HANDBOOK of APPLIED CRYPTOGRAPHY

Alfred J. Menezes Paul C. van Oorschot Scott A. Vanstone

> Apple 1135 Apple v. USR IPR2018-00809

Foreword

by R.L. Rivest

As we draw near to closing out the twentieth century, we see quite clearly that the information-processing and telecommunications revolutions now underway will continue vigorously into the twenty-first. We interact and transact by directing flocks of digital packets towards each other through cyberspace, carrying love notes, digital cash, and secret corporate documents. Our personal and economic lives rely more and more on our ability to let such ethereal carrier pigeons mediate at a distance what we used to do with face-to-face meetings, paper documents, and a firm handshake. Unfortunately, the technical wizardry enabling remote collaborations is founded on broadcasting everything as sequences of zeros and ones that one's own dog wouldn't recognize. What is to distinguish a digital dollar when it is as easily reproducible as the spoken word? How do we converse privately when every syllable is bounced off a satellite and smeared over an entire continent? How should a bank know that it really is Bill Gates requesting from his laptop in Fiji a transfer of \$10,000,000,000 to another bank? Fortunately, the magical mathematics of cryptography can help. Cryptography provides techniques for keeping information secret, for determining that information has not been tampered with, and for determining who authored pieces of information.

Cryptography is fascinating because of the close ties it forges between theory and practice, and because today's practical applications of cryptography are pervasive and critical components of our information-based society. Information-protection protocols designed on theoretical foundations one year appear in products and standards documents the next. Conversely, new theoretical developments sometimes mean that last year's proposal has a previously unsuspected weakness. While the theory is advancing vigorously, there are as yet few true guarantees; the security of many proposals depends on unproven (if plausible) assumptions. The theoretical work refines and improves the practice, while the practice challenges and inspires the theoretical work. When a system is "broken," our knowledge improves, and next year's system is improved to repair the defect. (One is reminded of the long and intriguing battle between the designers of bank vaults and their opponents.)

Cryptography is also fascinating because of its game-like adversarial nature. A good cryptographer rapidly changes sides back and forth in his or her thinking, from attacker to defender and back. Just as in a game of chess, sequences of moves and countermoves must be considered until the current situation is understood. Unlike chess players, cryptographers must also consider all the ways an adversary might try to gain by breaking the rules or violating expectations. (Does it matter if she measures how long I am computing? Does it matter if her "random" number isn't one?)

The current volume is a major contribution to the field of cryptography. It is a rigorous encyclopedia of known techniques, with an emphasis on those that are both (believed to be) secure and practically useful. It presents in a coherent manner most of the important cryptographic tools one needs to implement secure cryptographic systems, and explains many of the cryptographic principles and protocols of existing systems. The topics covered range from low-level considerations such as random-number generation and efficient modular exponentiation algorithms and medium-level items such as publickey signature techniques, to higher-level topics such as zero-knowledge protocols. This

book's excellent organization and style allow it to serve well as both a self-contained tutorial and an indispensable desk reference.

In documenting the state of a fast-moving field, the authors have done incredibly well at providing error-free comprehensive content that is up-to-date. Indeed, many of the chapters, such as those on hash functions or key-establishment protocols, break new ground in both their content and their unified presentations. In the trade-off between comprehensive coverage and exhaustive treatment of individual items, the authors have chosen to write simply and directly, and thus efficiently, allowing each element to be explained together with their important details, caveats, and comparisons.

While motivated by practical applications, the authors have clearly written a book that will be of as much interest to researchers and students as it is to practitioners, by including ample discussion of the underlying mathematics and associated theoretical considerations. The essential mathematical techniques and requisite notions are presented crisply and clearly, with illustrative examples. The insightful historical notes and extensive bibliography make this book a superb stepping-stone to the literature. (I was very pleasantly surprised to find an appendix with complete programs for the CRYPTO and EUROCRYPT conferences!)

It is a pleasure to have been asked to provide the foreword for this book. I am happy to congratulate the authors on their accomplishment, and to inform the reader that he/she is looking at a landmark in the development of the field.

Ronald L. Rivest Webster Professor of Electrical Engineering and Computer Science Massachusetts Institute of Technology June 1996

Preface

This book is intended as a reference for professional cryptographers, presenting the techniques and algorithms of greatest interest to the current practitioner, along with the supporting motivation and background material. It also provides a comprehensive source from which to learn cryptography, serving both students and instructors. In addition, the rigorous treatment, breadth, and extensive bibliographic material should make it an important reference for research professionals.

Our goal was to assimilate the existing cryptographic knowledge of industrial interest into one consistent, self-contained volume accessible to engineers in practice, to computer scientists and mathematicians in academia, and to motivated non-specialists with a strong desire to learn cryptography. Such a task is beyond the scope of each of the following: research papers, which by nature focus on narrow topics using very specialized (and often non-standard) terminology; survey papers, which typically address, at most, a small number of major topics at a high level; and (regretably also) most books, due to the fact that many book authors lack either practical experience or familiarity with the research literature or both. Our intent was to provide a detailed presentation of those areas of cryptography which we have found to be of greatest practical utility in our own industrial experience, while maintaining a sufficiently formal approach to be suitable both as a trustworthy reference for those whose primary interest is further research, and to provide a solid foundation for students and others first learning the subject.

Throughout each chapter, we emphasize the relationship between various aspects of cryptography. Background sections commence most chapters, providing a framework and perspective for the techniques which follow. Computer source code (e.g. C code) for algorithms has been intentionally omitted, in favor of algorithms specified in sufficient detail to allow direct implementation without consulting secondary references. We believe this style of presentation allows a better understanding of how algorithms actually work, while at the same time avoiding low-level implementation-specific constructs (which some readers will invariably be unfamiliar with) of various currently-popular programming languages.

The presentation also strongly delineates what has been established as fact (by mathematical arguments) from what is simply current conjecture. To avoid obscuring the very applied nature of the subject, rigorous proofs of correctness are in most cases omitted; however, references given in the Notes section at the end of each chapter indicate the original or recommended sources for these results. The trailing Notes sections also provide information (quite detailed in places) on various additional techniques not addressed in the main text, and provide a survey of research activities and theoretical results; references again indicate where readers may pursue particular aspects in greater depth. Needless to say, many results, and indeed some entire research areas, have been given far less attention than they warrant, or have been omitted entirely due to lack of space; we apologize in advance for such major omissions, and hope that the most significant of these are brought to our attention.

To provide an integrated treatment of cryptography spanning foundational motivation through concrete implementation, it is useful to consider a hierarchy of thought ranging from conceptual ideas and end-user services, down to the tools necessary to complete actual implementations. Table 1 depicts the hierarchical structure around which this book is organized. Corresponding to this, Figure 1 illustrates how these hierarchical levels map

Information Security Objectives	
Confidentiality	
Data integrity	
Authentication (entity and data origin)	
Non-repudiation	
Cryptographic functions	
Encryption	Chapters 6, 7, 8
Message authentication and data integrity techniques	Chapter 9
Identification/entity authentication techniques	Chapter 10
Digital signatures	Chapter 11
Cryptographic building blocks	
Stream ciphers	Chapter 6
Block ciphers (symmetric-key)	Chapter 7
Public-key encryption	Chapter 8
One-way hash functions (unkeyed)	Chapter 9
Message authentication codes	Chapter 9
Signature schemes (public-key, symmetric-key)	Chapter 11
Utilities	
Public-key parameter generation	Chapter 4
Pseudorandom bit generation	Chapter 5
Efficient algorithms for discrete arithmetic	Chapter 14
Foundations	
Introduction to cryptography	Chapter 1
Mathematical background	Chapter 2
Complexity and analysis of underlying problems	Chapter 3
Infrastructure techniques and commercial a	aspects
Key establishment protocols	Chapter 12
Key installation and key management	Chapter 13
Cryptographic patents	Chapter 15
Cryptographic standards	Chapter 15

Table 1: Hierarchical levels of applied cryptography.

onto the various chapters, and their inter-dependence.

Table 2 lists the chapters of the book, along with the primary author(s) of each who should be contacted by readers with comments on specific chapters. Each chapter was written to provide a self-contained treatment of one major topic. Collectively, however, the chapters have been designed and carefully integrated to be entirely complementary with respect to definitions, terminology, and notation. Furthermore, there is essentially no duplication of material across chapters; instead, appropriate cross-chapter references are provided where relevant.

While it is not intended that this book be read linearly from front to back, the material has been arranged so that doing so has some merit. Two primary goals motivated by the "handbook" nature of this project were to allow easy access to stand-alone results, and to allow results and algorithms to be easily referenced (e.g., for discussion or subsequent cross-reference). To facilitate the ease of accessing and referencing results, items have been categorized and numbered to a large extent, with the following classes of items jointly numbered consecutively in each chapter: *Definitions, Examples, Facts, Notes, Remarks, Algorithms, Protocols*, and *Mechanisms*. In more traditional treatments, *Facts* are usually identified as propositions, lemmas, or theorems. We use numbered *Notes* for additional technical points,

Figure 1: Roadmap of the book.

	Chapter	Prin	nary Au	thor
		AJM	PVO	SAV
1.	Overview of Cryptography	*	*	*
2.	Mathematical Background	*		
3.	Number-Theoretic Reference Problems	*		
4.	Public-Key Parameters	*	*	
5.	Pseudorandom Bits and Sequences	*		
6.	Stream Ciphers	*		
7.	Block Ciphers		*	
8.	Public-Key Encryption	*		
9.	Hash Functions and Data Integrity		*	
10.	Identification and Entity Authentication		*	
11.	Digital Signatures			*
12.	Key Establishment Protocols		*	
13.	Key Management Techniques		*	
14.	Efficient Implementation			*
15.	Patents and Standards		*	
	Overall organization	*	*	

 Table 2: Primary authors of each chapter.

while numbered *Remarks* identify non-technical (often non-rigorous) comments, observations, and opinions. *Algorithms, Protocols* and *Mechanisms* refer to techniques involving a series of steps. *Examples, Notes*, and *Remarks* generally begin with parenthetical summary titles to allow faster access, by indicating the nature of the content so that the entire item itself need not be read in order to determine this. The use of a large number of small subsections is also intended to enhance the handbook nature and accessibility to results.

Regarding the partitioning of subject areas into chapters, we have used what we call a *functional organization* (based on functions of interest to end-users). For example, all items related to entity authentication are addressed in one chapter. An alternative would have been what may be called an *academic organization*, under which perhaps, all protocols based on zero-knowledge concepts (including both a subset of entity authentication protocols and signature schemes) might be covered in one chapter. We believe that a functional organization is more convenient to the practitioner, who is more likely to be interested in options available for an entity authentication protocol (Chapter 10) or a signature scheme (Chapter 11), than to be seeking a zero-knowledge protocol with unspecified end-purpose.

In the front matter, a top-level Table of Contents (giving chapter numbers and titles only) is provided, as well as a detailed Table of Contents (down to the level of subsections, e.g., $\S5.1.1$). This is followed by a List of Figures, and a List of Tables. At the start of each chapter, a brief Table of Contents (specifying section number and titles only, e.g., $\S5.1$, $\S5.2$) is also given for convenience.

At the end of the book, we have included a list of papers presented at each of the Crypto, Eurocrypt, Asiacrypt/Auscrypt and Fast Software Encryption conferences to date, as well as a list of all papers published in the *Journal of Cryptology* up to Volume 9. These are in addition to the *References* section, each entry of which is cited at least once in the body of the handbook. Almost all of these references have been verified for correctness in their exact titles, volume and page numbers, etc. Finally, an extensive Index prepared by the authors is included. The Index begins with a List of Symbols.

Our intention was not to introduce a collection of new techniques and protocols, but

rather to selectively present techniques from those currently available in the public domain. Such a consolidation of the literature is necessary from time to time. The fact that many good books in this field include essentially no more than what is covered here in Chapters 7, 8 and 11 (indeed, these might serve as an introductory course along with Chapter 1) illustrates that the field has grown tremendously in the past 15 years. The mathematical foundation presented in Chapters 2 and 3 is hard to find in one volume, and missing from most cryptography texts. The material in Chapter 4 on generation of public-key parameters, and in Chapter 14 on efficient implementations, while well-known to a small body of specialists and available in the scattered literature, has previously not been available in general texts. The material in Chapters 5 and 6 on pseudorandom number generation and stream ciphers is also often absent (many texts focus entirely on block ciphers), or approached only from a theoretical viewpoint. Hash functions (Chapter 9) and identification protocols (Chapter 10) have only recently been studied in depth as specialized topics on their own, and along with Chapter 12 on key establishment protocols, it is hard to find consolidated treatments of these now-mainstream topics. Key management techniques as presented in Chapter 13 have traditionally not been given much attention by cryptographers, but are of great importance in practice. A focused treatment of cryptographic patents and a concise summary of cryptographic standards, as presented in Chapter 15, are also long overdue.

In most cases (with some historical exceptions), where algorithms are known to be insecure, we have chosen to leave out specification of their details, because most such techniques are of little practical interest. Essentially all of the algorithms included have been verified for correctness by independent implementation, confirming the test vectors specified.

Acknowledgements

This project would not have been possible without the tremendous efforts put forth by our peers who have taken the time to read endless drafts and provide us with technical corrections, constructive feedback, and countless suggestions. In particular, the advice of our Advisory Editors has been invaluable, and it is impossible to attribute individual credit for their many suggestions throughout this book. Among our Advisory Editors, we would particularly like to thank:

Mihir Bellare	Don Coppersmith	Dorothy Denning	Walter Fumy
Burt Kaliski	Peter Landrock	Arjen Lenstra	Ueli Maurer
Chris Mitchell	Tatsuaki Okamoto	Bart Preneel	Ron Rivest
Gus Simmons	Miles Smid	Jacques Stern	Mike Wiener
Yacov Yacobi			

In addition, we gratefully acknowledge the exceptionally large number of additional individuals who have helped improve the quality of this volume, by providing highly appreciated feedback and guidance on various matters. These individuals include:

Carlisle Adams	Ricl
Simon Blackburn	Ian
Colin Boyd	Jörg
Ed Dawson	Pete
Whit Diffie	Han
Luis Encinas	War
Shuhong Gao	Will
Jovan Golić	Diet

Rich Ankney Ian Blake Jörgen Brandt Peter de Rooij Hans Dobbertin Warwick Ford Will Gilbert Dieter Gollmann Tom Berson Antoon Bosselaers Mike Burmester Yvo Desmedt Carl Ellison Amparo Fuster Marc Girault Li Gong

Carrie Grant	Blake Greenlee	Helen Gustafson
Darrel Hankerson	Anwar Hasan	Don Johnson
Mike Just	Andy Klapper	Lars Knudsen
Neal Koblitz	Çetin Koç	Judy Koeller
Evangelos Kranakis	David Kravitz	Hugo Krawczyk
Xuejia Lai	Charles Lam	Alan Ling
S. Mike Matyas	Willi Meier	Peter Montgomery
Mike Mosca	Tim Moses	Serge Mister
Volker Müeller	David Naccache	James Nechvatal
Kaisa Nyberg	Andrew Odlyzko	Richard Outerbridge
Walter Penzhorn	Birgit Pfitzmann	Kevin Phelps
Leon Pintsov	Fred Piper	Carl Pomerance
Matt Robshaw	Peter Rodney	Phil Rogaway
Rainer Rueppel	Mahmoud Salmasizadeh	Roger Schlafly
Jeff Shallit	Jon Sorenson	Doug Stinson
Andrea Vanstone	Serge Vaudenay	Klaus Vedder
Jerry Veeh	Fausto Vitini	Lisa Yin
Robert Zuccherato		

We apologize to those whose names have inadvertently escaped this list. Special thanks are due to Carrie Grant, Darrel Hankerson, Judy Koeller, Charles Lam, and Andrea Vanstone. Their hard work contributed greatly to the quality of this book, and it was truly a pleasure working with them. Thanks also to the folks at CRC Press, including Tia Atchison, Gary Bennett, Susie Carlisle, Nora Konopka, Mary Kugler, Amy Morrell, Tim Pletscher, Bob Stern, and Wayne Yuhasz. The second author would like to thank his colleagues past and present at Nortel Secure Networks (Bell-Northern Research), many of whom are mentioned above, for their contributions on this project, and in particular Brian O'Higgins for his encouragement and support; all views expressed, however, are entirely that of the author. The third author would also like to acknowledge the support of the Natural Sciences and Engineering Research Council.

Any errors that remain are, of course, entirely our own. We would be grateful if readers who spot errors, missing references or credits, or incorrectly attributed results would contact us with details. It is our hope that this volume facilitates further advancement of the field, and that we have helped play a small part in this.

Alfred J. Menezes Paul C. van Oorschot Scott A. Vanstone August, 1996

Table of Contents

1

List	of Tables xv
List	of Figures xix
Fore	word by R.L. Rivest xxi
Pref	ace xxiii
1101	
Over	rview of Cryptography 1
1.1	Introduction
1.2	Information security and cryptography
1.3	Background on functions
	1.3.1 Functions (1-1, one-way, trapdoor one-way)
	1.3.2 Permutations
	1.3.3 Involutions
1.4	Basic terminology and concepts
1.5	Symmetric-key encryption
	1.5.1 Overview of block ciphers and stream ciphers
	1.5.2 Substitution ciphers and transposition ciphers
	1.5.3 Composition of ciphers
	1.5.4 Stream ciphers
	1.5.5 The key space
1.6	Digital signatures
1.7	Authentication and identification
	1.7.1 Identification
	1.7.2 Data origin authentication
1.8	Public-key cryptography
	1.8.1 Public-key encryption
	1.8.2 The necessity of authentication in public-key systems
	1.8.3 Digital signatures from reversible public-key encryption
	1.8.4 Symmetric-key vs. public-key cryptography
1.9	Hash functions
1.10	Protocols and mechanisms
1.11	Key establishment, management, and certification
	1.11.1 Key management through symmetric-key techniques
	1.11.2 Key management through public-key techniques
	1.11.3 Trusted third parties and public-key certificates
1.12	Pseudorandom numbers and sequences
1.13	Classes of attacks and security models
	1.13.1 Attacks on encryption schemes
	1.13.2 Attacks on protocols
	1.13.3 Models for evaluating security
	1.13.4 Perspective for computational security
1.14	Notes and further references

2	Math	nematica	al Background 49
	2.1	Probab	pility theory
		2.1.1	Basic definitions
		2.1.2	Conditional probability
		2.1.3	Random variables
		2.1.4	Binomial distribution
		2.1.5	Birthday attacks
		2.1.6	Random mappings
	2.2	Inform	ation theory \ldots \ldots \ldots \ldots \ldots \ldots \ldots 56
		2.2.1	Entropy
		2.2.2	Mutual information
	2.3	Compl	exity theory
		2.3.1	Basic definitions
		2.3.2	Asymptotic notation
		2.3.3	Complexity classes
		2.3.4	Randomized algorithms
	2.4	Numbe	er theory
	2	2.4.1	The integers
		2.4.2	Algorithms in \mathbb{Z}
		2.4.3	The integers modulo n
		2.4.4	Algorithms in \mathbb{Z}_m 71
		2.4.5	The Legendre and Jacobi symbols 72
		2.4.6	Blum integers
	2.5	Abstra	ct algebra
	2.0	2.5.1	Groups 75
		2.5.2	Rings 76
		2.5.3	Fields 77
		2.5.4	Polynomial rings
		2.5.5	Vector spaces 79
	26	Finite f	fields 80
	2.0	261	Basic properties 80
		2.6.2	The Euclidean algorithm for polynomials
		2.0.2	Arithmetic of polynomials
	27	Notes a	Anumetic of polynomials
	2.1	1101051	
3	Num	ber-The	eoretic Reference Problems 87
	3.1	Introdu	action and overview
	3.2	The int	teger factorization problem
		3.2.1	Trial division
		3.2.2	Pollard's rho factoring algorithm
		3.2.3	Pollard's $p-1$ factoring algorithm
		3.2.4	Elliptic curve factoring
		3.2.5	Random square factoring methods
		3.2.6	Ouadratic sieve factoring
		3.2.7	Number field sieve factoring
	3.3	The RS	SA problem
	3.4	The au	adratic residuosity problem
	3.5	Comp	uting square roots in \mathbb{Z}_n
	2.0	3.5.1	Case (i): n prime
		3.5.2	Case (ii): n composite \ldots 101
			$\mathbf{v}_{\mathcal{F}}$

	3.6	The discrete logarithm problem	03
		3.6.1 Exhaustive search	04
		3.6.2 Baby-step giant-step algorithm)4
		3.6.3 Pollard's rho algorithm for logarithms)6
		3.6.4 Pohlig-Hellman algorithm)7
		3.6.5 Index-calculus algorithm	09
		3.6.6 Discrete logarithm problem in subgroups of \mathbb{Z}_{n}^{*}	13
	3.7	The Diffie-Hellman problem $\ldots \ldots \ldots$	13
	3.8	Composite moduli	14
	3.9	Computing individual bits	4
		3.9.1 The discrete logarithm problem in \mathbb{Z}^* — individual bits 11	16
		3.9.2 The RSA problem — individual bits $\dots \dots \dots$	16
		3.9.3 The Rabin problem — individual bits	17
	3.10	The subset sum problem	17
	0110	$3.10.1$ The L^3 -lattice basis reduction algorithm	18
		3 10 2 Solving subset sum problems of low density	20
		3 10 3 Simultaneous diophantine approximation	20
	3 11	Factoring polynomials over finite fields	21
	2.11	3 11 1 Square-free factorization	22
		3 11 2 Berlekamn's <i>Q</i> -matrix algorithm	23
	3 1 2	Notes and further references	24 25
	5.12		25
4	Publi	ic-Kev Parameters 1	33
	4.1	Introduction	33
		4.1.1 Generating large prime numbers naively	34
		4.1.2 Distribution of prime numbers	34
	42	Probabilistic primality tests	35
		4.2.1 Fermat's test	36
		4.2.2 Solovav-Strassen test	37
		4.2.2 Solovay Strassen test	38
		4.2.5 Ninter-Rabin test	40
	43	(True) Primality tests	40 42
	т.5	4.3.1 Testing Mersenne numbers	т2 42
		4.3.2 Primality testing using the factorization of $n = 1$	т∠ 13
		4.3.3 Jacobi sum test $1/2$	τ3 4Λ
		4.5.5 Jacobi sum test \ldots 14 4.3.4 Tests using alliptic curves	++ 15
	11	Prime number generation	+J 15
	4.4	1 A 1 Bandom search for probable primes 14	+5 45
		4.4.1 Kandolni search foi probable primes $\dots \dots \dots$	+3 40
		4.4.2 Strong primes	+9 50
		4.4.5 NIST method for generating DSA primes	50 50
	4 5	4.4.4 Constructive techniques for provable primes $\ldots \ldots \ldots$	52 54
	4.3	irreducible polynomials over \mathbb{Z}_p	54 5⊿
		4.5.1 Intreducible polynomials	34 57
		4.5.2 Irreducible trinomials	57
	1.1	4.5.3 Primitive polynomials	57
	4.6	Generators and elements of high order	50
		4.6.1 Selecting a prime p and generator of \mathbb{Z}_p^*	54
	4.7	Notes and further references	65

5	Pseu	dorandom Bits and Sequences	169
	5.1	Introduction	169
		5.1.1 Background and Classification	170
	5.2	Random bit generation	171
	5.3	Pseudorandom bit generation	173
		5.3.1 ANSI X9.17 generator	173
		5.3.2 FIPS 186 generator	174
	5.4	Statistical tests	175
		5.4.1 The normal and chi-square distributions	176
		5.4.2 Hypothesis testing	179
		5.4.3 Golomb's randomness postulates	180
		5.4.4 Five basic tests	181
		5.4.5 Maurer's universal statistical test	183
	5.5	Cryptographically secure pseudorandom bit generation	185
		5.5.1 RSA pseudorandom bit generator	185
		5.5.2 Blum-Blum-Shub pseudorandom bit generator	186
	5.6	Notes and further references	187
6	Strea	um Ciphers	191
	6.1		191
		6.1.1 Classification	192
	6.2	Feedback shift registers	195
		6.2.1 Linear feedback shift registers	195
		6.2.2 Linear complexity	198
		6.2.3 Berlekamp-Massey algorithm	200
	<i>(</i>)	6.2.4 Nonlinear feedback shift registers	202
	6.3	Stream ciphers based on LFSRs	203
		6.3.1 Nonlinear combination generators	205
		6.3.2 Nonlinear filter generators	208
	<i>.</i> .	6.3.3 Clock-controlled generators	209
	6.4	Other stream ciphers	212
		6.4.1 SEAL	213
	6.5	Notes and further references	216
7	Bloc	Cinhers	223
'	7 1	Introduction and overview	223
	7.2	Background and general concepts	224
	/.2	7.2.1 Introduction to block ciphers	224
		7.2.2 Modes of operation	228
		723 Exhaustive key search and multiple encryption	233
	73	Classical ciphers and historical development	237
	,	7 3 1 Transposition ciphers (background)	238
		7.3.2 Substitution ciphers (background)	238
		7.3.3 Polyalphabetic substitutions and Vigenère ciphers (historical)	220
		7.3.4 Polyalphabetic cipher machines and rotors (historical)	242
		7.3.5 Cryptanalysis of classical ciphers (historical)	245
	7.4	DES	250
		7.4.1 Product ciphers and Feistel ciphers .	250
		7.4.2 DES algorithm	252
		7.4.3 DES properties and strength	256

	7.5	FEAL
	7.6	IDEA
	7.7	SAFER, RC5, and other block ciphers
		7.7.1 SAFER
		7.7.2 RC5
		7.7.3 Other block ciphers
	7.8	Notes and further references
8	Publi	ic-Key Encryption 283
	8.1	Introduction
		8.1.1 Basic principles
	8.2	RSA public-key encryption
		8.2.1 Description
		8.2.2 Security of RSA
		8.2.3 RSA encryption in practice
	8.3	Rabin public-key encryption
	8.4	ElGamal public-key encryption
		8.4.1 Basic ElGamal encryption
		8.4.2 Generalized ElGamal encryption
	8.5	McEliece public-key encryption
	8.6	Knapsack public-key encryption
		8.6.1 Merkle-Hellman knapsack encryption
		8.6.2 Chor-Rivest knapsack encryption
	8.7	Probabilistic public-key encryption
		8.7.1 Goldwasser-Micali probabilistic encryption
		8.7.2 Blum-Goldwasser probabilistic encryption
		8.7.3 Plaintext-aware encryption
	8.8	Notes and further references
9	Hash	Functions and Data Integrity 321
	9.1	Introduction
	9.2	Classification and framework
		9.2.1 General classification
		9.2.2 Basic properties and definitions
		9.2.3 Hash properties required for specific applications
		9.2.4 One-way functions and compression functions
		9.2.5 Relationships between properties
		9.2.6 Other hash function properties and applications
	9.3	Basic constructions and general results
		9.3.1 General model for iterated hash functions
		9.3.2 General constructions and extensions
		9.3.3 Formatting and initialization details
		9.3.4 Security objectives and basic attacks
		9.3.5 Bitsizes required for practical security
	9.4	Unkeyed hash functions (MDCs)
		9.4.1 Hash functions based on block ciphers
		9.4.2 Customized hash functions based on MD4
		9.4.3 Hash functions based on modular arithmetic
	9.5	Keved hash functions (MACs)
		9.5.1 MACs based on block ciphers
		1

		952 Co	onstructing MACs from MDCs	354
		953 Cu	istomized MACs	356
		954 M	ACs for stream ciphers	358
	96	Data integ	rity and message authentication	359
	7.0	961 Ba	ckground and definitions	359
		9.6.1 Da	on-malicious vs. malicious threats to data integrity	362
		963 Da	the integrity using a MAC alone	364
		964 Da	the integrity using an MDC and an authentic channel	364
		9.0.4 Da	the integrity combined with encryption	364
	07	Advanced	lattacks on bash functions	268
	9.7	Auvanceu	t attacks on hash functions	260
		9.7.1 DI	runday attacks	271
		9.7.2 PS	eudo-comptons and compression function attacks	3/1
		9.7.5 CII		275
	0.0	9.7.4 At	tacks based on properties of underlying cipner	3/3
	9.8	Notes and		3/0
10	Ident	ification a	nd Entity Authentication	385
	10.1	Introducti	on	385
		10.1.1 Ide	entification objectives and applications	386
		10.1.2 Pro	operties of identification protocols	387
	10.2	Passwords	(weak authentication)	388
		10.2.1 Fix	xed password schemes: techniques	389
		10.2.2 Fix	ked password schemes: attacks	391
		10.2.3 Ca	se study – UNIX passwords	393
		10.2.4 PI	Ns and passkevs	394
		10.2.5 On	e-time passwords (towards strong authentication)	395
	10.3	Challenge	e-response identification (strong authentication)	397
		10.3.1 Ba	ckground on time-variant parameters	397
		10.3.2 Ch	allenge-response by symmetric-key techniques	400
		10.3.3 Ch	allenge-response by public-key techniques	403
	10.4	Customize	ed and zero-knowledge identification protocols	405
		10.4.1 Ov	verview of zero-knowledge concepts	405
		10.4.2 Fe	ige-Fiat-Shamir identification protocol	410
		10.4.3 GC) identification protocol	412
		10.4.4 Sc	hnorr identification protocol	414
		10.4.5 Co	imparison: Fiat-Shamir, GO, and Schnorr	416
	10.5	Attacks of	n identification protocols	417
	10.6	Notes and	further references	420
11	Digit	al Signatui	res	425
	11.1	Introducti	on	425
	11.2	A framew	ork for digital signature mechanisms	426
		11.2.1 Ba	sic definitions	426
		11.2.2 Di	gital signature schemes with appendix	428
		11.2.3 Di	gital signature schemes with message recovery	430
		11.2.4 Ty	pes of attacks on signature schemes	432
	11.3	RSA and	related signature schemes	433
		11.3.1 Th	e RSA signature scheme	433
		11.3.2 Po	ssible attacks on RSA signatures	434
		11.3.3 RS	SA signatures in practice	435

		11.3.4 The Rabin public-key signature scheme	. 438
	11.3.4 The Rabin public-key signature scheme 11.3.5 ISO/IEC 9796 formatting 11.3.6 PKCS #1 formatting 11.4 Fiat-Shamir signature schemes 11.4.1 Feige-Fiat-Shamir signature scheme 11.4.2 GQ signature scheme 11.5.3 The DSA and related signature scheme 11.5.1 The Digital Signature Algorithm (DSA) 11.5.2 The ElGamal signature scheme 11.5.3 The Schnorr signature scheme 11.5.4 The ElGamal signature scheme 11.5.5 The Box on relignature scheme 11.5.4 The ElGamal signature scheme 11.5.5 The Box on relignature scheme 11.5.4 The ElGamal signature scheme 11.6.5 The Merkle one-time signature scheme 11.6.2 The Merkle one-time signature scheme 11.6.3 Authentication trees and one-time signatures 11.6.4 The GMR one-time signature scheme 11.7 Other signature schemes 11.7.1 Arbitrated digital signatures 11.7.2 ESIGN 11.8 Signatures with additional functionality 11.8.1 Blind signature schemes 11.8.2 Undeniable signature schemes 11.8 Signatures with additional functionality 11.8.3 Fail-stop signature schemes 11.9 Notes and further references 12.1 Introduction	442	
		11.3.6 PKCS #1 formatting	. 445
	11.4	Fiat-Shamir signature schemes	. 447
		11.4.1 Feige-Fiat-Shamir signature scheme	. 447
		11.4.2 GQ signature scheme	. 450
	11.5	The DSA and related signature schemes	. 451
		11.5.1 The Digital Signature Algorithm (DSA)	452
		11.5.2 The ElGamal signature scheme	. 454
		11.5.3 The Schnorr signature scheme	. 459
		11.5.4 The ElGamal signature scheme with message recovery	. 460
	11.6	One-time digital signatures	462
		11.6.1 The Rabin one-time signature scheme	. 462
		11.6.2 The Merkle one-time signature scheme	. 464
		11.6.3 Authentication trees and one-time signatures	. 466
		11.6.4 The GMR one-time signature scheme	. 468
	11.7	Other signature schemes	. 471
		11.7.1 Arbitrated digital signatures	472
		11.7.2 ESIGN	. 473
	11.8	Signatures with additional functionality	474
		11.8.1 Blind signature schemes	. 475
		11.8.2 Undeniable signature schemes	. 476
		11.8.3 Fail-stop signature schemes	. 478
	11.9	Notes and further references	. 481
12	Kev	Establishment Protocols	489
12	Key 12.1	Establishment Protocols	489 489
12	Key 1 12.1 12.2	Establishment Protocols Introduction	489 489 490
12	Key 1 12.1 12.2	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts	489 489 490 490
12	Key 12.1 12.2	Establishment Protocols Introduction	489 489 490 490 490 493
12	Key 12.1 12.2	Establishment Protocols Introduction	489 489 490 490 490 493 495
12	Key 12.1 12.2	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols Key transport based on symmetric encryption	489 489 490 490 490 493 495 497
12	Key 12.1 12.2 12.3	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols Key transport based on symmetric encryption 12.3.1 Symmetric key transport and derivation without a server	489 489 490 490 493 493 495 497
12	Key 1 12.1 12.2 12.3	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols	489 489 490 490 493 493 495 497 497 500
12	Key 1 12.1 12.2 12.3	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols Key transport based on symmetric encryption 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key agreement based on symmetric techniques	489 489 490 490 493 495 497 497 500 505
12	Key 1 12.1 12.2 12.3 12.4 12.5	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key transport based on symmetric techniques Key transport based on public-key encryption	489 489 490 490 493 495 497 497 500 505 506
12	Key 1 12.1 12.2 12.3 12.4 12.5	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key transport based on symmetric techniques Key transport based on symmetric techniques 12.3.2 Kerberos and related server-based protocols 12.3.3 Key transport based on symmetric techniques 12.3.4 Key transport based on symmetric techniques 12.3.5 Key transport based on public-key encryption	489 489 490 490 493 495 497 497 500 505 506 507
12	Key 1 12.1 12.2 12.3 12.4 12.5	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key transport based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures	489 489 490 490 493 495 497 500 505 506 507 509
12	Key 1 12.1 12.2 12.3 12.4 12.5	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key transport based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption	489 489 490 490 493 495 497 497 500 505 506 507 509 512
12	Key 1 12.1 12.2 12.3 12.4 12.5	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key transport based on symmetric techniques Key transport based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption	489 489 490 490 493 495 497 497 500 505 506 507 509 512 515
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key transport based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption 12.5.4 Diffie-Hellman and related key agreement protocols	489 489 490 490 493 495 497 500 505 506 507 509 512 515 515
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols 12.3.3 Key transport based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption 12.5.4 Ley transport protocols using PK encryption 12.5.5 Image: the protocols of the public key agreement protocols 12.5.3 Hybrid key transport protocols using PK encryption 12.5.4 Ley transport protocols using PK encryption 12.5.5 Ley transport protocols using PK encryption 12.5.3 Ley transport protocols using PK encryption 12.5.4 Ley transport protocols using PK encryption 12.5.5 Ley transport protocols using PK encryption 12.5.3 Ley transport protocols using PK encryption 12.5.4 Ley transport protocols using PK encryption <	489 489 490 490 493 495 497 500 505 506 507 509 512 515 515 520
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols 12.3.3 Key transport based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption 12.5.4 Ley transport protocols using PK encryption 12.5.5 Implicitly-certified public keys 12.5.1 Diffie-Hellman and related key agreement protocols	489 489 490 490 493 495 497 497 500 505 506 507 509 512 515 515 520 522
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols 12.3.3 Key transport based on symmetric techniques 12.3.4 Key transport based on symmetric techniques 12.5.5 Key transport using PK encryption 12.5.6 Protocols combining PK encryption and signatures 12.5.7 Protocols combining PK encryption and signatures 12.5.8 Hybrid key transport protocols using PK encryption 12.6.1 Diffie-Hellman and related key agreement protocols 12.6.2 Implicitly-certified public keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys	489 489 490 490 493 495 497 500 505 506 507 509 512 515 515 520 522 524
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6 12.6	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols 12.2.3 Assumptions and adversaries in key establishment protocols 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols 12.3.2 Kerberos and related server-based protocols Key transport based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption 12.6.1 Diffie-Hellman and related key agreement protocols 12.6.2 Implicitly-certified public keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys	489 489 490 490 493 495 497 500 505 506 507 509 512 515 515 515 520 522 524 524
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6 12.7	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols Key transport based on symmetric encryption 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key agreement based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption 12.6.1 Diffie-Hellman and related key agreement protocols 12.6.2 Implicitly-certified public keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.7.1 Simple shared control schemes 12.7.2 Threshold schemes	489 489 490 490 493 495 497 500 505 506 507 509 512 515 515 520 522 524 524 524 525
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6 12.7	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols Key transport based on symmetric encryption 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key agreement based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption 12.6.1 Diffie-Hellman and related key agreement protocols 12.6.2 Implicitly-certified public keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.7.1 Simple shared control schemes 12.7.2 Threshold schemes 12.7.3 Generalized secret sharing	489 489 490 490 493 495 497 500 505 506 507 509 512 515 515 520 522 524 524 524 525 526
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6 12.7	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols Key transport based on symmetric encryption 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key agreement based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption 12.6.1 Diffie-Hellman and related key agreement protocols 12.6.2 Implicitly-certified public keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.7.1 Simple shared control schemes 12.7.2 Threshold schemes 12.7.3 Generalized secret sharing 12.7.3 Generalized secret sharing	489 489 490 490 490 493 495 497 500 505 506 507 509 512 515 515 520 522 524 524 524 525 526 528
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6 12.6 12.7 12.8 12.9	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols Key transport based on symmetric encryption 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key agreement based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption 12.6.1 Diffie-Hellman and related key agreement protocols 12.6.2 Implicitly-certified public keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.7.1 Simple shared control schemes 12.7.2 Threshold schemes 12.7.3 Generalized secret sharing 12.7.4 Mey stablishment protocols	489 489 490 490 493 495 497 500 505 506 507 506 507 509 512 515 515 520 522 524 524 524 525 526 528 528 530
12	Key 1 12.1 12.2 12.3 12.4 12.5 12.6 12.6 12.7 12.8 12.9	Establishment Protocols Introduction Classification and framework 12.2.1 General classification and fundamental concepts 12.2.2 Objectives and properties 12.2.3 Assumptions and adversaries in key establishment protocols Key transport based on symmetric encryption 12.3.1 Symmetric key transport and derivation without a server 12.3.2 Kerberos and related server-based protocols Key agreement based on symmetric techniques Key transport based on public-key encryption 12.5.1 Key transport using PK encryption without signatures 12.5.2 Protocols combining PK encryption and signatures 12.5.3 Hybrid key transport protocols using PK encryption 12.6.1 Diffie-Hellman and related key agreement protocols 12.6.2 Implicitly-certified public keys 12.6.3 Diffie-Hellman protocols using implicitly-certified keys 12.7.1 Simple shared control schemes 12.7.2 Threshold schemes 12.7.3 Generalized secret sharing 12.7.3 Generalized secret sharing 12.7.4 Threshold schemes 12.7.5 Analysis of key establishment protocols	489 489 490 490 493 495 497 500 505 506 507 509 512 515 515 520 522 524 524 524 524 525 528 528 528 530 530

		12.9.2 Analysis objectives and methods	532
	12.10	Notes and further references	534
12	Kow	Managament Tashniguas	512
13	12 1	Introduction	543 573
	13.1	Background and basic concepts	545
	13.2	13.2.1 Classifying keys by algorithm type and intended use	544
		13.2.1 Classifying Keys by algorithmit type and intended use	544
		13.2.2 Key management objectives, threats, and policy	545
		13.2.5 Simple key establishment models	540
		13.2.4 Koles of unitu parties	550
	122	Tacknigues for distributing confidential logg	550
	15.5	12.2.1 Vev lovering and emptoneriade	551
		13.3.1 Key layering and cryptoperiods	551
	12 /	Tochniques for distributing public loss	555
	15.4	12 4 1 Authentication trace	555
		13.4.1 Authentication trees	550
		13.4.2 Public-key certificates	559
		13.4.3 Identity-based systems	561
		13.4.4 Implicitly-certified public keys	562
	12.5	Tachniques for controlling here usage	303 567
	15.5	12.5.1 Very comparation and constraints on law years	567
		13.5.1 Key separation and constraints on key usage	569
	126	13.3.2 Techniques for controlling use of symmetric keys	570
	13.0	12.6.1 Trust between two domains	570
		13.6.1 ITUSI between two domains	570
		13.6.2 Trust models involving multiple certification authorities	576
	127	Vocalificate distribution and revocation	570
	13.7	12 7 1 Lifetime protection requirements	570
		13.7.1 Litetime protection requirements	570
	120	13.7.2 Key management file cycle	5/8 501
	13.8	Advanced trusted third party services	501
		13.8.1 Trusted unrestamping service	501
		13.8.2 Non-repudiation and notarization of digital signatures	382 594
	12.0	13.8.5 Key escrow	584
	13.9		380
14	Effici	ient Implementation	591
	14.1	Introduction	591
	14.2	Multiple-precision integer arithmetic	592
		14.2.1 Radix representation	592
		14.2.2 Addition and subtraction	594
		14.2.3 Multiplication	595
		14.2.4 Squaring	596
		14.2.5 Division	598
	14.3	Multiple-precision modular arithmetic	599
		14.3.1 Classical modular multiplication	600
		14.3.2 Montgomery reduction	600
		14.3.3 Barrett reduction	603
		14.3.4 Reduction methods for moduli of special form	605
	14.4	Greatest common divisor algorithms	606
		-	

		14.4.1 Binary gcd algorithm	606
		14.4.2 Lehmer's gcd algorithm	607
		14.4.3 Binary extended gcd algorithm	608
	14.5	Chinese remainder theorem for integers	610
		14.5.1 Residue number systems	611
		14.5.2 Garner's algorithm	612
	14.6	Exponentiation	613
		14.6.1 Techniques for general exponentiation	614
		14.6.2 Fixed-exponent exponentiation algorithms	620
		14.6.3 Fixed-base exponentiation algorithms	623
	14.7	Exponent recoding	627
		14.7.1 Signed-digit representation	627
		14.7.2 String-replacement representation	628
	14.8	Notes and further references	630
15	D -4		()=
12		Its and Standards	035
	15.1	Introduction	635
	15.2	Patents on cryptographic techniques	635
		15.2.1 Five fundamental patents	620
		15.2.2 Ten prominent patents	641
		15.2.5 Tell selected patents	041 645
	15.2	15.2.4 Ordering and acquiring patents	645
	15.5	15.2.1 International standards asymptocraphic techniques	645
		15.3.2 Poplying couries tondards (ANSLISO)	640
		15.3.2 Danking security standards (ANSI, ISO)	653
		15.3.4 U.S. government standards (FIPS)	654
		15.3.5 U.S. government standards (1115)	655
		15.3.6 De facto standards	656
		15.3.7 Ordering and acquiring standards	656
	154	Notes and further references	657
	13.4		057
A	Bibli	ography of Papers from Selected Cryptographic Forums	663
	A.1	Asiacrypt/Auscrypt Proceedings	663
	A.2	Crypto Proceedings	667
	A.3	Eurocrypt Proceedings	684
	A.4	Fast Software Encryption Proceedings	698
	A.5	Journal of Cryptology papers	700
	Dafa	rancas	702
			103
	Index	X	/55

Chapter

Stream Ciphers

Contents in Brief

6.1	Introduction
6.2	Feedback shift registers
6.3	Stream ciphers based on LFSRs
6.4	Other stream ciphers
6.5	Notes and further references

6.1 Introduction

Stream ciphers are an important class of encryption algorithms. They encrypt individual characters (usually binary digits) of a plaintext message one at a time, using an encryption transformation which varies with time. By contrast, *block ciphers* (Chapter 7) tend to simultaneously encrypt groups of characters of a plaintext message using a fixed encryption transformation. Stream ciphers are generally faster than block ciphers in hardware, and have less complex hardware circuitry. They are also more appropriate, and in some cases mandatory (e.g., in some telecommunications applications), when buffering is limited or when characters must be individually processed as they are received. Because they have limited or no error propagation, stream ciphers may also be advantageous in situations where transmission errors are highly probable.

There is a vast body of theoretical knowledge on stream ciphers, and various design principles for stream ciphers have been proposed and extensively analyzed. However, there are relatively few fully-specified stream cipher algorithms in the open literature. This unfortunate state of affairs can partially be explained by the fact that most stream ciphers used in practice tend to be proprietary and confidential. By contrast, numerous concrete block cipher proposals have been published, some of which have been standardized or placed in the public domain. Nevertheless, because of their significant advantages, stream ciphers are widely used today, and one can expect increasingly more concrete proposals in the coming years.

Chapter outline

The remainder of $\S6.1$ introduces basic concepts relevant to stream ciphers. Feedback shift registers, in particular linear feedback shift registers (LFSRs), are the basic building block in most stream ciphers that have been proposed; they are studied in $\S6.2$. Three general techniques for utilizing LFSRs in the construction of stream ciphers are presented in $\S6.3$: using

a nonlinear combining function on the outputs of several LFSRs ($\S6.3.1$), using a nonlinear filtering function on the contents of a single LFSR ($\S6.3.2$), and using the output of one (or more) LFSRs to control the clock of one (or more) other LFSRs ($\S6.3.3$). Two concrete proposals for clock-controlled generators, the alternating step generator and the shrinking generator are presented in $\S6.3.3$. $\S6.4$ presents a stream cipher not based on LFSRs, namely SEAL. $\S6.5$ concludes with references and further chapter notes.

6.1.1 Classification

Stream ciphers can be either symmetric-key or public-key. The focus of this chapter is symmetric-key stream ciphers; the Blum-Goldwasser probabilistic public-key encryption scheme (§8.7.2) is an example of a public-key stream cipher.

6.1 Note (*block vs. stream ciphers*) Block ciphers process plaintext in relatively large blocks (e.g., $n \ge 64$ bits). The same function is used to encrypt successive blocks; thus (pure) block ciphers are *memoryless*. In contrast, stream ciphers process plaintext in blocks as small as a single bit, and the encryption function may vary as plaintext is processed; thus stream ciphers are said to have memory. They are sometimes called *state ciphers* since encryption depends on not only the key and plaintext, but also on the current state. This distinction between block and stream ciphers is not definitive (see Remark 7.25); adding a small amount of memory to a block cipher (as in the CBC mode) results in a stream cipher with large blocks.

(i) The one-time pad

Recall (Definition 1.39) that a Vernam cipher over the binary alphabet is defined by

$$c_i = m_i \oplus k_i \text{ for } i = 1, 2, 3 \dots$$

where m_1, m_2, m_3, \ldots are the plaintext digits, k_1, k_2, k_3, \ldots (the *keystream*) are the key digits, c_1, c_2, c_3, \ldots are the ciphertext digits, and \oplus is the XOR function (bitwise addition modulo 2). Decryption is defined by $m_i = c_i \oplus k_i$. If the keystream digits are generated independently and randomly, the Vernam cipher is called a *one-time pad*, and is unconditionally secure (§1.13.3(i)) against a ciphertext-only attack. More precisely, if M, C, and K are random variables respectively denoting the plaintext, ciphertext, and secret key, and if H() denotes the entropy function (Definition 2.39), then H(M|C) = H(M). Equivalently, I(M; C) = 0 (see Definition 2.45): the ciphertext contributes no information about the plaintext.

Shannon proved that a necessary condition for a symmetric-key encryption scheme to be unconditionally secure is that $H(K) \ge H(M)$. That is, the uncertainty of the secret key must be at least as great as the uncertainty of the plaintext. If the key has bitlength k, and the key bits are chosen randomly and independently, then H(K) = k, and Shannon's necessary condition for unconditional security becomes $k \ge H(M)$. The one-time pad is unconditionally secure regardless of the statistical distribution of the plaintext, and is optimal in the sense that its key is the smallest possible among all symmetric-key encryption schemes having this property.

An obvious drawback of the one-time pad is that the key should be as long as the plaintext, which increases the difficulty of key distribution and key management. This motivates the design of stream ciphers where the keystream is *pseudorandomly* generated from a smaller secret key, with the intent that the keystream appears random to a computationally bounded adversary. Such stream ciphers do not offer unconditional security (since $H(K) \ll H(M)$), but the hope is that they are computationally secure (§1.13.3(iv)). Stream ciphers are commonly classified as being synchronous or self-synchronizing.

(ii) Synchronous stream ciphers

6.2 Definition A *synchronous* stream cipher is one in which the keystream is generated independently of the plaintext message and of the ciphertext.

The encryption process of a synchronous stream cipher can be described by the equations

$$\sigma_{i+1} = f(\sigma_i, k),$$

 $z_i = g(\sigma_i, k),$
 $c_i = h(z_i, m_i),$

where σ_0 is the *initial state* and may be determined from the key k, f is the *next-state* function, g is the function which produces the keystream z_i , and h is the output function which combines the keystream and plaintext m_i to produce ciphertext c_i . The encryption and decryption processes are depicted in Figure 6.1. The OFB mode of a block cipher (see §7.2.2(iv)) is an example of a synchronous stream cipher.

Figure 6.1: General model of a synchronous stream cipher.

6.3 Note (properties of synchronous stream ciphers)

- (i) synchronization requirements. In a synchronous stream cipher, both the sender and receiver must be synchronized using the same key and operating at the same position (state) within that key to allow for proper decryption. If synchronization is lost due to ciphertext digits being inserted or deleted during transmission, then decryption fails and can only be restored through additional techniques for re-synchronization. Techniques for re-synchronization include re-initialization, placing special markers at regular intervals in the ciphertext, or, if the plaintext contains enough redundancy, trying all possible keystream offsets.
- (ii) *no error propagation*. A ciphertext digit that is modified (but not deleted) during transmission does not affect the decryption of other ciphertext digits.
- (iii) active attacks. As a consequence of property (i), the insertion, deletion, or replay of ciphertext digits by an active adversary causes immediate loss of synchronization, and hence might possibly be detected by the decryptor. As a consequence of property (ii), an active adversary might possibly be able to make changes to selected ciphertext digits, and know exactly what affect these changes have on the plaintext. This illustrates that additional mechanisms must be employed in order to provide data origin authentication and data integrity guarantees (see §9.5.4).

Most of the stream ciphers that have been proposed to date in the literature are additive stream ciphers, which are defined below.

6.4 Definition A *binary additive stream cipher* is a synchronous stream cipher in which the keystream, plaintext, and ciphertext digits are binary digits, and the output function *h* is the XOR function.

Binary additive stream ciphers are depicted in Figure 6.2. Referring to Figure 6.2, the *keystream generator* is composed of the next-state function f and the function g (see Figure 6.1), and is also known as the *running key generator*.

Figure 6.2: General model of a binary additive stream cipher.

(iii) Self-synchronizing stream ciphers

6.5 Definition A *self-synchronizing* or *asynchronous* stream cipher is one in which the keystream is generated as a function of the key and a fixed number of previous ciphertext digits.

The encryption function of a self-synchronizing stream cipher can be described by the equations

$$\sigma_i = (c_{i-t}, c_{i-t+1}, \dots, c_{i-1}),$$

 $z_i = g(\sigma_i, k),$
 $c_i = h(z_i, m_i),$

where $\sigma_0 = (c_{-t}, c_{-t+1}, \dots, c_{-1})$ is the (non-secret) *initial state*, k is the key, g is the function which produces the keystream z_i , and h is the *output function* which combines the keystream and plaintext m_i to produce ciphertext c_i . The encryption and decryption processes are depicted in Figure 6.3. The most common presently-used self-synchronizing stream ciphers are based on block ciphers in 1-bit cipher feedback mode (see §7.2.2(iii)).

Figure 6.3: General model of a self-synchronizing stream cipher.

- **6.6** Note (properties of self-synchronizing stream ciphers)
 - (i) self-synchronization. Self-synchronization is possible if ciphertext digits are deleted or inserted, because the decryption mapping depends only on a fixed number of preceding ciphertext characters. Such ciphers are capable of re-establishing proper decryption automatically after loss of synchronization, with only a fixed number of plaintext characters unrecoverable.
 - (ii) *limited error propagation*. Suppose that the state of a self-synchronization stream cipher depends on t previous ciphertext digits. If a single ciphertext digit is modified (or even deleted or inserted) during transmission, then decryption of up to t subsequent ciphertext digits may be incorrect, after which correct decryption resumes.
 - (iii) active attacks. Property (ii) implies that any modification of ciphertext digits by an active adversary causes several other ciphertext digits to be decrypted incorrectly, thereby improving (compared to synchronous stream ciphers) the likelihood of being detected by the decryptor. As a consequence of property (i), it is more difficult (than for synchronous stream ciphers) to detect insertion, deletion, or replay of ciphertext digits by an active adversary. This illustrates that additional mechanisms must be employed in order to provide data origin authentication and data integrity guarantees (see §9.5.4).
 - (iv) diffusion of plaintext statistics. Since each plaintext digit influences the entire following ciphertext, the statistical properties of the plaintext are dispersed through the ciphertext. Hence, self-synchronizing stream ciphers may be more resistant than synchronous stream ciphers against attacks based on plaintext redundancy.

6.2 Feedback shift registers

Feedback shift registers, in particular linear feedback shift registers, are the basic components of many keystream generators. $\S6.2.1$ introduces linear feedback shift registers. The linear complexity of binary sequences is studied in $\S6.2.2$, while the Berlekamp-Massey algorithm for computing it is presented in $\S6.2.3$. Finally, nonlinear feedback shift registers are discussed in $\S6.2.4$.

6.2.1 Linear feedback shift registers

Linear feedback shift registers (LFSRs) are used in many of the keystream generators that have been proposed in the literature. There are several reasons for this:

- 1. LFSRs are well-suited to hardware implementation;
- 2. they can produce sequences of large period (Fact 6.12);
- 3. they can produce sequences with good statistical properties (Fact 6.14); and
- 4. because of their structure, they can be readily analyzed using algebraic techniques.
- **6.7 Definition** A *linear feedback shift register* (LFSR) of length L consists of L stages (or *delay elements*) numbered $0, 1, \ldots, L 1$, each capable of storing one bit and having one input and one output; and a clock which controls the movement of data. During each unit of time the following operations are performed:
 - (i) the content of stage 0 is output and forms part of the *output sequence*;