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AJP Volume 39 

form x2 = 'TJt. The classical problem of a rod of 
fixed length originally at a temperature T 0 and 
whose end faces are held at a temperature T 
cannot be solved by this technique. 

We note that the transformation J.11 is not 
completely determined due to the variability of n. 
Even with appropriate initial conditions for the 
transformed equation we have a one-parameter 
infinity of solutions to choose from. It is not clear 
that more than one physically meaningful solution 
should exist. This suggests the value of n that 
ultimately completely determines M should not 
be arbitrary but should reflect an important 
physical feature of the problem. 
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A class of methods is derived for data smoothing based 
on minimizing an error function consisting of two terms. 
The first term is the weighted sum of the squares of the 
deviations between the smoothed values and the original 
data, and the second term is the weighted sum of the squares 
of the (k+ 1)st order finite differences of the smoothed 
values. The method embodies two arbitrary parameters. 
Specifying the value of k chooses one member of the class 
of methods. The other parameter is a weighting factor that 
determines the degree of smoothing achieved at each point. 
Limits on the value of the weighting factor can be imposed 
based on the statistical properties of the data. 
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INTRODUCTION 

Often the experimental physicist will en­
counter situations where it is desirable to make use 
of data smoothing techniques in the analysis or 
presentation of experimental results. An ideal 
example is the measurement of energy spectra 
with scintillation or solid state detectors using a 
multichannel pulse height analyzer. The resulting 
data is a digital representation of an intensity 
distribution as a function of energy. In addition 
to certain types of resolution distortion,1 each data 
point can vary from the true value because of the 
presence of statistical fluctuations. It is the 
purpose of data smoothing to reduce the effects of 
such random variations in order that those 
features of the distribution that exceed the ex­
pected statistical deviations will become more 
discernible. Other obvious examples of the use of 
data smoothing techniques suggest themselves, 
but the underlying motivation is the same, 
namely, to reduce distortion resulting from 
statistical errors. 

Perhaps the most commonly used smoothing 
procedure is based on the least squares fitting of 
polynomial functions to the data points. 2 •3 Since 
the method demonstrates some of the basic 
features of data smoothing techniques in general, 
we will examine it in some detail. To illustrate 
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the procedure, consider a set of data ( j;) that 
represents experimentally measured values of a 
functionj(x) at a discrete set of values {x;). We 
wish to replace the set of values { f;) by another 
set of values { F;) that represent the "smoothed" 
form of the data. To generate Fk, one chooses 
from [ f;} the subset consisting of fk and the rn 
values on either side of .fk. Then an nth degree 
polynomial of the form 

is fitted to these 2m+ 1 points using a least 
squares criterion to generate the set of coefficients 
[an}. Once the coefficients have been determined 
from the least squares fit, Fk is just the value of 
the polynomial at xk, i.e., Fk=y(xk)- In this way 
the set (F;) is generated point by point. This 
procedure must, of course, be modified near the 
end points since for an arbitrary choice of m a 
value of J1c will not necessarily have m experi­
mental values on both sides of it. This situation 
can be handled by always choosing the 2rn+ 1 
points nearest the point being smoothed, with the 
additional requirement that the point being 
adjusted be the central value whenever the range 
of the data permits. 

With various modifications the procedure 
outlined above forms the basis of most polynomial 
smoothing techniques. The method directly 
illustrates a basic assumption of any smoothing 
technique, namely, that the smoothed value of 
each point should be influenced in some manner 
by the values of the data points on either side of 
the point being adjusted. This is just another way 
of saying that the function for which the data are a 
statistically distorted representation is smooth, 
or continuous, and that the interval over which 
any rapid fluctuations in the value of the function 
occurs is large with respect to the interval be­
tween the measured values. Because of the resolu­
tion distortion characteristics of the experimental 
measuring apparatus this assumption is essentially 
always satisfied even for data which should in 
principle display discontinuities or very rapid 
fluctuations. The resolution of the measuring 
apparatus causes such discontinuities to be dis­
torted into a smoothly varying function, and the 
proper design of the experiment dictates that 
measurements be performed in intervals that are 
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on the order of, or smaller than, the "resolution 
width" of the measuring apparatus. 1 

Note that the polynomial smoothing technique 
is essentially a two-parameter method that is 
characteristic of any routine for smoothing a 
two-dimensional function for which the statistical 
uncertainty occurs in only one dimension. These 
parameters affect the resulting values of the 
smoothed data in a complex manner. First, m 

determines the number of points that exert any 
influence on the adjusted value of each data point. 
Once 1n is fixed, then n determines the degree to 
which each point is smoothed, i.e., the deviation 
between the smoothed value and the original 
value. For fixed rn the degree of smoothing 
decreases ,vith increasing n. For n = 0 the 
smoothing is a maximum with the smoothed value 
of each point being just the average of the nearest 
2rn+l data points. For n=2m no smoothing is 
accomplished since a polynomial of degree 2m 
will pass through all of 2rn+ 1 points. The range 
of n is thus 0~n~2m. 

There are several aspects of this type of 
smoothing that are unsatisfactory from a mathe­
matical point of view. The major difficulty is the 
absence of quantitative criteria on which to base a 
choice of m and n. It, is difficult to defend even 
qualitatively a specific value for m. The only 
satisfactory operational criterion is that m must 
be sufficiently small that a polynomial of reason­
able degree will give a good fit to the 2m+ 1 
points. This is a subjective criterion based on how 
rapidly the data fluctuate in the vicinity of the 
point being smoothed. A value of m that yields 
satisfactory results in one region of the data 
might conceivably be too large to work properly 
in another region. The choice of n is equally 
difficult to justify and in addition is related to the 
choice of m. Quite often the same degree of 
smoothing can be achieved by more than one set 
of values for m and n. What is even more difficult 
to justify a priori is the choice of polynomial 
functions to fit the data. There is no basis for 
choosing polynomials instead of a sum of ex­
ponentials or a sum of sines and cosines, for 
example. Here again such a choice is an intuitive or 
subjective one not based on any degree of rigor. 

In the following analysis we present a more 
direct approach to the problem of data smoothing 
in which the significance of the arbitrary parame-

AJP Volnme 39 / 1315 
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J. T. Grissom and D.R. Koehler 

ters can be interpreted directly and for which 
quantitative criteria aid in choosing the parame­
ters based on the statistical properties of the data. 

I. A DIRECT APPROACH 

Consider a set of n data points { f;} that repre­
sent the measured values of the function f(x) 
with f; = f (x;). Due to the presence of statistical 
variations in the measuring procedure each of 
the values f; differs from the corresponding true 
value F; with Fi-Ji= f;. For the sake of simplicity 
we limit our attention to data where the error in 
the measurement of f; greatly exceeds the ex­
pected error in x;. Let u; denote the standard 
deviation in f;. The value of u; is either experi­
mentally determined or statistically estimated 
from the data. 

Any smoothing technique must be based on a 
few fundamental assumptions. For a two-dimen­
sional function f (x), where the major statistical 
error is confined to only one dimension with 
relatively negligible error in the independent 
variable, the smoothing procedure should contain 
two arbitrary parameters as discussed above. One 
of these can be related to the number of neigh­
boring points that influence each of the smoothed 
values, and the other parameter can determine 
the degree of smoothing at each point. These are 
the two degrees of freedom in the smoothing 
process. Note that the former degree of freedom is 
related to the independent variable while the 
latter one affects only the dependent variable. 
Consequently, the two-parameter nature of the 
smoothing process derives from the two-dimen­
sional character of the data. 

The smoothed data itself must satisfy two 
essential requirements. First, it must be a sta­
tistically valid representation of the original data, 
and second, it must represent a continuous func­
tion. · A smoothing procedure should embody 
quantitative measures of the degree to which 
each of these requirements is satisfied. Quite 
obviously the two requirements cannot be totally 
independent but are in fact opposite conditions. 
The more the data are smoothed the less the 
agreement between the initial and smoothed 
values. For the sake of discussion we will refer to 
these two conditions as, respectively, the require-

Consider the quantity 

El= 
.;., (F;-f;)2 n f·2 

- ,L.,--- = I:~, 
i=l a? i=l Ui 

(1) 

where E 1 is a positive quantity whose magnitude 
measures the agreement between the smoothed 
data and the original values. Each of the squared 
deviations in Eq. (1) is weighted by the inverse 
of the corresponding variance a}. Thus E 1 is a 
quantitative measure of reproducibility. Mini­
mizing the value of E1 with respect to the choice of 
( F;} in the least squares sense results in the trivial 
solution 

i=l,2, ... ,n, 

which satisfies the reproducibility criterion exactly 
but violates the smoothness requirement. 

To measure the smoothness of the solution we 
will make use of the finite difference Taylor series 
representation 

Fi+s =F;+soF;+[s(s+l) /2!]o 2F;+ · · · 

+[s(s+l) · · · (s+k-1)/k!JokF;+Rki, 

where s is an integer, okF; represents the kth 
finite difference of F;, and Rki is the remainder 
after k+ 1 terms. We will limit ourselves to the 
case s = I for which 

The finite differences are of the form 

where 

oF;=Fi-F;-1, 

o2F; = F;-2F;-1+F;-2, 

o3F;=F;-3F;-1+3F;-2-F;_3, 

(
kJ_)=-k! 

(k-J)!j!' 

(3) 

ments of "reproducibility" and "smoothness." are the binomial coefficients. From Eqs. (2) and 
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(3) and the properties of the binomial coefficients 
one can show that 

Rki=F,-+1- kf (-).i- 1 (k~l)Fi-(j-1J (4) 
.1-1 .7 

From Eq. (,t:i) we see that the. magnitudes of 
the Rki directly indicate the relative smoothness 
of the solution { F, /. Consider 

n-1 

B2= ,I: R1:/ (6) 
i-k+I 

defined so that E2 is a positive quantity whose 
value measures the smoothness of the {Fi j . 
Minimizing E 2 with respect to the choice of the 
l Fi) in the least squares sense results in the 
trivial solution 

Fi=const; 1'.=l, 2, .. ·, 11, 

which satisfies the smoothness criterion exactly 
but in general violates the reproducibility require­
ment. 

We can combine the error functions E1 and 
E 2 that measure, respectively, the degree to which 
the reproducibility and smoothness criteria are 
individually satisfied into a single error function 
E such that 

(7) 

where a is a constant. The value of E measures 
both the smoothness of the curve and the extent 
to which the smoothed values reproduce the 
initial data. The value of a determines the relative 
weight of E 2 with respect to E 1. Smoothing is 
accomplished by minimizing the value of E with 
respect to the choice of the {Fi). The smoothed 
solution { Fi) is thus determined by solving the 
set of n simultaneous equations 
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smoothing routine based on the arbitrary pararne­
ters k and a. The value of k specifies the number 
of terms in the finite difference series representa­
tion of Eq. (2), which is analogous at least to 
determining the number of neighboring points 
that are sampled to adjust the value of each of the 
initial data points. This analogy is not rigorous 
since in actuality the value of each F; resulting 
from the solution of Eqs. (8) depends on all of the 
data values. The parameter a fixes the relative 
weights of E 1 and E2 in the minimization of E, 
which is analogous to determining the degree 
of smoothing at each point. Later we will discuss 
the dependence of the solution on k and a. 

:1finimizing E by Eq. (8) automatically mini­
mizes the deviations between the smoothed 
solution and the original values as far as is 
consistent with the degree of smoothing achieved. 
This in turn is determined by the value of k and a 

or more specifically, by the weighting factor a 

once k is specified. Thus neither E 1 nor E2 is 
minimized absolutely, but their weighted sum is 
minimized to satisfy both the requirements of 
reproducibility and smoothness. 

II. MATRIX FORMALISM 

We will rewrite the smoothing procedure using a 
matrix formalism to make it easier to appreciate 
the mathematical structure of the technique and 
to interpret the significance of the various 
quantities that comprise the method. 

Let f represent an nX I column matrix whose 
elements consist of the n values { fd. Similarly F 
represents an nX 1 matrix composed of the n 
smoothed values f F,-l. Then t is the matrix given 
by 

t= F-f. (9) 

If S is an n X n matrix whose elements s;; are 
given by 

(10) 

where Oii represents the usual Kronecker delta, 
then Eq. ( 1) can be written in matrix form as 

E1 = (F-f)TS- 1 (F-f) (lla) 
aE/aF;=O; 

with le and a fixed. 

j=l, 2, .. ·, 11, (8) or 

(llb) 

We have now formulated a least squares in terms of the matrix t and its transpose. 

AJP Volume 89 / 1817 
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