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Biometric Decision Landscapes

John Daugman University of Cambridge The Computer Laboratory1

Abstract

This report investigates the “decision landscapes” that characterize several forms of biometric
decision making. The issues discussed include: (i) Estimating the degrees-of-freedom associated
with different biometrics, as a way of measuring the randomness and complexity (and therefore
the uniqueness) of their templates. (ii) The consequences of combining more than one biometric
test to arrive at a decision. (iii) The requirements for performing identification by large-scale
exhaustive database search, as opposed to mere verification by comparison against a single
template. (iv) Scenarios for Biometric Key Cryptography (the use of biometrics for encryption
of messages). These issues are considered here in abstract form, but where appropriate, the
particular example of iris recognition is used as an illustration. A unifying theme of all four
sets of issues is the role of combinatorial complexity, and its measurement, in determining the
potential decisiveness of biometric decision making.

Keywords – Statistical decision theory, pattern recognition, biometric identification, combinatorial
complexity, iris recognition, Biometric Key Cryptography.

1 Yes/No Decisions

Biometric identification fits squarely in the classical framework of statistical decision theory. This
formalism emerged from work on statistical hypothesis testing1 in the 1920s - 1930s and on radar
signal detection analysis2 in World War II, and its key elements are briefly summarized here in
Figures 1 and 2. For decision problems in which prior probabilities are not known, error costs are
not fixed, but posterior distributions are known, the formalism of Neyman and Pearson1 provides
not only a mechanism for making decisions, but also for assigning confidence levels to such decisions
and for measuring the overall “decidability” of the task.

Yes/No pattern recognition decisions have four possible outcomes: either a given pattern is,
or is not, in fact the target; and in either case, the decision made by the recognition algorithm
may be either the correct or the incorrect one. In a biometric decision context the four possible
outcomes are normally called False Accept (FA), Correct Accept (CA), False Reject (FR), and
Correct Reject (CR). Obviously the first and third outcomes are errors (called Type I and Type
II respectively), whilst the second and fourth outcomes are the ones sought. By manipulating the
decision criteria, the relative probabilities of these four outcomes can be adjusted in a way that
reflects their associated costs and benefits. These may be very different in different applications.
In a customer context the cost of a FR error may exceed the cost of a FA error, whereas just the
opposite may be true in a military context.

It is important to note immediately the uselessness of either error rate statistic alone in char-
acterizing performance. Any arbitrary system can achieve a FA rate of 0 (just by rejecting all
candidates). Similarly it can achieve a FR rate of 0 (just by accepting all candidates). The notion
of “decision landscape” is intended to portray the degree to which any improvement in one error
rate must be paid for by a worsening in the other. This concept facilitates the definition of metrics
quantifying the intrinsic decidability of a recognition problem, and this can be useful for comparing
different biometric approaches and understanding their potential.

1Cambridge CB2 3QG, England. tel +44 1223 334501 fax +44 1223 334679 john.daugman@CL.cam.ac.uk
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Statistical Decision Theory
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Figure 1: Decision landscape: general formalism for biometric decision making.

Figure 1 illustrates the idea of the decision landscape. The two distributions represent the two
states of the world, which are imperfectly separated. The abscissa is any metric of similarity or
dissimilarity; in this case it happens to be Hamming Distance, which is the fraction of bits that
differ between two binary strings. A decision about whether they are instances of the same pattern
(albeit somewhat corrupted), or completely different patterns, is made by imposing some decision
criterion for similarity as indicated by the dotted line. Similarity up to some Hamming Distance
(0.4 in this case) is deemed sufficient for regarding the patterns as the same, but beyond that point,
the patterns are declared to be different.

The likelihoods that these are correct decisions, or not, correspond to the four stippled areas
that lie under the two probability distributions on either side of the decision criterion. It is clear
that moving the decision criterion to the right or left (becoming more liberal or more conservative)
will change the relative likelihoods of the four outcomes. It is also clear that the “decidabiity” of a
Yes/No decision problem is determined by how much overlap there is between the two distributions.
The problem becomes more decidable if their means are further apart, or if their variances are
smaller. One measure of decidability, although not the only possible one, is d′ (d-prime), defined
as follows if the means of the two distributions are μ1 and μ2 and their two standard deviations
are σ1 and σ2:

d′ =
|μ1 − μ2|√
1
2(σ2

1 + σ2
2)

(1)

(Note that d′ has the units of Z-score: distances are marked off in units of a conjoint standard
deviation.) A shortcoming of the d′ statistic is that it ignores moments higher than second-order,
and it becomes less informative if distributions depart significantly from modal form. Nevertheless,
it can be a useful gauge for assessing different decision landscapes. It has the virtue of quantifying,
in a single number, the intrinsic decidability of a decision task in a way that is independent of the
chosen decision criterion. It assesses the degree of inevitable trade-off between the two error rates.
Because it measures the separation between the two distributions defining the decision landscape,
the higher it is, the better. In the schematic of Figure 1, d′ = 2.

Let us name the two distributions PIm(x) and PAu(x), denoting respectively the probability
densities of any measured dissimilarity x (such as a Hamming Distance) arising from two different
biometric sources (“Impostor”), or from the same source (“Authentic”). Then the probabilities of
each of the four possible decision outcomes FA, CR, CA, and FR are equal to the areas under these
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two probability distributions on either side of the chosen decision criterion C:

P (FA) =
∫ C

0
PIm(x)dx (2)

P (CR) =
∫ 1

C
PIm(x)dx (3)

P (CA) =
∫ C

0
PAu(x)dx (4)

P (FR) =
∫ 1

C
PAu(x)dx (5)

It is clear that these four probabilities separate into two pairs that must sum to unity, and two
pairs that are governed by inequalities:

P (CA) + P (FR) = 1 (6)

P (FA) + P (CR) = 1 (7)

P (CA) > P (FA) (8)

P (CR) > P (FR) (9)
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Figure 2: The Neyman-Pearson (ROC) decision strategy curve.

Manipulation of the decision criterion C in the integrals (2) - (5) in order to implement different
decision strategies appropriate for the costs of either type of error in a given application, is illus-
trated schematically in Figure 2. Such a decision strategy diagram, sometimes called a Receiver
Operating Characteristic or Neyman-Pearson curve, plots P (CA) from (4) against P (FA) from (2)
as a locus of points. Each point on such a curve represents a different decision strategy as specified
by a different choice for the operating criterion C, as was indicated schematically in Figure 1.

Inequality (8) states that the Neyman-Pearson strategy curve shown in Figure 2 will always lie
above the diagonal line. Clearly, strategies that are excessively liberal or conservative correspond
to sliding along the curve towards either of its extremes. Irrespective of where the decision criterion
is placed along this continuum (hence how liberal or conservative one wishes to be in a particular
application), the overall power of a pattern recognition method may be gauged by how bowed the
ROC curve is. The length of the short line segment in Figure 2 is monotonically related to the
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