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Duoknory 
Dicode 
Modified Duobmary 

R:Cosine Roll-off 
L : Linear Roll -off 

Fig. I. P(0) for continuous filters. 

Duobinary 
Dicode 
Modified Duotinary : ---- 
R:Cosine Roll-off 
L : L i n w  Roll-off 

Fig. 2. P(0) for modified filters. 

filters G ( f )  used in the system are cosine roll-off (C), 
modified cosine roll-off (MC), linear roll-off (L) and the 
modified linear roll-off (ML) filters. The spectra of these 
filters are given in the above paper. ’ 

Figs. 1 and 2 show @(e) (with T = 1) for all PRS systems 
for normal and modified filtering, respectively. The best 
performance is obtained with the duobinary signaling for 0 < 
0.5 for the continuous filters and for 0 < 0.35 for the modified 
ones. Dicode gives the largest values for the low values of 0. 
This result is in contrast to the conclusions in the paper’ where 
it is stated that jitter performance of dicode is the best of all 
and that of the duobinary is the poorest. It seems that the 
normalization of @(e) curve to @(O) prior to plotting them 
(Appendix of the paper I )  has caused this misinterpretation. 
Actually, it is true the rate of decrease of normalized @(e) 
functions is highest for dicode signaling as stated in the paper.’ 
However, @(e) should not be normalized for comparing the 
three PRS systems, since the samples of r ( t )  at optimum time 
instants take the same values for all techniques. 

Author’s Reply 

A. GRAM1 AND S. PASUPATHY 

We thank Y. Tanik for drawing our attention to the issue of 
normalization of @(e). As stated in the Appendix to our paper,’ 
we have indeed plotted the normalized measure @(0)/@(0) in 
our figures. This was done in order to study the effect of 
excess bandwidth 0 on the rate of decrease in sensitivity to 
timing phase jitter and also to show clearly that the relative 
sensitivity stops decreasing after a certain value of 0 for certain 
schemes. As mentioned in our paper, such normalized plots 

~ 

OO90-6778/89/0800-0885$01 .OO 0 1989 IEEE 

885 

show (and we quote) “the rate of decrease in @(e) as a function 
of excess bandwidth is more significant in 1 - D than in 1 + 
D and 1 - Oz.” This is also consistent with the other results 
our our paper, namely, the rates of increase in speed tolerance 
and eye width (slopes of Figs. 5 and 6) are more significant for 
1 - D than for the other schemes. However, Tanik is also 
correct in his interpretation of the plot of (unnormalized) @(e). 
In terms of the absolute performance measure @(e) [as well as 
in terms of speed tolerance and eye width] 1 + D is the best of 
,111. Thus, in summary, unnormalized and normalized @(e) 

IOW different aspects of timing jitter sensitivity as a function 
f excess bandwidth. 

Packet Reservation Multiple Access for Local 
Wireless Communications 

D. J. GOODMAN, R. A. VALENZUELA, K. T. GAYLIARD, AND 
B. RAMAMURTHI 

Abstract-Packet reservation multiple access (PRMA) allows a variety 
of information sources to share the same wireless access channel. Some of 
the sources, such as speech terminals, are classified as “periodic” and 
others, such as signaling, are classified as “random.” Packets from all 
sources contend for access to channel time slots. When a periodic 
information terminal succeeds in gaining access, it reserves subsequent 
time slots for uncontested transmission. Computer simulations and a 
listening’ test reveal that PRMA achieves a promising combination of 
voice quality and bandwidth efficiency. 

I. BACKGROUND 
Wireless access to public telecommunications networks is at 

present a topic of intense interest to researchers, developers, 
manufacturers and service providers throughout the world. 
There are healthy markets for the present generation of 
cellular mobile telephone services and residential cordless 
telephones. Plans for second generation products and services 
are advancing rapidly [ 11, 121, [3]. 

Looking further into the future, we see several wireless 
access issues that remain to be resolved. Three important 
questions are as follows: 

1) how to create wireless private branch exchanges and local 
area networks that fill a gap between mobile telephony 
(serving a metropolitan area) and cordless telephones (serving 
a single residence), 

2) how to use the same resources to communicate efficiently 
voice, computer data, images and other types of information, 
and 

3) how to unify a variety of wireless access modes including 
cellular radio, cordless telephones, wireless private branch 
exchanges, wireless local area networks, dispatch services, 
and radio paging. 

Paper approved by the Editor for Voice/Data Networks of the IEEE 
Communications Society. Manuscript received March 14, 1988; revised 
September 6, 1988. This paper was presented at the IEEE 38th Vehicular 
Technology Conference, Philadelphia, PA, June 1988. This work was 
performed while the authors were at AT&T Bell Laboratories, Holmdel, NJ 
07733. 

D. J. Goodman is with the Department of Electrical and Computer 
Engineering, Rutgers University, Piscataway, NJ 08855. 

R. A. Valenzuela is with the Codex Corporation, Mansfield, MA 02048. 
K. T. Gayliard is with AT&T Bell Laboratories, Holmdel, NJ 07733. 
B. Ramamurthi is with the Indian Institute of Technology, Madras, India. 
IEEE Log Number 8929108. 
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This paper examines a key component of all of these issues, 
the multiple-access technique. Current and emerging systems 
use frequency division [ 11, [3] and time division [2] to provide 
many users with simultaneous access to the same wireless 
medium. Code division is another alternative that has received 
extensive attention [4], [5]. Here we explore a fourth one, 
packet contention. 

Packet contention techniques such as ALOHA and carrier 
sense multiple access [6] find widespread use in data commun- 
ications, including common control channel signaling in 
cellular mobile radio systems [7]. Among the principal merits 
of packet contention methods is their ability to serve a large 
number of terminals, each with a low average data rate and a 
high peak rate. While they function with little or no central 
coordination, packet contention techniques often make ineffi- 
cient use of the shared transmission medium. When too many 
terminals try to communicate at once, throughput goes down 
and transmission delay increases substantially. While recent 
studies [8], [9], [lo] indicate that packet contention schemes 
perform better in local radio environments than elsewhere, 
unpredictable, possibly long, delays have made packet conten- 
tion appear unattractive for voice transmission. 

Addressing this problem, this paper explores PRMA, 
packet reservation multiple access, a technique for transmit- 
ting, over short range radio channels, a mixture of voice 
packets and packets from other information sources. The 
PRMA protocol is organized around time frames with duration 
matched to the periodic rate of voice packets. In each frame, 
time slots are dynamically reserved for packets from active 
voice terminals. As a consequence, the terminals with reserva- 
tions share the channel in a manner closely resembling time 
division multiple access (TDMA). The throughput is high and 
the voice packet delay is constrained to meet a specific design 
limit. To enforce this constraint, terminals discard packets that 
encounter excess delay. Dropped packets are the main cause of 
speech impairment. 

PRMA is closely related to the reservation ALOHA 
protocol, R-ALOHA [ 1 13, [ 121. PRMA is distinguished from 
R-ALOHA by its response to network congestion and by its 
short round trip transmission time. In R-ALOHA, congestion 
causes long packet delays. In PRMA, information packets 
from periodic sources, such as speech, are discarded if they 
remain in the terminal beyond a certain time limit. 

In local wireless access systems, the roundtrip propagation 
time between terminals and base stations is on the order of a 
few tens of microseconds outdoors, and less than one 
microsecond indoors. Packet durations typically are 500- loo0 
ps. The short propagation times allow terminals to learn 
quickly the results of transmission attempts. In many cases, an 
acknowledgment message for the current time slot can arrive 
at the terminals before the beginning of the next time slot, or, 
at most, one slot later. In our studies, we have assumed 
immediate acknowledgments are possible. A one slot delay 
would have little effect on performance. 

In the configuration we have studied, PRMA makes 
efficient use of speech activity detectors to obtain a bandwidth 
efficiency improvement over time division multiple access. 
The control complexity of TDMA makes it a difficult matter to 
use speech detection to improve efficiency. PRMA, on the 
other hand, is simple to implement and gracefully accommo- 
dates many types of information. 

11. SCOPE OF THIS WORK 
We are concerned with a wireless packet communication 

network with a star topology. All terminals use a single 
channel to transmit information packets to a central base 
station. This upstream (terminal-to-base) channel is slotted, 
and after each time slot, the base station transmits a short 
acknowledgment packet in addition to a downstream informa- 

tion packet. Downstream traffic can be transmitted in a 
separate channel (using a different frequency band). Or, it can 
time share a single channel with the upstream traffic. In either 
case, the base station schedules the downstream traffic 
avoiding all contention. In this paper, we concentrate on the 
problem of dispersed terminals competing for access to the 
upstream channel. 

We are interested in possible applications of this network in 
an indoor or other localized service area. In terms of radio 
transmission, two salient features of these environments are 
short round-trip propagation delays, and wide variations in 
path attenuations (near/far phenomenon). The short delays 
permit rapid acknowledgments of the results of packet 
transmissions. The near/far phenomenon admits the possibility 
of packet capture when two or more terminals transmit packets 
in the same time slot. In the absence of capture, all contending 
packets require retransmission. On the other hand, accurate 
detection of the strongest received packet could lead to 
substantial performance improvements [8], [9], [lo]. 

To explore the capabilities of such a network for telephony, 
we have simulated on a computer the transmission of up to 50 
simultaneous conversations. To do so, we have created an 
elaborate statistical model of the patterns of talkspurts and 
silent intervals in conversational speech. In addition to 
artificial speech generated under the control of this model, we 
have also simulated the transmission of real speech. In a 
listening test, the simulated speech transmissions reveal the 
subjective effects of impairments caused by network conges- 
tion. 

Each terminal contains a sensitive voice activity detector, a 
32 kbit/s speech encoder, and a packet assembler. Packets 
consist of 64 bits of header and other non-speech material plus 
512 coded speech bits. Our study explores two important 
variables. One is the packet transmission protocol which can 
be ALOHA or PRMA, defined in detail in the next section of 
this paper. The other variable is the strength of the capture 
phenomenon. We have studied performance with no capture, 
partial capture, and perfect capture [ 131. 

A fundamental requirement in speech communication is 
prompt delivery of information. This is in contrast to packet 
data systems which respond to congestion and transmission 
impairments by delaying packets in queues. In our study, 
terminals discard speech packets that are not successfully 
transmitted within 32 ms. A figure of merit is the amount of 
voice traffic carried in the upstream channel without exceeding 
a specified probability of packet dropping. 

A transmission delay as long as 32 ms implies that echo 
control will be required when PRMA is used for access to the 
public telephone network. This is comparable to the delay 
budget of Pan-European mobile radio [2] and the delay budget 
of a statistical multiplexer used in a terrestrial packet speech 
network [ 141. In response to congestion, this multiplexer 
reduces the lengths of speech packets, rather than discard 
entire packets. Although packet length reduction leads to 
higher efficiency than packet dropping, it is a difficult matter 
to provide variable length packets in a system with dispersed 
terminals. 

111. PACKET RESERVATION MULTIPLE ACCESS 

At a speech terminal, the time slots are grouped in frames. 
Each slot in a frame is recognized as “reserved” or 
‘ ‘available” according to the acknowledgment message re- 
ceived from the base at the end of the slot. When a talkspurt 
begins, the terminal uses the ALOHA protocol to contend for 
an available slot. When it successfully transmits a speech 
packet, it reserves that slot in future frames and there are no 
subsequent collisions with packets from other terminals. At 
the end of the talkspurt, the terminal releases its reservation by 
leaving the reserved slot empty. 
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A .  Packet Categories 
The packet assembler distinguishes between two types of 

information packets: periodic information packets and random 
information packets. The packet category is communicated by 
means of one bit of the packet header. Speech packets are 
always labeled as “periodic.” Certain data packets, such as 
those involved in file transfers, can also be “periodic.” Other 
data packets, such as keyboard entries to a computer terminal, 
signaling messages and system control information, are 
labeled as ‘ ‘random. ’ ’ 

B. Information Frames 
Each terminal organizes the transmission time slots in 

frames with N slots per frame. N is a system parameter 
common to all terminals. However, it is not necessary for all 
terminals to agree on which slot is the first in the frame. The 
terminal contains a frame reservation register, with one bit 
for each slot in the frame. It sets a bit to “0” when informed 
by the base station that the corresponding time slot is 
unreserved; otherwise it sets the bit to “1.” 

C.  Contention 
To begin to send periodic information, a terminal uses the 

slotted ALOHA [6] protocol to contend with other terminals 
for an unreserved time slot. If the terminal does not success- 
fully transmit the first packet of a talkspurt in the first 
unreserved time slot, it retransmits the packet with probability 
q in subsequent unreserved slots. It continues to do so until the 
base station acknowledges successful reception of the packet. 
The permission probability q is a design variable. 

D. Reservations 
At the end of each upstream transmission, the base station 

broadcasts the outcome in an acknowledgment packet. When 
the base station acknowledges accurate reception of a periodic 
information packet, the terminal that sent the packet reserves 
that time slot for future transmissions. All terminals then 
refrain from using that slot in future frames. The terminal with 
the reservation thus has uncontested use of the time slot. 

When a terminal stops sending periodic information in the 
reserved slot, this event is broadcast by the base station in the 
acknowledgment packet. All terminals are then free to contend 
for that slot in future frames. 

E. Packet Loss 
While it is contending for unreserved time slots, the 

terminal holds packets in a first-in first-out-buffer. If the 
packets are speech, the buffer size is limited according to the 
delay constraint imposed upon the network. In our study, the 
buffer holds 32 ms of speech. When a new speech packet 
arrives at a full buffer, the buffer discards the oldest packet. 
The number of lost packets and their temporal distribution 
strongly affect the quality of the received speech. With 
PRMA, all packet losses occur at the beginnings of talkspurts. 
It has been observed that this “front end clipping” is less 
harmful to subjective speech quality than other types of packet 
loss [15]. Our listening test supports this observation. 

F. Random In formation Packets 
A terminal transmits random information packets in unre- 

served time slots. In the event of a collision, packets are 
retransmitted with probability r .  This probability could differ 
from q, the permission probability for periodic information 
packets. By setting q > r ,  the system would give priority to 
periodic over random information. When a random packet is 
successfully transmitted, the terminal does not obtain a time 
slot reservation. If it has other packets to send, it must contend 
for subsequent unreserved time slots. 

The buffer size for random information packets can be quite 

long. If it is, the effect of network congestion on random 
information is long packet delay, rather than packet loss as 
with periodic information packets. 

G. ALOHA 
One of our aims is to compare PRMA to conventional, 

nonreservation slotted ALOHA. In conventional ALOHA, 
contention takes place as in PRMA. However, all slots are 
unreserved, and all periodic information packets must contend 
with transmissions from other terminals. It is known that 
ALOHA benefits from packet capture. An interesting question 
is whether a strong capture mechanism also enhances the 
performance of PRMA. 

IV. COMPUTER SIMULATION 
We have performed computer simulations to investigate 

PRMA performance and to compare PRMA with slotted 
ALOHA. The simulated network carries conversational 
speech coded at 32 kbits/s. The channel rate is 720 kbits/s 
which is a conservative (low) estimate of what an indoor 
channel can support [16]. 

A .  Transmission Format 
After obtaining a reservation, a periodic information termi- 

nal transmits one packet per frame. Therefore, the frame 
repetition rate must equal l /Tp ,  the rate at which the terminal 
generates packets. In our simulations Tp = 16 ms and there 
are 62.5 frameds. With 32 kbit/s speech coding, there are 512 
speech bits per packet. In addition, 64 bits are allocated for 
header information and other purposes. Therefore, each slot 
contains 576 bits. This packet size is typical of those 
considered in general packet voice studies [17], [18]. It is 
employed in an experimental (wired) packet voice network 

With the frame duration 16 ms, the 720 kbit/s channel 
transmits 11 520 bits per frame. Therefore, there are 11 520/ 
576 = 20 slots per frame. With a delay limit of 32 ms, a 
packet is dropped after waiting two frames (40 time slots) for a 
reservation. 

B. Packet Collisions 
When two or more packets contend for the same time slot, 

the ability of the base to detect the strongest packet depends on 
the channel characteristics, the transmission technique (modu- 
lation and coding), and on the locations of the active terminals. 
Our simulation study employs a simple capture model, in 
which the base station is at the center of a service area and the 
terminals are uniformly spaced between the cell center and the 
perimeter of the service area. 

We identify three levels of capture: no capture, partial 
capture, and perfect capture. With no capture, the base 
station is unable to detect any packet when there are two or 
more simultaneous transmissions. All colliding packets must 
be retransmitted. 

With partial capture, the ability of the base station to detect 
the strongest packet depends on the relative positions of the 
two active terminals that are nearest the base. In the context of 
the simplified capture model presented in [lo], the capture 
parameter in this study is p = 1.4. This means that if the 
second terminal is at least 40 percent further from the base 
than the nearest active terminal, the base station successfully 
receives the packet from the nearest terminal. 

With perfect capture, the base can always detect the packet 
from the nearest active terminal regardless of the number and 
locations of contending terminals. 

C.  Permission Probability 
In order to contend for an unreserved time slot, a terminal 

must have permission to transmit. The appropriate permission 
probability q depends on the capture ability of the transmission 

r141. 
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