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Preface 

The existence of high speed, inexpensive computing has made it easy to look 
at data in ways that were once impossible. Where once a data analyst was 
forced to make restrictive assumptions before beginning, the power of the 
computer now allows great freedom in deciding where an analysis should 
go. One area that has benefited greatly from this new freedom is that of 
non parametric density, distribution, and regression function estimation, or 
what are generally called smoothing methods. Most people are familiar with 
some smoothing methods (such as the histogram) but are unlikely to know 
about more recent developments that could be useful to them. 

If a group of experts on statistical smoothing methods are put in a 
room, two things are likely to happen. First, they will agree that data 
analysts seriously underappreciate smoothing methods. Smoothing meth­
ods use computing power to give analysts the ability to highlight unusual 
structure very effectively, by taking advantage of people's abilities to draw 
conclusions from well-designed graphics. Data analysts should take advan­
tage of this, they will argue. 

Then, they will strongly disagree about which smoothing methods 
should be disseminated to the public. These conflicts, which often hinge on 
subtle technical points, send a garbled message, since nonexperts naturally 
think that if the experts can't agree, the field must be too underdeveloped 
to be of practical use in analyzing real data. Besides being counterproduc­
tive, these arguments are often pointless, since while some methods are 
better at some tasks than others, no method is best on all counts. The 
data analyst must always address issues of conceptual and computational 
simplicity versus complexity. 

In this book, I have tried to sort through some of these controversies 
and uncertainties, while always keeping an eye towards practical applica­
tions. Some of the methods discussed here are old and well understood, 
while others are promising but underdeveloped. In all cases, I have been 
guided by the idea of highlighting what seems to work, rather than by the 
elegance (or even existence) of statistical theory. 

This book is, first and foremost, for the data analyst. By "data ana­
lyst" I mean the scientist who analyzes real data. This person has a good 
knowledge of basic statistical theory and methodology, and probably knows 
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viii Preface 

certain areas of statistics very well, but might be unaware of the benefits 
that smoothing methods could bring to his or her problems. Such a person 
should benefit from the decidedly applied focus of the book, as arguments 
generally proceed from actual data problems rather than statistical theory. 

A second audience for this book is statisticians who are interested in 
studying the area of smoothing methods, perhaps with the intention of un­
dertaking research in the field. For these people, the "Background material" 
section in each chapter should be helpful. The section is bibliographic, giv­
ing references for the methods described in the chapter, but it also fills in 
some gaps and mentions related approaches and results not discussed in 
the main text. The extensive reference list (with over 750 references) also 
allows researchers to follow up on original sources for more technical details 
on different methods. 

This book also can be used as a text for a senior undergraduate or 
graduate-level course in smoothing. If the course is at an applied level, the 
book can be used alone, but a more theoretical course probably requires 
the use of supplementary material, such as some of the original research 
papers. Each chapter includes exercises with a heavily computational focus 
(indeed, some are quite time consuming computationally) based on the data 
sets used in the book. Appendix A gives details on the data sets and how 
to obtain them electronically. 

I believe that anyone interested in smoothing methods benefits from 
applying the methods to real data, and I have included sources of code for 
methods in a "Computational issues" section in each chapter. New code 
often becomes available, and commercial packages change the functionality 
that they provide, but I still hope that these sources are useful. Many 
software packages include the capability to write macros, which means that 
analysts can write their own code (or perhaps someone else already has). 
I apologize for any omissions or errors in the descriptions of packages and 
code. No endorsement or warranty, express or implied, should be drawn 
from the listing and/or description of the software given in this book. The 
available code is to be used at one's own risk. See Appendix B for more 
details on computational issues. 

In recent years, several good books on different aspects of smoothing 
have appeared, and I would be remiss if I did not acknowledge my debt 
to them. These include, in particular, Silverman (1986), Eubank (1988), 
HardIe (1990, 1991), Hastie and Tibshirani (1990), Wahba (1990), Scott 
(1992), Green and Silverman (1994), and Wand and Jones (1995). I own all 
these books, but I believe that this book is different from them. 

The coverage in this book is very broad, including simple and complex 
univariate and multivariate density estimation, non parametric regression 
estimation, categorical data smoothing, and applications of smoothing to 
other areas of statistics. There are strong theoretical connections between 
all these methods, which I have tried to exploit, while still only briefly exam­
ining technical details in places. Density estimation (besides its importance 
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Preface IX 

in its own right) provides a simple framework within which smoothing issues 
can be considered, which then builds the necessary structure for regression 
and categorical data smoothing and allows the latter topics to be covered in 
less detail. Even so, the chapter on non parametric regression is the longest 
in the book, reinforcing the central nature of regression modeling in data 
analysis. 

Despite the broad coverage, I have had to omit certain topics because of 
space considerations. Most notably, I do not describe methods for censored 
data, estimation of curves with sharp edges and jumps, the smoothing of 
time series in the frequency domain (smoothed spectral estimation), and 
wavelet estimators. I hope that the material here provides the necessary 
background so that readers can pick up the essence of that material on 
their own. 

This book originated as notes for a doctoral seminar course at New 
York University, and I would like to thank the students in that course, 
David Barg, Hongshik Kim, Koaru Koyano, Nomi Prins, Abe Schwarz, 
Karen Shane, Yongseok Sohn, and Gang Yu, for helping to sharpen my 
thoughts on smoothing methods. I have benefited greatly from many stim­
ulating conversations about smoothing methods through the years with 
Mark Handcock, Cliff Hurvich, Paul Janssen, Chris Jones, Steve Marron, 
David Scott, Berwin Turlach, Frederic Udina, and Matt Wand. Samprit 
Chatterjee, Ali Hadi, Mark Handcock, Cliff Hurvich, Chris Jones, Bernard 
Silverman, Frederic Udina, and Matt Wand graciously read and gave com­
ments on (close to) final drafts of the manuscript. Cliff Frohlich, Chong Gu, 
Clive Loader, Gary Oehlert, David Scott, and Matt Wand shared code and 
data sets with me. Marc Scott provided invaluable assistance in installing 
and debugging computer code for different methods. I sincerely thank all 
these people for their help. Finally, I would like to thank my two editors 
at Springer, Martin Gilchrist and John Kimmel, for shepherding this book 
through the publication process. 

A World Wide Web (WWW) archive at the URL address 
http://www.stern.nyu.edu/SOR/SmoothMeth 

is devoted to this book, and I invite readers to examine it using a WWW 
browser, such as Netscape or Mosaic. I am eager to hear from readers 
about any aspect of the book. I can be reached via electronic mail at the 
Internet address j simonoff@stern.nyu. edu. 

East Meadow, N.Y. Jeffrey S. Simonoff 
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Chapter 1 

Introduction 

1.1 Smoothing Methods: a 
Nonparametric/Parametric Compromise 

One thing that sets statisticians apart from other scientists is the general 
public's relative ignorance about what the field of statistics actually is. 
People have at least a general idea of what chemistry or biology is - but 
what is it exactly that statisticians do? 

One answer to that question is as follows: statistics is the science that 
deals with the collection, summarization, presentation, and interpretation 
of data. Data are the key, of course - the stuff from which we gain insights 
and make inferences (or, to paraphrase Sherlock Holmes, the clay from 
which we make our bricks). 

Consider Table 1.1. This data set represents the three-month certificate 
of deposit (CD) rates for 69 Long Island banks and thrifts, as given in 
the August 23, 1989, issue of Newsday. This table presents a valid data 
collection but clearly is quite inadequate for summarizing or interpreting 
the data. Indeed, it is difficult to glean any information past a feeling for 
the range (roughly 7.5% - 8.8%) and a "typical" value (perhaps around 
8.3%). 

Table 1.1. Three-month CD rates for Long Island banks and thrifts. 

7.56 7.57 7.71 7.82 7.82 7.90 8.00 8.00 8.00 8.00 
8.00 8.00 8.00 8.05 8.05 8.06 8.11 8.17 8.30 8.33 
8.33 8.40 8.50 8.51 8.55 8.57 8.65 8.65 8.71 
7.51 7.75 7.90 8.00 8.00 8.00 8.15 8.20 8.25 8.25 
8.30 8.30 8.33 8.34 8.35 8.35 8.36 8.40 8.40 8.40 
8.40 8.40 8.40 8.45 8.49 8.49 8.49 8.50 8.50 8.50 
8.50 8.50 8.50 8.50 8.50 8.50 8.52 8.70 8.75 8.78 
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2 Chapterl. Introduction 
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Fig. 1.1. Fitted Gaussian density estimate for Long Island CD rate data. 

The problem is that no assumptions have been made about the un­
derlying process that generated these data (loosely speaking, the analysis 
is purely nonparametric, in the sense that no formal structure is imposed 
on the data). Therefore, no true summary is possible. The classical ap­
proach to this difficulty is to assume a parametric model for the underlying 
process, specifying a particular form for the underlying density. Then, ap­
propriate summary statistics can be calculated, and a fitted density can be 
presented. For example, a data analyst might hypothesize a Gaussian form 
for the density f. Calculation of the sample mean (X = 8.26) and standard 
deviation (8 = .299) then determines a specific estimate, which is given in 
Fig. 1.1. This curve provides a wealth of information about the pattern of 
CD rates, including typical rates, the likelihood of finding certain rates at 
a randomly selected institution, and so on. 

Unfortunately, the strength of parametric modeling is also its weak­
ness. By linking inference to a specific model, great gains in efficiency are 
possible, but only if the assumed model is (at least approximately) true. If 
the assumed model is not the correct one, inferences can be worse than 
useless, leading to grossly misleading interpretations of the data. 
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1.1. Smoothing Methods: a Nonparametric/Parametric Compromise 3 
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Fig. 1.2. Histogram for Long Island CD rate data. 

I 

8.8 

Smoothing methods provide a bridge between making no assumptions 
on formal structure (a purely nonparametric approach) and making very 
strong assumptions (a parametric approach). By making the relatively weak 
assumption that whatever the true density of CD rates might be, it is 
a smooth curve, it is possible to let the data tell the analyst what the 
pattern truly is. Figure 1.2 gives a histogram for these data, based on 
equally sized bins (discussion of histograms and their variants is the focus 
of Chapter 2). The picture is very different from the parametric curve of 
Fig. 1.1. The density appears to be bimodal, with a primary mode around 
8.5% and a secondary mode around 8.0% (the possibility that the observed 
bimodality could be due to the specific construction of this histogram should 
be addressed, and such issues are discussed in Chapter 2). 

The form of this histogram could suggest to the data analyst that there 
are two well-defined subgroups in the data. This is, in fact, the case ~ the 
69 savings institutions include 29 commercial banks and 40 thrift (Savings 
and Loan) institutions (the CD rates for the commercial banks correspond 
to the first three rows of Table 1.1, while those for the thrifts appear in 
the last four rows). These subgroups can be acknowledged parametrically 
by fitting separate Gaussian densities for the two groups (with means 8.15 
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4 Chapter 1. Introduction 
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Fig. 1.3. Fitted Gaussian density estimates for Long Island CD rate data: com­
mercial banks (dashed line) and thrifts (solid line). 

and 8.35, respectively, and standard deviations .32 and .25, respectively). 

Figure 1.3 gives the resultant fitted densities (the dashed line refers 
to commercial banks, while the solid line refers to thrifts). It is apparent 
that recognizing the distinction between commercial banks and thrifts helps 
to account for the bimodal structure in the histogram. There are several 
plausible hypotheses to explain this pattern. The Savings and Loan bailout 
scandal was just becoming big news at this time, and it is possible that 
many thrifts felt they had to offer higher rates to attract nervous investors. 
Another possibility is that these institutions were trying to encourage an 
influx of deposits so as to ward off bankruptcy. Still, Fig. 1.3 is less than 
satisfactory, as the modes are not as distinct as they are in Fig. 1.2 (in­
deed, the mixture density that combines these two Gaussian densities is 
unimodal). 

Figure 1.4 provides still more insight into the data process. It gives two 
kernel density estimates for these data, corresponding to the commercial 
banks (dashed line) and the thrifts (solid line). These estimates can be 
thought of as smoothed histograms with very small bins centered at many 
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1.1. Smoothing Methods: a Nonparametric/Parametric Compromise 5 
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Fig. 1.4. Kernel density estimates for Long Island CD rate data. 

different CD rate values. The underlying structure in the data is now even 
clearer. While the distinction between commercial banks and thrifts is a 
key aspect of the data, there is still more going on. The commercial bank 
CD rates are bimodal, with a primary mode at 8.0% and a secondary mode 
around 8.5%, while the distribution for the thrifts has a pronounced left 
tail and a mode around 8.5%. These modes account for the form of the 
histogram in Fig. 1.2. 

Note also the apparent desirability of "round" numbers for CD rates of 
both types, as bumps or modes are apparent at 7.5%, 8.0%, and 8.5%. The 
construction and properties of density estimators of the type constructed 
in Fig. 1.4 will be discussed in Chapter 3. 

It is clear that any model that did not take the subgroups into account 
would be doomed to failure for this data set. The subgroups do not exactly 
correspond to the observed modes in the original histogram (since the left 
mode comes from both subgroups), which shows that there is not necessar­
ily a one-to-one correspondence between modes and subgroups. Still, the 
observed structure in the histogram was instrumental in recognizing the 
best way to approach the analysis of these data. 

The ability of smoothing methods to identify potentially unexpected 
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6 Chapter 1. Introduction 

Fig. 1.5. Scatter plot oflog C-peptide versus age with linear least squares (dashed 
line) and Nadaraya-Watson kernel (solid line) estimates superimposed. 

structure extends to more complicated data analysis problems as well. The 
scatter plot given in Fig. 1.5 comes from a study of the factors affecting 
patterns of insulin-dependent diabetes mellitus in children. It relates the 
relationship of the logarithm of C-peptide concentration to age for 43 chil­
dren. The superimposed dashed line is the ordinary least squares linear 
regression line, which does not adequately summarize the apparent rela­
tionship in the data. The solid line is a so-called Nadaraya-Watson kernel 
estimate (a smooth, non parametric representation of the regression rela­
tionship), which shows that log C-peptide increases steadily with age to 
about age 7, where it levels off (with perhaps a slight rise around age 14). 
Again, the smoothed estimate highlights structure in a nonparametric fash­
ion. Regression smoothers of this type will be discussed in Chapter 5. 

It might be supposed that the benefits of smoothing occur only when 
analyzing relatively small data sets, but this is not the case. It also can 
happen that a data set can be so large that it overwhelms an otherwise 
useful graphical display. 

Consider, for example, Fig. 1.6. This scatter plot refers to a data set 
examining the geographic pattern of sulfate wet deposition ("acid rain"). 
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1.1. Smoothing Methods: a Nonparametric/Parametric Compromise 7 
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Fig. 1.6. Scatter plot of correlation of adjusted wet deposition levels versus dis­
tance with lowess curve superimposed. 

The plot relates the distance (in kilometers) between measuring stations 
and the correlation of adjusted deposition levels (adjusted for monthly and 
time trend effects) for the 3321 pairings of 82 stations. It is of interest 
to understand and model this relationship, in order to estimate sulfate 
concentration and trend (and provide information on the accuracy of such 
estimates) on a regional level. 

Unfortunately, the sheer volume of points on the plot makes it difficult 
to tell what structure is present in the relationship between the two variables 
past an overall trend. Superimposed on the plot is a lowess curve, a robust 
nonparametric scatter plot smoother discussed further in Chapter 5. It is 
clear from this curve that there is a nonlinear relationship between distance 
and correlation, with the association between deposition patterns dropping 
rapidly until the stations are roughly 2000 km apart, and then leveling off 
at zero. 
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8 Chapter 1. Introduction 

1.2 Uses of Smoothing Methods 

The three preceding examples illustrate the two important ways that 
smoothing methods can aid in data analysis: by being able to extract more 
information from the data than is possible purely non parametrically, as 
long as the (weak) assumption of smoothness is reasonable; and by being 
able to free oneself from the "parametric straitjacket" of rigid distributional 
assumptions, thereby providing analyses that are both flexible and robust. 

There are many applications of smoothing that use one, or both, of 
these strengths to aid in analysis and inference. An illustrative (but nonex­
haustive) list follows; many of these applications will be discussed further 
in later chapters. 

A. Exploratory data analysis 

The importance of looking at the data in any exploratory analysis cannot be 
overemphasized. Smoothing methods provide a way of doing that efficiently 
- often even the simplest graphical smoothing methods will highlight im­
portant structure clearly. 

B. Model building 

Related to exploratory data analysis is the concept of model building. It 
should be recognized that choosing the appropriate model as the basis of 
analysis is an iterative process. Box (1980) stated this point quite explicitly: 
"Known facts (data) suggest a tentative model, implicit or explicit, which 
in turn suggests a particular examination and analysis of data and/ or the 
need to acquire further data; analysis may then suggest a modified model 
that may require further practical illumination and so on." Box termed 
this the criticism stage of model building, and smoothing methods can, 
and should, be an integral part of it. 

The earlier example regarding CD rates illustrates this point. A first 
hypothesized model for the rates might be Gaussian, yielding Fig. 1.1. Ex­
amination of a histogram (Fig. 1.2) suggests that this model is inadequate 
and that a model that takes account of any subgroups in the data could be 
more effective. Outside knowledge of the data process then leads to the idea 
of using the type of banking institution as those subgroups (without seeing 
the histogram, the existence of these subgroups might easily be ignored). 
This might suggest a model based on a mixture of two Gaussians, with pos­
sibly different variances, as is presented in Fig. 1.3. The kernel estimates in 
Fig. 1.4 imply that this model is still inadequate, however, and that further 
refinement is necessary. In this way, both the data and outside knowledge 
combine to progressively improve understanding of the underlying random 
process. 
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1.2. Uses of Smoothing Methods 9 

C. Goodness-of-fit 

Smoothed curves can be used to test formally the adequacy of fit of a 
hypothesized model. It is apparent from Figs. 1.2 and 1.4 that a Gaussian 
model is inadequate for the CD rate data; tests based on the difference 
between those curves and the Gaussian curve (Fig. 1.1) can be defined to 
assess this lack of fit formally. Similarly, the difference between the solid 
and dashed lines in Fig. 1.5 defines a test of the goodness-of-fit of a linear 
model to the diabetes data presented there. Tests constructed this way 
can be more powerful than those based on the empirical distribution alone 
and more robust than those based on a specific distributional form for 
the errors in a regression model. Alternatively, smoothed density estimates 
and regression curves can be used to construct confidence intervals and 
regions for true densities and regression functions, with similar avoidance 
of restrictive parametric assumptions. 

D. Parametric estimation 

Density and regression estimates can be used in parametric inference as well. 
Suppose the mixture of two Gaussians tied to the type of bank institution 
that was graphically presented in Fig. 1.3 was hypothesized for the CD 
rate data (considering the long tails and bimodality apparent in the density 
estimates of Fig. 1.4, this might be a poor choice, however). An alternative 
to the usual maximum likelihood estimates would be to fit the two Gaussian 
densities that are "closest" to the curves in Fig. 1.4, defining closeness 
by some suitable distance metric. Estimators of this type are often fully 
efficient compared to maximum likelihood but are more robust, since a 
density estimate is much less sensitive to an unusual observation (outlier) 
than are maximum likelihood estimates like the sample mean and variance. 

E. Modification of standard methodology 

Standard methodologies can be modified using smoothed density estimates 
by simply substituting the density estimate for either the empirical or para­
metric density function in the appropriate place. For example, discriminant 
analysis is usually based on assuming a multivariate normal distribution 
for each subgroup in the data, with either common (linear discriminant 
analysis) or different (quadratic discriminant analysis) covariance matrices. 
Then, observations are classified to the most probable group based on the 
normal densities. This procedure can be made nonparametric (and robust 
to violations of normality) by substituting smoothed density estimates for 
the normal density and classifying observations accordingly. 

The bootstrap is another method where improvement via smoothing 
is possible. The ordinary bootstrap is based on repeated sampling from the 
data using the empirical distribution. This can result in bootstrap samples 
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10 Chapter 1. Introduction 

dominated by unusual observations, or repeat values, not typical of the 
true underlying density. Simulating from a smoothed version of the under­
lying density avoids these difficulties, leading to potentially more accurate 
estimates of standard error and confidence regions for statistics. 

1.3 Outline of the Chapters 

The purpose of this book is to provide a general discussion of smoothing 
methods in statistics, with particular emphasis on the actual application 
of such methods to real data problems. There is a good deal of common 
structure in all these methods, which will be emphasized throughout the 
discussion. 

Chapter 2 introduces the ideas of data smoothing through the simplest 
of all density estimators, the histogram. The required tradeoff of bias versus 
variance is noted, as well as its connection to the choice of bin widths for 
the estimate. More efficient variants of the histogram idea, such as the 
frequency polygon, are then examined, and their strengths and weaknesses 
are described. 

Smoother univariate density estimation methods are the focus of Chap­
ter 3. The kernel estimator is discussed first, including an examination of 
the properties of the estimator and discussion of various methods that have 
been suggested to regulate the amount of smoothing of the estimator. Im­
provements and extensions of the estimator are also examined. In addition, 
alternative estimators are examined and compared with kernel estimators. 

Generalization to multivariate density estimation is the subject of 
Chapter 4. High-dimensional spaces are difficult to deal with, and methods 
designed to overcome these problems are described. 

Chapter 5 treats non parametric regression techniques. The three most 
widely used methods -- kernel, local polynomial, and spline estimators -
are discussed and compared. 

Application of smoothing to contingency tables is the subject of Chap­
ter 6. Smoothing can lead to great gains in accuracy over the usual fre­
quency estimates when the table is sparse. Variations and improvements 
of different estimators are examined and compared, and connections with 
nonparametric regression and density estimation are described. 

Chapter 7 presents applications of smoothed estimates of the type de­
scribed in Section 1.2. This includes a more detailed discussion of the uses of 
smoothing in discriminant analysis, goodness-of-fit, parametric estimation, 
and the bootstrap. 
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Computational issues 11 

Background material 

Section 1.1 

The diabetes data come from a study discussed in Sockett et ai. (1987). 
Hastie and Tibshirani (1990, p. 10) presented scatter plots with a poly­
nomial fit superimposed, as well as eight different non parametric smooth 
curves, each of which has an appearance similar to that of the curve in Fig. 
1.5. 

Oehlert (1993) discussed extensively the ecological and statistical as­
pects of the analysis of sulfate wet deposition data. He proposed using a 
multivariate time series model that incorporates both temporal and spa­
tial correlation, and smoothing observed values based on physical distance 
between their associated locations. 

Section 1.2 

Tukey (1977) emphasized the importance of looking at the data in any 
statistical analysis. Other authors besides Box (1980) that have noted the 
iterative nature of model building include Tukey (1977, p. v), Mosteller and 
Tukey (1977, Chapter 6), Cook and Weisberg (1982, pp. 7-8) and Cleveland 
(1993, p. 122). Other references for this section will appear in later chapters. 

Computational issues 

This section describes the availability of computer software to use the meth­
ods discussed in each of the following chapters. The software includes both 
commercial and free (or shareware) resources. An important resource is 
the statlib archive at Carnegie-Mellon University; information on us­
ing statlib can be obtained by sending the message send index to the 
electronic mail address statlib@lib. stat. cmu. edu. In addition, the au­
thors of many papers will provide code of some sort upon request; if a 
paper specifically encourages such dissemination of code, the section notes 
this. On-line directories of generally available resources, such as archie 
(for anonymous ftp access), veronica (for gopher access), and Lycos 
(for World Wide Web access), are invaluable in keeping up with the ever­
expanding pool of information available over the Internet. Material that is 
available via one access method is often also available via other methods 
(so, for example, code available via anonymous ftp is often also available 
via gopher or a World Wide Web browser, such as Mosaic or Netscape). 
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12 Chapter 1. Introduction 

Exercises 

Exercise 1.1. Consider the histogram in Fig. 1.2. Using that histogram, 
construct an alternative density estimate by drawing straight lines that 
connect the points defined by the middle of each bin interval and the height 
of that bin. Do you feel that either estimate is a better representation of 
the true underlying density of CD rates than the other? If so, why? 

Exercise 1.2. Based on the kernel estimates given in Fig. 1.4, try to estimate 
the density of the CD rate data using a mixture of normal densities. How 
many such normals, with how many fitted parameters, would be needed to 
fit all the CD rates? Just the commercial banks? Just the thrifts? 

Exercise 1.3. Fit a quartic polynomial regression model (that is, with terms 
up to power 4) to the diabetes data using any linear regression software. 
How does the fitted line compare to the kernel curve? Do you think a lower 
order polynomial might fit about as well as the quartic polynomial? 

Exercise 1.4. Use a nonlinear regression package to fit the model 

Correlation = a x exp( - (3 x Distance) + E 

to the sulfate wet deposition data of Fig. 1.6. How does this fit compare to 
the lowess curve? 
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Chapter 2 

Simple Univariate Density Estimation 

2.1 The Histogram 

2.1.1 Motivation for the histogram 

A fundamental concept in the analysis of univariate data is the probability 
density function. Let X be a random variable that has probability density 
function f (x). The density function describes the distribution of X and 
allows probabilities to be determined using the relation 

Pea < X < b) = lb f(u)du. 

A motivation for the construction of a non parametric estimate of the 
density function can be found using the definition of the density function. 
Recall that 

f(x) == ~F(x) == lim F(x + h) - F(x) , 
dx h--->O h 

(2.1) 

where F(x) is the cumulative distribution function of the random variable 
X. Let {Xl, . .. , X n } represent a random sample of size n from the density 
f. A natural finite-sample analog of (2.1) is to divide the line into a set 
of K equisized bins with small bin width h and to replace F(x) with the 
empirical cumulative distribution function 

F(x) = #{Xi ~ x}. 
n 

This leads to the histogram estimate of the density within a given bin: 

where (bj , bj+IJ defines the boundaries of the jth bin, or 

A n 
f(x) = n~' (2.2) 
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14 Chapter 2. Simple Univariate Density Estimation 
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Fig. 2.1. Histograms of forged Swiss bank note data based on (a) 28 bins, (b) 12 
bins, (c) 6 bins. 

where nj is the number of observations in the jth bin and h = bj+l -

bj . The histogram (and other density estimators) also are often used to 
summarize the distribution of observed values even if they are not a random 
sample from an (unknown) density (although then the usual theory is not 
relevant). The histogram estimator is undoubtedly the most commonly used 
univariate density estimator, and there are several good reasons for this. 
The estimator has the advantages of ease and simplicity of construction, 
simplicity of interpretation (including for the statistically unsophisticated), 
and lack of requirement of advanced graphical tools. Its popularity makes it 
important to understand its strengths and weaknesses and how to overcome 
those weaknesses. 

2.1.2 Properties of the histogram 

It is clear from (2.2) that the properties of the histogram estimator depend 
on the bin width h (or, equivalently, the number of bins). The histograms 
given in Fig. 2.1 refer to observation of the width of the bottom margin (in 
millimeters) for 100 forged Swiss bank notes. Multimodality is of interest 
here, since forged bank notes are typically printed in batches (thus, a mul­
timodal distribution would be indicative of possibly forged currency). The 
first histogram is based on 28 bins; the histogram seems undersmoothed 
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Fig. 2.2. Histograms of three randomly generated Gaussian samples: (a) - (c) 
using 20 bins; (d) - (f) using 4 bins. 

(too bumpy), and there is evidence of modes around 8 mm (perhaps), 10 
mm, and 11.5 mm. Figure 2.1(b), based on 12 bins, indicates two modes 
at around 10 and 11.5 mm (although the second mode is somewhat ques­
tionable). The third histogram, based on 6 bins, suggests merely one mode, 
with a possibly skewed density. Thus, the bin width choice is crucial in the 
construction and interpretation of the histograms. 

The patterns in Fig. 2.1 can be viewed as reflecting a fundamental 
(and unavoidable) tradeoff in all smoothing methods, that of bias versus 
variance. Figure 2.2 presents histograms that illustrate this tradeoff. Plots 
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16 Chapter 2. Simple Univariate Density Estimation 

(a), (b), and (c) are histograms with 20 bins each from 3 randomly generated 
samples of size 100 from a standard normal distribution, while plots (d), 
(e), and (f) are histograms with 4 bins each for the same 3 samples. The 
true Gaussian density is superimposed on each plot. 

Plots (a) - (c) demonstrate the difficulties with undersmoothing. Al­
though the bin heights generally follow the true density, they vary dramat­
ically from plot to plot. That is, the estimator has small bias but large 
variability. In contrast, plots (d) - (f) highlight the problems with over­
smoothing. In these plots, the bin heights are reasonably stable from plot 
to plot, but they don't follow the true density very well. That is, the esti­
mator has small variability but large bias. 

What is needed is some way to evaluate lex) as an estimator of f(x). 
One way to evaluate lex) is via some measure of its difference from f(x). 
The measure that is simplest to handle mathematically is squared error, 

SE(x) = [lex) - f(x)f, and its expected value (mean squared error), 

MSE(x) = Ef [lex) - f(x)f. Since global accuracy over the entire interval 

of support is usually of most importance, the integrated squared error, 

Joo 2 

ISE = -00 [leu) - feu)] du, 

and its expected value, mean integrated squared error (MISE), are also of 
interest. 

Since the value of the histogram estimator in any bin follows a binomial 
distribution (scaled by a constant), it is possible to calculate the exact MSE 
of lex), but it is simpler to examine the asymptotic MSE (as the sample 
size n ---t (0). In order for the estimator to be consistent, the bins must 
get narrower, with the number of observations per bin getting larger, as 
n ---t 00; that is, h ---t 0 with nh ---t 00. If the underlying density is smooth 
enough (f'(x) is absolutely continuous and square integrable), then 

Bias [lex)] = Ef [lex)] - f(x) 
1 

= 2f'(x)[h-2(x-bj )]+O(h2 ) , xE(bj,bj+l], (2.3) 

while the variance is 

Combining the squared bias and variance yields the mean squared error, 

MSE [lex)] = Var [lex)] + Bias2 [lex)] 
= f(x) + f'(X)2 [h _ 2(x _ b)]2 

nh 4 J 

+O(n- 1 )+O(h3 ). (2.4) 
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2.1. The Histogram 17 

Finally, integrating over each bin, and then summing bin by bin, gives 

(2.5) 

where R( ¢) represents J ¢( U)2 duo The notation AMISE will be used to 
represent asymptotic MISE (the leading terms in the expansion of MISE). 

The tradeoff of bias versus variance previously noted can be seen math­
ematically in (2.5). The bin width h is directly related to the integrated 
squared bias h2 R(f')j12 and inversely related to the integrated variance 
(nh)-l. That is, narrower bins give an estimator that is less biased (as 
h -+ 0, j approaches a set of spikes at each observation and has zero bias) 
but more variable; making the bins wider increases the number of observa­
tions per bin, reducing variance, but increasing the bias. The histograms in 
Figs. 2.1 and 2.2 illustrate the practical implications of this tradeoff. 

The minimization of MISE requires explicitly balancing bias and vari­
ance through the choice of the bin width h. The minimizer of AMISE is 
easily determined as 

_ -1/3 [ 
6 ] 1/3 

ho - R(f') n , (2.6) 

which results in the minimum AMISE, 

AMISE = [9R(f')] 1/3 n- 2/ 3 . 
o 16 (2.7) 

Equations (2.6) and (2.7) show that the roughness of the underlying 
density, as measured by R(f'), determines the optimal level of smoothing 
and the accuracy of the histogram estimate. Densities with few bumps 
(smaller R(f')) are easier to estimate and require a wider bin, while bumpy 
densities (larger R(f')) are more difficult to estimate and require a smaller 
bin width. 

2.1.3 Choosing the bin width 

Equation (2.6) provides an unambiguous rule (in terms of AMISE) for 
choosing the bin width h of a fixed bin-width histogram. Unfortunately, 
this rule involves the density f, which is precisely what is being estimated, 
so it is of limited usefulness. 

The most straightforward approach to choosing h is to pick a partic­
ular density f and simply substitute into (2.6) to get a value of h. Not 
surprisingly, the typical choice is a Gaussian density. It can be shown that 
the minimizer of AMISE then has the form 

(2.8) 

Practical application of the rule requires an estimate of a. The usual es­
timates, such as the sample standard deviation or interquartile range, can 
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18 Chapter 2. Simple Univariate Density Estimation 

be inadequate for nonnormal data. Multiple modes inflate these measures, 
meaning that a Gaussian-based histogram based on them will be over­
smoothed. 

What is needed is a measure of scale with a local focus - that is, 
one that is dependent on the variability of the observations within homoge­
neous subgroups (modes), rather than for the entire sample (across several 
modes). Janssen et al. (1995) developed such a measure, which leads to a 
more effective histogram based on (2.8) for multimodal densities. 

The obvious drawback in choosing the bin width based on (2.8) is 
that there is no theoretical justification for this approach if the underlying 
density is not Gaussian. A method that does not require assuming the 
nature of the density would be more generally applicable. Consider again 
the ISE measure: 

ISE = j[J(u) - j(u)f du 

= j j(U)2 du + j j(U)2 du - 2 j j(u)j(u)du 

== R(f) + R(j) - 2 j j(u)f(u)du. (2.9) 

R(f) does not depend on j, so it is irrelevant for the purposes of choosing h. 
The last term of (2.9) is evidently -2E[j(X)] (where the expectation is with 
respect to the point of evaluation, not over x), which must be estimated. 
The principle of cross-validation provides one way to do that. Dropping the 
ith case from the random sample {Xl, ... ,Xn } leads to an estimate j-i(Xi) 
that has expected value E[j(X)] (based on the full sample). That is, 

E[j-i(Xi)] = E[j(X)], 

or 

E [~~ j-i(Xi)] = E[j(X)] == j j(u)f(u)du. 

Thus, a data-dependent way to choose h that minimizes an unbiased esti­
mator of ISE is to minimize the cross-validation criterion 

, 2 ~ , 
CV = R(f) - - ~ j-i(Xi). 

n 
i=l 

An equivalent form of (2.10) for the histogram estimator is 

CV = ~ [_2 _ n + 1 ~ (nj)2]. 
h n-1 n-1~ n 

j=l 

(2.10) 

(2.11) 

The potential strengths and weaknesses of these two approaches can 
be seen in Fig. 2.3. The given histograms use the Gaussian-based rule (first 
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Fig. 2.3. Histograms of CD rates for Long Island thrifts, CD rates for Long 
Island commercial banks, and percentage silica in chondrite meteors, respectively, 
choosing bin width based on the Gaussian-based rule (top) and cross-validation 
(bottom). 

row) or cross-validation (second row), for three data sets: CD rates for Long 
Island thrifts (first column), CD rates for Long Island commercial banks 
(second column), which were discussed in Chapter 1, and the percentage 
of silica in 22 chondrite meteors, for which a trimodal density has been 
suggested in many previous analyses. 

An encouraging aspect of these plots is that the simple Gaussian-based 
histograms, despite being based on the density having a roughly Gaussian 
shape, show the bimodal structure of both CD rate distributions, with 
modes at 8% and 8.5%. Unfortunately, the histogram for the chondrite 
data is oversmoothed, suggesting an inability of the scale estimate to focus 
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20 Chapter 2. Simple Univariate Density Estimation 

on the underlying subgroups in the data. 
The cross-validation-based histograms also can be problematic. Both of 

the CD rate histograms are obviously undersmoothed, exhibiting the excess 
roughness that comes from too many bins. This pattern of undersmoothing 
is not unusual for density estimates based on cross-validation. On the other 
hand, this method does bring out the trimodal nature of the chondrite data 
very nicely. 

One other point about a data-dependent choice of the level of smooth­
ing of the estimate should be made. It could be argued that an automatic 
choice is not even worth investigating, since the choice should be made by 
the analyst subjectively anyway. Certainly, no data-dependent rule should 
be followed blindly, and subjective impressions of the proper amount of 
smoothing for a given set of data are important. 

That does not diminish the importance of data-dependent choices, 
however. In some applications, graphical summaries need to be provided 
automatically (for screening of large amounts of data, for example), which 
requires automatic smoothness determination. Statistical investigation of 
the general properties of different methods via Monte Carlo simulation also 
requires such automatic choice, as does the use of resampling (bootstrap) 
methods to assess their properties for a given data set. Finally, even subjec­
tive choice requires some sort of "benchmark" to use as a basis from which 
to (subjectively) vary. For all these reasons, effective automatic determi­
nation of the amount of smoothing for any smoothing method is highly 
desirable if the method is to be applied in practice. 

2.2 The Frequency Polygon 

2.2.1 Properties of the frequency polygon 

Whatever the usefulness of histograms might be in the presentation of data, 
it is apparent that they do not provide an adequate description of a smooth 
density function, because of their inherent piecewise constant nature. More 
accurate estimators should necessarily be smoother. A simple way to make 
a histogram appear smoother, by avoiding the discontinuities at the bin 
edges, is to connect mid-bin values by straight lines. The resultant frequency 
polygon estimator is continuous, but its derivative is undefined at the mid­
bin points. 

Let {b1 , ... , bK+d again represent bin edges of bins with width h, 
with {nl,"" nK} being the number of observations falling in the bins, 
and define {co, ... ,CK +d to be the midpoints of the bin intervals (that is, 
Cj = (bj+bj+d/2, j = 1, ... , K, with Co = b1-h/2 and CK+l = bK+l +h/2). 
The frequency polygon is then defined as 

, 1 
f(x) = nh2 [njcj+l - nj+lcj + (nj+l - nj)x] , x E [Cj,Cj+l], (2.12) 
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Fig. 2.4. Frequency polygon construction based on histograms of CD rates for 
Long Island thrifts and CD rates for Long Island commercial banks. 

where no = nK +1 == O. Figure 2.4 gives examples of the construction of fre­
quency polygons based on histograms given previously in Fig. 2.3 for Long 
Island CD rates. The resultant density estimate gives a more aesthetically 
pleasing representation of the density than the histogram, while retaining 
its simplicity and ease of interpretation. 

Asymptotic analysis shows that this aesthetic improvement can trans­
late into improved accuracy of the estimator. Assume that f" is absolutely 
continuous, and R(f), R(f'), R(f") , and R(f"') are all finite (note that 
additional smoothness of f is being assumed here, compared with what is 
required for histogram estimation). Proceeding in a manner analogous to 
that for histograms (basing properties on two adjacent bin counts, rather 
than only one) gives the form of the MISE: 

(2.13) 

As was true for histograms (see Eq. (2.5)), the first (variance) term varies 
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22 Chapter 2. Simple Univariate Density Estimation 

inversely with bin size, while the second (bias) term varies directly with 
it. The remarkable change, however, is that the squared bias term is now 
o (h4 ), rather than 0 (h2 ); evaluating the histogram only at the mid-bin 
value, where the bias is O(h2), rather than O(h), reduces the bias by an 
order of magnitude. 

The implications of this bias reduction are immediate. Minimization of 
the leading terms of (2.13) provides the asymptotically optimal bin width 

_ -1/5 [
15 ]1/5 

ho - 2 49R(f") n , (2.14) 

which gives the minimal asymptotic MISE 

AMISE = ~ [49R(fIl)] 1/5 n-4 / 5 . 
o 12 15 (2.15) 

Thus, the simple strategy of imposing straight-line interpolation onto 
a histogram estimate results in a density estimator with an improved con­
vergence rate. Comparison of (2.14) and (2.6) shows that the optimal bin 
width of a frequency polygon is different from that of a histogram (O(n- 1/ 5 ) 

versus O(n-1/3)), and will asymptotically be larger. 

2.2.2 Choosing the bin width 

The simplest way to choose the bin width h for a frequency polygon is 
to substitute a particular form of f into (2.14). The resultant Gaussian 
reference rule is 

(2.16) 

with an appropriate estimate of scale substituted for u. 
The frequency polygon given in Fig. 2.5 uses this Gaussian-based con­

struction. The estimator refers to the distribution of velocities (in kilome­
ters per second) of 82 galaxies relative to the Milky Way. If galaxies cluster 
together into so-called superclusters, the distribution of velocities would be 
multimodal, with each mode representing a cluster as it moves away at its 
own speed. The frequency polygon supports the supercluster hypothesis, 
possessing modes at around 10,000, 19,000, 23,000, 27,000, and 33,000 km 
per second. 

2.3 Varying the Bin Width 

The histogram (2.2) and frequency polygon (2.12) estimators discussed thus 
far are based on a fixed (constant) bin width for all cells. This is not, how­
ever, the best approach (at least theoretically). The bin width h controls the 
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Fig. 2.5. Gaussian-based frequency polygon of velocities of galaxies data. 

bias - variance tradeoff at any point, and the best tradeoff varies depending 
on the local properties of the true density. 

Equation (2.4) quantifies this tradeoff in terms of MSE for the his­
togram, as it implies that the local properties of the density at any point 
x determine the accuracy of a histogram at x. In particular, the bin width 
should be larger in regions of high density, to reduce the first (variance) 
term, while it should be inversely related to If' (x) I, in order to minimize 
the second (bias) term. The latter pattern is intuitive, since it implies that 
more detail will be available in the histogram estimate in areas where the 
density is changing rapidly. Thus, a histogram with locally varying bin 
widths should be more accurate than one with fixed bin widths. 

Generalizing the definition of a histogram to locally varying bin widths 
is straightforward. Differentiation of the empirical cumulative distribution 
function motivates the appropriate estimate: 

, n· 
f(x) = J 

n(bj +! - bj ) , 
(2.17) 

Thus, the problem becomes one of choosing the bin edges {b1 , ... , bK+r}. 
A similar pattern emerges for the frequency polygon. The asymptotic 

MISE of the estimator over the bin containing x has the form 
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24 Chapter 2. Simple Univariate Density Estimation 

AMISE(x) = 2f(x) + ~h4f"(x)2 
3nh 2880 ' 

(2.18) 

implying that the optimal local bin width satisfies 

h = 2 [ 15f(x) ] 1/5 n-1/5. 
x 49f"(X)2 

Comparison of (2.18) and (2.6) shows that the locally optimal bin width 
for a frequency polygon is different from that for a histogram, with f" (x) 
determining the bias, rather than f' (x). The behavior of these two measures 
will often coincide in the tails (with both being small, implying larger bin 
widths), but otherwise can be quite different. 

The frequency polygon can be generalized to allow varying bin widths 
by simply allowing bj+1 - bj to vary, giving the general form 

+ J _ J X ( n '+1 n.) ] 
bj+2 - bj+l bj+1 - bj , 

A simple way to construct locally varying bin-width histograms or 
frequency polygons that often works well in practice is by transforming the 
data to a different scale and then smoothing the transformed data. This 
can sometimes remove characteristics of a density that can cause trouble 
for a fixed bin-width estimator. Then, the final estimate is formed by simply 
transforming the constructed bin edges {b j } back to the original scale and 
using (2.17) or (2.19) (this assumes, of course, that the transformation is 
monotonic) . 

Figure 2.6 illustrates how this method can work. The data are the 
1993 salaries of the ll8 Major League baseball players who were eligible 
for salary arbitration before the 1993 season (these are players who have 
between two and six years of Major League service and whose contracts 
have expired). Figure 2.6(a) is a fixed bin-width frequency polygon of the 
data in the original dollar scale, based on a bin width of $300,000. The long 
right tail of the distribution is apparent, with the highest mode at about 
$1 million, but the roughness in the tail makes it difficult to decide if any 
other structure might be present in the data. 

Salaries are often modeled using the lognormal distribution, and the 
long right tail of the distribution suggests that a logarithmic transformation 
can reveal new structure by deemphasizing the long tail. The frequency 
polygon in Fig. 2.6(b) is a fixed bin-width frequency polygon (with bin 
width .1) in the IOglO (salary) scale. After exponentiating back to the original 
scale, the locally varying bin-width frequency polygon given in Fig. 2.6( c) 
is the result. While this plot still shows the long tail and primary mode 
at $1 million, it also exhibits minor modes at $250,000, $500,000, and $2.5 
million. This is an intuitive result, as these values correspond to appealing 
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(a) 
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Fig. 2.6. Frequency polygons of baseball player salary data. (a) Fixed bin-width 
frequency polygon in original scale. (b) Fixed bin-width frequency polygon in 
logarithmic scale. (c) Locally varying bin-width frequency polygon based on ex­
ponentiation from logarithmic scale. 
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26 Chapter 2. Simple Univariate Density Estimation 

"round" numbers and reflect the inherent inhomogeneity in the data (while 
some players who are eligible for arbitration have already been successful in 
the Major Leagues and earn salaries in the millions, a notable percentage 
are utility players and earn considerably less). 

Other (monotone) transformations can be useful for particular applica­
tions. The histograms in Fig. 2.7 are based on values of shooting percentage 
for the 292 National Hockey League players who played at least 60 games 
during the 1991~1992 season and scored at least one goal (the shooting per­
centage is the proportion of shots by a player on the opposition goal that 
are actually goals). Figure 2.7(a) is a 13-cell, fixed bin-width histogram in 
the original scale. Most players have a shooting percentage between 2% and 
15%, but the structure in that area is very hard to see. 

Since the data values are proportions here, a reasonable target scale is 
the logistic, £ = log[Pj(l - p)], where p is the observed shooting percent­
age. After constructing a fixed bin-width histogram in that scale, it is then 
transformed back using the inverse transformation p = exp(£)j[exp(£) + 1]. 
Figure 2.7(b) is the resultant variable bin-width histogram based on 13 cells. 
It now appears that the distribution of shooting percentages is trimodal. 
The reason for this pattern can be seen in Fig. 2. 7( c). This plot gives two 
fixed bin-width histograms (bin width .01) for shooting percentage, sepa­
rated by whether the player was a forward (shaded bars) or a defenseman 
(unshaded bars). The distribution of shooting percentages for defensemen 
is multimodal, with modes corresponding to defensively oriented defense­
men and offensively oriented ones. After combining these players with the 
forwards (who are generally more offensively oriented, since they score most 
of the goals), the trimodal pattern in Fig. 2.7(b) emerges. 

2.4 The Effectiveness of Simple Density Estimators 

The examples given thus far show that simple density estimators like the 
histogram and frequency polygon can be very informative in highlighting 
interesting structure in a univariate data set. Still, the question remains 
whether such estimators are adequate for general use or should be replaced 
with better (and more complex) methods. 

From the point of view of AMISE, the choice between the histogram 
and frequency polygon estimators is easy. Equations (2.7) and (2.15) imply 
that, as the sample size increases, the frequency polygon dominates the his­
togram (in terms of MISE) if the bin width is chosen appropriately. Monte 
Carlo simulations support this for small samples also, whether choosing the 
bin width to minimize the actual ISE, or in a data-dependent way, as the 
frequency polygon consistently has smaller average ISE than the histogram 
in the situations examined. Since there is virtually no additional effort in 
calculating or presenting a frequency polygon compared to a histogram, 
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Fig. 2.7. Histograms of hockey player shooting percentage data. (a) Fixed bin­
width histogram. (b) Locally varying bin-width histogram based on inverse 
transformation from logistic scale. (c) Fixed bin-width histograms separated by 
whether player was a defenseman (unshaded bars) or a forward (shaded bars). 
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frequency polygons should be used routinely instead of histograms, and 
histograms should be replaced as standard output of statistical packages. 

Simulations also provide guidance about how to choose the bin width 
in practice. More complicated approaches, such as cross-validation (and its 
variants), do not seem to be worth the effort, since the Gaussian reference 
rules (2.8) and (2.16) beat them (with respect to ISE), even if the true 
underlying density is far from Gaussian. 

A related question is that of choosing the anchor of a histogram or 
frequency polygon (b1 in the notation of Sections 2.1.1 and 2.2.1, respec­
tively). The form of MISE given in (2.5) and (2.13), respectively, shows 
that the choice has a lower-order effect than does the choice of h asymp­
totically, but it is still possible that anchor position could be important in 
small samples. In fact, Monte Carlo simulations indicate that the choice 
of anchor position has a (perhaps surprisingly) small effect on the ISE of 
the resultant histograms or frequency polygons, as long as the underlying 
bins do not cross a discontinuity point (for example, the point x = 0 for an 
exponential density). 

Do these results mean that a simple Gaussian-based estimator, with 
arbitrarily chosen anchor, is the final density estimator of choice? Unfortu­
nately, no. Consider the six histograms given in Fig. 2.8. These histograms 
are all estimates for one data set (n = 50) generated from the bimodal 
normal mixture distribution .5N(0, 1) + .5N(3, 1), all based on the same 
bin width h = 1, but with different anchor positions. It is apparent that the 
histograms give quite different impressions of the density, with from one to 
three modes indicated, and different degrees of asymmetry being suggested 
(obviously, frequency polygons also would have very different appearances). 
Despite their different appearances, all of these histograms have ISE in the 
range [.0153, .0169] (that is, the least accurate of these histograms has ISE 
only 10% higher than the most accurate). The ISE measure does not ad­
equately reflect the performance of the estimate in the way that matters 
to the data analyst ~ that is, the ability to identify interesting structure 
in the data accurately. Monte Carlo simulations confirm this result, in that 
seemingly accurate frequency polygon rules (in terms of ISE) can be very 
poor at resolving modes in the underlying density. The stability of the ap­
pearance of a histogram or frequency polygon also depends on the precision 
to which the data are reported and how that precision relates to the chosen 
bin width. 

The implication of these results is that the simple density estimation 
methods described in this chapter don't take advantage of the power of 
smoothing methods well enough. Apparently, reaping the practical bene­
fits of smoothing requires better smoothing methods, which are necessarily 
more complex. Such methods are the subject of the succeeding chapters. 
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Fig. 2.8. Histograms of bimodal mixture data using different anchor positions. 
All histograms have bin width equal to 1. 
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30 Chapter 2. Simple Univariate Density Estimation 

Background material 

Section 2.1 

2.1.1. The histogram estimator can be motivated using ordinary (likelihood­
based) theory, as it is the unique maximum likelihood estimator over the 
set of estimates of f that are piecewise constant on the set of bins {b j } (de 
Montricher, Tapia, and Thompson, 1975). This is true for both equal and 
unequal bin-width histograms. 

2.1.2. The observations of bottom margin width for Swiss bank note data 
come from a larger data set given in Flury and Riedwyl (1988). 

Standard notation concerning the convergence properties of sequences 
is as follows: 
(1) Deterministic sequences: Let Xn and Yn be two real-valued determin­

istic (nonrandom) sequences. Then, as n ---; 00, 

(a) Xn = O(Yn) if and only if limsuPn~CXl IXn/Ynl < 00, 

(b) Xn = O(Yn) if and only if limn~CXl IXn/Ynl = O. 
(2) Random sequences: Let Xn and Yn be two real-valued random se­

quences. Then, as n ---; 00, 

(a) Xn = Op(Yn) if and only if for all f > 0, there exist 8 and N such 
that P(IXn/Ynl > 8) < f, for all n > N, 

(b) Xn = Op(Yn) if and only if for all f > 0, limn~CXl P(IXn/Ynl > f) = 
O. 

Many authors have proposed rules to determine the number of bins to 
use in the construction of a histogram. In a weak sense, the choice of h is not 
crucial, since j(x) is a consistent estimator of f(x) as long as n ---; 00 with 
h ---; 0 and nh ---; 00 (Abou-Jaoude, 1976a,b), but this does not reflect the 
very different appearances histograms have for finite samples when based on 
different bin widths. Suggested bin-selection methods include rules based on 
the logarithm of the sample size (Sturges,' 1926; Larson, 1975, p. 15; Doane, 
1976; Becker, Chambers, and Wilks, 1988; Dixon, 1988), the square root of 
the sample size (Duda and Hart, 1973; Davies and Goldsmith, 1980, p. 11; 
Numerical Algorithms Group, 1986), and the sample size itself (Ishikawa, 
1986, p. 8). Scott (1979) and Freedman and Diaconis (1981) established the 
optimal rate, in terms of minimizing AMISE. The optimal O( n -2/3) rate for 
AMISE is uncomfortably slow, as Boyd and Steele (1978) showed that the 
fastest possible rate is O(n-I). This is the rate achieved in the parametric 
situation when using a y'ii-consistent estimator, so this deficiency can be 
viewed as the price one pays (when using the histogram) for removing 
parametric assumptions. 

Equation (2.5) provides a way to approximate the effect of choosing 
the bin width h suboptimally. Choosing the bin width h* = cho, substi­
tuting into (2.5), and comparing with the value given in (2.7) shows that 
AMISE* = (c3 + 2)/(3c) x AMISEo. The AMISE is fairly insensitive to 
errors in the choice of h as high as 30% or so. Proportional errors above the 
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optimal h are somewhat less deleterious than errors below the optimal hi 
for example, there is a 13% increase in AMISE associated with choosing h 
40% too high, as opposed to a 23% increase when choosing h 40% too low. 
Thus, oversmoothing a bit hurts accuracy (as measured by squared error) 
less than a similar amount of undersmoothing. 

2.1.3. Lugosi and Nobel (1996) gave sufficient conditions for the consistency 
of (possibly multivariate) histograms based on data-dependent partitioning 
rules. Scott (1979) proposed applying the Gaussian-based rule (2.8) using 
the sample standard deviation s as the estimate of 0'. Freedman and Dia­
con is (1981) noted that s is not appropriate for non-Gaussian densities and 
suggested using the interquartile range, with the rule h = 2(IQR)n- 1/ 3 . 

Silverman (1986, p. 47) combined these two ideas by proposing the rule 
h 3.49a-n- 1/ 3 , where a- = min(s, IQR/1.34). 

It is possible to justify the Gaussian-based rule without the require­
ment of underlying normality. Terrell and Scott (1985) noted that while de­
termination of the optimal number of bins from (2.6) requires exact knowl­
edge of j, it is possible to estimate a lower bound for RU'), based on the 
data, thereby giving a lower bound for the optimal number of bins. They 
termed this oversmoothing, since any wider bin width cannot be the optimal 
choice. They determined the density that minimizes RU') among bounded 
densities and then showed that using the range of the data as a scale esti­
mate implies that the optimal number of bins must be at least (2n) 1/3. This 
corresponds to a bin-width requirement h :::; 3.550'n- 1/ 3 , which is very sim­
ilar to the Gaussian-based rule. Terrell (1990) investigated the oversmooth­
ing idea further by exploring measures of scale other than the range, leading 
to other rules (still similar to the Gaussian one). 

Rudemo (1982) and Bowman (1984) originally suggested the use of 
cross-validation for choosing the bin width of a histogram. Stone (1985a) 
provided theoretical justification for the CV rule (2.11), showing that this 
rule is asymptotically optimal, in the following sense: Let ho be the true 
minimizer of ISE, and assume that there exists a nonempty subset of lR 
on which l' is continuous and nonzero (actually, the required condition is 
slightly weaker than this). Then, 

lim ISE(h;w) = 1 
n-+oo ISE( ho) 

(2.20) 

with probability 1. Burman (1985) established a similar result assuming 
only bounded ness of j, but required stronger conditions on h. This asymp­
totic optimality of the CV choice does not address the variability of CV as 
an estimator of ISE, which is unfortunately high. Daly (1988) suggested an 
alternative criterion that is based on estimating MISE. 

An attempt to address this high variability is the biased cross-validation 
(BCV) method of Scott and Terrell (1987), which sacrifices the unbiased­
ness of CV as an estimator of MISE - RU) in order to reduce variability 
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around MISE - R(J). The BCV criterion is based on substituting an esti­
mate for R(J') into the AMISE given by the leading terms of (2.5). For this 
reason, it can be viewed as an example of a plug-in method for choosing the 
bin width; such methods will be more important in succeeding chapters. 
The BCV criterion has the form 

5 1 K 
BCV = - + -- "(n·+l - n·)2 6nh 12n2h~ J J 

j=O 

(defining no = nK+l = 0). Scott and Terrell showed that in most cases 
Var[BCV(h)] is considerably smaller than Var[CV(h)], which translates into 
correspondingly reduced variation in the minimizers hev and hBev , respec­
tively. Both hev and hBev have the slow relative convergence rate of 

but Hall and Marron (1987a,b) showed that this is, in fact, the optimal rate. 
Unfortunately, hBev tends to oversmooth; indeed, for smaller samples the 
BCV criterion sometimes does not have any local minima at all. 

Scott (1992, pp. 77~80) hypothesized possible causes of the tenden­
cies for CV to undersmooth (the existence of (near) ties in the data) and 
BCV to oversmooth (the global minimum of BCV is h = 00, and local 
minima can be correspondingly large). Marron (1992a) proposed that the 
practical implementation of the cross-validation rules should be that hev 
is the largest value of h that is a local minimum of CV(h), while hBev is 
the smallest value of h that is a local minimum of BCV(h) (presumably 
less than the oversmoothed choice). It should be noted, however, that this 
recommendation was made regarding the more accurate density estimators 
discussed in the next chapter, where it would be expected that the CV and 
BCV functions would have fewer local minima. 

The chondrite meteor data are originally from Ahrens (1965). The 
trimodal nature of the underlying density has been noted by several authors, 
including Good and Gaskins (1980) and Simonoff (1983). 

Section 2.2 

2.2.1. The frequency polygon is the unique maximum likelihood estimator 
(MLE) over the set of functions that are piecewise linear between a set of 
equispaced grid points, but it is not the MLE if the grid points are unequally 
spaced (de Montricher, Tapia, and Thompson, 1975). 

Scott (1985a) provided an asymptotic analysis of the accuracy (in 
terms of MISE) of the fixed bin width frequency polygon, leading to Eqs. 
(2.13) ~ (2.15). Samiuddin, Jones, and EI-Sayyad (1993) showed that the 
gain in AMISE of the frequency polygon over the histogram is due to the 
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evaluation of the histogram at only the mid-bin value, where the bias is 
O(h2), rather than O(h). 

There are other simple histogram-based estimators that achieve this 
reduced bias; see, for example, Minnotte (1996). Jones et aI. (1998) sug­
gested connecting bin edge, rather than mid-bin values, with the height at 
the edge being the average of contiguous bin heights. This bin edge frequency 
polygon (EFP) has the form 

fA () _ _ l{nI+~(nI+1+nI-d (x-mI)(nI+l-nI-1)} 
EFP x - n 2h + 2h2 ' 

(2.21) 
where x falls in bin I and mI is the midpoint of the bin. The optimal JEFP 

has 11% smaller AMISE than the optimal frequency polygon. The Gaussian 
reference rule is to take h = 1.50an-1/ 5 . 

Equation (2.13) can be used in the same way as Eq. (2.5) to ap­
proximate the effect of choosing the bin width h suboptimally. If a bin 
width h* = cho is chosen, substituting into (2.13) shows that AMISE* = 
(c5 + 4)/(5c) x AMISEo. 

2.2.2. Terrell and Scott (1985) and Terrell (1990) investigated oversmooth­
ing in the frequency polygon context. Minimization of R(f"), rather than 
R(f'), determines the bin width. Using the range of the data as a scale esti­
mate implies that the optimal number of bins must be at least (147n/2)1/5. 
For fixed a 2 , the corresponding rule is h ~ 2.33an- 1/ 5 . The similarity of 
this to (2.16) reinforces the impression that the Gaussian density is quite 
smooth. 

Roeder (1990) gave data on velocities of galaxies relative to the Milky 
Way and found the same five modes as are evident in the frequency polygon 
using a mixture of Gaussian densities. 

Cross-validation, as in (2.10), can be used to choose the bin width of 
a frequency polygon. For a fixed bin-width estimator, if x E [bj , bj +1], then 
J-i(Xi) has the form 

{

I [ nj-nj_l-l ( )] [] 
A (n-l)h nj-l + h Xi - Cj-l , Xi E bj,Cj , 

f-i(xi) = 1 [nj+1-nj+l ] 
.(n-l)h nj+l + h (Xi - Cj+d , Xi E [cj,bj+1] 

Substituting these values (for each Xi) into (2.10) gives the CV criterion. 
The BCV criterion also can be defined for a fixed bin-width frequency 

polygon. Here an estimate of R(f") is required, based on the available 
frequency polygon. Scott and Terrell (1987) proposed an estimate based on 
second differences: 

All 1,"", 26 
R(f ) = n 2h5 L.,,(nj+l - 2nj + nj-l) - nh5 ' 

Plugging into (2.13) then gives 
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271 49 2 
BCV = 480nh + 2880n2 h I)nj+l - 2nj + nj-l) 

(Scott, 1992, p. 101). 

Section 2.3 

Scott (1992, Sect. 4.1.3) derived the optimal bin width of a frequency poly­
gon at a point x based on the asymptotic MSE. 

Early attempts at constructing variable bin-width histograms were 
based on sample percentiles; that is, setting nj equal to a fixed constant (say, 
k). See, for example, Rodriguez and Van Ryzin (1985), Van Ryzin (1973) 
and Wegman (1969, 1970a,b, 1975). Unfortunately, as was demonstrated by 
Scott (1982), choosing bin widths in this fashion results in histograms with 
MISE many times larger than that of the best fixed bin-width histogram, 
for a wide range of densities (see also Scott, 1992, Sect. 3.2.8.4). The prob­
lem is that these rules imply bin widths that are inversely related to f(x), 
rather than 1f'(x)1 (as they should be), leading to inflated bias. 

Kogure (1987) derived the optimal MISE for the variable bin-width 
histogram. This optimal value is typically 15%-30% smaller than the op­
timal value for a fixed bin-width histogram (Scott, 1992, p. 68). Kogure 
showed that this optimal rate can be achieved using a recursive partition­
ing method, where the interval of interest is divided into equisized bins, 
each of which might then be subdivided further. 

The data on Major League Baseball salaries come from the February 
21, 1993, issue of Newsday (Newsday, 1993a). The data on shooting per­
centages for National Hockey League players were extracted from National 
Hockey League (1992). 

Section 2.4 

The Monte Carlo simulations of Simonoff and Hurvich (1993) indicated the 
superiority (based on ISE) of simple Gaussian-based rules for choosing the 
bin width of histograms and frequency polygons over the cross-validated 
choice. Their results also established the much smaller average ISE of fre­
quency polygons compared with histograms in the situations studied for 
even very small samples. 

Many authors have focused on the apparent effect of the choice of an­
chor position on the appearance of the resultant histogram as one of the 
biggest drawbacks of the histogram estimator (see, for example, Silverman, 
1986, Sect. 2.2; HardIe, 1991, Sect. 1.4; Izenman, 1991; HardIe and Scott, 
1992; Scott, 1992, Sect. 4.3; Samiuddin, Jones, and EI-Sayyad, 1993). Si­
monoff (1995a) provided Monte Carlo evidence for the insensitivity of aver­
age ISE to the choice of anchor position for both histograms and frequency 
polygons. That paper also examined the mode resolution ability of the es­
timators (a property much more related to its appearance) and showed the 
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potential inability of histograms and frequency polygons to identify true 
underlying modes correctly. That is, a functional norm like ISE does not 
necessarily reflect what a data analyst would mean by effective estimation 
of the density. 

Simonoff and Udina (1996) proposed an index of the stability of the 
appearance of histograms for a given bin width if the anchor position is 
changed, based on the statistical roughness (R(f')) of the histogram. They 
found that underlying densities with more structure (modes and long tails) 
lead to greater instability in the appearance of histograms. They also found 
that it is very important to choose the bin width to be consistent with the 
precision of the data, in order to avoid unstable histograms. That is, if 
the data are reported to the nearest integer (for example), using a non­
integral bin width greatly increases the chances of producing histograms 
whose appearance changes dramatically if the anchor position is changed. 
In comparisons with other bin-based methods, they found that the bin 
edge frequency polygon (2.21) is generally less sensitive to shifts in anchor 
position than the histogram and ordinary frequency polygon. 

ISE, as a measure of the quality of a density estimate, has the ad­
vantage of mathematical tractability and the availability of the intuitive 
variance versus bias tradeoff. Still, there is nothing inherently more reason­
able about the use ofISE compared with other possible criteria (there is no 
least squares/Gaussian distribution/maximum likelihood justification, as is 
often the case in parametric modeling). The ISE criterion can be criticized 
on the grounds that it puts too little emphasis on the tails of the density, 
because of the squaring of j(x) - f(x). 

A natural alternative to the use of squared error is to use integrated 
absolute error to evaluate the accuracy of a density estimate: 

IAE = J Ij(u) - f(u)ldu, 

with expected value mean integrated absolute error 

MIAE = E [J Ij(u) - f(u)ldU] . 

Devroye and Gyorfi (1985) and Devroye (1987) provided a thorough dis­
cussion of density estimation and the absolute error criterion. They derived 
bounds on the asymptotic MIAE for fixed bin-width histograms and showed 
that MIAE = O(n- 1/ 3 ), as would be expected from the O(n- 2/ 3 ) rate of 
MISE. 

The upper bound on MIAE provides a criterion to minimize to deter­
mine an optimal bin width. The resultant minimizer is 

[J f(u)~du] { 
2 }_1/3 

ho = 8mr [J If'(u)ldu]2 ' 
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36 Chapter 2. Simple Univariate Density Estimation 

or ho = 2.72O"n-1j3 for Gaussian data. This is considerably smaller than 
the AMISE-optimal bin width, but Scott (1992, Sect. 3.6.1) reported that 
Monte Carlo simulations with Gaussian data show that the minimizer of 
MIAE ho ~ 3.370"n- 1/ 3 , which is close to the AMISE-optimal bin width 
given in (2.8) (a pattern that persists for more accurate density estimation 
methods). See also Hall and Wand (1988a). Thus, there appears to be little 
gain in using the more mathematically complicated absolute error. 

The likelihood principle states that inference should proceed based on 
the likelihood function, and measures like ISE and IAE are artificial. The 
Kullback-Leibler information provides a likelihood-based distance measure 
for densities: 

KL(f,j) = J f(u) log[f(u)/ j(u)]du (2.22) 

= J f(u) log[f(u)]du - J f(u) log[j(u)]du. 

The first term is not a function of j, so minimizing KL is equivalent to 
maximizing J f(u) log[j(u)]du. 

KL is not defined if j = 0; that is, a strategy to choose the bin size 
to minimize KL requires that the minimum bin count must be 1. Hall 
(1990a) pointed out that the minimization of KL can violate the principle 
of trading off bias versus variance, depending on the tail properties of f. For 
any histogram estimator (with at least two bins), there is always a nonzero 
probability that a bin will be empty, so E(KL) = 00 and cannot be used as 
a target criterion. 

The same cross-validation argument as was used for squared error can 
be used to form a data-based estimate of KL as well. Since the goal is to 
maximize J f(u)log[j(u)]du, the likelihood cross-validation approach is to 
maximize 

n 

KLCV = 2: log [j-i(Xi)] 
i=l 

(Habbema, Hermans, and van den Broek, 1974). Chow, Geman, and Wu 
(1983) established consistency of j based on KLCV if f is bounded with 
compact support, but for unbounded densities, there are problems in the 
tails. Hall (1990a) provided careful asymptotic analysis of KL and KLCV, 
showing that often when KLCV leads to a consistent estimator, it still gives 
bin widths that are not O(n- 1/ 3 ). 

An alternative likelihood-based approach is by using Akaike's Infor­
mation Criterion, or Ale (Akaike, 1973). Ale is based on maximizing a 
penalized likelihood function, where the penalty function is typically the 
number of unknown parameters. For histograms, the quantity to be maxi­
mized is 

K 

Ale = 2: nj lognj - nlog(nh) - K* 
j=l 
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(Taylor, 1987; Atilgan, 1990). Here K*, the number of unknown parameters, 
can be taken as either the number of nonempty bins or the total number of 
bins between the smallest and largest data points (K). See Atilgan (1990) 
and Hall (1990a) for a discussion of the properties of histograms constructed 
based on AfG. 

Hall and Hannan (1988) proposed a criterion based on stochastic com­
plexity to choose the bin width of a histogram, recommending that it be 
chosen to maximize 

They found that, from a practical point of view, such histograms are very 
similar to those based on KLCV. 

Kanazawa (1988, 1992) used the Hellinger distance 

as a criterion for density estimation, and investigated the function j that 
estimates its minimizer among piecewise constant functions. Although the 
resultant estimator has the appearance of a locally varying bin-width his­
togram, it is not, in fact, a histogram estimator, in the sense of (2.17). 
Kanazawa (1988) provided a dynamic programming algorithm to obtain the 
required estimate. Kanazawa (1993) proved the equivalence of minimizing 
Hellinger distance and maximizing AfG for fixed bin-width histograms; see 
also .Jones (1995a). 

Computational issues 

Virtually any statistical package can produce fixed bin-width histograms, 
usually with the ability to control the position of the anchor and the bin 
width. Unfortunately, often the estimate is presented in a nondensity form, 
with the vertical axis representing the count of observations in a bin, rather 
than the appropriate density estimate value (this doesn't change the ap­
pearance of the estimate, of course, since the density estimate is a constant 
multiplier of the bin count for every bin). This can make it more difficult 
for a package to produce a locally varying bin-width histogram, since that 
density estimate is not a constant multiplier of the bin count for every 
bin. Correct locally varying bin width histograms can be constructed in 
MINITAB and S-PLUS. 

Frequency polygon construction often must be done by hand using 
a package that can draw straight lines between specified [x, j(x)] values. 
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38 Chapter 2. Simple Univariate Density Estimation 

Fortran code that determines such values for the Gaussian-based and lo­
cally varying bin-width frequency polygons discussed in Simonoff and Hur­
vich (1993) can be obtained using a World Wide Web (WWW) browser 
at http://www . stern.nyu.edu/,,-,jsimonof/frpoly. f. MINITAB, NCSS, 
and Systat can produce fixed bin-width frequency polygons, as can the 
Fortran code of Exponent Graphics (IMSL). MINITAB also gives variable 
bin-width frequency polygons. Venables and Ripley (1994) gave S-PLUS 
code to construct frequency polygons automatically. 

The collection haerdle in the S directory of statlib contains S-PLUS 
functions to construct fixed bin-width histograms and frequency polygons 
based on code discussed in HardIe (1991). 

XLISP-STAT code to calculate the anchor position stability index of 
Simonoff and Udina (1997) is available via anonymous ftp at the address 
libiya.upf.es in the directory /pub/stat/anchor-position. 

Exercises 

Exercise 2.1. Write code to implement the cross-validation and biased cross­
validation criteria for choosing the bin width of a fixed bin-width histogram 
(this involves evaluating the CV and BCV criteria over a grid of possible 
bin-width choices). Apply your code to the forged Swiss bank note data of 
Fig. 2.1. Do either of these criteria yield a satisfactory estimate? Recall that 
multimodality is of particular interest for data of this type what is your 
impression of the existence of more than one mode for these data? BCV is 
known to have a tendency to oversmooth, while CV tends to undersmooth 
- is that the case here? 

Exercise 2.2. Write computer code to implement the cross-validation and 
biased cross-validation criteria for choosing the bin width of a fixed bin­
width frequency polygon. Apply your code to the forged Swiss bank note 
data. What are your impressions? How do the results compare with those 
of Exercise 2.1? 

Exercise 2.3. The Swiss bank note data presented in Fig. 2.1 are part of a 
larger set, which includes both real notes and forged notes and also includes 
measurement of the image diagonal length of the bill. Compare histograms 
and frequency polygons, using various criteria for choosing the bin width, 
for the additional variables and cases. Do the real notes exhibit multi­
modality? Does the pattern for diagonal length differ from that for bottom 
margin? 

Exercise 2.4. Write computer code to implement non-ISE-based criteria 
for choosing the bin width of a fixed bin-width histogram, such as using 
KLCV, AIC, or stochastic complexity. Apply your code to the Swiss bank 
note data. Do your impressions change from those of Exercises 2.1 - 2.3? 
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Theory suggests that histograms using such criteria will have wider bins 
than those based on ISE-based measures - is that the case here? 

Exercise 2.5. Data-dependent criteria such as CV, BCV, KLCV, AIC, etc., 
can be used to choose the anchor position of an estimate in addition to the 
bin width. Write computer code to allow the anchor position to be chosen 
using such criteria, and apply it to the CD rate and Swiss bank note data. 
Does using a data-dependent choice of anchor position seem to lead to a 
better estimate? 

Exercise 2.6. Construct the bin edge frequency polygon (2.21), using a 
Gaussian reference rule to choose the bin width, for the CD rate and Swiss 
bank note data. Is its appearance very different from that of a Gaussian­
reference frequency polygon for each data set? Is that appearance stable if 
the anchor position is changed? 
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Chapter 3 

Smoother Univariate Density 
Estimation 

3.1 Kernel Density Estimation 

3.1.1 Motivation for the kernel estimator 

The simple density estimators of Chapter 2 are informative, but they suffer 
from two serious drawbacks: they are not smooth, and they are not sensitive 
enough to local properties of f. It is easy to solve both of these problems. 

Consider again the definition of f(x): 

f(x) == ~F(x) == lim F(x + h) - F(x - h) 
dx h->O 2h 

(3.1) 

(this is equivalent to definition (2.1)). The histogram estimates (3.1) by 
dividing the line into bins, but a more sensible approach is to estimate the 
derivative separately at each point x. Replacing F(x) with the empirical 
cumulative distribution function gives 

f'( )=#{XiE(X-h,x+h]} 
x 2nh . 

This can be rewritten as 

where 
K (u) = { ~, if -1 < u S; 1, 

0, otherwise. 

(3.2) 

The form (3.2) is that of a kernel density estimator, with kernel function 
K. Note that this kernel function is a uniform density function on (-1,1]. 

Figure 3.1 gives a kernel density estimate of the CD rate data with 
h = .14 and can be compared with the histograms of Fig. 2.3 and the 
frequency polygons of Fig. 2.4. The "rug" along the bottom of the plot 
gives the positions of the observations. The estimate is more local in nature 
but is hardly a reasonable estimate of a smooth density. 

 
PAGE 51 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



~q 
c 
Q.) 

o 

o 
o 

7.5 

3.1. Kernel Density Estimation 41 

8.0 8.5 

CD rate 

Fig. 3.1. Kernel estimate of CD rate data using uniform kernel. 

The problem is that the additive form of (3.2) implies that the estimate 
j retains the continuity and differentiability properties of K. Since the 
uniform density is discontinuous, so is the kernel density estimate based on 
a uniform kernel function. A smoother kernel function will thus lead to a 
smoother kernel density estimate. 

Figure 3.2 presents a kernel estimate for these data using a Gaussian 
density for K, with h = .08. The curve is appealingly smooth, and a tri­
modal form, with modes at 7.5%, 8.0%, and 8.5%, is apparent. The curves 
along the bottom of the plot illustrate the additive form in (3.2); the den­
sity estimate at any point (the solid curve) is an average of the Gaussian 
densities centered at each observation (the dashed curves). For clarity of 
presentation, only a few of the dashed curves are given. 

3.1.2 Properties of the kernel estimator 

The degree to which the data are smoothed has a strong effect on the 
appearance of j (x) through the setting of the smoothing parameter (or 
bandwidth) h. The kernel estimates in Fig. 3.3 correspond to that of Fig. 
3.2, except that the bandwidth is half as large in plot (a) (that is, h = .04), 
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Fig. 3.2. Kernel estimate of CD rate data using Gaussian kernel, with some 
underlying evaluations of the kernel function. 

while it is twice as large in plot (b) (h = .16). The former estimate is very 
undersmoothed, with the previously noted three modes joined by three 
additional modes and a bump. The latter estimate is oversmoothed, with 
only a slight bulge remaining of two of the modes noted earlier. 

Once again, the tradeoff of bias versus variance that results from choos­
ing the amount of smoothing can be quantified through a measure of accu­
racy of j, such as MISE. Define K to satisfy the conditions 

J K(u)du = I, J uK(u)du = 0, J u2 K(u)du = a'i > 0, 

and assume that the underlying density is sufficiently smooth (I" being 
absolutely continuous and I''' being square integrable). If h -+ 0 with nh -+ 

00 as n -+ 00, then by Taylor Series expansions, 

and 
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Fig. 3.3. Kernel estimates of CD rate data: (a) h = .04, (b) h = .16. 

Combining variance and squared bias gives the mean squared error 

MSE[j(x)] = f(x)R(K) + h40"kUI/(x)J2 + O(n-l) + O(h6 ). (3.3) 
nh 4 

Integrating over the entire line then gives the asymptotic MISE 

AMISE = R(K) h40"kR(fI/) 
nh + 4 . (3.4) 

Note the similarity of (3.4) to the corresponding form of MISE for 
frequency polygons (2.13). The O(h4) magnitude of the squared bias term 
implies the same optimal convergence rate as was noted there; that is, the 
asymptotically optimal bandwidth satisfies 

_ [ R(K) ] 1/5 -1/5 
ho - O"kR(fI/) n , (3.5) 

implying minimal AMISE 
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44 Chapter 3. Smoother Univariate Density Estimation 

(3.6) 

The term R(J") measures the roughness of the true underlying den­
sity and is (of course) out of the control of the data analyst. In general, 
rougher densities are more difficult to estimate (higher AMISE) and require 
a smaller bandwidth. 

The term [0" K R( K) J4/5, being a function only of the kernel function K, 
is under the control of the data analyst, so a natural question is to ask how 
to choose K in the "best" way; that is, to minimize [O"K R(K)J4/5. If the 
kernel K is restricted to be a proper density function (which means that j 
will be also), the minimizer is a scaled version of a quadratic density, 

K(u) = { ~(1 - u2 ), 
0, 

if lui S 1, 
otherwise 

(this is often called the Epanechnikov kernel). 
The value of O"KR(K) for the Epanechnikov kernel is 3/(5V5); thus, 

the ratio O"K R(K)/[3/(5V5)] provides a measure of the relative inefficiency 
of using other kernel functions (this ratio is the multiplicative factor for the 
equivalent sample size needed to achieve the same AMISE). Table 3.1 gives 
values for this ratio for several common kernel functions. 

Table 3.1. Inefficiency of various kernels relative to the Epanechnikov kernel. All 
kernels, except for the Gaussian, are zero outside the interval [-1, 1]. 

Kernel Form Inefficiency 

Epanechnikov ~(1 - u2 ) 1 

Biweight i~ (1 - u2 )2 1.0061 

Triweight ~~ (1 - u2 )3 1.0135 

Gaussian (27f)-1/2 e-u2 /2 1.0513 

Uniform 1 1.0758 "2 

The obvious message from the values in Table 3.1 is that the AMISE 
is insensitive to the choice of the kernel, so K should be chosen based on 
other issues, such as ease of computation or properties of j. In particu­
lar, an argument against using the Epanechnikov kernel is that since it is 
not everywhere differentiable, neither will j be everywhere differentiable 
(despite the assumption that three derivatives of f exist). 
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3.1. Kernel Density Estimation 45 

3.1.3 Choosing the bandwidth 

The simplest way to choose the bandwidth h is by choosing a reference 
density for f and substituting into (3.5). So, for example, if the reference 
density is Gaussian, and a Gaussian kernel K is used, then 

(3.7) 

Substituting an estimate for a into (3.7) gives a data-based version of this 
rule. 

This Gaussian reference rule assumes use of a Gaussian kernel, but 
it is straightforward to convert a rule based on one kernel function (such 
as the Gaussian) to any other kernel, using (3.5). Since R(K) = (2y'7r)-1 
and aK 1 for the Gaussian kernel, the equivalent asymptotically optimal 
bandwidth for any density using a different kernel K* satisfies 

hO,K* = cK*ho,e, 

where 

CK* = [2y'7r~(K*)] 1/
5, (3.8) 

a K * 

and ho,e is the optimal bandwidth using a Gaussian kernel. Thus, any 
rule derived based on a Gaussian kernel (which is often more convenient to 
work with theoretically) can be converted to one based on any other kernel 
(which might be more useful computationally) using a simple multiplier. 
Table 3.2 gives the appropriate multipliers for different kernel functions. So, 
for example, the asymptotically optimal bandwidth for a Gaussian density 
when using a biweight kernel is ho = (2.623)(1.059an- 1/5 ) = 2.778an- 1/5 . 

Table 3.2. Multiplier (3.8) for converting smoothing parameter based on Gaus­
sian kernel to other kernels. 

Kernel 

Epanechnikov 

Biweight 

Triweight 

Uniform 

Multiplier 

2.214 

2.623 

2.978 

1.740 

Depending as it does on the assumption that the true density is Gaus­
sian, the rule (3.7) is of limited value. Cross-validation, as in (2.10), is 
general enough to be applied to bandwidth choice for kernel density es­
timation. Unfortunately, the cross-validated choice of bandwidth for the 
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Fig. 3.4. Kernel estimates of Swiss bank note data (bottom margin) using 
Sheather-Jones bandwidth choice. (a) Forged bills. (b) Real bills. 

kernel estimator is highly variable, and often undersmooths, yielding spuri­
ous bumpiness in the estimate. A different approach is based on the plug-in 
principle, where the asymptotically optimal ho is estimated by substituting 
an estimate of RU") into (3.5); that is, 

(3.9) 

Implementation of (3.9) requires choosing the estimate RU"). The 
current "state of the art" appears to be the method of Sheather and Jones 
(1991), which takes RU") = Rei"). The estimate j used here is based on 
a different bandwidth from the one that is appropriate for estimation of f 
itself (determined by theoretical considerations), and is estimated from the 
data. 

Figure 3.4 presents kernel estimates for the bottom margins of 100 
forged Swiss bank notes and 100 real Swiss bank notes, using the Sheather-
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Fig. 3.5. Kernel estimate of Swiss bank note data (diagonal length) using 
Sheather-Jones bandwidth choice. 

Jones bandwidth (hsJ)' The margins of the forged bills exhibit a trimodal 
structure, with modes around 8, 10, and 11.55 mm, which suggests pro­
duction of separate batches of bills. The real bills exhibit considerably less 
structure, but there is a hint of bimodality (which, considering government 
quality control efforts in currency manufacture, is somewhat surprising). If 
anything, the rug along the bottom of the plot suggests stronger bimodality, 
meaning that the chosen bandwidth has oversmoothed a bit. 

The curve in Fig. 3.5 is a kernel density estimate for the diagonal length 
of all 200 bills, again using the Sheather-Jones bandwidth. A clear bimodal 
structure is apparent, where the left mode corresponds to forged bills, while 
the right mode corresponds to real bills. The small bump around 138.5 mm 
also corresponds to forged bills. 

The impressions from Figs. 3.4 and 3.5 are potentially misleading, in 
the sense that the given density estimates do not reflect the inherent vari­
ability in the estimation process. There are two sources of this variability: 
that of the estimator from sample to sample drawn from a given population 
(for a given choice of h), and that associated with a data-based choice of h. 
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Fig. 3.6. Variability plot for kernel estimate of Swiss bank note data (bottom 
margin). 

A variability plot, as given in Fig. 3.6, can help give a fuller picture of 
the degree of certainty associated with a given density estimate. The plot is 
based on bootstrapping. A sample of size n is drawn with replacement from 
the given data set. Then, the bandwidth is chosen for the new sample based 
on the Sheather-Jones method, and a density estimate is determined. This 
process is then repeated many times, with the values of j being recorded 
at a fixed grid of values of x. 

The dashed lines in Fig. 3.6 are the upper and lower pointwise 2.5% 
points from 200 resamples from the bottom margins of forged Swiss bills 
data. The dashed envelope is not a 95% confidence interval for the true f, 
but rather a representation of the inherent variability in the process yielding 
j. The variability envelope for these data supports the trimodal impression 
of the original density estimate, as it is fairly narrow. The plot widens at 
the peaks and valleys of j and narrows where j is flat; this is consistent 
with the mean squared error of j(x), which is directly related to [f"(X)]2, 
as in (3.3). 

If dynamic graphics are available, the sensitivity of the fitted estimate 
to the choice of h can be examined interactively. A natural mechanism 
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is the use of a slider, which determines the bandwidth. Markings on the 
slider corresponding to data-dependent choices such as cross-validation or 
Sheather-Jones could designate benchmark values, and the data analyst 
could then observe the effects on j when h is changed (the multiplicative 
effect of h on AMISE suggests that such markings should be on a logarith­
mic scale). In any event, the estimates corresponding to several choices of 
h should be examined in order to find the most reasonable h (and j). 

3.2 Problems with Kernel Density Estimation 

Despite (or perhaps because of) the simplicity and intuitive appeal of the 
kernel estimator, it is not without faults as a general-purpose density esti­
mation tooL Boundary bias, lack of local adaptivity, and the tendency to 
flatten out peaks and valleys are all potential difficulties for this estimation 
method. 

3.2.1 Boundary bias 

Kernel estimation can fail dramatically when the region of definition of 
the data at hand is not unbounded. Consider Fig. 3.7. The data are the 
time intervals (in days) between accidents resulting in fatalities in mines 
in Division 5 of the Great Britain National Coal Board over a 245 day 
period in 1950. The kernel density estimate, based on a biweight kernel 
with h = 10.5, peaks at around 3 days between accidents, even though 
roughly 35% of the data points fall in the range [0,3). That is, the estimate 
is biased downward near the boundary. 

The reason for this is apparent from the original definition of f(x), 
given in (3.1), which motivates the kernel estimate with uniform kernel: 

( ) -1' F(x+h)-F(x-h) 
g x = h~ 2h . 

Of course, typically g(x) = f(x), the density function. Say the observed 
density has a lower boundary at 0, and f is being estimated at some x 
within the boundary region; that is, x = ph, 0 ::; p < 1. Then (3.1) becomes 

( ) _ I' F(x + h) - F(O) 
g x = 1m h ' 

h-->O 2 

since x < h. This implies that 

g(x) = (x + h) lim F(x + h) - F(O) 
2h h-->O x + h 

= (P;l)f(x;h), 
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Fig. 3.1. Kernel estimate of mine accident data. 

50 

since x = ph. That is, the usual kernel formulation is estimating a value 
that is biased downward near the boundary, unless f (x) = 0 there. 

Taylor Series expansions similar to those discussed in Section 3.1.2 for­
malize this effect for general kernel density estimation. Consider any kernel 
K defined on (-1,1). Let af(p) = J!:I uf K(u)du and b(p) = J!:l K2(u)du. 
Then 

(3.10) 

and 
Var[j(x)] = f(x2~(p) + O(n-I). 

Away from the boundary (p 2: 1), these expressions reduce to the usual 
formulas, but near the boundary the kernel estimate is not even consistent, 
unless f(x) = 0 (since ao(p) < 1). Even if the kernel is locally renormalized 
to integrate to 1 (by dividing j (ph) by ao (p)), the bias in the boundary 
region is O(h), rather than the O(h2) of the interior. 
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Fig. 3.8. Kernel estimate of men's marathon record data. 

3.2.2 Lack of local variation in smoothing 

The ordinary kernel estimator does not allow for different levels of smooth­
ing at different parts of the density, as it is controlled by the single band­
width h. This is obviously not optimal, as Eq. (3.3) shows that the mean 
squared error of j (x) at any point x is directly related to f (x) / hand 
h4[1"(X)J2. That is, in order to reduce MSE, h should increase with f(x) 
(to reduce variance) and should decrease with 11"(x)1 (to reduce bias). 

From a practical point of view, this lack of adaptivity tends to manifest 
itself as oversmoothing in regions with high structure (where 11"1 is large) 
and undersmoothing (bumpiness) in the tails (where 11"1 is small), with au­
tomatic bandwidth selectors (such as plug-in selectors) sometimes perform­
ing poorly. Figure 3.8 gives a kernel estimate based on 55 national men's 
record times for the marathon, based on a Gaussian kernel and h = 1.435. 
The estimate peaks at around 132 minutes (2 hours 12 minutes) and shows 
interesting structure near the "round" numbers of 135 minutes and 150 
minutes (2i and 2~ hours, respectively), perhaps reflecting psychological 
barriers at those values. It is difficult to assess how genuine the structure 
in the tails is, however, given the apparently spurious bumpiness there. 
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Fig. 3.9. Kernel estimate of Nassau County racial distribution data, superim­
posed on a histogram of the same data. 

3.2.3 Flattening of peaks and valleys 

The bias of the kernel estimator often shows up as a flattening of peaks and 
troughs of the density. Recall that the first term in the asymptotic bias of 
j(x) has the form h2(Jkf"(x)/2. This value is usually largest in absolute 
value at local maxima and minima, where f'(x) is changing fastest, being 
negative at peaks and positive at valleys. 

Figure 3.9 refers to data reporting the proportion of white students in 
56 public school districts in Nassau County (New York) for the 1992-1993 
school year. The solid line is a kernel density estimate (using a Gaussian 
kernel, with h = .052), superimposed on a histogram with a narrow bin 
width (.025). The distribution of proportion of white students is appar­
ently bimodal, with most districts being at least 70% white, while a small 
number are heavily populated with minority students. The kernel estimate 
of the right mode appears to be too low (compared with the histogram 
bin heights), suggesting flattening of the peak there. In addition, spurious 
bumpiness in the center of the density estimate and boundary bias near the 
left boundary are also apparent. 

 
PAGE 63 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



3.3. Adjustments and Improvements to Kernel Density Estimation 53 

3.3 Adjustments and Improvements to Kernel Density 
Estimation 

3.3.1 Boundary kernels 

The boundary bias of the kernel estimator can be corrected by using special 
kernels termed boundary kernels. Boundary kernels are weight functions 
that are used only within the boundary region (with the usual kernel K 
used in the interior). Let c£(p) = rl u£L(u)du, with L being some kernel 

function different from, but related to, K. Let iK be a kernel estimate 
based on K, while h is an estimate based on L. By (3.10), 

and 

This immediately implies that the linear combination of the two kernels 

satisfies 

B(x) = cl(p)K(x) - al(p)L(x) 
cl(p)aO(p) - al(p)cO(p) 

E[iB(X)] = f(x) + O(h2); 

(3.11) 

that is, the bias near the boundary is restored to the O(h2) level achieved 
in the interior. 

Many different forms of L are possible, each leading to a different 
boundary kernel (or family of boundary kernels). One useful form is to take 
L(x) = xK(x), which results in the boundary kernel 

B(x) = [a2(p) - al(p)x]K(x) 
aO(p)a2(p) - ai(p) 

(3.12) 

Figure 3.10 gives a density estimate for the mine accident data of Fig. 
3.7 based on this kernel, using the biweight kernel for K and h = 10.5. The 
boundary bias apparent in Fig. 3.7 is now gone, and the characterization 
of the density as roughly exponential (as would be implied by a Poisson 
process for the occurrence of the accidents), but with a bulge at around 20 
days between accidents, is clear. 

The bias correction in Fig. 3.10 comes with a cost. Figure 3.11 gives a 
95% variability plot of the boundary kernel estimate for the mine explosion 
data (taking the bandwidth to be the biweight equivalent to 1.683hsJ for 
each bootstrap resample, as that was the value used in Figs. 3.7 and 3.10). 
The most striking property of this plot is the great widening of the envelope 
as the boundary is approached. That is, the reduction in bias is accompanied 
by a notable increase in variance. The important practical message is that 
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Fig. 3.10. Boundary kernel estimate of mine accident data. 

while the appearance of 1 near zero is more appealing in Fig. 3.10 than in 
Fig. 3.7, the actual value of 1 near zero cannot be viewed as known with 
great accuracy. 

The density estimate 1B is not necessarily a bona fide density, since 
it can take on negative values and does not necessarily integrate to 1. A 
simple solution is to define 1 to equal zero when it is negative and then 
normalize to force a unit integral. More complicated corrective procedures 
are also possible. 

3.3.2 Varying the bandwidth 

The usual kernel density estimator (3.2) is susceptible to bumpiness in 
the tails, since it does not adapt to local variations in smoothness. The 
estimator can be generalized to allow this, by using broader windows for the 
contribution of values associated with regions of low density and narrower 
windows for values associated with regions of high density. The general 
formula for one such estimator, the variable-bandwidth kernel estimator, is 

, 1 ~ 1 [x - Xi] 
f(x) = ;;: ~ h(Xi) K h(Xi) . 
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Fig. 3.11. Variability plot for boundary kernel estimate of mine accident data. 

Since the goal is to smooth less where there is more structure (and more 
where there is less structure), it is natural to have h(Xi) vary inversely with 
the underlying density. Consider taking h(Xi) = hv x f(Xi)-1/2; that is, 

(3.13) 

This choice is particularly advantageous, since (subject to some technical 
details) it results in the bias of iv(x) being O(h4), rather than the usual 
O(h2), while leaving the variance O(n-1h-1). Taking hv = O(n- 1/9 ) then 
gives the improved convergence rate of MSE = O(n-BI9 ). 

Some issues need to be addressed before the estimator (3.13) can be 
applied in practice. The estimator depends on the values f(xd, which are 
of course unknown. A "pilot" estimate j is usually used, based on, for 
example, a fixed-bandwidth kernel estimate (note that taking j to be a 
uniform density gives the fixed-bandwidth kernel as a special case of the 
variable-bandwidth estimator). 

 
PAGE 66 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



56 Chapter 3. Smoother Univariate Density Estimation 

£ 
CI) 

c 
Q) 

o 

C\J 

o 

co 
o 
o 

""" o 
o 

o 
o 

130 140 150 160 

Marathon record time (minutes) 

Fig. 3.12. Variable kernel estimate of men's marathon record data. 

Another difficulty is that the estimator (3.13), as given, does not 
achieve bias of order O(h4). The problem is that observations Xi far from 
the evaluation point X can have a large effect on iv(x). A simple corrective 
action is to restrict the pilot density i to be bounded away from zero. 

Both theory and practical experience show that the precise form of 
the pilot estimate does not have a strong effect on the final iv' The band­
width hv does, however, exert a strong influence on the final estimate. It is 
straightforward to apply variations of the cross-validation criterion (2.10) to 
the choice of hv, but little work on plug-in type methods for this estimator 
has been done. 

Figure 3.12 gives a variable kernel estimate for the men's marathon 
data discussed earlier. The pilot estimate is the fixed-bandwidth kernel 
pictured in Fig. 3.8, and hv = .466 was chosen based on cross-validation. 
This estimate captures the main features of the density (the peak at about 
132 minutes, the bulge at around 135 minutes, and the bump at around 
150 minutes) while avoiding the spurious bumpiness apparent in Fig. 3.8. 

Figure 3.13 illustrates the different effects that varying the two band­
widths (that of the pilot estimate, and hv) has on iv for the marathon data. 
In the first column, hv is fixed at hv = .466, while the pilot bandwidth is 
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Fig.3.13. Variable kernel estimates of men's marathon record data, changing 
either the pilot bandwidth (first column) or variable bandwidth hv (second col­
umn). 
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either halved to h = .7675 (first row) or doubled to h = 2.87 (second row). 
These changes do not affect the variable kernel estimate very much, rein­
forcing the impression that the final estimate is insensitive to the form of 
the pilot estimate. 

In the second column of the figure, the pilot h is fixed at h = 1.435, 
while hv is either halved to hv = .233 (first row) or doubled to hv = .932 
(second row). The variable kernel estimate iv is very sensitive to changes in 
hv, with too small values leading to undersmoothing and too large values 
leading to oversmoothing. 

A different way to vary h in the kernel estimator to try to improve 
performance is to choose hex) as a function of the evaluation point x as 
discussed in Section 3.2.2; that is, a local-bandwidth kernel estimator 

• 1 ~ [x - x.] 
hex) = nh(x) ti' K h(x)' . (3.14) 

At any given value x, this is no different from the fixed-bandwidth kernel 
estimator (3.2) - the only change is that different values of h can be used 
at different locations x. Since (3.14) represents an ordinary fixed-bandwidth 
kernel estimator at each point x, it cannot improve on the usual O(n-4/ 5 ) 

convergence rate of MISE. 
The most common choice of h( x) is as the kth nearest neighbor distance 

from the data points to x (that is, the distance from x ofthe kth closest data 
point). The number of nearest neighbors k controls the level of smoothing, 
with larger values of k corresponding to more smoothing. The use of nearest 
neighbors results in more smoothing occurring in regions of low density (and 
less smoothing in regions of high density). 

Unfortunately, the resultant nearest neighbor estimate is unsatisfac­
torily rough and does not provide the desired improved local adaptivity. 
Figure 3.14 gives nearest neighbor estimates for the men's marathon data 
based on using distances of 10, 20, 30, and 40 nearest neighbors, respec­
tively (with K being a biweight kernel). The estimate based on 10 nearest 
neighbors is too rough, but increasing the number of nearest neighbors does 
not remove all of the jaggedness of the estimate, as in plot (d). The esti­
mate also does not capture the interesting features of the density (as the 
variable kernel does in Fig. 3.12), with the the bump at around 150 min­
utes being smoothed over in plots (b)-(d). It is apparent that the variable 
kernel estimator is a better way to allow local levels of smoothing than the 
local-bandwidth estimator using nearest neighbors (though other ways of 
choosing a local bandwidth can do better than nearest neighbors). 

3.3.3 Higher order kernels 

The use of a density function as the kernel function K in a fixed-bandwidth 
kernel estimator has intuitive advantages, in that the resultant estimate 
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also will be a density (that is, nonnegative and integrating to 1). From a 
theoretical point of view, however, there is an advantage to allowing the 
choice of K to be more general. 

The full Taylor Series expansion for E[j(x)] has the form 

E[j(x)] =f(x) J K(u)du - hf'(x) J uK(u)du + h2 f;(x) J u2 K(u)du 

hP f Cp) (x) J + .. ·+(-1)p , uPK(u)du+ .. ·. (3.15) 
p. 

Let K be a symmetric function satisfying 

J K(u)du = 1, J uT K(u)du = 0, r = 1, ... ,p - 1, J uP K(u)du -=J. 0 

(note that p must be even, and for p > 2 the function K must take on 
negative values). This is termed a kernel of order p, with the usual nonneg­
ative kernel being of order 2. If f is sufficiently differentiable, the integrated 
squared bias of an estimator based on a pth order kernel is O(h2p ). Since the 
integrated variance is still O( n -1 h -1), using higher order kernels improves 
the optimal MISE to O(n-2p/C2P+l)). 

Despite the apparent benefit to using higher order kernels, there are 
several reasons why they have not had much impact in practice: 
(1) Since the kernel function K takes on negative values, the resultant 

density estimate also can have negative values. Although such nega­
tive values can be "clipped" to be zero, this then results in a nondif­
ferentiable estimate, which is particularly counterintuitive given the 
assumed increased differentiability of f that justifies taking the Taylor 
Series (3.15) to more terms. 

(2) Sample sizes at least in the hundreds are apparently necessary for 
higher order kernels to outperform nonnegative kernels for simple 
(Gaussian-type) densities, with far larger samples necessary for densi­
ties with more complicated structure. 

(3) The choice of the bandwidth is more complex for higher orderker­
nel estimates, since the smoothness of the resultant estimate is not 
a monotone function of h (that is, both smaller and larger values of 
h can lead to estimates that appear rougher than ones for h in the 
middle ground). A practical plug-in estimate of h has not been con­
structed (one could be constructed using the same principles as for 
the nonnegative kernel estimates), although cross-validation is easily 
implemented. In any event, higher order kernel estimates often exhibit 
spurious bumpiness (and negativity) in the tails. 
Other variations of the higher order kernel theme are possible. The 

order can be taken to the limit p -+ 00, resulting in the best possible 
MISE rate (assuming sufficient smoothness of f). One example of such an 
estimator is the Fourier integral estimator, which is based on the kernel 
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K(u) = sin(u). 
7rU 

This estimate integrates to 1, but the regions corresponding to both the 
positive and the negative values, respectively, are not integrable with prob­
ability 1. 

A different way to achieve faster convergence of MISE is to decrease 
the bias in estimation of log f (rather than f) and then exponentiate the 
result. Equivalently, the geometric combination estimator of f has the form 

(3.16) 

where ich(X) is a kernel estimator with bandwidth ch. Taking c = 2, for 
example, gives the estimator 

(3.17) 

The resultant estimator is positive everywhere but does not integrate to 1. 

3.3.4 Transformation-based estimation 

A natural approach to estimate hard-to-handle (complex) densities is to 
transform the data to a more appropriate scale, estimate the transformed 
density, and then transform back. Figures 2.6 and 2.7 showed how this can 
work when using histograms or frequency polygons, and similar results are 
possible using kernel estimates. In particular, transformation-based estima­
tors can remove spurious bumpiness in the tails (by smoothing more there) 
and reduce boundary bias (by eliminating the boundary in the transformed 
scale). 

Let f x (x) be the density in the original scale (which is the density being 
estimated), while fy(y) is the density of the transformed random variable 
Y = g(X), with gO being a monotonic (increasing) transformation. Then, 
a simple change of variable implies that 

fx(x) = jy[g(x)]g'(x). 

If fy is estimated using a kernel estimator, the transformation-based esti­
mator of f x is 

where hy is chosen based on the Y scale. So, for example, for long right­
tailed (positive) data, a logarithmic transformation might be used, yielding 
the estimator 

ix(x) = _1_ t K [log(x) -log(X i )] . 

nxhy . hy ,=1 
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Fig. 3.15. Density estimates of earthquake depth data. (a) Kernel estimate with 
h = 5.5. (b) Kernel estimate with h = 2. (c) Boundary kernel estimate with 
h = 5.5. 
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Fig. 3.16. Transformation-based kernel estimate of earthquake depth data. 

The properties of the log function mean that the data are smoothed much 
less for small values of x than for large values. 

Consider Fig. 3.15, which gives estimates of the density for the focal 
depth in kilometers of 2178 earthquakes with body wave magnitude at least 
5.8 on the Richter scale occurring between January 1964 and February 1986. 
Figure 3.15(a) is a kernel estimate (based on a Gaussian kernel with h = 5.5) 
of the density, which exhibits modes at 10, 33, 100, and 200 km but (given 
its decrease towards zero for a sample with many small values, including 145 
zero values) seems to suffer from boundary bias. Figure 3.15(b), a kernel 
estimate with h = 2, reinforces this point, as it shows a peak at zero depth 
(but it is disturbingly rough, including in the long right tail). A boundary 
kernel estimate (Fig. 3.15(c)), smoothed as in Fig. 3.15(a), shows the peak 
at zero depth but smooths over the possible mode at 10 km. 

Figure 3.16 gives a transformation-based estimate for these data. The 
depths were transformed using a Johnson family I transformation, 

y = 991og[1 + (x - X)/99], 

where X = 74.36 km, smoothed based on a Sheather~Jones bandwidth in 
that scale, and then back-transformed. The resultant estimate captures the 
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previously noted structure (modes at 0, 10, 33, 100, and 200 km), while 
avoiding roughness and spurious bumpiness. 

It is possible to automate this procedure by choosing the appropri­
ate transformation in a data-based way, although it is unlikely that any 
parametric family of transformations would be rich enough to account for 
all possible densities. For example, long right-tailed data probably would 
benefit from a shifted power transformation, 

if A2 =I 0, 
if A2 = 0, 

with A1 > - min(x). Other transformations could be more appropriate for 
fat-tailed (kurtotic) data, or correction of boundary bias. Alternatively, the 
transformation could be estimated non parametrically from the data based 
on a pilot estimate of the density f x (x). 

3.4 Local Likelihood Estimation 

The density estimation methods discussed so far are quite nonparametric, in 
that the estimate is not affected by any predisposition towards a particular 
parametric family. In some circumstances, it could be that a particular 
family is appealing as a "first guess" for the local behavior of the density, 
which could then be incorporated into the estimator. 

A flexible way to do this is by using local likelihood estimation. The 
idea is to estimate the parameter vector 0 of a parametric family f(x,O) 
locally for each x and then estimate f as Je(x) = f(x, 8). 

In order to preserve likelihood-based estimation while still operating 
locally, a local log-likelihood function is defined as 

L(x,O) = ~ nIh K (x ~ Xi) log f(Xi, 0) - J ~K (x ~ u) f(u, O)du. 

(3.18) 
When h is large, this is close to a constant times the ordinary log-likelihood 
function, and the maximizers of L(x, 0) are the ordinary maximum likeli­
hood estimators, giving a fully (global) parametric fit. For smaller h, the 
maximizers provide a local fit instead. 

The local log-likelihood (3.18) also provides a link to ordinary kernel 
estimation. If the parametric family is a (log) constant [J (t, 8) = exp( 8)], 
then (3.18) has the form 

n () () 
1 x - Xi e 1 x u 

L(x,8) =8L::-K -- -e J-K -- duo 
nh h h h 

i=l 
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The maximizer of this is i = exp(G) and (if the range of x is unbounded) 
is the ordinary kernel estimator (for bounded range, it is the locally renor­
malized kernel estimator discussed in Section 3.2.1). 

More flexible choices of f(-, 0) result in better local behavior. In par­
ticular, the distribution of if converges to a normal distribution with bias 

• h2 a 2 b(x) 
Bias[h(x)]= ~ +O(h4+n-I) 

and variance 
Var[if(x)] = f(x)~(K) + O(n-I). 

n 
These are similar to the values for the kernel estimator (substituting b(x) 
for rex)~, with b(x) a measure of the difference between f(x) and f(x,O) 
whose exact form is related to p, the dimension of O. In particular, if p = 2, 
b(x) = rex) - rex, ( 0 ), where f(x, ( 0 ) is the locally closest member of 
the parametric family. 

Further, while a scalar e (p = 1) yields an estimator that suffers from 
boundary bias (as happens for the kernel estimator, a special case of scalar 
e), for bivariate 0 (p = 2) the asymptotic bias of the distribution of the local 
likelihood estimator is identical to that of the boundary kernel (3.12). That 
is, any local likelihood estimator with bivariate 0 automatically corrects 
for boundary bias without explicitly defining a boundary kernel. Taking 
f(x,O) = eo + e1(t - x) as the local model around x (a linear model) 
gives a bias representation identical to that of a kernel, while f(x,O) = 
eo exp[e l (t - x)] (a local log-linear model) applies a correction factor to the 
bias. 

The dimension of the parameter 0 continues to determine the bias 
properties of the local likelihood estimator for dimensions greater than 2. 
If p = 3 or 4, the O(h2) term in the bias representation in the interior 
drops out, making it O(h4). An even dimension (p = 4) again results in 
a simplification to the bias term and automatic boundary bias correction 
from O(h3) to O(h4). So, for example, a local log cubic polynomial estimator 
roughly corresponds to a boundary-corrected, fourth order kernel estimator 
(in the log f scale). 

Local likelihood estimation does suffer from an interesting difficulty. 
For K bounded and fixed h, there is positive probability that no observa­
tions will fall within the support of K for any x. This means that MSE[if(X)] 
is not defined for any x. One way (but not the only way) to allow h to vary 
locally to avoid this is to base it on a nearest neighbor distance (so that 
there are always sufficient observations close to x within the support of 
K). By incorporating the nearest neighbor distance indirectly (through the 
local likelihood), the extreme roughness of the ordinary nearest neighbor 
estimate (as in Fig. 3.14) can often be avoided. 

Figure 3.17 gives a local likelihood estimate for the racial distribution 
data (from Fig. 3.9) using a local log-quadratic function, with hex) a nearest 
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Fig. 3.17. Local log-quadratic density estimate of racial distribution data, using 
70% nearest neighbor span. 

neighbor span covering 70% of the observations closest to x. This estimate 
corrects the deficiencies of the kernel estimate (Fig. 3.9) - the peak at 
x = .9 is not flattened, the spurious bumps around x = .4 are not present, 
and there is no evidence of boundary bias near x = O. The resultant estimate 
is quite smooth, showing that the local likelihood approach smooths out the 
roughness of the nearest neighbor distance. 

The automatic boundary bias correction achieved by the local likeli­
hood estimator is illustrated in Fig. 3.18. This is a variability plot for a 
local log-quadratic density estimate of the mine accident data, with h(x) 
having a nearest neighbor span of 65% of the observations. The estimate 
is similar to that of the boundary kernel (Fig. 3.10), and the variability 
envelope exhibits the expected widening at x = 0 and around x = 20. 

There is also, however, a puzzling "jag" in the upper limit of the en­
velope at around 5 days between accidents. This is a direct consequence 
of the use of nearest neighbor distance and shows that the roughness asso­
ciated with nearest neighbors is not completely avoided when using local 
likelihood estimation. 

Figure 3.19 is a local log-quadratic density estimate of these data with 
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Fig. 3.18. Variability plot of local log-quadratic density estimate of mine accident 
data, using 65% nearest neighbor span. 

a nearest neighbor span of 64%, rather than 65%, of the observations. The 
estimate is much less satisfactory, as the problems in the region of 5 to 
10 days between accidents are apparent. The local log-quadratic fit with 
fixed h does not exhibit this pattern for these data (but is also not locally 
adaptive). 

3.5 Roughness Penalty and Spline-Based Methods 

The nonparametric maximum likelihood estimator (MLE) of ! is not a 
viable density estimator; the maximizer of the log-likelihood 

n 

£(f) = n- 1 L log !(Xi) 
i=l 

is a set of Dirac spikes at the observations {Xi}. Local likelihood estimation 
avoids this problem by operating locally rather than globally. A different 
approach is to modify the log-likelihood to discourage the roughness of the 
MLE by maximizing a penalized (log) likelihood 
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Fig. 3.19. Local log-quadratic density estimate of mine accident data, using 64% 
nearest neighbor span. 

n 

L(f) = n-1 2:)Ogf(Xi) - if>(f) (3.19) 
i=l 

subject to J f = 1, where if>(f) ?: 0 is a roughness penalty that decreases 
as f gets smoother. The resultant maximum penalized likelihood estimator 
(MPLE) provides a tradeoff between fidelity to the data (from the log­
likelihood) and smoothness (from the roughness penalty). 

Different choices of if> yield different estimators. The penalty could 
be based on first derivatives, such as R[(logfY] = JU'(u)lf(u)j2du or 
R[(f1/2)'J, or second derivatives, such as R[(log J)"] or R[(f1/2)"]. The ad­
vantage of basing the penalty on log f or f1/2 is that negativity can be 
avoided. For example, take g = log f and if>(g) = aR(g") , a ?: O. Maximiz­
ing (3.19) is then equivalent to minimizing 

L(g) = _n- 1 tg(Xi) + a J[g"(u)]2 du + J eg(u)du 
>=1 

(3.20) 

(the last term effectively enforces the constraint J f = 1). Then, j = exp(g). 
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As a -7 0, the MPLE approaches the non parametric MLE of Dirac 
spikes, while as a -7 00, the MPLE becomes the MLE within a parametric 
family that depends on cJ>. For example, if f is defined on the nonnegative 
numbers, and cJ>(g) = aR(g"), the limiting family is exponential, while if 
cJ>(g) = aR(glll) , the limiting family is Gaussian. If f is bounded away 
from zero, and R[f(2m)j is finite, then a roughness penalty based on m 
derivatives gives an estimator whose MSE converges to zero at the rate 
O(n-4m/(4m+l»). 

Penalized likelihood estimators are often called spline estimators, since 
many such estimators take the form of polynomial splines with knots at the 
order statistics. A polynomial spline is a function that is a piecewise poly­
nomial of degree r on any subinterval defined by adjacent knots, has r - 1 
continuous derivatives, and has an rth derivative that is a step function 
with jumps at the knots. Asymptotically, the MPLE is approximately a 
local-bandwidth kernel estimator, as in (3.14). IfcJ>(g) = aR(g"), for exam­
ple, 

j(x) ;:::; f(X)1/4 ~ K [(X - Xi )f(X)1/4] , 
na1/4 ~ a 1/ 4 

i=l 

with 

away from the boundary. This is a fourth order kernel, which accounts for 
the O(n-S/ 9 ) convergence rate of the MSE (since the roughness penalty 
is based on m = 2 derivatives). In addition, since the MPLE is defined 
through exponentiating an estimate of the log-density, it is nonnegative. 

The exact MPLE is difficult to calculate, which has motivated several 
approximations and spline-based estimators. One such approach is to define 
the estimator directly as a cubic spline fit to the logarithm of the density 
g, with knot placement determining the smoothness of the estimate. The 
logspline density estimate then takes j = exp(g). 

Computational details become key in practical application of logspline 
density estimation. For example, restrictions must be placed on the estimate 
below the first knot and above the last knot, such as being linear in the log 
scale. If such exponential behavior is inappropriate, some correction (such 
as transformation) must be made. 

Knot placement is crucial in logspline density estimation. A natural 
set of potential knots is the set of order statistics (as penalized likelihood 
estimation would suggest), with the first and last knots being the minimum 
and maximum of the sample values, respectively. Ideally, the number of 
knots would be chosen in a data-dependent way. One possibility is to start 
with the entire set of order statistics being the initial set of knots and 
then delete knots in a stepwise manner if they do not improve the fit (as 
measured by some criterion, such as Ale). Previously deleted knots also 
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could be added back in if that helps. Once the knots are determined, the 
spline is estimated by maximum likelihood. 

The importance of the placement, as well as the number, of knots for 
the logspline density estimate is apparent in Fig. 3.20. The three pairs of 
density estimates (for the mine accident, racial distribution, and earthquake 
depth data, respectively) refer to estimates where the number and place­
ment of knots were chosen automatically by stepwise deletion of knots, and 
where the number was chosen manually (with placement in a roughly sym­
metric pattern). The automatic estimates for the mine accident and racial 
distribution data are oversmoothed, being based on only four and three 
knots, respectively; the manual versions are each based on six knots and 
recover most of the structure. The automatic estimate for the earthquake 
depth data (based on 14 knots) is a dismal failure, while the manual version 
(again based on 14 (different) knots) recovers the structure for depths less 
than 50 km well (although it is less successful above that). 

3.6 Comparison of Univariate Density Estimators 

The most important lesson to be drawn from this chapter is that the ap­
pealing simplicity of the estimators described in Chapter 2 is probably not 
a good enough reason to use them. The estimators discussed in this chapter 
are superior at recovering interesting structure and should be used instead. 
Taking the trouble to construct a variability plot envelope is also a good 
idea, in order to get a sense of how the variability of the estimator changes 
over the range of the data. 

Having said that, which is the estimator of choice? The easy answer 
is the kernel estimator, which is highly intuitive, well understood, and 
amenable to routine and automatic application. But, this answer is not 
right either, as boundary bias and the lack of local adaptivity limit the 
applicability of the estimator (using boundary kernels can fix the former 
problem, but not the latter). 

Currently no method can claim to be "best," which might be a fun­
damental characteristic of the problem. Candidates for a good general ap­
proach are 
(1) Kernel-type estimators such as the local- and variable-bandwidth ker­

nels and transformation-based kernel, which achieve desirable local 
adaptivity and retain the intuitive appeal of the kernel, but also can 
share problems such as boundary bias. Many routine problems can be 
handled using transformations, which allow the use of well-established 
automatic bandwidth selectors (although in the transformed, rather 
than original, scale). 

(2) Estimators based on the log-density, such as local likelihood and 
logspline estimators, which achieve automatic boundary correction and 

 
PAGE 81 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



z-. 
'iii 
c 
Cl) 

o 

z-. 
'iii 
c 
Cl) 

0 

z-. 
'iii 
c 
Cl) 

0 

<0 

'<t 

C\I 

0 

0 

0 

0 
0 

3.6. Comparison of Univariate Density Estimators 71 

Automatic Manual 

z-. 1.0 
'iii 
c 0 Cl) 

0 

0 
0 

o 1 0 20 30 40 50 o 10 20 30 40 50 

Days Days 

<0 

z-. 
'<t 'iii 

c 
Cl) 

0 C\I 

0 

0.0 0.4 0.8 0.0 0.4 0.8 

Proportion of white students Proportion of white students 

z-. 
'iii 

C\I c 
Cl) 0 

~ 
0 0 

rA. 0 
0 

0 200 400 600 0 200 400 600 

Focal depth Focal depth 

Fig. 3.20. Logspline density estimates of mine accident data (first row), racial 
distribution data (second row), and earthquake depth data (third row), based on 
whether knots are chosen automatically using stepwise deletion (left column) or 
manually (right column). 
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local adaptivity, but can be more difficult to study theoretically. An­
other appealing possibility that is closely related to the local likelihood 
estimator will be described in Section 6.4. 
One of the most controversial issues in the density estimation literature 

is that of automatic smoothing parameter selection. If an impression of the 
broad features in the density is desired, stable bandwidth methods such as 
plug-in selectors have an advantage, even though they might oversmooth 
and miss some effects. If it was desired to notice all structure, no matter 
how small, less biased methods like cross-validation have an advantage, 
although they might undersmooth and yield many false signals. It is always 
a good idea to look at a wide range of smoothing parameters to minimize 
the chances of missing anything important and to get a sense of whether 
locally varying the smoothing parameter would be useful. 

Still, a strong determining aspect in whether anyone method becomes 
the "gold standard" is success in determining the degree of smoothing au­
tomatically, a criterion that would work against the spline-based methods. 
In any event, the similarity of many of the plots in this chapter suggests 
that most "smart" estimators are likely to give similar impressions of the 
data. 

Background material 

Section 3.1 

3.1.2. Fix and Hodges (1951) first proposed the kernel estimator, using a 
uniform kernel; see Silverman and Jones (1989) for discussion (and publica­
tion) of this unpublished paper. Akaike (1954) studied consistency proper­
ties of the estimator based on a uniform kernel using the properties of the 
binomial distribution. Whittle (1958) examined some finite sample proper­
ties of the estimator, but the results cannot be used generally in a prac­
tical way. Rosenblatt (1956) and Parzen (1962) first examined the asymp­
totic properties of the kernel estimator in terms of MSE. Parzen (1962), 
Bertrand-Retali (1978) and Devroye and Gyorfi (1985) examined the con­
sistency properties of j, establishing consistency under very weak (or no) 
conditions on f. Wand and Devroye (1993) examined a measure of the 
difficulty in estimating a density based on absolute error. 

Bartlett (1963) and Epanechnikov (1969) (and Hodges and Lehmann, 
1956, in a different context) proved that the quadratic kernel is asymptoti­
cally optimal when the kernel function is restricted to be a proper density. 
Trosset (1993) derived the form of the corresponding kernel for finite sam­
ples. Cline (1988) showed that any estimator based on an asymmetric kernel 
can be beaten (in the sense of smaller MISE) by an estimator based on a 
symmetric kernel, so (in this sense) asymmetric kernels are inadmissible 
(any asymmetric square integrable kernel can be improved by reflecting 
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about zero, as in K*(u) = [K(u) + K( -u)J/2). Parzen (1962) calculated 
R(K) for several kernel functions and noted the connection with AMISE. 

The formula (3.2), which involves the sum of n values for each evalu­
ation point x, is not computationally feasible for very large sample sizes. 
Similarly, repeated calculation of j, such as would be required for Monte 
Carlo simulations or bootstrapping, could become impossible if it was done 
using (3.2). 

For this reason, computationally more efficient forms of j have become 
generally available in recent years. Most are based on binning the data 
and then smoothing the resultant histogram form. Silverman (1982a) took 
advantage of binning and the Fast Fourier Transform in computer code 
based on using the Gaussian kernel. 

Scott (1985b) motivated this idea as a way to eliminate the dependence 
of histograms on the anchor position, by estimating f using an average 
of histograms with different anchor positions. Let M be the number of 
shifted histograms that constitute the average. The resultant average shifted 
histogram (ASH) estimator, as M gets larger, has the form (3.2) with a 
triangular kernel function 

K(u) = { 1 -lui, 
0, 

if lui::;; 1, 
otherwise. 

The squared error properties of the ASH are similar to those of the ker­
nel estimator with triangular kernel, with added terms that are a function 
of M: 

2 ( 1) h2 RU') h4 RU") ( 2 3) 
AMISE = 3nh 1 + 2M2 + 12M2 + 144 1 - M2 + 5M4 . 

Note that the additional terms become negligible for M as small as 10. See 
also Jones and Lotwick (1983), Scott and Sheather (1985), Jones (1989), 
and Hall and Wand (1996). 

This estimator can be generalized to approximate any kernel estima­
tor with any kernel function by using weighted averages of histograms 
rather than a simple average. This weighted averaging of rounded points, 
or WARPing, is described in detail in HardIe (1991) and HardIe and Scott 
(1992). 

Several authors have proposed kernel-type estimators (of a form termed 
generalized kernel estimators ~ see Foldes and Revesz, 1974, and Walter 
and Blum, 1979) based on smoothing a histogram without focusing specif­
ically on computational savings. Examples include the estimators of Vitale 
(1975), Gawronski and Stadt muller (1980, 1981) and Stadt muller (1983). 

A simple improvement to the WARPing estimate is to use as the es­
timate a piecewise linear interpolant of the WARPing estimates at the 
histogram bin centers. The similarity of this estimate to a frequency poly­
gon led Scott (1985b) to refer to this as the frequency polygon-average 
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shifted histogram (FP-ASH) estimate. The resultant estimator appears 
much smoother to the eye, which translates into improved AMISE, 

2 h4R(f") ( 1 9) 
AMISE = 3nh + 144 1 + M2 + 20M4 ' 

which is virtually identical to that of the triangular kernel estimator for 
M as small as 3. Jones (1989) also investigated this interpolated density 
estimator. 

The standard MISE results for kernel estimators are based on assum­
ing that the observations constitute a random sample from the density I; 
that is, they are independent and identically distributed. If instead the ob­
servations are a sample from a strictly stationary process, they are still 
identically distributed (so estimation of their marginal density I makes 
sense) but are no longer independent. 

Several authors have studied the effect of dependence on the asymp­
totic properties of the kernel estimator under various models for depen­
dence, including Markov and autoregressive processes, and mixing-type 
conditions; see, for example, Roussas (1969,1988), Rosenblatt (1970, 1971), 
Nguyen (1979), Masry (1983), Hart (1984), Tran (1989,1990), Gyi:irfi et al. 
(1990), and Bosq (1995). These authors found that, if the dependence is not 
too strong, the AMISE of the kernel estimator is identical to that when the 
observations are independent. In particular, Hall and Hart (1990a) showed 
that for linef:tr processes 

MISE(jh) ~ MISE(}~) + Var(X)R(f'), 

where j~ is the kernel estimate of the density function obtained from 
a random sample (the extra term comes from the asymptotic variance, 
as the bias is unaffected by dependence). Under short-range dependence, 
Var(X) = O(n- 1), which is smaller than MISE(j~) = O(n-4 / 5 ), so asymp­
totically the effects of dependence disappear. Under long-range dependence, 
however, the rate of MISE is dominated by the slower convergence of 
Var(X) to zero and does not even depend on the smoothing parameter 
(see Beran, 1994, for a discussion of such long memory processes). See also 
Csi:irgo and Mielniczuk (1995a). 

Despite the lower order effect of short-range dependence on AMISE, 
for finite samples any kind of dependence can affect the efficiency of j in a 
significant way; see Hart (1984) and Wand (1992a) for discussions relating 
to first-order autoregressive and linear processes, respectively. 

3.1.3. Many of the results discussed in Chapter 2 about bin-width determi­
nation for histograms and frequency polygons carryover to kernel estima­
tion. For example, Terrell and Scott (1985) and Terrell (1990) addressed 
oversmoothing in this context, determining that the oversmoothed choice 
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when using a Gaussian kernel is h = 1.144an- 1/ 5 . This is close to the op­
timal value for a Gaussian density (3.7), reinforcing the notion that the 
Gaussian density is quite smooth. 

Kraft, Lepage, and van Eeden (1983) and Dodge (1986) studied the 
performance of the minimizer of AMISE for finite samples via Monte Carlo 
simulation. They found that the asymptotically optimal choice works well 
for small samples (as small as n = 10) for shorter-tailed densities, such as 
the Gaussian and logistic, but is much less effective for longer-tailed den­
sities, such as the double exponential, gamma, and Cauchy (where sample 
sizes of at least 50 to 100 are necessary for the asymptotics to take over). 

Rudemo (1982) and Bowman (1984) proposed using the minimizer hey 
of the cross-validation function for kernel density bandwidth choice. Let 
h opt be the value of h that minimizes MISE, while hopt is the value that 
minimizes ISE (for a given sample). Hall (1983a) showed that under smooth­
ness conditions on f and K, hey j hopt ---> 1 in probability as n ---> 00. Stone 
(1984) strengthened this result: if K is symmetric, compact, and Holder 
continuous, and f is bounded, then hey is asymptotically optimal, in the 
sense that 

lim MISE(hey) = 1 
n-->oo MISE( hopd ' 

with probability 1. Burman (1985) used a different approach to obtain 
similar results. 

Diggle and Marron (1988) used the equivalence of hey based on a uni­
form kernel and an empirical Bayes smoothing parameter method of Diggle 
(1985a) for intensity function estimation to motivate a strong connection 
between density and intensity estimation (in the intensity estimation frame­
work, observations are treated as a realization on an interval [0, T] of a 
nonstationary Poisson process with intensity function '\(x)). 

The value h opt only reflects average performance over all possible data 
sets from a given population, rather than performance for the observed data 
set. For this reason, from a conceptual point of view, the value hopt is a 
more reasonable target, since it reflects the accuracy of j for the data set 
at hand. 

Unfortunately, hopt is an exceedingly difficult target to try to hit. Hall 
and Marron (1987a) showed that the best possible convergence rate of any 
data-dependent h to hopt is 

(3.21 ) 

This is the rate achieved by hey (Hall and Marron, 1987b) and also 
the rate if h opt itself were available (Hall and Marron, 1987a). Hall and 
Johnstone (1992) showed that h opt (and any data-based choice satisfying 
hjhopt = 1 + op(n-3/ 1O )) does improve on hey as an estimate of hopt , 
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however, in the sense of smaller asymptotic variance (although it does 
not reach the minimal variance). See Mammen (1990), Hall and Marron 
(1991a), Jones (1991), Jones and Kappenman (1991), and Grund, Hall, 
and Marron (1994) for further discussion of the issues in estimating h opt 

versus h opt . Gu (1995a) argues in favor of using ISE, rather than MISE, as 
a target, further proposing that R(j") is more meaningful than h is across 
sampling replicates. 

The slow rate in (3.21) has been the motivation for much research that 
has focused on the estimation of h opt , rather than h opt . If only two bounded 
derivatives of f exist, a rate of n- l / lO to h opt is optimal, but assuming addi­
tional smoothness implies that the optimal rate of convergence is as fast as 
h/hopt = 1 + Op(n-l/2) (Hall and Marron, 1991a). Note, however, that the 
kernel estimator itself only assumes two derivatives, so these "improved" 
methods assume an underlying smoothness that makes the density estima­
tor itself suboptimal, a point noted by Terrell (1992) and Loader (1995), 
among others. 

The minimizer of CV, hev, achieves the very slow rate hev / h opt = 
1 + Op(n-l/lO) (Hall and Marron, 1987b; Scott and Terrell, 1987). This 
slow rate translates into high variability of hev, as has been noted in 
many Monte Carlo simulation studies (Bowman, 1985; Scott and Terrell, 
1987; Park and Marron, 1990; Chiu, 1991a; Jones, Marron, and Park, 1991; 
Marron, 1991; Simonoff and Hurvich, 1993; Cao, Cuevas, and Gonzalez­
Manteiga, 1994; Jones, Marron, and Sheather, 1996). These studies have 
also revealed that the CV function often exhibits multiple local minima; 
Hall and Marron (1991b) provide theoretical support for this observation. 

The value hev, besides being highly variable, often undersmooths in 
practice, in that it leads to spurious bumpiness in the estimated density 
(hev is an unbiased estimator of hoPt ' so in that MISE-based sense it is not 
necessarily undersmoothing); see Scott and Terrell (1987), Chiu (1991a), 
Park and Turlach (1992), and Sheather (1992). Silverman (1986, pp. 51-52), 
Chiu (1991b), and Hall and Marron (1991b) provided theoretical arguments 
to explain this observed behavior. 

Woodroofe (1970) and Nadaraya (1974) proposed the idea of plug-in 
bandwidth selection without investigating issues of practical implementa­
tion of the idea. An early plug-in approach to bandwidth selection was 
biased cross-validation (Scott and Terrell, 1987), but this bandwidth choice 
shares the slow n-1/ 10 convergence rate to hopt of hev (Jones and Kappen­
man, 1991, described other such methods). Later methods have improved 
on this rate, giving h/hopt = 1 + Open-a), with Q = 4/13 (Park and Mar­
ron, 1990), Q = 5/14 (Sheather and Jones, 1991; Hall, Marron, and Park, 
1992; Cao, Cuevas, and Gonzalez-Manteiga, 1994; Engel, Herrmann, and 
Gasser, 1994), and Q = 1/2 (Chiu, 1991a, 1992; Hall et al., 1991; Jones, 
Marron, and Park, 1991; Hall, Marron, and Park, 1992; Marron, 1992b; 
Kim, Park, and Marron, 1994). See also Fan and Marron (1992) and Park 
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and Marron (1992) for further theoretical discussion of these methods. 
A uniformly best bandwidth selection method for the fixed-bandwidth 

kernel estimator has not been found, which (given the complexity of the 
problem and the limitations of the estimator) is probably not surprising. 
The results in Park and Thrlach (1992), Sheather (1992), Cao, Cuevas, and 
GonzaJez-Manteiga (1994), and Jones, Marron, and Sheather (1996) suggest 
that the best methods are those of Park and Marron (1990), Sheather and 
Jones (1991), Chiu (1992), Hall, Marron, and Park (1992), Cao, Cuevas, 
and GonzaJez-Manteiga (1994), and Engel, Herrmann, and Gasser (1994), 
with the Sheather~Jones method being the single best choice, if one method 
had to be chosen. 

Wand and Jones (1995, Chapter 3 and Appendix D) discussed many 
of the issues raised in this section in more detail. 

Loader (1995) argued forcefully against the use of plug-in selectors, and 
hSJ in particular. He noted that these selectors require restrictive smoothing 
assumptions on the true density, and he claimed that selectors based on 
Ale or cross-validation that make similar assumptions are generally at least 
as good as plug-in selectors. He noted that plug-in selectors also tend to 
oversmooth in situations where the density exhibits widely varying 1f"(x)l, 
choosing an h larger than hopt (estimators designed for densities of this 
type are discussed in Section 3.3.2). This oversmoothing tends to reduce 
variance, but at the cost of increased bias in j. 

The plug-in approach to bandwidth selection is just addressing esti­
mation of R(f"), as in (3.9)~hus, a good bandwidth selection method 
corresponds to an accurate R(f"), which also can be used in other appli­
cations. For example, a plug-in estimate of the optimal (minimal AMISE) 
bin width for a constant bin-width frequency polygon is 

h - 2 [ 15 ]1/5 ~1/5 
- 49R(f") n , 

based on (2.14). It is likely that if a complex bin-width selection method 
(which itself uses kernel estimation techniques) is used, then a better (ker­
nel) density estimator would be used as well, but a plug-in-based method 
provides a useful "best case" data-based choice of bin width for compara­
tive purposes, or if a simpler estimator was desired. Simonoff (1995a) and 
Jones et ai. (1998) examined the use of this plug-in rule as applied to such 
estimators. The functional R(f'), which is needed for optimal histogram 
bin-width choice (see Eq. 2.6), can sometimes be estimated in a similar 
way, since for many densities R(f') = - J f"(u)f(u)du; see Wand (1997). 

These various bandwidth selection methods can be made more com­
putationally efficient by using binning (as WARPing does for the kernel 
estimate itself). Gonzalez-Manteiga, Sanchez-Sellero, and Wand (1996) ex­
amined the effects of such binning on cross-validation and plug-in methods. 
They found that for many univariate densities, binning over a grid of a few 
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hundred values provides an accurate approximation to the actual target 
bandwidth measure. 

All these bandwidth choices are motivated through the use of squared 
error, which can be criticized as an arbitrary (and unrealistic) loss function. 
Devroye and Gyorfi (1985) examined the use of absolute error, IAE = 
J li(u) - f(u)ldu. Hall and Wand (1988a,b) showed that the minimizers 
of MISE and MIAE are very close for symmetric, light-tailed densities, 
implying that the methods based on MISE perform similarly with respect 
to MIAE as well. See also Dodge (1986), Schucany (1989), and Cao, Cuevas, 
and Gonzalez-Manteiga (1994). 

Habbema, Hermans, and van den Broek (1974) and Duin (1976) pro­
posed likelihood cross-validation, which is based on minimizing an estimate 
of Kullback-Leibler distance. Chow, Geman, and Wu (1983) established 
consistency of the resultant bandwidth choice if both f and K are bounded, 
although Hall (1982) showed that it can be suboptimal even if it is consis­
tent. Gregory and Schuster (1979) and Schuster and Gregory (1981) noted 
that the likelihood cross-validation bandwidth can be inconsistent for un­
bounded densities. Hall (1987) sharpened these results theoretically, proving 
that the tail properties of f and K have a profound influence on the prop­
erties of the likelihood cross-validation bandwidth (see also Broniatowski, 
Deheuvels, and Devroye, 1989). Marron (1985a) discussed a modification 
of the likelihood cross-validation rule that results in better performance. 
Marron (1987) compared the asymptotic behavior of least squares and like­
lihood cross-validation in terms of the distances each rule minimizes. 

It can be argued that none of these distances is a sensible target for 
density estimation, since they do not reflect what a data analyst would con­
sider the quality of a density estimate. In particular, squared (or absolute) 
error heavily penalizes a misplaced mode, even if the qualitative shape of 
the density estimate is close to that of the true density (see Kooperberg 
and Stone, 1991, for an example of this phenomenon). 

Park and Thrlach (1992) investigated this issue by evaluating various 
bandwidth selectors using the number of modes in the resultant density 
estimate, but this does not address the size and shape of those estimated 
modes. Cuevas and Gonzalez-Manteiga (1991) and Mammen (1995) focused 
on characteristic points of the density, such as inflection points. Marron 
and Tsybakov (1995) proposed the use of "visual error criteria" to try to 
assess the qualitative effectiveness of smoothing, based on both vertical 
and horizontal distances between {x,j(x)} and {x, i(x)}. Marron (1998) 
examined these measures further, concluding that the bandwidth selector 
of Sheather and Jones (1991) is still a good all-around choice. 

If the observed data constitute a stationary time series rather than 
a random sample, then the optimal bandwidth changes. Roughly speak­
ing, dependence implies less information about f, and hence an effectively 
smaller sample size than n. This suggests the use of a larger bandwidth 
than results based on independence would imply. 
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Hart and Vieu (1990) proposed a modification to cross-validation, 
wherein a sequence of Rn + 1 consecutive observations are dropped out, 
rather than one observation at a time. They showed that under an a-mixing 
condition, as long as Rn does not increase too quickly, the cross-validated 
bandwidth is asymptotically optimal. Although the usual (leave-out-one) 
version satisfies this condition, they found that for sufficiently strong de­
pendence, taking Rn > 0 can improve ISE performance. 

Cao, Quintela del Rio, and Vilar Fernandez (1993) examined the be­
havior of the cross-validation and biased cross-validation bandwidths, as 
well as those of Jones, Marron, and Park (1991) and Sheather and Jones 
(1991) (and other proposals), under dependence using Monte Carlo simula­
tions. They found that the Jones-Marron-Park and Sheather-Jones band­
widths were fairly insensitive to the degree of dependence and were the best 
behaved. They also noted, however, that all the bandwidths tended to de­
crease with increasing autocorrelation, rather than increase as they should. 
Quintela del Rio and Vilar Fernandez (1992) adapted local cross-validation 
to dependent data. 

Efron and Tibshirani (1993) gave an overview of the bootstrap ap­
proach to statistical inference. Jones and Rice (1992) described a way of 
summarizing a set of smooth curves using principal component analysis, 
which could be used as an alternative to a variability plot. 

Tierney (1990) emphasized the usefulness of sliders to assess the sensi­
tivity of estimation procedures to user-chosen parameters, with particular 
emphasis on kernel density estimation in Section 1O.l.3. Marron's (1993) 
comments on appropriate bandwidth grid scale for Monte Carlo simulations 
are consistent with tuning bandwidth sliders using a logarithmic scale. Fan 
and Muller (1995) suggested plotting density estimates based on the set of 
bandwidths {h = l.4j hROT ,j = -3, -2, ... , 2} on the same plot in order 
to assess the sensitivity to bandwidth choice, where hROT is a Gaussian 
rule ofthumb bandwidth using (3.7); Scott (1992, p. 161) suggested the set 
{h = hos /l.05) ,j = 0,1,2, ... }, where hos is the oversmoothed bandwidth 
choice. Marron (1995a) proposed a similar idea, centering an equally spaced 
set of bandwidths (in a log scale) at hsJ . 

A static display that can show the changes in the fitted density as 
the bandwidth changes is the mode tree of Minnotte and Scott (1993). In 
this display, mode locations are plotted against the log of the bandwidth 
at which the density estimate with those modes is calculated. In this way, 
the splitting of modes as h decreases is apparent, and the sensitivity of the 
fitted estimate to the choice of h can be evaluated. The mode tree is based 
on the use of a Gaussian kernel, since for that kernel the number of zeroes 
in all derivatives of j is monotone decreasing in h (Silverman, 1981). This 
implies that when using the Gaussian kernel, all modes found at a given 
value of h remain as h decreases. 

The close connection between kernel estimation and estimation based 
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on Fourier series is a major focus of Tarter and Lock (1993). A different, 
quite promising, orthogonal series method that is locally adaptive is the 
wavelet density estimator; see Kerkyacharian and Picard (1992, 1993), Hall 
and Patil (1995), and Donoho et al. (1996). 

Section 3.2 

3.2.1. Maguire, Pearson, and Wynn (1952) gave the mine accident data. 
Gasser and Muller (1979) first examined issues of boundary bias, although 
in the context of nonparametric regression. Jones (1993a) provided a unified 
framework for investigation of the problem. 

Boundary bias can also affect bandwidth selection methods for kernel 
density estimators. Plug-in estimators of RUff) can be inefficient if f has 
nonzero derivatives at the boundaries, which leads to corresponding ineffi­
ciencies and inconsistencies in plug-in bandwidth selectors. See Van Es and 
Hoogstrate (1994, 1998) (these papers also examined the effects of jumps 
and kinks in the density f in the interior on bandwidth selection). 

3.2.2. Dawkins (1989) included the men's marathon data as part of a larger 
set of values of national racing records. Hurvich and Simonoff (1993) con­
structed fixed and variable bin width frequency polygons for these data 
that highlight the possible "round number" threshold effect, while avoiding 
bumpiness in the upper tail. 

Chatterjee, Handcock, and Simonoff (1995) gave the data reporting 
the proportion of white students in Nassau County school districts (p. 298), 
along with a detailed description of the data analysis issues involved. 

3.2.3. Stoker (1993) noted that Jensen's inequality implies that j(x) is 
biased downward where f is concave and biased upward where f is convex, 
and related this property to derivative estimation. 

Section 3.3 
3.3.1. Jones (1993a) used the concept of generalized jackknifing to motivate 
the formulation of boundary kernels using the linear combination of two 
functions. Gasser and Muller (1979) (and, more recently, Hart and Wehrly, 
1992) suggested the boundary kernel (3.12). Rice (1984a) proposed a kernel 
family based on (3.11), taking L(x) = cK(cx). Jones (1993a) showed that 
the bias of j B equals 

or 

[ a~(p) - a1(p)a3(p)] h2f"(x) + (h2) 
aO(p)a2(p) - ai(p) 2 0, 

for the particular kernel (3.12). The variance has the form 

(3.22) 

 
PAGE 91 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



Background material 81 

{ ci(p)b(p) - 2Cl(p)al(p)e(p) + ai(p)g(P)} f(x) + O(n-l) (3.23) 
[cl(p)ao(p) - al(p)eo(p)j2 nh ' 

where e(p) == J~l K(u)L(u)du and g(p) == J~l £2(u)du. Substituting the 
kernel (3.12) based on a biweight kernel into (3.23) shows that the asymp­
totic variance is about seven times greater at p = 0 than at p = 1, which 
provides theoretical support for the observed pattern in the variability plot 
presented in Fig. 3.1l. 

Jones (1993a) established the formal equivalence between using the 
boundary kernel (3.12) and estimating a density using a weighted local lin­
ear estimate. That is, estimate f by ~o, where ~o and ~l are the minimizers 
of 

(3.24) 

and 8 is the Dirac delta function (making n- 1 L:~=l 8( u - Xi) the empirical 
density function). See also Sarda (1991), Lejeune and Sarda (1992), Fan, 
Gijbels, Hu, and Huang (1996), and Cheng, Fan, and Marron (1997). This 
density estimator will be discussed further in Section 6.4. 

Jones and Foster (1996) described a boundary kernel estimator that is 
nonnegative (but does not integrate to 1). 

3.3.2. Victor (1976) and Breiman, Meisel, and Purcell (1977) originally 
proposed the variable kernel estimator. Devroye (1985) and Schilling and 
Stute (1987) established consistency of the estimator. Victor and Breiman 
et al. proposed choosing h(Xi) to be proportional to the distance to the 
kth nearest neighbor, or h(Xi) ex f(Xi)-l for univariate data. Schafer and 
Trampisch (1982) discussed difficulties with this choice and proposed an ad 
hoc modification of it; see also Tseng and Moret (1990). Abramson (1982) 
proposed taking h(Xi) ex f(Xi)-1/2 and showed that this is the only func­
tion of f where the O(h4) term of the asymptotic squared bias disappears. 
Silverman (1986, p. 104), Hall and Marron (1988a), Hall (1990b), and Jones 
(1990) gave the exact form of the squared bias. 

Abramson's (1982) estimate requires bounding the pilot density away 
from zero. Terrell and Scott (1992) showed that if this is not done (result­
ing in an estimator they termed the "nonclipped" estimator), the squared 
bias can be O([h/logh]4) rather than the anticipated O(hB), because of 
the influence of observations Xi far from the evaluation point X. I Still, the 
nonclipped estimator has exhibited good small-sample properties in simu­
lations (Abramson, 1982; Silverman, 1986; Terrell and Scott, 1992; Foster, 
1995), presumably because extreme observations are less of a problem in 
small samples. 

McKay (1993) noted that the practical difficulties of tail effects are less 
important if a kernel estimate is used as the pilot, since it will tend to over­
estimate f where f is small. McKay also suggested an alternative method 

 
PAGE 92 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



82 Chapter 3. Smoother Univariate Density Estimation 

of bounding the pilot away from zero that allows a uniformly convergent, 
higher order bias expansion where f is bounded away from zero and that 
yields an estimate that is nonnegative and integrates to 1. See Hall, Hu, and 
Marron (1995) for further discussion of tail effects on the variable kernel 
estimator and another method of addressing them. 

Hall (1992a) showed that the MISE for the variable-bandwidth esti­
mator (3.13) is determined almost completely by the tails of the density 
f, unless these tails are very heavy. He suggested using as an alternative 
target a weighted version of MISE, where the tails are downweighted. This 
can be estimated using a weighted cross-validation criterion. One possible 
weight function is to give zero weight to observations that are too far into 
the tails, and full weight otherwise. 

One way to view the use of a variable bandwidth h(Xi) is that the kernel 
contributions from each Xi are scaled differently based on local properties 
of the density. Samiuddin and El-Sayyad (1990) showed that varying the lo­
cation of each kernel can also lead to improved bias properties. Specifically, 
a suitably "clipped" version of the estimator 

achieves O(h4) bias, and hence O(n-S/ 9 ) mean squared error. Practical 
application of this estimator requires pilot estimation of (log f)' = f' / f· 

Jones, McKay, and Hu (1994) showed that these location- and scale­
varying kernel estimators are special cases of a wide family of such estima­
tors 

n 

j(X) = n-1h-1 L a(xi)K {h-1a(xi)[x - Xi - h2 A(Xi)]}, 
i=l 

which all solve the differential equation 

a; (!2)" (u) = (Af)'(u). 

They also showed how to generalize this family in order to achieve O(h6) 
bias, although small-scale Monte Carlo simulations did not indicate any 
meaningful improvement in performance. 

Loftsgaarden and Quesenberry (1965) first proposed the nearest neigh­
bor density estimator, with the kernel function being a uniform density (the 
estimator based on an arbitrary kernel function K is sometimes called a 
generalized nearest neighbor estimator and has also been called a balloon 
estimator, following a suggestion of Tukey and Tukey, 1981). Jones (1990) 
and Terrell and Scott (1992) examined the properties of estimators of the 
local-bandwidth form. The best h(x) (in the sense of minimal asymptotic 
MISE) yields AMISE 
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which, by Jensen's inequality, is less than or equal to the corresponding 
value for the fixed- bandwidth kernel estimator (given in (3.6)). The optimal 
h(x) is proportional to {f(x)/[f"(X)]2P /5, or inversely proportional to the 
local roughness of the true density. 

While there has been some work on estimating the optimal h(x) at any 
one point Xo (see, for example, Sheather, 1986; Hall and Schucany, 1989; 
Mielniczuk, Sarda, and Vieu, 1989; Hall, 1993; and Fan, Hall, Martin, and 
Patil, 1996), there are no effective data-based methods for determining it 
at every x, as would be necessary for calculation of the local kernel esti­
mate. The nearest neighbor distance, in contrast, is easy to calculate but 
is far from optimal. Terrell and Scott (1992) showed that for most densi­
ties encountered in practice, the integrated squared bias of the estimator is 
asymptotically infinite, with small-sample roughness as seen in Fig. 3.14 not 
at all unusual (an example is given in Silverman, 1986, p. 20). Other inves­
tigations of consistency and asymptotic properties of the nearest neighbor 
density estimator include those of Devroye and Wagner (1977), Moore and 
Yackel (1977), Mack and Rosenblatt (1979), and Rosenblatt (1979). 

Marron and Udina (1995) examined the qualitative behavior of both 
variable and local kernel estimates when the bandwidth functions h(Xi) and 
h(x), respectively, are allowed to vary widely. They used a cubic spline as 
the user interface to the smoothing parameter function, with user-controlled 
knot positions. They found that each of these kernel formulations is consis­
tent with a large family of estimates that contain members with very dif­
ferent appearances, reinforcing the need to choose the function h carefully. 
Hall, Marron, and Titterington (1995) examined the theoretical properties 
of such an interface for the local kernel estimator, calling it "partial local 
smoothing." They examined different ways of estimating h(x) at the knots 
and found that linear interpolation on as few as 5 ~ 9 knots yields most 
of the potential improved AMISE of the local kernel estimator over the 
fixed-bandwidth kernel estimator. 

3.3.3. Parzen (1962) noted that the kernel function can be chosen to lead 
to improved asymptotic bias of the kernel estimator. Bartlett (1963) noted 
the necessary conditions for the kernel function. The bounded fourth order 
kernel that minimizes the asymptotic variance of the estimator is 

K(x) = { ~(3 - 5x2 ), Ixl < 1: 
0, otherwIse 

(Deheuvels, 1977a; Miiller, 1984). Gasser, Miiller, and Mammitzsch (1985) 
derived higher order (polynomial) kernels that minimize AMISE subject to 
a fixed number of sign changes in the kernel (it is not possible to minimize 
AMISE without restrictions for p > 2). 
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Jones and Foster (1993) showed that the principle of generalized jack­
knifing (Schucany, Gray, and Owen, 1971) can be used to construct many 
higher (fourth) order kernels from nonnegative (second order) kernels. Let 
K be a symmetric density function, while L is an alternative symmetric 
function. Then, if Tk == J Uk L( u)du, 

hK(x) - o"kL(x)] 
T2 - a'kTo 

is a fourth order kernel (Schucany and Sommers, 1977). 
Different choices of L give different fourth order kernels. For example, 

taking L(x) = cK(cx), c E (0,1), gives the kernel 

K(x) - c3 K(cx) 
(3.25) 

(Schucany and Sommers, 1977; Wand and Schucany, 1990). Taking L(x) = 
x2 K(x) gives the locally weighted quadratic kernel 

(84 - a'kx2)K(x) 
84 - a'l 

where 84 == J u4 K(u)du (Lejeune and Sarda, 1992). The choice L(x) 
xK'(x) gives the kernel 

3 1 2K (x) + 2xK'(x), 

which also corresponds to (3.25) with c -> 1 (Silverman, 1986, p. 69; Wand 
and Schucany, 1990). Stuetzle and Mittal (1979), Singh (1987), Devroye 
(1989), Berlinet (1990), Samiuddin and EI-Sayyad (1990), Fan and Hu 
(1992), and Abdous (1995) described other ways to construct higher or­
der kernels. 

Marron and Wand (1992) examined the exact MISE for pth order ker­
nel estimators of densities that are convex combinations of Gaussian densi­
ties. This family of densities is rich enough to produce densities with vary­
ing numbers of modes and varying levels of skewness and kurtosis. They 
found that the asymptotic MISE is sometimes quite different from the ex­
act MISE (with correspondingly different minimizers). Also, they found 
that higher order kernels only improve on second order kernels for sample 
sizes of at least n = 1000 for simple densities, and as much as n = 1,000,000 
for hard-to-estimate densities. Apparently, increased variance balances de­
creased bias (see also HardIe, 1986, and Foster, 1995). 

Marron (1994) showed that higher order kernel estimators are better 
than nonnegative ones when the true density is well approximated by a 
parabola over the (effective) window width of the kernel. This will not be 
true for densities with interesting structure unless the bandwidth is small, 
which is only appropriate for (very) large sample sizes. 
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One way to view the bias reduction properties of higher order kernel 
estimators is that the bias of a second order kernel estimator j (x) is esti­
mated and then subtracted from j(x) (Jones, 1995b). Bias reduction can 
also be achieved using a multiplicative correction, as in 

(Jones, Linton, and Nielsen, 1995). This estimator achieves O(h4) bias, with 
a bias function different from that of higher order kernels (the asymptotic 
variance is identical to that of the fourth order kernel estimator based on 
twicing [Stuetzle and Mittal, 1979]). Monte Carlo simulations reported by 
Jones et al. indicate that this estimator outperforms the fourth order kernel 
estimator. 

Jones (1992) examined the relative error rate of convergence of data­
based bandwidth choices for higher order kernels. The choice based on cross­
validation is even worse than for second order kernels, as 

(see also Marron, 1986). So, for example, for p = 4, the relative error rate is 
Op(n- 1/18 ). A plug-in estimator analogous to the construction of Sheather 
and Jones (1991) has 

h = 1 + 0 (n-(2P+l)/(6p +2) 
ho p , 

or relative error rate Op(n-9/26 ) for p = 4 (although the paper did not give 
any practical plug-in estimate). 

The reduced bias of a pth order kernel estimator holds only if the 
density is sufficiently smooth; for example, if the density has only two 
bounded derivatives, a fourth order kernel estimator should not be used. 
This suggests choosing the order p in a data-dependent way. Hall and Mar­
ron (1988b) proposed doing this using cross-validation and showed that this 
choice is asymptotically optimal as long as the underlying density is not too 
smooth. 

Hall and Murison (1993) examined making the estimate into a bona 
fide density using simple "clipping" and normalization, yielding 

A(x) = j(~)I(}(~) > 0) , 
1 + J If(u)II(j(u) < O)du 

where Ie) is an indicator function. Unless f has very heavy tails (no finite 
moments), this operation has little effect on the ISE and the choice of h, so 
any choice of h based on the original estimator can be used for the modified 
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version. Gajek (1986) described more complex corrections for non-bona fide 
estimates that are guaranteed not to increase the MISE (simply clipping 
and normalizing cannot increase IAE - see Devroye and Gyorfi, 1985, 
Chapter 11). 

Konakov (1973) and Davis (1975, 1977) described the Fourier integral 
estimator. Davis (1977) showed that the estimator achieves the minimal 
rate of MISE for kernel estimators (as derived in Watson and Leadbet­
ter, 1963) for f sufficiently smooth (if its characteristic function decreases 
algebraically, exponentially or is compact). Davis (1981) and Hart (1985) 
discussed data-based choice of the bandwidth. See Ibragimov and Khasmin­
skii (1982), Devroye and Gyorfi (1985, pp. 133-137), and Abdous (1993) 
for further discussion of this estimator. Devroye (1992) examined the MIAE 
properties of estimators of related form, which he called "superkernels." 

The geometric combination estimator, with c = 2 as in Eq. (3.17), 
was introduced by Terrell and Scott (1980). Koshkin (1988) described and 
analyzed the general formulation (3.16). See also Jones and Foster (1993) 
for generalizations of this estimator. 

3.3.4. Devroye and Gyorfi (1985, Chapter 9) and Silverman (1986, Sect. 
2.9) described the benefits of transformation-based density estimation. The 
earthquake data came from the Bulletin of the International Seismologi­
cal Centre and were discussed in Frohlich and Davis (1990). Yang (1995) 
suggested the use of the Johnson family for the transformation-based es­
timate for these data. The observed modes at 0, 33, 100, and 200 km can 
be explained as follows (Frohlich, 1995): When locations of earthquakes 
are initially reported, they are likely to have provisionally reported depth 
in only rough terms, such as "shallow" (zero depth) or to within 100 km 
(100 or 200 km depths). As further processing continues, some of these 
quakes are confirmed as definitely shallow, but no more accurate depth can 
be determined; these are assigned a depth of 33 km by convention (due 
to seismic modeling that assumes that the Earth's crust is 33 km thick). 
Others might have the actual depth confirmed, in which case the actual 
number is assigned to the seismic event. Thus, events at 0, 100, and 200 
km never received additional processing and confirmation, while those at 
33 km were processed further, but the inherent difficulty in pinpointing 
the precise depth of shallow events prevented an exact location from being 
determined. 

Wand, Marron, and Ruppert (1991) examined the use of the shifted 
power transformation for long right-tailed data. They proposed choosing the 
parameters to minimize R(if a)' where if a is a pilot kernel estimate with 
bandwidth a. This choice is b~ed on (3.6); since minimizing an estimate of 
R(J") is equivalent to minimizing the best possible AMISE in the Y scale, 
which should translate to accurate estimation in the X scale. 

Ruppert and Wand (1992) examined using convex combinations of 
the identity transformation and the standard normal cumulative distribu­
tion function to address thick-tailed (kurtotic) data. Marron and Ruppert 

 
PAGE 97 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



Background material 87 

(1994) suggested addressing boundary bias by transforming the data to a 
density that has its first derivative equal to zero at both boundaries; their 
parametric family of transformations was based on polynomials and a Beta 
cumulative distribution function. 

Ruppert and Cline (1994) proposed estimating the transformation g(x) 
nonparametricallyas G[Fx(x)], where G is the inverse cumulative distribu­
tion function of some target distribution, and Fx is a kernel-based estimate 
of the cumulative distribution function of X (Fx(x) = J~oo ix(u)du, us­
ing an initial pilot kernel estimate of f x). Then, the data are smoothed in 
the transformed scale and then back-transformed to an updated ix. They 
showed that if the target distribution is uniform (that is, g(x) = Fx(x)), 
then applying p iterations of this process (using appropriate bandwidths 
and a boundary kernel) yields an estimate with squared error of order 
Op(n-4PI(4PH)). So, for example, two iterations (where the first iteration 
is just the pilot kernel estimate) yields squared error of order Op(n-8/g ), 

as does a fourth order kernel and the variable kernel estimate (3.13). Such 
iteration does not improve the MSE rate of the variable kernel estimate 
past two iterations (Hall and Marron, 1988a), although Ruppert and Cline 
noted that the MISE of the estimate did seem to improve up to three or four 
iterations in their Monte Carlo simulations. Their transformation-based es­
timate and the variable kernel estimate performed similarly in their Monte 
Carlo simulations and examples. Hossjer and Ruppert (1995) derived exact 
coefficients for the asymptotic expansion of the estimator. 

Jones and Signorini (1997) compared many of the methods that can 
achieve O(h4) asymptotic bias, including fourth order kernels, the geomet­
ric combination estimator, the variable kernel estimator, and the estimators 
of Samiuddin and EI-Sayyad (1990), Ruppert and Cline (1994), and Jones, 
Linton, and Nielsen (1995), both theoretically and using Monte Carlo sim­
ulations. They showed that all of these methods have asymptotic biases of 
the same general form, with different constant terms. Their Monte Carlo 
simulations (based on ISE) indicated roughly similar performance for the 
variable kernel estimator and the estimators of Samiuddin and EI-Sayyad, 
Ruppert and Cline, and Jones et at., which were better than the fourth­
order kernel and geometric combination estimators (with the estimator of 
Jones et al. performing best). They also noted the need for very large sam­
ples before qualitative improvement over the ordinary (second order) kernel 
estimator was evident. 

Section 3.4 

Hjort and Jones (1996) laid out the general framework of local likelihood 
estimation, while Loader (1996) focused on the use of local log-polynomials. 
Both papers discussed the properties of the estimator, including asymptotic 
bias and variance representations, and the potential for automatic boundary 
bias correction. Hjort and Jones showed that the locally closest parametric 
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fit corresponds to the minimizer of local Kullback-Leibler distance. They 
showed that the bias of the local log-linear estimator (using a Gaussian 
kernel) provides a bias correction over the local linear (kernel) estimator, 
giving 

b(x) = rex) - [J;~:f, 
which attempts to correct the local slope of the estimator. Higher order 
local log-polynomials bring in higher order curvature corrections. They 
also discussed minimizing a squared error measure of distance, rather than 
Kullback-Leibler distance; this corresponds to (3.24). 

Besides theoretical concerns, Loader (1996) discussed computational 
issues in the construction of local log-polynomial estimation. He showed 
that the asymptotic relative efficiency of the local log-linear estimator com­
pared with the kernel estimator is ARE(x) = 11 - [J'(x)J2 j[J(x)f"(X)]ll/2 
(where values less than 1 mean that the local log-linear estimator is more 
efficient). For densities that decay exponentially (f(x) = exp[-x'" + o(x"')] 
as x ---+ 00, with ex > 0), the relative efficiency is 

Thus, ARE(x) ---+ 0 as x ---+ 00. Very limited Monte Carlo simulation evi­
dence supports the impression of improved bias in the tails. 

Copas (1995) described a different (but not dissimilar) local likelihood 
approach based on ideas from the analysis of censored data. 

A different way to incorporate prior feelings for the true density is by 
using what have been called semiparametric estimators. Many variations are 
possible. Hjort and Glad (1995) proposed using j(x) = fo(x)r(x), where 
rex) is a kernel estimate of rex) = f(x)j fo(x), and fa is a starting guess 
for f. They derived the asymptotic properties of the estimator, which are 
similar to those of the kernel estimator, except that the squared bias is a 
function of [Jo(x)r"(x)J2 rather than f"(x)2 (now fa is the best parametric 
approximant to 1). Thus, if fa is close to f, rex) ~ 1, and [Jo(x)r"(x)J2 will 
be smaller than f" (x)2. The special exponential family estimators of Efron 
and Tibshirani (1994) reverse the order of estimation, where an ordinary 
kernel estimate is corrected to match sample moments to a parametric 
model. 

Other semiparametric estimation schemes are also possible. Buckland 
(1992a) described a method that approximates r as a polynomial, esti­
mating the coefficients of the polynomial using maximum likelihood. The 
number of terms in the polynomial can be chosen using likelihood ratio 
tests (see also Fenstad and Hjort, 1995). Elphinstone (1983) described a 
different polynomial-based method that allows specification of a "target" 
density. 

A semiparametric estimate also can be based on an additive form rather 
than a multiplicative form; that is, 
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j(x) = 7rfo(x, 8) + (1 - 7r)jtx), 

(Schuster and Yakowitz, 1985; Olkin and Spiegelman, 1987). The param­
eter 7r is estimated using maximum likelihood. The theoretical properties 
reported by these authors are valid only if f is defined on a bounded interval 
and bounded away from zero. Faraway (1990a) showed that this condition 
is important, as 11- is very sensitive to contributions from data in the tails, 
and he recommended estimating 7r after trimming observations in the tails. 
See also Jones (1993b) for further discussion of this estimator. 

Mixture models are another approach to semiparametric estimation. 
Consider, for example, a normal mixture density 

f(x) = J h- 1¢ (x ~ 8) dQ(8), 

where Q is a probability measure (termed the mixing distribution). For 
unrestricted hand Q, the likelihood function approaches infinity as f ap­
proaches the (unsmoothed) empirical density function (Geman and Hwang, 
1982). The class of finite mixtures 

defines a restricted parametric family, but it is not amenable to likelihood­
based analysis (see, for example, McLachlan and Basford, 1988). Roeder 
(1990, 1992) proposed estimating f based on the observed sample spac­
ings and proved almost sure convergence of the estimator. Priebe (1994) 
proposed an adaptive mixture family, where the estimate is recursively up­
dated as new observations are added to the sample, and established strong 
consistency. Marchette et al. (1996) used a mixture model indirectly by 
first fitting it and then estimating the density using a linear combination 
of kernel estimates, where the parameters of the linear combination are es­
timated based on the original estimated mixture model, calling this filtered 
kernel density estimation. 

A natural alternative to a semiparametric estimation scheme if some 
parametric family is considered a good guess for the true density is to incor­
porate that feeling into a prior distribution and usc a Bayesian approach. 
Hjort (1996) described various Bayesian approaches to density estimation. 
One approach is to bin the data by dividing the interval of interest into 
cells. Then, a Dirichlet distribution constitutes a conjugate prior family. 
Ferguson (1973) introduced the Dirichlet process, which avoids the need 
to bin the data. Unfortunately, the Dirichlet process does not incorporate 
smoothness in a useful sense, but this can be overcome by smoothing the 
prior. The resultant posterior is a mixture of Dirichlet processes (Ghorai 
and Rubin, 1982; Ferguson, 1983; Lo, 1984). 
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90 Chapter 3. Smoother Univariate Density Estimation 

A different Bayesian estimator is based on treating the log-density 
rather than the density. Lenk (1988, 1991, 1993) assumed a logistic trans­
form of a Gaussian process as the prior process for a Bayesian analysis and 
described specific functional forms for the covariance function of the process 
(and the resultant estimation process). See also Leonard (1978) and Thor­
burn (1986). Another Bayesian approach uses a normal mixture model; see 
Escobar and West (1995) and the references therein. 

Section 3.5 

Good and Gaskins (1971, 1972) introduced maximum penalized likelihood 
estimation. They suggested enforcing nonnegativity by operating on the 
square root of the density, = j1/2 and then squaring the result. They 
proposed the penalties 

and 

([>2(f) = 40: I: ,'(u? du + (3 I: ,1/(u)2 duo 

de Montricher, Tapia, and Thompson (1975) examined in detail the prop­
erties of the estimators, including issues of existence and uniqueness, and 
showed that the MPLE based on a penalty involving derivatives is a spline 
with knots at the order statistics. Klonias (1982, 1984) examined a general 
class of penalized likelihood estimators and suggested choosing the smooth­
ing parameter(s) based on cross-validation. Cox and O'Sullivan (1990) pro­
vided asymptotic analysis of penalized likelihood estimators. 

Penalized likelihood estimation can be viewed as a Bayesian method, 
with the prior for the density having the form exp[ -([>(f) J and the posterior 
mode being the final estimate. Good and Gaskins (1980) used this Bayesian 
framework to suggest a way to evaluate the importance of individual modes 
("bump-hunting") through the logarithm of the Bayes factor on the odds 
that the bumps would be present in a sample of infinite size. 

In order to avoid computational difficulties, Scott, Tapia, and Thomp­
son (1980) converted the penalized likelihood to one on discrete data by 
binning the observations (see also Tapia and Thompson, 1978, reprinted 
in Thompson and Tapia, 1990). They called this the discrete maximum 
penalized likelihood estimator (DMPLE) and gave conditions where the 
DMPLE converges to the MPLE as the bins narrow. Granville and Ras­
son (1995) also proposed binning the observations, and they examined an 
approximation to the MPLE based on a Taylor Series expansion around a 
uniform set of binned counts. Ghorai and Rubin (1979), Good and Gask­
ins (1980), Ishiguro and Sakamoto (1984), and Klonias and Nash (1987) 
discussed other MPLE computational methods. 
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Silverman (1982b, 1984) examined the use of penalties based on the 
log of the density, as in (3.20), and derived the equivalent kernel for the 
spline estimator. 

Since a cubic spline is a piecewise cubic polynomial that has continuous 
second derivatives, this suggests approximating the MPLE by a linear com­
bination of cubic polynomial pieces, anchored at each data value, that are 
restricted to have continuous second derivatives. Such functions are called 
B-splines. So, an approximate MPLE is defined by the set of coefficients a 
that minimize (3.20), where g(Xi) has the form 

n 

g(x) = L:>jBj(x), 
j=1 

where B j is the B-spline anchored at the jth knot (O'Sullivan, 1988). This 
penalized spline estimator is called a P-spline. Since the cubic B-spline B j 

is only positive over the five consecutive knots beginning at the jth knot, 
this minimization can be accomplished relatively easily. 

A related estimator defines the penalty directly in terms of the coeffi­
cients of adjacent B-splines, encouraging smoothness by forcing the coeffi­
cients to be close. For example, the P-spline corresponding to second order 
differences is determined by the minimizer a of 

n 

+ a 2)aj - 2aj_1 + aj_2)2 
j=3 

(Eilers and Marx, 1994). A density estimate can be calculated by binning 
the data and choosing a by a model selection criterion such as AlG. 

A different way to enforce the constraint J f = 1 in (3.19) is to use the 
logistic transform f = exp(g)j J exp(g). This is equivalent to minimizing 

L(g) = _n-1 t9(Xi) +a j[g"(uWdU+log j e9 (u)du 
.=1 

and then taking j = exp(g)j J exp(g). This logistic spline estimate is then 
defined through a side condition on g, such as J 9 = 0 or g(O) = 0; in either 
case, it is a cubic spline estimator. While the minimizer is not computable, 
the minimizer over an adaptive restricted space is, and it shares the same 
convergence rates. See Leonard (1978), Gu (1993), and Gu and Qiu (1993). 

Stone and Koo (1986) first described the fitting of logspline models. 
Stone (1990) described the theory underlying such models. Kooperberg 
and Stone (1991) described the practical aspects of constructing logspline 
density estimates. 
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92 Chapter 3. Smoother Univariate Density Estimation 

Boneva, Kendall, and Stefanov (1971), Lii and Rosenblatt (1975), 
Wahba (1975a, 1976), and Barron and Sheu (1991) discussed other spline­
based density estimators. 

Machler (1995a) proposed a penalized likelihood estimator designed to 
control the maximum number of modes of the final estimate. The rough­
ness penalty is related to the relative change of curvature of the underlying 
density. The MPLE solves an ordinary differential equation with bound­
ary conditions; the solution requires a crude approximate solution to be 
provided, and Machler used logspline estimates for this purpose. 

Computational issues 

Many computer packages provide kernel density estimation as a standard 
option; examples include NCSS, SAS/INSIGHT, S-PLUS, SOLO, Stata, 
STATGRAPHICS PLUS, and Systat. IMSL provides a Fortran subroutine 
to calculate a kernel density estimate. APL2STAT, a set of APL2 pro­
grams for statistical analysis (Friendly and Fox, 1994), includes code for 
kernel density estimation and is available via the World Wide Web at the 
address http://www.math.yorku.ca/SCS/friendly . html. The collections 
ash and haerdle in the S directory of statlib contain S-PLUS functions 
that calculate kernel estimates based on WARPing. The package XploRe 
(HardIe, Klinke, and Turlach, 1995) also uses WARPing to calculate den­
sity estimates. The collection fan-marron in the jcgs directory of statlib 
includes code to calculate kernel estimates based on binning and updating 
algorithms described in Fan and Marron (1994). JMP and the R-code of 
Cook and Weisberg (1994) include sliders, which allow interactive control 
of the bandwidth and presentation of its effect on the form of the estimate 
(see also the XLISP-STAT code of Tierney, 1990, p. 305). 

Park and Turlach (1992) gave pseudo-code algorithms for the band­
width selectors of Hall et al. (1991), Jones, Marron, and Park (1991), 
Sheather and Jones (1991), and Hall, Marron, and Park (1992), as well as 
unbiased and biased cross-validation. They have made GAUSS code avail­
able to calculate these selectors. Venables and Ripley (1994) gave S-PLUS 
code to calculate the Sheather-Jones and cross-validation (unbiased and 
biased) selectors. XploRe includes code to calculate the selectors of Silver­
man (1986, Section 3.4.2), Jones, Marron, and Park (1991), Sheather and 
Jones (1991), Hall, Marron, and Park (1992), and Park and Marron (1992). 
Fortran and C code to calculate a bandwidth in the spirit of that of Engel, 
Herrmann, and Gasser (1994) can be obtained using a WWW browser at 
the URL http://W..iIw.unizh.ch/biostat/ software. html. 

S-PLUS code to calculate and display the mode tree is available via 
anonymous ftp at the address ftp. stat. rice. edu and can be found in 
the directory pub/scottdw/Mode. Tree. 
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Wavelet density estimation is provided in XploRe. Such estimates can 
also be calculated using the C code (with S-PLUS drivers) included in the 
wavethresh collection in the S directory of statlib. 

Scott (1991) gave pseudo-code for a WARPing (average shifted his­
togram) version of the variable kernel estimate and has made S~·PLUS code 
available for implementation of the algorithm. 

Udina (1994) described a general software package to calculate and 
display many variations of kernel density estimation using XLISP-STAT. 
The code calculates kernel estimates based on direct, binning, and updating 
algorithms. It allows the setting of the bandwidth manually using sliders, as 
well as automatic choice using the normal reference rule, cross-validation, 
and the automatic bandwidth selectors of Park and Marron (1990), Hall 
et al. (1991), and Sheather and Jones (1991). The code can also calculate 
variable- and local-bandwidth estimates, allowing the user to control the 
level of local smoothing interactively. The code (and a Postscript version 
of the paper describing the code) is available via anonymous ftp at the 
address libiya. upf. es and can be found in the directory pub/stat/kde. 

C code (and S-PLUS interfaces) to calculate local log polynomial (con­
stant, linear, and quadratic) estimates is available at http://cm.bell­
labs.com/stat/project/locfit using a World Wide Web browser (this 
location also includes a description of the code and extensive description of 
the method). 

Buckland (1992b) gave Fortran code to calculate the semiparamet­
ric, polynomial-based estimate of Buckland (1992a). C code to calculate 
adaptive mixture density estimates can be obtained using a World Wide 
Web browser at http://irisd.nswc . navy .mil/Code/am. tar. Z, while the 
address http://irisd.nswc . navy .mil/Code/fke. tar.Z is the location of 
code for filtered kernel density estimation. 

IMSL provides a Fortran subroutine to calculate a discrete maximum 
penalized likelihood density estimate. 

The collection logspline in the S directory of stat lib contains S­
PLUS functions that calculate logspline density estimates based on methods 
described in Kooperberg and Stone (1991). 

Eilers and Marx (1996) discussed computational details of calculating 
P-splines using finite differences of coefficients of adjacent B~splines. Paul 
Eilers contributed S-PLUS code to calculate the estimates to the S-news 
electronic mailing list, which can be found in the collection digest153 in 
the S-news directory of stat lib (June 21, 1994, with correction June 23, 
1994). 

RKPACK-II, a collection of Ratfor routines for penalized likelihood 
density estimation, is available using a World Wide Web browser at the 
URL http://www . stat. purdue. edu/ rvchong/ software. html. 
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94 Chapter 3. Smoother Univariate Density Estimation 

Exercises 
Exercise 3.1. Investigate the relationship between the success of different 
bandwidth selectors for the kernel density estimator and sample size by 
calculating the associated density estimate for different methods for 
(a) a small sample - the percentage of silica in chondrite meteors (n = 

22), 
(b) a moderately sized sample - velocities of galaxies (n = 82), 
(c) a large sample - earthquake depths (n = 2178). 
Do you think that any methods are more effective (in a comparative sense) 
for small samples than for large ones? 

Exercise 3.2. Use the Sheather-Jones-based estimate of R(f") to determine 
bin widths for fixed bin-width frequency polygons for the data sets exam­
ined in Chapter 2. Are any of the resultant bin widths very different from 
the Gaussian-based rule? Do any of the resultant frequency polygons seem 
to reflect the underlying structure more effectively? 

Exercise 3.3. Use a goodness-of-fit test of your choice to test whether the 
mine accident data are consistent with being a sample from an exponential 
distribution. Would you expect such a test to be statistically significant? 

Exercise 3.4. Construct variability plots corresponding to kernel estima­
tion for the CD rate data (Fig. 3.2). For what values of CD rate does the 
variability of the estimator increase? 

Exercise 3.5. A natural estimate of the derivative of a density f'(x) is the 
derivative of a kernel estimate of the density; that is, 

i'(x) = n-1h-2 t K' (x ~ Xi) 
,=1 

(assuming differentiability of K). Calculations similar to those leading to 
(3.6) imply that the optimal bandwidth is O(n- 1/7 ), with optimal AMISE 
of order O(n-4/7 ). Compare "reasonable" choices of h for estimation of f' 
(by eye) for the CD rate and Swiss bank note data with those for estima­
tion of f, and construct variability plots for the resultant estimates. Are 
the density derivative estimates less precisely determined than the density 
estimates, as the asymptotics would suggest? 

Exercise 3.6. Verify that, in (3.12), if K is the biweight kernel, 

ao(p) = (3p5 - lOp3 + 15p + 8)/16, 

al (p) = (5p6 - 15p4 + 15p2 - 5) /32, 

a2(p) = (15p7 - 42p5 + 35p3 + 8)/112. 

Exercise 3.7. Transformation-based kernel estimators can be iterated, in 
the sense that once-transformed data can be transformed again, smoothed, 
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and then back-transformed twice to the original scale (and so on). Investi­
gate this possibility for the earthquake depth data. Does fitting a second 
Johnson family transformation to the once-transformed data improve the 
final density estimate? 

Exercise 3.8. Construct a variability plot for the variable kernel estimate for 
the marathon record data (Fig. 3.12). Which parts of the estimated density 
are less precisely determined? 

Exercise 3.9. In Chapter 2, the baseball salary data were analyzed after a 
logarithmic transformation, while the hockey shooting percentage data were 
analyzed after a logistic transformation. Do these transformations improve 
kernel estimation for these data sets? 

Exercise 3.10. Compare the properties of local likelihood density estimation 
using constant bandwidth to using nearest neighbor variable bandwidth (as 
in Fig. 3.17) for the racial distribution data. Which estimate highlights the 
underlying structure better? 

Exercise 3.11. The local log-polynomial density estimate for the mine ac­
cident data in Fig. 3.18 is based on a quadratic model, but the somewhat 
exponential nature of the data suggests that a local log-linear model might 
be more sensible. Is that true? 

Exercise 3.12. Construct variability plots corresponding to local likelihood 
density estimation (Fig. 3.17) and logspline density estimation (Fig. 3.20) 
for the racial distribution data. Do the variability envelopes have similar 
shapes? 
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Chapter 4 

Multivariate Density Estimation 

4.1 Simple Density Estimation Methods 

Exploring and identifying structure is even more important for multivariate 
data than univariate data, given the difficulties in graphically presenting 
multivariate data and the comparative lack of parametric models to repre­
sent it. Unfortunately, such exploration is also inherently more difficult. 

An obvious way to present bivariate data is using a scatter plot. Figure 
4.1 gives a scatter plot of the number of points scored per minute (PPM) and 
number of assists credited per minute (APM) for the 96 National Basketball 
Association (NBA) players who played the guard position during the 1992-
1993 season and played an average of at least 10 minutes per game. While a 
scatter plot can be effective as a representation of the relationship between 
two variables, it is not at all effective as a representation of the distribution 
of the observations, in the sense of locating high density regions. The reason 
is that the overprinting of observations on the plot is not a good indicator 
of relative density. 

Scatter plots can be improved for this purpose by representing the 
number of (near) replicates by numbers or symbols, such as in a sunflower 
plot (where the number of petals of the sunflower equals the number of 
replicates). Still, a direct representation designed to reflect density estima­
tion is likely to be more evocative of structure. 

The histogram can be easily generalized to multiple dimensions. Let 
{Xl, ... ,xn } be a random sample from f(x), where x E ffid. If the region 
of interest is divided into hyperrectangles of size hI x ... X hd, with nk 

observations falling in the hyperrectangular bin B k , then the histogram 
estimator has the form 

for X E B k . 

Let jj = 8f(x)j8xj and h = minj hj, and assume that f is sufficiently 
smooth (roughly speaking, f should be twice continuously differentiable 
with bounded integrable partial derivatives). Then multivariate Taylor Se­
ries expansions and integration approximations imply that 

 
PAGE 107 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



4.1. Simple Density Estimation Methods 97 

o 

o 0 

@o CD <9 
o 0 0 

o Ah 0 00 0 0 
o U""U 0 0 00 0 
o cP 8 0 0 0 oOCOR-. 0 0 

o 0 0 goo s.:P ~ 'It' 000 

o %0 ~r 0 Q 0 0 0 
0 0 8 0 0 

CO 0 00 

o 
o 

o 

o 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 

Assists per minute 

Fig.4.1. Scatter plot of points scored per minute versus assists credited per 
minute for 96 NBA guards. 

d IlL 2 . AMISE = h h + - hi R(Ii). 
n 1'" d 12. ,=1 

( 4.1) 

The first term in (4.1) is the integrated asymptotic variance, while the 
second term refers to the integrated squared bias. The bin widths that 
minimize AMISE are thus 

with minimized AMISE equaling 

[ 
d ll/(d+2l 

AMISEo = ~ 36g RUi) n~2/(d+2l. (4.3) 
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98 Chapter 4. Multivariate Density Estimation 

Fig. 4.2. Perspective view of bivariate histogram for basketball data. 

A simple data-based rule for choosing h j is to substitute a reference 
distribution f into (4.2). So, for example, if the reference distribution is 
multivariate normal, with the different variables being independent with 
possibly different standard deviations O"j, (4.2) becomes 

hjo = (2)(3 1/(d+2)) 7rd/(2d+4)O"jn-l/(d+2) , 

or roughly hjo ~ 3.5&jn- 1/(d+2). 

Figure 4.2 gives a perspective view of a bivariate histogram for the 
basketball data, taking hAPM = .04 and hpPM = .1. It is almost impossible 
to identify any structure past a general high density region because of the 
blockiness of the estimate. That is, the estimate is too rough to be useful 
as a representation of the true density. 

A natural improvement on the histogram is linear interpolation, form­
ing a multivariate frequency polygon. There is no unique way to do this, 
but a reasonable approach is to define the density estimate surface as de­
termined by the centers of the 2d adjacent histogram bins. Figure 4.3 gives 
this linear blend frequency polygon (LBFP) from the histogram of Fig. 4.2. 
The estimate is smoother than the histogram, although it is still difficult 
to identify the underlying structure. 
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Fig. 4.3. Perspective view of bivariate linear blend frequency polygon for basket­
ball data. 

Not surprisingly, the multivariate frequency polygon provides signif­
icant improvement over the multivariate histogram in terms of accuracy. 
Define an LBFP bin 

d 

B k" .. ,kd = rr[tkj , tkj + hj ), 

j=l 

where h j is the bin width in the jth dimension. Then, for x E Bk" .. ,kd , the 
LBFP is 

~ 1 
f (x) = ~-----,:-­

nh1 ... hd 

"" [rrd (x. - tk )Ji ( X - tk )l-ji
] 

x. L d '-1 'hi' 1 - 'hi i nk,+j" .. ,kd+jd' 
), •... ,)dE{O,l} ,-
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Fig. 4.4. Contour plot of bivariate linear blend frequency polygon for basketball 
data. 

where 
.. Ej2 f(x) 
fij = f) f) . 

Xi Xj 

The optimal choice of hj is then hjo = O(n- 1/(d+4»), with optimal 
AMISEo = O(n-4/(dH»). 

The difference between (4.1) and (4.4) represents the improvement 
achievable through better smoothing. The optimal AMISE rate for the his­
togram is O(n-2/(d+2»), while that of the frequency polygon is O(n-4/(dH»), 
which is necessarily smaller. For d = 1, AMISEgist = O(n- 2 / 3 ) while 
AMISEif = O(n-4 / 5 ), as noted in Chapter 2. For d = 2, AMISEgist = 
O(n-1/ 2 ) and AMISEif = O(n- 2 / 3 ); for d = 3, AMISEgist = O(n- 2 / 5 ) and 
AMISEif = O(n-4/ 7 ). 

Figure 4.4 is a contour plot of the frequency polygon of Fig. 4.3. The 
density contours correspond to density values (1.35,3.35, ... ,17.35). The 
contour plot avoids the problems in detecting structure in the perspective 
plot because of peaks blocking others behind them. The piecewise linear na­
ture of the density contours comes from the construction of the frequency 
polygon. Despite that, a bimodal character of the density is apparent, cor-
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responding to guards averaging roughly 0.1 assists per minute played, and 
those averaging roughly twice that level. Teams usually play two guards 
at a time, with one having primary responsibility as a scorer (a "shooting 
guard") and the other having primary responsibility as a passer (a "point 
guard"), so this bimodality (which was not at all apparent in the original 
scatter plot) is quite natural. 

In succeeding sections of this chapter, smoother (and more effective) 
density estimators will be described, but Figure 4.4 already shows the kinds 
of exploratory analysis possible using density estimation. Unfortunately, the 
frequency polygon also illustrates three problems that go with multivariate 
density estimation: 
(1) Multivariate density estimates are necessarily more complicated than 

univariate ones. There are more possibilities among which to choose in 
implementation and more smoothing parameters that have to be set. 

(2) Multivariate density estimates are difficult to visualize graphically. 
While a contour plot for a bivariate density is easy to understand, 
for trivariate data this is no longer true, and compromises must be 
made (such as "slicing" the density by fixing the value of one variable, 
or plotting three-dimensional contour volumes inside each other, per­
haps in different colors). Past three dimensions, any ability to look at 
the entire density is lost, and only slicing is possible. 

(3) As the dimension of the data increases, density estimation gets pro­
gressively more difficult. This is apparent from the frequency polygon's 
AMISE rate O(n-4/(d+4»), which approaches zero more slowly as d gets 
larger. The need for progressively larger sample sizes in higher dimen­
sions to achieve comparable accuracy is called the curse of dimen­
sionality. An important consequence of this pattern is the somewhat 
paradoxical fact that in high dimensions, "local" neighborhoods are al­
most surely empty, and neighborhoods that are not empty are almost 
surely not "local." 

Examples of this paradox are not difficult to find. For example, 
consider a uniform sample over the hypercube [-1, l]d. When d = 2, 
roughly 79% of the observations will fall in the unit circle centered at 
the origin, but for d = 5 this proportion falls to 16%, and for d = lO 
it is 0.25%. That is, large neighborhoods have virtually no data in 
them, which means that any local character is lost. For the multivari­
ate normal density with d = lO, over half of the observations will fall 
(on average) in regions where the density is less than one-hundredth 
of its maximum value, and over 99% will fall outside the hypersphere 
centered at the origin with radius 1.16. That is, most of the data accu­
mulation occurs in the tails of the density, in contrast to the pattern 
in low dimensions. Unfortunately, the tails are precisely the part of 
the density that is least likely to be of any great interest to the data 
analyst. 
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4.2 Kernel Density Estimation 

4.2.1 Properties of the kernel estimator 

Kernel density estimation can be easily generalized from univariate to mul­
tivariate data, in theory if not always in practice. The general form of the 
estimator is 

( 4.5) 

where IHI is the absolute value of the determinant of the matrix H. Here 
Kd : IRd ---+ IR is the kernel function, often taken to be a d-variate proba­
bility density function, and H is a nonsingular d x d bandwidth matrix. A 
popular technique for generating Kd from a univariate kernel K is by using 
a product kernel, 

d 

Kd(u) = IT K(uj). 
j=l 

The AMISE of the estimator is derived using multivariate Taylor Series 
expansions. Assume that all second partial derivatives of f are piecewise 
continuous and square integrable, and that the kernel Kd satisfies the con­
ditions 

where these multivariate integrals are over IRd , and Id is the d x d identity 
matrix (these conditions are generalizations of those required for univariate 
kernels, with the third corresponding to scaling the kernel to have unit 
variance). Define h > 0 and the d x d matrix A to satisfy H = hA, where A 
has unit determinant. Then, if h ---+ 0 and nhd ---+ 00 as n ---+ 00, the AMISE 
has the form 

R(K) h4 J 
AMISE = nhd + 4 {trace[AA' \12 f(u)]}2 du, (4.6) 

where \12 f(u) is the d x d Hessian matrix, 

The optimal H is not generally available in closed form, but (4.6) shows that 
h should be taken to be O(n- 1/(dH)), yielding AMISEo = O(n-4/(dH)). 

Figure 4.5 gives a contour plot of a kernel estimate for the NBA data 
corresponding to that for the frequency polygon in Fig. 4.4. The kernel used 
is the multivariate normal (Gaussian) density with H = diag(.025, .05). The 
plot highlights the bimodal structure clearly but also suggests even more 
detail. It appears that the left mode displays negative correlation, while 
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Fig. 4.5. Contour plot of kernel estimate for basketball data. 

the right mode exhibits positive correlation. Other statistics support this 
pattern, as the observed correlation between the two variables for players 
averaging less than 0.2 assists per minute is -0.19, while that for players 
averaging at least 0.2 assists per minute is 0.15. Thus, while there is ap­
parently a tradeoff between points and assists for shooting guards (the left 
mode), for point guards the better players are better at both. 

The density contours also strongly identify two observations as very 
unusual. These observations correspond to a remarkably prolific scorer 
(Michael Jordan) and a remarkably prolific passer (John Stockton). Both 
of these players are among the best ever at their positions, so the observed 
pattern is not surprising. 

The stability of the observed patterns can be assessed using a vari­
ability plot (Fig. 4.6). For these bivariate data, this takes the form of two 
contour plots (a lower and upper limit plot), but otherwise the construction 
is the same as for the univariate estimates of Chapter 3. The two modes are 
apparent in both halves of the plot, and their heights are only 35% lower 
(lower limit) and 45% greater (upper limit) than the estimated value in 
Fig. 4.5, respectively, which supports the existence of the observed modes. 

As was true for univariate data, the choice of kernel function Kd has 
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Fig. 4.6. Variability plot of kernel estimate of NBA data, 
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4.2. Kernel Density Estimation 105 

little effect on AMISE (although the effect does increase with d) and can 
be chosen based on theoretical or computational concerns. 

4.2.2 Choosing the bandwidth matrix 

The general kernel (4.5) requires specification of the bandwidth matrix H, 
which has d( d + 1) /2 distinct entries. This number becomes unmanageable 
very quickly, which suggests restricting H to have some simpler form. Three 
possibilities have typically been considered: 
(1) H = hI. Setting the smoothing parameter to be constant for every 

variable implies that the amount of smoothing in each direction is the 
same. This is sensible only if the scales of all variables are roughly con­
stant, so this would be done only after each variable was standardized 
to be on a common scale. 

(2) H = diag(hl' ... ,hd). This parameterization allows different amounts 
of smoothing in each coordinate direction. This approach is also the 
"practical" version of approach (1); if Sj is the scaling constant for the 
jth variable, (1) is equivalent to using H = hdiag(sl, ... ,Sd). 

(3) H = hSl / 2 , where S is an estimate of the covariance matrix of x. 
This is the multivariate generalization of coordinatewise-scaling, since 
it is equivalent to linearly transforming the data to have unit estimated 
covariance (often called sphering the data), using a constant bandwidth 
H = hI, and then transforming back to the original scale. The idea is 
to use a kernel that is the same general shape as the density. 
Unfortunately, none of these parameterizations is rich enough to be 

able to handle all possible density shapes. Both scaling and sphering based 
on the sample standard deviations and covariance matrix, respectively, can 
be arbitrarily poorly behaved, since (as was noted in Chapters 2 and 3) 
these values do not measure scale in a meaningful way in terms of density 
estimation accuracy. Using a diagonal H is often good enough, although 
sometimes a full matrix is necessary. 

Data-based choices of H are based on the same principles as are used 
for univariate data. The obvious reference distribution to use is the multi­
variate normal; using a Gaussian kernel gives optimal bandwidth matrix 

H = _4_ E~n-l/(dH) ( ) 
l/(dH) 

d+2 

(this is a justification for sphering the data). The constant ranges be­
tween 0.924 and 1.059, equaling 1 for d = 2, so a rough Gaussian­
based rule takes iI = i:1/ 2n- 1/(dH). For a diagonal bandwidth ma­
trix (which is optimal for independent x), this corresponds to iI = 
diag( 0-1 n- l /(dH), ... ,0-dn-l/(dH»). 

More sophisticated bandwidth selectors are also possible. The least 
squares cross-validation score generalizes easily to 
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f A 2 2~A 
CV = feu) du - :;;, L f-i(xi). 

i=l 

Interestingly, the relative accuracy of the cross-validated bandwidth im­
proves as the dimension increases. If H = hI, then 

hr:N _ 1 = Op(n- d/(2d+8)), 

ho 

where ho is the minimizer of ISE. That is, as d -+ 00, the convergence 
rate of hev approaches the optimal rate Op(n- 1/ 2 ). Despite this, the cross­
validation bandwidth matrix often undersmooths in practice. 

Plug-in selectors also can be generalized to multivariate density estima­
tion, based on the representation of AMISE (4.6). One such generalization, 
related to the univariate selector hSJ, can achieve relative error rates 

~ - 1 = Open-a), 
ho 

where ex = 5/14 if d = 1 and ex = 2/(d+4) if d::::: 2. This rate is faster than 
that of cross-validation for d :::; 3, equal for d = 4, and slower for d ::::: 5. 

Figure 4.7 illustrates the use of the plug-in selector for the earthquake 
data described in Chapter 3. The latitude and longitude of each earthquake 
form the bivariate data set, so the geographic distribution of earthquake 
events is the focus of study. A kernel estimate using a Gaussian kernel based 
on H = diag(h1at = 5.40, h10ng = 13.33) is superimposed on a world map 
in the figure, representing the distribution of earthquakes worldwide. The 
dominant feature is the high density of quakes along the Pacific rim, with 
modes centering in Chile, Japan, and New Guinea. Three other notable "hot 
spots" are the South Sandwich Islands (off the southeastern coast of South 
America), Kazakhstan (in Central Asia), and Novaya Zemlya (off Russia's 
Arctic coast). The latter isolated mode actually represents 22 underground 
nuclear explosions by the former U.S.S.R. 

The estimator (4.5) can be applied to higher dimensional data, of 
course, but the difficulties of presenting the estimate become more serious. 
Figure 4.8 illustrates the problem. It is a contour shell of a kernel estimate 
for the three-dimensional version of the earthquake data. The base of the 
cube represents latitude and longitude, while the vertical axis is the loga­
rithm of the depth of the quake, where the view is from the surface looking 
down (145 quakes at the surface, with zero depth, are not included). The 
shell corresponds to f = .08 max(}). It is apparent that it is virtually im­
possible to sort out the patterns in the density. 

For these data, a much better representation of a density estimate is a 
contour plot, fixed at different depths, of the conditional bivariate density 
of latitude and longitude. Figure 4.9 gives four such views of a Gaussian­
based kernel using (close to) the Gaussian reference rule H = diag( hlat = 
10, h10ng = 15, h1og(depth) = .1) at selected depths. 
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Fig. 4.7. Contour plot of kernel estimate of earthquake distribution based on 
plug-in selector. 

The four contour plots illustrate the change in location of earthquakes 
as the depth increases. Closer to the surface (50 km depth), the dominant 
locations are the Pacific rim, including Alaska, with prominent modes at 
Japan and New Guinea, and smaller modes at the South Sandwich Islands 
and Kazakhstan. The relative likelihood of a quake at a depth of 200 km 
occurring in Kazakhstan is much higher, as is one in Chile, while the den­
sity around New Guinea splits into two modes. There is no indication of 
earthquake activity at this depth in the South Sandwich Islands and Alaska, 
and this is the case, as the maximum observed earthquake depths in those 
locations are around 140 km and 160 km, respectively. 

The bifurcation around New Guinea becomes more pronounced as the 
depth increases, as do the modes in Japan and Chile. On the other hand, the 
relative likelihood of quakes in Kazakhstan lessens (the maximum observed 
depth of quakes there is around 230 km). In this instance, where depth 
of the quake can be intuitively viewed as a conditional factor related to 
geographic distribution of earthquakes, these conditional contour views are 
very effective at describing the three-dimensional pattern in the data. 

Two-dimensional perspective views of the density at the given depth 
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i ~ 'i. 

Fig. 4.8. Three-dimensional perspective plot of one contour shell of kernel esti­
mate of earthquake data. 
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Fig. 4.9. Views of conditional density of latitude and longitude earthquake dis­
tribution given (log) depth: (a) 50 km depth; (b) 200 km depth. 
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values could be used to determine the overall probability of earthquakes oc­
curring (rather than the conditional probability given that depth). The pre­
viously constructed marginal density estimate for earthquake depth (Fig. 
3.16) implies that most earthquakes occur at depths less than about 100 
km, so the modes in the conditional contour plots at greater depths are 
representing rare events in an absolute sense. 

4.3 Other Estimators 

The multivariate kernel estimator carries with it the problems noted earlier 
for the univariate estimator - that is, boundary bias and a lack of sen­
sitivity to local variations in smoothing. Many of the proposed univariate 
solutions also carryover, along with some new approaches. 

4.3.1 Local variation in smoothing 

Consider Fig. 4.10. These contour plots represent kernel density estimates 
for the joint distribution of the bottom margin and diagonal length of the 
bills in the Swiss bank note data discussed in chapters 2 and 3. The bills 
with shorter diagonal correspond to forged bills, while those with longer 
diagonal are real bills. The top plot is based on the plug-in choice of H = 
diag(hbot = .397, hdiag = .233) and is oversmoothed. The low-density mode 
at the lower left, which corresponds to the mode at 8 mm (bottom margin) 
in the univariate forged bills plot in Fig. 3.4, has been smoothed over. 
Further, there is no indication of any bimodal structure at the top of the 
plot, despite the noticeable bulge at 9 mm in the univariate real bills plot 
in Fig. 3.4. Reducing the bandwidths to H = diag(.l, .2) supports more 
structure, but at the expense of severe undersmoothing. 

The problem is that while the degree of smoothing implied by the 
plug-in choice is correct for the right side of the plot, it is too large for 
the left side. What is needed is an estimator that allows local variation 
in smoothing. One such estimator for bivariate data that takes advantage 
of the connection between the joint density and conditional densities is 
as follows. Let !I(Xl) and h(X2) be the marginal densities of Xl and X2, 
respectively, and let hll(X2[xd and flI2(Xl[X2) be the conditional densities 
of Xl given X2 and X2 given Xl, respectively. Then, by the definition of a 
conditional density function, 

An estimate of f(Xl, X2) can be constructed by estimating the two 
marginal and two conditional densities. Any of the univariate estimates 
described in Chapter 3 could be used to estimate the marginal densities, 
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Fig. 4.10. Kernel estimates of Swiss bank note data based on plug-in bandwidth 
choice and undersmoothed bandwidth choice. 
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Fig. 4.11. Contour plot of marginal/conditional estimate of Swiss bank note data. 

but estimating the conditional densities is more challenging. Consider di­
viding the bivariate region of interest into a rectangular grid, based on 
BI bins {hi} (for xd and B2 bins {I2j} (for X2). Then hll(X2!XI E hi) 
can be estimated using a univariate density estimate based on the set of 
X2 values corresponding to Xl E hi (with corresponding construction for 
f1l2(Xllx2 E 12j )). Then, estimating the marginal and conditional densities 
with the usual accuracy obtained from kernel estimates (for example), and 
choosing Bl and B2 appropriately, implies that the mean squared error of 
the estimate 

i(XI,X2) = [i211(X2IxI Ehi)il(xdA I2(Xllx2 E I2j )i2(X2)]1/2, 

Xl E hi, X2 E izj, 

converges to zero at the rate O(n-4 / 7 ), which is slightly slower than that 
of the kernel estimator (which has convergence rate O(n- 2/ 3 )). 

Figure 4.11 illustrates the use of this "marginal/conditional" estimator. 
The contour plot highlights all the interesting structure in the data, includ­
ing the bimodality for longer diagonal bills, the bimodality for medium 
diagonal length bills, and the small mode for shortest diagonal bills. Since 
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Fig. 4.12. Contour plot of variable kernel estimate of Swiss bank note data. 

the estimate at any point is based on two conditional estimates, which vary 
based on location, a good deal of local adaptivity is possible, allowing all 
the structure to come through. 

The estimate in Fig. 4.11 appears undersmoothed, and a smoother 
adaptive estimate would be preferable. This can be easily accomplished by 
using the marginalj conditional estimate as a pilot estimate for a variable 
kernel estimate, as in Chapter 3. The estimator has the form 

A 1 ~ 1 -1 
j(x) = ~ ~ IHI Kd[Hi (x - Xi)]. 

i=l • 

(4.7) 

Taking Hi = Hj(Xi)-1/2 (as in the univariate case) removes the O(h2) 
bias term, resulting in an estimate with MSE = O(n-8/(d+8»). Thus, using 
the marginal/conditional estimate as a bivariate pilot estimate (suitably 
eli pped away from zero, if necessary), and then determining a variable kernel 
estimate (4.7), yields an estimator with MSE = O(n-4 / 5 ). 

Figure 4.12 is a contour plot of the variable kernel estimate using the 
marginal/conditional estimate for the pilot and H = diag(.05, .05). The 
previously noted structure is still evident, and the estimate is considerably 
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Fig. 4.13. Perspective plot of bivariate kernel estimate of earthquake data. 

smoother than that of Fig. 4.11, providing a compelling argument for five 
modes in the data. 

4.3.2 Boundary bias 

Multivariate kernel estimators suffer from the same boundary bias problems 
that univariate estimators do. Indeed, the problems can be more severe in 
higher dimensions, as the boundary region is a larger proportion of the 
region of interest. Figure 4.13 is a perspective plot of a bivariate kernel 
estimate of the density of the focal depth and magnitude of the earthquake 
data examined earlier. Here H = diag(9.75, .05), which corresponds to the 
Gaussian reference rule. Even though 31 % of all the quakes had magnitude 
less than or equal to 5.8, and 43% occurred at depths less than or equal 
to 33 km, the estimate drops towards zero at the lower boundary in both 
dimensions due to boundary bias. 

In principle, boundary kernel estimates can be defined for multivariate 
kernels, but determining the boundary region gets progressively harder in 
higher dimensions. This makes methods that accomplish automatic bound­
ary bias correction, such as local likelihood estimation, particularly attrac­
tive. The estimator has the form j£(x) = f(x, O(x)), where O(x) maximizes 
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Fig. 4.14. Perspective plot of local log-quadratic estimate of earthquake data. 

the multivariate version of the local likelihood (3.18). Once again, the di­
mension of (J determines the asymptotic properties of the estimator, al­
though now it is the minimum number of parameters in each direction that 
matters. So, for example, fitting a local log-linear density 

f = aexp[bl(tl - Xl) + b2(t2 - X2)] 

to bivariate data (modeling local level and local slopes) yields Op (n -1/3) 
convergence both in the interior and at the boundary. 

Figure 4.14 is a perspective plot of a local log-quadratic density es­
timate corresponding to the estimate in Fig. 4.13. The bandwidth is 3s; 
in each direction, where Si is the sample standard deviation for the ith 
variable. The boundary bias is gone, but the estimate cannot be viewed 
as completely satisfactory, as the multimodality of the focal depth variable 
(Fig. 3.16) has been smoothed over. 

Figure 4.15 shows a more successful application of the local log­
quadratic estimate. This estimate of the density for the Swiss bank note 
data (using a nearest neighbor bandwidth covering 25% ofthe observations) 
captures the multimodal structure well and is even a bit smoother than the 
variable kernel estimate in Fig. 4.12. 
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Fig. 4.15. Contour plot of local log-quadratic estimate of Swiss bank note data. 

4.4 Dimension Reduction and Projection Pursuit 

The existence of large empty regions in multidimensional space suggests 
that collapsing the data down to a smaller number of dimensions can lead 
to better density estimation. Such dimension reduction should be driven by 
the goal of preserving any interesting structure in the data in the lower­
dimensional data while removing uninteresting attributes. This is the idea 
behind projection pursuit. 

Since the most efficient way to discover structure is graphically, it 
makes sense to focus on linear projections (which are easiest to understand) 
to one or two dimensions. The projection is chosen to maximize some nu­
merical index that gauges "interestingness." Given the general impression 
that the multivariate normal distribution is uninteresting, and that most 
linear combinations of variables will be distributed roughly normally (due 
to the Central Limit Theorem), constructing projections to be as non normal 
as possible seems sensible. 

Thus, any statistic for testing normality is a candidate to be the basis of 
a projection index. Those that are computationally easy to construct, and 
focus on identifying multimodality, are particularly attractive. One such 
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index can be constructed in the following way. First, sphere the data in or­
der to remove location, scale, and correlation structure (call a sphered data 
value z). Let X = a'z be a one-dimensional candidate linear projection, 
and define R = 24i(X) - 1, where 41(·) is the Gaussian cumulative distri­
bution function. If X rv N(O, 1), then R rv Uniform[-l, 1], so a measure of 
nonuniformity of R corresponds to a measure of nonnormality of X. 

A useful projection index can be defined as an approximation to the 
integrated squared distance between the density of Rand .5, the uniform 
density over [-1,1]. Approximating this using Legendre polynomials gives 
the index 

(4.8) 

where J is the order of the Legendre approximation, and the Legendre 
polynomials Pj(R) satisfy the recursive relationship 

{
I, 

Pj(R) = R, 
[(2j - 1)RPj _1 (R) - (j - 1)Pj - 2 (R)]IJ, 

if j = 0, 
if j = 1, 
if j ~ 2. 

The linear projection a maximizes 1(0.) under the condition 0.'0. = 1. Bi­
variate projections are defined in the same way, with a bivariate projection 
being transformed to be close to uniform on the square (-1, 1) x (-1, 1). 

Since it is likely that more than one projection would be needed to 
represent the structure in the data, a way to remove the structure found at 
any iteration must be devised so that a new projection can be constructed 
that is (in some sense) orthogonal to what has already been found. Since a 
projection has no interest if it is normal, structure can be removed by apply­
ing a transformation that results in a normal distribution in the projected 
subspace but does not affect orthogonal directions. 

Figure 4.16 illustrates the potential for projection pursuit to find struc­
ture in high-dimensional data. The data consist of information about 93 new 
1993 model automobiles, concerning price, city miles per gallon, highway 
miles per gallon, engine size, horsepower, fuel tank capacity, and weight. 
The figure gives the bivariate projections for the first two projections (based 
on fourth order Legendre polynomials), along with a bivariate kernel esti­
mate superimposed on the projected points. 

The first projection has the form 

Horizontal: 5 x Engine size - Fuel capacity, 

Vertical: Price + 5 x Engine size. 

The density estimate (based on a Gaussian product kernel with H = 
diag(.6, .4)) supports three high density regions: the bulk of cars (in the 
center right of the plot), expensive autos with large engines (at the upper 
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Fig. 4.16. Bivariate projections of first two projections from application of projec­
tion pursuit to 1993 auto data, with density estimates superimposed on projected 
points. 
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Fig. 4.17. Kernel estimate of engine size for 1993 auto data. 

right of the plot) such as the Lincoln Town Car and Cadillac Deville, and 
expensive autos with smaller engines (at the center of the plot) such as the 
Cadillac Seville and Lexus SC300. 

The second projection has the form 

Horizontal : -10 x City MPG + 5 x Highway MPG 

+ 16 x Engine size - 4 x Fuel capacity, 

Vertical: -City MPG - 6 x Engine size. 

The density estimate (using H = diag(.35, .2)) identifies three separate di­
rections away from the center (which corresponds to the bulk of the autos): 
larger cars (to the right) such as the Lincoln Continental and Pontiac Bon­
neville, small cars (to the left) such as the Dodge Colt and Ford Festiva, 
and small low mileage cars (to the top) such as the Mazda RX-7 and Toyota 
Previa. 

These patterns suggest that the interesting structure in these data 
comes from engine size in particular, along with price, miles per gallon, 
and fuel tank capacity. Figures 4.17 and 4.18 confirm this. Figure 4.17, a 
kernel estimate of engine size, shows three modes, at around 2.2 liters (small 
cars), 3 liters (midsize cars), and 4.5 liters (large cars). 
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The bivariate density estimates in Fig. 4.18 show that while price in­
creases with engine size, some midsize cars (around 3 liter engine size) can 
be expensive (note the bulge in the center of the density estimate), while 
very large engines are associated with both expensive and relatively inex­
pensive cars. 

Not surprisingly, there is a negative association between engine size 
and mileage, but the density estimate suggests three high density regions: 
very small, high mileage cars; moderate size, good mileage cars; and large, 
lower mileage cars. Note also that the mileage flattens out as engine size 
increases, not falling below 15 miles per gallon. Finally, there is a positive 
association between engine size and fuel tank capacity, with the tank size 
increasing more slowly as engine size increases. 

The power of projection pursuit is its ability to "home in" on inter­
esting patterns in the data and point the data analyst toward them. The 
projections themselves can define indices that highlight such patterns, and 
(as happens for these data) the variables that define the projections can be 
examined directly as ones that are likely to show interesting relationships. 

4.5 The State of Multivariate Density Estimation 

The gap between theory and practice is probably widest for multivariate 
density estimation, compared with other smoothing problems. Although 
many estimation schemes, including kernel and local likelihood estimation, 
directly generalize to higher dimensions, practical implementation lags be­
hind this theoretical fact. The "empty space phenomenon" in higher di­
mensions described in Section 4.1, whereby most local neighborhoods are 
almost surely empty, argues against very effective direct density estima­
tion in more than four or five dimensions. Even with the use of color and 
dynamic graphics, more than four dimensions are almost impossible to rep­
resent, and contour plots, which can be highly evocative of structure, can 
only represent two-dimensional slices of data. Asymptotic arguments re­
quire massive amounts of data in high dimensions, making it very difficult 
to understand completely what various estimators are actually doing. 

Further progress on effective implementation of direct density esti­
mators on two- and three-dimensional data (such as how to regulate the 
degree of smoothing, and the usefulness of local variations in smoothing) 
would be welcome, but it seems likely that the most useful approach for 
higher-dimensional data is dimension reduction of some sort, such as that 
accomplished using projection pursuit. It is likely that higher-dimensional 
data will fall into lower-dimensional subspaces, which can be identified and 
(it is hoped) understood. 
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Fig. 4.18. Bivariate kernel estimates of engine size and price, city miles per gallon, 
and fuel tank capacity, respectively, for 1993 auto data. 
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Background material 

Section 4.1 

Chatterjee, Handcock, and Simonoff (1995, p. 299) gave a superset of the 
NBA data and analyzed it using regression methods. Cleveland and McGill 
(1984) and Schilling and Watkins (1994) discussed the construction and 
properties of sunflower plots. 

Geffroy (1974) and Abou-Jaoude (1976a) examined the consistency 
properties of the multivariate histogram. Lecoutre (1985) derived the 
AMISE of the histogram estimator for d-dimensional data, assuming con­
stant bin width in all dimensions. Scott (1992, Chapter 3) derived cor­
responding results for general choices of hj . Scott (1988), Hiisemann and 
Stevens (1991), and Hiisemann and Terrell (1991) examined the use of non­
rectangular, rotated and nonregular bins. Hexagonal bins are the optimal 
bin shape for bivariate histograms using a regular grid pattern and also can 
be better on the grounds of graphical perception (Carr et al., 1987), but 
their AMISE is only about 2% less than that using square bins, as in (4.3). 

Scott (1992, Section 4.2) discussed multivariate frequency polygons. 
Terrell (1983) and Hjort (1986) derived the properties of the linear blend 
frequency polygon. Hjort showed that the LBFP integrates to I, and derived 
the AMISE of the estimator. 

Scott (1985a,b) described a different way to construct a frequency poly­
gon from a multivariate histogram. Triangular meshes are formed by inter­
polating values at the centers of d + 1 adjacent histogram bins (the con­
struction is not unique). Scott (1985a) derived similar (but more complex) 
AMISE results to (4.4) and proposed a rough guideline for bin width choice 
as hj = 2c3"jn- 1/(dH). 

Bellman (1961) first used the term "curse of dimensionality" when 
describing the computational effort required in combinatorial optimization 
over many dimensions. Silverman (1986, Sect. 4.5.1) and Scott (1992, Chap­
ter 7) discussed its implications for density estimation in some detail. In 
particular, Silverman described the properties of the multivariate normal 
density in this context, and Scott showed the effect on the uniform density 
over a hypercube. 

Section 4.2 

4.2.1. Cacoullos (1966) introduced multivariate kernel density estimation, 
taking H = hI, and studied its consistency properties. Devroye and GyCirfi 
(1985, Sect. 3.1) examined almost sure convergence and convergence in 
LP norm. Epanechnikov (1969) examined the estimator using a vector of 
bandwidths H = diag(h1 , ... , hd ), while Deheuvels (1977b) first treated 
the case of an arbitrary bandwidth matrix H. Scott (1992, Sect. 6.3.2) 
suggested the use of the parameterization H = hA in the derivation of the 
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AMISE of the estimator, while Wand (1992b) derived these results using a 
different representation. 

An alternative to the use of product kernels to construct a multivariate 
kernel function is to use a spherically symmetric kernel, 

In general, this kernel is different from the corresponding product ker­
nel (except for the multivariate normal kernel). For example, the product 
Epanechnikov kernel is 

while the spherically symmetric version is 

{ [d(d+2)] r (.<:1) Jr-d/2(1 - XiX) 
Kd(X) = 4 2 ' 

0, 

if XiX:::; 1 

otherwise. 

Each of these kernels mInImIZeS AMISE within their respective classes 
(Epanechnikov, 1969; Fukunaga and Hostetler, 1975). Wand and Jones 
(1995, Table 4.1) showed that the spherically symmetric versions of ker­
nels based on the Beta density function (such as the uniform, quadratic 
(Epanechnikov) and quartic (biweight)) are more efficient than the product 
versions, although the drop in efficiency is less than 10% for the quadratic 
and quartic kernels for d :::; 4. Cline (1988) showed that asymmetric kernels 
are inadmissible for multivariate density estimation. 

Calculation of multivariate density estimates should not be based on 
(4.5) for large samples because of the computational burden involved. Scott 
(1985b) and HardIe and Scott (1992) showed that WARPing can be gener­
alized to multivariate kernel estimation. Wand (1994b) compared different 
binning rules for multivariate data and showed the usefulness of the Fast 
Fourier Transform in this context. 

One way to quantify the curse of dimensionality is by determining the 
increase in the number of observations needed to achieve a given level of ac­
curacy. Epanechnikov (1969), Silverman (1986, p. 94), and Scott and Wand 
(1991) investigated this for multivariate normal data and a Gaussian kernel. 
The following table gives the sample sizes needed to achieve AMISE = .393 
and AMIAE = .5987: 
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Dimension AMIBE sample size AMIAE sample size 
1 4 4 

2 17 11 

3 52 32 

4 155 98 

5 480 312 

6 1563 1020 

7 5382 3415 

8 19558 11719 

9 74746 41203 

10 299149 148366 

The sample sizes necessary to achieve the given AM I AE are 35%-50% 
smaller than those necessary to achieve the given AMISE, but in either 
case they increase rapidly with d. 

4.2.2. Fukunaga (1972, p. 175) proposed the sphering technique when 
smoothing multivariate data. 

Wand and Jones (1993) examined various parameterizations for H for 
bivariate data using normal mixture densities. They showed that scaling and 
sphering using sample standard deviations and covariances can lead to poor 
performance. They found that using diagonal H is generally reasonable, 
although it can be made arbitrarily inefficient for certain densities. 

Scott (1992, p. 152), Wand (1992b), and Wand and Jones (1995, p. Ill) 
derived Gaussian-based rules for bandwidth selection. Hall (1985), Marron 
(1986), Jones (1992), and Sain, Baggerly, and Scott (1994) investigated the 
properties of least squares cross-validation-based bandwidth selection. Sain 
et al. also proposed a biased cross-validation selector that achieves the same 
convergence rate as (unbiased) cross-validation. Results of Monte Carlo 
simulations up to three dimensions show that the cross-validated choice 
often undersmooths, while biased cross-validation is much better behaved. 

Wand and Jones (1994) investigated plug-in methods for multivariate 
data. If f is sufficiently smooth, the terms in AMISE that are a function of 
f can be written using terms of the form 

'¢r = J f(r)(u)f(u)du, 

which can be estimated using a kernel estimator (Wand, 1994, and Gonzalez­
Manteiga, Sanchez-Sellero, and Wand, 1996, described binned approxima­
tions to these functionals). Their estimated bandwidths performed well 
in small-scale simulations for bivariate densities, exhibiting low variability 

 
PAGE 135 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



126 Chapter 4. Multivariate Density Estimation 

with a tendency to oversmooth slightly. Difficulties in estimating (4.6) for 
large d are an obvious impediment to plug-in methods for high-dimensional 
data. 

Hall and Wand (1988a) described an algorithm to choose h to minimize 
MIAE. Scott and Wand (1991) showed that the minimizer of mean absolute 
error at any value x is slightly smaller (within 4%) than the minimizer of 
mean squared error, so a rule based on minimizing absolute error is not 
appreciably different from one based on minimizing squared error. 

Minnotte and Scott (1993) generalized the mode tree diagram to bi­
variate data, allowing the effects of bandwidth choice on the estimate to be 
represented graphically. 

Frohlich and Davis (1990) analyzed the three-dimensional earthquake 
data using single linkage clustering. Their results were similar to those 
reported here. 

Scott (1992, Sect. 1.4 and Plates 1~ 16) discussed and illustrated various 
ways of presenting higher-dimensional density estimates, including the use 
of color and different "banding" styles of contour shells. 

Section 4.3 
4.3.1. Flury and Riedwyl (1988, Fig. 2.4) noted the multimodal character 
of the distribution of bottom margin values for both the real and forged 
Swiss bank notes. 

Simonoff (1995b) proposed the marginal/conditional estimator and 
studied its properties theoretically and via Monte Carlo simulations. He 
found that the number of bins Bl and B2 should be chosen to increase 
with n at the rate n2/7, with Bl = B2 = 1.75n2/ 71 working well in his ex­
amples (1·1 means round up to the nearest greater integer). Each marginal 
density and the Bl + B2 conditional densities were estimated using over­
smoothed kernel estimates with bandwidths 2.5hsJ, which were found to 
provide a better graphical display. Since Bl and B2 increase very slowly 
with n, the estimate can be calculated very quickly, as it is based on only 
Bl + B2 + 2 univariate density estimates. 

Abramson (1982) formulated the variable kernel estimate for arbitrary 
dimensions and showed that choosing the bandwidth at Xi to be propor­
tional to f(Xi)~1/2 removes the O(h2) bias term. Devroye and Penrod 
(1986) examined using the kth nearest neighbor distance as the bandwidth, 
which corresponds to using Hi ex f(Xi)~l/d, and established the uniform 
consistency of the resultant estimate under weak conditions on f, n, and k. 
The nearest neighbor variable kernel corresponds to Abramson's choice for 
bivariate (d = 2) data but otherwise will not achieve reduced bias. Devroye 
(1985) established conditions for weak consistency of estimates of the form 
(4.7) for all f. 

Worton (1989) compared the fixed and variable bandwidth estimators 
for bivariate data, using an idealized version of the variable kernel estimator 
with the pilot density being the true density (without clipping away from 
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zero). He compared the estimators with respect to both finite sample and 
asymptotic properties and found that the variable kernel estimator can give 
appreciably smaller MISE than the fixed-bandwidth estimator. 

Bowman and Foster (1993) also studied an idealized version of the 
estimator (4.7), using the true density in Hi = HI(Xi)-ljp, but without 
clipping away from zero. They found that while taking p = 2 does reduce 
bias (as expected), the increase in variability more than offsets this com­
pared with taking p = d (as in nearest neighbor variable kernel estimation). 

Local kernel (balloon) estimation also can be generalized to multiple 
dimensions, with 

Devroye and Wagner (1977), Moore and Yackel (1977), Mack and Rosen­
blatt (1979), and Hall (1983b) investigated convergence properties of this 
estimator when H(x) is (a function of) the kth nearest neighbor distance. 
Terrell and Scott (1992) showed that this estimator can achieve a faster 
rate of convergence of asymptotic MSE compared with the fixed kernel es­
timator for certain x, corresponding to certain properties of the matrix of 
second partial derivatives of I at x. Unfortunately, such improved conver­
gence rates are not possible at modes, and the estimate will not generally 
be a density function. 

4.3.2. Dong and Simonoff (1995) described the construction of d-dimen­
sional boundary kernels based on the product Epanechnikov kernel. The 
kernels take the form of cubic polynomials, with coefficients that solve d 
systems of four equations, and the solutions are given in the paper. 

Hjort and Jones (1996) and Loader (1996) discussed application oflocal 
likelihood estimation to multidimensional data. The estimator, as described 
by Hjort and Jones, is fe(x) = I(x, O(x)), where the local estimate 0 solves 

n-1 t KH(Xi - X)V(Xi' 9) - J KH(u - x)v(U, 9)/(u, 9)du = 0, 
i=l 

where v(-) is a weight function and KH(U) = IHI-1 K(H-1u). The estimate 
thus involves solving p nonlinear integral equations, where p is the number 
of parameters in 9. Choosing v appropriately then yields the expected con­
vergence rate in both the interior and boundary regions. For example, if all 
derivatives of 9 = log I exist up to order p + 1, and a local log-polynomial 
up to order p is fit, 

(Loader, 1996). 
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As local likelihood estimation involves solving integral equations, com­
putational issues become important. In particular, multidimensional numer­
ical integration should be avoided if possible. Loader (1994, 1996) discussed 
methods to speed up computation of the estimate. 

The semiparametric estimator proposed by Hjort and Glad (1995) can 
be generalized to multivariate data in a straightforward way as 

n 

is(x) = n- 1 f(x, 0) L KH(Xi - x)/ f(Xi, 0). 
i=l 

The properties of is carry through as before. For a product kernel, for 
example, the variance is identical to that of the multivariate kernel (4.5), 
while the bias is approximately 

~ t, [/ u2 K j (U)dU] h;fo(x)rjj(x), 

where fo(x) is the best parametric approximant and rex) = f(x)/ fo(x). 
Thus, if forjj is small compared with jjj, the semiparametric estimator 
has smaller bias than the kernel estimator. The estimator still suffers from 
boundary bias, however, so the difficulties in constructing multidimensional 
boundary kernels persist. 

Penalized likelihood and spline-based methods also can be generalized 
to multivaria:te data, although computational issues become much more cru­
cial. Natural roughness penalties take the form of sums of squared derivative 
terms (one for each dimension), such as (for bivariate data) 

(Scott, Tapia, and Thompson, 1978, who use a discrete version of this 
penalty) or 

where I = V1 (Good et at., 1989). Granville and Rasson (1995) gave a 
general formulation of the penalized likelihood approach using a Bayesian 
framework, and proposed a penalty based on 9 = log f. 

Another possible approach is to mimic the sphering technique of Fuku­
naga (1972), transforming the data to have zero mean and diagonal covari­
ance matrix, then smoothing in each dimension using a univariate MPLE, 
and transforming back to the original scale (Bennett, 1974; Scott, Tapia, 
and Thompson, 1978; Thompson and Tapia, 1990, pp. 141-145). This esti­
mator is called the pseudo-independent estimator. 
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Gu (1993, 1995b) and Gu and Qiu (1993) defined the logistic spline 
estimator for multivariate, as well as univariate, data. In this context, the 
spline estimate can take the form of thin plate splines and tensor product 
splines (Gu and Wahba, 1993a). 

Section 4.4 

Survey articles on projection pursuit include those of Huber (1985), Jones 
and Sibson (1987), and Li and Cheng (1993). The idea behind projection 
pursuit, defining an index that measures the "interestingness" of lower­
dimensional projections of multivariate data, is due to Kruskal (1969,1972). 
Friedman and Tukey (1974) coined the term and defined their index so as to 
identify clustering in the data. Huber (1985) and Jones and Sibson (1987) 
showed that the index can be written as an estimate of R(f) = J P based 
on a kernel density estimate of the projected points; thus, maximizing the 
index looks for projections away from a parabolic (quadratic) density (this 
is the same argument as the one that yields the Epanechnikov kernel as the 
optimal nonnegative kernel function). 

Since, generally speaking, most projections look normal (Diaconis and 
Freedman, 1984), a more sensible target for noninterestingness is the normal 
distribution. This also coincides with the idea of minimizing randomness, 
as measured by entropy, since the normal distribution maximizes entropy 
(Huber, 1985). Using the negative Shannon entropy J flog f as a projection 
index will therefore identify nonnormal projections. This index is computa­
tionally intensive, and Jones and Sibson (1987) derived an approximation 
based on Hermite orthogonal polynomials that is a simple function of third 
and fourth moments of the projected data (that is, skewness and kurtosis). 

A direct approach to choosing a projection index is to measure the 
distance between the observed projected data and normality. Cook, Buja, 
and Cabrera (1993) formulated this general approach as follows. Let T : 
IR -+ IR be an arbitrary, strictly monotone, and smooth transformation on 
the random variable X so that Y = T(X). If X has density f(x), let Y 
have density g(y). Define a null version of the f density to be ¢(x) (such 
as the normal distribution), with the corresponding null version of g being 
'ljJ(y). A general family of indices is then 

1= llg(y) - 'ljJ(y)]2'ljJ(y)dy. 

Taking T = 2<P(X) - I, as in Friedman (1987), yields the exploratory pro­
jection pursuit method described in Section 4.4, as in (4.8). The density 
g(y) is then expanded in terms of the Legendre polynomial family. In the 
original scale, this index corresponds to 

r If(x) - ¢(x)j2 dx 
JIR 2¢(x) 
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and thus puts more weight on the tails of f. Morton (1989) proposed a 
version of this index that is affine invariant, based on terms of a Fourier 
series and Laguerre polynomials. 

Hall (1989a) noted this higher weight in the tails and proposed mea­
suring distance from ¢ in the original scale; that is, 

The density f(x) is then expanded in terms of the Hermite polynomial 
family. This corresponds to using the transformation T(X) ex: <P cr=v'2(X). 
Cook, Buja, and Cabrera (1993) proposed using the identity transformation 
T(X) = X, yielding the index 

JIR[J(x) - ¢(xW¢(x)dx, 

which they termed the natural Hermite index (the density f(x) is then also 
expanded in terms of the Hermite polynomial family). They showed that 
this index puts less weight on the tails than either the Legendre or Hermite 
indices. In particular, the lowest order terms of the Hermite and natural 
Hermite indices correspond to identifying holes in the center of the data, 
while the second order term of all three indices focuses on skewness (the 
first order term of the Legendre index is identically zero). Posse (1995a) 
proposed an index based on using a X2 statistic to test normality of the 
projected data. 

Posse (1995b) compared the ability of various implementations of bi­
variate exploratory projection pursuit to discover underlying structure. He 
found that the optimization algorithm used can have a large effect on the 
ability of projection pursuit to identify structure, regardless of the index 
used, and recommended a random search method for locating the global 
maximum of the projection index (see Posse, 1990). He found that the Leg­
endre, Hermite, and X2 indices are sensitive to departures from normality 
in the center of the distribution, while the Laguerre-Fourier and natural 
Hermite indices are useful for identifying clusters. These properties do not 
necessarily coincide with the theoretical distances that the indices estimate, 
reinforcing the importance of examining the indices themselves, rather than 
the theoretical distances. See also Sun (1993) for comparisons of indices. 

Nason (1995) discussed projection pursuit using three-dimensional in­
dices. His method was based on generalizing the index of Jones and Sibson 
(1987), and he described computational issues and the treatment of outliers. 

Projection pursuit also can be used to estimate directly the multi­
variate density f; while this is of limited importance graphically (since 
multivariate densities past two dimensions cannot be directly graphed very 
easily), it can be useful if the density is used indirectly in some statistical 
functional (such as in discriminant analysis). See Friedman, Stuetzle, and 
Schroeder (1984), Huber (1985), Buja and Stuetzle (1985), Jee (1987), and 
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Jones and Sibson (1987). Stahel (1981) and Donoho (1982) used a pr~ 
jection pursuit construction to derive multivariate location and dispersion 
estimators that are affinely equivariant and highly robust, having a break­
down point approaching .5. See also Li and Chen (1985), Donoho and Gasko 
(1992), and Ammann (1993). 

In practice, the data are usually centered and sphered before the ap­
plication of projection pursuit, so that any location and scale effects are 
removed. For high-dimensional data, it is often useful to remove irrelevant 
and redundant information. Extracting the largest q principal component 
axes (with q chosen to account for most of the variation in the data), and 
then operating on this q-dimensional data can improve the ability to dis­
cover interesting structure (see, for example, Jee, 1987; Friedman, 1987; and 
Scott, 1992, Sect. 7.3). Note that principal components analysis is itself a 
form of projection pursuit, with the projection index being the proportion 
of total variance accounted for by the projected data. 

The 1993 automobile data are part of a larger set given in Lock (1993). 
Huber (1985) and O'Sullivan and Pawitan (1993) discussed computer­

ized tomography, another approach to multivariate density estimation that 
is based on using low- (one-) dimensional density smoothers. O'Sullivan 
and Pawitan described implementation of the estimator (including on a 
parallel computer) using penalized B-spline estimates and showed that the 
estimator achieves the same MISE convergence rate as kernel and spline 
estimators. 

Computational issues 

S-PLUS code to construct a bivariate histogram is available via anony­
mous ftp at the address ftp. stat. rice. edu and can be found in the 
directory pub/ scottdw /Mul ti. Den. Est/hist .2d. Exponent Graphics, S­
PLUS, STATGRAPHICS PLUS, and STATISTICA also provide bivariate 
histograms. 

Tw~dimensional kernel estimation is available in Systat, XploRe, and 
JMP (the latter package includes a slider to control the amount of smooth­
ing). The collection kde2d in the S directory of statlib contains S-PLUS 
functions that implement bivariate kernel estimation, also allowing spher­
ing of the data. The collection ash in the S directory of statlib con­
tains S-PLUS functions that calculate average shifted histogram (WARP­
ing) estimates up to lO dimensions, and includes functions to represent 
three-dimensional contour volumes graphically. The author of Wand (1994) 
has made available S-PLUS and Fortran code to calculate two- and three­
dimensional estimates using the binning methods discussed in the paper. 

Fortran code to calculate the marginal/conditional density estimate 
of Simonoff (1995b) can be obtained using a World Wide Web browser at 
http://www.stern.nyu.edu/~jsimonof/bivar.f. 
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C code (and S-PLUS interfaces) to calculate multivariate local log 
polynomial (up to quadratic) estimates is available using a WWW browser 
at the URL http://cm.bell-labs . com/stat/project/locfit. 

RKPACK-II, a collection of Ratfor routines for multivariate penalized 
likelihood density estimation, is available using a WWW browser at the 
URL http://www . stat. purdue. edu/ "'chong/ software. html. 

The collection projpurs in the general directory of statlib contains 
Fortran code to implement the exploratory projection pursuit algorithm de­
scribed in Friedman (1987). The collection cook-b-c in the jcgs directory 
of statlib contains S-PLUS code to calculate one- and two-dimensional 
Hermite, Legendre, and natural Hermite projection indices for a given pro­
jection, one-dimensional indices using kernel methods based on entropy and 
the index of Friedman and Thkey (1974), and several auxiliary plotting and 
utility routines. XploRe provides a similar range of projection pursuit ap­
proaches. XGobi, which is available as the collection xgobi in the general 
directory of statlib, also includes projection pursuit functionality, with the 
ability to USe projection pursuit to guide "tours" through the data (Cook et 
al., 1995). Fortran and S-PLUS code to implement the three-dimensional 
projection pursuit method of Nason (1995) is available by anonymous ftp 
at ftp. stats . bris . ac . uk in the directory /pub/ software/pp3, in the file 
pp3. shar . gz. 

O'Sullivan and Pawitan (1993) have made available Fortran and S­
PLUS code to calculate the computerized tomography multivariate density 
estimate. 

Exercises 

Exercise 4.1. Construct bivariate histograms, using whatever bin widths 
seem appropriate, for the earthquake distribution data (Fig. 4.7) and Swiss 
bank note data (Fig. 4.12). Do the histograms bring out the structure in 
the data? Now try linear blend frequency polygons, representing the den­
sity estimate using a contour plot. Are the frequency polygons better at 
illuminating the structure? Are they as useful as smoother estimates? 

Exercise 4.2. Construct a variability plot for the kernel estimate of the 
earthquake distribution data (Fig. 4.7), as was done for the basketball data 
in Fig. 4.6. Does the plot support the qualitative impressions in Fig. 4.7? 

Exercise 4.3. Construct a bivariate kernel density estimate for the earth­
quake distribution data, for events occurring at zero depth. Is the distri­
bution different from those given in Fig. 4.9? Does the plug-in bandwidth 
matrix choice give an appealing estimate in this case? What about the 
Gaussian reference rule? 

 
PAGE 142 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



Exercises 133 

Exercise 4.4. Construct bivariate kernel estimates using the sphering choice 
of bandwidth matrix H = hS1/ 2 for the basketball data, earthquake distri­
bution data, and Swiss bank note data. Are the resultant estimates similar 
to those on unsphered data using the plug-in bandwidth choice? 

Exercise 4.5. Construct a three-dimensional kernel estimate of the earth­
quake data (as in Fig. 4.9), transforming the focal depth variable using a 
Johnson family transformation rather than a logarithmic one. Are slices at 
50, 200, 400, and 600 km similar to those in the figure? What does a slice 
at zero depth look like? How does it compare to the estimate constructed 
in Exercise 4.3? 

Exercise 4.6. Construct bivariate kernel estimates for the Swiss bank note 
data, separating the real from the forged bills, using the plug-in choice of 
bandwidth for each estimate. Do the two estimates reinforce the impression 
of five modes in the (joint) data set? 

Exercise 4.7. Construct marginal/conditional estimates for the two parts of 
the Swiss bank note data set. Do they identify the underlying structure? 
Is it helpful to use these estimates as pilots in constructing variable kernel 
estimates? Does local likelihood estimation give better estimates? 

Exercise 4.8. Construct pseudo-independent estimates of the densities for 
the basketball data, earthquake distribution data, and Swiss bank note 
data using any of the nonkernel univariate density estimates described in 
Chapter 3 (such as local likelihood, semiparametric, P-spline, logistic spline 
or logspline estimates). How do the estimates compare to those of Exercise 
4.4? How do they compare to the bivariate kernel estimates in Figs. 4.5, 
4.7, and 4.12, respectively? 

Exercise 4.9. Construct the first two principal components for the 1993 auto 
data, and plot the corresponding component scores, along with a superim­
posed bivariate density estimate of your choice. Do the principal compo­
nents highlight the same structure as exploratory projection pursuit does? 
Which method seems to do a better job? 

Exercise 4.10. Perform a projection pursuit analysis on the four-dimensional 
(longitude, latitude, focal depth, and magnitude) earthquake data. Do you 
discover anything new? Do the previously noted patterns come through? Is 
the analysis more effective if any variables are transformed first? 

Exercise 4.11. Perform a projection pursuit analysis on the 1993 auto data 
using an index different from the Legendre index. Are the results the same, 
or are different patterns highlighted? 
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Chapter 5 

Nonparametric Regression 

5.1 Scatter Plot Smoothing and Kernel Regression 

The most widely used general statistical procedure is (linear) regression. 
Regression models are powerful tools for modeling a target variable y as 
a function of a set of predictors x, allowing prediction for future values of 
y and the construction of tests and interval estimates for predictions and 
parameters. 

Regression models are also susceptible to the same problems as any 
other parametric model. Consider the simple linear regression model, 

i = 1, ... ,n, (5.1) 

with the errors E usually taken to be independent and identically (roughly 
Gaussian) distributed with zero mean and variance u 2 . If this model is a 
good representation of reality, least squares estimates of (3 can be calculated, 
and inference and prediction follow. 

Figure 5.1 is a scatter plot of the eruption duration (horizontal axis) 
and following eruption time interval (vertical axis) of 222 eruptions of the 
"Old Faithful Geyser" in Yellowstone National Park. It is apparent that a 
positive association exists between these variables, with a longer interval 
until the next eruption following longer eruptions. The National Park Ser­
vice would like to predict the time until the next eruption, so that tourists 
can be sure to see it; the superimposed least squares regression line can be 
used for that purpose. 

What if the linear model (5.1) is not appropriate? Fitting a linear 
model to a nonlinear relationship can give results that are worse than use­
less, implying a degree of certainty that is not realistic. A more general 
alternative to (5.1) is the nonparametric regression model 

(5.2) 

The regression curve m(x) is the conditional expectation m(x) = E(YIX = 
x), with E(EIX = x) = 0, and V(EIX = x) = u2 (x) not necessarily constant. 
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Fig.5.1. Scatter plot of "Old Faithful Geyser" eruption time interval versus 
previous eruption duration, with least squares linear regression line superimposed. 

The model (5.2) removes the parametric restrictions on m(x) and al­
lows (perhaps unexpected) alternative structure to come through. An es­
timate of m( x) superimposed on the scatter plot (a so-called scatter plot 
smoother) thus can be a highly effective way to check the appropriateness of 
the model. The multivariate density estimation results of Chapter 4 provide 
guidance on how to estimate m. By definition, 

m(x) = E(YIX = x) 

= J yf(ylx)dy 

-J f(x,y) d 
- y fx(x) y, (5.3) 

where fx(x), f(x, y), and f(ylx) are the marginal density of X, the joint 
density of X and Y, and the conditional density of Y given X, respectively. 
A product kernel estimate of f(x, y) is 

, 1 ~ (x - Xi) (y - Yi) 
f(x, y) = nhxhy ~ Kx -,;:;- Ky -,;;;- , 
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Fig. 5.2. Scatter plot of "Old Faithful" data, with Nadaraya-Watson kernel es­
timate superimposed. 

while a kernel estimate of fx(x) is 

A 1 n (x - Xi) 
fx(x) = nh LKx -h- . 

x i=l x 

Substituting into (5.3), and noting that J Ky(u)du = 1 and J uKy(u)du = 

0, yields the Nadaraya- Watson kernel estimator, 

",n K (X-Xi) y' n 
A () 6,=1 h ' _ '\;""' 

mNW x = ",n K (X-Xi) = ~ WiYi, 
6,=1 h i=l 

a linear function of y with weights 

(this estimator is sometimes called an evaluation kernel estimator). 
Figure 5.2 again gives the "Old Faithful Geyser" eruption data, with a 

 
PAGE 146 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



C/) 
Q) 
"0 
'x 
o C") 
() 

~ 
c:: 
'0 
25 C\J 

~ 
C 
Q) 
() 
c:: 
o 
() 

5.1. Scatter Plot Smoothing and Kernel Regression 137 

o 
0"-
:o(§) 

<ID :' 

0.6 

o 
o 

cB 
o o 

0.8 1.0 

Equivalence ratio 

1.2 

Fig. 5.3. Scatter plot of nitric oxide levels versus equivalence ratio, with Nada­
raya-Watson kernel estimate (solid line) and quadratic least squares regression 
line (dashed line) superimposed. 

Nadaraya-Watson kernel estimate superimposed (using a Gaussian kernel, 
with h = .25). The curve shows that a reasonable alternative model to the 
simple regression line of Fig. 5.1 is to treat the two high density regions 
separately (shorter eruption duration followed by shorter eruption time 
interval, and longer eruption duration followed by longer eruption interval, 
respectively), with the average eruption interval for the former group being 
around 50 minutes and that for the latter group being 75 -- 80 minutes. 

Figure 5.3 illustrates another data set where the smooth curve argues 
against a simple parametric model. The data relate the concentration of 
nitric oxides in engine exhaust to the equivalence ratio, a measure of the 
richness of the air/ethanol mix, for a burning of ethanol in a single-cylinder 
automobile test engine. The curve shows an increase in nitric oxides up to 
an equivalence ratio of about 1, followed by a steady decrease. This pattern 
might suggest a parabolic (quadratic) relationship, but the superimposed 
quadratic least squares fit shows that this is not the case. 

The Nadaraya-Watson kernel estimator is most natural for data using 
a random design, as in (5.3) (that is, when the design is a random sample 
from some distribution having density Ix). If Ix is known a priori, an 
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obvious alternative weighting is 

(5.4) 

If the design is not random, but is rather a fixed set of ordered nonrandom 
numbers Xl, ... , X n , the intuition of (5.3) is lost, and a different form of 
kernel estimator could be considered. One approach is to estimate a "density 
function" at the design points using the spacings between the design points, 

Substituting this into the weights Wi (changing from fx(x) to Ix (Xi» yields 
the Priestley-Chao kernel estimator, 

A -1 X-Xi 
n () mpc(x) = h t;(Xi - Xi-dK -h- Yi 

(a closely related version of the estimator, mpCl, substitutes (XHI -Xi-l)/2 

for Xi - Xi-I). Another estimator intended for the fixed design case is the 
Gasser-Muller kernel estimator, 

n [lSi (x -u) 1 mGM(X) = h- 1 t; 8i-1 K -h- du Yi, 

where Xi-I:::; 8i-l :::; Xi (a common choice being 8i-l = (Xi-l +xi)/2, with 
So and 8n being the upper and lower limits of the range of x, respectively). 
Estimators of this type are often called convolution estimators. 

5.2 Local Polynomial Regression 

5.2.1 Local polynomial estimation 

Basic calculus shows that mNW is the solution to a natural weighted least 
squares problem, being the minimizer 00 of 

That is, mNW corresponds to locally approximating m(x) with a constant, 
weighting values of Y corresponding to XiS closer to X more heavily. 

This suggests fitting higher order local polynomials, since a local con­
stant usually makes sense only over a very small neighborhood. Such a (pth 
order) local polynomial regression estimator is the minimizer of 
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Let Xx be the design matrix 

X -Xn 
(the estimator can be written using terms of the form Xi X rather than 
X - Xi, but this does not affect any of its properties, and using X - Xi allows 
connections with kernel estimation to be more apparent), and let 

-1. [(X-Xl) (x-xn)] Wx =h dlag K -h- , ... ,K -h-

be the weight matrix; then, if X~ WxXx is invertible, 

j3 = (X~ W xX x)-l X~ WxY. 

The estimator mp(x) is then the intercept term ~o, or (in matrix notation) 

(5.5) 

where e r is the (p + 1) x 1 vector having the value 1 in the rth entry and 
zero elsewhere and Sx = e~ (X~ WxXx) -1 X~ W x. More generally, q! x ~q = 

q!e~+l(X~WxXx)-lX~Wxy is an estimate of the qth derivative of m(x), 
m(q)(x). The local linear (p = 1) estimator of m(x) can be written as 

where 

5.2.2 Properties of local polynomial estimators in the interior 

The distinction between the fixed and random design cases complicates the 
asymptotic analysis of mp. Problems occur because the matrix X~ WxXx 
in (5.5) might not be invertible (at least p+ 1 different points with positive 
weight are required). Taking h large enough can guarantee invertibility for 
fixed designs, but for a random design, bounded kernel function K, and 
any fixed h, there is positive probability that invertibility does not hold. 
Conditioning on the observed predictor values makes the analysis similar 
to the fixed design case and hence easier (results for fixed designs take 
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Xi = F- 1(i/n), with F the cumulative function of the "density" f of the 
design). 

Consider a point X away from the boundary region (boundary effects 
are discussed in the next subsection). Then, assuming appropriate smooth­
ness of m and f, the asymptotic conditional bias of mp(x) is 

(5.7a) 

if p is odd, and 

(5.7b) 

if P is even, where 

J.Lq(K(p») = J uqK(p) (u)du 

and K(p) is a (p + l)th order kernel function when p is odd and a (p + 
2)th order kernel function when p is even. These kernels are related to the 
generalized jackknifing higher order kernels described in Chapter 3 (as in 
(3.25)). The conditional variance equals 

A R(K(p»)a.2(x)_l 
V(mp(x)l x1, ... , xn ) = nhfx(x) + op[(nh)]. (5.8) 

Thus, the conditional MSE equals 

MSE(mp(x)lx1, ... ,xn ) 

= [hP+lm(p+1)(X)J.Lp+1(K(p»)] 2 + R(K(p»)a2 (x) 
(p + I)! nhfx (x) 

(5.9) 

if P is odd, and 

if P is even. 
Several implications can be drawn from (5.7) and (5.8). First, the de­

gree of the polynomial being fit determines the order of the bias of mp , with 
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polynomials of adjacent pairs of degree being conceptually similar. For ex­
ample, local constant (p = 0) and local linear (p = 1) estimation both yield 
Op(h2) bias, local quadratic (p = 2) and local cubic (p = 3) estimation 
both yield Op(h4) bias, and so on. 

Given this, odd degree polynomials have a simpler asymptotic bias 
expression, similar to that of kernel density estimators (substituting m for 
1). The bias of even degree local polynomial estimators depends on the 
design density, while that of odd degree estimators does not (odd degree 
estimators can be viewed as "design adaptive" in that sense). 

Equations (5.7) and (5.8) determine the asymptotic rate for h that 
will minimize the conditional MSE. For p odd, h = O(n- 1/(2 P+3)), yielding 
MSE = Op(n-(2p+2)/(2p+3)), while for p even, h = O(n- 1/(2P+5)), yielding 
MSE = Op(n-(2p+4)/(2P+5)). So, as expected, for p = 0 or 1, the optimal 
MSE = Op(n-4/5); for p = 2 or 3, the optimal MSE = Op(n-8/g ), and so 
on. 

In an asymptotic sense, local linear estimation combines the good prop­
erties of other kernel estimators while avoiding their faults. While mpc, 
mpc1, and mGM have the simple bias expansion as in (5.7a), 

mNW does not (as it corresponds to p = 0 in (5.7b)). On the other hand, 
the variance of mpc1 and mGM for random designs equals 

. 3 R(K)a2 (x) -1 
Vanance = 2: x nhfx(x) + op[(nh) j; 

that is, 1.5 times the local linear value from (5.8) (also attained by mNW)' 
For fixed designs, local polynomial and convolution estimators are asymp­
totically equivalent. Thus, m1 combines the simple bias of the convolution 
kernel estimators with the smaller random design variance of the evaluation 
kernel estimator. 

Practical application of local polynomial estimators, however, rein­
forces the potential dangers of trusting the implications of (5.7) and (5.8) 
uncritically. For example, while the quadratic (Epanechnikov) kernel is 
asymptotically optimal (with respect to conditional MSE), its use leads 
to estimators with infinite unconditional (finite sample) variance. This is 
because of the kernel's boundedness, and the possibility of sparse regions 
in the design, and can translate into roughness of the estimate. 

Using an unbounded kernel, such as the Gaussian, corrects this prob­
lem, yielding local linear estimators with finite conditional and uncondi­
tional variance. Another way to achieve this is to require at least four points 
in the interval covered by the kernel, such as by using a bandwidth based on 
nearest neighbors. Local linear and quadratic estimators with bandwidth 
based on nearest neighbors are often called loess (or the older term lowess) 
estimators. 
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Fig. 5.4. Scatter plot of Sunday circulation versus daily circulation for 19 news­
papers, with Nadaraya-Watson kernel estimate superimposed. 

5.2.3 Properties of local polynomial estimators near the 
boundary 

As was true in the density estimation context (Section 3.2.1), one of the 
most serious problems when using kernel regression estimators is boundary 
bias, because of the asymmetric contribution of observations to the kernel 
summation near the boundary. Figure 5.4 gives a scatter plot of the Sunday 
circulation versus the daily circulation (in thousands) for 19 newspapers, 
with mNW superimposed (using a Gaussian kernel and h = 150). Boundary 
bias is evident here, as the curve "flattens out" at the left boundary, with 
most of the observations falling below the curve for daily circulation less 
than 400,000 and then lying above it for daily circulation between 400,000 
and 800,000. 

Local polynomial estimation can automatically provide boundary bias 
correction. By fitting local polynomials at values in the boundary region, the 
estimator does not "flatten out" because of the lack of available data past 
the boundary the way the kernel estimator (which fits a local constant) does. 
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Consider local linear estimation, and assume (without loss of generality) 
that the support of Ix is [0,1]. Then, for left boundary points x = ch, 
c 2: ° (for kernels supported on [-1, 1], c ::; 1), the conditional bias of ml 
IS 

where 
S2 - S S 

( ) 2,e 3,e l,e 
CXK C = 2 

S2,e SO,c - Sl,c 

and SC,e = J~oo u£ K(u)du, £ = 0,1,2,3. This is exactly analogous to the bias 
achieved by the generalized jackknifing kernel (3.12) discussed in Chapter 
3, as given in (3.22). That is, the local linear estimator is, in this sense, 
asymptotically an automatic boundary kernel estimator. In contrast, the 
conditional bias of mNW satisfies 

which is only Op(h) unless m'(x) = 0, rather than Op(h2 ). 

The practical benefits of this boundary bias correction can be seen in 
Fig. 5.5, where a local linear estimate (with Gaussian kernel and h = 150) 
is superimposed on the scatter plot of Fig. 5.4. The local linear estimate 
avoids the bias at the left boundary and highlights much more effectively 
the close-to-linear relationship between daily and Sunday circulation. 

Figure 5.6 illustrates bias correction at both boundaries. The plot re­
lates the electricity usage at an all-electric residential home (in kilowatt­
hours) to the average daily temperature for 55 months. The local constant 
(mNw) and local linear estimates (using a Gaussian kernel and h = 9) 
are very similar in the interior, but mNw is severely negatively biased at 
the left boundary and moderately positively biased at the right boundary 
because of a flattening-out effect. The local linear estimate automatically 
corrects this and highlights the nonlinear (inverse, as would be expected in 
this northern North American home) relationship between electricity usage 
and temperature. 

Naturally, bias correction comes with a price -- that is, increased vari­
ance. The asymptotic conditional variance of ml near the boundary is 

(5.10) 

where 
Jc (S2 e - USI c)2 K2(u)du 

(3K(C) = -00' , 2 2 
(S2,c SO,e - Sl,J 

For the Gaussian kernel, for example, the asymptotic conditional variance of 
ml is about 3.17 times that of mNw at the boundary if the same bandwidth 
is used; for the biweight kernel, it is about 3.58 times that of mNw. 
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Fig. 5.5. Scatter plot of newspaper circulation data, with local linear estimate 
(solid line) and Nadaraya-Watson kernel estimate (dashed line) superimposed. 

Figure 5.7 is a variability plot of the local linear estimator for the elec­
tricity usage data. The plot is constructed by repeatedly sampling with 
replacement from the data and fitting the local linear estimate to the re­
samples. The dashed lines in the figure are the upper and lower pointwise 
2.5% points for 200 resamples. Note that the envelope does not represent 
a 95% confidence region for m(x), since its construction ignores the bias 
of mI. The envelope is narrow, suggesting a good deal of stability in the 
estimate, but it noticeably widens at the boundaries. Equation (5.10) pro­
vides support for this pattern, since the asymptotic conditional variance is 
more than six times greater at the boundary than it is in the interior for 
the Gaussian kernel, assuming the same values of h and Ix. 

The automatic boundary bias correction of mp for p = 1 versus p = 0 
persists for higher order polynomials, with odd values of p asymptotically 
improving on the boundary bias of even values. So, for example, while local 
quadratic and local cubic estimators both achieve Op(h4) conditional bias 
in the interior, local quadratic estimators have Op(h3 ) conditional bias in 
the boundary region. 
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Fig. 5.6. Scatter plot of electricity usage versus temperature in an all-electric 
residence, with local linear estimate (solid line) and Nadaraya-Watson kernel 
estimate (dashed line) superimposed. 

5.2.4 Choosing the degree of the polynomial fit 

The results of Sections 5.2.1 and 5.2.2 provide some guidance on how to 
choose the degree of polynomial p being fit when constructing mp. If the 
regression curve m(x) changes rapidly, Im"(x)1 will be large, and the Op(h2 ) 

conditional bias term in (5.7 a) for p = 1 can be large (that is, the local linear 
estimate can flatten out sharp peaks and troughs). In that circumstance, 
removing the Op(h2 ) bias term by going to p = 2 or p = 3 can be beneficial, 
at least asymptotically. This is the same argument as was used in Chapter 
3 regarding higher order kernels and density estimation, of course (since 
higher degree local polynomial fitting is asymptotically equivalent to higher 
order kernel fitting), where it was argued that the benefits of using such 
kernels were minor. 

Experience with regression models appears to be more positive, how­
ever. Consider, for example, Fig. 5.8, which refers to the nitric oxide pro­
duction data examined in Fig. 5.3. The dashed line is a local linear estimate 
using a Gaussian kernel and h = .0253, while the solid line is a local cubic 
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Fig. 5.7. Variability plot of local linear estimate for electricity usage data. 

estimate with h = .04. Despite the wider bandwidth, the local cubic esti­
mate seems to follow the contours of the regression curve better, particularly 
around the center of the plot, where it is changing most rapidly. 

Figures 5.9 and 5.10 also show the possible advantages of using higher 
order polynomials. The plots refer to data from a vineyard on a small island 
in Lake Erie. The vineyard is divided into 52 rows, and the 52 observations 
in the data set correspond to the sum of the yields of the harvests in 1989, 
1990, and 1991 separated by row, as measured by the total number of lugs 
(a lug is a basket that is used to carry the harvested grapes, which holds 
roughly 30 pounds of grapes). The row numbers are naturally ordered, with 
increasing row number reflecting movement from northwest to southeast. 

Figure 5.9 gives the data, with two local linear estimates (each using 
a Gaussian kernel) based on h = 3 and h = 1.5, respectively. Both curves 
show the general pattern of the yield being higher in the middle of the 
vineyard than at the edges. This is because of weather (wind) and animal 
(birds and raccoons) damage at the outer, exposed, parts of the vineyard. 
Rows 31-52 are shorter than rows 1-30 (100 yards long versus 120 yards), 
which accounts for the steeper drop in yield at the right side of the plot 
compared with the left side. 
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Fig. 5.8. Scatter plot of ethanol data, with local linear (dashed line) and local 
cubic (solid line) estimates superimposed. 

The local linear estimate using h = 3 is very reasonable for rows 10-30 
and 40-52 but seems to be oversmoothed for the other rows, exhibiting 
noticeable negative bias at the left boundary and pronounced positive bias 
at the dip in yield in rows 30-40 (there is a farmhouse directly opposite 
those rows, which could possibly account for this dip). The local linear 
estimate with h = 1.5 picks up the left boundary and the dip quite nicely 
but is undersmoothed for the other rows, with many spurious bumps in the 
estimated curve. 

Figure 5.10 gives a local cubic estimate (h = 3) that apparently ad­
dresses the difficulties of the local linear estimate. The curve is pleasingly 

. smooth, without spurious bumpiness, yet picks up the structure well, in­
cluding the dip in rows 30-40. 

Asymptotically, the choice between even and odd p is easy ~ odd 
values (1 versus 0, 3 versus 2, and so on) have a clear advantage. The con­
ditional bias for odd values of p is simpler than that for even values and 
does not depend on the design Ix. Even more importantly, local pth de­
gree polynomial estimators have Op(hP+l) conditional bias in the boundary 
region, which is higher order for the odd member of the pair, apparently 
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Fig. 5.9. Scatter plots of total lug counts versus row for three vineyard harvests, 
with local linear estimates superimposed, using h = 3 and h = 1.5, respectively. 
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Fig. 5.10. Scatter plot of vineyard data, with local cubic estimate superimposed. 

deciding the matter convincingly. 
As with all asymptotic arguments for smoothing methods, however, 

things aren't quite that straightforward for finite samples. Figure 5.11 gives 
variability plots for the electricity usage data for local quadratic and local 
cubic estimates (each using a Gaussian kernel and h = 3) that are directly 
comparable to Fig. 5.7. The fitted regression estimates themselves are vir­
tually identical (despite potential gains in bias from going to higher p), 
but the increased variability in the boundaries associated with higher p is 
obvious from the variability envelopes (particularly at the left boundary). 
There is little reason to go past p = 1 for these data, as the worse vari­
ance properties for p = 3 versus p = 2 can actually overwhelm the better 
boundary bias properties. 

Figure 5.12 is a variability plot for the local cubic estimate given in 
Fig. 5.10 for the vineyard data. The narrow envelope for most of the range 
of the data argues in favor of using p = 3, but even here, the marked 
increase in variability at the boundary that comes with higher order bias 
correction should be recognized and taken into account in any discussion 
of the implications of the fitted curve. 
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Fig. 5.11. Variability plots of local quadratic and local cubic estimates for elec­
tricity usage data. 
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Fig. 5.12. Variability plot of local cubic estimate for vineyard data. 

5.3 Bandwidth Selection 

The appearance of a local polynomial regression estimate depends strongly 
on the bandwidth h, and an automatic choice is desirable (further tuning of 
the bandwidth by the data analyst is often beneficial as well). Each of the 
bandwidth selectors described in Chapter 3 has an analogous formulation 
in the regression context and often exhibits similar behavior. 

Assume that the support of Ix is [0,1] and that the errors are ho­
moscedastic with variance 0-2 (nonconstant variance suggests varying the 
bandwidth with x, which will be discussed in the next section). The 
weighted conditional MISE of mp is a global measure of accuracy of mp 
and equals 

MISE(mplxl,"" xn) == E[ISE(mplxll ... , xn)] 

= E {j[mp(u) - m(u)]2 Ix(u)dulxl,'" 'Xn}. (5.11) 
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The weighting by fx puts more emphasis on accuracy in regions with more 
data, since the mean averaged squared error (mean ASE, or MASE) 

is a discrete approximation to (5.11). For p odd, (5.9) implies that 

MISE(mplxl, ... ,xn ) 

= [hP+I~p;ll(;(p))r J m(p+l)(u)2fx(u)du + R(~~)(J2 

(5.12) 

Cross-validation proceeds directly, using the idea of "leave-one-out" 
prediction. The criterion has the form 

where m~i) (Xi) is the estimate mp based on the data with Xi removed, 
evaluated at Xi. The cross-validatory choice of h (hev) is the minimizer of 
CV(h). 

Unfortunately, hev suffers from the same unappealing characteristics 
in the regression context as it does in the density estimation context; that 
is, it is highly variable and tends to undersmooth in practice, yielding curves 
that are too "wiggly." For local linear estimation, for example, hev con­
verges very slowly to the minimizers of ASE and MASE, at the relative rate 
Op(n- l / lO). This suggests also trying a plug-in selector for h. 

The minimizer of the MISE (5.12) is asymptotically 

[ 
(p+1)(p!)2R(K(p)(J2 ]1/(2P+3) 

ho = 2npp+l (K(p)2 J m(p+l) ( U)2 !x( u)du ' (5.13) 

as long as J m(p+l)(u)2 fx(u)du is nonzero. A plug-in choice of h relies on es­
timating (J2 and replacing the integral in the denominator with an estimate. 
Note that a plug-in selector will fail if the true regression relationship is lin­
ear, since then the denominator in (5.13) equals zero (the optimal choice of 
h for linear m is h = 00, which will give the least squares regression line). 
Practically speaking, a plug-in method cannot be expected to do very well 
for near-linear regression relationships, as it will likely undersmooth (the 
same is true for plug-in selectors for kernel density estimation based on 
(3.9), but for [more unusual] straight-line densities). 

Consider the local linear estimate mI' Equation (5.13) then simplifies 
to 
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[ 
R(K)a2 ] 1/5 

ho = nf.l2(K)2 J ml/(u)2 fx(u)du 
(5.14) 

~ 2 
A natural estimate of J ml/(u)2 fx(u)du is n~l L~l ml/(xi) ,where 

m~i) = 2e;(X~JVxiXxJ~1 X~i WXiY 

and X and Ware based on a local cubic estimate using an appropriately 
chosen bandwidth g. 

A plug-in estimator for a 2 is based on a residual sum of squares, 
n 

(j2 = V~l L[Yi - ml (xi)F, (5.15) 
i=l 

where ml uses an appropriately chosen bandwidth A. By analogy with ordi­
nary linear regression, v can be thought of as the error degrees of freedom. 
If Sx is defined to be the matrix with ith row SXi' v equals 

v = trace[(I - Sx)(I - Sx)'J = n - 2trace(Sx) + trace(SxS~). (5.16) 

This choice of v makes (j2 conditionally unbiased for a 2 if m is linear (fur­
ther analogy with the usual parametric analysis of variance implies that 
2 trace(Sx) - trace(SxS~) plays the role of the number of "parameters" fit 
by the smoother). This construction then yields a plug-in choice h that satis­
fies h/ho -1 = Op(n~2/7), a considerable improvement over the Op(n~l/lO) 

rate of hey. 
Figure 5.8 gave an example of the use of this plug-in selector. The local 

linear estimate given there (using h = .0253) uses the plug-in selector and 
gives a reasonable view of the regression relationship. Figure 5.13 is com­
parable, presenting a local linear estimate for the vineyard data of Figs. 5.9 
and 5.10. The estimate uses the plug-in bandwidth h = 1.8, a compromise 
between the two values used in Fig. 5.9, which captures the structure al­
most as well as the local cubic estimate of Fig. 5.10 (except for some slight 
bumpiness between rows 10 and 20). 

Figure 5.14 presents another data set related to the vineyard. There 
are three response values for each row, corresponding to the 1989, 1990, 
and 1991 harvests, which are the differences between the number of lugs 
for that row and harvest year and the average number of lugs per row for 
that harvest year. Correction by the average number of lugs per row for 
each harvest removes the harvest effect and allows the row-to-row variatiori 
to come through, while also reflecting year-to-year variation around the 
annual mean. The plug-in choice for bandwidth is h = 1.8, and the plot 
gives the resultant local linear estimate. The pattern is very similar to the 
one in Figs. 5.10 and 5.13, and the local linear estimate captures it well, 
with no need to go to higher degree polynomials. 
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Fig. 5.13. Local linear estimate for vineyard data using plug-in bandwidth. 

5.4 Locally Varying the Bandwidth 

The form of the conditional MSE of mp at a given value x, as given (for p 
odd) in (5.9), shows that it is dependent on three factors: the design density 
fx(x), the curvature m(p+I)(x), and the local variance 0"2(x). Consider, 
for example, the local linear estimator mI. The conditional MSE for this 
estimator equals 

, [h2mll(X)J12(K)] 2 R(K)0"2(x) 
MSE(ml(x)!xI, ... ,Xn ) = 2 + nhfx(x) 

+ op[h4 + (nh)-lj. (5.17) 

The minimizer of the asymptotic conditional MSE is thus 

(5.18) 

Equations (5.17) and (5.18) imply that in order to minimize the condi­
tional MSE at any given point, a locally varying bandwidth h(x) should be 
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Fig. 5.14. Scatter plot of lug counts by row for three years, removing year effect, 
with local linear estimate based on plug-in selector superimposed. 

used that varies directly with the local variance and inversely with the lo­
cal curvature and local design density. Each of these results makes intuitive 
sense: a larger local variance requires a larger bandwidth to smooth over 
the local increase in responses farther from m(x); greater local curvature 
requires a smaller bandwidth to pick up the sharp peak or trough; and a 
sparser local design (lower design density) requires a larger bandwidth to 
avoid the roughness that comes from smoothing over too few observations. 
Unfortunately, it is exceedingly difficult to estimate ho,x at each x, since 
the available information regarding the unknown values (72(x), m"(x), and 
fx(x) is only obtainable locally, implying a small effective local sample size. 

A straightforward way to address the effect of the design density f x (x) 
is to vary the bandwidth by basing it on nearest neighbor distances, as is 
true for the loess estimator (although, asymptotically at least, the band­
width is then proportional to fX(x)-l rather than the optimal fX(X)-1/5). 
Figure 5.15 illustrates how this can work. The figure is a scatter plot of 
the change in adoption visas issued by the Immigration and Naturalization 
Service for the purpose of adoption by residents of the United States from 
1991 to 1992 versus the change in visas issued from 1988 to 1991 for 37 
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Fig. 5.15. Scatter plot of change in adoption visas from 1991 to 1992 versus 
change from 1988 to 1991, with local linear loess estimate using a 75% span 
superimposed. 

countries (with change measured as the logarithm of the ratio of visas in­
cremented by one, to handle zero values). The design density is long-tailed, 
with many countries having abscissa values in the range [-.5, 5], and then 
a few stretching out to values greater than 3. 

A local linear loess curve is superimposed (using the standard tricube 
kernel) where the bandwidth is chosen so that the kernel covers 75% of the 
observations (the span of the estimate). The smaller bandwidth at the left 
of the plot allows the nonmonotone relationship to come through, while 
the larger bandwidth at the right of the plot allows a smooth, reasonably 
straight fit to the higher values of the predictor. There is a generally in­
verse relationship between change in visas from 1988 to 1991 and change 
from 1991 to 1992, reflecting a tendency for increases in visas issued to be 
followed by decreases, and vice versa, but this pattern does not hold uni­
formly. A fixed-bandwidth estimator could not give this picture, as it would 
either oversmooth, and miss, the structure on the left, or undersmooth, and 
interpolate, the observations on the right (or be undefined for some values 
because of the lack of any observations with positive weights). 

As useful as nearest neighbor distances can be, they generally cannot 
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Fig. 5.16. Scatter plot of monthly birth rate, with local cubic estimate superim­
posed. The bandwidth is varied as indicated on the plot. 

address all the needs for locally varying bandwidths, since they do not re­
late to mil (x) or (]'2(X). The designer of a well-designed experiment probably 
would guarantee more data (and larger fx(x)) at values of x that corre­
spond to interesting structure in m (larger Im"(x)l), and would want more 
data (and larger fx(x» in areas where the responses follow the regression 
line closely (smaller (]'2(X)). An experiment designed that way would be 
very amenable to analysis using local polynomials based on nearest neigh­
bor distances, since taking hex) to be inversely related to fx(x) (as nearest 
neighbors do) also would result in an inverse relationship with Im"(x)1 and 
a direct relationship with (]'2(x), as (5.18) requires. 

Unfortunately, many data sets arrive with either a fixed uniform design, 
where nearest neighbor distances correspond exactly to fixed bandwidths 
(except at the boundaries), or some random design, where it is impossible 
to guarantee that fx has the desirable form (it might even be so perversely 
formed as to have low density in the places with the most structure and 
high density in places with little structure). Locally varying bandwidths are 
still useful, but are considerably more difficult to construct automatically. 

Figure 5.16 illustrates the results of locally varying the bandwidth man-

 
PAGE 167 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



158 Chapter 5. Nonparametric Regression 

0 
0 
C\I 

0 
0 

C/) 

ai 
::::l 
"0 0 '(j) 
Q) 

a: 
0 
0 ...-

I 

0 
0 
C\I 

I 

1940 1942 1944 1946 1948 

Year 

Fig. 5.17. Time series plot of residuals from local cubic regression estimate with 
locally varying bandwidth for birth rate data. 

ually. The figure is a scatter plot of the monthly birth rates in the United 
States for the period from January 1940 through December 1947. As the 
observations are equispaced, nearest neighbor bandwidths are equivalent 
to fixed bandwidths in the interior. The curve is a local cubic regression 
estimate, with the bandwidth varying over four regions of the data. 

The birth rate pattern provides a compelling glimpse of the dynam­
ics of life in the United States during the 1940s, lagged by nine months. It 
rises smoothly from January 1940 through July 1942 (smalllm"I), so a wide 
(h = 7.5) bandwidth is appropriate. From August 1942 through September 
1943, there is a sharp peak in the birth rate (large Im"I), so a narrower 
bandwidth (h = 5) is appropriate. Note that this peak corresponds to a 
sudden increase in the birth rate from August 1942 through February 1943 
(9 to 14 months after the entry of the U.S. into World War II), followed 
by a sharp decline in birth rate starting in March 1943 (most potential 
fathers being in the armed forces by nine months before this date). From 
October 1943 through October 1945 there is a steady decline in birth rate 
(corresponding to the war years), and a larger bandwidth (h = 7.5) shows 
this. Finally, starting in January 1946 (nine months after the end of the 
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Fig. 5.1S. Scatter plot of nursing time of beluga whale calf by time period, with 
local quadratic estimate superimposed. The bandwidth is varied as discussed in 
the text. 

war in Europe), there is a very sharp rise in birth rate (to January 1947) 
followed by a sharp dip and rise around April 1947 (large 1m"!), so a small 
bandwidth is the best choice (h = 3). If a fixed bandwidth had been used, 
either the sharp peaks and dips would have been smoothed over, or the 
flatter areas would have been undersmoothed. 

Figure 5.17, which is a time series plot of the residuals from the fit 
(Yi - m( Xi)), shows that the regression estimate captures the main relation­
ship well, with no evidence of systematic over- or underestimation. There 
also is strong autocorrelation in the series, with the birth rate dipping at 
the beginning of the summer and the beginning of the winter, and peak­
ing in midwinter and the beginning of the autumn. Issues relating to this 
autocorrelation are discussed further in Section 5.5.2. 

Figure 5.18 gives an example where heteroscedasticity also determines 
the correct local bandwidth. The figure is a scatter plot that relates the 
nursing time (in seconds) of a newborn beluga whale calf named Hudson 
(born in captivity at the New York Aquarium) to the time after birth, 
where time is measured in six-hour time periods. Once again, the design is 
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fixed and equispaced, so nearest neighbor distances are equivalent to fixed 
bandwidths in the interior. The superimposed curve is a local quadratic 
estimate using a locally varying bandwidth. The following table summarizes 
the bandwidths used and the reasons for the choices made: 

Time periods Bandwidth Reason for choice 

1-20 5.5 Smooth rise in nursing 
21-40 2.75 Sharp peak in nursing 7 days 

postpartum 
41-120 11 Drop, then flattening out in 

nursing, with increase in variance 
121-160 6 Sharp dip in nursing 35 days 

postpartum 
161-228 11 Smooth rise in nursing with 

large increase in variance 

The dip in nursing time at 35 days postpartum is particularly notewor­
thy, since this was followed 10 days later by a diagnosis of bacterial infection 
(Hudson was administered antibiotics for 24 days and recovered). Thus, the 
observation of such a dip can be an "early warning sign" of potential health 
problems in a newborn calf. 

These data sets were divided into blocks informally here, but the divi­
sion can be formalized into an automatic procedure. The sharp change in 
degree of smoothing from block to block could be avoided by smoothing the 
blockwise bandwidths over adjacent blocks (although the discontinuities in 
bandwidths from block to block do not seem to have caused serious prob­
lems for these examples). Other, more complex, approaches to automating 
locally varying bandwidth choice exist as well, but it must be remembered 
that any attempt to vary hex) at too many places will bump up against 
the possibility of too little available data leading to high variability (even if 
asymptotically varying the bandwidth would yield a smaller MISE), unless 
the sample size is very large. 

5.5 Outliers and Autocorrelation 

5.5.1 Outliers and robust smoothing 

Local polynomial regression estimates, being based on least squares estima­
tion, can be affected by observations with unusual response values (outliers) 
in much the same way that ordinary (global) least squares estimates are. 
H an observed response is sufficiently far from the bulk of the observed 
responses for nearby values of x, in will be drawn towards the aberrant 
response and away from the bulk of the points. 
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Fig.5.19. Scatter plot of Skeena River salmon recruits versus spawners, with 
loess estimates superimposed. The dashed curve is the ordinary loess estimate, 
while the solid curve is the robust version. 

Having noted that, it is important to recognize that it is much harder to 
identify unambiguously a point as outlying for a nonparametric regression 
model than it is when fitting a parametric model, such as a linear regres­
sion model. The reason is that the inherent flexibility of the nonparametric 
regression model (5.2) makes it difficult to tell the difference between an 
outlier and an acceptable property of the model. For example, several ob­
servations (with similar x) with response values that are unusually distant 
from the conditional mean could be outliers, or they could be the result 
of a larger variance (j2 (x) off the regression line for that x. An isolated 
observation in a very sparse region of the design is virtually impossible to 
identify as an outlier without making further assumptions on m; there is no 
way to know if the observed response reflects the true m or is an outlying 
response, since it is difficult to estimate m in sparse regions of the design. 

Still, in regions with enough data, it is possible to recognize an obser­
vation as reflecting a different conditional mean of y given x than that of 
nearby observations and to want to downweight (or eliminate) its influence 
on the fitted m. Such a modified smoother is called a robust smoother. 
Figure 5.19 illustrates the effect of a possibly unusual observation on both 
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a nonrobust and a robust estimate. The data relate the size of the annual 
spawning stock and its production of new catchable-sized fish (recruits) for 
1940 through 1967 for the Skeena River sockeye salmon stock (in thou­
sands of fish). The dashed curve is a loess (local quadratic) curve with span 
equaling 60% of the observations. The estimate shows a close-to-linear re­
lationship between recruits and spawners up to about 600,000 spawners, 
after which the regression curve flattens out. This nonlinearity is not unex­
pected, since a linear relationship would imply that recruitment could be 
increased without limit by reducing fishing (allowing more spawners). 

The solid curve is a robust version of the loess curve. The construction 
of the estimate is as follows: 
(1) Construct the usual loess curve (the dashed curve). Let ei = Yi -m(xi) 

be the residual of the ith observation from the fitted curve, and let s 
be the median of the absolute residuals. 

(2) Define the robustness weight 0 for each observation as 

Oi = B[e;j(6s)], 

where B(x) is the biweight function. Let L\ = diag(Ol, ... , on) be the 
diagonal n x n matrix of robustness weights. 

(3) Construct the loess estimate, forming the weighted regression estimates 
using weight matrix L\ W. Calculate the residuals e and scale measure 
s. 

(4) Repeat steps (2) and (3) (three more times is standard). 
This iterative process has the effect of taking observations that are 

far from the loess curve and repeatedly downweighting them in successive 
fittings, so that they have less effect on the constructed curve (although 
using the nonrobust loess fit in step (1) can lead to missed outliers if the 
nonrobust curve has been drawn too closely to them). For these data, the 
robust curve tracks the nonrobust one closely, except at around 800,000 
spawners, where it dips markedly. The difference between the two curves 
is completely determined by the value for 1944, where 824,000 spawners 
were followed by 3,071,000 recruits, by far the largest amount over this 
time frame. The nonrobust curve treats the wide range of recruit values 
corresponding to around 800,000 spawners (from 627,000 to 3,071,000) as 
reflecting a change in (J"2 (x) (but not m( x)) and puts the fitted curve roughly 
through the middle of the values, while the robust version treats 1944 as 
an outlier and puts the fitted curve roughly through the middle of the 
remaining values. It is impossible to know just from the data which of 
the two curves is a better representation of reality, but they do offer two 
competing models to consider. 

Figure 5.20 gives a clearer case of an outlier. The plot refers to ra­
dioimmunoassay calibration data that relates counts of radioactivity to the 
concentration of the dosage of the hormone TSH (in micro units per ml 
of incubator mixture). There is a roughly hyperbolic relationship between 
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Fig. 5.20. Scatter plot of radioimmunoassay calibration data, with loess estimates 
superimposed. The dashed curve is the ordinary loess estimate, while the solid 
curve is the robust version. 

counts and concentration, with one observation (at (20,4478)) a clear out­
lier. The nonrobust loess (local linear ) estimate (with span equaling 36% of 
the observations) follows the outlier, causing a troubling peak in the fitted 
curve. The robust loess curve follows the general trend more closely (though 
not as well as would be hoped), but it is not completely unaffected by the 
outlier (dipping below the nonoutlying value at x = 20). 

Outliers also can cause problems by affecting data-based methods that 
control the appearance of the smoother, such as methods to choose the 
bandwidth. Figure 5.21 illustrates this effect. The data given relate the dif­
ference between the Democratic and Republican votes on voting machines 
to the difference between the Democratic and Republican votes from ab­
sentee ballots for 22 State Senate elections that took place in Philadelphia 
County from 1982 through 1993. The superimposed curve in Fig. 5.21(a) 
is a local linear estimate based on the plug-in choice for the bandwidth, 
h = 7114.4. The curve shows the nonlinear (roughly quadratic) relationship 
between absentee votes and machine votes, but is undersmoothed. One rea­
son that the plug-in estimate is too small is that it has been affected by 
the two outlying points at the top of the plot; the bandwidth selector tries 

 
PAGE 173 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



164 Chapter 5. Nonparametric Regression 

(a) 
Q) 

(5 0 
> 
Q) 0 
Q) 0 0 - 0 c 
Q) 
en 
.0 0 
ct! 0 0 
c 0 
ct! LO 0 o 0 0 .2 
:0 0 
::l 
C- o 
Q) 

a: 
0 

Cii 0 0 

t 0 0 
LO a I 

E 
Q) 

0 

0 20000 40000 60000 

Democrat - Republican machine vote 

(b) 
Q) 

~. 0 

Q) 0 
Q) 0 0 - 0 c 
Q) 
en 
.0 0 
ct! 0 0 
c 0 
ct! LO 0 o 0 0 .2 
:0 0 
::l 
c- o 
Q) 

a: 
0 

Cii 0 0 
.... 0 0 
U LO a I 

E 
Q) 

0 

0 20000 40000 60000 

Democrat - Republican machine vote 

Fig. 5.21. Scatter plots of Democratic plurality in absentee votes versus plurality 
in machine votes, with local linear estimates superimposed. (a) Plug-in bandwidth 
choice using entire data set. (b) Plug-in bandwidth choice omitting outliers. 
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Fig. 5.22. Scatter plot of voting fraud data, with local linear estimate (estimate 
and plug-in bandwidth choice based on data omitting outliers - solid curve) and 
robust loess estimate (dashed curve) superimposed. 

to include these points as part of the general trend by decreasing the band­
width. 

Figure 5.21 (b) gives the local linear estimate (based on the entire data 
set) with bandwidth h = 8237, the plug-in choice based on the data after 
omitting the two outliers. The larger bandwidth has the desired effect of 
reducing the spurious bumpiness in the curve. An even more sensible esti­
mate is the solid curve in Fig. 5.22, which is the local linear estimate (with 
h = 8237) based on the data with the two outliers omitted. This elimi­
nates the effects of the points on the estimate itself, and the fitted curve 
goes through the observations smoothly. A robust loess estimate with span 
equal to.5 (the dashed curve) is very similar to the local linear estimate, the 
only noteworthy difference being at around a difference of 10,000 machine 
votes. This is because the loess curve also downweights the 1990 election 
observation that falls below the estimated line. 

The two previously noted outlying observations correspond to a reg­
ular election in 1992 (the right point) and a special election in 1993 (the 
left point). The latter observation is particularly interesting, since a Federal 
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District Court judge ultimately reversed the election result due to irregu­
larities in the absentee ballot process. The nonparametric regression curves 
support the position that this election was very unusual, with a surpris­
ingly large plurality of Democratic over Republican absentee ballots (con­
sistent with possible voting fraud). The 1992 election (in which no fraud 
was alleged) encourages caution in this inference, however, since a surpris­
ingly large plurality of Democratic over Republican absentee ballots also 
occurred then. 

5.5.2 The effects of autocorrelation 

All of the theory developed in this chapter has been based on the assump­
tion that the error terms ti can be viewed as statistically independent of 
each other. This assumption is questionable if the observations have a nat­
ural ordering, such as in a time series, since then it is likely that nearby 
errors are correlated with each other (that is, the error process exhibits 
autocorrelation). Possible effects of this autocorrelation include changes in 
the asymptotic properties of the regression estimator in, and changes in the 
behavior of data-based bandwidth selectors. 

Consider data in the form of a time series, where the predictor falls 
in an equispaced fixed design (usually representing time), and the er­
rors follow a zero-mean stationary time series with covariance function 
,(k) == E(titi+k) == (J"2p(k) (where p(.) is the autocorrelation function) 
independent of the sample size that satisfies I:~=l kh(k)1 < 00 (examples 
of such processes include the well-known autoregressive moving average 
[ARMAJ processes). Asymptotic analysis then shows that the MISE for in l 

(the local linear estimate) satisfies 

The bias contribution to MISE is identical to that for independent data, 
but the variance term adds 2 I:~=l ,(k) (which is zero for independent ob­
servations) to (J"2. Equation (5.19) implies that the consistency properties of 
in for autocorrelated errors are broadly similar to those under independent 
errors, with bandwidth h = O(n- l / 5 ) implying the usual convergence rate 
O(n-4/ 5 ). 

At a more detailed level, the change in integrated variance means that 
the autocorrelation structure determines the optimal bandwidth, and band­
width selectors that ignore this autocorrelation will not work correctly. 
Straightforward minimization of (5.19) gives the asymptotically optimal 
bandwidth, 

h _ {R(K)[(J"2 + 2 I:~=l,(k)J }l/5 
0" - nfJdK )2 J m"(u)2 du 

(5.20) 
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There is a simple multiplicative relationship between ho,,,! and ho, the 
asymptotically optimal bandwidth for independent data, 

[ 

00 ]1/5 
ho,,,!= 1+2~P(k) xho· 

Thus, if the data are positively auto correlated (p(k) ::: 0 for all k), the 
optimal bandwidth is larger than that for independent data. 

Autocorrelation in the errors often severely affects data-based band­
width selectors. Such selectors tend to be "fooled" by the autocorrelation, 
interpreting it as reflecting the regression relationship and variance func­
tion. So, the cyclical pattern in positively autocorrelated errors is viewed as 
a high frequency regression relationship with small variance, and the band­
width is set small enough to track the cycles (giving an unelersmoothed 
fitted regression curve). The alternating pattern above and below m for 
negatively autocorrelated errors is interpreted as a higher variance, and 
the bandwidth is set high enough to smooth over the variability (giving an 
oversmoothed fitted regression curve). 

In a very real sense, this problem reflects an inherent identifiability 
problem when smoothing autocorrelated data. Without a rigid parametric 
structure, there is no unambiguous way to distinguish between positive au­
tocorrelation and a high frequency response other than from general beliefs 
about which is more plausible for the data. It is therefore not surprising 
that data-based bandwidth selectors are unable to make this choice either. 

Figure 5.23 illustrates this effect. The data are the U.S. monthly birth 
rate data given previously in Fig. 5.16. There is strong autocorrelation 
of the errors for these data, as the residual plot in Fig. 5.17 shows. The 
superimposed curve in Fig. 5.23 is the local linear estimate using the plug­
in bandwidth h = 1.813. The curve is very undersmoothed, as it tries 
to follow the cyclical pattern in the residuals rather than the dominant 
regression relationship. 

Figure 5.24 shows that this effect also can occur even if the predictor 
variable is not a time index. The plots refer to (a) the "Old Faithful Geyser" 
eruption data, as in Fig. 5.2, and (b) the electricity usage data, as in Fig. 5.6. 
Each plot has superimposed on it the local linear estimate using the plug-in 
bandwidth (h = .204 and h = 5.07, respectively). Each curve exhibits some 
spurious waviness due to undersmoothing. 

Equation (5.20) provides a way to choose the bandwidth for time se­
ries data. Besides estimating (J"2 and J mil (U)2 du, the term G == 2::%"=1 ,( k) 
also must be estimated. Unfortunately, the usual estimates of (J"2 and 
J mil (U)2 du are not appropriate, since they are calculated assuming in­
dependent errors, and other estimates must be used instead. Although the 
usual residual-based estimators of the autocovariances "YO are consistent, 
2::%"=1 "Y(k) is not a consistent estimator of G. A different approach to esti­
mating G is to fit a parametric model to the residuals (thereby obtaining 
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Fig. 5.23. Scatter plot of birth rate data, with local linear estimate based on 
plug-in bandwidth superimposed. 

estimates of ,(.)) and use these estimates in (5.20). Of course, if the as­
sumed parametric model is incorrect, these estimates can be far from the 
truth, resulting in a poor choice for ho,T In any case, such methods are 
unlikely to be very effective for small-to-moderate-sized data sets. 

5.6 Spline Smoothing 

5.6.1 Roughness penalties and nonparametric regression 

Section 3.5 described the roughness penalty approach to density estimation. 
This methodology is easily applied to non parametric regression as well (and, 
in fact, was first applied in this context). The underlying principle is iden­
tical to that described earlier: estimate the unknown smooth (regression) 
function by explicitly trading off fidelity to the data with smoothness of 
the estimate. For regression data, the residual sum of squares is a natural 
measure of fidelity to the data, so the roughness penalty estimator is the 
minimizer of 
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Fig. 5.24. Scatter plots with local linear estimate using plug-in bandwidth su­
perimposed, for "Old Faithful Geyser" eruption data and electricity usage data. 
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where <I>(m) is a roughness penalty that decreases as m gets smoother. In 
this context, it is easiest to assume that the sample is ordered over the inter­
val [a, b] with respect to the predictor values; that is, a ~ Xl ~ X2 ~ ... ~ 
Xn ~ b. The class of possible minimizing functions must be restricted, or 
else the minimization problem has no unique solution. A natural constraint 
to put on in is that it be sufficiently smooth, which amounts to a condition 
on its derivatives. If in belongs to wi [a, b], the class of functions on [a, b] 
with square integrable .eth derivative and absolutely continuous derivatives 
up through order .e - 1, an appropriate form for L is 

(5.21) 

Here a acts as a smoothing parameter analogous to the bandwidth for 
kernel and local polynomial estimators. 

The most common version of L takes .e = 2, defining in as the minimizer 
of 

over the class of functions with m and m' absolutely continuous and m" 
square integrable. The estimator is then a cubic smoothing spline with knots 
at predictor values {Xi}. Recall that a cubic spline is a function that is a 
piecewise cubic polynomial on any subinterval defined by adjacent knots, 
has two continuous derivatives, and has a third derivative that is a step 
function with jumps at the knots. The smoothing spline is more correctly 
a natural cubic spline, since it is constructed to have zero second and third 
derivatives at the boundaries (the so-called natural boundary conditions); 
that is, in is linear for X E [a, Xl) and X E (xn, b]. 

5.6.2 Properties of cubic smoothing splines 

The form of the cubic smoothing spline implies various properties of it. 
If a = 0, the smoothing spline becomes an interpolating spline that goes 
through each of the responses Yi, while if a -+ 00, in approaches the linear 
least squares regression line. The smoothing spline is a linear estimator, so 
the vector of fitted values iii = in(Xi) can be written as y = A(a)y. The 
matrix A(a) is called the hat matrix because it takes the observed data y 
to the fitted values y, with the ith row corresponding to Bex with X = Xi in 
the definition of the local polynomial estimator (5.5). 

The asymptotic properties of in depend on the characteristics of the 
true regression function m - its smoothness properties, of course, but also 
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its behavior at the boundaries. Away from the boundary, assuming four 
bounded derivatives, the bias is asymptotically 0(0:), while the variance is 
0[n~10:~1/4] (assuming 0: --> 0 and n0: 1/ 4 --> (0). The minimizer of asymp­
totic MSE is thus 0: = 0(n~4/9), giving MSE = 0(n~8/9), the optimal rate. 
These rates hold close to a and b only if m satisfies the natural boundary 
conditions m"(a) = m"(b) = m(3)(a) = m(3)(b) = 0, however, since the 
smoothing spline itself satisfies these conditions. 

If m does not satisfy the boundary conditions, the bias of the smoothing 
spline increases near the boundary. Specifically, if mil = 0 but m(3) =f. 0, 
the bias near the boundary is 0(0:3/ 4), while if mil =f. 0, it is 0(0:1/ 2). These 
higher order biases hold within 0(0:1/4) of the boundaries, after which the 
O( 0:) rate of the interior takes over. 

These results sound very much like what an even degree local poly­
nomial estimator, or a higher order kernel estimator (without boundary 
correction), would imply, and in a sense that is the case. Asymptotically, 
in the interior in takes the form 

1 ~ [x-x.] 
in(x) = nfx(x)h(x) ~ K h(x)' Yi, (5.22) 

with 

K(u) = ~e~lul/v'2 sin (M + ~) 
2 V2 4 

and h(x) = 0:1/4fx(x)~1/4. As noted in Section 3.5, this is a fourth order 
kernel estimator with locally varying bandwidth of order 0:1/ 4 . The optimal 
choice of h(x) is thus 0(n~4/9)1/4, or 0(n~1/9), and the bias is of order h4, 
as would be expected for a fourth order kernel estimator (this also suggests 
a correspondence to a local polynomial estimator with p = 2 or 3). 

In the boundary region (which (5.22) shows is of length 0(0:1/ 4 )), the 
kernel is deformed in a way that results in boundary bias. If mil = 0 but 
m(3) =f. 0, the bias becomes 0(h3), while if mil =f. 0, it is 0(h2). Again, these 
rates are consistent with a Taylor Series expansion of the bias associated 
with a non-boundary corrected, renormalized kernel estimator, with the 
exception that the condition m' =f. 0 does not lead to O(h) bias (as is also 
true for a local linear estimator). So, the smoothing spline exhibits order 
of magnitude asymptotic behavior similar to that of a fourth order kernel 
estimator (except for the avoidance of O(h) boundary bias if m' =f. 0) or a 
local quadratic polynomial estimator (except for the existence of 0(h2) bias 
if mil =f. 0). In particular, the smoothing spline achieves MISE = 0(n~4/5) 
assuming two bounded derivatives for m, whatever the boundary conditions 
are. In this loose sense, the cubic spline estimator can be thought of as 
falling somewhere between the two kernel-type estimators. 

The roughness penalty approach also has a straightforward Bayesian 
interpretation. If the errors are normally distributed with constant variance, 
and the prior density for m is proportional to exp[ -0: J mil (u f du/2] over 

 
PAGE 181 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



172 Chapter 5. Nonparametric Regression 

the space of all smooth functions, the smoothing spline corresponds to the 
posterior mode given the data. 

5.6.3 Choosing the smoothing parameter 

The parameter a acts as a smoothing parameter in the roughness penalty 
approach, with larger values of a penalizing roughness more, yielding a 
smoother estimate. As always, a can be chosen to minimize the cross-
validation score 

where m(i) (Xi) is the spline estimate based on all the observations except 
Xi, evaluated at Xi. It can be shown that for linear smoothers, CV(a) can 
be written as a function of the fitted values, 

CV(a) = ~ ~ [Yi - m(Xi)] 2, 
n ~ 1- A (a) i=l n 

(5.23) 

where Ai(a) is the ith diagonal element of the hat matrix. Aii(a) is called 
the leverage value, since it measures the potential for the observed response 
at Xi (Yi) to exert influence on the fitted value at Xi (ih). An observation 
with a high leverage value (a leverage point) is potentially problematic, since 
the fitted regression curve will follow the observed response value irrespec­
tive of the general trend implied by the responses of other observations. 

A variation on (5.23) is generalized cross-validation (GCV), which re­
places each value 1 - Aii(a) with their average, 1 - n- 1 trace[A(a)]. The 
generalized cross-validation selector of a, aGcv, is the minimizer of 

GCV(a) = I:~=l[Yi - m(xi)J2 
n{l - n- 1 trace[A(a)]p 

(5.24) 

An equivalent form of (5.24) makes clearer the connection between GCV(a) 
and CV(a), since 

GCV(a) = ~ t ({ 1_- Aii(a) }2 [Yi - mCi)(XiW) . 
n i=l 1- n 1 trace[A(a)] 

If the Aii (a) values are equal, as would be true for equispaced data (except 
for boundary effects), GCV(a) and CV(a) are identical, but otherwise GCV 
downweights the effects of high leverage points on the selection criterion, 
which is desirable. Thus, acv and aGcv are very close for equispaced data, 
but aGcv will generally be preferable for unequally spaced observations. 

Figure 5.25 gives two examples of the use of generalized cross-validation 
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Fig. 5.25. Scatter plots with cubic spline estimate using generalized cross­
validation smoothing parameter superimposed, for diabetes data and acid de­
position data. 
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Fig. 5.26. Scatter plot of change in adoption visa data, with cubic smoothing 
spline based on generalized cross-validation smoothing parameter superimposed. 

for the cubic smoothing spline. The plots give the spline estimates for the 
diabetes data given in Fig. 1.5 (&GCV = .938) and the acid deposition data 
given in Fig. 1.6 (&GCV = 167,566). The superimposed regression estimates 
are similar to the kernel and lowess estimates, respectively, given in those 
figures. 

The approximate form (5.22) of the spline estimator as a fourth order 
kernel estimator with locally varying bandwidth inversely related to the de­
sign density suggests that the spline estimator should be effective when such 
kernel (or local polynomial) estimators are. Figure 5.26 is a scatter plot of 
the change in adoption visas data given in Fig. 5.15, where a nearest neigh­
bor local polynomial estimate (loess) was used to estimate the regression. 
The spline estimate (&GCV = .001245) is very similar to the loess estimate, 
as it also is able to use a smaller effective bandwidth to the left of the plot 
and a larger one to the right. 

Figure 5.27 shows that the "higher order kernel" characteristic of the 
cubic spline allows the estimate to pick up rapid changes in the curvature 
of the regression curve. The figure is a scatter plot of the total lug count 
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Fig. 5.27. Scatter plot of total lug count vineyard data, with cubic smoothing 
spline superimposed. 

vineyard data, which Figures 5.9 and 5.10 showed to be better fit with a 
local cubic estimate than a local linear estimate; that is, a higher order 
(reduced bias) method. The cubic smoothing spline (0: = .102) similarly 
picks up the dip in total number of lugs in rows 30 through 40, while not 
undersmoothing the other rows. 

Unfortunately, but not unexpectedly, Qccv also can suffer from the 
bane of cross-validated smoothing parameter selectors: undersmoothing of 
the regression curve. One such data set is the vineyard data of Fig. 5.27. 
The smoothing parameter choice based on generalized cross-validation is 
Qccv = .0293, which is too small. Figure 5.28 gives two more examples of 
this problem. In each plot, the solid curve represents the spline based on 
Qccv. For both the ethanol data (as in Fig. 5.8), where Qccv = 3.02x 10-8 , 

and the newspaper circulation data (as in Fig. 5.5), where Qccv = 2032.1, 
the estimates based on generalized cross-validation are very undersmoothed. 
The problem is not with the spline estimator itself, since larger values of 0: 
(0: equaling 1.92 x 10-7 and 245,223, respectively) provide very reasonable 
representations of the regression relationships (the dashed curves). 
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Fig. 5.28. Scatter plots with cubic spline estimate using generalized cross­
validation (solid line) and larger smoothing parameter (dashed line) superim­
posed, for ethanol data and newspaper circulation data, 
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The recognition of A(a) as the hat matrix provides a motivation for 
an estimator of (J"2 based on spline smoothing. Since in the linear regression 
model the trace of the hat matrix equals the number of fitted parameters, 
the effective number of parameters fit by the spline can be taken to be 
trace[A(a)]. Thus, a possible estimate of (J"2 is 

n 

0-; = v;l 2:[Yi - m(xiW, (5.25) 
i=l 

where Vs, the error degrees of freedom, equals 

Vs = trace[(I - A(a)] = n - trace[A(a)]. (5.26) 

There are two key differences between this estimator and the local poly­
nomial-based estimator described in (5.15) and (5.16). First, 0-; is based 
on the same regression estimate m as would be used for estimation of m, 
whereas the regression estimate m used in (5.15) is asymptotically under­
smoothed for estimation of m. Second, the form for the error degrees of 
freedom (v) is different. As a increases the two forms become identical, but 
for small a they can differ, with the value in (5.16) generally having better 
properties. 

5.6.4 Violations of assumptions 

Not surprisingly, the smoothing spline (being a linear estimate of the data) 
can be severely affected by outliers, particularly at high leverage points 
(which correspond to observations in sparser regions of the design density). 
Similarly, data-based smoothing parameter selectors can be adversely af­
fected by outliers. Figure 5.29 is a scatter plot of the voting fraud data of 
Figs. 5.21 and 5.22, where the plug-in selector for the local linear estimate 
led to undersmoothing because of two outliers. The outliers also affect the 
spline generalized cross-validation selector, but in the opposite way. In Fig. 
5.29, the solid curve is a cubic spline based on accv = 1.725 x 1012 and is 
obviously oversmoothed; a better choice is a = 8.372 x 1010 , which yields 
the dashed curve in the figure. One solution to these problems is to robustify 
the roughness penalty criterion to downweight the effect of outliers. 

As would be expected, accv is also susceptible to autocorrelation 
effects, with positive autocorrelation leading to undersmoothing. Figure 
5.30 is a scatter plot of the birth rate data with a cubic spline based on 
accv = 7.456 x 10-4 superimposed. The regression estimate is severely 
undersmoothed (even compared with that in Fig. 5.23), being virtually an 
interpolation of the observed birth rates. 
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Fig. 5.29. Scatter plot of voting fraud data, with cubic smoothing spline based 
on generalized cross-validation (solid curve) and smaller smoothing parameter 
(dashed curve) superimposed. 

5.7 Multiple Predictors and Additive Models 

5.7.1 Nonparametric regression with multiple predictors 

Local polynomial estimation generalizes in a straightforward way to multi­
ple predictors, allowing easy application to the many real situations where 
the response variable Y is possibly related to more than one predictor. Con­
sider, as the simplest case, local linear estimation. The estimator is the 
entry So == ml (x) of the minimizer j3 of 

n 

L[Yi - /30 - /31 (Xl - Xli) - ... - /3d(Xd - XdiWKd[H-l(x - Xi)], 
i=l 

where the multivariate kernel function Kd and bandwidth matrix Hare 
defined as in Section 4.2, and the d x 1 vector x corresponds to the set of 
predictor variables. 
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Fig. 5.30. Scatter plot of birth rate data, with cubic spline estimate based on 
generalized cross-validation superimposed. 

Using the same parameterization of Kd and H as was used in Section 
4.2, if h -+ 0 and nhd -+ 00 as n -+ 00, the conditional asymptotic MSE of 
ml (x) in the interior equals 

')1 ) R(K)(J"2(X) h4 { I 2 2 
AMSE(ml(X Xl"",Xn = nhdf(x) + 4 trace[AA v m(x)]} . 

The curse of dimensionality is apparent, as the variance is of order (nhd)-l, 
implying an optimal conditional AMSE = Op(n-4/(d+4») taking h = 
O(n- 1/(d+4»). The local linear estimator for d > 1 achieves this conditional 
AMSE rate all the way to the boundary, avoiding boundary bias problems 
in the same way as when d = l. 

Figure 5.31 gives an example of the application of the local linear es­
timator to data with two predictors. The estimate uses nearest neighbor 
weights (that is, it is a loess estimate) with the span being .3 (the nearest 
neighbor distances use the predictors after standardizing each by its 10% 
trimmed standard deviation) and diagonal H. The fitted regression surface 
is all estimate of the mean points scored per minute conditional on the num­
ber of minutes played per game and height in centimeters for the 96 NBA 

 
PAGE 189 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



180 Chapter 5. Nonparametric Regression 

t-: 
o 

<ll <0 

~o 
'E '" ~ 0 

<ll 
o.<t 

g~ o . 
0. 0 

C\J 
ci 

Fig. 5.31. Perspective plot of loess estimate of points scored per minute as a 
function of minutes played per game and height. 

players described in Chapter 4. A trend towards higher scoring as a player's 
height and minutes played increase dominates the perspective plot of the 
regression surface, a not unexpected result. There is a plateau in the surface 
for heights roughly between 175 and 190 cm, which could correspond to an 
area of "typical" (that is, stable) performance. A surprising pattern is the 
negative slope of in for values of minutes per game less than 20 and height 
less than 180, but as this corresponds to one isolated observation (Keith 
Jennings, who scored .5 points per minute, but only played eight games 
before getting injured), its importance should not be overemphasized. 

Spline (roughness penalty) estimators can be generalized to multiple 
predictors in various ways, with different estimators resulting from different 
generalizations of the roughness penalty. One possibility is to define the 
estimator as the minimizer (over a suitable class of smooth functions) of 

Taking £ = 2 generalizes the univariate cubic spline. So, for example, for 
bivariate data the thin plate smoothing spline is the minimizer of 

 
PAGE 190 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



5.7. Multiple Predictors and Additive Models 181 

(the term "thin plate" spline is used because the bending energy of an 
infinite elastic thin plate when deformed is, to first order, proportional to 
the roughness penalty above). 

5.7.2 Additive models 

Direct estimation of a multivariate regression surface is limited by the mul­
tidimensional character of the problem. It is difficult to visualize regression 
surfaces for more than two predictors and difficult to interpret the com­
plex structure that can arise. Further, the curse of dimensionality implies 
that as the number of predictors increases, massive amounts of data will be 
required for accurate estimation. 

A way around these difficulties is to restrict the form of the regression 
function m(x). A natural possibility is to generalize ordinary (multiple) 
linear regression to allow arbitrary additive functions, as in 

d 

m(x) = a + L fj(xj). (5.27) 
j=l 

Univariate smoot hers can be used to estimate the functions fj, thereby 
avoiding the curse of dimensionality, but at a crucial cost: If the additive 
form (5.27) is not correct, the estimator m need not even be consistent. If m 
does satisfy (5.27), the convergence rate of m is identical to that of the one­
dimensional smoother (if it does not, convergence is to the closest additive 
approximation to m in the sense of MSE). In addition, interpretation of the 
model is simpler, as the structure related to any predictor is defined in a 
univariate way (conditional on the other smooth functions in the model). 

Figure 5.32 illustrates the application of additive modeling to the bas­
ketball data of Fig. 5.31. The univariate smoothers used are local linear 
loess estimates with span equal to .5. The curve on each plot illustrates 
graphically the contribution of each predictor to m given the other pre­
dictor. Superimposed on each plot are partial residuals (the fitted term 
plus standardized residuals), which can help show the strength of the ob­
served relationship. The additive model implies that scoring rate increases 
steadily (roughly linearly) with increasing playing time (given height), with 
one notably large positive residual (Michael Jordan) apparent. In contrast, 
scoring rate increases with height for height greater than roughly 185 cm, 
but is flat for smaller players (the positive slope for height less than 170 cm 
corresponds to only one player). 

This succinct representation is not dissimilar from that implied by the 
loess fit in Fig. 5.31, as Fig. 5.33 shows. This figure is a perspective plot of 
the fitted additive model and appears to be a smoother version of the direct 
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Fig. 5.32. Plots of contributions of minutes per game (top) and height (bottom) 
to additive model estimate of points scored per minute, with partial residuals 
superimposed. 

 
PAGE 192 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



I"-: 
o 

Q) <0 
:;0 
.~ ~ 
Q5~ 
0. 0 

en '" CO 
'0 N 
(Lei 

ei 

5.7. Multiple Predictors and Additive Models 183 

Fig. 5.33. Perspective plot of additive model estimate of points scored per minute 
as a function of minutes played per game and height. 

loess surface in the earlier figure, with the only major difference being the 
fit for the one player with height less than 180 cm who played less than 20 
minutes per game. 

The real power of additive models comes from the ability to summarize 
relationships in an intuitive way. Figure 5.34 gives an example of this. The 
plots correspond to those of Fig. 5.32, except that the response variable is 
now assists made per minute, rather than points scored per minute, and 
the univariate smoother used is a cubic spline with trace[A(a)] = 5. The 
contribution of minutes played per game is similar to that for points scored 
per minute, but the relationship with height is opposite, with increasing 
height being associated with lower assists per game for players over 185 
cm tall (who are more likely to be shooting guards). This pattern is not 
surprising, and it helps explain the negative association between points per 
minute and assists per minute among shooting guards that was evident in 
Fig. 4.5. 

As is true for linear regression modeling, the relationships represented 
in Figs. 5.32 and 5.34 are conditional ones, given the other predictors in 
the model. In many circumstances, this is precisely the relationship wanted, 
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Fig. 5.34. Plots of contributions of minutes per game (top) and height (bottom) 
to additive model estimate of assists made per minute, with partial residuals 
superimposed. 
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Fig. 5.35. Scatter plot of total gasoline consumption versus price index for gaso­
line, with spline estimate superimposed. 

and additive modeling can help explain an otherwise puzzling relationship 
in the data. Consider Fig. 5.35, a scatter plot of the annual U.S. consump­
tion of gasoline (in tens of millions of 1967 dollars) versus the price index 
for gasoline (in 1967 dollars) for the years 1960 through 1986. Standard eco­
nomic theory states that there should be an inverse relationship between 
demand for a product and its price, but the observed relationship (with a 
spline estimate superimposed) is instead direct (and nonlinear) over most 
of its range. Does this mean that the economic theory fails in practice? 

Additive modeling can help resolve this apparent inconsistency. Figure 
5.36(a) summarizes the contributions of per capita disposable income and 
price index for used cars (both in 1967 dollars) to an additive model (that 
also includes price index for gasoline) based on splines. The curve for per 
capita disposable income shows a direct linear relationship given the other 
variables, while that for price index of used cars shows slight nonlinearity. 
Figure 5.36(b) gives the corresponding plot for price index for gasoline, 
and corrects the mistaken impression from Fig. 5.35. As economic theory 
suggests, given per capita disposable income and price index of used cars, 
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Fig.5.36(a). Plots of contributions of per capita disposable income (top) and 
price index for used cars (bottom) to additive model estimate of total gasoline 
consumption, with partial residuals superimposed. 
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Fig. 5.36(b). Plot of contribution of price index for gasoline to additive model 
estimate of total gasoline consumption, with partial residuals superimposed. 

the gasoline demand is inversely, and linearly, related to the price index of 
gasoline. 

An appealing generalization of additive modeling is to allow alterna­
tives to the "regression curve plus error" form (5.2) using the likelihood 
function. This is the essence of the generalized additive model. In this model, 
the response y has a density in the exponential family, 

[ ye-b(e) ] 
Jy(y) = exp a(¢) + c(y, ¢) , (5.28) 

where e is called the natural parameter, and ¢ is a scale parameter. In 
a generalized linear model, the mean of y, J-l, is related to covariates by 
g(J-l) = TJ = a + f31Xl + ... + f3dxd, and gO is called the link function. So, 
for example, in a logistic regression, y is binomially distributed, and the 
link function is the logit link 

TJ = log (_J-l ). 
1-J-l 
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Fig. 5.31. Plot of spline fit to generalized additive model estimate of probability 
of passage of school budget from tax rate in logit scale. 

The mean f.L is related to the natural parameter e by f.L = b' (e), and the 
link function for which 1] = g(f.L) = e is called the canonical link (this is the 
logit link for binomial data, for example). 

The generalized additive model generalizes this by allowing the link 
function to be additive, as in g(f.L) = 0: + ~~=l fJ(Xj), rather than only 
linear. Generalized linear models are special cases of generalized additive 
models, with the functions fJ(Xj) taken to be fJ(Xj) = {3jXj. Another 
special case is to have both linear contributors to 1] and (at least) one 
smooth term, which results in a generalized partially linear model, or more 
generally a semi parametric model. 

Figures 5.37 and 5.38 illustrate application of a generalized (logistic) 
model. The data relate the voting result (passage or failure to pass) in 38 
Long Island school district budget votes in 1993 to the average proposed 
equalized property tax rate (in dollars per $100 of assessed valuation) in 
the budget. Figure 5.37 gives the spline fit to the probability of passage 
in the logit scale. A linear logistic regression fit would correspond to a 
straight line in this plot, but the fit here is decidedly nonlinear (the plotted 
data points are the partial residuals from this logistic fit). The probability 
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Fig. 5.38. Plot of generalized additive (solid curve) and generalized linear (dashed 
curve) estimates of probability of passage of school budget in the original scale. 

of passage decreases for tax rates up to $40, whereupon it rises for rates 
up to $80 and then falls again. Thus, the model implies that besides a 
general pattern of increasing tax rate being associated with failure to pass 
the budget (an expected result), there is a "middle ground" of rates in the 
range of $40~$80 where the probability of passage is higher. 

Figure 5.38 represents the data in the original scale, with the fitted 
estimate based on the spline model (solid curve) and linear model (dashed 
curve) superimposed. The spline model fits the observed pattern more accu­
rately than the linear model does, as it picks up a sharp drop in passage rate 
for tax rates between $30 and $40, followed by an increase for rates between 
$40 and $80. The logistic regression model cannot fit such a pattern, as the 
fitted probability of success is a monotone function of tax rate. Of course, 
the evidence for nonmonotonicity is based on only a few observations, so it 
should be considered somewhat speculative. 
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5.8 Comparing Nonparametric Regression Methods 

Local polynomial estimators and smoothing spline estimators have been 
the focus of this chapter, although they are not, by any means, the only 
possible approaches to nonparametric regression. There are good reasons 
for this focus. Each of these estimation schemes can be viewed as a "natu­
ral" approach to smoothing; each has reasonable properties in the sense of 
closeness to the true regression function (including in the boundary region); 
and each is accessible (in various forms) in generally available software. 

Having said that, there are also considerable differences between the 
methods. Local polynomial estimators are easy to interpret, since they gen­
eralize the most commonly used statistical method - linear regression -
to allow local nonlinearity (and easily allow local variations in smoothing). 
This local regression nature also allows the explicit use of least squares 
regression theory to derive the properties of the estimator. Spline estima­
tors put the smoothing problem in the appealing framework of optimizing 
a penalized version of the likelihood, resulting in elegant theoretical devel­
opments, but it is much more difficult to understand how the smoothing 
spline uses the observed data in any local sense (the only method being to 
appeal to a kernel approximation). 

Historically, a strong argument for roughness penalty methods over 
kernel estimators was the ease with which they could generalize from a least 
squares criterion (which is implicitly based on a Gaussian density for the 
error) to arbitrary likelihood functions. If the conditional density of y given 
the predictors comes from the exponential family (5.28), for example, the 
roughness penalty estimate of the mean function ry(x) using the canonical 
link is the minimizer of 

(the scale parameter ¢ is a nuisance parameter and is ignored in the mini­
mization). 

Local polynomial estimators, however, are as easy to generalize to ar­
bitrary likelihoods, using the idea of local likelihood. The corresponding 
local linear estimator of ry(x) to the roughness penalty estimator above is 
/Jo, where j3 is the maximizer of 

(the local nature of the maximization means that the first order asymptotic 
properties of fJ do not depend on ¢). Link functions other than the canonical 
link also can be used for both the roughness penalty and local polynomial 
estimators. 
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Ultimately, the choice between the two approaches might come down 
to the ease of smoothing parameter selection. With the increasing use of 
smoot hers as ingredients of more complex estimators (such as in general­
ized additive modeling), effective automatic choice of smoothing parame­
ters becomes more important. On this count local polynomial estimators 
have a clear advantage. Their kernel-like nature allows adaptations of sta­
ble bandwidth methods (such as plug-in methods) in addition to cross­
validation-based methods, while such approaches have not been developed 
for roughness penalty estimators. 

Background material 

Section 5.1 

Weisberg (1985, pp. 231 and 234) gave the geyser eruption data. The auto 
exhaust data are from Brinkman (1981) and are included as part of the 
S-PLUS package. 

Nadaraya (1964) and Watson (1964) proposed the Nadaraya-Watson 
kernel estimator. Greblicki (1974) introduced the kernel estimator (5.4), 
which has been studied by Johnston (1982), Greblicki and Krzyzak (1980) 
and Georgiev (1984a,b). Priestley and Chao (1972) and Benedetti (1977) 
proposed and studied the Priestley-Chao kernel estimator. Jones, Davies, 
and Park (1994) proposed the modified Priestley-Chao estimator mpCl. 

That paper examined different formulations of kernel estimators, focusing 
on the relative benefits of using estimates of fx(x) ("external") or fX(Xi) 
("internal") in the kernel weights Wi, with the internal choice being pre­
ferred. Gasser and Muller (1979, 1984) originated the Gasser-Muller es­
timator, and Cheng and Lin (1981) examined the special case Si = Xi' 
Jennen-Steinmetz and Gasser (1988) described a generalization of the esti­
mator. Altman (1992) discussed different kernel-type approaches to regres­
sion estimation, while HardIe (1990) gave a book-length treatment. 

Section 5.2 

5.2.1. Hastie and Loader (1993), Cleveland and Loader (1996), and Chapter 
5 of Wand and Jones (1995) gave general descriptions of local polynomial 
estimation. The second reference describes early applications of the idea, 
dating back to Spencer (1904) and Macaulay (1931). Fan and Gijbels (1996) 
is a book-length treatment of local polynomial estimation. 

5.2.2. Stone (1977) examined the consistency properties of many nonpara­
metric regression estimators, including local polynomial estimators. Cleve­
land (1979) was a catalyst for renewed interest in local polynomials, in­
troducing lowess as using a tricube kernel function with bandwidth based 
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on nearest neighbor distances (the tricube kernel is K(x) = (1 Ix1 3 )3 for 
x E (-1, 1) and zero otherwise). 

Katkovnik (1979) and Cleveland and Loader (1996) gave exact expres­
sions for the conditional bias and variance of rhp. For p = 1, if m has 
bounded second derivative, then 

where 

E(rhl(x) - m(x)lxl, ... , xn) = ~ t(x - xd2Ri(x)m"(Bi), 
i=l 

R(x)' = (Rl(x), ... ,Rn(x» = c(x)'(X~WxXx)-lX~Wx, 
Bi satisfies (x - Bi)(Xi - Bi ) :S 0, 

and c(x)' = (1, x, ... , xP ). That is, for any sample size and any design, the 
bias does not involve m'. Thus, the local linear estimate is unbiased if the 
true regression relationship between x and y is linear. The same is true for 
quadratic functions if local quadratic fitting is used, and so on. For general 
p, the conditional variance equals 

V(rhp(X)IXl,"" xn) = 
(J"2(X)c(X)'(X~ WxXx)-l X~ W;Xx(X~ WxXx)-lC(X). 

Several authors have examined the asymptotic properties of local 
polynomial estimators, including Lejeune (1985), Tsybakov (1986), MUller 
(1987), Fan (1992, 1993), Ruppert and Wand (1994), and Fan, Gasser, Gij­
bels, Brockmann, and Engel (1997). Fan (1992, 1993) showed that the local 
linear estimator is (close to) optimal, in the following sense. Let C2 be the 
set of joint densities f that satisfy 

C2 = {f(.,.) : Im(x) - m(xo) - m'(xo)(x - xo)1 :S C(x - xo)2/2, 

Im(xo)1 :S C*} 

n {f(',') : (J"2(X) :S B, fx(xo) ~ b, Ifx(x) - fx(y)1 :S clx - YI"} 

for C, C*, B, b, c, and a positive constants (the condition on m is slightly 
weaker than having a bounded second derivative). Then the local linear 
estimator based on the Epanechnikov kernel achieves the minimum value 
over all linear smoothers of the maximum asymptotic conditional MSE over 
C2 (that is, it is minimax optimal over linear smoothers) and has asymptotic 
minimax efficiency at least 89.6% over all smoothers over C2 . In order to 
guarantee that the denominator in (5.6) is not zero, Fan added n-2 to that 
denominator, which results in finite unconditional variance. 

Lejeune (1985), Muller (1987), Chu and Marron (1991a) (and the dis­
cussion thereon), Jones, Davies, and Park (1994), and Seifert and Gasser 
(1996a) compared local polynomial estimators to earlier kernel estimators. 
Various strengths and weaknesses of kernel estimators were catalogued and 
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compared (referencing earlier theoretical work on these estimators), and 
the possible position of local polynomial estimation as a "gold standard" 
was noted and evaluated. 

Seifert and Gasser (1996b) closely examined the conditional and uncon­
ditional properties of local polynomial estimators for finite samples. They 
noted that sparse regions of the design lead to unstable behavior of lo­
cal polynomial estimators using compact kernels and infinite unconditional 
variance (and hence infinite unconditional MSE). In contrast, everywhere 
positive kernels yield finite unconditional variance and MSE. 

Seifert and Gasser (1996b) also described ways to improve the variance 
properties of local polynomial estimators based on compact kernels, includ­
ing increasing the bandwidth locally in sparse regions until the variance of 
the estimator is stabilized, and modifying the local least squares regression 
estimator to be a local ridge regression estimator. Hall and Turlach (1996) 
suggested handling sparse design regions by adding interpolated "pseudo­
data" to the original data set in places where there are gaps in the design. 

Fan and Marron (1994) and Seifert et al. (1994) described fast im­
plementations of kernel and local polynomial estimates that improve on 
naive application of (5.5) using binning and updating formulas. Seifert and 
Gasser (1996a) described improvements of both the naive and updating 
approaches. Cleveland and Grosse (1991) described the implementation of 
loess, which involves fitting the estimate at a small number of points and 
then interpolating the value at any desired evaluation points. 

5.2.3. Berenson and Levine (1992, p. 66) gave the newspaper circulation 
data, while Chatterjee, Handcock, and Simonoff (1995, p. 292) gave the 
electricity usage data set and provided regression analysis of it. 

Fan and Gijbels (1992) derived and described the boundary proper­
ties of the local linear estimator. The conditional variance of mNW at the 
boundary is 

or twice the conditional variance in the interior. Comparing this value to 
the value in (5.10) shows that the conditional variance of ml is roughly 3 
to 3.5 times that of mNW at the boundary, depending on the kernel. Rup­
pert and Wand (1994) extended these results to higher degree polynomials. 
The boundary kernel methods described in Chapter 3 also will work for 
kernel regression estimators (indeed, most were originally proposed in the 
regression rather than density estimation context). 

Cheng, Fan, and Marron (1997) established the minimax optimality 
of ml at the boundary. Specifically, they showed that the minimum value 
at the left boundary for all linear smoothers of the maximum asymptotic 
MSE over C2 is attained by a local linear estimator using the kernel 
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K(u) = { 1 - u, 
0, 

for 0 ::::; u ::::; 1, 
otherwise. 

Using a Gaussian kernel results in only a 2% loss in efficiency compared 
with the optimal kernel. Sidorenko and Riedel (1994) also described optimal 
kernels for local polynomial estimators in the boundary region. 

The problem of constructing confidence bands for non parametric re­
gression functions is very difficult. The bias of m( x) makes the usual 
parametric-type approaches ineffective, unless it is accounted for in some 
way. Also, if (T2(X) is not constant, confidence regions must account for the 
heteroscedasticity. The distribution of the error term f and the marginal 
density Ix (for random designs) also have a potentially strong effect on the 
properties of confidence regions. 

Several different approaches to confidence region construction have 
been proposed. These include ones where the interval is centered on a 
bias-corrected estimate of m( x), using the asymptotic variance to deter­
mine the width of the region (Eubank and Speckman, 1993); ones based 
on bootstrapping (Hiirdle and Bowman, 1988; Faraway, 1990b; Hiirdle and 
Marron, 1991; Hall, 1992b); and ones based on, or related to, tube formu­
las for coverage probabilities (Knafi, Sacks, and Ylvisaker, 1985; Hall and 
Titterington, 1988; Johansen and Johnstone, 1990; Sun and Loader, 1994). 
Loader (1993) compared the properties of some of these methods. 

A more general question is the utility of such confidence regions at all. 
An obvious use of such regions is to try to determine if the data are con­
sistent with some parametric model (a linear model, for example), but this 
can be formulated easily as a goodness-of-fit problem. Chapter 7 includes 
discussion of such smoothing-based goodness-of-fit tests. 

5.2.4. The vineyard data can be found in Chatterjee, Handcock, and Si­
monoff (1995, p. 304). That reference also provides an extensive descrip­
tion and discussion of the vineyard and its characteristics, and includes a 
(somewhat crude) map of the property (p. 86). 

Cleveland and Loader (1995) noted that the "best" degree p of local 
polynomial fitting might not be obvious, in that (for example) a higher 
value of p might be needed to estimate sharp peaks and troughs in the 
regression curve but could lead to unacceptably large variance near the 
boundary. They proposed choosing the degree to be a possibly noninteger 
value b. Let b = p + I, where p is an integer and 0 ::::; I < 1. If I = 0, 
then use a local polynomial of degree p; otherwise, the estimated regression 
function is a weighted average of the estimates for local polynomials of 
degree p and p + 1, with the weights being 1 - I and I, respectively. The 
mixing parameter b is chosen to minimize a cross-validation sum of absolute 
deviations, 

(5.29) 
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where hii(Xi) is the ith diagonal element of the prediction matrix Hx,b for 
the mixed degree polynomial estimator. 

Section 5.3 

Bandwidth selection for kernel regression estimators has been the subject of 
a good deal of research. Hiirdle and Marron (1986) showed that the choice 
of squared error criterion is asymptotically unimportant, in the sense that 
for kernel estimators (assuming boundedness and continuity conditions), 

I d(h) - MISE(h) I a.s. 0 
sup MISE(h) ---+ 

hEHn 

as n ---+ 00, where Hn = [n6 - 1 , n6j, 0 < 8 < .5, and d(h) represents the dis­
tances ASE(h), MASE(h), and ISE(h). Thus, any sequence of bandwidths 
that is asymptotically optimal with respect to one of these distances (in 
the sense used earlier, as in (2.20)) is optimal with respect to MISE as well. 
Hiirdle and Marron (1985) showed that hev is such a selection method. 

Kernel regression bandwidth selectors fall into three main categories. 
The "leave-one-out" form of CV(h) is due to Stone (1974) and was first 
applied to kernel smoothing by Clark (1975) (other related references are 
Allen, 1974, and Wahba and Wold, 1975). A second approach is to base the 
fitting criterion on the resubstitution estimate of the prediction error, 

modified to be an unbiased estimate of ASE(h). The asymptotic bias of 
p(h) is 

Let Zi = (nh)-l K(O)j !X(Xi). The penalizing function approach chooses a 
function E (Zi) such that 

is an asymptotically unbiased estimator of ASE(h) (plus a constant). Taylor 
Series expansion of G(h) shows that the penalizing function should satisfy 

lim E(u) = 1 + 2u, 
u ..... o 

which still leaves many possible choices of E. Various proposals include 
generalized cross-validation (GCV) [E(u) = (1-u)-2j (Craven and Wahba, 
1979); Shibata's selector [E(u) = 1 + 2uj (Shibata, 1981); AIC [E(u) = 
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exp(2u)] (Akaike, 1970); finite prediction error [5(u) = {(I + u)/(1 - un] 
(Akaike, 1974); and Rice's T [5(u) = (1-2u)-1] (Rice, 1984b). HardIe, Hall, 
and Marron (1988) showed that CV(h) also has this form. They also showed 
that the selectors based on each of these rules are asymptotically equivalent, 
the relative error of each converging to the same normal distribution at 
the rate Op(n- 1/ 1O). Monte Carlo simulations showed that the selectors 
generally tend to undersmooth, and Chiu (1990) provided a theoretical 
explanation for this pattern. 

The third commonly considered approach to bandwidth selection, 
which includes plug-in selection, allows significant improvement by chang­
ing the target from ho to ho, which can be estimated much more accurately. 
Chiu (1991c) described a selector for the Priestley-Chao kernel estimator 
on a fixed, uniform grid. The selector is based on replacing p( h) in any of 
the penalizing function methods with a version that has much less variabil­
ity, obtained by modifying the periodogram of the observations. Gasser, 
Kneip, and Kohler (1991) proposed an iterative plug-in selector for the 
Gasser-Muller kernel estimator and fixed designs. Each of these selectors 
can achieve a relative rate of Op(n-l/2) to ho, assuming enough derivatives 
for m. (The Op(n-1/ 10 ) rate is optimal if only two derivatives are assumed.) 

HardIe, Hall, and Marron (1992) proposed a selector for the Nadaraya­
Watson estimator that uses two kernel smooths of the data, which they 
termed double smoothing. This approach is related to the smoothed cross­
validation method for density estimation of Hall, Marron, and Park (1992) 
and also can achieve Op(n-l/2) relative convergence to ho. 

Herrmann (1997) gave a generalization of the Gasser, Kneip, and 
Kohler (1991) bandwidth selector to boundary-corrected kernel estimation. 
The local linear plug-in selector described in the text is due to Ruppert, 
Sheather, and Wand (1995). They showed that 9 (the bandwidth used when 
estimating J ml/(u? fx(u)du) should (asymptotically) satisfy 

[ 
172 ] 1/7 

g = C2 (K) , nl J ml/(u)m(4) (u)fx (u)dul 

where C2 is a function of K that takes on one of two different forms de­
pending on whether J ml/(u)m(4) (u)fx(u)du is positive or negative. The 
bandwidth), (which is used when estimating (7 2 ) should satisfy 

). = C3 (K) { 17
4 }1/9, 

[n J m"(u)2 fx(u)duJ2 

where C3 (K) = [4R(K *K -2K)/ 1-t2(K)4]1/9 and (K *K)(x) is the convolu­
tion of K with itself, J K(u)K(x - u)du. These bandwidths are themselves 
functions of unknown properties of m (mil and m(4), which are estimated 
by dividing the range of x into blocks and estimating m over each block 
using a polynomial (see HardIe and Marron, 1995). Monte Carlo evidence 
confirms that the plug-in bandwidth selector tends to undersmooth for 
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near-linear regression functions (Wand, 1995). Turlach and Wand (1996) 
showed how many of the necessary quantities can be calculated quickly 
using binning methods. 

A rule-of-thumb selector that is appropriate for roughly uniform design 
density over [a, b] and constant variance (J"2 can be based on estimating 
m"(x) and (J"2 from a fourth order polynomial fit m(x) = Cto + Ct1X + 
... + Ct4X4 to the data (Fan and Muller, 1995; Fan and Gijbels, 1996). The 
resultant bandwidth selector from (5.14) is 

h = [ R(K)(b - a)a-2 ]1/5 

nf-L2(K)2 J:(20: 2 + 60: 3u + 120:4u2)2du 

Cleveland and Devlin (1988) suggested constructing regression esti­
mates for a range of smoothing parameters in order to see how the resultant 
tradeoff between bias and variance affects the estimate for that data set. 
Fan and Muller (1995) suggested plotting regression estimates based on the 
set of bandwidths {h = 1.4j hev, j = -2, ... , 2} on the same plot in order 
to assess the sensitivity of the appearance of m to bandwidth choice. 

Hall and Marron (1990) proposed the variance estimator (5.15) when 
using the Nadaraya~Watson kernel estimate and showed that it is optimal, 
in a minimax sense. Cleveland (1979) suggested it for local polynomial 
regression. Ruppert, Sheather, and Wand (1995) examined its asymptotic 
properties when estimating musing mp for p odd. Fan and Gijbels (1995a) 
proposed a plug-in type estimator (J"2(x) for a possibly changing variance 
that uses a weighted version of p( h), 

They also derived a bandwidth selector based on minimizing J RSC(u)du 
over h, where 

RSC(x) = a-2 (x)[1 + (p + 1)V], (5.30) 
and V is the first diagonal element of (XIWX)~1(XIW2X)(X'WX)~1. 

A different approach to variance estimation comes from time series 
analysis and estimates (J"2 using finite differences of observed Yi values. Ex­
amples include those of Rice (1984b), Gasser, Sroka, and Jennen-Steinmetz 
(1986), Hall, Kay, and Titterington (1990), and Seifert, Gasser, and Wolf 
(1993). Buckley, Eagleson, and Silverman (1988) and Ullah and Zinde­
Walsh (1992) developed a general framework for variance estimation based 
on quadratic functions of the data and discussed optimal choices for that 
class (see also Carter and Eagleson, 1992). 

The bandwidth h can be chosen based on loss functions other than 
squared error. Jhun (1988) examined absolute error loss for the Nadaraya~ 
Watson estimator and derived the minimizer of asymptotic integrated ab­
solute error. 
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Section 5.4 

Chatterjee, Handcock, and Simonoff (1995, p. 19) presented the data of Fig. 
5.15 and noted the generally inverse relationship between changes in visas 
from 1988 to 1991 and from 1991 to 1992. Cook and Weisberg (1994, p. 35) 
analyzed the U.S. birth rate data and noted the general patterns described 
here. 

Chatterjee, Handcock, and Simonoff (1995, p. 306) gave the beluga 
whale nursing data, and analyzed them using various regression models, in­
cluding ones based on differencing the data. Russell, Simonoff, and Nightin­
gale (1997) discussed the biological implications of several of those analyses. 

Several authors have discussed local variation of the bandwidth for 
kernel estimators. Muller and Stadt muller (1987) examined the convolution 
estimator using an equispaced fixed design and showed that using a data­
dependent hex) that is a consistent estimator of the optimal ho(x) results 
in an m based on this h( x) that behaves asymptotically as well as m based 
on ho(x). Under weak conditions, this implies that the asymptotic MISE 
of the resultant m is less than or equal to that using the optimal global 
bandwidth ho. 

Muller and Stadtmuller (1987) proposed an estimator of ho(x) based 
on first estimating the global optimal bandwidth and then adapting it lo­
cally using an estimate of m"(x). Staniswalis (1989a) proposed estimating 
the exact (finite sample) MSE of m at a point x with a consistent es­
timator and then estimating ho(x) as the minimizer of estimated MSE. 
Brockmann, Gasser, and Herrmann (1993) and Herrmann (1997) adapted 
the iterative plug-in method for choosing a global bandwidth of Gasser, 
Kneip, and Kohler (1991) to allow for local adaptivity. Schucany (1995) 
proposed estimating the asymptotic bias of m(x) for different possible band­
widths, and then estimating m"(x) using a least squares regression fit to 
this bias/bandwidth relationship. He showed that the estimator achieves 
a relative rate to ho(x) of Op(n- 1/ 7 ), a rate shared by the method of 
Staniswalis. Schucany (1995) noted the theoretical difficulties of plug-in 
local bandwidth selection at inflection points (since m"(x) = 0) and gave 
a modification to the selector to try to handle these problems. Vieu (1991) 
examined the Nadaraya-Watson estimator and proposed choosing hex) to 
minimize a locally weighted version of cross-validation, which he showed 
yields an asymptotically optimal bandwidth estimator. 

Hardie and Marron (1995) argued that a simple, yet effective method 
to choose the bandwidth in a data-dependent way is to divide the range of 
the predictor into blocks and use a plug-in choice within each block based 
on fitting parametric models within the block. This can lead to either a 
global (fixed) bandwidth estimate that combines blockwise estimated vari­
ances and biases or locally varying bandwidths that are smoothed blockwise 
bandwidths. They specifically addressed the Nadaraya-Watson estimator, 
but the methods can be adapted to higher degree local polynomials as 
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well. They estimated fx(x) (and f'x(x), which is needed for bias estima­
tion for mNw) using a histogram, and estimated m'(x) (needed for mNW) 
and mil (x) by fitting blockwise parabolas to the data. The estimated local 
variance a-2 (x) comes from the residual sum of squares from these block­
wise parabolas. They recommended taking the number of blocks (which 
corresponds to a smoothing parameter) to be between three and five. 

Fan and Gijbels (1995a) used the RSC estimate of variance (5.30) to 
motivate a locally varying bandwidth that is also based on blocking the 
data. Within each block, an optimal bandwidth (for local polynomial fit­
ting of degree p+ 2) is found based on the integral of RSC over that interval. 
The resultant bandwidths are smoothed, and these smoothed bandwidths 
are used to estimate m(p+l), m(p+2), and 0-2 locally. These pilot estimates 
then yield blockwise minimizers of the estimated MISE. These final band­
widths are then smoothed once more. Monte Carlo simulations showed the 
potential for the locally varying bandwidths to improve on a global band­
width choice, particularly for sample sizes of at least 200. Fan and Gijbels 
(1995a) also applied their method to examples with very complex struc­
ture (with n = 2048), and found that it performed similarly to the wavelet 
thresholding approach of Donoho and Johnstone (1994); see also Herrmann 
(1997). 

Cleveland and Loader (1996) proposed choosing a local bandwidth 
based on minimizing a local version of Mallows' (1973) Cp statistic, 

C(h) = \W) {2 trace[(X'W- 1 X)-l (X'W2 X)] - trace(W) 
trace 

+ ~12 t Wi(X)[Yi - mp(xiW}, 
0- i=l 

for any x over a suitably chosen interval on h(x). 
Results of Wang and Gasser (1996) reinforce the difficulty in determin­

ing estimators of locally optimal bandwidths. They showed that the best 
possible relative rate of h(x) to the minimizer of ISE(x) is 

~h(x) _ 1 = 0 (n- 2 / 45 ) 
ho(x) p , 

(5.31a) 

while the best possible relative rate to the minimizer of MISE(x) is 

(5.31b) 

assuming four derivatives for m. Fan, Gijbels, Hu, and Huang (1996) showed 
that the selector of Fan and Gijbels (1995a) achieves the rate (5.31b). 

The rates (5.31) can be compared with the values for global bandwidth 
selection, Op(n- 1/ 1O ) and Op(n- 1/ 2 ), respectively. Since they converge to 
zero considerably more slowly, data-dependent locally varying bandwidth 
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selection requires much larger samples to be reasonable than does data­
dependent global bandwidth selection. 

Another way to allow a local polynomial estimator to have different 
degrees of smoothing locally is to vary the degree of the polynomial, rather 
than vary the bandwidth for a fixed-degree local polynomial. Cleveland 
and Loader (1995) generalized their polynomial mixing estimator to allow 
varying degrees of mixing, chosen using a locally weighted version of the 
cross-validation criterion (5.29). Fan and Gijbels (1995b) suggested estimat­
ing the MSE of different (integer) degree polynomials for a given bandwidth 
at different locations and then choosing the degree for each location that 
minimizes the estimated MSE. Monte Carlo evidence suggests that this 
approach is insensitive to the bandwidth choice, often allowing a simple 
rule-of-thumb bandwidth selector to be used (thereby avoiding the prob­
lem of accurate bandwidth selection entirely). 

Section 5.5 
5.5.1. Cleveland (1979) proposed the iterative algorithm to construct a ro­
bust version of the loess estimate (his paper referred to loess's predecessor, 
lowess). That paper recommended two iterations ofthe robust downweight­
ing operation, but the default in the S-PLUS implementation of loess is 
four, and it is the latter number that is given here. Machler (1989) noted 
the potential nonrobustness of basing the robust estimate on the nonrobust 
version and proposed corrective actions. 

Carroll and Ruppert (1988, p. 140) gave the Skeena River sockeye 
salmon data and fitted linear and nonlinear regression models to them. 
Tiede and Pagano (1979) gave the radioimmunoassay calibration data and 
noted the effect of the outlier on nonlinear regression estimation. Chatterjee, 
Handcock, and Simonoff (1995, p. 306) gave the voting fraud data and 
investigated the statistical evidence of fraud in the 1993 special election. 

Several authors have discussed methods of robustifying the kernel re­
gression estimator directly. M -type kernel smoothers are formed by mini­
mizing a new local criterion; rather than the estimator being the minimizer 
~o of 

it is the minimizer of 

(5.32) 

where the function p(.) is chosen to downweight outlying observations. The 
minimizer solves the equation 

X -x' 
n () t; 7/J[Yi - m(x)]K T = 0, (5.33) 
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where 'ljJ = p', assuming differentiability of p. The usual Nadaraya-Watson 
estimator takes 'ljJ(u) = u, while robust versions take 'ljJ to be monotone 
nondecreasing, antisymmetric, and bounded. A common example is the 
proposal of Huber (1981), 'ljJ(u) = max[-c, min(u, c)], c > O. 

Brillinger (1977) proposed the use of M-type smoothers. Stuetzle and 
Mittal (1979) studied this estimator based on a uniform kernel. HardIe 
(1984) generalized the estimator to general kernels and proved consistency 
and asymptotic normality; see also Boente and Fraiman (1989). HardIe arid 
Tsybakov (1988) extended the estimator to include simultaneous estima­
tion of the scale function 0-( x). They showed that the resultant estimator of 
m(x) has the same asymptotic bias as that of mNW, with asymptotic vari­
ance that depends on 'ljJ and the true conditional distribution of ylx. HardIe 
(1987) described a one-step version of the M-smoother (which corresponds 
to one iteration of the solution to (5.33), using mNW as the starting value) 
and gave Fortran code to calculate it. HardIe and Gasser (1984), Antoch 
and Janssen (1989), and Hall and Jones (1990) discussed the construction 
of M-type convolution estimators. Kozek (1992) described and established 
consistency of a corresponding M -estimation construction for local polyno­
mials, which is defined as in (5.32), adding higher degree polynomial terms. 
Fan, Hu, and Truong (1994) derived the asymptotic normal distributions 
for the M-type local linear estimator both in the interior and at the bound­
ary. Manchester (1996) described the construction of a graphical method 
(termed the influence surface) to assess the effect of a single (possibly out­
lying) observation on a regression estimate for a given data set. 

Kozek (1992) also proposed using general local nonlinear functions, 
replacing local polynomials, when the context of the problem suggests such 
functions. Jones and Hjort (1995) noted that the order of magnitude of the 
bias of the resultant regression estimator depends only on the number of 
parameters in the function, rather than its specific form, although the exact 
form of the bias can be simpler if the local nonlinear function is closer to 
the true curve than a polynomial is. 

Fan and Hall (1994) examined least absolute deviation smoothing 
(p(u) = lui in (5.32)). They examined the estimator assuming one bounded 
derivative for m and showed that the estimator is asymptotically optimal 
in a minimax sense (with a convergence rate of n-1/ 3 ). Wang and Scott 
(1994) extended this idea to local polynomial estimation. They discussed 
the linear programming problems involved in determining the estimate and 
gave recommendations on how to calculate it, including how to choose the 
smoothing parameter (or span, for nearest neighbor bandwidths); see also 
Wang (1994). They examined the asymptotic properties of the estimator 
assuming a fixed, equispaced design and obtained the usual rates of conver­
gence for the estimator (that is, MSE = O(n-4 / 5 ) for local linear fitting, 
MSE = O(n-8 / g ) for local quadratic fitting, and so on). 

The field of robust estimation and outlier identification is very ac-

 
PAGE 211 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



202 Chapter 5. Nonparametric Regression 

tive. Book-length treatments include Hawkins (1980), Huber (1981), Ham­
pel et ai. (1986), and Barnett and Lewis (1994). Hadi and Simonoff (1993, 
1994), and the references therein, proposed alternatives to robust estima­
tion to handle outliers in regression models, which could potentially be 
adapted to local polynomial estimators as well. 

5.5.2. There are many books on the analysis of time series data; see, for 
example, Brillinger and Krishnaiah (1984), Aoki (1990), and Brockwell and 
Davis (1991). Work on nonparametric regression with auto correlated errors 
has focused on time series data, with equispaced time values as the predictor 
values, and the use of the convolution estimators mpc and mCM. An ex­
ception is Chu and Marron (1991b), which focused on mNW. They derived 
the asymptotic MISE of the estimator assuming a covariance stationary 
process for the errors (see also Altman, 1990, and Hart, 1991). 

Several authors have noted the tendency for data-based bandwidth se­
lectors to undersmooth for positively autocorrelated errors and oversmooth 
for negatively autocorrelated errors. Chiu (1989) formulated the problem 
in the frequency domain, and showed why the Mallows' (1973) CL criterion 
has this property (see also Hurvich and Zeger, 1990), while Hart (1991) 
worked in the time domain and showed that bandwidths based on cross­
validation will severely undersmooth for positively auto correlated errors 
(see also Hart and Wehrly, 1986). 

Chu and Marron (1991b) proposed modifying cross-validation to be 
"leave (2£ + 1) out" (ordinary cross-validation taking £ = 0), with obser­
vations (Xj+i, YHi), -£ ~ i ~ £ being omitted in the calculation of m(xj). 
They showed that if the errors follow an ARMA process, the modified cross­
validated bandwidth choice converges in distribution to a normal distribu­
tion centered at ho" at the rate n- 1/ 10 as long as £ is large enough (without 
the need for any knowledge of the true covariance structure). This rate, of 
course, is the same (slow) rate achieved by ordinary cross-validation for 
independent errors. 

Chiu (1989), Altman (1990), and Hart (1991) examined the modifica­
tion of penalizing functions (such as GCV and CL) for bandwidth selection 
with auto correlated errors, based on a plug-in approach where the penal­
izing function criterion is modified to reflect the autocorrelation. These 
methods require specification of the true error process; if the specification 
is correct, and the covariance estimates are Vn-consistent, then the resul­
tant bandwidths have the same asymptotic distribution as that of modified 
cross-validation for large enough £ (Chu and Marron, 1991b). Hart (1991), 
Truong (1991), and Altman (1993) discussed the estimation of /(-) in the 
non parametric regression context. 

Herrmann, Gasser, and Kneip (1992) and Quintela del Rio (1994) pro­
posed direct plug-in methods based on (5.20) under certain models for the 
error process. They established the consistency of these selectors assum­
ing correct specification of the error process and gave some Monte Carlo 
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evidence of their ability to address observed autocorrelation. Hart (1994) 
proposed a prediction-based version of cross-validation that he termed time 
series cross-validation (TSCV). The method attempts to find a good one­
step-ahead predictor based on past data, using a specified parametric model 
for the error process. Hart showed that for a correctly chosen error process, 
minimizing TSCV is asymptotically equivalent to minimizing MASE. 

The results of this section assume that the error process has a finitely 
summable covariance function. Many real-world series have error terms with 
autocorrelation that decays so slowly that this condition is violated (equiva­
lently, the spectrum is infinite at frequency zero). Such processes are termed 
long memory processes. The behavior of nonparametric regression estima­
tors is very different from the previously noted results for processes of this 
type. Hall and Hart (1990b) showed that if the errors have an autocorrela­
tion function of the form p(k) = C3k- 0 , for C3 > 0 and 0 <.0: < 1, then 
the optimal bandwidth that minimizes the asymptotic MISE is 

h' = [C30: f flu - vi-a K(U)K(V)dUdV] 1/(4+0) 

o n0 J.l2(K)2 f m"(u)2 fx(u)du 

The optimal rate for MISE is O(n-40 /(4+0 »), which is slower than the usual 
convergence rate. Ray and Tsay (1996) proposed a plug-in estimator for h~ 
and showed that if 0: and C3 are estimated consistently, the estimated 
bandwidth is asymptotically equivalent to h~. Their simulations suggested 
that the proposed long memory method produces bandwidths closer to 
ho than the method of Herrmann, Gasser, and Kneip (1992) under long 
memory processes, although the actual ISE and relative ISE values were 
not significantly different. See also Csorgo and Mielniczuk (1995b). 

Section 5.6 

5.6.1. Several book-length treatments focusing on roughness penalty meth­
ods have appeared in recent years. Green and Silverman (1994) gave a very 
accessible account, while Eubank (1988) and particularly Wahba (1990) 
provided more theoretical treatments. See also Silverman (1985). Eilers and 
Marx (1996) defined the penalty function to be based on finite differences of 
the coefficients of adjacent B-splines (a P-spline)j see also O'Sullivan (1986, 
1988). 

5.6.2. Whittaker (1923) originated the idea of spline smoothing, terming 
the smoothing process a graduation of the observations. The modern for­
mulation of spline smoothing as a nonparametric regression estimator is due 
to Schoenberg (1964) and Reinsch (1967), who proved that the minimizer 
of (5.21) with £ = 2 isa cubic smoothing spline. Wahba (1975b) showed 
that the estimator is linear in the observations, and she derived asymptotic 
MISE properties of it. Analysis based on the general form of the roughness 
penalty (5.21) generalizes the case £ = 2. Kimeldorf and Wahba (1970a,b) 
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showed that the minimizer is a polynomial spline of degree 2C -1 with knots 
at the data points. If m E wi, MISE = O(n-2£/(2l+1)), the optimal rate 
(Wahba, 1978; Craven and Wahba, 1979). 

Silverman (1984) derived the approximate kernel form for the cubic 
smoothing spline. Messer (1991) and Messer and Goldstein (1993) investi­
gated the connections between the smoothing spline and approximate kernel 
further, and the latter paper formulated asymptotically equivalent, closed 
form, boundary corrected kernels for this problem. See also Nychka (1995). 

Rice and Rosenblatt (1983) proved the existence of boundary bias prob­
lems for the cubic smoothing spline if three or four derivatives of mare 
bounded but the second or third derivatives are nonzero at the boundaries. 
Utreras (1988) extended these results to £ > 2. Oehlert (1992) derived 
what he termed "relaxed boundary splines" that correct the boundary 
bias problem for equispaced data design for £ 2: 4 (that is, if m E Wi£, 
MISE = O(n-4£/(4l+1»)) without any boundary conditions on m. 

Kimeldorf and Wahba (1970a,b) investigated the Bayesian formulation 
of smoothing splines. Wahba (1978) provided a Bayesian justification based 
on Gaussian processes for smoothing splines. If the prior has the distribution 
that is the same as the distribution of the stochastic process 

£ 

X(t) = L eJ1)j(t) + u(na)-1/2 Z(t), 
j=l 

where () = (el, ... ,ee)' rv N(O,~I£x£), ¢j(t) = tj-1jU -I)!, j = 1, ... ,£, 
and Z(-) is the £-fold Wiener process, 

t (t - U)£-l 

Z(t) = io (£ _ I)! dW(u), 

W(u) being the Wiener process, then the smoothing spline is the mean of 
the posterior process if ~ --+ 00 (a diffuse prior on ()). 

Wahba (1983) used this Bayesian formulation to justify the construc­
tion of confidence intervals for the true function m based on the smoothing 
spline. The intervals are constructed based on the posterior distribution of 
m given the data, but Monte Carlo evidence suggested that they have good 
frequentist properties as well, in the following sense: in repeated sampling 
from the regression model, roughly 95% of the simulated observations are 
covered by each newly constructed 95% confidence region (Wahba, 1985). 
The reason for these good frequentist properties is that the average poste­
rior variance is close to the MASE. See Silverman (1985), Hall and Titter­
ington (1987a), and Nychka (1988, 1990). Wang and Wahba (1995) com­
pared the properties of these Bayesian confidence intervals to bootstrap­
based intervals. 

5.6.3. Wahba and Wold (1975) first proposed the use of cross-validation to 
choose a. Craven and Wahba (1979) introduced generalized cross-validation 
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and argued for its superior performance over cross-validation for unequally 
spaced data. Marron (1985b) pointed out that the approximate kernel form 
for the spline implies that acv and aGCV have properties similar to those 
in the kernel regression context. 

The Bayesian formulation of the smoothing spline estimator given in 
Wahba (1978) allows the smoothing parameter selection problem to be ad­
dressed using the (marginal) likelihood function. The resultant generalized 
maximum likelihood choice is the minimizer of 

GML a = y'[I - A(a)]y 
() {det+[I - A(a)]p/(n-£) ' 

where det+[I - A(a)] is the product of the n - £ nonzero eigenvalues of 
1- A(a) (Anderssen and Bloomfield, 1974; Barry, 1983; Wecker and Ans­
ley, 1983; Wahba, 1985). Wahba (1985) showed that for a certain class of 
functions m, the MASE based on aGML converges to zero at a rate slower 
than that when using aGCV, while for other classes of smooth functions, 
the MASE properties are similar. Kohn, Ansley, and Tharm (1991) used 
Monte Carlo simulations to compare acv, aGCV, and aGML. They found 
that the other methods outperformed acv for unequally spaced data, while 
aGCV and aGML had similar properties for cubic smoothing splines. They 
also found that quintic splines (£ = 3) based on aGML outperformed cubic 
splines for the situations studied. Barry (1995) used a Bayesian analysis to 
motivate choosing a using Jeffreys' prior, and his Monte Carlo simulations 
(using £ = 1) suggested that this choice outperforms GCV for larger cr, 
smaller n, and less smooth m. 

Wahba (1978) proposed the variance estimator (5.25) for smoothing 
splines. Carter and Eagleson (1992) compared variance estimators using 
the two forms of error degrees of freedom (5.16) and (5.26) and found that 
for small a, (5.26) leads to too small an estimate of cr 2 . Since generalized 
cross-validation sometimes undersmooths, variance estimates using splines 
based on aGcv can be unacceptably negatively biased when using (5.26), 
and they recommended using (5.16) instead. Hastie and Tibshirani (1990, 
p. 305) suggested the approximation v = vs trace[A(a)J/4 + .5 relating 
(5.16) to (5.26) for the cubic smoothing spline. 

5.6.4. The smoothing spline objective function (5.21) is based on assuming 
constant variance off the true regression line. It can be adjusted if het­
eroscedasticity is present, in the same way that the linear least squares 
estimation criterion (which is just (5.21) with a = 0) becomes a weighted 
least squares criterion under nonconstant variance. 

Say the true variances satisfy the relation crT = cr2 /Wi. Then, the ad­
justed roughness penalty criterion is 

(5.34) 

 
PAGE 215 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



206 Chapter 5. Nonparametric Regression 

yielding a weighted smoothing spline. Just as is true in linear least squares 
regression, some guess for the weight vector w must be made, which will 
often be based on a preliminary unweighted spline estimate. 

Silverman (1985) discussed incorporating weighting into the roughness 
penalty objective function to account for heteroscedasticity and suggested 
fitting an unweighted spline and then estimating the local variance with 
a local moving average of squared generalized residuals (the generalized 
residuals being residuals divided by VI:[Yi - m(xi)J2jn) to determine the 
weights. Eubank and Thomas (1993) described simple tests and diagnostic 
plots based on the unweighted smoothing spline estimate. The perceived 
need to weight the global error sum of squares in the spline formulation to 
account for nonconstant variance can be contrasted with the situation for 
local polynomial estimation, where no such weighting of the local fitting 
criterion is warranted (Jones, 1993c); rather, locally varying the bandwidth 
under heteroscedasticity is the appropriate remedy. Since the spline esti­
mator is asymptotically a kernel estimator, this casts some doubt on the 
necessity of weighting the spline roughness penalty at all. 

Eubank (1984) examined the hat matrix for smoothing splines closely 
and described how they can be used to identify potentially influential ob­
servations. Eubank (1985) extended this work to define other diagnostics 
analogous to those used for linear least squares regression. So, for example, 
the studentized residuals are defined as 

j = I, .. . ,n, (5.35) 

and can be used to identify outliers (see also Silverman, 1985). Diagnostics 
for the jth observation based on omitting that observation also can be 
defined, using the identity 

'(j)( .) _ '( .) + Aij(a)ej m x, - m x, A ( ). 
1 - jj a 

Thus, the deleted studentized residual rjj) replaces fy s in (5.35) with fyij), 
where 

1 L:n 
[ A.(a)e. ]2 fy(j) = + t) ) 

s n-1-trace(AU)). ei 1-A .. (a) 
t=1 JJ 

and 

( (j) _ ""' [ () Aij (a)2] trace A - L Aij a + 1 _ A . (a) . 
i#j JJ 

Different applications of m(j)(xi) yield diagnostics that correspond to com­
monly used diagnostics in least squares regression analysis (see Chatterjee 
and Hadi, 1988, for a thorough discussion of such diagnostics). Thomas 
(1991) described how the local influence approach of Cook (1986) can be 
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used to construct diagnostics that can identify observations that locally 
influence aGcv. 

The smoothing spline estimation criterion itself can be robustified, in 
much the same way as kernel and local polynomial estimators can, to down­
weight the influence of outliers. An M-type smoothing spline is the mini­
mizer over Wi[a, b] of 

where p(.) is a function as in (5.32) (Anderssen, Bloomfield, and McNeil, 
1974; Huber, 1979; Utreras, 1981). Cox (1983) examined the asymptotic 
properties of M-type smoothing splines. 

Diggle (1985b) and Diggle and Hutchinson (1989) investigated the ef­
fects of autocorrelation on generalized cross-validation and found that pos­
itive autocorrelation tends to lead to undersmoothing. Diggle and Hutchin­
son proposed a modification to the generalized cross-validation criterion 
that assumes knowledge of the true auto covariance process. Van der Linde 
(1994) noted that this criterion is actually a different penalizing function 
criterion that does not address the autocorrelation problem, and proposed 
a different criterion that also depends on knowledge of the true autocovari­
ances. 

Schimek (1988) and Schimek and Schmaranz (1994) generalized the 
weighted objective function (5.34) to address autocorrelation for equispaced 
time series data. This spline-related estimate is the minimizer of 

n n n-1 

'2::: '2:::[Yi - m(xi)]dij[Yj - m(xj)] + a '2::: [m(ti+1) - 2m(ti) + m(ti_1)]2, 
i=1 j=1 i=2 

where the dij are the elements of D = 17- 1 , 17 being the covariance matrix 
of the error process. This is a discrete generalized least squares formulation, 
just as (5.34) is a weighted least squares formulation. Kohn, Ansley, and 
Wong (1992) proposed a similar construction using state space methods. 

Schimek (1992) used Monte Carlo simulations to investigate the effects 
of autocorrelation on the ordinary spline estimator and the discrete gen­
eralized least squares-based estimator. The simulations showed that while 
autoregressive-type autocorrelation can sometimes affect the estimation ac­
curacy of the ordinary spline (with the generalized least squares version be­
ing an improvement), moving average-type autocorrelation has little effect, 
with the ordinary spline providing smaller MASE. 

Section 5.7 

5.7.1. Cleveland and Devlin (1988) described local polynomial estimation 
for multiple predictors using nearest neighbor weights (loess) and described 
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the use of approximate hypothesis tests based on analogy with analysis of 
variance to evaluate the fitted surface. Cleveland, Grosse, and Shyu (1992) 
gave a detailed discussion of application of loess to several real data sets. 
Ruppert and Wand (1994) derived the asymptotic properties of the mul­
tivariate local linear and local quadratic estimators. No systematic study 
of bandwidth matrix choice has been made for these estimators, although 
Herrmann et al. (1995) proposed plug-in approaches for bivariate convolu­
tion kernel estimators. Zhang (1991) and Bickel and Zhang (1992) examined 
choosing the number of predictors in a multivariate kernel regression in a 
data-dependent way. 

Cleveland and Grosse (1991) discussed computational issues in the im­
plementation of loess to multivariate data sets. The methods described in 
Wand (1994b) also can be applied to multivariate local polynomial regres­
sion estimation. 

Eubank (1988, pp. 286-292), Wahba (1990, pp. 30-39), and Green 
and Silverman (1994, Chapter 7) described thin plate smoothing splines 
and gave earlier references to the method. Carmody (1988) generalized 
regression diagnostics based on the hat matrix to thin plate splines. It 
is also possible to construct multivariate regression estimators based on 
univariate splines using tensor products; see Green and f?ilverman (1994, 
pp. 155-159) for a discussion. 

5.7.2. Chatterjee, Handcock, and Simonoff (1995) gave the basketball data 
(p. 299) and gasoline demand data (p. 291). The school budget vote data 
originally appeared in the May 6, 1993, issue of Newsday (Newsday, 1993b). 

Stone (1985b) established that additive models overcome the curse of 
dimensionality, with convergence rates identical to those in one dimension 
to the closest additive approximation to the true regression curve, using 
spline smoot hers for the univariate smoothing. Stone (1986) generalized 
these results to generalized additive models. Hastie and Tibshirani (1986, 
1987) and Hastie (1992) provided an overview of generalized additive model 
fitting, including a discussion of computational issues and application to real 
data, while Hastie and Tibshirani (1990) gave a book-length treatment. See 
also Buja, Hastie, and Tibshirani (1989). McCullagh and NeIder (1989) gave 
a book-length treatment of the generalized linear model. 

Other approaches to additive modeling have also been proposed in 
the literature. Wahba (1986), Chen (1993), and Gu and Wahba (1993b) 
allowed for the possibility of interaction among the predictors by using in­
teraction spline models, which they called smoothing spline ANOVA. Chen 
(1987) and Barry (1993) studied model fitting procedures for these mod­
els. Friedman and Silverman (1989) proposed fitting additive models using 
piecewise polynomials with data-dependent knot choice (which they termed 
TURBO). Hastie (1989) adapted the method to incorporate a different al­
gorithmic scheme (BRUTO), while Marx and Eilers (1994) proposed using 
P-splines. 
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Friedman (1991) proposed multivariate adaptive regression splines 
(MARS), a generalization of the TURBO method of Friedman and Sil­
verman. Stone et al. (1997) described the general use of polynomial splines 
and their tensor products in many additive modeling situations. Smith and 
Kohn (1996) proposed a Bayesian approach to additive modeling that is 
also based on regression splines, with the Gibbs sampler being used to se­
lect knots and transformations and to identify outliers. Projection pursuit 
regression (Friedman and Stuetzle, 1981; Diaconis and Shahshahani, 1984; 
Donoho and Johnstone, 1986, 1989; Hall, 1989b; Chen, 1991; Roosen and 
Hastie, 1994) constructs a regression estimate that is a sum of smooth 
functions of linear combinations (with unknown coefficients) of the predic­
tors. The alternating conditional expectations (ACE) method of Breiman 
and Friedman (1985) allows transformation of the response variable to help 
achieve additivity, while the additivity and variance stabilization (AVAS) 
method of Tibshirani (1988) adds a variance-stabilization step to the fit­
ting of the model. Gu (1992) described diagnostics to help analysts build 
parsimonious versions of additive models. 

The partially linear model has been studied closely. Examples include 
Heckman (1986, 1988), Chen (1988), Speckman (1988), Chen and Shiau 
(1991), and Young and Bowman (1995). A variation on this model (related 
to projection pursuit) is the partially linear single index model, where a 
smooth term is included that is a function of a linear combination of several 
predictors (with coefficients to be estimated), rather than a single predictor; 
see Hardie, Hall, and Ichimura (1993) and Carroll et al. (1997). 

Section 5.8 

Marron (1996) gave a very cogent account of the kinds of issues that go 
into a comparison of nonparametric regression estimators (and smooth­
ing methods in general). He pointed out that any such comparison should 
take into account many different properties of a "good" method, including 
general availability, interpretability, statistical efficiency, quick computabil­
ity, integrability into general computer frameworks (such as S-PLUS or 
XLISP-STAT), and ease of mathematical analysis. Since it is unlikely that 
any method will dominate all others on all these criteria, the search for 
the "best" method is probably futile. The results of Banks, Maxion, and 
Olszewski (1995) support this; they compared many multivariate nonpara­
metric regression methods, including MARS, loess, ACE, AVAS, generalized 
additive models, and projection pursuit regression, and found that the best 
method depends on many factors, including the dimensionality of the data, 
the dimensionality of the true regression relationship, the sample size, and 
the strength and complexity of the relationship. 

Other approaches to non parametric regression can be designed to opti­
mize some criterion other than sums of squares. Mammen (1991) developed 
a method based on controlling the qualitative smoothness of the estimate, 
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as measured by inflection points. Related methods include those of Machler 
(1995b) and Riedel (1995). McDonald and Owen (1986) used split smoothed 
linear fits to allow estimation of curves with discontinuities or discontinuous 
lower order derivatives. Parametric regression models that are rich enough 
to represent smooth curves, such as polynomial and trigonometric series, 
can be used to estimate such curves through estimation of the coefficients of 
the regression model; see, for example, Cox (1988), Eubank (1988, Chapter 
3), Eubank and Speckman (1990), and Tarter and Lock (1993). Hurvich 
and Tsai (1995) discussed the properties of using AIC to choose the num­
ber of terms in the series, while Kneip (1994) examined the use of CL for a 
wide class of smoothers. Antoniadis (1994) and Antoniadis, Gregoire, and 
McKeague (1994) discussed the application of wavelets to curve estimation, 
with the latter paper describing wavelet versions of the Gasser-Muller and 
Nadaraya-Watson kernel estimators. See also Donoho and Johnstone (1994, 
1995) and Donoho et al. (1995). 

O'Sullivan, Yandell, and Raynor (1986), Green (1987), Cox and O'Sul­
livan (1990), and Gu and Qiu (1994) discussed the properties of roughness 
penalty estimators for general likelihood functions. Eilers and Marx (1992) 
proposed a version of penalized likelihood using P-splines. Wahba et ai. 
(1995) generalized smoothing spline ANOVA models to accommodate ex­
ponential families. Brillinger (1977) and Tibshirani and Hastie (1987) de­
scribed the use oflocallikelihood estimation. Staniswalis (1989b) examined 
local constant (Nadaraya-Watson kernel) estimation for local likelihoods, 
while Fan, Heckman, and Wand (1995) provided asymptotic theory for local 
polynomials, showing that they retain the same types of properties in the 
local likelihood context as in ordinary nonparametric regression. See also 
Jones and Hjort (1995). 

Computational issues 

Kernel regression estimation is available in several statistical packages, in­
cluding SAS/INSIGHT, S-PLUS, XLISP-STAT, and XploRe. The haerdle 
collection in the S directory of statlib also contains S-PLUS code, based 
on HardIe (1991). 

XploRe provides local linear regression estimation. The collection fan­
marron in the jcgs directory of statlib contains code to calculate lo­
cal linear estimates based on the algorithms in Fan and Marron (1994). 
Fortran code for local polynomial estimation, along with S-PLUS in­
terface, based on Seifert et ai. (1994), can be obtained by anonymous 
ftp at the address biostat 1. unizh. ch in the file pub/lpepa. The URL 
address http://cm.bell-labs . com/ stat/pro j ect/locfi t allows World 
Wide Web access to S-PLUS code to calculate local polynomial estimates, 
including locally adaptive estimates and different likelihood families, as de­
scribed in Loader (1995). 
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Many statistical packages provide lowess estimation (local linear regres­
sion with nearest neighbor bandwidth). These include Data Desk, NCSS, 
S-PLUS, SPSS, Stata, Systat, XLISP-STAT, and XploRe. The Smoother's 
Workbench (described in Manchester and Trueman, 1993) also includes it 
(and can be obtained as the collection smoothwb in the general directory of 
statlib), as does APL2STAT, which is available via the World Wide Web 
at the address http://www.math.yorku.ca/SCS/friendly.html. JMP, 
SAS/INSIGHT, and S-PLUS provide the more modern estimator loess, 
which allows local quadratic fitting and multiple predictors. Instructions 
on how to obtain Fortran and C code for loess can be found in the loess 
entry of the general directory of statlib. 

S-PLUS code to calculate the local polynomial ridge regression esti­
mator of Seifert and Gasser (1996b) is available by anonymous ftp at the 
address biostat1. unizh. ch in the file pub/lpridge. 

The URL http://www.unizh.ch/biostat/ software. html provides 
access to code for the global and locally adaptive local polynomial band­
width selectors discussed in Herrmann (1997). 

The Fortran code of HardIe (1987) is algorithm 222 in the apstat 
collection of statlib. The Smoother's Workbench code also includes this 
one-step M-smoother. 

Spline smoothing estimation, with various smoothing parameter selec­
tors, is available in various statistical packages, including JMP, SAS/IN­
SIGHT, S-PLUS, and XploRe. Several Fortran and Ratfor implementa­
tions of spline smoothing are available via anonymous ftp at the address 
www.netlib.org in the directory gcv. These include GCVPACK (Bates et 
al., 1987), which also fits multivariate data using thin plate splines, BART 
(O'Sullivan, 1985), GCVSPL (Woltring, 1986), and RKPACK (Gu and 
Wahba, 1991), which also includes thin plate and tensor product splines 
and can be used to fit smoothing spline ANOVA models. The latter set of 
routines is also available as the collection rkpk in the general directory of 
statlib. 

Paul Eilers contributed S-PLUS code to calculate P-spline estimates 
for scatter plot smoothing and logistic regression to the S-news electronic 
mailing list, which can be found in the collection digest153 in the S-news 
directory of statlib (June 21, 1994, with correction June 23, 1994). 

The first author of Schimek and Schmaranz (1994) has made available 
code to calculate the discrete generalized least squares-based spline estimate 
of Schimek (1988). 

GLIM, S-PLUS, and XploRe provide generalized additive model fitting 
as part of the package. Fortran code to fit generalized additive models is 
available in the collection gamfit in the general directory of statlib. 
The collection cox_ph in the S directory of statlib gives C, Ratfor, and 
S-PLUS code that allows fitting of proportional hazards models using the 
generalized additive modeling techniques of S-PLUS. 

Fortran and S-PLUS code that implements the Bayesian additive mod-
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eling approach of Smith and Kohn (1996) can be obtained using a WWW 
browser at http://www.agsm.unsw.edu.au/..-.mikes/ software. html. 

S-PLUS and XploRe include projection pursuit regression functional­
ity. The collection roosen-hastie in the j cgs directory of statlib con­
tains S-PLUS code to calculate projection pursuit regression estimators 
based on the automatic smoothing spline approach of Roosen and Hastie 
(1994). Fortran code to carry out ACE is available as the collection ace 
in the general directory of statlib. S-PLUS and XploRe include ACE 
as part of the package. S-PLUS code to determine ACE estimators for lo­
gistic regression can be found in ace .logi t of the S directory of statli b. 
Fortran code and S-PLUS drivers to carry out AVAS constitute the avas 
collection in the S directory of statlib. Fortran code to implement MARS 
is in the collection mars3. 5 in the general directory of statlib. C code 
with S-PLUS drivers that determine wavelet transforms and thresholding 
in one and two dimensions can be found in the wavethresh collection in the 
S directory of statlib. The S + WAVELETS toolkit, by Bruce and Gao 
(1995), performs wavelet calculations within S-PLUS. Wavelet regression 
estimation is also provided in XploRe. 

GRKPACK, a collection of RatforjFortran programs that are a gener­
alization of RKPACK, fits smoothing spline ANOVA models to exponential 
families. It is available as the collection grkpack in the general directory 
of statlib. 

Exercises 

Exercise 5.1. Calculate local constant, linear, quadratic, and cubic estimates 
based on a fixed bandwidth for the acid deposition data of Figs. 1.6 and 
5.25. How do the estimates compare with the lowess and cubic smoothing 
spline estimates given in the earlier figures? Which gives the best impression 
of the observed regression relationship? 

Exercise 5.2. Construct fixed-bandwidth local quadratic and cubic esti­
mates of the newspaper circulation data of Fig. 5.5. Do these estimates 
suggest a near-linear relationship between daily and Sunday circulation? 

Exercise 5.3. Construct variability plots for each of the estimates in Ex­
ercises 5.1 and 5.2. Do the higher order polynomial estimates suffer from 
increased variability compared to the lower order polynomial estimates? 

Exercise 5.4. Construct variability plots for the annual lug count data of 
Fig. 5.14 for the local linear estimate given there and a local quadratic 
estimate. Which estimate would you prefer based on these plots? 

Exercise 5.5. Determine the plug-in bandwidth choices for local linear esti­
mation for the acid deposition data, newspaper circulation data, diabetes 
data (Figs. 1.5 and 5.25), and beluga whale data (Fig. 5.18). Graph the 
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resultant regression estimates. Are you satisfied with the impressions from 
the fitted curves? If not, why do you think that the plug-in-based local 
linear estimator failed? 

Exercise 5.6. Calculate bandwidths for the local linear estimate based on 
cross-validation and generalized cross-validation for the ethanol data (Fig. 
5.8), total lug count data (Fig. 5.13), annual lug count data, acid deposition 
data, newspaper circulation data, diabetes data, and beluga whale data. 
How do the chosen bandwidths compare with the plug-in bandwidths? Do 
the cross-validation rules tend to lead to undersmoothing for these data 
sets? 

Exercise 5.7. Construct loess estimates (linear and quadratic) for the news­
paper circulation data. Are they better representations of the regression 
relationship than the fixed-bandwidth estimates? 

Exercise 5.8. Rows 1 and 52 in the total lug count data appear to be possible 
outliers. Refit the regression estimates of Figs. 5.9, 5.10, and 5.12 with these 
points omitted. Do the fitted curves change very much? What does the 
robust version of the loess estimate look like? 

Exercise 5.9. The beluga whale data set also includes corresponding infor­
mation for a second calf (Casey) born at the New York Aquarium around 
the same time as Hudson. Fit a local polynomial estimate to Casey's data. 
Is his nursing pattern similar to Hudson's? Does varying the bandwidth 
locally give a better regression estimate? 

Exercise 5.10. Fit cubic smoothing splines to the annual lug count data 
using different smoothing parameter selectors. Which selectors result in a 
reasonable estimate? 

Exercise 5.11. The true regression curve being estimated for the acid de­
position data is a correlation function and as such, must satisfy certain 
properties. More informally, its nature as a correlation function suggests 
likely properties for the curve. Based on this, which of the estimates con­
structed in Figs. 1.6 and 5.25, and in Exercises 5.1, 5.5, and 5.6, are most 
likely to be accurate reflections of the true curve? 

Exercise 5.12. Fit cubic smoothing splines to the geyser data (Figs. 5.1 and 
5.24), electricity usage data (Figs. 5.6 and 5.24), birth rate data (Figures 
5.16 and 5.23), and beluga whale data using generalized cross-validation to 
choose the smoothing parameter. Does autocorrelation of the errors seem 
to cause difficulties for the selector for these data sets? 

Exercise 5.13. Fit cubic smoothing splines to the Skeena River salmon data 
(Fig. 5.19) and immunoassay calibration data (Fig. 5.20) using generalized 
cross-validation to choose the smoothing parameter. Does the presence of 
possible outliers cause difficulties for the selector for these data sets? 
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Exercise 5.14. Construct a perspective plot for a loess fit to the basketball 
data of Fig. 5.31 with the observation corresponding to Keith Jennings 
omitted from the data set. Does this change the fitted surface for small 
values of height and minutes per game? What about fitting the robust 
version of loess to the entire data set? How do you account for the observed 
patterns? 

Exercise 5.15. The basketball data also include the player's age. Fit additive 
models using height, minutes per game, and age as predictors of points 
scored per minute and assists made per minute, respectively. Is age related 
to either of these response variables? Does it add anything to either fit? 

Exercise 5.16. Fit a loess estimate to the gasoline demand data of Figs. 5.35 
and 5.36, and plot two-dimensional slices of the estimated surface using 
perspective plots. Are your impressions similar to those from the additive 
model fit? 

Exercise 5.17. The school budget vote data of Fig. 5.38 also include in­
formation on the total proposed budget, percentage change in the budget, 
percentage change in the tax rate, and average full-value property wealth 
per student for each school district. Construct the best generalized additive 
model you can using these variables. Which variables add significantly to 
the fit, and which can be omitted? Do the results make intuitive sense for 
these data? 
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Chapter 6 

Smoothing Ordered Categorical Data 

6.1 Smoothing and Ordered Categorical Data 

All the examples described in Chapters 2 - 4 referred to continuous data 
and estimation of a smooth density function j. This is reasonable, since 
smoothness and continuity would seem to be naturally linked to each other. 

Consider now a one-dimensional categorical variable, where the sam­
ple space consists of K cells, and ni observations fall in the ith cell, 
i = 1, ... , K, with I:; ni = n the sample size. The vector p = {pd rep­
resents the probability of an observation falling in a given cell. There are 
two obvious arguments against smoothing data of this type: 

(1) The discrete nature of the data means that no sensible concept of 
"smoothness" exists (since the idea of "nearby" values being similar 
to each other is essential to the idea of smoothness). 

(2) The observed cell frequencies Pi = ndn are already adequate esti­
mates of the cell probabilities. 

Neither of these arguments completely removes the possible benefits of 
smoothing. A categorical variable where the categories do not have any nat­
ural ordering is called a nominal variable (examples would be the religion or 
nationality of the respondent to a survey). For such data, smoothing is not 
very helpful, since it is very difficult to define how "close" two categories 
are (since their ordering is arbitrary). 

A categorical variable where the categories do have a natural ordering, 
called an ordinal variable, is a very different matter. Such a variable can 
arise as a discretization of an underlying continuous variable (for example, 
o < x :s: 10; 10 < x :s: 20; 20 < x :s: 30, and so on) or as an inherently 
discrete, but ordered, set of categories (for example, strongly disagree; dis­
agree; no opinion; agree; strongly agree). For such a variable, smoothing 
makes sense, as it is likely that the number of observations that fall in 
a particular cell provides information about the probability of falling in 
nearby cells as well. For example, if the variable represents a discretization 
of a continuous variable with smooth density j, the probability vector p 
also will reflect that smoothness, with Pi being close to Pj for i close to j. 
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The second argument against smoothing is valid, but only when p is a 
good estimator of p. The Law of Large Numbers states that Pi is a consis­
tent estimator of Pi as long as ni -> 00 as n -> 00. From a practical point 
of view, this corresponds to the sample size n being large compared with 
the number of cells K. In many situations, however, such as for multidi­
mensional tables, the number of cells is close to (or even greater than) the 
number of observations, resulting in many small (or zero) cell counts. Such 
a table of counts is called a sparse table. For such tables, Pi is not a good 
estimator of Pi, as the usual asymptotic approximations do not apply. 

Consider Table 6.1. The table gives three discretizations of data repre­
senting the monthly salary of 147 nonsupervisory female employees holding 
the Bachelors (but no higher) degree who were practicing mathematics or 
statistics in 1981. Despite their inherently continuous nature, these data 
were given in discretized form in the original data source. Figure 6.1 gives 
the corresponding frequency estimates as solid lines connecting the esti­
mated cell probabilities (the circles). The 6-cell table is not at all sparse, 
and the cell frequencies highlight a smooth pattern of the salaries, peaking 
in the third cell ($1751 ~$2150), with a noticeable bulge around the fifth cell 
($2551 ~$2950). 

The cell frequencies in the 12-cell table reflect the same general pat­
tern, but sparseness now causes roughness in the probability estimates. In 
particular, there are four modes in p, and it is unlikely for them to all be 
genuine. 

In the 28-cell discretization (the resolution given in the original source), 
sparseness has obscured almost all the structure, except for the peak around 
$1900. There are many spurious modes, making it difficult to get an im­
pression of the general pattern of probabilities. 

Table 6.1. Discretizations of salary data (6 cells and 12 cells). 

6 cells 12 cells 

Salary ni Salary ni Salary ni 

1 951~1350 11 1 951~1150 6 7 2151~2350 17 
2 1351~1750 27 2 1151--1350 5 8 2351~2550 10 
3 1751~2150 45 3 1351~1550 12 9 2551~2750 14 
4 2151~2550 27 4 1551~1750 15 10 2751--2950 11 
5 2551~2950 25 5 1751-1950 30 11 2951~3150 6 
6 2951~3750 12 6 1951--2150 15 12 3151~3750 6 
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Table 6.1( cont.). Discretization of salary data (28 cells). 

28 cells 

Salary ni Salary ni Salary ni 
1 951-1050 5 11 1951-2050 6 20 2851-2950 5 
2 1051-1150 1 12 2051-2150 9 21 2951-3050 4 
3 1151-1250 0 13 2151--2250 5 22 3051-3150 2 
4 1251-1350 5 14 2251-2350 12 23 3151-3250 1 
5 1351-1450 2 15 2351-2450 7 24 3251-3350 2 
6 1451-1550 10 16 2451-2550 3 25 3351-3450 0 
7 1551-1650 5 17 2551-2650 10 26 3451-3550 1 
8 1651-1750 10 18 2651-2750 4 27 3551-3650 1 
9 1751-1850 10 19 2751-2850 6 28 3651-3750 1 

10 1851-1950 20 

Smoothing methods provide a way around this problem. Since it is 
reasonable to assume that p changes smoothly as salary increases, infor­
mation in nearby cells can be "borrowed" to help provide more accurate 
estimation in any given cell (discretizing continuous data has already done 
a crude form of smoothing). Not surprisingly, modifications of the methods 
of earlier chapters can be used to accomplish this. 

6.2 Smoothing Sparse Multinomials 

Consider a one-dimensional table {ni}. The standard model for this random 
variable is a multinomial distribution with sample size n and probability 
vector p, with log-likelihood 

K 

L ni logpi, 
i=l 

K 

subject to the constraint L Pi = 1 
i=l 

(ignoring constants). For this distribution E(ni) = npi, and hence E(Pi) = 
Pi. It is helpful to think of the vector p as being generated from an under­
lying smooth density f on [0,1] through the relation 

ilK 

Pi = 1 f(u)du; 
(i-1)IK 

in this way, the existence of derivatives of f corresponds to smoothness of 
p. Note that the Mean Value Theorem implies that 
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Fig. 6.1. Frequency estimates of cell probabilities for salary data based on dis­
cretizations into 6, 12, and 28 cells, respectively. 
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Pi = !(xi)/K, for some Xi E [(i -1)/K,i/K], (6.1) 

which is O(K- 1) for bounded f. 
A natural way to define a smooth estimator f> is by analogy with a 

regression of response values Pi on the equispaced design i/ K, i = 1, ... , K, 
since in a regression model E(Yi) = m(xi), the value to be estimated. So, a 
Nadaraya-Watson kernel estimator of Pi, as in Section 5.1, would be 

",K W (ilK-ilK) -. 
0J=1 h PJ 

Pi = K (ilK-ilK)' 
Li=l W h 

(6.2) 

where We-) is the kernel function. Here, the bandwidth h is in units cor­
responding to the proportion of cells in the table; so, for example, for a 
kernel that is positive on (-1,1), if h = .1, 20% of the cells are used in the 
smoothing in the interior, centered at cell i. 

Figure 6.2 gives kernel-based estimates for the three salary tables of 
Table 6.1, superimposed on dashed lines giving the frequency estimates. 
The kernel estimates are based on h = .075 (6 cells), h = .067 (12 cells), 
and h = .057 (28 cells), respectively. The 6-cell table is not sparse, and no 
smoothing is needed, so f> is close to p. For 12 and 28 cells, however, the 
smooth curves remove the spurious bumpiness in the frequency estimates 
and lead to the same general impressions for all three versions of the data. 

As would be expected, however, the kernel estimator (6.2) is subject to 
boundary bias. Table 6.2 gives counts that correspond to a discretization 
into 55 cells of 109 time intervals between explosions in mines involving 
more than ten men killed in Great Britain from December 8, 1875 to May 29, 
1951. Figure 6.3 is a plot of p, where the sparseness of the table is evident. 
While the estimated probabilities have a vaguely exponential shape (not 
surprisingly for time interval data), there is a jumble of structure around 
the tenth cell (300 days between explosions) that is difficult to resolve. 
The many zero probability estimates also are obviously not an accurate 
reflection of the true cell probabilities. 

The top plot of Fig. 6.4 is a kernel estimate for these data using h = 
.029. The estimate resolves the structure around the tenth cell as a clear 
bulge, and it is apparent that the underlying density is more long-tailed 
than an exponential density. 

Unfortunately, the kernel estimate exhibits boundary bias at the left 
boundary. The obvious corrective action is to move from the (kernel) lo­
cal constant estimator (6.2) to higher order polynomials, so that Pi is the 
constant term of the minimizer j3 of 
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Fig. 6.2. Kernel estimates of cell probabilities for salary data based on discretiza­
tions into 6, 12, and 28 cells, respectively. 
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20 30 

Cell 

40 50 

Fig. 6.3. Frequency estimates of cell probabilities for mine explosion data. 

The gains of p over p show up in asymptotics that represent sparse 
tables. These sparse asymptotics require the number of cells to become 
infinite as the sample size becomes infinite, thereby modeling the occurrence 
of large tables with relatively few observations in each cell. Even though 
the cell frequencies p are accurate when the table size is small compared 
with the sample size, under sparse asymptotics they are generally not even 
consistent, in the sense that if K and n both become infinite at the same 
rate, 

sup [Pi - 1[ =I op(l) 
l::::i::::K Pi 

(assuming f is bounded below, so that infiPi > 0). Squared error analysis 
is based on the mean sum of squared errors MSSE (MSSE(p) = E[I:i (Pi -
Pi)2]), and (6.1) shows that K x MSSE corresponds to the MISE measure 
used in continuous density estimation. The frequency estimator satisfies 
MSSE(p) = O(N- 1 ), so under sparse asymptotics, K x MSSE f+ O. 

In contrast, the local polynomial estimator p is consistent, with prop­
erties very similar to those for non parametric regression estimation. Say f 
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Table 6.2. Time intervals between mine explosions data. 

Days ni Days ni Days ni 
1 0-30 18 20 571-600 1 38 1111-1140 0 
2 31-60 14 21 601-630 0 39 1141-1170 0 
3 61-90 9 22 631-660 0 40 1171-1200 0 
4 91-120 8 23 661-690 1 41 1201-1230 1 
5 121-150 6 24 691-720 0 42 1231-1260 0 
6 151-180 4 25 721-750 0 43 1261-1290 0 
7 181-2lO 6 26 751-780 1 44 1291-1320 1 
8 211-240 7 27 781-810 0 45 1321-1350 0 
9 241-270 1 28 811-840 0 46 1351-1380 1 

10 271-300 6 29 841-870 0 47 1381-14lO 0 
11 301-330 7 30 871-900 0 48 1411-1440 0 
12 331-360 5 31 901-930 1 49 1441-1470 0 
13 361-390 5 32 931-960 0 50 1471-1500 0 
14 391-420 0 33 961-990 0 51 1501-1530 0 
15 421-450 0 34 991-lO20 0 52 1531-1560 0 
16 451-480 2 35 lO21-lO50 0 53 1561-1590 0 
17 481-5lO 1 36 lO51-lO80 0 54 1591-1620 1 
18 511-540 1 37 lO81-11lO 0 55 1621-1650 1 
19 541-570 1 

has t+1 uniformly continuous derivatives, and h -> 0 with hK -> 00. Then, 
for t odd, the MSSE for the tth-degree local polynomial estimator satisfies 

MSSE(') =~ [ht+l /1t+1 (WCt»)] 2 J J(t+ll(u)2du 
P K (t + I)! 

+ R~~i2) +o[h2t+2 K- 1 +(nhK)-1] (6.3) 

(t is used here to avoid confusion with the probability vector p). 
The correspondence to the asymptotic MISE for a tth degree local poly­

nomial regression estimator given in (5.12) is obvious, as K x MSSE equals 
MISE, with J taking the place of m (recalling that here W is the kernel 
function and t is the degree of the polynomial). A similar correspondence 
occurs for even t, with even degree estimators (such as the kernel estimator 
(6.2)) suffering from boundary bias compared with the next highest (odd) 
degree (the boundary properties correspond to those given for nonparamet­
ric regression estimation in Section 5.2.3). The bandwidth that minimizes 
the leading terms of (6.3) is 
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Fig. 6.4. Local polynomial estimates for mine explosion data. The dashed line 
represents the frequency estimates. Top: local constant (Nadaraya-Watson-type) 
estimate. Bottom: local linear estimate. 
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Fig. 6.5. Local constant (x) and local linear (0) estimates of cell probabilities 
for mine explosion data superimposed on same plot. 

[ 
(t + 1)(t!)2 R(W(t» ] 1/(2t+3) 

ho -
- 2nJlt+1(W(t»2 J f(t+1) (U)2 du ' 

(6.4) 

which shows that the optimal MSSE converges to zero at the optimal 
rate of O(n-(2t+2)/(2t+3) K-l) (so, for local linear estimation, the rate is 
O(n- 4/ 5 K- 1». 

The bottom plot in Fig. 6.4 illustrates the benefits of moving from the 
local constant to the local linear estimator. The estimators are virtually 
identical over all the cells, except at the left boundary, where the local 
linear estimate no longer suffers from boundary bias. Figure 6.5 makes the 
relationship between the two estimators clearer. Here the local constant 
estimates are marked with the symbol x, while the local linear estimates 
are marked with the symbol o. The close correspondence over all cells but 
the left boundary cells is obvious, as is the boundary bias of the local 
constant estimates in the left boundary region. 
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Fig. 6.6. Frequency estimates of cell probabilities for calcium carbonate data. 

The form of the MSSE (6.3) shows that higher order local polynomials 
can achieve reduced bias if f is smooth enough (although at the cost of 
increased variance in the boundary region). Table 6.3 and Fig. 6.6 give a 
50-cell multinomial that represents the range of percentage concentrations 
of calcium carbonate for 52 sets of 5 samples each, taken from a mixing plant 
ofraw metal. The cell frequencies are virtually impossible to interpret, being 
far too rough. Figure 6.7 gives local linear and local quadratic estimates for 
these data, using h = .128. The estimates are similar for cells 1 through 
20, and both reflect an asymmetry in the cell probabilities, but the local 
quadratic estimate levels out for cells 35 through 45, which (based on Fig. 
6.6) seems more reasonable than the steady decrease in the local linear 
estimate. 

As was noted in Chapter 5, higher order local polynomial regression 
estimators are subject to spurious bumpiness in the tails because of in­
creased variability. Local polynomial estimators for multinomials behave 
similarly. Figure 6.8 is a plot of local cubic cell probability estimates for 
the calcium carbonate data, again using h = .128. The general pattern is 
the same as for the local quadratic estimates, but there are now dips at 
both ends, presumably because of increased variability. For these data, the 
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Table 6.3. Calcium carbonate concentration data. 

Concent. ni Concent. ni Concent. ni 

1 .100-.112 1 18 .305-.316 4 35 .509-.520 0 
2 .113-.124 2 19 .317-.328 3 36 .521-.532 0 
3 .125-.136 1 20 .329-.340 0 37 .533-.544 0 
4 .137-.148 1 21 .341-.352 1 38 .545-.556 3 
5 .149-.160 0 22 .353-.364 0 39 .557-.568 1 
6 .161-.172 1 23 .365-.376 4 40 .569-.580 0 
7 .173-.184 2 24 .377-.388 2 41 .581-.592 0 
8 .185-.196 3 25 .389-.400 2 42 .593-.604 0 
9 .197-.208 0 26 .401-.412 1 43 .605-.616 1 

10 .209-.220 3 27 .413-.424 3 44 .617-.628 0 
11 .221-.232 1 28 .425-.436 1 45 .629-.640 0 
12 .233-.244 1 29 .437-.448 0 46 .641-.652 0 
13 .245-.256 2 30 .449-.460 0 47 .653-.664 0 
14 .257-.268 1 31 .461-.472 0 48 .665-.676 0 
15 .269-.280 1 32 .473-.484 0 49 .677-.688 1 
16 .281-.292 3 33 .485-.496 1 50 .689-.700 0 
17 .293-.304 1 34 .497-.508 0 

local quadratic estimate seems to be the best choice. 
Equation (6.4) provides one way to try to choose the bandwidth h. A 

plug-in method would substitute an estimate for J j(t+ll(u)2du into (6.4). 
An alternative that is likely to work reasonably well is to take advantage 
of the close connection of the estimator to a regression estimator and use 
a regression-based method on the data {i/K,pJ. The bandwidths for the 
local linear estimates in Figs. 6.4 and 6.7 were chosen this way, using the 
local linear plug-in method described in Chapter 5. 

6.3 Smoothing Sparse Contingency Tables 

The problems associated with sparse multinomials are magnified when mov­
ing to higher dimensions (contingency tables). Since the number of cells in 
a table increases multiplicatively with the dimension of the table, higher 
dimensional tables are more likely to be sparse. Fortunately, smoothing 
methods extend directly to higher dimensions as well. Not surprisingly, 
however, so does the curse of dimensionality. 
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Fig. 6.7. Local linear (top) and local quadratic (bottom) estimates of cell prob­
abilities for calcium carbonate data. 
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Fig. 6.S. Local cubic estimates of cell probabilities for calcium carbonate data. 

Local polynomial estimators generalize to d-dimensional tables in the 
same way that they do for non parametric regression with multiple predic­
tors. For example, the local linear estimator Pij for the probability of falling 
in the (i,j)th cell of an R x C two-dimensional table {nij} is (30, where j3 
is the minimizer of 

RC[ (. k) (. £)]2 LL Pk£- f30 - (31 i-Ii - (32 ~ - C WhR,hc(i,j,k,£,R,C), 
k=l £=1 

where WhR,hc (i, j, k, £, R, C) is a two-dimensional kernel function (a prod­
uct kernel, for example) and hR and hc are the smoothing parameters for 
rows and columns, respectively. 

Just as was true for regression and density estimation, the higher the 
dimension of the table, the more slowly the variance converges to zero, be­
cause of the relative lack of local information in higher dimensions. The vari­
ance is now O[(nh1'" hdK)-l], where K is the total number of cells in the 
table, reflecting the increasing difficulty in estimation in high dimensions 
(that is, the curse of dimensionality). So, for example, for a two-dimensional 
table where Rand C both become infinite at a rate proportional to Vn (so 
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Table 6.4. MBA survey data. Rows represent opinion of importance of statistics 
in business education from least to most important; columns represent opinion 
of importance of economics. The numbers outside the table represent the scale 
used to define the rows and columns (1 = completely useless; 2 = useless; 3 = 
little importance; 4 = neutral; 5 = somewhat important; 6 = very important; 7 
= absolutely crucial). 

Economics 

1 2 3 4 5 6 7 

2 0 1 0 0 0 1 0 

3 0 0 0 1 0 0 0 

4 0 0 3 6 4 0 0 

Statistics 

5 0 0 1 4 7 4 0 

6 1 0 0 2 6 10 1 

7 0 0 0 0 0 2 1 

that the total number of cells in the table increases at the same rate as the 
sample size), the optimal MSSE rate is O(n- 2 / 3 K- 1 ), which is attained 
when h = O(n- 1/ 6 ) for both rows and columns, which can be compared to 
the optimal O(n- 4 / 5 K- 1 ) rate in one dimension. 

Table 6.4 is a 6 x 7 cross-classification of the responses of 55 first 
year MBA students at New York University's Stern School of Business in 
1991 to questions about the importance of statistics (rows) and economics 
(columns) in business education. Responses were coded on a 7-point scale 
from "completely useless" to "absolutely crucial" (no students rated statis­
tics "completely useless"). 

This table is moderately sparse, the results of which can be seen in the 
top plot of Fig. 6.9. This is a shade plot (sometimes called an image plot), 
where greyscale shading represents the counts in the contingency table, with 
higher counts corresponding to a darker shade. The shade plot highlights a 
generally positive association between ratings of statistics and economics, 
with the highest counts associated with ratings of 5 or 6 on both scales. 
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Fig. 6.9. Shade plots of unsmoothed counts (top) and local linear smoothed 
counts (bottom) for MBA survey data. 
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Still, the progression from light to dark in the plot is not completely smooth. 
There are also three cells that are outlying compared with the others (the 
darker shadings along the left and top boundaries), corresponding to a 
student with a low opinion of both statistics and economics, a student with 
a low opinion of statistics but a high opinion of economics, and a student 
with a low opinion of economics but a high opinion of statistics, respectively. 

The shade plot in the bottom of Fig. 6.9 represents the smoothed 
(truncated) counts (that is, In x PijJ, where l·J is the greatest integer 
function) based on a local linear loess estimate with span equal to .25 
(that is, the tricube-based kernel covers 25% of the cells). The estimated 
probability matrix is smoother than before (reflecting the not unexpected 
positive association between the variables), and the counts in the three 
unusual cells have been smoothed over to be more consistent with the cells 
around them. 

One unfortunate property of the local polynomial estimator that is also 
noticeable in the shade plot is that the estimated cell probabilities can be 
negative (for the local linear estimator, because of boundary bias correc­
tion). The three cells with the lightest shading have probability estimates 
less than zero, which is meaningless. 

For this table, boundary bias correction is apparently not needed, 
as the probabilities decrease smoothly towards the boundaries. Thus, a 
smoothed fit with only nonnegative probabilities can be achieved by using 
a local constant (kernel) estimator. Figure 6.10 gives a shade plot of a local 
constant loess fit with span equal to .2. The high probability region around 
answers (6,6) is evident, with a slow drop in probabilities in the direction of 
positive association (with a slightly faster dropoff to (7,7), due, no doubt, 
to that being the highest rating possible) and a fast drop in probabilities 
in the direction of negative association. 

More complex structure in the probability matrix might require the 
use of higher degree polynomials. Table 6.5 refers again to the salary data 
of Table 6.1, except that now the 147 respondents have been cross-classified 
into a 12 x 10 contingency table, with the columns representing the number 
of years since receiving the Bachelor's degree. It is very difficult to see the 
relationship between the variables from the table, as it is very sparse. Figure 
6.11, which gives shade plots for this table, reinforces this impression. The 
top plot represents the unsmoothed counts, and other than a somewhat 
weak positive association between salary and years since degree, little else 
is apparent from the table. 

The bottom plot in Fig. 6.11 is a shade plot of the smoothed counts 
based on a local quadratic loess fit with span equal to .35. The smoothed 
counts are far more evocative of the pattern in the table. There is a high 
probability region centered at 0-5 years since degree and $1351-$2150 
monthly salary and a generally positive association between the two vari­
ables (as would be expected). The smoothed counts also suggest bimodality 
in the probability matrix, with a secondary mode (representing more ex-
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Fig. 6.10. Shade plot of local constant smooth counts for MBA survey data. 

perienced, and higher paid, workers) centered at 15-17 years since degree 
and $2351-$2750 monthly salary. 

Unfortunately, this estimate also includes negative values (the eight 
cells with the lightest degree of shading along the left and upper bound­
aries). This could be avoided by using a local constant estimator, but that 
estimator cannot achieve the improved bias properties of the local quadratic 
estimator (squared bias being O(hS K- 1 ) in the interior). It is possible, how­
ever, to achieve this rate while still guaranteeing that all cell probability 
estimates are nonnegative, by using a geometric combination estimator, as 
in (3.17). That is, for (possibly multidimensional) cell I, the probability 
estimator equals 

(6.5) 

where p(Ilh) is a (possibly boundary bias-corrected) kernel estimator us­
ing bandwidth (vector) h. This estimator improves on the local con­
stant and linear estimators, giving sum of squared errors SSE(p*) = 
Op(n-s/(d+8)K- 1). For d = 2, this is Op(n-4 / 5K- 1), an improvement over 
the usual O( n -2/3 K- 1 ) rate and the same as the rate for the local cubic 
estimator (and interior rate for the local quadratic). 
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Table 6.5. Salary data. Rows represent salary; columns represent the number of 
years since receiving the Bachelor's degree. 

Salary Years since degree 

0- 3- 6- 9- 12- 15- 18- 24- 30- > 35 

2 5 8 11 14 17 23 29 35 

951-1150 5 0 1 0 0 0 0 0 0 0 

1151-1350 2 1 0 0 0 0 0 2 0 0 

1351-1550 5 1 3 2 0 0 1 0 0 0 

1551-1750 5 5 2 1 0 1 0 1 0 0 

1751-1950 9 9 5 0 2 2 1 1 1 0 

1951-2150 3 5 2 1 2 0 1 0 0 1 

2151-2350 0 1 4 3 2 1 3 0 2 1 

2351-2550 0 0 4 0 1 2 2 0 0 1 

2551-2750 0 0 2 2 0 5 1 2 1 1 

2751-2950 0 0 1 0 0 1 4 0 2 3 

2951-3150 1 0 1 0 1 1 1 0 1 0 

3151-3750 0 0 0 0 0 0 5 0 0 1 

 
PAGE 243 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



234 Chapter 6. Smoothing Ordered Categorical Data 

Un smoothed counts 

0-2 3-5 6-8 12-14 18-23 30-35 

Years since degree 

Smoothed counts 

0-2 3-5 6-8 12-14 18-23 30-35 

Years since degree 

Fig. 6.11. Shade plots of unsmoothed counts (top) and local quadratic smoothed 
counts (bottom) for salary data. 
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Fig. 6.12. Shade plot of smoothed counts using geometric combination estimate 
for salary data. 

Figure 6.12 gives a shade plot for an application of this estimator to 
the salary data. The underlying estimates are local constant loess estimates 
with spans of .13 and .52, respectively (doubling the bandwidth in both 
dimensions corresponds to multiplying the span by four). The smoothed 
counts are similar to those of the local quadratic estimate in Fig. 6.11, with 
the same indications of bimodality and positive association but now with 
no negative cell probability estimates. 

The informal exploratory analysis given here is not typically the fo­
cus of contingency table analysis. Rather, such tables are usually analyzed 
through the fitting of models (often log-linear) that reflect different associ­
ation patterns between the rows and columns. Standard analysis, however, 
is based on the usual asymptotics where the number of observations in each 
cell is large and is thus inappropriate for sparse tables. Smoothing-based 
model fitting for such tables will be discussed briefly in Chapter 7. 
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6.-4 Categorical Data, Regression, and Density 
Estimation 

Categorical data smoothing provides a natural bridge between nonpara­
metric regression and density estimation. As was noted in the two previous 
sections, contingency table smoothing is operationally very similar to non­
parametric regression, with the cell relative frequencies being the response 
values and the cell indices being the predictor values. Multinomial and con­
tingency table smoothing is also closely connected to density estimation, 
through (6.1), with an estimate of a cell probability Pi giving a density 
estimate for J(Xi) (it is easiest to take J to be supported on [0,1], so that 
Xi = i/ K, but any arbitrary interval can be treated by a simple translation, 
with the estimated density on [a, bJ being the estimated density on [0,1] di­
vided by b - a). This is the essence of the computational efficiencies that 
arise from calculating density estimates on binned data. 

Thus, in a sense all these smoothing problems can be treated as special 
cases of a general regression problem, with the response variable possibly 
being a true response y or a set of cell relative frequencies p. If the bins 
are so narrow that only one observation can fall into any bin (except for 
exact duplications to the resolution of the data), the resultant regression 
estimator corresponds exactly to a density estimator. For example, the uni­
variate (multinomial) local linear regression-based density estimator that 
is the constant term of the minimizer of 

becomes equivalent to the constant term of the minimizer of (3.24), 

as the bins narrow, substituting i / K for X and j / K for u. This local polyno­
mial estimator is equivalent to the generalized jackknifing boundary kernel 
given by (3.12), so higher odd order local polynomials correspond to bound­
ary bias correction for higher order kernel estimators, and multivariate lo­
cal polynomial regression-based density estimators correspond to boundary 
bias-corrected multivariate density estimators, which can be calculated us­
ing available local polynomial regression software. 

Figure 6.13 gives an illustration of the regression-based density esti­
mator for the mine accident data previously examined in Figs. 3.7, 3.10, 
3.11, and 3.18 - 3.20. The data are binned to the integer level, which is the 
resolution of the data. The circles in the plot are the frequency estimates 
for the bins (which correspond to the response values in the regression), and 
the density estimate is a local linear loess estimate with span equal to .4. 
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Fig. 6.13. Local linear loess density estimate for mine accident data. 

The form of the estimate is very similar to the previous versions, with the 
roughly exponential shape and bulge around 10-20 days between accidents 
apparent. 

Regression-based density estimation is probably even more useful for 
multivariate data, where boundary bias correction results have lagged be­
hind those of univariate estimation. The top plot of Fig. 6.14 is a scatter 
plot of the percentage of people in rural areas with access to safe water in 
1985 (horizontal axis) and in 1990 (vertical axis) for 70 countries reporting 
the values. It is apparent that there is a positive association between the 
two variables, but the scatter plot does not reveal any structure past that. 

The bottom plot in Fig. 6.14 is a contour plot for a regression-based 
local quadratic loess estimate with span equal to .3. The basis of the es­
timate is a 10 x 10 table of counts, so that each bin has width 10, or ten 
times the resolution of the data. Despite the coarseness of the grid, the 
density estimate shows clear trimodality in the density, corresponding to 
countries with very little rural access to safe water in both years (this in­
cludes countries such as Afghanistan, Ethiopia, and Nicaragua), countries 
with a moderate level of access in both years (including Algeria, Honduras, 
and the Philippines), and countries with high access in both years (such as 
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Fig. 6.14. Rural access to safe water data. Top: Scatter plot of rural access in 
1990 versus rural access in 1985. Bottom: Contour plot of local quadratic loess 
density estimate. 
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Fig.6.15. Perspective plot of local quadratic loess density estimate for water 
access data. 

Bahrain, Cyprus, and Tonga). Another noteworthy property of the density 
is that the modes corresponding to low and moderate access are centered 
at higher values for 1990 than for 1985, suggesting an encouraging pattern 
of improved access over the five years. 

The high access mode is difficult to assess in the contour plot, since it 
is at the edge of the support of the data. Figure 6.15 gives a corresponding 
perspective plot, which shows the trimodality, including the high density 
"point" at the upper boundaries of the two variables. 

A drawback to the regression-based density estimator, and the closely 
related local polynomial multinomial and contingency table estimator, is 
that density and probability estimates can be negative. Figure 6.16 is a 
local quadratic loess estimate for the mine accident data with span equal 
to .7. The form of the estimate is similar to that of the local linear loess 
estimate in Fig. 6.13, but the density estimate is now negative for values 
between 30 and 40 days. The bivariate local quadratic loess density estimate 
for the water access data also has negative regions, which correspond to the 
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Fig. 6.16. Local quadratic loess density estimate for mine accident data. 

lowest density contours in Fig. 6.14 and are also apparent in the perspective 
plot of Fig. 6.15. 

One way to avoid these negative values is to use a geometric combi­
nation estimator, as in (6.5) and Fig. 6.12. A more general approach is to 
recognize that the main justification for the use of local least squares in the 
local polynomial regression objective function is the assumption that regres­
sion errors are normally distributed, since least squares then corresponds 
to maximum likelihood. This is not true for multinomial data, and using an 
objective function tied to the proper likelihood function is more sensible. 
That is, the appropriate regression analogy is not with least squares regres­
sion, but with generalized regression, in the sense of generalized linear and 
additive models, as in Section 5.7. 

It is helpful to formulate this problem in terms of a Poisson model, 
rather than a multinomial model (the multinomial vector can be viewed 
as a set of Poisson random variables, conditional on L: ni = n). The log­
likelihood is then 

K 

2:[nj log(npj) - npj] 
j=l 

(6.6) 

(ignoring constants). The canonical link for the Poisson distribution is the 
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log link, so the local log-likelihood has the form 

L' ~ t,{ nj [fio + H, (~ - fS] 
[ ( . . ) t] } ( "j K "j K) - exp f30 + ... + f3t ~ - ~ W Z h J (6.7) 

for cell i. The density estimate is then exp(,Bo), where j3 is the maximizer 
of (6.7). This guarantees that the estimate will be nonnegative. 

For K -'t 00, npj ~ nf(xj)1 K as in (6.1), so (6.6) is approximately 

The generalized local log-likelihood (6.7) is thus approximately 

L' ~ t, W CIK ~ jlK) nj log [nf};j)] 

- n tw CIK ~ jlK) f~) 
)=1 

~ ~w (x ~ Xi) 10g[f(Xi)]- n J W (x h u) f(u)du (6.8) 

(ignoring constants and changing to a continuous scale by substituting x 
for ilK and approximating the second sum with an integral). Equation 
(6.8) is identical to the local likelihood (3.18) for density estimation, so a 
Poisson-based nonparametric regression on cell frequencies for a fine grid is 
an approximate local likelihood density estimator. Besides sharing the good 
properties of that estimator, the approximate estimator effectively is always 
defined, since the regression estimator on the equispaced grid exists as long 
as h is large enough to include the minimal number of grid points needed 
for the local regression estimate to be defined (for local linear estimation, 
for example, the span of the estimate must be at least two grid points). 

Figure 6.17 gives the approximate local (quadratic) likelihood estimate 
for the mine accident data that corresponds to the local (quadratic) least 
squares estimate of Fig. 6.16. Not surprisingly, the two estimates have al­
most identical forms, but the approximate local likelihood estimate is non­
negative, as it must necessarily be. Figure 6.18 is a variability plot for this 
estimate, which has the expected properties of widening at the boundary 
and in the region of the bulge, without the disquieting jaggedness of the 
nearest neighbor-based local quadratic variability plot given in Fig. 3.18. 
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Fig. 6.17. Approximate local (quadratic) likelihood density estimate for mine 
accident data. 

The local likelihood density estimator discussed in Chapter 3 allows 
the local degree of smoothing to vary by using nearest neighbor weights, 
thereby smoothing less in high density regions and more in low density 
regions. Nearest neighbor weights do not do this for the approximate local 
likelihood estimator, since the "observations" are equispaced grid points, 
but the same goal can be accomplished by locally varying the bandwidth 
in an appropriate way. 

Figure 6.19 shows how this can be done. The density estimate given is 
an approximate local (quadratic) likelihood estimate for the racial distri­
bution data. Figure 3.17 gave the local quadratic estimate for these data 
using a 70% nearest neighbor span, which allowed the peak on the right 
side to be highlighted without spurious bumpiness in the low density region 
to the left. The approximate estimate in Fig. 6.19 is virtually identical to 
that in Fig. 3.17 and is based on an approximate local quadratic likelihood 
loess fit with spans equal to .8 for 0 :::; x :::; .461, .5 for .461 < x :::; .81, 
and .2 for x > .81, respectively. That is, by locally varying the bandwidth, 
there is more smoothing at the lower density regions and less smoothing at 
the high density regions. 
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Fig. 6.18. Variability plot of approximate local (quadratic) likelihood density 
estimate for mine accident data. 

The approximate local likelihood density estimator is of local polyno­
mial form, but estimators of the same type that are not based on local 
polynomials can be constructed. Any non parametric regression estimate 
that can be adapted to the generalized likelihood framework could be used 
to fit a smooth curve to the Poisson mean function in (6.6), yielding a 
density estimate. In particular, fitting a generalized regression model us­
ing smoothing splines instead of local polynomials is conceptually similar 
to the logspline estimator discussed in Section 3.5, although the details of 
implementation are considerably different. 

Background material 

Section 6.1 

Simonoff (1995c) gave a detailed account of smoothing methods for categor­
ical data. He showed that suggested approaches have close ties to other areas 
of statistical methodology, including shrinkage estimation, Bayes methods, 
penalized likelihood, splines, and kernel density and regression estimation. 
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Fig. 6.19. Approximate local (quadratic) likelihood density estimate with varying 
bandwidth for racial distribution data. 

The salary data, in its 28-cell form, came from Department of Energy 
(1982). Simonoff and Tsai (1991a) gave the 6-cell version, while Simonoff 
(1987) gave the 12-cell version. 

Section 6.2 

Simonoff (1983) gave the 55-cell discretization of the mine explosion data. 
Simonoff (1985) included the 50-cell discretization of the calcium carbonate 
data. 

Aitchison and Aitken (1976) proposed the use of kernel estimators 
for multinomials with unordered categories (that is, a nominal categorical 
variable). The kernel gives higher weight to Pi in estimation of Pi and lower, 
constant, weight to all other cell frequency estimates. This has the effect 
of shrinking the frequency estimates toward a uniform distribution, and it 
can be shown that a shrinkage factor (which is a function of the unknown 
probabilities) exists such that the MSSE of the kernel estimator is smaller 
than that of the frequency estimator (Brown and Rundell, 1985). 

When the categories are ordered, a kernel function that takes the or­
dering into account is sensible. Such a kernel should have the property that 
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W(x) decreases smoothly as Ixl increases. Aitchison and Aitken (1976) pro­
posed such weights for the case K = 3, which Aitken (1983) extended to 
arbitrary K cells. Habbema, Hermans, and Remme (1978), Titterington 
(1980), and Wang and Van Ryzin (1981) gave other specific suggestions. 
Such an estimator can be viewed as a discretization of a continuous density 
estimator (as well as through analogy with regression), and Solow (1995) 
defined a categorical data smoother by first using a kernel estimator on 
continuous data and then integrating the resultant j over the range of a 
given cell to estimate the cell probability. 

Aitchison and Aitken (1976) proposed choosing the smoothing param­
eter using likelihood cross-validation, which leads to a consistent estimator 
of p under standard asymptotics (Bowman, 1980) but can behave errati­
cally when there are small cell counts in the table (Hall, 1981). For this 
reason, Titterington (1980), Hall (1981), Bowman, Hall, and Titterington 
(1984), and Brown and Rundell (1985) proposed squared-error rules, such as 
least squares cross-validation. Titterington and Bowman (1985) performed 
a small Monte Carlo study comparing several different kernels and smooth­
ing parameter rules. 

Fienberg and Holland (1973) and Bishop, Fienberg, and Holland (1975, 
Chapter 12) introduced the idea of sparse asymptotics, where the number 
of cells becomes infinite at the same rate as the sample size. They studied 
the properties of shrinkage estimators Pi = (ni + O:i)/[I:j(nj + O:j)] and 
showed that certain choices of Q lead to smaller sparse asymptotic MSSE 
than that of p. These estimators are still not sparse asymptotic consistent, 
however. 

Burman (1987a) and Hall and Titterington (1987b) first examined the 
sparse asymptotic properties of kernel estimators. Burman's proposed ker­
nel estimator was of the Nadaraya-Watson (local constant) form, and he de­
rived the asymptotic form of its MSSE assuming h --+ 0 with hK --+ 00. Bur­
man avoided boundary bias problems by assuming that 1'(0) = 1'(1) = 0, 
and proposed choosing h using AfG. 

Hall and Titterington (1987b) proposed a kernel estimator of the 
Priestley-Chao form, 

'_{--W(i/K-j/K)_ 
P2 - 6 hPj. 

i=l 

Note that the Pi do not necessarily sum to 1 (and usually sum to less than 1). 
Hall and Titterington derived the optimal convergence rate of any estimator 
of p and showed that the kernel estimator achieves it. Specifically, say f 
has s bounded continuous derivatives on (-00,00) and vanishes outside a 
bounded interval. This condition imposes very strong boundary conditions 
on the true density; for example, for s = 2, it requires that f, 1', and f" all 
become zero at the boundary. Let b satisfy SUPi Pi :::; Gb for some constant 
G (roughly speaking, b is equivalent to K- 1 ). Then, if b --+ 0 as n --+ 00, 
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the optimal rate of MSSE of any estimator :f> equals 

MSSE( A) _ {o(n- 1), if n1/(2s+1)8 is bounded away from zero, 
p - O(n-2s /(2s+1)8), if n 1/(2s+1)8 ~ 0. 

Thus, if the multinomial is not overly sparse, with K increasing at a rate 
no faster than n 1/(2s+1) , the optimal convergence rate of MSSE is O(n- 1), 

which p achieves. Any greater sparseness, however, requires estimators 
that smooth by borrowing information from nearby cells. If f has two 
bounded continuous derivatives, the optimal rate is O(n-4 / 5 K- 1 ), as the 
local constant (assuming boundary conditions) and local linear estimators 
achieve. Hall and Titterington proposed using least squares cross-validation 
to choose h and proved its asymptotic optimality. 

The boundary conditions needed for the kernel estimators to achieve 
consistency (Hall and Titterington) or optimal MSSE (Burman) are often 
not satisfied. Dong and SimonofI (1994) derived boundary kernels (based 
on the Hall and Titterington kernel estimator) that avoid the need for 
the boundary conditions. At the left boundary, the kernel weights are con­
structed from integration of a boundary kernel function that satisfies 

j q Wq(u) = 1; jq uwq(u)du = 0; 
-1 -1 

j q U2Wq(u)dU = G.q f=. 0; jq Wq(U)2 du < 00; 
-1 -1 

Wq ~ W as q ~ 1 

(right boundary kernels are defined analogously). Dong and SimonofIproved 
that the boundary kernel estimator achieves MSSE = O(n-4 / 5 K- 1 ) with­
out restrictive boundary conditions. Dong and Ye (1996) advocated choos­
ing the kernel to minimize asymptotic variance, which amounts to using 
a boundary-corrected uniform kernel. Rajagopalan and Lall (1995) defined 
a discrete kernel estimator where the coefficients of the quadratic kernel 
change for each cell to guarantee that the required moment conditions on 
the kernel are satisfied exactly (the bandwidth is also constrained so that 
hK is an integer). 

Aerts, Augustyns, and Janssen (1997a) examined the properties oflocal 
polynomial estimators for sparse multinomials. They derived the theoretical 
properties of the estimator and showed its improved performance over the 
local constant estimator in a small Monte Carlo study. 

SimonofI (1983) gave the first demonstration of sparse asymptotic con­
sistency for an estimator, using a penalized likelihood approach. The esti­
mator is the maximizer of 

K K-1 

L ni log Pi - {3 L (log Pi -logPH1)2, {3 > 0, 
i=1 i=1 
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where (3 is a smoothing parameter. Assuming appropriate smoothness of f, 
and the boundary conditions 1'(0) = 1'(1) (these conditions were mistak­
enly omitted in the paper), the maximum penalized likelihood estimator p 
is sparse asymptotic consistent, with rate 

sup Ipi - 11 = Op[K-2/5(logK)2/5]. 
l:::;i:::;K Pi 

Monte Carlo simulations support the improved performance of p over the 
frequency and shrinkage estimators. 

As always, penalized likelihood estimators also can be justified on 
Bayesian grounds, with the penalty function being proportional to the 
logarithm of the prior density. Bayesian justifications for penalized like­
lihood estimation (and related estimators) for discrete data can be found 
in Leonard (1973), Thorburn (1986), Lenk (1990), and Granville and Ras­
son (1992). The discrete maximum penalized likelihood density estimator 
of Scott, Tapia, and Thompson (1980) also can be viewed as a penalized 
likelihood estimator for categorical data. 

Section 6.3 

Burman's (1987a) results on kernel estimation apply to d-dimensional ta­
bles, for general d. He showed that while the bias of the estimator remains 
O(h4K- 1), the variance is O[(nhdK)-l] (taking the smoothing parameters 
to be converging to zero at the same rate). This result still requires bound­
ary conditions (that all first partial derivatives are zero at the boundary). 
Dong and Simonoff (1995) described the construction of boundary kernels 
for d-dimensional contingency tables that achieve the same MSSE conver­
gence rate without requiring boundary conditions. 

Aerts, Augustyns, and Janssen (1997b) studied the properties of lo­
cal polynomial estimation for sparse multidimensional contingency tables. 
They showed that the asymptotic MSSE has a form similar to that of the 
AMISE in regression estimation, just as it does for one-dimensional data. 
Using the parameterization of Sections 4.2 and 5.7 for the multivariate ker­
nel Wand bandwidth matrix H, the asymptotic MSSE for the local linear 
estimator is 

R(W) h4 J 
AMSSE = nhdK + 4K {trace[AA' \72 f(U)]}2 duo 

Aerts et al. also described generalization of these results to higher order 
local polynomial estimators. 

Simonoff (1995c) gave the MBA survey data, while Simonoff (1987) is 
the source of the salary data. 

Dong and Simonoff (1995) proposed and analyzed the geometric com­
bination estimator for d-dimensional tables. They showed that if f has 
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bounded fourth partial derivatives, then the geometric combination es­
timator (6.5) using d-dimensional boundary kernels has SSE that con­
verges to zero in probability at the rate n-S/(d+S) K- 1 , while not yield­
ing nonnegative estimates. So, for example, for a one-dimensional table, 
SSE(p*) = Op(n-S/9 K- 1). This convergence in probability of SSE is not 
as strong as mean square convergence, which can be achieved under more 
restrictive conditions. If all second and third partial derivatives are zero 
in the boundary region, and d::; 4, then p* using non-boundary-corrected 
kernels has MSSE = O(n-S/(d+8) K-1), as expected. 

Simonoff (1987) first proposed the marginal/conditional estimator (de­
scribed in Chapter 4 for use with bivariate continuous data) for use with 
two-dimensional contingency tables. Let Pi. and P-j be the frequency esti­
mates of the marginal probabilities of falling in the ith row and jth column, 
respectively. Define P~, j = 1, ... , C, to be the penalized likelihood esti­
mates of the conditional probability of falling in the (i, j)th cell given being 
in the ith row (another one-dimensional multinomial smoother also could be 
used, but the MPLE was used in the paper). Similarly, let P~, i = 1, ... , R, 
be the penalized likelihood estimates of the conditional probability of falling 
in the (i,j)th cell given being in the jth row. The marginal/conditional es­
timator is Pij = (P~P~Pi.P-j) 1/2. Assuming appropriate smoothness and 
boundary conditions, if Rand C both become infinite at the rate Vii, then 

sup I
p2J - 11 = Op[n-1/5(1ogn)2/5]. 

2,J P2J 

Although this rate is slower than the corresponding rate for a product kernel 
estimator, Monte Carlo simulations indicate better performance, presum­
ably because of the locally adaptive nature of the estimator. 

Just as a smooth underlying one-dimensional probability vector can 
be viewed as locally uniform (showing that smoothing towards local uni­
formity is useful), so too a smooth underlying two-dimensional probability 
matrix can be viewed as exhibiting local independence. For this reason, 
Bayesian and penalized likelihood methods that shrink the frequency esti­
mates towards independence will result in smoother probability estimates. 
Leonard (1975), Laird (1978), Simonoff (1983), and Granville and Rasson 
(1995) gave examples of such estimators. 

A different kind of multidimensional contingency table structure is that 
of multivariate binary data. Here, observations fall in 2d cells, a number 
that can become very large as d increases, leading to very sparse tables. 
Aitchison and Aitken (1976) gave a kernel estimator for tables of this type, 
where the distance between two cells is a function of how many of the 
dimension entries (0 or 1) they have in common. That is, "closeness" of 
two cells is defined based on having common indices over many dimensions, 
rather than having close indices within a particular dimension. 

Grund (1993) examined the theoretical properties of the kernel esti­
mator for fixed dimension d, while Grund and Hall (1993) investigated the 

 
PAGE 258 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



Background material 249 

case of sparse tables. They defined smoothness of the underlying proba­
bilities through a smooth function of the distance between two cells, and 
showed that the superiority in MSSE of the kernel estimator over the fre­
quency estimator (as d increases) increases with the smoothness of the un­
derlying probabilities and the sparseness of the table. Grund and Hall also 
showed that minimizing the cross-validatory choice of smoothing parameter 
is asymptotically equivalent to minimizing the mean sum of squared error. 

Diaconis (1983) examined projection pursuit for categorical data. He 
showed that the "least interesting" projection for such data is uniform, 
rather than Gaussian, but did not examine sparse asymptotic properties or 
the best way to smooth the lower-dimensional projections. 

Fahrmeir and Tutz (1994, Sect. 5.2) discussed smoothed categorical 
regression estimators. These estimators are designed for regression data 
where the target variable is categorical and the predicting variables are 
either continuous or categorical. Kernel estimators combine local density 
estimation at a particular predictor value Xi with weighting across predictor 
values, using either continuous kernels or categorical kernels, as appropriate. 

Section 6.4 

The background material for Section 3.3.1 described the connection between 
the generalized jackknife boundary kernel and the local polynomial density 
estimator. In particular Fan, Gijbels, Hu, and Huang (1996) and Cheng, 
Fan, and Marron (1997) proposed constructing local polynomial density 
estimates using local polynomial regression estimates on binned data. World 
Bank (1994) gave the water access data. 

Cheng (1997) investigated plug-in bandwidth selection for the local lin­
ear density estimator. The selector is conceptually similar to the Sheather­
Jones selector hSJ but uses a plug-in estimate of R(f") that is based on 
local polynomial estimates instead of kernel estimates, thereby adapting to 
boundary effects. The resultant estimator satisfies h/ho - 1 = Op(n-<», 
where 0: = 5/14 if f f"(U)f(4) (u)du < 0 (which is true if the density has 
zero second and third derivatives at the boundary), the usual rate for hSJ, 
or 0: = 2/7 if f f"(U)f(4) (u)du > O. 

Wei and Chu (1994) gave a different method for adapting nonparamet­
ric regression methods to estimation of a density. The method uses a Taylor 
Series expansion to motivate a regression formulation based on the empir­
ical cumulative distribution function. The method is not based on binning 
the data. Wei and Chu report that the resultant density estimate can have 
a very rough appearance in boundary regions. 

Lindsey (1974a,b) proposed estimating a density using Poisson regres­
sion on binned data, although this was in the context of parametric, rather 
than nonparametric, modeling; see also Lindsey and Mersch (1992). Efron 
and Tibshirani (1996) also proposed using Poisson regression, to determine 
their semi parametric special exponential family estimate. Loader (1995) 
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gave an example of density estimation using a locally adaptive Poisson re­
gression estimate. Jones (1996) discussed the connections between the dif­
ferent versions of local likelihood density estimation and local polynomial 
density estimation. 

Computational issues 

Fortran code to calculate the one-dimensional boundary kernel estimates 
of Dong and Simonoff (1994), and boundary kernel estimates based on 
generalized jackknifing, is available as the collection dong-simonoif in the 
jegs directory of statlib. 

Any of the nonparametric regression methods described in Chapter 5 
can be used to smooth categorical data, taking p as the response variable 
and i/ K, i = 1, ... , K as the equispaced predictor design. Higher dimen­
sional tables can be smoothed the same way, with d predictor variables 
based on an equispaced design corresponding to the cell index in that di­
mension divided by the number of cells in that dimension. Likelihood-based 
estimators can be constructed using a nonparametric regression package 
that also allows generalized likelihood modeling. Nonparametric regression­
based and approximate local likelihood density estimators are calculated 
in the same way. The S-PLUS code described in Loader (1995), available 
at http://em. bell-labs. eom/stat/projeet/loefit using a World Wide 
Web browser, does this directly. 

Exercises 

Exercise 6.1. Fit local linear, quadratic, and cubic estimators to the three 
versions of the univariate salary data given in Table 6.1. Do any of the higher 
order polynomials provide insight to these data that the kernel estimates 
did not? 

Exercise 6.2. Fit local quadratic and cubic estimators to the mine explosion 
data. Do either of these estimates improve on the local linear estimate? 

Exercise 6.3. A different way to guarantee nonnegative probability estimates 
in a contingency table is to take the square root of the counts, smooth them, 
and then square the resultant fitted values. Apply this strategy to local 
linear estimation of the MBA survey data (Table 6.4) and local quadratic 
estimation of the salary data (Table 6.5). How does it compare with the 
methods discussed in this chapter? 

Exercise 6.4. Treat the 10 x 10 binning of the water access data that was 
used to construct the density estimates in Figs. 6.14 and 6.15 as a 10 x 10 
contingency table. Construct different smoothing-based estimates of the 
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probability matrix, such as local polynomials of various degrees and the ge­
ometric combination estimator. Do these estimates give the same impression 
of the data as the continuous density estimates do? Which methods seem 
to work best? 

Exercise 6.5. Construct spline-based density estimates that correspond to 
the local polynomial-based ones given in Figs. 6.13,6.16,6.17, and 6.19. 
How do the two approaches compare? 

Exercise 6.6. Construct approximate local polynomial likelihood estimates 
for the marathon record data of Fig. 3.12 and the earthquake depth data 
of Fig. 3.16. Explore the possibilities of using higher order polynomials and 
of locally varying the bandwidth. Is it possible to construct satisfactory 
density estimates using this method? 

Exercise 6.7. Construct regression-based density estimates for the NBA 
data of Fig. 4.5 and the Swiss bank note data of Fig. 4.12. Explore the 
possibilities of using higher order polynomials and of locally varying the 
bandwidth. Is it possible to construct satisfactory density estimates using 
this method? 
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Chapter 7 

Further Applications of Smoothing 

The focus of the previous chapters was mostly on the uses of smoothing 
as an exploratory tool in graphical data analysis. This chapter gives sev­
eral (brief) examples of the application of smoothing methods in other, 
more formal applications to illustrate the general applicability of the idea 
of smoothing. 

7.1 Discriminant Analysis 

The discriminant analysis problem arises when one wishes to classify an 
object as a member of one of M classes, where data have previously been 
sampled from those classes. The available data are a set of M samples of p­
dimensional data x, with the ith sample (of size ni) known to come from the 
ith class. Given these data (called the training set) and a new observation, 
the goal is to predict the actual class of the new observation. 

A standard approach to this problem is by using Bayes' Theorem. 
Say the probability of an observation coming from the ith class is 7ri, i = 

1, ... , M (these are called the prior probabilities), and the observations 
from the ith class are a random sample from a distribution with density 
fi(X). Then the posterior probability of an observation being from the ith 
class given the data x is 

.( ) _ 7rdi(X) 
p, X - f(x) , (7.1) 

where 7rili(x) is the joint density of the data x and being in class i and 
f(x) = "Lf=l7rjfj(x) is the marginal density of x. The Bayes rule is to 
classify an observation to the group with highest posterior probability (or 
equivalently, maximum 7rdi(X)), so the discrimination problem becomes 
one of estimating the densities Ii-

The classical approach to discriminant analysis substitutes a particular 
parametric form for Ii into (7.1). The assumption of a multivariate normal 
density for each class, with common covariance matrix but possibly different 
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mean vectors, yields the linear discriminant rule. The common covariance 
matrix is estimated using a pooled estimate of the covariance, 

where Ej is the sample covariance matrix from the training sample for the 
jth class. Assuming multivariate normal densities for all classes while allow­
ing different covariance matrices yields the quadratic discriminant rule. The 
problem with these rules, of course, is that if these parametric assumptions 
do not hold, the classification rule can be a complete failure. 

Figure 7.1 gives a graphical representation of a univariate linear dis­
criminant rule. The data are the previous salaries (to the nearest $500) 
of 91 first-year, full-time MBA students at New York University's Stern 
School of Business in 1989 and 1990. The data fall into the two classes of 
65 male students and 26 female students, and their corresponding salaries 
form rugs at the bottom (male students) and top (female students) of each 
plot. 

It is known that the gender distribution of the school's students was 
roughly 65% male and 35% female at the time, so the prior probabilities 
are taken here to be 71"male = .65 and 71"female = .35. The curves in Fig. 7.1 
represent the joint densities of salary and gender for each gender, using a 
solid line for the male class and a dashed line for the female class. The 
mean salary for the men is $35,785, while that for the women is $35,635, 
and the pooled standard deviation is $15,979. The top plot of Fig. 7.1 gives 
the resultant linear discriminant rule; the joint density for the male class is 
larger than that for the female class for all salaries between 0 and $100,000, 
so all observations are classified as male. 

This failure of the linear discriminant rule could be due to the presence 
of an outlier. One woman had a previous salary of $104,000, far larger 
than that of any other woman. If this observation is dropped from the 
training sample, the mean salary of women drops to $32,900, and the pooled 
standard deviation drops to $14,247. The bottom plot of Fig. 7.1 gives the 
resultant linear discriminant rule, and all observations are still classified as 
male. 

A nonparametric discriminant analysis (the top plot of Fig. 7.2) makes 
clear what is going on here. The curves are again estimates of the joint 
density for each class but are now based on kernel density estimates (using 
a Gaussian kernel, with h ma1e = 5200 and hfemale = 3150, respectively). 
Linear discriminant analysis fails because the variability of the two classes 
is different. Men's salaries cover a much wider range than women's salaries, 
which is a clear violation of the constant variance assumption of linear 
discriminant analysis. 

The kernel-based discriminant analysis implies the following classifica­
tion rule: 

 
PAGE 263 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



254 Chapter 7. Further Applications of Smoothing 

Full data set 
LO 

I 
< 
0 
.-
~ 

~ 

>. -·iii 
c: 
<J.) 

<0 0 I 
< 
0 .-
~ 

LO 

0 

0 20000 40000 60000 80000 100000 

Salary 

Omitting outlier 

LO 
I 

< 
0 .-
~ 

~ 

>. -·iii 
c: 
<J.) 

0 <0 
I 

< 
0 
.-
~ 

LO 

0 

0 20000 40000 60000 80000 100000 

Salary 

Fig. 7.1. Application of linear discriminant rule to MBA salary data. The solid 
curves are Gaussian fits to the male students, and the dashed curves are Gaussian 
fits to the female students. Top plot: using the full data set. Bottom plot: omitting 
an outlier. 
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Fig. 7.2. Application of discriminant rules to MBA salary data. The solid curves 
are fits for the male students, and the dashed curves are fits for the female stu­
dents. Top plot: kernel-based rule. Bottom plot: quadratic rule after omitting an 
outlier. 
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Salary range 
< $30,890 

[$30,890, $38, 029) 
~38,029,$100,017) 

?:: $100,017 

Classification 
Male 

Female 
Male 

Female 

The shaded regions in Fig. 7.2 correspond to classifications to female stu­
dents. Since the densities for male and female salaries are not very non­
Gaussian, the kernel-based discriminant analysis suggests trying a quadratic 
discriminant analysis on these data. Omitting the outlier, the standard de­
viation of men's salaries is $16,247, while that of women's salaries is $6,351, 
yielding the quadratic discriminant analysis in the bottom plot of Fig. 7.2. 
The results are similar to the kernel-based discriminant analysis, with an 
observation being classified to the female class if salary is in the range 
[$26,700, $38, 060j. 

The classification rules can be compared by examining their ability 
to classify the observations correctly. In order to mimic the prediction of 
a new observation from a training sample, a cross-validated estimate is 
useful, where each observation is successively omitted from the data and 
then classified based on the remaining observations. The two methods are 
very similar based on this crit.erion, with the nonparametric rule correctly 
classifying 61 of the 91 cases, and the quadratic discriminant rule correctly 
classifying 59 of the 90 (nonoutlying) cases. (The kernel-based rule is better 
for the men, with 52 of 65 correct classifications versus 44 of 65 correct 
classifications for quadratic rule; the quadratic rule is better for the women, 
with 15 of 25 correct versus 9 of 26.) Of course, the quadratic discriminant 
rule fails if the outlier is not omitted, while the outlier does not greatly 
affect the kernel-based rule. 

Generalization to multivariate data proceeds by using multivariate den­
sity estimates. Figures 7.3 and 7.4 illustrate a bivariate example. The data 
are the score on the Graduate Management Admission Test (GMAT) and 
first-year grade point average (GPA) for 61 second-year MBA students at 
New York University's Stern School of Business in 1995, with data values 
for men marked by x and those for women marked by o. The GMAT is 
a standardized examination used by almost all American business schools 
as an admission criterion that is designed to predict success of students in 
school (with a maximum score of 800), so the relationship between these 
two variables is of interest to school administrators. 

Figure 7.3 is a contour plot of kernel estimates of the joint densities of 
GMAT and GPA and gender for the 48 men (solid curves) and 13 women 
(dashed curves) in the training sample. Prior probabilities of gender were 
again set to 1Tmale = .65 and 1Tfemale = .35, and both estimates are based 
on multivariate normal kernels with diagonal bandwidth matrices H = 
diag(25, .15) for the men and H = diag(45, .12) for the women, respectively. 
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Fig. 7.3. Contour plots of joint density estimates of GMAT score and grade point 
average and gender for male (solid curves and x) and female (dashed curves and 
0) MBA students, 

The joint density for the men shows little correlation between GMAT 
and GPA, but the women concentrate in a narrow band showing positive 
correlation. These densities yield the discrimination rule given in Fig. 7.4. 
All regions lead to classification of a student as male, except for two regions 
(low GMAT and GPA, and high GMAT and moderate GPA). 

The kernel-based discriminant analysis correctly classifies over 90% of 
the observations, although the cross-validated estimate of correct classifi­
cation rate drops to roughly 79%. These are higher than the corresponding 
values for the linear discriminant analysis rule (74% and 72%, respectively). 

The usefulness of discriminant analysis based on density estimation ob­
viously depends on the accuracy of the underlying density estimates. Data 
that are roughly multivariate normally distributed with constant covari­
ance matrix over classes are much more suitable for analysis using linear 
discriminant analysis, but data that violate the assumptions are potential 
candidates for smoothing-based discriminant analysis. 

A potentially serious problem for discriminant analysis based on den­
sity estimation is the curse of dimensionality, particularly since actual dis­
crimination data sets often include many potential predictors. Methods 
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Fig. 7.4. Classification regions based on nonparametric discriminant analysis. 

designed to address the curse of dimensionality, such as projection pursuit, 
can help to overcome this problem. Classification also can be viewed as a re­
gression problem (with group membership being the response variable), and 
nonparametric regression methods (based on additive models, for example) 
also can be used for multivariate data. 

7.2 Goodness-of-Fit Tests 

In the discussion of Long Island CD rates in Chapter 1, the appearance 
of density estimates (a histogram or a kernel estimate) for those data ar­
gued against an underlying Gaussian density. Put another way, the density 
estimates showed a lack of fit of the Gaussian model to the data. 

Smooth density, regression, and probability estimates can be used to 
assess lack of fit formally as well, using goodness-of-fit tests. A natural 
way to do this is by using some measure of the difference between a non­
parametric estimate and a fitted parametric estimate. So, for example, the 
standardized distance 
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J [j(u) - f(u, 0)]2 d 
f(u,O) u, (7.2) 

where j( u) is a nonparametric density estimate and f( u, 0) is a parametric 
fit to the data, provides a test of the hypotheses 

Ho: The density is a member of the parametric family f(·, 0) 

versus 

Ha: The density is a smooth density not in the family fe 0). 

Similarly, linearity of a regression function can be tested using the test 
statistic 

~ {1- L~=l[Yi - m(xi)]2 } 
2 L~=l [Yi - /30 - /31Xi]2 , 

(7.3) 

where m(·) is a nonparametric regression estimate based on sample pairs 
{Xi, Yi}, i = 1, ... , n, and /:J is the vector of least squares regression co­
efficients. The test (7.3) compares the residual sum of squares from the 
non parametric fit to that of the parametric fit and takes the form of a 
likelihood ratio test of the linear model (5.1) versus the arbitrary smooth 
regression model (5.2). 

Tests of this type can be more powerful than omnibus tests, which 
are designed to detect arbitrary alternatives to the null, since they focus on 
alternative functions (densities or regression curves) that are smooth. If the 
true function is not smooth, these tests are not appropriate, but a smooth 
density or regression curve under the alternative hypothesis is usually a 
reasonable assumption if the null function is smooth. 

Goodness-of-fit based on sparse categorized data provides a good ex­
ample of the benefits of testing using smoothed estimates. Consider a vector 
of counts {nl' ... ,nK} generated from an underlying probability vector p. 
These could be inherently categorical data or a discretized version of con­
tinuous data. The classic goodness-of-fit problem tests the null hypothesis 

Ho: P = Po 

(for some specified Po that could be based on estimated parameters) versus 
the alternative 

Ha: P i= Po· 

The most frequently used statistics for this test are the Pearson X2 statistic 

and the likelihood ratio X2 statistic 

K 

C 2 = 2L n i log (~). 
i=l npiO 
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The usual asymptotic approximation for each of these statistics under 
Ho is Xk-v-l' where v is the number of estimated parameters under Ho· 
This is appropriate under the model n ---> CX) with infi npi ---> CX) and is thus 
not appropriate for a sparse table. In particular, the distribution of C 2 can 
be very far from X2 for sparse tables, and the tests have very low power, 
since the frequency estimates Pi = ndn are poor estimates of the true Pi 
values. 

The smoothed probability estimators described in Chapter 6 can be 
used to construct a more powerful test. If the alternative hypothesis is 
restricted to be 

H~: P is a smooth probability vector not equal to Po, 

the local linear estimator f> provides an accurate estimator of P under both 
Ho and H~. First, define 

PiO 
Under sparse asymptotics, under Ho the asymptotic mean of Zi in the in­
terior satisfies 

(7.4) 

and the asymptotic variance of Zi satisfies 

R(W) 
VarO(zi);:::;O hK ' 

n PiO 

where W is the kernel used. 
If Ho does not hold, Zi will no longer have asymptotic mean (7.4), 

which suggests that the test statistic 

M _ ~ IZi - h2p~~(J?v/(2piO)1 
- '8 [R(W)/(nhKpiO)]1/2 

(7.5) 

is useful to identify nonnull behavior. If the true probability vector P "I Po, 

E[ . _ (.)] ~ Pi - Pio + (Jw Pi - Pia I h2 2 (" " ) I 
Z, J-lo z, ~ 2' 

PiO Pio 

Thus, the test M effectively uses two types of measures of deviation from 
the null: a distance measure similar to that used by X 2 and a measure that 
compares the local smoothness of P and Po. If the true density is smooth, 
this additional contribution can lead to improved power. 

Application of this test to the calcium carbonate data given in Table 
6.3 illustrates the possible gains over standard X2 tests. A test of the null 
hypothesis of uniformity 

Ho: Pi = 1/ K, i = 1, ... , K, 
for these data gives X 2 = 65.3 with X2 tail probability (on 49 degrees of 
freedom) .08. The X2 approximation is suspect here, but the tail probability 

 
PAGE 270 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



7.3. Smoothing-Based Parametric Estimation 261 

also can be estimated using Monte Carlo methods by repeatedly generating 
random tables with n = 52 and K = 50 from a uniform probability vec­
tor and determining the proportion of the resultant values of X 2 that are 
greater than 65.3. Here, the simulated tail probability based on 1000 repli­
cations is .046. Thus, the evidence against the uniform distribution given 
by X 2 is weak, despite the very nonuniform appearance of the probability 
estimates in Fig. 6.7. 

This result can be contrasted with that obtained when using (7.5). 
The vector p is the local linear estimate of Fig. 6.7, with p~~ = 0 under the 
uniform null hypothesis. The statistic M = 113.05, with Monte Carlo tail 
probability less than .001. Thus, uniformity is strongly rejected here, which 
certainly seems to be the correct decision. 

7.3 Smoothing-Based Parametric Estimation 

The goodness-of-fit tests of the previous section are designed to identify 
situations where a hypothesized parametric family does not provide an 
adequate fit to the observed data. Smoothing methods also can be used in 
situations where the parametric model is reasonable (except for possibly a 
few unusual values) by improving the parameter estimates themselves. 

Figure 7.5 illustrates the problem. The data are the normal minimum 
January temperatures for weather recording stations, with one station in 
each of the 50 states. A rug along the bottom of the plot gives the data 
values. The solid curve is a fitted normal density using the maximum likeli­
hood estimates fl = 23.54 and fJ = 13.38, while the dashed curve is a kernel 
estimate of the density, using a Gaussian kernel with h = 4.8. The fitted 
normal density does not follow the non parametric estimate as well as we 
would like, but not because of strong inherent nonnormality. Rather, the 
maximum likelihood estimates are apparently inflated by the two unusually 
high values (corresponding to January temperatures in Honolulu, Hawaii 
and Key West, Florida), causing the fitted Gaussian density to be centered 
at too high a value and to be too wide. 

Smoothing-based estimators of JL and (J can be constructed by choosing 
fl and fJ so that the fitted Gaussian density f (', fl, fJ) is as close as possible 
to the nonparametric density estimate fe). One reasonable measure of the 
distance between the two curves is the Hellinger distance, 

(7.6) 

The resultant minimum Hellinger distance estimators (MHDEs, the min­
imizers of (7.6)) are asymptotically normal and asymptotically efficient if 
the model family is correct (since the Hellinger distance is asymptotically 
equivalent to the likelihood distance in this case). In contrast to the maxi­
mum likelihood estimators however they are also robust. The local nature 
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Fig. 1.5. Fitted Gaussian density using maximum likelihood estimates (solid 
curve) and kernel estimate (dashed curve) for January temperature data. 

of j means that outliers have little effect on most of the density estimate, so 
the outliers have a limited effect on the estimates of J.l and (1. More techni­
cally, the breakdown point of the estimator for Gaussian data is at least .25 
(the breakdown point is the smallest fraction of bad data that can cause an 
estimator to give an arbitrarily bad answer). This breakdown point persists 
for multivariate data as well. By comparison, the breakdown point for the 
maximum likelihood estimators is lin. 

The MHDEs for these data are p, = 22.22 and if = 12.53, with resultant 
fitted Gaussian density given in Fig. 7.6. The fitted parametric density is 
closer to the kernel estimate, and the outliers have less effect on them. 
The outliers do still have some effect, however, as the MHDEs with them 
omitted are p, = 21.92 and if = 11.86. 

Minimum Hellinger distance estimation also can be applied to categor­
ical data. The corresponding distance measure to (7.6) is 

K 

D2(p, p) = L(Pi(O)1/2 - pi /2 f, (7.7) 
i=l 
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Fig. 7.6. Fitted Gaussian density using minimum Hellinger distance estimates 
(solid curve) and kernel estimate (dashed curve) for January temperature data. 

where p(O) is the estimated probability vector under the parametric model. 
Under standard asymptotics, the frequency estimators p can be used for p, 
and the resultant MHDEs are asymptotically efficient with breakdown .5 
(the maximum value). For sparser tables with ordered categories, however, 
the frequency estimator can be replaced with one of the smoothed proba­
bility estimators described in Chapter 6, since they are more accurate. For 
nons parse tables, the smoothed estimates are very close to the frequency 
estimates, so it does not matter which set is used. 

Consider the following example, summarized in Figs. 7.7 and 7.8. The 
data are the number of accidents that 17 Asian airlines experienced over 
the period 1985-1994 (eight airlines had no accidents, five airlines had one 
accident, two airlines had three accidents, and one airline each had five 
and ten accidents). A Poisson model might be hypothesized for these count 
data, 

e-A,\X 
P(X = x) = -,-, 

x. 
x = 0,1, .... 

The maximum likelihood estimate of ,\ is simply the sample mean, or 
5. = 1.53. Figure 7.7 gives a plot of the frequency estimates (solid lines 
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Fig. 7.7. Frequency estimates (solid line connecting x's) and fitted Poisson prob­
abilities using maximum likelihood estimate (dashed line connecting o's) for air­
line accident data. 

connecting x's) and the resultant parametric estimates (dashed lines con­
necting o's). The one airline with ten accidents (Merpati Airlines of Indone­
sia) has seriously inflated the estimate of .x, as the fitted probabilities are 
too low for zero accidents and too high for two and three accidents. 

The MHDE using the frequency estimates as p is ). = .48, and the top 
plot of Fig. 7.8 gives the resultant fitted probabilities. This is better than 
in Fig. 7.7, but now). seems too small, as the fitted probabilities are too 
high for zero accidents and too low for three accidents. The problem is that 
the zero observed count at two accidents has caused). to be deflated, to 
improve the fit there. 

The MHDE based on a local linear estimate (using a Gaussian kernel 
and h = .91) is). = .97. The bottom plot of Fig. 7.8 gives the resultant fitted 
Poisson probabilities along with the local linear probability estimates. The 
parametric fit is similar to the non parametric estimates and also provides 
a good fit to the observed data (the frequency estimates). The maximum 
likelihood estimate of .x if Merpati Airlines is omitted from the data is 
). = 1, which highlights the robustness of the smoothing-based MHDE. 

The Hellinger distances (7.6) and (7.7) also can be used to test para-
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Fig. 7.8. Minimum Hellinger distance estimates for airline accident data. Top 
plot: frequency estimates (solid lines and x's) and fitted Poisson probabilities 
(dashed lines and o's). Bottom plot: local linear estimates (solid lines and x's) 
and fitted Poisson probabilities (dashed lines and o's). 
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metric hypotheses, as an alternative to likelihood ratio tests. Let 8 0 be a 
specified proper subset of 8, the allowable space of f). A Hellinger-based 
test of the hypotheses 

Ho: f) E 8 0 

versus 

Ha: f) E 8\80 

can be constructed as 

where 10 is the parametric density estimate based on the MHDE over 8 0, 
while 1 is the parametric density estimate based on the MHDE over 8. 
This Hellinger deviance test has properties analogous to the MHDE, as it 
is asymptotically efficient within the parametric family while being more 
resistant to outliers than the likelihood ratio test. 

7.4 The Smoothed Bootstrap 

The bootstrap is a nonparametric approach to the estimation of errors 
in statistical estimation. The standard bootstrap technique is applied to 
an estimator 8(Xl,'" ,xn ) by resampling B times (with replacement) the 
observed sample {Xl, ... ,Xn } to form bootstrap samples {xi, ... ,x~}. The 
distribution of the resultant values of 8* = 8( xi, ... ,x~) is then used to 
assess the properties of 8 under F, the distribution generating the data. 
For example, the standard error of 8 can be estimated by the standard 
deviation of the B values 8*. Thus, the bootstrap substitutes the empirical 
distribution function of the observed sample for the unknown underlying 
distribution function in the definition of the functional of interest. 

The smoothed bootstrap changes this algorithm by using a smooth 
estimate of the distribution (or density) instead of the empirical estimate. 
Then, the bootstrap samples are generated from the smooth density es­
timate. Unlike the ordinary bootstrap samples, these smoothed bootstrap 
samples will not usually have repeat values, and they are less likely to be 
dominated by unusual values in the sample. 

Theoretical attention to the smoothed bootstrap has focused on con­
tinuous densities. Generally speaking, smoothing has only a second order 
asymptotic effect on the bootstrap for statistics that depend on global prop­
erties of the underlying distribution (of course, improvements in small sam­
ples could still be substantial). All statistics that are expressible as differen­
tiable functions of vector means, such as means, ratios of means, variances, 
and correlation coefficients, fall into this category. 

Statistics that are functions of local properties of the underlying dis­
tribution are very different in that first order improvements are possible. 
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Examples include bootstrap estimation of statistical properties for the mode 
and for sample quantiles (such as the median). 

The smoothed bootstrap also can be useful for ordered categorical 
data. The ordinary bootstrap cannot differentiate between a structural zero 
value in the ith cell (where the true underlying probability is zero) and a 
random zero in the ith cell (where the count is zero but the cell has positive 
probability), since in either case the bootstrap samples are generated from a 
probability vector with zero in the ith cell. In contrast, smoothed bootstrap 
samples are generated from a smoothed probability vector that is generally 
nonzero for cells with random zeroes. 

Table 7.1 illustrates the benefits of smoothing in a simple context. 
The table compares the accuracy of bootstrap estimates of the standard 
error of the sample mean and sample median, respectively, drawn from a 
discrete uniform distribution on the integers from 1 to K (K equaling 20 
or 50). The unsmoothed bootstrap samples from the frequency estimates, 
while the smoothed bootstrap samples from a local linear estimate of the 
probabilities. The table reports values of bias and standard error (s.e.) based 
on 500 Monte Carlo replications for each nand K. 

Table 7.1. Performance of unsmoothed and smoothed bootstrap estimates of 
standard error of sample mean and sample median, respectively, from a uniform 
distribution on the integers 1 to K, for varying sample sizes. 

K=20 
Sample mean Sample median 

Unsmoothed Smoothed Unsmoothed Smoothed 
n Bias s.e. Bias s.e. Bias s.e. Bias s.e . 
5 -.321 .627 -.266 . 545 -.190 1.320 -.342 1.153 
lD -.lD1 .306 -.094 .266 -.043 .803 -.ll6 .696 
15 -.057 .204 -.052 .188 -.009 .764 -.107 .623 
20 -.044 .165 -.042 .150 .058 .588 .009 .503 

K=50 
Sample mean Sample median 

Unsmoothed Smoothed Unsmoothed Smoothed 
n Bias s.e. Bias s.e. Bias s.e. Bias s.e . 
lD -.313 .781 -.266 . 699 -.308 2.075 -.481 1.794 
20 -.ll3 .409 -.120 .390 .044 1.536 -.060 1.219 
30 -.073 .274 -.085 .272 .169 1.167 .007 .913 
40 -.027 .231 -.052 .225 .208 .975 .llO .758 
50 -.022 .199 -.OlD .188 .157 .853 .077 .637 

 
PAGE 277 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



268 Chapter 7. Further Applications of Smoothing 

For small samples, the smoothed bootstrap estimates of standard error 
can improve on those of the ordinary (unsmoothed) bootstrap in terms of 
both bias and variability, and one benefit that shows up consistently is 
lower standard error (that is, less variability). Interestingly, it is generally 
the sample size, rather than the sparseness of the discrete uniform table, 
that seems to determine the extent of improvement due to smoothing. The 
gains are larger for the estimate of standard error of the median than for 
that of the mean, which is consistent with the theoretical results mentioned 
earlier. 

Background material 

Section 7.1 

Hand (1982) gave a book-length discussion of the application of kernel 
density estimation to discrimination, with Chapter 7 summarizing Monte 
Carlo comparisons with linear and quadratic discriminant analysis. Hall and 
Wand (1988c) described bandwidth selection using a criterion designed for 
classification. Posse (1992) and Polzehl (1995) discussed the application 
of projection pursuit to the discrimination problem. Hastie and Tibshirani 
(1996) proposed modeling each class using a mixture of multivariate normal 
densities with common covariance matrix, calling this "mixture discrimi­
nant analysis." 

Breiman and Ihaka (1984) proposed additive modeling for discriminant 
analysis, choosing a nominal transformation of the response classes using 
ACE; see also Berres (1993). Hastie, Buja, and Tibshirani (1995) general­
ized linear discriminant analysis by proposing to choose discriminant vari­
ables to maximize the between-class covariance subject to a constraint on 
a penalized version of the within-class covariance, where the penalty forces 
smoothness of the solution. They called this "penalized discriminant anal­
ysis" and described applications to situations where there are a large num­
ber of correlated predictors or where the number of predictors is smaller 
but these predictors are better used via smoothing splines, tensor prod­
uct splines or additive splines. The flexible discriminant analysis method of 
Hastie, Tibshirani, and Buja (1994) uses the more adaptive smooth regres­
sion estimators based on MARS and BRUTO. 

Section 7.2 

Bickel and Rosenblatt (1973) suggested using functionals such as (7.2) based 
on kernel estimators to construct goodness-of-fit tests. They derived the 
asymptotic distributions of such tests, although they did note that the 
asymptotics might not be directly applicable for moderate sample sizes. 
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Lewis et al. (1977) proposed using Gamma distributions to determine criti­
cal values based on Monte Carlo simulations. Khashimov (1984), Falk (1985, 
1986), Ghosh and Huang (1991), Bowman (1992), and Huang (1997) ex­
amined (variations of) tests of this type, while Rosenblatt (1975) and Bow­
man and Foster (1993) described generalizations to multivariate data. Tests 
based on other density estimators are also possible: Lii (1978) described a 
similar test based on the spline density estimator of Lii and Rosenblatt 
(1975), Mack (1982) proposed using a nearest neighbor density estimator, 
while Bowman and Foster (1993) proposed using variable kernel estima­
tors. Ghorai (1980) and Eubank and LaRiccia (1992) based their tests on 
an orthogonal series estimator. The results of these papers suggest that 
smoothing-based tests can be more powerful than omnibus tests in detect­
ing alternatives with sharp peaks (that is, high frequency alternatives). 

Azzalini, Bowman, and HardIe (1989) proposed the pseudo-likelihood 
ratio regression test (7.3). Other related proposals include those of Yanag­
imoto and Yanagimoto (1987), Cox et al. (1988), Cox and Koh (1989), 
Munson and Jernigan (1989), Eubank and Spiegelman (1990), Kozek (1990, 
1991), Raz (1990), Buckley (1991), Firth, Glosup, and Hinkley (1991), Ie 
Cessie and van Houwelingen (1991), Simonoff and Tsai (1991b), Staniswalis 
and Severini (1991), Muller (1992), Azzalini and Bowman (1993), Eubank 
and Hart (1993), Eubank, Hart, and LaRiccia (1993), Eubank and LaRic­
cia (1993), HardIe and Mammen (1993), Chen (1994a,b), and Djojosugito 
(1994, 1995). Eubank and Hart (1992) and Hart and Wehrly (1992) pro­
posed tests based on the smoothing parameter, with rejection of the null 
occurring if the minimizer of estimated MISE leads to too much smoothing 
away from linearity. 

HardIe and Mammen (1993) showed that the ordinary bootstrap can­
not be used to determine the tail probabilities for these tests (see also 
Firth, Glosup, and Hinkley, 1991) and proposed using a different form of 
bootstrapping called the wild bootstrap. Many authors noted the slow con­
vergence of these test statistics to their asymptotic distributions and used 
Monte Carlo to determine tail probabilities in practice. 

Smoothing-based tests also can be constructed to compare two non­
parametric regression curves. Examples of such tests include those of Hall 
and Hart (1990c), HardIe and Marron (1990), King, Hart, and Wehrly 
(1991), and Kulasekera (1995). 

Bowman and Young (1996) described a graphical procedure designed 
to be used in conjunction with formal tests of hypotheses of equality of 
nonparametric regression curves, linearity of regression functions, and nor­
mality of an underlying density. The graphical method is not designed to 
replace formal tests of hypotheses, but rather to identify why or why not 
the relevant null hypotheses are rejected using the tests. 

Read and Cressie (1988) gave a book-length treatment of different X2 

goodness-of-fit tests. Difficulties with the X2 approximation for these tests 
for sparse tables were noted by Cochran (1954), Larntz (1978), Koehler 
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and Larntz (1980), and Lewis, Saunders, and Westcott (1984), while Pierce 
and Schafer (1986) and Koehler and Gan (1990) noted the low power of 
X 2 . Morris (1975), McCullagh (1985, 1986), and Koehler (1986) treated 
the asymptotic behavior of the tests for sparse tables. Simonoff and Tsai 
(1991a) developed a diagnostic to gauge how poor the X2 approximation to 
the distribution of G2 is for a given data set. 

Simonoff (1985) proposed a statistic similar to M, based on penal­
ized likelihood estimators. Monte Carlo simulations confirmed that the 
smoothing-based test has greater power than X 2 unless the alternative is 
very nonsmooth. A test of uniformity for the calcium carbonate data based 
on the penalized likelihood estimates also strongly rejects uniformity, with 
a tail probability less than .OOL 

Burman (1982, 1987b) discussed a smoothing-based test of indepen­
dence in contingency tables using kernel estimators. He showed that the test 
is more sensitive than X 2 under sparse asymptotics, where the probability 
matrix under the alternative satisfies nonindependence that is consistent 
with a smooth matrix. 

Section 7.3 

The January temperature data are from Hoffman (1992, p. 186). Newsday 
(1995) gave the airline accident data. 

Beran (1977) and Stather (1981) examined the properties of minimum 
Hellinger distance estimators. Beran proved consistency for compact 8, and 
established asymptotic normality and efficiency for compact densities and 
possibly random bandwidth, while Stather allowed densities with infinite 
support with deterministic bandwidth. Tamura and Boos (1986) studied 
estimation for multivariate, elliptically symmetric distributions. They pro­
vided corresponding asymptotic normality and efficiency results (including 
weakening the requirement of compact 8) and showed that the finite sam­
ple breakdown point (Donoho and Huber, 1983) of MHDEs of location and 
covariance is at least .25 for arbitrary dimension. Eslinger and Woodward 
(1991) studied the small sample properties of the estimator for univariate 
Gaussian data and found that the MHDEs do achieve robustness competi­
tive with that of M -estimators while remaining efficient at the true modeL 

Rao (1963) established the asymptotic efficiency of the MHDE for 
multinomial data with a finite number of cells. Simpson (1987) discussed 
MHDEs for discrete data with a possibly infinite number of cells (such as 
a Poisson distribution). He established asymptotic normality and efficiency 
of the estimator and determined the asymptotic breakdown under certain 
conditions (for example, the asymptotic breakdown under a Poisson model 
is .5). 

Lindsay (1994) studied the properties of minimum distance estimators 
for discrete data in some detail. He showed that the influence curve does 
not measure their robustness well and proposed the residual adjustment 
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function as an alternative way to assess the estimator's tradeoff of effi­
ciency and robustness. (See also Basu and Lindsay, 1994, for a discussion of 
Gaussian models and Basu, Markatou, and Lindsay, 1993, for a discussion 
of regression models.) 

These results for discrete data are based on using the frequency es­
timates for p in (7.7). Harris and Basu (1994) showed that in this case 
the MHDE minimizes a penalized version of the Kullback-Leibler distance, 
where the penalty equals 

with h = 1. For nonsparse data, there are few cells with ni = 0, so the 
Hellinger distance is close to the Kullback-Leibler distance (and hence the 
MHDE is similar to the MLE). For sparse data, however, there can be many 
such cells, resulting in behavior different from that of the MLE at the true 
model. They proposed taking h = .5, which forces the so-called penalized 
MHDE to treat the empty cells the same way that the MLE does. 

Park, Basu, and Basu (1995) generalized this penalized approach, sug­
gesting defining estimators to minimize a blended weight Hellinger distance 
(Lindsay, 1994) 

(7.8) 

for a E [0,1] (taking a = .5 gives twice the squared Hellinger distance). 
They also described a generalization of this distance that includes the dis­
tance of Harris and Basu (1994). 

Simpson (1989) examined the asymptotic properties of Hellinger de­
viance tests, establishing asymptotic equivalence to likelihood ratio tests. 
Let (1 be the smallest fraction of contamination that can make the test 
inconsistent. For tests of the Gaussian mean and Poisson mean, (1 = ° for 
the likelihood ratio test, while (1 > ° for the Hellinger deviance test. The 
exact value depends on the specific null and alternative hypotheses, but 
generally speaking, the stronger the evidence against the null, the higher 
the breakdown point. See also Beran (1977) and Eslinger and Woodward 
(1991). 

Basu and Sarkar (1994) discussed the use of (7.8) for testing goodness­
of-fit and recommended taking a = 1/9 in that context. The penalized 
Hellinger distance of Harris and Basu (1994) also can be used to construct 
goodness-of-fit tests, and Basu, Harris, and Basu (1996) described corre­
sponding deviance, score, and Wald tests. 

A different way to estimate an unknown parameter () is by choosing 
the parameters to minimize an estimate of the integrated squared error 
between the parametric and true densities. Since 
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ISE = jU(U, 0) - f(uW du 

= j f(U,O)2du-2 j f(u,O)f(u)du+ j f(U)2du, 

estimating 2J f(u,O)f(u)du by 2n- 1 r:,:'=lf(Xi,O) gives as the estimate 
the minimizer iJ of 

The connection with smoothing of this approach is that it is equivalent for 
a Gaussian model to choosing p and (y to minimize the integrated squared 
distance between the Gaussian density and a histogram of the data with 
bin width h -> 0 (Brown and Hwang, 1993; Jones and Hjort, 1994). The 
resultant estimators of J.l and (J are inefficient, with asymptotic variances 
54% and 85% higher, respectively, than those of the sample mean and 
sample standard deviation. 

Section 7.4 

In his original formulation of the bootstrap, Efron (1979) also described 
the smoothed bootstrap as an alternative to the ordinary (unsmoothed) 
version. See ·also Efron (1982, Sect. 5.3), De Angelis and Young (1992), and 
Efron and Tibshirani (1993, Sect. 16.5). Application of the method requires 
the ability to simulate from density estimates, which is described in Efron 
(1979) and Silverman (1986, Sect. 6.4). 

Silverman and Young (1987) described conditions under which the 
smoothed bootstrap is more accurate than the unsmoothed bootstrap in 
estimating standard errors. Hall, DiCiccio, and Romano (1989) showed that 
the smoothed bootstrap can provide only second order improvement over 
the unsmoothed bootstrap if the statistic being examined is a differentiable 
function of vector means. Despite this, marked improvement can still be 
seen in small samples, as in Efron (1982, Table 5.2). 

Statistics whose properties depend on local properties of the underlying 
distribution are much more likely to benefit from smoothed bootstrapping. 
Such examples include sample quantiles (Hall, DiCiccio, and Romano, 1989; 
De Angelis, Hall, and Young, 1993a), the mode (Romano, 1988), and least 
absolute values regression (De Angelis, Hall, and Young, 1993b). 

In situations where smoothing is helpful, higher order smoothing also 
can be theoretically advantageous. Lee and Young (1994) discussed how to 
construct smoothed bootstrap samples from higher order kernel estimates 
(with possibly negative values). 

Simonoff, Hochberg, and Reiser (1986) studied the problem of estimat­
ing P(X < Y) for X and Y variables that are discretized into categorical 
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variables. They used the bootstrap to construct confidence intervals for dif­
ferent estimators of A = P(X < Y) - P(Y < X), including ones based 
on smooth (penalized likelihood) probability estimates for X and Y. They 
also noted that the smoothed bootstrap in this context refers to generat­
ing multinomial samples from a smoothed probability vector based on the 
original data. 

Computational issues 

S~PLUS and Fortran code for discriminant analysis using ACE is available 
as the collection gdiscr in the S directory of statlib. The file mda. shar. Z, 
available via anonymous ftp at the address playf air. stanf ord. edu in 
the directory pub/hastie, contains Ratfor and S~PLUS code to carry out 
mixture discriminant analysis, flexible discriminant analysis and penalized 
discriminant analysis. 

Exercises 
Exercise 7.1. The default setting for most discriminant analysis programs is 
to take the prior probabilities to be equal for all classes. How do the results 
of the linear, quadratic, and kernel discriminant rules for the MBA salary 
data change if the prior probabilities are taken to be .5 for each gender 
class? 

Exercise 7.2. Nonparametric discriminant analysis need not be based on a 
kernel density estimator but can be based on any estimation method. Do 
the results for the MBA salary data change if a variable kernel estimator 
is used in the algorithm? What about if a transformation-based estimator 
is used, based on a logarithmic transformation? 

Exercise 7.3. The actual distribution of genders at the Stern School of Busi­
ness in 1995 was 74% male and 26% female. Does taking these values as the 
prior probabilities change the results of the linear and kernel discriminant 
analyses for the GMAT and GPA data? 

Exercise 7.4. The apparent difference in covariances between GMAT and 
GPA for men and women in Fig. 7.3 suggests that quadratic discriminant 
analysis might be useful for these data. Is that the case? How do the results 
of the quadratic discriminant analysis compare with those of the kernel 
discriminant analysis? 

Exercise 7.5. Test the fit of a Poisson model to the airline accident data 
of Figs. 7.7 and 7.8 using the goodness-of-fit statistics X 2 , G2 , and M. Do 
the tests give different impressions of whether the Poisson distribution fits 
these data? Which test(s) is (are) most trustworthy in this context? 
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Exercise 7.6. Test the fit of an exponential distribution to the mine explosion 
data given in Table 6.2 using X 2 , C2 , and M. Does the exponential model 
fit the data? Which test do you trust most for these data? 

Exercise 7.7. Fit separate Gaussian distributions to the men's and women's 
salaries from the MBA salary data of Figs. 7.1 and 7.2 using minimum 
Hellinger distance estimation. How do the MHDEs compare with the sample 
mean and standard deviation for these variables? Would you expect there 
to be very much difference between the estimators for either of these data 
sets? 

Exercise 7.8. Construct estimates of the standard error of>' using the un­
smoothed and smoothed bootstrap for the mine explosion data of Table 6.2, 
where>. is either the maximum likelihood or minimum Hellinger distance 
estimator of the time between explosions based on an exponential fit to the 
data. Which version of the bootstrap do you prefer for these data? Which 
estimator of >. has a smaller estimated standard error for these data? 
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A. Descriptions of the Data Sets 

This appendix gives descriptions of the data sets used in the book. All 
of the data sets can be obtained electronically over the Interhet from the 
statlib server. One way to obtain them is to send the message 

send smoothmeth from datasets 
to the Internet address statlib©lib. stat. cmu. edu. 

The files also can be accessed from the World Wide Web, by connecting 
to the URL address 

http://www.stern.nyu.edu/SOR/SmoothMeth 
using a Web browser, such as Mosaic or Netscape. The latter method also 
provides access to updated information about this book. The data files are 
written in plain ASCII (character) text, so it should be possible to import 
them into virtually any statistical, database management or spreadsheet 
package. Note, however, that for many of the data sets the last variable 
is a character variable that labels the observations, which should not be 
input as a numerical variable. It is also likely that such files would have to 
be input using fixed, rather than free, format, if the case labels were to be 
included. 

File name 
adptvisa.dat 

Description of data 

Changes in visas issued in 37 countries or regions by the Immigration and 
Naturalization Service for the purpose of adoption by U.S. residents 

Variables in file 

(1) Log[(1991 visas + 1)/(1988 visas + 1)] 
(2) Log[(1992 visas + 1)/(1991 visas + 1)] 
(3) Country or region 

Data source 

Chatterjee, Handcock, and Simonoff (1995) 
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File name 
airaccid.dat 

Description of data 

Airline accidents for 17 Asian airlines for 1985-1994 

Variables in file 

(1) Number of accidents 
(2) Airline 

Data source 
Newsday (1995) 

File name 
basesal.dat 

Description of data 
Salaries of the 118 Major League baseball players who were eligible for 
salary arbitration in 1993 

Variables in file 
(1) Salary (thousands of dollars) 
(2) Name 

Data source 

Newsday (1993a) 

File name 
baskball.dat 

Description of data 
Performance of the 96 National Basketball Association players who played 
the guard position during the 1992-1993 season and played at least 10 
minutes per game 

Variables in file 
(1) Points scored per minute played 
(2) Assists credited per minute played 
(3) Height (em) 
(4) Minutes played per game 
(5) Age (years) 
(6) Name 

Data source 

Chatterjee, Handcock, and Simonoff (1995) 
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File name 
birthrt.dat 

Description of data 

A. Descriptions of the Data Sets 277 

Monthly birth rates in the U.S. for January 1940 through December 1947 
(96 months) 

Variables in file 

(1) Monthly time index starting at January 1940 
(2) Number of births 

Data source 
Cook and Weisberg (1994) 

File name 
caco2.dat 

Description of data 
Discretization of 52 ranges of percentage concentrations of calcium carbon­
ate in five samples, taken from a mixing plant of raw metal 

Variables in file 
(1) Cell number 
(2) Count 

Data source 

Simonoff (1985) 

File name 
calibrat . dat 

Description of data 
Relationship of radioactivity counts to hormone level for 14 immunoassay 
calibration values 

Variables in file 

(1) Concentration of dosage of TSH (micro units/ml of incubator mixture) 
(2) Radioactivity counts 

Data source 

Tiede and Pagano (1979) 
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File name 
cars93.dat 

Description of data 
Properties of 93 1993 new-model automobiles 

Variables in file 

(1) Price of basic version of automobile (thousands of dollars) 
(2) EPA city mileage (miles per gallon) 
(3) EPA highway mileage (miles per gallon) 
(4) Engine size (liters) 
(5) Maximum horsepower 
(6) Fuel tank capacity (gallons) 
(7) Weight (pounds) 
(8) Make and model 

Data source 
Lock (1993) 

File name 
cdrate.dat 

Description of data 
Three-month CD rates for 69 Long Island banks and thrifts in August 1989 

Variables in file 
(1) Return on CD 
(2) Type of institution: commercial bank (0) or thrift (1) 

Data source 
Newsday (1989) 

File name 
chondrit.dat 

Description of data 
Percentage of silica in 22 chondrite meteors 

Variable in file 
(1) Percentage of silica 

Data sources 

Ahrens (1965), Good and Gaskins (1980) 
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diabetes.dat 

Description of data 

A. Descriptions of the Data Sets 279 

Factors affecting patterns of insulin-dependent diabetes mellitus in 43 chil­
dren 

Variables in file 

(1) Age (years) 
(2) Logarithm of C-peptide concentration (pmol/ml) at diagnosis 

Data sources 

Sockett et al. (1987), Hastie and Tibshirani (1990) 

File name 

elusage.dat 

Description of data 

Electricity usage in an all-electric home for 55 months 

Variables in file 

(1) Average daily temperature (degrees Fahrenheit) 
(2) Average daily electricity usage (kilowatt hours) 
(3) Month 

Data source 

Chatterjee, Handcock, and Simonoff (1995) 

File name 

ethanol.dat 

Description of data 

Engine exhaust for 88 burnings of ethanol in an automobile test engine 

Variables in file 

(1) Concentration of nitric oxides in engine exhaust, normalized by engine 
work 

(2) Equivalence ratio 

Data source 

Brinkman (1981) 
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File name 

galaxy.dat 

Description of data 

Velocities relative to the Milky Way of 82 galaxies 

Variable in file 

(1) Velocity (km/sec) 

Data source 

Roeder (1990) 

File name 
gascons.dat 

Description of data 
Price indices and gasoline consumption in the U.S. over the 27 years 1960-
1986 

Variables in file 

(1) Year 
(2) Consumption of gasoline (tens of millions of 1967 dollars) 
(3) Price index for gasoline (1967 dollars) 
(4) Per capita disposable income (1967 dollars) 
(5) Price index for used cars (1967 dollars) 

Data source 
Chatterjee, Handcock, and Simonoff (1995) 

File name 
geyser.dat 

Description of data 
Characteristics of 222 eruptions of the "Old Faithful Geyser" during August 
1978 and August 1979 

Variables in file 
(1) Duration of eruption (minutes) 
(2) Time until following eruption (minutes) 

Data source 

Weisberg (1985) 
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hckshoot.dat 

Description of data 

A. Descriptions of the Data Sets 281 

Shooting percentage of the 292 National Hockey League players who played 
at least 60 games in the 1991-1992 season and scored at least one goal 

Variables in file 

(1) Shooting percentage 
(2) Position played: defenseman (0) or forward (1) 
(3) Name 

Data source 

National Hockey League (1992) 

File name 

jantemp.dat 

Description of data 

Normal minimum January temperature for weather stations in each of the 
50 U.S. states 

Variables in file 

(1) Normal minimum January temperature (degrees Fahrenheit) 
(2) Weather station 

Data source 

Hoffman (1992) 

File name 

marathon.dat 

Description of data 

National men's record times for the marathon for 55 countries 

Variables in file 

(1) Marathon record time (minutes) 
(2) Country 

Data source 

Dawkins (1989) 
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File name 

mbagrade.dat 

Description of data 

Gender, GMAT score, and first-year grade point average of 61 second-year 
MBA students 

Variables in file 

(1) Gender: male (0) or female (1) 
(2) GMAT score 
(3) Grade point average 

File name 
mbasalry.dat 

Description of data 

Previous salaries of 91 MBA students by gender 

Variables in file 
(1) Gender: male (0) or female (1) 
(2) Previous salary (dollars, to nearest $500) 

File name 
mbasurv.dat 

Description of data 

Regression form of contingency table of survey on opinions of 55 MBA stu­
dents on the importance of statistics and economics in business education 
(Table 6.4) 

Variables in file 
(1) Row (Statistics) cell 
(2) Column (Economics) cell 
(3) Count 

Data source 

Simonoff (1995c) 

 
PAGE 292 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



File name 

mineacci.dat 

Description of data 

A. Descriptions of the Data Sets 283 

Twenty-eight time intervals between accidents causing fatalities in Division 
5 of the Great Britain National Coal Board in 1950 

Variable in file 

(1) Time interval (days) 

Data source 

Maguire, Pearson, and Wynn (1951) 

File name 

mineexpl.dat 

Description of data 

Discretization of 109 time intervals between explosions in mines involving 
at least 10 men killed in Great Britain from December 8, 1875 to May 29, 
1951 

Variables in file 

(1) Cell number 
(2) Count 

Data source 

Simonoff (1983) 

File name 
newscirc.dat 

Description of data 

Circulation figures for 19 newspapers 

Variables in file 

(1) Sunday circulation (thousands) 
(2) Daily circulation (thousands) 
(3) Newspaper 

Data source 

Berenson and Levine (1992) 
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File name 

quake.dat 

Description of data 

Characteristics of 2178 earthquakes with magnitude at least 5.8 on the 
Richter scale occurring between January 1964 and February 1986 

Variables in file 

(1) Focal depth (km) 
(2) Latitude (degrees) 
(3) Longitude (degrees) 
(4) Body wave magnitude on the Richter scale 

Data sources 

Bulletin of the International Seismological Centre, as discussed in Frohlich 
and Davis (1990) 

File name 

racial.dat 

Description of data 

Racial distribution of students in the 56 public school districts in Nassau 
County in the 1992-1993 school year 

Variables in file 
(1) Proportion of white students 
(2) District 

Data source 

Chatterjee, Handcock, and Simonoff (1995) 

File name 
safewatr.dat 

Description of data 

Population access to safe water in rural areas of 70 countries in 1985 and 
1990 

Variables in file 

(1) Percentage of rural population with access to safe water in 1985 
(2) Percentage of rural population with access to safe water in 1990 
(3) Country 

Data source 

World Bank (1994) 
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File name 

salary.dat 

Description of data 

A. Descriptions of the Data Sets 285 

Discretizations of monthly salaries of 147 nonsupervisory female employees 
holding the Bachelor's degree (but no higher) who were practicing mathe­
matics or statistics in 1981 

Variables in file 

(1) Cell number 
(2) Count for 6-cell discretization (cells 7~28 coded as M) 
(3) Count for 12-cell discretization (cells 13~28 coded as M) 
(4) Count for 28-ceil discretization 

Data sources 

Department of Energy (1982), Simonoff (1987), Simonoff and Tsai (1991a) 

File name 

salmon.dat 

Description of data 

Annual recruits and spawners of the Skeena River sockeye salmon stock for 
the 28 years 1940~ 1967 

Variables in file 

(1) Year 
(2) Spawners (thousands) 
(3) Recruits (thousands) 

Data source 

Carroll and Ruppert (1988) 
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File name 

salyear.dat 

Description of data 
Regression form of contingency table of 147 female employees of salaries 
and years since degree (Table 6.5) 

Variables in file 

(1) Row (Salary) cell number 
(2) Column (Years since degree) cell number 
(3) Count 

Data source 
Simonoff (1987) 

File name 
schlvote.dat 

Description of data 
Budget votes for 38 Long Island school districts in 1993 

Variables in file 
(1) Voting result: failure to pass (0) or pass (1) 
(2) Proposed average equalized property tax rate (dollars per $100 assessed 

valuation) 
(3) Total proposed budget (dollars) 
(4) Percentage change in budget 
(5) Percentage change in tax rate 
(6) Average full property wealth per student (dollars) (missing value coded 

as M) 
(7) District 

Data source 

Newsday (1993b) 
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File name 

sulfate .dat 

Description of data 

A. Descriptions of the Data Sets 287 

Relationship of distance between 3321 pairs of measuring stations and cor­
relation of adjusted sulfate wet deposition levels 

Variables in file 

(1) Distance between stations (km) 
(2) Correlation of adjusted sulfate wet deposition levels 

Data source 

Gary W. Oehlert, similar to data in Oehlert (1993) 

File name 

swissmon.dat 

Description of data 

Characteristics of 100 real and 100 forged Swiss bank notes 

Variables in file 

(1) Width of bottom margin (mm), forged bills 
(2) Image diagonal length (mm), forged bills 
(3) Width of bottom margin (mm), real bills 
( 4) Image diagonal length (mm), real bills 

Data source 

Flury and Riedwyl (1988) 

File name 

vineyard.dat 

Description of data 

Grape yields for the 52 rows of a vineyard for different harvest years 

Variables in file 

(1) Row number 
(2) Number of lugs for 1989 harvest 
(3) Number of lugs for 1990 harvest 
(4) Number of lugs for 1991 harvest 

Data source 

ChatterjeE, Handcock, and Simonoff (1995) 
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File name 

votfraud.dat 

Description of data 

Democratic over Republican pluralities of voting machine and absentee 
votes for 22 Philadelphia County elections 

Variables in file 

(1) Democratic plurality in machine votes 
(2) Democratic plurality in absentee votes 

Data source 

Chatterjee, Handcock, and Simonoff (1995) 

File name 

whale.dat 

Description of data 

Nursing patterns for two beluga whale calves born in captivity at the New 
York Aquarium for 228 and 223 six-hour time periods postpartum, respec­
tively 

Variables in file 

(1) Six-hour time period postpartum index 
(2) Nursing time for Hudson (seconds) 
(3) Nursing time for Casey (seconds) (extra time periods 224-228 coded 

as M) 

Data source 

Chatterjee, Handcock, and Simonoff (1995) 

B. More on Computational Issues 

The Computational issues sections include sources for computer code, since 
it is only using smoothing methods that reveals their real power (and their 
strengths and weaknesses). This information comes from promotional liter­
ature, software reviews, news groups, Internet searches, and personal knowl­
edge. If a paper includes an invitation for readers to obtain code from the 
author, that fact is also noted in the section. Naturally, one's own biases 
come in here; S-PLUS was used to construct all the figures in this book, so 
it should not be a surprise to find a fairly thorough discussion of S-PLUS­
related software. I apologize for any omissions or errors in descriptions of 
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the software, or of locations where code can be obtained electronically. I 
would be happy to have readers let me know of such errors or omissions; I 
will keep a list of updates and corrections on the WWW server described 
in Appendix A. 

Discussion of any software does not imply any endorsement of any 
kind about that software, and I provide no warranty of any kind on the 
correctness or usefulness of any software mentioned, or of the accuracy of 
my descriptions of the software. Users of any software should consider the 
software as being used at their own risk. 

The following list provides trademark information about software men­
tioned in the book. All other trademarks are the property of their respective 
owners. 

Data Desk is a registered trademark of Data Description, Inc. 

Exponent Graphics and IMSL are registered trademarks of Visual 
Numerics, Inc. 

GAUSS is a trademark of Aptech Systems, Inc. 

GLIM is a trademark of the Royal Statistical Society. 

JMP and SAS/INSIGHT are registered trademarks of SAS Institute 
Inc. 

MINITAB is a registered trademark of Minitab, Inc. 

NCSS is a trademark of NCSS Statistical Software. 

SOLO is a trademark of BMDP Statistical Software, Inc. 

S-PLUS is a trademark of StatSci. 

SPSS and Systat are registered trademarks of SPSS, Inc. 

Stata is a registered trademark of Stata Corporation. 

STATGRAPHICS is a registered trademark of Statistical Graphics 
Corporation. 

STATISTICA is a trademark of StatSoft, Inc. 

XploRe is a trademark of W. Hardie. 
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newspaper circulation, 142, 144, 175, 

193,283 

"Old Faithful Geyser," 134, 136-137, 

167, 191, 280 

racial distribution, 52, 65-66, 70, 80, 

242, 284 

salary, 216-217, 219, 244, 285 

salary and experience, 231-233, 247, 

286 

school budget, 188-189, 208, 286 

sockeye salmon, 161-162, 200, 285 

sulfate wet deposition, 6-7, 11, 174, 

Subject Index 331 

287 

Swiss bank note, 14--15, 30, 46-48, 

Ill, 113--115, 116, 126, 287 

vineyard, 148-149, 154, 174--175, 194, 

287 

voting fraud, 163-166, 177,200,288 

water access, 237-239, 249, 284 

Density derivative estimator, 94 

Density estimator 

average shifted histogram, see Kernel 

density estimator, binning 

Bayesian estimators, 89-90 

computerized tomography, 131, 132 

Fourier integral, see Kernel density es-

timator, higher order kernels 

frequency polygon, see Frequency 

polygon 

geometric combination, see Geometric 

combination estimator 

histogram, see Histogram 

kernel, see Kernel density estimator 

local-bandwidth kernel, see Kernel 

density estimator, local-bandwidth 

estimator 

local likelihood, see Local likelihood 

density estimator 

local polynomial, see Local polynomial 

density estimator 

logistic spline, see Logistic spline den­

sity estimator 

logspline, see Logspline density esti­

mator 

marginal/conditional, 111-115, 126-

127, 131,248 

maximum penalized likelihood 

(MPLE), see Maximum penalized 

likelihood density estimator 

multivariate frequency polygon, 

see Multivariate frequency polygon 

multivariate histogram, see Multivari­

ate histogram 

multivariate kernel, see Multivariate 

kernel density estimator 
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332 Subject Index 

Density estimator cant. 
multivariate local-bandwidth kernel, 

see Multivariate kernel density esti­

mator, local-bandwidth estimator 

multivariate variable-bandwidth ker­

nel, see Multivariate kernel density 

estimator, variable bandwidth esti­

mator 

nearest neighbor, see Kernel density 

estimator, local-bandwidth estima­

tor 

P-spline, see P-spline, density estima­

tor 

semi parametric estimators, 88-89, 93 

multivariate, 128 

variable-bandwidth kernel, see Kernel 

density estimator, variable­

bandwidth estimator 

WARPing, see Kernel density estima­

tor, binning 

Dimension reduction, see Projection pur­

suit 

Discriminant analysis, 9, 252-258, 268, 

273 

effect of outliers, 253-256 

linear discriminant rule, 252-257, 268 

non parametric discriminant rule, 253-

258, 268 

non parametric regression, 258, 268 

projection pursuit, 257, 268 

quadratic discriminant rule, 253, 256, 

268 

Exploratory data analysis, 8, 11 

Exponent Graphics, 38, 131, 289 

Frequency polygon, 20-22, 23-28, 32-34, 

35,77 

anchor position, 28, 35 

as MLE, 32 

bin edge frequency polygon, 33, 35 

bin width 

biased cross-validation, 33-34 

cross-validation, 33 

Gaussian reference, 22 

MISE optimal, 22 

oversmoothing, 33 

plug-in, 77 

suboptimal choice, 33 

comparison to histogram, 26-28, 34 

definition, 20 

locally varying bin width 

definition, 24 

transformation-based, 24-26 

MISE, 21-22, 32 

MSE, 23-24, 34 

multivariate, see Multivariate frequen­

cy polygon 

GAUSS, 92, 289 

Gaussian reference 

frequency polygon, see Frequency 

polygon, bin width 

histogram, see Histogram, bin width 

kernel density estimator, see Kernel 

density estimator, bandwidth 

multivariate histogram, see Multivari­

ate histogram, bin width 

multivariate kernel density estimator, 

see Multivariate kernel density esti­

mator, bandwidth matrix 

Generalized additive model, see Additive 

model, generalized additive model 

Generalized cross-validation 

kernel regression estimator, see Kernel 

regression estimator, bandwidth 

smoothing spline regression estimator, 

see Smoothing spline regression es­

timator, smoothing parameter 

tendency to undersmooth, 175, 196 

Generalized jackknifing 

boundary kernel, see Kernel density 

estimator, boundary kernel 

higher order kernels, see Kernel den­

sity estimator, higher order kernels 

Geometric combination estimator, 61, 86, 

87 

categorical data, see Categorical data 

smoothing, geometric combination 

estimator 

contingency table, see Contingency ta­

ble smoothing, geometric combina-
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tion estimator 

GLIM, 211, 289 

Goodness-of-fit, 9, 258-261, 268-270 

categorical data, 259-261, 269--270 

regression, 259, 269 

univariate, 258-259, 268-269 

Hellinger distance 

histogram, 37 

minimum Hellinger distance estima­

tor, 261-264, 270-271 

breakdown, 261-262, 263, 270 

other distances, 270-271 

testing, 264-266, 271 

Histogram, 3, 13-20, 23, 26-28, 30-32, 

35-36,77 

anchor position, 28, 34-35 

as MLE, 30 

bin width 

biased cross-validation, 31-32 

cross-validation, 18, 28, 31-32 

Gaussian reference, 17-18, 28, 31 

MISE, 30 

MISE optimal, 17 

oversmoothing, 31 

plug-in, 77 

suboptimal choice, 30-31 

definition, 13 

locally varying bin width 

definition, 23 

MISE, 34 

sample percentiles, 34 

transformation-based, 26 

MIAE,35-36 

MISE, 17 

MSE,16 

multivariate, see Multivariate histo­

gram 

IMSL, 92, 93, 289 

JMP, 92, 131, 211, 289 

Kernel density estimator, 4-5, 40-64, 72-

87, 92-93, 152, 253--256, 261-262, 

268-269, 272 

bandwidth, 74-77 

Subject Index 333 

biased cross-validation, 76, 92 

cross-validation, 75-76, 77, 92, 93 

Gaussian reference, 45, 74, 93 

MISE optimal, 43-45 

mode tree, 79, 92 

oversmoothing, 74-75 

plug-in, 46-48, 76-77, 152 

Sheather-Jones, 46-48, 76, 77, 78, 

79, 92, 93, 126, 249 

slider, 48-49, 79, 92, 93 

binning, 73-74, 77-78, 93, 236 

average shifted histogram, 73-74, 

93 

WARPing, 73-74, 92 

boundary bias, 49-50, 53-54, 80 

boundary kernel, 53-54, 80-81, 94, 236 

generalized jackknifing, 80-81 

choice of kernel, 45, 72-73 

definition, 40 

higher order kernels, 58-61, 83-87, 272 

bandwidth, 85 

drawbacks, 60 

Fourier integral estimator, 60-61, 

86 

generalized jackknifing, 84 

MISE, 60, 83, 84-85 

local-bandwidth estimator, 58, 82-83, 

93 

bandwidth, 82-83 

nearest neighbor estimator, 58, 82, 

269 

local variation in smoothing, 51, 54-

58, 81-82 

MIAE,78 

MISE, 42-45 

multivariate, see Multivariate kernel 

density estimator 

time series data, 74 

bandwidth, 78-79 

transformation-based, 61-64, 86-87 

variable-bandwidth estimator, 54-58, 

81-82,87, 93, 269 

bandwidth choice, 56-58 

definition, 54 

MSE, 55-56, 81--82 
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Kernel density estimator 

variable-bandwidth estimator cont. 
tail effects, 81-82 

Kernel regression estimator, 135-138, 

191, 192-193, 194, 195-196, 197, 

210, 269 

bandwidth, 195-196, 197 

cross-validation, 195 

generalized cross-validation, 195 

MIAE,197 

penalizing functions, 195-196 

plug-in, 196 

binning, 193 

boundary kernel, 143, 193 

generalized jackknifing, 143 

confidence bands, 194 

convolution, 138 

Gasser-Muller, 138, 141, 191 

local bandwidth estimator, 198-199 

local variation in smoothing, 198-199 

Nadaraya-Watson, 6, 135-138, 141, 

142-144, 191 

boundary bias, 142, 143, 193 

definition, 136 

outliers, 200-201 

Priestley-Chao, 138, 141, 191 

robust estimator, 200-201, 211 

time series data, 202-203 

bandwidth, 202-203 

Kullback-Leibler information, 36 

Local likelihood density estimator, 64-

67, 87-88, 93 

and kernel density estimator, 64-65 

approximate estimator, 240-242, 249-

250 

local bandwidth estimator, 242 

asymptotic distribution, 65, 87-88 

boundary bias, 65, 66 

definition, 64 

MSE undefined, 65 

multivariate, 115-116, 127, 132 

asymptotic distribution, 116, 127 

boundary bias, 116 

definition, 115-116, 127 

Local likelihood regression estimator, see 

Local polynomial regression estima­

tor, local likelihood 

Local polynomial density estimator, 81, 

236-242, 249-250 

bandwidth, 249 

boundary bias, 81, 236, 249 

multivariate, 237-239 

negative estimates, 239-240 

Poisson model, see Local likelihood 

density estimator, approximate es­

timator 

Local polynomial regression estimator, 

138-168, 178-183, 190-203, 207-

208, 210-211 

bandwidth, 151-153, 163-168, 196-

197, 211 

effect of autocorrelation, 166-168 

effect of outliers, 163-166 

plug-in, 152-153, 163-166, 168, 196, 

211 

rule-of-thumb, 196-197 

binning, 193, 197, 208 

boundary bias, 142-144, 147, 193-194 

odd versus even polynomial degree, 

147 

conditional bias 

odd versus even polynomial degree, 

140-141 

conditional MSE, 139-141, 154, 192--

193 

definition, 138-139 

degree of polynomial, 140-141, 145-

149, 194-195, 200 

estimation of variance, 153, 177, 197 

local-bandwidth estimator, 154-160, 

199-200 

local cubic estimator, 145-149, 157-

159 

local likelihood, 190, 210 

local linear estimator, 139, 141, 143-

149, 152-153, 163-166, 168 

local quadratic estimator, 144, 149, 

159-160 

local variation in smoothing, 154-160, 

199-200, 211 

 
PAGE 344 OF 349

SONOS EXHIBIT 1016 
IPR of U.S. Pat. No. 8,942,252



MASE, 151-152 

multiple predictors, 178-180, 207-208 

boundary bias, 179 

conditional MSE, 179 

nearest neighbor weights, see Loess es-

timator 

nonconstant variance, 206 

outliers, 160--166, 200-201 

robust estimator, 161-163, 200-201 

time series data, 166-168 

MISE, 166-167 

unconditional MSE, 141 

weighted conditional MISE, 151-152 

Loess estimator, 141, 155-157, 161-163, 

181-183, 191-192, 193, 209, 211 

multiple predictors, 179-180, 208 

robust version, 162-163 

see also Lowess estimator 

Logistic spline density estimator, 91 

multivariate, 129, 132 

Logspline density estimator, 69--70, 91, 

92, 93, 243 

knot placement, 69-70 

Lowess estimator, 7, 141, 211 

see also Loess estimator 

Marginal/ conditional density estimator, 

see Density estimator, marginal/ 

conditional 

MARS, see Additive model, MARS 

Maximum penalized likelihood density es-

timator, 67-69, 90-92, 93 

approximate kernel, 69, 91 

binning, 90 

connection to Bayesian estimators, 90 

MSE,69 

multivariate, 128 

Mean average squared error 

local polynomial regression estimator, 

see Local polynomial regression es­

timator, MASE 

Mean integrated absolute error 

histogram, see Histogram, MIAE 

kernel density estimator, see Kernel 

density estimator, MIAE 

multivariate kernel density estimator, 

Subject Index 335 

see Multivariate kernel density esti­

mator, MIAE 

Mean integrated squared error 

frequency polygon, see Frequency 

polygon, MISE 

histogram, see Histogram, MISE 

kernel density estimator, see Kernel 

density estimator, MISE 

multivariate frequency polygon, 

see Multivariate frequency polygon, 

linear blend frequency polygon 

multivariate histogram, see Multivari­

ate histogram, MISE 

multivariate kernel density estimator, 

see Multivariate kernel density esti­

mator, MISE 

multivariate variable-bandwidth esti­

mator, see Multivariate kernel den­

sity estimator, variable-bandwidth 

estimator 

smoothing spline regression estimator, 

see Smoothing spline regression es­

timator, MISE 

versus integrated squared error, 75-76 

Mean squared error 

additive model, see Additive model, 

MSE 

frequency polygon, see Frequency 

polygon, MSE 

histogram, see Histogram, MSE 

local likelihood density estimator, see 

Local likelihood density estimator, 

MSE undefined 

local polynomial regression estimator, 

see Local polynomial regression es­

timator, conditional MSE; uncondi­

tional MSE 

maximum penalized likelihood density 

estimator, see Maximum penalized 

likelihood density estimator, MSE 

multivariate variable-bandwidth esti­

mator, see Multivariate kernel den­

sity estimator, variable-bandwidth 

estimator 
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336 Subject Index 

Mean squared error cont. 

smoothing spline regression estimator, 

see Smoothing spline regression es­

timator, MSE 

variable-bandwidth estimator, see Ker­

nel density estimator, variable­

bandwidth estimator 

Mean sum of squared errors (MSSE) 

kernel probability estimator, see Cat­

egorical data smoothing, kernel es­

timator 

local polynomial probability estima­

tor, see Categorical data smooth­

ing, local polynomial estimator 

multivariate kernel probability estima­

tor, see Contingency table smooth­

ing, kernel estimator 

multivariate local polynomial proba­

bility estimator, see Contingency ta­

ble smoothing, local polynomial es­

timator 

MINITAB, 37, 38, 289 

Mode resolution, 28, 78 

Mode tree, see Kernel density estimator, 

bandwidth 

multivariate, see Multivariate kernel 

density estimator, bandwidth ma­

trix 

Multivariate frequency polygon, 98-101, 

123 

linear blend frequency polygon, 98-

101, 123 

definition, 99 

MISE, 99-100 

Multivariate histogram, 96-98, 123, 131 

bin width, 97-98 

Gaussian reference, 98 

MISE optimal, 97-98 

definition, 96 

MISE, 96-98, 123 

Multivariate kernel density estimator, 

102-111,114-115,123-127,131, 

256-257 

bandwidth matrix, 105-111, 125-126 

biased cross-validation, 125 

cross-validation, 106, 125 

Gaussian reference, 105, 107-111, 

125 

mode tree, 126 

plug-in, 106-107, Ill, 125-126 

slider, 131 

sphering, see Sphering 

binning, 124, 131 

boundary bias, 115 

boundary kernel, 127 

choice of kernel, 103-105 

definition, 102 

local-bandwidth estimator, 127 

local variation in smoothing, 111-1l5, 

126-127 

MIAE, 124-125, 126 

MISE, 102, 123-125 

product kernel, 102, 124 

spherically symmetric kernel, 124 

variable-bandwidth estimator, 114-

115, 126·-127 

MISE, 126-127 

MSE, 114, 126 

Ness, 38, 92, 211, 289 

Oversmoothing 

frequency polygon, see Frequency 

polygon, bin width 

histogram, see Histogram, bin width 

kernel density estimator, see Kernel 

density estimator, bandwidth 

P-spline 

density estimator, 91, 93 

regression estimator, 203, 208, 210, 211 

Parametric modeling, 8, 9, 261-266, 27(}-

272 

categorical data, 262-264, 270-271 

multivariate, 270 

regression, 6, 134, 137 

testing, 264-266 

univariate, 2, 3-4, 261-262, 270, 271-

272 

weaknesses, 2 

Partial residuals, 181. 188 

Principal components analysis, 131 
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Projection pursuit 

categorical data, 249 

discriminant analysis, 258, 268 

multivariate data, 117-121, 129--131, 

132 

X2 index, 130 

density estimation, 130-131 

entropy index, 129, 130, 132 

Friedman-Tukey index, 129, 132 

Hermite index, 130, 132 

index, 117-121, 129-130 

Legendre index, 118-121, 129-130, 

132 

natural Hermite index, 130, 132 

robust estimation, 131 

three-dimensional index, 130, 132 

regression data, 209, 212 

Proportional hazards, 211 

Qualitative smoothing, 78, 92, 209-210 

see also Mode resolution 

Regression curve derivative estimator, 

139 

Regression estimator 

categorical regression, 249 

kernel, see Kernel regression estimator 

local-bandwidth kernel, see Kernel re-

gression estimator, local-bandwidth 

estimator 

local-bandwidth local polynomial, see 

Local polynomial regression estima­

tor, local-bandwidth estimator 

local likelihood, see Local polynomial 

regression estimator, local 

likelihood 

local polynomial, see Local polynomial 

regression estimator 

loess, see Loess estimator 

lowess, see Lowess estimator 

P-spline, see P-spline, regression esti­

mator 

smoothing spline, see Smoothing spline 

regression estimator 

Robust estimation 

Hellinger estimator, see Hellinger dis-

Subject Index 337 

tance, minimum Hellinger distance 

estimator 

kernel regression, see Kernel regression 

estimator, robust estimator 

local polynomial regression, see Lo­

cal polynomial regression estima­

tor, robust estimator 

multivariate data 

projection pursuit, see Projection 

pursuit, multivariate data 

smoothing spline regression, 

see Smoothing spline regression es­

timator, robust estimator 

Roughness penalty, 67-69 

multivariate, 128 

regression, 168-170 

S-PLUS, 37, 38, 92, 93, 131, 132, 200, 

209, 210, 211, 212, 250, 273, 288, 

289 

SAS/INSIGHT, 92, 210, 211, 289 

Smoother's Workbench, 211 

Smoothing spline regression estimator, 

168--177, 180-181, 183-187, 190--

191, 203-207, 211, 268, 269 

ANOVA, see Additive model, interac-

tion spline 

approximate kernel, 171, 174-175,204 

Bayesian formulation, 204 

boundary bias, 170-171, 204 

confidence bands, 204 

cubic spline, 170-177, 183-187, 203-

204 

estimation of variance, 177, 205 

general likelihood function, 190, 210, 

212 

hat matrix, 170, 206--207 

MISE, 171, 203-204 

MSE, 170-171 

multiple predictors, 180-181, 208, 211 

tensor product, 208 

thin plate, 180-181,208 

nonconstant variance, 205-206 

outliers, 177, 206-207 

robust estimator, 207 
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338 Subject Index 

Smoothing spline regression estimator 

cant. 
smoothing parameter, 172-175, 177, 

204-205 

cross-validation, 172, 204-205 

effect of outliers, 177 

generalized cross-validation, 172-

175, 177,204-205 

generalized m~imum likelihood, 

205 

time series data, 177, 207, 211 

smoothing parameter, 207 

SOLO, 92, 289 

Sphering, 105, 118, 125, 128, 131 

Spline 

definition of polynomial spline, 69 

smoothing spline, see Smoothing spline 

regression estimator 

tensor product spline, 129 

thin plate spline, 129 

Spline estimator 

density estimator, 92, 269 

see also Logistic spline density esti­

mator; Logspline density estimator; 

Maximum penalized likelihood den­

sity estimator; P-spline 

logistic spline, see Logistic spline den­

sity estimator 

P-spline, see P-spline 

regression estimator, see Smoothing 

spline regression estimator 

SPSS, 211, 289 

Stata, 92, 211, 289 

STATGRAPHICS, 92, 131, 289 

STATISTICA, 131, 289 

Statlib, 11, 92, 93, 131, 132, 210, 211, 

212, 250, 273, 275 

Sunflower plot, 96, 123 

Systat, 38, 92, 131, 211, 289 

Time series data 

kernel density estimator, see Kernel 

density estimator, time series data 

kernel regression estimator, see Ker­

nel regression estimator, time series 

data 

local polynomial regression estimator, 

see Local polynomial regression es­

timator, time series data 

smoothing spline regression estimator, 

see Smoothing spline regression es­

timator, time series data 

Transformation-based density estimation 

frequency polygon, see Frequency 

polygon, locally varying bin width 

histogram, see Histogram, locally vary­

ing bin width 

kernel density estimator, see Kernel 

density estimator, transformation­

based 

TURBO, see Additive model, TURBO 

Variability plot, 47-48, 53-54, 66, 79, 

103, 145-146, 149, 241 

Wavelet estimator, 80, 93, 210, 212 

XGobi,132 

XLISP-STAT, 38, 92, 93, 209, 210, 211 

XploRe, 92, 131, 132, 210, 211, 212, 289 
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