
Apple 1021 (Part 2)
Apple v. USR

IPR2018-00810

Applications, systems, and networks can be made secure through the use of

security protocols, which provide a wide range of encryption and authen-

tication services. Each protocol is placed within several layers of a com-

puting infrastructure (that is, network, transport, and application layers).

Figure 7-1 shows the various protocols and their locations within the

TranSportation Control Protocol/Internet Protocol (TCP/IP) stack. This

chapter and Chapter 8 describe these protocols and explain how they oper-

ate within the TCP/IP stack. This chapter first covers the IPSec protocol,

which provides security at the network layer. Then we take an in-depth look

at the Secure Sockets Layer (SSL), which implements security at the trans-

port layer.

Internet Protocol Security

Internet Protocol Security (IPSec) is a framework of open standards for

ensuring secure private communications over IP networks. Based on stan-

dards developed by the Internet Engineering Task Force (IETF), IPSec

ensures confidentiality, integrity, and authenticity of data communica-

tions across a public IP network. IPSec is a necessary component of a

Apple 1021 (Part 2)

Apple v. USR
|PR2018—00810

21 0 Chapter 7

Figure 7-1

Protocol locations

within TCPflP:

(a) network
(A) Network security

(B) Transport security
standards-based, flexible solution for deploying a network—wide security

policy.

IPSec implements network layer encryption and authentication, pro-

viding an end-to-end security solution in the network architecture. In this

way, and systems and applications can enjoy the advantage ofstrong secu—

rity without the need to make any changes. Because IPSec encrypted

packets look like ordinary IP packets, they can be easily routed through

any IP network, such as the Internet, without any changes to the inter»

mediate networking equipment. The only devices that know about the

encryption are the endpoints. This feature greatly reduces the cost of

implementation and management.

IP Security Architecture

IPSec combines several security technologies to protect the confidential—

ity, integrity, and authenticity of IP packets. IPSec actually refers to sev-

eral related protocols as defined in RFCs 240L241]. and 2451. Two of

these standards define IPSec and Internet Key Exchange (IKE). IPSec

defines the information that is added to an IP packet to enable confiden-

tiality, integrity, and authenticity controls; it also defines how to encrypt

the packet data. IKE is used to negotiate the security association between

two entities and to exchange keying material. The use of IKE is optional,

but it relieves users of the difficult and labor-intensive task of manually

configuring security associations. IKE should be used in most real-world

applications to enable large-scale, secure communications.

Network and Transport Security Protocols 2 1 l

lPSec Services

IPSec provides security services at the IP layer by enabling a system for

selecting required security protocols, determining the a1gorithm(s) to use

for the service(s), and implementing any cryptographic keys required to

provide the following services:

I Access control ‘

I Connectionless integrity (a detection method of the IP packet itself)

I Data origin authentication

i Rejection of replayed packets (a form of partial sequence integrity)

I Confidentiality (encryption)

I Limited traffic—flow confidentiality

IPSec provides these services through the use of two protocols. The first

one, the authentication header (AH) protocol, supports access control, data

origin authentication, connectionless integrity, and the rejection of replay

attacks, in which an attacker copies a packet and sends it out of sequence

to confuse communicating nodes. The second protocol is the encapsulating

security payload (ESP) protocol. ESP alone can support confidentiality,

access control, limited traffic-flow confidentiality, and the rejection of

replay attacks.

NOTE:

ESP and AH can be used in concert to provide all the services.

The Authentication Header Protocol

AH provides data integrity and authentication services for IP packets (see

Figure 7—2). These services protect against attacks commonly mounted

against open networks. AH uses a keyed-hash function rather than digi-

tal signatures because digital signature technology is too slow and would

greatly reduce network throughput. Note, however, that AH does not pro—

vide confidentiality protection, so data can still be viewed as it travels

across a network.

2 l 2 Chapter 7

The .

authentication Secunty Parameters Index (SP1)
header protocol

Sequence Number .

Authentication Data (variable length)

AH contains the following fields:

I! Next Header This field identifies the higher-level protocol

following AH (for example, TCP, UDP, or ESP).

I Payload Length This field indicates the length of the AH contents.

I Reserved This field is reserved for future use. Currently, this field

must always be set to zero.

I Security Parameters Index This field is a fixed-length, arbitrary

value. When used in combination with the destination IP address, this

value uniquely identifies a security association for this packet (that is,

it indicates a set of security parameters for use in this connection).

a Sequence Number The field provides a monotonically increasing

number for each packet sent with a given SPI. This value lets the

recipient keep track of the order of the packets and ensures that the

same set of parameters is not used for too many packets. The

sequence number provides protection against replay attacks.

I Authentication Data This variable-length field contains the

integrity check value (ICV) (see next section) for this packet. It may

include padding to bring the length of the header to an integral

multiple of 32 bits (in IPv4) or 64 bits (IPv6).

Integrity Check Value Calculation

The ICV, a truncated version of a message authentication code (MAC), is

calculated by a MAC algorithm. IPSec requires that all implementations

support at least HMAC—MD5 and HMACK-SHAI (the HMAC symmetric

authentication scheme supported by MD5 or SHA—l hashes; see Chap-

ter 6. To guarantee minimal interoperability, an IPSec implementation

must support at least these schemes. '

Network and Transport Security Protocols 2 1 3

The ICV is computed using the following fields:

I The IP header fields that either do not change in transit or whose

values are predictable upon arrival at the endpoint for the AH

security association. Other fields are set to zero for the purpose of

calculation.

I The entire contents of the AH header except for the Authentication

Data field. The Authentication Data field is set to zero for the purpose

of calculation.

I All upper-level protocol data, which is assumed to be immutable in

transit.

NOTE:

The HMAC value13 catcalated completely, although it is truncated to
96 bytes {the default size for the Authentication Data field).

Transport, and Tunnel Modes

Figure 7-3

IPv4 and IPv6

before AH is

applied

AH services can be employed in two ways: in transport mode or in tunnel

mode. The actual placement of the AH depends on which mode is used and

on Whether the AH is being applied to an IPv4 or an IPv6 packet. Fig-

ure 7«3 illustrates IPv4 and IPv6 packets before authentication services

are applied.

In transport mode, the AH applies only to host implementations and

provides protection for upper—layer protocols in addition to selected IP

header fields. In this mode, AH is inserted after the IP header but before

Standard IPv4 packet

Original IP Header

Standard IPv6 datagram
Extension

01.153331013515de Headers Data
y p 0 (if present) :

2 I 4 Chapter 7W

Figure 7-4

IPv4 and IPv6"

header placement

in transport mode

any upper—layer protocol (such as, TCP, UDP) and before any other IPSec

headers that have already been inserted. In IPv4, this calls for placingAH

after the original IP header but before the upper-layer protocol. In IPv6,

AH is viewed as an end-to-end payload; this means that intermediate

routers should not process it. For this reason, the AH should appear after

the original IP header, hop-by-hop, routing, and fragmentation extension

headers. This mode is provided via the transport security association (SA).

Figure 7-4 illustrates the AH transport mode positioning in typical IPv4

and IPv6 packets.

IPv4 AH in transport mode

Original IP Header

IPv6 AH in transport mode

. . HOPTby-HOP . ‘ Destination "'
Original IP Header Destination, Routing AH Options TCP Data

Fragment ' ;

In tunnel mode, the AH can be employed in either host or security gate-

ways. When AH is implemented in a security gateway (to protect transit

traffic), tunnel mode must be used. In this mode, the AH is inserted

between the original IP header and the new outer IP header. Whereas the

inner IP header carries the ultimate source and destination addresses,

the new outer IP header may contain distinct IP addresses (such as,

addresses of firewalls or other security gateways). In tunnel mode, AH

protects the entire inner IP packet, including the entire inner IP header.

In tunnel mode, the position of AH relative to the outer IP header is the

same as for AH in transport mode. This mode is provided Via the tunnel

SA. Figure 7-5 illustrates AH tunnel mode positioning for typical IPv4

and IPv6 packets.

NOTE:

ESP andAH headers can be combined in a variety ofmodes. The IPSec

architecture document (RFC2401) describes the combinations ofsecurity

associations that must be supported.

Network and Transport Security Protocols 2 l 5

Fi 8 7-5 IPv4 AH 111 tunnel mode

New IP Header Ori 'nai 1P Header
IPv4 and IPv6 . AH g“ . rep Data .header Placement--
in tunnel mode _ '_ _ _ _

1PV6 AH in tune] mode

New IP Extension Headers Extension Headers

The Encapsulating Security Payload Protocol

The encapsulating security payload (ESP) protocol provides confidential-

ity services for IP data while in transit across untrusted networks.

Optionally, ESP also provides authentication services. The format of ESP

varies according to the type and mode of the encryption being used. In all

cases the key associated with the encryption is selected using the SP1.

Figure 7-6 illustrates the components of an ESP header.

 Security Parameters Index (SP1)

Sequence Number

Payload Data (variable length)

Figure 7—6

Components of an
ESP header

Padding (0—255 bytes)

Authentication Data (variable length}

2 l 6 Chapter 7

The ESP header contains the following fields:

I Security Parameters Index This field, as in the AH packet, is

used to help uniquely identify a security association to be used.

I Sequence Number This field, again as in the AH packet, contains

a counter that increases each time a packet is sent to the same

address using the same SPI. It lets the recipient keep track of the

packet order.

3 Payload Data This variable-length field contains the actual

encrypted data contents being carried by the IP packet.

l Padding This field provides space for adding bytes, as required by

certain types of encryption algorithms (see Chapter 2). Data padding

confuses sewers, who try to access information about encrypted data

in transit, in this case by trying to estimate how much data is being

transmitted.

I Pad Length This field identifies how much of the encrypted

payload is padding.

I Next Header This field identifies the type of data carried in the

Payload Data field.

I Authentication Data This variable—length field contains a value

that represents the ICV computed over the ESP packet minus the

Authentication Data field. This field is optional and is included only if

the authentication service is selected within the SA.

NOTE:

All the ESP header components are encrypted except for the Security

Parameters Index and Sequence Number fields. Both of these fields, how—

ever, are authenticated.

Encryption Algorithms

The IPSec ESP standard currently requires that compliant systems have

two cryptographic algorithms. Systems must have the DES algorithm

using cipher block chaining (CBC) mode (see Chapter 2); compliant sys‘

terns that require only authentication must have a NULL algorithm.

However, other algorithms are defined for use by ESP services. Following

are some of the defined algorithms:

Network and Transport Security Protocols 2 I 7

I Triple DES

I R05

I IDEA

I CAST

I BLOWFISH

I 3IDEA

ESP in Transport and Tunnel Modes

Figure 7-7

IPv4 and IPv6

header placement

in transport mode

Like AH, ESP can be employed in two modes: transport mode and tunnel

mode. These modes operate here in a similar way to their operation in AH,

with one exception: with ESP, data, called trailers, are appended to the

end of each packet.

In transport mode, ESP is used only to support host implementations

and to provide protection for upper~1ayer protocols but not for the IP

header itself. As with AH, in an IPv4 packet the ESP header is inserted

after the original IP header and before any upper~1ayer protocols (for

example, TCP, UDP) and before any other existing IPSec headers. In IPv6,

ESP is viewed as an end-tomend payload; that is, intermediate routers

should not process it. For this reason, the ESP header should appear after

the original IP header, hop—by—hop header, routing header, and fragmen-

V tation extension header. In each case, the ESP trailer is also appended to

the packet (encompassing the Padding, Pad Length, and Next Header

fields). Optionally, the ESP authentication data field is appended if it has

been selected. Figure 7J7 illustrates the ESP transport mode positioning

in typical IPv4 and IPv6 packets.

IPv4 ESP in transport mode

Original 1r Header ESP ESP ESP

IPv6 AH in transport mode

‘ . Hop~by-Hop _ ,

Ongflolfiiggsder Destination, Routing HESEI) D3232:“ TCP Data TBS?
y p Fragmentation ea or p ra1 er

ESP

Authentication

2 l 8 Chapter 7

Figure 7-8

IPv4 and IPv6

header placement
in tunnel mode

Tunnel mode ESP can be employed by either hosts or security gate-

ways. When ESP is implemented in a security gateway (to protect sub~

scriber transit traffic), tunnel mode must be used. In this mode, the ESP

header is inserted between the original IP header and the new outer IP

header. Whereas the inner IP header carries the ultimate source and des—

tination addresses, the new outer IP header may contain distinct IP

addresses (such as, addresses of firewalls or other security gateways). In

tunnel mode, ESP protects the entire inner IP packet, including the entire

inner IP header. The position of ESP in tunnel mode, relative to the outer

1P header, is the same as for ESP in transport mode. Figure 7-8 illustrates

ESP tunnel mode positioning for typical IPv4 and IPv6 packets.

IPv4 AH in tunnel mode

NewIPHeadcr ESP OriginalIPHeadcr TCP D t ESP ESP ‘
(any options) Header (any options) aa Trailer Audientication

IPv6 All in tunnel mode VA

. - . Original :
New IP . New Extensmn ESP Ongmal . ESP ESP

NOTE:

ESP and AH headers can be combined in a variety of modes. The IPSec

architecture document describes the combinations ofsecurity associations

that must be supported.

Security Associations

To communicate, each pair of hosts using IPSec must establish a security

association (SA) between them. The SA groups together all the things that

you need to know about how to communicate securely with someone else,

such as the type ofprotection used, the keys to be used, and the valid dura—

tion of this SA. The SA establishes a one-way relationship between the

sender and the receiver. For peer communications, 3 second SA is needed.

Network and Transport Security Protocols 2 l 9

You can think of an SA as a secure channel through the public network

to a certain person, group of people, or network resource. It’s like a con-

tract with whoever is at the other end. The SA also has the advantage in

that it lets you construct classes of security channels. If you need to be a

little more careful when talking to one party than another, the rules of

your SA with that party can reflect extra caution—for example, specifying

stronger encryption.

A security association is uniquely identified by three parameters:

I Security Parameters Index This bit string uniquely identifies a

security association relative to a security protocol (for example, AH

or ESP). The SP1 is located Within AH and ESP headers so that the

receiving system can select the SA under which a received packet

will be processed.

I 11’ Destination Address This parameter indicates the destination

IP address for this SA. The endpoint may be that of an end user

system or a network system such as a gateway or firewall. Although

in Concept this parameter could be any address type (multicast,

broadcast, and so on), currently it can be only a unicast address.

I Security Protocol Identifier This parameter indicates whether

the association is that of an AH or an ESP security association.

Combining Seturity Associations

Using a single SA, you can deploy either AH or ESP (but not both) to

implement security for IP packets. However, there is no restriction on the

use of multiple SAs, usually referred to as an SA bundle. The order in

which the SAs are bundled is defined by your security policy. IPSec does

define two ways of combining SAs: transport adjacency and iterated tun-

neling.

Ykonsport adjacency refers to the process of applying multiple trans—-

port SAs to the same IP packet without using tunneling SAs. This level of

combination lets you apply both AH and ESP IP packets but does not

enable further nesting. The idea is that strong algorithms are used in both

AH and ESP, so further nesting would yield no additional benefits. The IP

packet is processed only once: at its final destination. Figure 7~9 illus-

trates the application of transport adjacency.

In iterated tunneling, you apply multiple (layered) security protocols by

using IP tunneling. This approach allows multiple levels of nesting. Each

220 Chapter 7

Figure 7-9

Transport

adjacency

tunnel can originate or terminate at a different IPSec site along the path.

Figure 7-10 shows three basic cases of iterated tunneling supported by the

IPSec protocol.

NOTE:

You, can also combine transport adjacency and iterated tunneling. For

example, you could construct an SA bundle from one tunnel SA and one

or two transport SAs applied in sequence.

Security Databases

IPSec contains two nominal databases: the Security Policy Database

(SPD) and the Security Association Database (SAD). SPD specifies the

policies that determine the disposition of all 1]? traffic, inbound or out-

bound. SAD contains parameters that are associated with each currently
active security association.

 Network and Transport Security Protocols 22 1

. Security Security

F1m 7'10 gateway 1 gateway 2 Host 2
Three cases of ‘-

iterated

tunneling

Secufity Security

Host 1 gateway 1 gateway 2 Host 2

 Security assmiatim l

(ESP tunnel)

C3822

Security Security
atewa 1 gateway 2Host 1 g 3’ Host 2

222 Chapter 7

Security Policy Database

An SA is nothing more than a management construct that is used to

enforce a security policy. Because SPD is responsible for all IP traffic, it

must be consulted during the processing of all traffic (inbound and out—

bound), including non-IPSec traffic. To support this, SPD requires distinct

entries for inbound and outbound traffic; these entries are defined by a set

of selectors, or IP and upper—layer protocol field values. The following

selectors determine an SPD entry:

I Destination IP Address This can be a single IP address, a list of

addresses, or a wildcard address. Multiple and Wildcard addresses

are used when you have more than one source system sharing the

same SA (for example, behind a gateway).

a Source IP Address This can be a single IP address, a range of

addresses, or a wildcard address. Multiple and wildcard addresses are

used when you have more than one source system sharing the same

SA (for example, behind a gateway).

ll Name This can be either an X500 distinguished name or a user

identifier from the operating system.

a Data Sensitivity Level This is used for systems that provide

information flow security (for example, unclassified or secret).

I Transport Layer Protocol This is obtained from the IPv4 Protocol

field or IPv6 Next Header field. It can be an individual protocol

number, a list ofprotocol numbers, or a range of protocol numbers.

I Source and Destination Ports These can be individual UDP or

TCP port values, or a wildcard port.

Security Association Database

Each implementation of IPSec contains a nominal SAD, which is used to
define the parameters associated with each SA. The following parameters
are used to define an SA:

3 Sequence Number Counter A 32-bit value used to generate the

Sequence Number field in AH or ESP headers.

a Sequence Counter Overflow A flag indicating whether overflow

of the sequence number counter should generate an auditable event

and prevent transmission of additional packets on the SA.

Network and Transport Security Protocols 223

I Anti-Replay Window A 32-bit counter that is used to determine

Whether an inbound AH or ESP packet is a replay.

I AH Information Parameters relating to the use ofAH (such as

authentication algorithms, keys, and key lifetimes).

I ESP Information Parameters relating to the use of E8]? (such as

encryption algorithms, keys, key lifetimes, and initialization values).

3 Lifetime of This Security Association A time interval or byte

count that specifies an SA’s duration of use. When the duration is

complete the SA must be replaced with a new SA (and new SP1) or

terminated, and this parameter includes an indication of which of

these actions should occur. ‘

NOTE:

If a time interval is employed, and ifIKE employs X509 certificates for

SA establishment, the SA lifetime must be constrained by the validity

intervals of the certificates and by the ‘WextIssueDate” of the CRLS used

in the IKE exchange for the SA. For more about CRLs, see Chapter 6.

I IPSec Protocol Mode Specifies the mode—tunnel, transport, or

Wildcard-of AH or ESP that is applied to traffic on this SA.

I Path MTU Any observed path maximum transferable unit (MTU)

and aging variables. (The MTU is the maximum size of a packet

without fragmentation.)

Key Management

As With any security protocol, when you use IPSec you must provide key

management, such as supplying a means of negotiating with other people

the protocols, encryption algorithms, and keys to be used in data

exchange. In addition, lPSec requires that you keep track of all such

agreements between the entities. IETF’s IPSec working group has speci—

fied that compliant systems must support both manual and automated SA

and cryptographic key management.

224 Chapter ”I

Following are brief descriptions of these techniques:

I Manual Manual key and SA management are the simplest forms

of key management. A person (usually a systems administrator)

manually configures each system, supplying the keying material and

SA management data relevant to secure communication with other

systems. Manual techniques can work effectively in small, static

environments, but this approach is not very practical for larger

networks.

I Automated By using automated key management protocols, you ,

can create keys as needed for your SAs. Automated management also

gives you a great deal of scalability for larger distributed systems

that are still evolving. You can use various protocols for automated

management, but IKE seems to have prevailed as the current

industry standard.

Internet Key Exchange

IKE is not a single protocol; rather, it is a hybrid of two protocols. IKE

integrates the Internet Security Association and Key Management Proto-

col (ISAKMP) with the Oakley key exchange protocol.

IKE performs its services in two phases. In the first phase, two IKE

peers establish a secure, authenticated channel for communication by

using a common IKE security association. IKE provides three modes of

exchanging keying information and setting up SAs (see next section); in

this first phase, only main or aggressive mode is employed. .

In the second phase, SAs are negotiated on behalf of services such as i

IPSec or any other service that needs keying material or parameter nego- E

tiation. The second phase is accomplished via a quick mode exchange.

Main Mode

IKE’S main mode provides a three-stage mechanism for establishing the

first-phase IKE SA, which is used to negotiate future communications. In

this mode, the parties agree on enough things (such as authentication and

confidentiality algorithms, hashes, and keys) to be able to communicate

securely long enough to set up an SA for future communication. In this

mode, three two-way messages are exchanged between the SA initiator

and the recipient.

As shown in Figure 7—11, in the first exchange, the two parties agree on

basic algorithms and hashes. In the second, they exchange public keys for

Network and Transport Security Protocols 225

Figure 7-11

Transactions in

IKE’s main mode

Initiator Responder

 --lfl

* Indicates inclusion of optional certificate payload

a Diffie-Hellman exchange and pass each other nonces (random numbers

signed and returned by the other party to prove its identity). In the third

exchange, they verify those identities.

Aggressive Mode

Aggressive mode is similar to main mode in that aggressive mode is used

to establish an initial IKE SA. However, aggressive mode differs in the

way the messages are structured, thereby reducing the number of

exchanges from three to two.

In aggressive mode, the proposing party generates a Diffie—Hellman

pair at the beginning of the exchange and does as much as is practical

with that first packet: proposing an SA, passing the Diffie-Hellman pub-

lic value, sending a nonce for the other party to sign, and sending an ID

packet that the responder can use to check the initiator’s identity with a

third party (see Figure 7-12). The responder then sends back everything

needed to complete the exchange. All that’s left for the initiator to do is to

confirm the exchange.

The advantage of aggressive mode is its speed, although aggressive

mode does not provide identity protection for the communicating parties.

This means that the parties exchange identification information before

226 Chapter 7

Initiator Responder
1

an..-
Figure 7-12

Aggressive mode
transactions

2 III-ml:

* Indicates inclusion of optional certificate payload

establishing a secure SA in which to encrypt it. As a result, someone mon-

itoring an aggressive mode exchange can identify the entity that has just
formed a new SA.

Quick Mode

After two communicating entities have established an IKE SA using

either main or aggressive mode, they can use quick mode. Quick mode,

unlike the other two modes, is used solely to negotiate general IPSec secu-

rity services and to generate fresh keying material.

Because the data is already inside a secure tunnel (every packet is

encrypted), you can afford to be a little more flexible in quick mode. Quick

mode packets are always encrypted and always start with a hash payload,

Which is composed using the agreed-upon pseudo—random function and

the derived authentication key for the IKE SA. The hash payload is used

to authenticate the rest of the packet. Quick mode defines which parts of

the packet are included in the hash.

As shown in Figure 7-13? the initiator sends a packet with the quick

mode hash; this packet contains proposals and a nonce. The responder

Initiator Responder
, l

[mM
Figure 7-13

Quick mode
transactions

‘ 2

Network and TranSport Security Protocols 227

then replies with a similar packet, this time generating its own nonce and

including the initiator’s nonce in the quick mode hash for confirmation.

The initiator then sends back a confirming quick mode hash of both

nonces, completing the exchange. Finally, using the derivation key as the

key for the hash, both parties perform a hash of a concatenation of the fol-

lowing: the nonces, the SPI, and the protocol values from the ISAKMP

header that initiated the exchange. The resulting hash becomes the new

password for that SA.

Secure Sockets Layer

Figure 7-14

SSL in the

TCP/IP stack

Secure Sockets Layer (SSL), the Internet protocol for session-based

encryption and authentication, provides a secure pipe between two par-

ties (the client and the server). SSL provides server authentication and

optional client authentication to defeat eavesdropping, tampering, and

message forgery in client-server applications. By establishing a shared

secret between the two parties, SSL provides privacy.

SSL works at the transport layer (below the application layer) and is

independent of the application protocol used. Therefore, application pro-

tocols (HTTP, FTP, TELNET, and so on) can transparently layer on top of

SSL, as shown in Figure 7-14.

The History of SSL

Netscape originally developed SSL in 1994. Since then, SSL has become

widely accepted and is now deployed and supported in all major Web

browsers and servers as well as various other software and hardware

products (see Figure 7-15). This protocol currently comes in three ver-

sions: SSLVZ, SSLv3, and TLSvl (also known as SSLv3.1). Although all

three can be found in use around the world, SSLV3, released in 1995, is

the predominant version.

Z28 Chapter 7

Figure 7-15

The padlock

symbol in this
browser denotes

the use of SSL for

Web security

El

Vite—m

SSE. Secured [123 Bit

SSLV3 solved many of the deficiencies in the SSLv2 release. SSLVB

enables either party (client or server) to request a new handshake (see

next section) at any time to allow the keys and ciphers to be renegotiated.

Other features of SSLVB include data compression, a generalized mecha-

nism for Diffie-Hellman and Fortezza key exchanges and non-RSA cer-

tificates, and the ability to send certificate chains.

In 1996, Netscape turned the SSL specification over to the IETF. Cur-

rently, the IETF is standardizing SSLVS in its Transport Layer Security

(TLS) working group. TLSVl is very similar to SSLV3, with only minor pro-

tocol modifications. The first official version of TLS was released in 1999.

Session and Connection States

Any system of the type discussed in this chapter is composed of two parts:

its state and the associated state transitions. The system’s state describes

the system at a particular point in time. The state transitions are the

processes for changing from one state to another. The combination of all

possible states and state transitions for a particular object is called a state

machine. SSL has two state machines: one for the client side of the proto-

col and another for the server side. Each endpoint must implement the

matching side of the protocol. The interaction between the state machines

is called the handshake.

It is the responsibility of the SSL handshake protocol to coordinate the

states of the client and server, thereby enabling each one’s protocol state

machine to operate consistently even though the state is not exactly par-

allel. Logically, the state is represented twice: once as the current operat-

ing state and (during the handshake protocol) a second time as the

pending state. Additionally, separate read and write states are main-

Network and Transport Security Protocols 229

tained. An SSL session can include multiple secure connections, and par-

ties can have multiple simultaneous sessions.

The SSL specification defines the elements of a session state as follows:

I Session Identifier An arbitrary byte sequence chosen by the

server to identify an active or resumable session state.

I Peer Certificate X.509V3 certificate of the peer. This element of the

state can be null.

I Compression Method The algorithm used to compress data before

encryption.

I Cipher Spec Specifies the bulk data encryption algorithm (null,

DES, and so on) and a MAC algorithm (such as MD5 or SHA-l) used

for message authentication. It also defines cryptographic attributes
such as the hash size.

I Master Secret 48—byte secret shared between the client and the
server.

I Is Resumable A flag indicating whether the session can be used to

initiate new connections.

Furthermore, the SSL specification defines the following elements of a
connection state:

I Server and Client Random Byte sequences that are

independently chosen by the server and the client for each

connection.

I Server Write MAC Secret The secret key that is used in MAC

operations on data written by the server.

I Client Write MAC Secret The secret key that is used in MAC

operations on data written by the client.

I Server Write Key The symmetric cipher key for data encrypted by

the server and decrypted by the client.

I Client Write Key The symmetric cipher key for data encrypted by

the client and decrypted by the server.

I Initialization Vectors The initialization vector (IV) required for

each block cipher used in CBC mode. This field is first initialized by

the SSL handshake protocol. Thereafter, the final ciphertext block

from each record is preserved for use with the following record.

I Sequence Numbers Each party maintains separate sequence

numbers for transmitted and received messages for each connection.

When a party sends or receives a change cipher spec message (see

Z 3 0 Chapter 7

later section titled “The Change Cipher Spec Protocol”), the

appropriate sequence number is set to zero. Sequence numbers are
of type uint64 and may not exceed 264-1.

The Record Layer Protocol.

As data is transmitted to and received from upper application layers, it is

operated on in the SSL record layer (see Figure 7-16). It is here that data
is encrypted, decrypted, and authenticated.

Add MAC

/ \

Encrypt

Add SSL

record header

The following five steps take place in the record layer:

1. As the record layer receives an uninterrupted stream of data from

the upper application layer, the data is fragmented, or broken into
manageable plaintext blocks (or records). Each record is 16K or
smaller.

2. Optionally, the plaintext records are compressed using the

compression algorithm defined by the current session state.

3. A MAC is computed for each of the plaintext records. For this

purpose, the shared secret key, previously established, is used.

Network and Transport Securfty Protocols 23 l

4. The compressed (or plaintext) data and its associated MAC are

encrypted using the symmetric cipher that has been previously

agreed upon for this session. Encryption may not increase the overall

length of the record beyond 1,024 bytes.

5. A header is added to each record as a prefix consisting of the

following fields:

Content Type This field indicates the protocol used to process

the enclosed record in the next—higher level.

Major Version This field indicates the major version of SSL in

use. For example, TLS has the value 3. ‘

Minor Version This field indicates the minor version of SSL in

use. For example, TLS has the value 1.

Compressed Length This field indicates the total length in

bytes of the plaintext record.

, The party receiving this information reverses the process, that is, the

decryption and authentication functions are simply performed in reverse.

NOTE:

Sequence numbers are also included with each transmission so that

missing, altered, or extra messages are detectable.

The Change. Cipher Spec Protocol

The change cipher spec protocol is the simplest of the SSL-specific proto—

cols. It exists to signal a transition in the ciphering strategies. The

protocol consists of a single message, which is encrypted and compressed

by therecord layer as specified by the current cipher specification. Before

finishing the handshake protocol, both the client and the server send this

message to notify each other that subsequent records will be protected

under the just-negotiated cipher specification and associated keys. An

unexpected change cipher spec message should generate an unex-

pected_message alert.

Z 32 Chapter 7

The Alert Protocol

One of the content types supported by the SSL record layer is the alert

type. The alert protocol conveys alert messages and their severity to par-

ties in an SSL session. Just as application data is processed by the record

layer, alert messages are compressed and encrypted as specified by the
current connection state.

When either party detects an error, the detecting party sends a mes-

sage to the other. If the alert message has a fatal result, both parties

immediately close the connection. Both parties are required to forget any

session identifier, keys, and secrets associated with a failed connection.

For all other nonfatal errors, both parties can cache information to resume

the connectiOn.

The following error alerts are always fatal:

I Unexpected_message This message is returned if an inappro-

priate message was received.

I Bad_record_mac This message is returned if a record is received

without a correct message authentication code. '

I Decompression_failure This message is returned if the

decompression function received improper input (for example, the

data could not be decompressed or it decompresses to an excessive

length).

I Handshakejailure The return of this message indicates that the

sender was unable to negotiate an acceptable set of security

parameters given the available options.

I Illegal_parameter A field in the handshake was out of range or

inconsistent with other fields.

The remaining alerts are as follows:

I No_certificate This message can be sent in response to a certifi—

cation request if no appropriate certificate is available.

I Bad_certificate The return of this message indicates that a certi-

ficate was corrupted (that is, it contained a signature that did not

verify).

I Unsupported_certificate The return of this message indicates

that a certificate was of an unsupported type.

I Certificate_revoked The return of this message indicates that a

certificate was revoked by its signer.

,—-—-—~r—-——"——-—*—1 Network and Transport Security Protocols 233

I Certificate_expired The return of this message indicates that a

certificate has expired.

l Certificate_unknown The return of this message indicates that

some other (unspecified) issue arose in processing the certificate, and

it was rendered unacceptable.

B Close_notify This message notifies the recipient that the sender

will not send any more messages on this connection. Each party is

required to send this message before closing the write side of a
connection.

The Handshake Protocol

The SSL handshake protocol is responsible for establishing the parame—

ters of the current session state. As shown in Figure 7~17, both parties

agree on a protocol version, select cryptographic algorithms, optionally

Figure 7-17

Overview of the

handshake

protocol
Saver Hello
Certificate*

Certificate Request*

C rtifi t * Server Key Exchangee cae

Client Key Exchange

Certificate Vexify*

Change Cipher Spec
* Indicates optional or situation-dependent message

234 Chapter 7

authenticate each other, and use publicskey encryption techniques to gen-

erate shared secrets (described later under “Cryptographic Computa-

tions”) through a series ofmessages exchanged between the client and the
server. The following subsections explain in detail the steps of the hand-

shake protocol.

The Client Hello Message

For communications to begin between a client and a server, the client
must first initiate a client hello message. The contents of this message

provide the server, with data (such as version, random value, session ID,
acceptable ciphers, and acceptable compression methods) about variables
that are supported by the client. This message can come as a client
response to a hello request (from the server), or on its own initiative the
client can use it to renegotiate the security parameters in an existing con-

nection.

A client hello message contains the following fields:

ll Clientwversion' This field provides the highest SSL version that is

understood by the client.

I Random This field contains a client—generated random structure

that will be used for later cryptographic computations in the SSL,

protocol. The 32-byte random structure is not entirely random.
Rather, it is made up of a 4-byte date/time stamp, with the remaining
28 bytes of data being randomly generated. The date/time stamp
assists in the prevention of replay attacks.

I Session_id This field contains a variable-length session identifier.

This field should be empty if no session identifier is available or if the

client wishes to generate new security parameters. If the session

identifier does, however, contain a value, that value should identify a

previous session between the same client and server Whose security
parameters the client Wishes to reuse. (The reuse of session
identifiers is discussed later in this chapter under “Resuming

Sessions”)

I Cipher_suites This field contains a list of combinations for
cryptographic algorithms supported by the client. This list is ordered
according to the client’s preference (that is, first choice first). This list
is used to make the server aware of the cipher suites available to the

client, but it is the server that ultimately decides which cipher will he

Network and Transport Security Protocols ‘ 235

used. If the server cannot find an acceptable choice from the list, it

returns a handshake failure alert and closes the connection.

I Compression_methods Similar to the cipher_suites field, this

field lists all supported compression methods known to the client.

Again, this list is ordered according to the client’s preference.

Although this field is not regularly used in SSLV3, future TLS

versions will require support for it.

NOTE:

After the client hello message is sent, the client waits for a server hello

message. If the server retnrns any handshake message other than a server

hello, a: fatal error results and communications are halted.

The Server Hello Message

After the server processes the client hello message, it can respond with

either a handshake failure alert or a server hello message. The content of

the server hello message is similar to that of the client hello. The differ-

ence is that Whereas the client hello is used to list its capabilities, the
server hello is used to make decisions that are then passed back to the

client.

The server hello message contains the following fields:

I Server_version This field contains the version that was decided

on by the server; this version will be used for further communi—

cations with the client. The server bases its decision on the highest

version supported by both parties. For example, if the client states

that it can support SSLV3 but the server supports up to TLS (or

. SSLV3.1), the server will decide on SSLVS.

I Random This field, similar in structure to that of the client’s, is

used for future cryptographic operations within SSL. It must,

however, be independent of and different from that generated by the

client.

I Session_id This field provides the identity of the session

corresponding to the current connection. If the session identifier that

was received by the client is nonempty, the server will look in the

session cache for a match. If a match is found, the server can

establish a new connection, resuming the specified session state. In

that case, the server returns the same value that was provided by the
client, indicating a resumed session. Otherwise, this field contains a
different value, identifying a new session.

n Cipher_suite This field indicates the single cipher suite selected by
the server from the list provided by the client.

I Compressionwmethod Similar to the cipher_suite message, this
field indicates the single compression method selected by the server

from the list provided by the client.

The Server Certificate Message

Immediately after the server hello message, the server can send its cer-
tificate or chain of certificates to be authenticated. Authentication is

required in all cases of agreed-on key exchange (with the exception of
anonymous Dime—Hellman). The appropriate certificate type (generally
an X.509v3 server certificate) must be used for the key exchange algo-

rithm of the selected cipher suite.

This message also makes the public key available to the client. This

public key is What the client uses to encrypt the actual session key.

NOTE:

A similar message type can be used for client—side authentication support.

The Server Key Exchange Message

The server sends a server key exchange message only when no certificate

is present, when the certificate is used only for signing (as with Digital
Signature Standard [DSS] certificates and signing-only RSA certificates),
or when Fortezza key exchange is used. The message complements the

cipher suite that was previously stated in the server hello message, pro-
viding the algorithm variables that the client needs in order to continue.
These values depend on which algorithm has been selected. For example,

with RSA key exchange (where RSA is used only for signatures), the mes-

Network and Transport Security Protocols 23 7

‘ sage would contain a temporary RSA public key exponent and modulus,
and a signature of those values.

The Certificate Request Message

The optional certificate request message requests a certificate from the

client for authentication purposes. It is made up of two parameters. The

first parameter indicates the acceptable certificate types (RSAwsigna-

ture-only, DSS—signaturc»~only, and so on). The second parameter indi-

cates the acceptable distinguished names of acceptable certificate

authorities.

NOTE:

This message is to be used only by nonononymous servers (servers not

using anonymous Diffie-Hellman).

The Server Hello Done Message

As the name implies, the server hello done message is sent by the server

to the client to indicate the end of the server hello and to signal that no

further associated server hello messages are coming. After this message is

sent, the server waits for the client to respond. On receipt of the server

hello done message, the client should verify the certificate and any cer-

tificate chain sent by the server (if required) and should verify that all

server hello parameters received are acceptable.

The Client Certificate Message

The client certificate message is the first message that a client can send

after a server hello done message is received, and it is sent only if the

server requests a certificate. If the client does not have a suitable cer-

tificate (for example, an X.509v3 client certificate) to send, it should

send a nomcertificate alert instead. Although this alert is only a warning,

it is a matter of the server’s discretion whether to continue or terminate

communications.

Z 38 Chapter 7

The Client Key Exchange Message

Like the server key exchange message, the client key exchange message

allows the client to send key information to the server. Unlike the server

key exchange message, however, this key information pertains to a sym-

metric-key algorithm that both parties will use for the session.

NOTE:

Without the information contained in this message, communications can-
not continue.

The content of this message depends on the type of key exchange, as
follows:

I BSA The client generates a 48-byte pre-master secret, which it

encrypts by using either the public key from the server’s certificate

or a temporary RSA key from a server key exchange message. This

result is then sent to the server to compute the master secretkey.

(Computation of the master secret is discussed later in this chapter

under “Cryptographic Computations”)

I Ephemeral or Anonymous Diffie-Hellman The client provides

its own Diffie—Hellman public parameters to the server.

a Fortezza The client calculates public parameters using the public

key in the server’s certificate along with private parameters in the

client’s token. These parameters are then sent to the server.

The Certificate Verify Message

The certificate verify message is used to provide explicit verification of a

client certificate. When using client authentication, the server authenti—

cates the client using the private key. This message contains the pre-

master secret key signed with the client’s private key. The server validates

the key against the client’s certificate. The server is not required to

authenticate itself to the client. Because the pre-master secret is sent to

the server using the server’s public key, only the legitimate server can

decrypt it with the corresponding private key

Network and Transport Security Protocols 239

The Finished Message

Next, the client sends a change cipher spec message, followed immedi-

ately by the finished message. When the server receives the finished mes-

sage, it too sends out a change cipher spec message and then sends its

finished message. At this point the handshake protocol is complete and

the parties canbegin to transfer application data securely.

Be aware that the finished message is the first to be protected with the

just-negotiated algorithms, keys, and secrets. As a result, the communi—

cating parties can verify that the key exchange and authentication

processes were successful. No acknowledgment of the finished message is

required; parties can begin sending encrypted data immediately after

sending the finished message. Recipients of finished messages must ver-

ify that the contents are correct.

NOTE.'

The change cipher spec message is actually part of the change cipher spec
protocol and not the handshake protocol.

Ending a Session and Connection

Before the end of communications, the client and the server must share

knowledge that the connection is ending. This arrangement protects the

session from a possible truncation attack, whereby an attacker tries to

compromise security by prematurely ending communications. Either

party can terminate the session by sending a close_notify alert before clos-

ing its own write session. When such an alert is received, the other party

must send its own close_notify alert and close down immediately, dis-

carding any pending writes.

NOTE:

If the SSL session is closed before either party sends a close_notify mes- '

sage, the session cannot be resumed.

240 Chapter 7

Resuming Sessions

Public-key encryption algorithms are very slow. To improve performance,

the parties can cache and reuse information exchanged during the hand-
shake protocol. This process is called session ID reuse. If it is determined

during the handshake protocol that the client and the server sides of the

protocol share a session ID, the public-key and authentication operations
are skipped, and the previously generated shared secret is reused during

key generation.

Both parties (client and server) must agree to reuse a previous session

ID. If either party suspects that the session may have been compromised
or that certificates may have expired or been revoked, it should force a full
handshake. Because an attacker who obtains a master secret key may be

able to impersonate the compromised party until the corresponding ses-

sion ID expires, the SSL specification suggests that the lifetime of cached

session IDs expire after 24 hours. It also suggests that applications that

run in relatively insecure environments should not write session IDs to

stable storage.

Cryptographic Computations _

We have used the term “shared secret” to explain how traffic is encrypted

in SSL. Now let’s look at the generation of the master secret, which is

derived from the pre—master secret. In the case of RSA or Fortezza cryp-

tography, the pre-master secret is a value generated by the client and sent
to the server via the client key exchange message. In Diffie-Hellman cryp-

tography, the pre-master secret is generated by each side (server and

client) using the other party’s Diffie-Hellman public values.

In each of these three cases, after a pre-master secret is generated and

both sides are aware of it, the master secret can be computed. The master

secret, which is used as the shared secret, is made up of several hash cal-

culations of data previously exchanged in messages. Figure 7-18 shows

the format of these calculations.

Encryption and Authentication Algorithms

SSLV3.0 supports a wide range of algorithms that provide various levels of

security These algorithms (encryption, key exchange, and authentication)

support a total of 31 cipher suites, although some of them provide little or

Figure 7-18

Generating a
master secret

Summary

Network and Transport Security Protocols 24 l

Master__secret = MDS(pre_master_secret + SHA(‘A’ + pre_master_secret +
ClientI-Iello.random + ServerHello.random)) +

MDS(pre_master_secret + SHA ‘BB’ + pre_master_secret +

ClientI-Iello.random + ServerHello.random)) +

MDS(pre_master_secret + SHA ‘CCC’ + pre_master_secret +

ClientHello.random + ServerHello.random)) +

*The characters A, BB, and CCC are actual
ASCII values

no security in today’s world. One such cipher suite is based on anonymous

Diffie—Hellman, and the specification strongly discourages its use because

it is vulnerable to man-in-the—middle attacks.

Security protocols make use of the various technologies described up to

this point in the book to provide the necessary security. All cryptographic

algorithms, whether they are symmetric, asymmetric, message digests, or

message authentication, codes do very little on their own; instead, they

are the basis for the security provided through set standard protocols
such as IPSec or SSL.

Security protocols can be placed within the various layers of the TCP/IP

networking stack. IPSec, for example, is located at the IP layer, while SSL

is located between the TCP and application layers. The lower in the

TCP/IP stack a protocol is placed, the more flexible and less user-intrusive

the protocol is.

IPSec plays an important role in securing IP networks to provide pri-

vate communications. It enables a wide“range of security services, not only

confidentiality but also authentication, access control, and protection

against replay attacks. These services are available through the use of

either or both the authentication header (AH) and encapsulating security

payload (ESP).

SSL provides security at the transport (TCP) layer, which is below the

application layer. The security provided by SSL can be thought of as a

secure pipe placed between a client and server. Data is authenticated con-

fidentially while in the pipe. It should be noted, however, that once either

system (client or server) receives the data, the data is returned to its

unprotected clear state.

' 242 Chapter 7

Real-World Examples

Various products are available that provide security using the IPSec and

SSL protocols. There are several toolkits available for developers who

wish to build IPSec and SSL into their applications. RSA Security, Inc.

provides two such commercial products, BSAFE Crypto—C/J and SSL—CXJ,

both of which are available for C programmers as well as Java program-
mers.

Other companies, however, have created end-user software and embed—

ded hardware products using IPSec and SSL. In fact, most virtualprivate

networks (VPNs) are based on the popular IPSec protocol. For example,

Microsoft Windows 2000 makes use of IPSec to provide a VPN, something

most end users aren’t aware is available. Just as IPSec can be found in a

various software and hardware products, so can SSL. SSL is by far the

most widely distributed security protocol when it comes to e-commerce.

One reason for SSL’s widespread use is that it is incorporated in every

copy of Netscape and Internet Explorer available today. SSL is also found

within the operating system of various platforms. Many Linux vendors

have included SSL in their systems; it provides security not only for

HTTP communications, but also for other protocols as well, such as NNTP,

SMTP, and FTP.

S/MIME V

Like Chapter 7, this chapter looks at security protocols that are used in

today’s networks. But unlike the protocols described in Chapter 7, the pro-

tocols discussed in this chapter provide security services for specific appli-

cations (such as Simple Mail Transfer Protocol (SMTP), Hypertext ’

Transfer Protocol (HTTP), and so on). Figure 8-1 shows each of these

application protocols along with its location in the Transportation Control

Protocol/Internet Protocol (TCP/IP) stack. This chapter provides a de-

tailed look at two well-known security protocols—S/MIME and SET—

which operate above the application layer.

Secure /Multipurpose Internet Mail Extensions (S/MIME) is a specifica-

tion for securing electronic mail. S/MIME, which is based On the popular

MIME standard, describes a protocol for adding cryptographic security

services through MIME encapsulation of digitally signed and encrypted

objects. These security services are authentication, nonrepudiation, mes-

sage integrity, and message confidentiality.

244 Chapter 8

Figure 8-1

Application-layer

protocols within
TCP/IP

Although SIMIME is most widely known and used for securing e-mail,
it can be used with any transport mechanism that transports MIME (such
as HTTP). S/MIME can even be used in automated message transfer

agents, which use cryptographic security services that do not require
human intervention. The S/MIME specification even points out how to use

its services to encrypt fax messages sent over the Internet.

The following section describes S/NIIME along with the various MIME

types and their uses. It explains how to create a MIME body that has been
cryptographically enhanced according to Cryptographic Message Syntax
(OMS), a formatting standard derived from PKCS #7. Finally, it defines
and illustrates how cryptographic signature and encryption services are

added to MIME data.

Overview

In the early 19805, the Internet Engineering Task Force (IETF) developed

Request for Comment (RFC) 822, which became the specification that
defined the standard format of electronic mail messages. Along with RFC

821 (which defined the mail transfer protocol), RFC 822 was the founda-

tion of the SMTP, which was designed to carry textual messages over the
Internet.

MIME, also developed by the IETF, was designed to support nontextual

data (such as graphics or video data) used in Internet messages. The

MME specification adds structured information to the message body that
allows it to contain nontextual information. However, MIME does not pro-

vide any security services.

In 1995, RSA Data Security, Inc., led a consortium of industry vendors

in the development of S/MIME. After work on the specification was under

way, RSA passed it to the IETF for further development. SMIMEV3 is the
current version. Through continued development by the IETF SIMIME

working group, the protocol has incorporated a number of enhancements.

Application-Layer Security Protocols 245

S/MIME Functionality

S/MIMEV3 currently provides the following security enhancements to
MIME content:

I Enveloped data This function supports confidentiality services by

allowing any content type in a MIME message to be symmetrically

encrypted. The symmetric key is then encrypted with one or more

recipients’ public keys. The encrypted data and corresponding

encrypted symmetric key are then attached to the data structure,

along with any necessary recipient identifiers and algorithm
identifiers.

l Signed data This function provides data integrity services. A

message digest is computed over the selected content (including any

algorithm identifiers and optional public-key certificates), which is

then encrypted using the signer’s private key. The original content

and its corresponding signature are then base—64 encoded (base-64

and other encoding methods are described later in “Transfer

Encoding”).

l Clear-signed data This function allows S/MIME to provide the

same data integrity services as provided by the signed data function,

while at the same time allowing readers that are not S/MIME-

compliant to View the original data. Following the processes just

described, a digital signature is computed over the selected content,

but only this digital signature (and not the original data) is base-64

encoded.

I Signed and enveloped data This function supports both

confidentiality and integrity services by allowing either the signing of

encrypted data or the encrypting of signed data.

Cryptographic Algorithms

,S/MIMEV3 implements support for several symmetric content—encryption

algorithms. However, some S/MIME implementations still incorporate

R02 with a key size of 40 bits, and by today’s standards, a 40-bit key is too

weak. However, in most current S/MIMEV3 implementations, the user can

choose from various content-encryption algorithms, such as DES, Triple

DES, or R02 with a key size greater than 40; see Chapter 2.

246 Chapter 8

The specification does, however, spell out all algorithms to be used for

security services within S/MIMEV3. Some of them are optional, and oth-

ers are required. They are as follows: ‘

H Digest and hashing algorithms These must support MD5 and

SHA—l; however, SHA-l should be used.

I Digital signature algorithms Both sending and receiving agents

must support DSA and should also support RSA.

I Key encryption algorithms Sending and receiving agents must

support Diffie-Hellman and should also support RSA encryption.

m Data encryption (session key) algorithms Sending agents

should support RCZ/40—bit key, RCZ/128-bit key, and Triple DES.

Receiving agents should support RCZ/128 and Triple DES but must

support RCZ/40.

Which algorithm is best? It’s a simple matter of looking at key length; the

bigger the key, the greater the security. However, sending and receiving

agents are not always at the same level. For instance, the sending agent

may be attempting to encrypt something with RCZ/128 for added security;

however, the receiving agent may only have the ability to decrypt messages

with RCZ/40. For this reason, the S/MIME specification defines a process for

deciding which algorithm is best when you’re sending S/MIME messages.

The following are the specified rules that a sending agent should use in

making its decision: '

1. Known capabilities. If the sending agent has previously received a

list of cryptographic capabilities of the recipient, the sender should

choose the first (most preferred) capability listed to encrypt the

outgoing message.

2. Unknown capabilities but known use ofencryption. This rule applies
when the sending agent has no idea of the encryption capabilities of

the recipient but has received at least one previously encrypted

message from that recipient. In this case, the sending agent should

encrypt the outgoing message using that algorithm.

3. Unknown capabilities and unknown version ofS /MIME. This rule

applies when a sending agent has had no previous contact with the

recipient and does not know its capabilities. The sending agent should

use Triple DES because of its strength and because it is required by

S/MIMEVB. However, if Triple DES is not used, the sending agent
should use RCZ/40.

Application-Layer Security Protocols 247

S/MIME Messages

SIMIME messages are made up ofthe MIME bodies and CMS objects. The
latter are derived from PKCS #7 data structures.

Before any cryptographic processing takes place, a MIME entity must

be prepared. A MIME entity may be a subpart of a message or the whole

message, including all its subparts. The latter type of MIME entity is

made up only of the MIME headers and MIME body and does not include

the RFCSZZ headers (To:, From:, and so on). This MIME entity is then

converted to canonical form, and the appropriate transfer encoding is

applied (both processes are discussed in the following sections).

After the MIME entity has been created and all proper encoding has

taken place, the MIME entity is sent to security services, Where the cho-

sen security function is provided (enveloping, signing, or both). This

process yields a CMS (or PKCS #7) object, which in turn is wrapped up in

MIME and placed with the original message, according to the selected

S/MIME content type.

Canonicalization

As stated in the preceding section, each MIME entity must be converted

to a canonical form. This conversion allows the MIME entity to be

uniquely and unambiguously represented in the environments Where the

signature is created and Where the signature will be verified. This same

process is performed for MIME entities that will be digitally enveloped as

well as signed. Canonicalisation provides a standard means by which data

from various platforms can be exchanged.

Transfer Encoding

Whenever data is processed by digital equipment, it can be encoded and

represented in a variety of ways, such as 7—bit, 8~bit, or binary. Transfer

encoding ensures that data is represented properly for transfer across the

Internet and ensures reliable delivery. One common method is base—64

encoding, which enables arbitrary binary data to be encoded so that it

may pass through a variety of systems unchanged. For example, if 8-bit

data is transferred and a 7-bit device (such as a mail gateway) receives it,

there is a good chance that before it is forwarded to its final destination,

it may be stripped of characters.

248 Chapter 8

NOTE:

As you might expect, if a digitally signed message is altered or stripped of

characters, it will be selected as invalid.

Enveloped-Only Data

The process of generating an encrypted MIME entity is called digital

enveloping and is provided for by the enveloped-data content type. This

content type consists of encrypted content of any type and encrypted

content-encryption keys for one or more recipients. For each recipient, a

digital envelope (made up. of the encrypted content and associated

encrypted content—encryption key) is created, ensuring confidentiality for

the message While it is in transit. Figure 8-2 illustrates the S/MIME

enveloped-data process.

. Random Recipient

Flgure 8'2 . , encryption key public key
S/MIME ‘”

enveloped-data Applications/ x—

process MIME bOdy t0 pkcs7~mime
encrypt

 Encrypt session key

using recipient '

public key
. Encrypt , . ‘ ASN.1 ,.

Wag, . , , » , 1° _ o encode
Algorithm identifiers and parameters

To construct an enveloped—data content type, follow these steps:

1. For a chosen symmetric algorithm (that is, RC2, DES, and so on),

generate a pseudo-random content-encryption key.

2. For each recipient, encrypt the content-encryption key. Which

encryption to use depends on which key management system is used.

The associated key management systems are as follows:

RSA key transport The content—encryption key is encrypted in

the recipient’s public key.

Application-Layer Security Protocols Z49

Diffie-Hellman key agreement The recipient’s public key and

the sender’s private key are used to generate a shared symmetric

key, which is then used to encrypt the content-encryption key.

Known symmetric key The content-encryption key is

encrypted using a previously distributed symmetric key.

3. For each recipient, create a block of data containing the recipient

information. This information includes the encrypted content-

encryption key and other recipient-specific information (such as -

version and algorithm identifiers).

4. Encrypt the message using the content-encryption key.

5. Prepend the recipient information to the encrypted content, and base

64-encode the result to produce the enveloped—data value.

When the digital envelope is received, the process is reversed to retrieve

the original data. First, the enveloped data is stripped of its base-64 encod-

ing. Then the appropriate content—encryption key is decrypted. Finally, the

content-encryption key is used to decrypt the original content.

Signed-Only Data

The S/MIME specification defines two methods for signing messages:

I Application/pkcs7-mime with signed-data (usable only by S/MIME—

compliant mailers)

I Multipart/signed, also known as clear signing (usable by all mailers)

S/MIMEV3 doesn’t mandate which method to use, but the specification

mentions that the multipart/signed form is preferred for sent messages

because of its readability by any mailer. The specification states that

receiving agents should be able to handle both kinds.

Signed Data An S/MIME application/pkcs7-mime message with signed

data may consist of any MIME content type, in which any number of sign-

ers in parallel can sign any type of content. Figure 8-3 illustrates S/MIME

data signing.

The following steps apply to constructing a signed-data content type:

1. For each signer, select a message digest or hashing algorithm (MD5

or SHA—l).

2. Compute a message digest or hash value over all content to be signed.

 250 Chapter 8

Figure 8-3

SfMIME data

signing
 Applications/ x—

pkcs’?~n1ime MIME body to

be signed

Originator

private key
Algorithm identifiers and parameters Originator certificate

3. For each signer, digitally sign the message digest (that is, encrypt the
digest using the signer’s private key).

4. For each signer, create a signer information block containing the
signature value and other signer-specific information (such as version

and algorithm identifier).

5. Prepend the signed content with signer information (for all signers),

and then base—64-encode it to produce the signed data value.

After it is received, the signed data content type is stripped of its

base-64 encoding. Next, the signer’s public key is used to decrypt and

reveal” the original message digest. Finally, the recipient independently
computes the message digest and compares the result with that of the one

that was just decrypted.

Clear-Signed Data It is possible that data you have digitally signed might

be received by a recipient that is not SMIME-compliant, rendering the

original content unusable. To counter this problem, SIMIME uses an

alternative structure, the multipart/signed MIME type.

The body of the multipartlsigned MIME type is made up of two parts.

The first part, which can be of any MIME content type, is left in the clear

and placed in the final message. The contents of the second part are a spe—

cial case of signed data, known as a detached signature, which omits the

copy of the plaintext that may be contained within the signed data. Fig

ure 8-4 illustrates the S/MIME clearvsignecl data process.

Figure 8—4

S/MIME clear-

signed data
process

Application-Layer Security Protocols 251

Multipart/signed
content

Originator

private key Applicationsf x—
pkcs?~mime

signature

Canonicalize :

Algorithm identifiers and parameters Originator certificate

Signing and Encrypting

S/MIME also supports both encryption and signing. To provide this ser-

vice, you can nest enveloped-only and signed-only data. In other words,

you either sign a message first or envelope the message first. The decision

of which process to perform first is up to the implementer and the user.

NOTE:

The S lMIMEUS specification (RFC2633) describes security risks involved

with each technique (envelope first or signing first).

Registration Request

In addition to security functions, S/MIME defines a format for conveying

a request to have a public-key certificate issued. A MIME content type,

application /x-pkc310, is used to request a certificate from a certification

authority.

2 52 Chapter 8

NOTE:

The specification does not mandate the use ofany specific technique for

requesting a certificate, whether it is through a certificate authority, a

hardware token, or manual distribution. The specification does, however;

mandate that every sending agent have a certificate.

Certificates-Only Messages

A certificates-only message is an application/pkcs7-mime and is prepared

in much the same way as a signed-data message. This message, which is

used to transport certificates to an S/MIME-compliant end entity, may be

needed from time to time after a certification authority receives a certifi-

cate request. The certificates—only message can also be used for the trans-

port of certificate revocation lists (CRLs).

Enhanced Security Services

Currently there are three optional enhanced security services that can be

used to extend the current S/MIMEV3 security and certificate processing

services.

I Signed receipts A signed receipt is an optional service that allows

for proof of message delivery. The receipt provides the originator a

means of demonstrating to a third party that the recipient not only

received but also verified the signature of the original message

(hopefully, this means that the recipient also read the message).

Ultimately, the recipient signs the entire message and its corre—

sponding signature for proof of receipt. Note that this service is used

only for signed data.

I Security labels Security labels can be used in a couple of ways.

The first and probably most easily recognizable approach is to

describe the sensitivity of data. A ranked list of labels is used (confi-

dential, secret, restricted, and so on). Another technique is to use the

labels to control authorization and access, describing which kind of

recipient should have access to the data (such as a patient’s doctor,

medical billing agents, and so on).

a Secure mailing lists When S/MIME provides its services, sending

agents must create recipient-specific data structures for each

Application—Layer Security Protocols 253

recipient. As the number of recipients grows for a given message, this

processing can impair performance for messages sent out. Thus, mail

list agents (MLAs) can take a single message and perform the

recipient-specific encryption for every recipient.

Interoperability

Since the S/MIME standard first entered the public eye, a number ofven—

dors have made efforts to incorporate it. However, a lack of interoperabil—

ity is one pitfall that end users should take into account. For example,

many vendors are still S/MIMEv2-compliant, whereas others have moved

to S/MIMEv3 Without supporting backward compatibility. Other problems

include limits on the certificate processing available in various products.

To help promote product interoperability, the RSA Interoperability Test

Center was established. This S/MIME test center allows vendors to per-

form interoperability testing on their products and to have the results
published. The following Web address provides interoperability informa-

tion as well as products that have been found to be S/MIME-compliant:

http://WWW.rsasecurity.com/standards/smime/interop_center.html.

Secure Electronic Transaction (SET)

The Internet has made it easier than ever for consumers to shop, money

to be transferred, and bills to be paid over the Internet at the press of a

button. The price we pay for this ease of use, however, is increased oppor—

tunity for fraud. For example, Figure 8-5 illustrates how easy it is for

those with very little character to fraudulently generate credit cards used

for online payment, known in the industry as payment cards.

The Secure Electronic Transaction (SET) specification provides a

framework for protecting payment cards used in Internet e—commerce

transactions against fraud. SET protects payment cards by ensuring the

confidentiality and integrity of the cardholder’s data while at the same

time providing a means of authentication of the card. The current version

of the specification (SETvl) was initiated by MasterCard and Visa in Feb-

ruary 1996 and was completed in May 1997.

SET is defined in three books. The first book, Business Description,

describes the specification in business terms (that is, goals, participants,

254 Chapter 3

_
FiieHeip

Credit Card:

401 3 64522506

Generation of

fraudulent credit Barth:
Card Types:

6" Visa

— Rank 11! America
- Union Trust
- First Chicago Bank

cards— 4013 36222222
3m 93923923
3m 45429456
8013 54092559

4" Discover

1‘" American

Express
 - Consumers Edge

- Securily First
- Gold Dome

6013 84823487
521 1 35335235 ~ First Atlanta

5211 37861331] Wm Card Humbur.4013 4125?851
4013 49284313

Social Seaway Number:_ was
info Generator

By: Wealherhlan

and overall architecture). The second book, Programmer’s Guide, is a

developer’s guide, detailing the architecture, cryptography, and various

messages used in SET. The third book, Formal Protocol Definition, pro—

vides a formal definition of the entire SET process. (All three books were

published by Visa International and MasterCard on May 31, 1997.)

What follows is a high—level overview of the SET specification, outlining

the business requirements, functions, and participants defined in the first

book. We also cover SET certificates used and their management, describ—

ing the addition of SETuspecific extensions. Finally, we look at the SET

messages and transactions.

Business Requirements

The specification defines the business requirements of SET as follows:

P To provide confidentiality of payment information and enable

confidentiality of the associated order information

as To ensure the integrity of all transmitted data

H To provide authentication that a cardholder is a legitimate user of a

branded payment card account

SET Features

ApplicationnLayer Security Protocols 255

I To provide authentication that a merchant can accept branded

payment card transactibns through its relationship with an acquiring

financial institution

I To ensure the use of the best security practices and system design

techniques to protect all legitimate parties in an electronic commerce
transactions

I To create a protocol that neither depends on transport security

mechanisms nor prevents their use

I To facilitate and encourage interoperability among software and

network providers '

To meet its stated business requirements, SET defines the following nec—

essary features:

I Confidentiality of information Confidentiality provides a secure

channel for all payment and account information, preventing

unauthorized disclosure. SET provides for confidentiality through the

use of the DES algorithm.

l Integrity of data Data integrity ensures that the message content

is not altered during transmission. This feature is provided through

the use of digital signatures using the RSA algorithm.

I Cardholder account authentication Cardholder authentication

provides merchants a means ofverifying the cardholder as legitimate.

Digital signatures and X.509V3 certificates are used to implement

this function.

I Merchant authentication Merchant authentication gives

cardholders a means of verifying that the merchant not only is

legitimate but also has a relationship with a financial institution.

Again, digital signatures and X.509V3 certificates are used to

implement this service.

I Interoperability Interoperability allows the use of this

specification in hardware and software from various manufacturers,

allowing their use by cardholders or other participants.

2 56 Chapter 8 .

SET Participants

Various participants use and interact with the SET specification. Figure
8-6 illustrates a simplified overview of the participants’ interactions.

Figure 8-6 CW1“ '
Interactions S

among SET

participants

 Payment

Gateway

Acquirer

Following are these participants and their roles in the transactions

governed by SET:

I Issuer The issuer is the bank or other financial institution that

provides a branded payment card (such as a MasterCard or Visa
credit card) to an individual. The card is provided after the individual

establishes an account with the issuer. It is the issuer that is

responsible for the repayment of debt, for all authorized transactions

placed on the card.

Application—Layer Security Protocols 2 5 7

l Cardholder The cardholder is the individual authorized to use the

payment card. The SET protocol provides confidentiality services for

the cardholder’s transactions with merchants over the Internet.

I Merchant The merchant is any entity that provides goods and/or

services to a cardholder for payment. Any merchant that accepts

payment cards must have a relationship with an acquirer.

I Acquirer The acquirer is a financial institution that supports

merchants by providing the service of processing payment cards. In

other words, the acquirer pays the merchant, and the issuer repays

the acquirer.

I Payment gateway The payment gateway is the entity that

processes merchant payment messages (for example, payment

instructions from cardholders). The acquirer or a designated third

party can act as a payment gateway; however, the third party must

interface with the acquirer at some point.

Dual Signatures

The SET protocol introduced dual signatures, a new concept in digital sig-

natures. Dual signatures allow two pieces of data to be linked and sent to

two different entities for processing. For example, within SET a card-

holder is required to send an order information (OI) message to the mer-

chant for processing; at the same time, a payment instructions (PI)

message is required by the payment gateway. Figure 8-7 illustrates the

dual signature generation process.

The dual signature process follows these steps:

1. A message digest is generated for both the OI and the PI.

2. The two message digests are concatenated (hashed) to produce a new

block of data.

3. The new block of data is hashed again to provide a final message

digest.

4. The final message digest is encrypted using the signer’s private key,

producing a digital signature.

A recipient of either message can check its authenticity by generating

the message digest on its copy of the message, concatenating it with the

message digest of the other message (as provided by the sender) and com—

puting the message digest of the result. If the newly generated digest

258 Chapter 8

Figu—re—3.7 fl SHA1am.Generating dual 56D»SHA’I am;L—ignatures n SHA-I_. 0° '

Customer’s

private key @ I

P1 = Payment information
OI = Order information

PIMD = PI message digest

OIMD = OI message digest

I I = Concatenation . Dual
PONED -Paymenthrder message digest Signature

matches the decrypted dual signature, the recipient can trust the authen~

ticity of the message.

SET Certificates

The SET protocol provides authentication services for participants

through the use ofX.509v3, and has revocation provisions through the use
of CRLv2 (both X.509v3 and CRLV2 are described in Chapter 6.). These

certificates are application-specific; that is, SET has defined its own spe-
cific private extensions that are meaningful only to SET—compliant sys-
tems. SET contains the following predefined profiles for each type of
certificate:

I ! Cardholder certificates function as electronic representations of

payment cards. Because a financial institution digitally signs these
certificates, they cannot be altered by a third party and can be
generated only by the financial institution. A cardholder certificate

does not contain the account number and expiration date. Instead,
the account information and a secret value known only to the

cardholder’s software are encoded using a one-way hashing
algorithm.

I: Merchant certificates function as electronic substitutes for the

payment card brand decal that appears in a store window; the decal

Appfication—Layer Security Protocols 259

itself is a representation that the merchant has a relationship with a

financial institution allowing it to accept the payment card brand.

Because the merchant’s financial institution digitally signs them,

merchant certificates cannot be altered by a third party and can be

generated only by a financial institution.

I Payment gatewaycertificates are obtained by acquirers or their

processors for the systems that process authorization and capture

messages. The gateway’s encryption key, which the cardholder gets

from this certificate, is used to protect the cardholder’s account

information. Payment» gateway certificates are issued to the acquirer
by the payment card brand organization.

I Acquirer certificates are required only in order to operate a

certification authority that can accept and process certificate requests

directly from merchants over public and private networks. Those

acquirers that choose to have the payment card brand organization

process certificate requests on their behalf do not require certificates
because they are not processing‘SETmessages. Acquirers receive

their certificates from the payment card brand organization. I

I Issuer certificates are required only in order to operate a

certification authority that can accept and process certificate requests

directly from cardholders over public and private networks. Those

issuers that choose to have the payment card brand organization

process certificate requests on their behalf do not require certificates

because they are not processing SET messages. Issuers receive their

certificates from the payment card brand organization.

Certificate Management

The SET specification states that certificates must be managed through a

strict certificate hierarchy, as shown in Figure 8-8 (certificate hierarchies

_ are explained in Chapter 6).

In the case of SET, each certificate is linked to the signature certificate

of the entity that digitally signed it. By following the trust tree to a known

trusted party, a person can be assured that the certificate is valid. For

example, a cardholder certificate is linked to the certificate of the issuer

(or the brand organization on behalf of the issuer). The issuer’s certificate

is linked back to a root key through the brand organization’s certificate.

The public signature key of the root is known to all SET software and can

be used to verify each of the certificates in turn.

260 Chapter 8

Figure 8-8

SET certificate

hierarchy

Root

certification authority

Brand

certification authority

: Optional .Geopolitical .
| certification authority

Cardholder , Merchant 1

certification authority certification authority -.

Cardholder _f ;. Payment gateway

Payment gateway }:

certification authority . i

Payment Processing

To provide for secure payment processing over the Internet, the SET spec-

ification defines multiple transaction types, as shown in Table 8-1.

To illustrate how SET provides security of payment processing within
e—commerce transactions, we next discuss each of the following transac-

tion types in depth:

I Purchase request

I Payment authorization

I Payment capture

Purchase Request

The purchase request transaction is made up of four messages that are

exchanged between the cardholder and the merchant:

1. Initiate request. When the cardholder has selected a purchase and

decided which payment card to use, the cardholder is ready to

initiate the request. To send SET messages to a merchant, the

cardholder must have a copy of the merchant’s and payment

Application—Layer Security Protocols 26 1

————_.__._—_—_——____

Table 3-1 Transaction Description

SET Transaction Cardholder registration Allows the cardholder to register with a CA.
Types

Merchant registration

Purchase request

Allows a merchant to register with a CA.

Message from the cardholder containing order
information (OI) and payment informatiOn
(PI) and sent to the merchant and bank.

Payment authorization Message between the merchant and payment
gateway requesting payment authorization
for a transaction.

Payment capture Message from the merchant to the payment
gateway requesting payment.

Certificate inquiry A CA may send this message to either
and status cardholders or merchants to state that more

Purchase inquiry

Authorization reversal

Capture reversal

Credit

Credit reversal

Payment gateway
certificate request

Batch administration

Error message

processing time is needed.
or

A cardholder or merchant may send this
messageto a CA to check the current status
of a certificate request, or to receive the
certificate if the request has been approved.

Allows the cardholder to check the status of

authorization, capture, or credit processing of
an order after the purchase response has been
received.

Allows a merchant to reverse an

authorization entirely or in part.

Allows a merchant to correct errors in

previous capture requests, such as those
caused by human error.

Allows a merchant to issue credit to a

cardholder’s account for various reasons (such

as for returned or damaged goods).

Allows a merchant to correct errors in a

previous credit request.

Allows a merchant to request a current copy
of the payment gateways certificates.

Message between merchant and payment
gateway regarding merchant batches.

Indicates that a responder rejects a message
because it fails tests of format or content
verification.

————-—-——..—__———____—'

262 Chapter 8

gateway’s key—exchange keys. The SET order process begins when the
cardholder software (software that runs with your browser) requests

a copy of the gateway’s certificate. The message from the cardholder
indicates which payment card brand will be used for the transaction.

2. Initiate response. When the merchant receives an initiate request

message, a unique transaction identifier is assigned to the message.

The merchant then generates an initiate response message

containing its certificates and that of the payment gateway. This
information is then digitally signed with the merchant’s private key

and transmitted to the cardholder.

3. Purchase request. Upon receipt of the initiate response. message, the
cardholder software verifies the certificates of both the merchant and

gateway. Next, the cardholder software creates a dual signature using
the OI and PI. Finally, the cardholder. software generates a purchase

request message containing a dual—signed OI and a dual-signed PI
that is digitally enveloped to the payment gateway. The entire

purchase request is then sent to the merchant.

4. Purchase response. When the merchant software receives the ’

purchase request message, it verifies the cardholder’s certificate
contained within the message, as well as the dual-signed OI. The

merchant software then begins processing the OI and attempts to

gain authorization from the payment gateway by forwarding the PI.
Finally, the merchant generates a purchase response message, which
states that the merchant received the cardholder’s request.

Upon receipt of the purchase response from the merchant, the card-
holder software verifies the merchant certificate as well as the digital sig—

nature of the message contents. At this point, the cardholder software

takes some action based on the message, such as displaying a message to

the cardholder or updating a database with the status of the order.

Payment Authorization

During the processing of an order from a cardholder, the merchant
attempts to authorize the transaction by initiating a two—way message

exchange between the merchant and the payment gateway. First, an

authorization request is sent frOm the merchant to the payment gateway;

then an authorization response is received from the merchant by the pay-

ment gateway. The request and response are described as follows:

Application—Layer Security Protocols 263

1. Authorization request. The merchant software generates and digitally

signs an authorization request, which includes the amount to be

authorized, the transaction identifier from the OI, and other

information about the transaction. This information is then digitally

enveloped using the payment gateway’s public key. The authorization

request and the cardholder PI (which is still digitally enveloped to

the payment gateway) are transmitted to the payment gateway.

2. Authorization response. When the authorization request is received,

the payment gateway decrypts and verifies the contents of the

message (that is, certificates and PI). If everything is valid, the

payment gateway generates an authorization response message,

which is then digitally enveloped with the merchant’s public key and
transmitted back to the merchant.

Upon receipt of the authorization response message from the payment

gateway, the merchant decrypts the digital envelope and verifies the data

within. If the purchase is authorized, the merchant then completes pro—

cessing of the cardholder’s order by shipping the goods or performing the
services indicated1n the order.

Payment Capture

When the order-processing portion is completed with the cardholder, the

merchant then requests payment from the payment gateway. Payment

capture is accomplished by the exchange of two messages: the capture

request and the capture response. This process is described as follows:

1. Capture request. The merchant software generates the capture

request, which includes the final amount of the transaction, the

transaction identifier, and other information about the transaction.

This message is then digitally enveloped using the payment

gateway’s public key and transmitted to the payment gateway.

2. Capture response. The capture response is generated after the

capture request is received and its contents verified. The capture

response includes information pertaining to the payment for the

. transaction requested. This response is then digitally enveloped

using the merchant’s public key and is transmitted back to the

merchant.

264 Chapter 8

Summary

Upon receipt of the capture response from the payment gateway, the

merchant software decrypts the digital envelope, verifying the signature

and message data.

NOTE:

The merchant software stores the capture response and uses it for recon-

ciliation with payment received from the acquirer:

Security protocols located at the application layer work slightly differ-

ently from those that operate on the IP (network) and TCP (transport)

layers. Whereas IPSec (see Chapter 7) is used to provide security for all

data being transferred across an IP network, S/MIME and SET are used

solely to provide security for certain applications. -

In 1995, a consortium of application and security vendors, led by RSA

Data Security, Inc., designed the S/MIME protocol. Since then, the IETF

S/MIME working group has taken control of S/MIME to continue its

growth. S/MIME provides security not only for e—mail but also for any

data that is transferred via the MIME protocol. Since its creation,

S/MIME has continued to grow and improve its security services, adding

support for mailing lists, signing receipts, and security labels.

SET is an open specification that provides a framework for protecting

payment cards that are used in e-commerce transactions. Initiated by

Visa and MasterCard in 1996, SET was completed in 1997, with the help

of various other application developers and security vendors. The specifi—

cation is described in three books totaling more than 900 pages.

Note that this chapter and Chapter 7 discuss only four selected proto—

cols. Numerous others are available today, each of them supporting a spe-

cific security task.

Application—Layer Security Protocols 265

Real-World Examples

Both S/MIME and SET have been incorporated in various applications.

For secure e-mail, many companies and individuals have chosen to use

S/MIME instead of a proprietary system such as PGP. In fact, many users

have S/MIME-enabled mailers that they have not taken advantage of.

S/MIME is incorporated in Microsoft’s Outlook and Outlook Express e-

mail applications as well as Netscape’s Messenger software.

SET has also gained widespread use. Many ofthe vendors that visitors

shop with daily across the Internet are SET—enabled. Currently, the mer-

chants worldwide who use SET number in the hundreds. SET products

are available not only for consumers but also for merchants, payment

gateways, and SET certificate authorities. For a list of current SET-

enabled products as well as the merchants that use them, visit

http://www.setco.org/.

For both of these protocols, many security vendors also provide crypto—

graphic APIs (application programming interfaces, or toolkits), which

developers can use to produce secured applications. RSA Security, Inc., is

one such company.

The performance of cryptosystems varies, and some of them come with a
significant computational expense to computer systems. One way to ad-

dress this problem is to apply cryptographic hardware. Cryptographic

accelerators, for example, offer performance enhancements (as well as pos-

sible pitfalls). Cryptographic hardware, including various kinds of tokens,

also plays a role in authentication, as does the old technology ofbiometrics,

now being applied in new ways. ‘

Cryptographic Accelerators

Cryptographic accelerators provide a means of performing the computa-

tionally expensive workload that usually accompanies various algorithms

and protocols. Cryptographic accelerators work like math coprocessors:

They implement in hardware a set of functions usually handled by soft-

ware. Encoding these functions in silicon allows hardware to perform

these tasks much faster.
Cryptographic accelerators provide usefulness on two fronts. First and

most noticeable is increased speed, which is particularly important to

‘2 68 Chapter 9

e—commerce companies that interact with a considerable number of cus-

tomers daily. The second benefit is a spin-off of the first one: By reducing

the workload on the system’s CPU, accelerators allow the system to be

used more efficiently for other tasks. Figure 9-1 shows a typical Secure

Socket Layer (SSL) accelerator card.

Figure 9-1

A typical SSL
accelerator card

Another reason for the popularity of cryptographic accelerators is the

certifications associated with them. NIST, for example, has certified many

of them. The certification of each device depends on the safeguards that

were implemented in it during manufacture.

Hardware Solutions: Overcoming Software Limitations 269

NOTE:

Cryptographic accelerators often serve to slow down cryptographic opera

tions because accelerators are I/O-bound. For example, a Web server that

has farmed out private-key operations to a cryptographic accelerator

often performs slower in SSL handshakes when the load is high. The rea~

son for this is simple. I/ O-boaad operations are an order of magnitude

slower than CPU-bound operations because getting the data to the hard

ware has consumes an enormous amount ofoperating system and con-

text-switching resources. An operating system with poor multitasking

capabilities will likely be brought to its knees if it has to deal with a high

number ofSSL handshakes farmed out to an accelerator: Each thread

must block and wait, and the CPU must manage all the blocked threads.

This leads to a great deal of thread thrashing and, simply put, hills per

‘formance. For this reason, installing a cryptographic accelerator does not

necessarily give you an across»the-board increase in speed. Where and

how the accelerator is applied are ofprime importance.

Authentication Tokens

In the realm of computer security, another important set of hardware

devices is authentication tokens. Authentication tokens provide a means

of authenticating and identifying an end user. Instead of memorizing

passwords, end users protect their identity using a physical object that is

unique to each user. An everyday analogy is the use of a driver’s license to

prove a person’s identity.

Many tokens are designed for use with automated authentication sys—

tems. To verify the identity of the token’s owner, the host system performs

its authentication protocol using information encoded on the token.

Because the uniqueness of the information is responsible for proving the
identity of its bearer, the information must be protected against duplica-

tion or theft. Advanced tokens usually contain a microprocessor and semi-

conductor memory, and they support sophisticated authentication

protocols that provide a high level of security.

Z 70 Chapter 9

In theory, authentication tokens enable the use of single sign-on (SSO)

systems. As the name implies, SSO systems allow users to use an authen-

tication token to sign on once to all applications they require access to. At

the moment, true 880 is more or less a theoretical concept. In reality,

even systems that use authentication tokens may have reduced sign-on

capabilities.

Token Form Factors

Authentication tokens come in a variety of physical forms. The size, shape,

and materials from which a token is manufactured are referred to collec-

tively as the token’s form factor. These parameters affect the durability,

portability, security, and convenience of a given type of token. For exam-

ple, some tokens have electrical contacts mounted on the outer surface of

the token’s casing. The electrical contacts are connected to an integrated

circuit embedded in the token. When an electrostatic discharge of suffi-

cient potential is applied to the contacts, the integrated circuit may be

damaged. Because the human body can accumulate a significant static

charge in dry weather, care must be taken in the design of such tokens to

minimize the risk of damage from static discharges. To compensate for

this, some types of tokens have contacts that are recessed in a conductive

plastic casing. This type of token is less susceptible to damage from stray

static discharges because the casing absorbs the charge before it reaches

the contacts.

A token’s form factor involves trade-offs thatmust be evaluated for a

specific application. Tokens that have recessed contacts usually require a

thicker casing than those that have surface-mounted contacts, and that

can make it harder to carry the token in a pocket. Customers can some-

times select from a number of different form factors with the same func-

tionality, making it possible to choose the form factor that is best suited to

a particular application. Figure 9-2 shows three form factors.

Noncontact Tokens

Noncontact tokens, as their name implies, require no electrical or physical

contact with a token reader device. Instead, noncontact tokens usually

operate by transmitting data to and receiving data from a terminal, or

they require that the user enter data that is then generated by the token.

Figure 9~2

Cryptographic
tokens from

(a) Rainbow

Technologies,
(b) Datakey, and

((3) RSA Security

Hardware Solutions: Overcoming Software Limitations 2 7 1

(1))

RSA SecurID"

flflflnflfllflflfl

O P

Noncontact tokens inciude proximity cards, one-time password genera-

tors, and handheld challenge/response calculators.

Proximity Cards

Proximity cards are noncontact tokens that use radio frequency signals to

authenticate users. Proximity cards contain micro—miniature electronic

tuned circuits, a switching mechanism, and a power source. These cards

transmit a coded signal either when they come Within a certain range of

a proximity reader or when someone activates them manually. Some prox-

imity devices are also designed to transmit continually. A user merely

Z 7 2 Chapter 9

Figure 9—3

XyLoo proximity
card and reader

holds a uniquely coded proximity token or card within a given distance of

a proximity reader, and the system reads the data within it. Figure 9-3

shows the XyLoc proximity card and reader from Ensure Technologies.

NOTE:

Theoretically, authentication data (a coded signal in this case) is suscep-

tible to replay attacks. That is, an outsider couid conceivably record the

signal being transmitted and replay it at a later time to gain access.

One-Time Password Generators

One-time password generators have proven to be one of the most success-

ful types of authentication tokens to date. RSA Security, Inc., has proven

this fact through its sales of the ACEIServer and SecurTD products. The

system has proven to be portable and to provide a very high level of scene

rity. Figure 9-4 shows a SecurID token in one of its (a) original form fac-

tors and (b) running on the Palm OS.

RSA’s solution is made up of two components, which work in concert

with each other. The ACE/Server is a back-end server application that

heuses a user’s seed record. In turn, this seed is used by the ACE/Server

application to produce a random six-digit numeric code on a configurable

Figure 9-4

(a) SecurID

token;
(b) SecurID on

Palm OS

Figure 9-5

Authentication

via a one-time

password

generator

time scale (for example, every 60 seconds a new six-digit numeric code is
produced). The second component, the SecurID token, is also aware of the
user’s seed record. Like the ACEfServer, the SecurID produces a random
numeric code. Figure 9-5 illustrates the user interaction with one-time
passwords for authentication.

When users log in, they enter a four-digit PIN (known only to them) as
well as the six-digit random code displayed by their token at that

 I-
RSA ScourID _

 ACE/Server

Z 74 Chapter 9

Figure 9-6

User intervention

in challenge/
response

calculators

moment. In this way, the system can authenticate the user’s entry against

the entry in the back-end server.

Challenge/Response Calculators

Challenge/ response calculators work on a premise similar to that of one-

time password generators. Through the use of a back-end server compo-

nent and a handheld device, an initial seed record is synchronized. In the

case of challenge/response calculators, however, there is slightly more

user intervention.

As users log in, they are prompted with a random challenge from the

host system. The users must then enter the displayed challenge into their

calculator, which performs a cryptographic operation on the challenge

password and displays the result. In turn, users enter this result (the

response) into the host system to gain access. Figure 9-6 illustrates the

common component setup and user intervention involved with chal-

lenge/response calculators.

Client Server

User 10 in:

with a challenge

User enters challenge 1‘
into C/R calculator and

returns the response
Server verifies user’s

Logged in... granted
C:> i. ‘

NOTE:

Challenge/ response calculators tend to be protected by a PIN that the

user must enter before the challenge/ response sequence.

Hardware Solutions: Overcoming Software Limitations 2 7 5

Contact Tokens

To transfer data, most tokens must make physical contact with the reader

device. For example, magnetic stripe tokens (the kind used in automated

teller machines) are inserted into a reader so that the magnetic stripe

makes contact with an electromagnetic sensing device. Most integrated

circuit tokens require an interface in which electrical contacts located on

the token physically touch matching contacts on the reader to supply such

functions as power, ground, and data signals. The physical arrangement

and functional definition of these contacts have an impact on the interop-

erability of tokens and reader devices because these devices cannot com-

municate unless the contacts are defined in the same way.

Smart Cards

Figure 9-7

(a) Datakey

smart card; (1))
RSA smart card

A smart card, an intelligent token, is a credit card-sized plastic card that

contains an embedded integrated circuit chip. It provides not only mem-

ory capacity but also computational capability. The self-containment of

smart cards makes them resistant to attack because they do not depend

on potentially vulnerable external resources. Because of this characteris-

tic, smart cards are often used in applications that require strong security

protection and authentication.

For example, a smart card can act as an identification card to prove the

identity of the cardholder. It also can be used as a medical card that stores

the cardholder’s medical history. Furthermore, a smart card can be used as

a credit or debit bankcard and used for offline transactions. In all these

applications, the card stores sensitive data, such as biometrics information

of the card owner, personal medical history, and cryptographic keys for

authentication. Figure 9-7 shows a Datakey smart card and RSA smart card.

(a)

John Doe _‘SIN 2934?92 -

276 Chapter 9

Smart Card Standards

Smart card standards govern the physical properties and communication

characteristics of the embedded chip. ISO 7816 is the international stan—

dard for smart cards. The standard itself is made up of six parts, each

describing everything from electrical properties to card dimensions. The

following is a description of each part of the ISO 7816 standard:

I ISO 7816-1 Defines the physical dimensions of contact smart cards

and the placement of chips, magnetic stripes, and any embossing on

the cards. It also describes the required resistance to static

electricity.

n ISO 7813-2 Defines the location, purpose, and electrical

characteristics of the smart card’s contacts.

I ISO 7816-3 Describes electronic signals and transmission protocols,

defining the voltage and current requirements for the electrical

contacts defined in ISO 7816—2.

I ISO 7816-4 Across all industries, defines a set of commands to

provide access, security, and transmission of card data (that is, the
card reads and writes to its memory).

I ISO 7816-5 Defines Application Identifiers (AIDS), which are used

to identify a specific application.

I ISO 7816-6 Describes encoding rules for data needed in many

applications.

Currently Europay International, MasterCard International, and Visa

International (EMV) are cooperatively developing specifications to facilin

tate the use of smart cards for payments worldwide. These specifications

build upon the ISO 7816 standards that have been developed for smart
cards that use electrical contacts.

Yet another standard, which has helped to ensure interOperability, is

public-key cryptography standard PKCS #11. PKCS #11 provides func-

tional specification for personal cryptographic tokens.

Types of Smart Cards

A variety of smart cards are available, each defined according to the type

of chip it uses. These chips range in their processing power, flexibility,

.mam?“

Hardware Solutions: Overcoming Software Limitations 2 77

memory, and cost. The two primary categories of smart cards—mmemory

cards and microprocessor cards—are described in the following sections.

Memory Cards

Memory cards have no sophisticated processing power and cannot man-

age files dynamically. All memory cards communicate with readers

through synchronous protocols. There are three primary types of memory

cards:

I Standard memory cards These cards are used solely to store

data and have no data processing capabilities. These cards are the

least expensive per hit of user memory. They should be regarded as

floppy disks of varying sizes without the lock mechanism. Memory

cards cannot identify themselves to the reader, so the host system

must recognize the type of card that is being inserted into a reader.

I Protected/segmented memory cards These cards have built-in

logic to control access to memory. Sometimes referred to as intelligent

memory cards, these devices can be set to write-protect some or all of

the memory array. Some of these cards can be configured to restrict

access to both reading and writing, usually through a password or

system key. Segmented memory cards can be divided into logical

sections for planned multifunctionality

I Stored value memory cards These cards are designed to store

values or tokens and are either disposable or rechargeable. Most

cards of this type incorporate permanent security measures at the

point of manufacture. These measures can include password keys and

logic that are hard-coded into the chip. The memory arrays on these

devices are set up as decrements, or counters, and little or no memory

is left for any other function. When all the memory units are used, the

card becomes useless and is thrown away or recharged.

CPU/MPU Microprocessor Multifunction Cards

These cards have on—card dynamic data processing capabilities. Multi-

function smart cards allocate card memory into independent sections

assigned to specific functions or applications. Embedded in the card is a

microprocessor or microcontroller chip that manages this memory alloca—

tion and file access. This type of chip is similar to those found inside per-

sonal computers; when implanted in a smart card, the chip manages data

in organized file structures via a card operating system (COS). Unlike

Z 78 Chapter 9

other operating systems, this software controls access to the on-card user

memory. As a result, various functions and applications can reside on the
card. This means that businesses can use these cards to distribute and

maintain a range of products.

These cards have sufficient space to house digital credentials (that is,

public and private key—pairs). Further, through the use of the use of the

on-card microprocessor chip, many of the needed cryptographic func-

tions can be provided. Some cards can even house multiple digital cre-

dential pairs.

Readers and Terminals

Smart cards can be plugged in to a Wide variety of hardware devices. The

industry defines the term reader as a unit that interfaces with a PC for

the majority of its processing requirements. In contrast, a terminal is a

self-contained processing device. \

Terminals as well as readers can read and write to smart cards. Read—

ers come in many form factors and offer a wide variety of capabilities. The

easiest way to describe a reader is according to the method of its interface

toa PC. Smart card readers are available that interface to R8232 serial

ports, Universal Serial Bus (USB) ports, PCMCIA slots, floppy disk slots,

parallel ports, IRDA (infrared data) ports and keyboards, and keyboard

wedge readers. Another way to distinguish reader types is according to

onboard intelligence and capabilities. Extensive price and performance

differences exist between an industrial-strength intelligent reader that

supports a wide variety of card protocols and a home-style Windows

based-card reader that works only with microprocessor cards and per-

forms all the data processing in the PC. _

The options available in terminals are equally numerous. Most units

have their own operating systems and development tools. They typically

support other functions such as magnetic stripe reading, modem func-

tions, and transaction printing.

The Pros and Cons of Smart Cards

There is sufficient evidence in the computer industry that smart cards

greatly improve the convenience and security of any transaction. They

provide tompcrproof storage of user and account identity. They protect

against a full range of security threats, from careless storage ofuser pass-

Hardware Solutions: Overcoming Software Limitations 2 79

JavaCards

words to sophisticated system hacks. But smart cards, like other authen-

tication systems, are vulnerable to various attacks.

Moreover, a major drawback of smart card technology is price. The cost

is considerably higher than that of software~based access control (such as

passwords), creating a barrier to Widespread distribution of smart card

technology. As more units are sold, however, we should begin to see prices

fall, making smart cards and their associated hardware more affordable.

A JavaCard is a typical smart card: It conforms to all smart card stan-

dards and thus requires no change to existing smart card—aware applica-

tions. However, a JavaCard has a twist that makes it unique: A Java

Virtual Machine (JVM) is implemented in its read-only memory (ROM)

mask. The JVM controls access to all the smart card resources, such as

memory and I/O, and thus essentially serves as the smart card’s operating

system. The JVM executes a Java bytecode subset on the smart card, ulti-

mately allowing the functions normally performed off-card to be per-

formed on-card in the form of trusted loyalty applications. For example,

instead of using the card to simply store a private key, you cannow use

that private key to perform a digital signature.

The advantages of this approach are obvious. Instead of programming

the card’s Code in hardware-specific assembly language code, you can

develop new applications in portable Java. Moreover, applications can be

securely loaded to the card post-issuancewafter it’s been issued to the

customer. In this way, vendors can enhance JavaCards with new functions

over time. For example, bankcards that initially give customers secure

Internet access to their bank accounts might be upgraded to include

e-cash, frequent flier miles, and e—mail certificates.

History and Standards

Schlumberger, a leading smart card manufacturer, provided one of the

first working prototypes of a, Java—based card in 1996. The original imple—

mentation was made up of a smart card that housed a lightweight Java

bytecode interpreter. As work continued in this field, SUN Microsystems

280 Chapter 9

issued the first JavaCard specification in October 1996. This specification

was based on Schlumberger’s experience.

It was not until February 1997 that the concept of a JavaCard finally
took off, at which time Schlumberger and other smart card manufacturers

formed the JavaCard Forum. By the end of 1997, the JavaCard Forum had

released a new specification, JavaCard 2.0. This specification answered

many of the shortcomings of the original specification and included many

new concepts. '

Another standard, which is of importance to JavaCards as well as to

smart cards, is the OpenCard Framework (00F). 00F‘, which was created

by the OpenCard Consortium, is made up of many of the leading smart

card and JavaCard manufacturers, as well as many application develop-

ers, such as Dallas Semiconductors, Gemplus, IBM Corp, Visa Interna~

tional, SUN Microsystems, and others.

OCF, similar to the JavaCard Forum, has been the driving force for the

development Java—based systems. Unlike the JavaCard Forum, which pro—

vides development specifications for applications to be run on—card, OCF

provides the development specifications for applications to be run in com-

puters and terminals.

NOTE:

The application specifications provided by OCF are for use by systems

that will communicate not only with JavaCards, but also with any smart

card that follows the PKCS #11 standard.

JavaCard Operations

A JavaCard operates like a typical smart card. When the smart card

reader sends a command, the JavaCard processes it and returns an

answer. To maintain compatibility with existing applications for smart

cards, a single JavaCard can process only one command at a time. Fig-

ure 98 illustrates the JavaCard components.

Hardware Solutions: Overcoming Software Limitations 281

Figure 9—8

JavaCard

components

ROMIEEPROM

Trusted Applet Trusted Applet

JavaCard ‘.

Class Library

JavaCard

Virtual Machine

Communication and Cryptography I
Device Drivers ,

Smart Card Hardware I Hardware
|

Other Java Tokens

Figure 9-9

Crypto iButton
form factors:

(a) wristwatch;

(b) dog‘tag—type

token; (c) Java

ring

Another great advancement that has taken off because ofJavaCard tech—

nology is the advent of other kinds of Java tokens, including Java rings.

Java rings offer the most personal of tokens: jewelry. The ring is a steel

casing that houses an 8—bit microprocessor called Crypto iButton. This

microprocessor is similar to one you might find on smart card. It has its

own real-time clock and a high-speed math accelerator to perform

1,024~bit public-key operations. Conceivably, it can hold additional infor—

mation (such as a passport, driver’s license, or medical data). The Crypto

iButton microprocessor is not specific to Java rings and can be found in a

number of other form factors, as shown in Figure 9-9.

Z82 Chapter 9

Biometrics

Biometrics is the science of measuring a characteristic of the human body;

in its commercial application, such measurements are used to verify the

claimed identity of an individual. Physical characteristics such as finger-

prints, retinas and irises, palm prints, facial structure, and voice are some

of the many methods being researched. Because these characteristics are

relatively unique to each individual, biometrics provides an excellent

means of authentication. As explained in the following sections, this tech-

nology is particularly useful for authentication when applied to commerce
over the Internet.

Biometric systems are believed to provide a higher level of security

than other forms of authentication, such as the use of passwords or PINS.

One reason is that a biometric trait cannot be lost, stolen, or duplicated,

at least not as easily as a password or PIN. Second, the use of biometrics

provides nontransferable authentication. Simply stated, all other types of

authentication, such as a key, are transferable. You can give someone your

private key, but not your eyeball or finger (we hope).

Biometric Systems Overview

The various biometric recognition mechanisms typically operate in two

modes: enrollment and verification. In the enrollment process, the user’s

biological feature (physical characteristic or personal trait) is acquired

and stored for later use. This stored characteristic, commonly known as a

template, is usually placed in a back-end database for later retrieval. The

verification process is as you might expect. The user’s characteristic is

measured and compared against the stored template. The following sec—

tions describe these processes in greater detail.

Enrollment

For initial use of the biometric, each user must be enrolled by a system

administrator, who verifies that each individual being enrolled is an

authorized user. The biological feature is acquired by a hardware device,

known as a sensor, which typically resides at the front end of the biomet-

ric authentication mechanism. When a physical feature is presented to

the sensor, the sensor produces a signal that is modulated in response to

variations in the physical quantity being measured. If, for example, the

Figure 9-10

Enrollment

process

Hardware Solutions: Overcoming Software Limitations 283

sensor is a microphone used to capture a voice pattern, the microphone

produces a signal Whose amplitude (voltage or current) varies with time

in response to the varying frequencies in a spoken phrase.

Because the signals produced by most biometric sensors are analog,

they must be converted into digital form so that they can be processed by

computer. An analog—te—digital converter is therefore the next stage in

most systems. Analog—to-digital converters take an analog input signal

and produce a digital output stream, a numeric representation of the orig-

inal analog signal. Rather than use raw data from the sensor, biometric

systems often process the data to extract only the information relevant to

authentication. Further processing may be used to enhance differences

and compress data. When the digital representation has been processed to

the desired point, it is stored. Most biometric devices take multiple sam-

ples during enrollment to account for degrees ofvariance in the measure-

ment. Figure 9—10 illustrates a typical enrollment process.

Once approved, server

requests a biomeuic
scan

User registers with ;
server 3

Server stores the E

biometric template ;

Biometric scan is taken,

and a digital .

representation is created 3
and sent to server

Template
database

Verification

After users are enrolled, their biometrics are used to verify their identity.

To authenticate someone, his or her biological feature is acquired from the

sensor and converted to a digital representation, called a live scan. Then

the live scan is compared to the stored biometric template. Typically, the

live scan does not exactly match the user’s stored template. Because hi0-

metric measurements almost always contain variations, these systems

Z 84 Chapter 9

cannot require an exact match between the enrollment template and a

current pattern. Instead, the current pattern is considered valid if it falls

within a certain statistical range of values. A comparison algorithm is

used to determine whether the user being verified is the same user that

was enrolled.

The comparison algorithm yields a result that indicates how close the

live scan is to the stored template. If the result falls into an “acceptable”

range, an affirmative response is given; if the result falls into an “unac-

ceptable” range, a negative response is given. The definition of “accept-

able” differs for each biometric. For some biometrics, the system

administrator may set the level of the acceptable range. If this level is set

too low, however, the biometric fails to be a valid authentication mecha—

nism. Similarly, if it is set too high, the authorized users may have trou-

ble being authenticated. Pattern matching is fundamental to the

operation of any biometric system and therefore should be considered a

primary factor when you’re evaluating a biometric product. Figure 9-11

illustrates a typical verification process.

Figure 9-1 1 .

Verification ' I.
process ”a

. Template

User’s biometric is Server verifies login 5 database

scanned and the template ‘ template against stored

is generated, which is template. If match is

sent to the server... . confirmed, user may

Logged in...
C:> :

Templates

continue...
In general, most available biometric authentication mechanisms function

as explained in the preceding sections. One key feature of biometrics is

the template. The accumulated templates of all users are referred to as

the template database. These databasesrequire the same protections as

password databases. The size of the templates vary from system to sys-

Hardware Solutions: Overcoming Software Limitations 235

tem. When you’re testing these systems for accuracy, you should examine
the templates to determine Whether unique biometric features are ade-

quately represented.

Another aspect of templates that affects biometric authentication is the

approach taken by the comparison algorithm in using the template. Most

devices use the template for verification, but some use it for identification.

In the latter, the device takes a live scan and then compares it against the

entire template database to determine Whether any of the stored repre—

sentations falls within the acceptable comparison algorithm range. In con-

trast, a biometric verification compares the live scan only against the

single template of the person Whom the user claims to be. For example, a

user types a user name and then submits to a live scan for verification.

The comparison algorithm compares the scan only to thetemplate associ-

ated with that user name. Typically, verification biometrics are faster

because they do not have to compare the live scan against the entire tem-

plate database.

Recognition Methods

Just as every human body has countless unique characteristics, countless

recognition methods can be used in biometrics. Let’s look at some of the

common biometric recognition methods in use.

Fingerprint Recognition

Fingerprint recognition is probably the most common form of biometrics

available. This form of data encryption has evolved from the use of finger-

prints for identification over the past several decades. By having an individ«

ual scan a fingerprint electronically to decode information, the transmitter

of the data can be certain that the intended recipient is the receiver of the

data. When scanned electronically fingerprints provide a higher level of

detail and accuracy than can be achieved with manual systems.

Another strength of fingerprint biometrics is that giving fingerprints is

more Widely accepted, convenient, and reliable than other forms of physi-

cal identification, especially when technology is used. In fact, studies have

shown that fingerprint identification is currently thought to be the least

intrusive of all biometric techniques. One concern. of fingerprint biomet-

rics is that latent prints left on a scanning medium will register a prior

user; however, units exist that do not operate unless a “live” finger is on

Z86 Chapter 9

the medium, and they register only the later imprint. The error rate expe—

rienced with this form of encryption is approximately 1 in 100,000 scans.

One of the most important features of fingerprint biometrics is its low

cost. Scanners are fairly inexpensive, and as the technology becomes more

common the cost should only decrease. In fact, in anticipation of wide-

spread use of this technology in the future, some mouse manufacturers

are developing products with built-in fingerprint scanner technology.

Optical Recognition

There are two common types of optical biometrics: retinal and iris. These

devices are more accurate than fingerprint and hand devices because both

the retina and the iris have more characteristics to identify and match

than those found on the hand. Retinal and iris scanning devices have

come a long way in recent years and now allow individuals to be scanned

even through eyeglasses or contact lenses. The error rate for a typical

retina or iris scanner is about 1 in 2,000,000 attempts, something that

further demonstrates the reliability of this technology. Two drawbacks to

these devices, however, are that they have difficulty reading images of

thoSe people who are blind or have cataracts and that they currently are

cumbersome to use.

The cost of these systems averages $6,500, making them somewhat

unattractive for network users. But as this technology becomes more stan-

dardized and accepted, the cost should fall and become less of a factor in

decision making.

Facial Recognition

In this form of biometrics, an image is examined for overall facial struc—

ture. This approach is often less reliable than more common forms such as

fingerprints and iris scans. Moreover, the interpretative functions per-

formed by the computer are much more subjective using this technology.

Although one benefit of facial biometrics is that it can be applied at either

at close range or over greater distances, it loses accuracy progressively as

the distance increases between the individual and the scanner. Changes

in lighting can also increase the error rate.

An attractive feature of facial recognition products is their low cost.

Units can typically be purchased for as little as $150. At this price, this

technology might lend itself to electronic commerce, but the units can be
cumbersome to use and still are not as reliable as other forms of biomet-

rics for encryption purposes.

Hardware Solutions: Overcoming Software Limitations 287

Voice Recognition

Voice recognition offers several advantages for use in encryption. Not only

is voice biometrics perfect for telecommunications applications, but also

most modern personal computers already have the necessary hardware to

use the applications. Even if they don’t, sound cards can be purchased for

as little as $50, and‘ condenser microphones start at about $10. This

means that for less than $100, individuals can possess the technology

needed to have fairly reliable biometric encryption technology for use over
the Internet.

This type of biometric is not as accurate, however, as some other forms.

The error rate for voice recognition ranges between two percent and five

percent. However, it lends itselfwell to use in the public telephone system
and is more secure than PINS.

Some drawbacks to this technology are that voiceprints can vary over

the course of the day, and if a user has a health condition such as a cold or

laryngitis, it can affect verification.

Signature Recognition

Most adults are familiar with the signing of documents. In our personal

lives we sign everything from personal checks to birthday cards. In the

business world we sign things such as expense accounts and other official

documents. This widespread practice lends itself well to the use of signa-

ture recognition as a means of biometric verification in electronic com-

merce. This type of signature identification, however, is different from the

normal two—dimensional signature that you find on a form or document.

Biometric signature recognition operates in a three-dimensional environ-

ment that uses measurements not only of the height and width but also

the amount of pressure applied in a pen stroke; the latter measurement

gauges the depth of the stroke as if it were made in the air. This extra

dimension helps to reduce the risk offorgery that can occur in two—dimen-

sional signatures.

One drawback to signature recognition is that people do not always

sign documents in exactly the same manner. The angle at which they sign

may be different because of their seating position or their hand placement

on the writing surface. Therefore, even though the three-dimensional

approach adds to its ability to discern impostors, this method is not as

accurate as other forms of biometric verification.

Signature recognition systems are not as expensive as some of the

higher-end systems such as iris scanners; they are priced more in the

288 Chapter 9

range of voice and fingerprint scanners, and that makes them affordable
for network use.

Keystroke Recognition

This technology is not as mundane as it sounds. The concept is based on a

password or PIN system but adds the extra dimension of keystroke

dynamics. With this technology, not only must intruders know the correct

password, but they must also be able to replicate the user’s rate of typing
and intervals between letters. Even if an unauthorized person is able to

guess the correct password, it’s unlikely that he will be able to type it with

the proper rhythm unless he has the ability to hear and memorize the cor—

rect user’s keystrokes. '

Keystroke recognition is most likely one of the least secure of the new

biometric technologies that have evolved in recent years, but it is also

probably one of the least expensive and easiest to implement. It probably

won’t gain much attention for use in electronic commerce because simi-

larly priced systems offer far more reliability.

Biometric Accuracy

When you’re choosing a biometric authentication system, an important

consideration is its accuracy. The accuracy of biometric authentication

systems can be categorized by two measures: the false acceptance rate

(FAR) and the false rejection rate (FRR). A system’s FAR reflects the situ-

ation in which a biometric system wrongly verifies an identity by match-

ing biometric features from individuals who are not identical. In the most

common context, false acceptance represents a security hazard. Similarly,

a system’s FRR reflects the situation in which a biometric system is not

able to verify the legitimate claimed identity of an enrolled person. In the

most common context, the user of a biometric system will experience false

rejection as inconvenience.

Suppliers of biometric systems often use FAR together with FRR to

describe the capabilities of the system. Obviously, FRR and FAR are

dependent on the threshold level. Increasing the threshold will reduce the

probability of false acceptance and therefore enhance security. However,

system availability will be reduced due to an increased FRR.

How these rates are determined is fundamental to the operation of any

biometric system and therefore should be considered a primary factor

Hardware Soiutions: Overcoming Software Limitations 289

when a biometric system is evaluated. You should be aware that manna

facturers’ FAR and FRR numbers are extrapolated from small user sets,

and the assumptions for the extrapolations are sometimes erroneous.

You should assess these performance factors with an eye toward the

type of users who will use the system. For a proper live scan to be taken,

users must become familiar with the device. You can expect it to take two

weeks before the false rejection rate drops off. Another user consideration

is that not all users may be able to use the biometricw—for example,

because of an impairment that prevents them from taking an acceptable

scan. In that case, you may need to provide an alternative method to grant

those users access, or you may have to select a biometric based on the

needs of each set of users. When selecting a biometric, also consider user

acceptance. Some biometrics have met with resistance from users

because the technology is too invasive.

Combining Authentication Methods

Passwords, authentication tokens, and biometrics are subject to a variety

of attacks. Passwords can be guessed, tokens can be stolen, and even bio-

metrics have certain vulnerabilities; these threats can be reduced by

applying sound design principles and system management techniques

during the development and operation ofyour authentication system. One

method that can substantially increase the system’s security is to use a

combination of authentication techniques. ‘

For example, an authentication system might require users to present

an authentication token and also enter a password. By stealing a user’s

token, an attacker would still not be able to gain access to the host system

because the system would require the user’s password in addition to the

token. Although it might be possible to guess the user’s password, the host

system can make this extremely difficult by locking the user out after a

specified number of invalid passwords have been presented in succession.

After a user’s account has been locked in this manner, only the appropri-

ate system administrator or security officer should be able to unlock the

account.

Tokens can also be used to store biometric templates for user authenti-

cation. After enrollment, the user’s unique template could be stored on a

token rather than in a file on the host system. When the user requests

access to the system, a current template is generated and compared to the

290 Chapter 9

Figure 9-12

BioMouse Plus

from American

Biometric

Company

enrollment template stored on the user’s token. It would be preferable for

this comparison to be carried out internally by the token because in that

way the enrollment template would never need to leave the token. How-

ever, often this method is not possible because of the complexity of the

algorithms used for the comparison. The microprocessors typically used

in smart tokens cannot execute these algorithms in a reasonable time. If

the template comparison is done by the host system, the host must pro-

vide adequate assurance that users’ templates cannot be compromised.

In addition, the token and host system should implement an authentica-

tion protocol that ensures two things: that the host system is obtaining

the template from a valid token and that the token is submitting the tem-

plate to a valid host. The ideal situation is to have both the biometric sen-

sors and the comparison algorithm implemented on the token. In that

case, the token can perform the entire biometric authentication process.

Figure 9~12 shows one of the newer products available on the market,

which combines authentication methods.

 Hardware Solutions: Overcoming Software Limitations 291

Summary

A wide variety of cryptographic hardware is available on the market. Var-

ious tokens can be used for authentication, as can various microprocessor

cards, biometrics, and accelerators. Each of these approaches has its place,

for the right price.

Vendors

A great many vendors manufacture and sell cryptographic accelerators,

tokens, smart cards, and biometric devices. Table 9-1 lists some of the

manufacturers and the products they sell.

uammbnmhooAHamfimwarmwmmofiflmwagon—Emm—

Swfiamo“Eamaow653-3038noflue330mban—8m“.0thhem—mamaAHHHDUQmEnfiflwwfiwvm$9.3053mEnema.

gmumz“$339908mg”323933334‘
manqowanwfifiqgfifiufidam«odeoMaa—fi€8.03“E32533390umH—wfiommcmuflmfifiaficufidaawmggxh3335.3va

H53.MmfiflafloqwfiowfifigfimfiiHouofiwfiofiammmmanbvéfiofimmmfimfiEMEMQEo~38EmgmnmxhBEmommofiannuvm.«Ha—mam385.333135???33mwMSmQ
\fiouuflfifiuegmfigfifiunan...”magnum4mmmaggopfiwmuékbgufifimmwwomofiomeEBQEMmace.wmafioo.E§"mfiAvmnmfioo\Eou.nm£&o:.E§fifiA$39an03on3355390

mumasuofisnmguEmmumfigoTm03MB
292

Thanks to the Internet, e-commerce has dramatically changed our ways of

conducting business. As each day passes, paper-based transactions—

including agreements that have legal force—are becoming obsolete as the

use ofelectronic agreements transmitted over the Internet increases in pop-

ularity. The main motivation for this change is convenience. Distance, for

example, is no longer a barrier to getting an agreement signed. Within sec-

onds, an electronic agreement can travel across the world, receive an elec-

tronic (or digital) signature, and be returned completed. But this new

world ofe-commerce requires close attention to legal and technical issues.

Users’ experiences with digital signatures (see Chapter 5) have shown

that this technology can save e—commerce parties time and money. Com-

pared with paper signatures, digital signatures offer a number ofbenefits:

I Message integrity A digital signature is superior to a handwritten

signature in that it attests to the contents of a message as well as to

the identity of the signer. As long as a secure hash function is used,

there is no way to take someone’s signature from one document and

attach it to another, or to alter the signed message in any way, The

slightest change in a signed document will cause the digital

signature verification process to fail. Thus, authentication allows

people to check the integrity of signed documents. Of course, if

294 Chapter 1 0

signature verification fails, it may be unclear Whether there was an

attempted forgery or simply a transmission error. I Savings The use of open systems (such as the Internet) as

transport media can provide considerable savings of time and money.

Furthermore, adding automation means that data can be digitally

signed and sent in a timely manner.

 3 Storage Business data (contracts and similar documents) can be

stored much more easily in electronic form than in paper form. :

Furthermore, in theory an electronic document that has been :5.

digitally signed can be validated indefinitely If all parties to the

contract keep a copy of the time-stamped document, each of them can

prove that the contract was signed with valid keys. In fact, the time

stamp can prove the validity of a contract even if one signer’s key

becomes compromised at some point after the contract was signed.

5 Risk mitigation If properly implemented, digital signatures

reduce the risk of fraud and attempts by a party to repudiate

(disavow) the contract.

Before companies and individuals adopt these new techniques, how-

ever, they must first address a few legal and technical concerns. In US.

federal law, under the Statutes of Frauds, a party that claims that a an

tract was made must provide proof. The traditional method of proof is the

document with a handwritten signature. The question is whether an elec-

tronic document containing a digital signature is secure and therefore

reliable as proof. The Federal Rules of Evidence allow computer data to be

admitted as business records if a foundation is established for their relia—

bility. As this book is being written, new federal legislation has taken

effect. This legislation provides that an electronic signature has the same

legal status as a handwritten signature. It should be noted, however, that

these new laws are still untested.

This chapter provides insight into the many aspects of digital and elec-

tronic signatures as they apply to eacommerce. We discuss concepts and

requirements, legal and technical, that users must completely understand

if they hope to apply these signatures. We also look at the various relevant

laws, including the newly enacted federal Electronic Signatures in Global

andNational Commerce (E—SIGN) Act. Finally, we discuss the differences

between electronic and digital signatures and howr each falls short if the

proper concepts and requirements aren’t used.

Digital Signatures: Beyond Security 295

Legislative Approaches

As we’ve discussed, digital signatures offer a range of benefits for busi-

nesses and consumers alike.,For digital signatures to make their way into .

mainstream, however, two barriers must be overcome:

I How to give documents that exist only in electronic form the same

legal status as paper documents

I How to provide a secure, reliable, and legally sanctioned method for .

“signing” electronic documents that will eliminate the need to

generate and sign paper documents, thereby. encouraging and

facilitating electronic commerce

Both problems require legislative solutions.

Legal Guidelines from the American
Bar Association

The American Bar Association (ABA), the organization that represents

the legal profession in the United States, has done considerable work on

the legal aspects of digital signatures. In 1996, the ABA’S Information

Security Committee, Section of Science and Technology, published a docu-

ment titled “Digital Signature Guidelines.” These guidelines were origi-

nally drafted to provide “general, abstract statements of principle,

intended to serve as long-term, unifying foundations for digital signature

law across varying legal settings.” Many states have chosen to model their

own digital signature legislation after these guidelines.

Many legal professionals, with the exception of the ABA special inter-

est legal groups, are playing catch-up in the fast evolving and sometimes

complicated digital world. As the‘number of e—commerce sites using digi-

tal signatures increases, so will the need for lawyers Who can render

sound legal advice. Clients Will begin to look to attorneys and others for

guidance about the appropriate level of security for a given line of elec-

tronic business and other transactions.

It will be of the utmost importance for attorneys to cooperate closely

with business and technical specialists in the procurement and deploy-

ment of computer security systems generally, and specifically those sys-

tems that require electronic signatures. The legal consequences that flow

296 Chapter 10

from the presence or absence of particular elements of data security will
constitute risks, liabilities, and other potential costs that should be taken

into account from the beginning.

Legal Concepts Related to Digital Signatures

Because electronic documents can be easily copied and modified without

detection, they cannot automatically be assumed to be authentic. More-
over, unlike. hand—written characters, digitally encoded characters are not
unique. The signature on an electronic document is not physically con—
nected to the document’s content.

To Withstand both legal and technical tests, the recipient of an elec~

tronic document containing a digital signature must be able to prove to an

impartial third party (a court, a judge, or a referee before Whom the par-
ties have agreed to submit for resolution any issue or dispute) that the
contents of the document are genuine and that it originated with the

sender. In addition, the signature must be such that the sender‘cannot

later disavow the contents of the document.

Before we go any further, let’s review the concepts of nonrepudiation
and authentication, which have been described earlier (see Chapters 5

and 6). These concepts play a key role in the legalities of digital signa-

tures, and it is important to understand how they differ in the digital
world compared with the paper world.

Nonrepudiation

Nonrepudiation, at its most basic, is the ability to prove to an impartial
third party—after the fact—that a specific communication originated
with and was submitted by a certain person or was delivered by a certain

person. Nonrepudiation, then, defines the means that are used to prevent
illegitimate breaches of contract on the same grounds. This means that
evidence exists thst ties the identity of a party to the substance of a mes-

sage or transaction at a certain point in time and that the evidence is suf-
ficiently strong to prevent or rebut that party’s subsequent denial of it.

The 1988 ISO Open Systems Interconnection Security Architecture

standard provides a limited definition of nonrepudiation as a security ser-

Digital Signatures: Beyond Security 297

vice that counters repudiation, where repudiation is defined as “denial by

one of the entities involved in a communication of having participated in

all or part of the communication.” Signatures, seals, recording offices, cer-

tified mail, letters of credit, notaries, auditors, and collateralized bills of

lading are examples of nonrepudiable business practices traditionally

employed to support legally binding business transactions.

These elements of nonrepudiation must now be incorporated into the

electronic environment—in real time, with full assurance, and without a

paper trail.

In the absence of this kind of rigor, how can businesses operating at

Internet speed avoid or resolve disputes? It is only with a full set of digi-

tal nonrepudiation elements that irrefutable evidence can be shown in a

court of law. Otherwise, businesses aren’t protected against breach of con-

tract, fraud, currency fluctuations, insolvency, credit risks, incomplete

funds delivery, and operational failure.

Nonrepudiation services provide trusted evidence that a specific action

occurred. The concept of nonrepudiation, as it pertains to information

security and digital signatures, can be broken into three types: nonrepu-

diation of origin, nonrepudiation of submission, and nonrepudiation of

delivery.

I Nonrepudiation of origin This concept protects the recipient of a

communication by guaranteeing the identity of the originator of a

communication. It further confirms the time the message was sent

and ensures that the message was not tampered with during
transmission.

l Nonrepudiation of delivery This concept protects the sender of a

communication by guaranteeing essentially the same elements as

does nonrepudiation of origin. As with nonrepudiation of origin, it can

be used to provide the time a message was sent and to indicate

whether the data was tampered with during transmission.

I Nonrepudiation of submission This concept is similar to

nonrepudiation of origin and delivery except that it is used to protect

the sender against any claim by the recipient that the data wasn’t

sent or wasn’t sent at a specific time.

298 Chapter 10

Authentication

For the purposes of this chapter, and in relation to digital signatures, two

types of authentication must be understood: signer authentication and
data authentication.

For a document to have any legal force, the signer of the document

must be authenticated; this concept is called signer authentication. If

someone signs a loan certificate, for example, the bank can store the bor-

rower’s signature for use later in legal ways because the signature is
believed to authenticate the borrower with a high probability. A signature

should. indicate who signed a document, message, or record, and it should

be difficult for another person to produce the signature without autho-

rization. If a public/private key pair is associated with an identified

signer, the digital signature attributes the message to the signer. The dig~

ital signature cannot be forged unless the signer loses control of the pri-

vate key (a “compromise” of the private key), such as by divulging it or

losing the medium or device in which it is contained.

Data: authentication is comparable to stamping a document in a way

that disallows all future modifications to it. Data authentication‘is usu~

ally accompanied by data origin. authentication, which binds a concrete

person to a specific document (for example, by limiting the number of per—
sons who use the stamp). A signature should identify What is signed, mak—

ing it impracticable to falsify or alter either the signed matter or the

signature without detection. The digital signature also identifies the
signed message, typically with far greater certainty and precision than

paper signatures. Verification reveals any tampering because the com—

parison of the hash results (one made at signing and the other made at

verifying) shows whether the message is the same as when signed.

Signer authentication and data authentication are used to exclude

impersonators and forgers, and they are essential ingredients in what is

often called a nonrepudiation service. A nonrepudiation service provides

assurance of the origin or delivery of data in order to protect the sender

against false denial by the recipient that the data has been received, or to

protect the recipient against false denial by the sender that the data has

been sent. Thus, a nonrepudiation service provides evidence to prevent a

person from unilaterally modifying or terminating legal obligations aris~
ing from a transaction effected by computer-based means.

Digital Signatures: Beyond Security 299

Written Versus Digital Signatures

Although digital and written signatures can serve the same purposes,

there are obvious physical differences. Let’s look at the differences

between the signatures applied to written and digital documents.

Written Documents

Traditionally, someone’s signature on a literal document authenticates

the origin of the data contained in it. Because people sign various docu-

ments during their lifetimes, their signatures become a part of their iden-

tity over time. By using a unique combination of pencil strokes that is

very difficult for anyone else to forge, they can sign anything, almost with-

out thinking. Additionally, loan certificates (and other documents that

may have legal force) have been designed to guard against forging of a

signed document. Examples include documents that use watermarks,

embossing, and special ink treatment, all of which provide protection

against photocopies and other forgeries.

Digital Documents

Electronic documents can easily be copied and modified without detection.

To generalize this consideration, digital information is usually defined

(loosely) as the kind of information not bounded to any concrete carrier,

such as the ink on a piece of paper. Additionally, the digital information

lacks personality (a file saved by someone can be easily updated by some-

one else having the appropriate permissions).

Clearly, the traditional methods of signing by appending the signature

to an existing document do not work for electronic documents. Anyone can

simply modify the document and append the same signature to it.

Requirements for the Use of Digital Signatures

For current digital signature legislation to withstand the test of litigation,

a number of important issues must be resolved. The American Bar Asso-

ciation’s “Guidelines for Digital Signatures” is an excellent foundation,

but corporations and individuals might wish to focus on concerns not

addressed in the guidelines. The following sections describe those require-

ments, which are essential if digital signatures are to stand up.

300 Chapter 10

Public Key Infrastructures

To effectively incorporate digital signatures within an e—commerce frame-

work, an organization should create and maintain a public-key infra-

structure (PKI), as described in Chapter 6. To a point, having a PKI

ensures that only valid keys are used in signing and verifying electronic

documents.

The PKI must enforce policies whereby properly administered certifi—

cation authorities (CAs) and registration authorities (RAs) are used,

requiring end users to show reliable proof that authenticates them. Fur-

thermore, public-key certificates can be housed in a central location that

can be accessed by any relying party. Finally, a PKI serves to revoke or

suspend certificates as needed.

Control of Key Revocation

Another important issue related to the use ofdigital signatures is the man-

agement ofprivate signature keys. If an unauthorized person gains access

to a private key, the thiefwill be able to forge the owner’s signature on elec—

tronic documents. To prevent this, a user should be able to revoke a com-

promised signature key in the public directory. Here are some guidelines:

I All users should be able to revoke their public keys from the

directory at any time. For this policy to work, CAs should save (in

the public directory) information about all revoked keys.

I An authority should be able to revoke the signatures issued for its

employees. A separate CA could certify digital signatures for

employees of a given company.

I Online Certificate Status Protocol (OCSP), which was explained in

Chapter 6, should be used to ensure that verifiers receive the most

current revocation status.

Time-Stamping

Another issue is time~stamping. Digital signatures provided through the

use of public—key technology can be called into question for a simple rea-

son: If the signer of a particularly important document (for example, a

Figure 10-1

Time—stamping

components

Digital Signatures: Beyond Security 301

loan agreement) later wishes to repudiate her signature, she can dishon—

estly report the compromise of her private key and ask it to be revoked. A

later verifier will not be able to certify whether the signing happened
before or after the revocation.

Time-stamping is a set of techniques that enable you to ascertain

whether an electronic document was created or signed at (or before) a cer-

tain time. Tn practice, most time-stamping systems use a trusted third

party called a time-stamping authority (TSA). A time stamp is the TSA’s

digital attestation that an identified electronic document was presented to
the TSA at a certain time.

A timestamping service (T88) is a collection of methods and techniques

providing long-term authentication of digital documents. The object of a

T83 is to authenticate not only the document but also the moment in time

at which the document is submitted for authentication. Figure 10-1 illus-

trates the interaction between end-users and a trusted time-stamping
server available from Datum.

The importance of time—stamping becomes clear when there is a need

for a legal use of electronic documents with a long lifetime. Without time»

stamping, you cannot trust signed documents after the cryptographic

primitives used for signing have become unreliable, nor can you resolve

cases in which the signer repudiates the signing, claiming to have acci-

dentally lost the signature key.

During recent years, especially in the context of legal regulation of the

use of digital signatures, the organizational and legal aspects of time-

stamping have become the subject ofworldwide attention. Time-stamping

helps to significantly lower the level of trust currently required of a PE]

by making it possible to prove that a document was signed before the cor-

responding signature key was revoked. For that reason, organizations

often depend on time-stamping to resolve the status of documents.

302 Chapter 10

Current and Pending Legislation

Digital signature legislation has been an ongoing issue for some time.

Worldwide, especially in Europe, digital signature laws have been in effect

for about a decade. The United Nations Commission on International Trade

Law (UNCITRAL), a model law on electronic commerce, took effect in 1996

and has had a major influence on signature laws worldwide. The UNCI-

TRAL model law takes a high-level, enabling approach to electronic signa—

tures and records, with no mention of digital signatures or cryptography.

Only during the past five years has the United States gained momen-

tum in this legal arena. The first state law, enacted in Utah in 1995 and

amended in March 1996, is widely recognized as an important and posi-

tive first step toward legal recognition of digital signature technology. The

Utah act provides for the licensure of certification authorities by the Utah

Department of Commerce. Utah’s law also details the rights and liabilities

of parties to a transaction using public—key cryptography and a licensed

certification authority. In 1996, Washington state adopted legislation

closely resembling the Utah law. Other states, most notably. Georgia,

began considering bills modeled after the Utah law, and, for a time, it

seemed that a consensus was developing among the states.

Now, however, various policy issues have increasingly moved states

toward approaches that are less regulatory, less technology-specific, and

‘more incremental. For example, California and Arizona enacted legisla-

tion permitting the use of digital signatures for transactions involving

state entities. This legislation authorized the two states’ secretaries of

state to promulgate regulations to achieve the purpose of the act. Still

other states have passed laws permitting the use of electronic signatures

for particular purposes, such as for medical records (Connecticut) or for

budget and accounting purposes, such as electronic check signing by the

treasurer (Delaware). Georgia, along with a number of states that had leg-

islation resembling the Utah act, have allowed the bills to die and opted

for further study.

The effort in Massachusetts exemplifies an attempt to craft laws that

directly address the legal issues raised by electronic commerce but do not

exclusively codify public-key cryptography in statute. This approach seeks

generally to remove legal obstacles to electronic communications and

transactions by giving legal effect to electronic signatures and electronic

records. The law would also specifically provide for the admissibility of

electronic signatures and records.

Digital Signatures: Beyond Security 303

The problem with the state laws, however, is that no two sets of laws are

the same. Building on the work in Massachusetts, the federal government

is trying to provide a solution by working on new federal legislation. The

US. House and Senate, after long negotiations, compromised on a new

electronic signature bill, the Electronic Signatures in Global and National

Commerce (E-SIGN) Act, on June 9, 2000. The E-SIGN Act makes elec-

tronic, or online, signatures as legally binding as ink-and-paper signatures

and states that they can be used as evidence in legal proceedings.

The E-SIGN Act

President Bill Clinton signed the E-SIGN Act on June 30, 2000. E—SIGN

gives legal recognition and effect to electronic signatures, contracts, and

records, and it empowers the use of online contracts and provision of

notices. The law became effective October 1, 2000, except for certain pro-

visions affecting the use of electronic records to satisfy records retention

requirements, which became effective March 1, 2001. E-SIGN requires a

consumer to agree to electronically signed contracts and consent to receiv—

ing records over the Internet. Companies must verify that customers have

an operating e-mail address and other technical means of receiving infor-

mation. Some notices, such as evictions, health insurance lapses, or elec-

tricity lapses, must still come in paper form.

Under E-SIGN, federal agencies are given authority allowing them to

unconditionally exempt specified types of records from the consumer

consent provisions. Most notably, the legislation directs the Securities

and Exchange Commission (SEC) to use this authority to issue a regula-

tion that effectively allows mutual funds to provide prospective investors

with an electronic fund prospectus at or before the time they access elec-

tronic sales literature, without first obtaining investor consent to the

electronic format of the prospectus. Inthis way, funds can continue the

practice, permitted under the SEC’s interpretive releases, of using

hyperlinks on their Web sites to give prospective investors simultaneous

access to both sales literature and the fund’s prospectus.

E-SIGN was originally designed to boost Internet e-commerce transac-

tions, for both business-to-business (B2B) and business—to-consumer (B2C)

markets, by eliminating paperwork arising from contracts. The effect of

the E—SIGN Act is uniform nationwide legislation enabling the use of elec—

tronic records and signatures for interstate and international commerce.

304 Chapter 10

Electronic Versus Digital Signatures:
What’s the Difference?

Simply put, an electronic signature is any symbol or method, accom-

plished by electronic means, that is executed or adopted by a party

with present intention to be bound by_or to authenticate a record. An

electronic signature can be created by any electronic means. For

example, the output of a sophisticated biometric device, such as a

fingerprint computer recognition system, could qualify as an elec-

tronic signature, and so would the simple entry of a typed name at

the end of an e-mail message. The principle is that the symbol or

method was executed or adopted by the signer with a present intent

to sign the record. This definition focuses on the traditional legal

purposes of a signature and not on the particular medium or manner

chosen to effect the signature.

In contrast, a digital signature refers to a particular implemen—

tation of public-key cryptography (such as the implementation

described in Chapter 5). More formally, a digital signature can be

defined as the transformation of a record using an asymmetric cryp-

tosystem and a hash function such that a person having the initial
record and the signer’s public key can accurately determine (a)

whether the transformation was created using the private key that

corresponds to the signer’s public key and (b) whether the initial
record has been altered since the transformation was made.

In other words, a digital signature is created by use of a public-

key system, whereas an electronic signature is produced by any com-

puter method, including public-key systems. Digital signatures are

technology-specific. Electronic signatures are technology-neutral.

The use of low-security electronic signatures, such as simply typ-

ing one’s name on an e—mail, raises serious questions ofproofregard-

ing the authenticity of such a signature. However, there are times

when little or no security is warranted. A given transaction or mes-

sage may be informal, of little or no value, or otherwise not reason-
ably likely to form the basis of subsequent dispute. For example, it’s

common practice to conclude purely social e-mail messages with the

typing of the sender’s name. In this case, the name is a symbol
intended to authenticate the document but not necessarily mani—

festing intent to be bound by the content—assuming there exists

Digital Signatures: Beyond Security 305

’3

any particular content at all. In this context, the word “authenticate

means merely the intention to represent that the signer was the

sender. In common practice, e-mail among friends and close col-

leagues is often concluded with the initials of the sender alone.

For more formal, but low~risk, electronic transactions, a more

robust signature system may be desirable. This does not necessarily

mean that a full~fledged public-key solution is required. For exam~

ple, some business and professional online services require entry of

a user name and password to access their systems. After users are

on the system, they may be entitled to additional information or ser~

vices, such as online dialog with an expert or authorization to view

value-added proprietary documents. Here, the electronic signature

is created by use of a user name and password, probably relying on

access control technology far less expensive and simpler to use than

public—key cryptosystems. Depending on the understanding of the

parties as evidenced by contracts, disclaimers, or other conditions of

use, the use of this system may authenticate the user and also by
implication, or perhaps expressly, express intent to be bound by

billing rates or other terms.

Following is a description of various E-SIGN provisions:

Technology ‘E-SIGN requires that parties to a contract decide on the

form of electronic signature technology. From a scanned handwritten

signature to biometric-protected smart cardaE-SIGN allows the use of

various forms of technology as long as both parties agree.

Notification The E-SIGN Act provides the following with regard to

notification:

1. The consumer decides whether to use an e—signature or

handwritten signature; the consumer must give consent before

receiving bills and other documents only in electronic form.

Cancellation and foreclosure notices must be sent on paper.

The vendor must conduct test e-mailings before sending

subsequent e—mail notifications.

4. The law does not allow e-signatures on adoptions, wills, and

product safety recalls.

5"!"

306 Chapter 10
I Rights Consumers must be made aware of any right or option to

receive a disclosure in paper form and what they must do to obtain

paper copies. Furthermore, consumers must be made aware of the

right to Withdraw consent to have records provided electronically,

including any conditions, consequences, or fees associated with doing

so. The organization must describe the procedures for withdrawing

consent and for updating information needed to contact the consumer

electronically.
a Consent Consumers must be presented with and must confirm the

hardware and software requirements for access and retention of

electronic records and must confirm consent to the contract. Both

confirmations must be visibly and conspicuously separate from all 5;;

other terms and agreements.

I Consumer obligations The consumer is obligated to inform

electronic records providers of any change in e-mail address or other

location to which the electronic records may be provided.

Furthermore, the consumer is obligated to notify the electronic

records provider before Withdrawal of consent.

m Enforcement The E—SIGN Act provides for its enforcement by

giving authority to government agencies as needed to protect the

public interest.
Dealing with Legal Uncertainties

Because the E-SIGN Act does not prescribe the technology that must be

used to sign and verify an electronic document, an electronic signature

could simply be a person’s typed name on e-mail. All that is required is for

both parties to agree to the technology. To the best of our knowledge, such

a signature in no way fosters nonrepudiation and authentication, which

have always been the foundation for commerce as we know it.

Ultimately, we believe that a more solid foundation will be needed. The

concepts of authentication and nonrepudiation are crucial to the opera-

tion ofbusiness transactions. To separate authorized users of information

from unauthorized users, there must be a reliable way to ascertain the

identity of the user. The Internet was not designed with adequate technit

cal means to achieve this identification. In fact, Without the existence of

the requirements listed in “Requirements for the Use of Digital Signa—

tures,” it is easy impersonate someone else.

Summary

Digital Signatures: Beyond Security 307

Finally, because the validity of documents with these new electronic

signatures has never been challenged in court, their legal status is truly

not yet defined. It’s likely that through such challenges, we will see the

courts issue rulings that will better define which methods, key sizes, and

security precautions are acceptable for electronic signatures to be legally

binding.

Digital signatures have the potential to possess greater legal authority

than handwritten signatures. Why? Digital signatures may provide a

higher degree of nonrepudiation and authenticity than their handwritten

counterparts. For example, if a ten-page document is signed by hand on

the tenth page, one cannot be sure that the first nine pages have not been

altered. However, if an electronic document is signed with a digital signa-

ture, a third party can verify that not one byte of the contract has been

altered. For this and other reasons, digital signatures also save the parties

time and money.

However, if digital signatures are to replace handwritten signatures,

serious issues—‘—some of which revolve around current legislation—must

be answered. For example, is the current E-SIGN Act enough? Do elec—

tronic signatures provide the same level of nonrepudiation and authen-

ticity provided by handwritten signatures?

E—SIGN is a great leap forward for both interstate and international

Internet commerce. However, E—SIGN should be seen more as a founda-

tion on which to build with current and emerging technologies, such as

the use of public-key technology, PKIs, and digital notaries.

Real-World Examples

A number of relevant products can be purchased or downloaded free from

the Internet. They range from enabling software to hardware that allows

users to authenticate themselves to their private signing key. Following

are only a couple of the available solutions.

308 Chapter 10

i RSA Security, Inc, as well as a number of other security software

vendors, offers developer software development kits (SDKs) and

products. BSAFE Cert-C and Cert-J, for example, allow developers to

use public—key certificates for a number of security services such as

digital signatures.

i Datum carries an excellent time-stamp device to be used in
conjunction with digital notaries or time-stamp authorities or to

provide in-house time-stamp services.

In addition to security vendors that sell products designed for users

and developers, we will likely see the advent of more businesses that will

offer services to support digital signatures. Such services include certifi—

cation authorities and time-stamp and digital notary services. Here are

some examples:

I Digisign is one company that has already begun selling time-stamp

and digital notary services.

a VeriSign is a certification authority that issues public—key certificates
to end users. ‘

Finally, we should not forget legal professionals. A great many legal

professionals have taken the time to become technically savvy, and we

expect to see this number increase as more related legal cases are seen in

the future.

f-

Over the past two decades, the computer industry has really taken offi

and the number of security incidents has increased significantly. Corpo-

rations as well as individuals have learned the hard way that data can

easily be accessed, disclosed, modified, or even deleted ifproper security

is not provided.

Over the years, companies have fallen short in their efforts to imple-

ment cryptographic solutions both in their own products and services and

in attempts to protect their internal enterprise from intruders. This chap-

ter summarizes the various types of losses that occur when a system is not

properly secured. We also outline the kinds of threats and intruders that

have come to be widely reported. Finally, we look at a number ofcase stud-

ies in which security was either overlooked or failed because of improper
implementation. (We describe successful case studies in Chapter 12.)

Measuring Losses

The kinds of losses that organizations can experience because of lapses in

computer security can be counted in a number ofways. Many people think

3 l 0 Chapter 1 1

first of the direct forms of loss, such as the loss ofdata. However, when yOu

look closely at what is at stake, loss of data is only the beginning. Follow-

ing is a short list of the types of losses that occur:

I! Loss of data or secrets When people hear the word “hacker,” this

is perhaps one of the first types of loss that they think of. This cate-

gory includes the loss of user credit card numbers, compromise of

financial reports, and unauthorized access to medical information.

NOTE:

The data itself need not have been stolen for a serious loss to result.

Instead, an attacker may manipulate the data in such a way that it is

rendered inaccurate or unusable.

I Loss of reputation After a successful breach of security, end users

may abandon a service or product because they’re afraid to use it. Yet

another aspect of this type of loss is the effect it has on assessments

of a corporation by financial analysts. Sometimes an analyst’s '

negative evaluation can have as great an impact as the break-in

itself. This may be one of the main reasons that corporations seldom

report break—ins and theft of data.

I Financial losses In addition to direct financial thefts, loss of data

and loss of reputation will result in financial losses. Financial losses

can be one of the most difficult to quantify. One reason is that no one

knows exactly how many current customers will not return following

a break—in or, worse yet, how many potential new customers will

never make the attempt.)

Types of Security Threats

J‘XwWMHNW'T>§MW2V*M‘”‘rfi;<..43.53:2,}...ask-Ly’,fv::rr,:.:¥.3::fi;“‘z’<’<,:;f.
To implement security effectively, corporations as well as individuals need

to be aware of a variety of potential threats. Let’s take a look at each these

threats.

was-w:bum/m

Doing it Wrong: The Break—Ins 3 l l
NOTE:

Each of the following threats does not necessarily require direct human

interaction. Through the use ofcomputer viruses or Trojan Horse applica-

tions, data can easily be destroyed, manipulated, or sent to an intruder

for viewing.

Unauthorized Disclosure of Data

Unauthorized disclosure of data results from an individual accessing or

reading information and revealing it either accidentally or intentionally.

Corporations and individuals are making greater use of networks, includ—

ing private networks such as local area networks (LANs) and wide area

networks (WANs) and public networks such as the Internet. As a result,

some of the data stored or processed on the network may require some

level of protection to ensure confidentiality Network data or software may

be compromised when it is accessed, read, and possibly released to an

unauthorized individual.

A common cause of unauthorized access is the failure to encrypt sensi—

tive information. Data can be compromised by exploiting the following

types of vulnerabilities:

l Storing data in the clear (i.e., unencrypted) when it is considered

sensitive enough to warrant encryption

I Failing to implement, monitor, and enforce appropriate authorization

and access—control mechanisms Where sensitive data is stored

Unauthorized Modification of Data

Information in digital form is often shared between many users and

stored on numerous shared devices. The unauthorized modification of

data includes the modification, deletion, or destruction ofdata or software

in an unauthorized or accidental manner.

A particularly insidious event is data modification that goes unde-

tected. When such modifications are present for long periods of time, the

modified data may be spread throughout the network, possibly corrupting

databases, spreadsheet calculations, and other forms of application data.

3 1 2 Chapter 1 1W

This kind of damage can compromise the integrity of application infor—

mation. When undetected software changes are made, all system software

can become suspect, warranting a thorough review (and perhaps rein—

stallation) of all related software and applications. i :

These kinds of unauthorized changes can be made in simple command

programs (for example, in PC batch files), in utility programs used on

multiuser systems, in major application programs, or in any other type of

software. They can be made by unauthorized outsiders as Well as those

who are authorized to make software changes (although not, ofcourse, the

damaging changes we are speaking of here). These changes can divert

information (or copies of the information) to other destinations, corrupt

the data as it is processed, and impair the availability of system or net-

work services.

The unauthorized modification of data and software can easily take

place when data integrity services are not provided.

Unauthorized Access

Unauthorized access occurs when someone who is not authorized to use

a system or network gains access, usually by posing as a legitimate user

of the network. Three common methods are used to gain unauthorized

access: password sharing, general password guessing, and password

capture.

Password sharing allows an unauthorized user to assume the network

access and privileges of a legitimate user with the latter’s knowledge and

acceptance. General password guessing is not a new means of unautho-

rized access. In password capture, a legitimate user is tricked into

unknowingly revealing his or her login ID and password. Methods of pass-

word capture include the use of a Trojan Horse program. To a user, this

program looks like a legitimate login program; however, it’s designed

solely to capture passwords.

Another method used to ultimately gain network access is to capture a

login ID and password as they are transmitted across the network unen-

crypted. A number of methods for capturing cleartext network traffic,

including passwords, are readily available.

Intruders can gain unauthorized network access by exploiting the fol-

lowing types of vulnerabilities:

Doing It Wrong: The Break—Ins 31 3

Lack of, or insufficient, identification and authentication schemes

PassWord sharing

The use of poor password management or easy-to-guess passwords

II

I

a

I Failure to patch known system holes and vulnerabilities

I The storage of network access passwords in batch files on PCs

I Lack of a time-out for login and log-off attempts

Disclosure of Network Traffic

Many users realize the importance ofprotecting confidential information

when it is stored on their workstations or servers; however, it’s also

important to maintain confidentiality as the information travels across

the network. The disclosure of network traffic occurs when someone who

is unauthorized reads, or otherwise obtains, information as it traverses

the network. Intruders can easily compromise network traffic by listen-

ing to and capturing traffic transmitted over the network transport

media. Examples of attack methods include tapping into a network cable

with the use of a hardware device that analyzes network traffic as it is

transmitted.

Traffic analyzing software, or snifi‘ers, allow intruders to access the net-

work the traffic is traversing. One such application is Sun Microsystdms’

“snoop” utility, which was originally created to allow administrators to ,

verify traffic flow across the network. But it also allows intruders running

the Solaris operating system to watch the flow of network traffic.

Information that can be compromised in this way includes system and

user names, passwords, electronic mail messages, application data, health

records, and so on. For example, even if patient records are stored on a

system in an encrypted form, they can be captured in plaintext as they are

sent from a workstation or PC to a file server. Electronic mail message

files, which usually have strict access rights when stored on a system, are

often sent in plaintext across a wire, making them an easy target for cap~

turing.

Disclosure of network traffic is usually the result of data sent in the

clear, across both public and private networks.

31 4 Chapter 1 l

Spoofing of Network Traffic

It’s a basic principle ofnetwork security that data that is transmitted over
a network should not be altered in an unauthorized manner—“either by

the network itself or by an intruder-as a result of that transmission.

Network users should have a reasonable expectation that any messages

they send will be received unmodified. A modification occurs when an

intentional or unintentional change is made to any part of the message,

including the contents and addressing information.

Spoofing ofnetwork traffic involves (1) the ability to receive a message

by masquerading as the legitimate receiving destination or (2) mas-

querading as the sending machine and sending an unauthorized message

to a destination. For an attacker to masquerade as a receiving machine,

the network must be persuaded that the destination address is the legit—

imate address of the machine. (Network traffic can also be intercepted by

listening to messages as they are broadcast to all nodes.) To masquerade

as the sending machine and deceive a receiver into believing the message

was legitimately sent, attackers can masquerade the address or mount

a playback attack. A playback involves capturing a session between a

sender and a receiver and then retransmitting the message (with either

a new header, new message contents, or both).

Intruders can spoof or modify network traffic by exploiting the follow-

ing types of vulnerabilities:

I Transmitting network traffic in plaintext

ll Lack of a date/time stamp (showing sending time and receiving time)

I Failure to use message authentication codes or digital signatures

I Lack of a real—time verification mechanism (to use against playback)

Identifying Intruders

Every day, undesirable intruders make unauthorized entry into computer

systems and networks. Who exactly are the intruders? These individuals

range from recreational hackers to foreign intelligence agencies. Each of

these groups has its own agenda and motivations. The following sections

paraphrase the descriptions of various intruders that were noted in a

recent Federal Bureau of Investigation Congressional statement titled

“Cybercrime.”

Insiders

Hackers

Terrorists

Doing It Wrong: The Break—Ins 3 l 5

Most corporations want to believe that their employees are the cream of

the crop and would never violate corporate security. In reality, however,

some employees are not what they seem. People who commit security

crimes against their employers are motivated by a number of reasons; the

disgruntled insider (a current or former employee) is a principal source of

computer crimes for many companies. Insiders’ knowledge of the target

company’s network often allows them to gain unrestricted access and

damage the system or steal proprietary data. The 2000 survey by the

Computer Security Institute and FBI reports that 71 percent of respon—'

dents detected unauthorized access to systems by insiders.

/\

Virtually every day we see news reports about recreational hackers, or

“crackers,” who crack into networks for the thrill of the challenge or to

gain bragging rights in the hacker community. Remote cracking once

required a fair amount of skill and computer knowledge, but recre-

ational hackers can now download attack scripts and protocols from the

World Wide Web and launch them against victim sites. Thus, even

though attack tools have become more sophisticated, they have also
become easier to use.

Increasingly, terrorist groups are using new information technology and

the Internet to formulate plans, raise funds, spread propaganda, and com-

municate securely. Moreover, some terrorist groups, such as the Internet

Black Tigers (who reportedly are affiliated with the Tamil Tigers), have

been known to engage in attacks on foreign government Web sites and

e—mail servers. “Cyber terrorism”—by which we mean the use of cyber

tools to shut down critical national infrastructures (such as energy, trans-

portation, or government operations) for the purpose of coercing or intim-

idating a government or civilian population—is thus a very real, although

still largely potential, threat.

3 l 6 Chapter 1 I

Foreign Intelligence Services

Hactivists

Not surprisingly, foreign intelligence services have adapted to using cyber

tools as part of their espionage tradecraft. As far back as 1986, before the

worldwide surge in Internet use, the KGB employed West German hack-

ers to access US. Department of Defense systems in the well—known

“Cuckoo’s Egg” case. Foreign intelligence services increasingly View com»

puter intrusions as a useful tool for acquiring sensitive US. government

and private sector information.

/--»,

Recently there has been a rise in what has been dubbed “hactivism”-—

politically motivated attacks on publicly accessible Web pages or e-mail

servers. These groups and individuals overload e-mail servers and hack

into Web sites to send a political message. Although these attacks gener—

ally have not altered operating systems or networks, they damage ser—

vices and deny the public access to Web sites containing valuable

information; and they infringe on others’ right to communicate.

One such group, the Electronic Disturbance Theater, promotes civil dis-

obedience online in support of its political agenda regarding the Zapatista

movement in Mexico and other issues. In the spring of 2000, the group
called for worldwide electronic civil disobedience, and it has taken What it

terms “protest actions” against White House and Department of Defense

servers. Supporters of Kevin Mitnick, recently convicted of numerous

computer security offenses, hacked into the Senate Web page and defaced

it in May and June 2000.

The Internet has enabled new forms of political gathering and infor-

mation sharing for those who want to advance social causes; that is good

for the promotion of democracy worldwide. But illegal activities that dis-

rupt e—mail servers, deface Web sites, and prevent the public from access-

ing information on US. government and private sector Web sites should

be regarded as criminal acts that deny others their human rights to com-

municate rather than as an acceptable form of protest.

Doing It Wrong: The Break—Ins 31 7

Intruder Knowledge

How have intruders gained the knowledge that allows them to commit

such serious break—ins? For the most part, few of the intruder types we’ve

discussed have extensive knowledge of the inner workings of today’s com-

puter systems. Many of these intruders do nothing more than use the

information and tools built by other intruders in the past. Many Web sites

provide them with all the information and tools needed to break in or

damage computer systems and networks.

This doesn’t mean that the information and tools downloaded by

intruders were created for the purpose of aiding such attacks. On the con

trary, much of this knowledge is designed to help administrators and secu-

rity officers recognize potential security holes within their systems and

networks—such was the case with Sun Microsystems’ snoop utility,

described earlier in this chapter. It’s through the use of these tools, how-

ever, that intruders are able to exploit the weaknesses inherent in many

systems.

Case Studies

The following case studies illustrate various ways in which security can

be improperly implemented. Each example is based on an actual account

of a real corporation, although the names have not been used. In general,

these real-word examples demonstrate that security breaches often focus

on four areas: data at rest, data in transit, authentication, and improper

implementation. It is staggering how often these four elements are

involved in security lapses. By examining these cases in depth, we hope to

prevent these types of incidents from reoccurring.

Data in Transit

Many Web sites are still providing communications in the clear (i.e., not

encrypted). As a result, they make themselves vulnerable to attackers

using sniifcrs, who monitor and intercept clear traffic for their own pur-

poses. Worst yet, officials in many corporate enterprises feel that their

data is safe as long as it remains within their firewalls. The problem is

that with many employees within the same local area network, it is easy

31 8 Chapter 1 1

Data at Rest

for an employee with sinister intentions to view, destroy, or simply manip-

ulate all the data traveling up and down the lines.

For example, one software vendor that recently joined the ranks of the

“dot-com” world allowed for the unsecured transfer of data between its

internal servers. This meant that account numbers and cardholder infor-

mation flowed across their internal network completely visible to any

employee. This corporation, like many other corporations, felt that as long

as security was provided for information flowing across the Internet, there

was no need to enable internal security (behind their corporate firewall).

This particular corporation found out the hard way that there was need

for internal security It turned out an employee had been saving customer

credit card numbers as they zoomed across their internal network.

When asked why, the employee simply stated that he could. What if the

employee had posted the credit card numbers on the Internet (for the

world to see)? If the press had gotten hold of that story, the corporation

would have most likely lost many customers. What if the employee had

used the credit card numbers to make purchases for himself? The credit

card corporations involved might have lost faith in the merchant and can-

celled their contracts. Fortunately, the corporation discovered the

employee’s file of saved credit card numbers before any real harm had

been done.

The corporation could have avoided this predicament by enabling SSL

(described in Chapter 7) and making use of secure e-mail through a pro-

tocol such as S/MIME (described in Chapter 8).

The need for security in such situations is so obvious that we honestly

don’t know why it is sometimes difficult for others to grasp. No corpora-

tion would have unlocked doors. We’d be willing to bet that the CEO keeps

his or her possessions under lock and key, as do the company’s employees.

The reason is obvious: People snoop, steal, or inadvertently look at things

they shouldn’t.

A number of corporations that provide goods and services to Internet cus-

tomers actually do a great job protecting customer data in transit by mak-

ing use of the SSL protocol. However, they fail to realize (or maybe they
choose to forget) that data requires further protection once it’s at rest.

SSL does not protect ,data after it leaves the security of the protocol. After

data is received by either the client or the server, that data is decrypted.

Doing it Wrong: The Break-Ins 3 I 9

Nevertheless, some companies fail to adequately protect such data. One

corporation, an online music vendor, recently had the misfortune of hav»

ing an unauthorized “guest” break in to its systems. The attack placed

more than three million credit card numbers from the company’s back-end

databases at risk of disclosure on the Internet. Fortunately, in this inci-

dent, it has been reported that the credit card numbers were never

obtained. Still, the potential for widespread credit card fraud was there.

In news reports, the corporation’s upper management stated that they

didn’t quite understand how the attack occurred. The company had pro»

vided for security through the use of SSL to secure connections. However,

' this corporation could have and should have done more in the way of secu-

rity. For example, it could have encrypted the credit card numbers before

placing them in the database.

Authentication

Authentication is by far one of the easiest of the security services to imple—

ment, but many corporations limit their system and network seCurity to

user ID/password schemes. Many applications, whether they reside

within an enterprise or at consumer sites, incorporate nothing more than

a simple password or, worse yet, a four—digit PIN.

It’s easy to experience firsthand the best example of the risk incurred

by companies that use inadequate authentication safeguards. All you

' have to do is to sit down at someone’s computer who uses a certain travel-

services Web site. One of the authors of this book did just that. It was a

simple matter to go to the site and select the button Lost/Forgotten Pass-

word. Within one minute, the password was e—mailed directly to the user’s

account (which the author could easily open as well). Within all of five

minutes, he could have purchased two round—trip tickets to the Caribbean.

Even if an individual had to guess a password or a PIN to access the site

as another person, it would take a day at most.

In the digital age, with all the information provided in this book and

others like it, no new technology is needed to greatly improve authentica-

tion security. The cost ofan authentication token is nothing in comparison

with the money that would be lost by a fraudulent purchase at such a site.

Another example occurred recently at a medical center, where the sys-

tem was hacked by an intruder who entered by using a common tool used

by network administrators known as VNC (virtual network computing).

Through the use of VNC, the intruder was able to enter the file system

320 Chapter 11

and gain access to various medical records. In all, the hacker accessed

more than 4,000 cardiology patient records, 700 physical rehabilitation

records, and every admission, discharge, and transfer record of the med-

ical center within a five-month period.

Without regard to internal security and the sensitivity of medical

records, all this data was stored in the clear. But let’s focus on the more

important issue: how the network was accessed in the first place. VNC in

its current incarnation has very limited authentication mechanisms (i.e.,

user ID and password). This means that intruders need only try a number

of passwords before they gain access.

In a case concerning medical records, you can easily see the losses add

up. What if this sensitive data was released publicly across the Internet?

There is the obvious loss ofpatient confidence, as well as the very real pos—

sibility of lawsuits. Furthermore, what if the medical records were modi-
fied? While it sounds like something from a movie, this could easily

happen.

With that said, proper authentication could have been observed in this

case. True user IDfpassword schemes do provide authentication to a point,

but as the sensitivity of the data increases so should the degree of authen-

tication required. At the medical center, authentication would have been

best provided for by requiring the use of client—side certificates or a one-

time password token.

Implementation

Improper implementation can be seen in many examples of security

breaches. The fact is that it isn’t easy to implement security services using

cryptography. Considerable time and effort must be taken to ensure that

the newly implemented system is secure.

One well-known bug, which was recently discovered, belongs to one

widely used security application, which provides encryption and digital

signatures to its users. In attempting to create a new key-escrow scheme

(explained further in Chapter 6) that would be less intrusive to users, the

application developers made a simple error.

This simple error allowed for the possible disclosure of all data that had

been encrypted using its new functionality. Furthermore, the integrity of

any information, which was digitally signed by the software, could be

destroyed. In this case, the actual dollar losses may never be calculated,

simply because we do not know exactly when this bug was first discovered

Doing it Wrong: The Break—Ins 32 l

(we would like to believe that it was announced as soon as it was found).

The corporation who originally developed the software must now spend

even more money fixing the problem that they created.

The entireincident could have been prevented by following existing

security protocols (in this case, sticking with none key—escrow schemes).

While we can appreciate the fact that the company went to the trouble of

implementing a new less~intrusive concept, we feel developers should first

have their work verified by an objective third party. There are a number

of security consultants and agencies that test and even certify the security

of products.

Information Security: Law Enforcement

Just as legal professionals are beginning to look at the legal ramifications

of information security (see Chapter 10), various law enforcement agen—

cies are studying related enforcement issues. Within the past year alone,

the FBI has begun increasing the number of field agents in its National

Infrastructure Protection Center (NIPC). Over the next two years, the

number of field offices nationwide is to be increased to 56. ‘

Within the past year, the US. Department of Justice has also initiated

a new section devoted to investigating computer crime. The Computer
Crime and Intellectual Property Section (CCIPS) has a staff of attorneys

who advise federal prosecutors and law enforcement agents about various

issues raised by computer and intellectual property crime. Furthermore,

the staff provides ongoing work in the areas of e-commerce security, elec—

tronic privacy laws, and hacker investigation.

Various other agencies provide a broad range of security services. One

such agency is the Computer Emergency Response Team/ Coordination

Center (CERT/CC). CERT/CC was originally created in 1988 by DARPA

(the Defense Advanced Research Projects Agency, part of the US. Depart-

, ment of Defense) after the Morris Worm incident, which crippled 10 per~

cent of all computers on the Internet. CERTXCC works on a number of

initiatives, such as research into security Vulnerabilities, improvement

of system security, and coordination of teams to respond to large-scale
incidents.

3 Z2 Chapter 1 1

Summary

Efforts made to improve the security of computer networks provide bene-

fits beyond the reduction of risks for corporations. They also play an inte~

gral role in keeping fear at bay for the benefit of everyone who uses such

systems. To really see the BZB and B20 e-commerce markets take off, we

are going to have to see improvements in information security.

Various risks and vulnerabilities plague all the players in the new dig-

ital World. The number of intruders, ranging from internal employees to

teenage hackers who threaten computer systems, continues to grow. These

intruders are becoming more knowledgeable and finding better tools that

enable them to attack unsuspecting systems. Still, as the case studies

from this chapter have shown, corporations and developers alike often

refuse to do everything in their power to provide for proper security

Although law enforcement agencies are quickly coming up to speed with

today’s technology, they are simply “fighting fires” when it comes to deal-

ing with digital attacks at this point. However, by incorporating proper

security from the onset, corporations, developers, and users can prevent

cybercrime before it happens.

A growing number oftechniques are available to help organizations ensure

that they’ve incorporated adequate security in their products and services

as well as provided security for their own enterprises. Every security pro-

fessional should know certain important concepts. Various standards,

guidelines, and regulations have been developed, and various external

agencies and organizations can be called on, to help ensure that security is

implemented properly. The experiences of successful organizations can be

helpful in understanding how security can be properly incorporated into

everything from back-end enterprises to end-userproducts and services.

As you learned in Chapter 11, it seems as if there is no way around it:

Sooner or later your network will be broken into. It’s an excellent idea to

operate under this assumption. To a casual outsider or to those Who are

new to the field of information security, this practice may seem a bit over-

board or even a little paranoid. But security experts think this way so that

they can stay ahead of the bad guys. In this chapter, you’ll learn the vari-

ous ways that companies are properly implementing security in the digi-

tal age.

3 Z 4, Chapter 1 2

Security Services and Mechanisms

A security service is a collection of mechanisms, procedures, and other

controls that are implemented to help reduce the risk associated with the

threat of data loss or compromise. Some services provide protection from

threats, and other services provide for detection of the occurrences of any

breach. For example, an identification and authentication service helps

reduce the risk posed by access to the system by an unauthorized user. An

example of a service that detects a security breach is a logging or moni-

toring service.

The following security services are discussed in this section:

I Authentication is the security service that can be used to ensure

that individuals accessing the network are authorized.

ll Confidentiality is the security service that can be used to ensure

that data, software, and messages are not disclosed to unauthorized

parties.

I Integrity is the security service that can be used to ensure that.

unauthorized parties do not modify data, software, and messages.

I Nonrepudiation is the security service that can be used to ensure i

that the entities involved in a communication cannot deny having 35

participated in it. Specifically, the sending entity cannot deny having

sent a message (nonrepudiation with proof of origin), and the

receiving entity cannot deny having received a message

(nonrepudiation with proof of delivery). i

that helps ensure that network resources are being used in an authorized
manner.

Authentication

The first step in securing system resources is to implement a service to

verify the identities of users, a process referred to as authentication.

NOTE:

Though not discussed in this chapter; access control is the security service

Authentication provides the foundation that determines the effectiveness {

Doing it Right: Following Standards 325

of other controls used on the network. For example, a logging mechanism

provides usage information based on user ID, and an access-control mech-

anism permits access to network resources based on the user ID. Both

controls are effective only under the assumption that the requester of a

network service is the valid user assigned to that specific user ID.

Identification requires that the user be known by the system or net-

work in some manner, usually based on an assigned user ID. However,

unless the user is authenticated, the system or network cannot trust the

validity of the user’s claim of identity. The use is authenticated by sup-

plying something possessed only by the user (such as a token), something

only the user knows (such as a password), or something that makes the

user unique (such as a fingerprint). The more of these kinds of authenti-

cation that the user must supply, the less risk there is that someone can

masquerade as the legitimate user.

On most systems and networks, the identification and authentication

mechanism is a scheme that combines a user ID with a password. Pass-

word systems can be effective if managed properly, but they seldom are

managed properly Authentication that relies solely on passwords often

fails to provide adequate protection for systems for a number of reasons.

First, users tend to create passwords that are easy to remember and hence

easy to guess. On the other hand, passwords generated from random char-

acters are difficult to guess but also difficult for users to remember. As a

result, users may write down such passwords, and they are often found in

areas that are easy accessible. It’s not unusual, for example, to find pass-

words written on sticky notes mounted on computer monitors, where any-

one can find them and use them to gain access to the network. The

guessing of passwords is a science, and a great deal of research has been

published that details the ease with which passwords can be guessed.

Proper password selection—striking a balance between the password

being easy to remember for the user but difficult to guess for everyone else-

has always been an issue. Password generators have been developed that

produce passwords consisting of pronounceable syllables. Such passwords

have greater potential .of being remembered than those made of purely

random characters. Some systems and network administrators require the

use of an algorithm that produces random pronounceable passwords. Pro-

grams called password checkers enable a user to determine whether a new

password is considered easy to guess and thus unacceptable.

Because of the vulnerabilities that still exist with the use of password-

only mechanisms, more robust mechanisms can be used, such as token-
based authentication or biometrics. A smart card—based or token—based

3Z6 Chapter 12

mechanism requires that a user be in possession of the token and addi-

tionally may require the user to know a PIN or password. These devices

then perform a challengefresponse authentication scheme using real—time

parameters. The latter practice helps prevent an intruder from gaining

unauthorized access through a login session playback. These devices may

also encrypt the authentication session, preventing compromise of the

authentication information through monitoring and capturing. ’

Locking mechanisms can be used for network devices, workstations, or

PCs, requiring user authentication to unlock. These tools can be useful when

users must leave their work areas frequently. These locks allow users to

remain logged in to the network and leave their work areas (for an accept~

ably short period of time) without exposing an entry point into the network.

i

n(mam/J3.i,is
'2’wn;4.».

Confidentiality

Because access control through the use of proper authentication is not

always possible (because of shared drives and open networks), data confie ;

dentiality services can be used when it’s necessary to protect the secrecy

of information. The use of encryption through symmetric or asymmetric

ciphers (or both) can reduce the risk of unauthorized disclosure, both in p

the case of data at rest and data in transit, by making it unreadable to i

those who may capture it. Only the authorized user who has the correct

key can decrypt the data.

«amswmwac'o‘a’someway»,.4:we;5‘

Integrity

Data integrity services provide protection against intentional and acci-

dental unauthorized modification of data. This service can be used for

data while it is at rest on a back-end database or while it is in transit

across a network. This service can be provided by the use ofcryptographic .

checksums and highly granular access—control and privilege mechanisms. 1
The more granular the access-control or privilege mechanism, the less

likely it is that an unauthorized or accidental modification can occur.

Furthermore, data integrity services help to ensure that a message is

not altered, deleted, or added to in any manner during transmission

across a network. Most available security techniques cannot prevent the

modification of a message, but they can detect that a message has been

modified (unless the message is deleted altogether).

was”,r.

Doing it Right: Following Standards 327

Nonrepudiation

Nonrepudiation helps to ensure that the entities in a communication can—

not deny having participated in all or part of the communication. When a

major function of the network is electronic mail, this service becomes cru-

cial. Nonrepudiation services can be provided through the use of public-

key cryptographic techniques using digital signatures.

Standards, Guidelines, and Regulations

Throughout this book, we’ve described a number of standards, guidelines,

and regulations. For example, Chapter 6 explains how the X.509 standard

can be used to provide for secure public-key operations, and Chapter 7

describes the SSL and IPSec protocols, which are used to provide various

security services. The following sections outline the various organizations

that have made the effort to ensure that each standard, guideline, and

regulation provides for a proper security implementation.

The Internet Engineering Task Force

The Internet Engineering Task Force (IETF) is an international commu-

nity ofnetwork designers, operators, vendors, and researchers. This group

is concerned with the smooth operation of the Internet and the evolution I

of the Internet architecture.

The technical work of the IETF is done in its working groups, which

are organized by topic into several areas (routing, transport, security, and

so on). The working groups are managed by area directors (ADs), who are

members of the Internet Engineering Steering Group (IESG). Providing

architectural oversight is the Internet Architecture Board (IAB). The IAB

also adjudicates appeals when someone complains about the policies

adopted by the IESG. The IAB and IESG are chartered by the Internet

Society (ISOC) for these purposes. The general area director also serves

as the chair of the IESG and of the IETF and is an ex officio member of

the IAB.

328 Chapter 12

ANSI X9

X9 is a division of the American National Standards Institute (ANSI) that

develops and publishes voluntary, consensus technical standards for the

financial services industry. X9’s voting membership includes more than

300 organizations representing investment managers, banks, software

and equipment manufacturers, printers, credit unions, depositories, gov-

ernment regulators, associations, consultants, and others. I

X9 develops standards for check processing, electronic check exchange,

PIN management and security, the use of data encryption, and wholesale

funds transfer, among others. Standards under development include elec-

tronic payments via the Internet, financial image interchange, home

banking security requirements, institutional trade messages, and elec—

tronic benefits transfer.

X9’s procedures ensure that interested parties have an opportunity to

participate and comment on a developing standard before it is imple—

mented. X9 standards are also reviewed by ANSI before publication to

ensure that all requirements are met. ANSI conducts an audit ofX9 oper-

ations every five years. '
' X9 is organized into seven subcommittees. At any given time the com—

mittee has 20 to 30 active working groups and more than 80 domestic and

international standards projects. Organizations that vote on more than

one subcommittee constitute a parent committee that sets policy and pro—

cedures.

National Institute of Standards and Technology

The National Institute ofStandards and Technology (NIST) has published

many guidelines and standards on the topic of information security. One

of its key contributions to cryptography is the federal information-

processing standard (FIPS 140—1), which describes a standard for secure

cryptographic modules. FIPS 140—1 is discussed more fully in the follow-

ing section.

NIST also administers a certification process for software and hard-

ware cryptographic modules.

Doing It Right: Following Standards 329

FIPS 140-1

FIPS 140-1 specifies the security requirements that are to be satisfied by

a cryptographic module that is used in a security system protecting

unclassified information in computer and telecommunication systems.

Cryptographic modules conforming to this standard must meet the applic-

able security requirements described in the standard.

The FIPS 140—1 standard was developed by a working group, composed

of users and vendors and including government and industry partici-
pants. To provide for a Wide spectrum of data sensitivity (such as low-

value administrative data, large funds transfers, and data related to

human life and safety) and a diversity of application environments (such

as a guarded facility; an office, and a completely unprotected location), the

working group identified requirements for four security levels for crypto-

graphic modules. Each security level offers an increase in security over

the preceding level. These four increasing levels of security are designed

to support cost-effective solutions that are appropriate for different

degrees of data sensitivity and different application environments.

, Although the security requirements specified in this standard are

intended to maintain the security of a cryptographic module, conformance

to this standard does not guarantee that a particular module is secure. It

is the responsibility of the manufacturer of a cryptographic module to

build the module in a secure manner. _

Similarly, the use of a cryptographic module that conforms to this stan-

dard, in an overall system does not guarantee the security of the overall

system. The security level of a cryptographic module should be chosen to

provide a level of security that’s appropriate to the security requirements

of the application, the environment in which the module is to be used, and

the security services that the module is to provide. The responsible
authority in each agency or department must ensure that the agency or

department’s relevant computer or telecommunication systems provide

an acceptable level of security for the given application and environment.

NIST emphasizes the importance of computer security awareness and

of making information security a management priority that is communi—

cated to all employees. Because computer security requirements vary

among applications, organizations should identify their information

resources and determine the sensitivity to and potential impact of losses.

Controls should be based on the potential risks. Available controls include

330 Chapter 12
administrative policies and procedures, physical and environmental con-

trols, information and data controls, software development and acquisi-

tion controls, and backup and contingency planning.

NIST has developed many of the needed basic controls to protect com-

puter information and has issued standards and guidelines covering both

management and technical approaches to computer security. These ‘

include standards for cryptographic functions that are implemented in

cryptographic modules as specified in the FIPS 140-1 standard. This stan-

dard is expected to be the foundation for NIST’s current and future cryp-

tographic standards.

Common Criteria

A standard known as Common Criteria (CC) was developed as the result

of a series of international efforts to develop criteria for evaluation of

information security. It began in the early 1980s, when the Trusted Com—

puter System EvaluationCriteria (TCSEC) was developed in the United

States. Ten years later, a European standard, the Information Technology

Security Evaluation Criteria; (ITSEC), was built on the concepts of the

TCSEC. Then in 1990, the International Organization for Standardiza-

tion (ISO) sought to develop a set of international evaluation criteria for

general use. The CC project was started in 1993 in order to bring these

(and other) efforts together into a single international standard for infor-

mation security evaluation.

The CO aims to build consumer confidence by testing and certifying

products and services. Typically, certifiers are commercial organizations

operating testing laboratories accredited by ISO. Accreditors are some-

times closely involved in the determination of functional and assurance

requirements for a system.

The Health Insurance Portability Act

Various regulations have been enacted at the local, state, and federal lev-

els, each of them specifying unique requirements for the various market

sectors. The Heaith Insurance Portability Act (HIPAA) is one such regula—

tion. Handed down by the federal government and signed into law in

1996, HIPAA addresses both health insurance reform and administrative

simplification. The latter section aims to standardize access to patient

Doing It Right: Following Standards 331

records and the transmission of electronic health information between

organizations. Important among these administrative issues is the pro—

posed standard for security and electronic signatures, which mandates

requirements for the following:

I Confidentiality This requirement is designed to keep all transfers

of information private. Steps must be taken to ensure that

information is not made available or disclosed to unauthorized

individuals.

I Integrity This requirement ensures that data has not been

changed or altered en route or in storage.

I Authentication This mandate means that organizations must

make sure that the person sending the message is the person he or
she claims to be.

I Nonrepudiation This principle ensures that after a transaction

occurs, neither the originator nor the recipient can deny that it took

place.

I Authorization This requirement limits access to network

information and resources to users who have been authenticated

based on defined privileges.

When it comes to people’s most personal information-“their medical

history—people have always been concerned about confidentiality. As

individuals, we are secretive about every aspect of our health, from weight

to illness to prescriptions to payments. When it comes to medical infor-

mation, it is essential that healthcare providers implement PKI security

infrastructures so that they can use digital certificates to securely store,

transmit, and access health records electronically. The thought ofpersonal

information on a public network can be intimidating, and patients need to

be assured that their private medical histories continue to maintain

unparalleled confidentiality.

Developer Assistance

Many software developers, whether they’re implementing security for a

retail product or for the newest e-commerce site or they’re building appii-

cations for an enterprise, have chosen to outsource the security task. A

good number of security consultants, architects, and managed security

332 Chapter 12

services are available for hire. These individuals and companies provide a

wide range of assistance in implementing security, allowing developers to

spend more time working on the unique aspects of their products (where
their talents are best used).

RSA Security, Inc., is one professional services organization that can

assist developers in the design and implementation of security. In addi-

tion, many organizations, including RSA, can also provide certification

when the system is completed. '

Insurance

Many financial institutions and insurance companies have now begun

insuring e-commerce Web sites. Many of these new insurers look for cer-

tification and require security audits. One way to implement insurance

requirements is through the use of secure cryptographic modules (such as

BSAFE, a software product family line available from RSA Security, Inc.).

American International Group, Inc. (AIG), one such insurance provider,

has e-business divisions that offer insurance to companies with e-buSiness

initiatives. RSA Security, Inc., and AIG partnered in January 2000 to pro-

vide e—security to corporations. The partnership means that customers can

take advantage of discounts offered by AIG for the use of RSA products.

Security Research

Sun Tzu stated it perfectly in The Art of War: “Know your enemy as you

know yourself, and in a thousand battles you shall never perish.” For orga—

nizations that are designing and implementing security systems, the most

successful approach is to learn what intruders know so that you can come

up with a way to stop them. The following list ofWeb sites is an excellent

place to start to learn what the enemy knows.

http://www.cert.org/ CERT/CC is a center of Internet

security expertise.

http://www.securityfocus.com/ Security Focus provides up-to-date

information on current bugs. It also

keeps an excellent collection of

hacker—related articles.

;§'"3
‘3:

E

Doing it Right: Following Standards 333

http://www.slashdot.org/ This site provides information

about current break—ins and

describes the various known system

vulnerabilities.

http://www.2600.org/ This site dubs itself the “Hacker

Quarterly,” providing its readers

with current information on system

hacks and cracks. '

NOTE:

This list is by no means complete; it is merely a starting place where you

can gain knowledge about security issues. '

Case Studies

In contrast to the case studies presented in Chapter 11, the following case

studies illustrate the ways in which corporations and developers took

steps to properly implement security, focusing specifically on their tech—

niques within the four commonly ignored areas described in Chapter 11:

data at rest, data in transit, authentication, and implementation. Each

case study shows how time and money can be saved by properly imple-

menting security before an incident arises.

Implementation

One major hardware manufacturer recently looked into implementing a

public-key infrastructure. After close analysis, company officials realized

that not all the applications that the company needed secured were “PKI-

ready;” that is, some of the applications did not support the use of public-

key certificates. After working with various security architects and

consultants, company officials learned that for this set of applications

they need to provide a front-end server application that handled certifi—

cates. The employees already had one of the easiest-to-use PKI clients: a

Web browser.

334 Chapter 1 2

In this case, there is still a chance that sensitive data might be exposed

at points where the new server application communicates with the legacy

applications. However, the level of security at this company is now signif-

icantly higher than it was before the PKI was established.

Even if their systems and networks are never breached, this company

has saved a significant amount of both time and money. Each of their

legacy applications required a password to access, which meant they

needed a fully staffed help desk to assist users with logging in and reset-

ting forgotten passwords. Another cost advantage came through the use of

digital signatures on electronic ordering forms, which are now legally

binding (see Chapter 10).

Authentication

A California city government recently discovered that a typical city

employee had to establish and memorize six to nine passwords to access

various applications. With this number of passwords, city officials realized

that time and money were being wasted on administering the effort to

, deal with lost and forgotten passwords. For those users who weren’t hav—

ing such problems, it was probably because they had written down the

passwords next to their computer terminals, creating a serious security

hazard.

The city quickly realized that they needed to reduce the average num-

ber of passwords required, while at the same time increasing security

After seeking assistance from various security groups and reviewing a

variety of products, city officials decided on using biometrics. Through the

use of biometric technologies, this city provided fingerprint scanners at

each of its computer terminals, thereby eliminating the need for multiple

passwords. As a result, trouble calls are down substantially, amounting in

considerable savings. At the same time, concerns that sensitive data

might be disclosed have decreased significantly.

Another example of a company making authentication more secure

occurred in the banking industry. Think of how often you walk up to your

ATM machine, insert your card, enter your PIN, and perform a transac-

tion. And consider how many other PINs you may have, for example, for i
your brokerage account or for accounts with other banks. The more PINS i

you have the easier they are to forget, and havingjust one PIN for all your l

accounts puts you at risk. One major bank realized that they were spend- ;
l

ivasewsmmmmwwsmwmwmwarmVfiviaifii‘b—whmwwM.»mi

i

r.

ing a considerable amount of time and money on customers who were for-

Data at Rest

Doing it Right: Following Standards 335

getting their PIN number. Still more time and money were lost because of

fraud (it is not uncommon for bank users to write their PIN code down in

their wallet, or worse yet, give the code to a friend who performs a trans-

action for them.)

Realizing the need for an authentication alternative, the bank searched

out security professionals and reviewed various software and hardware

packages. After a thorough look at the costs and return on investment, the

bank has decided implement a biometric system. Currently they are test-

ing both finger and iris scanners.

The actual dollar amount saved in decreased fraud was not disclosed;

however, you can only imagine how much the bank 10st each year, Fur- .

thermore, the costs of keeping a customer help desk to reset PINs as

needed has decreased significantly

Prior to last year,- one federal law enforcement agency, which works closely

with the relocation of witnesses, had not provided any true security for

their field agent’s laptops. Imagine for a moment what exactly might hap-

pen if one of these laptops were lost or stolen?

After realizing the possibility of confidential data possibly being

exposed if one of these laptops were compromised, the agency added secu-

rity software that encrypts and decrypts files as needed. Furthermore, the

software requires strong, two—factor authentication through the use of a

one-time password token.

By simply taking the time to add strong security to each of these lap-

tops, this agency has more than likely saved not only time and money, but

possibly even lives.

Another example, although not as dramatic as the first one, involves a

major US. airline using encryption to provide confidentiality services to its

back-end databases. What is unique about this case is that the encryption

is applied not only to user information required for reservations, but also

to all information pertaining to users’ frequent flyer mileage accounts.

After the company began to recognize just how much these miles were

worth once they started adding up, they decided it was time to provide

security Through the use of a symmetric-key algorithm, their customers’

information as well as the miles they had earned were safely secured.

You might think that customer information or frequent flyer miles are

not the most sensitive data in the world. However, this company realized

3 36 Chapter 12

that if their customer accounts, especially corporate accounts, were ever

disclosed publicly on the Internet it could mean financial disaster—not to

mention the cost of paperwork if a customer’s reservation was changed or

removed from the database.

Data in Transit

Summary

One Canadian-based software corporation was providing a product to

pharmacists and doctors that allowed for quicker prescription fulfillment.

Their product simply transmitted the necessary patient data and pre—

scription from the physician to the pharmacy. However, until recently, the

data was not encrypted during transmission. The company felt that

because the data was traveling across a dial-up phone line it was unnec-

essary to provide security.

The software corporation quickly realized that even with a dial-up

phone connection, security was a necessity. However, the company was

afraid that if they were to add security, that doctors and pharmacists

might have difficulty using it (after all, doctors know medicine, not secu—

rity). After speaking with outside security professionals, the corporation

decided on the integration of the SSL protocol (discussed in Chapter 7) to

provide security. The SSL protocol is virtually transparent to the end-

users eliminating the difficulty factor.

The software company now knows they are selling a product that not

only can protect the data as it is communicated, but also, through the use

of SSL, can guarantee the data was not changed in transit. Furthermore,

their market has now expanded to cover not only physicians and phar-

macies using dial-up lines, but also those that use open networks (such as

the Internet).

At first glance, it may appear that protecting the security of data in a net-

work is a losing battle, but many developers, enterprises, and users have

been successful in achieving this goal. This chapter tells only a few of

many success stories in this arena.

As these case studies illustrate, security is a battle that you should not
face alone. Instead, you should take advantage of the expertise of other

Doing it Right: Following Standards 337

professionals. Here you’ve seen a number ofways in which security can be

ensured through the use of existing standards, protocols, algorithms, and

assistance from consultants who have been shown to be of great help.

Through the certification process, many users can ensure that their secu-

rity methods (especially cryptography) are as well designed and well

implemented as possible. It is sometimes useful to consult with a trusted

third party or external agency to gain a different point of view.

Security is an important issue for businesses and other organizations

that are entrusted with personal data. In the long run, everyone benefits

when consumers can have faith in the technology that enables not only

the efficient storage of data, but also the potential for unprecedented com-

munication and human growth.

Throughout this book, we show data as hexadecimal (often shortened to

“hex”) numbers. Even if the data is a series of letters, it can be represented

in hexadecimal numbers. This appendix describes bits, bytes, and hexadec-

imal numbers and explains how ASCII characters are formed.

Using Decimal, Binary, and Hexadecimal
Numbers

A computer is a binary machine; everything is either “on” or “of ,” reflect-

ing the fact that electric power is either flowing or not flowing through a

given circuit. The machine can be programmed to interpret the state of

being on or off as a 0 or a 1. If you string these 0s and 1s together, you can

represent anything. For example, you can represent the decimal number

105 as the binary number 1101001.

To see how binary numbers work, it might be helpful to recall how dec-

imal numbers work. A decimal number is composed of some number of

“ones,” “tens,” “hundreds,” and so on. As Figure A—1 shows, if you start

 340 Appendix A

. 8,614
Figure A-l

The number FMS 0 ~
8,614 is decimal, THOW many 10 S
comprising four Hill: man 101S
“Ones,” one “ten,” Hundreds y
six “hundreds,” How many 102s
and elght Thousands
“thousands.” The

number

10000110100110 -

is the binary

equivalent. The
numerals in the

positions indicate
the number of

powers of 1, 2, 4,

8, and so on

How many 103s

10000110100110

Ones

How many 20s
Twos

How many 21s

8192s 13 Fours 2
How many 2 s How many 2 s

Eights

How many 23s

counting at zero and move from right to left, each place in a decimal num-

ber represents a number of 10‘s (10 to the nth power). A computer does the

same thing except that it uses “two” as its base instead of “ten.” For each

place in a binary number, there can be only two possible values: a 0 or a 1.

In Figure A—1, the binary number is computed ifyou start counting at zero

and move from right to left to see how many “ones,” how many “twos,” how

many “fours,” and so on, each of which represents a power of 2.

Any value that can be represented as a decimal number can also be

represented as a binary number. The binary number will take up more

space, but any value can be expressed. Suppose you wanted to use the dec-

imal number 2,535,294,694. A computer would “think” of it as binary,

which would look like this:

1001 0111 0001 1101 1000 0110 1110 0110

Writing such numbers can be tedious, so programmers use hexadeci-

mal as a convenience. The word “decimal” has to do with “ten” (“dec”

means “ten,” as in “decade” or “decathlon”), whereas “binary” refers to

“two” (“bi” means “two,” as in “bicycle” or “bifocals”), and the word “hexa-

decimal” refers to “sixteen.” So binary numbers are “base two,” decimal

Bits, Bytes, Hex, and ASCII 34 1

Table A-1

Binary, Decimal,
and Hexadecimal

Equivalents

numbers are “base ten,” and hexadecimal numbers are “base sixteen.” The

digits used in binary numbers are

0 1

The digits used in decimal numbers are

0123456739

And the digits used in hexadecimal numbers are

0123456739ABCDEE‘

Notice that each system has the same number of digits as what we’ve

referred to as the “base.” Base two uses two digits, base ten uses ten dig-

its, and base sixteen uses sixteen digits. Table A-1 is a conversion table for
numbers in the three bases.

Base Two Base Ten Base Sixteen

0

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

com-ammvhwmr-Io
HHHHH.hcoMl-lc *spa:3C3tup>toa:—qc:01iscasoP‘c:
H U1

342 Appendix A

Hexadecimal is convenient because any group of four binary digits (a

binary digit is also known as a bit) can be represented in one hexadecimal

digit. This means that you can take a big binary number, break it into

groups of four digits, and rewrite it in hexadecimal. For example,

1001 0111 0001 1101 1000 0110 1110 0110

can be rewritten in hex as

0397 1D 86 ES

The 1001 has been converted to 9 (see Table A—l), the 0111 has become 7,

and so on. The UK at the front is a notational convention indicating that

the number is in hexadecimal.

It’s possible to think of that number as “six 1s,” “fourteen 16s,” “six

256s,” and so on. You start counting at zero and move from right to left,

and each place represents the number of 16%.

Using Bits and Bytes

If you put eight bits together, you have one byte. The word “byte” is sim-

ply the technical jargon for a group of eight bits. For example, 1001 0111

is a byte. It can also be represented as 0X97, so two hex digits make up one

byte. The number 0x97 1D 86 E6 is 32 bits, or four bytes. A byte is also a

measure of space. Ifyour computer has 1MB ofmemory, that means it has

space enough to load one million bytes of data into memory. A byte can

have 256 possible values, from 0 to 255 (0X00 to OXFF).

‘ NOTE:

Actually, 0: megabyte is 1,048,5176 bytes, which is 220. Most quantities of

things in the computer industry come in powers of2, either for technical

reasons or simply because. Computers are binary machines, so hardware

constraints may dictate that you use a power of2, and in software, working

with numbers that are powers of2 can ofi‘en be more convenient than using

other numbers. But sometimes the only reason to use a power of2 is that a

task is being computerized. For example, in cryptography 104—bit symmet-

ric keys are secure enoagh, but that number is not a power of2. So people

use 128-bit keys. There’s no technical cryptographic reason to use 128 bits

instead of 104, but 128 is a power of2. People working in computer science

sometimes choose numbers simply because they are powers of2. 3:»

 FWHLWfi/mtmwawesomeness;...

Bits, Bytes, Hex, and ascu 343

Using ASCII Characters

A computer chip can interpret only 1s and 0s and therefore does not‘have

a native way to represent letters of the alphabet. So in the 1960s, at the

beginning of the computer age, the American Standards Association, call-

ing on the contributions of computer manufacturers, programmers, and

others, came up with a standard way to represent letters as numbers.

Because A is the first letter of the English alphabet, it could have been

assigned the number 0x01; B could have been 0x02, and so on. It could

have been, but that’s not what the committee chose. The people involved

were interested in representing more than just letters of the alphabet.

They knew that computers would also need to interpret numerals, math

symbols, and punctuation marks. In addition, they would need uppercase

as well as lowercase ietters.

Eventually, a standard was developed specifying that the bytes 0x20

through 0x7F would be used to represent the English alphabet, numerals,

certain symbols, and certain punctuation marks. That’s 96 standard char-

acters. Table A—2 shows the values and their characters. The standard is

called ASCII (pronounced ASK-ea), an acronym for American Standard

Code for Informatioa Interchange.

As it turned out, the original 96 ASCII characters were not sufficient

because some languages had special marks on their letters (called dia-

critical marks), such as the umlaut (two dots) in it or the cedilla (the

squiggle on the bottom) in c. Other languages had larger alphabets. In

addition, values for more punctuation marks and control characters were

needed. Over the years, standards committees have generated additional

character sets. A byte can have only 256 possible values, and that is not

enough space to hold all the possible characters. As a result, some of the

new standards define characters in two bytes, allowing definition of as

many as 65,536 characters. Other standards specify four bytes per char-

acter, giving space for more than four million characters. Most character

sets include the original ASCII values along with the added values.

All this means that if a computer is operating on the expression

0x52 53 41 53, it could be the hex representation of the decimal number

1,381,187,923, or it could be the letters RSAS.

Appendix A344

qmm. E.mmmma“.mmmm

“mammagma$53ELMOaflogmfioSE..38?03»503anoowmm055md.60QOmmomxoEpomamgoon?
”mummMmmg,Wm.”mm

QbOwOmQvHmmQN

ON.00OmOwOmOn

my
mm.MN

4%«w4m4%Jamor4m

kmE.
w

mmWmm.Havmmm.
A

mm

Nw»ammMmmmwwwmm
v

mm

3E.wpm3Nb6.3»N.mm
v”R

>5mmmm.mmmmmmDDmm.mm.mm3.mwwmmmmmmm.as,»mmmm
aS.6dmB«AmQ3‘w.wma“mm

mumpano@mmmmmmmmNm0mma»awmNmmmm%vummmm
aanw5aE4m{3‘HHm.

N
am

‘nmorowcm0%omom

Empwpomhmaodo?pmafimg.mm980ma?Néw@ENB

Bits, Bytes, Hex, and ASCII 345

Using Computers in Cryptography

Keep in mind that to a computer, numbers can represent many kinds of

meanings. For example, if a computer is looking at 0x42 A0 10 07, it might

be looking at the decimal number 1,117,786,119, or those bits might mean

something else. It could be an instruction, for example. A computer pro-

gram is a series of instructions, and because a computer stores everything
as binary numbers, instructions, too, can look like numbers. Moreover,

each chip has its own instruction set, so a number on one computer may

mean one instruction but on another computer may mean something else.

For example, on one machine the bits 0x42 A0 10 07 might be the com-

puter’s way of saying, “Add the contents of register 16 to the contents of

register 7 and store the result in register 7.” Other values could represent

memory addresses, other control characters, or some sort of data in

another format. ’

In cryptography, though, these kinds of values are simply bytes and

numbers. 80 when we talk aboutplaintext, we really mean bytes of data,

no matter what meaning the owner of the data attributes to the bytes. A

crypto algorithm looks at the data as bits to manipulate or numbers to

crunch. Cryptography makes no distinction between bytes that represent

letters of the alphabet and bytes that indicate instructions in a program.

They are simply bytes.

Abstract

An RSA’ Laboratories Technical Note

Burton S. Kaliski Jr.

Revised November 1, 1993

NOTE: .
This document supersedes June 3, 1991 version, which was also pub-

lished as NIST/ 031 Implementors’ Workshop document SEC-SIG-91-17.

PKCS documents are available by electronic mail to <pkcs@rsa.com>.

This note gives a layman’s introduction to a subset of OSI’s Abstract Syn-

tax Notation 1 (ASN.1), Basic Encoding Rules (BER), and Distinguished

Encoding Rules (DER). The particular purpose of this note is to provide

background material sufficient for understanding and implementing the

PKCS family of standards.

Copyright © 1991—1993 RSA Laboratories, a division of RSA Data Security, Inc. License to

copy this document is granted provided that it is identified as “RSA Data Security, Inc.

Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this
document. 003—903015- 110-000—000

348 Appendix B

Section 1 : Introduction

It is a generally accepted design principle that abstraction is a key to

managing software development. With abstraction, a designer can specify

a part of a system without concern for how the part is actually imp1e~

mented or represented. Such a practice leaves the implementation open;

it simplifies the specification; and it makes it possible to state “axioms”

about the part that can be proved when the part is implemented, and

assumed When the part is employed in another, higher-level part. Abstrac-

tion is the hallmark of most modern software specifications.

One of the most complex systems today, and one that also involves a

great deal ’of abstraction, is Open Systems Interconnection (OSI,

described in X200). OSI is an internationally standardized architecture

that governs the interconnection of computers from the physical layer up

to the user application layer. Objects at higher layers are defined

abstractly and intended to be implemented with objects at lower layers.

For instance, a service at one layer may require transfer of certain

abstract objects between computers; a lower layer may provide transfer

services for strings of 1’s and 0’s, using encoding rules to transform the

abstract objects into such strings. OSI is called an open system because it

supports many different implementations of the services at each layer.

OSI’s method of specifying abstract objects is called ASN.1 (Abstract
Syntax Notation 1, defined in X208), and one set of rules for representing

such objects as strings of 1’s and 0’s is called the BER (Basic Encoding

Rules, defined in X209). ASN.1 is a flexible notation that allows one to

define a variety data types, from simple types such as integers and bit

strings to structured types such as sets and sequences, as well as complex

types defined in terms of others. BER describes how to represent or

encode values of each ASN.1 type as a string of eight—bit octets. There is

generally more than one way to BER-encode a given value. Another set of

rules, called the Distinguished Encoding Rules (DER), which is a subset of

BER, gives a unique encoding to each ASN.1 value.

The purpose of this note is to describe a subset of ASN.1, BER, and

DER sufficient to understand and implement one OSI-based application,

RSA Data Security, Inn’s Public—Key Cryptography Standards. The fea-

tures described include an overview of ASN.1, BER, and DER and an

abridged list of ASN.1 types and their BER and DER encodings. Sec-

tions 2-4 give an overview ofASN. 1, BER, and DER, in that order. Section

5 lists some ASN.1 types, giving their notation, specific encoding rules,

A Layman's Guide to a Subset of ASN. I, BER, and DER 349

examples, and comments about their application to PKCS. Section 6 con»

cludes with an example, X500 distinguished names.

Advanced features of ASN.1, such as macros, are not described in this

note, as they are not needed to implement PKCS. For information on the

other features, and for more detail generally, the reader is referred to
CCITT Recommendations X208 and X209, which define ASN.1 and BER.

Section 1.1: Terminology and Notation

In this note, an octet is an eight-bit unsigned integer. Bit 8 of the octet is

the most significant, and bit 1 is the least significant.

The following meta-syntax is used in describing ASN.1 notation:

BIT Monospace denotes literal characters in the type and value
notation; in examples, it generally denotes an octet value in
hexadecimal

1:; Bold italics denotes a variable

[] Bold square brackets indicate that a term is optional

{} Bold braces group related terms

| Bold vertical bar delimits alternatives within a group

Bold ellipsis indicates repeated occurrences

Bold equals sign expresses terms as subterms

Section 2: Abstract Syntax Notation 1

Abstract Syntax Notation 1, abbreviated ASN.1, is a notation for describ-

ing abstract types and values.

In ASN.1, a type is a set of values. For some types, there are a finite

number of values, and for other types there are an infinite number. A

value of a given ASN.1 type is an element of the type’s set. ASN.1 has four

kinds of types: simple types, which are “atomic” and have no components;

structured types, which have components; tagged types, which are derived

from other types; and other types, which include the CHOICE type and the

ANY type. Types and values can be given names with the ASN.1 assign-

ment operator (: : 2) , and those names can he used in defining other types
and values.

3 50 Appendix B

Every ASN.1 type other than CHOICE and ANY has a tag, which consists

of a class and a nonnegative tag number. ASN.1 types are abstractly the

same if and only if their tag numbers are the same. In other words, the

name of an ASN.1 type does not affect its abstract meaning; only the tag

does. There are four classes of tags: ‘

1. Universal, for types Whose meaning is the same in all applications;

these types are only defined in X208.

2. Application, for types whose meaning is specific to an application,

such as X.500 directory services; types in two different applications

may have the same application-specific tag and different meanings.

3. Private, for types whose meaning is specific to a given enterprise.

4. Context-specific, for types whose meaning is specific to a given

structured type; context-specific tags are used to distinguish between

component types with the same underlying tag within the context of

a given structured type, and component types in two different

structured types may have the same tag and different meanings.

The types with universal tags are defined in X208, which also gives the

types’ universal tag numbers. Types with other tags are defined in many

places, and are always obtained by implicit or explicit tagging (see Section

2.3). Table B-1 lists some ASN.1 types and their universal-class tags.

ASN.1 types and values are expressed in a flexible, programming-

language-like notation, with the following special rules:

I Layout is not significant; multiple spaces and line breaks can be

considered as a single space.

I Comments are delimited by pairs of hyphens (--), or a pair of hyphens
and a line break.

I Identifiers (names of values and fields) and type references (names of

types) consist of upper— and lowercase letters, digits, hyphens, and

spaces; identifiers begin with lowercase letters; type references begin

with uppercase letters.

The following four subsections give an overview of simple types, struc-

tured types, implicitly and explicitly tagged types, and other types. Sec-

tion 5 describes specific types in more detail.

l

A Layman’s Guide to a Subset of ASN. 1, BER, and DER 351

Table B-1 Tag Number 'I‘ag Number

Some Types and Type (Decimal) (Hexadecimal)
Their Universal~ INTEGER 2 02

Class Tags m STRING 3 03

OCTET STRING 4 04

NULL 5 05

OBJECT IDENTIFIER 6 06

SEQUENCE and SEQUENCE or 16 10

SET and SET OF 17 11

PrintableString 19 13

T6 1 Str ing 20 14

IASString 22 16

UTCTime 23 1’?

Section 2.1: Simple Types

Simple types are those not consisting of components; they are the “atomic”

types. ASN.1 defines several; the types that are relevant to the PKCS

standards are the following:

BIT STRING, an arbitrary string of bits (1’s and 0’s)

IASStr ing, an arbitrary string of 1A5 (ASCII) characters

INTEGER, an arbitrary integer

a
NULL, 3. null value

OBJECT IDENTIFIER, an object identifier, which is a sequence of

integer components that identify an object such as an algorithm or

attribute type

OCTE'I‘ STRING, an arbitrary string of octets (eight-bit values)E

[a Pr intables tring, an arbitrary string of printable characters

3 52 Appendix B

I TSlString, an arbitrary string of TBI (eight-bit) characters

I UTCTime, a “coordinated universal time” or Greenwich Mean Time

(GMT) value

Simple types fall into two categories: string types and nonstring

types. BIT STRING, IASString, OCTET STRING, PrintableString,

T6lString, and UTCTime are string types.

String types can be viewed, for the purposes of encoding, as consisting

of components, where the components are substrings. This view allows

one to encode a value whose length is not known in advance (e.g., an octet

string value input from a file stream) with a constructed, indefinite-length

encoding (see Section 3).

The string types can be given size constraints limiting the length of
values.

Section 2.2: Structured Types

Structured types are those consisting of components. ASN.1 defines four,

all of which are relevant to the PKCS standards:

1. SEQUENCE, an ordered collection of one or more types

2. SEQUENCE OF, an ordered collection of zero or more occurrences of a

given type

3. SET, an unordered collection of one or more types

4. SET OF, an unordered collection of zero or more occurrences of a

given type '

The structured types can have optional components, possibly with default

values.

Section 2.3: lmplicitly and Explicitly Tagged Types

‘ Tagging is useful to distinguish types within an application; it is also com-

monly used to distinguish component types Within a structured type. For

instance, Optional components of a SET or SEQUENCE type are typically

given distinct context-specific tags to avoid ambiguity.

There are two ways to tag a type: implicitly and explicitly.

A Layman’s Guide to a Subset of ASN. 1, BER, and DER 353

l Implicitly tagged types are derived from other types by changing the

tag of the underlying type. Implicit tagging is denoted by the ASN.1

keywords [class number] IMPLICIT (see Section 5.1).

I Explicitly tagged types are derived from other types by adding an

outer tag to the underlying type. In effect, explicitly tagged types are

structured types consisting of one component, the underlying type.

Explicit tagging is denoted by the ASN.1 keywords [class number]

EXPLICIT (see Section 5.2). I

The keyword [class number] alone is the same as explicit tagging,

except when the “module” in which the ASN. 1 type is defined has implicit

tagging by default. (“Modules” are among the advanced features not

described in this note.)

For purposes of encoding, an implicitly tagged type is considered the

same as the underlying type, except that the tag is different. An explicitly

tagged type is considered like a structured type with one component, the

underlying type. Implicit tags result in shorter encodings, but explicit tags

may be necessary to avoid ambiguity if the tag of the underlying type is

indeterminate (e.g., the underlying type is CHOICE or ANY). -

Section 2.4: Other Types

Other types in ASN.1 include the CHOICE and ANY types. The CHOICE type

denotes a union of one or more alternatives; the ANY type denotes an arbi-

trary value of an arbitrary type, where the arbitrary type is possibly

defined in the registration of an object identifier or integer value.

Section 3: Basic Encoding Rules

The Basic Encoding Rules (BER) for ASN.1 give one or more ways to rep-

resent any ASN.1 value as an octet string. (There are certainly other ways

to represent ASN.1 values, but BER is the standard for interchanging

such values in OSI.)

There are three methods to encode an ASN.1 value under BER, the

choice ofwhich depends on the type ofvalue and whether the length of the

3 54 Appendix B
value is known. The three methods are primitive, definitedength encod—

ing; constructed, definite-length encoding; and constructed, indefinite-

length encoding. Simple nonstring types employ the primitive,

definite-length method; structured types employ either of the constructed

methods; and simple string types employ any of the methods, depending

on whether the length of the value is known. Types derived by implicit

tagging employ the method of the underlying type, and types derived by

explicit tagging employ the constructed methods. ’
In each method, the BER encoding has three or four parts:

1. Identifier octets These identify the class and tag ninnber of the

ASN.1 value, and indicate whether the method is primitive or

constructed.

2. Length octets For the definite-length methods, these give the

number of contents octets. For the constructed, indefinite~length

method, these indicate that the length is indefinite.

3. Contents octets For the primitive, definite-length method, these

give a concrete representation of the value. For the constructed

methods, these give the concatenation of the BER encodings of the

components of the value.

4. End-of-contents octets For the constructed, indefinite-length

method, these denote the end of the contents. For the other methods,

these are absent.

The three methods of encoding are described in the following sections.

Section: 3.1: Primitive, Definite-Length Method

This method applies to simple types and types derived from simple types

by implicit tagging. It requires that the length of the value be known in

advance. The parts of the BER encoding are as follows:

identifier Octets

W3M‘3W‘SimaAafiniusL-,.,mnwa»
There are two forms: low tag number (for tag numbers between 0 and 30)

and high tag number (for tag numbers 31 and greater).

Low-Tag-Number Form One octet. Bits 8 and 7 specify the class (see

Table B—2), bit 6 has value “0,” indicating that the encoding is primitive,

and bits 5~1 give the tag number.

A Layman's Guide to a Subset ofASN. 1, BER, and DER 355

Table B-2

Class Encoding in

Identifier Octets

Class Bit 8 Bit 7

universal 0 0

application 0 1

context-specific 1 0

private 1 1

High-Tag-Number Form Two or more octets. First octet is as in low-tag-

number form, except that hits 5—1 all have value “1.” Second and follow-

ing octets give the tag number, base 128, most significant digit first, with

as few digits as possible, and with the bit 8 of each octet except the last
set to “1.”

Length Octets

There are two forms: short (for lengths between 0 and 127), and long def—

inite (for lengths between 0 and 21°03 — 1).

Short Form One octet. Bit 8 has value “0” and bits 7—1 give the length.

Long Form Two to 127 octets. Bit 8 of first octet has value “1” and bits

7—1 give the number of additional length octets. Second and following

octets give the length, base 256, most significant digit first.

Contents Octets

These give a concrete representation of the value (or the value of the

underlying type, if the type is derived by implicit tagging). Details for par-

ticular types are given in Section 5.

Section 3.2: Constructed, Definite-Length Method

This method applies to simple string types, structured types, types

derived from simple string types and structured types by implicit tagging,

and types derived from anything by explicit tagging. It requires that the

length of the value be known in advance. The parts of the BER encoding

are as follows.

356 ' AppendixB

Identifier Octets

As described in Section 3.1, except that bit 6 has value “1,” indicating that

the encoding is constructed.

Length Octets

As described in Section 3.1.

Contents Octets

The concatenation of the BER encodings of the components of the value:

I For simple string types and types derived from them by implicit

tagging, the concatenation of the BER encodings of consecutive

substrings of the value (underlying value for implicit tagging)

I For structured types and types derived from them by implicit tagging,

the concatenation of the BER encodings of components of the value

(underlying value for implicit tagging)

I For types derived from anything by explicit tagging, the BER

encoding of the underlying value

Details for particular types are given in Section 5.

Section 3.3: Constructed, Indefinite-Length Method

This method applies to simple string types, structured types, types

derived from simple string types and structured types by implicit tagging,

and types derived from anything by explicit tagging. It does not require

that the length of the value be known in advance. The parts of the BER

encoding are as follows:

Identifier Octets

As described in Section 3.2.

Length Octets

One octet, 80.

A Layman’s Guide to a Subset ofASN. 1, BER, and DER 357

Contents Octets

As described in Section 3.2.

End-of-Contents Octets

Two octets, 00 00.

Since the end-of-contents octets appear where an ordinary BER encod-

ing might be expected (e.g., in the contents octets of a sequence value), the

00 and 00 appear as identifier and length octets, respectively. Thus the

end-of—contents octets are really the primitive, definite-length encoding of

a value with universal class, tag number 0, and length 0.

Section 4: Distinguished Encoding Rules

The Distinguished Encoding Rules (DER) for ASN.1 are a subset of BER,

and give exactly one way to represent any ASN.1 value as an octet string.

DER is intended for applications in which a unique octet string encoding

is needed, as is the case when a digital signature is computed on an ASN.1

value. DER is defined in Section 8.7 of X509.

DER adds the following restrictions to the rules given in Section 3:

,1. When the length is between 0 and 127, the short form of length must

be used.

2. When the length is 128 or greater, the long form of length must be

used, and the length must be encoded in the minimum number of
octets.

3. For simple string types and implicitly tagged types derived from

simple string types, the primitive, definite-length method must be

employed.

4. For structured types, implicitly tagged types derived from structured

types, and explicitly tagged types derived from anything, the

constructed, definite-length method must be employed.

Other restrictions are defined for particular types (such as BIT

STRING, SEQUENCE, SET, and SET OF), and can be found in Section 5.

3 58 Appendix B

Section 5: Notation and Encodings for

Some Types ‘

This section gives the notation for some ASN.1 types and describes how to

encode values of those types under both BER and DER.

The types described are those presented in Section 2. They are listed

alphabetically here.

Each description includes ASN.1 notation, BER encoding, and DER

encoding. The focus of the encodings is primarily on the contents octets;

the tag and length octets follow Sections 3 and 4. The descriptions also

explain Where each type is used in PKCS and related standards. ASN.1

notation is generally given only for types, although for the type OBJECT

IDENTIFIER, value notation is given as well.

Section 5.1: lmplicitly Tagged Types

An implicitly tagged type is a type derived from another type by changing

the tag of the underlying type. '

Implicit tagging is used for optional SEQUENCE components with

underlying type other than ANY throughout PKCS, and for the

extendedCertificate alternative of PKCS #7’8 Extended-

CertificateOrCerti f icate type.

ASN.1 notation:

[[olass] number] IM9LICIT Type

class = UNIVERSAL | APPLICATION l PRIVATE

Where Type is a type, class is an optional class name, and number is the

tag number Within the class, a nonnegative integer.

In ASN.1 “modules” whose default tagging method is implicit tagging,

the notation [[class] number] Type is also acceptable, and the keyword

IMPLICIT is implied. (See Section 2.3.) For definitions stated outside a

module, the explicit inclusion of the keyword IMPLICIT is preferable to

prevent ambiguity.

If the class name is absent, then the tag is context—specific. Context—spe-

cific tags can only appear in a component of a structured or CHOICE type.

A Layman’s Guide to a Subset ofASN. 1, BER, and DER 359

Example PKCS #8’s PrivateKeyInfo type has an optional attributes

component With an implicit, context-specific tag:

PrivateKeyInfo ::= SEQUENCE {
version varsion,

privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
privatexey Privatexey,

attributes [0] IMPLICI’I‘ Attributes OPTIONAL }

Here the underlying type is Attributes, the class is absent (i.e.,

context—specific), and the tag number Within the class is 0.

BER Encoding

Primitive or constructed, depending on the underlying type. Contents

octets are as for the BER encoding of the underlying value.

Example The BER encoding of the attributes component of a Pri-

vateKeyInfo value is as follows:

Ii The identifier octets are 80 if the underlying Attributes value has

a primitive BER encoding, and a0 if the underlying Attributes

value has a constructed BER encoding.

I The length and contents octets are the same as the length and

contents octets of the BER encoding of the underlying Attributes

value.

DER Encoding

Primitive or constructed, depending on the underlying type. Contents

octets are as for the DER encoding of the underlying value.

Section 5.2: Explicitly Tagged Types

Explicit tagging denotes a type derived from another type by adding an

outer tag to the underlying type.

Explicit tagging is used for optional SEQUENCE components with under—

lying type ANY throughout PKCS, and for the version component of

X.509’s Certi ficate type.

ASN.1 notation:

[[class] number] EXPLICIT Eype

class = UNIVERSAL 1 APPLICATION 1 PRIVATE

360 Appendix B

where Type is a type, class is an optional class name, and number is the

tag number within the class, a nonnegative integer.

If the class name is absent, then the tag is context-specific. Context-

specific tags can only appear in a component of a SEQUENCE, SET, or

CHOICE type.

In ASN.1 “modules” Whose default tagging method is explicit tagging,

the notation [[class] number] Type is also acceptable, and the keyword

EXPLICIT is implied. (See Section 2.3.) For definitions stated outside a

module, the explicit inclusion of the keyword EXPLICIT is preferable to

prevent ambiguity.

Example 1 PKCS #7’s Contentlnfo type has an optional content com-

ponent with an explicit, context—specific tag:

ContentInfo ::= SEQUENCE {
contentType ContentType,
content

[0] EXPLICIT ANY DEFINED BY contentTy'pe OPTIONAL }

Here the underlying type is ANY DEFINED BY contentType, the class

is absent (i.e., context~specific), and the tag number Within the class is 0.

Example 2 X.509’s Certi f icate type has a version component with an

explicit, context—specific tag, Where the EXPLICIT keyword is omitted:

Certificate ::= ...

version [0] Version DEFAULT V1988,

The tag is explicit because the default tagging method for the ASN.1

“module” in X509 that defines the Certificate type is explicit tagging.

BER Encoding

Constructed. Contents octets are the BER encoding of the underlying
value. /“Weatwaammwmww(messaawsaat
Example The BER encoding of the content component of a Content~

Info value is as follows: 4%/fl<

n Identifier octets are al’) . i {
5 Length octets represent the length of the BER encoding of the

underlying ANY DEFINED BY contentType value.

A Layman: Guide to a Subset ofASN. 1, BER, and DER 361

n Contents octets are the BER encoding of the underlying ANY

DEFINED BY contentType value. ‘

DER Encoding

Constructed. Contents octets are the DER encoding of the underlying

value. ‘

Section 5.3: ANY

The ANY type denotes an arbitrary value of an arbitrary Lype, where the

arbitrary type is possibly defined in the registration ofan object identifier

or associated with an integer index.

The ANY type is used for content of a particular content type in PKCS

#7’s Content Info type, for parameters of a particular algorithm in

X.509’s Algorithmldentifier type, and for attribute values in X.501’s

Attribute and AttributeValueAssertion types. The Attribute

type is used by PKCS #6, #7, #8, #9, and #10, and the AttributeValue-

Assertion type is used in X501 distinguished names.

ASN.1 Notation

ANY [DEFINED BY identifierlwhere identifier is an optional identifier.

In the ANY form, the actual type is indeterminate.

The ANY DEFINED BY identifier form can appear only in a component

of a SEQUENCE or SET type for which identifier identifies some other

component and only if that other component has type INTEGER or OBJECT

IDENTIFIER (or a type derived from either of those by tagging). In that

form, the actual type is determined by the value of the other component,

either in the registration ofthe object identifier value, or in a table of inte-

ger values.

Example X.509’s Algorithmldentifier type has a component of type
Alfifl

AlgorithmIdantifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,

parameters ANY DEFINED BY algorithm OPTIONAL }

362 Appendix B

Here the actual type of the parameter component depends on the value

of the algorithm component. The actual type would be defined in the

registration of object identifier values for the algorithm component.

BER Encoding

Same as the BER encoding of the actual value.

Example The BER encoding of the value of the parameter component is
the BER encoding of the value of the actual type as defined in the regis-

tration of object identifier values for the algorithm component.

DER Encoding

Same as the DER encoding of the actual value.

Section 5.4: BIT STRING

The BIT STRING type denotes an arbitrary string of bits (1’s and 0’s). A

BIT STRING value can have any length, including zero. This type is a

string type.

The BIT STRING type is used for digital signatures on extended cer-

tificates in PKCS #6’s ExtendedCertif icate type, for digital signatures

on certificates in X.509’s Certificate type, and for public keys in cer-

tificates in X.509’s Subj ectPubl icKeyInfo type.

ASN.1 Notation

BIT STRING

Example X.509’s Subj ec tPubl i cKeyInf 0 type has a component of type
BIT STRING:

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm Algorithmldentifier,

publicKey BIT STRING }

BER Encoding

Primitive or constructed. In a primitive encoding, the first contents octet

gives the number of bits by which the length of the bit string is less than

the next multiple of 8 (this is called the “number ofunused bits”). The sec-

A Layman’s Guide to a Subset ofASN.'l, BER, and DER 363

ond and following contents octets give the value of the bit string, con-

verted to an octet string. The conversion process is as follows:

1. The bit string is padded after the last bit with zero to seven bits of

any value to make the length of the bit string a multiple of 8. If the
length of the bit string is a multiple of 8 already, no padding is done.

2. The padded bit string is divided into octets. The first eight bits of the

padded bit string become the first octet, bit 8 to bit 1, and so on

through the last eight bits of the padded bit string.

In a constructed en coding, the contents octets give the concatenation of
the BER encodings of consecutive substrings of the bit string, where each

substring except the last has a length that is a multiple of eight bits.

Example The BER encoding of the BIT STRING value “01101110010111

0111” can be any of the following, among others, depending on the choice

of padding bits, the form of the length octets, and whether the encoding

is primitive or constructed:

O3 O4 06 6e 5d c0 DERencoding

O3 O4 06 6e 5d e0 Padded with “100000”

03 81 O4 06 6e 5d c0 Longform ofleng‘thoctets

23 O9 Constructed encoding:
O3 O3 00 6e 5d “0110111001011101”+“11”
O3 O2 06 CO

DER encoding

Primitive. The contents octets are as for a primitive BER encoding, except

that the bit string is padded with zero—valued bits.

Example The DER encoding of the BIT STRING value “01101110010111

0111” is

03 O4 06 Ge 56! c0

Section 5.5: CHOICE

The CHOICE type denotes a union of one or more alternatives.

The CHOICE type is used to represent the union of an extended certifi—

catc and an X509 certificate in PKCS #7’s ExtendedCertif icate—

OrCert i ficate type.

364 Appendix B

ASN.1 notation

CHOICE I

[identifie11] Type“
...,

[identifiez3] Type“)

where identifier1 , . . ., identifiern are optional, distinct identifiers for

the alternatives, and Typel, . . ., Typen are the types of the alternatives.

The identifiers are primarily for documentation; they do not affect values

of the type or their encodings in any way

The types must have distinct tags. This requirement is typically satis-

fied with explicit or implicit tagging on some of the alternatives.

Example PKCS #7’s ExtendedCertificateOrCertificate type is a

CHOICE type:

ExtendedCertificateOrCertificate ::= CHOICE {
certificate Certificate, -— x.509

extendedCertificate [0] IMPLICIT ExtendedCertificate
}

Here the identifiers for the alternatives are certi f icate and

extendedCertificate, and the types of the alternatives are Certifi—

cate and [O] IMPLICIT ExtendedCertificate.

BER encoding

Same as the BER encoding of the chosen alternative. The fact that the

alternatives have distinct tags makes it possible to distinguish between

their BER encodings.

Example The identifier octets for the BER encoding are 3 0 if the chosen

alternative is certificate, and a0 if the chosen alternative is

extendedCertificate.

DER encoding

Same as the DER encoding of the chosen alternative.

Section 5.6: IASString

The IASString type denotes an arbitrary string of IA5 characters. IA5

stands for International Alphabet 5, Which is the same as ASCII. The

16 0d 74 65

74

16 81

74

36 l3

l6

16

16

31 40

0d

65 73

05 74

01 4O

07 72

A Layman: Guide to a Subset ofASN. 1, BER, and DER 365

character set includes non-printing control characters. An IASString

value can have any length, including zero. This type is a string type.

The IASString type is used in PKCS #9’5 electronic—mail address,

unstructured-name, and unstructured—address attributes.

ASN.1 notation

IASString

BER encOding

Primitive or constructed. In a primitive encoding, the contents octets give

the characters in the 1A5 string, encoded in ASCII. In a constructed encod-

ing, the contents octets give the concatenation of the BER encodings of

consecutive substrings of the IAS string.

Example The BER encoding of the IASString value “test1@rsa.com” can

be any of the following, among others, depending on the form of length

octets and whether the encoding is primitive or constructed:

7 3 DER encoding

72 73 61 2e 63 6f 6d

Long form of length octets
74 31 40 72 73 61 2e 63 6f 6d

Constructed encoding:
65 73 74 31 “testl” + “@” + “rsa.com”

73 61 2e 63 6f 6d

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Example The DER encoding of the IAS String value “test1@rsa.com” is

16 0d 74 65 '73 74 31 40 72 73 61 28 63 6f 66.

Section 5.7: INTEGER

The INTEGER type denotes an arbitrary integer. INTEGER values can be

positive, negative, or zero, and can have any magnitude.

The INTEGER type is used for version numbers throughout PKCS, for

366 Appendix B

cryptographic values such as modulus, exponent, and primes in PKCS #l’s

RSAPublicKey and RSAPrivateKe-y types and PKCS #3’s DHParameter

type, for a message-digest iteration count in PKCS #5’s PBEParameter

type, and for version numbers and serial numbers in X.509’s Certifi—

cate type.

ASN.1 Notation

INTEGER [{ identifiexg(valuel) ... identifieu;(valuen) }]

Where identifierl, . . ., identifier" are optional distinct identifiers and

valuel, . . ., value, are optional integer values. The identifiers, when pre-

sent, are associated with values of the type.

Example X.509’s Version type is an INTEGER type With identified val-
ues:

Version ::8 INTEGER { v1988(0) }

The identifier v1 9 8 8 is associated with the value 0. X.509’s Cert i f ieate

type uses the identifier v19 88 to give a default value of 0 for the version

component:

Certificate ::= ...
version Version DEFAULT V1988,

BER Encoding

Primitive. Contents octets give the value of the integer, base 256, in two’s

complement form, most significant digit first, with the minimum number 1”,

of octets. The value 0 is encoded as a single 00 octet. 5

Some example BER encodings (which also happen to be DER encod-

ings) are given in Table 13-3.

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

A Layman‘s Guide to a Subset ofASN.], BER, and DER 367

Table B-3 Integer Value BER Encoding

Example BER 0 02 01 co

Encodmgs of 127 02 01 7F
INTEGER Values

128 02 02 00 80

256 02 02 01 DO

#128 02 01 BO

-129 02 02 FF 7F

Section 5.8: NULL

The NULL type denotes a null value.

The NULL type is used for algorithm parameters in several places in
PKCS.

ASN. 1 Notation

NULL

BER Encoding

Primitive. Contents octets are empty.

Example The BER encoding of a NULL value can be either of the follow-

ing, as well as others, depending on the form of the length octets:

05 O0
05 81 00

DER Encoding

Primitive. Contents octets are empty; the DER encoding of a NULL value

is always 05 00.

368 Appendix B

Section 5.9: OBJECT IDENTIFIER _

The OBJECT IDENTIFIER type denotes an object identifier, a sequence of

integer components that identifies an object such as an algorithm, an

attribute type, or perhaps a registration authority that defines other

object identifiers. An OBJECT IDENTIFIER value can have any number of

components, and components can generally have any nonnegative value.

This type is a nonstring type. '

OBJECT IDENTIFIER values are given meanings by registration au-

thorities. Each registration authority is responsible for all sequences of

components beginning with a given sequence. A registration authority

typically delegates responsibility for subsets of the sequences in its

domain to other registration authorities, or for particular types of objects.

There are always at least taro components.

The OBJECT IDENTIFIER type is used to identify content in PKCS #7’s

Contentlnfo type, to identify algorithms in X.509’s Algorithmldenti—

f ier type, and to identify attributes in X.501’s Attribute and Attrib—

uteValueAssertion types. The Attribute type is used by PKCS #6,

#7, #8, #9, and #10, and the AttributeValueAssertion type is used in

X501 distinguished names. OBJECT IDENTIFIER values are defined

throughout ‘PKC S.

ASN.1 Notation

OBJECT IDENTIFIER

The ASN.1 notation for values of the OBJECT IDENTIFIER type is

{ [identifier] compostemi:1 . . . component” }

(:ctmponem:i I: identifie:-i | identifieri (valuei) I valuei

where identifier, identifierl, . . ., identifiern are identifiers, and valuel,

. . ., value” are optional integer values.

The form without identifier is the “complete” value with all its com-

ponents; the form with identifier abbreviates the beginning components

with another object identifier value. The identifiers identifier” . . ., iden-

tifiern are intended primarily for documentation, but they must corre—

spond to the integer value when both are present. These identifiers can

appear without integer values only if they are among a small set of iden- 2
tiiiers defined in X208. ,

Table B-4

Some Object
Identifier Values

and Their

Meanings

A Layman: Guide to a Subset ofASN. 1, BER, and DER 369

Example Both of the following values refer to the object identifier

assigned to RSA Data Security, Inc.:

I 1.80”.) mamber-body(2) 840 113549 }
t 1 2 840 113549 }

(In this example, which gives ASN.1 value notation, the object identifier

values are decimal, not hexadecimal.) Table A-4 gives some other object

identifier values and their meanings.

Object Identifier Value Meaning

{ 1 2 } ISO member bodies

{ 1 2 840 l US (ANSI)

{ 1 2 840 113549 } BSA Data Security, Inc.

{ 1 2 840 113549 1 } BSA Data Security, Inc. PKCS

{ 2 5 1 Directory Services (X. 500)

l 2 5 8 l Directory services—algorithms

BER Encoding

Primitive. Contents octets are as follows, where value” . . ., value” denote

the integer values of the components in the complete object identifier:

1. The first octet has value 40 X calms1 + valueg. (This is

unambiguous, since vatue1 is limited to values 0, 1, and 2; value,3 is

limited to the range 0 to 39 when value, is O or 1; and, according to

X208, 1?. is always at least 2.)

2. The following octets, if any, encode valuea, . . ., value,,. Each value is

encoded base 128, most significant digit first, with as few digits as

possible, and the most significant bit of each octet except the last in

the value’s encoding set to “1.”

3 70 Appendix B

Example The first octet of the BER encoding of RSA Data Security, Inc.’s

object identifier is 40 X 1 + 2 = 42 = 2am. The encoding of 840 = 6 X 128

+ 4816 is 86 48, and the encoding of 113549 = 6 X 1282 + 7716 X 128 +

(3116 is 86 f? 0d. This leads to the following BER encoding:

06 06 2a 86 48 86 f? 0d

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Section 5.10: OCTET STRING

The OCTET STRING type denotes an arbitrary string of octets (eight-bit

values). An OCTET STRING value can have any length, including zero.

This type is a string type.

The OCTET STRING type is used for salt values in PKCS #5’s PBE

Parameter type, for message digests, encrypted message digests, and

encrypted content in PKCS #7, and for private keys andencrypted private
keys in PKCS #8.

ASN.1 Notation

OCTET STRING [SIZE ({size i sizel..sizez})]

where size, sizel, and sizez are optional size constraints. In the OCTET

STRING SIZE (size) form, the octet string must have size octets. In the ,

OCTET STRING SIZE (sizeksizeg) form, the octet string must have

between sizel and size2 octets. In the OCTET STRING form, the octet

string can have any size.

Example PKCS #5’5 PBEParameter type has a component of type OCTET
STRING:

PBEParameter : : = SEQUENCE {
salt OCTET STRING SIZE(8) I

iterationCOunt INTEGER }

Here the size of the salt component is always eight octets.

A Layman’s Guide to a Subset ofASN. 1, BER, and DER 37!

BER Encoding

Primitive or constructed. In a primitive encoding, the contents octets give

the value of the octet string, first octet to last octet. In a constructed

encoding, the contents octets give the concatenation of the BER encodings

of substrings of the OCTET STRING value.

Example The BER encoding of the OCTET STRING value 01 ‘ 23 45 67

89 ab cd ef can be any of the following, among others, depending on

the form of length octets and whether the encoding is primitive or con—

structed:

04 08 01 23 45 67 89 ab cd ef DERencoding

04 81 08 01 23 45 6'? 89 ab cd ef Longform oflengthoctets

24 Ge Constructed encoding:
04 O4 01 23 45 67 01 H. 67't89 ...ef

04 O4 89 ab Cd ef

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Example The BER encoding of the OCTET STRING value 01 23 45 67

89 ab Cd ef is

04 08 01 23 45 67 89 ab Cd ef

Section 5.1 1: PrintableString

The PrintableString type denotes an arbitrary string of printable

characters from the following character set:

A, B, ...,Z

a, b, ..., z
0, 1, ..., 9

(space) ' () + , — . I : a ?

This type is a string type.

The PrintableString type is used in PKCS #9’s challenge—password

and unstructured-address attributes, and in several X.521 distinguished

names attributes. ‘

3 72 Appendix B

ASN.1 Notation

PrintableString

BER Encoding

Primitive or constructed. In a primitive encoding, the contents octets give

the characters in the printable string, encoded in ASCII. In a constructed

encoding, the contents octets give the concatenatien of the BER encodings

of consecutive substrings of the string.

Example The BER encoding of the PrintableString value “Test

User 1” can be any of the following, among others, depending on the form

of length octets and whether the encoding is primitive or constructed:

13 0b 54 65 73 74 20 55 73 65 72 20 31 DERencoding

13 81 0b 54 65 '73 74 20 55 73 65 72 20 31 Longformoflength
octets .

33 Of Constructed

13 05. 54 65 73 74 2O encoding:
3.3 06 55 73 65 72 20 31 “Test“+“Userl”

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Exampfe The DER encoding of the PrintableString value “Test
User 1” is '

13 0b 54 65 73 ‘74 20 55 '73 65 72 20 31

Section 5.12: SEQUENCE The SEQUENCE type denotes an ordered collection of one or more types.

The SEQUENCE type is used throughout PKCS and related standards.

A Layman's Guide to a Subset ofASN. 1, BER, and DER ‘ 373

ASN. 1 Notation

sequence {

[identifiem Typel [{OP‘I‘IONAL 1 DEFAULT value,” ,. . . ,

[identifiern] Typan “OPTIONAL I DEFAULT valuenfl}

where identifier, , . . ., identifier“ are optional, distinct identifiers for

the components, Typel, . . ., Typen are the types of the components, and

valuel, . . ., value, are optional default values for the compenents. The

identifiers are primarily for documentation; they do not affect values of

_ the type or their encodings in any way.

The OPTIONAL qualifier indicates that the value of a component is

optional and need not be present in the sequence. The DEFAULT qualifier

also indicates that the value of a component is optional, and assigns a

default value to the component when the component is absent.

The types of any consecutive series of components with the OPTIONAL

or DEFAULT qualifier, as well as of any component immediately following

that series, must have distinct tags. This requirement is typically satisfied

with explicit or implicit tagging on some of the components.

Example X.509’s Validity type is a SEQUENCE type with two compo-
nents:

Validity ::= SEQUENCE {
start UTCTime,

and UTC'I'ime 3’

Here the identifiers for the components are start and end, and the

type of both components is UTCTime.

BER Encoding

, Constructed. Contents octets are the concatenation of the BER encodings

of the values of the components of the sequence, in order of definition,

with the following rules for components with the OPTIONAL and DEFAULT

qualifiers:

I If the value of a component with the OPTIONAL or DEFAULT qualifier ‘

is absent from the sequence, then the encoding of that component is

not included in the contents octets.

. I If the value of a component with the. DEFAULT qualifier is the defauit

‘ value, then the encoding of that component may or may not be
included in the contents octets.

3 74 Appendix B

DER Encoding

Constructed. Contents octets are the same as the BER encoding, except

that if the value of a component with the DEFAULT qualifier is the default

value, the encoding of that component is not included in the contents
octets.

Sectopm 5.13: SEQUENCE OF

The SEQUENCE OF type denotes an ordered collection of zero or more

occurrences of a given type.

The SEQUENCE OF type is used in X.501 distinguished names.

”ASN.1 Notation

SEQUENCE OF Expo

where Type is a type.

Example X.501’s RDNSequence type consists of zero or more occurrences

of the RelativeDistinguishedName type, most significant occurrence

first: ‘

RDNSaquence ::= SEQUENCE OF RelativenistinguishedName

BER Encoding

Constructed. Contents octets are the concatenation of the BER encodings

of the values of the occurrences in the collection, in order of occurrence. 3%!
.3
ii
if?

DER Encoding

Constructed. Contents octets are the concatenation of the DER encodings

of the values of the occurrences in the collection, in order of occurrence.

Section 5.14: SET

The SET type denotes an unordered collection of one or more types.

The SET type is not used in PKCS.

A Layman’s Guide to a Subset ofASN. 1, BER, and DER 3 75

ASN.1 Notation

SET {

[identifier-1] Type, [{op-rxom I DEFAULT vaine,}],...,

[identifiern] armsn “OPTIONAL ; DEFAULT valuenn}

where identifierl, . . ., identifiern are optional, distinct identifiers for the

components, Typel, . . ., Type" are the types of the components, and

valuel, . . ., value,, are optional default values for the components. The

identifiers are primarily for documentation; they do not affect values of

the type or their encodings in any way.

The OPTIONAL qualifier indicates that the value of a component is

optional and need not be present in the set. The DEFAULT qualifier also

indicates that the value of a component is optional, and assigns a default

value to the component when the component is absent.

The types must have distinct tags. This requirement is typically satis-

fied with explicit or implicit tagging on some of the components.

BER Encoding

Constructed.IContents octets are the concatenation of the BER encodings

of the values of the components of the set, in any order, with the following

rules for components with the OPTIONAL and DEFAULT qualifiers:

I If the value of a component with the OPTIONAL or DEFAULT qualifier

is absent from the set, then the encoding of that component is not

included in the contents octets.

I If the value of a component with the DEFAULT qualifier is the default

value, then the encoding of that component may or may not be

included in the contents octets.

DER Encoding

Constructed. Contents octets are the same as for the BER encoding,

except that:

I If the value of a component with the DEFAULT qualifier is the defauit

value, the encoding of that component is not included.

I There is an order to the components, namely ascending order by tag.

3 76 Appendix B

Section 5.15: SET OF

The SET OF type denotes an unordered collection of zero or more occur—

rences of a given type.

The SET OF type is used for sets of attributes in PKCS #6, #7, #8, #9,

and #10, for sets of message-digest algorithm identifiers, signer informa-

tion, and recipient information in PKCS #7, and in X501 distinguished
names.

ASN.1 Notation

SET OF me

Where Type is a type.

Example X.501’s RelativeDistinguishedName type consists ofzero or

more occurrences of the AttributeValueAssertion type, Where the
order is unimportant:

Relativenistinguishednme : 3 a:
SET OF AttributeValueAssertion

BER Encoding

Constructed. Contents octets are the concatenation of the BER encodings

of the values of the occurrences in the collection, in any order. .

DER Encoding

Constructed. Contents octets are the same as for the BER encoding,

except that there is an order, namely ascending lexicographic order of

BER encoding. Lexicographic comparison of two different BER encodings

' is done as follows: Logically pad the shorter BER encoding after the last

octet with dummy octets that are smaller in value than any normal octet.

Scan the BER encodings from left to right until a difference is found. The

smaller-valued BER encoding is the one with the smaller-valued octet at

the point of difference.

A Layman's Guide to a Subset ofASN. 1, BER, and DER 377

Section 5.16: T61 String

14

14

34

Of

63

81

63

15

l4

14

14

66

Of

60

05

Ol

09

c2

c2

63

2O

7O

65 73 20 7O 75 62 6C 69 71 75 65 73

The T6 lString type denotes an arbitrary string of T.61 characters. T.61

is an eight-bit extension to the ASCII character set. Special “escape”
sequences specify the interpretation of subsequent character values as,

for example, Japanese; the initial interpretation is Latin. The character

set includes nonprinting control characters. The Tolstring type allows

only the Latin and Japanese character interpretations, and implementors’

agreements for directory name‘s exclude control characters [NIST92]. A

T61String value can have any length, including zero. This type is a

string type.

The Telstring type is used in PKCS #9’s unstructured—address and

challenge-password attributes, and in several X521 attributes.

ASN.1 Notation

T61String

BER Encoding

Primitive or constructed. In a primitive encoding, the contents octets give

the characters in the T.61 string, encoded in ASCII. In a constructed

encoding, the contents octets give the concatenation of the BER encodings

of consecutive substrings of the T.61 string.

Example The BER encoding of the T6lstring value “clés publiques”

(French for “public keys”) can be any of the following, among. others,
depending on the form of length octets and whether the encoding is prim-

itive or constructed:

IDER encoding

65 73 2O 7O 75 62 6c 59 71 75 65 73

Long form of length octets

Constructed encoding:

6c :22 65 73 “clés” + “ “ + “publiques”

75 62 6C 69 71 75 65 73

The eight-bit character (:2 is a T.61 prefix that adds an acute accent (’)
to the next character.

3 78 Appendix B

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Example The DER encoding of the T6lString value “clés publiques” is V

14 0f 63 6c (:2 65 '33 20 ’70 '75 62 6c 69 71 '75 65 73

Section 5. 1 7: UTCTime

The UTCTime type denotes a “coordinated universal time” or Greenwich
Mean Time (GMT) value. A UTCTime value includes the local time precise

to either minutes or seconds, and an offset from GMT in hours and min—

utes. It takes any of the following forms:

WthmmZ
Wthmn-rhh ’m ’
Wthm-bh ’mm ’
YYMMDthmmssz
thhmnss+1111 'mm '
YWthJ-mss4111 ’mm ’

Where:

YY is the least significant two digits of the year

MM is the month (01 to 12)

DD is the day (01 to 31)

ML is the hour (00 to 23)

mm are the minutes (00 to 59)

33 are the seconds (00 to 59)

Z indicates that local time is GMT, + indicates that local time is

later than GMT, and — indicates that local time is earlier than

GMT

hh’ is the absolute value of the offset from GMT in hours

mm’ is the absolute value of the offset from GMT in minutes

This type is a string type. L
The UTCTime type is used for signing times in PKCS #9’5 signing~time

attribute and for certificate validity periods in X.509’s Validity type.

A Layman’s Guide to a Subset ofASN.1, BER, and DER 3 79

ASN.1 Notation

UTCTime

BER Encoding

Primitive or constructed. In a primitive encoding, the contents octets give

the characters in the string, encoded in ASCII. In a constructed encoding,

the contents octets give the concatenation of the BER encodings of con»

secutive substrings of the string. (The constructed encoding is not partic-

ularly interesting, since UTCTime values are so short, but the constructed

encoding is permitted.) ~

Example The time this sentence was originally written was 4:45:40 PM.

Pacific Daylight Time on May 6, 1991, which can be represented with

either of the following UTCTime values, among others:

"910506164540-0700"
“9105062345402“

These values have the following BER encodings, among others:

17 Dd 39 31 30 35 30 36 33 33 34 35 34 30 5a

17 11 39 31 30 35 30 36 31 36 34 35 34 30 2D 30 37 30
30

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Section 6: An Example

This section gives an example of ASN.1 notation and DER encoding: the

X501 type Name.

380 Appendix B

Section 6.1: Abstract Notation

This section gives the ASN.1 notation for the X.501 type Name.

Name ::= CHOICE {

RDNSequence },

RDNSequence ::= SEQUENCE OF RelativenietinguishedName

RelativaDistinguishedName ::=
SET OF AttributeValueAssertion

Attributevaluenssertion ::= SEQUENCE { g

' AttributeType, t
AttributeValue } 3

AttributeType ::= OBJECT IDENTIFIER

AttributeValue :== ANY

The Name type identifies an object in an X500 directory. Name is a

CHOICE type consisting of one alternative: RDNSequence. (Future revi—

sions of X500 may have other alternatives.) ‘

The RDNSequence type gives a path through an X.500 directory tree

starting at the root. RDNSequence is a SEQUENCE OF type consisting of

zero or more occurrences of RelativeDistinguishedName.

The RelativeDistinguishedName type gives a unique name to an

object relative to the object superior to it in the directory tree. Rela-

tiveDistinguishedName is a SET OF type consisting of zero or more

occurrences of AttributeValueAssertion.

The AttributeValueAssertion type assigns a value to some

attribute of a relative distinguished name, such as country name or com-

mon name. AttributeValueAssertion is a SEQUENCE type consisting of

two components, an At tributeType type and an AttributeVa lue type.

The AttributeType type identifies an attribute by object identifier. ,3

The AttributeValue type gives an arbitrary attribute value. The actual ‘

type of the attribute value is determined by the attribute type.

Section 6.2: DER Encoding

This section gives an example of a DER encoding of a value of type Name,

working from the bottom up. Wmmiww'7‘«w.,,.,5~}“~}:‘g"~3»->.1‘w?.7”~j:\,w.<_5-,yj.;-‘.V

A Layman’s Guide to a Subset ofASN. 1, BER, and DER 381

The name is that of the Test User 1 from the PKCS examples [Ka193].

The name is represented by the following path:

(root)

countryName = “US“

organizationName = "Example Organization"

commonName = “Test User 1"

Each level corresponds to one RelativeDistinguishedName value,

each of which happens for this name to consist of one At tributeValue—

Assertion value. The AttributeType value is before the equals sign,

and the At tributeValue value (a printable string for the given

attribute types) is after the equals sign.

The countryName, organizationName, and commonUnitName are

attribute types defined in X.520 as:

attributeType OBJECT IDENTIFIER ::=

{ joint-iso-ccitt(2) ds(5) 4 }

countryName OBJECT IDENTIFIER ::= { attributeType 6 }
organizationName OBJECT IDENTIFIER ::=

{ attributeType 10 }
commonUnitName OBJECT IDENTIFIER ::=

{ attributeType 3 }

AttributeType

The three At tributeType values are OCTET STRING values, so their

DER encoding follows the primitive, definite-length method:

06 03 5'5 04 06 country‘Name
06 03 55 04 0a organizationName

06 03 55 04 03 commonName

The identifier octets follow the low—tag form, since the tag is 6 for

OBJECT IDENTIFIER. Bits 8 and 7 have value “0,” indicating universal

class, and bit 6 has value “0,” indicating that the encoding is primitive.

The length octets follow the short form. The contents octets are the con-

catenation of three octet strings derived from subidentifiers (in decimal):

40 X 2 + 5 = 85 = 5516; 4; and 6, 10,0r 3.

3 82 Appendix BW

13

13

13

AttributeValue

The three AttributeValue values are PrintableString values, so

their encodings follow the primitive, definite-length method:

02 55 53 “US”

14 “Example

45 78 61 6d 70 6C65 20 4f 72 67 61 6e 69 7a 61 Organization”
74 69 6f 6e '

Ob “Test User 1”
54 65 73 74 7.0 55 73 65 72 20 31

The identifier octets follow the low~tag~number form, since the tag

for PrintableString, 19 (decimal), is between 0 and 30. Bits 8 and 7

have value “0” since Pr intableString is in the universal class. Bit 6 has

value “0” since the encoding is primitive. The length octets follow the short

form, and the contents octets are the ASCII representation of the
attribute value.

AttributeValueAssertion

The three At tributeValueAssertion values are SEQUENCE values, so

their DER encodings follow the constructed, definite-length method:

3 O 0 9 countryName = “US”
0 6 O 3 5 5 O 4 O 6

1 3 O 2 5 5 5 3

3 0 lb organizationName = “Example Organization”
0 6 O 3 5 5 O 4 O a

1 3 14 . . . 6 f 6e

3 O 12 commonName = “Test User 1”
O 6 O 3 5 5 O 4 Ob

13 Ob 20 31

The identifier octets follow the low-tag—number form, since the tag for

SEQUENCE, 16 (decimal), is between 0 and 30. Bits 8 and 7 have value

“0” since SEQUENCE is in the universal class. Bit 6 has value “1” since

the encoding is constructed. The length octets follow the short form, and
the contents octets are the concatenation of the DER encodings of the

attributeType and attributeValue components.

A Layman: Guide to a Subset ofASN. 1, BER, and DER 383

RelativeDistinguishedName

The three RelativeDistinguishedName values are SET OF values, so

their DER encodings follow the constructed, definite-length method:

31 0b
30 09 ... 55 53

31 1d
30 1b ... 6f 66

31 14
30 12 ... 20 31

The identifier octets follow the low-tag—number form, since the tag for

SET OF, 17 (decimal), is between 0 and 30. Bits 8 and 7 have value “0”

since SET OF is in the universal class. Bit 6 has value “1” since the encod~

ing is constructed. The length octets follow the short form, and the

contents octets are the DER encodings of the respective Attribute—

ValueAssertion values, since there is only one value in each set.

RDNSequence

The RDNSequence value is a SEQUENCE OF value, so its DER encoding

follows the constructed, definite-length method:

30 42
31 0b ... 55 53

31 1d ... 6f Se

31 14 ... 20 31

The identifier octets follow the low-tag-number form, since the tag for

SEQUENCE OF, 16 (decimal), is between 0 and 30. Bits 8 and 7 have value

“0” since SEQUENCE OF is in the universal class. Bit 6 has value “1” since

the encoding is constructed. The length octets follow the short form, and

the contents octets are the concatenation of the DER encodings of the

three Re lat; iveDi stinguishedName values, in order of occurrence.

384 Appendix B

Name

The Name value is a CHOICE value, so its DER encoding is the same as

that of the RDNSequence value:

30 42
31 Ob '

30 09

06 03 55 04 06 attribute'l‘y‘pe a countryName
13 02 55 53 attributeValue = "US"

31 1d
30 1b

06 03 55 04 0a attributerype - organizationueme
13 14 attributeValue = "Examle Organization"

45 78 61 6d 70 60 65 20 4f 72 67 61 69 69 7a 61
74 69 6f 6e

31 14
30 12

06 03 55 04 03 attribubeType 2 commonName
13 0b attributeValue = "Test User 1"

54 65 73 74 20 55 73 65 72 2O 31

References

PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption Standard. Ver—

sion 1.5, November 1998.

PKCS #3 RSA Laboratories. PKCS #3: Dime-Hellman Key—Agreement

Standard. Version 1.4, November 1993.

PKCS #5 RSA Laboratories. PKCS #5: Password-Based Encryption

Standard. Version 1.5, November 1993.

PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax

Standard. Version 1.5, November 1993.

PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax

Standard. Version 1.5, November 1998.

PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information Syntax

Standard. Version 1.2, November 1993.

PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types. Ver-

sion 1.1, November 1993.

PKCS #10 RSA Laboratories. PKCS #10: Certification Request Syntax

Standard. Version 1.0, November 1993. — 3

X200 CCITT. Recommendation X200: Reference Model of Open }

Systems Interconnection for GO!if‘TApplications. 1984.

A Layman’s Guide to a Subset ofASN. 1, BER, and DER 385

X208

X209

X.500

X.501

X509

X520

[Kal93l

[NIST92l

Revision History

June 3, 1991, Version

CCITT. Recommendation X208: Specification of Abstract

Syntax Notation One (ASN.1). 1988.

CCITT. Recommendation X209: Specification of Basic

Encoding Rules for Abstract Syntax Notation One (ASN.1).

1988.

CCITT. Recommendation X.500: The Directory—Overview of

Concepts, Models and Services. 1988.

CCITT. Recommendation X.501: The Directory—Models.

1988.

CCITT. Recommendation. X509: The Direcwry—Authentica-

tion Framework. 1988.

CCITT. Recommendation X.520: The Directory—Selected

Attribute Types. 1988.

Burton S. Kaliski Jr. Some Examples of. the PKCS Stan-

dards. RSA Laboratories, November 1993.

NIST. Special Publication 500-202: Stable Implementation

Agreements for Open Systems Interconnection Protocols. Part

11 (Directory Services Protocols). December 1992.

The June 3, 1991, version is part of the initial public release of PKCS. It

was published as NIST/OSI Implementors’ Workshop document SEC-

SIG-91—17.

November I, 1993, Version

The November 1, 1993, version incorporates several editorial changes,

including the addition of a revision history. It is updated to be consistent

with the following versions of the PKCS documents: ‘

PKCS #1

PKCS #3

RSA Encryption Standard. Version 1.5, November 1993.

Diffie-Hellman Key-Agreement Standard. Version 1.4,

November 1993.

386 Appendix B

PKCS #5

PKCS #6

PKCS #?

PKCS #8

PKCS #9

PKCS #10

Password-Based Encryption Standard. Version 1.5, Novem-

ber 1993.

ExtendedCertificate Syntax Standard. Version 1.5, Novem-
ber 1993.

Cryptographic Message Syntax Standard. Version 1.5,

November 1998.

Private-Key Information Syntax Standard. Version 1.2,

November 1993. ’

Selected Attribute Types. Version 1.1, November 1993.

Certification Request Syntax. Standard. Version 1.0, Novem-

ber 1993.

The following substantive changes were made:

Section 5

Section 6

Description of T618tring type is added.

Names are changed, consistent With other PKCS examples.

In this appendix, you will find extra information not covered in the main

body of the book. It is a deeper look at some of the topics described. This

information is not necessary for a proper understanding of the main con-

cepts, but should be interesting reading for those who want to explore cryp-

tography a little further.

How Digest-Based PRNGs Work

As mentioned in Chapter 2, most PRNGs (pseudo-random number gener-

ators) are based on digest algorithms. The algorithm takes a seed and—

just as sowing a botanical seed produces a plant—produces a virtually

unlimited number of pseudo-random numbers. Here is a typical imple-

mentation using SHA—l as the underlying digest algorithm.

Suppose the user wants two 128—bit session keys. The first step is give

the seed to the PRNG, which digests it using SHA—l. The seed is the “mes-

sage” of the message digest. This produces a 20-byte internal value, com—

monly called the state, which must be kept secret. Next, the user asks the

PRNG for 16 bytes (the data of the first 128—bit session key). The PRNG

uses SHA—l to digest the state. Now the state, rather than the seed, is the

388 Appendix c

message of the message digest. The digest produces 20 bytes. The user

needs only 16, so the PRNG outputs the first 16 bytes.

The user then requests 16 more bytes (the data of the second 128-bit

session key). The PRNG has four left over from the last call; it could

return them, but it also needs 12 more to fill the second request. To get the

next 12 bytes, the PRNG changes the state somehow and digests the

resulting new state. Because the PRNG has changed the state, this next

block of 20 bytes will be different from the first block. The PRNG now has
20 new bytes. It returns the four left over from the first digest and the

first 12 from the current digest.

Each time the PRNG produces output, it either returns leftovers or

changes the state, digests the state, and returns as many bytes from that
result as needed.

How does a PRNG change the state? It may simply add one to the curm

rent state. Recall that ifyou change a message, even ifonly by one bit, the

resulting output will be significantly different. No matter what the input

message is, the output will always pass tests of randomness. So if the

PRNG takes a current state and adds one to it, digesting the new state will

produce completely different, pseudo—random output. Ifthe current state is

OxFF FF FF FF . . . FF

then adding one to it will change the state to

0x00 00 00 00 . . . 00

It’s certainly possible to change the state by adding a different con-

stant. Instead of adding 1, the PRNG could add a 20-byte number. In that
way, all bytes of the state are manipulated in each operation.

A simpler PRNG would not bother with an internal state. Instead, it

would digest the seed to create the first block of output and then would

digest the first block of output to create the second block. Such a PRNG

would be horrible.

Here’s Why. Suppose Ray (the attacker from Chapter 3) wants to read

Pao-Chi’s email. The first thing Ray does is to get Pao-Chi to send him

some encrypted e-mail—that is, to send him a few digital envelopes. With

this e-mail, What Ray has is several 128-bit session keys (and possibly

some initialization vectors if the encryption algorithm is a block cipher

With a feedback mode). These keys are a series of pseudo-random bytes,

each block produced by digesting the preceding block. With a little work,

Ray can figure out a block boundary. Now Ray eavesdrops on Pao-Chi’s

future e-mails. What is the 128-bit session key used for the next email?

Further Technical Details 389

It’s simply the digest of the last block that Ray has. That’s why good

digest-based PRNGs use an internal state.

If the underlying digest algorithm is truly one-way (meaning that no

one can determine the message from the digest), no one will be able to fig-

ure out what the state was that produced any particular pseudo-random

output. If no one can figure out what the state is at any point in time, no

' one can compute what the next bytes will be.

Feedback Modes

In Chapter 2 you learned about block ciphers. A block cipher encrypts

each block independently, so if the same block of plaintext appears more

than once in a message, the resulting ciphertext block also will be

repeated. This repetition could help an attacker. For example, suppose a

company encrypts employee information in a database using the same

key for each entry If two entries contain the same block of ciphertext for

“salary,” anyone seeing that matching block would know that those two

people earn the same salary. ,

Feedback modes make certain that each block of ciphertext is unique.

(Except for that, they offer no additional security.) The most common feed—

back mode (described in Chapter 2) is cipher block chaining (CBC). When

you encrypt data in CBC mode, each block of plaintext is XOR’d with the

preceding block of ciphertext before the block is encrypted. There is no

previous ciphertext for the first block, so it is XOR’d with an initialization

vector (IV).

The term for no feedback is electronic codebook (ECB). Following are

some other feedback modes.

Cipher Feedback Mode*

In cipher feedback (CFB) mode, you encrypt a block of data and XOR the

plaintext with this encrypted block to produce the ciphertext. The block of

data you encrypt is the preceding ciphertext. The first block has no pre-

ceding ciphertext, so it uses an IV. To create the first block of ciphertext,

you encrypt the IV and XOR it with the plaintext. Now you save the

*(Source: RSA Labs)

390 Appendix C

resulting ciphertext for the next block. For the second block, you encrypt

» the preceding ciphertext (the result of the preceding XOR) and XOR the

result of that with the plaintext. For example, suppose that the first plain—

text block begins with the word “Goal.” Here’s the process.

1. Encrypt the IV. IV == 0xA722B551 _ . . becomes 0x38F01321

2. XOR the plaintext with the encrypted IV. Goal = 0x476F616C

becomes 0X7F9F724D, which is the ciphertext. '

3. Encrypt the preceding ciphertext. 0X7F9F724D . . . becomes

0xE1250B77

4. XOR. the plaintext with the encrypted preceding ciphertext, and

repeat until the entire message is encrypted.

It’s possible to define CFB mode so that it uses feedback that is less

than one full data block. In fact, with CFB, it’s possible to define a block

size as one byte, effectively converting a block cipher into a stream cipher.

Suppose you’re using AES, a block cipher with a block size of 16 bytes.

Here’s what to do. First, use a 16-byte IV and encrypt it. You now have a

block of 16 bytes that is the encrypted IV. Grab one byte of plaintext and

XOR it with the most significant byte of the encrypted IV. Now that you’ve

used that byte, throw it away by shifting the block of encrypted IV to the

left. That leaves the least significant byte open. Fill it with the ciphertext

(the result of the XOR). Now go on to the next byte of plaintext.

CFB mode is as secure as the underlying cipher, and using the XOR

operation conceals plaintext patterns in the ciphertext. Plaintext cannot

be manipulated directly except by the removal of blocks from the begin—

ning or the end of the ciphertext. '

Output Feedback Mode*

Output feedback (OFB) mode is similar to CFB mode except that the

quantity XOR’d with each plaintext block is generated independently of

both the plaintext and the ciphertext. Here’s how to use this mode. For the

first block of ciphertext, encrypt the IV and call this quantity the'cipher

block. Now XOR the cipher block with the plaintext. For the second block,

encrypt the cipher block to create a new cipher block. New XOR this new

cipher block with the next block of plaintext.

*(Source: BSA Labs)

Further Technical Details 391

Assuming again that the first block of plaintext is “Goal,” here’s how

OFB works.

1. Encrypt the IV to produce the cipher block. IV = OxA722B551 . . .

becomes 0X38F01321

2. XOR the plaintext with the encrypted IV. Goal = 0x476F6160

becomes 0X7F9F724D, which is the ciphertext. .

3. Encrypt the preceding cipher block. 0x38F01321 . . . becomes

0X9D44BA16

4. XOR the plaintext with the. encrypted preceding cipher block, and

continue in the same manner

Feedback widths less than a full block are possible, but for security rea-

sons they’re not recommended. OFB mode has an advantage over CFB

mode in that any bit errors that might occur during transmission are not

propagated to affect the decryption of subsequent blocks. Furthermore,

this mode can be programmed to take advantage of precomputations to

speed the process. In CBC and OFB, you can’t do the next step until com—

pleting the preceding step. Here, you can compute cipher blocks before

computing the XOR or loading the next block of plaintext.

A problem with OFB mode is that the plaintext is easily manipulated.

An attacker who knows a plaintext block mi can replace it with a false

plaintext block x by computing mi XOR x to the corresponding ciphertext

block Ci- Similar attacks can be used against CBC and OFB modes, but in

those attacks some plaintext blocks will be modified in a manner that the

attacker can’t predict. Yet the very first ciphertext block (the initialization

vector) in CBC mode and the very last ciphertext block in OFB mode are

just as vulnerable to the attack as the blocks in OFB mode. Attacks of this

kind can be prevented using, for example, a digital signature scheme or a

MAC scheme.

Counter Mode*

Because of shortcomings in OFB mode, Whitfield Diifie has proposed an

additional mode of operation termed counter mode. It differs from OFB

mode in the way the successive data blocks are generated for subsequent

*(Source: RSA Labs)

392 Appendix c

encryptions. Instead of deriving one data block as the encryption of the

preceding data block, Diffie proposes encrypting the quantity i + IV mod
block bits for the ith data block.

Here5 how it works. First, encrypt the IV and XOR it with the first

block of plaintext. Now add 1 to the IV (if the IV were OxFF FF. .,FF

the addition would produce 0x00 00 0.0 that’s What the mod block

bits means). Encrypt this new block, and XOR it with the next block of
plaintext. If the cipher uses 8~byte blocks and the first block of data is

“Goal #14,” then counter mode would look like this:

1. Encrypt the IV to produce the cipher block. W = 0XA72213551
041A3096 becomes Ox38F01821 7922E09B.

2. XOR the plaintext with the encrypted IV. Goal #14 = 0x476F6160

20233134. becomes 0X7F9F724D 5901D1AF, which is the ciphertext.

3. Encrypt IV + 1. OXA722B551 041A3C97 becomes 0X674B9B01

CFA38027.

4. XOR the plaintext with the encrypted IV + 1, and repeat the process.

Cryptanalysis of this method continues, but most cryptographers

express confidence that counter mode will be a good alternative to CBC

w because this feedback mode can take advantage of precomputations and

hence speed the process.

How to Plug Information Leaks from IV and Salts

One concern of cryptographers is the concept of leaking information. For

example, the IV for a block cipher and the salt in PBE are not secret. Any-

one eavesdropping on a digital conversation protected by a block cipher

with a feedback mode will know What the IV is. Someone who finds a pass-

word-protected session key will know the salt. That’s no problem because

knowing the IV or salt does not help an attacker. But Where did that IV

and salt come from? A PRNG? The same PRNG that produced the session

key? If it did, it means that the program has leaked information about the

session key. The session key is related to the IV or salt (or both), and the

attacker knows what those values are.

Certainly if the PRNG uses a good digest with an internal state, knowl-

edge of the IV or salt will not lead the attacker to the session key. Even

Further Technical Details 393

though a relationship exists between the values, an attacker will not be

able to exploit that relationship.

Nonetheless, information is leaking, and it’s extremely simple to plug the

hole. When you generate a session key, you use a PRNG with a good seed.

For the IV orsalt, you use a different PRNG seeded with the time of day.

You want every IV and salt you use to be unique. To do that, you use

a different PRNG with a different salt each time. The time will be dif-

ferent for each instance, so there is a simple seed that will guarantee a

different salt and IV each time. In Chapter 2, you saw that the time

alone is a poor seed. That’s because you don’t want the attacker to do a

brute force attack on the seed to reconstruct the PRNG and then repro-

duce the secrets generated by the PRNG. But if the thing generated by

the PRNG is public, it doesn’t matter whether the attacker can repro-

duce the seed. Knowledge of the seed in this case allows the attacker

only to reconstruct a PRNG and reproduce values that have already

been made public.

So to avoid leaking information, you use two PRNGS: one for generat-

ing secrets, and another one for generating salts and We. For performance

reasons, you shouldn’t waste time collecting a good seed for the PRNG

that generates the salt and IV; simply use the time. It’s fast, and it guar-

antees different output each time you use the PRNG.

Tamper-resistant Hardware"

In Chapter 3, you learned that some hardware devices are built to be tam-

per—resistant. Usually this means that they detect when someone is trying

to access data through some means other than normal channels. How can

these devices be made tamper-resistant?

Many techniques are used to make hardware tamper-resistant. Some of

these techniques are intended to thwart direct attempts at opening a

device and reading information from its memory; others offer protection

against subtler attacks, such as timing attacks and induced hardware

fault attacks.

*(Source: BSA Labs)

394 Appendix cW

At a very high level, here are a few general techniques used to make

devices tamper~resistant:

I Employing sensors of various types (for example, light, temperature,

and resistivity sensors) to detect malicious probing

l Packing device circuitry as densely as possible (dense circuitry makes
it difficult for attackers to use a logic probe effectively)

I Using error—correcting memory

I Using nonvolatile memory so that the device can tell whether it has
been reset (or how many times it has been reset)

I Using redundant processors to perform Calculations and ensuring
that all the calculated answers agree before outputting a result

RSA Padding

Chapter 4 describes the RSA digital envelope, in which a session keyis
encrypted with an RSA public key. The RSA public exponent is often 3,
which means that to encrypt data, you treat the session key as a number

and raise it to the 3‘“ power modulo the modulus. That’s the same as find-

ing s X s X 3 mod n, where a is the session key as a number, and n is the
modulus. Most RSA keys are 1,024 bits, so the modulus1s 1024. bits long

Modular multiplication means that the answer will always be less than
the modulus. You compute the product, and if it is less than the modulus,

there’s no more work; if it’s greater than the modulus, you reduce the

result. To reduce a number means that you divide the intermediate result

by the modulus and take the remainder as the answer. For example,

10 X 10 mod 35 = 100 mod 35 = rem (100 X 35) = 30

Because 10 X 35 is 2 with a remainder of 30 (100 - 2 X 35 == 100 - 70),

the answer is 30. The number 100 has been reduced to 30 modulo 35.

This reduction is essentially the reason RSA (and Diffie-Hellman and

BSA) is secure. You compute an intermediate value and then reduce it.

I The attacker may know what the reduction is, but what was the interme-

diate value? If the attacker knows the intermediate value, it would not be

hard to find the original number, but for each final number there are sim-

ply far too many possible intermediate values. That is, with big enough

Further Technical Details 395

keys, any one of trillions upon trillions of intermediate values produces

the same final answer, and each intermediate value comes from a differ-

ent starting point. A 1,024—bit modulus means that there are about 21024

possible starting points, so there are about 21024 possible intermediate val-

ues an attacker would have to examine to find the correct one. You saw in

Chapter 2 how long it would take to examine 2128 keys, so you can imag-

ine that using brute force to find the correct intermediate value among

21024 possible numbers is not a, Viable option. That’s why attackers would

use other mathematical techniques, such as factoring or solving the dis-

crete log problem, to break the algorithm, but those other techniques also

take millions of years.

When you multiply two numbers, the size of the result is the sum of the

sizes of the operands (or possibly one bit less). Assuming the session key

you’re encrypting is 128 bits long (the most common session key size), the

size of s X sis 256. Because the RSA modulus is 1,024 bits long, the prod-

uct s >< s is smaller than the modulus, so no reduction is necessary. Finally,

s X (s X s) will be a 384—bit number (a 128—bit number times a 256-bit

number). That, too, is less than the modulus, so no reduction is necessary.

So if you found s X s >< 8 mod n, you would not do any reductions, and

an attacker would know the intermediate value (it’s the final result) and

would be able to compute the original number s. The solution to this prob-

lem is to pad the data (see also Chapter 2). Here’s how. Start with s, but

make it a bigger number so that when finding s X s X 3, you create inter-

mediate answers larger than n and you have to reduce. Of course, you

must pad in such a way that when decrypting, the recipient knows what

the pad bytes are and can throw them away.

PKCS #1 Block 02 Padding

The most common padding scheme for RSA is defined in the Public Key

Cryptography Standard #1 (PKCS #1; see the accompanying CD). It

works like this. Start with a block that is the same size as the modulus. If

the modulus is 1,024 hits, the block is 128 bytes long. The session key will

fill 16 of those bytes (assuming that the session key is 128 bits), and this

means that you’ll need 112 bytes of padding. The padding comes first, fol-

lowed by the key. So the first 112 bytes of the block are padding, and the

last 16 bytes are the session key.

396 Appendix C

The first byte of padding is 00, the next byte is 02, and then the next
109 bytes are random or pseudoq'andom values, none of which can be 00.

Finally, the 112th byte of padding is 00. If the session key were

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

then a padded block might look like this:

00 02 D0 CE 21 83 41 73 F6 84 32 06 A8 A6 AD 13
2B 65 2? 86 28 EF 0E BC CA 4F 20 C0 19 95 EE 6C
3E 69 1A 49 9C B7 C3 80 8A 9D C7 3D EC 6F 64 33

A5 65 A0 A4 35 93 CA D4 CB CD 1D CB 60 63 E2 7F
28 BD 27 El 47 F2 13 F0 65 41 9E 0D lfi CD 34 3D
24 14 C4 78 A6 AG F3 1E 07 61 BS C4 49 A0 77 18
BB OE C7 72 E3 F1 79 1C 02 90 23 04 82 69 63 00
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

This block, then, becomes the value to encrypt. Cubing this number

(cubing means to multiply a number by itself three times) will produce a

number larger than the modulus, so reduction is necessary. The answer

(ciphertext) might look something like this.

A0 2E 7D bE 8F 7A SB DD 04 01 26 03 CC AF F5 7F

34 3F 49 22 C4 DC 48 09 E8 33 3B 80 59 DA D2 E7
33 38 23 A7 D6 EB F1 B7 ED 3C 73 45 81 4E 4F 3C

F4 BC 93 42 A8 8E 02 A9 05 13 f3 81 3E 8F 06 05
22 F3 90 9F 93 35 13 A6 89 EC C3 5F 3F 6F 1D 9F
54 DE C3 C0 0F F3 2F FF 13 45 CA 80 BS 59 63 DF
54 C1 A7 34 A2 D6 F5 53 E5 5D F1 D5 39 F4 9E 5F
74 4C CD 72 Cl 29 B7 FF D5 29 05 13 AD 04 BA 15

The recipient would decrypt this and recover the original padded value.

That individual (more precisely, the recipient’s software) would then need

to unpad, or throw away the pad bytes, keeping only the session key. The

first byte is 00, and the second byte is 02; those are simple—throw them

away. Now throw away all the ensuing bytes that are not 00: the 109 ran-

dom or pseudo-random numbers. The padding routine must never use 00

as one of those bytes, so during unpadding, the end of the padding is easy

to spot; it’s the first instance of 00. When the unpad routine reaches 00, it

knows there’s no more padding. It throws away the 00, and the rest of the

bytes are the session key.

The Bleichenbacher Attack

In 1998, Daniel Bleichenbacher, a cryptographer at Bell Labs, came up
with an attack against PKCS #1 Block 02 padding. This attack takes

Further Technicai Details 397

advantage of the fact that the decryptor looks for specific bytes in specific

locations. After decryption, the recipient will see whether the first byte is

00 and the second byte is 02 and Whether there is a 00 after some random

values.

Suppose that Ray, our attacker from Chapter 3, has an encrypted mes-

sage from Pao-Chi to Gwen. If Ray can decrypt the RSA digital envelope

portion of the communication, he will have the session key and can

decrypt the message. Here’s how the attack works. First, Ray computes a

bogus RSA digital envelope that looks like Pao-Chi’s envelope. To do that,

Ray uses a special mathematical formula and uses as input Pao-Chi’s cor-

rect envelope and a random or pseudo-random number (for details, see the

RSA Labs Bulletin number 7, June 26, 1998, written by Daniel Bleichen-

bacher, Burt Kaliski, and Jessica Staddon). Ray then sends the substitute

envelope to Gwen. If Gwen responds by saying that something went

wrong, that the envelope didn’t unwrap properly, Ray uses the same for-

mula to create a new, different envelope using Pao~Chi’s envelope and a

different number (probably just the previous number plus 1) and sends

the new envelope to Gwen. When an envelope. unwraps improperly, it

means that the first byte is not 00, or the second byte is not 02, or maybe,

there’s no 00 to indicate the end of padding. Ray continues to send fake

envelopes to Gwen until she responds by saying the envelope unwrapped

properly.

When Ray has a fake envelope that works, he can figure out what Pao—

Chi’s original envelope is. The fake envelope and Pao-Chi’s are related;

Ray created the fake one based on the correct one and a number he chose.

He uses this relationship to break the encryption. This technique does not

break the private key; rather, it recovers only one envelope. Ray’s fake

envelope, when decrypted, does not produce the same thing Pao—Chi

encrypted; rather, the result is something that simply looks like a digital

envelope. It has the leading 00 02,Kand somewhere along the line there’s
another 00 to indicate the end of the padding. Gwen (or rather the soft-

ware she uses to open the envelope) simply assumes that the numbers fol-

lowing this second 00, whatever those numbers happen to be, make up a

session key. They don’t—this is a bogus envelope—but to Gwen it looks

like a legitimate envelope because all the marker bytes are there in the

correct location. ’

Bleichenbacher’s research indicates that Bay will probably need to

send about 1,000,000 (one million) fake envelopes to recover one message.

In some situations, he might even need to send 20,000,000 fake envelopes.

This attack is not likely to work using e-mail because Ray would have

to wait for Gwen to open the one million e-mails and send a response to

398 Appendix C

each one, and eventually Gwen would stop trying to open any e-mail from

Ray. But it might work if the recipient is using an automated responder.

An example is an SSL server that simply responds to “hits,” sending an

error message when something goes wrong and opening a session when

all goes right.

There are simple ways to thwart this attack (see the bulletin previously

cited), and in fact, the SSL specification has a built-in countermeasure. It

is probably safe, in the real world, to continue using PKCS #1 Block 02

padding when you’re creating digital envelopes. However, if you want to

avoid this attack, you can use a different padding scheme. The next sec-

tion describes a padding scheme that’s immune to the Bleichenbacher

attack.

Optimal Asymmetric Encryption Padding

In 1995, two cryptographers-Mihir Bellare of the University of California

at San Diego and Phillip Rogaway of the University of California at Davis-

proposed a new way to pad RSA digital envelopes. They named this tech-

nique Optimal Asymmetric Encryption Padding (OAEP).

Suppose the RSA key is 1,024 bits and the session key is 128 bits. You

create a buffer of 128 bytes (the same size as the RSA modulus) and place

the session key at the end, just as in PKCS #1 Block 02. You now need

112 bytes of padding to precede the session key. The first byte is 00. The

next 20 bytes, known as the seed, are random or pseudo-random. The

next 20 bytes are the SHA-l digest of some known data. (This known

data is part of the algorithm identifier, the information you pass to the

recipient indicating what you did to create the envelope.) The next 70

bytes are all 00, and then the last pad byte is 01. For example, assuming

the session key is 16 bytes of OxFF, at this point, you would have some-

thing that looks like this.

00 14 86 6A 90 11 B4 DE 48 66 25 03 SB E2 57 F5
23 BD 27 E1 47 F2 18 F0 65 41 9E 0D 1A CD B4 3D

24 C4 78 A6 A6 F3 1E 07 61 00 00 00 00 00 00 00

'00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

You’re not finished yet. From the seed, you create a mask 107 bytes

long. The mask-generating function is based on SHA-l. Then, you XOR

Further Technical Details 399

the mask with next 107 bytes, which are the digest, all the 00 bytes, the

01, and the session key. In the following, the underlined values have been

masked.

00 14 86 6A 90 11 34 DE 48 66 25 03 9B 22 57 F5

23 BD 27 E1 47 36 C2 32 3A 61 C§_§B 85 20 30 10

39 C5 fD 13 E3 bE 37 9C F5 EF 79 1Q_02 90 23 04
82 69 63 AA AF 3? 30 64 66 D D AF 35 58 99 BC

6F 3C 7E 14 RE 9D D1 PB F7 D1 F6 97 93 D9 BO A6

8A D8 C4 44.§Z F2 EC 77 EE 2D 98 F8 41 02 D8 50
23 00 57 49 EF D1 61 98 41 51 49 C8 A5 4D 74 A?

19 E4 in 80 8§_§9 6? AB 1E 57 98 32 41 59 2F EA

‘ Finally, you use this resulting value (the 107 bytes after the XOR oper-

ation) as a second seed to create a mask for the original seed. Then you

XOR the original seed with this new mask.

00 88 6Q 80 FE DE CA AF 72 77 4E 46 32 4D 63 F1
E3 82 3? 5C DA 36 C2 32 3A 61 C8 88 86 20 30 1C
B9 C5 ED 13 E3 bE 37 9C F5 EF 79 1C 02 90 23 04
82 69 63 AA AF 37 30 64 66 D6 CD AF 35 58 99 BC
6F 3C 7E 14 AE 9D D1 F8 F7 D1 F6 97 93 D9 BO A6

8A D8 C4 44 87 F2 EC 77 EE 2D 93 F8 41 02 D8 50

23 00 57 49 E? D1 61 98 41 51 4D C8 A6 4D 74 A7
19 E4 4D 80 86 A9 6? A8 1E 57 98 32 41 59 2F EA

The result looks random. To unpad, you skip the first 21 bytes (the

decryptor knows the first byte is 00 and the next 20 bytes are the seed).

You use the rest of the data as a seed (this is the second seed) to create a

mask. You XOR this mask with the 20 bytes after the first byte (remem-

ber, the first byte is 00). NOW you’ve reconstructed the original seed. You

use the original seed to create a mask to XOR with the remaining 107

bytes. Then, you digest the known data and compare it to the 20 bytes

after the seed Also, you check to make sure that the next ’70 bytes are all

00 and that the last byte before the session key1s 01 If all these checks

pass, the recipient has the session key.
OAEP has some variants. Different digest algorithms with different

seed sizes are possible. The first byte might be a random byte instead of

00 (although there are mathematical limitations on What that byte can

be).

Using this padding scheme means that a Bleichenbacher attack will

almost certainly fail. The chances that someone could create a fake enve-

lope that produces a valid OAEP block are so astronomically small that it

will virtually never happen. The reason is the digesting. Remember that

digest algorithms produce dramatically different output when the input is

400 Appendix C

changed, even slightly. A fake envelope would have to decrypt to some-

thing that by sheer chance created some digests that, after the XOR oper-

ation, created the 70 bytes of 00 followed by the one byte of 01 in the

appropriate place.

Timing Attacks

How long does it take for your computer to perform a private-key opera—

tion (creating a digital signature or opening a digital envelope)? It turns

out that there are slight variations in the amount of time needed to per-

form asymmetric algorithm operations. The actual time is dependent on

the key itself and the input data.

Here’s what we mean. Take two private keys, both of them the same

algorithm (RSA, DH, DSA, or ECG) and the same size. Now perform the

same operation (sign, encrypt, key agree) with the same data. How long

exactly did each operation take? With one key it might take 02007415517

milliseconds, and with the second 02007415548 milliseconds. The differ-

ence is tiny, but there is a difference.

Or suppose that the time can be computed in cycles. One key makes the

computation in 90,288,451 cycles, and another key uses 90,289,207 cycles.

If you’re not familiar with computer cycles, one cycle is one “tick” of the

computer’s internal clock. A hertz is one cycle per second, so a 450 mega-

hertz (450MHz) computer can operate at 450 million cycles per second.

Most processors can perform one integer addition in one cycle and one

integer multiplication in two to six cycles (some processors might need 27

cycles to do one integer multiplication). So a 450MHz processor could do

450 million additions or 75 million to 225 million multiplications in one

second. Actually, it gets complicated with pipelining and multiprocessing

and integer units and floating-point units, but the point is that time can

be measured in cycles as well as seconds.

However time is measured, the variations in time can aid an attacker.

Knowing the input data (for example, what you’re signing) and exactly

how long it took you to perform the private-key operation (such as sign-

ing), an attacker can gain information about your private key. This is

known as a timing attack. The attacker almost certainly needs timings

from many private—key operations (each operation working on different

input data) to figure out the entire key. The more exact the time, the fewer

data points the attacker needs.

Further Technical Details 401

Highly controlled experiments on simple machines running simple

software implementations have had some success in measuring the times

of various operations. More success has been found timing tokens and

other slow processors. But often the experiments have required hundreds

if not thousands of timings to collect enough information on a particular

key. Furthermore, using the Chinese Remainder Theorem (CRT; see Chap-

ter 4) for RSA operations and Montgomery multiplication helps thwart

the attack. (Peter Montgomery is a researcher who came up with a clever

way to perform the internal operations of RSA, DH, DSA, and some ECG

much faster.) Data and instruction caching may skew the measurements.

Another way to defeat this attack is to prevent the attacker from knowing

the input, an approach known as blinding. The attacker knows what the
input is, but ifyou alter it before signing and then alter the resulting sig-

nature to compensate for the original alteration, the exact data operated

on by the private key is unknown. Unfortunately, blinding is a drain on

’ performance, adding another 40 percent to the total signature time.

In real-world applications, a timing attack may not be practical because

virtually all current implementations of RSA employ CRT and the imple-

mentations of all public~key algorithms employ Montgomery math. Fur-

thermore, attackers often have no way of knowing how long it took to

perform the operation, or the measurements were not accurate enough.

Possibly the target did not make enough priVate-key computations before

changing keys.

In some situations, a timing attack may be more practical. One

example is an SSL server performing private—key operations automati-

cally. An attacker could request an SSL connection and time the response

and then repeat the request, time the response again, and so on hundreds

or thousands of times. For each SSL connection, the server creates a digi~

tal signature, each time signing something different. This is exactly what

the attacker needs: knowledge of the data being signed, different data

being signed each time, and many iterations.

No one has demonstrated a successful timing attack in real-world situ-

ations, including an attack on an SSL server. CRT and Montgomery math

may be all that’s needed to prevent a successful attack, or other opera-

tions may mask the signature time. But you may need to be aware of the

possibility of a timing attack, especially if, in the future, you use a smart

card in someone else’s reader. In that case, blinding may become a pru-
dent countermeasure.

402 Appendix C

Kerberos*

L/

In Chapter 5, you learned about authentication using digital signatures.

You may have heard about, Kerberos, an alternative authenticating
technique.

Kerberos is an authentication service developed by the Project Athena

team at MIT, based on a 1978 paper by Roger Needham and Michael

Schroeder. The first general—use version was version 4. Version 5, which

addressed certain shortfalls in version 4, was released in 1994. Kerberos

uses secret~key ciphers for encryption and authentication. Version 4 used

only DES. Unlike a public-key authentication system, Kerberos does not

produce digital signatures. Instead, Kerberos was designed to authenti-

cate requests for network resources rather than to authenticate author-

ship of documents. Thus, Kerberos does not provide for future third-party
verification of documents.

In a Kerheros system, a designated site on each network, called the

Kerberos server, performs centralized key management and administra»

tion. The server maintains a database containing the secret keys of all

users, authenticates the identities ofusers, and distributes session keys to
users and servers that wish to authenticate one another. Kerberos

requires trust in a third party (the Kerberos server). If the server is com—

promised, the integrity of the Whole system is lost. Public-key cryptogra-

phy was designed precisely to avoid the necessity to trust third parties
with secrets.

Kerberos is generally considered adequate within an administrative

domain; however, across domains, the more robust functions and proper-

ties of public-key systems are often preferred. Some developmental work

has been done to incorporate public—key cryptography into Kerberos.

For detailed information on Kerberos, read “The Kerberos Network

Authentication Service (V5)” (J. Kohl and C. Neuman, RFC 1510) at

ftpz/lftp.isi.eduXin—notes/rfc1510.txt.

*(Source: RSA Labs)

‘ ."'"“'W_"N..

Further Technical Details 403

DH, ECDH, DSA, and ECDSA Certificates

In Chapter 6, you learned about certificates. The minimum contents of a

certificate are the owner’s name, public key, and the CAs signature. For

RSA, the public key is the modulus and public exponent. For DH, ECDH,

DSA, and ECDSA, the public key consists of the system parameters and a

public value. ‘

Often, messages contain certificates. For example, if Pan-Chi sends a

signed message to Daniel, Daniel needs Pao-Chi’s certificate to verify the

signature. Pao-Chi can include his certificate as part of the message, sav-

ing Daniel the trouble of searching for it in public directories. If Satomi

wants to pose as Pan-Chi, she could send a message with a certificate con~

taining Pao-Chi’s name but not his true public key. But she will have to

get that certificate signed by a CA whose certificate was signed by the root

that Daniel will use. Satomi will have to break the root’s key to become

the root (and hence create‘her own CA) or break a CA’s key to create a

valid certificate. That’s not likely, so including the certificate in a message

is no security problem. >

Because messages contain certificates and because larger messages are

_ sometimes expensive, it’s often desirable to create smaller certificates. A

protocol or company might demand that names be short (for example, that

they carry no title, mailing address, fax number, or other such informa-

tion) or that there be no extensions or attributes.

In the past, people have proposed shrinking public keys. DH, ECDH,

DSA, or ECDSA keys can be compressed by excluding the system para-

meters. Everyone would have to get the system parameters in some other

way.

But this is not a good idea. The purpose of a certificate is to guarantee

that an attacker could not replace a true public key with a fake one. But

if the parameters are not part of the certificate, an attacker could replace

the parameters. Someone using a public key extracted from a certificate

(creating a digital envelope or verifying a signature) would be certain of

using the correct public value but not the correct parameters. If Satomi,

for example, replaces the parameters on Pao«Chi’s machine and ifPao-Chi

tries to send a message to Daniel, he will create something that Daniel

cannot read. Satomi almost certainly won’t be able to read it either (she

would still need to know Daniel’s private value), so all she would be doing

by changing the parameters would be creating a nuisance. This is a

denial—of-service attack because her actions would deny Pao-Chi and
Daniel the service of secure communication.

404 Appendix c

To prevent this problem, the company could enforce a policy in which

everyone uses the same system parameters. It could create some system

parameters and distribute them to all employees, each ofwhom would cre-

ate individual public and private key pairs. This is generally not a secu-

rity problem; sharing system parameters does not weaken the math.

Some cryptographers warn that if “too many” people share system para-

meters (good luck getting one of those cryptographers to quantify “too

many”), it might be possible to introduce weaknesses, but for the most

part, sharing parameters does not aid an attacker. In such a situation,

Satomi could not replace the system parameters on Pao-Chi’s machine

because he would know what the true parameters were; they’re his. Pre-

sumably, Pao—Chi will have those parameters protected in such a way that

Satomi could not alter them without his knowledge.

This parameters policy could work for communications among all the

employees at Pao—Chi’s company, but how could people outside the com-

pany guarantee a public key’s authenticity? Everyone else would also

need the system parameters. Suppose the company created a second cer-

tificate, this one for the parameters. That would mean two certificates

would be required to verify one public key, defeating the purpose of saving
space.

The best way to distribute DH, ECDH, DSA, and ECDSA keys is to

include the system parameters in the certificate.

Problems with Using SSL to Protect Credit Cards

Chapter 7 describes the Secure Socket Layer (SSL), the latest version of

which is known as Transport Layer Security (TLS). Many companies use

SSL exclusively to protect credit card transactions. Unfortunately, that

may not be a wise policy.

SSL encrypts data while in transit, so if someone runs a sniffer program

on the Internet—checking traffic to see whether any credit card numbers

are sent in the clear—SSL will protect the transaction. However, credit

card numbers sent over the Internet usually are not stolen in transit;

instead, they are stolen while in storage. Rather than eavesdropping on

Internet messages, thieves break into servers storing sensitive material.

When you operate a Web site, you’re essentially making your local files

available for the world to see. Recall the discussion of permissions in

Chapter 1. You can set the permissions on your files so that only certain

Further Technical Details 405

users have read or write access to them. A Web server has, in effect, set

the read permission on many of its files to the entire world.

One mistake made by companies is to store the credit card numbers on

the Web server. In fact, an MSNBC reporter discovered that on January 13,

2000, when he “was able to View nearly 2,500 credit card numbers stored

by seven small e—commerce Web sites within a few minutes, using elemen-

tary instructions provided by a source. In all cases, a list of customers and

all their personal information was connected to the Internet'and either

was not password-protected er the password was viewable directly from

the Web site.” (source: www.msnbc.com) The companies may set the per—

missions of the files containing the numbers to exclude the world, or they

may not. It doesn’t matter. As you saw in Chapter 1, simple OS permissions

are no real deterrent to the majority of hackers and crackers.

The best policy is to store credit card numbers encrypted. Another pos-

sibility is to use a protocol, such as SET, in which credit cards numbers are

transmitted using a digital envelope, the public key creating the envelope

belonging to the issuing bank. Hence, a merchant never sees the credit

card in the clear and can never store it unsecurely. Because SET has not
been widely adopted, the credit card companies and banks may devise a

new protocol.

One way consumers can protect themselves is to read the security poli-

cies of the e—commerce companies from which they might wish to make

purchases. The following quotations indicate policies that are less than
secure:

“ . . . uses SSL, an advanced encryption technology that protects

your credit card information.”

“We use Secure Sockets Layer (SSL) technology to protect the

security of your online order information.”

The point is not that SSL has no value but rather that SSL does not

address the storage issue. It is not a silver bullet that solves all security

problems.

Here is a policy that is starting to get the right idea:

“To ensure that your information is even more secure, once we

receive your credit card information, we store it on a server that

isn’t accessible from the Internet.”

Finally, here are quotes from a couple of security policies of Web sites

that are truly interested in security.

4-06 Appendix C

“Every time you send us your credit card number and your billing

and shipping information, we use the industry~standard Secure

Sockets Layer (SSL) technology to prevent the information from

being intercepted. We also encrypt your credit card number

when we store your order and Whenever we transfer that

information to participating merchants.”

“Within those systems, sensitive information is encrypted to

protect your personal data, like credit card numbers.”

Index

Symbols ‘ ECDSA, 163
elliptic curve, 94

128 bits, symmetric key size, 33 encryption, 19

7816 standard, smart cards, 276 ESP, 216
Gemstar, 23

hash, 143

A historical overview, 23—25 '
key tables, 38

keys, 22

brute force attacks, 30, 33

generating keys, 22

chfgjgggggféfgzl known plaintext attacks attacks, 36
’ measuring time of attacks, 37

acquirer certificates, 259 . __
ACs (Attribute Certificates), PKI, 203 :fifififfi' generau‘m’ 26 27

ABA (American Bar Association), digital

signature guidelines, 295

Adleman, Len, 94

AES (Advanced Encryption Standard), block MD2’ 148
’ h 45 50 MD5, 148

c1P er: 2 NIST standards, 50
Aggresive mode, IKE, establishing SAs, 225
AH (Authentication Header), 211 WM“ key’ breaking 93

fields, 212 128:, 3:, 98
transport mode, 213 ‘Rijndael, 50
tunnel mOde’ 214 BSA, 94, 98—99, 102—104, 160

Alert protocol, SSL, 232 SMIME 245
algorithm identifier bytes, digital security ,publiciy known 25

signatures, 156 SHA-l, ’143, 149 ’
algorithms, 159

AES, 45, 5O

block ciphers, 38

feedback modes, 40

SSL authentication/encryption, 240

stream ciphers

key streams, 44—45

one—time pads, 41, 44
padding, 39—40 RC4 45

3:31:12?):31: ' threshold, 130—131
. . . Tri le DES, 47

interoperability, 122 X011; operations, 42—43
keyfsmes, 119121 ANSI (American National Standards Institute)
per Gina??? 118 X9 security standards, 328
:80111‘1 y, . _ . 122 application—layer security protocols, 243

DEgaZZEZSIZg Sizes, application/plies? content type, MIME, 252
, :1 ARLs (Authority Revocation Lists),

DH, 94, 105, 108 PKI 190
digital signature security, 163—164 ASN.1 (Abstract Syntax Notation 1),
BSA, 161

ECDH, 111—114 encodmg rules, 179
asymmetric key cryptography, 88

408 Index

attackers, 19

breaking algorithms, 30
See also hackers.

attacks

authentication, 319

bypassing OS, 6

data at rest, 318

data in transit, 317

data recovery, 7

implementation errors, 320

memory reconstruction, 9

passwords, 5

FEB, slowing down, 64

authentication, 12, 159, 324

attacks, 319

biometrics, 326

digital signatures, 298

nonrepudiation, 327

passwords, 325

SSL, algorithms, 240

user DDS, 325
Authentication Data field

AH, 212

ESP headers, 216

authentication tokens, 269

biometrics, 282

challenge/response calculators, 274

contact tokens, 275

form factors, 270

JavaCards, 279—281

memory cards, 277

multifunction smart cards, 277

one-time password generators, 272

proximity cards, 271

smart cards, 275

readers, 278

authorization requests, SET, 262

automated authentication systems,

tokens, 269

B

base CRLs, PKI, 189

BER (Basic Encoding Rules), ASN.1, 179

BFK (brute-force on the key), 64

BFP (brute-force on the password), 64

biometrics, 75—36, 282

accuracy of systems, 288

authentication, 326

comparison algorithms, 285

enrollment process, 282

facial recognition, 286

fingerprint recognition, 285

iris recognition, 286

keystroke recognition, 288

retina recognition, 286

signature recognition, 287

templates, 284

verification process, 283

voice recognition, 287

block ciphers, 38

AES, 45

Blowfish, 49

commercial DES replacements, 49

DES, 45—46

feedback modes, 4O

‘ padding, 39—410

Blowfish block cipher, 49

breaches in security, 309—3 10

breaking algorithms, 30, 93
brute force attacks

breaking algorithm keys, 30, 83

PBE passwords, 63, 68

BSAFE Crypto—C/J, 242

BSAFE SSLwC/J, 242

bulk data encryption, PBE, 60m61

business requirements, SET, 254—255

bypassing OS attacks, 6

C

calculating ICVs, IPSec, 213

canonicalization of MIME entities,

SJMIME, 247

cardholder certificates, SET, 258

CAs (Certificate Authorities), 172, 180

digitally signed certificates, 180

Keon certificate server, 207

self—signed certificates, 180
case studies ‘

security authentication, 334

security implementations, 333—336

Cast block cipher, 49

Index 409

CBC (Cipher Block Chaining), 40 clear-signed data types, SMIME, 250

CC security standard (Common cleartext. See plaintext.

Criteria), 330 _ clients

CCIPS (Computer Crime and Intellectual certificate messages, SSL, 237

Property Section), 321 hello messages, 234

CERT Web site (Computer Emergency Response key exchange messages, 238

Team), 332 CMMF (Certificate Management Message

CERTICC (Computer Emergency Response Format), 183

Team/Coordination Center), 321 ‘ Cocks, Clifford, 95 .
certificate chains collisions, message digests, 145—146

PKI, 194—195 , ' combining SAs, 219
X509, 194 commercial DES replacements, 49

certificate directories, PKI, 181 comparing algorithms

certificate hierarchies, PKI, 192 interoperability, 122

certificate request messages, SSL, 237 key sizes, 119

certificates _ performance, 121

digitally signed, 180 security, 117—118

PGP, 172 transmission sizes, 122

PKI comparison algorithms, biometrics, 285

ACs, 203 confidentiality of data, 326

issuance, 184 connections, SSL

registering, 184 states, 228

revocation, 185 terminating, 239

roaming, 201—202 contact tokens, 275

suspending, 190 content types, MIME

policies, 204 applicationfpkcs'Y, 252

self—signed, 180 ‘ envelopedndata, 248

SET, 258—259 multipart/signed, 250

smart cards, 202 signeddata, 249

X. 509, 172—174 COS (card operating system), 277

CPS qualifiers, 176 CPS qualifiers (Certification Practice

CRLs, 175 ' Statement), X509 certificates, 176

extension fields, 175~176 CPSs (Certificate Practice

OIDs, 176 Statements), 204w205

TLS, 176 crackers, 2

unique identifiers, 174 password attacks, 5

URIs, 176 See also hackers.

certificates-only messages, S/MIME, 252 CRLs (Certificate Revocation Lists)

CESG (British Communications Electronic PKI, 185

Security Group), 95 CRLs, 189

chaining certificates. See certificate chains. distribution points, 189

challenge/response authentication, 326 , extensions, 187—188

challenge/response calculators, 274 fields, 186

change cipher spec protocol, SSL, 231 _ indirect CRL, 189

checks, FEE, 61 X509 certificates, 175

ciphertext, 19 cross-certification certificates, PKI, 193

salt, 58 CRT (Chinese Remainder Theorem), 104

XOR operations, 43 cryptanalysis, 20

41 0 Index

crypto accelerators, 69, 73—75, 267 differences from written document

Crypts iButton, 281 signatures, 299

cryptographers, 20 E-SIGN Act, 303, 306

cryptographic accelerators, 28 key revocation, 300

cryptography, 11——12, 15~19 legal issues, 296

legislative issues, 302—303

message integrity, 293

D nonrepudiation, 296—297
padding bytes, 156

PKI, 300

private keys, 141, 154, 158

storage advantages, 294

time stamping, 301

digitally signed certificates, 180

data at rest attacks, 318

data in transit attacks, 31’?
data

authentication, 298

encryption, 60—61

integrity checking, 12, 159, 326 disarm 1.0% Pr‘iblem’ 108
message digests, 153 distribution pomts, CRLS, 189

origin authentication, 298 DN: (Distinguished Names), X500, 178
recovery attacks, 7 DS algorithm, 160461
security, 12 dual Signatures, 257

decryption, 17-19 PBE, 61

session keys, 55 E

delta CRLs, PKI, 189

deploying PKIs, 201 E-SIGN Act (Electronic Signatures in Global and

Dept. of Justice, CCIPS (Computer Crime and National Commerce), 294, 303, 306

Intellectual Property Section), 321 ECDH algorithm, 111—1 14

DER (Distinguished Encoding Rules), ECDSA algorithm, 163

ANSI.1, 179 El Gamal, Taber, 160

DES (Digital Encryption Standard), block electronic signatures, differences from digital
cipher, 45—46 signatures, 304

developers and security, 331 elliptic curves

DH algorithm, 94, 105 algorithms, 94

discrete log probiem, 108 points, 112

key agreement, 108 Ellis, James, 95

public keys, 108 encryption, 16—18

session keys, 106 AES standard, 50

dictionary attacks, 5?, 63 algorithms, 19

Diiiie, Whitfield, 93 ‘ block ciphers, 3840, 45

digital envelopes, 91—92 commercial DES replacements, 49

key recovery, 123 DES, 46

SIMIME entities, 248 ESP, 216

digital signatures, 137—139, 154, 158 key tables, 38

ABA guidelines, 295 keys, 22

algorithms, 163—164 RC4 stream cipher, 45 i

identifier bytes, 156 stream ciphers, 41, 4445 Z
authentication, 298 Triple DES, 47 ,
differences from electronic XOR operations, 42413 5

signatures, 304 crypto accelerators, 73—75

keys, 19w21

PBE, 55

bulk data, 60~61

S/MIME, 251

SSL algorithms, 240

Enigma machine, 23

enrollment process, biometrics, 282

Ensure Technologies, XyLoc proximity cards, 272

entity names, X509, 178

entropy, PRNGs, 29

entrust PKIs, 201

enveloped-data content types, S/MIME, 248

error alert messages, SSL, 232

escrow. See key escrow.

ESP (Encapsulating Security Payload), 211

encryption algorithms, 2,16

header fields, 216

trailers, 217—218

transport mode, 217

tunnel mode, 218

Euler, Leonhard, 101

Euler’s phi~function, 101

Extended Euclidean Algorithm, 101
extensions

CRLs, 187—188

X509 certificates, 175-136

F

facial recognition, biometrics, 286

factoring, 102

FAR (false acceptance rate), biometrics, 288

FBI, NIPC (National Infrastructure Protection

Center), 321

feedback modes, block ciphers, 40

Format test, 100
fields

AH, 212

CRLs, 186

ESP headers, 216

X509 certificates, 173—174

files, read protection, 3

fingerprints ‘

authentication, 325

biometric recognition, 285

Finished messages, SSL, 239

411Index

FIPS 140—1 (Federal Information-Processing

Standard), 329

floppy drive certificates, 202

foreign intelligence services, security

attacks, 316

form factors, authentication tokens, 270

formats for certificates

PGP, 172

X509, 172—174 ,

FRR (false rejection rate), biometrics, 288

functions of S/MIME, 245

G—H

Gemstar algorithm, 23

generating

algorithm keys, 22

key pairs, PKI, 197

Hacker Quarterly Web site, 333

hackers, 2

password attacks, 5

security attacks, 315

hactivists, security attacks, 316

handshakes, SSL, 228, 233

hard drives, permissions, 8

hardware—based key storage, 69

hash algorithms, 143

hash payloads, IKE quick mode, 226~227
headers

AH, 211

fields, 212

transport mode, 213

tunnel mode, 214

ESP fields, 216

SSL records, 231

Hellman, Martin, 93

HIPAA (Health Insurance Portability

Act), 330

historical overview of algorithms, 23—25

histories, PKI key pairs, 200

HMAC (hash message authentication

checksum), 151-153

I 4 I 2 Index

IAB (Internet Architecture Board), 327

ICVs (Integrity Check Values), IPSec, 213

IDEA block cipher, 49

identification parameters, SAs, 219

IESG (Internet Engineering Steering

Group), 327

IETF (Internet Engineering Task Force),

security standards, 327

IKE (Internet Key Exchange), 210, 224

aggresive mode, 225 ‘

main mode, 224

quick mode, 226—227

implementation errors and security

breaches, 320

indirect CRLs, PKI, 189

insiders, security attacks, 315

insourced PKIs, 201

Inspector Copier, 7—8

insurance for e—commerce sites, 332

integrity services, 326

Intel RNG, 27

intelligent memory cards, 27?

intemperability, algorithm

comparisons, 122

intruders ,

foreign intelligence servicess, 316

hackers, 315

hactivists, 316

identifying, 314

insiders, 315

terrorists, 315
IP Destination Address parameter, SAs, 219

IP packets, security, 219

IPSec (Internet Protocol Security), 209—2 10

AH (Authentication Header), 211

service modes, 213

ESP (Encapsulating Security

Payload), 211

encryption algorithms, 216

service modes, 217

ICVs (Integrity Check Values), 213

key management, 223 224

MTU (Maximum Transferable Unit), 223

replay attack prevention, 211

SAD (Security Association Database), 222

SAs (Security Associations), 218—219

SPD (Security Policy Database), 222

IRDA ports, smart card readers, 278

iris recognition, biometrics, 286

ISAKMP (Internet Security Association and Key

Management Protocol), 224

ISO (International Organization for

Standardization), 330

security standards, 330

smart card standards, 72, 276

1800 (Internet Society), 327

issuer certificates, SET, 259

issuing certificates, PKI, 184

iterated tunneling, SAs, 219

ITSEC (Information Technology Security

Evaluation Criteria), 330

We (Initialization Vectors), CBC, 4O

J-K

Java rings, 281

JavaCard Forum, 280

JavaCards, 279~281

JavaScript Source password generator, 69

KEKs (key encryption keys), 54, 85—86

mixing algorithms, 56

reasons for usage, 58

Keen certificate server, 207

Keen Web PassPort, 207

key agreement, 108

key distribution problem, 82—84

asymmetric key cryptography, 88

DH algorithm, 105, 108

digital envelopes, 91~92

ECDH algorithm, 111, 113w114

public key cryptography, 88—89

RSA algorithm, 98—99, 102—104

sharing keys in person, 83

key escrow, 125, 182

key exchange, 108

key management

IPSec, 223-224

PKI, 197

key masters, 84
key pairs, PM, 197—200

key recovery, 125

digital envelopes, 123

servers, 182

threshold schemes, 127M130

trustees, 126

Index 413

TTPs, 124

key revocation, digital signatures, 300

key size, algorithms, 32

key streams, stream ciphers, 44—45

key tables, algorithms, 38

keyed digests, HMAC, 151—«153

keys

128 bit size, 33

algorithms, 22, 119

attacks, 30, 33—37

generating, 22

random number generation, 26—27

encryption, 19—21

hardware-based storage, 69

session keys, 54

keystroke recognition, biometrics, 288

known plaintext attacks, 36

Koblitz, Neal, 94

Kravitz, David, 160

L

LOphtCrack, 5

LDAP (Lightweight Directory Access

Protocol), 181

legal issues, digital signatures, 296

legislative issues, digital

signatures, 302—303

live scan biometrics, 283

losses due to security breaches, 309-310

loyalty applications, JavaCards, 279

M

magnetic stripe tokens, 2'?5

main mode, IKE, 224

management'protocols, PKI, 182—183

managing SET certificates, 259

manual key management, 224

manual public-key distribution, 1‘?1

master secrets, 88L, 240

MD2 algorithm, 148

MD5 algorithm, 148

measuring time of algorithm attack, 37

memory cards, 277

memory reconstruction attacks, 9

merchant certificates, SET, 259, 265

Merkle, Ralph, 95

message digests, 143—144, 148—149

collisions, 145-146

data integrity, 153

PRNGS, 30

randomness, 142

message integrity, digital signatures, 293

messages

S/MIME

certificates-only, 252

MIME entities, 247

signing, 249
SSL

alerts, 232

certificate request, 237

certificate verify, 238

client certificate, 237

client hello, 234

client key exchange, 238

finished, 239

server certificate, 236

server hello, 235

server key exchange, 236

Microsoft Outlook/Express, S/MIME

support, 265

Miller, Victor, 94

MIME (Multipurpose Internet Mail

Extensions), 244

application/pkcs7 content type, 252

entities, S/MIME, 247—248

enveloped~data content types, 248

multipart/signed data types, 250

signed-data content types, 249

mixing algorithms, 56

MLAs (mail list agents), 253

modular exponentiation, 108, 161

modulus, RSA public keys, 99

MTU (Maximum Transferable Unit),

. IPSec, 223

multifunction smart cards, 277

multipart/signed data types, MIME, 250

multiple key pairs, PKI, 199

multiprime RSA algorithm, 104

41 4 Index

N

names, X509, 178

Netscape

Messenger, SMIME support, 265

SSL, 227

seed generation, 35

TLS, 228
networks

security protocols, 209
traffic

interception, 313

spoofing, 314
Next Header field

AH, 212

ESP headers, 216

NIPC (National Infrastructure Protection

Center), 321

NIST (National Institute of Standards and

Technology), 328

algorithm standards, 50

FIPS 140-1, 329

security standards, 328

nonce exchange, IKE main mode, 224

noncontact tokens, 270—271

nonrepudiation, 159

authentication, 327

digital signatures, 296~297

services, 298

NSA (National Security Agency), 95

numbers, random generation, algorithm keys,
26-27

0

Oakley key management protocol, 224

OCF (OpenCard Framework), smart card

standards, 280

OCSP (Online Certificate Status Protocol),

190—191, 300

OIDs (Object Identifiers), X509

certificates, 176

one way functions, public key

cryptography, 96

one~time pads, stream ciphers, 41, 44

one-time password generators, 272

operational protocols, PKI, 184-

Oracle 8i, symmetric key example, 51

origins of public key cryptography, 95

OSes (operating systems), 2

bypass attacks, 6

memory reconstruction attacks, 9

permissions, 3

security, 2—3

Outlook/Outlook Express, SIMIME

support, 265

outsourcing PKIs, 201

P

Pad Length field, ESP headers, 216

padding

block ciphers, 39—40

bytes, digital signatures, 156

field, ESP headers, 216

participants, SET, 256

partitions, CRLS. See distribution points.

passwords

attacks, 5

authentication, 325

checkers, 325

cracking, 5

generators, 67
PBE

brute—force attacks, 68

guidelines on selection, 65

slowing down attacks, 64

superusers, 4

three try limitations, 66

token storage, 72—«73

Payload Data field, ESP headers, 216

Payload Length field, AH, 212

payments, SET

authorization requests, 262

capture transaction, 263

gateway certificates, 259 ,
PBE (Password~Based Encryption), 55, 90

brute~force attacks, 63

bulk data encryption, (SO—~61

checks, 61

decryption, 61

dictionary attacks, 63

Index 41 5

KEKs, 55, 58

passwords
brute force attacks, 68

generators, 67

guidelines on selection, 65

slowing attacks, 64

salt, 55~57

session keys, 58

performance, algorithm comparisons, 121

permissions, 3, 8

permissive links, 96

PGP (Pretty Good Privacy), 172

pigennhole principle, 145
PINS (Personal Identification Numbers)

authentication, 326

tokens, 71

PKCs (Public-Key Certificates), 172

PKI (Public-Key Infrastructure), 171

A05 (Attribute Certificates), 203

ARLs (Authority Revocation Lists), 190
CAs (Certificate Authorities), 180
certificates

chains, 194

cross-certification, 193

directories, 181

hierarchies, 192

issuing, 184

policies, 204

registering, 184

revoking, 185

suspending, 190

CPSs (Certificate Policy Statements),
204—205

CRLs (Certificate Revocation Lists), 185

base CRLS, 189

delta CRLs, 189

distribution points, 189

extensions, 187-»188

fields, 186

indirect CRLS, 189

digital signatures, 300

insourced, 201

Keen certificate server, 207

Keen Web PassPort, 207

key management, 197

key pairs, 197

histories, 200

updating, 199

key recovery servers, 182

management protocols, 182—183

multiple key pairs, 199 '

OCSP, 190-»191

operational protocols, 184

private keys, protecting, 197

RAs (RegistrationAuthorities), 180

roaming certificates, 201-202

trust models, 191

trust paths, 193

plaintext, 19, 43

platform support for S/MIME, 253

playback attacks, 314

points on elliptic curves, 112

pre-master secrets, SSL, 240

Prime Number Theorem, 100

prime numbers, public key

cryptography, 100

privacy, 12

private CAs, 180

private keys

digital signatures, 141, 154, 158

PKI, 197-199

protecting, 123

PRNGs (Pseudo—Random Number Generators)

entropy, 29

message digests, 30

seeds, 28

protected smart cards, 277
protecting private keys, 123, 197

protocols

AH, 211

applicatiomlayer security, 243

change cipher spec, 231

CMMF, 183

ESP, 211

IPSec, 209—210

ISAKMP, 224

LDAP, 181

network security, 209

Oakley, 224

OCSP, 190

PKI management, 182—183

PKI operations, 184

SXMIME, 244

SSL, 227, 230

transport security, 209

proximity cards, 271

41 6 Index

public CAs, 180

public exponents, RSA public keys, 99

public key cryptography, 88—89

algorithms, breaking, 93

DH algorithm, 108

functionality, 94

one way functions, 96

origins, 95

pull model, certificate chains, 195

push model, certificate chains, 195

O—R

quick mode, IKE, 226—227

random number generators, algorithm '

keys, 26~27

randomness, message digests, 142

MS (Registration Authorities), 180

RC2 algorithm, 49

RC4‘algorithm, 24, 45, 98

R05 algorithm, 49, 98 ’

RDNs (Relative Distinguished Names),

X500, 178

read protection, 3
readers

smart cards, 278

tokens, 71

receiving agents, S/MIME, 246

recognition methods in biometrics, 285—288

Record layer, SSL, 230-231

registering certificates, PKI, 184

registration requests, S/MIME, 251

relying parties, 171

replay attacks, 211, 272

repudiation, 297

Reserved field, AH, 212

responders, OCSP, PKI, 190-191

restarting SSL sessions, 240

retina recognition, biometrics, 76, 286
revocation

certificates, PKI, 185

keys, digital signatures, 300

Reynolds Data Recovery, 7

Rjjndael algorithm, 50

Rivest, Ron, 94

RNGs (Random Number Generators), 27

roaming certificates, PKI, 201—202

RSA algorithm, 94, 98—99, 102—104, 160

RSA Security, Inc.

key challenges, 33

onewtime password generators, 272

security implementations, 332

S

S/MIME (Secure/Multipurpose Internet Mail

Extensions), 243—244

algorithms, 245

certificates—only messages, 252

clear-signed data types, 250

encryption, 251

envelopedwdata content types, 248

interoperability, 253

messages

MIME entities, 247

signing, 249

MIME entities, 247-248

MLAs (Mail List Agents), 253

receiving agents, 246

registration requests, 251

security, 245, 252

sending agents, 246

signing, 251-252 '

SAD (Security Association Database), IPSec, 222

safer block cipher, 49

salt, 55—58

SAs (Security Associations)

AH transport mode, 214

AH tunnel mode, 214

combining, 219

IKE, aggresive mode, 225

IP packet security, 219

IPSec, 218-»219

iterated tunneling, 219

transport adjacencies, 219

scalar multiplication, ECDH

algorithm, 113—114

Schlumberger JavaCards, 279~280

Schnorr, Clans, 160

scrambling values, algorithms, 38

secret key cryptography See symmetric keys.

secret sharing/splitting, 12'.7

secure mailing lists, SIMIME, 252

secure payment processing, SET, 260

SecurID token, 272

security

algorithms

comparisons, 117—118

publicly known, 25

authentication, 324—326, 334

biometrics, 75—76

cryptography, 1 1—12

digital signature algorithms, 163—164

IETF standards, 327

implementation case studies, 333—336

insurance for e—commerce sites, 332

IP packets, SAs, 219

losses due to breaches, 309—3 10

nonrepudiation, 327

OSes, 3

program developers, 331

protocols, 209

useful Web sites, 332

Security Focus Web site, 332

security labels, S/MIME, 252

Security Parameters Index field

AH, 212

ESP headers, 216

Security Parameters Index parameter,

SAs, 219

Security Protocol Identifier parameter,

SAs, 219

security threats

authentication attacks, 319

data at rest, 318

data in transit, 317

foreign intelligence, 316

hackers, 315

hactivists, 316

implementation errors, 320

insiders, 315

intruders, 314

network traffic, 313—3 14

terrorists, 315

unauthorized access, 312

unauthorized data disclosure, 311

unauthorized data modification, 311—3 12
seeds

breaking algorithms, 34

Netscape SSL generation, 35

PRNGs, 28

segmented memory smart cards, 277

Index 4 l 7

selectors, SPD entries, 222

self-signed certificates, 180

sending agents, S/MIME, 246 4

Sequence Number field

AH, 212

ESP headers, 216

server messages, 235—236

service delivery modes, ESP, 217—218

service modes, AH, 213

session keys, 54, 106

encrypting, 55

reasons for usage, 58

sessions, SSL, 228, 239—240

SET (Secure Electronic Transaction), 253

business requirements, 254—255

certificates, 258—259

dual signatures, 257

participants, 256

payments

authorization requests, 262

capture transactions, 263

secure processing, 260

purchase request transactions, 260

vendors and merchants, 265

SHA—l algorithm, 143, 149

Shamir, Adi, 94, 130

shared secrets, SSL, 227

sharing keys in person, 83

signature recognition, biometrics, 287

signed receipts, S/MIME, 252

signed-data content types, MIME, 249

signer authentication, 298 I

signing S/MIME messages, 249—25 1

Slash Dot Web site, 333

smart cards, 69—71, 275

authentication, 326

certificates, 202

ISO standards, 72, 276

JavaCards, 279—281

memory cards, 277

multifunction, 277

private keys, 123

pros and cons, 278

readers, 278

sniffers, 313

Snoop utility, 313

SPD (Security Policy Database), IPSec, 222

spoofing network traffic, 314

4 1 8 Index

SSL (Secure Sockets Layer), 35, 227—228 DES, 45

accelerator cards, 268 feedback modes, 40

alert protocol, 232 padding, 39—40
authentication algorithms, 240 RC4 stream ciphers, 45
certificates stream ciphers

request messages, 237 key streams, 44—45
verify messages, 238 one-time pads, 41, 44

change cipher spec protocol, 231 XOR operations, 42—43
clients symmetric keys, 33

certificate messages, 237 cryptography, 15—19, 51

hello messages, 234 management, 53—55

key exchange messages, 238 system administrators, 3
connection states, 228

encryption algorithms, 240 error alert messages, 232 T
finished messages, 239

handshakes, 228, 233 TCSEC (Trusted Computer System Evaluation
master secrets, 240 Criteria) 330

pre-master secrets, 240 templates, biometrics, 284

RC4 allgorlthm, 24 terminals, smart cards, 278
recoird ayer, 230—231 terminating SSL sessions, 239
see generation, 35 terrorists, security attacks, 315

servers third-party PKls, 201
certlficate messages, 236 threats to security
hello messages, 235 authentication, 319
key exchange messages, 236 data at rest 318

sess10ns _ data in transit, 317
resuming, 240 foreign intelligence services, 316
states, 228 hackers, 315
terminating, 239 _ hactivists, 316

shared secrets, 227 implementation errors, 320
state machine, 228 insiders 315

S80 systems, authentication tokens, 270 intruders 314

standardshfor smsallrt cards, 276 network traffic interception, 313
state mac 1119, S , 228 . spoofing network traffic, 314
storage advantages, d1g1tal Signatures, 294 terrorism 315
stored value memory cards, 277 unauthorized access 312

strl‘fam ClpheI‘S unauthorized data disclosure, 311
ey SFreamSé44g45 _ unauthorized data modification, 311—312

ORI§4tl4ne P3 S, 1, 44 three try password limitations, 66 ‘
: 5 threshold algorithms, 130—131

superuf’iérS, passrvords, 3;; threshold schemes, key recovery, 127—130
suspen lrlg clertlr lfiates, , 190 time stamping, digital signatures, 301
symmetrrc a gorit ms TLS (Transport Layer Security), 176, 228

block c1phers, 38 tokens 69—71

AES, 45 authentication, 269—270, 325
commercial DES replacements, 49 noncontact tokens, 270~271

number generators, 75

password storage, 72-73

private keys, 123

traffic analysis programs, 313

trailers, ESP, 217—2 18

transaction processing, SET, 260

transfer encoding, MIME entities, 247

transmission sizes, algorithm

comparisons, 122

transport adjacencies, SAS, 219

Transport mode

AH, 213

ESP, 217

transport seCurity protocols, 209

Triple DES (Triple Digital Encryption

Standard), 47

trust, PKI, 191—193

trustees, key recovery, 126

TSAs (Time-Stamping Authorities), 301

TTPs (trusted third parties)
KEKs, 85—86

key recovery, 124
Tunnel mode

AH, 214

ESP, 218

U

unauthorized access, 312

unauthorized data disclosure, 3‘11

unauthorized data modification, 311-312

UNCITRAL (United Nations Commission on

International Trade Law), 302

unique identifiers, X509 certificates, 174

updating key pairs, PKI, 199

URIs (Uniform Resource Identifiers), X.509

certificates, 176

USB ports, tokens, 72

user IDs, authentication, 325

user names, 3

user—input seed collectors, 28

Index

V

vendors, SET, 265

verification process, biometrics, 283

Verisign PKIS, 201

VNC (Virtual Network Computing), 319

voice recognition, biometrics, 76, 287

\X/

Web sites, security strategies, 332

Weierstrass equation, 112

Weierstrass, Karl, 112

Williamson, Malcolm, 95

written signatures, differences from

digital signatures, 299

X

X500, 178

X509, 172
certificates

chains, 194

CPS qualifiers, 176

CRLs, 175

extension fields, 175—176

fields, 173-174

OIDs, 176

TLS, 176

unique identifiers, 174

URIs, 176

entity names, 178

X9 security standards, 328

XOR operations, 42-43

XyLoc proximity card, 272

419

INTERNATIONAL CONTACT INFORMATION

 AUSTRALIA SINGAPORE (Serving Asia)

McGraW—Hill Book Company Australia Pty. Ltd. McGraw-Hill Book Company
TEL +61~2-9417-9899 TEL +6586?» 1580

FAX +61-2-9417-5687 FAX +65-862—3354

http://www.mcgraw-hi11.com.au http://Www.mcgraw—hill.com.sg
books-itflsydney@mcgraw-hill.com mghasia®mcgraw-hill.com

CANADA SOUTH AFRICA

McGraw-Hill Ryerson Ltd. McGraw-Hill South Africa
TEL +905-430—5000 I TEL +27~1 1—622-75 12

FAX +905—430-5020 FAX +27—11—622—9045

http://www.mcgrawhill.ca r0byn_swanepoel@mcgraw—hill.com

GREECE, MIDDLE EAST, UNITED KINGDOM & EUROPE

NORTHERN AFRICA (Excluding Southern Europe)

McGraw—Hill Hellas McGraw—Hill Publishing Company _

TEL +30-1-656-0990-3—4 TEL +44-1—628—502500

FAX +30-1-654-5525 FAX +44-1~628—770224

http://www.mcgraw~hi11.co.uk

MEXICO (Also serving Latin America) computingjeurope@mcgraw-hill.com
McGraw—Hill Interamericana Editores SA. de CV.

TEL +525-117—1583 ‘ ALL OTHER INQUIRIES Contact: ~

FAX +525—1 17-1589 Osbo’rne/McGraw-Hill

httpzilwww.mcgraw-hi11.com.mx TEL +1-510-549~6600
femandoucastellanos@mcgraw-hfll.com FAX +1-510—883-7600 "

http://www.osborne.com

omgintemational©mcgraw-hi11.com

RSA BSAFE
ENCRYPTION

FROM THE

MOST TRUSTED

NAME IN

E-SECURITY

Whether you need core cryptography

routines, digital certificate management

components, or fully implemented pro—

tocol for your application, the RSA

BSAFE SDKs provide you with all of the

components you need to make your

applications absolutely safe and secure.

By using RSA BSAFE products, your staff

can save months of development time, x. ‘

enabling you to roll out mission-critical

systems earlier and with more confi-

dence. Contact RSA Security, your choice

for authentication, encryption and PKl.

Pmdumdixplayrnglhhsymbal S E C U R IT Y"mnti’n a! are mm Uble wlth the
\/ me bufledu-meurfly technologyseamen _ The Most Trusted Name in e-Security'

www.rsasecurity.comlgolrsapress/CRYPTO

RSA, BSAFE'the RSA Secured logo, 'The Most Trusted Name in e-Security' and the RSA Security logo are registered trademarks or trademarks al RSA Security Inc. All other Irademarks are the property of their respective owners. 02000 RSA Security Inc. All rights reserved.

SECURITY”

The Most Trusted Name in e-Security®

The Company

RSA Security Inc. is the most trusted name in e-security, helping. organizations build

secure, trusted foundations for e—business through its two-factor authentication, encryp-

tion and public key management systems. RSA Security has the market reach, proven

leadership and unrivaled technical and systems experience to address the changing secu~

rity needs of e-business and bring trust to the new online economy.

A truly global company with more than 8,000 customers, RSA Security is renowned for

providing technologies that help organizations conduct e—business with confidence. Head—

quartered in Bedford, Mass, and With offices around the world, RSA Security is a public

company (NASDAQ: RSAS) with 2000 revenues of $280 million.

Our Markets and Products

With the proliferation ofthe Internet and revolutionary new e~business practices, there

has never been a more critical need for sophisticated security technologies and solutions.

Today, as public and private networks merge and organizations increasingly expand their

businesses to the Internet, RSA Security's core offerings are continually evolving to

address the critical need for e-security. As the inventor of leading security technologies,

RSA Security is focused on three core disciplines of e-security.

Public Key Infrastructure

RSA Keon® public key infrastructure (PKI) solutions are a family of interoperable,

standards—based PKI software modules for managing digital certificates and creating an

environment for authenticated, private and legally binding electronic communications

and transactions. RSA Keen software is designed to be easy to use and interoperable with

other standards-based PKI solutions, and to feature enhanced security through its syn-

ergy with the RSA SecurID authentication and RSA BSAFE encryption product families.

Authentication

RSA SecurID® systems are a leading solution for two-factor user authentication. RSA

SecurID software is designed to protect valuable network resources by helping to ensure

that only authorized users are granted access to e-mail, Web servers, intranets, extranets,

network operating systems and other resources. The RSA SecurID family offers a wide

range of easy-to-use authenticators, from time~synchronous tokens to smart cards, that

help to create a strong barrier against unauthorized access, helping to safeguard network

resources from potentially devastating accidental or malicious intrusion.

Encryption

RSA BSAFE® software is embedded in today's most successful Internet applications,

including Web browsers, wireless devices, commerce servers, e-mail systems and virtual

private network products. Built to provide implementations of standards such as SSL,

SfMIME, WTLS, IPSec and PKCS, BSA BSAFE products can save developers time and

risk in their development schedules, and have the security that only comes from a decade

of proven, robust performance. ,

Commitment to Interoperability

RSA Security’s offerings represent a set of open, standards—based products and tech~

nologies that integrate easily into organizations‘ IT environments, with minimal modifi-

cation to existing applications and network systems. These solutions and technologies are

designed to help organizations deploy new applications securely, while maintaining cor-

porate investments in existing infrastructure. In addition, the Company maintains active,

strategic partnerships with other leading IT vendors to promote interoperability and

enhanced functionality.

Strategic Partnerships

RSA Security has built its business through its commitment to interoperability. Today,

through its various partnering programs, the Company has strategic relationships with

hundreds of industry-leading companies—uincluding 300M, AOL/Netscape, Ascend,
AT&'I‘, Nortel Networks, Cisco Systems, Compaq, IBM, Oracle, Microsoft and Intel—Who

are delivering integrated, RSA Security technology in more than 1,000 products.

Customers

RSA Security customers span a wide range of industries, including an extensive pres—

ence in the e-commerce, banking, government, telecommunications, aerospace, university

and healthcare arenas. Today, more that 8 million users across 7,000 organizations——

including more than half of the Fortune 100—use RSA SecurID authentication products

to protect corporate data. Additionally, more than 500 companies embed RSA BSAFE

software in some 1,000 applications, with a combined distribution of approximately one

billion units worldwide.

Worldwide Service and Support

RSA Security offers a full complement of world-class service and support offerings to

ensure the success of each customer's project or deployment through a range of ongoing

customer support and professional services including assessments, project consulting, ‘

implementation, education and training, and developer support. RSA Security‘s Technical

Support organization is known for resolving requests in the shortest possible time, gain—

ing customers' confidence and exceeding expectations.

Distribution

RSA Security has established a multichannel distribution and sales network to serve

the enterprise and data security markets. The Company sells and licenses its products

directly to end users through its direct sales force and indirectly through an extensive net-

work of GEMS, VARs and distributors. RSA Security supports its direct and indirect sales

effort through strategic marketing relationships and programs.

Global Presence

RSA Security is a truly global e-security provider with major offices in the U.8., United

Kingdom, Singapore and Tokyo, and representation in nearly 50 countries with additional

international expansion underway. The RSA SecurWorld channel program brings RSA

Security’s products to value-added resellers and distributors worldwide, including loco?

tions in Europe, the Middle East, Africa, the Americas and Asia-Pacific.

For more information about RSA Security, please visit us at:

www. rsasecuritycom.

RSA
‘ ' ' SSPR:1

...Because Knowledge Is Security"VI

. Now you can safeguard your network with proven solutions—exclusively from

RSA Press. Featuring authors who are recognized experts in network and

computer security technology, these books offer authoritative advice for

protecting your digital information and your business today———and in the future.

 Also:

SEGIII'IW lll'GIIIIecIIII'e:

IIGSIQII. Ilenlovmenl 8:

Almlloallons

STEVE BURNETT CARLTON R. DAVIS ANDREW NASH,WlLLlAM CHRISTOPHER KING,

AND STEPHEN PAINE ISBN: 0_07-2|2757_0 DUANE, CELIA JOSEPH CURTIS DALTON, AND

ISBN; 0_07_2l3|39_x $4939 AND DEREK BRINK ERTAM OSMANOGLU
$59.99 ' ISBN: 0-07-2l3l23-3 ISBN: 0-07-2I3385-6

lNCLUDES CD—ROM 0 $4939 $49-99
Available June 200|

Available at bookstores everywhere!

-PRg//SS...Because Knowledge Is Security'-

RANDALL K. NICHOLS,

DANIEL J. RYAN,AND 'w
JULIEJ.C.H. RYAN D S B D R N E
ISBN: 0-07~2 l 2285-4

$49.99 www.rsapress.com www.osborne.com

SOFTWARE AND INFORMATION LICENSE

The software and information on this CD-ROM (collectively referred to as the “Product”) are the property of RSA

Security Inc. (“RSA Security”) and are protected by both United States copyright law and international copyright
treaty provision. You must treat this Product just like a book, except that you may copy it into a computer to be
used and you may make archival copies of the Products for the sole purpose of backing up our software and pro-

tecting your investment from loss.

By saying “just like a book,” RSA Security means, for example, that the Product may be used by any number

of people and may be freely moved from one computer location to another, so long as thereis no possibility of the
Product (or any part of the Product) being used at one location or on one computer while it is being used at an-
other. Just as a book cannot be read by two different peoplein two different places at the same time, neither can

the Product be used by two different peoplein two different places at the same time (unless, of course, RSA Secu-
rity’s rights are being violated)

RSA Security reserves the right to alter or modify the contents of the Product at any time.

This agreement is effective until terminated. The Agreement will terminate automatically without notice ifyou

fail to comply with any provisions of this Agreement. In the event of termination by reason of your breach, you
will destroy or erase all copies of the Product installed on any computer system or made for backup purposes and

shall expunge the Product from your data storage facilities.

LIMITED WARRANTY ‘ /

RSA Security warrants the CD-ROM(S) enclosed herein to be free of defects in materials and workmanship for a

period of sixty days from the purchase date. If RSA Security receives written notification within the warranty pe~

riod of defects in materials or workmanship, and such notification is determined by RSA Security to be correct,

RSA Security will replace the defective diskette(s). Send request to:

RSA Press

RSA Security Inc.

2955 Campus Drive
Suite 400

San Mateo, CA 94403

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to replacement

of defective CD—ROM(S) and shall not include or extend any claim for or right to cover any other damages, including

but not limited to, loss of profit, data, or use of the software, or special, incidental, or consequential damages or

other similar claims, even if RSA Security or The McGraw—Hill Companies, Inc. (“McGraw-Hill”) has been specif-

ically advised as to the possibility of such damages. In no event will RSA Security’s or McGraw—Hill’s liability for

any damages to you or any other person ever exceed the lower of suggested list price or actual price paid for the
license to use the Product, regardless of any form of the claim.

RSA SECURITY INC. AND THE McGRAW—HILL COMPANIES, INC. SPECIFICALLY DISCLAIMS ALL

OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically; nei-

ther RSA Security nor McGraw-Hill makes any representation or warranty that the Product is fit for any partic-

ular purpose and any implied warranty ofmerchantability is limited to the sixty day duration of the Limited War—

ranty covering the physical CD-ROM(s) only (and not the software or information) and is otherwise expressly and

specifically disclaimed.

This Limited Warranty gives you specific legal rights; you may have others which may vary from state to state.

Some states do not allow the exclusion of incidental or consequential damages, or the limitation on how long an
implied warranty lasts, so some of the above may not apply to you. b

This Agreement constitutes the entire agreement between the parties relating to use of the Product. The terms

of any purchase order shall have no effect on the terms of this Agreement. Failure of RSA Security to insist at any .

time on strict compliance with this Agreement shall not constitute a waiver of any rights under this Agreement.

This Agreement shall be construed and governed in accordance with the laws of Massachusetts, irrespective of its

choice of law principles. If any provision of this Agreement is held to be contrary to law, that provision will be en-

forced to the maximum extent permissible and the remaining provisions will remain in force and effect.

. Llaaaay'oe oomoasss

“fl l’ llll.'ll .! t-lllzqa
flUD?flrfifi8352

learn new crrlmoeranmr werlrs— _
from the leading authority Ill e—securnu

Cryptography is one of the smartest
ways to protest the information on your

Distinguish rlltl'ereht types of Get detaila en eurrerit Pitl
l‘lETWDik and reduce the risk [if SECUFHF symmetric-hey eneryntien standards and teehneleyy—u

biEflChES and attaoks from hflCkEl‘S. algorithms and lrnew where including yenderinformatien
. . each '5 it“ “3‘?” Understand it one rertilleate”

fitl‘ld DECHUSB ll'l'lDlEmEi'llll'lg CWngrapW Find out how password-hosed and directory structures
is El oomplea DFUQESS, 3m” “BEG thfi' Emma" WM“ Get an operational overview et
praotioal adyioo and [Jl'fl‘u'Eil'l tEChfliflUES Cnmmunioate safely ll'll'El‘ widety-used protocols—

unseeura ohannola using including lPEee, ESL, and GET

eontaioed inside this otfiolal guide. puhucmmhmlm mmwwmgmphymm”mm“
Wl‘lTTBF'l by iilSICIEEl'S at R3331 SBCUI’Ity, Usonuelie-keytechnology for oereneetines—r:nrrn'rttrtirrnaJ

this expert FESDLWEB EX plains thB authentication anti developers. and users
. . non-repudiation _ F d' 't 1 .

rlrtferenees between symmetrIo—key and , , ”Emmi“ 'fl'i' 5'9"““5
Recognize how oernnrntrons nae and hardware solutrlns—emart

nubile-key cryptography. hUW PKI Elm! erypteerephy to immune oeourity oarrle.toltens,hey storage

1': 509 alteot SEEM”? hEl'u'li the RSI-1i through teat-world ease studies tiraitioes1 and more
algorithm works within oroioools, and

”LLEChlmm'fulfl f1???” torereee seeeritrr amt ereteet your eoraoaelr’s
31‘” “33‘ L'“ “b ‘3' "‘9 information with tire roost aottreritatiee guide to

differentltyoes of seourity Efflflfflgfflflflfl altflflflfltfl.
yolneralnlrtles and what

types of eryptography apotloatroos neour 1H5 until on s;

V'FUUICE prEUent Hfifltkg. ST-E'UE IBUPH-FIT-Iiaa degrees in fllEItll from liriririell Cnilagr-tlIiri_|I:-I.t.'ti-ario Tlte CItiI'IJF-‘U'H lirarluaieScrruol In Lalrfurrna. r!n Has intent moat sl Ina r::rr-.’-.Hr Et:-n1'r—:i-.rn-_._r litatli :nto computer pi'rrrgrnnia. I I 1'

at l-rlerrraph [torporatios a 1r! new with ESE. saw-my. ii frequent speaker at inoustry eon areneos

ano‘ eol ego ealruiuses. Fitter-e 25 the ”earl engineer ‘or Rays 33qu Cry-ole t‘. and liryplo-J
Gt-il .‘r Adel; ABLE FROM ass. SFEllltI‘nr |‘.I|'“l'|l|-]|:'i. whion are general :Jt.F:Jl‘J.‘ii-: oryoloeraoiry estrus-ah: -'.leyeloe=-“ent wife n I: arrr: Jaye.

Hfie Immature-r" comet-ire hit? i-l STEPHEN some ass worierl i'11i'llfifilllll'l'r' nan Ilrrouiill-frlll nit-st of ll:5’3ill'DE'f- tenet-r “It “It
F‘-.I.'r|u:- Key [.‘ryaluur'raplfs Starrnards U-rirerl Stale-e lylar-no Corps and :‘er Still-l lyin:rosyslems He is eurrently a systems engineer for iii-1r

ti-ryelo 3349.3 YHL'h'IICeI weevil-riders Beersrily. where to oilranhlu li-‘.:.'Illil'lt ::I!. none. to oo-‘noratiors anrl developers wurloy-rion and
provides trai-rilrr; to I:usluri’:er;—; arit: FISt-‘t olnoloyees.

Heraessrnersteuern Book we o-ot-enasaaes of

D 5 B U R N E ii: ll Isen o-o7-213Lan-x_. 9 Ct El El 9

Rfflflflgfl HEABJWE l or rite information age

S9._r|"'.'I'Ir'-1-II;G:IT|'II.r~fI"r'H'Z'_.-':r.1|h 1r'rti ? sass-tosses e . I
$59.99 USA £43.99 UK etaeotatmaeo

