
Copyright © 2001 BeComm Corporation. All Rights Reserved. Page 1 of 10

Using Strings to Compose Applications from Reusable Components
BeComm Corporation
info@becomm.com

October 4, 2001

The past decade in technology has evidenced an explosive growth in the proliferation of new web and
network services, digital data and content, new and increasingly diverse computing devices and new
wired and wireless networks for data communication. With the billions investments in hardware
infrastructure, software infrastructure and network infrastructure, not only do end users want to see new
applications, but ISVs and OEMs must deliver these applications in a way that assuages managements
demands for an ever-increasing return on investment. As a result, this changing landscape has imposed a
critical challenge on software developers and IT managers to improve time to market and reduce
development costs. To leverage this existing investment in hardware, network and software infrastructure,
applications must be developed to capitalize on new revenue opportunities while also reducing existing
operating expenses. The key observation made by many is that reuse of technology assets to compose
new applications is critical to addressing these challenges.

There are, however, several issues that make reuse difficult to achieve. First, reuse is an easily
misunderstood concept, as it is not simply using previously engineered or acquired technology asset more
than once. It requires reuse engineering that prepares technology assets to be reusable. Second,
identifying what software components can be reused is a confusing process, as traditional design
approaches tend to prevent reuse outside the narrow scope or domain in which they were initially
developed. Finally, software engineering techniques and methodologies alone are insufficient tools for
developers to achieve true reuse. Even with the best development methodologies and architectural
techniques, taking a traditional approach to development can reduce the potential for reusing technology
assets or limit the type of potential reuse, without later additional re-engineering.

To address these issues requires an application framework that promotes reuse at every level: from fine-
grained application components to large-scale back-end systems. The lack of a solid application
framework for reuse has prevented it from being widely accepted and implemented. Such a framework
needs to yield solutions that are dynamic enough to adapt reusable components to changing networks,
media types, and device types at runtime in unanticipated ways; distributed so as to leverage services
within the WAN and LAN; and efficient enough to run on network servers and resource-constrained
embedded devices alike. While traditional techniques (e.g., object-oriented design and component
systems with the appropriate extensions to support client/server systems) and methodologies (e.g., UML
that aids in the specification and design of systems) have various strengths they have two inherent
limitations that prevent the developer from creating solutions that are truly reusable. These limitations are
as follows:

Limitation 1: Imperatively Defined Configuration Intelligence
In traditional application development, the software developer explicitly identifies a set of required
services and specifies how and when to interface with them. This necessitates that developers have a
priori knowledge of all services that are to be used directly by their component. This entanglement of
configuration intelligence with application logic transcends from the so-called “main loop” of the
application down to granular components composing the application. While conventional
OO/component techniques enable the developer to be oblivious of an algorithm’s implementation
details, they are still required to know the interfaces, and to write code that depends on those
interfaces to meet the goals of the application. Consequently, it is difficult to chain together services
to achieve a desired goal without explicitly specifying all possible configurations in advance.
Therefore, in practice, imperatively defining the configuration intelligence limits the application to a
static set of predefined interactions.

Page 1 of 10 Implicit Exhibit 2021
Sonos v. Implicit, IPR2018-0766, -0767

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Copyright © 2001 BeComm Corporation. All Rights Reserved. Page 2 of 10

Limitation 2: Process-centric Computing
The traditional notion of an “application” implies a process-centric viewpoint, in which each
application is embodied by a computational process on a node in the network. From the end-user’s
perspective, the application is usually perceived to be the process with which they are directly
interacting (e.g. a spreadsheet or a web browser), possibly extended to include the back-end services
supporting that process, such as a web server and CGI program. In the case of distributed systems,
the “application” might be interpreted as living on both the client and server node.

The framework for enabling communication is considered external to the application itself, existing
as a separate layer on which the application resides. Application development focuses on defining
the computational process, encoding the relationships between objects, and invoking methods from a
known set of interfaces, but the flow of data between processes is considered subordinate to the
processes themselves. This “process-centric” notion of an application is inherently limiting to the
developer, because it does not easily accommodate the potential for an application to participate as a
service operating on a stream of data flowing through a dynamic configuration of other services.

Today’s emphasis on return on investment requires the reuse of legacy technology assets as well as newly
designed algorithms, and therefore evidences the need to overcome traditional application design
limitations such that application logic can be reused in a more flexible, efficient, and cost sensitive
manner.

Strings™ defines an application framework that supports build-time and more importantly runtime
adaptability of reusable software components. The methodology used to develop Strings-based
applications facilitates the creation of software components as services with an unprecedented degree of
reusability, thereby enabling software developers to quickly create smarter and less expensive solutions.

2 Strings Methodology

To achieve an unprecedented degree of reuse, the Strings methodology is to (i) turn application logic into
services (ii) to augment the process-centric paradigm with a dataflow-centric paradigm, in which the
defining principle of the application are goal rules that control the flow of data itself over these services.
The data can then pass through an ad hoc defined sequence of reusable application services. The fact that
these services may be embodied in processes is secondary to the primary notion of a stream of data.

By separating configuration intelligence from application logic into rules and primitive services,
respectively, it is possible to declaratively define how and when the service can be used. This separation
results in a form of communication indirection, in which no service refers to the interface of any other
service, and no two objects talk directly to each other. Instead, an “intelligent engine” facilitates the
creation of communication paths between objects automatically by reasoning about the goals of the
application.

In this way it is possible to hook services together at run-time as they are discovered. As a result, the
traditional tight coupling of objects and the so-called “main loop” of the application ceases to exist, being
replaced by a set of rules and a “higher-order control” that coordinates the flow of communication
between services. With such an approach, applications no longer exist as static “programs”, but rather as
dynamic invocations of services that can be automatically configured in unanticipated ways, adapting to
meet the goals of the system on the fly.

The resulting inversion of control greatly improves the task of building applications, as the programmer is
freed from the task of specifying configuration information imperatively. Routing decisions and state
management are removed from the application, and handled by the system. In this model, objects can talk
to each other without a priori knowledge of each other’s existence.

Page 2 of 10 Implicit Exhibit 2021
Sonos v. Implicit, IPR2018-0766, -0767

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Copyright © 2001 BeComm Corporation. All Rights Reserved. Page 3 of 10

3 Strings Framework

The Strings framework consists of the following components:

1. A dynamic set of discrete services, called Beads™, which encapsulate application logic.
2. A set of declarative rules specifying when beads are used to achieve some application-specific

goal, which can either be specified by the user, system’s integrator, or catalyzed by system events
at runtime.

3. An “engine” that matches the application-specific goals with the declarative rules of the beads,
and thereby decides what services to employ to meet the goals.

The rest of this section discusses this components in further detail.

3.1 Beads
Beads encapsulate resources as discrete services that adhere to a highly structured interface. The bead
itself is a software component that exports a granular unit of functionality. Examples of resources that a
bead can encapsulate include:

• hardware such as a video display, speaker, microphone, mouse, Ethernet, etc.
• protocols such as TCP/IP, HTTP, SOAP, email (POP3, SMTP), etc.
• transformational algorithms such as audio/video decoders, etc.
• SDK technologies such as speech-recognition engines (e.g., IBM’s ViaVoice), text-to-speech

generators, etc.
• Backend services such as Database, CRM, and Content Management Systems.

In other words, any resource that can be defined as a service can be encapsulated within a bead. There is
no direct reliance on a particular programming language (such a Java) required to use the framework.
The purpose of the bead is to completely hide both the interface and the implementation of the resources
they encapsulate, and thereby cleanly separate the internal algorithm from its external relationship to
other such algorithms. The methodology of encapsulating functionality into discrete elements encourages
a software partitioning that exhibits no redundancy or dependencies on other beads. This results in code
that is highly reusable, and enables services to be assembled into dynamic applications by an automated
engine.

Beads are the building block for the pipeline of processing elements applied to a data flow. Beads
conform to a strongly-typed interface pattern, in which operations are represented as Edges, which are the
touch points of how beads are strung together into a pipeline. Configurations of pipelines range from
linear, unidirectional to complex, bi-directional flows of data. Bi-directional flows are automatically
managed by the Strings engine, such that a bead may send data in the opposite direction of the flow
without needing to know from where the flow originated.

A bead is described to the Strings engine in an XML-based Bead Schema that declares the number and
direction of its edges and the conditions indicating when its input edges can be used and what type of data
comes out of its output edges. A Bead Schema can be authored directly in XML or with the Bead Schema
Editor, which is a development tool included with the Strings toolkit.

Figure 1 shows an example bead schema that defines the operation of an MPEG audio decoder. The
schema identifies the bead’s name, description, and one or more edges. Each edge is a separately
nameable entity, and in this example the MPEG decoder bead has a single “filter” edge, which logically is
both an input and output edge. The precondition of the edge predicates that it should only be used if the
content-type variable of the data is set to the MIME-like string of ‘audio/mp3’. Similarly, the post
condition overrides the content-type variable to the MIME-like string of ‘audio/pcm’ to indicate the
edge’s output type.

Page 3 of 10 Implicit Exhibit 2021
Sonos v. Implicit, IPR2018-0766, -0767

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Copyright © 2001 BeComm Corporation. All Rights Reserved. Page 4 of 10

<BEAD_SCHEMA name="mp3decoder">
<DESCRIPTION>

 The Mp3Decoder bead decodes mp3 data to PCM audio.
</DESCRIPTION>

 <EDGE name="Decode" shape="filter">
 <PRECONDITION value="query:Content-Type==’audio/mp3’"/>
 <POSTCONDITION value="namespace:Content-Type=’audio/pcm’"/>
 </EDGE>
</BEAD_SCHEMA>
Figure 1. Bead Schema for an MPEG Layer-3 decoder.

Each edge is implemented as a set of handlers: the message handler, which is called on to process each
message passing through the edge, and several auxiliary handlers to support the creation and destruction
of data flows. The partitioning of logic into these handlers, combined with the strongly-typed pipe-like
structure of the edge interface, is precisely what enables Strings to hook beads together on the fly to
create higher-level services based on the needs of the network, the system, the media types being handled,
and user preferences.

3.2 Declarative Rules
Rules are the primary mechanism for configuring Strings, as they define when beads are used to perform
some task to achieve some application-specific goal. A rule is defined as a sequence of one or more steps
to execute when a specific set of constraints are met.

Constraints are defined using an evaluation grammar that supports an arbitrary set of evaluation object
types. The type of an evaluation object can be an integer, an IP address, a date, or the content-type of the
data, etc., which allows for a rich set of declarative rules to be used. For example, if developing an
application for the consumer space, it would be possible to declare the constraints of a rule that specify to
play music on the home theatre system after 6:00PM. The result of a constraint evaluation determines
both whether Strings will execute the steps specified by the rule, as well as which steps to take if multiple
rules match the constraints.

If all of a rule’s constraints are met, then Strings will execute the specified steps. The collection of steps
associated with a rule is referred to as a route along which data will flow. There are three types of steps
that the Strings engine can take: 1) a bead step which passes data to a particular bead; 2) a seed step
which populates the “namespace of an application context”* with a value that may satisfy some condition
of another rule; and, 3) a loopback step which specifies what should be sent in the opposite direction of
the original data flow.

A rule is described to the Strings engine in an XML-based format that declares a predicate and an
associated route of steps. The rules can be authored directly in XML or with a graphical Rule Editor.

Figure 2 shows an example rule that plays audio content of type MPEG to a speaker device, as defined by
its predicate and only a single seed step. The rule declares that for data labeled with a content-type of
‘audio/mp3’ the system should seed the application context’s namespace* with the value “Target-
Device=’speaker’”. It would then be up to the system to determine how to satisfy the application-specific
goal of rendering MPEG audio to a speaker. This style of rule is referred to as a goal rule, because it does
not specify an “edge step” to pass data to a particular bead.

* The application context’s namespace will be further discussed in section 3.3.

Page 4 of 10 Implicit Exhibit 2021
Sonos v. Implicit, IPR2018-0766, -0767

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Copyright © 2001 BeComm Corporation. All Rights Reserved. Page 5 of 10

<RULE>
 <PREDICATE value="query:Content-Type==’audio/mp3’" />
 <ROUTE>
 <STEP>
 <SEED value="namespace:Target-Device=’speaker’" />
 </STEP>
 </ROUTE>
</RULE>
Figure 2. Example rule that plays MP3 audio to a speaker device.

Achieving the rule’s goal specified in Figure 2 assumes that the Strings engine is configured with
additional rules and bead schemas. Let’s assume this configuration information comes from the
previously described MPEG decoder bead schema shown in Figure 1 (section 3.1) as well as the rule and
bead schemas shown in Figure 3, which defines how to render audio data to a speaker device. The rule in
Figure 3 declares that the speaker bead’s “Encode” edge should be used when the target device is set to
speaker, while the bead schema defines that the speaker bead can only accept input of content-type
‘audio/pcm’.

<RULE>
 <PREDICATE value="query:Target-Device==’speaker’" />
 <ROUTE>
 <STEP>
 <BEAD name="Speaker" />
 <EDGE name="Encode" />
 </STEP>
 </ROUTE>
</RULE>

<BEAD_SCHEMA name="Speaker">
 <DESCRIPTION>
 The Speaker bead delivers PCM audio to an audio output device.
 </DESCRIPTION>
 <EDGE name="Encode" shape="input">
 <PRECONDITION value="query:Content-Type==’audio/pcm’"/>
 </EDGE>
</BEAD_SCHEMA>
Figure 3. Example rule and bead schemas to render audio data to a speaker device.

When a message is injected into the system containing MPEG audio data and the content-type is set to
audio/mp3 in the application context’s namespace, then the Strings engine would evaluate the above
mentioned rules, create a pipeline consisting of the MPEG decoder and the speaker bead, and route the
message along the appropriate edges of these beads. The outcome is the desired effect of rendering
MPEG audio to the speaker device.

The flexibility of using a declarative style configuration system was only partially shown in the above
example. A similar “program” could have been constructed straightforwardly using a traditional
application design approach that imperatively defines how to decode MPEG audio into a format that can
be rendered to a speaker. However, such an application and its components can only be used in the
parochial scope for which it was developed. It would be difficult to reconfigure this “program” in
unanticipated ways without a fair amount of re-engineering. For example, consider the amount of re-
engineering required if the audio data should be processed by a speech-recognition component, and that
its output is then sent to either a word processor or an email client. With Strings this is a straightforward
process of modifying or replacing the declarative rules, which can be done either at build-time or more
importantly at runtime in response to a changing user preference or catalyzed by system events. The
flexibility of Strings will be further explored later in section 4.

Page 5 of 10 Implicit Exhibit 2021
Sonos v. Implicit, IPR2018-0766, -0767

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

