
1994 IEEE Workshop on Fault-Tol. Par. and Dist. Syst., College Station, TX, June 13-14. (Appears inFault-Tol. Par. and Dist. Syst., D. Pradhan and D. Avresky, eds., IEEE Comp. Soc. Press, pp. 268-277.)Fault-Tolerant Clock Synchronization forDistributed Systems with High Message Delay Variation�Marcelo Moraes de Azevedo and Douglas M. BloughDeparment of Electrical and Computer EngineeringUniversity of California, IrvineIrvine, CA 92717AbstractFault-tolerant clock synchronization is an important requirement in many distributed sys-tems, especially in time-critical and safety-critical applications. Frequently, interactive con-vergence algorithms are used for fault-tolerant clock synchronization, providing advantagessuch as fully distributed operation, low message exchange overhead, and simplicity of imple-mentation. This paper presents the measured performance of three interactive convergenceclock synchronization algorithms. Our experiments were conducted in a distributed UNIXenvironment featuring high message delay variation, which poses severe constraints on theclock synchronization tightness that may be achieved. The algorithms that were tested are:FTMA (fault-tolerant midpoint algorithm) [1], AEFTMA (adaptive exponential averagingfault-tolerant midpoint algorithm) [2], and SWA (sliding window algorithm) [3]. Our ex-perimental results indicate that SWA outperforms the other algorithms in this environment,being able to achieve tighter synchronization under di�erent simulated fault conditions. Thesuperiority of SWA can be attributed to its high degree of fault tolerance, combined with itsability to treat messages with much longer than expected delays as faults.1: IntroductionIn distributed systems, computers cooperate to provide the expected functionality toa given application. Some tasks that are often found in such systems are: synchronizingactivities that occur at di�erent points of the system, ordering events in time, enforcingdeadlines, and measuring elapsed time. A system with one or more of these requirementsmust use proper synchronization mechanisms to establish an agreed-upon global time scaleamong its components. Particularly in the case of safety-critical applications, synchronymust be maintained in spite of the presence of faults in the system.Frequently, fault-tolerant clock synchronization is achieved via interactive convergencealgorithms in which nodes exchange their clock values and determine clock correction termsat regular intervals. This paper presents the measured performance of three interactive con-vergence algorithms: the sliding window algorithm (SWA) [3], the fault-tolerant midpointalgorithm (FTMA) [1], and the adaptive exponential averaging fault-tolerant midpoint al-gorithm (AEFTMA) [2]. The measurements were carried out with an application-levelimplementation running in a distributed UNIX environment [2]. This environment posessome practical constraints to clock synchronization, in particular a high variation in the�This research was supported in part by Conselho Nacional de Desenvolvimento Cient���co e Tecnol�ogico(CNPq - Brazil), under Grant 200392/92-1, by the National Science Foundation under Grant CCR-9318495,and by the California Space Institute under Grant CS-54-92.1
PAGE 1 OF 10

SONOS EXHIBIT 1010
IPR of U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1994 IEEE Workshop on Fault-Tol. Par. and Dist. Syst., College Station, TX, June 13-14. (Appears inFault-Tol. Par. and Dist. Syst., D. Pradhan and D. Avresky, eds., IEEE Comp. Soc. Press, pp. 268-277.)message delay. Our results are therefore representative of a broad class of systems where alow variation in the message delay cannot be achieved. Our experimental results indicatethat SWA maintains tighter clock synchronization than the other algorithms. We will showthat this results from SWA's higher degree of fault tolerance [3], together with its abilityto treat messages with much longer than expected delays as faults.2: Background: Interactive convergence algorithmsIn a distributed system, time is usually observable in a local reference referred to asclock time. Clock times may di�er both in absolute value and in rate from an assumedNewtonian time frame, which is not directly observable and is referred to as real time.The clock of a node can be represented by a mapping C from real time to clock time.For example, Ci(t) = T means that at real time t the clock of node i has value T . Clocks indi�erent nodes in a distributed system tend to drift apart from each other with the passageof time, because they typically do not tick at exactly the same rate. This brings about theneed of some form of clock synchronization scheme in systems where a global time scalemust exist. Moreover, clock synchronization must often be achieved in environments inwhich challenges such as faults and high message delay variation may exist.Interactive convergence is a widely used approach to fault-tolerant clock synchronization,being suitable for a large range of distributed systems applications. Clock synchronizationis accomplished in a fully distributed fashion, allowing every node to exhibit equal func-tionality with regard to synchronization. No single point of failure exists, and expensivemodules to provide real-time clock references are not required. Interactive convergencealgorithms are driven by the multiple clock sources normally found in distributed systems,and therefore can be implemented at little additional cost. In addition, such algorithmsusually feature low message exchange overhead, requiring only O(n) messages per round inan n-node system with broadcast capabilities. Interactive convergence algorithms provideinternal clock synchronization, meaning that the system's global time scale is not necessarilysynchronized to an external time reference.In an interactive convergence algorithm, nodes periodically exchange synchronizationmessages containing their clock values and then use the received values to adjust their clocks.The interval of time between successive resynchronizations is dubbed a resynchronizationinterval or a round of the algorithm and its duration is denoted by Tint. A node that isexchanging messages for the rth time since the clock synchronization process was started issaid to be in its rth resynchronization interval. One technique that can be used to exchangeclock values is broadcasting, which is in fact the method used in our experiments.The process by which a node assigns a clock value to be sent in an outgoing messageor to be attached to an incoming message is referred to as time-stamping. The clockvalue that is sent in a synchronization message is referred to as the sender's time-stamp(Tsend). Similarly, the clock value that is attached to an incoming synchronization messageis referred to as the receiver's time-stamp (Trec).Assume that at real time trsend(i) node i time-stamps its rth synchronization messagewith a sender's time-stamp T rsend(i). Let the total message delay between nodes i and jduring the rth resynchronization interval be dr(i; j), such that i's message is time-stampedby j at real time trrec(i; j) = trsend(i) + dr(i; j). If j's clock reads T rrec(i; j) at real timetrrec(i; j), then the clock value of i can be estimated by j at real time trj , trj � trrec(i; j), byCri;j(trj) = T rsend(i) + drmed(i; j)+ (Cj(trj)� T rrec(i; j)), where drmed(i; j) is j's estimate for themessage delay between nodes i and j during the rth resynchronization interval.The clock deviation between nodes i and j at real time t is Cj(t) � Ci(t). The clocks2
PAGE 2 OF 10

SONOS EXHIBIT 1010
IPR of U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1994 IEEE Workshop on Fault-Tol. Par. and Dist. Syst., College Station, TX, June 13-14. (Appears inFault-Tol. Par. and Dist. Syst., D. Pradhan and D. Avresky, eds., IEEE Comp. Soc. Press, pp. 268-277.)of any two nonfaulty nodes a and b in the system deviate by at most �int seconds at anyreal time t � 0, where �int is referred to as the worst-case clock synchronization tightness.Formally, 8a; b; 8t � 0; jCa(t)� Cb(t)j � �int.The estimated clock deviation between nodes i and j as measured by node j at real timetrj during the rth resynchronization interval is given by�ri;j = Cj(trj)� Cri;j(trj) = T rrec(i; j)� T rsend(i)� drmed(i; j) (1)To simplify the terminology of this paper, we hereafter use the term clock deviation torefer to a clock deviation estimate. Whenever appropriate, we will remind the reader thata distinction exists as de�ned above.At the end of the rth resynchronization interval, each node j, 1 � j � n, will havecollected a vector of clock deviations �rj = [�r1;j �r2;j � � � �rj�1;j 0 �rj+1;j � � � �rn;j] (notethat �rj;j = 0). A clock correction term CORRrj is then calculated from �rj by means of aconvergence function. Following this step, the local clock of node j is adjusted by CORRrj.To guarantee that an interactive convergence algorithm maintains synchronization re-quires that clock synchronization messages be exchanged with some bounded delay dmax.Message delay is expected to vary in the range [dmin; dmax], with dvar = dmax � dmin beingreferred to as the message delay variation and dvar=2 being referred to as the reading error.Naturally, dvar a�ects the worst-case clock synchronization tightness (�int).Lundelius and Lynch [4] proved that in a system with n clocks and message delay vari-ation dvar the clock synchronization tightness cannot be better than dvar(1� 1=n). Such alower bound holds under the strong assumptions that all clocks run at a perfect rate andthat there are no failures in the system. Under the same assumptions and also assumingthat clocks initially have arbitrary values, Lundelius and Lynch give a simple algorithmthat achieves this bound. Clearly, this lower bound also holds for the more realistic casethat we consider in which clocks drift and faults occur.Our implementation performs time-stamping of messages in the application level, usingUNIX system calls for that purpose. This mechanism exhibits a highly variable delay be-tween the moment a time-stamp is obtained and the corresponding message is actually sentor received. The resulting message delay variation in an application-level software imple-mentation is typically several hundreds of milliseconds [2]. According to the Lundelius andLynch lower bound, the worst-case clock synchronization tightness (�int) should thereforebe on the same order of magnitude.An interesting aspect of implementing a clock synchronization algorithm in the applica-tion level is that a high independence of the hardware platform is obtained. Therefore, thisapproach can be readily used in existing systems.Application-level clock synchronization can be used in many applications that do notrequire tight synchronization. Nevertheless, we would still like to have the best tightnessthat can be achieved in this environment. Considering this goal, our experiments evaluatedthree di�erent interactive convergence functions: FTMA, AEFTMA, and SWA.3: Description of convergence functionsAs described in the previous section, interactive convergence algorithms exhibit greatprocedural similarity, with variations being limited to the convergence function that is usedto compute the clock correction term at every round. In the remainder of this section, wedescribe the convergence functions used by FTMA, AEFTMA, and SWA.3

PAGE 3 OF 10

SONOS EXHIBIT 1010
IPR of U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1994 IEEE Workshop on Fault-Tol. Par. and Dist. Syst., College Station, TX, June 13-14. (Appears inFault-Tol. Par. and Dist. Syst., D. Pradhan and D. Avresky, eds., IEEE Comp. Soc. Press, pp. 268-277.)3.1: Fault-tolerant midpoint algorithmThe fault-tolerant midpoint algorithm (FTMA) [1] relies on the hypothesis that at mostk clocks are faulty at any resynchronization interval. At least n = 3k+1 nodes are requiredin the system to tolerate k Byzantine faults.Assume that, at a given round r of the algorithm, a sorted clock deviation vector Xrj =[x1 x2 � � � xi � � � xn], xi � xi+1, is available at node j (note that the elements in Xrj areexactly the elements in �rj , except that in Xrj they are sorted). To �nd the clock correctionterm, FTMA discards the k lowest and the k highest clock deviations and computes thearithmetic mean of xk+1 and xn�k; that is, CORRrj = (xk+1 + xn�k)=2.3.2: Adaptive exponential averaging fault-tolerant midpoint algorithmThe adaptive exponential averaging fault-tolerant midpoint algorithm (AEFTMA) [2] is avariation of the FTMA algorithm [1]. Assume that CORRrFTMA is the correction term com-puted via the standard FTMA convergence function (i.e., (xk+1 + xn�k)=2) in the rthresynchronization interval and that CORRr�1AEFTMA is the correction term computed byAEFTMA in the previous round. Instead of using CORRrFTMA as the correction termduring the rth resynchronization interval, AEFTMA computes its correction term byCORRrAEFTMA = �(r) � CORRrFTMA+ (1� �(r))CORRr�1AEFTMA.�(r) is a weight factor in e�ect during the rth resynchronization interval, such that0 � �(r) � 1. The weight factor \smooths" the clock correction term CORRrAEFTMA,introducing a lagging mechanism between adjacent rounds. This approach follows the as-sumption that correction terms of similar magnitude are expected at every resynchroniza-tion interval, since changes in the drift rate of clocks are generally caused by intrinsicallyslow phenomena such as temperature variation and component aging. Therefore, excessivecorrection terms resulting from large message delay variation are attenuated by exponentialaveraging. Nevertheless, in order to guarantee a fast recovery of synchrony in case of tran-sient fault occurrence, the weight factor varies adaptively according to the absolute value ofthe clock correction term computed by AEFTMA in the current round (jCORRrAEFTMAj).The adaptive control of the weight factor must be chosen according to the expectedmessage delay variation, which in an application-level implementation is highly depen-dent on aspects such as CPU and network utilization and the priority assigned to theclock synchronization process. We used in our implementation a 4-level stepwise functionf(jCORRrAEFTMAj), which selects the next-round weight factor �(r+1) from a set of valuesB = f0:1; 0:25; 0:5; 1g. Selection of �(r + 1) is accomplished by comparing the current-round absolute clock correction term jCORRrAEFTMAj with a set of thresholds C = f50 ms,100 ms, 150 msg, such that �(r + 1) = 0:1 if jCORRrAEFTMAj � 50 ms, �(r + 1) = 0:25 if50 ms < jCORRrAEFTMAj � 100 ms, �(r + 1) = 0:5 if 100 ms < jCORRrAEFTMAj � 150 ms,and �(r + 1) = 1 if jCORRrAEFTMAj > 150 ms. Such a function was selected according tothe type of load used during our experiments, which consisted of long-run applications thatgenerate continuously high CPU load and network utilization.Note that when �(r) = 1 the clock correction term resulting from AEFTMA equalsthat computed via the standard FTMA convergence function. This allows synchrony tobe quickly reestablished in the presence of a transient fault, since the lagging e�ect ofprevious clock adjustments persists for at most one round after the fault occurred. Afterthat, AEFTMA enters a memoryless operation mode, behaving exactly like FTMA, until�(r) is again reduced below 1. 4

PAGE 4 OF 10

SONOS EXHIBIT 1010
IPR of U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1994 IEEE Workshop on Fault-Tol. Par. and Dist. Syst., College Station, TX, June 13-14. (Appears inFault-Tol. Par. and Dist. Syst., D. Pradhan and D. Avresky, eds., IEEE Comp. Soc. Press, pp. 268-277.)3.3: Sliding window algorithmThe sliding window algorithm (SWA) tolerates considerably higher percentages of non-Byzantine faults than other interactive convergence algorithms [3]. However, the algorithmrequires that the number of Byzantine faults must be limited to b � n=4, which is a properassumption for many systems. A basic assumption made by SWA is that the readings ofdi�erent \good" clocks by a given node j should di�er by a small amount. Therefore, it isexpected that the clock estimates computed by j from the messages received from \good"clock sources will be clustered within a limited range. The basic operation performed bySWA consists of locating a cluster of \good" clock values by means of a sliding windowmechanism. Alternatively, SWA can be implemented such that identi�cation of clustersoccurs in a clock deviation vector, which is the approach used in our implementation.Assume that, at a given round r of the algorithm, a sorted clock deviation vector Xrj =[x1 x2 � � � xi � � � xn], xi � xi+1, is available at node j (note that the elements in Xrj areexactly the elements in �rj , except that in Xrj they are sorted). Starting at the leftmostelement of Xrj , SWA slides a window of width w to locate clusters of clock deviation values.This is done by aligning the left border of the window with each value xi 2 Xrj . Thewindow spanning the range of values [xi; xi + w] is referred to as the ith window instance(wi). If x` 2 Xrj is the largest clock deviation value such that xi � x` � xi + w, then thecardinality of wi (the number of clock deviation values in wi) is given by pi = ` � i + 1.Among all n possible window instances, SWA selects a window instance we such thatmax(p1; p2; : : : ; pn) = pe. If two or more window instances wa; wb; : : : exist such that pa =pb = : : : = pe, then an additional criterion is used for window selection. Two possibilitiesare to deterministically select the �rst window instance with cardinality pe, or to select thewindow instance with minimum variance among those with cardinality pe. Once a windowinstance we is selected, the clock correction term can be calculated by taking either the meanor the median of the values in we. This results in a total of four variations of the algorithm:SWAmedian, SWAdetmedian, SWAmean, and SWAdetmean [3]. Due to several advantages discussedin [3], SWAdetmean was selected for our implementation. The clock correction term in node j(CORRj) computed by SWAdetmean is given by CORRj = (pe)�1Pe+pe�1i=e xi.The size of the window frame (w) is an important parameter in all variations of SWA.For SWAdetmean, the optimal window size is �int + dvar [3]. A window of size w = 100 mswas selected for the implementation of SWA used during our experiments. This was donebecause about 70% of all \good" clock deviation estimates that were collected during ourexperiments with the SWA algorithm remain below the 100-ms threshold, meaning that awindow of similar size correctly selects \good" clocks with very high probability.4: Experimental results4.1: Message delay distribution and algorithm performanceThe experiments described in this section were conducted in an environment in whichthe message delay typically follows a distribution similar to that shown in Figure 1.1 Themain characteristic of interest is the long and thin tail of the distribution. Although amaximum delay dmax may be present, its value is usually much greater than dmin.While the vast majority of message delays occur in a small range around the expecteddelay, outliers (messages with very long delays) do occur with some regularity. It is these1A similar distribution was reported in a di�erent environment by Cristian [6].5

PAGE 5 OF 10

SONOS EXHIBIT 1010
IPR of U.S. Pat. No. 8,942,252

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

