

BeComm Corporation

Technical Presentation

Page 1 of 31

BeComm corporation™

Why Strings?

Communications systems need to be:

Dynamic: networks, media types and end points are unpredictable

Distributed: content, resources and processing need to be distributed to maximum networked elements

Efficient: managing communications must be efficient for everything from overloaded back-end systems to resource constrained clients

Page 2 of 31

Potential Strings Enabled Systems

Multimedia applications:

Video Players, Browsers, Audio Players, Video Conferencing,
 VoIP systems, Video on Demand, Digital/Personal VCR

Networking:

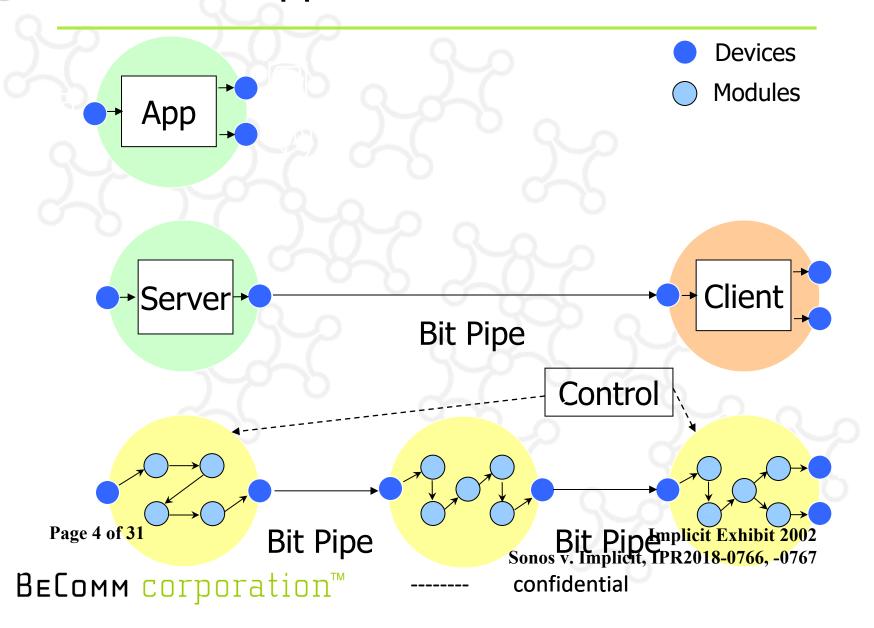
NAT, Firewalls, Soft Routers, Soft Bridges, Remote Control

Server:

File Servers, Media Servers

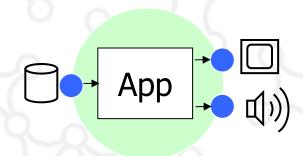
Gateways:

 Wireless Application Gateways, Media Gateways, Telephony Gateways, Web Portals, Content Management Systems


Peer-to-Peer:

File Sharing systems, Collaboration systems, Distributed
 Page 3 ₱₱७cessing systems
 Implicit Exhibit 2002

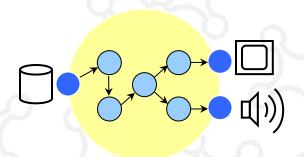
Sonos v. Implicit, IPR2018-0766, -0767


confidential

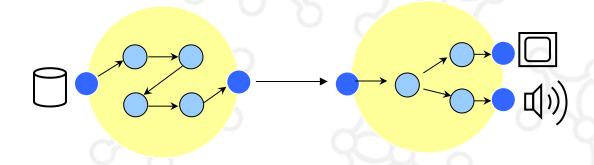
Application Evolution

A Traditional Video Player

- 1. Application has built in knowledge of devices
- 2. Application features are tied together
- 3. Application components are not reusable in other contexts at runtime
- 4. Application cannot be decomposed and distributed
 Page 5 of 31
 Implicit Exhibit 2002


Sonos v. Implicit, IPR2018-0766, -0767

confidential


Strings Vernacular

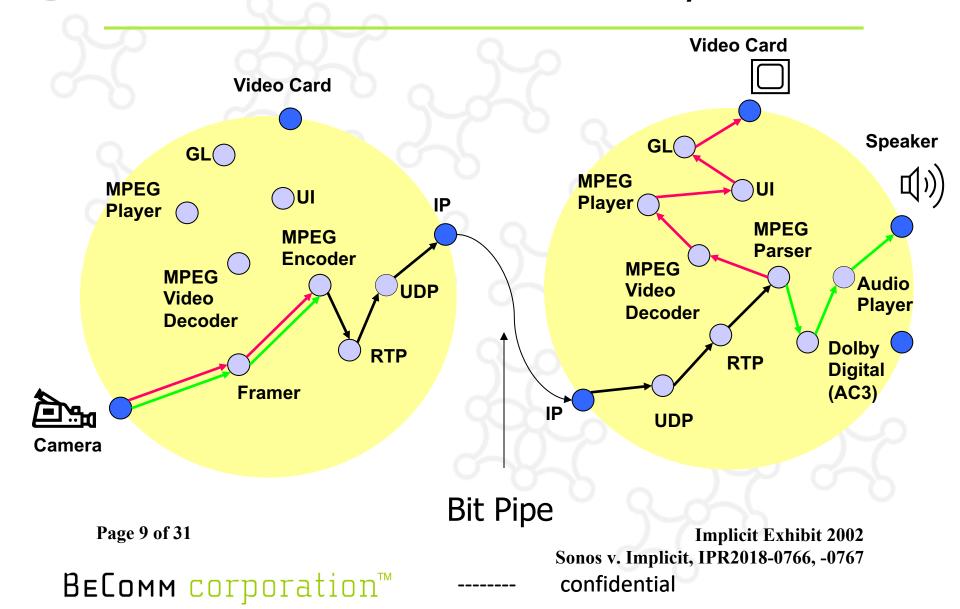
- Beads
 - separate the software's internal activity from external relationship
- Labels
 - externalize description of Beads
- Mapping
 - Glue together Beads using their Labels
- Paths
 - global context of a set of mapped Beads

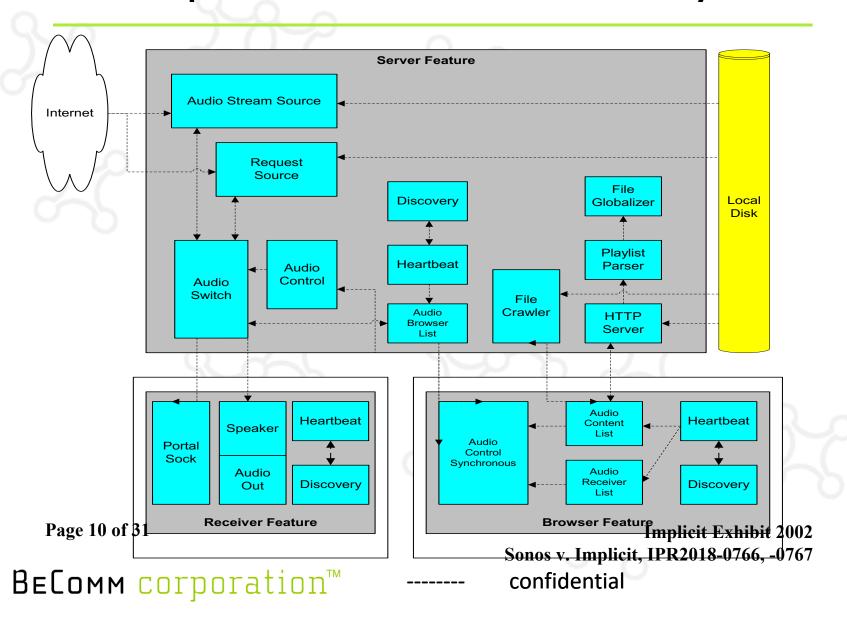
A Strings Video Player

- Source and Sink Beads
- Transform Beads

Page 7 of 31

BeComm corporation™


A Look Inside


Page 8 of 31

BeComm corporation™

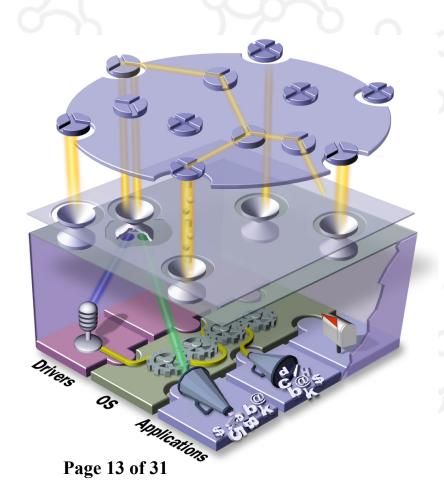
A Distributed Video Player

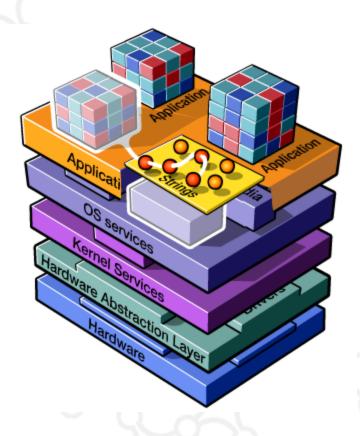
Example: Distributed Media System

Benefits Over Traditional Systems

- 1. Device knowledge encapsulated in Beads
- 2. Features are re-configurable at initialization or run time
- 3. Network services are dynamically discovered
- 4. Beads can be re-organized to create a distributed service
- 5. Behavior can be modified without requiring new code

Page 11 of 31




Platform Independence

- Interface Libraries provide access to external resources such as drivers, OS services and API
- Operating System Abstraction Layer (OAL)
 provides abstraction from underlying Kernel
 services such as access to physical memory,
 CPU scheduling and locks
- Strings manages scheduling, memory, timers and module loading for consistency across underlying platforms

Page 12 of 31

Achieving Platform Independence

Implicit Exhibit 2002 Sonos v. Implicit, IPR2018-0766, -0767 confidential

BeComm corporation™

Beads

- Software components that encapsulate algorithms.
- Composed of a series of inputs and outputs
- Beads provide a service that when described to the core system can be used to create higher level services (features) on the fly.
- Focused only on encapsulating internal algorithms not external relationships.

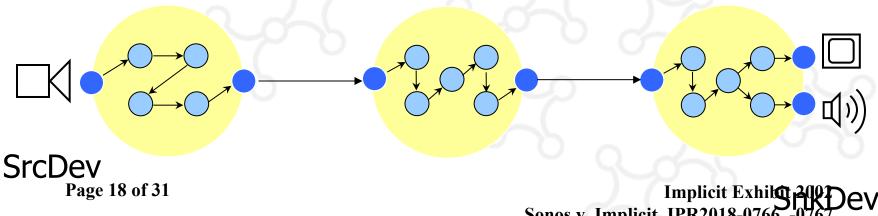
Labels

- Labels are names used to tag information with query-able attributes.
- Labels are used to define inputs and outputs to Beads.
- Labels can be arbitrarily rich.
- A registry in Strings is used to name space created by the available labels.

Mapping

- The Mapping Engine is a system level service for determining what Beads are necessary to handle a given type of media within a given set of constraints.
- The Map is a set of rules to impose upon the graph search the Mapping Engine performs.
- Mapping is adaptive to the changing environment.
- Mapping is rules based meaning the determination of Beads can be influenced by external rules (security, network bandwidth etc..)

Page 16 of 31


BeComm corporation™

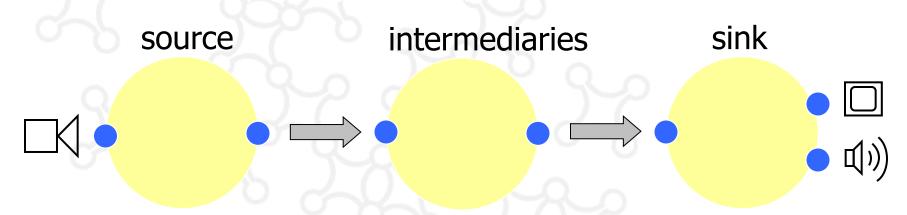
Paths

- Paths capture the global context of stream of data through a set of Beads.
- Paths can be extended across machines boundaries.
- Paths are efficient abstractions for managing streams of data.
- Paths are dynamically constructed and destructed.

Mapping

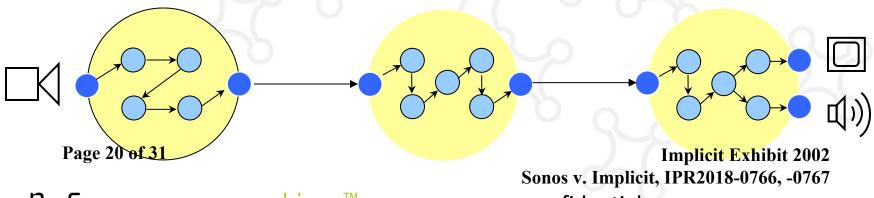
- Framework to string modules from source device to sink device(s)
- Necessary pieces
 - Resource Discovery and Route Selection
 - Code Module Installation

BeComm corporation™


Sonos v. Implicit, IPR2018-0766, -0767 confidential

Input to the process

- Media object
 - Requirements to play
- User
 - Preferences
- Node
 - Capabilities and Devices (Resources)
- Systems Integrator
 - Rules of Composition


Page 19 of 31

End-to-End Mapping

Resource Discovery and Route Selection

Local Path Construction

BeComm corporation™

confidential

Global Path Construction

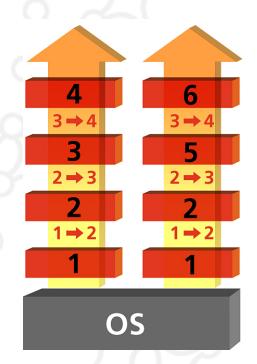
- Resource Discovery
 - Directory Service (Node Capabilities)
- Route Selection
 - Functionality
 Locate sufficient resources for function chains
 Pattern Match (Rules with Node Capabilities)
 - Connectivity
 Issue: Limiting the search space
 Shortest Path/ K-shortest Paths / Overlay

Page 21 of 31

Dynamic

- Identify optimal set of Beads to handle a data flow
- Discover Beads on remote nodes to distribute processing
- Adjust Paths as necessary to adapt to changing QoS and resources
- Reroute Paths based on user input or system input

Page 22 of 31


BeComm corporation™

Distributed

- Name Space
- Distributing Content
- Distributing Resources
- Distributing Control
- End to End Paths

Efficient

- Vertical Scheduling
- QoS
- Logical Paths
- Physical Paths
- Code Reuse

Page 24 of 31

BeComm corporation™

Beads

- Beads are autonomous units of functionality which provide a welldefined service.
- The service provided by a Bead is described by its Schema.
- Instantiating a Bead requires configuring it to participate in higherlevel services called Features.

Page 25 of 31

Features

- A Feature is a collection of Beads and/or other Features
- Features are implemented in terms of the services provided by the elements (Beads & sub-Features) of the Feature.
- The service provided by a Feature can be described by the same Schema as the Schema used for a Bead
- Feature can be thought of as a composite Bead.

Page 26 of 31

Service

- Features can be configured in such a way as to exported to the network
- Other hosts in the network can leverage that Feature either at runtime, via remote mapping
- ...or at configuration time in the construction of higher level Features.

Example Schemas

Page 28 of 31

BeComm corporation™

- Rich & Diverse name space (e.g. files, devices, resources, media types, network addresses)
- Rich Querying language (e.g. where are my jazz files? What network service provides mpeg2 decoding with support for RTP framing?)
- Distributed Discovery (e.g. can support discovery services such as UPnP or Strings Discovery Protocol)
- Extensible (e.g. support NTFS, LDAP, Gnutella, UDDI)

Page 29 of 31

BeComm corporation™

Microsoft

- DirectX multimedia framework
- NDIS network framework
- COM OO framework
- C#, .NET distributed services framework
- UPnP discovery services

Page 30 of 31

BeComm corporation™

Sun

- Java OO framework for platform independent applications
- Jini discovery services and API for distributed applications on Java
- JXTA A peer to peer framework

Page 31 of 31

BeComm corporation™