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Time Synchronization Over Networks
Using Convex Closures

Jean-Marc Berthaud

Abstract—This paper presents a general time synchroniza-
tion algorithm that analyzes the time offset between any two
computers’ clocks in a network and its evolution, by using math-
ematical topology properties. It builds a conversion function that
produces precise and guaranteed bounds for each time conversion,
and which provides accurate time synchronization. It is able to
automatically adjust the observation process so as to maintain
the error bound within some specified limit. It does not require
adjustments to local clocks, and it features a way of filtering
observation data based on a criterion of usefulness to improve
precision, thus discarding only useless information.

Advantages over approaches using other tools to filter out and
analyze observation data (mean and variance, linear regression,
midpoint functions, etc.) are exposed. Special attention is given
to assessing the uncertainties and errors made in the observation
process, and to their propagation in the estimation processes. The
developed technique allows one to globally achieve a better preci-
sion than what has been reached on each single observation, given
some conditions of operation that are explained.

Index Terms—Continuous estimation from discrete samplings,
distributed processing, error propagation, network time synchro-
nization.

I. INTRODUCTION

CONSIDER a system of distributed processes over a net-
work of communicating and independent devices, used,

for example, to manage distributed databases, or handle coor-
dinated actions distributed over several processors, or record
events for time duration measurements, or distribute time of
the day. They have one common feature: they all require some
kind of time synchronization, to be able to refer to a common
timescale when carrying out their work.

Definitions and Terminology on Time Synchronization:One
device is said to be synchronized in time with another device if
at any moment it can tell what is the time offset between its own
clock and the other device’s clock, or it can display the same
time. The first device is called slave or client, and the second one
is called master or reference. Time synchronization designates
the process executed by one or more devices linked by a commu-
nication medium, so that some or all devices are synchronized
in time with other devices through observation of their time.

In this paper, the terms “slave” and “master” will be used
to refer to the roles defined in the above definitions. The term
“host” will be used to refer to a device having a processor and a
local clock, and running a time synchronization process. A host
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can play both slave and master roles in relation to different hosts
at the same time.

Exact time synchronization over a network of computers
cannot be achieved when there are uncertainties on transmis-
sion delays in the network, and on processing delays in the
protocol layers of the computers [1], [6]. Unfortunately, this is
the very vast majority of the cases, and thus uncertainties have
to be managed to provide approximate time synchronization.

In addition, determining the offset to the master’s time at one
specific moment does not imply that a slave is synchronized
with it after or before that moment. Indeed, independent com-
puter clocks tend to evolve at different rates unless there is an
atomic cesium clock in every host (this is referred to as clock
drift).

Therefore, hosts attempting to time synchronize must con-
stantly refresh their observation data and handle uncertainties
to guarantee that they remain synchronized within a requested
error interval.

A. Related Work

Techniques generally applied in networks regularly measure
the offsets between clocks of the computers to synchronize. To
avoid bursts of messages happening in narrow synchronization
periods, some introduce randomness in the synchronization pe-
riod [8], to stagger messages in time. Others [5], [7] let each
synchronizing host decide its own synchronization rhythm.

Existing work can be divided into two major groups:

• In the first group, strong relationships are defined between
hosts, specifying for each host some other hosts it can ob-
serve, and/or the ones it should not. In this hierarchical
model, one or several special hosts are declared reference
hosts, and provide the initial external time without looking
at any other host. Examples of this kind of approach are
encountered in the 4.3BSDtimedprotocol [2], the Internet
Network Time Protocol (NTP) [5], [7], or the digital time
service (DTS) [4]. These solutions have the advantage of
reducing the number of synchronization messages over the
network. They also allow the building of history of obser-
vations between slave and masters, to improve precision
of time synchronization.

• In the second group, no static role is enforced for each
host, but rather it is tried to get the set of hosts synchro-
nized between them as a whole. Some special hosts can
also be time synchronized with an external clock source
[10]. This typically can lead to a quadratic number of mes-
sages being exchanged over the network. However, some
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work allows reducing this drawback [8]. The main advan-
tage of such solutions is that they are more robust and sup-
port failures of a number of hosts in the network.

In both groups, some common principles are used.
Each time a slave (i.e., a host/process getting time informa-

tion from other hosts/processes) acquire a new set of several ob-
servations, it tries to reduce this set by excluding what it thinks
could be erroneous or less accurate observations. Observations
are filtered out based on statistical considerations [4], [5], on as-
sumptions regarding maximum number of failing hosts [9], or
on some time-constraints to respect [8]. It can lead to getting
more observations if the size of the reduced set is judged insuf-
ficient to produce a valid estimation.

Then, an estimation is produced from that set of observa-
tion(s), and several tools may be used in the estimation eval-
uation process, such as: mean value, weighted average, linear
regression, midpoint functions, etc. (see [8] and [9] for an ex-
planation of the last one). The assessment of the error made on
that estimation, when there is one, is done accordingly: statis-
tical value (variance, dispersion in [4] and [7]), maximum bound
derived from constraint or sometimes from assumption [9], [10].

In [4] and [5], these two steps are improved using a history of
selected observations.

At last, the estimation is used to determine the amount by
which a slave should adjust its local clock. To reflect the adjust-
ment, it can either modify its local clock, either produce a vir-
tual clock that is calculated by adding that amount to the local
clock. The new value output by the system is then considered
valid until the next synchronization round. In both cases, the ad-
justment can be discrete [2], [4], [5], [8], or can be introduced
continuously [3], [8].

B. Paradigm Shift: Do Not Adjust Clocks, Measure Usefulness
of Information, Provide Accurate and Continuous Error
Bounding

In the context of regular operations (no false-tickers), the
main challenge that time synchronization techniques are facing
is the calculation of uncertainties and the determination of
optimal—or not far from optimal—and yet guaranteed error
bounds when estimating a new time. That issue is not so strong
when the application is just displaying the same time as the
other computers. When this time has to be used for other
more demanding fields such as distributed database merging,
distributed processing or time elapsed between events, this
becomes a major requirement.

When using statistics to filter out observation data or to pro-
duce an estimation, time synchronization processes are unable
to supply an accurate estimation of the error made on time dis-
played by slaves. The resulting error interval is either statisti-
cally guaranteed, and hence they cannot guarantee that a re-
quested error interval is satisfied, or it is large enough compared
to results and uncertainties of the process, but in that case it is
not optimal.

When assumptions or general constraints are used, the filter
and bounds are calculated using these maximum values, or some
value derived from them. Then, the length of the guaranteed
error interval is also not optimal. Moreover, the errors actually
measured are rarely incorporated.

In both cases, when a time synchronization process guaran-
tees an error interval, its length is determined and fixed until
the next synchronization point occurs. Since hosts’ clocks are
drifting from each other, the error interval could clearly be better
tailored by being continuously function of time.

In any case, the process used to discard observation data can
discard useful data. Since it is not able to measure the actual
benefits an observation data is bringing to a time estimation,
the criterion to filter it out is somewhat arbitrary. Indeed, even
a seemingly erroneous data can contribute, when put together
with other data and used correctly, to improve the overall result.
In that sense, these processes are again suboptimal.

Last, adjusting the local clock (either for real or by using a vir-
tual clock) can destroy the coherence of local time on each slave
host. The time elapsed between two events happening on the
same host, when enclosing one or several adjustments, cannot
be anymore expressed exactly in the host time. The time syn-
chronization process introduces uncertainties and thus an error
coming from the surrounding network, mainly because it does
not keep track of all the adjustments and of when they were
done. In some cases, the order of happening of the events can
even appear to be reversed. Additionally, the action of really
modifying a clock introduces by itself nondeterministic errors
(mainly, the action of adjusting the clock value takes some time
we cannot determine, cf. [3]).

The proposed technique uses a continuous function to cal-
culate a master’s time and the error made on it, and does not
modify local clocks of slaves: events happening on them are
recorded with the time read from the original unmodified local
clock. For that purpose, it introduces mathematical topology ob-
jects, based on the common linear model of computer clocks,
to build structures that characterize an observed clock. If local
clock modification is required by the application (for example:
time-of-day distribution), the result of the conversion function
can still be applied to the local clock to adjust it.

These structures allow filtering of observation data with a cri-
terion based on usefulness in improving their global precision.
Then, only useless information will be discarded. Since these
structures are evolving, a useful information can become use-
less at a later time. They represent the best information we can
extract from the accumulation of observation data and of their
associated uncertainty intervals, in relation to the model. This
is by nature more precise than statistical information, assump-
tions, or constraints.

C. Justification for a Hierarchical Organization

The topological algorithms proposed in this paper can be used
in both groups of time synchronization solutions. However, a
hierarchical organization is chosen here because:

1) this kind of solution does not put a constraint on the un-
derlying network (like fully meshed), is simpler to im-
plement, and engenders intrinsically less synchronization
messages overhead;

2) it is more appropriate for developing a history about
master/slave relationship because of the oriented nature
of the relationship;
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Fig. 1. Examples of hierarchical organization.

3) it is easy to find a common reference time that will be used
for time calculations, namely the root of the hierarchical
tree;

4) robustness problems can be overcome through diverse
techniques, like

a) in order to pass throughnetwork failuresor host
crashes, declare any or a number of hosts as ref-
erences, and slaves who lose their master(s) broad-
cast then a request for a reference, and choose the
one(s) that answers first. A number of policies for
reconnecting to an initial master when it is back op-
erational can be developed. This is out of the scope
of this paper;

b) in order to avoid the problem offalse-tickers, mon-
itor several masters at the same time, and select the
best one or combine the best ones. This is also out
of the scope here.

Fig. 1 illustrates hosts hierarchically organized in a tree over
the network. This organization may be static or evolving over the
time. When one wants to measure or order events that have hap-
pened on different hosts, the local timestamps of these events are
sent upwards over the tree to the nearest common node (the root
of the smallest sub-tree containing these hosts). Timestamps and
error intervals are converted into master’s time along the path to-
ward the common root. Thus, comparisons and delay measure-
ments can be done on this single node in this single time scale
with correct and accurate uncertainty intervals.

When one wants to generate synchronized or ordered dis-
tributed actions from different hosts, the commands are sent
from the root node with the root times of their future occurrence.
These times are converted back into the local time along their
way to the target nodes, where they will be used to schedule the
desired actions. If along the conversion path, the error interval
becomes larger than some requested value, the action can then
be aborted.

D. Paper Organization

Section II describes the computer clock model that is used
for the conversion function. Then in Section III, the time syn-
chronization process is decomposed in two independent levels.
Topological structures used for building the conversion function
are situated in Level 2, together with features to overcome “ac-
cidents.” Section IV explains the use by the conversion function
of the structures built at Level 2, to produce estimated times and
error intervals. Finally, experimental results from a real imple-
mentation are presented in Section V.

II. M ODEL OFRELATION BETWEENCOMPUTERCLOCKS

From a hardware point of view, a computer clock is composed
of a counter and a frequency device that controls the increment
of the counter. Each tick generated by the frequency device in-
crements the counter by a small amount, which represents the
granularity of the clock. For a given clock, the frequency device
(generally a quartz) has a frequency that can change, but only
slowly with time. It is then realistic to assume it is a constant or
a slowly-changing function of time (cf. [3], [6], and [7]).

A conversion law from a clock on hostto another on host
only has to know the shift in frequency(drift) between these
two clocks, and an offsetat some moment, for example at time
0 on host. This can be expressed as

(1)

where is the universal absolute time, and is the time
shown by local clock of hostat that time. The proposed al-
gorithms in this paper do not requireand to be fixed, they
only assume that they are slowly changing functions of time.

As said before, hostcannot fully reconstruct the clock of
host ; there are uncertainties. In this context, the following is
defined:

“Synchronized” means that for any slavewith master ,
there is a conversion function such that it transforms time
of host in time of host and that the calculated error interval
provided with the result is guaranteed and is within a requested
maximum interval [ , ].

Formally: if and represent the time of hostand
host , respectively, at universal absolute time, host and host
are synchronized during time interval [, ] if, and only if,
there exists as per (1) such that

III. T IME SYNCHRONIZATION PROCESS

The proposed time synchronization process is split into two
levels that are run in each slave host. A master has to know about
its slaves to pass them commands or to collect information, and
only has to serve the poll requests from slaves by returning time
information in its answers. Time synchronization is completely
handled by slaves, and these are responsible for guaranteeing
the requested precision. This kind of structure is retrieved in
NTP [7], for example.

Level 1 is dedicated to get over the network observation data
at one instant from the master clock, and it is responsible for
formatting it and estimating accurately the uncertainty interval
that is associated with it. It uses some information provided by
Layer 2, such as and surrounding the actual value of
the drift between local and master clocks. It then gives the whole
to Level 2 as a triplet ( , , ), which can be interpreted as:
“when the clock at hostindicates , the clock in hostindicates
a value somewhere in [ , ].” This paper uses a
common algorithm for getting observation data, but refines the
assessment of the error interval to a further point. Any other
algorithm able to provide such a triplet of information can be
used instead.
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Level 2 is in charge of calling Level 1 to get triplets, of
maintaining and filtering a history of the triplets, of evaluating
the conversion function parameters, and of determining when
it should get observation data through Level 1 to guarantee the
requested precision.

The requested precisionhas a lower limit that depends on
the granularity of host clocks (that is, the time increment at each
clock tick), and on the underlying communication protocol and
network used [1]. In this paper, the latter part can be reduced to
the minimum transmission round-trip delay experienced for the
synchronization messages exchanged between hosts.

One advantage of using a conversion function is that it can
estimate times and calculate associated error intervals either in
the past before the time synchronization process was started, or
in the future. Thus, time synchronization is not limited to the ob-
served period, although best results are of course achieved in this
interval. Another advantage is that, since the conversion func-
tion is evolving and its precision is monotonously increasing, a
conversion that does not provide sufficient precision can be re-
done at a later time with a better precision.

A. Level 1 of the Time Synchronization Process

The Level 1 mechanism attempts to determine the current
offset between the local clock and the master clock, and the un-
certainty on this value. It is based on the exchange of two mes-
sages as per Fig. 2, conveying time information between the two
hosts. The principle is the same as for NTP [7], which is by it-
self a variant of the returnable-time system used in some digital
telephone networks [1]. It is designed to deduce bounds on the
offset to apply to the time information from another host it con-
veys, keeping in mind that it is impossible to exactly determine
the transmission delay of a message.

The poll mechanism is an exchange of two messages con-
veying time information defined as per Fig. 2. With the
data , , , and collected through this
mechanism by host, it is possible to determine the current
offset with an uncertainty which is function of the round-trip
delay expressed in the time of host.

and cannot physically be determined, but as shown
in Appendix I-A, if was exactly known, we could express

as

(2)

Fig. 2. Poll mechanism.

Then, as per Appendix I-B, the triplet (, , ) to remember
in the history would be

(3)

Due to uncertainties, an exact value foris not available and
a [ , ] interval must be used instead. As a consequence,
the triplet to enter in the history at the moment where the Level
1 is run should be as shown in (4), shown at the bottom of the
page; see Appendix I-C for details.

When Level 1 is run for the first time, there is no value yet
calculated by Level 2 for and . Some initial values
have then to be supplied.

It can be seen from calculations in Appendix I-B that exact
offset determination is achieved when . This is
when both paths of the poll mechanism are symmetric. There
is no way however to determine when this happens. Inversely,
maximum error is introduced when the paths are totally asym-
metric, that is when one of the travel times tends toward zero.

As a result, there is an interest in using a protocol as sym-
metric as possible and in having the same message length on
both directions for the poll mechanism, so that the actual point
is best centered in the uncertainty interval [ , ].
Moreover, in order to limit the width of the uncertainty interval,
the interest is also to minimize . This means re-
plying as quickly as possible in hostto the incoming messages
of the poll mechanism.

1) Impact of Clock Granularity:The primary effect of clock
granularity when reading the valuefrom a clock is that the

with
(4)
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real-valued time is in fact somewhere in, , where
is the value of the clock increment (the notation means:
any real value between, included, and , not included). This
has a nonnegligible impact on the uncertainty associated with a
measurement by the polling mechanism. Indeed, it is frequent to
have increments of 10 or 20 ms for a clock, while the round-trip
delay can be for example of the order of 10 ms on LAN’s.

Calculations with clock granularity are detailed in Ap-
pendix I-D. The triplet to return to Level 2 accounting for slave
and master clocks granularities is then

with

and defined as in Appendix I-D.

(5)

B. Level 2 of the Time Synchronization Process

This level is responsible for calculating the conversion func-
tion and for guaranteeing the required precision level. It should
get more data through Level 1 when needed, while limiting
the number of exchanged synchronization messages to the min-
imum. To do so, it calculates the interval in the time of host
where this required precision is respected, at each synchroniza-
tion sequence. Before the end of that interval, a new synchro-
nization sequence should be executed.

The following list of actions describes the synchronization
sequence and the Level 2 process.

1) Get one observation data by calling Level 1. If, current
master clock cannot be reached, find a new one and
restart. Else, add new data to history.

2) Run the synchronization algorithm on the history to cal-
culate the conversion function and the bounding struc-
tures.

3) Calculate the next time a new observation data should be
got from master clock to guarantee the requested preci-
sion. Rerun the sequence at that time.

The general problem faced here is, how to reconstruct a con-
tinuous function giving as result a point and an uncertainty in-
terval, from a linear model (1), and from a set of discrete sam-
pling points with their associated uncertainty intervals (the his-
tory of triplets).

Classical approaches use statistics, usually with linear regres-
sion or midpoint functions. The algorithm described here builds
mathematical structures on the elements of the history. These
are used to extract parameters for the conversion function and
to calculate the uncertainty interval when a conversion is done.

1) Outline of the Algorithm Used for Extracting Bounding
Structures and Conversion Function Parameters:This algo-
rithm is applied to the history of triplets received from Level
1. is a set of triplets of the form , , ,

, , , , , , . It represents the
current set of observation data with their uncertainty intervals.

The primary goal of the algorithm is to build bounding struc-
tures that will be used for accurate error assessment when a con-
version is done, and to place the conversion function between

them. The secondary roles are to filter out the contents ofso
that it does not become too big, and to detect “accidents” and
recover from them.

This algorithm is composed of the following steps.

1) Calculate two sets of points, one made of maximum po-
sitions of observation data in their error interval, and one
of minimum positions.

2) Build the convex closures of each one of these sets.
3) Detect abnormal situations (crossing closures), and take

corrective action by discarding points from history.
4) Remove useless data from history (first step), not used by

at least one of the convex closures.
5) Calculate infinite lines with the maximum and minimum

gradient for the observed clock, using convex closures.
6) Remove useless data from history (second step), that are

made obsolete by the preceding step.
7) Choose conversion function, with regards to convex clo-

sures positions, and infinite lines of step 5.

2) Introducing Convex Closures:A definition of the convex
closure of a set of points in a plane is given in Appendix II.
It is highly recommended to look at that short section before
continuing if the notion is not familiar to the reader.

The interesting property of convex closures is that they math-
ematically define the intuitive notions of “boundary” and “ex-
terior” of a set of points. Any infinite line of the plane whose
intersection with the convex closure( boundary) of a set of
points S is

1) empty ( ),
2) reduced to one point,
3) or a segment of (i.e., the line is tangent to a segment of

)

is said to be at the “exterior” of (it does not pass through, or
there are not points of on both of its sides). This notion will
be used to define areas where the infinite line representing the
conversion function as per (1) cannot be.

In the following, the notions of superior and inferior parts of a
convex closure of are also used. In a reference plane where
points are defined by coordinates (, ), these will, respectively,
designate the parts of that are “above” and “below” , with
regards to the axis. A more formal and mathematical defini-
tion is given in Appendix II. To have a quick and intuitive un-
derstanding, see also in Appendix II an example with a diagram.

3) Detailed Description of the Algorithm:Fig. 3 depicts a
representation in the plane of the observation data in history

, of the bounding structures extracted from them, and of the
chosen conversion function. The algorithm is composed of the
following steps.

a) If there are points in the history H:

i) Sets of maximum and minimum positions:
Build two sets of points: ,

, and ,
. Since the uncertainty

intervals , are calculated
by (5) of Level 1 so that the actual point cannot be
outside, is the set of upper possible positions for
each observation data in, and is the set of lower
possible positions. This inclusion condition is very
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