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IHAPTER

3

IHARACTERIZATION OF

LIGNALS AND

iYSTEMS

gnals can be categorized in a number of different ways such as random versus

terministic, discrete time versus continuous time, discrete amplitude versus
ntinuous amplitude, lowpass versus bandpass, finite energy versus infinite
ergy, finite average power versus infinite average power, etc. In this chapter we
at the characterization of signals and systems that are usually encountered in

a transmission of digital information over a communication channel. In partic-
tr, we introduce the representation of various forms of digitally modulated
;na1s and describe their spectral characteristics.

We begin with the characterization of bandpass signals and systems,
:luding the mathematical representation of bandpass stationary stochastic

acesses. Then, we present a vector space representation of signals. We conclude

th the representation of digitally modulated signals and their spectral charac-
istics.

l REPRESENTATION OF BANDPASS

GNALS AND SYSTEMS

any digital information-bearing signals are transmitted by some type of carrier
)dulation. The channel over which the signal is transmitted is limited in

ndwidth to an interval of frequencies centered about the carrier, as in double-

Leband modulation, or adjacent to the carrier, as in single-sideband modula-

n. Signals and channels (systems) which satisfy the condition that their

ndwidth is much smaller than the carrier frequency are termed narrowband
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bandpass signals and channels (systems). The modulation performed at the

transmitting end of the communication system to generate the bandpass signal

and the demodulation performed at the receiving end to recover the digital

information involve frequency translations. With no loss in generality and for

mathematical convenience, it is desirable to reduce all bandpass Signals and

channels to equivalent lowpass signals and channels. As a consequence, the

results of the performance of the various modulation and demodulation tech-

niques presented in the subsequent chapters are independent of carrier frequen-

cies and channel frequency bands. The representation of bandpass signals and

systems in terms of equivalent lowpass waveforms and the characterization of

bandpass stationary stochastic processes are the main topics of this section.

3.1.1 Representation of Bandpass Signals

A real-valued signal s(t) with a frequency content concentrated in a narrow band

of frequencies in the vicinity of a frequency f, can be expressed in the form

s(t) = a(t)cos[21rfct + 0(z)] (3.1.1)

where a(t) denotes the amplitude (envelope) of s(t), and 0(t) denotes the phase

of s(t). The frequency fc is usually called the carrier of s(t) and may be any

convenient frequency within or near the frequency band occupied by the signal.

When the band of frequencies occupied by s(t) is small relative to fc, the signal is

called a narrowband bandpass signal or, simply, a bandpass signal.

By expanding the cosine function in (3.1.1) a second representation for s(t)

is obtained, namely,

s(t) = a(t)cos0(t)costrfct — a(t)sin0(t)sin27rfct

= x(t)cos27rfct -— y(t)sin21rfct (3.1.2)

where the signals x(t) and y(t), termed the quadrature components of s(t), are
defined as

x(t) = a(t)cos0(t)

y(t) = a(t)sin0(t)

The frequency content of the quadrature components x(t) and y(t) is concen-

trated at low frequencies (around f = 0, as shown below) and, hence, these

components are appropriately called lowpass signals. Finally, a third representa-

tion for s(t) is obtained from (3.1.1) by defining the complex envelope u(t) as

u(t) = a(t)ejo(’)

= x(t) +jy(t) (3.1.4)

(3.1.3)

so that

s(t) = Re [u(t)ej2"’f"] (3.1.5)

where Re[ ] denotes the real part of the complex-valued quantity in the

brackets. Thus a real bandpass signal is completely described by any one of the

three equivalent forms given in (3.1.1), (3.1.2), or (3.1.5).
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The Fourier transform of s(t) is

S(f) = [00 s(t)e‘jz"f’dt

= 0° {Re [u(t)e12”fv’]}e 12"f'dt (3 1 6)

Use of the identity

Re(€) = %(£ + £*) (3 1 7)
in (3.1.6) yields the result

S(f) = %f°° [u(t)ejz"fv’ + u*(t)e‘jz”f€']e‘jz”f’dt

= %[U(f-fc) + U*(-f—fc)] (3-1-8)

where U(f ) is the Fourier transform of u( t). Since the frequency content of the
bandpass signal s(t) is concentrated in the vicinity of the carrier fc, the result in
(3.1.8) indicates that the frequency content of u(t) is concentrated in the vicinity
of f = 0. Consequently, the complex-valued waveform u(t) is basically a low-pass
signal waveform and, hence, is called the equivalent lowpass signal.

The energy in the signal s(t) is defined as

= °° {Re[u(t)el‘2"fc']}2dz (3.1.9)

When the identity in (3.1.7) is used in (3.1.9), we obtain the following result:
]_ co

«3”: §/_w|u(t)|2dt

+%f_°° Iu<t>12cos14m + 200)] d: (3.1.10)

Consider the second integral in (3.1.10). Since the signal s(t) is narrowband, the
real envelope u(t) E |u(t)| or, equivalently, a2( t) varies slowly relative to
the rapid variations exhibited by the cosine function. A graphical illustration
of the integrand in the second integral of (3.1.10) is shown in Fig. 3.1.1. The value
of the integral is just the net area under the cosine function modulated by a2( t).
Since the modulating waveform a2(t) varies slowly relative to the cosine func-
tion, the net area contributed by the second integral is very small relative to the
value of the first integral in (3.1.10) and, hence, it can be neglected. Thus, for all
practical purposes, the energy in the bandpass signal s(t), expressed in terms of
the equivalent lowpass signal u(t), is

av= if” |u(t)|2dt (3.1.11)

where |u(t)! is just the envelope a(t) of s(t).
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FIGURE 3.1.]

The signal a2(t)cos[4wfi.t + 20(1)].

 
3.1.2 Representation of Linear Bandpass Systems

A linear filter or system may be described either by its impulse response h(tj
by its frequency response H( f ), which is the Fourier transform of h(t). Si
h(t) is real,

H*(-f) =H(f) (3.1.

Let us define C( f — fi.) as

C(f-f.)={gl(f) $3 (3.1.
Then

C*(-f-f..) = {2”(4) fig (3.1
Using (3.1.12), we have

H(f)=C(f-f.)+C*(~f-f.-) (3-1-

The inverse transform of H( f) in (3.1.15) yields h(t) in the form

h(t) = c(t)e12"fr’ + c*(t)e‘j2”/‘"

= 2Re [c(z)e12"fl'] (3.1.

where c(t) is the inverse Fourier transform of C(f ). In general, the impt
response c(t) of the equivalent lowpass system is complex-valued.
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Fourier transform of s(t) is

S(f) = f°° s(z)e-fl"f'dt

= °° {Re [u(t)e1‘2"fi']}e'fl"f'dz (3.1.6)

e identity

Re(£) = %(£ + £*) (3-1-7)
yields the result

S(f) = %/_00 [u(t)ej2-nfct + ”*(t)e—j21rf,t]e—j21rft dt

= Hum—f.) + U*(—f—f.)} (3-1-8)

f ) is the Fourier transform of u(t). Since the frequency content of the
signal s(t) is concentrated in the vicinity of the carrier fc, the result in
.icates that the frequency content of u(t) is concentrated in the vicinity
Zonsequently, the complex-valued waveform u(t) is basically a low-pass
Ieform and, hence, is called the equivalent lowpass signal.
energy in the signal s(t) is defined as

= °° {Re[u(t)e12"fc']}2dt (3.1.9)

identity in (3.1.7) is used in (3.1.9), we obtain the following result:
1 00

c5”: 2-f_°°|u(t)|2dt

+ %f_°° |u(t)|2cos [4an + 200)] dt (3.1.10)

be second integral in (3.1.10). Since the signal s(t) is narrowband, the
ope u(t) E |u(t)| or, equivalently, a2(t) varies slowly relative to
variations exhibited by the cosine function. A graphical illustration
grand in the second integral of (3.1.10) is shown in Fig. 3.1.1. The value
gral is just the net area under the cosine function modulated by a2(t).
modulating waveform a2(t) varies slowly relative to the cosine func-
et area contributed by the second integral is very small relative to the
1e first integral in (3.1.10) and, hence, it can be neglected. Thus, for all
nurposes, the energy in the bandpass signal s(t), expressed in terms of
lent lowpass signal u(t), is

1 co

g= §/_w|u(t)|2dt (3.1.11)
)| is just the envelope u(t) of s(t).

 
 

FIGURE 3.1.1
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The signal a2(t)cos[4wfi.t + 20(1)].

3.1.2 Representation of Linear Bandpass Systems

A linear filter or system may be described either by its impulse response h(t) or

by its frequency response H( f ), which is the Fourier transform of h(t). Since
h(t) is real,

Let us define C( f — f,.) as

Then

Using (3.1.12), we have

H*(-f) = H(f) (3.1.12)

C(f-f.) = {:(f) fig (3.1.13)

C*(-f-f..) = {21*(_f) fig (3.1.14)

H(f) = C(f~f..) + C*(-f-f..) (3-1-15)

The inverse transform of H( f ) in (3.1.15) yields h(t) in the form

h(t) = c(t)e12‘”fi-l+ C*(t)e_j2"/‘"

= 2Re [c(t)ej2"f‘"] (3.1.16)

where c(t) is the inverse Fourier transform of C( f ). In general, the impulse

response c(t) of the equivalent lowpass system is complex-valued.
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