
Apple Inc.
APL1109

U.S. Patent No. 8,724,622001

 fe

MB wannine

Faull S. rlethmon

Apple Inc.
APL1109

001 U.S. Patent No. 8,724,622

002

Illustrated Guide
to HTTP

PAUL S. HETHMON

MANNING

Greenwich

(74° w. long.)

003

Por electronic browsing and ordering ofthis book, see hrep://www.browsebooks.com,

The publisher offers discounts on this book when ordered in quantity. For more
information, please contact:

Special Sales Department
Manning Publications Co.
3 Lewis Srreer

Greenwich, CT 06830

Fax: (203) 661-9018

email: orders@manning.com

©1997 by Manning Publications Co.All rights reserved.

Nopart of this publication may be reproduced,stored in a retrieval system, or
transmitted, in any form or by meanselectronic, mechanical, photocopying, or
otherwise, withourprior written permission ofthe publisher.

@ Recognizing the importance of preserving what has been written,it is
Manning's policy to have the books it publishes printed on acid-free paper, and
we exert our best efforts to thar end.

Manyofthe designations used by manufacturers and sellers ro distinguish their
products are claimed as trademarks, Where those designations appear in the book,
and Manning Publications was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Hethmon, Paul S.

Illustrated guide to HTTP / Paul S, Hethmon.
Pp. cm.

Includes bibliographical refrences and index.
ISBN 1-884777-37-6

L. Hypertext systems. 2. HTTP (Computer network protocol)
L. Title.

QA76.76.H94H484 1997
004.6'2—de21 97-1596

cip

a Manning Publications Co.
3 Lewis Street

Greenwich, CT 06830

Copyeditor: Maggie Mitchell
Typesetcer: Dorothy Marsico
Cover designer: Leslie Haimes

Printed in the United States ofAmerica
123456789 10-CR- 060 99 98 97

003

004

chapter 2
HTTP overview

2.1 What is the World Wide Web? 8

2.2 General operation 10
2.3 Abitofhistory 12
2.4 HTTP/1.1 16

2.5 Finishing 24

004

005

CHAPTER 2 HTTP OVERVIEW

2.1 Whatis the

World Wide Web?

Just what is the World Wide Web? During the last few years, just about every-
body has defined wharit is (and isn’t). I'm not going to add another definition
here, but ifyou are reading this book you shouldbe familiar enough with it, Dis-
regarding any definition, the World Wide Web has become one of the most
important information technologies of the nineties.

2.1.1 The client/server model

From a programmer's viewpoint, the World Wide Web is the largest client/
server system implemented to date. It is made up of innumerable clients and
servers, all exchanging information. In a typical client/server system, a propri-
etary client talks to a proprietary server to accomplish sometask. The task might
be a sales order system for a mail order firm, or a data mining system for corpo-
rate executives. The Web changes things a bit, making them more complicated
and simple at the same time. The simple part comes from the open, well-defined
protocols used between the clients and the servers. The complicated part comes
from theloss ofextensive programmer-defined protocols.

Let me explain the latter a lirtle more thoroughly. If you were given the rask
of writing an application to handle order entry, you would typically define the
types of transactions to occur berween yourclient and server. A typical exchange
might be to look up a description of an item in the catalog. The client would
make a connection to rhe server, send a request which might be binary or plain
text, and then would receive the reply which would typically be plain text. The
reply might contain binary data also, such as a picture. Given a TCP/IP environ-
ment using sockets, the client would make a connection to a port on which the
serveris listening. Then it would send a packet of information to theserver. In
order to make interpreting the data easier, you might have defined a structure for
request packets that consist of 4 bytes for a numerical request code. The server
then knows to read 4 bytes from the socket and then interpret accordingly.
When the server sends the response ro the client, the client knows to expect a

005

006

WHAT 1S THE WORLD WIDE WEB?

certain type of reply, (See Figure 2.1). In this case, you've defined a header of
4 bytes that contains the length of the description (in plain text), and the
description immediately follows the header. If data follows the description, then
the 4 bytes after it are the length of the binary data, the picture of the irem, Once
the binary dara has been received, the server closes the connection and the trans-
action is finished.

4-byte request packel

Figure 2.1 Client/server
transaction

In this scenario, you as the programmer, had the utmost flexibility. You

were able to define the exact messages and the format of the replies to them.
Being able to do this makes your code very efficient. You don’t have to interpret
the transactions to any extent. You are able to minimize the amountof network
traffic you generate and maximize the amountof data in each transaction. Con-
tinuing on with your application, you can quickly define and implementall of
the transactions yourclient and server need to know for proper response.

Bur a couple of months down the road, the word comes down from the IS
department that your nifty client/server application also needs to run under
Windows 95 and OS/2 as well as the Mac client you originally wrote. So now
you've got to go back and program two new clients and have the possibility of
doing more in the furure. Ir would have been nice to write a single client which
would run on all of the possible operating systems. This is where HTTP comes
into play. Instead of writing clients for every possible operating system, you can
use a Web client such as Netscape Navigator, along with a Webserver, to build
your client/server system.

006

007

CHAPTER 2 HTTP OVERVIEW

Routines are a bit different in the Internet world however. In your original
client/server application you had the freedom to define your own messaging
standards. Now, someoneelse is going to give you the blueprint to work from in
the form of an RFC. As mentioned previously, RFC is short for Request For
Comments. RFCs are the technical documents which describe the protocols in
use on the Internet. HTTP is the protocol used to send and receive messages
between Web clients and servers. HTMLis the protocol used to create the Web
pages sent as the data resource of the HTTP message. The twoare closely related
but distinct. The latest RFCs are on the CD-ROM accompanying this book,
The principal US respository for RFCs is held at the Internic, the agency respon-
sible for domain registrations, among other functions. The Web site is
www. internic.net. From the main page, follow the prompts to the Directory
and Database Services and from there to the RFCinformation.

2.2 General operation
HTTP is a request-response type of protocol. The client application sends a
request to the server and then the server responds to the request. In HTTP/0.9
and HTTP/1.0, this was generally accomplished by making a new connection
for each request. HTTP/1.1 introduces persistent connections as the default
behavior. With persistent connections, the client and server maintain the con-
nection, exchanging multiple requests and responses until the connection is
explicitly closed by one. Even with persistent connections, HTTP remains a
stateless protocol. No informationis retained by the server between requests.

There are three general request-response chains in which HTTP operates.
The first is when a user agent makes a request directly to the origin server as
shown in Figure 2.2 herein, In this scenario, the user agent makes a connection
directly to the origin server on the default port of 80 (unless otherwise specified)
and sends its request. The server will be listening for incoming connections and
start a new threador process to serve the new request. Once the request has been
processed, the server sends the response back over the connection.

The second request-response chain involves a proxy or cache agent as an
intermediary. In this scenario, the user agent makes its request to the proxy

10

007

008

GENERAL OPERATION

 Raquast massage

User agent I TGP port 40 HTTP server

 Figure 2.2 Basic client to server
HTTP operation

instead ofto the origin server (See Figure 2.3). The proxy then makes the request
to the origin server on behalf of the client. The server replies to the proxy, and
then the proxy relays this to the user agen, thus fulfilling the request. This type
operation is mostly seen in firewall environments wherethe local LAN is isolated
from the Internet. An alternate on this procedures is for the intermediate agent
to also serve as a caching agent.

When making a request through the cache agent, the cache agent tries to
serve the response from its internal cache of resources. The cache itself saves any
response it receives, if the response is a cachable one. This shortens the request-
response chain, improves response time, and reduces network load. Most proxy
agents are also caching agents,

The final scenario is one involving an intermediate agent, acting as a tunnel.
A tunnel blindly funnels requests and responses between two HTTP
applications. As shown in Figure 2.4,it is, in essence, providing a path for the
user agent to the server.

A tunnelis different from a proxy in how it operates. A tunnel is simply a
mechanism via which the user agent sends requests and receives responses from
an origin server, The tunnel itself does nothing to the requests, unlike a proxy

Request to proxy

User agent

Response to proxy

Figure 2.3 Client to proxy to server HTTP operation

il

008

009

CHAPTER 2 ATTP OVERVIEY

Figure 2.4 Client to server via tunnel HTTP operation

which may rewrite certain headers or require authentication from the user before
providing services, A tunnel would be used most often to route HTTP traffic
over a non-TCP/IPlink.

Past the three basic request-response chains, anyone can put together any
combination of intermediate agents. It is entirely reasonable for a user agent to
send a request to a proxy, which sendsit through a cunnel which reaches another
proxy, and finally makes it to the origin server. Throughall of this, the basic idea
still maintains the request-response paradigm, although ir may make many
contortions along the way. Next, we will need to look in depth at the specific
operation of HTTP.

2.3 A bit ofhistory
Before we delve into HTTP/1.1,a bit of backgroundis in order. In this section
we'll examine the previous versions of HTTP: HTTP/0.9 and HTTP/1.0.
HTTP/1.1 is a response to those established previous versions—their strengths
and their shortcomings.

23.4 HTTPIO9

The first implementation of HTTP is now known as HTTP/0.9. The entire
description of that protocol encompasses only a few pages. In HTTP/0.9, a

i2

009

010

A BIT OF HISTORY

client program makes a connection to the server on TCP port 80. The client
then sends its request in the following form:

GET document.html CRLF

The request starts with the word GET. No other methods are supported. A
space character is then sent, followed by the document name. The document
name may be fully qualified and is not allowed to have any spaces. To end the
line, the client should send a carriage return line feed combination. ‘The specifi-
cation mentions that servers should be tolerant of clients by only transmitting
the line feed.

Oneother option is allowed for the document name. The client may send a
search request by appending a question mark, followed by a search term. Multi-
ple search terms may be specified by putting a plus sign between each. This type
request should only be generated when the document specified contains the
ISINDEX HTMLtag. This allows a requestof;

GET document .html?help+me CRLF

For the reply, the server returns the contents of the document. There is no
content information, MIME type, or any other information returned to thecli-
ent. The protocolis, in fact, restricted to sending only HTMLtext documents.
When the documenthasbeen sent, the server closes the connection to signify the
end of the document. This is necessary since no length informationis exchanged
between the server and client. When sending the document,the server delimits
each line by an optional carriage return, whichis then followed by a mandatory
line feed character.

As can be seen from this description, implementing the HTTP/0.9 protocol
can be done in a few dozen lines of code. The problem, however, was the
limitation it imposed. Only text documents could be served and there was no
methodfor the client to submit information to the server.

232 ALLTHLO

The HTTP/1.0 protocol was developed from 1992 to 1996. It has only
appeared as an Informational RFC as recently as May 1996. Before that point,

13

010

011

CHAPTER 2 HTTP OVERVIEW

HTTP/1.0 was based on what the major Web servers and clients did, Since
RFC 1945 is only an informational RFC, it does not actually specify an official
standard of the Internet. It does, however, describe the common usage of
HTTP/1.0 and provides the reference for ourserver's later implementation via
the enclosed CD.

HTTP/1.0 developed from the need to exchange more than simple text
information. It became a way to build a distributed hypermedia information
system adapted to many needs and purposes. From 1994 to 1997, the Web
developed from a forum in which computer science departments could showcase
their research into a center where everyone has a Web page. Infact half of the
television commercials today include a URL. In order for this to happen, HTTP
expanded tremendously from its original specification.

The first major change from the HTTP/0.9 specification was the use of
MIME-like headers in request messages and in response messages. Ontheclient
side, the request message grew from the one line request to a structured, stable
multi-line request:

Full-Request =Request-Line
*(General-Header |

Request-Header |
Entity-Header)

CRLF

[Entity-Bedy]

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

The added headers resulted from the need to transmit more information in

the request. For clients, this information included sending preferences for the
type of informarion desired. ‘his was expressed in terms of MIME media types:
terms such as text/html and image/gif were initiated so clients and servers
could send information each could understand and use. The additional headers

also let clients implement conditional retrievals using the Tf-Modified-Since
header. This header allows the client to request that the resource be returned
only if it has changed since the given date, With this, clients could cache fre-
quently requested pages and update them only when necessary, thus saving valu-
able time and bandwidth.

Onthe server side, the server was finally allowed to send back content infor-
mation, along with the resource, In HTTP/0.9, only the resource was sent. With

l4

011

012

A BIT OF HISTORY

the expanded response syntax, the server could now tell the client exactly what
type information was in the resource and, finally, substantially send more than
HTMLdocuments:

Full-Response = Status-Line

*(General-Header |
Response-Header |
Entity-Header }

CRLF

{ Entity-Body]
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

The addition of the Content-Type headerallowed the server to include the

media type of the resource. Along with the original HTML documents, images
and audio files became popular and commonplace as forms ofinformation to
present on a Website.

The next HTTP change was the definition of new request methods. Along
with the original GET request, HEAD and POST were now allowed. The HEAD
request allows a client application to request a resource and receive all of the
information about the resource without actually receiving the resource. This had
uses for Web robots and spiders, which traverse links to gather update informa-
tion and detect broken links. The Post method is what broughtreal interactivity
to the Web. Now clients had a way to send substantial information to a server
for processing. The Get method had been used arfirst as a way to transmit infor-
mation to a server, but was limited by the amountof information a server would
accept as part of the request -URI.* Now with post,virtually unlimited entity
bodies could be sent in a request message. With this, came the use of the Web
for inputting information: order forms, surveys, and requests could be made
from a Web page.

Servers also gathered theability to respond with a status code to theclient's
request, The infamous 404 Not Foundstatus code could now be sent whenever
the resource was not present. Beyond this, the server could also respond with
200 to indicate a general success response, 302 to indicate a resource had moved
temporarily to a different location, 401 to indicate authorization was required,
or 500 to indicate a general server error while trying to fulfill the request.

* Uniform Resource Identifiers (URIs) are covered in Chapter 3.

Ly

012

013

CHAPTER 2 HITP OVERVIEW

The 401 Unauthorized status code leads us into the final point to make
about HTTP/1.0. It introduced the idea of restricted access to resources. A

server could require a client to supply a username and password before returning
certain resources. The idea of basic authentication allowed someone to build a

Web site with private information. Information could be restricted to a certain
person or group of people. This also allowed a Web site to track a person
throughouthis visit. This ability permits a site to create a shoppingcart for a user
to track the items he wishes to purchase through multiple pages. At the end of
the visit, the server can supply the completelist of items the user has selected.
Given the srareless nature of HTTP,rhis allows commerce to flourish much eas-

ier on the Web.

From these enhancements to the protocol, HTTP developed from a simple
information retrieval system into a general purpose transaction system capable of
building quite complex systems with standard applications across multiple plat-
forms. With this success came problems. Users demanded faster loading of
pages, which led to clients making multiple connections to a single server. The
higher number of connections led to bandwidth and server overload at times.
Problems also appeared as more vanity servers appeared on the Internet. Servers
which host multiple virtual domains on a single machine required a unique IP
address for each virtual domain to identify each to the software. This has caused
the finite supply of IP addresses to dwindle just a bit faster. Problems also arose
as caching agents were introduced. Servers did not have a good way to specify
what could and could notbesafely cached, which led many sites to use cache-
busting techniques, which prohibit a cache agent from being able to cache a par-
ticular response. Throughout 1995 and 1996, the IETF/HTTP Working Group
worked ro develop HTTP/1.1 to build upon HTTP/1.0, improve HTTP’s gen-
eral capabilities, and fix some of the problems which had appeared.

24 HITP/11

In operation, HTTP/1.1 closely resembles HTTP/1.0, It still consists of the
request-response paradigm and is highly compatible with HTTP/1.0

16

013

014

ALTEEl

applications, There are seven areas we'll discuss here about how HTTP/1.1 dif-
fers from HTTP/1.0:

¢ New request methods
® Persistent connections

® Chunked encoding

® Byte range operations

* Content negotiation

* Digest Authentication

* Caching

2.4.1 New request methods
The HTTP 1.1 specification has defined two new methods which are highly
beneficial to the end user: put and prLETE. The pur method allows a user agent
to request a server to accept a resource andstore it as the request-URI given by
the client. This method allows a user agent to update or create a new resource on
a server. In use, an HTMLeditor might implement this as a way for the user to
maintain pages on a Website. The user could create the pages and have them
automatically updated by the editor, Notice thar this behavioris different from
the previously available post method. Using Post, the user agent was requesting
the resourceidentified by the request-URI to accept the entity sent by the client.
In essence, it was viewed as subordinate to the request-URI. The put methodis
asking the server to accept the entity as the request-URI. Another use of this
method might include implementing an HTTPbasedrevision control system.

The DELETE methodis self-explanatory: the user agentis requesting that the
request-URI be removed from the server. Along with put, there is now a stan-
dard method to implement Web based editing. ‘he protocolspecification spe-
cifically allows the server to defer the actual deletion of a resource when it
receives a request. It should move the resource to a nonaccessible location how-
ever. This relaxation allows a server to save deleted resources in a safe place for
review before final deletion and should probably be implemented in this way by

L7

014

015

CHAPTER 2 HTTP OVERVIEW

any server. Both the DELETE and PuT methods allow a user agent to create,
replace, and delete resources on a server. Because ofthis, access to both methods
should be controlled in some manner, either using IP address based restrictions
or via one of the authentication methods within HTTP.

The oprrons method is used to query a server about the capabilities of a
specific resource or about the server in general. A user agent can make an
OPTIONS request against a specific resource to find out which methodstheserver
supports when accessing the resource. The response returned by the server
should include any communications related information about the resource.
Typical information in the response would include an Allow headerlisting the
supported methods when requesting the resource. A user agent may also make a
general OPTIONS request of the server and receive the same information as it
applies to the server as a whole.

The final method added, TRACE, is used for debugging purposes at the appli-
cation level. A client program can use the method to haveits original request
echoed backro ir. Using this information, the client can debug problems which
might occur to an origin server when several intermediate agents handle its
request. In use, an HTTP traceroute can be accomplished byletting the request
advance one server at a time, checking the response back from each.

2.4.2 Persistent connections

As mentioneda bitearlier, in the quest for user satisfaction, Web browsers began
making multiple connections to origin servers in order to speed up response
times. Unfortunately, this led to some major congestion since a few clients could
quickly bog downa slow link. The practice also suffered from the inherit mecha-
nisms of making TCP connections where setup time can usurp a good portion of
the total connection cycle. Starting with HTTP/1.1, the protocol implements, as
a default behavior, the practice of persistent connections. This means that once a
client and server open a connection, the connection remains open until one or
the other specifically requests that it be closed. While open, the client can send
multiple, but separate, requests and the server can respond to them in order. Cli-
ents are also free co send multiple requests without waiting for the responses,

Ié

015

016

ATTP/121

basically pipelining the requests. In practice, a client might do this when
requesting all of the graphic images from a particular page. It can also make the
requests for the images, one after the other, and then finally listen for the
responses from the server. Implemented well, response time to the users will be
high, without the inefficiencies of individual requests.

2.4.3 Chunked encoding
One problem arises for servers when persistent connections become the default
behavior: they must now return a proper Content-Length header with each
response. Previously, servers could signify the end of the entity body by simply
closing the connection. With persistent connections, the server can no longer do
this and must be able to determine the length of any entity it sends co the client.
For mostresources, this is not a problem. The length of H'I'ML,and imagefiles
can be determined through the operating system. Where trouble arises is in
dynamically generated responses.

Fortunately, HTTP/1.1 also provides a solution: chunked encoding, Using
chunked encoding, a server or CGI process can send back an entity body of
unknown initial length by sending it back in chunks of known length. We'll dis-
cuss the details in a later chapter, but Figure 2.5 shows the basic format.

As shown,the server sends the size of the upcoming chunk in bytes and then
the actual chunk ofdata. This is repeated until all the data is sent. Onceall of the
data is sent, a final size of0 is sent, indicating the end ofthe data, Followingthis,
the server may optionally send footers, or header fields which are allowed to be
sent after the entity body. With this method,it becomes easy for a server to send
dynamically generated data and easy for the client to decodeit.

Figure 2.6 Chunked encoding
format

Id

016

017

CHAPTER 2 ATTP OVERVIEW

2.4.4 Byte range operations

Another optimization and convenience introduced is byte range operations, I'm
sure almost everyone has experienced trying to download the latest beta software
from a favorite vendor, only to have the connection fail with 100 bytes to go
(out of 5 MB,ofcourse), At that point, download is attempted again, hoping for
the best. Now, the user agent can just ask for the last 100 bytes of the resource
instead of asking for the entire resource again. This can improve both the mood
and response time. When requesting a byte range, a client makes a request as
normal, bur includes a Range header specifying the byte range the resource is to
return. The client may also specify multiple byte ranges within a single request if
it so desires. In this case, the server returns the resource as a multipart/

byteranges media type.
The use of byte ranges is not limited to recovery of failed transfers. Certain

clients may wish to limit the number of bytes downloaded prior to committing a
full request. A client with limited memory, disk space, or bandwidth can request
the first so-many bytes of a resource to ler the user decide whether to finish the
download. Servers are not required to implement byte range operations, butit is
a recommendedpart of the protocol.

2.4.5 Content negotiation

There are times when a server may hold several different representationsofa sin-
gle resource in orderto serve clients better, The alternate representations may be
national language versions of a page or a resource whichis available, both in irs
regular media type and as a gziped version. In order to provide to theclient the
best representation, content negotiation may be performed. ‘This can take the
form ofserver-driven, agent-driven, or transparentnegotiation.

The first form, server-driven negotiation, is performed on theorigin server,
based on the client’s request. The server will inspect the various Accept-*
headers a client may send and, using this information plus other optional infor-
mation, send the best response to the client. This allows the client to send
Accept, Accept-Charset, Accept-Language, of any combination of the
Accept-* headers, stating their preference for responses. When servers perform

20

017

018

ATTPHL

this negotiation, they must then send a Vary headerto theclient stating over
which parameters the server chose the particular resource. The vary headeris
required to be returned in order to provide caches with enough information to
properly determine which furure requests maybesatisfied by the response.

The second form of content negotiation is agent-driven. In this approach,
the server provides to the user agent the information needed to pick the best rep-
resentation of the resource. This may come in the form of the optional
Alternates header or in the entity body to the initial response. The
Alternates header is mentioned in the appendices to the HTTP protocols, but
the exact definition will be provided in a later specification thereto, Using either
approach allows the server to provide a list ofchoices to the user agent. The user
agent may then auromarically, or with user input, pick the best representation,

The final form is called transparent negotiation. In transparent negotiation,
an intermediate cache provides server-driven negotiation, based on the agent-
driven information from the server. In more concrete terms, the cache has the

agent-driven negotiation information from the server for a particular resource
with multiple representations, Assuming the cache understandsall of the ways in
which the representations vary, it may pick the best response when a client
request is received. This allows an off-loading of server duties onto cache agents
and improves response time to clients while providing accurate responses.

2.4.6 Digest Authentication
Digest Authentication is included in HTTP/1.1 as a replacement for Basic
Authentication. Basic Authentication suffers from the problem of passing the
user's passwordin clear text across the network, With Digest Authentication, the
passwordis kept as a shared secret berween theclient and server. The server and
client compute a digest value, using the MD5* (Message Digest 5) algorithm
over a concatenationofthe secret password and a few other values. This digestis
then sent across the network. Since only the client and server know the secret
password, the client can compute the digestvalue, sendit to the server, and then
the server can verify it against the information it holds. Since no one else knows

" MD5is detailed in RFC1321,

|

018

019

CHAPTER 2 HTTP OVERVIEW

the secret password, authenticity is more secure.‘l'his algorithm is similar to the
POP3 protocol’s APOP method ofauthentication.

Digest Authentication is still only a reasonably secure method, however. It
still requires an outside mode of exchanging the password between clients and
servers. Digest Authentication, therefore, is meant solely as a replacement for
Basic Authentication.

2.4.7 Caching

The caching model in HTTP/1.1 allows the server a great deal of control over
the caching of responses. First, the specification makes it clear what is cachable
and whatis not. Generally speaking, only Gey or HEAD responses are cachable;
responses to any other method must be explicitly marked as cachable by the
server. The protocol uses the Cache-Control header to transmit caching
instructions from servers and clients to caches.

For servers, the cache controldirectives can be segregated into five groups:
whatis cachable, what is not cachable, how old it can be, don’t serve anything
past its age, and don’t transform. In the first group are directives which allow an
origin server to explicitly mark something as cachable when it normally would
not be. This can be used to allow caching of authenticated responses or responses
to POST requests. An example ofa cachable PosT request mightbe the results of
a search engine on a Website. Under many circumstances, the results from a
search would remain valid for several hours or even a few days. If the response is
cachable andserves one other client request, the server has off-loaded some work
onto cache agents.

The whatis not cachable group ofdirectives include the no-cache and no-
store directives. Basically, these directives instruct the cache agents to never
save a response which includesthe directive. The no-cacheapplies ro responses
only, while the no-store applies to both the request and response messages.
The ne-store directive can be thought ofas the stronger. It instructs caches to
remove the request/response from volatile storage (i.¢., memory) as soon as pos-
sible and to neverstore it in nonvolatile storage (i.e., hard disk).

A server who wishes to control how long a response may be cached will use
the max-age directive, This directive sets a tueme limit from when it is served to

22

019

020

ATTPA)

when the response is considered stale. A client maystill request a cache return of
a response, even though it has becomestale, In these situations, the server can
includea directive from the don’t serve anythingpast its age group. These direc-
tives (must-revalidate and proxy-revalidate) instruct a cache to revali-

date a response with the origin server to make certain it is still valid. If the
response is not valid, the server will normally supply a fresh response; if the
server cannot be contacted to revalidate the response, then the cachewill rerurn
an error to the requestingclient.

The final category ofdirectives is the don’t transform group. The directive
here is called no-transform.Its function is to prevent an intermediate agent
from transforming a response in any way. The typical example would be a server
sending out medical images. Given the nature of medical images, the content
authors wish to maintain the images in their original formats, perhaps TIFF. An
intermediate agent may normally wish to transform all images into JPEG format
because of the space savings on disk and in bandwidth. This would result in a
loss of information which is unacceptable in the given context, hence the
no-transform directive.

The client agents also gain some control in HTTP/1.1 over the responses
that caches serve to them. The directives can be broken down into three basic

groups: not cachable, how old can it be, and don’t make a new request. The not
cachable group uses the no-cache and no-store directives as do the servers.
Here, the meaning is slightly different. When a client requests no-cache or
no-store,it is instructing the cache agent to not send any responses it may have
stored, but instead to make a new requestto the origin server, It also instructs the
cache agent to notcache the response from theserver.

In the how old can it be group, the cache control directives permit an agent
co control the age of a response whichaserverreturnsto it. It can specify this by
the age of the response (how longhas it beensince the origin server generatedit),
by specifying howstale it can be (how longpastits age is permissible), or by spec-
ifying how muchlonger the response must be fresh (how long until it becomes
stale). Using these directives, or combinations of them, the client can control
whether the response comes from the cache or from the origin server. If a client
wishes to receive a response which is no more than five minutes old and no more
than two minutesstale, it may specify a max-age= 300 and max-stale=120 in

23

020

021

CHAPTER 2 HITP OVERVIEW

its request message (values are expressed in seconds). If the client wishes to force
the cache to revalidate a response, it can specify max-age=0, This forces the
cache to revalidate the response with the origin server.

The last directive, only-if-cached, forms the don’t make a new request
group. This directive can be used in a request to have the cache only return a
response ifit already exists in the cache. If the response does notexist, then the
client agent will receive a 504 Gateway Timeouterror.

2.5 Finishing
This chapter has provided a broad overview of what constitutes HTTP,and in
particular, HTTP/1.1. In the next chapter, we will cover syntax and semantics
specific to HTTP/1.1

24

021

022

 chapter 3

Baste HITP—syntax
and semantics

3.1 Terminology 26
3.2 Protocol syntax 31
3.3 The basic prammar 33
3.4 Basic HTTP concepts 34
3.5 Finishing 52

25

022

023

CHAPTER 3 BASIC HTTP—SYNTAX AND SEMANTICS

In order to understand HTTP,you first need an understanding of the terminol-
ogy used in the protocol specification. As with most Internet protocols, there
exists a plethora of terms and definitions unique to HTTP.In this chapter, we'll
discuss the basics. Manyofthese terms are presented verbatim from theprotocol.
Given the need for precision here, it seems best to present a restatement from the
protocol and then expand uponit if necessary, hence this is the approach taken.

We'll start by going over some terminology. Words which have a particular
meaning within the protocol may not be thefirst meaning you would assign to
the word, Next, we'll go over some ofthe basic grammar constructs used in the
protocol, This will cover items which are not protocol-specific, but are necessary
in order to build up to the protocol’s specific terms, Finally, we'll cover some
basic concepts of HTTP, including factors such as byte ranges and entity tags.
This chapter should give you a basis for better understanding of the succeeding
Chapters 4, 5, and 6.

3.1 Terminology
The HTTPprotocol defines many termsprecisely. We'll restate those definitions
here, enclosed in quotes, and discuss them further as needed. The first three
terms are not technical terms, bur instead are those which describe the various

requirements of the protocol, Certain parts of the protocol are required to be
implemented in an application in order for the application to be compliant,
while other requirements are only recommended or optional. The protocol uses
specific words to denotethe different meanings:

Must “This word must or the adjective required, means that the item is an
absolute requirement of the specification.”

To qualify as a compliant, an HTTP/1.1 application mustsatisfy all parts of
the protocol which are described with must or required. For a general purpose cli-
entor server, compliance can be considered mandatory. All parts of the protocol
would be implemented. For a limited-use client or server, perhaps compliance
should be embedded into an application, but then only a limited set of

26

023

024

TERMINOLOGY

requirements might be implemented. The application would thus not be com-
pliant but instead would use a subset of HTTP/1.1 to accomplishits task.

Should The word should “or the adjective recommended, means that there may
exist valid reasons, in particular circumstances, to ignore this item, bur thefull
implications should be understood, and the case carefully weighed before choos-
ing an alternative course.”

To be unconditionally compliant with HTTP/1.1, an application must
implementall of the shouldrequirements. If it does not, then it can only be con-
ditionally compliant. Generally speaking, an all purpose HTTPclientor server
will implement the requirements ofthis category. The wording, however, gives
flexibility to those programmers implementing special purpose applications of
the HTTP protocol.

An example of a should requirement which might not be implementedis
accepting unbounded URI lengths in requests from clients. The protocol recom-
mends that an application be able to handle arbitrary and unbounded length
URI strings. In practice, if one were to implement a source code version control
system using HTTP, then an upper bound could be placed on the URIlength,
given limitations within the server's filesystem on the maximum path length.If
the local filesystem only supports path lengths to 512 characters, then the HTTP
server could reasonably expect to not see URIs abovethis length.

May The word may “or the adjective optional means that this item is truly
optional. One vendor may choose to include the item because a particular mar-
ketplace requires it, or because it enhances the product—for example, another
vendor may omit the same item.”

A good example of an optional behavioris the handling of the Host field in
a HTTP/1.1 style multihomedserver, If a server is not multihomed, then the
value of the Host field will not matter in determining with which resource to
respond. Only the URI sentwill be significant. A multihomed server, however,
will need to determine resources based on the URI and the Host field.

Therefore, the following terms are technical in nature with precise meanings
within the protocol.

27

024

025

CHAPTER 3 BASIC ATTP—SYNTAX AND SEMANTICS

Age “The age of a response involves the time since it was sent by, or success-
fully validated with, the origin server.”

Cache Cacheis defined as “a program’s local store of response messages and
the subsystem that controls its message storage, retrieval, and deletion. A cache
stores cachable responses in order to reduce the response time and network
bandwidth consumption on future, equivalent requests, Anyclient or server may
include a cache, although a cache cannotbe used by a server thatis routinely act-
ing as a tunnel.”

Cachable “A response is cachable if a cache is allowed to store a copy of the
response message for use in answering subsequent requests. The rules for deter-
mining the cachability of HTTP responses are defined in Section 13 (of the pro-
tocol.) Even if a resource is cachable, there may be additional constraints on
whether a cache can use the cached copy for a particular request.”

Client A client consists of “a program thatestablishes connections for the pur-
pose of sending requests.”

Connection A connection is “a transport layer virtual circuit established
between two programsfor the purpose of communication.”

Content negotiation Content negotiation encompasses “the mechanism for
selecting the appropriate representation whenservicing a request, as described in
Section 12 (of the protocol.) The representation ofentities in any response can
be negotiated (including error responses).”

Entity An entity is “the information transferred as the payload of a request or
response. An entity consists of metainformation in the form of entity-header
fields and content in the form of an entity-body, as described in Section 7” (of
the protocol).

Explicit expiration time Explicit expiration time denotes “the time at which
the origin server intends that an entity should no longer be returned by a cache
without further validation.”

28

025

026

TERMINOLOGY

First-hand “A responseis first-hand if it comes directly and without unneces-
sary delay from theorigin server, perhaps via one or more proxies. A responseis
also first-handifits validity has just been checked directly with the origin server.”

Fresh “A responseis fresh if its age has not yet exceeded its freshness lifetime.”

Freshness lifetime Freshness lifetime involves “the length of time between the
generation of a response andits expiration time.”

Gateway A gateway is “a server that acts as an intermediary for some other
server. Unlike a proxy, a gateway receives requests as if it were the origin server
for the requested resource; the requesting client may not be aware that it is com-
municating with a gateway.”

Heuristic expiration time THeuristic expiration time is “an expiration time
assigned by a cache when noexplicit expiration timeis available.”

Message A messageis “the basic unit of HTTP communication, consisting ofa
structured sequence of octets matching the syntax defined in Section 4 of the
protocol and transmitted via the connection.”

Origin server An origin serveris “the server on which a given resource resides
or is to be created.”

Proxy Proxy is “an intermediary program whichacts as both a server andacli-
ent for the purpose of making requests on behalf of other clients. Requests are
serviced internally, or by passing them on, with possible translation, to other
servers. A proxy must routinely implement both the client and server require-
ments ofthis specification,”

Representation Representation embodies “an entity included with a response
that is subject to content negotiation, as described in Section 12 (of the proto-
col). There may exist multiple representations associated with a particular
response status.”

29

026

027

CHAPTER 3 BASIC HTTP—SYNTAX AND SEMANTICS

Request Request implies “an HTTP request message, as defined in Section 5”
of the protocol.

Resource A resource is “a network data object or service rhar can be identified
by a URI, as defined in Section 3.2 (of the protocol). Resources may be available
in multiple representations (e.g. multiple languages, data formats, size, resolu-
tions) or vary in other ways.”

Response Response embodies “an HTTP response message, as defined in
Section 6” of the protocol.

Semantically transparent “A cache behaves in a semantically transparent man-
ner, with respect to a particular response, when its use affects neither the request-
ing client nor the origin server, except to improve performance, Whena cacheis
semantically transparent, the client receives exactly the same response (except for
hop-by-hop headers) that it would have received had its request been handled
directly by the origin server.”

Server A server constitutes “an application program that accepts connections
in order to service requests by sending back responses. Any given program may
be capable of being both a client and a server; our use of these terms refers only
to the role being performed by the program for a particular connection, rather
than to the program's capabilities in general. Likewise, any server may act as an
origin server, proxy, gateway, or tunnel, switching behavior based on the nature
of each request.”

Stale “A responseis staleif its age has passedits freshnesslifetime.”

Tunnel A tunnel is “an intermediary program whichis acting as a blind relay
between two connections, Once active, a tunnel is not considered a party to the
HTTP communication, although the tunnel may have been initiated by an
HTTP request. The tunnel ceases to exist when both ends of the relayed connec-
tions are closed,”

30

027

028

PROTOGOL SYNTAX

User agent “Theclient whichinitiates a request. These are often browsers, edi-
tors, spiders (Web-traversing robots), or other end-user tools.”

Validator A validator is “a protocol element (i.e., an entity tag or a
Last-Modified time) that is used to determine whether a cache entry is an
equivalent copy of an entity.”

Variant “A resource may have one, or more than one, representation(s) associ-
ated with it at any given instant. Each of these representations is termed a vari-
ant, Use of the term variant does not necessarily imply that the resource is
subject to content negotiation.”

3.2 Protocol syntax
As in many RFCs, the HTTP/1.1 protocol uses an augmented Backus-Naur
Form (BNF)first found in RFC 822. The exact usage ofthis format has varied
from protocol to protocol, so it is worth specifying exactly what is meant within
the HTTP document.

First we have the basic definitions:

name = definition The nameofa rule is simply the nameitself (without any
enclosing “<” and “>”) and is separated from its definition by the equal “=” char-
acter. white space is only significant in that indentation of continuationlines is
used to indicate a rule definition that spans more than one line. Certain basic
rules are in uppercase, such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle
brackets are used within definitions whenever their presence will facilitate dis-
cerning the use of rule names.

“literal” Quotation marks surroundliteral text. Unless stated otherwise, the
text is Case insensitive.

3!

028

029

CHAPTER 3 BASIC HTTP—SYNTAX AND SEMANTICS

rulel | rule2 Elements separated by a bar “|” are alternatives, i.c., yes | no
will accept yes or no.

(rulel rule2) Elements enclosed in parentheses are treated as a single element.
Thus, (elem (f00 | bar) elem) allows the token sequences elem foo elem
and elem bar elem.

rule The character “” preceding an element indicates repetition. The full
form is <n>*<m>element indicating at least <n> and at most <m> occurrences of
element. Default values are 0 and infinity so that * (element) allows any num-
ber, including 0; 1*element requires at least one; and 1*2element allows one
or two.

[rule] Square brackets enclose optional elements; [foo bar] is equivalent to
*1(foo bar).

N rule Specific repetition: <n> (element) is equivalent to <n>*<n> (element) ;
thatis, exactly <n> occurrences of (element). Thus 2DrGT1Tis a two-digit number,
and 3ALPHA is a string of three alphabetic characters.

#rule A construct “#”is defined, similar to “*”, for defininglists of elements.
Thefull form is <n>#<m>element indicating at least <n> and at most <m> ele-
ments, each separated by one or more commas (“,”) and optional linear white
space (Lws). This makes the usual form oflists very easy; a rule such as (*Lws
element *(*LWS “,” *LWS element)) can be shown as l#element. Wher-
ever this construct is used, null elements are allowed, bur do nor contribute to

the count of elements present, that is, (element), , (element) is permitted,
bur counts as only two elements. Therefore, where at least one elementis
required, at least one non-null element must be present. Default values are 0 and
infinity so that #element allows any number, including zero; 1#element
requires at least one; and 1#2e¢1ement allows one or two.

comment A semicolon, set off some distance to the right of rule text, starts a
commentthat continues to the end ofline. This is a simple way of including use-
ful notes in parallel with the specifications.

32

029

030

THE BASIC GRAMMAR

implied “LWS The grammar described by this specification is word-based.
Except where noted otherwise, linear white space (Lws) can be included between
any two adjacent words (token or quoted-string), and between adjacent tokens
and delimiters (tspeciais), without changing the interpretation of a field. At
least one delimiter (tspecials) must exist between any two tokens, since they
would otherwise be interpreted as a single token,

3.3 The basic grammar
Throughout the HTTP protocol, the grammar presented makes use of several
basic constructs. These define functions such as what a carriage recurn or space
characteris exactly. The basic constructs are predicated on the US-ASCII coded
characterset as defined by ANSI X3.4-1986,as follows:

OCTET = «any 8-bit sequence of data>

CHAR = <any WS-ASCII character (octets 0 - 127>)

UPALPHA = «any US-ASCII uppercase letter "A".."2">
LOALPHA = «<any US-ASCII lowercase letter "a".."z">

ALPHA = UPALPHA | LOALPHA
DIGIT = «any US-ASCII digit "0".."9">

CTL = ¢tany US-ASCII control character

(octets 0 - 31) and DEL (127)>

CR = <US-ASCII CR, carriage return (13)>

LF = <US-ASCII LF, linefeed (10)>

SP = «<US-ASCII SP, apace (32>)
HT = <US-ASCII HT, horizontal-tab (9)>

" = <US-ASCII double-quote mark (34)>
CRLF = CR LF

LWS = [CRLF] 1*(SP | HT }
TEXT = <any OCTET except CTLs, but including LWS>
HEX = "AR | “Bn | ace | “pe | pe | pe | wae |

‘Se [fem [| tae | tee | Hf" | prerr
token = l*<any CHAR except CTLs or tspecials>

tspecials es Ceorepe | eee | eat ge] ee ey
a, | =e | zis | pe l “[" | “]" | ape | ow |
EGO 28%) [SSR [ae

comment = "(" *(ctext | comment) ")"
etext <any TEXT excluding "(" and ")">

quoted-string (<"> *(qdkext) <">)

33

030

031

CHAPTER 3 BASIC HTTP—SYNTAX AND SEMANTICS

qdtext = <any TEXT except <">>
quoted-pair “\" CHAR

3.4 Basic HTTP concepts
Last to be discussed are basic HTTP concepts. These ideas are used in the proto-
col although they do not stand on their own as distinct requests or responses.
Instead they are used by the actual protocol messages to convey certain mean-
ings. An example of this would be giving the HTTP version number such as
HTTP/1.1. An application does not use this standalone, but instead includesit
as part of either a request or response line to convey the HTTP version as used
by the application.

3.4.1 HTTP version

Each HTTP request and response includes a version numberto indicate the pro-
tocol version supported by the sender. This version numberis not necessarily the
version number of the particular request or response butis instead the version
number supported by the sender. This allows a HTTP/1.1 client to send a
request labeled HrTP/1.1 to a server without knowing whetherornot the server
supports HTTP/1.1 features. The request in this example may only include
HTTP/1.0 features, The server, however, can interpret the request as coming
from an HTTP/1.1 compliant application and return a response which uses the
capabilities of HTTP/1.1.

Similarly, upon receiving an HTTP/1.0 request from a client, an HTTP/1.1
server may return the HTTP/1.1 version within the response, so long as the
response itself is compliant with the HTTP/1.0 specification. This allows the
server to inform the client of the 1.1 capabilities of the server. In effect, the
HTTP version is an upper limit on the capabilities of the sender, not an indica-
tion of the content of the message. An application which does not wish to receive
HTTP/1.1 messages should never send an HTTP version of 1.1. It should
restrict itself to HTTP/1.0, even if it understands some parts of HTTP/1.1.

34

031

032

BASIG HTTP CONCEPTS

For proxy applications, a special word of caution here: since the HTTPver-
sion indicates the version of the sender (which is the proxy), the proxy may be
forced to downgrade a request or response whenit does not understandthe level
indicated, An HTTP/1.1 compliant proxy, upon receiving an HTTP/1.2
request, must downgrade the version number of the request to HTTP/1.1. The
danger here to the proxy application is that it may need to modify headerfields
when downgrading the request. Some of the modifications may not be permitted
by the protocol. As an alternate, the proxy can respond with an error message or
switch to tunnel behavior to handle the request.

Grammatically, the HTTPversionis defined to be:

HTTP-Version = “HTTP" */* 1*DIGIT "." 1*DIGIT

‘The first number in the version is considered the major version number.
This numberis incremented whenever the format of messages within the proto-
col change. This would be for a change such as moving from the current RFC
822 style headers to a binary header format. The second numberin theversion is
the minor version number. This number is incremented for extensions to the

protocol which extend the capabilities without altering the message format. An
example of this would be when the additional headerfields in the 1.1 specifica-
tion are notpresentin the 1.0 specification. The general format of the headersis
still the same, although additional capabilities have been defined.

You should also note that because of this definition, the major and minor
version numbers are treated independently. A version number of HTTP/1.5 is
lower than HTTP/1.12. Likewise, a version number of HTTP/1.12 is lower

than a version number of HTTP/2.0. Applications must treat the major and
minor numbers separately when determining the overall version.

3.4.2 Uniform Resource Identifiers
Uniform Resource Identifiers (URI) are used in HTTP to identify a particular
resource available via the HTTP protocol. Many termsare used interchangeably
in this respect: Uniform Resource Locators, Uniform Resource Names,
Universal Document Identifiers, and simply WWW or Web addresses, Within

35

032

033

CHAPTER 3 BASIC HTTP—SYNTAX AND SEMANTICS

the HTTP protocol, they define how a HTTP client requests a resource and how
a HTTP server interprets the request. This use does not extend to how a URI is
used within an HTML document, only to what the HTTP application does with
it, once it is removed from rhe document.

The current(as of this writing) definitions of URI syntax and semantics are
in RFC 1738 and RFC 1808. The syntax presented in the HTTP protocolis
actually a superset of what is presented in RFC 1738. HTTPallows national
characters beyond RFC 1738, hence an HTTPapplication should be careful to
implement the syntax presented in HTTP, not just what is presented in
RFC 1738 and RFC 1808. You should also be aware of work being done to
update the URI standards and should check the RFC and Internet Draft archives
for the latest standards and proposals.

The syntax for HTTP URIsis given by:

URI = { absoluteURI | relativeURI) ["#" fragment)
absoluteURI = scheme ":" *(uchar | reserved)
YelativeURI = nét_path | abs_path | rel_path
net_path = "//" net_loc [| abs_path |

abs_path = "/*" rel_path

rel_path = [path) { ";" params) ["?" query]
path = fseqment *({ “/" segment)
fsegment = i*pchar

seqment = *pchar

params = param *({ ";" param)

param = "{ pehar | "/")
scheme = 1*{ ALPEA | DIGIT | 4" [| see[my
net_loc oe *4 pohar | ye | eee)
query = “{ uchar | reserved }
fragment = *(uchar | reserved)
pchar = ughar | *:" | “@" | “@* | “=* | *+*
uchar = unreserved | escape
unreserved = ALPHA | DIGIT | safe | extra | national
escape = “%* HEX HEX

reserved a Som pores | sen [Ber | see | eee! sar | mee
extra = "8 | ‘a | oo | mer | sl | ee
safe a | ec fli|
unsafe = CTL | SP | <"> | "#" | "#5 | "<*" | ">"
national = ~any OCTET excluding ALPHA, DIGIT,

reserved, extra, safe, and unsafe>

http_URL = “http:* “//"* host [":" port] [abs_path]
host = «<A legal Internet host domain name

36

033

034

BASIC HTTP CONCEPTS

or IP address (in dotted-decimal form),

as defined by Section 2.1 of RFC 1123>
pore = *DIGIT

As indicated by the grammar, HTTP does notplace limits on the length ofa
URI. However, applications should be aware that many (especially older) appli-
cations may restrict the length of a URI whichis accepted. A limit of 255 octets
is common.Server applications must be able to handle URIs of any resource they
serve. If a resource is identified by a URI of 2,000 octets, then the server must be
able to accept it in a request froma client. Similarly, ifa server accepts GET based
forms, then it should be able to handle arbitrary length URIs which such forms
might generate.

Whenever an HTTP application needs to know whether or not two URIs
are equal, then the application must do a comparison. Comparisons of URIsare
done withsix rules:

¢ Comparisons are case sensitive and done octet-by-octet except as noted.

* A port whichis empty, or not given, is equivalent to the default port for
that URI.

* Comparisons of hostnames are case insensitive.

¢ Comparisons ofscheme namesare case insensitive.

* An empry absolute path is equivalent to an absolute path of “/”.

* Characters are equivalent to their “*" HEX HEX encoding except for reserved
and unsafesets.

This leads to the following URIs being equivalent:

http: //example.com:$0/~jones/welcome.html
HTTP: / /EXAMPLE.COM/~jones/welcome.html

HTTP: //example.com/%7ejones/welcome.html

http: //Example.com/%7EjJones /welcome.html

The next URI is not equivalent to the previous examples:

http: //Example.com/%7EJones /welcome.html

af

034

035

CHAPTER 3 BASIC HTTP—SYNTAX AND SEMANTICS

3.4.3 Formatsfor date and time
HTTP applications have traditionally used three different formats to represent
date and time values. Two of the formats are based on RFCs while the third for-

mat is from the C language library call asct.ime(). The asetime() format can
be defined as:

asctime-date = wkday SP dates SP time SP 4DIGIT

wkday = "Mon" | "Tue" | "Wed" | "Thu" | "Fri®” |
"Sat" | "Sun"

dates = month SP (2DIGIT | SP 1DIGIT }
month = "Jan" | "Feb" | “Mar” | "Apr" | "May" | "Jun" |

"Jul" | "Aug" | “Sep" | "oct" | "Nov" | "Dec"
time = 2DIGIT “:" 2DIGIT ":" 2DIGItT

This gives us a date value of:

Mon Now 4 21:52:34 19596

This format has been deprecated for use within HTTP/1.0 and HTTP/1.1
applications, The biggest drawback to this format is the lack of a time zone.
Applications which receive dates in this format should assume the timevalueis
expressed in GMT (UTC).

The other deprecated format in use within HTTPis based on RFC 850.Itis
defined to be:

rfc850-date = weekday “," SP date? SP time SP "GMT"

weekday = "Monday" | "Tuesday" | "Wednesday" |
"Thursday" | "Friday" | “Saturday" | "Sunday"

datez = 2DIGIT "-" month "-" 2DIGIT

This format includes the GMTindicatorfor time zone, bur lacks a necessary
4-digit year value:

Monday, 04-Nov-96 21:52:34 GMT

The final formatis the one required by the HTTP/1.1 protocol:

rfie¢ll23-date = wkday "," SP datel SP time SP "GMT"
datel = 2DIGIT SP month SF 4DIGIT

358

035

036

BASIC ATTP CONCEPTS

This formatis derived from RFC 822 as updated by RFC 1123 and gives us
all of the desired characteristics:

Mon, 04 Nov 1996 21:52:34 GMT

All HTTP/1.1 date values must be expressed in Greenwich Mean Time
(GMT,also known as UTC). In addition, the RFC 1123 format allows a

four-digit year which prevents ambiguous dates for the next ten thousand years.
As per the protocol standard, all HTTP/1.1 applications are required to only

generate the RFC 1123 date for messages. This does not preclude them from
using an alternate date format for log files or to present same to the user,
HTTP/1.1 applications must also be able to accept all three formats. In practice,
this is not as difficult as it sounds. At most, two characters of a date string must
be examined to determine the format in question. The short code example in the
next section illustrates how to do this.

3.4.4 Code: date handling
This function is designed to parse any of the three possible date formats and
return a time_t style value, this value being the number of seconds which have
elapsed since the epochvalue ofJanuary 1, 1970. This gives us a format which is
easy to manipulate with the standard C library functions for the requisite date
and time values:

time_t ConvertDate(char *szDate)
{

char szMonth[64]; f/f Allow extra for bad formats.
struct tm tmData;

if (strlen(szDate) > 34) // Catch bad/unknown formatting.
{

return((time_t) 0 };

)

As shownhere, we'll make, at most, four checks before returning a default
value of 0, The first check is for the length of the date string passed into the
function. Given the possibilities of the three date formats, there should be no

3D

036

037

CHAPTER 3 BASIC HITP—SYNTAX AND SEMANTICS

date string with more than 34 characters in it. If we find one, we immediately
return a value of 0 since there is no hope of parsing it:

if (szDate[3]) == ',') // RFC 822, updated by RFC 1123
{

sscanft(szDate, "%*s %d $5 td td:%d:%d G*s",

<mData.tmumday), szMonth, &(tmData.tm_year),
&(tmData.tm_hour), &(tmPata.tm_min) ,

&(tmData.tm_sec));

tmData.tm_year -= 1900;
}

The second rf statement looks for the preferred format. By inspecting the
specification, the fourth character position must contain the commacharacterin
this format. No other format shares this characteristic, so we can key on it and
parse the given string if we findit:

@lse if (szDate[3] == ‘ ') // ANSI C's asctime() format
{

secanft(szDate, “%*s te 44 $d:4d:%d td",

szMonth, &(tmData.tm_mday), &(tmData.tm_hour),

&(tmData.tmmin), &(tmData.tm_sec) ,

&(tmData.tm_year)};

tmData.tmyear -= 1900;

The next format for which we check is the asctime() formar. In this for-

mat (and no other), the fourth character must be a space character. Given a
space, we parse according to the syntax:

else if (isascii(szDate[3])) // RFC 850, obsoleted by RFC 1036
{

sscanf(szDate, "%*s $d-%3s-4d Sd: %d:%d %*s",

&{tmData.tmmday), szMonth, &(tmData.tm_year),
&(tmData.tm_hour), &(tmData.tm_min),
&(tmData.tm_sec));

Finally, we make another check for the RFC 850 format. The fourth charac-
ter in this format will always be an ASCII character, specifically part of the
weekday. For robustness, we test for this condition instead of defaulting to it.
The final else clause returns a time ofzero again:

40

037

038

BASIC HITP CONCEPTS

else // Unknown time format

{

return ((time_t)0);
}

The remainder of the function then converts the struct tm dara into the

time_t value. The entire function is presented on the accompanying CD.

Delta seconds Onelast note should be made aboutdate and time values within

HTTP/1.1. Some message headers permit values to be expressed in delta sec-
onds, which is the number of seconds that have elapsed since a message was
received, The syntax for this is simply:

delta-seconds = 1*DIGIT

3.4.5 Character sets

The term character set is used in HTTP in the same manner as in MIME.Itis

used to denote a method of converting a sequence of octets into a sequence of
characters according to a table mapping. Quoting RFC 1521, Section 2, page 6:

The term character set is used in this document to refer to a method

used with one or more tables to convert encoded cext to a series of

octets. This definition is intended to allow various kinds of text encod-

ings, from simple single-table mappings such as ASCII to complex
table switching methods such as those that use TSO 2022's techniques.
However, a MIME character set name must fully specify the mapping
to be performed.

When used in this manner, the term character set entails more closing, fulfill-
ing character encoding. The character set tables define how an application should
interpret a sequence ofoctets. This allows an HTTPapplication to send an entity
body encoded in a character set other than US-ASCII. You should also note when
a character set, other than US-ASCII,is used for the entity body, then the HTTP
protocol allows the use of the equivalent characters for carriage return andline
feed in that character set, So, for any character set an HTTPapplication accepts,
it must be able to derermineline breaks, based on the characters ofthatset.

41

038

039

CHAPTER 3 BASIC HTTP—SYNTAX AND SEMANTICS

You should note that the use of charactersets is restricted to the entity body
ofan HTTP message. Only US-ASCII may be used within message headers. The
definition and use of character sets within HTTPis solely to enable applications
to reliably transfer non US-ASCII text.

When using character sets, applications should use only those charactersets
registered with the IANA Character Set registry. The Internet Assigned Num-
bers Authority (IANA) serves as a central clearinghouse for assigning unique
parameters to Internet protocols, In this role, the Character Set registry main-
tains a list of approved names for individual character sets. HTTP applications
must respect any charactersets in this registry, and represent them precisely as
indicated in the registry.

In the HTTP protocol, character sets are defined to be:

charset = token

Character set tokens are case insensitive.

3.4.6 Content codings
In order to reduce the numberof bytes transferred between HTTPapplications,
a content encoding transformation of the entity body may be performed. ‘This
allows an application to serve resources in a compressed format, while preserving
its underlying media type, As an example ofthis usage, this mechanism would be
an HTTPserver which distributes video files. Typical videofiles are rather large,
so the server stores the files in compressed format and transfers them tothe client
in this format. By using a content coding, the server can indicate the compressed
form ofthefile, while still sending the original media type ofthefile.

Content codings for HTTPare case insensitive and defined by:

eontent-coding = token

For HTTP/1.1, three different content codings are defined: GZIP, compress,
and deflate. GZIP is defined in RFC 1952, deflate in RFC 1950 and RFC 1951.
Compress is the common Unix format. New content codings are allowed, and
the protocol recommends that all new codings be registered and the algorithms
freely available for implementation.

42

039

040

BASIC HTTP CONCEPTS

3.4.7 Transfer codings
From the name, you might think transfer codingsare similar to content codings,
but in practice they are orthogonal to one another. A transfer coding is known as
a transformation which has been applied to the entity body of a message.It is a
property of the message and notof the entity body. In simpler terms, it means
the entity body is being transferred in an encoded fashion.

For HTTP/1.1, the only transfer coding defined is chunked encoding. With
this encoding the entity bodyis transferred as a series of chunks which encodetheir
ownlength. Normally, an HTTP application must send a Content-Length mes-
sage header to tell the receiving application the number of bytes in the entity
body. For dynamically produced entity bodies, this value may not be known
ahead of time since determining the length may be an expensive operation in
terms of resources or time. In cases such as these, the sending application can
apply the chunked encoding to a dynamic resource as it is produced. The
receiving application must then decode the chunked encoding to put togetherthe
actual entity body:

The syntax for chunked encodingis given by:

Chunked-Body = *chunk
“O"CRLF

footer

CRLF

chunk = chunk-size [chunk-ext] CRLF
chunk-data CRLF

«HEX excluding "0">
hex-no-zero “HEX

*(";" chunk-ext-name ["=" chunk-ext-value J] }
token

token | quoted-string
chunk-size (OCTET)

*eantity-header

hex-no-zero

chunk-size

chunk-ext

chunk-ext-name
chunk-ext-val

chunk-data

footer

There are a couple of factors you should notice in this definition. First,
unlike most of HTTP/1.1, for chunked encoding, the number of octets in a
chunkis represented in hexadecimal form. There must not be any leading zeros
as part of the hexadecimal number either. A chunk size of zero is reserved to
mark the end of the chunked encoding transfer. Another point to notice is that

43

040

041

CHAPTER 3 BASIC ATTP—SYNTAX AND SEMANTICS

the chunk size does not include the 2 bytes of the carriage return line feed at the
end of the chunk.

A footer is permitted as part of the chunked encoding transfer. This is to
allow dynamically generated entity headers to be included with the response. On
a dynamically generated resource, the value of the entity headers may not be
known before the entity is generated and sent. This allows the server to append
the final entity headers after the fact.

All HTTPY/1.1 applications must understand how to receive and decode
chunked encoding, If a transfer coding which an application does not under-
stand is received, it should always return a 501 error code to the sender and not
accept the encoding. The protocol further recommends closing the connection
after sending the 501 response. Applications sending chunked encoding must
never send it to an HTTP/1.0 application. While transfer coding is meant
mostly for dynamically generated responses, the protocol does not forbid a client
application from using it to send an entity body to a server. Therefore, routine
server applications should not overlook the requirement of being able to accept
chunked encoding. The code snippet in the next section shows an implementa-
tion ofreceiving such chunked encoding,

3.4.8 Code: chunked encoding

The HTTP/1.1 protocol presents an algorithm for receiving an entity body
transferred using the chunked encoding method, Here, we'll present working C
code. The code example uses two C++ classes which are also presented in the
accompanying CD. Thesocketclass is also presented in Chapter 7.

at

// GetChunked
ff

// Receive the entity using the chunked method.
ff

int GetChunked(Secket *sClient, ofstream kofOut, Headers *hinfo)
{

BOOL BbNotDone = TRUE;

ehar *szPtr;

$4

041

042

BASIC HTTP CONCEPTS

int iBytes, i, j, 1, iFacteor;

while (bNotDene == TRUE)

{

sClient->RecvTeol (NO_EOL); // Grab a line. Should
// Rave chunk size.

The loopstarts by grabbing a line of data from the socket. The Reev'eo!()
method retrieves the data up unto the terminating line feed delimiter. The
NO_EOLflag passed in causes the method to not return the end-of-line marker:

if (stremp(sClient->szOutBuf, "0") == 0)

{

bNotDone = FALSE; // The end of the chunks.
continue;

)

Since the ending markeris simply a zero, a simple string comparison suffices
to determine the end of the chunks. Finding the end causes the loop flag to
FALSE and the outer while loop ends:

szPtr = strehr(sClient->szOutBuf, ‘;');

if (szPtr != NULL) *szPtr = NULL; // Mark end of chunk-size.

Here we learn whether or not a chunk extension was sent. The code here

does not recognize any extensions, but does look for the semicolon which would
mark the start of a chunk extension. If found, we simply place a new terminating
NULL in the string overwriting the semicolon:

1 = strlen(sClient->sz0utBuf); // Find last hex digit.

in4

iBytes = 0;
iFactor = 1;

/f Convert to decimal bytes.
while (1 == 0)

{

iBytes += iFactor * Hex2Dec(sClient->szOutBuf[1]);

1--;
iFfactor *= 16;

)

i =O;

45

042

043

CHAPTER 3 BASIC ATTP—SYNTAX AND SEMANTICS

This section converts the hexadecimal number ro a decimal number for

internal manipulation, The Hex2Dec() function (presented as follows) converts
a single hex digit to the equivalent decimal digit:

// Wow receive the specified number of bytes.

while {i < iBytes)
{

j = sClient--Recy(iBytes - i); /?/ Some data.

i += 4; // Total the bytes.

ofOut.write({sClient->szOutBut, j}); // Save to disk.
} .

sClient->RecvTeol(NO_EOL); // Discard end of chunk marker.

}

The loop here uses another method in the Socketclass to receive the cor-
rect numberof bytes from the sender. As the bytes are received, they are written
in raw form to disk using ofstream:

// Now consume anything in the footer.

hinfo->RevHeaders (sClient) ;

The final operation is to check for any additional headers the client may
have sent. The class method used understands the various headers andfills in the

class data members as new informationis received:

return 0;

ii

// Hex2Dec
ff

// Convert a hex character to a decimal character,
f/

int Hex2Dec({char c)

{

switch ([¢)
{

case 'A';

case 'a':

return 10;
case 'B":

46

043

044

BASIC HTTP CONCEPTS

case 'b':

return 11;
case 'C':

case 'c':

return 12;
ease 'D':

case 'd':

return 13;
case 'E':

Case ‘ae’:

return 14;
case 'F':

case ‘f':

return 15;
default:

return (c - 48);

While the BNF grammar looks a bit imposing, the actual implementation of
chunked encodingis straightforward. Modifying this code to straight C would
only require a bit more work.

3.4.9 Media types
In order to specify the type of data within an entity body, HTTP uses Internet
Media Types such as are used in MIME. Internet Media Types are registered
with the LANA, the same organization which handles character set registration.
Anyone may register a new media type using the procedure outlined in
RFC 1590. Some examples ofregistered media types include:

text/plain

text/tab-separated-values

application/zip

application/wordperfect 5.1

application/pdf

image/qif

video/mpeg

044

47

045

CHAPTER 3 BASIC HTTP—SYNTAX AND SEMANTICS

The protocol encourages applications to only use registered types. At the
time ofthis writing, the official list of media types can be retrieved via anony-
mous FTP from the LANAarchivesat:

Ftp: //ftp.isi.edu/in-notes/iana/assiqnments /madia-types

Media types are defined by:

media-typea = type "/" subtype *(";" parameter)

type = token
subtype = token

parameter = attribute “=" value
attribute = token

value = token | quoted-string

The type, subtype, and attribute tokens are not case sensitive, The value of
the parameter may or may not be case sensitive depending on its definition.
HTTP applications must take care not to insert white space characters between
the type and subtype names or between attributes and their values. HTTP/1.1
applications should also be aware that older HTTP applications might nor cor-
rectly recognize parameter values for media types:

Canonical forms for media types All Internet media types are registered in
terms of a canonical form. This canonical form defines the format of the entity
bodyitself. In the case of text media types, this form may include entities with
varying forms ofend-of-line delimiters: carriage return line feed, carriage return,
or line feed. Although a bit of a pain to support in code, the HTTP protocol
allows an application to use any of these conventions when sending text media
types. If the character set used in the entity body does not use the same octets to
represent carriage return andline feed as ISO-8859-1, then the protocol allows
the use of the octet sequences defined by the characterset. So to be truly interna-
tional, an application needs to be aware ofthe differences berween charactersets
in this regard.

The relaxation of rules here for the entity body does not apply to any other
part of the protocol. An application must still generate and send the carriage
return line feed combination between headers and elsewhere as required in the

48

045

046

BASIC HTTP CONCEPTS

protocol. Also, the specification does not allow the switching of end-ofline
sequences within an entity body. If the entity body uses a carriage return, then it
must use a carriage return throughouttheentire entity body.

Multipart types As in the MIMEstandard, HTTP/1.1 allows the use of multi-
part types such as media types which encapsulare more than one entity within a
single message body. The multipart type allows sending multiple types of data or
discrete elements ofan entity in a single response. For HTTP/1.1, this is used by
server applications to send multiple byte range responses to a client. If a client
requests bytes 1 through 10 and 35 through 65 of a resource, then the server
must use a multipart type to send both byte ranges within the same routine
response message.

HTTPapplications can send applicable headers within a body part. When
sending headers within a body part, and when separating the body parts, the
application must always use a carriage return line feed to delineate the lines.

3.4.10 Product tokens

HTTPapplications are allowed to send a product token, an identifyingstring, as
part of HTTP messages. These tokens are specifically to identify a product by
nameandversion. Their use for advertising is forbidden by the protocol. Given
the fact only applicationsare likely to ever see them, their use for advertising is
minimal, at best, anyway. The syntaxis:

token ["/" product-version)
token

product
product-version

3.4.11 Quality values

Quality values are used in HTTP content negotiation to indicate relative impor-
tance of similar parameters. This allows an application to request multiple types
and indicate which types it would prefer, An example wouldbe:

Accept: text/html, text/plain; q=0.6, text/richtext; q=0.8

49

046

047

CHAPTER 3 BASIC HTTP—SYNTAX AND SEMANTICS

This specifies that the requesting application prefers text /htmi, but will
accept text/richtext and then text/plain. The quality values are
represented as three-digit floating point numbers with higher numbers preferred.
Therange allowed is from 0.000 to 1.000. The syntax is:

qvalue = { “O" [*°." G*3DIGIT)) | { "1" [-*." O*3q"0") J }

3.4.12 Language tags
A languagetag is similar in concept to a character set value, but represents a dif
ferent quantity. While a character set defines an encoding from octets to glyphs,
a language tag merely represents a natural language. This language may be spo-
ken, written, or used in some form to convey information. Computer languages
are excluded from this definition. Language tags are used in the
Accept-Language and Content-Language tags to negotiate and tag the lan-
guage used in the resource.

This allows a server to keep the same documentin several different lan-
guages and return the one preferred by the client, based on the value in the
Accept-Language header. Whenthe server does return the specified document,
it indicates the language of the document using the Content-Language
response header.

As in Media Types, the LANA maintains a registry of language tags per
RFC1766. The syntax is:

lanquage-tag = primary-taq *{ "-" subtag)

primary-tag 1*SALPHA
subtag 1*HALPHA

3.4.13 Entity tags
Entity tags arose from the need to make unambiguous comparisons between two
or more entities from the same requested resource. A typical application of this
would be to verify whether a page has changed between two visits. The use of
entity rags allows for the precise comparison berween the two requests. Further-
more, there is also the concept of a weak entity tag which implies the semantic

30

047

048

BASIC HTTP CONCEPTS

content of the resource has not changed, even thoughit is not exactly the same.
This can be used when something such as the background image is changed, but
the words on the page are the same.

The actual value of the entity tag is considered an opaque quoted string. The
actual bytes which make up the quotedstring are only ofsignificance to the gen-
erating application. The application comparing the values must do a simple
string comparison only. Depending on the use ofthe entity tag, either a weak or
strong comparison is made. The protocol specifies which are used in which
instances. The syntax for entity tags is given as:

entity-tag = [weak] opaque-tag
weak = ""/"

opaque-Lag = quoted-string

Applications which generate entity tags must take care to never generate the
same tag for two entities which are accessed via the same resource. In simpler
terms, an application may chooseto use something such as the last modification
timeofa file as an entity tag. This usage is permissible only so long as thereis no
chancefor that entity to be updated more than once within a single timestep. If
the file system keeps last modification times to a one-second precision and the
entity can be modified more than once within a given second, then a simple
timestampvalue is not sufficient for an entity tag.

3.4.14 Range units
As mentioned in the explanation of chunked encoding, an HTTP/1.1 applica-
tion can request that only a certain range (or ranges) ofan entity be returned in a
response. This allows an application to limit the size of a requested resource, or
to only retrieve a missing part of a resource. HTTTP/1.1 allows arbitrary range
units to be used in this manner, although only byte ranges are defined as follows
by the protocol:

range-unit = bytes-unit | other-range-unit
bytes-unit = "bytes"
other-range-unit = token

51

048

049

CHAPTER 3 BASIC ATTP—SYNTAX AND SEMANTICS

3.5 Finishing
This chapter has covered most of the basic mechanics of HTTP. In the next
chapter we will look in detail at the request messages sentby clients.

52

049

050

 chapter 4

The request

4.1 The Request Message 54
4.2 Method definitions 55

4.3 The request header fields 61
44 Implementation 71
4.5 Finishing 83

a3

050

051

CHAPTER 4 THE REQUEST

The first thing to look at for HT'T'P/1.1 is the request.he requestline is the
message sent by the client to the server to request a resource or an action to take
place. First, let us take a look at the overall construction of the request message.

4.1 The Request Message
The term Request Message is used to indicate the full message sent by a client
to a server to request a resource. This includes the Request-Line andpossibly a
set of header lines. ‘The overall syntax is defined as:

Request = Request-Line

*(General-Header

| Request-Header
| Entity-Header }

CRLF

[Entity-Bady]

Request-Line = Method SP Request-URI SP HTTP-Version CRLF
e

Given a Web server located on hops.ag.utk.edu, and the resource

os2/index. html, rhe Request-Line would be:

GET /os2/index. html HTTP/1,1

Host: hops.ag.utk. edu
User-Agent: IBM-WebExplorer-DLL/v1.1b

Referer: http://www. hethmon.com/index.html

The other general form a client might forward is when an entity body is sent
with rhe request:

POST /fceqi/search.cmd HTTP/1.1

Hest: hops.ag.utk.edu
User-Agent: IBM-WebExplorer-DLL/v1.1b

Content-Length: 22

Content-Type: text/plain

term=ibmétynpe=bénume2 0

In this example, a Post method is used to send an entity body with the
request. This is formed similarly to the previous example but has the addition of
an entity body after a blank line. It is important to note that the client must send

54

051

052

METHOD DEFINITIONS

two CRLFs in a row before the beginning of the entity body. The first CRLF
marks the end of the User-Agent: line. The second one follows with no inter-

vening characters—in essence a blank line, This way, the server has a clear and
concise delineation between the header fields and the entity body. The actual
form of the data in the entity body is defined by the application level and not
within the HTTP protocol. In this example we've shown a typical request
involving plain text for a routine form submission.

All request lines begin with a Method. This is a keyword such as GET or
post which indicate the type action the request is asking the server to execute.
Following the Method, the client sends the Request-URI, indicating the
resource upon which the Method acts. Finally, the line ends with the client's
HTTP version number. Remember this version number indicates the HTTP

capabilities of the client, not necessarily the version of the actual request. Thecli-
ent may send only HTTP/1.0 compliant requests andstill indicate a HTTP/1.1
version here. The client must be prepared to accept HTTP/1.1 responsesin this
situation. In practical terms, the client would only send the highest version num-
ber ic wishes to accommodate.

We'll start looking at these different pieces next, starting with the different
methods available to HTTP/1.1 applications.

4.2 Method definitions
In this section, we'll rake a look at the different methods available for HTTP/1.1

requests. With HTTP/1.1, there are seven basic methods: OPTIONS, GET, HEAD,
POST, PUT, DELETE, and TRACE.

4.2.1 The OPTIONS method

The oprrons method is used to query a server about the capabilities available
from the server, or from a particular resource on the server. When querying
about general capabilities, the client will send:

OPTIONS * HTTP/1.1

55

052

053

CHAPTER #4 THE REQUEST

The server, in turn, will reply with the general capabilities available. This
will likely include an Allow header listing the methods supported by the server.
Any general or response headerfields which are appropriate should be returned.
What must not be returned are entity headers. There must not be an entity body
in a response to an OPTIONS request, unless it is an error response, Since there is
no entity body, entity headers are not appropriate.

If the request from the client uses a URI instead of the “*”, then the response
should only include information relevant to that resource. A server is expected ro
resolve the URI and determine which methods are supported. This may mean
returning an Allow header with only GET and HEAD, and perhaps an
Accept-Ranges header indicating byte range retrieval thar is allowed for the
resource:

Flequest: OPTIONS * HITP/1.1

Response: 200 Ok

Allow: OPTIONS, GET, HEAD, POST, PUT
Accept-Ranges: bytes

Acocept-Encoding: qzip

Requast OPTIONS /egi-bin/order HTTP/1.1

Response: 200 Ok
Allow: POST

Accept-Encoding:

It should be pointed out that in the last example, the Accept-Encoding
line is correct. The standard allows an empty value indicating that the server does
notaccept any formof content encoding.

4.2.2 The GET method

GET serves as the work horse method for HTTP.It is the only method defined in
the original HTTP/0.9 standard. When a client sends a request using the GET
method, it is requesting that the server return the entity body of the resource
identified in the Request-URI. As mentioned before, this may be a simple

‘resource such as a Web page, an image, or an audio file. In those cases, the server
will return the entity body as part of the response to the client.

The request may be more complicated when theclient uses the query sym-
bol within the Request-uRI. This is the use of the question mark symbol (7)

56

053

054

METHOD DEFINITIONS

after the resource in order to pass information to the resource indicated. In
simple terms, this means passing parameters to a CGI resource and having the
CGI resource use the parameters to determine the exact resource to be returned
to the client. This can be used to implementa search engineofavailable docu-
ments, as an index into a database, or as a definitive way to pass coordinates for
an imagemap.

Either form of a GET request may be modified by the inclusion of an
If-Modified-Since request header in the request. If this header is present,
then the GET is performed as a conditional operation. Only if the resource has
been modified since the date given in the headeris TRUE, is the resource returned
to the client. This means, ifyour resource has a last-modified date of September
29, 1996, at 5:12 P.M.and theclient sends a last modified date of September
15, 1996, ar 1:00 A.M., then che server should rerurn the resource to the client.

For our examples here, assume the resource named index.htmhasalast-
modified date of September 29, 1996, at 5:12 P.M. For each example, we'll out-
line the response the server should make:

Request GET /index. html HTTP/1.1

Response: The resource index.html.

Request: GET /index. html HTTP/1.1

Tf-Modified-Since;: Wed, 25 Sep 1996 09:45:23 GMT

Response: The resource index.html.

Request: GET /index. html HTTP/1.1

Ilf-Modified-Since: Tue, 1 Oct 1996 14:09:34 GMT

Response: A304 not modified response. No resource is sent.

Request: GET /cgi/searchthttp+book HTTP/1.1

Response: Ihe output from the resource search given the two terms http and
book.

4.2.3 The HEAD method

As noted previously, the HEAD method has the same semantics as the GET
method. The difference between the two methodsis in the responses returned by
the server. For HEAD, the server never returns an entity body in a response. This
allows clients to verify links and check for modifications to resources withoutthe

57

054

055

CHAPTER i THE REQUEST

expense of transferring the entity body. A client may not perform a conditional
HEAD akin to a conditional Ge. If a server receives an If-Modified-Since

header as part ofa HEAD request,it should ignore it and return the normal header
information as if it were not present.

For the examples, we use the same resource as in the GET section.

Request: HEAD /index. html HTTP/1.1

Response: The response headers for index.html.

Request HEAD /index. html HTTP/1.1

Tf-Medified-Since: Wed, 25 Sep 1996 09:45:23 GMT

Response: The response headers for index. htm1.

4.2.4 The POST method

post is used by a client to transfer an entity body to the server. The entity body
is thought of as being subordinate to, and accepted by, the resource in the
Request-URI. This allows for data submission via HTTP to accomplish various
goals, such as database updating or order entry. This method was developed as a
way to transmit larger sizes of data from clients to servers over the GET plus query
term method.

There is one other big difference between GET and Post. This is the idea of
idempotence. In simple terms, it means that performing a GET request multiple
times should always result in the same response. If a client requests a GET for a
specific Web page, then the same Web pagewill always be returned. For Fost,
this does not hold true. Submitting a POST request multiple times may very well
result in multiple copies of forms being submitted for processing to a data han-
dling process. In more practical terms, if you were to POST an order form for a
poundofchocolate ten times, then you wouldlikely receive ten pounds of choc-
olate plus a bill for it. Most HTTPclients have a setting to warn the user about
this possibility,

When a client uses the Post method, it must include a Content-Length

header as part of the request. This must be included as a way for the server to
determine the end of the entity body. Since the socket connection must remain
open for the server to send a response, the client cannot simply close the

58

055

056

METHOD DEFINITIONS

connection to mark rhe end of the dara, as is done for FTP transfers. Check the

following examples:

Request: POST /ceqi-bin/submit HTTP/1.0

Content-Length: 3819

[3819 bytes of data]

Response: The output from the process submit.

Request: POST /fegi-bin/order HTTP/1.0
Content-Length: 6082

[6082 bytes of data]

Response: The output from the process order.

4,2.5 The PUT method

The put method is analogous to a sending a file via FTP. The client requests the
server to accept the enclosed entity body, andstore it as the Request -URI in the
request line. This is different from the Post method, since the Post method
implies the entity is to be passed or given to the Request-URI for processing.
With the put method,clients now have a way to implement updating a Website
through HTTPitself.

When a server accepts a PUT request, it must respect any Content -* headers
sent with the request. This provision is required to ensure that if a
Content-Encoding headeris given, the server must be capable of decoding the
entity body before updating the associated URI. If the server cannot honor a
content header, then it must issue an error response and discard the request. See
the following examples.

Request FUT /users/phethmon/welcome.html HTTP/1.1

Content-Type: text/html

Content-Length: 3109

[3109 bytes of entity]

Response: 204 No Content
Server: 3wd/1.1

Aeques: PUT /catalog/sectl/pa34.html HTTP/1.1

Content-Type: text/html

59

056

057

CHAPTER 4 THE REQUEST

Content-Length: 4526

Content-Enceding: gzip

[4526 bytes of entity]

Response: 501 Not Implemented
Server: 3wd/l.1

4.2.6 The DELETE method

‘The DELETE methodallows a client to request a URI to be removed from the
server, This methodis explicitly allowed to be overridden onthe server. A suc-
cessful response code only indicates the server expects to carry out the operation.
In practice, a server might remove the resource from the server tree and place it
in temporary storage, until reviewed by the server operator for permanentdele-
tion. Given the ability for widespread mayhem with this method, any implemen-
tation should enforce somesort of mandatory security over usingit.

Typical Web servers require authentication only when a resource indicates
it. For the DELETE method, a better way would be to always require authentica-
tion, and deny it when noneis specified.

Request: DELETE /catalog/sales/oct96.html HTTP/1.1

Response: 204 No Content

Request: DELETE /company/about.html HTTP/1.1

Response: 202 Accepted Pending Approval

4.2.7 The TRACE method

TRACE is used by client applications to do loopback requests. When a server
receives a TRACE request, it should respond with a message containingall of the
headers sent in the TRACE request, This allows a client to trace the progress of a
request through multiple proxies and firewalls for error detection. A client may
also attach a Max-Forwards request header to this type of request to limit the
number of proxies and gateways passing the request. If Max-Frorwards reaches
zero before reaching the destination server, the proxy or gateway to decrement
the value ro zero should return a response.

60

057

058

THE REQUEST HEADER FIELDS
-_-_oOoOoOeeSnnSEae...EEa

Request: TRACE / HTTP/1.1
Host: www.utk.edu

Max-Forwards: 10

User-Agent: JoeBrowser/10.0

Response: 200 OF

Content-Type: message/http

Content-Length: 84

TRACE / HTTP/1.1

Max-Forwards: 10

User-Agent: JoeBrowser/10.0
Host: www.utk.edu

4.3 The request headerfields
Along with the requestline sent by the client, several request, entity, and general
header fields are normally sent to make the full request message. The informa-
tion contained in these header fields provides information aboutthe client as
well as the entity body, if one is present. The header fields, used only for
requests, or generally only for requests, are presented in this section.

4.3.1 Accept
The Accept. headerfield is used by the client to signal which media types it pre-
fers. This field may have multiple values, each with a relative quality value. Serv-
ers which can serve different versions of a document based on the client's

preference should look ar this field. If the server cannot furnish an acceptable
resource, it should return a 406 code.

Syntax: Accept= "Accept" ":" #(media-range [accept-params])

media-range=("*/*"

| (type "se ee
| (type "/" subtype }
) *{ “;" parameter)

accept-params= ";" “q" “s" qvalue

*(accept-extension)

accept-extension= “;" token [“=“ (token | quoted-string)]

Example: Accept: text/plain; q=0.8, text/html

61

058

059

CHAPTER 4 THE REQUEST

In this example, the client is requesting a text/html version of the docu-
ment first, but if noneis available, then a text/plain may be substituted.

4.3.2 Accept-Charset
This header is used by the client to request that a resource be delivered in a cer-
tain character set. When used,it is one of the headers over which server-driven

negotiation takes place. When a server cannot furnish a resource in a requested
character set, it should return a 406 response. The standard does allow sending
an unacceptable response, basically allowing the server to ignore the headerifit
cannot satisfy the request. Depending on the circumstances, this may be
preferred to not sending a response. As in the Accept header, quality values may
be routinely used:

Syntax: Accept-Charset ="“Accept-Charset" ":"

1#(charset [";" "q" "=" qvalue j))}

Example: Accept-Charset: IS0-2022-JP-2, ISO-2022-7P; g=0.8

4.3.3 Accept-Encoding
Theclient uses Accept-Encoding to signal to the server whether it will accept a
Content-Encoding on responses from the server. The absence of this header
signifies to the server that the client will accept any encoding defined in the stan-
dard. At the moment,this includes GZIP, compress, and deflate. If the headeris
present, but contains no values, then no encodings are acceptable to the client.
Client applications should always take care to use this header if they are unable
to accept encoded responses.

Syntax: Accept-Encoding = "Accept-Encoding" ":" #{ content-coding)

Example: Accept-Encoding: gzip

4.3.4 Accept-Language
The client may use this request field to indicate which natural languages are
acceptable for responses. This field is used in the same way the other Accept-*

62

059

060

THE REQUEST HEADER FIELDS

fields are used by the server. The server should look ar this field for the client
preferences and attemptto satisfy them if possible. Language tags are matched
exactly and as a function of the prefix. ‘This prefix rule says thar if a client
requests en-gb for English-Great Britain, then matching on en- is allowed.
This does not mean all languages follow the samerules for prefixes, Said another
way, it is possible for prefixes to match, butif the client does not understand the
other languages,it is a function of the language family.

Syntax: Accept-Language = "Accept-Language" ":"
l#(language-range

[“z" “q" “=" qvalue] }

language-range = ((1*8ALPHA *({ “-" 1*8ALPHA)) | “*")

Example: Accept-Language: da, ean;g=0.5

4.3.5 Authorization

The Authorization header field is used by the client to send authorization
information from the client to the server. This information is used to verify
whether a client can make the request. The most common use for this header is
to protect pages from viewing by a restricted audience. Another common use is
to use the authorization information to track a user as it visits a Web site. Since

HTTPis a stateless protocol, that is information from one request/response that
is not used in the next request/response. This allows sites to track users through a
site by requiring the authorization information for each resource requested. The
syntax for the Authorization headeris:

Authorization = "Authorization" ":" credentials

For HTTP/1.1, there are two authentication methods: Digest Access Authen-
tication (which will be covered in Chapter 6) and Baste Authentication, With
Basic Authentication, the client sends a username/password combination to the
server for verification. The username and password are not encrypted during
transfer. They are encoded though using Base64 encoding as defined in
RFC 1521. For Basic Authentication we have the following definition;

eredentials = basic-credentials

basic-credentials = "Basic" SP basic-cookie

060

061

CHAPTER 4 THE REQUEST

basic-cookie = <«bagze64 encoding of userid-password,

except not limited to 76 char/line>
userid-password = [| Eoken J) ‘:" *TEXT

This defines the credentials to be a concatenation of the userlD, a colon,

and the password. Once concatenated, the result is encoded using the Base64
algorithm, As an example thereof, consider the userID of phethmon anda pass-
word of sambo:

First concatenate: phethmon:sambo

Nowencode: cGhidGhtb246c2Ftym8=

Authorization: Basic cGhldGhtb2d6c2Ftymg=

Finally, this gives us an exampleof:

GET /private/prices.html HTTP/1.1
Authorization: Basic cGhldGhth246c2Ftymd=

4.3.6 Code: Base64

Base64 is not a difficult algorithm to program.It is designed to encode arbitrary
octet sequences in a way that passes through SMTP mail agents where only 7-bit
characters are guaranteed, To encode, a 24-bit sequence is transformed into a
4-character encoded sequence. To arrive at the 4 characters, the 24-bit group is
broken into four 6-bit groups. Each of these 6-bit sequences is interpreted as an
index into the Base64 alphabet. If fewer than 24 bits are available when the end
of the data is reached, special encoding is done using the “=” character. If only
8 bits are available, then two characters are generated and the data is padded
with two “=” characters. If 16 bits are available, then three characters are gener-
ated and the encoded outputis padded with a single “=” character.

Let’s take a look at the process of encoding a 24-bit sequence. Given the
Sequence:

00110011 00110011 00110011

We look arit as:

001100 110011 001100 110011

64

061

062

THE REQUEST HEADER FIELDS

This gives us our four 6-bit sequences. Now we must view each as the lower
6 bits of an 8-bit byte:

00001100 00110011 00001100 00110011

These byte values are then used to index into the Base64 alphaber:

ABCDEFGHIIKLMNOPORSTUVWEY Zabcedefghijkimnoparstuvwxyz0123456789+/=

The A character is considered to be ‘at index 0 and the “/” character at

index 63. The “=” character is the special character at index 64. Here is our com-
plete function to encode an arbitrary string in Base64:

Jf eeennnn-nnnnnnnnnnneoeo======

ff

/f Qxfe = 11111100 Bit sequences needed for masks
// Qx03 = 00000011

// Oxf0 = 11110000
// Ox0f = 00001111

// Oxed = 11000000

f/f Ox3£ = 00111111

// 0x30 = 00110000
// Ox3c = 00111100

OP actaaetnaaadealedareciaieeea

// The Base64 alphabet

const

char s2zB64[) =

“ABCDEFGHIIKLMNOPORSTUVWKYZabcdefghijklmnopgrstuvwxyz0123456789+/=";

Jf seconeerieelieacaelatrmiataaaatiaaatite

ff

// ToB64()
fi

// This function takes a character string as input and
// transforms it to Base64 encoding. The return value
// is dynamically allocated and must be freed by the caller.
fi

char * ToB6é4(char *szStr)

{
char *szEnc;

65

062

063

CHAPTER 4 THE REQUEST

int iLen,

i,

43

iLen = strlen(szStr);

szEnc = new char [(int)((float)iLen * 1,5)]; // Space for the
// encoded string.

j = 0;
for (i = 0; i <= (iLben - (iLben % 3)); i+=3) // Encode 3 bytes at a

{ // time.

szEnc[j] = szB64[(szS8tr[i] & Oxfe) => 2 J;
szEnc[j+1] = szB6é4[({szStr[i] & 0x03) << 4) | (tazStr(i+l1) «&

OxE0) => 4) J;

szEnc(j+2) = szBéd4[((szStr[i+1] & OxO0f) << 2) | ((szStr[i+2] &
OxcO) >> 6) |;

szEnc(i+2] = szB64[(szStr[it2) & Ox3f) |];

j += 4;
)

i = iLen - (iLen % 3); // Where we left off before.

gewitch ({iLen © 3)
{

case 2: // One character padding needed.
{

szEnc(j) = szBé4[{ (szStrf{il & Oxic) >> 2];
szEnc[j+1] = szBé4[((szStr[i] & 0x03) << 4) | ((szStr[i+1]

& Oxf0) >> 4) J];

aszEnc([j+2] = szBe64[(szStr[i+1]) & Ox0£) << 2 J];

szEnc(j+3] = szB64[64); // Pad
break;

}

ease 1: // Two character padding needed.
{

szEnc[j) = szB64[(szStr[i) & Oxfc) >> 2 J;
szEnc[j+1] = szBé4d[(szStrf{i] & 0x03) << 4 J;

ezEnc([j+2] = szB64[(64]; // Pad

szEnc(j+3] = szBéd[64]); // Pad
break;

)

}

szEnc[([j+4] = NULL;
return (szEnc);

}

063

064

THE REQUEST HEADER FIELDS

4.3.7 From

This headerfield can be used bya client to send an Internet email address of the
user controlling the client. For typical browser usage, this field is recommended
to be completely user configurable. The client should allow the user to send, not
send, or change the email address at anytime. For applications such as Web
robots and spiders, a From header should be included as a contact point in case
the automated agentis causing problemsfor a Website.

"From" ":" mailbox

| RFC 822 definition]
Syntax: From

mailbox

Example: From: phethmon@hethmon.com

4.3.8 Host

Host is a new header in HTTP/1.1 used to help differentiate between virtual
hosts on the same machine. When a requestfor the default root */* comes into a
server providing virtual hosts, the Host field can be used. This field is required
for all HTTP/1.1 requests. If a HTTP/1.1 request does not have a Host field,
the server must refuse it with a 400 response code.

Syntax: Host = "Host" “:" host ["2" poxrct]

Example: Host: apacweb.ag.utk.edu

4.3.9 If-Modified-Since
If-Modified-Since is used with the cer method to make a conditional

request. [he field of the header contains a date/time stamp. When the client
requests a resource and includes this header, three possibilities exist:

* If the resource is valid and has not been modified, then a 304 responseis
regularly returned.

° If the resourceis valid and has changed, then a 200 response with the entity
is returned.

¢ If the resourceis invalid or the request results in a response other than a 200,
then the error response codeis returned as if the header were not included.

67

064

065

CHAPTER 4 THE REQUEST

The use of this header allowsfor efficient checking of a resource to see if a
cached response can be used instead. If the response has not changed, then a
minimum number of bytes is sent for the response. But if the resource has
changed, a second request is not needed inorderto retrieveit.

Syntax: 1f-Modified-Since = “If-Modified-Since" "“:" HATTP-date

Example: Ii-Modified-Since: Fri, 04 Oct 1996 18:13:34 GMT

If-Modified-Since: Thu, 31 Oct 1996 23:59:59 GMT

4.3.10 IfMatch

If-Matchis a new header for HTTP/1.1, and is used to make a request condi-
tional. The 1f£-Matchfield may be used for any method. The value is an entity
tag, which the server will match against the currententity tag for the resource in
the request URI, If there is a match, then the server should carry out the
requested operation. A typical use of this would be to make certain a DELETE
operation is only performed on the correct resource, When the match fails, the
server should return a 412 Precondition Failed response code. Only strong
comparisons are allowed for If-Match. A client may send thespecial case value
of “*" when they wish to match any currententity.

Syntax: If-Match = "“If-Match" ":" ("*" | l#entity-taq)

Example: If-Match: “abcde”

4.3.11 If-None-Match

If-None-Matchis a header which serves as another conditional, but in the neg-
ative sense. The client only wants the operation carried out if there is not a
match of entity tags. The weak entity tag comparison function may be used if
the method is GeT or HEAD. Orher methods require the strong comparison func-
tion. As per the Tf-Match header, there also exists the special value «*" which
matches any entity tag of the resource. If there is a match, then the server should
respond with a 304 code for GET or HEAD, and 412 for other methods,

Syntax: If-None-Mateh = "If-None-Match" ":" ("*" | l#entity-tag }

Example: If-None-Match: W/"abede", "xyz

68

065

066

THE REQUEST HEADER FIELDS

4.3.12 If-Range

If-Range provides a way for a client to do a conditional GET with a Range
request. Normally, when a client would do a Ge’ with a byte range request, it
would use either If-Unmodified-Since or If-Match to make sure it got a
byte range for the matching entity. If the match failed, then the client would
have to make another requestfor the full resource. Using the 1f-Range header,
the client can send the request, and if the match fails on the entity tag or date in
the header, then the server will automatically send the complete entity. This
saves the extra request by the client:

Syntax: If-Range = "If-Range" ":" ({ entity-tag | HTTP-date }

Exampla: Tf-Range: Sat, 20 Jul 1996 18:53:21 GMT

4.3,13 IfUnmodified-Since
This field is another conditional modifier field. Its meaning is to only perform
the requested operation if the resource has not been modified since the given
date. On failure, the server should return a 412 Precondition Failed response:

Syntax: If-Unmodified-sSince = "Tf-Unmedified-since" ":" HTTP-date

Example: If-Unmodified-Since: Sat, 20 Jul 1996 19:01:54 GMT

4.3.14 Max-Forwards

‘This request field is only used with the TRACE method. The client may specify
the maximum number of forwards it wishes the request to go through before
being returned. Servers will ignore this field, since the TRACE request will cause
them to send a response to the client. Intermediate agents, such as proxies and
caches, decrement the number given as it passes through. [f an intermediate
agent decrements the value to zero, then the forwardingis considered atits limit.
At this point, the intermediate agent must return the proper response to the
TRACE request:

Syntax: Max-FPorwards = “Max-Forwards" ":" 1*DIGIT

Example: Max-Forwards: 5

69

066

067

CHAPTER € THE REQUEST

4.3.15 Proxy-Authorization
After receiving a Proxy-Authenticate response froma proxy, the client may
use this header to validate themselves. This header uses the same mechanics as

the Authorization header, but is used specifically to authenticate the transac-
tion with a proxy server:

Syntax: Proxy-Authorization = "Proxy-Authorization" ":" credentials

Example: Authorization: Basic cGhldGhtb246c2Fryms=

4.3.16 Range

Byte range retrievals are a new feature of HTTP/1.1, designed to improve per-
formance. There are many times whena client will only receive part ofa resource
before unexpected conditions cause the connection to drop. The Range header
allows a client to request only the byte range of the resource it does not have,
instead of requesting the entire resource again. In normal operation, the Range
header will be used with an r£ header to make the retrieval conditional upon
matching the resource. The client may also send the 1£-Range headerto receive
the entire resource, if it does not match what it currently has. A client may send
multiple byte ranges in a single request, but should only do so if it can handle
receiving the multipart/byteranges media type. The Range header mayalso
be used by a client to request a maximumsize of a resource when bandwidth or
storage limitations preclude retrieving unlimited size resources:

Syntax: Range = "Range" "“:" ranges-specifier
ranges-specifier = byte-ranges-specifier
byte-ranges-specifier = bytes-unit "=" byte-range-set
byte-range-set = 1#(byte-range-spec |

suffix-byte-range-spec }

byte-range-spec = first-byte-pos "-" [last-byte-pos |]
first-byte-pos = 1*DIGIT

last-byte-pos = I*DIGIT

suffix-byte-range-spec = "=" suffix-lLength
suffix-length = 1*DIGIT

Example: Range: bytes=0-308

Range: bytes=-450
Range: bytes=200-340,700-

70

067

068

IMPLEMENTATION

When specifying a range, the numbers given refer to the byte offset of the
resource, This meansthefirst offset of an entity is 0, not |. Likewise, if the entity
is 1,000 bytes, then the last byte offset is 999. In the second foregoing example,
the range given is referred to as a suffix byte range. This is a request for the last
450 bytes of the resource. An implementation note here is that it is possible to
give overlapping ranges within a single range request.

4.3.17 Referer

Referer is an optional request headerfield used to indicate to the server the
source of the current Request-URI. Thefield is optional to allow for privacy of
the browser user. ‘The value of the field can either be an absolute or relative URI.

If the field is only a partial URI, then the server must interpretit relative to the
Request-URI. The client must not include a fragment with the URI:

Syntax: Referer = “Referer” ":"(absoluteURI | relativeURI)

Example: Referer: http: //www.software.ibm.com/os/warp/index.html
Referer: /public/index/a_f£.html

4.3.18 User-Agent
This field is used as the signature field of the browser, The information given
here can be used by the server for auditing, statistics, or tailoring responses
around browser limitations:

Syntax: User-Agent = "User-Agent" ":" 1*(product | comment)

Example: User-Agent: Mozilla/2.02E (05/2; 1)

User-Agent: fido/0.9 Harvest/1.4.pl2

4.4 Implementation
For the rest of this chapter, we'll take a look at some examples and implementa-
tion details for request messages. What we will cover will be typical ofall request
messages and how a server interprets the messages. We'll also look ar some code

/I

068

069

CHAPTER 4 THE REQUEST

for certain parts when the implementation may not be quite clear. Do remember
that the complete code to implement a HTTP/1.1 server is included on the CD.
The code presented herein is excerpted from there.

44] GETand HEAD

Ourfirst example will be on the most common methods in HTTP: cet and
HEAD. The GET methodis the workhorse ofHTTP.Each resource a client wishes

to obtain must be done via a GET request. For this example, we'll use a server
setup on the host www.example.com, A quick note here, in case you are not
aware of it, is thar the domain example.com is a reserved domain for just what
we are doing here, namely presenting examples. It won't actually resolve to a real
Internet host.

On our server, we'll create a documenttree (see Figure 4.1) with a main wel-
come documentcalled welcome.html and then present two branches: public
and private.

The first request to examine is the default resource for the Web site. This
corresponds to the resource identified as http: //www.example.com/. With
this rype request, the client application is requesting that the default resource be
returned to it. When the client constructs this request on behalf of the user, it
must include several headers per HTTP/1.1:

GET / HTTP/1.1

Host: www.example. com

User-Agent: Mozilla/2.02E (OS5/2; I)

Aceept: text/*

Accept-Encoding: gzip
From: phethmoné@hethmon. com

welcome.html

{public /private

| |
products.html sales.html prices.html reports.html

Figure 4.1. www.example.com documenttree

Pa

069

070

IMPLEMENTATION

Strictly speaking, the only part of the request message required here is the
initial request line and the Host. header field. The other fields are optional
although likely to be sent by a typical client. The Accept field indicates the
client will accept any resource in the text type range. This might include
text/html or text/plain, The Accept-Encoding headeris optional, butis
likely to always be sent since its absence indicates the client is willing to accept
any form of content encoding of the entity body, In our example, the client is
indicating it will only accept encoding in the GZIP format. Thefinal header,
From, is again optional.

In this basic type request, the header lines sent by the client are mostly dic-
tated by the capabilities of the client. If the client cannot accept any content
encoding, then the Accept-Encoding header should be sent without a value to
indicate this. Similarly, if rhe client wishes to restrict rhe charactersets it accepts,
then a properly formatted Accept-Charset header should besent.

Whentheserver receives the request, it must parse our the different headers
to fully understand the client’s request. The example server provided on the CD
uses multiple threads to service requests from clients. ‘This would betypical for
most non UNIX-based implementations and also for newer UNIX ones (where
the operating system supports threads). ‘The example server uses a socket class to
accept new connections and then spawnsa thread to service the request:

for (+ ;) // Forever

i

sClient = sSock.Accept(); // Listen for incoming connections

if (sClient != NULL)

{

// We established a connection, start a thread te handle it

ike = _beginthread(W3ctonn, 0, STACKSIZE, (void *)sClient);
if (ike == -1 }

{

// Failure to start thread. Close the connection.

sClient->Close();

delete sClient;
}

73

070

071

CHAPTER € THE REQUEST

In this code fragment, sSock is an instance of the Socket class. The class
method Accept () performs the typical functions required to accept an incom-
ing connection, and then creates a new class instance, sClient, to perform all
network-related operations. Once the connection has been established, a new
thread is created to service the request, At this point the server has not yet
received the actual request from the client. The function w3Conn() does this.

ie = sClient->RecvTeol(NO_EOL); // Get the message

// Parse the components of the request
ssecanf (eClient-sszOutBut, “Ss ts §s", szRequest, ezUri, szVer);

if (stricmplazVer, "http/1.0") == 0)

{

DoHttplO(sclient, szRequest, szUri);
}

else if {stricmp(szVer, "“http/i.i") == 0)

{

iRe = DoHttpll(sClient, szRequest, szUri);

While (ikc == TRUE) // Do persistent connections.

{

sClient->RecvTeol (NO_EOL);

sscanf(sClient->szOutBuf, "$s ts %s", szRequest,
szUri, sS2zVer) ;

ike = DoHttpli(sClient, szRequest, szUri);
}

)

else // Treat this request as a HTTP/0.9 request.
{

DoHttp09(sClient, szRequest, szUri);
}

Using the socket class, the first line of code receives the first line of the
request message from the client. The server simply parses the request line into
the three components and switches, based on the HTTP version number. For
HTTP/1.0 or HTTP/0.9 requests, the server simply services the request and
ends the connection. For HTTP/1.1 requests, the server services the request and
will continue to do so until the client drops the connection or ends the connec-
tion explicitly. This allows for the implementation of persistent connections.

Ar this point, the server has only received the request line and determined
that the client is sending an HTTP/1.1 compliant request for a resource. ‘The

74

071

072

IMPLEMENTATION

server must then determine which resource the client is requesting, and whether
any of the headers present in the request message modify the way in which the
server would return the resource. In order to do this, the server must receive all

of the headers and parse them into their components and meaning.‘This means
receiving each line of the request from the client and saving the values.

Our server here uses a Headersclass to handle the dirty work of receiving
and parsing the header lines. The class declaration is partially shown as follows:

elass Headers

c

public:

Headers ();

~Headers ();
int RevHeaders (Socket *sClient);
int CheckHeaders () ;

int FindRanges{int iS5ize);

char *szMethod,

*szUri,

*s2Ver,

What is missing from this code are the remaining data fields for storing the
header values. We'll leave ic on the CD and present a fragment of the
RevHeaders() method instead:

da

(

ifc = sClient->RecvTeol(NO_EOL); // Get the message.
if (ike < 0) break;

if (sClient--»szOutBut[0) == NULL) break;

szTmp = sClient->sz0utBuf;

if (! isspace(szTmp[0])) // Replace the header if not
// continuation,

i= 0;

while ((*s2Tmp != ':') && (*szTmp)) // Until the

// delimiter

stHdr[(ij = *szTmp; // Copy.

i++; // Adwanee.

szTmp++;

75

072

073

CHAPTER 4 THE REQUEST

}

szHdr[i] = NULL; // Properly end string,
strlwr(szHdr); // Lowercase only.

}

seTmpt+; // Go past the ':' or ' '.
while ((*szTmp == ' ') && (“*szTmp))

{

BzTmp++; // Eliminate leading spaces.

)

switch |azHdr([0))
{

ease ‘a’:

{

if (stremp(szHdr, “accept") == 0)
{

if (szAccept)

{

szBuf = new char[strien(szAccept)

+ strlen(szTmp) + 2];

sprintf (szbuft, “ts,%ts", szAccept, szTmp);

delete [] szAccept;
szAccept = szBuf;

}
else

SZACCept = strdup(sziImp);

)

The server first grabs a line of the request message from theclient. It must
then check to see if the line is a new header or a continuation header, It does this

by checking to see whether or not thefirst character is a space. This may actually
be a space character or a horizontal tab character, If it is not a continuationline,
then the header field name must be parsed outof the line. Our algorithm hereis
to copy the nameinto a separate buffer until we reach the colon delimiter. Once
copied, the buffer holding the header nameis properly terminated, changed to
lowercase, and saved for a moment. Next, the temporary pointer, szTmp,is
advanced to the beginning of the header field value, including bypassing any
leading spaces.

Now,the headerclass has the header namein one buffer and a pointer to the
field value in the other bufter. In order to determine thefield, a simple algorithm
is used. Thefirst step is to use a switch statement keyed on thefirst letter of the

76

073

074

IMPLEMENTATION

field name. This breaks down the headerfields into smaller chunks for process-
ing. By using a switch-case constructionhere,for efficiency the codeitself can
be well optimized by the compiler. Once the broad category has been deter-
mined, a string comparison is made to match the header name exactly. Since
we've already changed the header nameto lowercase, an exact comparison can be
made instead of a case-insensitive comparison. Given the sheer numberof head-
ers available in HTTP/1.1, it makes sense to narrow the search as quickly as
possible. With a smaller number of possibilities, a merely simple if-else-if
tree could be used.

As shownin the code for the accept header,it is possible for the header to
have multiple values and even to appear multiple times. If a value has already
been stored for the header, as evidenced by the szAccept variable having a
value, then the new value is appended to the current one. Otherwise the valueis
simply stored. For some headers, the protocolonly allows a single value. In those
cases, the last value received is the one saved by the headerclass.

The server now has all of the information from the client in order to process
the request. For this particular request, the server must determine the default
resource to be returned to the client since no specific resource was requested.
The exact resource returned will vary, depending on the server application. For a
Web server, this is usually specified as being the welcome. html or index.html
file within a certain directory of the server machine.

Once the server determines which resource to send back, it can check this

resource against the headers sent by the client. In our example, the media type of
the resource is checked against the Accept header type given: text /*. Since our
server is sending back a HTML document, the media types match. Remember
the server has a choice to respond with an error messageif the media types do
not match, or to return a resource with a different media type. The protocol rec-
ommends a server should return an error message when it cannot return the
proper media type.

The server should now return the resource to the client via the already open
connection. When sending the response back, the server constructs an
appropriate response message containing the resource, In Chapter 6, we will take
a close look at how the response message is constructed. For now,itis sufficient
ro say the resource is returned as the entity body.

iF

074

075

CHAPTER 4 THE REQUEST

If the request method had been HEAD instead of GET, then the server would
have performedtheidentical steps up until the last. For HEAD requests, the server
application must never send an entity body. The response is constructed exactly
the sameas if for a response to a GET request. This allows a client to query about
a specific resource withoutactually retrieving the resource. This can be useful for
verifying links.

4.4.2 POST

The post method is used as a way for a client application to submit data to a
resource ona server application. This is the method used for form data on Web
pages in most instances, GET may also be used, but is more limited. Using the
post method,the client sends an entity body to the server for processing. The
Request-URIin this case points to the resource on the server whichwill accept
the entity body. Depending on the server implementation, this may be a Perl or
REXXscript, an executable program, or a dynamiclink library. The possibilities
here are only limited by the server’s implementation. Once the resource acts
upon the entity body, a response is generated and returned to theclient.

Once again, using our example.com domain, a client has constructed a
request, based on a form filled out by the user (see Figure 4.2).

Whentheclient submits the form,it creates a request message suchas:

POST /eqi-bin/survey HTTP/1.1
Host: www.example.com

From: phethmon@hethmon.com

Content-Type: text/plain
Content-Length: 23

week=ToMuchkaccess=Psycho

For this request message, the client has indicated which resourceis to handle
the PosT datain the request line, This information comes from the Web form.
The information which is different from a GET request is the addition of
Content-Type and Content-Length headers. Since the request contains an
entity body, the client must indicate the media type of the entity and thesize.
Thesize is especially importantsince the server must know whenthe entity body

78

075

076

IMPLEMENTATION

Welcometothe Example Co mpany

| Take amoment to fill out our web survey.
LT ure tha ab each week

(@rmoderata:
heavy
(Bwayto much.

Dit bdidn'theve web access, tyemuld — |
boom. |: pan
GiFeel tkemay arms aregone.

| Ghyeod seriouspsychiatrichelp.

Figure 4.2) Screen shot of filled out form

ends in order to start processing the request. The entity body itself comes after a
single blank line after the headers. In more specific terms, the client sends the
normalcarriage return line feed to mark the end of the Content-Length header
and then immediately sends anothercarriage return line feed to mark thestart of
the entity body, After the 23 bytes of the entity body, the client again sends a
carriage return line feed to mark the end of the entiry body.

On theserver side, as before, the server receives the initial request and then
parses the headers. Once the headers are parsed, the server must then receive the
entity body based on the Content-Length value of 23 bytes. Once the entity
body has been received, the protocol actually leaves the picture.

The HTTP/1.1 protocol does not specify standards for what happens after a
server accepts an entity body via a POST request. The server must decide what to
do and how to generate a response to the request. For a Web server, this is usu-
ally done via executing a CGIscript or compiled program. Most servers then
leave it up to the executed process to generate a response and an entity body to
return to the client. Given the example here, the executed resource might simply
store the posted data into a database and return a generic response to the client,

79

076

077

CHAPTER @ THE REQUEST

thanking it for its input. In this case, the response would be an entity body
containing the thank you message, along with the proper related response head-
ers describing the response.

4.4.3 PUT

A client using the PUT request method will construct headers very similar to the
post method, The difference actually, is in the interpretation, rather than the
construction. As mentioned earlier in this chapter, the PUT method indicates to
the server to accept the enclosed entity body and store it, using the
request-URI given by the client. With this method, no processing ofdata takes
place. Either a new resource is created or an old resource is replaced, For our
example, we'll assumetheclient wishes to update the resource identified by the
URI http: //wew.example.com/private/prices.html. This resource is

considered to be in a private area of the server, accessible only to those with
rights, In light of the put method andits ability to replace a resource, we would
also want to control access to the PUT method. Ourclient might therefore send a
request message such as:

PUT /private/prices.html HTTP/1.1

Host: www.example.com

From: phethmon@hethmon. com

Content-Type: text/html
Content-Length: 1830
Tf-Match: "x3wzir9"

Authorization: Basic cGhldchtb2d6c2Ftrimg=

[1830 byte entity body]

When the server receives this request, it interprets it as meaning to store the
enclosed entity body as the resource /private/prices.html, replacing the
current entity body. Before the server can do this however, it must check two
things: The first, is the Authorization header. The server must verify that the
given user and password aresatisfactory, and allow the requested operation. If
the user is verified, then the server must further qualify the request by matching
the entity tag given in the Tf-Match header. Oncethese conditions are met, the

8&0

O77

078

IMPLEMENTATION

server may then carry out the requested operation and return the appropriate
response to the client.

4.4.4 DELETE

Constructing a DELETE request messageis simple for the client. After identifying
the resource to be removed, the client uses this as rhe request—URI, adds the

necessary header fields and sends the request to the server. For our example
domain, assume that the client wishes to remove the /public/sales.html
resource. The client further wishes to make certain that the resource has not been

updated since November 23, 1996, at 5:01 P.M., before deleting it. Given these
circumstances, we can construct a request message suchas:

DELETE /public/sales.html HTTP/1.1

Host: www.example.com

From: phethmon?thethmon.com
Tf-Unmedified-Since: Sat, 23 Nov 1996 17:01:00 GMT

Authorization: Basic cGhldGhtbh246c2Frymé=

Oncethe server receives and parses the request message,it makes its authori-
zation check on the credentials given in the request. If the credentials are valid,it
then checks the date given in the If-Unmodified-Since header against the
date of the resource, The semantics here say to only carry out this request if the
date of the resource is earlier than the date given. If this is true, then the server
removes the resource and returns the appropriate response to the client.

In this example, we again show the client sending authorization credentials
to be verified by the server. As with the put method, servers should be cautious
about accepting the DELETE method. As a policy, all requests using either
method should require some type of authorization instead of defaulting to the
typical model of only requiring authorization when required by the resource.

4.4.5 OPTIONS

The options header can be used by theclient to find out the capabilities of the
server. A client may wish to find out what methods the server supports for

&l

078

079

CHAPTER 4 THE REQUEST

www.example.com. To do this, the client sends a request message using the
opTrons method:

OPTIONS * HTTP/1.1

Host: www.example.com

From: phethmon@hethmon.com

The server, upon receiving the OPTTONS request, must first determine if the
request applies to the server as a whole, or to a specific resource on the server. In
the example here, the request URI has been set to the “*» case, indicating gen-
eral resources ofthe server. For the response to this method,the server uses the
internally configured data it has. The server may allow the administrator to deny
all DELETE requests. Thus, even though the server may have supported the
method, it should not return it since the support has been disabled.

4.4.6 TRACE

An example of the TRACE method would be when a client application is having
difficulties contacting a particular server. If this occurs, the client may wish to
send a TRACE request to find out the route the request is taking. It might be that
the route between the client and server includes multiple proxies or gateways.
For our example, the client needs to perform a TRACE on the connection from it
to www. example. com:

TRACE / HTTP/1.1

Host: www.example.com
Max-Forwards: 5

The server simply returns the entire request message as the entity body of the
response to the client. The media type of this message body is considered to be
message/http. If the application is, instead, a proxy or gateway, then the
request must be passed on, after decrementing the Max-Forwards value by one.
If, as a proxy or gateway, a value of zero for Max-Forwards has been received,
then a reply to the client should be returned,

079

080

FINISHING

4.5 Finishing
We have now covered the basics of HTTP, along with request messages. In the
next chapter, we will take a look at entity and general headers plus the practical
conceptofcache control.

83

080

081

 chapter 5

Entity andgeneralheaders,
and Cache-Control

5.1 The entity headers 85
5.2 The general headers 88
5.3 Cache-Control 91

5.4 Finishing 105

84

081

082

THE ENTITY HEADERS

During the exchange of information between clients and servers, there exists a
certain amountofinformation which falls into the entity and general category.
Informational headersrelative to the entity body are referred to as entity headers.
Headers which supply ancillary information not directly related to requests,
responses, or the entity body, are referred to as general headers,

5.1 The entity headers
Entity headers are used to describe the attributes of che entity body being sent by
the client or server applications. This includes information suchas thesize of the
entity, encoding which may have been applied to it for transfer, or the media
type ofthe entity. Clients and servers should use these headers, as appropriate, to
convey information to therecipient.

5.1.1 Allow

Allow is an entity headerfield used to transmit to the client the different meth-
ods supported by the resource as identified by the request URI. This field is
mandatory if the server returns a 405 Method Not Allowed response. A client
may still attempt methods not listed in the Allow header, although the client
should respect it:

Syntax: Allow = "Allow" ":" lfmethod

Example: Allow: GET, HEAD

5.1.2 Content-Base

The Content-Basefield is used to specify the base URI forresolving any rela-
tive URLs within the entity body, This field takes precedent over
Content-Location, if present, and the original URI of the request, when
resolving relative URLs.

Syntax: Content-Base = "Content-Base" ":" absoluteURI

Example: Content-Base: apacweb.ag.utk.edu/etpeug/

85

082

083

CHAPTER 5 ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

5.1.3 Content-Encoding
The Content-Encoding entity field specifies codings which have been applied
to the entity body before transmission. This is used to allow the server to com-
press an entity body before transmission to reduce the size of the transmission.
The server must respect any Accept-Encoding headersentby the client, when
applying a content encoding.

Syntax: Content-Encoding = "Content-Encoding" ":* l#content-coding

Example: Content-Encoding: compress

5.1.4 Content-Language
Content-Language specifies the natural language or languages of the entity
being returned. If the server performs negotiation of the resource that is to be
returned to the client, based on an Accept-Language header, then it should

return this header and value to indicate the result of the server-based negotiation.
The header may also be returned with any entity body, nor just those in which
negotiation has taken plzce.

Syntax; Content-Language = "Content-Language" “:" 1#language-tag

Example: Content-Language: en

5.1.5 Content-Length
The Content-Lengthfield is one of the more importantof the fields available.
This field is used to specify the byte length of the entity body being sent. With
persistent connections, both the client and server must specify the length of any
entity sent. When the length of an entity body is unknown, chunked encoding
may be used in place of this header.

Syntax: Content-Length = "Content-Length" *:* 1*DIGIT

Example: Content-Length: 1964

&6

083

084

HE ENTITY HEADERS

5.1.6 Content-Location

The Content-Location entity field can be used to supply the location of the
entity being returned. This is useful when a particular resource has multiple enti-
ties associated with it (i.e., national language versions) and each of them may be
accessed individually:

Syntax: Content-Location = “Content-Location" ":" (absoluteURI |
relativeURI }

Example: Content-Location: /home/lang/en/

5.1.7 Content-MD5

The Content-mp5 field may be used by the server to provide an end-to-end
integrity check of the entity body. It is not a meansofsecuring a transaction, but
a means of detecting accidental modifications during transmission. The MD5
algorithm used is the same as presented in RFC 1864.If present,it is computed
only on the entity body. It is not computed over any Transfer-Encoding
which may have been applied to the entity body, but is merely computed over
any Content-Encoding:

Syntax: Content-MDS = “Content-MD5S" ":" md5-digest
ma5-digest = <base64 of 128 bit MDS digest as per RFC 1¢64>

Example: Content-MDS: MDEyMzQ1Njc40TAxMjMONQ==

5.1.8 Content-Range
Whena client requests a byte range response ofa resource, the server must use the
Content-Range entity field to specify which byte ranges are being returned, and
the total length of the entity. If only a single byte range is being returned, the
server must also include a Content-Length header showing the numberof bytes
actually sent. If multiple byte ranges are being sent, then the multipart /byte
ranges media type is used. We'll discuss this further in Chapter 7.

Syntax: Content-Range = "Content-Range" “:*

content-range-spec

8&7

084

085

CHAPTER 5 ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

content-range-spec = byte-content-range-spec

byte-content-range-spec = bytes-unit SP first-byte-pos "-"

last-byte-pos */" entity-length

entity-length = 1*DIGIT

Example: Content-Range: bytes 459-2408/4707

5.1.9 Content-Type
The Content-Typefield indicates the media type ofthe entity being returned:

Syntax: Content-Type = "Content-Type" ":" media-typa

Example: Content-Type: image/gif

5.1.10 ETag
This entity field gives the entity tag for the entity in the message:

Syntax: ETag = "ETaq" ":" entity-tag

Example: ETag: "472497203910"

5.1.11 Last-Modified
The server should return the Last-Modi fied field with all responses containing
an enticy. This time value should be the timethe server believes the resource was
last modified. Forfiles, it may simply be the timestamp, while database informa-
tion may consist of the last time a field was updated:

Syntax: Last-Modified = "Last-Modified" ":" HTTP-date

Example: Last-Modified: Sat, 20 Jul 1996 19:05:28 GMT

5.2 The general headers
General headers apply to the connection, rather than to the entity body of a
request or response.

88

085

086

THE GENERAL HEADERS

5.2.1 Connection

The Connection field allows either the client or server to specify options to
apply to the current session. For HTTP/1.1, this field is used to communicate
the sender’s desire to close the current connection, once the response is sent. The
only value defined for HTTP/1.1 is close:

Syntax: Connection = "Connection" *:" 14(connection-token)
cannection-token = token

Example: Connection: close

5.2.2 Date

The Date is generated by the server in every response to time-stamp when a
message originated. It must use the RFC 1123style time format. The date spe-
cifically does not refer to the time the entity body was generated:

Syntax: Date = "Date" ":" HTTP-date

Example: Date: Sat, 20 Jul 1996 15:35:00 GMT

5.2.3 Pragma

Pragma is a general headerfield thatis defined in HTTP/1.1 solely for backward
compatibility with HTTP/1.0 practice. The most common use of Pragma is to
specify no-cache behavior andas such,is the same as using Cache-Control:
no-cache. The HTTP protocol will not be defining any new directives for
Pragma:

“Pragma" ":" l#pragma-directive
"no-cache" | extension-pragma
token ["=" (token | quoted-string }]

Syntax: Pragma

Ppragma-directive

extension-pragma
nonou

Example: Pragma: no-cache

5.2.4 Transfer-Encoding

The Transfer-Encodingfield signals what transformations have been made to
the message body for transport. Common application of this field is for the

8&9

086

087

CHAPTER § ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

chunked method of transfer coding which allows a client or server to send an
entity without knowingits length in advance.

Syntax: Transfer-Encoding = “Transfer-Encoding" ":"
l#transfer-encoding

Example: Transfer-Encoding: chunked

5.2.5 Upgrade
This field is used to negotiate a change in protocols berween the client and
server. As future versions of HTTP evolve, a client may send the Upgrade field
whenit does not know what version of HTTPtheserver supports. If the server
supports a higherlevel, then the server may send the response of 101 Switching
Protocol and indicate to which protocol it is switching. The change only
applies to the protocol layer on the existing transport layer connection:

Syntax: Upgrade = "Upgrade" ":" 1@product

Example: Upgrade: HTTP/2.0

5.2.6 Via

This header must be inserted by gateways and proxies to indicate the protocols
and recipients which handled the request betweenthe client andserver. It can be
used for tracking down loops and identifying protocol capabilities of the inter-
mediate handlers amongothers:

Syntax: Via = "Via" “:" 1l#(received-protocol

received-by [comment] }

received-by [protecol-name “/")] protocol-version
protoecol-name token

Pprotocol-version = token

received-by { host [":" port]) | pseudonym
pseudonym token

Example: Via: 1.0 proxy.ag.utk.edu

90

087

088

CACHE-CONTROL

5.3 Cache-Control

Cache-Control is one part of HTTP/1.1 which evolved heavily from previous
versions. The caching aspects of the protocol have been designed to allow for
efficient caching with quite a bit of control by both origin servers and clients
alike. The general goal of caching is to reduce network traffic by reducing or
eliminating the need for a client application to make a request to an origin
server. In simpler terms, if a client or cache agent has a copy of a resource already
stored, we want to be able to reuse the resource ifatall possible.

When using a cache, whether in the user agent or in a stand-alone cache
agent, the goal of the protocol is to always provide a semantically transparent
operation. This means the user agent should always receive the same representa-
tion of a resource via a cache as if the resource were obtained directly from the
origin server. There are conditions which may exist when this condition is not
met. When this happens, the protocol provides for explicit warnings to the user.

A wypical scenario involving a cache would be when a companyprovides a
proxy cache agentfor internal users to access the Internet. This might have been
set up for bandwidthorfirewall considerations. In this usage, the client browsers
must send all requests through the proxy agent. The proxy agent then makes the
request on behalf of the original user and caches as many responses as it can. The
first step which occurs, as shown as 1 in Figure 5.1, is for user agent A to make a
request to the proxy cache. The proxy cache then makes request 2 to the origin
server for the resource. In step 3, the origin server returns the response to the
proxy cache which,in turn, returnsit to user agent A in step4.

Now,at somelater point, user agent B makes the same request to the proxy
cache. But this time, instead of making a request to the origin server, the proxy
cache checks its internal cache, finds the resource which matches, and returnsit

to User agentB in step 2 (see Figure 5.2).
Whena cacheis operating in this manner,it is said to be a public or shared

cache. Any client which connects to it may receive any resource the cache agent
has cached. In other terms, cached resources are not associated with a specific

II

088

089

CHAPTER 5 ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

1 Request to-proxy

User agent A j

Figure 5.1 Proxy/cache operation

user, The HTTP/1.1 protocol allows a server to specifically deny caching a
specific resource in a public cache, but would allow it in whatis termed a private
cache. A private cache is a cache dedicated to a specific user. Resources which
may be allowed in a private (but not public) cache might include those requiring
a user authorization to recrieve. If specific user authorization is required, such as
a bank requiring a username and password before reviewing a checking state-
ment, then it is likely this information is private in nature. If the protocol
allowed it to be cached in a public cache, then sensitive information could be
accessible to nonauthorized users.

1 Request to proxy

User agent B

Figure 5.2 Proxy/cache operation

92

089

090

CACHE-CONTROL

5.3.1 What is cachable?

Broadly speaking, anything not specifically forbidden to be cachedis cachable.
Responses which are specifically forbidden as cachable include responsesto:

® POST requests

* PUT requests

* DELETE requests

* OPTIONS requests

° TRACE requests

* Requests which include an Authorization header

Whatthis leaves as cachable are responses to GET and HEAD requests. Given
the nature of HTTP usage, this accounts for the bulk of user requests. The GET
and HEAD responses are required to have a status code of either 200, 203, 206,
300, 301, or 410, Ifa cache does not support byte ranges, then it may not cache
the 206 responses, since these are partial responses by definition.

As with anything, there are exceptions to the broad rules presented above.
Let us first take a look at the headers used in cache-control, and the specific
cache-control directives which can modify behavior of a cache.

5.3.2 Age

The Age headeris a response header used to transmit the sender’s estimation of
the age of a response. This can be either the original response from the origin
server, or the time since an original response was revalidated with the origin
server. HTTP/1.1 caches are required to send an Age header in every response
sent. If a cache receives an age value which is larger than it can represent numer-
ically, ic must instead send a value of 2,147,483,648. This is a value of 23! and is
recommendedfor all caches to be able to handle numbers upto this size. Values
for Age are always expressed in delta seconds, in the process using only nonnega-
tive decimal integers:

Age = "Age" ":" age-value

age-value = delta-seconds

93

090

091

CHAPTER § ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

Note The meaning of the wording in this section ofthe draft specification
was the subject of a bit of controversy in the HTTP Working Group. Some
membersfelt the Age header should only be sentif the response had been resi-
dent in the cache, not when the cache is acting as a proxy. Implementors should
refer to the latest HTTP specification for current guidelines.

5.3.3 Cache-Control

This header controls most ofwhat happens with HTTP/1.1 caching. Directives
which are sent via a Cache-Control header must be carried out by any caches
which receive them. Caches and other intermediate HTTP agents must also pass
through any cachedirectives since they may also apply to other agents along the
request/response chain:

Syntax; Cache-Control = “Cache-Control" “;* l#cache-directive
cache-directive = cache-request-directive

| cache-response-directive

cache-request-directive =

*"no-cache" ["=" <"> 1#field-name <">]

| "no-store"
| “*max-age* “=" delta-seconds
| "max-stale" ["=" delta-seconds |
| “min-fresh" “=" delta-seconds
| "only-if-cached"
| cache-extension

cache-response-directive =

"public"

| "private" ["=" <"> 1#field-name <"> |
| “no-cache* [*=" <*> l#field-name <">]
| "no-store"
| “no-transform"
| “must-revalidate"
| "“proxy-revalidate"
| "max-age" "=" delta-seconds
| cache-extension

cache-extension = token ["="_(token | quoted-string)]

The cachedirectives no-cache and private allow the sender to optionally
specify the header fields to which the cache directive applies. If headerfields are

24

091

092

CACHE-CONTROL

specified, then the directive only applies to those fields which are listed. If no
header fields are listed, then the directive applies to the entire message.

5.3.4 Expires
‘The Expires field is used to give a date at which the response should be consid-
ered stale. For finer control, rhe server should use the newer Cache-Control

directives. To indicate a response which will not expire, the server should use a
date oneyear from the currentdate. T’o indicate a response which is expired, the
server should use the same date as in the Date header:

Syntax: Expires = "Expires" ":" HTTP-date

Exampla: Expires: Sat, 20 Jul 1997 15:35:00 GMT

5.3.5 Warning
The Warning response field is used to convey additional information about a
response beyond thar indicated in the general response code. Within the
HTTP/1.1 protocol, this is used to relay additional information about the
response when semantic transparency may have been violated. This can occur
when a cache agent returns a stale (out of date) response to a client, or after a
transformation has been applied to the entity body (changing an image format
from GIF to JPEG). Multiple warning headers are allowed in a response mes-
sage, and intermediate agents must not remove any they receive unless permitted
by the specific warning codeafter the resource has been revalidated. This can
happen when a warning value of 10 (Response is stale) is attached to a
response. If the cache holding this responseis later able to validate the response
as fresh, then it may remove the 10 warning value. When an intermediate agent
adds an additional Warning header, it should do so after any previous Warning
headers. User agents should look at earlier warning headersfirst, when multiple
headers are encountered:

il
"Warning" ":" l#warning-value

warn-code SP warn-agent SP warn-text
2DIGIT

{ host [“:" port 1) | pseudonym
quoted-string

Syntax: Warning

Warning-value
warn-code

Warn-agent
Warn-text

95

092

093

CHAPTER 5 ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

The current warning codes are:

* 10: Response is stale This must be included wheneverthe returned response
is stale, A cache may add this warning to any response, but may never
removeit until the response is known to befresh.

* 11: Revalidation failed This must be included if a cache returnsastale
response because an attempt to revalidate the response failed, due to an
inability to reach the server. A cache may add this warning to any response,
but may never remove it until the responseis successfully revalidated.

* 12: Disconnected operation This should be included if the cache is inten-
tionally disconnected from the rest of the network for a period of time.

© 13: Heuristic expiration This must be included if the cache heuristically
chose a freshness lifetime greater than 24 hours and the response’s age is
greater than 24 hours.

* 14: Transformation applied This must be added by an intermediate cache
or proxy if it applies any transformation changing the content-coding (as
specified in the Content-Encoding header) or media-type (as specified in
the Content-Type header) of the response, unless this Warning code
already appears in the response. It must not be deleted from a response even
after revalidation.

* 99: Miscellaneous warning The warning text may include arbitrary infor-
mation to be presented to a human user, or logged. A system receiving this
warning must not tale any automated action.

5.3.6 Cache operation
When in operation, a cachetries to satisfy as many requests as it can with as few
requests to origin servers. In serving the requests it receives, it must satisfy
semantic transparency, ifpossible, and return warnings or errors when it cannot.
We will look at how a cache must operate by lookingat the different directives it
Encounters enroute.

Cache-Contral: no-cache When a cache agent receives the no-cachedirec-
tive, it may not cache the response under any circumstances.

96

093

094

CACHE-CONTROL

Cache-Control: no-store The no-store directive may either be sent with a
request or a response message. If it is sent with a request message by a client, then
neither the request nor the response to it may be cached anywhere along the
request/response chain. If sent in a response, then the response may not be
cached. This directive does not apply to user agents who cache responses as part
ofa history mechanism,nor does it apply to users specifically saving the response
to permanent storage(i.c., save to file),

Cache-Control: max-age When used in a request message, max-age allows the
user agent to specify how old a response it will accept in terms of age of the
response. A cache agent can comparethis value to the age value associated with a
normal response.

When sent by an origin server, the max-age value specifies the expiration
time for the response.

Cache-Control: max-stale The max-stale directive allows a user agent to
make a request specifying thatit will accept an out of date response up to a cer-
tain value. If the user agent gives 300 for a value, then a cache may return a
response which is up to 300 secondspastits expiration time. A cache agent send-
ing such a reply must attach a Warning headerto the response with a code of 10
(Response is stale).

Cache-Control: min-fresh If a client wishes to receive a response which will
remain fresh for a given amountoftime after it receives it, then it may use the
min-fresh directive to specify the amountof time. For the cache, this means
adding the min-fresh time to the current age and verifying that the response
wouldstill be fresh at that point.

Cache-Control: only-if-cached In certain situations, a client may only wish to
retrieve a resource if the resource is currently stored in the cache agent. This may
occur because of disconnected operation or limited bandwidth constraints. In
this situation, the client may send the only-if-cached directive. If the cache
has a copy of the resource that meets any other requirements of the request, it
then returns it. If, however, it does not, it returns a 504 Gateway Timeout

response to theclient.

aT

094

095

CHAPTER § ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

Cache-Control: public The public response directive instructs the cache that
the response is cachable even though normally it would not be, Under normal
conditions, a cache agent may only cache responses with a status code of 200,
203, 206, 300, 301, or 410 and then only responses to GET and HEAD methods.
If this directive is present in a response to another method, then the response
may be cached.

If the request required authorization using the Authorization header,
then it would only be cachable in a shared cache, tharis, if the public directive
were present,

Cache-Control: private ‘The origin server sends a private directive when the
response is only cachable by the requesting user. The cache agent may cachethis
only for the requesting user. Private caches may cache these responses as they
normally would.

Cache-Control: no-transform A server may use the no-transform directive
to forbid transformations of the resource to the entity body, This can prevent a
cache or proxy agent, whenservingclients, from translating a TIFF image into a
JPEG image in order to save disk space within the cache or bandwidth. Some
applications require the client to receive an exact duplicate of the original entity.
Intermediate agents may not change the following headers when no-transform
is specified: Content-Encoding, Content-Length, Content-Range, and
Content-Type.

Cache-Control: must-revalidate The must-revalidate response directive
allows a server to require revalidation of a resource once it is considered stale.
When present, a cache may use the resource to serve subsequent requests for the
resource until the resource becomes stale. Once the resource is consideredstale,

the cache must revalidate the resource with the origin server for each request. Ifit
cannotreach the server to revalidate the response, it must return a 504 (Gateway
Timeout) response to the requesting agent.

Cache-Control: proxy-revalidate The proxy-revalidate directive is the
same as the must-revalidate directive, except that it does not apply to the
private caches.

98

095

096

CACHE-CONTROL

5.3.7 Expiration ofresponses
Much of how cache-control works is based on the idea of expiration times.
When a resource has reached its expiration time,it is said to be stale, The expira-
tion time of a resource may be calculated in different ways, The first, and best
method,is for the origin server to explicitly set an expiration time. The server has
two ways to accomplish this. The first way is to provide an Expires header.
This method has the advantage of also being defined in HTTP/1.0, When pre-
sented with an expiration time this way, a cache has an explicit date at which to
mark the saved resource as stale, The second way the server may use is the
max-age directive. This directive lets the server specify how long a response
remains fresh in regard to the freshness of the response. A server may include both
an Expires header and a max-age directive in the same response. HTTP/1.1
compliant caches must disregard the Expires header in these cases, This allows
the server to specify one expiration time for HTTP/1.0 caches (which may be
shorter) and a longer one for HTTP/1.1 caches (which may be longer or modi-
fied by further cache-control directives).

If a server does not specify an expiration time using either Expires or
max-age, then the cache may apply a heuristic to the response in order to assign
one. One way a cache may dothis is to look at the Last-Modified and Date
header values. If the response includes both, then the cache may calculate the
expiration time as somefraction of the time between those two dates. As an
example, assume a response has an absolute time of 72 hours between the
Last-Modified and Date values. The cache then takes a percentage ofthis
value to use as a max-age value, say 5% or 3.1 hours. The cache could also base
the percentage onasliding scale where time differences of greater than 1 week
are assigned ar 10% ofthe difference on the assumption the resourceisless likely
to change if it has been the samefor a longer period. In cases where the response
does not include a Last-Modified header, the cache maystill assign an expira-
tion time, although it should be especially conservative aboutit. If the heuristi-
cally assigned expiration timeis greater than 24 hours, the cache must include a
Warning header with a code of 13 whenit sends the responseto a client.

Once the HTTP/1.1 cache calculates the expirarion time, this value is
referred to as the freshness lifetime. The freshness lifetime is the number of sec-
onds a response remains fresh within the cache.

99

096

097

CHAPTER S ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

An HTTP/1.1 server should always try to assign an explicit expiration time
to cachable responses. For file based servers where administration of individual
expiration times is difficult, a server could offer to assign an expiration time
based on the heuristics described herein. The server could further offer the

administrator a choice of percentages based on theage ofthefile. Another option
would be to assign expiration times, based on the media type ofthe resource.
Images used on a page, especially logos and bullets, are unlikely to change for
long periods of time, and could have correspondingly long expiration times.

5.3.8 Fresh and stale responses
Once the cache knows an expiration time for a particular response, it must then
decide when the resource is fres), and whenit is stale. A fresh response is one
which may still be sent to a client. It has not passed its expiration date. A stale
response is one which has passed its expiration date and may not normally be
sent to a client, unless warnings are attached and semantic transparency is explic-
itly relaxed. A cache mustfirst determine the age ofa response in orderto deter-
minethe freshness or staleness ofir.

‘The age of a response is considered to be the time which has elapsed since
the response was generated ar the origin server. It includes time spent in transit
and time spent as resident in caches. It may be calculated by figuring the differ-
ence between the current time and the time in the Date header or by the age
header if only HTTP/1.1 caches are in the response path. The HTTP/1.1 speci-
fication presents the following algorithm to calculate the age ofa response:

j*

* agevalue

5 is the value of Age: header received by the cache with
= this response.

* date_value

* is the value of the origin server's Date: header

* request_time

* is the (local) time when the cache made the request

* that resulted in this cached response

* responsetime
* is the (local) time when the cache received the

= response
* now

100

097

098

CACHE-CONTROL

* is the current (local) time
«/

apparent_age = max({0, response_time - date_value);

corrected_received_age = max(apparent_age, age_value);

response_delay = response_time - request_time;

corrected_initial_age = corrected_receivead_age + response_delay;
resident_time = now - response_time;

current_age = corrected_initialage + resident_time;

This algorithm is a conservative one and will, on average, overestimate the
age of a response. This is intentional within the protocol, to be certain no one
receives a stale response by accident.

Now that the cache knows both the freshness lifetime and the age of the
response, it can determine whether the responseis fresh or stale. If the freshness
lifetime is greater than the age of the response, then the responseis fresh, and it
does notrequire validation before the cache can use it as a response toaclient. If
the response is stale, then the cache mustvalidate the response before sendingit
to a client.

5.3.9 Validating a response

When a responseis stale, a cache must validate it with the origin server, or an
upstream cache, before using it for further responses to its clients. HTTP/1.1
provides a way for caches to use validators within a request to a server to check
on whetheror not the responseis still valid. In general, a cache would do this by
issuing a conditional get which includes a validatorfor the response. Thenif the
resource had not changed, the server can respond with a 304 Not Modified
response and save the expense of retransmitting the entity body. If the resource
had changed, then the server simply sends the new entity body in a standard
response. Either way, the minimum of network traffic has taken place.

HTTP/1.1 provides two different validators: Last-Modified dates and
entity tags. Both types may be considered either as weak or strong validators,
depending on usage andindications by the origin server. The strong validatoris
a validator which changes whenever theentity with which itis associated changes
in any way, no matter how minor. The weak validator is a validator which
changes only when the entity changes in a semantically significant way. This

Ia]

098

099

CHAPTER 5 ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

might be used by a server when only the background color of a page has
changed, Even though it is not exactly the same, the information conveyed by
the resourceis still the same.

Last

When comparingvalidators, HTTP/1.1 defines two operations:

Strong comparison Both validators must be identical and both must be
strong

Weak comparison Both validators mustbe identical, but one or both may
be weak

Entity tags are always considered strong, unless explicitly tagged as weak.
modified dates are always considered weak unless certain conditions are met

as outlined by the protocol specification:
2

102

The validator is being compared by an origin server to the actual currentval-
idator for the entity and,

Thatorigin server reliably knows that the associated entity did not change
twice during the second covered by the presentedvalidator.

or

Thevalidator is about to be used by a client in an If-Modified-Since or
Tf-Unmodi fied-Since header, because the client has a cache entry for the
associated entity, and

That cache entry includes a Date value, which gives the time when theori-
gin server sent the original response, and

The presented Last-Modified timeis at least 60 seconds before the listed
Date value.

oF

The validator is being compared by an intermediate cache to the validator
stored in irs cache encry for the entity, and

t cache entry includes a Date value, which gives the time when the ori-That cache entry includesaDate val hich g h hen th
gin serversent the original response, and

099

100

CACHE-CONTROL

* The presented Last-Modified timeis at least 60 seconds before the listed
Date value.

5.3.10 Examples

Caching is a complex subject in HTTP/1.1. It answers the needs of those who
need ro conserve resources such as bandwidth, and the needs of those who need

control over when, where, and how their responses are cached, The protocol
specification is the final word on this and does contain many points not brought
up inthis section of this book. If you are going to administer or implement a
HTTP/1.1 cache, you will need to read the protocol and know whatit says. Let
us now go over some examples to more precisely illustrate the use of the
cache-control mechanisms.

Example 1 In example 1, the cache agent has a copy of the resource stored.
The origin server has not placed any extra restrictions on the cachability of the
resource. At the moment, the cache has calculated the age of the resource as well
as the expiration time, and has concluded that the resourceis still fresh:

age-value = 100
freshness-lifetime = 300

Now let us look at some specific requests for the resource given under these
conditions: We will consider /resource to be the correct URI for the resource.

Non-essential headers are omitted:

Request 1: GET /resource HTTP/1.1

Responsel: The cache uses the stored copy.

Request 2: GET /resource HTTP/1.1
Cache-Control: min-fresh=250

Response 2: The cache must validate the resource.

Requestd: GET /resource HTTP/1.1
Cache-Control: no-cache

Response3: The cache must reload the resource from the origin server.

103

100

101

CHAPTER § ENTITY AND GENERAL HEADERS, AND CACHE-CONTROL

Request4: GET ‘resource HTTB/1.1
Cache-Control: max-age=0

Response 4: The cache must validate with the origin server.

Request: GET /resource HTTP/1.1
Cache-Control: max-aqe=500

Response &: The cache uses the stored copy.

Example 2 1n this example, the cache once again has a copyof the resource in
storage. This time the age and freshness are:

age-value = 500
freshness-lifetime = 400

Ourrequests from theclientare:

Requasti: GET ‘resource HTTP/1.1

Responsei: The cache validates the resource.

Requast2: GET /resource HTTP/1.1
Cacghe-Control: no-store

Response 2: The cache must reload the resource from the origin server and not
store the response. The specification is silent on the disposition ofthe
currently cached copy. Conservative caches would flush the resource
from the cache.

Reguest3: GET /resource HTTP/1.1
Cache-Control: max-stale=200

Response 3: The cache returns the resource after attaching aWarning 10 to it.

Request4: GET /resource HTTP/1.1
Cache-Controel: only-if-cached

Response 4: ‘Ihe cache returnsthe resourceafter attaching a Warning 10 toit.
Request5: GET ‘resource HTTP/1.1

Cache-Control: max-agde-600, max-stale-300

Responses: The cache returns the resource after attaching a Warning 10 toit,

104

101

102

FINISHING

5.4 Finishing
In this chapter, we have covered the basics of entity and general headers, such
being the headers which may occur in either request or response messages. Also
covered has been the conceptofcache-control, which is all new in HTTP/1.1. In
the next chapter we will look further into the response messages sent by the
HTTPserver.

105

102

103

chapter 7
Sockets

7.1 Thesocket 129

7.2 Setting up the server socket 130
7.3 Setting up the client socket 134
7.4 Data transmission 136

7.5 Utility routines 144
7.6 Host name and address routines 144

7.7 NTspecifics 146
7.8 OS/2 specifics 147
7.9 The socket class 149

7.10 The socket class methods 154

7.11 Finishing 173

128

103

104

THE SOCKET

7.1 The socket

The socket is the basic mechanism used by programs to communicate in the
TCP/IP world. In simple terms, it is a communications link between two pro-
grams across a TCP/IP network. Sockets have their beginnings in BSD UNIX
from around 1982. At that time, the Internet was developing into the form as we
know it today. The Defense Advanced Research Projects Agency (DARPA) had
funded the ARPANET,beginning in the 1970s. The original ARPANET con-
nected military, university, and research sites across the United States with a
packet-switched network. This network consisted mainly of leased telephone
lines, although it did include experimentation with radio networks andsatellite
communications.

In the early 1980s, BSD UNIX was growing in popularity amonguniversity
computer science departments. To encourage the use of the new TCP/IP proto-
cols that DARPA research had created, they made an implementation of them
available at a low cost. DARPA funded Bolt Beranek and Newman, Inc., to

implement TCP/IP on a UNIX system and the University of California at
Berkeley did likewise to integrate TCP/IP into its BSD UNIX software. By
doing this, DARPA was able to reach most computer science departments in the
United States and ensure the success of the socker and TCP/IP protocols.

The sockaddr structure defined in the <sys\socket .h> headerfile defines
a socket address. Also used with the sockaddr structure are struct in_addr

and struct sockaddr_in.

#include <sys\socket .h>
struct sockaddr

{

u_short sa_family; /* address family */
char Sa_date(14]); /* pretecol specific information */

hi

finclude <netinet\in.h>

struct in_addr
{

u_long s_addr; /* 32 bit host address, network byte order */
hi

struct sockaddr_in

129

105

CHAPTER 7 SOCKETS

short sin_family; /* AP_INET family */

u_short sin_port; /* 16 bit port number */
struct inwaddr sin_addr; /* 32 bit host address */

char sin_zero([8]; /* set to zero, not used */

The sa_family field of the sockaddr structure defines which addressing
family is being used with the socket. AF_INET is the address family we will be
using. Other families include AF_UNTX, AF_NS, and AF_IMPLINK. When the
sockaddr structure is used with the Ar_tnevT family, it is overlaid with the
sockaddr_in structure. In simple terms, this means that the socket calls expect
a structure of type sockaddr. When using the calls with the AF_INET family,
use the sockaddr_in structure and cast it to the sockaddr structure in the

function call.

In the sockaddr_in structure, sin_family corresponds to the sa_family
field of the sockaddr structure and is always set to AF_INET. sin_portis the
16-bit port number in network byte order, while sin_addr is the 32-bit host
address in network byte order, sin_zerois not used and is set to zero, In a typi-
cal server application, the sin_port field will be set to the well-known port
numberfor the server, while the sin_addr field will be set to INADDR_ANY. By
setting the host address to TNADDR_ANY,the system will accept connections from
any internetinterface. The client program is only slightly different, in thatit will
set the specific sin_adarfield to the host address of the server to which it wishes
to connect.

7.2 Setting up the server socket
Thefirst API call to be used is socket ().

#include <sys\types.h>
#include <sys\socket.h>

int socket(int family, int type, int protocol):

familyis set to AF_INET, as outlined in the last section. type specifies the
type of socket to be created. The possible values are SOCK_STREAM,

130

105

106

SETTING UP THE SERVERSOCKET

SOCK_DGRAM, and SOcK_RaAW. Forthis book, we will be using the sock_STREAM
only. The combination ofAF_INET and SOCK_STREAM yield a TCP socket. With
SOCK_DGRAM, a UDP socket would be created, while sock_RAW gives access to
the IP protocol. The protocol field is typically set to zero, which means the
system selects the correct protocol based on thefirst rwo parameters. The return
value from socket () will be —-1 in case of error, or will return the socket num-

ber otherwise.

Once a socketis allocated in a server application, the next API to be logically
used is bind().

finclude <sys\types.h>

finclude <sys\socket .h>

int bind(int s, struct sockaddr *addr, int addrlan);

The bind call is used to assign a name to a socket. s is the socket number
previously allocated while addr is the protocol specific structure holding the
address. The size of the structure is specified in the addrlen parameter. With
TCP, the structure used is of type struct sockaddr_in.bind() is used totell
the system that your application wants any messages received for the given
address. For a server application such as FTPD or HTTPD,use the well known
port address of these servers in the call. You may specify any port for the bind
call, given the operating system restrictions. UNIX systems restrict the ports
below 1024 to the superuser(root) only. If the portis already in use by another
process, the call to bind will fail. The exception to this is, if the socket option
SO_REUSEADDR has been set, using the setsockopt() call. By setting this
option, the system will give control of the port to your program, taking it away
from the previous process using the port. A positive return value indicates
success.

Once our server is bound to a port, the socket must be set to passive mode in
order to accept connections from the clients. To accomplish this, the Listen ()
call is used:

finclude <sys\types. h>

finelude <sys\socket.h>

int listen(int s, int backlog);

I31

106

107

CHAPTER 7 SOCKETS

As before, s is the socket number, backlog is the maximum number of

requests the system will queue. For most systems, the maximum allowed is five.
To make the program moreflexible, the constant SOMAXCONN can be used. This
constant is defined in the header files to the current maximum value allowed.

Once a socket is placed in passive mode, it cannot be used to initiate connec-
tions, but only accept them, A positive value indicates success,

Onelast call is meeded by the server in order to establish connections:
accept ():

finclude <sys\tynes.h->

#finclude <sys\socket.h>

int accept(int 5, struct sockaddr “client, int *addrlen);

The accept () call causes the calling process to either accept a connection
from a client or be blocked until such a connection occurs.If the call returns suc-

cessfully, a new socket will have been created that is connectedto the client. The
new socket numberis the return value from accept (). At this point, you will
have created what many bookscall a 5-tuple, A 5-tuple is simply the set of data
that defines a unique connection between two processes across a TCP/IP socket.
Tt consists of the following; a socket number, a server IP address, a server port, a
client IP address, and a client port.

These fourcalls are all that is necessary to create a minimal server. The fol-
lowing example shows justthat:

#include <sys\types.h>
Hinelude <sys\socket.h>

finclude «<netinet\in.h>

void main(int arge, char *argv[])
{

int os, // our socket

re, f/ return code

a, // elient socket

len; // length of structure

struct sockaddr_in server, client;

5 = socket (AP_INET, SOCKSTREAM, 0); // create a socket

if (s < 0)

{

132

107

108

SETTING UP THE SERVER SOCKET
a

cerr «<< "Error! Cannot create socket." << endl;

return;

)

len = sizeof(struct sockaddr_in);
bzero(server, len); // clear the data

server.sin_family = AF_INET;

server.sin_port = htons (7777);
server.sin_addr = INADDR_ANY;

re = bind(s, (struct sockaddr *) &server, len);

if (re < 0)

{

carr << "Error! Bind failed." << endl;

return;

)

re = listen(s, SOMAXCONN); // change to passive socket
if (re < 0)

[

cerr << "Error! Listen failed." << endl;

return;

}

for(; 7)
{

bzero(&client, len);

¢ = accept(s, (struct sockaddr *)&client, &len);

if {ce <= 0)

(

cerr << "Error! Accept failed.* << endl;
return;

}

// do some work with new socket c to client

close (c);

This example follows the API calls as outlined previously. A sockeris allo-
cated first, using the socket () call. If successful, the socket is bound to port
7777 using the bind() call. The use ofport 7777is an arbitrary one, as any port
could be used. Port 7777 is above the range of the reserved and well-known
ports for such services as HTTP and SMTP(80 and 25 respectively). The line

server.sin_port = htons(7777);

133

108

109

CHAPTER 7? SOCKETS

does introduce one concept not yer mentioned. In the TCP/IP world, the range
of machines goes from PCs to supercomputers using various CPUs. To over-
come the problem ofthe machine representation of an integer being different on
a Motorola 68040 than on an Intel Pentium Pro, the concept of network byte
order is used. Network byte order uses big endian notation such as on the
Motorola 68000 series of processors. On machines that use big endian notation,
htons() will be defined as a null macro. For machines thar use the litrle endian

notation, it will swap the byte ordering. It is always a good idea to use the byte
swapping routines even if you know the machine you're targetingis big endian.
With the proliferation of processors and the ability of operating systems to run
on many platforms, you never know where your codewill end up.

Once the bind() call completes, the socket is placed into passive mode with
the Listen() call. At this point, the server is ready to accept incoming connec-
tions, A loop is used to cycle the server through the acceptcycle. The cycle starts
by clearing the data structure used for the client information. accept () is then
called to complete the connection. Uponsuccessful completion of the accept()
call, the necessary processing betweentheclient and server takes place. Depend-
ing on the operating system, this processing would take place by starting a new
process (UNIX), or by starting a new thread (OS/2 and NT). For a very simple
server, the processing could take place in the same process as the acceptcall, but
that would risk the possibility ofdropping a waiting connection.

7.3 Setting up the client socket
The procedure for setting up the client program starts out the same as for the
server, thar is, a socket is allocated with the socket () call. After that, the client

is ready to establish a connection with a server. The call used to do this is
connect (),

#include <sys\types.h->
#include <sys\socket.h>

int connect (int s, struct sockaddr *servar, int len);

134

109

110

SETTING UP THE CLIENT SOCKET

As before, s is the socket handle from the socket.() call. server is the

struct sockaddr_in structure. It specifies the server to which it wishes to con-
nect byfilling in the address and port fields. The last parameter, len,is the size
of parameter two. When connect completes successfully, a connection is estab-
lished between the client and server with another 5-tuple. A negative return
value indicates failure.

The following example shows a simpleclient:

finclude <sys\types.h>
#include «<sys\socket.h>
#inelude <netinet\in.h>

// this program expects the server address a5 & parameter

void main(int arge, char *argv[])

{

int 65, // the socket handle

re; // return code

struct sockaddr_in server;

if (arge l= 2)

{

cerr << "Error! Incorrect number of arguments." << endl;
return:

8 = socket (AF_LINET, SOCKSTREAM, 0);
if (s < 0)

{
cerr << "Error! Cannot create socket." << endl;
return;

}

brero(&server, sizeoft(struct sockaddr_in);:

server.sin_family = AP_INET;
server.sinport = htens (7777);

server.sin_addr = inet_addr(argv({1]); // use command line address

re = connect (s, (struct sockaddr *) &server,

sizeof(struct sockaddr_in));

if (xe < 6)

{

cerr << "Error! Connect failed." << endl;
return;

135

110

111

CHAPTER 7 SOCKETS

// do some processing of data between client and server

close(s);

While simple, this example shows the four basic steps that a client applica-
tion must perform, Thefirst step is to create a socket, Next a connection must be
madeto the server. The actual data processing is performed and thelast step is to
close the socket.

7.4 Data transmission

Since we are dealing with stream sockets, the data transmission which occursis
simply a byte stream. ‘There are no inherent recordsor signals for the end of a
message, hence the application must supply it. The typical signal for the end ofa
data transmission in the Internet protocols is the Telnet end-of-line sequence.
This sequence is defined as a carriage return, followed bya line feed. You will
note this is also the end-of-line marker for OS/2 and NT. TCP/IP has several

different APIs available for sending and receiving data. The two that we'll be
using in this book are:

#include <sys\types.h>

#include <sys\socket .h>

int send({int 5s, char *msg, int len, int flags);

int reev(int s, char *msg, int len, int flags);

In both calls, the first parameter s refers to the socket number on which to
perform the operation. msg is the buffer holding the data to be sent, for send{),
or the buffer area to receive the data, for recv(). The next parameter, len,
holds the length of the data for send (), and the length of the message buffer for
recy(), The flags parameter is used to modify the behavior ofthe calls. Some of
the flags available include MSG_ooB and MSG_PEEK. MSG_OOBrefers to placing
out-ofbound data in-bound while msG_PEEK is used for the reev() call in

order to receive the waiting data, but not consume it. The datais left for later
calls to read,

136

111

112

DATA TRANSMISSION

Before we delve into the use of these calls, one point of TCP communica-
tions needs to be addressed. When a process transmits data using the send()
call, it will request a certain numberof bytes to be sent. However, there is no
guarantee that the numberof bytes requested to be sent will be the number of
bytes actually sent. So, it may be necessary to resend part of the buffer becauseit
was not sent on thefirst call. Likewise, when receiving data using the recv()
call, you mayallocate a bufter of 1024 bytes and set your length to that number.
To the protocol stack, the length is just the maximum length you will accept,
You will only receive the number of bytes available. Multiple reev()s will be
needed to insure receiving the number of bytes your process needs.

Now wesee the need for the Telnet end-of-line sequence in Web and Inter-
net protocols. The processes which are communicating need a wayto signal each
other that the command has ended. The easiest way to accomplish this is to have
a special function to read lines from the socket. The next example shows the
RecvLine() function which does this:

#include <sys\\types.h>

#include <sys\socket .h>

// Receive a command line terminated by a telnet eol sequence

int Recvline(int iSocket, char “szBuf, int iben)
{

int iBytesRead,
ildx,

bNotDone;

iBytesRead = recv(iSocket, &szBuf[9], 1, 0);
iidx = 1;
bNotDone = TRUE;

while ({bNotDone == TRUE)

[

iBytesRead = recv(iSocket, &szBuf[iIdx]), 1, 0);
if (iBytesRead < 0}

i

return { -1); // error receiving
)

Lldx++;

if ((szBuf[itds -— 2) == '\r') &&

137

112

113

CHAPTER 7 SOCKETS
el

(szBuf[iIdx — 1] == '\n"') }

{

bNotDone = FALSE; // got telnet eéol
}

if (ildx == iLen)}

{

return { -1); // error, buffer too small

}
}

szBuf[ilTdx - 2] = NULL; // append null termination
return (TRUE };

This example shows a simple way to receive a commandline typically used
in Internet protocols such as HTTP, FTP, or SMTP. The function takes three
arguments which are the same as the first three arguments of recv(). The
fourth argument of reev() is not used andis left at 0. It starts by reading a sin-
gle character fromthe socket. Since our aim is to read until we have a telnet end-
of-line sequence, we must have a minimum of two characters. The first character
is read outside of the loop to ensure that we havearleast wo when we check. We
next enter the reading loop. A character is read and the return code is checked
for an error. If there is no error, then the string is checked for the end-of-line
sequence. We also check for a possible overrun of the message buffer. Finally,
once the end-of-line sequence has been read, the buffer is null terminated at the
end of the message. We discard the end-of-line sequence.

The drawback of this approach is that receiving one character at a timeis an
expensive operation. A much better approach would be to receive as many char-
acters as are available and then inspect the buffer until the end-of-line sequence
is reached. In order to accomplish this effectively, a C++ class could be used to
encapsulate the socket. With the class approach, you can easily maintain a bufter
of dara for each socket used in the system. Fortunately, most commandlines are
small, less than a few dozen characters. For an efficient implementation, I would
recommendusing C++ classes and we'll do thatlater in this chapter.

Now,let us take a look at how we would use the send({) and reev() func-

tions in oursimple client:

#include <sys\types .h>

#include <sys\socket.h>

138

113

114

DATA TRANSMISSION

#include <netinet\in.h>

#include <iostream.h>

#include <string.h>

// this program expects the server address as a parameter

void main(int arac, char *argqv[])

{

int 5, /? the socket handle

re; // return code

char s82Buf (256); // data buffer

struct sockaddr_in server; // server address

if (argo != 2)
{

eerr << "Error! Incorrect number of arguments." << endl;
recurn;

)

s = socket (AF_INET, SOCK_STREAM, 0);
if (s = 0)

{

carr << "Error! Cannot create socket." << endl;
return;

}

beero(&server, sizeof(struct sockaddr_in)};

server.sin_family = AF_INET;

server.sin_port = htons (7777);
server.sin_waddr = inet_addr(argv{1])); // use command line address

re = connect(s, (struct sockaddr *) &server,

Sizeof (struct sockaddr_in) };

if (re < 0)

‘

cerr << "Error! Connect failed." << endl;

return;

}

// do some processing of data between client and server
strepy(szBuf, "HELLO\e\n");
re = send(s, szBut, strlen(szBuf), 0);

if (re < 0)

{

cerr << “Error! Send failed." << endl;
return;

139

114

115

CHAPTER 7 SOCKETS

re = RecrlLine(s, szBuf, 256);
if (re < 0)

{
cerr << "Error! RecvLine failed." << endl;

return;

if (stremp(szBuf, "OK") != 0)
{

cerr << "Error! Unknown reply from server." << endl;
return;

}

strepy(szBut, “GOODBYE\rin")+

re = send(s, szBuf, strlen{szBuf), 0);
if (re =< 0}

{
eerr << "Error! Send failed." << endl;
return;

}

re = RecvbLine(s, szBuf, 256);
if {re < 0}

[

cerr << “Error! RecvLine failed." <« endl;
return;

j

if (stremp(szBuf, "OK") != 0)
{

eerr << "Error! Unknown reply from server." << endl;
return;

}

elose(s);

This exampleis the same as our first client example, only with the addition
of code to exchange messages with the server. The logic is simple, Once thecli-
ent is connected to the remoteserver, a simple greeting is sent. ‘The client then
checks for the server's response. Ifit receives the OK reply it expects, it then sends
a closing message ofGOODBYE. TheOKreply is expected again and checked before
the client closes the connection to the server.

Ontheserver side, things have changed onlyslightly:

140

115

116

DATA TRANSMISSION
iaecAaa

#include <sys\types.h>

#include <sys\socket .h>
#include <netinet\in.h>

#include <iostream.h>

#include <string.h>

woid main(int arde, char *argv[])

{

int 5, // our socket

re, // return code

i // client socket

len; f/f length of structure

struct sockaddr_in server, client;

Ss = socket (AF_INET, SO0CK_STREAM, 0); // create a socket
if (s < 0)

{
cerr << "Error! Cannot create socket." << endl;

return;

}

len = sizeof(struct sockaddr_in};

bzero(server, len); // clear the data

server.sin_family = AF_INET;

server.sin_port = htoens (7777);
server.sin_addr = INADDR_ANY;

te = bind(s, (stract sockaddr *) &server, len);
if (re =< OG}

{

cerr << "Error! Bind failed." << endl;
return;

re = listen(s, SOMAXCONN); // change to passive socket

if (re < 9)

{

cerr << “Error! Listen failed." << endl;
return;

}

for(; ;) // torever

{

bzero(&client, len);

© = accept(s, (struct sockaddr *)&cliant, &len);
if (e <0)

{

141

116

117

CHAPTER 7 SOCKETS
(Nur8EEE

cerr << "Error! Accept failed." << endl;
return:

}

// do gome work with new socket c to client

TalkToClient (c);

void TalkToClient lint iSocket)

{

int ike,

bNotDone;

char szBuf(256],

szOk[] = "OK",
sZErr[] = “ERR";

bNotDone = TRUE;

while ({bNotDone == TRUE)

{

iRe = RecvLine({iSecket, szBuf, 256);

if (ike < 0)

{

cerr << "Error! RecvLine failed." << endl;

bNotDone = FALSE;
}

if (stremp(szBuf, "HELLO") == 0)
{

iRe = send{iSecket, sz0k, strlen(teazOk), 0);

if (iRe «< 0)
{

eerr << "Error! Send failed." << endl;
bNotDone = FALSE

}

else if ({stremp(szBuf, "GOODBYE") == 0)

{

iRc = send({iSoecket, szOk, strlen(szOk), 0);

if (ifke < 0)

(

carr << "Error! Send failed." << andl;

bNotDone = FALSE

}

bNotDene = FALSE; // clese connection on GOODBYE

142

117

118

DATA TRANSMISSION

)

else // unknown message

{
send(iSocket, szErr, strlen(szErr), 0);

bNotDene = FALSE;

}

close (iSocket);

The revised server example has a function TalkToClient () added to it to
handle all communications with the connecting clients, In this function, the
server goes into a loop, receiving messages from the remoteclient. Upon receiv-
ing the HELLO message, the server responds with an ox reply. If the GoopBYE
message is received, then the OK reply is sent and the Boolean flag is marked
FALSE to end the connection.If the server receives any other messages, then the
ERR reply is sent and the connection is closed.

Although the example server does no real work, it does model the work flow
of a real server, Connections are accepted in a loop and a function handles the
work. In a real server, the difference would be rhar another process or thread
would be used to handle the work function, Under OS/2, the typical code would
look like this:

_beginthread(TalkToClient, 0, 8192, {void *}NULL};

This function starts a new thread of execution on the TalkToClient()

function, Under Linux, the fork() call is used to start a new process:

if (fork() == 0)

{

closels);

TalkToClient(c);
return;

)

Either method produces the sameresults. Another thread of execution han-
dles the connection to the currently connected client so that the server can go
back to accepting more connections.

143

118

119

 chapter 8

The HTTP/1.1 server

8.1 The configuration file 175
8.2 The main program 179
8.3 Theserver 183

8.4 The authorization model 187

8.5 Request and response headers 189
8.6 HTTP/1.1 216

8.7 Finding the method 224
8.8 TRACE 225

8.9 OPTIONS 229

8.10 PUT 230

8.11 Iffunctions 238

8.12 Chunked encoding 242
8.13 The DELETE method 247

8.14 GET the document 254

8.15 Checking the IfRange 265
8.16 Transmission of byte ranges 267

8.17 Finishing 274

174

119

120

THE CONFIGURATION FILE

Since HTTP/1.1 has not yet reached standard status, the code in appendix
hereto is based on the latest Internet Draft 7, dated August 12, 1996, which has
been approved by the IESG as a proposed standard, but has not been processed
by the RFC editor as this is written. By the time this bookis in print, the pro-
posed standard should beavailable from the Internic. You should retrieve a copy
to check if any changes were made necessitating code changes in theserver. If
changes were necessary, you may contact me at phethmon@hethmon.com to
learn where to obtain the updated code.

Whatis presented here is an explanation of the HTTPserver on the accom-
panying CD.In someplaces, you will be referred to the CD to look at some of
the code. The code in thosesectionsis fairly straightforward and the comments
in the code should be sufficient. The parts of the code which implementthe pro-
tocol directly, and are perhapsa bit tricky, are fully explained.

8.1 The configuration file
We'll start by looking over the configuration file which controls how theserver
behaves:

#

3wd configuration file
#

ServerRoot h:\book\serverl.1

#

HostName Warp.rmt.utk.edu

it
Port 80

a

DNSLookup On

The offset in minutes between local time and GMT

Where hhmm is the format. This value plus local time
should equal GMT.
GMTOffset 0400

175

120

121

CHAPTER 8 THE HTTP/1.1 SERVER

fh
Welcome welcome.html

#

AccessLog h:\book\serverl.0\access.log

#

ErrorLog h:\book\serverl.O\error.log

H

LogTime GMT

Filename used for read access authorizations
ReadAccessName 3wdread

Filename used for write access authorizations
WriteAccessName 3wdwrite

+

PathAlias is used to map document tree aliases to real locations
#

Up to 128 path aliases allowed.
#

PathAlias /1.0 h:/book/serverl1.0/
PathAlias /1.1 h:/book/serverl.1/
PathAlias /0.9 h:/book/server0.9b/

PathAlias /images h:/book/images/

#

ExecAlias is used to map cgi-bin aliases to real locations
#

Up to 128 exec aliases allowed.
#

ExecAlias /cgi-bin h:/book/serverl.1/cgi-bin

tt

DeleteDir is used to put store deleted resources
#

DeleteDir h:/book/serverl.1/delete/

ft

ExtType is used to map file extensions to the appropriate MIME type.
MIME types beginning with "text/" are assumed to be text format, all
others are assumed binary and transmitted as such.
#

Up to 256 extensions allowed.

176

121

122

THE CONFIGURATION FILE
ACSPRBGE

#

ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType

ExtType
ExtType
ExtType
ExtType

ExtType
Ext Type
ExtType
ExtType
ExtType

ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType
ExtType

html
htm
txt
text

readme
me

ema
doc

faq
cpp

hpp

jpeg
jpg
jpe
gif
tiff
tif

bmp
au
wav
wave

snd

mid
midi
avi

mpeg
mpg
mpe
inf

pdf
zip
exe

ps

dvi

text/html]
text/html

text/plain

text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
text/plain
image/jpeg
image/jpeg
image/jpeg
image/gif
image/tiff
image/tiff
image/bmp
audio/basic
audio/x-wav
audio/x-wav
audio/basic
audio/x-midi
audio/x-midi
video/avi

video/mpeg
video/mpeg
video/mpeg
application/x-view

application/pdf
application/unzip
application/octet-stream

application/postscript
application/x-dvi

Our configuration file starts out, as before, by specifying a default server
root, hostname, and DNSlookup. Theseitemsare fairly self-explanatory. How-
ever the next variable, GMToffset is used to tell the server the proper time
relationship between local time and GMT (or UTC) standard. Due to the
variances in supportforestablishing GMT under OS/2 and NT,we'll depend on
the userto tell us the explicit difference in hours and minutes. The welcome

177

122

123

CHAPTER 8 THE HTTP/I.1 SERVER

variable gives the default filename to use if one is not specified by theclient.
AccessLog and ErrorLog control wherethe respective access anderrorfiles are
written. The LogTimevariabletells the server whetherto use local time or GMT

within thelogfiles.
In order to implement basic authentication, the server must have a way to

determine whohasthe proper authorization to view or change documents. This
includes access for methods such as GET and Post, but also the puT and DELETE

methods. The access permissions needto be able to be specified independently of
one another however, so resources may be viewed by anyone, but only updated
by those with authorization:

Filename used for read access authorizations
ReadAccessName 3wdread

Filename used for write access authorizations

WriteAccessName 3wdwrite

The formerapplies only to read access while the latter applies to write access
to files. Depending on the operation requested by the client, we check the appro-
priate permissions:

Also specified in thefile is a place to hold deleted resources.

i

DeleteDir is used to put store deleted resources
H

DeleteDir h:/book/serverl.1/delete/

If this keywordis set, when the remote client deletesa file using the DELETE
method,the original file will be stored here. The server administrator must then
periodically clean up the delete directory. This allows the user to call up in a
panic after having deleted the incorrect resource and to have the cool headed
administrator say “no problem.”

Then we come to one of the more important directives: PathAlias.
PathAliasis usedto specify a translation between the paths requested byclients
and the actual location in the file system. This lets us use a URL ofthe form:

http: //warp.rmt.utk.edu/i.1

178

123

124

THE MAIN PROGRAM

This would in turn map to:

h: \book\serverl.1

In use, we can set up different roots for various documenttrees. It also
allows us to optimize someclient caching by puttingall of our imagefiles in the
samedirectory which can belocated by the samerelative URL. Given imagesare
someofthe biggest items your server will be sending, and the byte savings can be
quite large when the same images are repeated on multiple pages.

Ournextdirective, ExecAlias, does the same thing for our CGI scriptsas
AliasPath did for documents. The formatis the same as for AliasPath. The

last directive in thefile is used totell the server what the proper MIMEtypes are
for variousfiles in the system. The Ext'Type directive gives thefile extension and
the proper MIMEtypeto returnforit. It allows us to specify that files named
Readme can be returned as plain text. It will likewise match a filename without
an extension.

The source to read and parse the configuration file is presented in
config.cpp on the CD. Thecodepresentedinit is simple and therefore will be
skipped here.

8.2 The main program
Nowlet us take a look at the main function for the server:

volatile int iAccessLock = 0; // Ram semaphore for access logfile.
volatile int iErrorLock = 0; // Ram semaphore for error logfile.
void Stop(int iSig);

//

// main()
‘/

// Our main function and entry point
‘/

179

124

125

CHAPTER 8 THE HTTP/1I.1 SERVER

int main(int arge, char *argv[])
{

int iPort = WWW_PORT;
int i,

ikc;
char szCmd[512];
BOOL bNotDone = TRUE;

#ifdef _os2__

iRe = sock_init(); // Make sure socket services are available
if (iRe != 0)

{

cerr << "Error!" << endl;

cerr << "Socket services not available. Exiting." << endl;
return 1;

}

#elif _WINDOWS__
WORD wVersionRequested;
WSADATA wsaData;

wVersionRequested = MAKEWORD(1, 1);

iRc = WSAStartup(wVersionRequested, &wsaData) ;
if (iRc != 0)

{
cerr << "Error!" << endl;

cerr << "Socket services not available. Exiting." << endl;
return 1;

}
#endif

iRc = ReadConfig("3wd.cf");
if (ike)

{

cerr << "Error!" << endl;

cerr << "Error reading configuration file. Exiting." << endl;
return 1; // Exit on error.

}

ie ok

while (i < argc) // Check the command line args
{

if (stremp(argv[i], "-p") == 0)
{

// Set the port to user requested
sPort = (short) atoi(argv[i + 1]);

180

125

126

THE MAIN PROGRAM

i += 23;
}

else // Unknown arg, ignore it
{

cout << "Unknown argument \"" << argv[i]
<< "\" ignored." << endl;

‘ i++;

}

signal (SIGABRT, (_SigFunc) Stop);
signal (SIGBREAK, (_SigFunc)Stop);
signal({SIGINT, (_SigFunc) Stop);
signal(SIGTERM, (_SigFunc) Stop);

cout << "w3d> Starting server on port number " << iPort << ".
<< endl;

Server ();

#ifdef _WINDOWS__

WSACleanup(); // Cleanup for windows sockets.
#endif

// Now we're done

return 0;

‘f

// Stop
/f

// Handle the signals and stop the server.

void Stop(int iSig)
{

#ifdef _WINDOWS__

WSACleanup(); // Cleanup for windows sockets.
#endif

exit(0);

#endif

126

181

127

CHAPTER 8 THE HTTP/I.1 SERVER

Before our main function, we declare two important variables.
iAccess-Lock and iErrorLock are used as RAM semaphores for controlling
access to both the access log anderror log respectively. Since we're using threads
to handle each connection, we mustserialize access to the log files. These integer
values are used with the fast RAM semaphore functions provided by Visual Age
C++. We musttake care to initialize the values to zero so the semaphores arefree
initially.

Westart our main function by initializing our socket support for OS/2 with
the sock_init() call or for Windows with the wSAStartup() call. Both calls

serve to initialize socket support undertherespective operating systems.
After this, we read the configurationfile using the standard name 3wd.cf.If

there is an error, we print out a short error message to standard error and exit.
The reading of the configuration file is set before checking the commandline
arguments on purpose. We wantto allow any commandline arguments to over-
ride the values in the configuration file. To simplify our programming, the
global variables are set before we check the commandline. This way we do not
have to keep a separate set of possible commandline variables to hold those val-
ues while the configurationfile is read.

In the next section, we then read the commandline arguments:

i = 1;

while (i < argc) // Check the command line args
{

if (stremp(argv[i], "-p") == 0)
{

// Set the port to user requested
sPort = (short) atoi(argv[i + 1]);
i += 2;

}

else // Unknown arg, ignore it
{ 3

cerr << "Unknown argument \"" << argv[i]

<< "\" ignored." << endl;
i++;

}

Thefirst thing to do is to skip over argv[0], as it contains the program
name. Ourindex variable i is set to 1 to start. A while loopis used until i has
been incrementedpast the value of argc, thus checking all of the commandline:

182

127

128

THE SERVER

arguments. Forourserver, the only argument we’re supportingis for an alternate
port. We look for a -p andif found, use the next argumentas the port number.
Once that is done, we must increment our index value by 2 to allow for the -p
and the port number. Any other argumentis ignored and a short error messageis
sent to standarderror.

Thenext fourlines set up the signal handlers to catch a break signal from the
user. This is used to allow the serverto clean up after itself before closing. Once
those are set up, then we call the Server () function to actually handle the
incoming connections from theclient. If Server () returns, as would happen on
an error condition, then WSACleanup() is called for the Winsock version to

clean up any remaining sockets. OS/2 will automatically clean up sockets when
the program ends. Also shown in the codelisting is the signal handler itself,
Stop(). It is simply called whenever an exception is caught and proceeds to
make sure WSACLeanup() is called for the Winsock version.

8.3 The server

The nextpart of the server is the function used to listen for requests from clients.
This is contained in the function Server ():

‘f

// This function accepts the incoming connections spawning the threads
// to handle the actual work.
‘f

void Server ()
{

Socket sSock, // Our server socket for listening
*sClient; // The client socket

int iRc; // Integer return code

cout << "w3d> Using port number " << sPort << "."
<< endl << "w3d> ";

if (! sSock.Create()) // If failure
{

cerr << "Error." << endl;

183

128

129

CHAPTER 8 THE HTTP/1.1 SERVER

cerr << "Cannot create socket to accept connections." << endl;
return;

}

sSock.Passive(sPort, REUSE_PORT); // Go to passive model

For (; 73 // Forever
{

sClient = sSock.Accept(); // Listen for incoming connections

if (sClient != NULL)
{

// We established a good connection, start a
// thread to handle it

iRe = _beginthread(W3Conn, 0, STACKSIZE, (void *)sClient);
if (iRe == -1)

{
// Failure to start thread. Close the connection.

sClient->Close();
delete sClient;

Using our socketclass, the code here is very simple. The first thing we dois
announce on what port we're listening. Next, we create a socket using
sSock.Create() from oursocketclass. Ifwe fail, we announce that and return,

otherwise a call to sSock. Passive (sPort, REUSE_PORT) puts our socket into
listen mode. We specify the REUSE_PORT option to make sure our daemon
receives the port from the TCP/IPstack.

Nowatthis point, we’re ready to accept incoming connections. We start an
infinite for loop and wait for a connection in the sSock.Accept() call.
Accept () will return a pointer to a new Socket class instance when a connec-
tion is made. We verify that the class instance is valid and then call
_beginthread() to handle the connection. ,

Our next operation is to start a secondary thread to actually handle the
incoming HTTP connections. We use the C library call _beginthread(). If
you are not familiar with using threads in your programs, then a short
explanation is in order. Each thread in a program operates as an independent

184

129

130

THE SERVER

order of execution. They do share a commonaddress space and any global vari-
ables are accessible by any thread in the process. This gives both advantages and
disadvantages. By sharing a common address space, threads are sometimes
referred to as a lightweight process. Each operates independently, but does not
require a separate process, just its own stack and processor context. Butjust as
this is an advantage, it also means ifone thread causes an exception,all threadsin
the process will fail.

Ourcall to _beginthread() requires four arguments for the IBM Visual
Age C++ compiler. Other compilers may support a different number of argu-
ments. Check your compiler’s documentation for details. The first argumentis
the address of the function to start. This function must be declared using the
_Optlink calling convention. The second argumentis a holdover from OS/2
1.x days when the address of the bottom of the stack was needed. Stack alloca-
tion is now handled automatically by OS/2. The third parameteris the size of
the stack for the thread. As mentioned previously, the stack allocation is handled
automatically, so we specify a generous size. The last parameter is a pointer
which is passed as the only argumentto the function. This is where we can pass

_thread specific information. Since only 4 bytes are passed by the system, a
pointer to a data structure is a common argumentto pass. The codehere passes a
NULL value since we have no need to pass a parameterto theserver thread.

Ourcall to _beginthread() here specifies starting w3Conn() and passing
it a pointer to the Socketclass instance as a parameter to the new thread. This
gives us a tidy package with whichto start the connection. Ourlast bit of work
here is to make sure a new thread was actually started to handle the connection.
If the call failed, we close the socket and delete the class instance.

The next function is W3Conn(). This is the function with which the new

thread starts executing in order to serve the incoming request:

if
// W3Conn
ff

// This is our worker thread to handle the actual request.
ff

void _Optlink W3Conn(void *arg)
{

Socket *sClient;

185

130

131

CHAPTER 8 THE HTTP/I.1 SERVER

char *szRequest, *szUri, *szVer;
int iRc;

sClient = (Socket *)arg; // Get the pointer to the socket

// Resolve the IP Name if requested.
if (bDnsLookup == TRUE)

{
sClient->ResolveName ();
}

szRequest = new char[SMALLBUF] ;
szUri = new char[SMALLBUF] ;
szVer = new char[SMALLBUF] ;

iRc = sClient->RecvTeol(NO_EOL); // Get the message

// Parse the components of the request

sscanf(sClient->szOutBuf, "%s ts %s", szRequest, szUri, szVer);

lf (stricmp(szVer, "http/1.0") == 0)
{

DoHttp10(sClient, szRequest, szUri);
}

else if (stricmp(szVer, "http/1.i") == 0)
{

iRe = DoHttpli(sClient, szRequest, szUri);
while (iRc == TRUE) // Do persistent connections.

{

sClient->RecvTeol (NO_EOL);
sscanf(sClient->szOutBuft, "%s %s %s", szRequest,

szUri, szVer);

iRc = DoHttpll(sClient, szRequest, szUri);

}

else // Treat this request as a HTTP/0.9 request.
{

DoHttp09 (sClient, szRequest, szUri);
}

delete [] szRequest;
delete [] szUri;
delete [] szVer;
delete sClient;
return;

1 eaaatatcetetetatetatatenatatatatataataaaaiateataiaataidaaieaaaaaeeeie

186

131

132

THE AUTHORIZATION MODEL

When wefind szVver equal to HTTP/1.1, wecall the function Dont tp11()
to actually process the request:

ike = DoHttpll(sClient, szRequest, szUri);
while (iRc == TRUE) // Do persistent connections.

{

sClient->RecvTeol (NO_EOL);

sscanf(sClient->szOutBuf, "%s %s %s", szRequest,
szUri, szVer);

iRc = DoHttpll(sClient, szRequest, szUri);

Since persistent connectionsare the default behavior for HTTP/1.1, we loop
over the connection until the client tells us it wants to close. The return value

from DoHttp11() will be FALSE when the client sends the Connection:

close headerto us. Inside our loop, we simply grab the requestline, parse it out
and call DoHttp11() each time.

8.4 The authorization model

Before we go further,let us take a look at whatis required to supportthe separate
read and write accesses. First from the headerfile util. hpp:

ff

// Authorization codes.
f/f

#define ACCESS_OK 1 // Allow access.
#define ACCESS_DENIED // Need authorization.
#define ACCESS_FAILED // Credentials failed.lwbo

#define WRITE_ACCESS 1 // Check write access
#define READ_ACCESS 2 // Check read access

The defines here are used within the server to define the different failure

codes and types of access requested. Whenever a client makes a request, the
server calls the CheckAuth() function to determine if access is allowed. If an

187

132

133

CHAPTER 8 THE HTTP/1.1 SERVER

access file is present, then this function does the necessary work to determine
whetheror notthe current request is granted access.

//

// CheckAuth ()
ff

// This function will scan the directory tree for an access file.
// I£ found it will either verify the authorization if present in the
// Headers variable and return a challenge otherwise.
//

int CheckAuth(char *szPath, Headers *hInfo, int iType)
{

char *szTmpPath, *szPtr,
*szName;

int 1,

ike;
BOOL bNotFound = TRUE;
struct stat sBuf;

if (iType == READ_ACCESS) // Check for read or write access.
{

szName = szReadAccess;
}

else

{

szName = szWriteAccess;

szTmpPath = strdup(szPath);

1 = strlen(szTmpPath) - 1;

// Look for the access filename.
while (bNotFound)

{

while ((1 > 0) && (szTmpPath[1] != '/'))
{

szTmpPath[1] = NULL;
A=}

if (1 == 0) break; // Stop. No more path left.
l1--; // Go before the "/" for the next attempt.

188

133

134

REQUEST AND RESPONSE HEADERS

strcat(szTmpPath, szName) ; // Create filename.
iRc = stat(szTmpPath, &sBuf);
if ({iRe == 0) // We found the file.

{

iRe = CheckFile(szTmpPath, hInfo);
bNotFound = FALSE;
continue;

}
}

delete [] szTmpPath;

if (bNotFound == TRUE) // No access file found. Return ok.
{

return (ACCESS_OK);
}

return (iRc);

Thefirst step after starting the function nowis to check the value of iType
passed in. If we match the READ_ACCESSvalue, we assign szName to point to

-szReadaccess. For matching WRITE_ACCESS, we use szWriteAccess instead.
The CheckFile() functionis called to verify the given username and password
against whatis in the accessfile. The function can be found in the util.cppfile
on the CD.

8.5 Request and response headers
With HTTP/1.1, the numberof headers defined by the protocol has gone up
tremendously. In order to handle the increased number and to just handle the
increased amountofdata in general that we track during each transaction, we
have created a class called Headers. Herewith is part of the headers .hpp
includefile:

/f

// The Headers class contains most of the information used during
// a connection with a client. The header lines, the method, the

189

134

135

CHAPTER 8 THE HTTP/I.1 SERVER

// URI, and various other bits used to service a request.
ff

class Headers

{

public:

Headers ();
~Headers ();

int RevHeaders (Socket *sClient);

int CheckHeaders ();

int FindRanges{int iSize);

char *szMethod,
*szUri,
*szVer,

*szQuery,
*szAuthType,
*szRemoteUser,

*szAccept,

The Headersclass contains the complete set of information pertainingto a
single HTTP request. Most data members mimic an HTTP/1.1 header and as
such, just hold that information. A few are there to hold other information per-
taining to the request and we'll go over them also. The first two member func-
tions we examinerelative thereto are the constructor and destructor:

if
// Headers
‘f/f

// The ctor initializes most values to NULL for safety and easy
// checking.
fi

Headers: :Headers ()
{

szMethod = NULL;

szUri = NULL;
szVer = NULL;
szQuery = NULL;

szAuthType = NULL;
szRemoteUser = NULL;

szAccept = NULL;

szAcceptCharset = NULL;

190

135

136

NULL;
NULL;

szAcceptEncoding
szAcceptLanguage =
szAge = NULL;

szAllow = NULL;
szAuth = NULL;
szCacheControl
szConnection =
szContentBase =

szContentEncoding =
szContentLanguage

szContentLength =
szContentLocation =

szContentMD5 = NULL;

szContentRange = NULL;
szContentType = NULL;
szDate = NULL;

szETag = NULL;

szExpires = NULL;
szFrom = NULL;
szHost = NULL;

szifModSince = NULL;
szIlfMatch = NULL;
szIfNoneMatch = NULL;

szifRange = NULL;

szilfUnmodSince = NULL;
szLastMod = NULL;
szLocation = NULL;
szMaxForwards = NULL;

szPragma = NULL;

szPublic = NULL;
szRange = NULL;

szReferer = NULL;
szRetryAfter = NULL;
szServer = NULL;

szTransferEncoding = NULL;
szUpgrade = NULL;
szUserAgent = NULL;
szVary = NULL;
szVia = NULL;

szWarning = NULL;
szWWWAuth = NULL;
szDate = NULL;

szRealm = NULL;

ttIfModSince = 0;
ttlfUnmodSince = 0;

bPersistent = TRUE;

ulContentLength = 0;

= NULL;

NULL;
NULL;

NULL;
NULL;

NULL;
NULL;

136

REQUEST AND RESPONSE HEADERS

191

137

CHAPTER 8 THE HTTP/I.1 SERVER

szifMatchEtags = NULL;

szifNoneMatchEtags = NULL;
rRanges = NULL;

1RangeNum = 0;
bChunked = FALSE;

//
// ~Headers
//

// The dtor deletes any memory stored in the class instance.
‘i

Headers: :~Headers()
{

int i;

if (szMethod) delete [] szMethod;

if (szUri) delete [] szUri;
if (szVer) delete [] szvVer;

if (szQuery) delete [] szQuery;
if (szAuthType) delete [] szAuthType;
if (szRemoteUser) delete [] szRemoteUser;
if (szAccept) delete [] szAccept;

if (szAcceptCharset) delete [] szAcceptCharset;

if (szAcceptEncoding) delete [] szAcceptEncoding;
if (szAcceptLanguage) delete [] szAcceptLanguage;
if (szAge) delete [] szAge;
if (szAllow) delete [] szAllow;
if (szAuth) delete [] szAuth;

if (szCacheControl) delete [] szCacheControl;
if (szConnection) delete [] szConnection;
if (szContentBase) delete [] szContentBase;
if (szContentEncoding) delete [] szContentEncoding;

if (szContentLanguage) delete [] szContentLanguage;
if (szContentLength) delete [] szContentLength;
if (szContentLocation) delete [] szContentLocation;
if (szContentMD5) delete [] szContentMD5;
if ({szContentRange) delete [] szContentRange;

if (szContentType) delete [] szContentType;
if (szDate) delete [] szDate;

if (szETag) delete [] szETag;
if (szExpires) delete [] szExpires;
if (szFrom) delete [] szFrom;
if (szHost) delete [] szHost;

if (szIfModSince) delete [] szIfModSince;

192

137

138

REQUEST AND RESPONSE HEADERS

if (szIfMatch) delete [] szIfMatch;
if (szIfNoneMatch) delete [] szIfNoneMatch;

if (szIfRange) delete [] szIfRange;
if (szIfUnmodSince) delete [] szIfUnmodSince;
if (szLastMod) delete [] szLastMod;
1f (szLocation) delete [] szLocation;
if (szMaxForwards) delete [] szMaxForwards;

if (szPragma) delete [] szPragma;
if (szPublic) delete [] szPublic;

if (szRange) delete [] szRange;
if (szReferer) delete [] szReferer;

if (szRetryAfter) delete [] szRetryAfter;
if (szServer) delete [] szServer;
if (szTransferEncoding) delete [] szTransferEncoding;
if (szUpgrade) delete [] szUpgrade;

if (szUserAgent) delete [] szUserAgent;
if (szVary) delete [] szVary;

if (szVia) delete [] szVia;

if (szWarning) delete [] szWarning;
if (szWWWAuth) delete [] szWwWWAuth;
if (szDate) delete [] szDate;
if (szRealm) delete [] szRealm;

if (szIfMatchEtags)

for (i = 0; szIfMatchEtags[i] != NULL; i++)

delete [] (szIfMatchEtags[il]);

delete {] szIfMatchEtags;
Lf (ezt#NoneNatchstags)

for (i = 0; szIfNoneMatchEtags[i] != NULL; i++)

delete [] (szIfNoneMatchEtags[i]);
}

delete [] szIfNoneMatchEtags;
}

if (rRanges != NULL) delete [] rRanges;

The ctor function is very simple. It makes certain everything has a default
value. The reason for this is to make our coding easier when using theclass. We
wantto be able to check for the presenceof a particular header by checkingifit

193

138

139

CHAPTER 8 THE HTTP/1,1 SERVER

has a value. By explicitly assigning NULL to the character pointers, we can use
logical expressions such as:

if (h->szAccept != NULL)

This leads to an easy-to-understand programmingstyle and coding. If we
did notinitialize the pointers to NULL, it would belikely that an expression such
as this would betrue, but for h->szAcceptto pointjust about anywhere in the
system would cause a crash as soonas wetried to useit.

Wealso initialize several byte counters and time counters to 0 to signify
being empty. Likewise, assigned are default values for a couple of Booleans.
bPersistenttells us whether or not to keep alive the connection with the client
while bchunkedtells us whether to receive a chunked encoding from theclient.

The destructor is also rather straightforward. It just checks for allocated
memory andfrees anyit finds. The only tricky parts are handling the memory
deallocation for szIfMatchEtagsand for szIfNoneMatchEtags. Both ofthese

are pointers to pointers, so we must be sure tofree all the memory. To dothis,
we loop through the array values of each, and free the character strings stored
there. Onceall of the substrings are taken care of, we free the main pointerto
pointers. The rRangevariable is similar, but only one-dimensional in nature, so
only a single delete operationis needed.

The RcvHeaders () functionis next:

/f

// RevHeaders ()
//

// Receive the rest of the headers sent by the client.
/f

int

Headers: :RcvHeaders (Socket *sClient)
{

char *szHdr,
*szTmp,

*szBuf;
int iRc, i;

szHdr = new char[SMALLBUF] ;

194

139

140

REQUEST AND RESPONSE HEADERS

do

iRc = sClient->RecvTeol(NO_EOL); // Get the message.
if (iRe < 0) break;
if (sClient->szOutBuf[0] == NULL) break;

szTmp = sClient->szOutBuf;

if (! isspace(szTmp[0])) // Replace the header if not
// continuation.

{

i= 0;
while ((*szTmp != ':') && (*szTmp)) // Until the

{ // @Qelimiter.

szHdr[i] = *szTmp; // Copy.
itt; // Advance.
szTmp++;

}

szHdr[i] = NULL; // Properly end string.
strlwr (szHdr) ; // Lowercase only.

}

szTmp++; // Go past the ':' or ' '.

while ((*szTmp == ' ') && (*szTmp))
{

szTmp++; // Eliminate leading spaces.
}

switch(szHdr[0])
{

case ‘a':

{

if (stremp(szHdr, "accept") == 0}
{

if (szAccept)
{

szBuf = new char[strlen(szAccept) +
strlen(szTmp) + 2];

sprintf(szBuf, "%s,%s", szAccept, szTmp);
delete [] szAccept;
szAccept = szBuf;

}
else

{

szAccept = strdup(szTmp);
}

}

else if (strcemp(szHdr, "accept-charset") == 0)
t

195

140

141

CHAPTER 8 THE HTTP/I.1 SERVER

if (szAcceptCharset)
{

szBuf = new char[strlen(szAcceptCharset) +
strlen(szTmp) + 2];

sprintf(szBuf, "%s,%s", szAcceptCharset, szTmp);
delete [] szAcceptCharset;
szAcceptCharset = szBuf;

}
else

{

szAcceptCharset = strdup(szTmp);
}

}

else if (stremp(szHdr, "“accept-encoding") == 0)
{

if (szAcceptEncoding)
{

szBuf = new char[strlen(szAcceptEncoding) +
strlen(szTmp) + 2];

sprintf (szBuf, "%s,%s", szAcceptEncoding,
szTmp);

delete [] szAcceptEncoding;
szAcceptEncoding = szBuf;

}
else

{

szAcceptEncoding = strdup(szTmp) ;
}

}

else if (stremp(szHdr, "accept-language") == 0)
{

if (szAcceptLanguage)
{

szBuf = new char[{strlen(szAcceptLanguage) +
strlen(szTmp) + 2];

sprintf(szBuf, "%s,%s", szAcceptLanguage,
szTmp) ;

delete [] szAcceptLanguage;
szAcceptLanguage = szBuf;

}
else

{

szAcceptLanguage = strdup(szTmp);
}

}

else if (stremp(szHdr, "“authorization") == 0)
{

196

141

142

REQUEST AND RESPONSE HEADERS

if (szAuth) delete [] szAuth;
szAuth = strdup(szTmp) ;

}

break;
}

case 'c':

{

if (stremp(szHdr, "connection") == 0)
{

if (szConnection) delete [] szConnection;

szConnection = strdup(szTmp);
if (stricmp(szConnection, "close") == 0)

{

bPersistent = FALSE;

}

else if (strcemp(szHdr, "content-length") == 0)
{

if (szContentLength) delete [] szContentLength;
szContentLength = strdup(szTmp) ;
ulContentLength = atol(szContentLength);

}

else if (stremp(szHdr, "content-type") == 0)
{

if (szContentType) delete [] szContentType;
szContentType = strdup(szTmp);

}
break;

}
case ‘d':

{

if (stremp(szHdr, "date") == 0)
{

if (szDate) delete [] szDate;
szDate = strdup(szTmp) ;

}
break;

}
case 'f':

{

if (stremp(szHdr, "from") == 0)
{

if (szFrom) delete [] szFrom;
szFrom = strdup(szTmp);

}

break;
}

197

142

143

CHAPTER 8 THE HTTP/1.1 SERVER

case 'h':

{

if (stremp(szHdr, "host") == 0)
{

if (szHost) delete [] szHost;
szHost = strdup(szTmp);

}
break;

}
case ‘i':

{

if (stremp(szHdr, "if-modified-since") == 0)
{

if (szIfModSince) delete [] szIfModSince;

szilfModSince = strdup(szTmp);
ttIlfModSince = ConvertDate(szIfModSince) ;

}

else if (stremp(szHdr, "if-match") == 0}
{

if (szIfMatch)
{

szBuf = new char[strlen(szIfMatch) +

strlen(szTmp) + 2];

sprintf(szBuf, "%s,%s", szIifMatch, szTmp);
delete [] szIfMatch;

szifMatch = szBuf;
}

else

{

szifMatch = strdup(szTmp);
}

}

else if (stremp(szHdr, "if-none-match") == 0)
{

if (szIifNoneMatch)
{

szBuf = new char[strlen(szIifNoneMatch) +

strlen(szTmp) + 2);
sprintf(szBuf, “%s,%s", szifNoneMatch, szTmp);
delete [] szIifNoneMatch;
szilfNoneMatch = szBuf;

else

{
szifNoneMatch = strdup(szTmp);

}

198

143

144

REQUEST AND RESPONSE HEADERS

else if (stremp(szHdr, "if-range") == 0)
{

if (szIfRange) delete [] szIfRange;
szIifRange = strdup(szTmp);

}
else if (stremp(szHdr, "if-unmodified-since") == 0)

{

if (szIfUnmodSince) delete [] szIfUnmodSince;

szIfUnmodSince = strdup(szTmp);
ttIfUnmodSince = ConvertDate(szIfUnmodSince);

}
break;

if (stremp(szHdr, "range") == 0)
{

if (szRange) delete [] szRange;
szRange = strdup(szTmp);

}

else if (stremp(szHdr, "referer") == 0)
{

if (szReferer) delete [] szReferer;

szReferer = strdup(szTmp);
}

break;
}

case ‘t!':

{

if (stremp(szHdr, "transfer-encoding") == 0)
{

if (szTransferEncoding}
delete [] szTransferEncoding;

szTransferEncoding = strdup(szTmp);
if (stricmp(szTransferEncoding, "chunked") == 0)

{

bChunked = TRUE;

}
break;

}
case ‘u':

{

if (stremp(szHdr, "upgrade") == 0)
{

if (szUpgrade) delete [] szUpgrade;
szUpgrade = strdup(szTmp);

199

144

145

CHAPTER 8 THE HTTP/1.1 SERVER

}

else if (strcemp(szHdr, "user-agent") == 0)
{

if (szUserAgent) delete [] szUserAgent;
szUserAgent = strdup(szTmp) ;

}

break;
}

}

}
while (sClient->szOutBuf[0] != NULL);

delete [] szHdr;

// Now determine if we received any etags.
if (szIifMatch != NULL) szIfMatchEtags = Etag(sziIfMatch);
if (szIlfNoneMatch != NULL) szifNoneMatchEtags =

Etag(szIlfNoneMatch);

return iRc;

This member function is basically an expanded version of the
RcvHeaders () function found in the HTTP/1.0 server. We start out by allocat-
ing memory for ourinternal buffer and then entering the loop:

szHdr = new char[SMALLBUF];

do

{

iRc = sClient->RecvTeol(NO_EOL); // Get the message.
if (iRe < 0) break;
if (sClient->szOutBuf[0] == NULL) break;

The first step in the loopis to receive a line from the client. We do this, and
specify to leave off the end-of-line marker. After receiving the line, we must
check for any error condition which would end the loop. Thefirst is checking
for an error whenreading bytes from the socket. If an error was encountered by
the Socketclass, then a return code of —1 is sent back. The next check is not for

an error condition, but for the blank line after the headers. The Socket instance

will have read the end-of-line marker, but will not return anything else on the
line. We break outof the loop for either condition.

200

145

146

REQUEST AND RESPONSE HEADERS

Next we must separate the header tag from its value, while checking for
headers which may have been continued across multiple lines:

szTmp = sClient->szOutBuf;
if (! isspace(szTmp[0])) // Replace the header if not

{ // continuation.
i = 0;

while ((*szTmp != ':') && (*szTmp)) // Until the delimiter.
{

szHdr[i] = *szTmp; // Copy.
L++; // Advance.
szTmpt++;

}

szHdr[i] = NULL; // Properly end string.
strlwr (szHdr); // Lowercase only.

}

szTmp++; // Go past the ':' or ' '.

while ((*szTmp == ' ') && (*szTmp))
{

szTmp++; // Eliminate leading spaces.
}

Using szTmp for convenience, we assign it to point to the input buffer. We
then check to see if the line just read is a continuationline. It is a continuation
line if the first character ofthe line is a white space character.If it is not a contin-
uation line, then we must find thefirst “:” character in the line which marks the

break between the header name andthe value. While welook for it, we copy the
header nameinto the szHdr buffer. Once found, szHdr has a NULL appended to
it, and thenit is converted to lowercase for comparison purposes. Outside ofthe
if statement, szTmp is advanced until the first non-white space characterin the
string is found.

By constructing the codein this manner, we gain something important. We
always have the headervalue stored in local storage betweenlines of input. When
handling continuation lines, we have to know what header namewas used on the
previous line so we may appendtoit. If we simply made szHdr point to the
beginning of sclient->szOutBuf, then the header name would be lost when
we grabbed the nextline. If the next line was a continuation, then we would be
in a bind. So we savethe value in local storage and ifwe find a continuationline,
we don’t assign a new value to szHdr. Westill have the previous oneto use.

201

146

147

CHAPTER 8 THE HTTP/I.1 SERVER

Atthis point, we have both the header name and the header value. Now we
mustfigure out which header wejust read and store it. To do this in an efficient
way, we use a combination switch and if-else tree to determine the header:

switch(szHdr[0]}
{

case 'a':

{

if (stremp(szHdr, "accept") == 0)
{

// Do some processing.
}

else if (strcemp(szHdr, "accept-charset") == 0)
{

// Do some processing.
}

break;
}

case ‘c'

// And so on.

This shortened version shows the basic outline of how it is handled. The

switch statement keys on thefirst character in the header name. This allows us
to divide the subsequent if-else trees into at least twenty-six different struc-
tures, although for HTTP/1.1 headers, we don’t useall twenty-six letters. Instead,
with the correct case statement, we only have, at most, five comparisons to make
to determine which headerit is. To improvethehit ratio slightly, we could order
the comparisons within the case statements in the frequency in which we expect
to see the header. The current orderis pretty close anyway, so the gain would
probably not be worthit over keeping the alphabetic order for maintenance.

When we match on a comparison, there are a coupleofdifferent constructs
we use to save the values. Thefirst is for a header which may be continued over
multiplelines.

if (szAccept)
{

szBuf = new char[strlen(szAccept) + strlen(szTmp) + 2];
sprintf(szBuf, "%s,%s", szAccept, szTmp);
delete [] szAccept;

202

147

148

REQUEST AND RESPONSE HEADERS

szAccept = szBuf;

}
else

{
szAccept
}

il
strdup(szTmp);

We start here by checking to ascertain if the header has already been
assigned a value. If it has, then we’re adding to whatis currently saved. To do
this, we allocate a new buffer large enough to hold the current value, plus the
new value. You mustalso take care to leave enough space for the ending NULL,
plus the commabetween the values. The next line uses sprint f£() to join the
lines together, putting a commain between them. We then delete theold value
and assign the newly created buffer to the headervariable. If there is not a value
assigned to theheader variable yet, we simply use st rdup () to assign one.

The next way in which we save a valueis to utilize those which cannot span
multiple lines:

if (stremp(szHdr, "connection") == 0)
{

if (szConnection) delete [] szConnection;

szConnection = strdup(szTmp);
if (stricmp(szConnection, "close") == 0)

{

bPersistent = FALSE;
}

Using this code, we check to see if the header variable has already been
assigned a value. If it has, we delete the current value and then assign a new
one using strdup(). Also shownhereis an additional check donefor the value
of szConnection. If we find the Connection header, we check to see ifits

value is close.Ifit is, then bPersistentis assigned a value of FALSE so the
persistent connection ends in w3Conn().

Other headers which will require additional processing include
Content-Length, If-Modified-Since, T£-Unmodified-Since, and

Transfer-Encoding. When we encounter these headers, we convert the value

to ourinternal use value which maybe either a length, time, or Boolean flag.

203

148

149

CHAPTER 8 THE HTTP/I1.1 SERVER

Once outside ofthe receiving loop, only a couple ofhousekeeping choresare
left. The first is to free the dynamically allocated memory used in szHdr. After
that, we check for entity tags:

// Now determine if we received any etags.
if (szIfMatch != NULL) szIfMatchEtags = Etag(szIfMatch);

if (szIfNoneMatch != NULL) szIfNoneMatchEtags =
Etag(szIlfNoneMatch);

The private member function Etag separates out the individual entity tags
into the character arrays where we can use them:

‘f

// Etag
//

// Retrieve the etags sent by the client.
//

char **

Headers: :Etag(char *szTags)
{

char *szPtr, *szStart, **szEtags, cTmp;

int i, j;

// Find out how many tags are expected.
i= 0;
szPtr = szTags;

while (*szPtr != NULL)
{

if (*szPtr == ',') i++;
SZPtr++;

}

// A minimum of 2. One for a tag and one for a NULL marker.
i += 2;

szEtags = new char * [i];
for (j = 0; j < i; j++)

{

szEtags[{j] = NULL;

j = 0;
szPtr = szTags;

while (*szPtr != NULL)

204

149

150

REQUEST AND RESPONSE HEADERS

{

while ((isspace(*szPtr)) && (*szPtr != NULL))
{

szPtr++;

}

if (*szPtr == NULL) continue; // Escape.
szStart = szPtr;

if (*szPtr == 'W') szPtr += 2; // Bypass weak indicator.
if (*szPtr == '*')

t

szEtags[j] = strdup("*"); // Match any.
break;

}

szPtr++; // Advance past the <"> mark.
while ((*szPtr != '"') && (*szPtr != NULL) }

{

szPtr++; // Look for end of etag.
}

if (*szPtr == NULL) continue; // Escape.

szPtr++; // Past the ending <"> mark.
ceTmp = *szPtr; // Save character temporarily.
*szPtr = NULL; // Mark end of string of current etag.
szEtags[j] = strdup(szStart); // Save it.
j++; // Count it.
*szPtr = ¢cTmp; // Restore character.
while ((*szPtr != ',') && (*szPtr != NULL))

{

szPtr++; // Advance to start of next etag or end-of-line.
}

if (*szPtr == ',') szPtr++;
}

return szEtags;
}

’ Miinietelaieceiatntnialateiinninreiatetelaintalatatatalatatatntaindniatataintetelatatelatetatatatetataeaa

This little function goes back to nasty C pointers to accomplish its work.
Thefirst thing to do is to find out how manyentity tags to expect. To dothis,
we count the number of commas found. This may end up counting more than
are actually present, since a comma could be contained within an entity tag.
What we do assure ourselves of is not undercounting, which is more important.
Once we have counted the number of commas, we add 2 to the value to allow

for a minimal case where weonly have a single tag (so there would have been no

205
150

151

H

CHAPTER 8 THE HTTP/1.1 SERVER

commas counted). The extra is for one to be NULL and thus mark the end of the
atray. Memory is then allocated for the array of pointers present and each oneis
set to NULL. .

Westart out the main part of the program bysetting someinitial values and
entering a loop:

j = 0;
szPtr = szTags;
while (*szPtr != NULL)

{

while ((isspace(*szPtr)) && (*szPtr != NULL))
{

szPtr++;

}

if (*szPtr == NULL) continue; // Escape.

Thevariable j is used as our index value into the array of entity tags and is
initialized to 0. We also set our temporary pointerto the beginningoftheline of
entity tags. Once in the loop, we have it continue until the end ofthe line is
reached(as indicated by *szPtr being NULL). The first step taken in the loopis
to eliminate any leading white space characters from the string. Once outofthat
loop, we check for NULL again and break ifwe find it. .

szStart = szPtr;

if (*szPtr == 'W') szPtr += 2; // Bypass weak indicator.
if (*szPtr == '*')

{

szEtags{j] = strdup("*"); // Match any.
break;

}

szPtr++; // Advance past the <"> mark.

At this point, we have found the start of an entity tag, so we assign the
szStart pointer to remember where it begins. The next line checks for a weak
entity tag indicator. Our server does not generate weak entity tags, so any we
receive will be spurious. Now wecheck for the special case entity tag of ‘*’. If we
find it, we simply do a strdup() into the next available spot of the szEtags
array and break out ofthe loop. Even if there are more, it doesn’t matter since
‘** matches anything. On a normal entity tag, szPtr would point to the

206

151

152

REQUEST AND RESPONSE HEADERS

beginning quote mark of the entity tag, so we advance past it. Now we have
foundthe start, so we needto lookfor the endofthe entity tag:

while ((*szPtr != '"') && (*szPtr != NULL))
{

szPtr++; // Look for end of etag.
}

if (*szPtr == NULL) continue; // Escape.
szPtrt++; // Past the ending <"> mark.

The while loop goes throughthe line looking for the ending quote mark of
the entity tag. Once we break out of the loop, we check for a NULL value for
safety and then,if possible, advance past the ending quote mark we just found.
At this point we have szStart pointing to the beginning quote mark of the
entity tag and szPtr pointingto the characterjust after the ending quote mark.
Now weneedto save the entity tag:

cTmp = *szPtr; // Save character temporarily.
*szPtr = NULL; // Mark end of string of current etag.
szEtags[j] = strdup(szStart); // Save it.

Jj+t; // Count it.

*szPtr = cTmp; // Restore character.

In orderto save the entity tag, but not trounce on any subsequentvalues, we
save the character szPtr which currently points to the temporary variable cTmp.
Next, we assign NULL to *szPtr thus endingthestring pointed to by szStart.
Wecan simply use strdup() on thenextline to save the value and then restore
the string to theoriginal state on thefinal line.

In the last section of code within the loop, we advance szPtr past the next
comma:

while {((*szPtr != ',') && (*szPtr != NULL))
{

szPtr++; // Advance to start of next etag or end-of-line.
}

1f (*szPtr == ',') szPtr++;

Whentheloop starts up again,it will either be at the end ofthe line and
quit, or it will be at the start of the next entity tag. Once out of the loop, we

207

152

153

CHAPTER 8 THE HTTP/I.1 SERVER

simply return szEtagsas the result. The destructorfor the class will take care of
freeing the memory later.

The next public member function of the Headers class is
CheckHeaders(). This function does some consistency checks on the header
fields received from the client. There are a few ways in which clients can send
conflicting header information. An example would be sending an If-Match and
If-None-Match header with the same entity tag. Both cannot be valid at the
same time. The only time this is likely to happen is whenthe clientis in some
sort of error state, or just plain broke. However, the server must be capable of
handling any legal and illegal combination of headers. In this example, both
headers may be present and both may have the same entity tag and it would be
legal. What it means however, is beyond the scope of the protocol and ourserver
rejects it outright. Let us take a look at the entire function now:

/f
// CheckHeaders
‘f

// Check the headers received for inconsistent headers.
‘i

int

Headers: :CheckHeaders(}
{

int i, j;

// Check for the host header first.

if (szHost == NULL) return FALSE;

// First check to make sure the If-Unmodified-Since time
// is not before the If-Modified-Since time.

if ((szIifModSince != NULL) && (szIfUnmodSince != NULL))
{

if (ttIfModSince <= ttIfUnmodSince)
{

return FALSE;

}
}

// Now check for etags which match between If-Match and
// I£-None-Match.

208

153

154

REQUEST AND RESPONSE HEADERS

if ((szIfMatch != NULL) && (szIfNoneMatch != NULL))
{

for (i = 0; szIfMatchEtags[i] != NULL; i++)
{

for (j = 0; szIfiNoneMatchEtags[j] != NULL; j++)
{

if (strcmp (szIfMatchEtags[i],
szifNoneMatchEtags[j]) == 0)

return FALSE;

}

return TRUE;

The first check made in CheckHeaders() is for the Host header. This

header is required in all HTTP/1.1 requests. When it is not found, the server
must generate an error message to the client. The function returns FALSE when a
condition fails. The next possible and sometimes troublesome inconsistency
involves the If-Modified-Since and If-Unmodified-Sinceheaders:

// First check to make sure the If-Unmodified-Since time
// is not before the If-Modified-Since time.

if ((szIfModSince != NULL) && (szifUnmodSince != NULL))
{

if (ttIfUnmodSince <= ttIfModSince)
{

return FALSE;

}

If both headers are present, we must check to makesure theclient has not
specified a paradox of time by presenting the If-Unmodified-Since time-
stamp before the 1f-Modified-Since timestamp.If they do use this new time
keeping method,wereject the headers.

Thelast consistency check done is amongtheentity tags if both 1f-Match
and If-None-Matcharepresent:

209

154

155

CHAPTER 8 THE HTTP/1.1 SERVER

// Now check for etags which match between If-Match and
// T£-None-Match.

if ((szIfMatch != NULL) && (szIfNoneMatch != NULL))
{

for (i = 0; szIfMatchEtags[i] != NULL; i++)
{

for (j = 0; szIfNoneMatchEtags[j] != NULL; j++)
{

if (strcmp (szIfMatchEtags [i],
szlfNoneMatchEtags[j]) == 0)

{
return FALSE;

}

For this check we loop through both sets of entity tags, making comparisons
between them. Though fairly processorintensive, it is unlikely both are present
to begin with. If both are present, it is unlikely that there would be manytags
defined for either one. So the match-checking should befairly quick and defi-
nitely necessary. Again, ifwe do find a match, we return FALSEto signal that the
header check failed.

Thelast member function is FindRanges(). Once again we haveafairly
involved function using numerouspointers to do the work. The HTTP/1.1 pro-
tocolallows a great dealofflexibility in specifying ranges. This flexibility for the
clients results in considerable work for the server:

/f

// FindRanges
‘/

// Locate and store the ranges sent by the client.
//

int

Headers: :FindRanges (int iSize)
{

char *szBuf, *szTmp;

int i, iNum, iLength, iIdx,
bError;

L£ (szRange == NULL) return 1; // Nothing to do.

210

155

156

REQUEST AND RESPONSE HEADERS

bError = FALSE;

szTmp = szRange;
iNum = 1;
while (*szTmp != NULL) // Count the number of ranges.

{

if (*szTmp == ',') iNum++;
szTmp++;

}

rRanges = new Range[iNum]; // Space for them.
szBuf = new char[SMALLBUF];

// Now pull out the range numbers.
iIdx = 0;

szTmp = strchr(szRange, '=');
szTmp++;

while (*szTmp != NULL}
{

if (isdigit(*szTmp)) // Found range start.
{

i= 0;

while (isdigit(*szTmp)) // Advance past the digits.
{

szBuf[i] = *szTmp;
i++;
szTmp++;

}

szBuf[i] = NULL; // Mark NULL and grab the start.

rRanges[ildx].iStart = atoi(szBuf);

if (*szTmp != '-') bError = TRUE; // Wrong format.
szTmpt++;

if (isdigit(*szTmp)) // Found range end.
{

i= 0;

while (isdigit(*szTmp)) // Advance past the digits.
{

szBuf[i] = *szTmp;
itt;
szTmp++;

}

szBuf[i] = NULL; // Mark NULL and grab the end.
rRanges[ilIdx].iEnd = atoi(szBuf);

}

else // Use end-of-file as range end.
{

211

156

157

CHAPTER 8 THE HTTP/I1.1 SERVER

rRanges[iIdx].iEnd = iSize - 1;
}

ildx++; // Advance to next spot.
}

else if (*szTmp == '-') // No start range given.
{

szTmp++;
if (isdigit(*szTmp) != TRUE) bError = TRUE;
i= 0;

while (isdigit(*szTmp)) // Grab number of bytes.
{

szBuf[i] = *szTmp;
itt;
szTmp++;

}

szBuf[i] = NULL;
i = atoi(szBuf);

// The start will be so i bytes from the end of the file.
rRanges[iIdx].iStart = iSize - i - 1;
rRanges[iIdx].iEnd = iSize - 1;
ildx++;

delete [] szBuf;

iRangeNum = ildx;

if (bError == TRUE) // Error in ranges.
t

delete [] rRanges;
rRanges = NULL;

iRangeNum = 0;
return 1;

}
return 0;

Thefirst check necessary in this function is to make certain we received a
Range headerfrom theclient. Ifwe didn’t, we can quit and return immediately.
Otherwise weinitialize a few data structuresto start:

212

157

158

REQUEST AND RESPONSE HEADERS

bError = FALSE;
szTmp = szRange;
iNum = 1;

while (*szTmp != NULL) // Count the number of ranges.
{

if (*szTmp == ',') iNum++;
szTmpt++;

}

rRanges = new Range[iNum]; // Space for them.
szBuf = new char[SMALLBUF] ;

The first variable we set is our error flag, bError. Due to the complexity of
the function,it is easier to set a flag whenthere is an error and worry aboutit at
the end. The default, of course, is no error. Next we count the numberof ranges
sent by the client by counting the number of commas in szRange. Weinitialize
our counterto | as a minimum.Following the counting, we allocate the required
number of Range instances in an array to hold the range values sentby the cli-
ent. Wealso allocate temporary memory for the function here.

The main portion of the function takes part in a while, which keys on the
NULLat the endofthestring:

// Now pull out the range numbers.
iIdx = 0;

szTmp = strchr(szRange, '=');
szTmpt++;

while (*szTmp != NULL)
{

idx is our counter for the number of range values found andis initialized
to 0. We nextfind the start of the byte ranges by looking for the equal sign in the
string. By definition, the equal sign comes just after the token bytes in the
string. szTmp is then advanced by one, which should bethestart of the first byte
range. The loop itself continues until the end of the string marker has been
finally found.

Inside the loop wefirst check for a byte range whichstarts with a number:

if (isdigit(*szTmp)) // Found range start.
{

i= 0;

while (isdigit(*szTmp)) // Advance past the digits.

213

158

159

CHAPTER 8 THE HTTP/1.1 SERVER

szBuf[i] = *szTmp;
i++;

szTmp++;
}

szBuf[i] = NULL; // Mark NULL and grab the start.

rRanges[iIdx].iStart = atoi(szBuf);

The isdigit() function tells us whether or not we have a rangestart.
When we do, we must look for the end of the current number. The while loop
continues as long as we have numbers in a row. We store the numberin szBuf
inside the loop and once outside, append the NULL. Thelastline then stores the
number in numerical form in the current rRange array. At this point we must
find out whether we have an open specification, which means from. this byte
marker until the end ofthefile, or a closed range:

if (*szTmp != '-') bError = TRUE; // Wrong format.
szTmp++;

if (isdigit(*szTmp)) // Found range end.
{

i= 0;

while (isdigit(*szTmp)) // Advance past the digits.
{

szBuf[i] = *szTmp;
l++;

szTmpt++;
}

szBuf[i] = NULL; // Mark NULL and grab the end.
rRanges [iIdx].iEnd = atoi(szBuf);

}

else // Use end-of-file as range end.
{

rRanges[(iIdx].iEnd = iSize - 1;
}

itdx++; // Advance to next spot.

The first check done is for correctness of format. There must be a “-” char-

acter as the next character. Anything else is an error and sets ourerror flag to
TRUE. szTmp is then advanced past the “-” and wetest whether or not the next
characteris a digit. If it is a digit, then the client has specified an ending range
number and we must grab it, just as we grabbed the beginning number. This

214

159

160

REQUEST AND RESPONSE HEADERS

time, the end numberis stored as the i—Ena member of rRanges. Thisgives us a
complete byte range. If there was nota digit there, then the end-of-file is saved as
the end of the byte range. Our function has as its parameter the bytesize of the
file. We savethefile size —1 as the ending byte marker. The reasonforonelessis
that byte counting starts at 0 in HTTP/1.1. The counter, itdx, is then advanced
to the next spotin thearray.

If the first character tested was nota digit, the only other valid possibility is
for it to start with a “-” which meansto send thelast so-manybytes ofthefile. If
the client specified —-500 as a byte range, then we would routinely send the last
500 bytes of thefile:

else if (*szTmp == '-') // No start range given.
{

szTmp++;

if (isdigit(*szTmp) != TRUE) bError = TRUE;
i= 0;

while (isdigit(*szTmp)) // Grab number of bytes.
{

szBuf[i] = *szTmp;
i++;
szTmp++;

}
szBuf[i] = NULL;
1 = atoi(szBuft);

// The start will be i bytes from the end of the file.
rRanges[ilIdx].iStart = iSize - i- 1;
rRanges[iIdx].iEnd = iSize - 1;
ildx++;

cc 33

we just found and then check to
make sure there is a number coming up next.If there is not a number, we have
encountered anothersyntax error and set the error flag. Otherwise we grab the
numberofbytes by advancing through the while loop until we run out ofnum-
bers. Once out, we convert the number we found to a numerical value and store

it in i. The beginning byte range in this case will be found by subtracting the
number given from the file size and then subtracting one more for the
HTTP/1.1 indexing. The end ofthefile is found by subtracting 1 from thefile
size and we then advance our array index to the next available spot.

In this section, we advance past the

215

160

161

CHAPTER 8 THE HTTP/1,1 SERVER

The default else statement, if we didn’t find a digit or dash first, is to
advance the pointer by 1. This takes care of any white space, although none
shouldbepresent. Outside of the loop, we only have a few housekeeping duties:

delete [] szBuf;
iRangeNum = iIdx;

if (bError == TRUE) // Error in ranges.
{

delete [] rRanges;
rRanges = NULL;

iRangeNum = 0;
return 1;

}
return 0;

Thefirst statement outside of the loop frees our locally allocated memory,
especially important in a multithreaded server program. The next statement
saves the numberofbyte ranges found in the membervariable irangeNum. We
then check to see if the error flag was set while searching for byte ranges. If it
were, rRangesis freed and marked NULL. We also set iRangeNum to 0 to make

sure no inadvertent accesses are made on rRanges. Using normal C library style
returns, we return | on failure and 0 on success.

8.6 HITTP/1.1

In w3Conn(), the thread will call the DoHttp11i() function to handle a

HTTP/1.1 level request. This function determines the exact request and handles
direction of other functions to return the proper response to theclient:

// DoHttp11()
f/f

// This function handles our HTTP/1.1 requests.
f/f

int DoHttp11(Socket *sClient, char *szMethod, char *szUri)
{

216

161

162

ATTP/1.1

int iRc,

iRsp,
iType,
iMethod;

char *szReq,
*szPath,
*szCgi,
*szTmp,
*szSearch;

Headers *hInfo;

long lBytes = 0;
BOOL bExec = FALSE,

bCgi = FALSE,
bPersistent;

szReq = strdup(sClient->szOutBuf); // Save the request line.
iRksp = 200;
szSearch = NULL;
szPath = NULL;

szCgi = NULL;
hinfo = new Headers();

iMethod = CheckMethod(szMethod); // The request method.

// First, check for TRACE method.

if (iMethod == TRACE)
{

// Do a trace, saving connection.
bPersistent = DoTrace(sClient, hInfo);

DeHexify(szReq);
WriteToLog(sClient, szReq, iRsp, hInfo->ulContentLength);
delete [] szReq;
delete hiInfo;
return bPersistent;

hinfo->RcvHeaders(sClient); // Grab the request headers.
bPersistent = hInfo->bPersistent; // Find out if close

// was requested.
iRe = hinfo->CheckHeaders(); // Make sure none are inconsistent.

if (iRec == FALSE) // Bad request.
{

iRsp = SendError(sClient,
"Missing Host header or incompatible headers detected.",

400, HTTP_1_1, hInfo);

DeHexify(szReq);

WriteToLog(sClient, szReq, iRsp, hInfo->ulContentLength);
delete [] szReq;

217

162

163

CHAPTER 8 THE HTTP/1.1 SERVER

delete hinfo;
return bPersistent;

// Check for a query in the URI.
L£ ((szTmp = strcehr(szUri, '?')) != NULL)

{
// Break up the URI into document and and search parameters.
*szTmp = NULL; // Append NULL to shorter URI.

szTmpt+; // Let szTmp point to the query terms.
szSearch = strdup(szTmp);
hinfo->szQuery = strdup(szSearch);
if (strchr(szSearch, '=') != NULL)

{

bCgi = TRUE; // Only a cgi request can contain an
// equal sign.

}
}

DeHexify(szUri); // Remove any escape sequences.
hiInfo->szMethod = strdup(szMethod); // Save a few items.
hinfo->szUri = strdup(szUri);
hinfo->szVer = strdup(HTTP_1_1);

szPath = ResolvePath(szUri); // Check for path match.
szCgi = ResolveExec(szUri); // Check for exec match.

// Now key on the request method and URI given.
if ((iMethod == OPTIONS) && (szPath != NULL))

{

iRksp = DoOptions(sClient, szPath, hInfo, GET);
}

// OPTIONS with a match on Cgi Path.
else if ((iMethod == OPTIONS) && (szCgi != NULL))

{

iRsp = DoOptions(sClient, szCgi, hInfo, POST);
}

// Generic OPTIONS.

else if (iMethod == OPTIONS)
{

iRsp = DoOptions(sClient, "*", hInfo, UNKNOWN);
}

// Any POST request.
else if (iMethod == POST)

{

iRksp = DoExecli(sClient, iMethod, szCgi, szSearch, hInfo);

218

163

164

ATTP/I1

// A GET or HEAD to process as a CGI request.
else if ((bCgi == TRUE) &&

((iMethod == GET) || (iMethod == HEAD)))

 iRsp = DoExecll(sClient, iMethod, szCgi, szSearch, hiInfo);
}

// Any PUT request.
else if (iMethod == PUT)

{

iRsp = DoPut(sClient, hinfo, szPath, szCgi);
}

// Any valid DELETE request.
else if (({iMethod == DELETE) && (szPath != NULL))

{

iRsp = DoDelete(sClient, szPath, hInfo);
}

// The default, probably a simple GET or HEAD.
else if (szPath != NULL)

{

iRsp = DoPathll(sClient, iMethod, szPath, szSearch, hiInfo);
}

// Error Condition.
else

{

iRsp = SendError(sClient, "Resource not found.", 404,
HTTP_1_1, hInfo);

}

// This request now finished. Log the results.
DeHexify(szReq);
WriteToLog(sClient, szReq, iRsp, hInfo->ulContentLength);
delete [] szReq;
delete hInfo;

if ((szSearch != NULL) && (bCgi == FALSE))
{

unlink (szPath); // The temporary search file.
delete [] szSearch;

}

1f£ (szPath) delete [] szPath;

if (szCgi) delete [] szCgi;

return bPersistent;

219

164

165

CHAPTER 8 THE AHTTP/I,1 SERVER

This functionstarts out allocating memory, as and when needed,andinitial-
izing some variables:

szReq = strdup(sClient->szOutBuf); // Save the request line.
iRsp = 200;
szSearch = NULL;
szPath = NULL;
szCgi = NULL;
hiInfo = new Headers();

We save the request line in szReq, set the default response code to 200,
assign NULL tothree strings, and create a new instance of the Headersclass for
this request. A note here about use ofpersistent connections: within w3Conn () is
where the loop occurs to handle persistent connections. This function is called
for each request which comes in. It would have been possible to loop within this
function instead, but the coding for looping outside the function is much sim-
pler. Also important is to know for certain that we won’t make a mistake in
coding and mix up parts of multiple requests. All of the data structures used are
created new for each request which comes in. The performancehit is worth it for
the clarity of coding and ease of future maintenance.

Ournextstep is to determine which methodis being used:

iMethod = CheckMethod(szMethod); // The request method.

// First, check for TRACE method.
if (iMethod == TRACE)

{

// Do a trace, saving connection.
bPersistent = DoTrace(sClient, hInfo);

DeHexify(szReq);
WriteToLog({sClient, szReq, iRsp, hInfo->ulContentLength);
delete [] szReq;
delete hInfo;

return bPersistent;

CheckMethod() is called to determine the method used in the requestline.
Once we have this information, our first check is for the TRACE method. We

check forit first, because of the nature of the TRACE method. Whenweservice it,

we must return the headers, as we received them,to the client. Normally we

220

165

166

ATTP/1.1

would receive the headers, which will change their exact makeup and orderifwe
use Our Headersinstance to just send them back. Furthermore, there may be
headers sent in the message of which our server is not aware. So within the
DoTrace() function, we simply receive a line and then echoit back to theclient.
Theonly thing checked,is for the existence of a Connection: close header to
determine whether to close the connection afterward or not. Once the function

completes and returns here, we go through our normal steps to log the connec-
tion and free memoty.

Receiving andverifying the headers comes next:

hInfo->RevHeaders(sClient); // Grab the request headers.
bPersistent = hInfo->bPersistent; // Find out if close was

// requested.
iRkc = hInfo->CheckHeaders(); // Make sure none are inconsistent.

‘if (iRc == FALSE) // Bad request.
{

iRsp = SendError(sClient,

"Missing Host header or incompatible headers detected.",
400, HTTP_1_1, hInfo);

DeHexify(szReq) ;

WriteToLog(sClient, szReq, iRsp, hInfo->ulContentLength);
delete [] szReq;
delete hiInfo;

return bPersistent;

We use the Header class method RcvHeaders () as described earlier in the

chapter to receive the header lines from the client. Our persistence flag is then
assigned, based on hInfo->bPersistent. Next, we make a check on the con-
sistency of the headers. If any of the headers causes a problem, we send a 400
response back to the client, indicating an error has occurred. The message we
send is a bit generic and could be upgraded if we wanted to have
CheckHeaders() return an error code instead of a Boolean value. In that case

we might return 0 on success, | if the Host headeris missing, and so forth.
The next few lines of code perform our standard query string check on the

URI and the assigning of values from the request line to the hInfo variable.
Nowlet us take a look at our if-else tree which determines which path ofexe-

cution we take:

221

166

167

CHAPTER 8 THE HTTP/I,1 SERVER

// Now key on the request method and URI given.
// OPTIONS with a match on Path.
if ((iMethod == OPTIONS) && (szPath != NULL))

{

iRksp = DoOptions(sClient, szPath, hinfo, GET};
}

// OPTIONS with a match on Cgi Path.
else if ((iMethod == OPTIONS) && (szCgi != NULL))

{

iksp = DoOptions(sClient, szCgi, hInfo, POST);
}

// Generic OPTIONS.

else if (iMethod == OPTIONS)
{

iRsp = DoOptions(sClient, "*", hInfo, UNKNOWN);

The first check we make in the tree is for the opTtons method. Thefirst

branch handles resolving the URI to a path, the second to an executable path,
andthe third to the generic case of »*”. We pass a flag valueas the last parameter
to tell che DoOptions() function what methodsare allowed for a resource. The

next couple of branches check for a CGIrequest:

// Any POST request.
else if (iMethod == POST)

{

iRsp = DoExecll(sClient, iMethod, szCgi, szSearch, hInfo);
}

// &A GET or HEAD to process as a CGI request.
else if ((bCgi == TRUE) &&

((iMethod == GET) || (iMethod == HEAD)))

iRsp = DoExecli(sClient, iMethod, szCgi, szSearch, hiInfo);

Our first check in this section looks for the post method. Whenever we

receive a POST request, we automatically call the DoExec11() function. The
other possibility is for the client to send a GET or HEAD which must be handled
by the CGIprocessor. This keys on the bcgi flag set earlier. The next two cases
handle looking for PUT or DELETE:

// Any PUT request.
else if (iMethod == PUT)

eee

167

168

ATTP/I.1

iRsp = DoPut(sClient, hInfo, szPath, szCgi);
}

// Any valid DELETE request.
else if (iMethod == DELETE)

{

iRsp = DoDelete(sClient, szPath, szCgi, hiInfo);

For the put method, we include both szPath and szCqgi, sinceit is possible
for the client to update either type of resource. For DELETE, we pass both possi-
ble cases to the DoDelete() function. Once inside the function it figures out
which oneto try and delete. This reduces the number of comparisons we do in
the if-elsetree.

Thus we have:

// A simple GET or HEAD request.

else if (((iMethod == GET) || (iMethod == HEAD)) &&
(szPath != NULL))

iRsp = DoPathll(sClient, iMethod, szPath, szSearch, hInfo);
. }
// Unknown method used.
else if (iMethod == UNKNOWN)

{

iRsp = SendError(sClient, "Request method not implemented.",
501, HTTP_1_1, hInfo);

}
// Error Condition.
else

{

iRksp = SendError(sClient, "Resource not found.",
404, HTTP_1_1, hInfo);

Thefirst check is for the common case of a GET or HEAD request. We also
must make sure the szPath resolved to a valid resource before executing
DoPath11(). If we get past all of the previous cases, then we have two possible
error conditions to handle. Thefirst is for an unknown method usedby thecli-
ent. For an unknown method, we use SendError() to send a 501 code back to

the client. This indicates our server does not implement or understand the
request method. The last and default case will be used when nothing else

223

168

169

CHAPTER 8 THE HTTP/I.1 SERVER

resolves. Thelikely cause of this is a request for a non-existent resource by the
client. We simply send a generic 401 response forthis case.

Therest of the function handles the logging and cleaning up ofthe resources
used by the request. This includes several dynamically allocated arrays, and the
Headersclass instance. The function ends up by returning the bPersistent
flag to W3Conn() where it is checked to determine whether or not to continue
the connection at that juncture.

8.7 Finding the method
Something we need to do before exploring the different functions that support
the methods is to look at how to determine which methodtheclientis using:

‘i
// CheckMethod
if

// Determine which method the client is sending. Remember
// that methods *ARE* case-sensitive, unlike most of HTTP/1.1.
‘ft

int CheckMethod(char *szMethod}

{

if (stremp(szMethod, "GET") == 0)
{

return GET;
}

else if (stremp(szMethod, "POST") == Q)
{

return POST;
}

else if (stremp(szMethod, "HEAD") == 0)
{

return HEAD;
}

else if (strcemp(szMethod, "OPTIONS") == 0)
{

return OPTIONS;

}

else if (stremp(szMethod, "PUT") == 0)

224

169

170

TRACE

return PUT;
}

else if (stremp(szMethod, "DELETE") == 0)
{

return DELETE;
}

else if (stremp(szMethod, "“TRACE") == 0)
{

return TRACE;

}
return UNKNOWN;

This function is very simple. We just pass in a pointer to the method
‘requested by the client and do a series of stremp() function calls until we find a
match. In our headerfile, we defined the constants for each of the methods for

ease of use. We also define an UNKNOWN method in case someonetries something
we don’t know about. We do one optimization for this function, with the order
of the evaluations prioritized in the expected frequency of the requests. We've
put GETfirst and Traceslast. Although minor, it should help a bit.

8.8 TRACE

Nowlet us take a look at the functions required to support each method starting
with TRACE:

/f
// DoTrace

‘i

// Perform a HTTP trace on the request just received.
if

int DoTrace(Socket *sClient, Headers *hInfo)
{

ofstream ofOut;

char *szName, szBuf[SMALLBUF], *szTmp;

225

170

171

CHAPTER 8 THE HTTP/1.1 SERVER

struct stat sBuf;

int iRc;
BOOL bPersistent = TRUE;

szName = tmpnam(NULL); // Request temporary filename.

ofOut.open(szName) ;
if (! ofOut)

{

hInfo->RevHeaders (sClient) ;
bPersistent = hInfo->bPersistent;
delete hiInfo; ae
SendError(sClient, "Server error.", 500, HTTP_1_1, hInfo);
return bPersistent;

}

while (sClient->szOutBuf[0] != NULL)
{

ofOut << sClient->szOutBuf << endl;
// Look for Connection header.

szTmp = strchr(sClient->szOutBuf, ':');
if (szTmp != NULL)

{

*szTmp = NULL;

szTmpt++j;

if (stricmp(sClient->szOutBuf, "connection") == 0)
{

sscanf(szTmp, "%s", szBuf);

if (stricmp(szBuf, "close") == 0)
{

bPersistent = FALSE;
}

}
}

sClient->RecvTeol (NO_EOL) ;
}

ofOut.close();
iRkc = stat(szName, &sBuf);
if ({iRc == 0)

{

sClient->Send("HTTP/1.1 200 \r\n");
sClient->Send("Server: ");
sClient->Send(szServerVer) ;
sClient->Send("\r\n"};

szTmp = CreateDate(time(NULL)); // Create a date header.
if (szTmp != NULL)

{

226

171

172

TRACE

sClient->Send("Date: ");
sClient->Send(szTmp) ;
sClient->Send("\r\n");
delete [] szTmp;

}

sClient->Send("Content-Type: text/http\r\n");

hinfo->ulContentLength = sBuf.st_size; // Save the entity size.

sprintf(szBuf, "Content-Length: $d\r\n", sBuf.st_size);
sClient->Send(szBuf) ;
sClient->Send("\r\n");

iRe = sClient->SendText (szName) ;
}

unlink (szName) ;
return bPersistent;

The TRACE methodis very easy to implement. Wheneverit is received, we
simply send the headers of the request back to the client as an entity body. Since

_ we're going to send the headers back verbatim, we first open a temporary file in
whichto store them.

szName = tmpnam(NULL); // Request temporary filename.
ofOut.open(szName) ;
if (! ofOut)

{

hiInfo->RevHeaders (sClient);
bPersistent = hInfo->bPersistent;
delete hInfo;

SendError(sClient, "Server error.", 500, HTTP_1_1, hiInfo);
return bPersistent;

The only check made here is to be sure the temporary file was opened suc-
cessfully. The occurrence would be rare, but for completeness, we go ahead and
grab the headersif the file open failed, and then send(or at least try to send) an
error reply back to the client. The reason for receiving the headers is twofold:
First to clear any incoming data before the next request, and second,to check for
the persistent connectionsheader.

227

172

173

CHAPTER 8 THE HTTP/1.1 SERVER

Once we have the temporary file open, westart into a loop, savinglines to
the temporary file and looking for the connection header:

while (sClient->szOutBuf(0] != NULL)
{

ofOut << sClient->szOutBuf << endl;
// Look for Connection header.

szTmp = strchr(sClient->szOutBuf, ':');

if (szTmp != NULL)
{

*szTmp = NULL;
szTmp++;

if (stricmp(sClient->szOutBuf, “connection") == 0)
{

sscanf(szTmp, "%s", szBuf);

if (stricmp(szBuf, "close") == 0)
{

bPersistent = FALSE;
}

}
}

sClient->RecvTeol (NO_EOL) ;

At the top of the loop, we make our check for the end of the headers by
looking for a NULL incomingline. Inside the loop,thefirst step is to save the cur-
rent line to the temporary file, since we’re going to mangle the line in the next
step. The next step consists of using strchr() to locate the delimiting colon in
the headerline. If we find it, we NULL it to mark the end ofthefield name. A

comparison is then madefor the field name connection. If we succeedat this,
wepull the field value using sscanf() since it will eliminate any white space for
us and make the comparison for the close token. Finding the token sets the
bPersistentflag to FALSE. Outside of the if statement, the last line in the
loop receives another line from the client before we repeat the process.

Outside of the loop, we grab the size of the file using the stat () call and
then construct the necessary headers to return the message to the client. One
note here is to notice the Content-Type sentto the client is text /http. This

media typeis specifically defined for the TRACE methodby theprotocol. Ourlast
step at this stage is to delete the temporary file and return the bPersistent flag
to end the function.

228

173

174

OPTIONS

8.9 OPTIONS

The DoOptions() function handlesall oprrons requests from clients. Depend-
ing on the values passed in, it sends the generic response, or one specific, to a
plain resource or executable resource:

// DoOptions
ff

// Figure out the options available for the specified resource.
fi

int DoOptions(Socket *sClient, char *szPath, Headers *hInfo, int
iType)
C:

char *szTmp;

sClient->Send("HTTP/1.1 200 OK \r\n");
sClient->Send("Server: ");
sClient->Send(szServerVer);

* sClient->Send("\r\n");

szTmp = CreateDate(time(NULL)); // Create a date header.

Lf (szTmp != NULL)
{

sClient->Send("Date: ");

sClient->Send(szTmp) ;
sClient->Send("\r\n");

delete [] szTmp;
}

sClient->Send("Accept-Encodings: \r\n");

if (stremp(szPath, "*") == 0) // General options requested.
{

sClient->Send("Allow: GET, HEAD, POST, PUT, DELETE, TRACE\r\n");

sClient->Send("Accept-Ranges: bytes\n\n");
}

else if (iType == GET)
{

sClient->Send("Allow: GET, HEAD \r\n");

sClient->Send("Accept-Ranges: bytes\n\n");
}

else if (iType == POST)
{

229

174

175

CHAPTER 8 THE HTTP/1.1 SERVER

sClient->Send("Allow: POST \r\n");
}

sClient->Send("\r\n");

hinfo->ulContentLength = 0;

return 200;

There are only a couple of things we do in this function to distinguish it
from a normal return. The function starts by sending the standard Server and
Date headers. After this, we send the Accept-Encodings header, with no

value, to signify our server does not accept any type of encoding on theentity
body. We next key on the value of szPath to decide whether or not to send gen-
eral options. If the value of szPathis the “*” character, then the client has asked
for the general information on server capabilities. Our response to this is an
Allow header, which contains all of the methods we accept, plus an
Accept-Rangesheaderto signal our acceptance ofbyte range requests.

When szPathis not “*”, we look at the value of itype. Depending on the
resolution of the URI which DoHttp11() performed, the value passed in will
either be GET or Post. Wesend the appropriate Allow headerfor each, plus the
Accept-Ranges header for GET. The server does not accept byte ranges for
post. Thefinal sendis a blankline to signify the end of the headers.

8.10 PUT

The put method is new for HTTP/1.1. There were some uses ofit in

HTTP/1.0, but not enough to make the standard. The methodis very simple in
concept:just accept the entity body in the request andstoreit as the namein the
URI. Be on alert here for the permissions. You don’t wantto let just anyone
write newfiles all over your server machine. The one aspect of PUT and DELETE
support I would change now would be to makethe default behaviornotgive per-
mission, the exact opposite of our security model. If this were a textbook, I
would just tell you it was an exercise for the reader, butsince this isn’t, I'll tell

230

175

176

PUT

you to check with me via emailto see if I go back andrevise the server. Knowing
me, I probably will. Enough prattling; let us take a look at the function:

ff
// DoPut

if

// Save the entity sent as the specified URI.
if

int DoPut (Socket *sClient, Headers *hInfo, char *szPath, char *szCgi)
{

struct stat sBuf;

char *szTmp,
*szExt,
*szLoc,

szBuf [PATH_LENGTH],
szFile[PATH_LENGTH];

ofstream ofTmp;
int iRsp = 200,

ikc,

iType,

ilfUnmod,

ilfMatch,
ilfNone,
i, I;

unsigned long ulRc;
BOOL bChunked = FALSE;

// Figure out where to store it.
if (szPath != NULL)

{
szLoc = szPath;

}

else if (szCgi != NULL)
{

szLoc = szCgi;
}

else // Error. Cannot resolve location.

{

SendError(sClient, "Location not found.", 404, HTTP_1_1, hInfo);
return 404;

iRe = CheckAuth(szLoc, hInfo, WRITE_ACCESS); // Check for
// authorization.

231

176

177

CHAPTER 8 THE HTTP/1.1 SERVER

if (iRc == ACCESS_DENIED) // Send request for credentials.
{

sClient->Send("HTTP/1.1 401 \r\n");
sClient->Send("Server: ");
sClient->Send(szServerVer) ;
sClient->Send("\r\n");

szTmp = CreateDate(time(NULL)); // Create a date header.
if (szTmp != NULL)

{
sClient->Send("Date: ");
sClient->Send(szTmp) ;
sClient->Send("\r\n");
delete [] szTmp;

}

sprintf(szBuf, "WWW-Authenticate: Basic realm=\"%s\"\r\n",
hinfo->szRealm);

sClient->Send(szBuf};
sClient->Send("Content-Type: text/html\r\n");
sprintf(szBuf, "Content-Length: Sa\r\n", strlen(sz401));
sClient->Send(szBuf) ;
sClient->Send("\r\n");
sClient->Send(sz401);
return 401;

}

else if (iRc == ACCESS_FAILED) // Send forbidden response.
{

sClient->Send("HTTP/1.1 403 Access Denied\r\n");
sClient->Send("Server: ");
sClient->Send(szServerVer) ;
sClient->Send("\r\n");

szTmp = CreateDate(time(NULL)); // Create a date header.

if (szTmp != NULL}
{

sClient->Send("Date: ");

sClient->Send(szTmp);
sClient->Send("\r\n");

delete [] szTmp;
}

sClient->Send("Content-Type: text/html\r\n");
sprintf(szBuf, "Content-Length: @d\r\n", strlen(sz403));
sClient->Send(szBuf) ; ‘
sClient->Send("\r\n");
sClient->Send(sz403);

return 403;
}

if (hInfo->szRange != NULL) // Range not allowed for PUT.

232

177

178

PUT

{

SendError(sClient, "Range header not accepted for PUT.", 501,
HTTP_1_1, hInfo);

return 501;
}

if (hInfo->szIfModSince != NULL) // If£-Modified-Since
{ // not allowed for PUT.

SendError(sClient,

"Tf-Modified-Since header not accepted for PUT.",
501, HTTP_1_1, hInfo);

return 501;

// Now check the If headers.

ilfUnmod = IfUnmodSince(hInfo, sBuf.st_mtime) ;
iIfMatch = LfMatch(hInfo, sBuf.st_mtime);
iIfNone = IfNone(hInfo, sBuf.st_mtime) ;

if ((ilfUnmod == FALSE) || (iIfMatch == FALSE) |
(iIfNone == FALSE))

{
SendError(sClient, "Precondition failed.", 412,

HTTP_1_1, hinfo);
return 412;

}

// Accept the resource.
if (hInfo->bChunked == TRUE)

{
bChunked = TRUE;

}

else if (hInfo->szContentLength == NULL) // They must supply a
{ // length.

SendError(sClient, "Length required.", 411, HTTP_i_1l, hInfo);
return 411;

}

tmpnam(szFile);

ofTmp.open(szFile, ios::binary);
if (! ofTmp)

{

SendError(sClient, "Local processing error.", 500,
HTTP_11, hiInfo) ;

return 500;

if (bChunked == TRUE)
{

GetChunked(sClient, ofTmp, hInfo);

233

178

179

CHAPTER 8 THE HTTP/1.1 SERVER

}

else // Use Content-Length instead.
{

i = 0;

while (i < hInfo->ulContentLength) // The actual resource.
{

j = sClient->Recv(hInfo->ulContentLength - i);
i se 5y
offmp.write(sClient->szOutBuf, j);

}

}

ofTmp.close();

iRc = stat(szLoc, &sBuf); // Check for the resource.

ulRe = DosCopy(szFile, szLoc, DCPY_EXISTING);
unlink(szFile); // Remove the temporary always.
if (ulRe != 0)

{

SendError(sClient, "Local processing error.", 500,
HTTP:11) .AInfo)}

return 500;
}

if (iRe == 0) // File exists. Overwrite it.
{

sClient->Send("HTTP/1.1 204 No Content\r\n");

iksp = 204;
}

else // New resource

{

sClient->Send("HTTP/1.1 201 Created\r\n");
iRsp = 201;

}

sClient->Send("Server: ");
sClient->Send(szServerVer);
sClient->Send("\r\n");

szTmp = CreateDate(time(NULL)}); // Create a date header.
1f (szTmp != NULL)

{

sClient->Send("Date: ");

sClient->Send(szTmp);
sClient->Send("\r\n");

delete [] szTmp;
}

sClient->Send("\r\n");

234

179

180

PUT

hiInfo->ulContentLength = 0;

return iRsp;
}

Thefirst step is to figure out whereto place the entity. We do this by check-
ing the values of szPath and szCgi:

// Figure out where to store it.
if (szPath != NULL)

{
szLoc = szPath;

}

else if (szCgi != NULL)
{

szLoc = szCgi;
}

else // Error. Cannot resolve location.
{

SendError(sClient, “Location not found.", 404,
HTTP_1.1, hiInfo);

return 404;
}

Our if-else tree checks szPathfirst. If it is not NULL, then we assign our
local pointer szLoc to pointto it. The next branch checks sz¢gi, while the final
branch sends an error message to the client.

We check for authorization in the next step, as we do for any method that
involves retrieving or placing an entity. The steps involved are the same as we've
seen in the past, so we won't repeat the code fragment here. From the previous
code listing, you can see the call to Checkauth(), followed by the check of the
return value for either ACCESS_DENIED or ACCESS_FAILED. Either one causes

an error messageto be sent to the client and endsthe function.
This next check is a bit different from what we've done before:

if (hInfo->szRange != NULL) // Range not allowed for PUT.
{

SendError(sClient, "Range header not accepted for PUT.", 501,
HTTP_1_1, hInfo) ;

return 501;

235

180

181

CHAPTER 8 THE HTTP/1.1 SERVER

if (hInfo->szIfModSince != NULL) // If-Modified-Since
{ // not allowed for PUT.

SendError(sClient,

"Tf-Modified-Since header not accepted for PUT.",
501, HTTP_1_1, hiInfo);

return 501;

With the put method,there are a couple of things our server refuses to do.
The first of these is support a byte range request for the put entity. While it is
possible to support a byte range insertion into a file, there are quite a few vari-
ables which make it uncertain all of the time. The single biggest obstacle is
exactly how to calculate the byte range. If considering the PUT operation as
updating a Web page, then you basically wantto replace part of it. How many
times, in editing anything, do you inadvertently make changes which take up the
identical number of bytes as whatit replaced? If you were working with fixed
length records, as in a database, then it would be possible to define an extension
range type whichis the index number, and submit updates in that manner. We'll
avoid those wormshere.

The other item we don’t allow is the specification of an
If-Modified-Since header. The HTTP/1.1 standard specifically states that
this header is used as a modifier to the GET method. If we detect the header as

just being present, we return an error message to theclient.
Now we mustcheck the other rf headers introduced by HTTP/1.1:

// Now check the If headers.

ilfUnmod = IfUnmodSince(hInfo, sBuf.st_mtime);
ilfMatch = IfMatch(hInfo, sBuf.st_mtime);
iliNone = IfNone(hInfo, sBuf.st_mtime);

if ((iIfUnmod == FALSE) || (iIfMatch == FALSE)||
(iIlfNone == FALSE))

{

SendError(sClient, "Precondition failed.", 412,
HTTP_1_1, hInfo);

return 412;

The three headers represented here, If-Unmodified-Since, If-Match,
and I£-None-Match, must be checked to make sure nonefailed. The calls to the

236

181

182

PUT
See SSEEETETT ors

respective functions perform the checks and return FALSE whenanyfail. If any
of the three failed, the 412 Precondition Failed codeis returnedto theclient.

We'll cover the If functionsa bitlater in this chapter.
Now we're ready to receive the resource from the client for further process-

ing. In order to do so, we must be able to determine the end ofthe entity body.
The two ways wehaveavailable to do this are chunked encoding andthe client’s
specifying a contentlength:

// Accept the resource.
if (hInfo->bChunked == TRUE)

{
bChunked = TRUE;

}

else if (hInfo->szContentLength == NULL)// They must supply

{ // a length.
SendError(sClient, "Length required.", 411, HTTP_1_1, hInfo);
return 411;

We check for chunked encoding first, by looking at hInfo->bChunked.If
it’s TRUE, thenthe client has specified the entity body as being transferred using
the chunked method. If not, then we check for the Content-Length header to

tell us the number of bytes present. If this one fails, we send a 411 Length
Required codeto the client and end the function.

A temporaryfile is opened now to hold the entity bodyasit is received from
the client. We then branch onto receiving methods:

Lf (bChunked == TRUE)
{

GetChunked(sClient, ofTmp, hinfo);
}

else // Use Content-Length instead.
{

i= 0;

while (i < hinfo->ulContentLength) // The actual resource.
{

j = sClient->Recv (hInfo->ulContentLength - i);
i += 74;

offmp.write(sClient->szOutBuf, j);

237

182

183

CHAPTER 8 THE HTTP/1I.1 SERVER

For the chunked method, another function GetChunked () is called. We'll

look at it in a moment.Forentity bodies specified by a length, the else branch
goesinto a looptryingto receive the specified numberofbytes. The construction
here is important to note. The Socket class Recv() function only tries to
receive the specified numberof bytes, so it may return less. Thus, we must loop
through until we get the number we want, and each time we must adjust the
numberfor which we ask. Our temporary file has been opened in binary mode,
so awrite() operation is used where the numberofbytes to be written can be
easily specified.

Oncethe entity has been saved to the temporary file, we use the appropriate
OSAPI call to copy the new file over the top of the old one. The stat () call
just before is to determine whetherthefile was already there. If thefile did exist,
we send a 204 No Content response to the client. If it is a new file, then a
201 Createdis sent. Our Server and Date headers are sent, followed by the
empty line to mark the end of the headers. hInfo->ulContentLengthis set to
zero since no entity was sent and ispis finally returned.

8.11 Iffunctions
In the last section, we made somecalls to the 1£ functions, which check the val-

ues of the conditional headers which maybe present. Let us go ahead and look at
them now:

hig

// T£ModSince
fink

// Check whether the file had been modifed since the date

// given by the client.
/f

int IfModSince(Headers *hInfo, time_t ttMtime) ©
{

if (hInfo->szifModSince != NULL)
{

if ((hInfo->ttIfModSince > 0) &&
(hInfo->ttIfModSince < ttMtime))

{

238

183

184

IFFUNCTIONS

return TRUE;

}
else

{
return FALSE;

}

return TRUE; // Default is TRUE.

Thefirst rf function checks the If-Modified-Since header. In this func-

tion, we mustfirst look for the header by checking if hInfo->szIfModSinceis
not NULL. Once found, we makecertain the value given by theclient is greater
than zero, and that the date given is earlier than the current timestamp on the
file. We return FALSE only if the timestamp checkfails.

Ournext If function, 1fUnmodSince() is almost a twin:

f/

_// TfUnmoedSince
ff
// Check whether the file has not been modified since the date

// given by the client.
‘if

int IfUnmodSince(Headers *hInfo, time_t ttMtime)
{

if (hInfo->szIfUnmodSince != NULL)
{

1£ ((hInfo->ttIfUnmodSince > 0) &&
(hInfo->ttIfUnmodSince > ttMtime))

{
return TRUE;

}
else

{
return FALSE;

}

return TRUE; // Default is TRUE.

184

185

CHAPTER 8 THE HTTP/I.1 SERVER

Thelogical difference here from the 1fModSince() function is the return-
ing of FALSE only whenthe timegiven is earlier than the modification time of
the file, the exact opposite of before. We are, of course, checking the
If£-Unmodified-Since value for this function.

Next we turn our attention to the entity tags in the If-Match header:

//
// T&Match
/f

// Check the etag of the resource against that given by the client
// for a match.
/f

int IfMatch(Headers *hInfo, time_t ttMtime)
{

int iIfMatch = TRUE,
i;

char *szBuf,

szEtagStar[] = "*";

// Check to see if any etags match.
if (hInfo->szIfMatch != NULL)

{

iIlfMatch = FALSE; // We fail unless we match.
szBuf = new char[SMALLBUF] ;

sprintf(szBuf, "\"%d\"", ttMtime);
for (i = 0; hInfo->szIfMatchEtags[i] != NULL; i++)

{

if (strcmp (hInfo->szIfMatchEtags[i], szBuf) == 0)
{

ilfMatch = TRUE;
break;

} .

if (strcmp (hInfo->szIfMatchEtags[i], szEtagStar) == 0)
{

ilfMatch = TRUE;
break;

}
}

delete [] szBuf;
}

return ilfMatch;

240

185

186

IF FUNCTIONS

This function is a bit more involved than those which check timestamps. In
this function we must compareentity tags overthe set of tags sent bytheclient.
In mostcases, this should be a single tag, but multiple tags are allowed and the
code must handle them. Thefirst check madeis to see if an If-Match header

was found.If it wasn’t, a default value of TRUE is returned, meaningthetest is
satisfactory. It may seemabit oddatfirst, but the field is optional, so not having
any values is the same as matching one, and we return TRUE.

Whenthe headeris present, we default the return value to FALSE. We must
match now. A call to sprintf () is used to create the entity tag for the compari-
son test. What we do here is loop through the stored entity tags in the Header
class. Our for loop is conditional on finding the last value to be NULL since we
don’t save the numberoftags, but instead we use a NULL marker. Inside the
loop, we must make two comparisons each time. Thefirst is against the entity
tag since we created it. The secondis against the wildcard entity tag of +”. The
first time we find a match, iIfMatch is set to TRUE and webreak outofthe loop
immediately to returnit to the calling function.

The next If function handles checking the If-None-Match header. Basi-
_ cally it does the opposite of the previous function. It checks to make sure thereis

not a matchofentity tags:

fi
// T£None
ff

// Check to make sure no etags match the resource.
if

int IfNone(Headers *hInfo, time_t ttMtime)
{

int iIfNone = TRUE,
i;

char *szBuf,
szEtagStar[] = "*";

// Check to see if any of the If-None-Match etags match
if (hInfo->szIfNoneMatch != NULL)
{

ilfNone = TRUE; // We're ok unless we match.
szBuf = new char[SMALLBUF];

sprintf({szBuf, "\"Sd\"", ttMtime);

241

186

187

CHAPTER 8 THE HTTP/1.1 SERVER

for (i = 0; hInfo->szIfNoneMatchEtags[i] != NULL; i++)
{

if (stremp(hInfo->szIfNoneMatchEtags[i], szBuf) == 0)
{

ilfNone = FALSE;
break;

}

if (stremp (hInfo->szIfNoneMatchEtags[i], szEtagStar) == 0)
{

ilfNone = FALSE;
break;

}
}

delete [] szBuf;
}

return ilIfNone;

As can be seen, the flow ofexecution is like the IfMatch() function. We

first check to see if the header If-None-Match was found. Not findingit causes
a TRUE condition to be returned. Inside the If statement, we create the entity
tag for the current resource and then compareit to the entity tags sent bythecli-
ent. A check is also madeagainst the match-all token »*”. If a comparisonis true
here, the functionsets the return value to be FALSE. The meaning of the header
is to fail if we match an entity tag for the subject and current resource, hence
FALSE mustbe returned.

8.12 Chunked encoding
The chunked encoding method is a way for an HTTP/1.1 application to send an
entity body without explicitly knowing the full length when the transmission
starts. It allows the application to send a chunk of the entity body, specifying
only the length of the current chunk. For applications which dynamically gener-
ate responses, it means not having to store the entity body in orderto calculate
the length anymore. Receiving chunked encodingis fairly simple too:

242

187

188

CHUNKED ENCODING

if
// GetChunked
ff

// Receive the entity using the chunked method.
if

int GetChunked(Socket *sClient, ofstream &ofOut, Headers *hInfo)
{

BOOL bNotDone = TRUE;
char *szPtr;

int iBytes, i, j, 1, iFactor;

while (bNotDone == TRUE)
{

sClient->RecvTeol(NO_EOL); // Grab a line. Should have
// chunk size.

if (stremp(sClient->szOutBuf, "0") == 0)
{

bNotDone = FALSE; // The end of the chunks.
continue;

}

szPtr = strchr(sClient->szOutBuf, ';');

if (szPtr != NULL) *szPtr = NULL; // Mark end of chunk-size.

1 = strlen(sClient->szOutBuf); // Find last hex digit.
1l=-;

iBytes = 0;
iFactor = 1;

// Convert to decimal bytes.
while (1 >= 0)

{

iBytes += iFactor * Hex2Dec(sClient->szOutBuf[1]);
1--;
iFactor *= 16;

}
i = 0;

// Now receive the specified number of bytes.
while (i < iBytes)

{

j = sClient->Recv(iBytes - i); // Some data.
1L += 9; // Total the bytes.
ofOut.write(sClient->szOutBuf, j); // Save to disk.

243

188

189

CHAPTER 8 THE HTTP/1.1 SERVER

sClient->RecvTeol(NO_EOL); // Discard end of chunk marker.

// Now consume anything in the footer.
hinfo->RcvHeaders (sClient);
return 0;

|1 i oateietateieteteteeiatataintaatateaatanaetataeeaaataneaatateaaatatetaaenaetaiaeneatesateneiaetateeatataanea

The basic form for chunked encoding(as presented in Chapter 2)is:

Chunked-Body = *chunk
"OQ" CRLF

footer
CRLF

chunk = chunk-size [chunk-ext] CRLF
chunk-data CRLF

hex-no-zero = <HEX excluding "0">
chunk-size = hex-no-zero *HEX

chunk-ext = *(";" chunk-ext-name ["=" chunk-ext-value])
chunk-ext-name = token

chunk-ext-val = token | quoted-string
chunk-data = chunk-size (OCTET)

footer = *entity-header

In pseudo-code, we have a pattern such as:

<size in hex>CRLF
<data>CRLF
<size in hex>CRLF
<data>CRLF

<0 size>CRLF

<optional footer>CRLF

For ouralgorithm, we wantto grab thefirst line of the entity body as delim-
ited by the carriage return line feed sequence. Onthis line will be thesize of the
upcoming chunkspecified in Hex. The only restriction on thesize is that it can-
not be a zero size chunk. The use ofthe zero size chunkis restricted to indicate

the end of the chunked encoding. Oncethesize is decoded, we mustreceive the
specified numberof bytes and then receive the carriage return line feed sequence

244

189

190

CHUNKED ENCODING

denoting the end of the chunk. This carriage return line feed is not part of the
data, but just a marker between the end of the chunk and thenextsize specifica-
tion. This pattern is repeated until the 0 chunkis reached. After the 0 chunk,it
is possible for the client to send someadditional headers knownas footers. Only
those headers specified in the protocol for use in the footer may be used here.
Finally, an ending carriage return line feed is received to mark the end of the
entity body and request.

Ourfirst section of code grabs the chunk size from theclient:

while (bNotDone == TRUE)
{

sClient->RecvTeol(NO_EOL); // Grab a line. Should have
// chunk size.

if (stremp(sClient->szOutBuf, "0") == 0)
{

bNotDone = FALSE; // The end of the chunks.

continue;
}

Using the standard RecvTeol() function, the next line of input is read
from the client. We make a comparison here to determineifit is the ending
chunk by comparingit to 0. Ifwe find the end,ourloopflag is set to FALSE and
the continue statement forces execution to the top of the loop where the condi-
tional will now be false. If we don’t find a 0, then we have a hex size for a chunk
and must decodeit:

szPtr = strcehr(sClient->szOutBuf, ';');
if (szPtr != NULL) *szPtr = NULL; // Mark end of chunk-size.

1 = strlen(sClient->szOutBuf); // Find last hex digit.
l--;
iBytes = 0;
iFactor = 1;

// Convert to decimal bytes.
while (1 >= 0)

{

iBytes += iFactor * Hex2Dec(sClient->szOutBuf[1]);
L==;

iFactor *= 16;

245

190

191

CHAPTER 8 THE HTTP/I.1 SERVER

Thefirst two lines here check for the existence of a chunk extension with the

size. If a chunk extension is present, then a semicolon will separate it from the
size. We simply find the semicolon and NULLit out to end the line. Now we can
find the last digit of the hex number by using strlen() and adjusting our C
indexing by one. iBytesis initialized to 0 as our byte counter and iFactorto |
as the adjustmentfor the base 16 of the hex number.

Inside the loop, we multiply iractor by the decimal value of the hexdigit.
As we movefrom rightto left of the hex string, we increase our factor by 16 each
time, to allow for the change in place of the hex digits. When our index value
reaches 0, we have completed the conversion. The Hex2Dec () function is a sim-
ple reworking of the Hex2Char() function usedfor translating URIs. Instead of
returning a character value, it returns the appropriate decimal conversion.

To actually receive the chunk, we use the same construct as in the DoPut()
function previously mentioned:

i= 0;

// Now receive the specified number of bytes.
while (i < iBytes)

{

j = sClient->Recv(iBytes - i); // Some data.
i += j; // Total the bytes.
ofOut.write(sClient->szOutBuf, j); // Save to disk.

This loop continues reading bytes from the socket until the specified num-
ber of bytes have been read. Since we aren’t guaranteed how manybyteswill be
returned each time, we must adjust our request for bytes on the fly. Once the
specified numberis read, we grab the carriage return line feed, which marks the
end of the chunk, and return to the top ofthe loopto receive the next chunk.
After the last chunk is read and the loop ends, we call hinfo->RcvHeaders()
to consumeanyfooters sent bytheclient.

For completeness, following is the Hex2Dec() as modified from theoriginal
Hex2Char () function: .

‘f/f

// Hex2Dec

246

191

192

THE DELETE METHOD

fi
// Convert a hex character to a decimal character.
ff

int Hex2Dec(char c)
ci

Switch (c)
{

case 'A':
case ‘a':

return 10;
case 'B':

case 'b':

return 11;
case 'C':
case 'c':

return 12;
case 'D';:

case ‘d':

return 13;
case 'E':
case 'e':

return 14;
case 'F':

case 'f':

return 15;
default:

return (c — 48);

8.13 The DELETE method

DELETEis the next method we'll examine. The methodallowstheclient to delete

selected resources on the Webserver. This could be used to implement a Web
management system where users can update and remove pages remotely or per-
haps a version control system. Just as in the PuT method, this method must be
guarded against unauthorized usesince a security hole could wreak havoc with a
Webserver. Following is the complete function:

247

192

193

CHAPTER 8 THE HTTP/1.1 SERVER

[fo mmmrrrrsrrrnren
f/f
// DoDelete
/f

// This function checks to see if it can delete the resource

// specified by the client.
‘f/f

int DoDelete(Socket *sClient, char *szPath, char *szCgi,
Headers *hIinfo)

struct stat sBuf;

char *szTmp,
*szExt,
szBuf [PATH_LENGTH],
szFile[PATH_LENGTH];

ofstream ofTmp;

int iRsp = 200,
ike,

i iType,
: ilfMod,

iIfUnmod,
ilfMatch,
ilfNone;

iRe = CheckAuth(szPath, hInfo, WRITE_ACCESS); // Check for
|! // authorization.

if (iRc == ACCESS_DENIED) // Send request for credentials.
‘ {

Ve sClient->Send("HTTP/1.1 401 \r\n");
| sClient->Send("Server: ");

hoe sClient->Send(szServerVer) ;
i . . sClient->Send("\r\n");
I szTmp = CreateDate(time(NULL)); // Create a date header.
I. if (szTmp != NULL)

{

sClient->Send("Date: ");
sClient->Send(szTmp) ;
sClient->Send("\r\n");
delete [] szTmp;

} .
I sprintf(szBuf, "WWwW-Authenticate: Basic realm=\"%s\"\r\n",

hinfo->szRealm);

sClient->Send(szBuf) ;
sClient->Send("Content-Type: text/html\r\n");
sprintf(szBuf, "Content-Length: %d\r\n", strlen(sz401));
sClient->Send(szBuf) ;

248
193

194

THE DELETE METHOD

sClient->Send("\r\n");
sClient->Send(sz401);
return 401;

}

else if (iRc == ACCESSFAILED) // Send forbidden response.
{

sClient->Send("HTTP/1.1 403 Access Denied\r\n");
sClient->Send("Server: ");
sClient->Send(szServerVer);
sClient->Send("\r\n");

szTmp = CreateDate(time(NULL)); // Create a date header.
if (szTmp != NULL)

{

sClient->Send("Date: ");

sClient->Send(szTmp) ;
sClient->Send("\r\n");

delete [] szTmp;
}

sClient->Send("Content-Type: text/html\r\n");
sprintf(szBuf, "Content-Length: %d\r\n", strlen(sz403));
sClient->Send(szBuf);
sClient->Send("\r\n");
sClient->Send(sz403);
return 403;

}

if (hInfo->szRange != NULL) // Range not allowed for DELETE.
{

SendError(sClient, "Range header not accepted for DELETE.",
501, HTTP_1_1, hInfo);

return 501;

}
if (hInfo->szIfModSince != NULL) // If-Modified-Since

{ // not allowed for DELETE.

SendError(sClient,

"If-Modified-Since header not accepted for DELETE.",
501, HTTP_1_1, hInfo);

return 501;
}

// Now check the If headers.

ilfUnmod = IfUnmodSince(hInfo, sBuf.st_mtime);
ilfMatch = IfMatch(hInfo, sBuf.st_mtime);
ilfNone = IfNone(hInfo, sBuf.st_mtime) ;

if ((iTfUnmod == FALSE) || (iIfMatch == FALSE)||
(iIfNone == FALSE) }

{

249

194

195

CHAPTER 8 THE HTTP/1.1 SERVER

SendError(sClient, "Precondition failed.", 412,
HTTP_1_1, hInfo);

return 412;

if (szDeleteDir != NULL) // Save the deleted resource.
{

// Use the same file extension as the current resource.
szExt = strrchr(szPath, '.');
if (szExt != NULL)

{
szExt++;

}
else

{
SzExt = "del";

}

szTmp = MakeUnique(szDeleteDir, szExt);
DosCopy(szPath, szTmp, DCPY_EXISTING);

}

iRc = unlink(szPath) ;
if (iRe == 0) // Resource deleted.

{
sClient->Send("HTTP/1.1 204 \r\n");

| iRsp = 204;
| }

| ‘ else // Delete failed.
i {

sClient->Send("HTTP/1.1 500 \r\n");

f iRsp = 500;
}

sClient->Send("Server: ");
sClient->Send(szServerVer);
sClient->Send("\r\n");

szTmp = CreateDate(time(NULL));// Create a date header.
if (szTmp != NULL)

{

sClient->Send("Date: ");

sClient->Send(szTmp) ;
sClient->Send("\r\n");

delete [] szTmp;
}

sClient->Send("\r\n");
hInfo->ulContentLength = 0;
return iRsp;

{ [| wn 3 nnn nnn nnn nn nnn noonoon nnn nnn enn nnn nnn enn ene e =n===

250

195

196

THE DELETE METHOD

The DoDelete() function starts by checking for the client’s authorization.
This check uses the same code as the previous functions so we won’t go overit in
depth right here. After the authorization is approved, we muststart checking the
conditional headers to make certain we should complete the request:

if (hinfo->szRange != NULL) // Range not allowed for DELETE.
{

SendError(sClient, "Range header not accepted for DELETE.",
501, HTTP_1_1, hInfo);

return 501;
}

if (hInfo->szIfModSince != NULL) // I£-Modified-Since
{ // not allowed for DELETE.

SendError(sClient,

"Tf£-Modified-Since header not accepted for DELETE.",
501, HTTP_1_1, hInfo);

return 501;

Thefirst conditionals for which we check are the ones we don’t allow.If the

client sends a range request with the DELETE method,wereject the request out-
right. The hInfo->szIfModsince variable is also checked to see if header
If-Modified-Since was sent. Again here, the protocolstates it is only valid for
GET requests, so we reject it also. The other rf headers are checked next:

// Now check the If headers.

iIfUnmod = IfUnmodSince(hiInfo, sBuf.st_mtime) ;

ilfMatch = IfMatch(hInfo, sBuf.st_mtime);
ilfNone = IfNone(hInfo, sBuf.st_mtime);

if ((ilfUnmod == FALSE) || (iIfMatch == FALSE)||
(ilfNone == FALSE))

{

SendError(sClient, "Precondition failed.", 412,
HTTP_i1_1, hInfo);

return 412;

As in the DoPut() function, the same checks are made here. We want to

make sure the I1f-Unmodified-Since, If-Match, and If-None-Match head-

ers check out. Our check functions return FALSEif anyfail, and we then return
the 412 Precondition Failedresponseto theclient.

251

196

197

CHAPTER 8 THE HTTP/I.1 SERVER

What wedo nextis unique to this function: Ifa client does delete a resource,
we allow the Webmaster to specify in the configuration file to save any deleted
resources. This allows for a safety net for the users and makes the Webmaster
appear omnipotentto the careless users:

if (szDeleteDir != NULL) // Save the deleted resource.
{

// Use the same file extension as the current resource.
szExt = strrchr(szPath, '.');

if (szExt != NULL)
{

szExt++;

}
else

{
szExt = "del";

}

szTmp = MakeUnique(szDeleteDir, szExt);
DosCopy(szPath, szTmp, DCPY_EXISTING);
delete [] szTmp;

We check our global flag variable szDeleteDir to determine whether to
save a copy ofthe resource. If we find it defined, this signifies its use to save the
resource andtells us whereto save it. Inside the If statement, we look for thefile

extension of the resource using strrchr(), which will find the last occurrence
of the dot characterin the filename.Ifwefindit, we adjust szExt to point to the
start of the extension,andif not, to the string del. Thefollowing line creates a
unique temporary file for us in the directory we specify, with the extension we
provide. This function, MakeUnique(), is one we must provide since the C
library functions do notlet us pick the directory in which to create the tempo-
rary filenames. Thelast step is to copy the resource to the new filename and then
delete the memory for the filename.

Thelast part of the function is to just complete theaction:

iRe = unlink(szPath);
if (iRc == 0) // Resource deleted.

{

sClient->Send("HTTP/1.1 204 No Content\r\n");

iRsp = 204;

252

197

198

THE DELETE METHOD

else // Delete failed.

{
sClient->Send("HTTP/1.1 500 Server Error\r\n");

iRsp = 500;

Using unlink(), we delete the requested resource. Based on the return
value, we send a 204 No Content when the delete operation succeeds and a
500 Server Error whenit fails. The remainder of the function returns the

Server and Date headers backto the client.

Let us also look at the MakeUnique() function.

fi

// MakeUnique ()
i}

// Create a unique filename in the specified directory with the

// specified extension.
/f

char * MakeUnique(char *szDir, char *szExt)
{

ULONG ulNum = 0;

BOoOL bNotUnique = TRUE;
int iRc;
char *szFileName;

szFileName = new char[PATH_LENGTH];

while (bNotUnique)
{

sprintf(szFileName, "%s%08d.%s", szDir, ulNum, szExt);

iRc = open(szFileName, O_CREAT | O_EXCL | O_WRONLY
| O_TEXT, S_IWRITE);

if (iRe != -1)
{

// Success. This file didn’t exist before.

close(iRc);

bNotUnique = FALSE;
continue;

ulNum++;

if (ulNum > 99999999)
{

253

198

199

CHAPTER 8 THE HTTP/1.1 SERVER

delete [] szFileName;
szFileName NULL;

bNotUnique = FALSE;
}

i

}

return (szFileName);

This function is simple in its operation. We start with an empty string,
szFileName, and create a filename by concatenating togetherthe directory sent
by the client, an integer number controlled by the function, and the extension
sent by the client. Once put together, we try to create a new file with a call to
open() with the O_CREAT and O_ExcLflags set to make certain we only create
thefile if it does not already exist.

If the open () call is successful, then we close the newfile, set NotUnique to

FALSE, and issue a cont inuestatementto have the loop complete. The new file-
name is then returned to the client. When the open() call fails, we instead

incrementour counter and run throughthe loop again. Thebasic algorithm here
is to sequentially increment our integer counter until we find one notin use.
Giventhepossibility of running on a FAT partition, we limit the numberof dig-
its we use to 8. This gives us plenty ofchoices however.

8.14 GETthe document

Ourfinal method handler to cover is DoPath11(). This is the function which

handles the bulk of the requests of the Web server:

‘/
// DoPath11()
‘i

// This function checks to see if it can return the requested
// @ocament back to the client.
‘if

int DoPathii(Socket *sClient, int iMethod, char *szPath,

254

199

200

ASSPSSRSgrTI
GET THE DOCUMENT

Saaoeen

char *szSearch, Headers *hinfo)

struct stat sBuf;

char *szTmp,
*szExt,

szBuft [PATH_LENGTE],
szFile[PATHLENGTH];

ofstream ofTmp;
int

if

{

ike

if

{

iRsp = 200,
ike,

iType,
iTfMod,

itfUnmod,
iTfMatch,
ilfNone,

ilfRange,
iRangeErr;

(szPath[strlen(szPath) - 1] == '/')

streat(szPath, szWelcome); // Append default welcome file.

= CheckAuth(szPath, hInfo, READ_ACCESS); // Check for
// authorization.

(iRe == ACCESSDENIED) // Send request for credentials.

sClient->Send("HTTP/1.1 401 \r\n");

sClient->Send("Server: ");
sClient->Send(szServerVer) ;

sClient->Send("\r\n") ;

szTmp = CreateDate(time(NULL)); // Create a date header.
if (szTmp != NULL)

{
sClient->Send("Date: ");

sClient->Send(szTmp) ;
sClient->Send("\r\n");

delete [] sziTmp;
}

sprintf (szBuf,
"WWW-Authenticate: Basic realm=\"%s\"\r\n",

hInfo->szRealm);
sClient->Send(szBuf) ;

sClient->Send("Content-Type: text/html \r\n");

sprintf(szBuf, “Content-Length: %d\r\n", strien(sz401));
sClient->Send(szBuf) ;
sClient->Send("\r\n");

255

200

201

CHAPTER 8 THE HTTP/1.1 SERVER

sClient->Send(sz401);
return 401;

}

else if (iRc == ACCESS_FAILED) // Send forbidden response.
{

sClient->Send("HTTP/1.1 403 Access Denied\r\n");

sClient->Send("Server: ");
sClient->Send(szServerVer);

sClient->Send("\r\n");

szTmp = CreateDate(time(NULL)); // Create a date header.

if (szTmp != NULL)
{

sClient->Send("Date: ");

sClient->Send(szTmp};
sClient->Send("\r\n");

delete [] szTmp;
}

sClient->Send("Content-Type: text/html\r\n");
sprintf(szBuf, "Content-Length: %d\r\n", strlen(sz403));
sClient->Send(szBuf) ;
sClient->Send("\r\n");
sClient->Send(sz403);
return 403;

}

if (szSearch != NULL) // Do an index search.
{

iRec = Index(szPath, szSearch, szFile, hinfo->szUri);
if (iRe != 0)

{

iRe = SendError(sClient, "Resource not found.", 404,
HTTP_1_1, hInfo);

return iRc;
}

strepy(szPath, szFile);

ike = stat(szPath, &sBuf);
if (iRe < 0)

{

iRsp = SendError(sClient, "Resource not found.", 404,
HTTP_1_1, hiInfo);

return iRsp;

// Check If headers.

ilfMod = IfModSince(hiInfo, sBuf.st_mtime);

256

201

202

GET THE DOCUMENT

ilfUnmod = IfUnmodSince(hInfo, sBuf.st_mtime) ;
ilfMatch = IfMatch(hInfo, sBuf.st_mtime);
ilfNone = IfNone(hInfo, sBuf.st_mtime);

ilfRange = IfRange(hInfo, sBuf.st_mtime) ;
iRangeErr = hInfo->FindRanges(sBuf.st_size);

!

// Check to make sure any If headers are FALSE.
// EBither not-modified or no etags matched.

if ((iIfMod == FALSE) || (iIfNone == FALSE))
{

sClient->Send("HTTP/1.1 304 Not Modified\r\n");

iRsp = 304;
}

// No matching etags or it’s been modified.
else if ((iIfMatch == FALSE) || (iIfUnmod == FALSE))

{

sClient->Send("HTTP/1.1 412 Precondition Failed\r\n");

iRsp = 412;
}

// Resource matched so send just the bytes requested.
else if ((ilfRange == TRUE) && (iRangeErr == 0))

{

sClient->Send("HTTP/1.1 206 Partial Content\r\n");
iRsp = 206;

}

// Resource didn’t match, so send the entire entity.
else if ((hInfo->szIfRange != NULL) && (iIlfRange == FALSE))

{

sClient->Send("HTTP/1.1 200 OK\r\n");
iRsp = 200;

}

// Only asked for a byte range.
else if (iRangeErr == 0)

{

sClient->Send("HTTP/1.1 206 Partial Content\r\n");

iRksp = 206;
}

// Must be a plain jane request.
else

{

sClient->Send("HTTP/1.1 200 OK\r\n");

iRsp = 200;
}

sClient->Send("Server: "); // Standard server header.
sClient->Send(szServerVer) ;
sClient->Send("\r\n");

257

202

203

CHAPTER 8 THE HTTP/I,1 SERVER

szTmp = CreateDate(time(NULL)); // Create a date header.
if (szTmp != NULL)

{

sClient->Send("Date: ");

sClient->Send(szTmp);
sClient->Send("\r\n");

delete [] szTmp;

}

szTmp = CreateDate(sBuf.st_mtime); // The last modified time
// header.

if (szTmp != NULL)
{

sClient->Send("Last-Modified: ")};
sClient->Send(szTmp};
sClient->Send("\r\n")};

delete [] szTmp;
}

sprintf(szBuf, "ETag: \"Sd\"\r\n", sBuf.st_mtime); // Entity tag.
sClient->Send(szBuf);

if ((iRsp == 304) || (iRsp == 412))
{

sClient->Send("\r\n");

return iRsp; // Don’t send anything else.
}

if (szSearch != NULL) // Force search results to text/html type.
{

iType = FindType("x.html");
}

else

{

ifype = FindType(szPath); // Figure out the media type to
// return.

}

if (iRsp == 206) // Sending partial content.
{

// Send byte range to client.
SendByteRange(sClient, hInfo, szPath, &sBuf, iType, iMethod);
return iRsp; ,

}

// Send full entity.
sprintf(szBuf, "Content-Type: %s\r\n", eExtMap[iType] .szType) ;
sClient->Send(szBuf);
sprintf({szBuf, "Content-Length: %d\r\n", sBuf.st_size);

258

203

204

GET THE DOCUMENT

sClient->Send(szBuf) ;
sClient->Send("\r\n");

if (iMethod == GET) // Don’t send unless GET.
{

if (eExtMap[iType] .bBinary == TRUE)
{

iRc = sClient->SendBinary(szPath);

sClient->SendText (szPath) ;H- tya "l

Since this function handlesall default GzT or HEAD requests,it is possible for
_the client to not specify a specific resource, but to let the system provide the

_ default. The first bit of code in DoHttp11() takes care of this:

1£ (szPath[strlen(szPath) - 1] == '/')
{

streat(szPath, szWelcome); // Append default welcome file.
}

We simply check for any path ending in a forward slash and if found, we
append the default welcomefile name as listed in the configuration file. Note,
we do not checkhereto seeif this is valid. We just check to make sure we have a
full pathname whenlooking up theresource.

The security check comesafter this point, since we now have a full path-
name to check. The difference between this one and thecalls in Doput () and

DoDelete() is specifying to check read access with the READ_ACCESS flag.
Upon failure here, we either request credentials from the client or deny them
access if they supplied credentials whichfailed.

Once access has been approved, we must check to ascertain whether or not
the client requested a simple ISINDEX of the requested resource. This will be
true if szSearch is not NULL:

259

204

205

CHAPTER 8 THE HTTP/1.1 SERVER

if (szSearch != NULL) // Do an index search.
{

ike = Index(szPath, szSearch, szFile, hiInfo->szUri);
if (iRe != 0)

{
iRc = SendError(sClient, “Resource not found.", 404,

HTTP_1_1, hInfo);

return iRc;
}

strepy(szPath, szFile);

The Index() function (unchanged from the HTTP/1.0 version) performs
the simple search, creates the html outputfile and stores thefilenamein szFile.
Since the rest ofDoHt tp11() uses szPath, we copythe contents of szFile into
the current szPath.

Nowthat wehavereachedthis point, we verify the existence of the resource
file by using the stat () call. If it develops that the file does not exist, an error
message is sent to the client with a 404 Not Found code. Otherwise, it is time to
check the 1£ headers,all of them this time:

// Check If headers.

iIfMed = IfMedSince(hInfo, sBuf.st_mtime);
ilfUnmod = IfUnmodSince(hInfo, sBuf.st_mtime);
ilfMatch = IfMatch(hInfo, sBuf.st_mtime);
iIfNone = IfNone(hInfo, sBuf.st_mtime);
iIfRange = IfRange(hIinfo, sBuf.st_mtime);
iRangeErr = hinfo->FindRanges(sBuf.st_size);

Thefirst four lines are functions we have seen when handling the other
request methods. New at this time, are the IfRange() and
hInfo->FindRanges() functions. The IfRange() function checks the

If-Rangeheadertoseeifit is present. If it is present, it then verifies whether or
notthe field value matches the given resource. This field value may either be a
date or entity tag for the If-Range header. FindRanges(), as mentionedearlier
in the chapter, parses any byte ranges given by theclient and stores them in an
array of Range class objects.

Next comes the tricky part of HTTP/1.1: Given the multitude of possible
headers the client may send for any given request, the order in which the

260

205

206

GET THE DOCUMENT

conditionals are checked is important. Dependingonthe failure condition here,
wesend different response codesto theclient:

// Either not-modified or no etags matched.

if ((iIfMod == FALSE) || (iIfNone == FALSE))
{

sClient->Send("HTTP/1.1 304 Not Modified\r\n") ;

iRksp = 304;

Thefirst check we make is for those headers which require a 304 response
on failure. This is either the If-Modified-Since or If-None-Match headers.

If the formerfails, it means the resource has not been modified since the date

given bytheclient, hence we don’t want to send them anothercopy.Ifthe latter
fails, it means an entity tag sent by the client did match the entity tag of the
resource. Remember the If-None~Match means only to perform the action if
noneofthe tags sent match the resource. So if one matches, then we havea fail-
ure of the conditional:

// No matching etags or it's been modified.

else if ((ilfMatch == FALSE) || (ilfUmmod == FALSE))
{

sClient->Send("HTTP/1.1 412 Precondition Failed\r\n");
iRsp = 412;

This check is for the 1£-match and If-Unmodified-Since headers. If

either of these fail, we must return a 412 Precondition Failed responseto the
client. The 1£-Match headerfails if none of the entity tags sent by the client
match the entity tag of the resource. I1f-Unmodified-Since fails when the
resource has been modified since the date given by theclient.

The checks in the first two If statements must be done before our other

checks. The reason is that these are the checks for failure. The rest of the checks

are for success. We don’t wantto send a success response line to the client and
then turn around andfail to send the resource. Now that we have progressed this
far, we know weare going to senda resource to the client. It is just a matter of
whetherit will be a full resource or a byte range that we send back.

261

206

207

ee
:

CHAPTER 8 THE ATTP/1.1 SERVER

// Resource matched so send just the bytes requested.
else if ((iIfRange == TRUE) && (iRangeErr == 0))

{

sClient->Send("HTTP/1.1 206 Partial Content\r\n");
iRsp = 206;

At this point, we must checkto see ifwe need to send a byte range. The con-
ditions necessary for this to be true are for the client to have sent a valid Range
header and a valid 1£-Range. iRangeErr will be 0 when theclient sent a valid

byte range request. ilfRange will be TRUE if the client did not send an
If-Range headerorifthe If-Range headersentis valid. When both conditions

are met, we send the 206 Partial Content responseto theclient.

// Resource didn't match, so send the entire entity.
else if ((hInfo->szIfRange != NULL) && (iIlfRange == FALSE))

{

sClient->Send("HTTP/1.1 200 OK\r\n");
iRsp = 200;

The next check is instituted when the client requests a byte range, but the
resource has since changed. This uses the If-Range headerto shortcircuit the
normal error message and instead has us send the complete new resource. These
conditions are true when theclient did send an If-Range header and the

iIfRangevariable is FALSE, meaningthe field value did not match.

// Only asked for a byte range.
else if (iRangeErr == 0)

{

sClient->Send("HTTP/1.1 206 Partial Content\r\n");
iksp = 206;

This check must comeafter the previous two,since it is basically a default
following theclient’s request for a byte rangeretrieval. We execute this branch
whenthe client has sent a valid Range header and there are no contradictory
conditional headers it being basically covered by an unconditional byte range
retrieval. Again, for purpose of byte range retrievals, we send a 206 Partial
Contentresponse.

Thefinal default response we sendto theclient is a 200 OK response:

262

207

208

GET THE DOCUMENT
a eae senrereeetl —— Se

// Must be a plain jane request.
else

{

sClient->Send("HTTP/1.1 200 OK\r\n");

iRsp = 200;

Atthis time, westart to build and send our standard response headers to the
client. This includes the Server, Date, Last-Modified, and ETag headers.

The first two are constructed as we've seen before. The Last-Modified header

is built using the CreateDate() function and the last modified time from the
sBuf.st_mtime variable. For the ETag(), we simply use the actual value of
sBuf.st_mtime to construct the entity tag. For our file system based Web
server, it provides sufficient uniqueness to qualify as an entity tag. In a system
where resources are constantly updated, as something based on real time feeds
might be, the last modified timestamp would probably not prove to be suffi-
ciently unique to use as an entity tag. Depending on the system’s usage, we
might need to use somesort of integer counter which is incremented on changes.

Oncethe basic response headers are sent, we check the response code:

if ((iRsp == 304) || (iRsp == 412))
{

sClient->Send("\r\n");

return iksp; // Don't send anything else.

If we find a 304 or 412 code, wearefinished. Because of conditional head-

ers, we are not sending an entity body to the client, so we just send the final
empty line to mark the end of the headers and return the response code.

Whenwedosend anentity bodyto the client, we must determine the media
type ofthe resource andlabelir:

if (szSearch != NULL) // Force search results to text/html type.
{

iType = FindType("x.html");
}

else

{

ifype = FindType(szPath);// Figure out the media type to return.

263

208

209

CHAPTER 8 THE HTTP/1,1 SERVER

The only special checking to dohere is to determineif szSearchis defined.
If it is, we have done an index search and must force the media type to
text/html since szPath will hold the name of a temporary file and will not
have the html extension. On any other case, we let the FindType() function
from the HTTP/1.0 serverfigure out the media typeforus.

Now we mustsimply transfer the resource to the client. There are twopossi-
bilities for this. Thefirst is that we are sending a byte range back to theclient, in
which case iRsp will be 206. The other possibility is sending the entire resource
backto theclient: .

if (iRsp == 206) // Sending partial content.
{

// Send byte range to client.
SendByteRange(sClient, hInfo, szPath, &sBuf, iType, iMethod);
return iRsp;

Thefirst choice checks to see if insp is 206. If it is, we then call the function

SendByteRange() to figure out which byte ranges to send tothe client. iRsp is
then returned to end the function. For the default case we first send the

Content-Type and Content-Length:

// Send full entity.
sprintf(szBuf, "Content-Type: %s\r\n", eExtMap[iType] .szType);
sClient->Send(szBuf) ;

sprintf(szBuf, "Content-Length: %d\r\n", sBuf.st_size);
sClient->Send(szBuf) ;
sClient->Send("\r\n");

Thefirst line creates the Content-Type header using the information from
PindType(). The next line sends the buffer to the client and then the

Content-Length header is created and sent. The final line sends the empty line
to mark the transition from headers to entity. Our last check is to make certain
the request method is GET before sendingthe entity body:

if (iMethod == GET) // Don't send unless GET.
{

if (eExtMap[iType] .bBinary == TRUE)
{

iRe = sClient->SendBinary(szPath);

264

209

210

CHECKING THE IF-RANGE

iRc = sClient->SendText (szPath);

Within the if statement, we key on thefile type as held in the eExtMap
array to decide whether to sendthefile as binary or text data. Once done, iRsp
is returned to endthe function,

8.15 Checking the If-Range
‘We used the function IfRange() in the DoHttpi1(), but have notseenit yet.
This function is used to verify the If-Range header, so let us look at it now:

‘ff

// IfRange
‘f

// Find out whether the If-Range tag matches the resource.
if

int IfRange(Headers *hInfo, time_t ttMtime)
{

char *szBuf;
time_t ttDate;

// Check the If-Range header. We must have Range also to be valid.
if ((hInfo->szIfRange != NULL) && (hinfo->szRange != NULL))

{

// Figure out whether it is an etag or date.

if ((hInfo->szIfRange[0] == '"') ||
{hInfo->szIfRange[2] == '"'))}

{

szBuf = new char[SMALLBUF]; // An etag.
sprintf(szBuf, "\"Sd\"", ttMtime);
if (stremp(szBuf, hInfo->szIfRange) == 0)

{

delete [] szBuf;
return TRUE; // Match, send them the resource.

}

265

210

211

=
ie
|
i

CHAPTER 8 THE HTTP/1.1 SERVER

delete [] szBuf;
}
else

{ .

ttDate = ConvertDate(hInfo->szIfRange); // We found a date.
if (ttDate >= ttMtime)

{
return TRUE; // Match, send them the resource.

}

}

return FALSE; // No match.
}

This function combines parts of the other r£ functions we have seen so far.
Thereasonforthis is the possibility for either an entity tag or date for the value.
Luckily, we only have to check two characters to determine which is which:

// Check the If-Range header. We must have Range also to
// be valid.

if ((hinfo->szIfRange != NULL) && (hInfo->szRange != NULL))
{

// Figure out whether it is an etag or date.

if ((hInfo->szIfRange[0] == '"") ||
(hInfo->szIfRange [2] reeyy

Il li

{

Another check which must be madefirst in the function is to see whether we

have both an If-Range and Range headerin the request. An If-Range header
without a Range headeris invalid and ignored, according to the protocol stan-
dard. If this part is satisfactory, we then make our check to determine whether
we have anentity tag or date. The check is made on thefirst and third characters
of the string. If either one is a double quote symbol, then we have an entity tag.
We mustuse both since we may havea situation suchas this:

If-Range: W/"abc"
If-Range: Wed 24, Jul 1996 09:35:27 GMT

266

211

212

Wet

TRANSMISSION OF BYTE RANGES

As can be seen from the example,it is possible for the two to match in the
first position, so we must also check the third position where they cannot match
if the first position matches.

Theentity tag comparisonis similar to before:

szBuf = new char[SMALLBUF]; // An etag.
sprintf(szBuf, "\"Sda\"", ttMtime);

if (strcemp(szBuf, hInfo->szIifRange) == 0)
{

delete [] szBuf;
return TRUE; // Match, send them the resource.

}
delete [] szBuf;

The entity tag is constructed and a strcmp() made to determine whether
. there is a match. Note that we do not check the entity tag sent by the client

against the »*" case as for If-Match or If-None-Match. The syntax for
If-Range only allows an entity-tag as a value.

For the date comparison, we convert the date given by the client to a
time_t value and then makecertainit is greater than or equal to the modifica-
tion time ofthe resource. When wefind a matching condition in either of the
two comparisons, a TRUE valueis returned.

8.16 Transmission ofbyte ranges
Ourlast section for this chapter covers the SendByteRange() function. When-
ever a client requests a byte range retrieval, we must take some extra measures in
its transmission. This is especially pertinent when theclient sends a multiple byte
range request:

‘f

// SendByteRange
if

// Send the given byte ranges back to the client.
‘f

267

212

213

CHAPTER 8 THE HTTP/I.1 SERVER

int SendByteRange(Socket *sClient, Headers *hInfo, char *szPath,
struct stat *sBuf, int iType, int iMethod)

ifstream ifIn;
int iBytes, iCount, iLen,

i, gd;

char *szBuf, *szBoundary;

szBuf = new char [SMALLBUF] ;

if (hinfo->iRangeNum == 1) // Simple response, only one part.
{

iLen = hInfo->rRanges[0].iEnd - hInfo->rRanges[0].iStart + 1;
sprintf(szBuf, "Content-Length: %d\r\n", iLen);
sClient->Send(szBuf);

sprintfi(szBuf, "Content-Type: %s\r\n", eExtMap[iType] .szType) ;
sClient->Send(szBuf);
sClient->Send("\r\n");

if (iMethod == HEAD) // Don’t send an entity.
{

delete [] szBuf;

hinfo->ulContentLength = 0;
return 0;

}

ifIn.open(szPath, ios::binary); // Open the file, binary mode.
ifIn.seekg(hInfo->rRanges[{0].iStart, ios::beg);
icount = 0;

while (iCount < iLen)
{

ifiIn.read(szBuf,

(SMALLBUF < iLen-iCount ? SMALLBUF : iLen-iCount));

iBytes = ifIn.gcount();
icount += iBytes;
sClient->Send(szBuf, iBytes);

}

ifIn.close();
}

else // Do a multi-part MIME type.
{

szBoundary = new char[70];

srand(sBuf->st_mtime);
for (i = 0; i < 68; i++)

{

j = rand();

szBoundary[i] = szMime[{ j % iNumMime];

268

213

214

TRANSMISSION OF BYTE RANGES

}

szBoundary[69] = NULL;

sprintf (szBuf,
"Content-Type: multipart/byteranges; boundary=\"$s\"\r\n",
szBoundary);

sClient->Send(szBuf};

if (iMethod == HEAD) // Don’t send an entity.
{

delete [] szBuf;
hinfo->ulContentLength = 0;
return 0;

ifIn.open(szPath, ios::binary); // Open the file, binary mode.

for (i = 0; i < hInfo->iRangeNum; i++)
{

sClient->Send("\r\n--"); // The boundary marker first.
sClient->Send(szBoundary);
sClient->Send("\r\n");
sprintf(szBuf, "Content-Type: %s\r\n",

eExtMap [iType] .szType);
sClient->Send(szBuf) ; // Now content-type.

sprintf(szBuf, "Content-Range: bytes %d-%d/%d\r\n\r\n",
hInfo->rRanges[i].iStart,
hinfo->rRanges[i].iEnd,
sBuf->st_size);

sClient->Send(szBuf) ; // Now content-range.

ifIn.seekg (hInfo->rRanges[i].iStart, ios::beg);
iLen = hInfo->rRanges[i].iEnd -

hinfo->rRanges[i].iStart + 1;
iCount = 0;

// Read the specified number of bytes.
while (iCount < iLen)

{

ifIn.read(szBuf,

(SMALLBUF < iLen-iCount ? SMALLBUF : iLen-iCount));
iBytes = ifIn.gcount();

iCount += iBytes;
sClient->Send(szBuf, iBytes) ;

}
}

sClient->Send("\r\n--"); // The ending boundary marker.
sClient->Send(szBoundary);

269

214

215

CHAPTER 8 THE HTTP/I.1 SERVER

sClient->Send("--\r\n");
delete [] szBoundary;
ifiIn.close();

}

delete [] szBuf;
return 0;

}

We have two possible paths for sending byte range responses. Thefirst is the
simple case wherethe client only requests a single byte range. This one is han-
dled much as for any response-a Content-Length is sent along with a
Content-Type and the byte range as an entity body. We check for this type by
checking for the numberofbyte ranges:

if (hInfo->iRangeNum == 1) // Simple response, only one part.
{

iLen = hInfo->rRanges[0].iEnd - hInfo->rRanges[0].iStart + 1;

sprintf(szBuf, "Content-Length: %td\r\n", iLen);
sClient->Send(szBuf) ;

sprintf(szBuf, "Content-Type: %s\r\n",
eExtMap[iType] .szType) ;

sClient->Send(szBuf) ;

sClient->Send("\r\n");

If we do find a single byte range request, then we calculate the number of
bytes by subtracting the start number from the end number and then adding
one. We must add one, since the specification says byte rangesare inclusive. This
length and the media type are then sent to theclient.

We mustnext check for a HEAD request:

if (iMethod == HEAD) // Don’t send an entity.
{

delete [] szBuf;
hInfo->ulContentLength = 0;
return 0;

Even though weare doing a byte range request, it is still possible for a client
to do a HEAD request on it. This might be done byaclient to determine how

270

215

216

TRANSMISSION OF BYTE RANGES

manybytes are left to transfer for a resource before actually requesting the trans-
fer. If it is a HEAD request, we must free our temporary buffer, szBuf, and mark
our byte counttransferred to the client as zero.

For GET, we send the requested byte count:

ifIn.open(szPath, ios::binary); // Open the file, binary mode.
ifIn.seekg(hinfo->rRanges[0].iStart, ilos::beg);
icount = 0;
while (iCount < iLen)

{

ifin.read(szBuf,
(SMALLBUF < iLen-iCount ? SMALLBUF : iLen-iCount));

iBytes = ifIn.gcount ();
iCount += iBytes;
sClient->Send(szBuf, iBytes);

}

ifIn.close();

We start here by openingthefile in binary mode so we can traverse through
the file by byte count. Next we use seekg() to position thefile pointer at the
beginning byte. Now we loop through our read() operation counting bytes and
sending them each time. In the read() call, we don’t simply request the total
length of the byte range, but instead request the smaller of sMALLBUF and
iLen - icount. We mustdothis in order to not overflow szBuf. We adjust
the number of bytes we request each time by the number we read each time.
Once weread and send the requested number, the loop ends and weclosethefile.

For multiple byte ranges, we must do a little more work. Whenaclient
requests multiple byte ranges we need a methodtoreliably separate the parts in
the entity. To do this, a special media type ofmultipart /byterangesis used.
This is based on the MIMEstandard and requires using a boundary marker
between the parts and a separate Content-Type and Content-Rangefor each
part. A typical entity body might resemble the following:

Content-Type: multipart/byteranges; boundary="mimeboundarymarker"
--mimeboundarymarker

Content-Type: text/plain
Content-Range: bytes 0-4/10

abcde

--mimeboundarymarker

2/1

216

217

CHAPTER 8 THE HTTP/1.1 SERVER

Content-Type: text/plain
Content-Range: bytes 5-9/10

fghij
--mimeboundarymarker--

Thebasic idea is that the parts are separated by the boundary marker, which
is an arbitrary string. The quotes surroundingit are not partof the string butare
required when certain characters are present and are always allowed. We always
use them for simplicity of the algorithm. A part starts with two dashes followed
immediately by the marker and a carriage return line feed. Next come any head-
ers applicable to this part. We use Content-Type and Content-Range. The
Content -Rangeheaderis required. Thereis an empty line following the headers
and then the actual data starts. The end of the data is signaled by a carriage
return line feed, two dashes, and the marker. The carriage return line feed is not
part of the data here, but a delimiter. The end of the parts is specified by the
same sequence, plus the addition of two dashes after the boundary marker.
RFC 1521 goes into more detail on the multipart media types.

First we need to create the boundary marker:

szBoundary = new char[701];
srand(sBuf->st_mtime) ;
for (i = 0; 2 < 68; i++)

{

j = rand();
szBoundary[i] = szMime[j % iNumMime];

}

szBoundary[69] = NULL;

To create the boundary marker, we use the standard random numberrou-
tines from the C library over the allowable MIMEalphabet:

// The alphabet used for MIME boundaries.
const

char szMime[] =

"0123456789abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' ()=_
_ . =? wu ;p7ef i=

The alphabet shownhereis stretched over two lines due to book limitations,
but it is actually a single string in the code. We loop over the length of our

272

217

218

TRANSMISSION OF BYTE RANGES

boundary calling rand() each time. With this number we index into the MIME
alphabet using the mod operator to ensure a valid index value. We use the
resource’s last modification time as the seed number, which shouldgiveus suffi-
ciently random behavior. The only qualification on the boundary markeris that
it must not be expected to occur within the body part. Using a 69-character
string over the entire MIMEalphabet should fairly guaranteeit.

The boundary markeris then sent to the client:

sprintf (szBuf,
"Content-Type: multipart/byteranges; boundary=\"%s\"\r\n",
szBoundary);

sClient->Send(szBuf);

Oncethis is done, we check to see whether or not the method used by the
‘client was HEAD. If it was, then we tidy up as before and return from the
function.If it was GET, then we open thefile and start looping through each of
the byte ranges we have. The protocol actually allows combining byte ranges
when they overlap, but for simplicity, we'll assume clients won’t request the
sameparts twice and will just send them exactly whatthey askedfor:

sClient->Send("\r\n--"); // The boundary marker first.
sClient->Send(szBoundary);
sClient->Send("\r\n");

sprintf(szBuf, "Content-Type: %s\r\n", eExtMap[iType] .szType);
sClient->Send(szBuf); // Now content-type.
sprintfi(szBuf, "Content-Range: bytes %*d-%d/%d\r\n\r\n",

hInfo->rRanges[i].iStart, hInfo->rRanges[i].iEnd,
sBuf->st_size);

sClient->Send(szBuf) ; // Now content-range.

ifIn.seekg (hInfo->rRanges[i].iStart, ios::beg);
iLen = hInfo->rRanges[i].iE—nd - hInfo->rRanges[i].iStart + 1;
icount = 0;

// Read the specified number of bytes.
while (iCount < iLen)}

{

ifIn.read(szBuf,
(SMALLBUF < iLen-iCount ? SMALLBUF : iLen-iCount));

iBytes = ifIn.gcount();
iCount += iBytes;
sClient->Send(szBuf, iBytes);

273

218

219

CHAPTER 8 THE HTTP/1.1 SERVER

The code hereis designed to construct a single part of the multipart entity
body. We start out by sending a \r\n-- which delimits the parts. This serves
two purposes here, i.e., the first time through the loop it provides the initial
empty line separating the headers from the entity body. On subsequenttrips, it
provides the carriage return line feed after the part data. Note also that the
boundary marker does not include the quote marks when in use, only in the
Content-Type header. The content -Type headerfor this part is sent next, fol-
lowed by the Content-Range header. The latter header consists of the unit
specifier which is always bytes for us, and then the starting byte marker, a dash,
the ending byte marker, a forward slash, and then the total length of the
resource. Once the headersare sent, we use the same piece of code as when send-
ing a single part to forward the requested numberof bytes.

Onceoutofthe loop, we close the entity body:

sClient->Send("\r\n--"); // The ending boundary marker.
sClient->Send(szBoundary);
sClient->Send("--\r\n");

delete [] szBoundary;
ifIn.close();

We send the ending boundary marker, the one delimited with two dashes on
both ends, andafinal carriage return line feed. The memory for szBoundaryis
freed and thefile closed.

The function ends after freeing the memory used by szBuf.

8.17 Finishing
This chapter has covered the basics of an HTTP/1.1 server. You should have a
good understanding ofhow to translate the protocol elements of HTTP/1.1 into
working codeat this point. In the last chapter, we'll cover how to support the
standard CGIinterface for both OS/2 and Windows NT.

274

219

