties always know that the most

recently received CRL is current. A PKI’s certificate policy governsits
CRLtime interval. Latency between CRLsis one of the major drawbacks
of their use. For example, a reported revocation may not be received by the
relying party until the next CRL issue, perhaps several hours or several
weeks later.
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NOTE:

Currently, most applications (such as Web browsers and e-mail readers)
do not use the various revocation mechanismsthat are in place. However,
this is beginning to change as PKIs are becoming more widespread.
     

Certificate Revocation Lists

Figure 6-3

The standard
structure of a

CRL

As stated previously, a CRL is nothing more than a time-stamped,digi-
tally signed list of revoked certificates. The following section describes, in
detail, the various fields that make up a CRL. Figure 6-3 illustrates these
fields.

 

 
  
  

  
  

 

 

User Certificate Serial Number / Revocation Date

CRL Entry Extensions

User Certificate Serial Number / Revocation Date

CRL Entry Extensions

CRL Extensions

 
 

@ Version This field indicates the version of the CRL. (This field is

optional for Version 1 CRLs but must be present for Version 2.)

a Signature Algorithm Identifier This field contains the identifier
of the algorithm used to sign the CRL. For example,if this field
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contains the object identifier for SHA-1 with RSA, it means that
the digital signature is a SHA-1 hash (see Chapter 5) encrypted using
RSA(see Chapter 4).

Issuer Name_Thisfield identifies the DN, in X.500 format, of the

entity that issued the CRL,

This Update (Date/Time) This field contains a date/time value
indicating when the CRL wasissued.

Next Update (Date/Time) This optional field contains a date/time
value indicating when the next CRL will be issued. (Although this
field is optional, RFC2459 mandatesits use.)

User Certificate Serial Number/Revocation Date Thisfield

contains thelist of certificates that have been revoked or suspended.
The list contains the certificate’s serial number and the date and time

it was revoked.

CRL Entry Extensions Thesefields are discussed in the following
section.

CRL Extensions Thesefields are discussed in the section “CRL

Extensions.”

Signature This field contains the CA signature.

CRL Entry Extensions

Just as an X.509 Version 3 certificate can be enhanced through the use of
extensions, Version 2 CRLs are provided a set of extensions that enable
CAs to convey additional information with each individual revocation. The
X.509 standard defines the following four extensions for use with a Ver-
sion 2 CRL:

Reason Code This extension specifies the reason for certificate
revocation. Valid entries include the following: unspecified, key
compromise, CA compromise, superseded,certificate hold, and others.
(For valid reasons, RFC2459 recommendsthe useofthisfield.)

Hold Instruction Code This noncritical extension supports the

temporary suspensionofa certificate. It contains an OID that
describes the action to be taken if the extension exists.

Certificate Issuers This extension identifies the nameof the

certificate issuer associated with anindirecl CRL (discussed later in

the section titled “Indirect CRLs”). If this extension is present,
RF'C2459 mandates that it be markedcritical.
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g Invalidity Date This noncritical extension contains a date/time
value showing when a suspected or known compromiseof the private
key occurred,

CRL Extensions

The following CRL extensions have been defined on a per-CRL basis:

a Authority Key Identifier This extension can be used to
differentiate between multiple CRL signing keys held by this CA.
This field contains a unique key identifier (the subject key identifier
in the CRL signer’s certificate), The use of this field is mandated by
RFC2459.

= Issuer Alternative Name This extension associates one or more

alternative name forms with the CRL issuer. RFC2459 specifies that

if no DNis specified in the subjectfield of a certificate, it must have
one or more alternative names, and this extension must be flagged
critical. RFC2459 recommendstheuseof this extension when

alternative name formsare available but mandatesthatit not be

marked critical.

= CRL Number This noncritical extension provides a means ofeasily
recognizing whether a given CRL has been superseded.It contains a
unique serial numberrelative to the issuer of this CRL. Although this
extension is noncritical, RFC2459 mandatesits use.

ws Delta CRL Indicator This critical extension identifies the CRL as

a delta CRL and not a base CRL (see later section, “Delta CRLs”). If
this extension is present, RFC2459 mandates that it be marked
critical.

es Issuing Distribution Point Thiscritical extension identifies the
name of the CRL distribution point for a given CRL (see next section),
It also indicates whether the CRLcovers revocation of end user

certificates only or of CA certificates only, and it specifies whether the
certificate was revoked for a set reason. This extension can also be

used to indicate that the CRL is an indirect CRL.If this extension is

present, RFC2459 mandatesthat it be markedcritical.

CRL Distribution Points

What happens when the CRL for a given PKI domain becomestoo large?
CRLdistribution points (sometimesreferred to as CRL partitions) provide a
simple solution, The idea is that instead of a single large CRL, several

 
251



252

Public-Key Infrastructures and the X.509 Standard 189 

smaller CRLs are created for distribution. Relying servers retrieve and
process these smaller CRLs moreeasily, saving time, money, and bandwidth.

To use CRL distribution points, the CA supplies a pointerto a location
within the Issuing Distribution Point extension. Examples of such point-
ers are a DNS name, an IP address, or the specific filename on a Web
server. The pointer enables relying parties to locate the CRL distribution

point.

Delta CRLs

A delta CRL lists only incremental changes that have occurred since the
preceding CRL.In this way, delta CRLs provide a wayto significantly
improve processing time for applications that store revocation informa-
tion in a format other than the CRL structure. With this approach, such
applications can add new changesto their local database while ignoring
unchanged information already stored there. After an initial full CRL
(base CRL) posting, an accuratelist of revoked certificates is maintained
through delta CRLs. As a result, delta CRLs can be issued much more
often than can base CRLs.

CAs use the Delta CRL Indicator extension to indicate the use of delta

CRLs.In addition, a special value, the “Remove from CRL’value, can be
used in the Reason Code extension to specify that an entry in the base
CRL may now be removed. An entry might be removed becausecertificate
validity has expired or the certificate is no longer suspended.

Indirect CRLs

Indirect CRLs are another alternative for improving the distribution of

CRLs. As the name implies, an indirect CRL is provided to the relying
party by a third party that did not necessarily issuethe certificate. In this
way, CRLs that otherwise would be supplied by numerous CAs (or other
revoking authorities) can be consolidated into a single CRL for distribu-
tion. For example, suppose that a private PKI is served by multiple CAs.
By using indirect CRLs, the PKI can receive one CRLissued by one CA (or
other trusted third party) on behalf of the other CAs.

Two CRL extensions enable the use of indirect CRLs. To indicate that

a CRL contains revocation information from multiple CAs, the Indirect
CRLattribute is sct to True. It’s also important to provide the relying
party with additional information concerning revocation of each entry. A
CRLentry for each certificate is used to identify its CA, If there is no CRL
entry, the certificate is assumed to have been issued by the CA listed on
the first line of the CRL.
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Suspending a Certificate

At times, a CA needsto limit the use of a certificate temporarily but does
not require that it be revoked. For example, a corporate end user may be
going on vacation. In such cases, the certificate can be suspended,dis-
abling the use of PKI-enabled applications that should not be accessed in
the employee’s absence. When the employee returns, the CA removes the
suspension.This approach saves the CA timeby not requiringit to revoke
and thenreissue thecertificate. To suspend a certificate, the CA uses the
value Certificate Hold in the Reason Code extension of the CRL.

Authority Revocation Lists

Like end users, CAs themselves are identified by certificates. Just as end
user certificates may require revocation, so do CA certificates. An author-
ity revocation list (ARL) provides a meansof disseminating this revoca-
tion information for CAs. ARLs are distinguished from CRLs via the
Issuing Distribution Point field within the revocationlist.

Online Certificate Status Protocol

Dependingonthesize of the PKI population, CRLs can become unwieldy.
Even if you use the CRL techniques we’ve discussed (CRL distribution
points, indirect CRLs, and delta CRLs), the workload associated with
CRLs can become burdensome. On the other end, relying parties must

spend considerable resources obtaining the most current CRL.
A newerprotocol, the Online Certificate Status Protocol (OCSP), can be

used to check whethera digital certificate is valid at the time of a given
transaction. OCSP enables relying parties to conduct these checks in real
time, providing a faster, easier, and more dependable wayof validating
digital certificates than the traditional method of downloading and pro-
cessing CRLs. Figure 6-4 illustrates the interaction between various
OCSP components.

Here’s how it works. The CA provides a server, known as an OCSP
responder, that contains current revocation information. Relying parties
can query the OCSP responderto determine the status of a given certifi-
cate. The best way to obtain the information is to have the CA feed it
directly into the responder. Depending on the relationship between the CA
and the OCSPresponder, the CA can forward immediatenotification of a
certificate’s revocation, making it instantly available to users.
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Figure 6-4
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The relying party sends a simple request to the OCSP responder,sus-
pending the use of the certificate in question until a responseis received.
The OCSP request contains the protocol version, the service requested,
and one or morecertificate identifiers. The certificate identifier consists of

a hash ofthe issuer’s name,a hashofthe issuer’s public key, and the cer-
tificate serial number.

The OCSPresponderprovidesa digitally signed responsefor each of the
certificates in the original request. Replies consist of a certificate identi-
fier, one of three status values (Good, Revoked, or Unknown), and a valid-
ity interval (This Update and, optionally, Next Update). The response may
also include the time of revocation as well as the reason for revocation.

 

NOTE:

RFC2560 states that an OCSP request must be protocol-independent,
although HTTPis the most common approach tn use.

Trust Models

Trust models are used to describe the relationship between end users,

relying parties, and the CA. Various models can be found in today’s PKIs,
The following describes the two most widely used and well known:certifi-
cate hierarchies and cross-certification models.
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Certificate Hierarchies

Figure 6-5
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It should be noted, however, that each of these can be used not only
alone but in conjunction with one anotheras well.

As a PKI population begins to increase, it becomesdifficult for a CA to
effectively track the identities of all the parties it has certified. As the
numberofcertificates grows, a single authority may become a bottleneck
in the certification process. One solutionis lo use a cerlificale hierarchy, in
which the CA delegates its authority to one or more subsidiary authori-
ties. These authorities, in turn, designate their own subsidiaries, and the
process travels down the hierarchy until an authority actually issues a
certificate. Figure 6-5 illustrates the concept of certificate hierarchies.
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A powerful feature of certificate hierarchiesis that not all parties must
automatically trustall the certificate authorities. Indeed, the only author-
ity whose trust must be established throughout the enterpriseis the high-
est CA. Becauseofits position in the hierarchy, this authority is generally
knownas the root authority. Examples of current public root CAs include
Verisign, Thawte, and the U.S. Postal Service's root CA.

Cross-Certification

The concept of a single, monolithic PKI serving every user in the world is
unlikely to becomea reality. Instead, we will continue to see PKIs estab-
lished between nations,political organizations, and businesses. One rea-
son for this practice is the policy that each CA should operate
independently and follow its own rules. Cross-certification enables CAs
and end users from different PKI domainsto interact. Figure 6-6 illus-
trates the conceptofcross-certification.

Cross-certification certificates are issued by CAs to form a nonhierar-

chical trust path. A mutual trust relationship requires twocertificates,
which cover the relationship in each direction. These certificates must be

supported by a cross-certification agreement between the CAs. This agree-
ment governsthe liability of the partners in the event that a certificate
turns out to be false or misleading.

After two CAs have established a trust path, relying parties within
a PKI domain are able to trust the end users of the other domain. This

capability is especially useful in Web-based business-to-business communi-
cations. Cross-certification also proves useful for intradomain communica-
tions when a single domain has several CAs.

NOTE:

The use ofcross-certification instead ofor in conjunction with certificate
hierarchies can prove to be more secure than a pure hierarchy model. Ina
hierarchy, for example, if the private key of the root CA is compromised,
all subordinates are rendered untrustworthy. In contrast, with cross-cer-
tification, the compromising ofone CA does not necessarily invalidate the
entire PKI.

256



257

194 Chapter 6  

Figure 6-6
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X.509 Certificate Chain

A certificate chain is the most common methodusedto verify the binding
between an entity and its public key. To gain trust in a certificate, a rely-

ing party must verify three things about eachcertificate until it reaches
a trusted root. First, the relying party must check that each certificate in
the chain is signed by the public key of the next certificate in the chain.It
must also ensure that each certificate is not expired or revoked and that
each certificate conformsto a set of criteria defined by certificates higher

up in the chain. By verifying the trusted root for the certificate, a certifi-
cate-using application that trusts the certificate can develop trust in the
entity’s public key. Figure 6-7 illustrates certificate chains and how they
may be used.
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  Issuer:
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Subject:
Metro Motors

 

 
 

 
  Issuer:

Metro Motors

  
To see this process in action, consider what happens whenaclient

application in the marketing department verifies the identity of the mar-
keting department’s Webserver. The server presentsits certificate, which
wasissued by authority of the manufacturing department. The marketing
client does not trust the manufacturing authority, however, so it asks to
see that authority’s certificate. When the client receives the manufactur-

ing authority’s certificate, it can verify that the manufacturing authority
wascertified by the corporation’s root CA. Because the marketing client
trusts the root CA,it knows that it can trust the Web server.

The Push Model Versus the Pull Model

The chaining described hererelies on individuals having accessto all the
certificates in the chain. How does the relying party get these certificates?
One wayis for the issuer to send an entire chain ofcertificates when send-
ing one certificate (see Figure 6-8). This is the push model, in which the
sender pushes the entire chain of certificates to the recipient, and the
recipient can immediately verify all the certificates. Thepull model sends
only the sender’s certificate and leaves it up to the recipient to pull in the
CA’s certificate. Because each certificate contains the issuer’s name,the

recipient, knows where to go to verify the certificate. (To make searches
easier, Version 3 certificates offer more fields to hold information.) Even
with the push model, however, some recipient chaining may be necessary.
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Managing Key Pairs

The management of key pairs—the policies whereby they are generated
and protected—is important in any PKI. As described in this section, such
policy decisions depend greatly on the intended purpose of the keys. For
example, keys that enable nonrepudiation for e-commerce transactions
are more likely to be handled with greater care than those used to provide
for secure e-mail,
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Generating Key Pairs

Keys can be generated in one of two ways.In thefirst option, key pairs are
generated on the end user’s system. The second option requires that a
trusted third party (such as the CA or its delegated RA) generate the key
pair. Which of these options is more appropriate is a matter of debate.
Each approach has advantages and disadvantages.

End-user generation of keys can be effective, especially for generating
keys for the purpose of nonrepudiation. This option enables the userto
build greater confidence in the trust shared with relying parties because
the key value is never exposed to another entity. One problem is that the
end user must provide software or hardware to generate strong keys.
Even though most browsers incorporate this functionality, it tends to be
CPU-intensive and slow. In addition, end users face the task of securely

transporting the public key to the CA (or corresponding RA)for certifica-
tion.

The second method, in which a central system such as the CA or oneof

its RAs generates key pairs, also has its advantages. A central system
commonly has greater resources to provide for faster key generation. Fur-
thermore, an end user may require cryptographically strong keys that
have been generated by a trusted and independently evaluated crypto-
graphic module. In other cases, an end user may need private key backup,
and this service can be easily accommodated without unnecessary trans-
fer of the private key.

Because each approachoffers benefits, many CAs support both options.
Yet another option is the use of multiple key pairs. Here, end users gen-
erate keys used to provide nonrepudiation, and the central system pro-
vides the keys for encryption.

Protecting Private Keys

The strength of public-key cryptographic systems and their associated
certificates relies greatly on the security of private keys. It is crucial that
only the certified owner—thepersonor organization identified in the cer-
tificate—use the corresponding private key. The following mechanisms
are used to safeguard and limit access to private keys:

a Password protection This is the most commonform of protection
employed by PKIs. A passwordor personal identification number
(PIN)is used to encrypt the private key, which is stored on the local
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hard disk. However, if the key can be obtained from the hard disk,
the problem of accessing the key is reduced to simple password
guessing. As a result, this is considered the least secure method and
is generally not thought to be a long-term solution.

™ PCMCIA cards (Personal Computer Memory Card International
Association) To reduce the risk of a key being stolen from the user’s
hard disk, many vendors have begun to offer the option of storing
keys on chip cards. Because the key muststill leave the card and
enter the system’s memory, however, it remains vulnerable to theft.
Chip cards are discussed in Chapter 9.

@ Tokens With tokens, the private key is stored in an encrypted
format in a hardware device and can be unlocked only through the

use of a one-time passcode provided by the token. Althoughthis
technique is more secure than those mentionedso far, the tokenstill
must be available to the end user wheneverthe private key is needed,
and it can belost.

s Biometrics The keyis associated with a uniqueidentifying quality
of an individual user (for example, a fingerprint, a retinal scan, or a
voice match). The idea is that biometrics can provide the samelevel of

security as tokens while alleviating the need for the user to carry a
device that can belost.

gs Smartcards Ina true smart card (see Chapter 3), the key is stored
in a tamperproof card that contains a computer chip, enablingit to
perform signature and decryption operations. Thus, the key never
leaves the card, and the possibility of compromiseis greatly reduced.
However, the user must carry a device, and if the card was used for
encryption andis lost, the encrypted data may be unrecoverable.

NOTE:

Most users take few or no precautions to protect their private keys from
theft. As public-key technology becomes more widely used, organizations
will probably devote more time to awareness programs and education.

Managing Multiple Key Pairs

As stated throughout this chapter, it is not uncommon for end users to
have more than onecertificate for various purposes, and therefore they
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may havevarious key-pair types. For example, a key used to digitally sign
a document for purposes of nonrepudiation is not necessarily the same
one that would be usedfor the encryptionoffiles. For this reason,it is cru-
cial that end users as well as PKI administrators be aware of the various

management techniques used to secure these keys.
A private key that is used to provide digital signatures for the purposes

of nonrepudiation requires secure storagefor the lifetime of the key. Dur-
ing its lifetime, there is no requirement for backup;ifthe key is lost, a new
key pair should be generated. After the lifetime of the key has expired, the
key should not be archived. Instead, it should be securely destroyed. This
practice ensures against unauthorized use thal mayoccur years after the
key is considered expired. The use of secure time-stamping can also help
reduce fraud. To authenticate data signed by these private keys, it is nec-
essary to maintain the corresponding PKC.

NOTE:

For private keys used for nonrepudiation, the ANSI X9.57 standard
requires that they be created, used, and destroyed within one secure
module.
 

Conversely, a private key used to support encryption should be backed
up duringits lifetime to enable recovery of encrypted information. After
the private key is considered expired, it should be archived to support
later decryption of encrypted legacy data. Whether and how correspond-
ing public keys should be backed up and archived greatly depends on the
algorithm in use. With RSA, the public key does not require backupor
archiving. If Diffie-Hellman key agreement was used, on the other hand,
the public key will be required to recover data at a later time.

Updating Key Pairs

As mentioned earlier in this chapter in the section titled “Management

Protocols,” good security practices dictate that key pairs should be
updated periodically. One reasonis that, over time, keys become suscepti-
ble to compromise through cryptanalytic attacks. After a certificate has
expired, one of two things can occur: The CA can reissue a new certificate
based on the original key pair, or a new key pair can be generated and a
new certificate issued.
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Key pairs can be updated in one of two ways. In a manualupdate,it is
left to the end user to recognize that the certificate is about to expire and
request an update. This approach places a considerable burden on users to
keep track of a certificate’s expiration date. Failing to request a timely
update will put the user out of service and unable to communicate
securely. As a result, the end user must perform anoff-line exchange with
the CA.

A better solution is an automated update, in which a system is in place
to check the validity of the certificate each time it is used. As the certifi-
cate approachesexpiration, the automated system initiates a request for
key update with the appropriate CA. Whenthe new certificate is created,
the system automatically replaces the old certificate. In this way, the end
user is free to carry out secure operations uninterrupted.

Keeping a History of Key Pairs

A CA’s published policy states the time period during which a given cer-
tificate can be considered valid (typically, one year). As a result, it’s not
uncommonfor a user to accumulate three or more key pairs within three
years. A key history mechanism provides a way of archiving keys andcer-
tificates for later use. The other alternatives, such as decrypting and reen-

crypting data as new keys are generated, would be impractical in most
environments.

Such a history is of great importance to any PKI. For example, suppose
that a data file was signed with my private signing key three years ago.
How doesa relying party get a copy of the corresponding PKCto verify the
signature? Similarly, what if the public key from mycertificate was used
to encrypt some data or another symmetric key to perform a digital
enveloping process five years ago? Where can the corresponding private
decryption key be found? If a key history has been kept, the necessary
keys for both scenarios will be available.

NOTE:

As stated earlier, similar keys can be used for various purposes(for exam-

ple, private keys can be used not only for decryption but also for signing).
Because a key’s purpose dictates the method ofstorage, it may be neces-
sary to have two or more separale key pairs.
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Deploying a PKI

As organizations plan for deploying PKIs, they have three basic options:
outsourcing, insourcing, or running their own. With outsourcing, a third
party runs a CA on behalf of the organization. This option requires the
organization to have a great deal of trust in the third party andits poli-
cies and practices. The advantageofoutsourcing is that the organization
can leverage outside expertise and resources that it may not havein-
house.

With insourcing, an organization provides its own resources, but the
administrative staff is leveraged from outside. This option enables an
organization to maintain control over its own CA policies while taking
advantage of outside expertise. Many PKI vendors, including Entrust
Technologies and Verisign, include this service in their standardofferings.

Finally, it is possible for an organization to run its own CA. By using
PKlI-enabling products or building its own, an organization manages
every aspect of the PKI. This option greatly benefits organizations that
have in-house expertise, affording them the mostflexibility and control
over the system.

The Future of PKI

PKIs have grown considerably in the past decade as increasing numbers
of organizations have become dependent on them. However, many
improvementsare in the works, not only by noncommercial organizations
such as the International Organization for Standardization (ISO) and
Internet Engineering Task Force (IETF) but also by many PKI vendors.
Two such improvements are roaming certificates and attribute certifi-
cates, discussed in the next two sections.

Roaming Certificates

As you’ve seen, standard certificates do a great job of binding an individ-
ual to a public key, but a new problem hasarisen: the needfor portability.
It is not uncommonfor a user to move amongseveral computers within an

organization.A certificate can be placed on every possible machine, but in
order to be effective, the private key also must be present.
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Figure 6-9

Roaming
certificates

Until recently, only two real solutions have provided the mobility of cer-
tificates and their corresponding private keys, Thefirst is smart card tech-
nology, in which the public/private key pair is stored on the card, However,
this option has drawbacks, such as the inconvenienceof carrying an item
that can be lost or damaged. In addition, smart cards are usable only on

systems that have a smart card reader. The second option, which is not
much better, is to copy the certificate and private key onto a floppy for
later use. Again, the user is forced to carry an item that can be lost or dam-
aged, and a floppy is not as cryptographically secure as a smart card.

A new solution is the use of roaming certificates (perhaps better stated
as roaming certificates and private keys), which are provided through
third-party software. Properly configured on any system, the software (or
plug-in) enables a user access to his or her public/private key pairs. The
concept is simple. Users’ certificates and private keys are placed in a
secure central server. When the user logs into a local system, the pub-
lic/private key pair is securely retrieved from the server and placedin the
local system’s memory for use. When the user has completed work and
logs off of the local system, the software (or plug-in) scrubs the user’s cer-
tificate and private key from memory.

To date, this technology has been limited mainly to private PKIs, such
as corporations, because of scalability issues. However, as roaming appli-
cations and users become more prevalent, it’s conceivable that roaming

certificate technology will be developed into a cost-effective way of pro-
viding virtual PKIs worldwide. Figure 6-9 illustrates the interaction of
common roaming certificate systems.
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NOTE:

Although the concept ofroaming certificates has proven quite useful,
some standards do not support this technology. One such standardis
ANSI X9.57, which requires that private keys used for the purposes of
nonrepudiation be created, used, and destroyed within one secure
module,

Attribute Certificates

Another popular emerging standard is the attribute certificate (AC).
Although ACsaresimilar in structure to public-key certificates, ACs pro-
vide different functionality. ACs do not contain a public key for an indi-
vidual. Instead, they are used to bind an entity to a set of attributes that
specify membership,role, security clearance, or other authorization infor-
mation. Attribute certificates, like public-key certificates, are digitally

signed to prevent changesafter the fact.
In conjunction with current authentication services, ACs can provide a

means to transport authorization information securely. Applications that
can use this technology include those that provide remote access to net-

work resources (such as Web servers and databases) and those that con-
trol physical access to buildings and facilities. For example, after a user
signs on, his or her identity can be verified through the use of the current
public-key certificate. After the user has logged in,his or her public key
can be used to create a secure session with an access control server, and

the user’s attribute certificate can be checked againsta list of valid users.

Figure 6-10 illustrates a standardattribute certificate.

NOTE:

ISO has defined the basic attribute certificate, and IETF is currently pro-
filing these definitions for use in Internet environments.
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Version (V.1 or V.2)
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Certificate Policies and Certification
Practice Statements

Certification authorities act as trusted third parties, vouching for the con-
tents of the certificates they issue. But what exactly does a CA certify?
What makes one CA more trusted than another? Two mechanisms are

used by CAsto establish trust among endusers andrelying parties. These
are certificate policies and certification practice statements,

The X.509 standard definesa certificate policy as “a named set of rules
that indicates the applicability of a certificate to a particular community
and/or class of application with commonsecurity requirements.” One or
morecertificate policies can be identified in the standard extensionsofan
X.509 Version 3 certificate. As relying parties obtain a certificate for pro-
cessing, they can use the policies specified in that certificate to make a
decision of trust.

A more detailed description of practices is made available through the
use of a certification practice statement, a concept originated by the Amer-
ican Bar Association (ABA). According to the ABA's “Digital Signature
Guidelines,” a CPS is “a statementof the practices which the certification
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authority employs in issuing certificates.” A CPS gives relying parties a
basis for makinga trust decision concerning a CA.

The relationship betweencertificate policies and CPSs is not entirely
clear. Each kind of document was created for unique reasonsby different
sources. CPSs tend to provide a detailed statement about a CA's practices,
whereascertificate policies tend to provide a broader definition of prac-
tices.

RFC2527 outlines the key components of a CPSasfollows:

u Introduction This part of a CPS provides a general overview of
the certificate policy definition, indicating any applicable names or
other identifiers (for example, ASN.1 object identifiers) that are used
in the statement. It should also provideall contact information
(name, phone number, address, and so on) of the responsible
authority.

mw General Provisions This section describes the various obligations,
rights, and liabilities of the CA or RA, end users, and relying parties.
It also includes information about how and howoften certificates and

CRLswill be published.

@ Identification and Authentication This section describes the

procedures used by the CA or RA to authenticate an end user
applicant. It also describes how end users should requestcertificate
revocations and key updates.

w Operational Requirements This section describes the
requirementsfor certificate enrollment, issuance, and acceptance.It
also addresses suspension, revocation, and the frequency of CRLs.
Various security concerns are also covered, such as audit procedures,
compromise and disaster recovery, and procedures for CA
termination.

# Physical, Procedural, and Personnel Security Controls This
section defines the nontechnical controls that are in place to provide
for secure key generation, subject authentication, certificate issuance,
certificate revocation, audit, and archiving. Such controls, for
example, might includeoff-site record storage and background
investigations of employees whofill trustedroles.

a Technical Security Controls This section describes the security
measures taken by a CA to protect its private keys. Examples include
where and liuw private keys are stored and who can activate and
deactivate a private key.
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Summary

a Certificate and CRL Profile This section specifies the format to
be used for certificates and CRLs, the current versions supported, and
the name forms used by the CA, the RA,and the enduser. Also

identified here are the supported certificate and CRL extensions and
their criticality.

w Specification Administration This section specifies how this
certificate policy definition or CPSwill be maintained. Covered are

change proceduresfor updating this statement, how it will be
distributed, and the approval proceduresfor this and any new
statement.

Although public-key technology solves many of the problems associated
with symmetric-key technology, it presents a new setofdistribution prob-
lems. The most widely accepted standard for public-key technology is the
X.509 standard, which describes the format of public-key certificates to
assist in the secure distribution of these keys. X.509 Version3certificates,
for example, contain various fields and extensions that help govern their
use.

A public-key infrastructure (PKI) plays an importantrole in the oper-
ation of public-key certificates. A PKI managesthecollaboration between

end users and relying parties, enabling the secure issuance and operation
of these certificates. Certificate revocation and status checking are sup-
ported through the use of a CRLor the Online Certificate Status Protocol
(OCSP), or both,

Certificate policies and certification practice statements provide end
users andrelying parties with information on whichto base a decision to
trust a given CA.

Real-W/orild Examples

Various products are available that provide public-key infrastructure sup:
port, including developer toolkits, which assist individuals in creating their
own public-key infrastructures, and companies, such as Verisign, that have
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based their business on providingcertificates as a service. The followingis
a description of two PKI products developed by RSA Security, Inc.

Keon Certificate Server

The Keon certificate serveris a fully functionalCA\ RA withall of the nec-

essary tools to run a full CA. This server provides useful functionality,
such as the One Step function. The One Step function actually allows the
CA administrator to set up Keon programmatically so that as new

employees are added to a human resource database, a certificate is gen-
erated and stored for use. This functionality takes a lot of the burden off
end users and administrators.

Keon Web PassPort

Another advancement in the PKI arena is the new Keon Web PassPort.

The Web PassPort provides roaming-certificate technology, which is simi-
lar to certificates discussed in the “Roaming Certificates” section earlier in
this chapter. Through the use of a browser plug-in, a user can download
the necessary private and public information to make use of PKI-enabled
applications. A user may now, through the use of strong authentication
and one small plug-in, make use of any computer system anywherein the
world.
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