
/
*++
+++++++++++++

Copyright (c) 2001 BeComm Corporation

Filename:

 sosisampleclock.h

Group Name:

 Sample Clock Interface

Group Overview:

 A "Sample Clock" provides a mechanism for synchronizing
 two streams of multimedia.

 Each stream is characterized
 by a frequency and divisor to get the
 result in samples per millisecond.
 For instance a 44100Hz
 audio stream has a frequency of 44100Hz and a divisor
 of 1000 (44100 / 1000 = 4.41 samples per millisecond).
 A 25 frame-per-second video stream has a frequency of
 25/1000 frames per millisecond.

 A sample clock contains the frequency and divisor for
 the stream, plus an instantaneous position mark,
 consisting of a wall-clock time (in milliseconds) and
 a sample position (in samples).

 Given this set of values we can project back to get the time
at
 which sample 0 would have been played - the "epoch" for this
stream.
 By comparing two epochs, we can determine the time shift
 required to bring them into synchronization.

 The epoch for a given stream may drift with time for several
 reasons; audio hardware playout rates do not always exactly
 match the system clock; in some cases the drift varies
depending on
 the level of interrupt activity on the system. If a stream
is
 paused due to system contention or user intervention the
epoch
 will change.

 Typically one clock is identified as the master clock, and
 all other clocks attempt to match the master. For instance

1

Page 1 of 6

SONOS EXHIBIT 1025
IPR OF U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 when playing audio and video, the audio clock is typically
the
 master clock (because audio playout rate is usually regulated
 by an external DSP clock, and users are more perceptive to
changes
 in audio delivery rate).

 Periodically the playout position for the audio stream
 is copied into the master sample clock. The video stream
then
 uses the difference between it's own sample clock and the
audio-derived
 master clock to determine the frame delivery time for each
frame.

 Overflow errors must be considered when dealing with samples.
 A 32-bit millisecond counter will wrap after 2^32
milliseconds
 which is approximately 50 days. A 32-bit sample counter at
44100Hz
 will wrap around in 2^32/44100 seconds which is approximately
 27 hours. If any addition or multiplication is performed on
sample
 values, overflow errors may occur much earlier.

Owner:

 Guy Carpenter (guyc) 21-Aug-2001

------------*/

/* cvsid: $Id: sosisampleclock.h,v 1.5 2001/09/13 20:50:24 guyc
Exp $ */

#ifndef _SOSISAMPLECLOCK_H_
#define _SOSISAMPLECLOCK_H_

#include <sosstrings.h>

/*++
Macro Description:
 Defines the global identifier for the SampleClock interface.
--*/

#define SOS_ISAMPLECLOCK_ID "sampleclock"

typedef struct _SOS_ISAMPLECLOCK SOS_ISAMPLECLOCK;

/*++
Prototype Name:

2

Page 2 of 6

SONOS EXHIBIT 1025
IPR OF U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 SOS_ISAMPLECLOCK_FREQUENCYSET

Prototype Description:

 Set the sample frequency of the sample clock. The
 frequency is expressed as a ratio of two 32-bit unsigned
 integers.

Parameters:

 SOS_ISAMPLECLOCK * Interface - [in]
 Interface to object.

 SOS_UINT32 Frequency - [in]
 Frequency numerator.

 SOS_UINT32 Divisor - [in]
 Frequency divisor. May NOT be zero.

Return Value:

 SOS_STATUS -
 SOS_Success for successful completion.

 SOS_ErrorParameter if interface is invalid or the divisor
is zero.

--*/
typedef
SOS_STATUS
(*SOS_ISAMPLECLOCK_FREQUENCYSET)(
 SOS_ISAMPLECLOCK * Interface,
 SOS_UINT32 Frequency,
 SOS_UINT32 Divisor
);

/*++
Prototype Name:

 SOS_ISAMPLECLOCK_FREQUENCYGET

Prototype Description:

 Returns the current frequency ratio. If no call
 has been made to FrequencySet for this object, the
 values will be zero.

 Note that the sampleclock implementation may return
 different values for Frequency and Divisor than those
 originally set - the ratio should remain the same.

Parameters:

3

Page 3 of 6

SONOS EXHIBIT 1025
IPR OF U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 SOS_ISAMPLECLOCK * Interface - [in]
 Interface to object to be queried.

 SOS_UINT32 * Frequency - [out]
 If not null, current frequency numerator will be
 stored at Frequency.

 SOS_UINT32 * Divisor - [out]
 If not null, current frequency divisor will be
 stored at Divisor.

Return Value:

 SOS_STATUS -
 SOS_Success for successful completion.

 SOS_ErrorParameter if the interface is invalid.

--*/
typedef
SOS_STATUS
(*SOS_ISAMPLECLOCK_FREQUENCYGET)(
 SOS_ISAMPLECLOCK * Interface,
 SOS_UINT32 * Frequency,
 SOS_UINT32 * Divisor
);

/*++
Prototype Name:

 SOS_ISAMPLECLOCK_UPDATE

Prototype Description:

 Updates the sample position for this clock. The stream
 position is expressed in the units defined by the call
 to FrequencySet - typically samples for audio, or frames
 for video.

Parameters:

 SOS_ISAMPLECLOCK * Interface - [in]
 Interface to object being updated.

 SOS_CLOCK_TICK Time - [in]
 Clock time at which this sample was/will be delivered.

 SOS_UINT32 Sample - [in]
 Stream position.

Return Value:

4

Page 4 of 6

SONOS EXHIBIT 1025
IPR OF U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 SOS_STATUS -
 SOS_Success for successful completion.

 SOS_ErrorParameter if interfaces is not valid.

--*/
typedef
SOS_STATUS
(*SOS_ISAMPLECLOCK_UPDATE)(
 SOS_ISAMPLECLOCK * Interface,
 SOS_CLOCK_TICK Time,
 SOS_UINT32 Sample
);

/*++
Prototype Name:

 SOS_ISAMPLECLOCK_EPOCHGET

Prototype Description:

 Gets the nominal epoch (or stream-start time) for this
 clock. The epoch is the time at which frame zero would
 have been delivered, computed from the last update
 time and frequency settings. This value does not reflect
 the time frame/sample 0 was actually delivered, but rather
 the projected time based on the current frame position.

Parameters:

 SOS_ISAMPLECLOCK * Interface - [in]
 Interface to clock object.

 SOS_CLOCK_TICK * Epoch - [out]
 Location to store the computed epoch.

Return Value:

 SOS_STATUS -
 SOS_Success for successful completion.

 SOS_ErrorParameter if the interface is invalid,
 or if Epoch is NULL, or if the frequency has not
 been set.

--*/
typedef
SOS_STATUS
(*SOS_ISAMPLECLOCK_EPOCHGET)(
 SOS_ISAMPLECLOCK * Interface,
 SOS_CLOCK_TICK * Epoch

5

Page 5 of 6

SONOS EXHIBIT 1025
IPR OF U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

