
Apple 1027 
Apple v. USR 

IPR2018-00810

A Fuzzy Commitment Scheme

Ari Juels

RSA Laboratories

2D Crosby Drive

Bedford, MA 01730
E-mail: aricrsaxom

Abstract

We combine well~known techniques from the areas of error-
correcting codes and cryptography to achieve a new type of
cryptographic primitive that we refer to as a fuzzy commit
ment scheme. Like a conventional cryptographic commit-
ment scheme, our fuzzy commitment scheme is both can-
cealing and binding: it is infeasibie for an attacker to learn
the committed value, and also for the committer to de-
commit a value in more than one way. In a conventional
scheme, a commitment must be opened using a unique wit-
ness, which acts, essentially, as a decryption key. By con‘
trast, our scheme is fuzzy in the sense that it accepts a wit-
ness that is close to the original encrypting witness in a
suitable metric, but not necessarily identical.

This characteristic of our fuzzy commitment scheme
makes it useful for applications such as biometric authen-
tication systems, in which data is subject to random noise.
Because the scheme is tolerant of error, it is capable of pro-
tecting biometric data just as conventional cryptographic
techniques, like hash functions, are need to protect alphanu—
meric passwords. This addresses a major outstanding prob-
lem in the theory of biometric authentication. We prove the
security characteristics of our fuzzy commitment scheme rel-
ative to the properties of an underlying cryptographic hash
function.

1 Introduction

Cryptographic protocols are conventionally predicated on
exact knowledge. An authentication system using BSA sig-
natures, for example, derives its security largely from the
presumption that a legitimate user with public key (N,e)
possesses a corresponding secret key of the uniquely speci-
fiable form (N, d). There are situations, however, in which
human and other factors undermine the possibility of exact-
ness in a security system. In biometric systems Where users
identify themselves by means of fingerprint features, for ex-
ample, variability in user interaction is such that a finger is
rarely read exactly the same way twice. Moreover, even if
knowledge in asystem is exact, its transmission may only be 
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approximate. Users typically make typing errors, for exam-
ple, when entering passwords on keyboards. Similarly, data
transmission channels are often subject to random noise.
Our aim in this paper is to describe a simple cryptographic
primitive, namely a type of commitment scheme, that uses
well-known algorithms to facilitate the use of approximate
information in cryptographic systems. As a model for ap-
proximate reasoning in humans, researchers in artifical in-
telligence have elaborated a notion known as “fuzzy logic”
[37]. By analog, we call the primitive introduced in this
paper a fuzzy commitment scheme.

In a conventional bit commitment scheme, one player,
whom we denote the sender, aims to entrust a concealed
bit I) to a second player, known as the receiver. The sender
gives to the receiver an encryption y of b. A bit commit-
ment scheme should be such that it is infeasible for the

second player to learn the bit b from 3;. Additionally, the
sender should later be able to “open” the commitment y,
that is, to prove to the receiver that y indeed represents
an encryption of b. It should only be feasible, however, for
the sender to “open" 3: in one way, that is, to decrypt the
value b uniquely. We may view this, intuitively, as a pro-
cess whereby the sender places the bit b in a safe and gives
the safe to the receiver. Only the sender can open the safe,
since she alone knows the combination. Moreover, she Can-
not change the value contained in the safe while it is in the
keeping of the receiver.

Formally, a bit commitment scheme consists of a function
F : {0, 1} x X —> Y. To commit a bit b, the sender chooses a
witness a: E X, generally uniformly at random. The sender
then computes y = F(b,:z:). This value 3; is known as a
blob. It represents the bit b sealed in a “safe”. To “open”
or decommit the blob y, the sender produces the bit b and
the witness 3:. The blob is successfully opened if the receiver
has been convinced that y indeed represents an encryption
of b.

A bit commitment scheme is said to be concealing if it
is infeasible for the receiver to guess b with probability sig-
nificantly greater than 1/2. It is said to be binding if it is
infeasible for the sender to decommit the blob y with the
incorrect bit, that is, with 1 —- (1. Note that it is possiw
ble to deploy a bit commitment scheme as a commitment
scheme on an arbitrarily long string of bits by committing
each bit independently. We shall use the term commitment
scheme in this paper to refer to a scheme that involves com—
mitment of a bit string c (or other potentially non-binary
value) in a single blob, and for which it is possible to extract
(3 efficiently given a witness for the blob. Thus we assume
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F : C x X ~+ Y, where C is some potentially non-binary
space. Additionally, our scheme will be such that produc-
tion of a valid witness allows the committed value c to be

efficiently determined from a commitment F(c, as). This is
not the casein general for commitment schemes; often, both
c and a valid witness are required to enable the sender to
prove that F(c, n) represents a commitment of c. Finally, we
offer a stronger notion of binding than that conventionally
employed in the literature. We require not just the infeasi-
bility of decommitting two distinct values c and c’ from a
single commitment, but also that decommitment using two
distinctly difierent witnesses be infeasible. This notion of
strong binding is discussed in detail in Section 5. For fur-
ther details on bit commitment, the reader may consult a
standard cryptography textbook, such as [33], or one of the
seminal papers on the subject, such as [12].

Our aim in designing a fuzzy commitment scheme F is
to achieve a new property that we loosely call “fuzziness”.
By this, we mean that the commitment scheme should be

resilient to small corruptions in witness values. More pre-
cisely, we aim to allow a blob y :— F(b, z) to be opened using
any witness x’ that is close to a: in some appropriate metric,
such as Hamming distance, but not necessarily identical to
2:. At first glance, the requirement for this type of resilience
seems contradictory to the requirements that F be binding
and concealing. After all, to achieve these two security aims,
F must be an encryption function of sorts. It would there-
fore seem necessary, in accordance conventional encryption
or hash function design, for small changes in input values to
yield large, unpredictable changes in output values. In other
words, F should thoroughly and unpredictably “scramble”
input bits. On the other hand, the requirement of fuzziness
in F suggests exactly the opposite, namely a. high degree
of local structure. In this paper, we show how to reconcile
these ostensibly conflicting goals using well-known compo-
nents drawn from error-correcting codes and cryptography.
We combine a conventional hash function h with an error-

correcting code used in a somewhat unorthodox way. Our
construction is quite simple, and provably secure with re-
spect to the underlying hash function h.

1.1 Organization of this paper

In Section 2, we give an overview of biometric authentica-
tion and a. description of related work. We provide a brief
introduction to error-correcting codes in Section 3. We de-
scribe our fuzzy commitment construction in Section 4, and
also discuss some applications to general security protocols.
In Section 5, we state theorems regarding the security char-
acteristics of our construction and analyze its resilience. We
conclude in Section 6 with some suggestions for future areas
of research. Short proofs of our theorems are provided in
the appendix.

2 Background

2.1 Biometrics

An important motivation for our investigation of fuzzy com-
mitment is the problem ofsecure storage of data in biometric
systems. We now give a brief overview of this area.

Biometric authentication is the process of establishing
the identity of an individual using measurements of some
collection of his or her biological characteristics. Applied
in its broadest sense, biometric authentication describes the
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processes that human beings use naturally to recognize one
another, primarily through the senses of sight and hearing.
When you recognize a friend by her face, you are performing
a type of biometric authentication.

Biometric authentication can also assume automated

forms involving the identification of individuals to computer
systems by such means as retinal and fingerprint scans.
Until recently, biometric technologies have been the pre—
serve of government agencies and science fiction movies, as

in [2, ID, 27]. Recent improvements in on-chip scanning
technologies as well as a proliferation of peripheral devices
such as microphones and video cameras in desktop comput-
ers have promised to bring automated biometric authenti-
cation technologies to a consumer level in the near future
{11, 19]. A plethora of relatively inexpensive biometric au-
thentication techologies are now available, including ones
based on fingerprint scanning, iris scanning, voice authenti-
cation, face recognition — and even body odor. These tech-
nologies promise to play a major role in a broad range of
data security applications.

Much of the appeal of biometric authentication is its
promise of heightened security relative to passwords. As
security specialists know Well, users often choose passwords
poorly and write them down in conspicuous places, mak-
ing them vulnerable to attack. Biometrics eliminate the
problem of forgotten passwords and, according to industry
claims, are largely resistant to remote capture.

Biometrics, however, pose a security risk that passwords
do not. In many operating systems, as in most implementa-
tions of UNIX, a given password P is not stored explicitly
in the system password file. Instead, a commitment of P
is stored in the form of a hash h(P) [18, 26].1 (Note that
this hash may be regarded as a commitment on a null value
for which P is the witness.) Thus it is possible to verify
that a user has entered her password correctly, while even a
system administrator cannot feasibly extract a well-chosen
password P from the password file entry MP). Protect-
ing user secrets through a. straightforward means of com-
mitment like hashing is not possible, though, for biometric
authentication. The reason is this: two readings of the same
biometric are rarely identical. Changes occur naturally in
biological characteristics over time. Additionally, there is
substantial variability in human execution of physical tasks.
Because users are inconsistent in the position and pressure
with which they apply their fingers to readers, for example,
fingerprint reading devices almost always extract different
information from multiple readings of the same finger - even
when these readings occur in rapid succession.

To handle the variability inherent in biometric authen-
tication, most systems store for each user what is called a
template. The template mg for user U consists of a biometric
reading or set of readings obtained from U during an initial
registration or enrollment process. When a user claiming to
be U later authenticates herself, resulting in biometric read-
ing m', a matching algorithm is invoked to compare 92' with
my and determine whether the two belong to the same user.
How much r’ must look like my to generate a match depends
on the matching algorithm and its parameterization. The
parameterization of a matching algorithm depends in turn
on the false rejection and false acceptance rates desired in a
given authentication system.

Because of the resilience required for biometric authen-

Jflashed passwords are typically also salted as a. defensive measure
against dictionary attacks.



tication systems, templates are usually stored, unlike pass-
words, in explicit form. Yet the protection of biometric in-
formation is far more critical than that of passwords. It is
easy to use separate passwords for different systems, and to
change passwords on a frequent basis. Using multiple bio-
metrics across systems and changing biometric passwords is
harder. In a system employing fingerprints, for example, a
user can change her “password" at most nine times. Addi-
tionally, many users have serious concerns about the threat
to privacy posed by compromised biometric information.
These issues have been persistent points of contention in the
development of biometric authentication systems [11, 19].

2.2 Related Work

The idea of fuzziness in commitment schemes perhaps first
arises in the literature in connection with “collisionful” hash

functions, intended for use in password protection. (Recall
that the hash of a password may be viewed as a commit-
ment.) “Collisionful” hash functions, introduced in [9], aim
to discourage guessing attacks against passwords by means

of a dense pro-image space. Gong [20] describes methods of
carefully determining collision sets for this purpose, enabling
the selection of multiple, plausible passwords (or witnesses)
as preoimages for a given hash value. Other research in this
area includes that of Bakhtiari et all. [3, 4, 5].

As mentioned above, error-correcting codes play a cen—
tral role in our fuzzy commitment construction. The ap-
plication of error—correcting codes to cryptography has a
long history. Error-correcting codes are particularly impor-
tant in non-standard cryptographic models. They serve, for
example, as a means of eliminating errors introduced by
“dark counts” and other apparatus faults in quantum cryp
tographic key distribution protocols (see, e.g., [6]). They
are likewise a critical component in the implementation of
oblivious transfer and key agreement protocols over both
quantum [7, 14] and noisy channels (see, e.g., [13]).

Error-correcting codes can also be employed in the con—
struction of traditional cryptographic primitives. In [24],
McEliece elaborates a well-known public-key cryptosystem
whose hardness is based on the NP—hard problem of decod—

ing an arbitrary linear code [8]. Researchers have also pro-
posed identification [32] and digital signature Schemes [1]
based on error-correcting codes, among other applications.
In a recent paper [21], Jakobsen demonstrates that a class
of error'correcting codes known as Reed-Solomon codes can
even assist in the cryptanalysis of block ciphers.

A notable feature of these efforts is their uSe of error-

correcting codes to subserve conventional cryptographic
goals. In an important divergence from this tradition,
Davida, Frankel, and Matt [16] propose a synthesis of error-
correcting codes with cryptographic techniques to achieve a
new and somewhat unusual security goal. They describe a
system in which a biometric template can be stored in non»
explicit, protected form, but such that some corruption in
subsequent readings can be tolerated. They achieve this by
computing check bits on the template using a linear error-
correcting code, and storing these check bits along with a
hash of the template. Their construction offers important
new ideas, and may in fact be regarded as a kind of fuzzy
commitment. Their system does not have the necessary er-
ror tolerance to work in many real-world applications. They
require, for instance, that a. biometric scan be repeated many
times in succession under the assumption that the errors in
these scans will be wholly independent. Follow-up analysis
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of their work may be found in [17].
Vendors of biometric systems have for some time recog-

nized the importance of achieving a practical system along
the lines of that proposed by Davida et at. To this end, the
company Mytec Technologies has developed a related tech-
nology, consisting of an encryption process in which biomet-
ric data serves as an unlocking key. Sold under the brand
name BioscryptT”, this technology overcomes the problem
of biometric data corruption by means of Fourier transforms.
While fairly efiicient, however, it carries no rigorous security
guarantees (see, e.g., [30, 31]).

Our work on fuzzy commitment may be regarded as an
improvement on and generalization of that of Davida at
al. As mentioned above, their scheme involves the exten-
sion of a biometric template into an emr-correcting code—
word through the addition of check bits. (See Section 3 for
the definition of a codeword.) In contrast, our fuzzy com-
mitment scheme, as applied to biometric templates, treats
the template itself without any modification as a corrupted
codeword. This diflerence in perspective yields several ad-
vantages. Most importantly, our construction links the num-
ber of codewords to the security parameter, while that of
Davida et al. links it to the significantly larger message (i.e.,
template) size. in consequence, our construction use: much
smaller error-correcting codes than that of Davida et al. and
achieves significantly higher resilience. Our fuzzy commit-
ment construction thereby promises to bring the idea of se-
cure biometric template storage farther into the realm of
practical application.

3 Error-Correcting Codes

To provide background for the fuzzy commmitment con-
struction presented in the next section, we now give a brief
overview of error-correcting codes. The goal of an error-
correcting code is to enable transmission of a message m
intact over a noisy communication channel. This is accom-
plished by mapping in to a longer string 6 prior to transmis-
sion. The string c is constructed so as to contain redundant
elements. Therefore, even if some of the bits of this string
are corrupted by noise, it remains possible for a receiver to
reconstruct c, and consequently the message m.

More formally, an error-correcting code consists of a set
C Q {0, 1}” of codewords. This set contains the strings to
which messages are mapped prior to transmission. Hence,
in a code for use with k-bit messages, 0 contains 2" dis-
tinct elements. To achieve redundancy, it is a requirement
that n > k. Error-correcting codes may of course be easily
defined on non-binary spaces as well, and our constructions
are straightforwardly extensible to such spaces.

To use an error-correcting code, We require functions for

encoding and decoding of messages. Let M = {0,1}" rep-
resent the space of messages. The function g : M —> C,
which we calla translation function, represents a one-to~one
mapping of messages to codewords. In other words, 9 is the

mapping used prior to message transmission. (Conversely,
g‘ is used upon message receipt to retrieve the transmit-
ted message from a reconstructed codeword.) The function
f : {0,1}“ —v CU{¢}, known as a decoding function, is
used to map arbitrary n-bit strings to codewords. When
successful, 1‘ maps a given n—bit string a: to the nearest Code-
word in C (i.e., nearest in terms of Hamming distance).2

2The task of mapping an arbitrary string to its nearest codeword
is known as the maximum lakel-ihaod decod-mg problem. Practical



Otherwise, 1’ fails, and outputs (as
The robustness of an error-correcting code depends upon

the minimum distance between codewords. To make this

idea precise, we require some basic notation regarding
strings of binary digits. Let the symbol + (and equiva-
lently, the symbol —) denote the bitwise XOR operator on
bitstrings. (In this context, the symbols + and -— are more
intuitively appealing than 63-) The Hamming weight of an
n-bit string 11., denoted by i! u 1|, is defined to be the number
of ‘1’ bits in n. The Hamming distance between two bit—
strings u and o is likewise defined to be the number of digits
in which the two strings differ. Equivalently, the Hamming
distance is equal to I] u. — 11 ll.

We say that a decoding function f has a correction
threshold of size 13 if it can correct any set of up to t bit
errors. More precisely, for any codeword c e C and any
error term 6 6 {0,1}" with H e I] S t, it is the case that
f(c+ e) = c. We say that a code C has a. correction thresh-
old of size t if there exists a decoding function f for C that
has correction threshold t. Observe that the distance be-

tween any two codewords in 0 must be at least 2t + 1. We

define the neighborhood of a codeword c to be f‘1(c). In
other words, the neighborhood of c consists of a subset of
the 72-bit strings that f maps to c. The decoding function
f is generally such that any codeword in f‘1(c) is closer to
c than to any other codeword.

Example 1 Let n = 3,}: = 1, and C' = {000,111}. Let
the decoding function f compute majority, i.e., f maps a

bitstring :c 6 {0,1}3 to 000 If at least two bits of a: are Us
and to 111 if of. least two bits are ls. This decoding function
has t = 1. In other words, f can correct a single error, since
changing a single digit in either 000 or 111 does not change
the majority.

The ratio left: in an error-correcting code is known as its
coding ejfimency, and measures the degree of redundancy in
the code. (The lower the coding efficiency, the more redun-
dancy in the codewords.) The {000, 111} code, for instance,
has a. coding efiiciency of 1/3. In general, codes that can
correct a large number of errors must have a low coding
efficiency.

Further details on error-correcting codes are available in
any of a number of textbooks on the topic, such as, e.g.,
[23, 28, 36].

3.1 How we use error-correcting codes

As explained above, an error-correcting code traditionally
involves changing a message to a codeword before transmit-
ting it across a noisy channel. In some situations, however,
this initial encoding step is impossible because the message
cannot be modified. For instance, in the case of biometric
identification the noisy channel might be an error-prone fin-
gerprint reading machine, and the “message” might be an
actual fingertip. Thus, we do not have the ability to add re-
dundancy to the “message”. Because this constraint arises 

classes of codes with polynomial—time solutions to this broad prob—
lem are at present unknown. Conventional decoding functions per-
form a more limited task: they successfully decode any word that lies
Within a certain radius of some codeword. This is all that our fuzzy
commmitment algorithm requires.

3Error correcting codes may work somewhat differently. For ex—
ample, wnth use of list decoding, f may yield a set of candidate code-
words, rather than a single correct one. The underlying principles in
our construction remain the same in such settings.
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in our use of fuzzy commitment, we treat a witness (e.g.,
biometric template) as a corrupted codeword, rather than
a message. In consequence, our construction does not map
messages from the space M to the set of codewords. In fact,
we do not make use of M at all. Rather, we make use of
only half of an error-correcting code: we use the decoding
function 1', but not really the translation function g. This
use of error»correcting codes is somewhat unorthodox. It
represents the novel element in our construction.

The commonest class of error-correcting codes consists of
what are known as linear codes. These are codes whose set of

codewords, in the binary case, forms a vector space over the
field with two elements. Almost all of the error-correcting
codes used in practice are linear. Although not strictly nec-
essary, it is for several reasons convenient to choose a linear
code for our construction. For example, one property of lin-
ear codes useful in a number of applications of our fuzzy
commitment construction, as we shall see, is that it is very
easy to select a codeword c uniformly at random from C.

4 Construction of our fuzzy commitment scheme

4.1 Intuition

Let us now describe the construction of our fuzzy commit-
ment scheme F. We shall construct F so as to commit a

codeword c using a witness cc, where both c and :r. are n-bit
strings.

Observe that an n-bit witness :r; can be uniquely ex-
pressed in terms of the codeword (committed value) c along
with an offset 5 s {0,1}" such that :c = 6+ 6. Given a.
witness 2: expressed in this way, the idea behind the fuzzy
commitment function F is to conceal c using a conventional
hash function )2, while leaving 6 in the clear. The infor-
mation 5 provides resilence in the witness required to open
F. In particular, 5 provides some partial information about
2:. On the other hand, the remaining information needed to
specify 3, namely the codeword c, is presented in a concealed
form as h(c).

Recall that we define ICl = 2". The amount of infor-
mation contained in the codeword c, and thus the amount

of information about the witness a: concealed in Me) de-
pends on k, that is, on the number of codewords in G. The
greater the number of codewords, the greater the amount of
information about the witness a: that is concealed in Me).
In contrast, the amount of information in 6 determines the

level of resilience in F. If we are presented with a witness a."
that is near 1:, we can use 5 to translate .r' in the direction
of :c, facilitating our recovery of the committed codeword c.
As we shall see, we achieve a tradeoff between resilience and
security by varying in, and thus the relative distribution of
information between 5 and h(c).

In biometric scenarios, :1: will typically represent a bio-
metric template, such as a fingerprint. The codeword c will
represent a secret key protected under this template. For
example, c might be a decryption key protected under the
user’s fingerprint a: as the commitment F{c, as). In order to
unlock and reveal this key, it suffices for the user to present
a corrupted fingerprint image 92’ sufficiently close to a. Note
that in some scenarios where is not necessary to protect c
itself, the codeword c must still be drawn from a large space
C, in order to conceal the witness cc. Consider, for example,
a straightforward fingerprint authentication scenario meant
to model the use of hashed passwords on UNIX systems (and
presented as the “fuzzy authentication” protocol in Section



4.3). Here, F(c, (1;) is stored on a server. In order to demon-
strate her identity, it suffices for the user simply to present
to the server a fingerprint image that succesfully decommits
F(c, 2:). The committed value c does not serve in this exam—
ple as a cryptographic key. Nonetheless, c must be drawn
from a large enough space 0 to ensure that F(c, 3:) does not
reveal a. If iCl (or, equivalently k) is small, then an attacker
can guess c and extract a from F(c, s).

It is helpful to describe these ideas in terms of a geo—
metric analogy. Let C be the set of points on the lattice
{100a, 1001:} for integer values it and 1). Let us think of the
witness a: as a point on the Euclidian plane, say, (745, 260).
Let the decoding function 1' map a given point to the nearest
lattice point in C. E.g., f(120, 94) = (100, 100]. Suppose
we choose an arbitrary lattice point, say, c = (300, 300). We
can express a: in the form a: = 0+6 by letting 6 = (445, —40).

Suppose now that without knowing the codeword c, we
are given the blob y = (h(c),5). (This 31, as we shall see,
is exactly the fuzzy commitment of c.) Observe that 6 tells
us the position of :2; relatiVe to c, but gives us no infor—
mation about what 0 is. Thus, assuming that h is a se-
cure one-way function, the only information that y effec-
tively reveals about the witness a: is that it takes the form

(1001! +45, 1001)’ + 60) for some integers u’ and '0'. Subject
to this constraint, :1: could otherwise lie anywhere in plane.

Suppose we are now presented with some point :c' that
is close to at, say if = (720, 240). By subtracting 5, we
translate I’ to the region near the codeword c. In particular,
32’ — 6 = (275, 280). By applying the decoding function f to
this last point, we obtain f(:c’ — J) = c. Thus, knowledge of
35' and use of the decoding function I enable us to determine
a: from the blob y and decommit c.

Say that 3: Were the fingerprint template of a user. Then
an attacker with knowledge of 3; alone would be unable to
find a witness to decommit c. On the other hand, as demon-
strated above, if the user were to present her finger to a read
ing device, generating read data :I' , then it would be possible
to extract c from y. It is easy to see, in consequence, that
knowledge of ,1; makes it possible to verify that 91’ is close to
m, and thus to authenticate the user. In loose terms, rc’ may
be viewed as a fuzzy representation of the original witness
.11. Let us proceed to make this intuition more precise.

4.2 Construction of F

Our construction for F is now quite straightforward. Let
h : {0, 1}" —-» {0, 1}: be a hash (or one-way) function such as,
e.g., SHA-l. We now formally define F : ({O, 1}", {0, 1}“) -—»

({0, 1}z, {0, 1}") as follows:

F(c,:c) = (h(c), a — c).

To decommit F(c,m) = (0,5) using witness :c’, the re-
ceiver computes c' = f(s’—5) = f(c+(:c’-:r)). Ifo: = h(c’),
then the blob has been successfully decommitted, with c'
representing the extracted commitment. Otherwise, :r' is an
incorrect witness. Provided f is an efficient decoding func-
tion (which is the case, of course, for codes used in prac-
tice), then decommitment is likewise an efficient process. In
the remainder of the paper, we shall denote the entire com-
mitment scheme, both the commitment and decommitment
processes, informally by F.

Recall that the “fuzziness” of 1“ consists of the notion

that if :c’ is close to m, then 32’ can be used to decommit
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F(c,a:). This notion formalized in the following lemma,
whose proof is given in the appendix. Note that the con-
verse does not necessarily hold.

Lemma 1 Suppose that H a: — z’ |i _<_ t. Then for any c, the

witness :1." can be used to decommit F(c,m) successfully. I

4.3 Applications of the fuzzy commitment function F

To provide a flavor of how fuzzy commitment might be de-
ployed in a biometric system, We now sketch how F can be
used to achieve three different security goals, namely static
(or off-line) authentication, challenge-response authentica-
tion, and encryption/decryption. We assume that a user
presents a secret :1: in an enrollment (or encryption) phase
and in any given subsequent interaction presents some :c'
that, if legitimate, differs from a: by at most the correction
threshold t. In a biometric system, once again, 3: might
be the fingerprint template presented by the user in an en-
rollment phase. In this case, 31' is fingerprint information
presented for authentication at the initiation of a login ses-
sion. We use 63 in what follows to denote uniform random
selection from a. set.

In all three protocols, the basic idea is the same. The wit-
ness 9: is used to commit to a secret codeword c. Presenta~

tion of a witness :2:' close to 2: opens this secret c, which may
then be used to achieve the desired security goal, be it en-
cryption, decryption, or authentication. Note as mentioned
above, however, that in the first authentication protocol, the
committed value c does not play a direct role as a crypto-
graphic key. It must nonetheless be selected from a large
space 0 in order to ensure that .1: remains well concealed, as
well as to achieve a sufiiciently high level of security in the
authentication scheme.

Fuzzy authentication Let 5' denote the authentication en-
tity, such as a server verifying biometric data to control re-
source access. Let U denote the user. Our protocol is as
follows.

I Enrollment The user U presents biometric data 3:.
The system S selects a codeword c an C. Then S com-
putes the fuzzy Commitment ya = F(c, 2:), and stores
it in a file for user U. Alternatively, for off-line applica-
tions, it is possible to store up and a digital signature
of S on ya in, say, a smart card.

0 Authentication A user purporting to be U presents a
value :z’ for authentication. S looks up ya and checks
whether the witness m' yields a successful decommit-
ment. If so, the user is authenticated as U; otherwise,
the authentication fails. The authentication may, al—
ternatively, take place off—line in some trusted module.

Note that the length of the authentication data ya is just
11 + 1 bits, the length of the value as plus the length of the
image of h. For a stande hash function like SHA—l, the
fuzzy commitment of a biometric template is only 20 bytes
longer than the template itself.

The following small example is intended to provide some
flavor of how authentication would work under a fuzzy com-
mitment Scheme.

Example 2 Let us extend our simple zero-one-bluck code of
Example 1 and consider its application to a toy fingerprint



authentication system in which n = 10. Let C cons-1st of
the set of four codewords {0000011111}? Let I perform
majority error-correction sequentially on blocks of five bits
in the obvious way. Observe flzat t = 2 for this code.

Suppose that a user enrolls a fingerprint template :1: =
01010 10101 "I an authentication system (the space in the
representation of a: is inserted here for clanty). Suppose
further that the system randomly chooses the codeword c 2
00000 11111. Thus, 6 = 01010 01010. The authentica—
tion system stones the fuzzy commitment F(c,z) = (a,6) =
(h(00000 11111), 01010 01010).

Now suppose that when the user goes to authenticate her-
self, she presents fingerprint data 1' = 11010 11101. Ob—
serve that the value :t' dzfl‘ers from a: in two bit positions.

Therefore, ii a: u 1' I] 5 t. It follows that h(f(a:' — 6)) =
ammooo 10111)) = h(00000 11111) = or. As the decom-
mitment 25 successful, the authentication succeeds. I

Fuzzy challenge-response authentication protocol F can
serve as the basis of a fuzzy challengeresponse authenti-
cation using any public key cryptosystem. Let K be a de-
terministic algorithm that takes as input a seed and out-
puts a corresponding secret/public key pair (SK, PK). Let
D31; (m) denote the decryption (signature) of a message m
using secret, key SK, and let EPKCC) denote the encryption
(verification) using public key PK of a message (signature)
2. The protocol is as follows.

a Enrollment The user selects a codeword c En C. She

compute: F(c,:1;) and (SKU, PKU) = K(c). She stores
F(c,a:), and registers the key PKu with S.

- Authentication The authentication entity S sends
the user a random message m. The user takes data 22’
and tries to decommit F(c, 2:). If successful, she uses
the secret c as a seed to K to derive (SKU, PK”). She
then produces the digital signature 2‘. = 17.916110”) and
sends it to S. S verifies that the signature E is valid,
i.e., that EPKU (E) = m.

Fuzzy encryption Let Em (m) denote encryption under a
symmetric encryption algorithm of message m using key it).
We have the following encryption algorithm based on use of
fuzzy commitment.

o Encryption The user selects a codeword c E n 0. She

encrypts message m as (E5011), F(c, m)).

I Decryption To decrypt using 2’, the user first seeks
to decommit F(c,:r) using witness :c'. If successful, she
extracts the encryption/decryption key c, which she
uses to recover the plaintext m.

Fuzzy encryption allows applications such as that in which
a user employs a fingerprint as a secret enabling encryption
and decryption of files.

5 Security and Resilience

In this section, we investigate the security of our fuzzy com-
mitment function construction. To simplify our analysis, we
assume that the witness a; is drawn uniformly at random
from {0,1}". Also in this section, we consider the resilience
of F. As the the reader shall see, the resilience of F is
complementary, i.e., inversely related, to its level of conceal-
ment.
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5. 1 Security

Recall that the security of a commitment scheme comprises
two properties: it must be concealing and binding. The
following theorem characterizes the property of concealment
in F. A proof and some discussion may be found in the
appendix.

Theorem 1 Suppose that for c 63 C and :1: ER {0, 1}”1 an
attacker is able to determine c from F(c, 3:) in time T with
probability p(T). Then it is passable for the attacker to invert
Me) on a random input 2 6;: C in time T with probability
p(T)-

Observe that Theorem 1 does not offer a guarantee of
semantic security on 1'. Indeed, as explained above, F(c, :c)
does leak some information about :5; this is what provides
the property of fuzzinoss. Determining :1: in its entirety,
however, is clearly as hard as determining c. Therefore,
Theorem 1 also characterizes the hardness of determining :1:

from F(c, x).
As lC| = 2" , Theorem 1 indicates that. k. is a security pa-

rameter governing the concealment of our construction. For
most applications, a value of about is = 80 should provide
an adequate level of security. Under common assumptions
about hash functions ~ in, e.g., the random oracle model —
this security level will require from an attacker seeking to
open a. commitment under F an average of 279 hash function
computations. This is comparable to the computational ef-
fort required for factoring RSA-1024 or finding a collision in
SHA—l.

Recall that the notion of binding in a commitment
scheme conventionally refers to the property whereby it is
infeasible for any polynomially bounded player to produce
valid deoommitments of F(c, 2:) for two distinct values c and
c’. For our scheme, we consider a strictly stronger notion of
binding. We say that F is strongly binding if it is infeasible
for any polynomially bounded player to produce a witness
collision on F. A witness collision is a commitment F(c, :12)
and a pair of witnesses (3:1, 1:2) both of which yield valid de-
commitments, but such that 551—6 and :32—6 do not lie in the
same neighborhood, as defined in Section 3. In other words,
2:1 and x2 cannot be viewed as a fuzzy representations of

one another, but are truly distinct. This definition of strong
binding subsumce the conventional definition of binding.
In particular, it is easy to see that if F is strongly binding,
then F is also binding. We now have the following claim,
whose proof is straightforward and therefore omitted.5

Claim 1 F is strongly binding if h is collision resistant. In
particular, suppose that an attacker is capable of finding a.
witness collision. Then the attacker can find a collision on
h.

The notion of strong binding is particularly useful in bio-
metric authentication scenarios. For example, consider a sit-
uation in which an attacker is capable of finding a commit-
ment F(c, to) and two substantially difierent witnesses at and

“Strong binding may, of course, also be defined in a conventional
commitment scheme by allowing a witness collision to include any :1
and :52 that are distinct.

5In contrast to Theorem 1, we do not measure the success of the
attacker as a function of time here. This is due to our use of a fixed
hash function, since for any given hash function ii, there exists a
trivial, constant—time algorithm that finds a collision. This algorithm
simply outputs a known collision.



a", both of which yield a valid decommitment of the value
c. This situation is not captured by the weaker definition of
binding. In the setting of biometric authentication, however,
it might correspond to a situation in which the attacker can
register a pair of fingerprints from two different people that
Would be identified as belonging to the same person. Thus,
strong binding ensures against, e.g., a repudiation attack, in
which the user of security system registers two different keys
and then claims his data has been compromised by a party
possessing a different key. This is sometimes an important
property for the applications described in Section 4.3.

Claim 1 states that the length i of images output by h
dictates the security level of the strong binding property,
i.e., the hardness of finding a witness collision. Under the
common assumption that the most eifective means of finding
a collision for a hash function is a birthday attack (see [25}

for definition), the induced work factor is 2‘”. Hence a
security parameter of l = 160, which corresponds to the
image length of SHA—l, yields a minimum work factor of
about 280.

5.2 Resilience: What % error can F tolerate?

We now consider the tolerance of our technique to errors in
the witness. Let F be a fuzzy commitment scheme and let

F(c, as) = (a, 6) be the commitment generated for a bitstring
:r with a. randomly generated codeword c. We say that F
has q% resilience for the pair (a, c) if for error term e such

that H 6 ll 5 3‘11, the “fuzzy witness” a’ = :c + c is sufficient
to decommit (1,6). If F has 11% resilience for all pairs of
bitstn'ngs and codewords (1:, c), we say simply that F is 9%
resilient.

The resilience of a fuzzy commitment scheme is easily
seen to be bounded below by the resilience of the error-
correcting code used in its construction. If the code itself has

a. correction threshold of fit, then F is 9% resdient. This
follows from the fact, by dgiqmition, f (c + c) = f(c) for any
codeword c and any error term e such that Ii 6 II S {535. For
further details, see the proof of Lemma 1 in the appendix.

As remarked above, the correction threshold of an error—
correcting code is bounded by the minimum Hamming dis
tance between codewords in 0 (known as the minimum dis-
tance of the code). In general, the larger the minimum dis-
tance in an error-correcting code, the smaller the coding
efficiency k/n. (This is logical, as 19/11 is proportional to the
redundancy permitted in the code.) Often, however, we do
not have much control over the values n and Is. As detailed

in our security analysis, it should be approximately 80 to
prevent brute-force inversion attacks against the underly-
ing hash function h. The value n is typically fixed by the
particular application.

For fixed parameters k and n, there is no straightforward
way to determine the most efficient error—correcting code.
The design of codes to handle particular parameter sets is a
broad research topic covered in some degree by classic texts
such as [23] or [28]. In general, practitioners resort to tables
of the best known codes, such as those given in [28].

To provide some sense of the level of resilience achiev-
able in practical settings, however, let us consider the case
where n = 540. This corresponds to a rough estimation of
the amount of information in a typical template extracted
by the latest generation of fingerprint scanning chips man-
ufactured by Veridicom [22]. Consulting the table in [28]
on an efficiently computable class of error-correcting codes
known as BCH codes, we find that a BCH code exists with
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k: = 76, n = 511 and a correction threshold of 85 bits. The
parameter lc = 76 provides an acceptable security level, and
we can use codewords of length 511 by truncating or com-
pressing some data. This BCH code enables us to construct
a fuzzy commitment scheme that tolerates errors in any wit-
ness of up to almost 17% of the component bits.

5.3 Modifying distribution assumptions

Non-uniform distributions on witness a: We have assumed

throughout our exposition above that witnesses :1: to the
commitment scheme are selected uniformly at random from

{0, 1}“. If this is not the case, and m is drawn from some
non-uniform distribution D over {0,1}“, then Theorem 1
no longer holds. Some distributions D will not result in
a significant diminution in the security parameter k, while
others will yield a lesser security level. A good security
analysis wiil, in generai, require detailed knowledge of D.
On the other hand, if D is only slightly non-uniform, then
it is straightforward to show that only a slight diminution
in security will result. Larger diminutions in security can
be compensated for by increasing k (and thereby possibly
reducing the resilience of the commitment scheme).

Beating the correction threshold The error term a = m' — .1:
will, in a biometric system, typically represent the difference
between a biometric template and data presented during an
authentication. In many cases, the bits in e are distributed
independently. In other words, the corrupted witness 1’
results from the addition of noise that alters every bit of

:1: independently with some probability p. In this case, it is
generally not possible to achieve resilience much better than
the correction threshold t for the error-correcting code. On
the other hand, if bits in e are correlated, then we can some-
times construct codes that achieve higher level of resilience
that the correction threshold. This is because correlations

in e restrict the number of likeiy error patterns. If errors
tend to occur in sequence, for example, then it is advanta-
geous to use Reed-Solomon codes, well-known for their use
in the digital recording media such as compact discs, where
so-called burst errors are common [36]. An additional ad-
vantage of Reed-Solomon codes is that for this class of code
much progress has been made recently in achieving probable
error correction beyond the correction threshold [29, 34, 35].
In certain cases, it may even be possible to use such codes
to achieve good error correction under independence of bitsin e.

Real-world biometric systems Regrettably, a rigorous char-
acterization of the typical error level in the Veridicom and
other fingerprint readers is not yet available. The error level
and typical input distributions for some readers, such as the
iris scanner of IrisScimTM, are better understood (see, e.g.,

[15]), but not sufficiently for a good analysis of their po-
tential for secure error correction. The distribution charac-

teristics for biometric readers on typical human population

segments represents an important research topic.
Another important research topic treats the conversion

of biometric templates to bitstrings or other representations
amenable to fuzzy commitment. While IrisScanTM and some
other biometric templates take the form of bitstrings, many
fingerprint image templates do not. Pattern matching meth-
ods that involve conversion from native to more conven-

tional representations, however, are an active area of re



search [22, 30, 31]. In order to apply our fuzzy commitment
scheme with firm security guarantees to existing biometric
systems, it may be necessary to await advances in this area.

6 Conclusion

We have constructed a simple and practical fuzzy com-
mitment scheme using well-known techniques from error-
correcting codes and cryptography. Our work prompts a
number of further questions. Foremost is the question of the
distribution of inputs in biometric authentication and other
real-world applications. Are there common biometric tem-
plate types that are uniformly or near uniformly distributed?
If not, can our fuzzy commitment function construction be
adapted to provide strong security guarantees? Also im-
portant is the question of what types of error patterns are
common in real-world applications and, consequently, what
error-correcting codes are most suitable. (It is our suspicion
that recent research on Reed-Solomon codes may provide
useful results in this area.) A final avenue of exploration is
to find new applications of fuzzy commitment schemes, per-
haps to such areas as multimedia transmission over noisy
channels or digital watermarking.
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A Proofs

Lemma 1 Let F be a fuzzy commitment scheme based on.
an crror-conectmg code with error-conecting threshold t.
Suppose that If a: - a:’ If S t. Then for any a, the witness
:r’ can be used to decommit F(c,a:) = ((1,6).

Proof: Since t is the correction threshold of the code C, for

any 3 6 {0,1}“ with I] e [IS t we have f(c+e) = c = f(c).
Since I] m — :c’ |] S t, it follow that for any bitstring a and
codeword c, we have h(f(:c’ — 6)) = h(f(:c' — (:c - e))) =
h(f(c + :c’ ‘— a)) = h(f(c)) = a, so that x' will decommit
(0,6).

Theorem 1 Suppose that for c En C and 9: 6,12 {0,1}" an
attacker 15 able to determine 4: from F(c, a) :72 time T with
probability p(T). Then at as possible for the attacker to invert
h(z) on a random input z 63 C in time T with probabzlrty
MT)-

Proof: Since .1: and c are selected independently and uni-
formly at random, it is clear that 6 = a: — c reveals no in-
formation about the codeword c. It follows that the task of

an attacker in determining c is equivalent to the task, given
knowledge only of h(c), of finding a string .2 E C such that

h(z) = h(c). The theorem follows.

Remark The underlying assumption in Theorem 1, that it
is hard to invert h on images drawn from C, is somewhat
non-standard. It is in accordance, though, with common
security assumptions on hash functions, such as those pro-
vided by the random oracle model. Nonetheless, we can
easily recast Theorem 1 to use more canonical security as—

sumptions. For any c 6 C, let h(c) = h’(g"1(c)), where
h’ : {0,1}k -> {0,1}k is a one-way permutation. (Recall
here that 9‘1 is a one-to-one function that maps a code:
word to its corresponding message in M.) If we substitute h
for h in our construction of F, then the security of F relies
on the hardness of inverting the one-way permutation h’ on
a random image. Theorem 1 can be modified accordingly to
rely on this more standard security assumption.


