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Preface

Pharmacokinetics is the study of the time course of drug absorption,
distribution, metabolism, and excretion. It also concerns the relation­
ship of these processes to the intensity and time course of pharma­
cologic (therapeutic and toxicologic) effects of drugs and chemicals.
Pharmacokinetics is a quantitative study that requires a preexisting
competence in mathematics at least through calculus. It is also a
biologic study and can be very useful to the biomedical scientist.

At a fundamental level, pharmacokinetics is a tool to optimize the
design of biological experiments with drugs and chemicals. All bio­
logists would benefit from some knowledge of pharmacokinetics when­
ever they engage in data analysis. It has become increasingly impor­
tant in the design and development of new drugs and in the reass­
essment of old drugs. Clinical applications of pharmacokinetics have
resulted in improvements in drug utilization and direct benefits to
patients.

There is consensus that the origin of pharmacokinetics can be
traced to two papers entitled "Kinetics of distribution of substances
administered to the body" written by Torsten Teorell and published
in the International Archives of Pharmacodynamics in 1937. Since
this unheralded beginning, the study of pharmacokinetics has matured
rapidly; undoubtedly growth has been stimulated by major break­
throughs in analytical chemistry, which permit us to quantitatively
detect minute concentrations of drugs and chemicals in exceedingly
small volumes of biological fluids, in data processing, and by the bril­
liant insights of many scientists. Dost , Kruger-Theimer, Nelson,
Wagner, Riegelman, and Levy are among those scientists and must be
reserved a special place in the history of the development of phar­
macokinetics.

Our goals in preparing this revision were similar to those that
prompted us to undertake the initial effort. The need for revision
was amply clear to us each time we looked at our files, bulging with
research papers and commentaries on pharmacokinetic methods and

iii
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iv Preface

applications publiahed since 1975. The buzz words today are clearance
concepts, noncompartmental models, and physiologic pharmacokinetics.
Again, we strived to present the material in an explicit and detailed
manner. We continue to believe that Pharmacokinetics can be used in
formal courses, for self-study, or for reference purposes.

We thank our colleagues for their work and publicationa , our
staffs for their labors and support, and our families for their love
and understanding.

Milo Gibaldi
Donald Perrier
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1
One-Compartment Model

The most commonly employed approach to the pharmacokinetic char­
acterization of a drug is to represent the body as a system of com­
partments, even though these compartments usually have no physio­
logic or anatomic reality, and to assume that the rate of transfer be­
tween compartments and the rate of drug elimination from compart­
ments follow first-order or linear kinetics. The one-compartment
model, the simplest model, depicts the body as a single, kinetically
homogeneous unit. This model is particularly useful for the pharma­
cokinetic analysis of drugs that distribute relatively rapidly through­
out the body. Almost invariably, the plasma or serum is the anatomical
reference compartment for the one-compartment model, but we do not
assume that the drug concentration in plasma is equal to the concen­
tration of drug in other body fluids or in tissues, for this is rarely
the case. Rather, we assume that the rate of change of drug concen­
tration in plasma reflects quantitatively the change in drug concen­
trations throughout the body. In other words, if we see a 20% de­
crease in drug concentration in plasma over a certain period of time,
we assume that the drug concentrations in kidney, liver, cerebro­
spinal fluid, and all other fluids and tissues also decrease by 20%
during this time.

Drug elimination from the body can and often does occur by
several pathways, including urinary and biliary excretion, excretion
in expired air, and biotransformation in the liver or other fluids or
tissues. Glomerular filtration in the kidneys is clearly a diffusional
process, the rate of which can be characterized by first-order kinetics,
but tubular secretion in the kidneys, biliary secretion, and biotrans­
formation usually involves enzymatic (active) processes that are ca­
pacity limited. However, as demonstrated in subsequent sections of
the text dealing with capacity-limited and nonlinear processes (Chap.
7), at low concentrations of drug (Le . , concentrations typically as­
sociated with therapeutic doses) the rate of these enzymatic processes
can be approximated very well by first -order kinetics. Hence we find

1
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2 Pharmacokinetics

( 1.1)

(1. 3)

that the elimination of most drugs in humans and animals following
therapeutic or nontoxic doses can be characterized as an apparent
first-order process (Le., the rate of elimination of drug from the
body at any time is proportional to the amount of drug in the body
at that time). The proportionality constant relating the rate and
amount is the first-order elimination rate constant. Its units are
reciprocal time (I.e., min- 1 or h- 1). The first-order elimination rate
constant characterizing the overall elimination of a drug from a one­
compartment model is usually written as K and usually represents the
sum of two or more rate constants characterizing individual elimination
processes:

K = k + k + k' + k + •••
e m m b

where ke and kb are apparent first-order elimination rate constants for
renal and biliary excretion, respectively, and km and kin are apparent
first-order rate constants for two different biotransformation (metabo­
lism) processes. These constants are usually referred to as apparent
first-order rate constants to convey the fact that the kinetics only
approximate first-order.

INTRAVENOUS INJECTION

Drug Concentrations In the Plasma

FOllowing rapid intravenous injection of a drug that distributes in the
body according to a one-compartment model and is eliminated by ap­
parent first-order kinetics, the rate of loss of drug from the body is
given by

~; = -KX (1.2)

where X is the amount of drug in the body at time t after injection.
K, as defined above, is the apparent first -order elimination rate con­
stant for the drug. The negative sign indicates that drug is being
lost from the body.

To describe the time course of the amount of drug in the body after
injection, Eq. (1. 2) must be integrated. The method of Laplace trans­
forms in Appendix A will be employed. The transform of (1. 2) is

sX - X = -KXo
where Xo is the amount injected (I.e., the dose) and s is the Laplace
operator. Rearrangement of (1. 3) yields

_ X
oX=-­s+K

(1.4)
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(1. 5)

1 lOne-Compartment Model

which when solved using a table of Laplace transforms (Appendix A)
gives

X = X e-Kt
o

3

where e represents the base of the natural logarithm. Taking the
natural logarithm of both sides of (1. 5) gives

In X = In X o - Kt (1. 6)

Then, based on the relationship

2.303 log a =In a (1. 7)

Eq. (1. 6) can be converted to common logarithms (base 10, log):

Kt
log X =log Xo - 2.303 (1.8)

The body is obviously not homogeneous even if plasma concentra­
tion and urinary excretion data can be described by representing the
body as a one-compartment model. Drug concentrations in the liver,
kidneys, heart, muscle, fat, and other tissues usually differ from one
another as well as from the concentration in the plasma. If the rela­
tive binding of a drug to components of these tissues and fluids is
essentially independent of drug concentration, the ratio of drug con­
centrations in the various tissues and fluids is constant. Conse­
quently, there will exist a constant relationship between drug con­
centration in the plasma C and the amount of drug in the body:

X = VC (1. 9)

( 1.10)

The proportionality constant V in this equation has the units of
volume and is known as the apparent volume of distribution. Despite
its name, this constant usually has no direct physiologic meaning and
does not refer to a real volume. For example, the apparent volume of
distribution of a drug in a 70 kg human can be several hundred liters.

The relationship between plasma concentration and the amount of
drug in the body, as expressed by Eq , (1. 9), enables the conversion
of Eq , (1. 8) from an amount -time to a concentration-time relationship:

Kt
log C = log Co - 2. 303

where Co is the drug concentration in plasma immediately after injec­
tion. Equation (1.10) indicates that a plot of log C versus t will be
linear under the conditions stated (Fig. 1.1). Co may be obtained by
extrapolation of the log C versus t plot to time zero. This intercept,
CO, may be used in the calculation of the apparent volume of distribu­
tion. Since Xo equals the amount of drug injected intravenously (Le.,
the intravenous dose), V may be estimated from the relationship

AUROBINDO EX. 1018, 15
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Fig. 1. 1 Prednisolone concentration in plasma following an intra­
venous dose equivalent to 20 mg prednisone to a kidney transplant
patient. The data show monoexponential decline that can be described
by Eq. (1.10). Co = intravenous dose/V; slope = -K/2.303. (Data
from Ref. 1.)

V = intravenous dose

Co
( 1.11)

Equation (1.11) is theoretically correct only for a one-compartment
model where instantaneous distribution of drug between plasma and

AUROBINDO EX. 1018, 16



1 lOne-Compartment Model 5

( 1.12)

tissues takes place. Since this is rarely true, a calculation based on
Eq. (1.11) will almost always overestimate the apparent volume of
distribution. Sometimes the error is trivial, but often the overestimate
is substantial and the calculation may be misleading. More accurate and
more general methods of estimating V will be discussed subsequently.

The slope of the line resulting from a plot of log C versus time is
equal to -K/2.303 and K may be estimated directly from this slope.
It is easier, however, to estimate K from the relationship

K = 0.693
t

1/ 2

where t1/2 is the biologic or elimination half-life of the drug. This
parameter is readily determined from a semilogarithmic plot of plasma
drug concentration (on logarithmic scale) versus time (on linear
scale), as illustrated in Fig. 1.1. The time required for the drug
concentration at any point on the straight line to decrease by one-
half is the biologic half-life. An important characteristic of first-
order processes is that the time required for a given concentration to
decrease by a given percentage is independent of concentration. Equa­
tion (1.12) is easily derived by setting C equal to COl 2 and t equal
to t1/2 in Eq. (1.10).

In principle. a plot of the logarithm of tissue drug concentration
versus time should also be linear and give exactly the same slope as
the plasma concentration-time curve. This is illustrated in Fig. 1. 2.

Estimates of CO. t1l2. and K are often obtained from the best
straight-line fit (by eye) to the log C versus time data. However,
a more objective method is to convert all concentration values to log­
arithms, and then to determine the best-fitting line by the method of
least squares, described in elementary textbooks of statistics [3].
Computer programs are available (see Appendix H) that do not require
logarithmic conversions for nonlinear least-squares fitting of data.

Urinary Excretion Data

It is sometimes possible to determine the elimination kinetics of a drug
from urinary excretion data. This requires that at least some of the
drug be excreted unchanged. Consider a drug eliminated from the
body partly by renal excretion and partly by nonrenal processes such
as biotransformation and biliary excretion. as shown in Scheme 1,

Scheme 1

AUROBINDO EX. 1018, 17



6 Pharmacokinetics

2,.--------------------,

( 1.13)

0

I- • 0

u; 0
~ • 0
:> 0 0on 0on • 0:;:: 0

e 0 •
J •• • •c 0 • 0

s 0 ••
~

• 0
0 0

0•~ • 0uc
0 • 0 0u 0
CJ' 0 • •" • 0

00.11- • • 0• •• •

o 5 ~ ~ ~ ~

TIme (h)

Fig. 1.2 Dipyridamole concentrations in serum (0) and heart tissue
(e) after a single oral dose of the drug to guinea pigs. Drug con­
centrations in serum and heart decline in a parallel manner. (Data
from Ref. 2.)

where Xu and Xnr are the cumulative amounts of drug eliminated un­
changed in the urine and eliminated by all nonrenal pathways, re­
spectively. The elimination rate constant K is the sum of the individ­
ual rate constants that characterize the parallel elimination processes.
Thus

K = k + k
e nr

where ke is the apparent first-order rate constant for renal excretion
and k nr is the sum of all other apparent first-order rate constants
for drug elimination by nonrenal pathways. Since in first-order
kinetics, the rate of appearance of intact drug in the urine is propor­
tional to the amount of drug in the body, the excretion rate of un­
changed drug, dXu/dt, can be defined as

dX
--!:!.= k X
dt e

where X is the amount of drug in the body at time t ,
Substitution for X according to Eq , (1.5) yields

dXu -Kt
ill = keXOe

( 1.14)

( 1.15)
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1 / One-Compartment Model 7

( 1.16)

Therefore,

dXu Kt
log d't= log keXO - 2.303

Equation (1.16) states that a semilogarithmic plot of excretion rate
of unmetabolized drug versus time is linear, with a slope of -K/2. 303.
This slope is the same as that Obtained from a semilogarithmic plot of
drug concentration in plasma versus time. Thus the elimination rate
constant of a drug can be obtained from either plasma concentration or
urinary excretion data. It must be emphasized that the slope of the
log excretion rate versus time plot is related to the elimination rate
constant K, not to the excretion rate constant ke.

Urinary excretion rates are estimated by collecting all urine for
a fixed period of time, determining the concentration of drug in the
urine, multiplying the concentration by the volume of urine collected
to determine the amount excreted, and dividing the amount excreted
by the collection time. These experimentally determined excretion
rates are obviously not instantaneous rates (Le ,; dXu/dt) but are
average rates over a finite time period (i. e., f:, Xu I f:,t ) , However, we
often find that the average excretion rate closely approximates the

Table 1.1 Calculation of Excretion Rate Versus Time Data for
Estimating Half-Life

t (h) Xu (mg) lit lIXu liXu/lit (mg/h) t m

0 0.0
1 4.0 4.0 0.5

1 4.0
1 3.8 3.8 1.5

2 7.8
1 3.5 3.5 2.5

3 11. 3
3 9.1 3.0 4.5

6 20.4
6 13.5 2.2 9.0

12 33.9 12 14.7 1.2 18.0
24 48.6

12 6.4 0.53 30.0
36 55.0 12 2.8 0.23 42.0
48 57.8

Note: The symbols are as follows: t , cumulative time after intra­
venous administration; Xu' cumulative amount of unmetabolized drug
excreted in the urine; !:> t , urine collection interval; II Xu' amount of
drug excreted during each interval; f:;. Xul f:;. t, experimentally de­
termined excretion rate; t m, midpoint of the collection interval.

AUROBINDO EX. 1018, 19



8 Pharmacokinetics

instantaneous excretion rate at the midpoint of the urine collection
period. The validity of this approximation depends on the collection
period relative to the half-life of the drug. An individual collection
period should not exceed one biologic half-life and, ideally, should
be considerably less. These considerations are discussed in Appendix
F. It is important to remember that urinary excretion rates must be
plotted against the midpoints of the urine collection periods and not at
the beginning or end of these periods (see Table 1.1 and Figs. 1. 3
and 1. 4).

Fluctuations in the rate of drug elimination are reflected to a high
degree in excretion rate plots. At times the data are so scattered that
an estimate of the half-life is difficult. To overcome this problem an

4.0

~-.
2.0

o~
:c 0
"''" 1.0E.....e
e
0

'....
b
)( 0.5w

0.2

40363018126 24

Time (h)

Fig. 1. 3 Semilogarithmic plot of excretion rate versus time after in­
travenous administration of a drug. Data taken from Table 1.1. Each
excretion rate is plotted at the midpoint of the urine collection interval.
The data are described by Eq. (1.16). Slope = - K/ 2.303.
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100

9

10

20155o 10
Time (h)

Fig. 1. 4 Urinary excretion rate of norephedrine after oral administra­
tion of a single dose of the drug to a healthy adult subjeet , [From
Ref. 4. © 1968 American Society for Pharmacology and Experimental
Therapeutics, The Williams and Wilkins Company (agent).]

alternative approach, termed the sigma-minus method, is available.
This method is considered less sensitive to fluctuations in drug elim­
ination rate. The Laplace transform of Eq. (1.14) is

sX = k X
u e

( 1.17)

Substitution for X from Eq. (1. 4) and rearrangement yields

keX OX =
u s(s + K)

( 1.18)

which when solved gives the following relationship between amount of
drug in the urine and time:

( 1.19)
kX

X =~ (1- e- Kt )
u K

where Xu is the cumulative amount of unchanged drug excreted to
time t . The amount of unmetabolized drug ultimately eliminated in
the urine, X~, can be determined by setting time in (1.19) equal to
infinity; it is given by

AUROBINDO EX. 1018, 21



10 Pharmacokinetics

(1. 20)

For a drug eliminated solely by renal excretion, K = ke and the amount
ultimately excreted, X~, will be equal to the intravenous dose, XO' In
all cases the ratio of Xu to X0 equals the ratio of ke to K. This re­
lationship is commonly employed to estimate ke from urinary excretion
data once the half-life of the drug is determined.

Substitution of X~ for keXO/K in (1.19) and rearrangement yields

00 00 -Kt
X -X =X e

u u u

which in logarithmic form is

00 00 Kt
log (X - X ) = log X ---

u u u 2.303

(1. 21)

(1. 22)

The term (X~ - Xu) is commonly called the amount of unchanged drug
remaining to be excreted, or A.R.E. A plot of log A.R.E. versus time
is linear (Fig. 1.5) with a slope equal to -K/2.303. Hence the elimina­
tion rate constant may be estimated from plots of log drug concentra­
tion in plasma versus time, log excretion rate versus time (the rate
method), and log A.R.E. versus time (the sigma-minus method). To
determine X00, total urine collection must be carried out until no un­
changed dru~ can be detected in the urine. It is incorrect to plot
log (dose - Xu) rather than log (Xu - Xu) versus time.

When possible, total urine collection should be continued for a
period of time equal to about seven half-lives of the drug to accurately
estimate X~. This can be very difficult if the drug has a long half­
life. The problem does not arise if the log excretion rate versus time
plots are used since urine need be collected for only three or four
half-lives to obtain an accurate estimate of the elimination rate constant.
The rate method also obviates the need to collect all urine (Le., urine
samples may be lost or intentionally discarded to minimize the number
of assays) since the determination of a single point on a rate plot simply
requires the collection of two consecutive urine samples.

Renal Clearance

The kinetics of renal excretion of a drug may be characterized not only
by a renal excretion rate constant ke, but also by a renal clearance Clr.
The concept of drug clearance is discussed in Chap. 8. At this point
it suffices to state that the renal clearance of drug is equal to the
volume of blood flowing through the kidneys per unit time from which
all drug is extracted and excreted.

The renal clearance of a drug cannot exceed the renal blood flow.
Clearance has units of flow (I.e., ml/min or liters/h). In pharmaeo-

AUROBINDO EX. 1018, 22
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Fig. 1.5 Semilogarithmic plot of the average percentage unmetabolized
drug remaining to be excreted versus time after oral administration
of 250 mg of chlorpropamide to six healthy subjects. t1/2 =36 h.
(Data from Ref. 5.)

kinetic terms renal clearance is simply the ratio of urinary excretion
rate to drug concentration in the blood or plasma:

dX /dt
CI = u

r C

In practice, renal clearance is estimated by dividing the average
urinary excretion rate, t.Xu / t. t , by the drug concentration in plasma
at the time corresponding to the midpoint of the urine collection
period.

Since excretion rate is the product of the urinary excretion rate
constant and the amount of drug in the body [Eq. (1.14)], we can write

AUROBINDO EX. 1018, 23
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k X
Cl = _e_

r C

Pharmacokinetics

(1, 24)

Recognizing that X/C is simply the apparent volume of distribution
[Eq. (1.9)], we can shown that renal clearance is the product of the
urinary excretion rate constant and the apparent volume of distribu­
tion:

CI = k V
r e

(1, 25)

(1. 27)

All clearance terms can be expressed in terms of a rate constant and
a volume.

An estimation of renal clearance by means of Eq , (1, 23) may be
misleading because like all rate processes in the body, renal excre­
tion is subject to biologic variability. A more satisfactory approach is
to plot urinary excretion rate versus drug concentration in plasma at
the times corresponding to the midpoints of the urine collection periods
(see Fig. 1. 6) . Since rearrangement of Eq. (1, 23) yields

dX
~ = Cl C (1.26)
dt r

the slope of an excretion rate-plasma concentration plot is equal to
renal clearance.

A second method for calculating renal clearance requires simul­
taneous collection of plasma and urine. Integrating Eq. (1.26) from
t1 to t2 yields

t
(X ) 2 = Cl It 2 C dt ,

u t 1 r t1

where (Xu)~~ is the amount of unmetabolized drug excreted in the urine
t

during the time interval from t1 to t 2 and It: e dt is the area under the

drug concentration in plasma versus time curve during the same time
interval (see Fig. 1. 7). Terms for area have units of concentration-

time. A plot of (Xu)~~ versus Ji; C dt yields a straight line with a

slope equal to renal clearance.
Integration of Eq , (1.26) from time zero to time infinity, and re­

arrangement, gives an expression for the average renal clearance over
the entire time course of drug in the body after a single dose:

X
u
OO

X
OO

Cl = u
= Aue

r J; e dt
(1, 28)
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Fig. 1.6 Relationship between urinary excretion rates of tetracycline
and serum concentrations of the drug determined at the midpoints of
each urine collection interval after oral administration of a 250 mg dose
to five healthy adults. Two different oral preparations (•• A) were
given to each subject. The open symbols (0. A) denote the maximum
excretion rate for each preparation. The data are described by Eq.
(1.26); the slope of the line is equal to the average renal clearance
of tetracycline in the group. (Data from Ref. 6.)

The term f;e dt or AVe represents the total area under the drug
concentration in plasma versus time curve plotted on rectilinear graph
paper (see Fig. 1. 7) • This method has been used to estimate renal
clearance (see Fig. 1. 8) but is not ideal because it is difficult to col­
lect urine for long periods to get an accurate estimate of Xi'i. par­
ticularly for drugs with long half-lives.
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Fig. 1. 7 Plots of drug concentration in plasma as a function of time
after intravenous administration illustrating, by the shaded region,

(a) f; edt, the total area under the curve, AUe, and (b) ft
t 2 e dt,

the partial area under the curve from t1 to t2' 1

Use of Eqs. (1.27) and (1.28) for calculating renal clearance re­
quires the measurement of areas under the drug concentration in plasma
versus time curves. Several methods are available for determining the
area under a curve. For each of these methods it is essential to obtain
a sufficient number of blood samples to characterize adequately the
curve or a portion thereof. A planimeter, which is an instrument for
mechanically measuring the area of plane figures, is often used to
measure the area under the curve (drawn on rectilinear graph paper).
Another procedure, known as the cut and weigh method, is to cut out
the area under the entire curve on rectilinear graph paper and to
weigh it on an analytical balance. The weight thus obtained is con­
verted to the proper units by dividing it by the weight of a unit area
of the same paper. A third method to determine the area under the
curve is to estimate it by means of the trapezoidal rule (see Appendix
D). Other methods are described by Yeh and Kwan [7].

An exact mathematical method for determining the total area under
the plasma concentration-time curve is to convert Eq , (1. 10) to its
exponential form and integrate over the time interval zero to infinity.
Equation (1.10) expressed as natural logarithms is

In e =In eo - Kt (1. 29)
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Fig. 1. 8 Relationship between cumulative amount of tetracycline ex­
creted after 72 h and the total area under the tetracycline concentration
in serum versus time curve after oral administration of a 250 mg dose to
five healthy adults. Two different oral preparations (e ,A) were given
to each subject , The data are described by Eq. (1.28); the slope of
the line is equal to the average renal clearance of tetracycline in the
group. (Data from Ref. 6.)

Therefore,

C=Ce-Kt
o

Integration from time zero to time infinity yields

Co -Kt co Co
AUC =- -K- e =If

o

(1. 30)

(1. 31)

Therefore, the total area under the plasma drug concentration-time
curve is the plasma concentration at time zero, obtained by extrapola­
tion, divided by the apparent first-order elimination rate constant of
the drug. Since most drugs do not distribute instantaneously between
plasma and tissues, Eq. (1. 31) will usually underestimate the total
area under the drug concentration in plasma versus time plot after
intravenous administration. This error may be negligible or sub­
stantial, depending on the distribution and elimination characteristics
of the drug.
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Systemic Clearance

Pharmacokinetics

It has been shown that the product of the urinary excretion rate con­
stant ke and V is equal to renal clearance [Eq. (1.25)]. The product
of the elimination rate constant K and V also yields a clearance term,
which has alternatively been called plasma clearance, total body clear­
ance, or systemic clearance. We will use the last-mentioned term and
the designation CIs. It can be shown that the systemic clearance is
given by the ratio of the intravenous dose to the total area under the
drug concentration versus time curve. Since Clr = keV [according to
Eq. (1. 25)], we can transform Eq. (1. 28) to the expression

X
OO

u
V = k • AVC

e

Since we can show by rearranging Eq. (1. 20) that

x: Xo
k =If

e

it follows that

(1. 32)

(1. 33)

(1. 34)
Xo

CIs = VK = AVC

where Xo is the intravenous dose.
Systemic clearance represents the sum of the clearances of all in­

dividual processes involved in the elimination of drug from the body.
It is particularly useful for comparing data obtained using different
compartmental models and for relating pharmacokinetic and physiologic
processes. A comprehensive discussion of clearance is presented
in Chap. 8.

Another particularly useful relationship, from which the apparent
volume of distribution can be estimated, is obtained by rearranging
Eq. (1. 34):

Xo
V=K.AUC (1.35)

This relationship is used very widely for calculating the apparent
volume of distribution. The validity of Eq. (1. 35) is not dependent
on instantaneous distribution of drug between plasma and tissues, as
is the case for Eq. (1.11). Accordingly, Eq. (1. 35) can be applied in
principle to many compartmental models. When applied to one-com­
partmental models, it is often called the area method for estimating
apparent volume of distribution and V is sometimes written as Var ea.
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Scheme 2 illustrates parallel routes of drug elimination; one is urinary,
the kinetics of which have been discussed, and the other is metabolism.

Scheme 2

k

~7Xu
X

-------~M~Mk f T

In this scheme X, Xu' and ke are as defined previously, M is the
amount of metabolite in the body, and MT is the total amount of metabo­
lite eliminated by renal and/or biliary pathways as well as by metabo­
lism (Le , , where the primary metabolite M is further biotransformed).
The constants kf and km are the respective apparent first-order rate
constants for metabolite formation and elimination. The time course of
metabolite levels in the body is a function of the rates of formation and
elimination of the metabolite:

dM
Cit =kfX - kmM

The Laplace transform of this equation (see Appendix A) is

sM = kfX - kmM

Solving for Mand substituting for X from Eq. (1. 4) yields

kfX O
M = -

(s + k )(s + K)
m

(1.36)

(1.37)

(1. 38)

which when solved for M, employing a table of Laplace transforms,
gives

klo -kmt -Kt
M = (e - e )K-k

m
(1. 39)

(1. 40)

This equation permits calculation of the amount of metabolite in the
body at any time after intravenous injection of a dose X0 of a drug.
Dividing both sides of this equation by the apparent volume of distribu­
tion of the metabolite Vm yields

kfX O -kmt -Kt
Cm =V (K _ k ) (e - e )

m m
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(1. 41)

which describes the plasma concentration of metabolite Cm versus
time curve following the intravenous administration of parent drug.

It is informative to consider two different cases, one in which km
is greater than K and the other where K is greater than km• At one
time the general assumption was that km was always greater than K
since metabolites were considered to be more polar and hence more
readily eliminated from the body than the parent drug. This assump­
tion may be true when polar conjugates such as glucuronides and
glycine conjugates are the major metabolites of a drug. However, the
assumption is often not true when biotransformation results in acetyla­
tion or oxidation. If km is larger than K, then at some time after

drug administration e -kmt will approach zero, whereas e -Kt still has a
finite value resulting in Eq , (1. 40) reducing to

kfX O -Kt
Cm ~ V (k - K) e

m m

which when written in logarithmic form becomes

(1. 42)
Kt

--'--'---- - -2.-3-0-3
k~O

logCm~logV (k -K)
m m

(1. 43)

Therefore, a plot of log plasma concentration of metabolite versus time
will eventually become linear and parallel to the curve of log plasma
concentration of unchanged drug versus time (I.e., both will have a
slope of -K/2. 303), as illustrated by Fig. 1. 9. From a practical point
of view, this will be obvious only when km is several times larger
than K.

Conversely, if K is larger than km, metabolite concentration in
the plasma will decline more slowly than the concentration of unchanged
drug. In this instance the equation analogous to (1. 42) is

kfX O kmt
log Cm ~log V (K - k ) - 2.303

m m

The terminal slope of a plot of the logarithm of metabolite concentration
versus time is -km/2.303 (Fig. 1.10). Again the linear segment will
be obvious only when K is several times larger than km. In either
instance (Le , , when km > K or when K > km), the closer K and km are,
the more difficult it is to delineate a linear segment of the curve. It is
important to point out that by simply following metabolite concentration
in the plasma as a function of time and obtaining a linear portion of a
curve, one does not know whether the slope yields km or K. To re­
solve this dilemma, either the apparent first-order elimination rate
constant of the drug, K, must be known, or in some limited circum­
stances the metabolite can be administered as such and its elimination
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Fig. 1.9 Plasma concentrations of propranolol (0) and propranolol
glucuronide (.) after a 0.05 mg/kg intravenous dose of proprano­
lol to five normal volunteers. After about 4 h the concentrations of
parent drug and metabolite decline in parallel since the metabolite
has a shorter half-life than propranolol. (From Ref. 8.)

rate constant determined. Regardless of which rate constant (K or km)
is determined from the terminal linear segment of the curve, the other
rate constant can be estimated by the method of residuals (see Ap­
pendix C for a discussion of this method).
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Fig. 1. 10 Individual plasma concentrations of metoprolol (.,0), a­
hydroxymetoprolol, a metabolite, formed after administration of meto­
prolol (., 0), and a- hydroxymetoprolol after administration of the
metabolite per se ( ... , ~) in two dogs. The half-life of the metabolite
is considerably longer than the half-life of the parent drug. (From
Ref. 9. © 1979 Plenum PUblishing Corp.)

Metabolite Excretion In the Urine

Urinary excretion data for a metabolite may be employed to determine
the elimination kinetics of the parent drug and of the metabolite. Ac­
cording to Scheme 3

Scheme 3
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the differential equation describing the appearance of metabolite in
the urine is given by

dM
-.2!. = k M
dt mu

21

where Mu is the amount of metabolite in the urine. Mnr is the
amount of metabolite eliminated by all processes other than renal
elimination. The constant kmu is the apparent first-order rate con­
stant for the excretion of metabolite in the urine, and kmnr is the
sum of all apparent first-order rate constants for the elimination of
metabolite other than by renal excretion. The elimination rate constant
of the metabolite km is the sum of these two rate constants (I.e.,
km =kmu + kmnr).

The Laplace transform of (1. 44) is

sM = k M
u mu

Substitution for Mfrom (1. 38) and solving for M yields
u

k kfX OM = mu
u s(s + k )(s + K)

m

(1. 45)

(1. 46)

Solving for Mu employing a table of Laplace transforms results in the
following relationship between metabolite levels in the urine and time:

-Kt ]
K(: - K)

m
(1. 47)

(1. 48)

(1. 49)

Rearrangement of (1. 47) yields

k k X [ -k t ]M :: mu f 0 1 + 1 (Ke m _ k e- Kt)
u k K k -K mm m

At time t = 00, Mu equals M~, the amount of metabolite in the urine
at infinity, which is given by

k kfX O00 mu
Mu :: k K

m

Substituting M~ for the term kmukfXO/kmK in (1. 48) and rearranging
yields

MOO -k t
MOO _ M = u (k e- Kt _ Ke m)

u u k -K m
m

(1. 50)
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A second biexponential relationship may be obtained by substttutmg
in (1. 44) the value of M from (1. 39) . This gives the rate expression

dM
u

dt
(1. 51)

Assuming that km is greater than K, a plot of either log (M~ - Mu)
versus time or log (dMu/dt) versus time will result in a biexponential
curve (Fig. 1. 11). The apparent first-order elimination rate constant
K of the parent drug can be estimated from the slope of the terminal
linear portion of each curve, which equals -K/2.303. Figure 1. 12
shows the correlation between the half-life of antipyrine determined
by following the decline of drug concentrations in plasma and that
determined from a semilogarithmic plot of the urinary excretion rate

50 5

l
~';;10 "-:::E C', oS8 ='

~ ~
5 O.5~

<I

1 0.1
o ro ro ~ ~ ro w

Time (h)

Fig. 1.11 Semilogarithmic plots of [M~ - Mul (0) and lIMu/lit (0)
versus time after intravenous administration of a drug. The data are
described by Eqs. (1. 50) and (1. 51), respectively, for a situation
where km is greater than K.
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Antipyrine half-life (h)

Fig. 1.12 Correlation between the half-life of antipyrine determined by
following the decline of drug concentrations in plasma and that deter­
mined from a semilogarithmic plot of the urinary excretion rate of an
antipyrine metabolite, 4-hydroxyantipyrine, versus time in individual
patients. It is evident that the elimination rate constant of the metabo­
lite, km, is significantly larger than the elimination rate constant of
antipyrine, K. n = 17, r = 0.89, P < 0.001. (From Ref. 10.)

of an antipyrine metabolite, 4-hydroxyantipyrine, versus time in in­
dividual patients. Application of the method of residuals (see Ap­
pendix C) in both instances will enable estimation of km, the apparent
first -order elimination rate constant of the metabolite. If, however,
K is larger than km, km can be determined from the slopes of the
terminal linear phases of these plots and K can be determined from the
slopes of the residual lines. Without prior knowledge of either K or
km, one cannot tell whether the slope of the terminal linear segment
of the urinary excretion-time plots yields K or km.

With regard to the use of (1. 50) and (1. 51) for evaluating the elim­
ination kinetics of a drug and its metabolite, the same factors must be
considered as discusaed for the analogous equations (1.15) and (1. 21)
for urinary excretion of parent drug. As with (1.15), experimentally
determined urinary excretion rates of metabolite in (1. 51) are not
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(1. 52)

instantaneous rates but average rates over a finite period of time co

(see Appendix F). With respect to (1. 50), the determination of Mu
requires urine collection to be carried out until no further metabolite
can be detected in the urine. This may present difficulties if the
parent drug or metabolite has a long half-life.

Determination of Metabolite-Associated Rate Constants

Scheme 3 suggests that three rate constants are of interest in char­
acterizing the time course of metabolite in the body: the formation
rate constant kf' the overall rate constant for elimination of metabo­
lite km (I.e., the sum of kmu and kmnr), and the rate constant for
renal excretion of metabolite kmu' The formation rate constant is
usually estimated by determining the total amount of metabolite ulti­
mately excreted in the urine. Equation (1.49) can be rearranged to
give

k KM
co

m u
k f = k X

mu 0

If the metabolite is eliminated solely by renal excretion (f ,e , , km =
kmu), then

(1. 53)

Hence the ratio of total amount of metabolite ultimately excreted in
the urine to the intravenous dose, times the rate constant for elimina­
tion of parent drug, is equal to the formation rate constant if the
metabolite is subject to neither further metabolism nor nonrenal elim­
ination in the body.

Kaplan et al. [l1J have proposed a more general method for esti­
mating kf. This method is often limited to animal studies, for it
requires the administration of the metabolite. To determine kf in
Scheme 3, one must give the parent drug intravenously and determine
its elimination rate constant K, as well as the area under the metabo­
lite concentration in plasma versus time curve resulting from this
administration. Then one must administer intravenously a dose of
metabolite that is equimolar to the dose of drug and again determine
the area under the metabolite concentration versus time curve. The
estimate of kf is given by the relationship

k = KeI; Cm dtJ X

f J;C
m

dt
(1. 54)
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(1. 55)

where £/0' Cm dtJx and fa Cm dt represent the total areas under the
metabolite concentration-time curves after administration of the drug
and metabolite, respectively.

Several relationships have been described for the determination
of the rate constant for overall elimination of metabolite from the
body, k m [see Eqs. (1.40), (1.50), and (1.51)]. The rate constant
may be estimated from either the slopes of the linear portions of the
appropriate semilogarithmic plots or the residual curves derived from
such plots (see Appendix C). Other methods have been proposed for
estimating k m [12] but seem to offer no particular advantage.

No general method appears to be available for estimating the rate
constant for renal excretion of metabolite, k mu ' other than to admin­
ister the metabolite intravenously and carry out the appropriate mea­
surements. This is usually not possible in humans. On the other
hand. the renal clearance of the metabolite Clr m is relatively easily
determined after administering the parent drug by determining metabo­
lite concentrations in plasma and urine and applying equations analogous
to Eqs. (1. 23), (1. 27). or (1. 28); for example,

dM Idt
Cl = u

rm Cm

or

Cl =--""---­
rm

Interpretation of Total Radioactivity Data

(1. 56)

(1. 57)

Many studies in laboratory animals and some studies in humans involve
the administration of radiolabeled drug. Often, the results of such
studies are expressed in terms of total radioactivity in plasma. Some­
times, drug studies are initiated before a specific assay is available
and the results are reported in terms of the concentration of apparent
drug in plasma. In either case, great care must be exercised in at­
tempting to carry out a pharmacokinetic analysis of such data. The
concentration of total radioactivity or apparent drug in plasma, CT,
must be viewed as the sum of the concentrations of parent drug, C,
and all metabolites that are detected by the assay method, CMT' The
time course of unmetabolized drug after intravenous administration
is given by

Xo -Kt
C =y-e
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(1. 58)

Equation (1.40) describes the time course of a single metabolite in
the plasma after intravenous administration of parent drug. This
equation applies to each primary metabolite arising from the admin­
istered drug. Consequently, the plasma concentrations of all pri­
mary metabolites can be expressed by

n (kf)iXO -(k )i t -Kt
C = 2: (e m - e )

MT i=l (Vm)i[K - (km)i]

Combining Eqs. (1.57) and (1.58) and rearranging terms, we can
show that

(1. 59)

where (kf)i' (Vm}f, and (km)i are the apparent first-order formation
rate constant, the apparent volume of distribution, and the apparent
first-order elimination rate constant, respectively, for each of the n
primary metabolites, V is the apparent volume of parent drug, K is
the apparent first-order rate constant for drug elimination, and Xo
is the intravenous dose of drug.

If the individual rate constant for elimination of every primary
metabolite is greater than the elimination rate constant of administered
drug [Le., (km)i > K], a semilogarithmic plot of total radioactivity or
apparent drug concentration in plasma versus time will yield a biexpo­
nential curve and the slope of the terminal segment is equal to
-K/2.303. The same applies to plots of urinary excretion rates of
total radioactivity versus time [i.e., log d(XT)u/dt versus t] and to
sigma-minus plots for total radioactivity (I.e., log [(XT);i - (XT)u]
versus t ,

Hence under special circumstances which can be neither predicted
nor assumed, one may find that the half-life of elimination of total
radioactivity is equal to the elimination half-life of parent drug. Since
one is not certain of the chemical species being measured by counting
total radioactivity. no other pharmacokinetic parameter, including ap­
parent volume of distribution, can be calculated. Perhaps the most
useful pharmacokinetic information that may be derived unambiguously
from studies based on total radioactivity is that the drug administered
must have a biologic half-life equal to or less than the apparent half­
life of elimination of total radioactivity.

AUROBINDO EX. 1018, 38



1 / One-Compartment Model

INTRAVENOUS INFUSION

Drug Concentration In the Plasma
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If a drug is administered intravenously at a constant rate, the follow­
ing differential equation may be written for the change in amount of
drug in the body with time:

dX-= k -KX
dt 0

(1. 60)

(1. 61)

(1. 62)

where kO is the rate of drug infusion, expressed in amount per unit
time. The Laplace transform of (1. 60) is

_ kO
sX = -- KX

s

Rearrangement yields

kOX = --"---
s(s + K)

Solving (1.62), employing a table of Laplace transforms, gives the
following relationship between the amount of drug in the body and
time:

which can be written in concentration terms:

C = :~ (l - e -Kt)

(1. 63)

(1. 64)

(1. 65)

During continuous constant rate intravenous infusion drug concen­
trantions in plasma increase according to Eq. (1. 64) but eventually
approach a constant value (Le., as t + 00, e-Kt + 0 and C + kO/VK).
This constant drug concentration or plateau is sometimes called infusion
equilibrium but is actually a steady-state situation since at this con­
centration the elimination rate equals the infusion rate and dC/dt = O.
The steady-state concentration in plasma Css is given by

kO
C ss = VK

After infusing a drug for a period of time equal to four biologic half­
lives, drug concentrations in plasma are within 10% of steady state.
Infusion for a period of time equal to seven half-lives results in con­
centrations within 1% of steady state. Drug concentration in plasma
at steady state is directly proportional to the infusion rate and in­
versely proportional to the systemic clearance (Le ,; the product of
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V and K) of the drug. The systemic clearance of a drug is readily
calculated from the ratio of infusion rate to steady-state drug concen­
tration in plasma:

k
OCI = VK =-

s C
ss

(1. 66)

The elimination rate constant and half-life of a drug may also be
calculated from data collected during infusion to steady state. Sub­
stitution for kO/VK in Eq. (L 64) according to Eq. (1. 65) yields

-Kt
C =C (1 - e ) (1.67)ss

Upon rearrangement it can be shown that

C -C
ss

C
ss

Therefore,

(1. 68)

(1. 69)
Kt--=:.-=--- = - -2.-3-0-3

C - C
ss

log C
ss

A semilogarithmic plot of (Css - C) ICss versus time yields a straight
line with a slope of -K/2. 303. The elimination rate constant may be
estimated directly from the slope. The half-life may be estimated
either directly from the semilogarithmic plot or from K by rearranging
Eq. (1.12),

t = 0.693 (1.70)
1/2 K

The elimination rate constant may also be determined using the
declining drug concentration in plasma versus time data collected
after stopping the infusion. The differential equation describing these
data is simply

dC = -KC
dt

The Laplace transform of Eq. (1. 71) is given by

se- C = -KC
max

(1. 71)

(1. 72)

where Cmax is the drug concentration in plasma when the infusion was
terminated, (I.e., the initial condition for the postinfusion period).

On rearranging Eq. (1.72), we obtain

C- max
C=-­

s+K
(1. 73)
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Solving Eq. (1. 73) for C using a table of Laplace transforms gives

29

-Kt'
C = C e

max

or, in logarithmic form,

(1. 74)

(1. 75)Kt'
log C = log Cmax - 2.303

where t' is the time after stopping the infusion. The time during
which infusion took place is generally designated as T. If the infusion
has been carried out for a sufficiently long period such that T > seven
biologic half-lives, Cmax = Css = kO/VK. If the infusion were termin­
ated before reaching steady state, Cmax = kO(l - e-KT)/VK. Depend­
ing on the infusion time, Eq. (1.75) may be transformed to either

or

k O Kt'
log C = log VK - 2.303

k O -KT
log C =log VK(1 - e )

Kt'---
2.303

(1. 76)

(1.77)

(1. 78)

(1. 79)

In either case a semilogarithmic plot of postinfusion drug concentra- .
tion in plasma versus time t' will yield a straight line with a slope equal
to -K/2.303. The time course of drug concentrations in plasma during
and after constant rate intravenous infusions is shown in Fig. 1.13.

Data obtained from infusion studies are also useful for estimating
the apparent volume of distribution of a drug. For example, we can
show on rearranging Eq. (1. 65) that

k
O

V=CK
ss

Alternatively, if the infusion is terminated before attaining steady
state, then

k (l - e- KT)
o

V = C K
max

where Cmax is the drug concentration in plasma when the infusion was
stopped and T is the infusion time. The validity of Eq. (1. 79) requires
the assumption of a one-compartment model, but Eq. (1. 78) is a gen­
eral relationship that applies to many situations.

If drug concentration versus time data are obtained during as
well as after constant rate intravenous infusion, one can calculate sys­
temic clearance CIs and apparent volume of distribution V from the
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Fig. 1.13 Drug concentrations (log scale) in plasma during and after
constant rate intravenous infusion to steady state. The dashed line
denotes the decline of drug concentration in plasma after an infusion
period shorter than the time required to reach steady state.

total area under the concentration versus time curve. The area under
the up-curve is obtained by integrating Bq , (1. 64) from t =0 to
t = T. The area under the down-curve is obtained by integrating
Eq. (1. 74) from t' = 0 to t' = 00. Combining these areas and simplify­
ing terms yields

kOT
AUC = VK

Therefore,

kOT
CI = VK =--

s AUC

and

(1. 81)

(1. 82)
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(1. 83)

where T is the infusion time. Equations (1. 81) and (1. 82) apply ir­
respective of infusion time and do not require attainment of steady
state. Both are general expressions that may be used for many phar­
macokinetic models.

Simultaneous Rapid Intravenous Injection and Intravenous Infusion

Since the time required to reach steady state will be very long for a
drug with a long half-life, it is often desirable in such cases to ad­
minister an intravenous loading dose just before starting the intra­
venous infusion. The loading dose should be large enough to yield
the desired steady-state drug concentration in plasma, Css' immedi­
ately upon injection. The infusion rate should be fast enough to main­
tain this concentration. If we know the drug concentration we wish
to maintain, the appropriate infusion rate is given by rearrangement
of Eq. (1.65) (i.e., kO = CssVK). Recalling that V is the proportion­
ality constant relating drug concentration in plasma to total amount
of drug in the body, one concludes for a one-compartment model that
the loading dose Xo equals CssV, Using this dosage regimen, we
can show that the amount of drug in the body is constant until the
infusion is stopped.

The equation describing the time course of the amount of drug in
the body following simultaneous intravenous injection of a loading
dose and initiation of a constant rate intravenous infusion is the sum
of the two equations describing each process [i. e ,; Eqs. (1.5) and
(1.63)]. Therefore,

k
X X -Kt 0(1 -Kt)= Oe + If - e

Substituting CssV for Xo and CssVK for kO and rearranging terms
yields

X = C V
ss

(1.84)

Hence the amount of drug in the body is constant throughout the time
course of drug administration.

Urinary Excretion Data

Drug elimination kinetics may also be evaluated from urinary excretion
data obtained during constant rate Intravenous infusion. The dif­
ferential equation for the rate of appearance of unmetabolized drug in
the urine during infusion is the same as that describing urinary ex­
cretion of drug following an intravenous bolus injection [i.e., dXu/dt =
kjtX; Eq ._( 1.14)]. The Laplace transform ~ this expression is
sXu = keX [Eq. (1.17)]. Substituting for X according to Eq. (1. 62)
and rearranging terms yields
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(1. 85)X = --"--=--­
u

kekO
2

s (s + K)

Solving for Xu (see Appendix A) gives the following relationship be­
tween the cumulative amount of drug in the urine and time:

k k
X =~t

u K (1. 86)

When the drug has been infused for a sufficient period so as to ap­
proach steady state in the plasma. the term e- Kt approaches zero and
Eq , (1.86) reduces to
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Fig. 1. 14 Cumulative amount of unmetabolized drug excreted in the
urine as a function of time during constant rate intravenous infusion.
The data are described by Eq , (1. 86) .
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(1. 87)

(1. 88)

Accordingly, a plot of the cumulative amount of excreted drug versus
time is curvilinear initially but eventually becomes linear (see Fig.
1.14). The slope of the linear region is kekO/K. Extrapolation of the
linear segment of the curve to the time axis yields an intercept equal
to 11K, since according to Eq. (1. 87), t ::: 11K when Xu ::: O. In
principle, a plot of cumulative amount of drug excreted during infusion
to steady state versus time permits us to estimate both the overall
elimination rate constant and the excretion rate constant of a drug.

FIRST-ORDER ABSORPTION

Drug Concentrations in the Plasma

A very large number of plasma concentration-time curves obtained
after extravascular (e. g., oral, intramuscular, rectal, etc.) adminis­
tration of drugs can be described by a one-compartment model with
first-order absorption and elimination, despite the fact that first-order
absorption is often difficult to rationalize rigorously based on theoret­
ical principles. The equations describing this type of model are anal­
ogous to those developed for metabolite concentrations in the plasma
and urine. For a drug that enters the body by an apparent first­
order absorption process, is eliminated by a first-order process, and
distributes in the body according to a one-compartment model, the
following differential equation applies:

dX ::: k X - KX
dt a a

where X and K are as defined previously, k a is the apparent first-order
absorption rate constant, and Xa is the amount of drug at the absorp­
tion site. The Laplace transform of (1. 88) is

sX ::: k X - KX
a a

(1. 89)

(1. 91)

(1. 90)

The rate of loss of drug from the absorption site is

dX
~:::-kX
dt a a

The Laplace transform of which is

sX - FX ::: -k X
a 0 a a

where F is the fraction of the administered dose Xo that is ~bsorbed

following extravascular !,.dministration. Solving (1. 912.Jor Xa, sub­
stituting this value for Xa in (1. 89), and solving for X yields
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x = (s + K)(s + k )
a

Pharmacokinetics

(1. 92)

By employing a table of Laplace transforms, the following biexponential
relationship between the amount of drug in the body and time results:

-k t
_ e a) (1. 93)

which in concentr-ation terms is

(1. 94)

(1. 95)

A survey of the literature indicates that for most drugs adminis­
tered extravascularly in conventional dosage forms, the absorption
rate constant is significantly larger than the elimination rate constant.

As a result, at some time after administration the term e-kat approach­
es zero, whereas the term e-Kt is finite, and (1. 94) reduces to

kaFX O -Kt
C = V(k _ K) e

a

This equation describes the postabsorptive phase (Le . , the time when
absorption no longer occurs) of a plasma concentration-time curve.
Equation (1.95) written in common logarithms is

kaFX O Kt
log C = log V(k _ K) - 2.303 (1.96)

a

A plot of the logarithm of drug concentration in plasma versus time
yields a biexponential curve, the terminal portion of which is linear
and described by (1. 96) (Fig. 1.15). Therefore, an estimate of the
elimination rate constant can be obtained from the slope of this terminal
linear segment, which is equal to - K12.303. The absorption rate con­
stant may be calculated by the method of residuals (see Appendix C).
This graphical approach for estimating ka and K is useful only if the
two rate constants are substantially different. In our experience the
method works best if ka/K ~ 3. If this is not the case, the rate con­
stants are best estimated by fitting the concentration-time data to
Eq , (1. 94) with the aid of a nonlinear least-squares regression program
and a digital computer (see Appendix H).

Some drugs are absorbed very slowly, usually because of limited
solubility in the fluids at the site of administration-or by design.
Other drugs are eliminated from the body very rapidly. In either case
absorption may be relatively slow compared to elimination and the ab-
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Fig. 1. 15 Hydrocortisone concentrations in serum after rectal admin­
istration of a retention enema to a healthy subject , The data are de­
scribed by Eq. (1. 94) for the situation where ka is greater than K.
(From Ref. 13, subject 6.)

sorption rate constant may be smaller than the elimination rate constant.
This situation js observed often after the administration of drugs in
sustained-release dosage forms. In such cases the time course of drug
concentration in plasma is described by Eq. (1.94), but the slope of
the linear segment of the semilogarithmic plot of concentration versus
time is equal to -ka/2.303 rather than -K/2.303 and the elimination
rate constant must be determined by the method of residuals (see Ap­
pendix C). This circumstance is frequently called the flip-flop phe­
nomenon. The determination of whether the linear segment of a semi­
logarithmic plot of drug concentration in plasma versus time after ex­
travascular administration is related to the elimination rate constant or
to the absorption rate constant must be based on an independent estima­
tion of the elimination rate constant either after intravenous adminis­
tration of the drug or, in some circumstances, after administration of
a dosage form from which the drug is more rapidly absorbed (e.g.,
a solution).

The time course of concentration in plasma of certain drugs sug­
gests a time lag between oral administration and the apparent onset of
absorption. This lag may be the result of delayed release of drugs
from the dosage form or of a combination of negligible absorption from
the stomach and slow gastric emptying. One usually concludes the ex­
istence of a time lag if the intersection of the extrapolations of the
terminal exponential phase and residual line occurs at a time greater
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than zero. If there is no lag time, both extrapolations intersect the
log concentration axis at the same point. When a lag is evident, the
appropriate equation to describe the time course of drug concentra­
tions in plasma is

kaFX
O

-K(t-t )
C = V(k _ K) [e 0

a

-k (t-t )
a 0 J- e (1. 97)

(1. 98)

(1. 99)

where to is the lag time.
Drug concentration in plasma versus time data after oral adminis­

tration can provide estimates of the apparent absorption and elimina­
tion rate constants of a drug but usually cannot provide unambiguous
estimates of systemic clearance or apparent volume or distribution.
Integration of Eq. (1.94) from time zero to time infinity yields

kaFX O (1 1)
AUC = V(k

a
- K) i{- k

a

where kaFXO/V(ka - K) is the intersection of the extrapolation of the
terminal exponential phase on the log concentration axis (assuming no
lag time). Rearrangement of Eq. (1. 98) yields

FXO
AUC = VK

It follows that the systemic clearance is given by

FXO
CIs = VK = AUC

and the apparent volume of distribution by

FX
O

V=K.AUC

( 1.100)

( 1.101)

where FXO is the amount of drug absorbed or more precisely the amount
of drug reaching the systemic circulation. CIs and V can be estimated
only by assuming absorption to be complete (Le., by assuming that
F = 1). If this is not the case, the ratio of administered dose to AUC
is not CIs but Cls/F and the ratio of administered dose to the product
of K and AUC is not V but V/F.

Some literature reports have incorrectly estimated V after oral ad­
ministration by extrapolating the terminal linear phase of the log con­
centration versus time plot to the log concentration axis and by as­
suming that the intercept is equal to the administered dose divided by
the apparent volume of distribution. As cited above, this intercept is
equal to kaFXO/V(ka - K) rather than to XO/V.
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Determination of Cmax and tmax

Mathematical relationships can be developed to estimate the time at
which a peak plasma concentration of drug should be observed and
the maximum plasma concentration at this time following first-order
input into the body. Expanding Eq. (1.94) yields

kaFX O -Kt kaFX O -kat
C = V(k _ K) e - V(k _ K) e

a a

37

which when differentiated with respect to time gives

( 1.103)

(1. 104)

When the plasma concentration reaches a maximum (C max) at time tmax,
dC/dt =O. Therefore,

k
a
2FX

o -k t k KFX -Kt
a max a 0 max

V(k
a

- K) e = V(k
a

- K) e

which reduces to

k
-Kt

max
~= ....ce,,:-__
K -k t

a max
e

( 1.105)

Taking the logarithm of both sides of Eq , (1.105) and solving for t max
yields

k
t = 2.303 I a
max k - K og K

a
( 1.106)

For a given drug, as the absorption rate constant increases, the time
required for the maximum plasma concentration to be reached decreases.

The maximum plasma concentration is described by SUbstituting
tmax for t in Eq , (1. 94) :

k FX
O

-Kt -k t
C a (max _ e a max) (1. 107)

max = V(k - K) e
a

However, a simpler expression can be obtained. From (1.105) it can
be shown that
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e
-k t -Kt

a max K max
=k e

a
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(1.108)

Substituting for e -kat max, according to (1. 108). in (1. 107) yields

k - K -Kt
a max
k e

a
( 1.109)

which is readily simplified to

FX
O

-Kt
C = --e max

max Y ( 1.110)

( 1.111)

The values of Cmax and t max under the special circumstance
when ka = K is of mathematical interest and will be considered briefly.
Under these conditions. Eq , (1.92) can be written as

KFXO
X = 2

(s + K)

Hence

X = KFX te-Kt
o

KFXote-Kt

C= Y

and

( 1.112)

( 1.113)

( 1.114)
KFXot Kt

log C = log -y- - 2.303

Equation (1.114) indicates that when ka = K, a semilogarithmic plot of
C versus t will contain no linear segments.

Differentiating Bq , (1. 113) with respect to time yields
2

dC KFXO -Kt K FXO -Kt
<it=-y-e --y-te (1.115)

At t max, C =Cmax and dC/dt = O. Therefore,

KFX
O

-Kt K2FX
O

-Kt
__ e max = t e max

v Y max
( 1.116)
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which simplifies to

1
t max = If (1.117)

Substituting t max for t in Eq , (1.113) according to (1.117) gives

KFXO 1 -K(1/K)
Cmax = -V- K"e (1.118)

which simplifies to

FXO -1 0.37FX OC = --e =
max V V

Urinary Excretion Data

(1.119)

(1. 121)

Pharmacokinetic evaluation of urinary excretion data obtained after
extravascular administration involves relationships similar to those
described for evaluating such data after intravenous bolus injection.
Substituting for X in Eq. (1. 14) according to (1. 93) yields

dXu kekaFX O -Kt -kat)
<It = k - K (e - e (1.120)

a

The Laplace transform of Eq , (1.14) is sX u = keX [Eq. (1.17)].
Substituting for Xaccording to Eq. (1. 92) gives

k k FX
OX = e a

u s(s + K)(s + k
a)

which, when solved for Xu' yields

-k t
k k FX0 [ 1 -K t K a ]X - e a _+ e _ ---,~e.::..-__

u - KkK - k k (K - k )
a a a a

( 1.122)

( 1.124)

Equation (1. 122) describes the time course of the cumulative amount
of intact drug in the urine. At time infinity, (1. 122) reduces to

k FX
O

X: = T- (1.123)

Substitution of X~ for keFXO/K in (1.122) and rearrangement yields

X'" -k t
X'" - X = u (k e -Kt _ Ke a)

u u k -K a
a
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Therefore, a plot of log (dXu/dt) versus time or log (X~ - Xu) versus
time, according to Eq. (1.120) or (1.124), respectively, will result
in a biexponential curve. If ka is larger than K, the slope of the
terminal linear segment of the curve will yield an estimate of the first­
order elimination rate constant of parent drug. However, if the op­
posite is true (1. e , , K > ka), the constant obtained from the slope will
be the absorption rate constant. If urine samples are obtained soon
enough following drug administration, an estimate of ka (when ka > K)
or K (when K > k a) may be obtained by the method of residuals (see
Appendix C). However, collection of a sufficient number of urine
samples during the absorption phase to enable a pharmacokinetic analy­
sis of this phase is often difficult unless the drug is absorbed slowly.

Metabolite Concentrations in Plasma and Urine

Metabolite concentrations in plasma and urine following oral or intra­
muscular drug administration may be used under certain conditions to
obtain an estimate of the apparent first-order elimination rate constant
of a drug. As illustrated in Scheme 4,

Scheme 4

Xa

k
a >

;/XU

X

~M·--~)M
f k u

m

three steps are involved in the appearance of the metabolite in the
urine: absorption of the drug, conversion of the drug to a metabolite,
and elimination of the metabolite. Considering the principles developed
in analyzing metabolite concentrations in the plasma and urine following
intravenous injection, it is apparent that the time course of metabolite
in the plasma or urine following first-order absorption would be de­
scribed by a triexponential equation (Le., a third exponential term is
required for the absorption step). Assuming that both k a and km are
significantly larger than K, a plot of log Cm, log (dMuldt), or
log (M~ - Mu) versus time yields a triexponential curve which at some
time becomes linear. An estimate of K may be made from the slope of
this terminal linear segment, which is equal to -K/2. 303.

APPARENT ZERO-ORDER ABSORPTION

The gastrointestinal absorption of drugs is complex and involves
several rate processes, including dissolution, absorption from dif-
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( 1.125)

ferent sites, and gastric emptying, that occur both simultaneously and
sequentially. Despite this complexity the rate of appearance of drug
in the systemic circulation after oral administration can usually be de­
scribed by simple first-order kinetics.

Although the assumption of first-order absorption in pharmaco­
kinetics is almost axiomatic, there are several exceptions. Under cer­
tain conditions, it has been found that the absorption of certain drugs
may be better described by assuming zero-order (constant rate) rather
than first-order kinetics (see Fig. 1.16).

The equation describing drug concentration in plasma under these
conditions is derived in Appendix B and is given by

k (eK T _ l)e-Kt
o

C = VK
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Fig. 1.16 Average hydroflumethiazide concentrations in plasma after
a single 100 mg oral dose to 12 healthy subjects. The solid line repre­
sents the best fit of the data assuming zero-order abosrption [Eq.
(1.125)], and the dashed line represents the best fit assuming first­
order absorption [Eq. (1. 94)]. (From Ref. 16).
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where kO is the apparent zero-order absorption rate constant and t
is time after drug administration. During absorption, T = t. After
absorption apparently ceases, T is a constant corresponding to the
absorption time. In the postabsorption phase t = T + t', where t' is
the time from the start of the postabsorption phase. Equation (1.125)
describes the entire time course of drug concentration in plasma and
applies equally to drug concentrations in plasma during and after
constant rate intravenous infusion. During the absorption phase
C =kO(1 - e-Kt)/VK, which is the same as Eq. (1.64) since T =t ,
The maximum drug concentration in plasma occurs at the end of the
absorption phase when t = T. Thus Cmax = kO(1 - e-KT)/VK. During
the postabsorption period drug concentrations decline according to
Eq. (1. 74) since (eKT - 1)e-K(T+t ') = (1 - e-KT)e-Kt'.

The pharmacokinetic parameters required to describe the time
course of drug concentrations in plasma (1. e., kO/V, K, and T) are
best estimated by fitting the concentration-time data to Eq. (1.125)
with the aid of a nonlinear least-squares regression program and a
digital computer (see Appendix H).
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2
Multicompartment Models

Most drugs entering the systemic circulation require a finite time to
distribute fully throughout the available body space. This fact is
particularly obvious upon rapid intravenous injection. During this
distributive phase, drug concentration in the plasma will decrease
more rapidly than in the postdistributive phase. Whether or not such
a distributive phase is apparent depends on the frequency with which
blood samples are taken. A distributive phase may last .for only a few
minutes, for hours, or even for days.

If drug distribution is related to blood flow, highly perfused
organs and tissues such as the liver and kidney should be in rapid
distribution equilibrium with the blood. The blood and all readily ac­
cessible fluids and tissues may often be treated kinetically as a com­
mon homogeneous unit generally referred to as the central compart­
ment. As discussed in Chap. 1 with respect to the one-compartment
model, kinetic homogeneity does not necessarily mean that the drug
concentrations in all tissues of the central compartment at any given
time are the same. However, it does assume that any change that oc­
curs in the plasma level of a drug quantitatively reflects a change
that occurs in central compartment tissue levels.

Following the intravenous injection of a drug that exhibits multi­
compartment pharmacokinetics, the levels of drug in all tissues and
fluids associated with the central compartment should decline more
rapidly during the distributive phase than during the postdistributive
phase (Fig. 2.1). In contrast, drug levels in poorly perfused tissues
(e. g., muscle, lean tissue, and fat) first increase, ·reach a maximum,
and then begin to decline during the distributive phase (Fig. 2.2).
After some time, a pseudodistribution equilibrium is attained between
the tissues and fluids of the central compartment and the poorly per­
fused or less readily accessible tissues. Once pseudodistribution
equilibrium has been established, loss of drug from the plasma is
described by a monoexponential process indicating kinetic homogeneity
with respect to drug levels in all fluids and tissues of the body. The

45
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Fig. 2. 1 Multiexponential decline of griseofulvin concentration in plas­
ma following intravenous administration of the drug to two healthy
volunteers. (Data from Ref. L)

access of drug to the various poorly perfused tissues may occur at
different rates. Frequently, however, for a given drug these rates
would appear to be very similar and, therefore, cannot be differen­
tiated based solely on plasma concentration-time data. Consequently,
all poorly perfused tissues are often "lumped" into a single peripheral
compartment. It must be realized however, that the time course of
drug levels in a hypothetical peripheral compartment, as inferred from
the mathematical analysis of plasma concentration data, may not ex­
actly correspond to the actual time course of drug levels in any real
tissue. The peripheral compartments of pharmacokinetic models are,
at best, hybrids of several functional physiologic units.

The particular compartment (i. e., central or peripheral) with
which some tissue or part of a tissue may be associated often depends
on the properties of the particular drug being studied. For example,
the brain is a highly perfused organ. However, it is clearly separated
from the blood by an apparent barrier with lipid characteristics. There-
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fore. for lipid-soluble drugs the brain would probably be in the
central compartment. whereas for more polar drugs the brain would
probably be considered as part of a peripheral compartment. Hence,
depending on the drug, the brain may be in the peripheral or in the
central compartment.

As with the one-compartment model, drug elimination in multicom­
partment systems is assumed to occur in a first-order fashion. Trans­
fer of drug between body compartments is also assumed to occur by
first-order processes.

Following intravenous injection many drugs require more than one
exponential term to characterize the resulting decline in plasma concen­
trations as a function of time. The number of exponentials needed to
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Fig. 2.2 Time course of tissue and plasma concentrations of phenol
red in the dogfish shark after intravenous injection of the compound.
Phenol red is so polar that even highly perfused organs such as the
kidney and liver take on the characteristics of a peripheral compart­
ment. 6 kidney, 0 liver, 0 plasma. (From Ref. 2 e 1976 Plenum
PUblishing Corp.)
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describe adequately such a plasma concentration versus time curve
determines the number of kinetically "homogeneous" compartments that
a drug confers on the body. There are several types of n-compart­
ment systems for any n-exponential curve. They differ in that elim­
ination may be assumed to occur either from the central compartment,
from one of the peripheral compartments, or from any combination of
the central or peripheral compartments. Therefore, there are three
types of two-compartment models and seven types of three-compart­
ment models which are mathematically indistinguishable on the basis
of the usually available experimental data (drug concentrations in the
plasma and/or urinary excretion data). In the absence of information
to the contrary, it is usually assumed that drug elimination takes place
exclusively from the central compartment. All subsequent equations
are based on this assumption unless otherwise stated. The basis of
this assumption is that the major sites of biotransformation and excre­
tion (Le ,; the liver and kidneys) are well perfused with blood and are
therefore presumed to be rapidly accessible to drug in the systemic
circulation.

INTRAVENOUS INJECTION

Drug Concentrations In the Plasma

Following the rapid intravenous injection of a drug that distributes in
the body according to an n-compartment system with elimination oc­
curring from the central compartment, the disposition function for the
central compartment ds,c is given by (see Appendix B)

( 2.1)

n
IT (s + E.)

i=2 1
d =S,c n

IT (s +;U
i=l 1

where n is the number of driving force compartments (Le . , compart­
ments having exit rate constants), s is the Laplace operator, Ei is the
sum of the exit rate constants from the ith compartment (e. g., E1 =
k10 + k12 and E2 = k21 in Fig. 2.3), and Ai is a disposition rate con­
stant which may be expressed in terms of the individual intercompart­
mental transfer rate constants and elimination rate constants. When a
drug is administered as an intravenous bolus, the input function ins
is

(2.2)in = X
s 0

where Xois the intravenous dose. The Laplace transform for the
amount of drug in the central compartment as,c is given by the product
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.. k21
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Fig. 2.3 Schematic representation of the body as a two-compartment
open model. Drug elimination is restricted to the central compart­
ment.

of the input and disposition functions (2.1) and (2.2), respectively.
Therefore,

49

(2.3)

n
II (s + E.)

i=2 1
a =Xs ,o 0 n

II (s + \.)
i=1 1

Equation (2.3) may be solved for Xc' the amount of drug in the central
compartment, by taking the anti-Laplace of this equation employing the
general method of partial fractions (see Appendix B).

- \ )
R,

n

n .II
2

(E i \R,) -\ t

X = X 2: 1-=----- e R,
cOn

R,=1 II <A.
i=1 1

i:l R,

(2.4)

Although the central compartment is obviously not homogeneous,
by assuming that the ratio of drug concentrations in the various tis­
sues and fluids of the central compartment is constant (I.e., there is
very rapid distribution between the plasma and the fluids and tissues
of the central compartment), a linear relationship exists between the
drug concentration in the plasma C and the amount of drug in the
central compartment. That is,

X =V Cc c
(2.5)
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where Vc is the apparent volume of the central compartment. This
relationship enables the conversion of (2.4) from an amount-time to
a concentration-time equation which can be expressed as

or

n -A t
C = L A9-e 9­

9-=1

where

(2.6)

(2.7)

(2.8)

n
X II (Eio i=2

A9- =y- n
c II (>. _

i=l I
i:F9-

A plot of the logarithm of drug plasma concentration versus time ac­
cording to (2.7) will yield a multiexponential curve (Fig. 2.4). The
disposition constants A1 to An-1 are by definition larger than An;

-A1t -A 1ttherefore, at some time the terms Ale to An-1e n- will approach
-A t

zero, whereas Ane n will still have a finite value. Equation (2.7)
will then reduce to

- A t
C = A e n

n

which in common logarithms is

A t
n

log C = log An - 2.303

(2.9)

(2.10)

(2.11)

Hence an estimate of An can be obtained from the slope, - An/2.303, of
the terminal exponential phase, and the biologic half life t 1/2 can be
determined either directly from the terminal phase or by employing
the following relationship:

t = 0.693
1/2 A

n
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o\-t1l2 = n min
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Fig. 2.4 Plasma levels of pralidoxime after intravenous administration
of the iodine salt to a healthy volunteer. The data (0) are described
by a biexponential equation; the method of residuals has been applied.
In the notation of the text, A, B, a, e, and Cp correspond to AI'
A2, AI, A2. and C, respectively. 0 Experimental values, 0 residuals.
(Data from Ref. 3. SUbject 2663, dose = 10 mg{kg. )

The zero-time intercept obtained by extrapolation of the terminal linear
phase to t = 0 is An' Successive application of the method of residuals
(Appendix C) will yield linear segment(s) with slope(s) and intercept(s)
from which the remaining value(s) of A and A can be determined.

The constants A R. and AR. may be obtained graphically as shown in
Fig. 2.4 or with the aid of a digital computer. The best approach is to
fit the entire plasma concentration-time curve by means of a digital
computer program which provides a nonlinear regression analysis of
the curve (Appendix H). Once these experimental constants are ob­
tained, other pharmacokinetic parameters can be readily generated.

At time t = 0, (2.7) becomes

n
C = 2 A

o R.=1 R.
( 2.12)

where Co is the zero-time plasma concentration. Substituting the value
of A R. from (2. 8) into (2. 12) yields
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(2.13)

( 2.14)

n
IT (E. -

Xo n i=2 1
Co = V 2: ~n-=-----

c R.=1 IT (A.

i=1 1

i:/:R.

which simplifies to

Xo
CO= V

c

for any multicompartment model. Substitution of I:~=1AR. for CO'
according to (2.12), into (2.14), and rearrangement yields the follow­
ing expression, from which the apparent volume of the central com­
partment can be estimated:

v =c (2.15)

where Xo is the intravenous dose.

Drug Levels in a Peripheral or "Tissue" Compartment

The differential equation describing the rate of change in the amount
of drug in a peripheral compartment Xpj is

dX .
dfl= k 1jXc - EjXpj (2.16)

where k1j is the first-order intercompartmental transfer rate constant
from the central to the peripheral compartment. The value of j varies
from 2 to n , The Laplace transform of (2. 16) (see Appendix B) is
given by

s(a ) = k
1

.(a ) - E.(a )
s,p J s ,c J a.p

(2.17)

Solving for as, p and substituting the value of as, c as given in (2.3)
yields

n
k II(s+E.)

a = X -1L :...i=-=2~__1_

a.p 0 s + E. n
J II (s + ft..)

i=1 1

(2.18)
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the anti-Laplace of which is (see Appendix B)

53

n k
1,

X X " J
PJ' = 0 L., E A

t=l j - 9. n
II (\ - At)

i=l
i:l=t

(2,19)

This equation describes the time course of the amount of drug in the
peripheral compartment following intravenous administration. It is ob­
vious from (2.19) that after a sufficiently long period of time the ex-

-Alt -A itponential terms e to e n - will approach zero and (2.19) reduces
to

n
II (E, - A )

i=2 1 nk
1,X =X J

pj 0 E, - A n
J n II

i=l
i:l=9.

- A t
ne (2.20)

Hence the slope of the terminal exponential phase of a semilogarithmic
plot of tissue level versus time equals - An/2, 303. Therefore, in the
postdistributive phase, plasma and peripheral compartment levels de­
cline in parallel. This is illustrated in Fig, 2.5.

Urinary Excretion Data

It may be possible to obtain from urinary excretion data the pharma­
cokinetic parameters of a drug that confers on the body the pharma­
cokinetic characteristics of a multicompartment model. For a drug elim­
inated from the body partly by nonrenal processes a scheme analogous
to Scheme 1 of Chap, 1 can be drawn:

Scheme 1

k'
e X

X ,--x~u
p(n-l)~ c~x

k' nr
nr

where Xu and Xnr are the respective cumulative amounts of unchanged
drug eliminated in the urine and drug eliminated by all nonrenal path-
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Fig. 2.5 Semilogarithmic plots of the amounts of drug in the central
(A) and peripheral (B) compartments following intravenous adminis­
tration of two drugs, each of which confer the pharmacokinetic charac­
teristics of a two-compartment open model on the body, but which have
different distribution characteristics.

(2.21)

ways to time 1. The elimination rate constant from the central compart­
ment, klO' is the sum of the individual rate constants that character­
ize the parallel elimination processes. Therefore, k10 = k~ + krtr'
where k~ is the apparent first-order rate constant for renal excretion
and khr is the sum of all other apparent first-order elimination rate
constants for drug elimination by nonrenal pathways.

The excretion rate of intact drug, dXu/dt, can be defined as

dX
~=k'X
dt e c

where Xc is as defined previously. Substitution for Xc' according
to (2.4), into (2.21) yields

dX
~=k'X
dt e 0

n

n . IT
2

(Ei - AR,) - A tI 1_= e R,

R,=i n
IT

i=1
ifR,

(2.22)
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or

dX n -" t
u = L A' e R,

dt R,=1 R,

where

n
IT (E. - ,,")

. 2 I JC

A' =k' Xl=-=..c::... _
9- eOn

II (Ai - "R,)
i=1
i*9-

55

(2.23)

(2.24)

A semilogarithmic plot of excretion rate of unmetabolized drug versus
time according to (2.23) will yield a multiexponential curve (Fig. 2.6).
As with the semilogarithmic plasma concentration-time plot, An can be
obtained from the slope, -"n/2.303, of the terminal exponential phase,
and the biologic half-life tl/2 can be determined either directly from
the terminal phase or from "n by (2. 11) • Ah can be obtained by ex­
trapolation of the terminal linear phase to time zero. Application of
the method of residuals (Appendix C) permits estimates of the re­
maining value(s) of A and A'. As with plasma concentration-time data,
the constants AR, and A~ can be better obtained with the aid of a
digital computer (Appendix H). It must be emphasized that the termin­
al slope of the log excretion rate versus time curve is a function of
the overall elimination rate constant "n and not of the urinary excre­
tion rate constant k~. However, k~ can be calculated once the ex­
perimental constants" 9- and A~ are obtained. The sum of the zero­
time intercepts is given by

n

L
9-=1

A' = k'X
9- e 0

(2.25)

This equation can be simplified to

n
" A' =k'XL.,. R, e 0

9-=1

which when rearranged yields the following expression for k' :e

(2.26)

k' =e
(2.27)
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Fig. 2.6 Plasma concentrations (0) and urinary excretion rates (.)
of ampicillin (left) after intravenous injection of ampicillin itself or of
its prodrug, hetacillin (right). The triangles (right) indicate heta­
cillin concentrations in plasma. (Data from Ref. 4.)

Therefore, by knowing the intravenous dose and the values of A~, the
urinary excretion rate constant of intact drug can be determined.

An alternative approach, the sigma-minus method, is also avail­
able, from which the parameters of a multicompartment model can be
evaluated based on urinary excretion data. The Laplace transform of
(2.21) for the amount of drug in the urine as, u is

s(a ) = k'(a )
s .u e s ,c

(2.28)

Substitution for as,c from (2.3) and rearrangement yields

n
II (s + E.)

• 2 I
a = k' Xl:..=-=-----
s,U eOn

II s( s + A.)
i=l I

(2.29)
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(2.30)

Solving (2.29) (see Appendix B) produces the following relation­
ship between the amount of drug in the urine and time:

n n
IT E. IT (E. - An) _ \ t
'2 1 n. 2 1 N 1\

X = k'X !::....- + k'X L 1=-=~ e R,

u eOn e 0 R,=1 n
IT A. IT -A O. -

i=1 1 i=1 R, 1
iH

where Xu is the cumulative amount of unchanged drug excreted in the
urine to time t , The amount of unmetabolized drug ultimately elim­
inated in the urine, X~, can be determined by setting time in (2.30)
equal to infinity:

n
IT E.

. 2 1
X

CO =k' X !::....- (2.31)
u eOn

IT A.
i=1 1

Substitution of Xu for k~XO IT~2 Ei/IT~1 Ai in (2.30) and rearrangement
yields

or

X
CO

- X = k' Xu u e 0

n
IT (E. - A) _\ t

n . 2 1 R, 1\L 1=-.=..::- e R,

x.=1 n
IT AR, (Ai - AR,)

i=1
i#R,

(2.32)

X
CO

u

n -A t
X = L A'n' e R,

u i=R, N

(2.33)

(2.34)

where

n
IT (E. - A 0>

. 2 1 N
A" = k' X 1=-=..:;.- _

R, eOn
IT ). O. - A)

i=1 R, 1 N

iH

A plot of the logarithm of the amount of unchanged drug remaining to
be excreted versus time is multiexponential (Fig. 2.7), and the slope
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Fig. 2.7 SemiIogarithmic plot of the amount of drug remaining to be ex­
creted following intravenous administration of a drug. The data are
described by Eq. (2.33). where n = 2.

of the terminal exponential phase is - An /2.303. the same slope as a
plot of log C versus t or a plot of log (dXu/dt) versus t. The zero­
time intercept of the extrapolated terminal linear phase yields A~. The
other values of AR, and AIi can be obtained from the slope(s) and inter­
ceptts) , respectively, of the residual line(s).

The general merits of these two urinary excretion methods. the
excretion rate method and sigma-minus method, have been discussed
in Chap. 1. It is important to emphasize that the value of urinary
excretion data to obtain the pharmacokinetic parameters of a multi­
compartment model may be limited. In order to perform a multicom­
partment analysis of urinary excretion data. urine must be collected
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(2.35)

(2.36)

with sufficient frequency to enable the characterization of the distribu­
tive phase. Since it is difficult to collect urine samples at a frequency
of greater than every half-hour, the drug being examined must have
a significant distributive phase. This problem is usually not en­
countered with plasma-level data because plasma samples can generally
be collected with almost any desired frequency.

Renal Clearance

One can characterize the kinetics of renal excretion of a drug by a
clearance value as well as by an excretion rate constant. The concept
of clearance is discussed in Chap. 8. Renal clearance, as defined in
Chap. 1, is the volume of blood flowing through the kidney per unit
time from which all drug is extracted and excreted. In pharmaco­
kinetic terms, renal clearance Clr is the urinary excretion rate divided
by the blood or plasma concentration of drug at the midpoint of the
urine collection period:

dX /dt
CI = u

r C

Replacement of dXu/dt by k~Xc' according to (2.21), yields

k'X
CI =~

r C

Recognizing that Xc/C equals Vc [Eq. (2.5)], the following expression
for renal clearance can be obtained:

CI = k' Vr e c
(2.37)

Therefore, renal clearance equals the product of the renal excretion
rate constant k~ and the apparent volume of the central compartment
Vc ' If renal clearance is determined independently by (2.35) and if
an estimate of Vc is available, (2.37) may be employed to calculate k~.

This method for determining k~ has an advantage over the method
which employs (2.27) in that estimates of the zero-time intercepts of
an excretion rate plot, At, may be difficult to obtain.

Probably a more satisfactory method for determining clearance than
the one-point determination obtained by employing (2.35) would be to
rearrange Eq. (2.35) (Le . , dXu/dt = ClrC) and to plot excretion rate
versus the plasma concentration at the midpoint of each urine collection
period. The slope of such a plot equals renal clearance. The utiliza­
tion of rate plots is discussed in Appendix F.

Recognizing that renal clearance as defined by (2.35) equals keY
for a one-compartment model [Eq. (1.25)] and k~Vc for a multicompart­
ment model, it can be readily shown that (1. 27) and (1. 28) also apply
to multicompartment models:
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t t(X )t
2

= CI C dt
u 1 r t

1

Pharmacokinetics

(2.38)

(2.39)

(2.40)

X'" Xu'"
CI = u -

- AUC
r I; C dt

respectively. The term (Xu)ii is the amount of unmetabolized drug

eliminated in the urine during the time interval t1 to t2, and If: C dt

is the area under the blood or plasma concentration versus time curve
during the same time interval t1 to t2. 10 C dt or AUC represents the
total area under the drug concentration in the blood or plasma-time
curve. Therefore, by employing (2.38), an estimate of the renal
clearance of a drug, which distributes in the body according to a
multicompartment model, may be obtained from the slope of a plot of
the amounts of unmetabolized drug eliminated in the urine during time

intervals t1 to t2 [(Xu)iiJ versus the areas under the plasma concen­

tration-time curve (plotted on rectilinear graph paper) during the

same time intervals (If: C dt). The average renal clearance of a drug

can be determined using (2.39) if the total amount of unmetabolized
drug eliminated in the urine and the area under the plasma concentra­
tion-time curve from time zero to infinity are known.

The total area under the curve as required by (2.39) for the cal­
culation of renal clearance can be readily determined employing the re­
lationship

n A9­
AUC = L

9-=1 A 9-

which results from the integration of (2.7) from time zero to infinity.

Systemic Clearance

Systemic clearance CIs or total body clearance is the sum of clearances
for all processes involved in the elimination of a drug from the body
and can be given by an expression analogous to (2. 35), the equation
for renal clearance:

dXE/dt
CI s = --=C=--- (2.41)
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(2.42)

where dXE/dt is the rate of drug elimination by all routes of elimina­
tion. Solving (2.41) for dXE/dt and integrating the resulting expres­
sion from time zero to infinity yields

(XE) ~ = CIs £00 C dt = CIs' AUC

where (XE)Q' is the total amount of drug eliminated, which must be
equal to the dose Xo of drug administered when the drug is given
intravenously. Therefore, substitution of Xo for (XE)ljin (2.42)
and rearrangement provides the following expression for clearance:

(2.43)

Clearance is extensively discussed in Chap. 8.

Metabolite Levels in the Plasma

The formation of a metabolite that distributes in the body according to
a multicompartment model following the intravenous administration of a
drug which also distributes according to a multicompartment model is
illustrated in Scheme 2:

Scheme 2

n
IT (s + A.)

i=1 1

Xp and Xc are as defined previously; M and Mp are the amounts of
metabolite in the central and peripheral body compartments, respec­
tively; the constants kf and k:n are the apparent first-order formation
and elimination rate constants, respectively, of the metabolite; and k1
is the sum of all apparent first-order elimination rate constants for all
processes other than metabolism. In this scheme k10= k1 + kr, where
k 10 is the elimination rate constant from the central compartment for
parent drug.

The disposition functions for the drug, ds,c, and metabolite, ds,m,
in their respective central compartments (see Appendix B) are

n
IT (s + E.)

i=2 1
d =S,c
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CEq. (2.1) J and
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(2.44)

r

d = j~2 (s + Ej)

s .m r
IT (s+y.)

j=l ]

respectively, where Ei and Ai are as defined previously, Ej is the sum
of the exit rate constants from the jth compartment for the metabolite,
and Yj is a disposition rate constant associated with the blood or plasma
concentration-time curve following an intravenous bolus injection of
metabolite and is analogous to Ai' The Laplace transform for the
amount of drug in the central compartment, as, c- following intravenous
injection is given by

n
IT (s + E.)

i=2 1
a = X
s ,c 0 n

IT (s + Ai)
i=l

[Eq. (2.3)J. The input function into the central compartment for the
metabolite, ins,m' is given by

in = k 1 ( a ) (2.45)
s,m f s ,c

Therefore, the Laplace transform for the amount of metabolite in the
central compartment, as, m- following the intravenous injection of a
drug is given by the product of (2.44) and (2.45):

r
IT (s + E.)

'-2 ]a = k' (a ) ...J- _
s .m f s,c r

IT (s + Y
j
)

j=l

Substitution for as,c. according to (2.3). in (2.46) yields

(2.46)

(2.47)

n r
IT (s + E

i
) IT (s + E.)

i=2 j=2 ]
as,m = kfX O n r

IT (s + Ai) IT (s + Y
j
)

i=l j=l

Taking the anti-Laplace of (2.47) and writing a general equation for
the concentration of metabolite in the plasma, em' gives

AUROBINDO EX. 1018, 74



2 I Multicompartment Models 63

C
m

n -ll t r
"A R, + "L R,e L

R,=1 u=l

-Y t
B e u

u
(2.48)

Equation (2.48) indicates that a minimum of five exponential terms
are required to describe the time course of a relatively slowly distrib­
uting metabolite which is formed after intravenous administration of a
drug with multicompartment characteristics. In fact, metabolite concen­
tration-time curves rarely require more than two or three exponential
terms to describe them, reflecting a lack of discrimination of individual
rate processes. A rigorous analysis of metabolite concentration-time
data will provide little information concerning the multicompartment
pharmacokinetics of the parent drug or even concerning the metabolite
itself. The slope of the terminal linear segment of a semilogarithmic
plot of metabolite concentration versus time will probably be equal to
either -lIn/2.303 or -yr / 2. 303 , whichever is smaller. Residual analy­
sis will almost always result in hybrid constants that cannot be related
to either the drug or the metabolite.

INTRAVENOUS INFUSION

Drug Concentrations in the Plasma

The disposition function for the central compartment following constant
rate intravenous infusion of a drug that confers the pharmacokinetic
characteristics of a multicompartment model on the body is identical to
the disposition function for an intravenous bolus injection [Eq. (2. 1) ] :

n
IT (s + lI.)

i=l 1

n
IT (s + E.)

i=2 1
d =

s,C

s
(2.49)

For intravenous in-

in = --:..----­
S

where all parameters are as defined previously.
fusion the input function ins is given by

k (1 - e -Ts)
o

where kO is the zero-order infusion rate in units of amount per time
and T is the time when infusion ends. The Laplace transform for the
amount of drug in the central compartment, as,c is given by the prod­
uct of the input and disposition function, (2.49) and (2.1), respective­
ly. Hence
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s n
II (s + A,)

i=1 1

n
-Ts IT (s + E

i
)

kOO - e ) i=2
a = "--'-----
S,c (2.50)

One may solve for Xc' the amount of drug in the central compartment,
by taking the anti - Laplace of (2.50) (see Appendix B). The resulting
equation is

n
X = k 2:

c 0 R,=1

A T nR,
(1 - e ) II (E, - A) 't

i=2 1 R, - 1\ R,
e

n
- A II (A. - A )

R, i=1 1 R,

i:H

(2.51)

(2.52)

(A. - A )
1 R,

n
-A IT

R, i=1
i:# R,

k
O

n
C =- 2:V

c R,=1

which can be written in concentration terms, employing the relation­
ship Xc = VcC according to (2.5), as follows:

A T nR,
(1 - e ) II (E.

i=2 1

This equation describes the time course of drug in the plasma during
infusion and after cessation of infusion. While infusion is continuing,
T = t and varies with time. When infusion ceases, T becomes a con­
stant corresponding to the time infusion was stopped. Hence, by util­
ization of (2.52), the total plasma concentration-time curve during and
following infusion can be fit with the aid of a digital computer. Con­
sequently, it is not necessary to fit infusion curves by two discrete
equations, one representing the infusion period and one representing
the postinfusion period [5].

During infusion, T = t , and the term (l - eAR,T)e-AR,t in (2.52)

becomes (e-AR,t - 1). Therefore,

1) (2.53)
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Expansion yields

65

k O
C=­

V
c

n
II (E - A )

n i=2 i ~

2: n
~=1 A II 0. - A~)

~ i=1 1
i~~

n

2:
~=1

n
II (E. - A~)

i=2 1 - A~t
e

n
A II (A. - An)
~ i=1 1 '"
i~~

(2.55)

(2.56)

(2.57)

(2.54)

The first term in (2.54) can be simplified to give the following equa­
tion for C:

k [.~ Ei n .~ (Ei - A~) - A t]
C = -.Q. 1=2 _ 2: 1=2 e ~

V n n
c II A. R,=1 A II (A. - A )

i=1 1 ~ i=1 1 R,

i~~

This equation describes the rise in drug concentration with time after
the start of intravenous infusion. Plasma concentrations will increase
with time until the rate of elimination equals the rate of infusion and
then will remain constant. This plateau plasma drug concentration Css
can be determined from (2.55) by setting time equal to infinity (Le.,

by recognizing that the term e - A~t approaches zero with time). Thus

n
k

O
II E.

i=2 1
C = --=-..::.--

ss n
V II A.

c i=1 1

It is evident that the plateau or steady-state concentration Css of drug
is directly proportional to the rate of infusion. The term II !1-2 Ei I

n 1-
Vc ITi=1 Ai can be expanded to k21k31'" knI/VcA1A2A3'" An' which
is equal to 1/Vck10 or 1/Cls [see Eqs. (2.107), 2.169), and (2.215)].
Therefore, substitution of 11 CIs into (2.56) yields

kO
Css =zr

s

By knowing the clearance of a drug, the infusion rate required to
maintain a certain plasma concentration of drug can be readily cal­
culated employing the following rearrangement of (2.57):
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k
O

= C CIss s

Pharmacokinetics

(2.58)

As is apparent from (2.57), the systemic clearance of a drug is
readily calculated from the ratio of infusion rate to steady-state
drug concentration in plasma:

kOCl =­
s C

ss
(2.59)

The terminal disposition rate constant, and hence half-life, of a
drug may also be determined from data collected during infusion to
steady state. Expansion of (2.55), substitution of Css for k O rr~2Ei/
Vc rr ~1 Ai according to (2.56), and rearrangement gives

C
ss

- C

n
IT (E - A )

k O n i=2 i ~ - A~ t
= V L. --n----- e

c ~=1 A rr
9. i=l

i:# 9,

(2.60)

Based on this relationship, a plot of log (Cs s - C) versus time will
be nonlinear. However, since the values of A1 to An-1 are larger

than An' at some time during the infusion the terms e - A1
t to

e - An-1 t will approach zero. At this time (2.60) will simplify to

V A
c n

C
ss

n
kO.rr (Ei

1=2
n
rr

i=l
i:#n

A )
n - A t

n (2.61)

which in logarithmic terms becomes

A )
n

log (C - C)
ss

n
k

O
rr (E

i
i=2= log --'------­

n
V A rr (A. - A )

c n i=l 1 n

i:#n

A tn
2.303

(2.62)

Therefore, a plot of log (C ss - C) versus t should eventually yield
a linear segment with a slope of - An/ 2.303 from which An can be
determined. Half-life t1/2 can be determined either directly from the
terminal linear segment of the resulting plot or from the relationship
[Eq. (2.11)]
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t = 0.693
1/2 A

n

67

The half-life and terminal disposition rate constant may also be
determined from the declining drug concentration in the plasma versus
time data collected following cessation of an intravenous infusion.
Once infusion is stopped. T becomes a constant (i .e .• the time at

A T -Aot.
which infusion is ended). The term (1 - e ~)e '" In (2.52) be-

comes (1 - eA~T)e-A~(t'+T) since

t = t' + T

where t' is the postinfusion time. Rearrangement

(1 A~T) -A~(t'+T) . ld (-A~T 1) -A~t'- e e Yle s e - e .

A T - A t - A T - A t'
~ ~ ~ ~

(1 - e )e = (e - 1)e

of the term

Therefore.

(2.63)

(2.64)

-A T -Aot'
in the postinfusion phase. Substitution of (e ~ - 1)e '" for

(1 - eA~T)e-A~t in (2.52) yields the following relationship between
plasma concentration and time (t'. postinfusion time) during the
period after infusion [6]:

n
- 1) IT (E

i
- A~)

i=2

or

k
O

n

c=v 2
c .e,=1

-A T
(e il.

-A
~

n
IT

i=1
i~~

O.
1

(2.65)

c =
n

2
~=1

- A t'
R e ~

il.
(2.66)

where

-A T n
(e ~ 1) IT (E. - A~)k O i=2

1

R~ V n
c -A IT 0. A.e,)

~
i=1

1

i'#.e,

(2.67)

The coefficient R ~ can be related to A ~. the zero-time intercept
following intravenous injection. Rearrangement of (2.8) yields
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(2.68)n
V II (Ai - AR,)

c i=1
iH

Substituting AR,!XO for rr!l=2 (Ei AR,)!fVc rrf=1 i1:R, (Ai - AR,)] in
(2.67) and solving for A; gives the relationship'

(2.69)

where Xo is the administered dose and equals the product of the in­
fusion rate and the infusion time (Le . , kOT).

From (2.66) it is readily apparent that upon stopping the in­
fusion, drug concentrations in the plasma decline in a multiexponen­
tial manner when plotted semilogarithmically (Fig. 2.8). Determina­
tion of the constants A1 to An and R1 to Rn from postinfusion data
may be carried out in the usual fashion (Le., method of residuals,
Appendix C, or computer curve-fitting, Appendix H). By knowing
the duration of infusion and the infusion rate, A1 to An can be cal­
culated employing (2.69).

10

st,,
~ 5 -,,
<, -c

'"~ R
c .

\.2 \e \
c \.,
o \
C

\0

'" \

g 05 \
• -Q

~ \-2.303
\
I

InfusIon \ Postinfusion

0.1
2 3 4 5

Tune (h)

Fig. 2.8 Average oxacillin concentrations in plasma during and after
constant rate intravenous infusion in four healthy volunteers. In the
notation of the text, R, S, a, and B correspond to R1' R2' A1' and
A2' respectively. (Data from Ref. 7.)
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(2.70)

Equation (2.66), which describes the time course of drug follow­
ing the cessation of infusion, is very useful since it is frequently
difficult or impossible to administer a drug by rapid intravenous
injection because of limited solubility of the drug (requiring a large
injection volume), or because of possible adverse pharmacologic ef­
fects. It may then become necessary to inject the drug slowly (Le.,
as a short intravenous infusion).

If infusion is carried out until steady state is attained [Le., the

infusion time T is sufficiently long so that the term e - A~T in (2.65)
approaches zero], the zero-time intercept R ~, as defined by (2.67),
becomes

V n
c A II 01,-A

t
)

t i=1
i#~

Therefore, the decline of drug in the plasma after cessation of in­
fusion to steady state is given by

(A. - A )
1 t

n
II

i=2
n

A II
~ i=1

i#t

Eq uation (2.69) then reduces to

R XOA
A = 9, t

~ k
O

(2.71)

(2.72)

where R t is as defined by (2.70). Once R 1 to Rn and Al to An are
estimated from postinfusion plasma concentration-time data, AI. can
be calculated employing (2.72).

If a two-compartment system is considered (Le., n = 2), the
larger the ratio of the zero-time intercepts AllA2 following intra­
venous injection, the more readily one can discern the multicompart­
ment characteristics of a drug. As Al approaches zero, the ratio
AllA2 approaches zero and the plasma concentration-time curve be­
comes monoexponential (Fig. 2.9). On the other hand, if Al is ex­
ceedingly large relative to A2' the plasma curve may again appear
to reflect a one-compartment model since. in this case, the plasma
levels during the distributive phase may decline in an apparent mono-
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Fig. 2.9 Semilogarithmic plots of drug concentrations in plasma fol­
lowing intravenous injection of compounds X and Y. The disposition
rate constants A1 and A2 are the same for both drugs, but the ratios
of the coefficients (I ,e .• AI/A2) are markedly different, 0.3 for X
and 300 for Y.

exponential fashion over several orders of magnitude of plasma drug
concentration prior to reaching the terminal exponential phase (Fig.
2.9). This latter phase may not be observed, as the plasma con­
centration of drug may be well below the assay sensitivity for the
drug in plasma.

For a drug that is administered by a bolus intravenous injection,
the ratio of Al to A2 is given by

(2.73)
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where A1 and A2 are obtained from (2.8). However, when a drug
is infused to steady state, the analogous ratio Rl/R2 is given by

(2.74)

where R1 and R2 are obtained from (2.70). It follows that the ratio
Rl/R2 will always be less than the ratio Al/A 2 since A2 is by def­
inition smaller than AI. As a result, the ability to discern the
multicompartment characteristics of a drug following infusion is
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Fig. 2.10 Decline in plasma levels of a drug that confers two-com­
partment model characteristics on the body, following constant rate
intravenous infusion to steady state (-) and following the rapid in­
travenous injection of a dose that gives an initial drug concentration
equal to the steady-state concentration (-----). The biexponential
characteristic of the drug is more evident following the bolus injec­
tion than after terminating the infusion.
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usually decreased (Fig. 2. 10) . Hence the determination of the multi­
compartment model parameters following intravenous infusion may be
very difficult for drugs that do not display prominent multicompart­
ment characteristics upon rapid intravenous injection. However, for
drugs with a very high A1/A2 ratio, infusion may be advantageous
from a pharmacokinetic analysis point of view since the multiexpo­
nential time course of a drug in the plasma may become more ap­
parent. These general observations apply regardless of the number
of compartments required to describe the disposition characteristics
of a drug.

Simultaneous Rapid Intravenous Injection

The time required to obtain steady-state plasma levels Cs s by in­
fusion will be quite long for a drug with a long half-life. It may be
convenient in such cases to administer an intravenous loading dose
to attain immediately the desired drug concentration and then attempt
to maintain this concentration by continuous infusion. The equation
describing the time course of the plasma concentration of drug follow­
ing simultaneous injection of an intravenous loading dose and initia­
tion of infusion is the sum of the two equations describing these two
processes individually, Eqs. (2.6) and (2.55), respectively. Thus

-A t
~

O.
1

~'-------e

n
II

i=2
n
II

i=1
i=l: ~

[

~ E.
i=2 1

n
II A.

i=1 1

n

L
~=1

n
II

i=2
(E.

1

(2.75)

Expanding (2.75). collecting the coefficients of the exponential terms,
and bringing these terms to a common denominator yields

n n

k
O

II E.
XOA~ k o

II (E. A )
- A~ t1 n - 1 ~

i=2 i=2
C --+ L. V

e (2.76)
V n A n

c
II A.

~=1 c ~
II

°i A~)-
i=1

1
i=1
i=l:~
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Since the variable, time, remains in (2.76), it is readily apparent
that the plasma concentration following the intravenous injection and
simultaneous intravenous infusion of a drug that distributes in the
body according to a multicompartment model will not be constant.
For the concentration of drug in plasma to be constant, the coef­
ficient of the exponential term in (2.76) must equal zero. This will
occur when either XOAR, - kO and/or Ei - AR, in (2.76) are zero.
This situation is not possible unless n = 1 (Le , , a one-compartment
model) .

The loading dose required to give an immediate plasma concentra­
tion of drug equal to the steady-state level Cs s would be CssVc'
since Vc relates the amount of drug in the body at time zero (L e. ,
the dose) to the plasma concentration at time zero. However, when
a loading dose of CssVc is administered, and infusion is simultaneous­
ly initiated at a rate equal to CssCls [Eq. (2.58) J, the plasma level
will fall below the desired steady-state concentration, reach a min­
imum, then gradually increase until Css is obtained (Fig. 2.11). An
alternative approach is to administer a loading dose equal to CssVa
with infusion at a rate equal to CssCls' Va is the apparent volume
of distribution of a drug that relates plasma concentration to the
amount of drug in the body durrng the terminal exponential phase

E.....
~
c 2
~e
'E
8c
o

U

o
E
'"o
0:

Time (hI
4 5

Fig. 2. 11 Drug concentration in plasma on simultaneous rapid intra­
venous injection of a dose equal to CssVc' and initiation and mainte­
nance of an intravenous infusion at a rate equal to CssCls' The
drug in question displays multicomparment characteristics.
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(1. e.. ,\', = n) of a plasma concentration versus time curve. This
parameter is discussed in more detail later in the chapter. When a
loading dose equal to Cs s V f3 is administered. the initial concentra­
tion of drug in the plasma will be higher than the desired steady­
state level but will decrease with time to Cs s (Fig. 2.12). This al­
ternative appears to be satisfactory for certain drugs (e. g .• theo­
phylline). However. with other drugs which also have a low thera­
peutic index (e. g., lidocaine). the initial levels may be sufficiently
high as to produce toxicity. In practice a loading dose between the
two extremes (I.e., between VcCss and V SCs s). although not ideal,
would probably be the most satisfactory. This approach appears to
have been successfully employed by Thomson et al , [9J and Rowland
et al , [10J with lidocaine.

20

E
10

"-ao
::l..

c
0

~
5'E..

u
c
0
o..
c

>.
s:
Q
0.. 2x:
f-

\
0\

\

~
'~ 2 -o- ~ ..D.._ A .0- D

862
I L-_-L__I...-_-'-__l..-_-'-__.L..-_----'-_---'

o 4
Time (h)

Fig. 2. 12 Theophylline concentration in plasma on simultaneous
rapid intravenous injection of a dose equal to Cs s V f3' and initiation
and maintenance of an intravenous infusion at a rate equal to CssCls'
(From Ref. 8, subject F. S.; mean plateau concentration =4.92
~g/ml).

AUROBINDO EX. 1018, 86



2 / Multicompartment Models

Consecutive Constant Rate Intravenous Infusions

75

The administration of loading doses equal to CssVc or CssV 13' in con­
junction with a zero-order infusion at a rate of CssCls' presents dis­
advantages for drugs with pronounced multicompartment characteris­
tics. The former may result in blood levels sufficiently below the de­
sired drug concentration so that the patient is left unprotected for
relatively long periods of time. The latter may produce untoward ef­
fects shortly after initiating therapy. An arbitrarily selected inter­
mediate loading dose may still present one or the other problem. In­
terest in this issue has been considerable and several possible solu­
tions have been considered.

Kruger-Thiemer [11] designed a dosing regimen for a drug with
two-compartment characteristics that consists of an intravenous bolus
dose equal to CssVc and a simultaneous intravenous infusion with an
initial rate equal to A1Cs sVc which decreases exponentially with time
to a value of CssCls' This approach is theoretically sound but pre­
sents formidable practical problems. Vaughan and Tucker [12], in an
attempt to overcome the difficulties associated with administering a
drug infusion at an exponentially declining rate, proposed approximat­
ing the exponential rate with a consecutive declining series of con­
stant infusion rates.

A more realistic approach for the rapid achievement and maintenance
of desired concentrations of drug in the plasma is the use of two con­
secutive constant rate intravenous infusions. The second or slower
of the two infusions should be initiated immediately upon cessation of
the first infusion, at a rate equal to CssCls, where Cs s is equivalent
to the desired drug concentration. Selection of the appropriate rate
and appropriate infusion time for the first infusion is not as straight­
forward and requires consideration of several factors. Clearly, the
initial infusion must be given at a sufficiently rapid rate to achieve de­
sired drug concentrations shortly after initiating therapy. The first
infusion must not be continued for too long a period; otherwise high
blood levels associated with adverse effects may be reached. On the
other hand, if the first infusion is discontinued too quickly, blood
levels may fall below the desired range and remain there for an un­
acceptably long period of time.

The input function for the first infusion is given by Eq. (2.49):

-Ts
k

01
(l - e )

in = -:...::-----
s1 s

where k01 is the zero-order rate of the first infusion and T is the
duration of this fast infusion. The input function for the second in­
fusion, which is initiated at time T, is given by
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(2.77)

k (e-T s _ e-T's)
in = ----::.0 _

s2 s

where k02 is the zero-order rate of the second infusion and T' is the
duration of this maintenance infusion. The disposition function ds,c
for a multicompartment model has been described by Eq. (2. 1) •

The Laplace transform for the case where there are two consecu­
tive infusions will be the sum of the two input functions ins 1 and ins2
times the disposition function ds,c. Therefore,

-Ts
a =[k01(1-e )
S,c s

n
-Ts -T'S J IT (s + E.)

k 02(e - e ) i=2 1
+--=-=--------

S n
IT (s + A.)

i=1 1

(2.78)

The solution is (see Appendix B)

x =
c

n
2:

R,=1

A T A£ T
k

Ol
(l - e R, ) + k

02(e
-A

R,

(2.79)

Equation (2.79) can be written in concentration terms as follows:

A T' n
_ e £ ) n (E. An) t

i=2 1 N - AR.
--=-=---------:..::.=-------- =--..:=------ e

n
IT (A. - A )

i=l 1 R,

i=FR,

(2.80)

When t .Is less than T, both T and T' are replaced by t and Eq.
(2.80) reduces to Eq. (2.53). During the maintenance infusion (i , e. ,
when T < t < T'), only T' is replaced by t and Eq. (2.80) may be
written (on expansion) as

AUROBINDO EX. 1018, 88



2 I Multicompartment Models

T n

[ "
II (E. - AR,)n k 01( 1 - e ) i=2 1 - AR,t

C= 2: -A V enR,=1 R, c II (A.- AR,)
i=1 1

i*R,

AR,T
n
II (E. - AR,) - AR, tk 02e i=2 1

+ -A V enR, c
II (A.- AR,)

i=1 1

i*R,

k 02 i~1 (Ei - AR,) ]
+ -- =-..::-.._---

A V n
R, c II (A. - A )

i=1 1 R,

i*R,

77

(2.81)

Ultimately, as the maintenance infusion proceeds, steady state is
achieved and drug concentration Css is equal to the summation of the
third term on the right-hand side of Eq. (2.81). Substitution of Css
for this term and rearrangement leads to an expression describing
drug concentration at any time during the maintenance infusion com­
pared to the steady-state drug concentration:

1 n AR,T AR,T
C - C = V- 2: [k01(1 - e ) + k 02e ]

ss C 9.=1

(2.82)

Logically, the rate and duration of the loading infusion must be
such that upon discontinuation (Cmax, t = T) and initiation of the
maintenance infusion, the drug concentration would exceed the de­
sired drug concentration Css ' Equation (2.82) tells us that under
these conditions the time course of drug concentration may display one
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(2.83)

of two patterns: (1) blood levels will decline but may remain above
the desired drug concentration and eventually approach Css; or (2)
blood levels will decline but may fall below the desired drug concen­
tration and then slowly rise to eventually approach Css '

Wagner [13] has devised a double infusion method (with drugs
acting in the central compartment in mind) that results in blood levels.
at all times during the second (maintenance) infusion, greater than or
equal to Cs s ' This requires that the term C - Css in Eq. (2.82) be
forbidden to take on a negative value. Since the second term of the
summation in (2.82) will always be negative, the first term of the sum­
mation must be negative. This, in turn, requires that

A~T A~T
k 01e .:: k 01 + k 02e

or

-A T
~- e

(2.84)

(2.85)
-A T

1 - e ~

for all values of z, An infinite number of solutions for kOl will satisfy
the requirement imposed by (2.84), but to avoid adverse effects we
seek a minimum value of kOl' This is found when

k
02

As noted by Vaughan and Tucker [14], Eq. (2.85) has only one
solution. This is readily seen by consecutively substituting Eq. (2.85)
for kOl in the first summation term in Eq , (2.82) using ~ = I, 2,
3, ... ,n. Since Al > A2 > A3 > ••• > An, every value of ~ other
than ~ = n will produce a positive rather than a negative value for
the summation term. These outcomes violate the requirement estab­
lished at the outset. Thus the appropriate rate for the loading in­
fusion is given by

-A T
1 - e n

(2.86)

Under certain conditions Eq. (2.86) can be simplified to permit
k 01 to be estimated more easily. The series e- x = 1 - x + (x2/2) ­
(x3/6) + ••• can be approximated accurately by e- x = 1 - x, when
x 2.0.1. When this situation prevails, the denominator of (2.86) may
be approximated by AnT and the equation written as
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(2.87)

This approach is illustrated by the data in Fig. 2.13.
Equation (2.87) tells us that the ratio of k01 to k02 is a function

of the infusion time T for the first infusion. If T is short, the ratio
of infusion rates is high and relatively high blood levels will be
achieved. If we increase T, we decrease the ratio of infusion rates
and decrease the maximum blood level (see Fig. 2.14). The blood level
at the end of the first infusion, Cmax, may be determined by replacing
t and T' in Eq , (2.80) by T. Under these conditions Eq. (2.80) re­
duces to
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Fig. 2. 13 Plot of propranolol concentration in plasma during two con­
secutive constant rate intravenous infusions in a representative cat.
The second infusion was terminated at about 280 min. (From Ref. 15.
© 1979 PJD PUblications, Ltd.)
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Fig. 2.11J Drug concentrations in plasma during two consecutive con­
stant rate infusions. The maintenance infusion rate (k02) was the same
in each case. The loading infusion rate (k01) was calculated according
to Eq. (2.86), with infusion times (T) ranging from 60 to 240 min.
(From Ref. 16.)

A T
n

k
01

(l - e
R,

)
II (E.- AR,) -A Tn i=2 1

C 2:
R,

= e
max -A V n

R,=1 R, c
II O. AR,)

i=l 1

ii: R,

which can be further simplified to yield

(2.88)

n
- A T II (E. - An)

1 - e R, i=l 1 "-------
AR, n

II (A. - x )
i=l 1 R,
ii: R,

(2.89)
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Equation (2. 89) provides a guideline for the estimation of T.
After the initial selection of a desired infusion time, the maximum con­
centration it will produce may be determined by means of (2.89). If
this value of Cmax is inappropriately high and carries a risk of ad­
verse effects, a longer infusion time must be considered and similarly
evaluated.

FIRST-ORDER ABSORPTION

For a drug that enters the body by an apparent first-order absorption
process (generally via the oral or intramuscular routes) and distributes
in the body according to a mUlticompartment model, the disposition
function for the central compartment is identical to the disposition func­
tion for an intravenous bolus injection given by (2.1):

n
II (s + E

i
)

i=2
d =-----

s,C n
II (s + ),.,)

i=1 1

The following input function ins is used to describe first-order ab­
sorption:

k FXo. a
In =--­

s s+k
a

(2.90)

where ka is the apparent first-order absorption rate constant and F
is the fraction of the administered dose Xo absorbed following drug
administration. The Laplace transform for the amount of drug in the
central compartment as,c equals the product of the disposition and
first-order inp~t functions (Le , , ds,c and ins)' given by (2.1) and
(2.90), respectively, Therefore,

n
k FX

O
II (s + E.)

a i=2 1
(2.91)
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n
. IT (Ei - k a ) - k t

X = k FX 1=2 e a
c a 0 n

II (>..i - k )
i=1 a

n
II (E

i
- A )

i=2 £

n
A ) II (A.

£ i=1 1

i#:£

- A t
£ (2.92)

Expressing (2.92) in concentration terms employing the relationship
Xc = VcC [according to (2.5») results in the equation

II (Ai - k )
i=1 a

n

k FX . IT (E i - k a ) -k t
C =~ 1=2 e a

V n
c

n

L
£=1 (k _

a

n
An) II (>...

'" i=1 1

i#:£

(2.93)

The absorption rate constant, for most drugs admtnistered in
readily available dosage forms, is probably significantly larger than
the terminal disposition rate constant An' and since by definition A1
to An-1 are larger than An' at some time following administration the

-k t -A t -A 1t
terms e a and e 1 to e n- approach zero and (2.93) reduces to

(2.94)
- A t

n

A )
n

(k ­
a

n
II (E. - A )

i=2 1 n

n
A ) IT ( Ai
n i=1

i#:n

Therefore, a plot of the logarithm of plasma concentration versus time
following first-order input into a multicompartment model yields a
multiexponential curve (Fig. 2.15), the terminal portion of which is
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Fig. 2.15 Average digoxin concentrations in plasma after administra­
tion of an intravenous dose or an oral dose in one of three formulations
to 12 healthy volunteers. The multicompartment characteristics of
digoxin are evident after oral as well as after intravenous administra­
tion. (From Ref. 17.)

linear and described by (2.94). An estimate of the terminal disposi­
tion rate constant can be obtained from the slope, An/2.303, of this
terminal linear segment.

Following oral administration of many drugs that display multi­
compartment characteristics after intravenous injection, we often fail
to observe a distributive phase. The plasma concentration-time
curves for such drugs appear biexponential rather than multiexponen­
tial (Le., such curves behave as if the drug in question confers on
the body one-compartment rather than multicompartment characteris­
tics). It has been illustrated through simulations, assuming a two­
compartment model (L e . , n ::: 2), that as ka approaches Al' data will
still yield a curve consistent with a multicompartment system as illus­
trated in Fig. 2. 15, even though the two exponentials are approx­
imately equal to each other [18]. However, when ka approaches E2,
the data are best fit by a one-compartment model. Therefore, the
predominant distributive phase in Fig. 2.15 is characteristic of a multi-
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compartment model where ka is larger than E2 and larger than or
approaching AI,

Pharmacokinetic analysis of the blood level-time curve following
an administration requiring first-order input (by the method of re­
siduals, Appendix C, or nonlinear least-squares regression analysis,
Appendix H), to obtain k a and the disposition rate constants Al to An
may not be possible without intravenous data, since such data are
usually necessary for gaining an appreciation of the relative magni­
tudes of these rate constants. Assuming that the rate constant deter­
mined from the terminal slope is An' A1 will be the rate constant cal­
culated from the residual line if the data are best fit by a one-com­
partment model. When a one-compartment model adequately describes
the data, ka approaches E2' As can be seen in (2. 93), this causes
the coefficient of the exponential term describing absorption to ap­
proach zero. If the data are multicompartmental in nature, it is not
possible to predict whether the larger rate constant obtained from the
residual lines should be assigned to ka or to Ai- As ka approaches
or becomes less than An (Le , , a flip-flop model), the resulting plasma
concentration versus time plot again defies analysis, since one cannot
unambiguously assign the slow rate constant to either ka or An without
intravenous data.

DETERMINATION OF PHARMACOKINETIC PARAMETERS

Calculation of k 10, k12' k21, and k~

Two-Compartment Model, Elimination Central. The disposition function
ds,c for the central compartment of an n-compartment mammillary model
[given by Eq. (2.1)] can also be written as follows (see Appendix B):

(2.95)

n
IT (s + E.)

i=2 1

n
IT (s + E.)

i=1 1

dS,c n n
- E [k

1.k'1
IT (s+E)]

j=2 ]] m=2 m
m:#j

where k1j and kj1 are first-order intercompartmental transfer rate
constants, and Ei and Em are the sum of the first-order exit rate con­
stants out of compartment i or m , If the simplest case is considered
(Le., where a plasma concentration versus time curve is described by
a biexponential equation), n will equal 2 (Le . , a two-compartment
mammillary model; see Fig. 2.3) and (2.95) becomes

(2.96)
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where E1 = k10 + k12 and E2 = k21. The constant k10 is the apparent
first-order elimination rate constant from the central compartment. and
k 12 and k21 are the intercompartmental transfer rate constants (see
Fig. 2.3). Expansion of the denominators of (2.96) and (2.1), when
n = 2, yields

and

s + E
2

2s + s( A
1

+ A
2)

+

(2.97)

(2.98)

respectively. By comparing (2.97) and (2.98) it can be shown that
Al + A2 = El + E2 and Al\2 = EIE2 - k12k21. Substitution of kl0 + k12
for E1 and k21 for E2 yields the following equations for A1 and \ 2:

Al + A
2

= k
10

+ k 12 + k 21 (2.99)

and

( 2.100)

(2.101)

Al is by definition greater than A2'
The specific equation that describes the biexponential decay in

plasma concentrations following the intravenous bolus injection of a
drug can be readily obtained by setting n = 2 in (2.7):

-A t -A t
C=Ae I+ A e 2

1 2

where Al and A2 are given by [see (2.8)]

(2.102)

and

(2.103)

The terms AI. \2' AI' and A2 are commonly referred to as a, S. A,
and B in the literature.

As discussed praviously in this chapter AI' \2, AI' and A2 are
generally obtained from the nonlinear least-squares fit of plasma con­
centration versus time data to Eq. (2.101) (Appendix H). Once these
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parameters are determined, the constants klO' k12' and k21 can be
calculated. The apparent volume of the central compartment, Ve , is
given by (2.15) when n = 2:

Xo
V = A (2.104)

c 1 + A 2

Substitution of Al + A2 for XO/Vc [obtained by rearrangement of
(2.104)] in (2.103) yields

(AI + A2Hk21 - 1.
2)

A = (2.105)
2 Al - 1. 2

which can be solved for k21, since

A
I

A
2

+ A
2

A
l

k 21 = Al + A
2

(2.106)

(2.107)

(2.109)

The elimination rate constant from the central compartment can now
be calculated since k21 is known (2.106) and 1.11.2 = kl0k21 (2.100).
Hence

1.
11. 2k =--

10 k 21

Recalling that Al + 1. 2 = klO + k12 + k21 (2.99). it follows that

k 12 = Al + 1.
2

- k
21

- k l 0 (2.108)

All of these parameters, namely Vc ' klO. k12' and k 21, can also be
obtained from postinfusion data when the appropriate values of A R.
have been determined from the values of R R. using Eqs. (2.69) and
(2.72).

These constants may also be obtained from urinary excretion data.
The following equation will describe the biexponential decline in an
excretion rate versus time plot [set n = 2 in (2.23)]:

dX u - AIt - A2t
--=A'e +A'e
dt 1 2

where

(2.110)

and

(2.111)
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are obtained from (2.24). Rearrangement of (2.111) yields

A 2(Al - A2)
k 21 = k

'
X + !-2

e 0

87

(2.112)

The parameter k~, the first-order urinary excretion rate constant, can
be obtained for a two-compartment model from (2.27):

A' + A'
k' = 1 2

e Xo
Substitution for k~ in (2.112) according to (2.113) gives

A2(A1 - A
2

) X
O

k 21 = (A' + A' )X +!-2
1 2 0

(2.113)

(2.114)

(2.115)

Canceling the Xo terms and solving for a common denominator yields

AkAI - AkA2 +Al A2 + AkA2
k 21 = A' + A'

1 2

which when simplified becomes

AkAI + A1A2
k 21 = A' + A'

1 2
(2.116)

and is analogous to (2.106). The constants kl0 and k12 can be solved
for by employing the value of k21 from (2.114), and utilizing Eqs.
(2.107) (k10 = A1A2/k21) and (2.108) (k12 = A1 + A2 - k21 - k 10).

Amount unexcreted in the urine versus time data can also be used
to determine klO' k12, and k21. By setting n = 2 in (2.33), the fol­
lowing equation results:

-A t -A t
X"" - X =A" 1 + A" e 2u u 1 e 2

where

and

(2.117)

( 2.118)

( 2.119)
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are obtained from (2.34) by setting n = 2. Setting n = 2 in (2.31) and
solving for k~ yields

(2.120)

(2.121)

(2.122)

Substitution of k lOk21 for A1A2 in (2.120) according to (2.100) and
cancellation of common terms provides

X~k10
k~ =--x;-

MUltiplying the numerator and denominator of (2.119) by A1 and ex­
panding the numerator gives

A k - A A
A" = k' X 1 21 1 2

2 e 0 A1A201 - A2)

The SUbstitution of k10k21 for A1A2 in this equation followed by can­
cellation of the common parameter k21 yields

(2.123)

(2.124)

x~ can be substituted for k~XO/klO in (2.123) based on a rearrange­
ment of (2.121) to give

A - k
A" = X"" 1 10

2 u A
1

- A
2

It can be readily shown from (2.117) that

X"" = A" + A"u 1 2
(2.125)

SUbstituting Ay + A~ for X~ in (2.124) and solving for k10 yields

AliA + A" A
112

k 10 = A" + A"
1 2

(2.126)

(2.127)

The Constant k21 can be obtained by rearranging (2.100) to give

k = A1A221 -­
k

10

while Eq. (2.108) can be used to calculate k 12.
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(2.96)

(2.128)

Fig. 2.16 Schematic representation of the body as a two-compartment
open model. In case (a), elimination is restricted to the peripheral
compartment; in case (b), elimination occurs from both compartments.

Two-Compartment Model, Elimination Peripheral or Central and Periph­
eral. Elimination in a two-compartment model may occur not only from
the central compartment but also from the peripheral compartment or
from both compartments simultaneously (Fig. 2.16). Although the
three two-compartment models are indistinguishable based solely on
plasma or urinary excretion data, additional information may be avail­
able that will require the use of one of the models in which elimina­
tion is not exclusive to the central compartment.

For the case where elimination occurs only from the peripheral
compartment, the following disposition function for the central com­
partment, ds,c, may be written [see (2.95)]:

s + E
2

d =------=~----s ,c (s + E
1)(s

+ E
2)

- k
12k21

However, E1 =k 12 and E2 =k21 + k20 (see Fig. 2. 16a), where k20 is
the apparent first-order elimination rate constant from the peripheral
compartment. The constants k12 and k21 are as defined previously.
Since there are two driving force compartments in the model, (2.96)
may also be written as

s + E
2

d = ----::.---
s ,c (s + >'1)(s + >'2)

Expansion of (2. 96) and (2.128) yields (2. 97) and (2.98), respectively,
and Al + A2 equals E1 + E2 and >'1>'2 equals E1E2 - k12k21' Substitu­
tion of k12 for E1 and k21 + k20 for E2 yields the following expressions
for Al and ).2:
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(2.129)

(2.130)

(2.131)

(2.132)

For intravenous administration the input function ins equals XO'
the intravenous dose [Eq. (2.2) J. The Laplace transform for the
amount of drug in the central compartment, as,c, is therefore

(s + E
2)X Oa = -,-----,-=---=-7"

s ,c (s + A
1
)( s + A

2)

where as,c equals the product of ds,c and ins' E2 equals k21 + k20'
and Al and A2 are defined by (2.129) and (2.130). The anti-Laplace
of this equation yields an expression for the amount of drug in the
central compartment (Xc) as a function of time, which is

X
O(E2

- AI) -A
1t

X
O(E2

- A
2)

-A
2tX = e + e

c A2 - Al Al - A2

Substituting k21 + k20 for E2, converting to concentration terms em­
ploying Eq. (2.5) (Xc = VcC), and rearranging yields

X
0
0

1
- k

21
- k

20)
-A

1t
X

O(k21
+ k

20
- A

2)
-A

2t
C = e + eV

c(A 1
- A2) V

c(A I
- A

2)
( 2.133)

or

C=Ae
1

and

(2.135)

From a plot of log C versus time, estimates of AI, A2' AI' and A2 can
be made (method of residuals, Appendix C; nonlinear regression analy­
sis, Appendix H) from which Vc' k12' k21' and k20 can be determined.

The apparent volume of the central compartment can be estimated
employing Eq. (2. 104) :
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(2.137)

XoV = ---"--c--
C Al + A2

where Al and A2 are as defined by (2.134) and (2.135), respectively.
Substitution of Al + A2 for XO/Vc (Eq. (2.104)] into (2.135) yields

(AI + A
2)

(k
21

+ k 20 - A
2

)
A = (2.136)

1 Al - A2

Equation (2.99) can be rearranged to give

k 21 + k 20 - A2 = Al - k 12

Substituting Al - k12 for k21 + k20 - A2 into (2.136) and rearranging
gives the following expression which can be employed to calculate
k12:

(2.138)

(2.139)

The elimination rate constant from the peripheral compartment, k20'
can now be calculated since k12 is known (Eq. (2.138)] and since
Al >'2 = k12 k20 [Eq , (2.130)]. Rearranging (2.130) yields the following
expression for k 20:

A
IA2k =-­

20 k 12

The constant k21 can now be determined by rearrangement of (2.99)
to yield

(2.140)

The third type of two-compartment model, where elimination occurs
from both the central and peripheral compartments (Fig. 2.16b), may
be solved in a manner analogous to the other two-compartment models.

A biexponential equation of the form C = A1e-Alt + A2e-
A2t will result.

Relationships can be derived employing the methods and approaches
developed above which relate the individual model constants k12' k21,
klO' and k20 to the hybrid constants AI' A2, A1, and A2' However,
none of the model constants can be calculated independently, since in
a mammillary disposition model, the maximum number of solvable rate
constants Z is given by the following equation (5]:

Z = 2(n - 1) + 1 (2.141)

where n is the number of driving force compartments in the disposition
model. There are two driving force compartments in any two-compart-
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ment model and therefore the maximum number of solvable rate con­
stants is three. The model shown in Fig. 2.16b has four rate con­
stants.

Three-Compartment Model. Triexponential equations may be required
to describe adequately postintravenous injection data. In accordance
with previous discussions, the simplest three-compartment model will
be considered: that model where elimination occurs from a central
compartment which is reversibly connected to a "shallow" and a
"deep" peripheral compartment, compartments 2 and 3, respectively
(Fig. 2.17).

The disposition function for the central compartment, ds,c, may
be obtained by setting n = 3 in (2.1) or (2.95). This will yield

(s + E
2
)( s + E

3)d = (2.142)
s ,c (s + A

1
)(S + A

2
)(S + A

3)

and

(s + E
2
)( s + E

3)
d =~---=:-:--:----:~--:----:::-:c-"---:---:--"--:----::~--:----:----:--:-

s ,c (s + E
1)(s

+ E
2)(s

+ E
3)

- k
12k21(s

+ E
3)

- k
13k31(s

+ E
2)

( 2.143)

respectively, where E2 = k21' E3 = k310 and E1 = k12 + k13 + klO.
The constants k12 and k21, and k31 and k13 are the apparent first­
order intercompartmental transfer rate constants between the shallow
and central compartments, and deep and central compartments, re­
spectively. The elimination rate constant from the central compart­
ment is klO' In (2.142) A1 is by definition greater than A2' which is
in turn greater than A3.

Substituting k21 for E2 and k 31 for E3 in (2.142) and (2.143) and
k12 + k13 + k10 for E1 in (2.143) and expanding the denominators of
(2.142) and (2.143) yields

Comportment 2
Centrol

Comportment Comportment 3

Fig. 2.17 Schematic representation of the body as a three-compart­
ment open model with drug elimination from the central compartment.
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3 2
s + s (A1 + A2 + A3) + sOlA2 + A1A 3 + A2A 3) + A1A2A 3

(2.144)

and

3 2s + s (k
10

+ k
12

+ k
13

+ k
21

+ k
31)

+ s(k10k 21 + k 13k21 + k 10k31 + k 21k 31 + k 31k12) + k21k31klO

(2.145)

d =-:---=--------..;;;..::;.-----:...:::.-----------S,c

respectively. Comparing the coefficients in the denominators of
(2.144) and (2.145), it is readily apparent that A1' A2' and A3 may
be expressed in terms of the individual rate constants as

(2.146)

A1A2 + A
1

A
3

+ A
2A 3

= k 10k 21
+ k

13k 21 + k
10k 31

+ k
21k31 + k

31k12

(2.147)

and

(2.148)

(2.149)

The intravenous input function ins is given by Eq , (2.2), that is,
ins =XO, where Xo is the intravenous dose. The Laplace transform
for the amount of drug in the central compartment, as,c, which is
the product of the input and disposition functions [given by (2.2) and
(2.142), respectively], is

XO(s + E
2)(s

+ E
3)a =----"----"------

s;c (s + A
1
)(S + A

2
)( S + A

3)

Taking the anti-Laplace of (2.149) (Appendix B) yields the following
expression for the amount of drug in the central compartment, Xc,
as a function of time:

(2.150)
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Substituting k31 for E3, and k21 for E2, rearranging, and expressing
the equation in concentration terms by dividing by Vc according to
(2.5) (C = Xc/Vc) yields

X
O(k 21

- A
1)(k31

- A
1)

C=
Vc (A 1 - A2)( A1 - A3)

or

(2.151)

-A t -A t
2 + A 3

3
e (2.152)

where

and

( 2.153)

( 2.154)

(2.155)

Therefore, from a plot of the logarithm of plasma concentration versus
time after rapid intravenous injection, a triexponential curve should
be obtained from wWch Al, A2' A3, A1' A2' and A3 can be estimated
(Fig. 2.18). Although such estimations can be made employing the
method of residuals (Appendix C), the best method to determine these
terms is to fit the curve by nonlinear least-squares regression analy­
sis (Appendix H).

Once Al, A2, A3, Al, A2, and A3 are known, the apparent volume
of the central compartment Vc and the individual rate constants k12,
k21' k13' k31, and k10 can be calculated. At time t =0 the plasma
concentration Co is given by the equation

(2.156)

Substitution for Al' A2, and A3 according to (2.153), (2.154), and
(2. 155), respectively, in Eq. (2.156), bringing the resulting expres­
sion to a common denominator, expanding the numerator and denom­
inator, and simplifying yields Eq. 2.14
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Fig. 2.18 Dacarbazine concentration in plasma following intravenous
administration in the dog. Application of the method of residuals in­
dicates that the data are described by the following triexponential
equation: C = 30.5 exp (-0. 117t) + 10.2 exp (-0.028t) + 11.4
exp (-0.003t), where t is expressed in minutes. (Data from Ref. 19.)

Xo
C =­o V

c

(2.157)

Substitution of A1 + A2 + A3 for CO' according to (2.156), in (2.14)
and rearrangement yields the following expression for Vc '

XoV = -:---..,,:--~

C A
1

+ A
2

+ A
3

By substttuting A1 + A2 + A3 for XO/Vc in (2.154) and (2.155).
and solving (2.154) for k21 and (2.155) for k31. the following rela­
tionships are obtained:
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(2.158)

(2.159)

( 2.160)

(2.161)

A
3

(A1 - A
3)(

A
2

- A
3)k = A + --=---:::....----=:--:::....---=:--

31 3 (AI + A
2

+ A
3)(k21

- A
3)

respectively. Substitution of k 21, according to (2.158), in (2.159)
and simplification yields the following quadratic equation:

2 A03+A02+A~1+A~2+A~1+A~3

k 31 - k 31 Al + A
2

+ A
3

A1A2A 3 + A1A3A 2 + A2A3A 1
+ = 0

Al + A 2 + A 3

Similarly, substituting for k31' according to (2.159), in (2.158) and
simplifying yields a quadratic equation in k 21 with identical co­
efficients:

2 A
1
A

3
+ A

1
A

2
+ A

3
A1 + A

3
A

2
+ A

2
A

1
+ A

2
A

3
k 21 - k 21 Al + A

2
+ A

3

A
1

A
2
A

3
+ A

1
A

3
A

2
+ A

2A3
A

1
+ = 0

A
1

+ A
2

+ A
3

Equations (2.160) and (2.161) are of the form ax 2 + bx + c = 0, which
may be solved by

-b + Jb
2

- 4ac
x = 2a

Therefore,

where

a = 1

and

(2.162)

(2.163)

(2.164)

(2.165)
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(2.166)c =
A

1
A

2
A

3
+ A

1
A

3
A

2
+ A

2A 3
A

1
A

1
+ A

2
+ A

3

Since k31 is the exit rate constant from the deep peripheral compart­
ment, it will be smaller than k210 the exit rate constant from the shal­
low peripheral compartment. Hence

k =.!. (-b - Jb
2

- 4C) (2.167)
31 2

and

-k =.!.(-b+Jb
2-4C)

21 2
(2.168)

(2.169)

Once k31 and k21 have been determined, the elimination rate con­
stant from the central compartment k10 can be readily calculated from

A
1A 2A 3k =--""--=:......::

10 k
21k31

which is obtained by rearrangement of (2.148).
Solving (2.146) and (2.147) for k13 yields

k
l 3

= (A1 + A
2

+ A
3
) - (k

l O
+ k

21
+ k

31
+ k 12)

(2.170)

and

(2.171)

respectively. By subtracting (2.170) from (2.171) and solving for k12'
the following expression is obtained:

(2.172)

Rearrangement of (2.146) yields

k
13

= A
1

+ A
2

+ A
3

- (k
l O

+ k
12

+ k
21

+ k
31)

(2.173)

from which k 13 can be calculated since the constants k lO• k12. k21,
and k 31 are known.

As with a two-compartment model, there are many types of three­
compartment models where elimination may be assumed to occur from
anyone compartment or combination of compartments. These models
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(2.174)

(2.176)

(2.175)

are indistinguishable based solely on plasma or urinary excretion
data. There are indications that a triexponential equation may be
necessary to characterize the pharmacokinetic profile of digoxin [20],
tubocurarine [21], 5-(dimethyltriazeno)imidazole-4-carboxamide [19],
and diazepam [22]. A three-compartment model involving peripheral
compartment elimination has been employed for bishydroxycoumarin
[23]. The derivation for this particular model is given therein.

Determination of the rate constants associated with multicompart­
ment models may permit an assessment of the relative contribution of
distribution and elimination processes to the drug concentration versus
time profile of a drug. It may also aid in elucidating the mechanism of
drug interactions, and of the effects of disease, age, genetic in flu ­
ences, and other factors on drug disposition. However, it must be
kept in mind that these parameters are likely to be subject to consid­
erable error. As pointed out by Westlake [24], these errors are
probably unimportant when the parameters are used to predict plasma
drug concentration. If the parameters are used to predict other fea­
tures of the system (e. g., tissue drug concentrations), there may be
substantial errors in the predictions.

Relationship Between f3 and k 10' For multicompartment models a clear
distinction must be made between k10' the elimination rate constant.
and the terminal disposition rate constant An. which is frequently re­
ferred to as f3 in the literature. An or f3 is equivalent to A2 or A3 in
the respective bi - or triexponential equations discussed above. The
difference between klO and An may be clearly illustrated employing the
simplest multiexponential equation. the biexponential equation. These
two constants may be related in the following manner. The fraction of
drug in the body that is in the central compartment. fc' can be defined
as

x
c

fc = X

where X is the total amount of drug in the body and equals the sum of
the amounts of drug in the central and peripheral body compartments:

X = X + Xc p

Substitution of Xc + Xp for X in (2.174) gives

X
f = c
c X + Xc p

The appropriate values of Xc and X can be obtained from (2.4) and
(2.19). respectively. Setting n anl j in these equations equal to 2.
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which results in biexponential equations, then sUbstituting these equa­
tions for Xc and Xp in (2.176), yields

E 2 - 1.1 - 1.1t + X E.,...::-2_-----:-1.::;.2 - 1. 2t

Xo A
2

_ Al e 0 Al - 1. 2 e

E
2

- Al -A
1
t E

2
- A

2
-A

2
t

X o A - A e + X o A _ A e
2 1 1 2

k
12(E 2

- AI) -A
1
t k

12(E 2
- A

2
) -A

2
t

+X e +X eo (E
2

- A
1)(A 2

- AI) 0 (E
2

- A
2)(A 1

- A
2

)

f=--=:---------::,--------,-------------
c

(2.177)

Initial canceling of common terms and changing all coefficients to a
common denominator, Al - A2' which can then be canceled, gives

-" t -A t
01 - E

2
) e 1 + (E

2
- A

2
) e 2

-A
1t

-A
2t

-A
1t

01 - E
2
)e + (E

2
- A

2)e
- k

12
e +

(2.178)

Substituting k21 for E2 and collecting common terms in the denominator
results in the following equation:

f=----'='-----::..::-----:::..:::..----:~----
c

(2.179)

f = f* = ---'=-=-----::.---­
C C

(2.180)

which readily reduces to

k
21

- A
2f* = ::----'=-=----'='--

C k 21 + k 12 - "2
(2.181)

Therefore, in the postdistributive phase the fraction of drug in the
body that is in the central compartment is a constant, f~.
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( 2.182)

( 2.183)

(2.184)

(2.186)

( 2.185)

The rate of change in the amount of drug in the body (dX/dt)
equals the sum of the rates of change in the amounts of drug in the
central and peripheral body compartments:

dX dXc dX
_=_+-...E.
dt dt dt

The differential equations for dXc/dt and dXp/dt based on the model
in Fig. 2.3 are

dX
c<it = k 21Xp - k 12Xc - k l 0Xc

and

dX<If- = k 12Xc - k 21Xp

respectively. Substitution for dXcldt and dXpldt , according to
(2.183) and (2.184), respectively, in (2.182) yields

dXCit = k
21Xp

- k
12Xc - k

10Xc + k
12Xc

- k
21Xp

which readily reduces to

dXill = -k l 0Xc

By substituting for Xc' according to (2.4) with n = 2, in (2.186),
the following equation is obtained:

dX [X OO l - k 21) -Alt XO(k 21 - A2) -A2
t J

- = - k e + e (2. 187)
dt 10 A

l
- A

2
A

l
- A

2

Some time after administration e - A1t approaches zero (i , e., during the
postdistributive phase) and (2.187) reduces to

- A t
2e (2.188)

(2.189)

Rearrangement and expansion of (2.188) yields

dX k 10k 21 - k lOA 2 -A2t
ill = -XO A - A e

1 2

Recognizing that kl0k21 = A1A2 [Eq. (2.100)], substituting AIA2 for
k10k21 in (2.189), and rearranging the terms produces the relation­
ship
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(2.190)

(2.192)

It can now be shown that the term in brackets equals the amount
of drug in the body during the postdistributive phase. The amount of
drug in the body (X) is equal to Xc + Xp [Eq. (2.175)] and is given
by the denominator of (2.177):

X = X E2 - Al -A1t + X E2 - A2 -A2t
°A_A e OA-A e

2 1 1 2

k
12(E 2

- A
1)

- A
1t

k
12(E 2

- A
2)

-A
2t

+X e +X eo (E
2

- A
1)(A 2

- A
1)

0 (E
2

- A
2)(A 1

- A
2)

(2.191)

Solving for X in the postdistributive phase (Le . , e- A1t ->- 0), can­
celing the common term E2 - A2' and substituttng k 21 for E2 yields
the following equation for the amount of drug in the body during the
terminal exponential phase:

X
O(k21

- A
2

+ k
12)

- A
2t

X= A-A e
1 2

Rearrangement of (2.99) gives the expression

k 21 - A2 + k 12 = A1 - k 10

Therefore,

(2.193)

X
0
0

1
- k

lO)
-A

2
t

X = e (2.194)
A

1
- ),2

Substituting X for X001 - k10)e- A2t/01 - A2)' as given by (2.194),
into (2.190) yields the following equation for the rate of change of
drug levels in the body during the postdistributive phase:

dX<it = -A2X

Since Xc = fcX [Eq. (2. 174)], (2. 186) may be expressed as

dX<it = -k10fcX

In the postdistributive phase,

dX - k f*X<it - - 10 c

(2.195)

(2.196)

(2.197)
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where f6 is given by (2.181). By comparing (2.196) and (2.197), one
concludes that

(2.198)

It is clear from this equation that 1. 2 is a function of both elimination
(klO) and distribution.

The dependence of An or (3 on both distribution and elimination may
be demonstrated in a different manner. It has been shown previously
that 1.1 + 1.2 = k12 + k21 + klO [Eq. (2.99)] and 1.11.2 = k21klO [Eq.
(2.100)]. Solving (2.100) for 1.1 yields

k
21k10

1.1 = A (2.199)
2

Substituting this value for A1 into (2.99), multiplying each side of the
equation by 1.2' and rearranging terms results in the quadratic equa­
tion

which is of the form

2
ax + bx + c = 0

The general solution of ( 2.201) is

-b ± .Jb2 - 4ac
x = 2a

(2.200)

(2.201)

(2.162)

Therefore,

1. 2 = ~ [(k12 + k 21 + k 10) - J(k 12 + k 21 + k 10)2 - 4k21k10 ]

(2.202)

The sign preceding the square root term is negative rather than pos­
itive since A1 has been assumed to be greater than 1.2' It can be
readily demonstrated that the equation for 1.1 is identical to (2.202)
except that a positive sign precedes the square root term.

The constant k10 is the elimination rate constant from the central
compartment, and A2 reflects drug elimination from the body. The
biologic half-life t1/2 of a drug is calculated from 1.2 [Eq. (2.11)]
rather than from k10' Although 1.2 and half-life are hybrid parame­
ters, they are among the most important functional pharmacokinetic
parameters.

If, because of insufficient data, the plasma concentration of a
drug with multicompartment characteristics after rapid intravenous in­
jection show only the terminal exponential phase, what is actually the
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A2 value will appear to be the elimination rate constant K in a one­
compartment model.

Volume of Distribution and Clearance

V =-~­c

The apparent volume of distribution is a useful pharmacokinetic param­
eter that relates the plasma or serum concentration of a drug to the
total amount of drug in the body. Despite its name, this parameter
usually has no direct physiologic meaning and does not refer to a real
volume. However, it does provide some insight into the extent of
extravascular distribution of a drug; that is, the greater the volume
of distribution, the more extensive the extravascular distribution of
a drug, and hence the lower the plasma or serum concentration of a
drug for a given amount of drug in the body. For a drug with a
plasma concentration versus time profile that can be adequately de­
scribed by a single exponential following an intravenous bolus dose,
there is only one volume of distribution parameter. There may be
several volume parameters, however, for a drug whose disposition
requires a multiexponential equation for its description. One volume
term that has been mentioned in this chapter is Vc- the apparent vol­
ume of the central compartment. This parameter relates the drug con­
centration in the plasma to the amount of drug in the central compart­
ment, and can be readily determined from the relationship given by (2. 15)

Xo
n
l: A

R.=1 R,

where Xois the intravenous dose and l: ~=1 A R, is the sum of the n
zero-time intercepts that would be obtained by applying the method of
residuals to a plasma concentration-time curve after intravenous ad­
ministration of a drug that requires n exponentials to characterize it.
By assuming that a constant ratio of drug concentrations in the various
tissues and fluids of the central compartment exists, Vc can be em­
ployed to estimate the amount of drug in the central compartment at
any time regardless of the complexity of the model required to describe
the time course of drug in the plasma.

An additional volume parameter in multicompartment systems is V8.
This parameter relates plasma concentration to amount of drug in the
body during the terminal exponential phase of a plasma concentration
versus time curve. The fraction of drug in the body which is in the
central compartment during this terminal exponential phase, f~, is
given by

X
f* = --.2.
c X (2.203)
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(2.204)

VsC can be substituted for X in (2.203) since by definition X = VaC
during the terminal phase. Therefore,

X
f* = _c_
c VaC

Substitution of VcC for Xc' according to (2.5), in (2.204) and cancel­
lation of the common term yields

V
f* = ~
c Va

Equation (2.198) can be rearranged to give

A
f*= _2
c k

10

(2.205)

(2.206)

(2.207)

(2.208)

where k10 is the first-order elimination rate constant and A2 is the
disposition rate constant associated with the terminal exponential phase
of a biexponential plasma concentration versus time curve. Although
(2.198) was derived assuming that n = 2, a similar relationship would
have resulted regardless of the number of exponentials required to de­
scribe a plasma concentration versus time curve provided that elimina­
tion is assumed to occur from the central compartment. Therefore,
(2.206) can be written as

A
f* = -E.
c k

10

By comparing (2.205) and (2.207), it becomes readily apparent that

V A
c n

Va =k 10

Rearrangement of (2.208)
of Va:

V
ck10

V =--a An

provides one approach for the determination

(2.209)

Solving Eqs. (2.38) (kaVc = Xu/AUC) and (2.121) (k~ = X~k1O/XO)

for X~/ka yields

X
CO

u
k' = Vc• AUC

e
(2.210)
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(2.211)

(2.43)

x: Xo
k~ = k 10

Equating the right-hand sides of (2.210) and (2.211) and rearranging
the resulting expression gives

Xo
VcklO = AVC (2.212)

Substitution of this value of VcklO for VcklO in (2.209) results in the
following general equation for the determination of V13:

Xo
V 13 = A • AVC (2.213)

n

where AVC is the total area under the plasma concentration versus
time curve. This method of calculating V13 is independent of the num­
ber of exponentials required to describe a plasma concentration versus
time curve, and is analogous to the equation used to calculate volume
of distribution in a one-compartment model: Eq. (1.35) (V =XO/
K' AVC), where K is the first-order elimination rate constant of a
drug. As mentioned previously, V13' as determined by (2.213), can
be used to determine the amount of drug in the body during the
terminal exponential phase of a plasma concentration-time curve pro­
vided that elimination occurs only from the central compartment.
Equation (2. 213) can also be used to calculate V13 from intravenous in­
fusion data. When infusion data are employed, Xo is equal to the prod­
uct of the infusion rate kO and infusion time T (Le., kOT), and AVC is
the total area under the plasma concentration versus time curve from
the time of initiation of the infusion to time infinity after cessation of
the infusion.

Methods for the calculation of the clearance CIs of a drug using
both intravenous bolus and steady-state infusion data were presented
earlier in the chapter. The relationships are

Xo
CIs = AVC

and

(2.59)

where Css is the steady-state plasma concentration of a drug during
an intravenous infusion. Equation (2.213) can be rearranged to yield
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(2.214)

(2.215)

Xo
V 13An =AVC

A comparison of (2.212), (2.214), and (2.43) reveals that

CIs = V sAn = Vck10

Equation (2.215) can also be used to determine VS once clearance is
known since

CI
s

VS=-A-
n

(2.216)

(2.217)

Substituting 0.693/tl/2 for An [Eq. (2.11)] in (2.216) and solving
for tl/2 gives

t 1/ 2 = 0.693 ~s
s

which again illustrates the dependence of t1/2 on both the distribution
and elimination characteristics of a drug.

An additional volume parameter and probably the most useful vol­
ume term to describe the apparent distribution space in a multicompart­
ment system is V ss- the apparent volume of distribution at steady
state. This parameter was initially derived by Riggs [25], who
equated it to the sum of the apparent volumes of the central and pe­
ripheral compartments. As its name implies, Vss relates the amount
of drug in the body to the drug concentration in the plasma at steady
state during repetitive dosing or constant rate infusion:

and

x = V Css ss ss

x = V C
ss

(2.218)

(2.219)

where X ss and Cs s are the amount of drug in the body and plasma
concentration of drug at steady state. respectively, during constant
rate infusion, and X and C are the "average" amount of drug in the
body and plasma concentration of drug at steady state, respectively.
during repetitive dosing.

Rearrangement of (2.219) yields the following relationship for
Vss :

C

x
V =­

ss
(2.220)

The amount of drug in the body at any time t after a single intravenous
bolus dose in a multicompartment system is given by the difference be-
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(2.221)

(2.223)

tween the administered dose Xo and the amount eliminated up to that
time, (XE)t:

t
X = Xo - (XE)O

Solving (2.41) for dXE/dt and integrating the resulting expression
from time zero to t gives

(XE)~ = CIs It C dt (2.222)

where CIs is clearance and J1 C dt is the area under the plasma concen­
tration time curve describedOby (2.7). Substitution for (XE)b in
(2.221) according to (2.222) yields

X = X
o

- CIs ~t C dt

Integrating (2.7) from time zero to t and substituting the resulting
expression for JJ C dt in (2.223) gives

n A -AR,t
X =X - Cl 2: ~ (1 - e )

o s R,=1 AR,
(2.224)

The clearance of a drug is equal to the ratio of the intravenous dose
to the total area under the drug concentration in the plasma versus
time curve [Le., CIs = XO/AUC; Eq. (2.43)]. Substitution of
E~=l AR,/AR, for AUC, according to (2.40), in (2.43) yields

Cl = ---=---­
s

(2.225)

This value of CIs can then be substituted for CIs in (2.224) to give

or

n -A t
Xo E [(A / A )( 1 - e R,)]

R,=1 R, R,

n
E (A / A )

R,=1 R, R,

(2.226)
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n
r. (A fA ) +

R,=1 R, R,

n

1: (AR,/AR,)
R,=1

Xo { ~ (A / A )
R,=1 R, R,

X = . __...:..:..-~---_..:.:.....-=------.:.:......;::....-_----

(2.227)

On canceling common terms, the following results:

n -A t
Xo 1: [(A IA)e R,]

R,=1 R, R,
X = ---'--::..------- (2.228)

(2.229)

To convert the single-dose expression (2.228) to one describing the
situation during a dosing interval at steady state, the exponential

term in (2.228) is multiplied by 11 (1 - e - AR, T), where T is the dosing
interval, which is obtained by setting k] in the multiple-dosing func-

tion equal to AR, and recognizing that e - NAR, T approaches zero at
steady state (see Appendix B). Therefore,

n -A t -A T

Xo 1: [AR,e R,/AR,(l-e R,)]
R,=1

n
1: (AR,/AR,)

R,=1

where Xs s is the amount of drug in the body during a dosing interval
at steady state. The average amount of drug in the body at steady
state Xis defined as

x= --,f;,--X~ss=--d_t
T

(2.230)

Integration of the summation term in the numerator of (2.229) from
t = 0 to t = T yields

- A t - A t
A e

R,
-A e

R,
n AR,faT n

n T

o R,~1
R,

2:
R,

L 2 (2.231)=-A T -A T
AR,(l-e

R, R,=1 2 R, ) 0 R,=1 A
AR,(l - e R,

AUROBINDO EX. 1018, 120



2 I Multicompartment Models 109

It follows that

(2.232)

n
X o I: (A IA

2)

R.=1 R. R.
X=-------

n
T I: (A IA.)

R.=1 R, "-

The average concentration of drug in the plasma at steady state
C is given by

J; C dtC= __s_s__
T

(3.25)

Substitution of I: ~=1 A R. I AR. for Jri Cs s dt , according to (3.26), in
(3.25) gives

n
I: (AR,/AR.)

C = .;.:.R,=_1~ _
T

(2.233)

The values of X and C as given by (2.232) and (2.233), respectively,
can be substituted in (2.220) to yield

v = -...:.:......::.....----:­
ss

(2.234)

Therefore, once the estimates of A R. and AR. are obtained from a fit of
plasma concentration versus time data, Vss can be readily estimated
employing (2.234).

Although clearance and volume of distribution parameters have
been discussed in this section, a more detailed presentation of their
physiologic significance may be found in Chaps. 8 and 5, respectively.
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3
Multiple Dosing

Some drugs, for example, analgesics, hypnotics, neuromuscular block­
ing agents, bronchodilators, and antiemetics, may be used effectively
as a single dose. More frequently, drugs are given on a continuous
basis. Moreover, most drugs are administered with sufficient frequency
that measurable and often pharmacologically significant levels of drug
persist in the body when a subsequent dose is administered. For
drugs administered in a fixed dose at a constant dosing interval (e. g. ,
every 6 h or once a day), the peak plasma level following the second
and succeeding doses of a drug is almost always higher than the peak
level after the first dose, and therefore the drug accumulates in the
body relative to the initial dose. However, under these conditions
drug accumulation proceeds at a decreasing rate with increasing num­
ber of doses until a steady-state plasma level of drug is achieved. At
steady state, the plasma concentration of drug at any time during any
dosing interval should be identical to the concentration at the same time
during any other dosing interval. As will be demonstrated, the rate
and extent of accumulation of a drug is a function of the relative mag­
nitudes of the dosing interval and the half-life of the drug. A model­
independent approach to multiple dosing (Le., superposition) is dis­
cussed in Appendix E.

INTRAVENOUS ADMINISTRATION

The following general equation can be used to describe the plasma con­
centration versus time curve resulting from the intravenous injection
of a drug:

n -Jt t
C = L A9-e 9­

9-=1

where

(2.7)

113

AUROBINDO EX. 1018, 125



114 Pharmacokinetics

(2.8)

( 3.1)

n
X

o
II (Ei At)

i=2
At = V n

c II (A. - A.t)
i=l 1

i1.t

In these equations Xois the intravenous dose, Vc is the volume of
the central compartment, Ei is the sum of the exit rate constants from
the ith compartment, Ai and A.t are disposition rate constant, and n is
the number of exponentials required to describe the curve adequately.
The maximum plasma concentration resulting from the intravenous ad­
ministration of the first bolus dose of a drug, (C1)max, would occur
at t = O. Therefore,

n
(C 1)max = 2: A.t

.t=1

The concentration of drug in the plasma at the end of the first dosing
interval of length or time units (C1)min will be given by the relation­
ship

n -A or
(C

1)
. = 2: Ane .t

mIn .t=1 "
(3.2)

which is obtained by setting t equal to tin (2.7). Since there are
usually measurable plasma concentrations of drug when a second dose
is administered, administration of a second dose, equal in size to the
first dose, will produce an immediate increase in plasma concentration
of drug yielding a new maximum, (C2)max. This new maximum would
be equal to the sum of the plasma concentration at the time of admin­
istration (Le , , at time t = or) and the maximum concentration resulting
from the first dose [I.e., (C1)max]' Therefore,

(C 2)max = (C 1)max + (C 1)min (3.3)

Substitution for (C1)max and (C1)min according to (3.1) and (3.2),
respectively, yields

n n -A or n -A or
(C 2) = 2: A + 2: Ane .t = n2:=l A.t(l + e .t)

max .t=1 .t .t=1" "
(3.4)

(3.5)

The minimum concentration of drug in the plasma after the second dose
(C2)min (assuming a constant dosing interval of or) is given by

n -A or -A or
(C 2)min = 2: A (1 + e t)e .t

t=l .t
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which can be modified to yield

It follows that

n n - A T -2A T

(C ) - '\ A + '\ An(e £ + e £)
3 max - L.. £ n~_l Tv£=1 Tv

n -A T -2A T

=2:A(l+e £+e £)
£=1 £

and

n -A T -2A T -3A T

= 2: A£(e £ + e £ + e £)
£=1

115

(3.6)

(3.7)

(3.8)

where (C3)max is the maximum plasma concentration following a third
dose and (C3)min is the minimum plasma concentration T time units
after the third dose.

On examination of (3.1), (3.4), and (3.7), it is readily apparent
that a geometric series can be written for the maximum concentration
of drug in the plasma following N doses, (CN)max:

n -A T -2A T -(N-1)A T
'\ £ £ £

(CN)max = L.. A£(l + e + e + ••• + e )
£=1

(3.9)

If we let

- A T - 2A r
r=l+e £+e £+

it follows that

-(N-1) A 't

• + e £ (3.10)

n
(C

N)
= 2: A r

max £=1 £

Multiplication of (3. 10) by e - A£r yields

-A 't -A r -2A r -(N-1)A r -NA r
re £=e £+e £+"'+e £+e £

(3.11)

( 3.12)

AUROBINDO EX. 1018, 127



116 Pharmacokinetics

r - re

which when subtracted from (3.10) produces

->.. 1" -N>.. 1"
£ = 1 - e £ (3.13)

which can be solved for r to yield

-N>.. 1"
1 - e £

r=
->.. 1"

1 - e £

( 3.14)

( 3.15)

Substitution of this value of r in (3.11) yields the following general
expression for the maximum concentration of drug in the plasma after
intravenous administration of any number of doses:

-N>.. 1"
1 - e £

->"£1"
1 - e

( 3.16)

From a comparison of previous equations [1. e., (3.1) and (3.2),
(3.4) and (3.5), and (3.7) and (3.8)] it is equally clear that

->.. 1"
£

(CN)min = (CN)maxe

and, therefore,

(3.17)

-N>.. 1"
1 - e £ -;\1"

_>.. 1" e
1 - e £

It is evident on examination of (3.15) and (3.17) that the concen­
tration of drug in the plasma at any time during a dosing interval (Le ,
CN) is given by

(3.18)
n

C = l A
N £=1 £

-NA£1" -A t
1 - e £

-A 1" e
1 - e £

where t is the time elapsed since dose N was administered. Therefore,
by knowing the zero-time intercepts and disposition rate constants,
A£ and A£' respectively (both of which can be obtained following a
single intravenous dose), the plasma concentration of a drug at any
time during a dosing interval can be predicted provided that a fixed
dose is administered every 1" time units.

Equation (3. 18) may also be obtained by a method that does not
rely on a detailed derivation of the type presented above, and conse­
q uently is significantly more convenient (see Appendix B). Any equa-
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( 3.19)

tion that describes the time course of a drug in a driving force com­
partment after a single dose may be directly converted to a multiple­
dose equation by multtplymg each exponential term containing t by
the function

-Nk.T
1 - e 1

-k.r
1 - e 1

where Nand r are as defined previously and ki is the apparent first­
order rate constant in each exponential term. Therefore, multiplica-

-).. R.t
tion of (2.7), C = E~=1 AR.e , by the multiple-dosing function,
and setting ki equal to ).R. [since).. R. is the rate constant in the ex­
ponential term of (2.7)] permits (2.7) to be directly converted to
(3.18) •

The drug concentration in the plasma, at any time during a dosing
interval, will increase and then approach a constant value as the num­
ber of doses increases (see Fig. 3.1). The equation describing the
time course of drug at the plateau or steady state can be obtained by
setting N in (3.18) to infinity (I.e., by recognizing that the term

e-N).. R. T approaches zero with increasing number of doses). Thus

n -).. t
C=2:A 1 eR.

ss R.=1 R. -).. R. r
1 - e

where Css is the plasma concentration of drug at any time during a
dosing interval at steady state. Similarly, the equations for the max­
imum and minimum concentrations of drug in the plasma during a dosing
interval at steady state, (Css)max and (Css)min' respectively, can
be written as

(3.20)

(3.21)

and

n 1 -).. r
(C) 2: A e R.

ss min = R.=1 R. -).. T

1 - e R.

If the dosing interval r is much greater than the half-life of a drug
(where t1/2 =O.693/)..n) , (Css)min approaches zero. Under these
conditions no accumulation will occur and the plasma concentration
versus time profile will be the result of the administration of a series
of single doses.
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5

9084
Time

18126

t::::::.:.. (C')min

rll'ltlrJ.t1hlil~1.~"
Fig. 3.1 Drug accumulation and attainment of steady state on multiple
intravenous dosing of a fixed dose of drug every 6 h. Maximum and
minimum drug concentrations after the first dose are denoted (C Omax
and (Cl)min. respectively; those at steady state are denoted (Coo)max
and (Coo)min. respectively. The average drug concentration at
steady state, C, is also shown. The area under the drug concentra­
tion in plasma versus time curve during a dosing interval at steady
state (shaded area) is the same as the total area under the curve
after a single dose (shaded area bounded by solid and dashed lines) .

(3.22)

As discussed in Chap. 2, one frequently finds in a two-compart­
ment model that the larger the ratio of the zero-time intercepts A 1/A2.
the more readily one can discern the multicompartment characteris­
tics of a drug. Equation (3.19) can be written as

n - A t
C == L U.e J/,

ss J/,==l '"

where

(3.23)1
U == AJ/, J/, - AJ/, l"

1 - e

The ratio of U1/U2 would therefore be given by
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(3.24)

and will always be less than the ratio A1/A2. Since A1 is by definition
-A2T -A1 Tgreater than A2' the ratio (l - e ) / (1 - e ) will always be less

than 1. Consequently, following multiple dosing the ability to discern
the multicompartment characteristics of a drug is usually decreased.
On the other hand, analytical limitations may prevent one from observ­
ing more than one exponential phase after a single intravenous admin­
istration of a drug that has an exceptionally large ratio of A1 to A2.
In this case, multiple dosing makes the multicompartment characteris­
tic of the drug more obvious. For a more detailed discussion of this
phenomenon, see Chap. 2.

Average Steady-State Concentration

A parameter that is very useful in multiple dosing is the "average"
concentration of drug in the plasma at steady state, C. This parameter
can be defined as

JOT C dt
C = ---:----'s-'s_

T
(3.25)

(3.26)

where f6 Css dt is the area under the plasma concentration-time curve
during a dosing interval at steady state (I.e., between time zero and
T) where r Is as defined previously. Integration of (3.19) from time
zero to T yields

t C dt = £ ~tJo ss t=l t

This expression for the area under the plasma concentration-time
curve from time zero to or during a dosing interval at steady state is
equivalent to (2.40), the equation for the area under the plasma con­
centration-time curve from time zero to infinity following a single intra­
venous dose (see Fig. 3.1). Therefore, the average plasma concen­
tration of drug at steady state can be predicted from a single-dose
study by employing the following relationship:

_ f; C dt
C = -=--­

or
(3.27)
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(3.28)

(3.30)

The area under the plasma concentration versus time curve, AUC
or J; C dt , following a single intravenous dose, XO' can be obtained
by rearrangement of (2.214) to give

XoAUC =-­
VaAn

where V fl is the apparent volume of distribution and An is the dis­
position rate constant associated with the terminal slope of a log
plasma concentration-time curve and equals 0.693 divided by half­
life (Le., 0.693/t1/2) [Eq. (2.11)]. The relationship between these
parameters and clearance CIs has also been presented previously:

Cl = V A (2.215)
san

Therefore, substituting XO/VaAn for J;c dt in (3.27) and setting
Va An equal to CIs yields

_ X o X o
C = VD A T = Cl T (3.29)

p n s

which can also be written in terms of half-life, Le.,

_ 1. 44Xot 1/ 2C = --::-:-~::.:....::.

VaT

By knowing the AUC following a single dose, the clearance, or the
half-life and volume of distribution of a drug, the average plasma
concentration of a drug at steady state following the administration of
a fixed dose Xo at a constant time interval T can be predicted. As
can also be seen from (3.29) and (3.30), the size of the administered
dose Xo and the time interval at which this dose is administered, T,

can be adjusted to obtain a desired average steady-state plasma con­
centration. These equations assume that all parameters are constant
over the entire dosing period.

The average plasma concentration of a drug at steady state as
calculated employing (3.27), (3.29), or (3.30) is neither the arithmetic
nor the geometric mean of (Css)max and (Css)min' Rather, it is a
plasma concentration value which when multiplied by T equals the area
under the plasma concentration-time curve over the time interval zero
to T at steady state. Therefore, from simple geometric considerations,
C must represent a plasma concentration valu~between (Css)max and
(Css)min (See Fig. 3.1). A limitation of the C approach is that it_
gives no information about the fluctuations in plasma levels [Le., C
gives no information as to the relative magnitudes of (Css)max and
(Css)min] •
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Accumulation

(3.31)

As discussed previously, the administration of a drug on a multiple­
dose regimen will usually result in its accumulation in the body. The
extent of accumulation of a given drug may be quantified in several
ways. One approach is to determine the ratio of the minimum plasma
concentration of drug at steady state (Css)min to the minimum plasma
concentration following the first dose (Cl)min. This ratio can be
defined as the accumulation factor R. Therefore,

R = (Css)min

(C 1)min
,

Substitution for (Css)min and (C1)min in (3.31) according to (3.21)
and (3.2), respectively, yields

n
1

-A r
E A t

-A e
~=l

t ~t

R=
1 - e (3.32)

n -A t
E A e t

~=1 ~

This relationship is rather complex. However, if all doses are ad­

ministered in the postdistributive phase (Le , , e- A1t to e- An- 1t ap­
proach zero) of a plasma concentration versus time curve, or if the
plasma concentration versus time curve can be adequately described
by a monoexponential equation [I.e., n = 1 in (3.32)], then (3.32)
reduces to

(3.33)R=----1
-A t

1 - e n

Under these conditions the extent of accumulation can be predicted
simply by knowing the terminal disposition rate constant of a drug, An
or K, or half-life t1l2' since t1/2 = O.693/An = O.693/K.

The ratio of (Css)max to (Cl)max is also an appropriate expression
of drug accumulation. According to Eqs. (3.20) and (3.1), this ratio
is given by

n -A r
E [A / (1 - e ~)]

~=1 ~

n
E A

~=1 ~

(3.34)
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In the case of a drug that shows one-compartment model character­
istics on intravenous administration, Eq. (3.34) may be simplified to
Eq. (3.33) where K replaces An'

Another expression t~t has been used to characterize drug ac­
cumulation is the ratio of C, the average drug concentration at steady
state, to C1' the average drug concentration during the first dosing
interval. Consider thl!!. the average drug concentration during any
dosing interval (I.e., CN) may be defined as

(3.35)

where 16 CN dt is the area under the plasma concentration-time
curve during the Nth dosing interval. Integration of (3.18) from
time zero to 1 yields

(3.37)

(3.36)(' C dt = I A .:;.l__-:e:.....-_

N
_
A
_£_T

Jo N t=l tAt

Substitution of this value of fo CN dt in (3.34) and substitution for
fd Cs s dt in (3.25) according to (3.26) yields

-NA 1
n t

C = 2: A _l_-_e__
N £=1 tAtT

(3.38)

and at steady state

n 1
C= 2: A -

t=l t A£ T

respectively. Taking the ratio of CN to C and canceling the common
term T gives

C
(3.39)

CN-=""'-"----------

n -NA 1

E [A (l - e t ) fA t]
t=l t

n
E (At/At)

t=l

When N = 1, that is, for the first dose, (3.39) becomes

C

n -A 1

E [A (1 - e £) / A ]
£=1 £ £

n
E (At/At)

£=1

(3.40)
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The inverse ratio C/C1 may be used to express accumulation:

n
1: (At/At)

~=1

n -A r
1: [A (l - e t) / A ]

9,=1 9, 9,

(3.41)

In the case of a drug that can be described by a one-compartment
model on intravenous administration, Eq. (3.41) reduces to (3.33)
where K replaces An'

Equation (3.33) indicates that the larger the ratio of t1/21t, the
greater will be the extent of accumulation. For example, consider a
drug with a half-life of 24 h (Le., An = 0.029 h- 1). If this drug is
administered every 24 h (Le., t= 24 h), according to Eq. (3.33)
R equals 2. O. However, administration of the same dose every 6 h
results in much greater accumulation (R = 6.3). Consequently,
when tis equal to or greater than the half-life of a drug, the extent of
accumulation is relatively modest (~2). If the ratio t1l2/tis large,
however, the extent of accumulation may be substantial.

Time to Reach Steady State

The ratio CN/C as given by (3.39) can be employed to calculate the time
required to reach a certain fraction of the ultimate steady-state level,
where the fraction of the steady-state level, fss' is defined in terms
of average plasma levels:

CN
f =
ss C

(3.42)

(3.43)

gives

f = .::..-.;~--------
ss

Substitution for CN/C in (3.42) according to (3.39)

n -NA t

1: [A9,(l - e 9, )/A
t

]
9,=1

n
1: (At/At)

9,=1

Equation (3.43) can be used to calculate the fraction of the ultimate
steady state that is reached following the Nth dose. This equation
cannot, however, be rearranged to obtain an expression for the time
(Le., Nt) to reach a certain fraction of the steady-state level. The
term Nr can only be estimated by numerical iteration. If the plasma
concentration versus time profile of a drug can be adequately de­
scribed by a monoexponential equation (Le., n = 1), (3.43) reduces to
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f = 1 - e -NKT
ss

Rearrangement of (3.44) yields

e-NK T = 1 - f
ss

the common logarithm of which is

-NKT= 2.303 log (1- f )
ss

Pharmacokinetics

(3.44)

(3.45)

(3.46)

Equation (3.46) can be further rearranged to obtain an expression
for NT. Thus

or

NT= - 2.303 log (1- f )
K ss (3.47)

(3.48)NT = -3.32 t1/2 log (1 - fs s)

since K equals 0.693/t1/2 [Eq. (2.11)].
For a drug with one-compartment model characteristics the time

required to reach a particular fraction of steady state is independent
of the number of doses administered and the interval between admin­
istrations, but it is directly proportional to the half-life. From Eq.
(3.48) it can be readily calculated that 3.32 and 6.64 half-lives would
be required to reach 90 and 99%, respectively, of the steady-state
plasma level of a drug. Since Eqs. (3.44) and (3.48) were derived
based on a one-compartment system, they will be in error if used for
a drug that demonstrates multicompartment characteristics.

A model-independent approach for the estimation of fs s involves the
use of areas under the plasma concentration versus time curve [1].
This approach is based on a simple extension of Eq. (3.43). Expansion
of (3.43) yields

(3.49)

The total area under a plasma concentration versus time curve, AUe,
following the intravenous administration of a single dose of drug equals
l:~=1 (AR,/AR,) [Eq. (2.40)]. Substitution of AUe for l:~=1 (AR,I).,R,) in
(3.49) gives
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n -NA T

AVC E (A e R, / A )
R,=1 R, R,

f = (3.50)
ss AVC

The integral of (2.7) (C = L~=1 AR,e-AR,t) from time t to co provides
an expression for the area under a plasma concentration-time curve
following a single intravenous bolus dose from time t to co, AVCr:

n
AVC; = 2:

R,=1
(3.51)

(3.52)

Since NTin (3.50) equals the time since the beginning of dosing (i. e. ,

0, AVCtcan be substituted for L~=1 (AR,e-NAR,T/AR,) in (3.50) to yield

AVC - AVC; AVC~
f ss = AVC = AVC

Therefore, the fraction of steady state reached at time t after initia­
tion of a multiple-dosing regimen can be determined by knowing the
areas, AVC and AVCr or AVc1 obtained from a single bolus dose of
the drug. No model has to be assumed to permit the use of (3.52)
for determining fss'

Determination of a Loading Dose

As (3.48) indicates, a significant period of time may be required to
attain steady-state plasma concentrations for drugs with long half­
lives. A rational method to overcome the lapse in time before a steady­
state concentration is reached would be to administer an initial loading
dose. One approach to the calculation of a loading dose is as
follows. It is often desirable to maintain plasma concentrations of drug
greater than some minimum effective level. This level may be defined
as (Css)min' Therefore, the first dose (i.e., the loading dose Xo)
must be sufficiently high such that (C1)min equals (Css)min, where
(C1)min and (Css)min are given by (3.21) and (3.2), respectively.
Substitution for AR, according to (2.8), in (3.2) and (3.21), and sub­
stitution of X~ (the loading dose) for Xo (the maintenance dose) in
(3.2) yields

n
IT (E. - A") _, T

i=2 1 Tv 1\ R.
~'------e
n
IT <A. - A")

i=1 1 Tv

iU

(3.53)
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and

(3.54)

n
II (E.

i=2
n X o

(C) = '\ V-ss min L..
£=1 c

n
II (A ­

i=1 i
i1:R-

respectively. Since (C 1)min as given by (3.53) must equal (Css)min'

n X*
2: 0

R-=1 Vc

n
II (E.

i=2 1

n
II (\.

i=1 1

i1:R-

n
II (A ­

i=1 i
iH

1 - \ T_----:=--_ e R-
-\ T

1 - e R-

(3.55)

5

""I " I
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Fig. 3.2 Time course of drug concentration when a fixed dose of
drug is given every 6 h (dashed line) and when the first dose of
the regimen is replaced by an appropriately larger dose, a loading
dose (solid line). Drug concentrations in plasma at steady state are
identical, but steady state is attained much more quickly when a
loading dose is used.
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Fig. 3.3 Comparison of serum digoxin concentrations in human volun­
teers given a 2 mg loading dose followed by a 0.5 mg daily dose of
the drug (.) and in those in whom the loading dose was omitted (0).
(From Ref. 2.)

Solving (3.55) for X5 and canceling the common term Vc yields

n {[ n n ] -A T -A T}2: II (E.-A~)/II O,-A) [1/(l-e ~)]e ~
~=l i=2 1 i=1 1 ~

i*~x* = Xo 0

n {[ nL II (E. -
~=l i=2 1

n
A~)/ II 0,-

i=1 1

i*~
(3.56)

In a one-compartment system (Le ,; n = 1), or if all doses are admin-
-A1T -A ITistered in the postdistributive phase (Le., e to e n- approach

zero), (3.56) reduces to

AUROBINDO EX. 1018, 139



128

-,\ ,
n

Pharmacokinetics

(3.57)

Therefore, the loading dose is equal to the product of the maintenance
dose and the accumulation factor. Administration of a loading dose
Xoas calculated by (3. 57) followed by a maintenance dose Xo every,
time units in the postdistributive phase should produce an immediate
minimum steady-state plasma concentration of drug (Figs. 3.2 and
3.3). For example, administration of a loading dose twice the size of
the maintenance dose for a drug where the dosing interval, equals
the half-life will yield immediate minimum steady-state concentrations.
If a loading dose were not given, approximately four half-lives
would have been required to reach 90% of the ultimate steady state.

INTRAVENOUS INFUSION

Some drugs are administered as an intravenous infusion rather than
an intravenous bolus injection. The relationship describing the rise
in drug concentration in the plasma during infusion is

n n

kO
II E. II (E.-AR,) -A t

i = 2
1 n i = 2 1 R,

C =- 2 e (2.55)
V n n

c
II Ai

R, = 1 AR, IT (A.-AR,)
i = 1 i = 1 1

i :f R,

where k O is the zero-order infusion rate, and all other parameters are
as defined previously. Administration of a second dose as an infusion,
Ttime units after administration of the first dose, where r Is in the
postdistribution phase of the previous dose, would yield the following
equation for plasma concentration (C 2) as a function of time

n
IT (E. - AR,)

i =2 1

n

-A (t-T) k i ~ 2 Ei
- (C ) n +~C2 - 1 mine V

c

-A (t-,)R,
e

(3.58)

If a third infusion is given r ttme units after the second infusion,
plasma concentrations resulting from this infusion would be given by
the following equation:
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n
II E

i
i =2

n
II A.

i =1 1

n
IT (A.-A o )

i =1 1 Tv

i :# R,

129

(3.59)

On examination of Eqs. (2.55), (3.58), and (3.59), it is readily appar­
ent that a general equation can be written for the plasma concentration
of drug following N doses, CN' that is

-A (t-(N-1)1)
n

CN =(C N- 1)min
e

n
II E

i
i =2

n
II A.

i =1 1

-A (t-(N-1)T)
R,

e (3.60)

Since t =(N - 1)T + ti where ti is some time during infusion (Le .•
o~ ti ~ T, where T is the infusion time), Eq. (3.60) can be written
as follows:

n
II E.

i = 2 1

n
II A.

i =1 1

n

(3.61)

The maximum plasma concentration following the Nth infusion will occur
when ti =T and is therefore given by the relationship

(3.62)
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The plasma concentration of a drug as a function of time following
the cessation of infusion is given by

(2.66)

where

-A T
(e R,

n
A. II <A.-A.)

N i = 1 1 '"

i :F 2

(2.67)

and t' is the time postinfusion. Equation (2.66) can be readily con­
verted to a multiple-dosing equation by multiplying it by the multiple­
dosing function and setting ki equal to 1,.£, yielding

n -NA2 T -A t'
1 - e 2

CN = 2: R 2 -A T e
2=1 l-e 2

The minimum postinfusion concentration will occur when t' equals T

- T. If each dose is administered in the postdistribution phase of the
previous dose, 2 =n , Therefore, (CN -1) min' a value necessary to
determine CN and (CN)max from Eqs. (3.61) and (3.62), is given
by

co ) - RN-1 min - n

-(N-1)A T

1 - e n
- A 1"

1 - e n

- A (1"-T)
n

e (3.63)

Rn is given by 2.67 when 2 = n .
At steady state, that is, when e-(N-l)An1" approaches zero

1 -An(1"-T)(C) =R _--=.~- e
ss min n -A T

1 - e n

(3.64)

The maximum concentration of drug at steady state, and the concen­
tration of drug at steady state during infusion can be determined by
setting (CN- 1)min in Eqs. (3.61) and (3.62) equal to (Css)min; the
latter is given by (3.64).

The average concentration of drug in the plasma at steady state,
C, resulting from multiple intravenous infusions can be determined from
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the same basic relationship used for the intravenous bolus case,
namely c= JiJess dt/T [Eq. (3.25)]. It can be demonstrated that

t C dt = to C dt (3.65)Jo ss Jo
Therefore,

(3.66)
kOT

C = -,.:---
Vck10 T

since In C dt following an intravenous infusion equals kOT IV cklO [see
Eq. (2.212)]. The product kOT equals the intravenous dose XO' and
VcklO = Vs,\n = CIs [Eq. (2.21)]. Therefore, the average plasma
concentration of drug at steady state resulting from intravenous in­
fusions can also be determined using Eqs. (3.27), (3.29), or (3.30).

Provided that the same underlying assumptions are met, an ac­
cumulation factor R, the time to reach a certain fraction of steady
state NT, and a loading dose Xocan be determined for intravenous
infusion data using the same relationships as used for intravenous
bolus data:

1
-,\ T

1 - e n

(3.33)

(3.48)

and

(3.57)X * - X 1o 0 -,\ T

1 - e n

respectively. Equation (3.48) applies only to a one-compartment model.
In (3.57) Xo would equal the product of the loading infusion rate kO
and the loading infusion time T* for the loading dose, and Xo would
equal the product of the infusion rate kO and infusion time T for the
maintenance dose. Therefore,

(3.67)1
k*T* = k To 0 -,\ T

1 - e n

Assuming that the infusion times for the loading and maintenance doses
are the same (i. e., T * = T), (3. 67) can be simplified to

k* = ko 0
1
-,\ T

1 - e n

(3.68)
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FIRST-ORDER ABSORPTION

Pharmacokinetics

The vast majority of drugs administered on a continuous basis are
given orally. The equation describing the plasma concentration versus
time curve following multiple dosing of a drug that is absorbed by an
apparent first-order process can be arrived at directly. Multiplica­
tion of the exponential terms in (2.93), which describes the time
course of drug in the plasma following first-order input, by the
multiple-dosing function and setting ki in each function equal to the
rate constant in each exponential term (see Appendix B) yields

k )
a

n
IT (E. - k )

kaFX O i=2 1 a
CN = -V-- n

c IT (A.
i=l 1

-Nka'_kt
1- e a

-k , e
1 - e a

n

L
~=1 (k

a

n
IT (E. A~)

i=2 1

n
A ) IT (A. - A )
~ i=l I ~

i#~

-N A r
1 - e ~

-A ,
1 - e ~

e
- A t

~

(3.69)

where 0 ~ t ~ r k a is an apparent first-order absorption rate constant,
and F is the fraction of the orally administered drug that reaches the
systemic circulation. All other parameters are as defined previously
in this chapter. Equation (3.69) can be employed to predict the
plasma concentration of drug at any time during any dosing interval.
However, information that is often difficult to obtain, such as estimates
of F IV c and ka, is required for such predictions. In such cases
superposition (Appendix E) is an attractive alternative.

At steady state the time course of drug in the plasma during a
dosing interval can be described by the equation

n
IT (E. - k )

kaFX O i=2 I a 1
Css = -V-- n -k r e

c IT (A. - k) 1 _ e a
i=l I a

-k t
a
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k FX
O

n
a 2:+--
V

c £=1 (k
a

n
II (E. - x )

i=2 1 R,

n
x ) II (A.­

R, i=1 1

i:H

1
->. t

£

(3.70)

which is obtained by setting N equal to a sufficiently large number in
-Nk r -N A r

(3.69) and realizing that the terms e a and e £ then approach
zero.

The average plasma concentration of drug at steady state, C, as
defined by (3.25) (C = fo Css dt/,), can be calculated either by
employing (3.25) directly, or by e'!!!ploying (3.27) (C = foC dt/T)
o!:..equations analogous to (3.29) (C = XO/V 13An'= XO/Clst) or (3.30)
(C = 1.44XOt1/2/VI3')' Integration of (3.70) from time zero to,
yields

n

l
' k FX '~ (E i - k a)

C dt =~ 1=--..::2 -
ss V n

o c k II (A. - k )
a i=1 1 a

n
II (E.

i=2 1

n
A ) II (A.­

R, i=1 1

if £

(3.71)

This equation can be further simplified to

n
A ) II (A.­

R, i=1 1

if £

n
k II (E. - A )

a i=2 1 £

n
II (E. - k )

i' FXo i=2 1 a n
C dt=- :......::.----+ 2:

o ss Vc n 1
II (A. - k) £= A (k -

i=1 1 a R, a

(3.72)

Expanding the term within the brackets for a given n , canceling com­
mon terms, and recognizing that II};2 Ei/II~1 Ai = 1/klO [see (2.107)
and (2.169)], where klO is the first-order elimination rate constant
from the central compartment, gives

AUROBINDO EX. 1018, 145



134

Since

V k ::: V A ::: Cl
c 10 13 n s

(3.73) can also be written as follows:

l 'C dt > FXO ::: FXO

O
ss V A Cl

13 n s

It can also be demonstrated that

Pharmacokinetics

(3.73)

(2.215)

(3.74)

(3.75)(, C dt::: (CO C dt
Jo ss Jo

where foC dt is the area under the plasma concentration-time curve
from time zero to infinity following first-order input of a single dose.

Substituting FXO/V sAn and/or FXO/Cl s for fiI Css dt in (3.25)
and recognizing that An::: 0.6931t1/2 [Eq. (2.11)] yields

_ FX
O

FX
O

1. 44FX
Ot1/ 2

C:::
V13 A,:::Cl,:::

V, (3.76)
n s 13

As is evident from (3.76), C is dependent on the size of dose admin­
istered, t~ extent to which it is absorbed, and the dosing interval.
However, C is independent of the rate of absorption and all other dis­
position rate constants, as evidenced by the absence of ka and A terms
from (3.76). The same average plasma concentration of drug will be
obtained whether the dose Xo is administered as a single dose every
r thne units, or is subdivided and administered at different times with­
in r tirne units; that is, 600 mg once a day is equivalent to 300 mg
every 12 h , is equivalent to 150 mg every 6 h , and so on (see Figs.
3.4 and 3.5). However, upon subdividing the dose, the difference
between the minimum and maximum plasma concentration will usually
decrease.

Although Eq. (3.76) permits the estimation of average drug con­
centration at steady state based on the pharmacokinetic parameters of
the drug, it is rarely used as such; a much simpler approach is avail­
able. Since C ::: f~ Css dth and foCss dt ::: foC dt , C may be esti­
mated directly from the ratio of total area under the drug concentration
in plasma versus time curve after a single oral dose, to the dosing in­
terval , (see Fig. 3.6). This approach assumes that systemic avail­
ability and clearance are constants from dose to dose.

Accumulation can be determined by comparing the minimum plasma
concentrations of drug at steady state and following the first dose,
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o
I

2

Dose (1x 500 mg loble!/day) Dose (4 x125mg tablets/doy)
,

w
U1

+1

5 10
Time(h)

24 o 5 10
Time (h)

24

Fig. 3.5 Average concentrations of griseofulvin during the first and
fourteenth day of drug administration in human volunteers who re­
ceived 500 mg once a day or 125 mg four times a day. Theory pre­
dicts that the average drug concentration at steady state will be the
same for both regimens but that the steady-state peak-to-trough
ratio will be larger for the once-a-day regimen. (From Ref. 4.)
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R = (C ss)min/(C1)min [Eq. (3.31)J. However, this method is rel­
atively simple only when one is dealing with a situation in which each
dose is administered in the postabsorptive-postdistributive phase of
the preceding dose. This situation probably exists for a large num­
ber of drugs, although it may not be valid for sustained-release
products and for drugs that are absorbed very slowly.

By setting N equal to 1 and t equal to r in (3.69), an expres­
sion for the minimum plasma concentration following the first dose
(C 1)min can be obtained:

n
IT (E. - k )

kaFX O i=2 1 a
(C 1)min = -V-- n

c IT (A. - k )
i=l 1 a

-k ,
ae

k FX
O+ _a__

Vc

n
]] (E. - A )

i=2 1 R,

n
A ) ]] (A,

R, i=l 1

i#R,

- A )
R,

e
-A ,

R,
(3.77)

Similarly, by setting t equal to r In (3.70), the following expression
for the minimum plasma concentration at steady state (CSS)min
results:

n
]] 0. - k )

i=l 1 a
1 - e

n
IT (E, -- k )

k FXO i=2 1 a
(C) = _a__

ss min V
c

1 -ka ,

-k ,e
a

n
2:

R,=1 (k
a

n
A ) IT (A. - A )

R, i=l 1 R,

i*R,

(3.78)

Assuming that each dose is administered in the postabsorptive-post-

d ' ibuti h [. -ka, d -1. 1' -An-1' h Jtstri utrve p ase 1. e .• as e an e to e approac zero,
(3.77) and (3.78) become
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Fig. 3.6 Time course of plasma nortriptyline concentrations in two
normal subjects, G. A. (0) and B. A. (e), who received 0.4 mg/kg
three times a day for 2 weeks. The average drug concentrations pre­
dicted from the total area under the curve after a single dose were
53 and 116 ng/ml for G. A. and B. A., respectively. (From Ref. 5.)

and

n
II (E. - A )

i=2 1 n

n
(k - A ) II (A. - A )

a n i=1 1 n

i:f:R.

n
II (E. - A )

i=2 1 n
n

A ) II (A. - A ) 1
n i=1 1 n

i=lR.

(3.79)

1 -An'
-A r e

n- e

(3.80)

respectively. Therefore, the accumulation factor R, which is defined
-A ,

as (Css)min I (C 1)min, equals 11(l - en) [Eq , (3.33)]. This ex-
pression can readily be employed to determine the extent of accumula­
tion following first-order input every, time units, since only an
estimate of the terminal disposition rate constant is required. How­
ever, if each dose is not administered in the postabsorptive-post-
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(3.81)

-KT
e

K

-NKt
1 - e

-KT
1 - e

-k t
e a

k a

distributive phase, a rather complex function would result for the
accumulation factor. R would then be equal to the ratio of Eq. (3.78)
to Eq. (3.77).

The time required to reach a certain fraction of the ultimate
steady state following first-order input can also be estimated where
the fraction of the ste~y-state concentration fs s is as defined by
(3.4~, that is, fs s = CN/C, where CN = MCN dt/T [Eq. (3.34)]
and C = FXO/ClsT = FXO/V SAnT [Eq. (3.76)]. Integration of (3.69)
is relatively complex. However, the concentration-time profile fol­
lowing the oral administration of many if not most drugs can be
adequately characterized by a one-compartment model with first­
order input. Under these conditions, appropriate redefinition of the
terms and integration of Eq. (3.69) from 0 to Tyields

(T C
N

dt = V~~FX! K) (1 _e~:k:T

Jo a 1 a-e

-Nk T
1 - e -NK T 1 1 _ e a

+
1 _ e-KT K -k r

1 - e a

which on rearrangement and simplification becomes

(3.82)i T FXO ( K -Nk T k e-
NKt)

CN dt = VK 1 + k
e

_: - k
a

_ K
o a a

Substitution of the value of f6 CN dt , as given in (3.82), into (3.34)
yields the following expression for the average plasma concentration
of drug during the Nth dosing interval:

(3.83)
FX ( -Nka T k e-

NKt
)C = __0 1+ Ke _ ,-=-a_=-

N VKT k
a

- K k
a

- K

By substituting C for FXO/VK r accordtng to (3.76) in (3.83) and
dividing both sides of the equation by C, one obtains

- -Nk r
CN Ke a

f s s =-C- =1 + k
a

- K

-NKT
k e

a
k - K

a
(3.84)

From (3.84) it is readily apparent that the time required to reach a
certain fraction of the steady-state level is a complex function of the
absorption and elimination rate constants. The larger the value of
ka relative to K, the less dependent on ka is the time required to
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reach a given fraction of steady state [6]. At very large values of
ka relative to K (i. e., ka/K ~ 10), Eq. (3.84) approaches

f = 1 - e -NK1"
ss

Therefore,

(3.44)

(3.48)

Hence, when the absorption rate constant is significantly larger than
the terminal disposition rate constant, the time required, N1", to
reach a certain fraction of the steady-state level is a function only of
the half-life of the drug. If this is not the case, then fs s is also
dependent on ka. The smaller the value of ka, the longer the time
required to attain steady state or some fraction thereof.

Estimation of the time to steady state for a drug that shows
multicompartment characteristics on oral administration is a task par­
ticularly well handled by the method of Chiou [1] [see Eq. (3.52)].

As discussed in the section on multiple dosing by intravenous
administration, an initial loading dose may be desirable, since for
drugs with long half-lives, a long period of time is required to reach
steady state. The loading dose Xorequired to achieve steady-state
levels on the first dose may be determined by letting Xo equal Xoin
Eq , (3.77) [the equation for (C1)min l and setting this equal to the
equation for (Css)min [Eq. (3.78)]:

n
II (E. - A )

i=2 1 t

n
k FX* II (E. - k )

a 0 i=2 1 a
Vc n

II (A. - k )
i=l 1 a

-k 1" k FXo* n
e a+ T 2:

c t=l
(k ­

a

n
A ) II

t i=1
i:H

O. - A )
1 t

n
k FX II (E. - k )

a 0 i=2 1 a 1
= -V-- n -k 1" e

c II (A. - k) 1 - e a
i=l 1 a

-k 1"
a

n

2:
t=l (k

a

n
A ) II (A. - A )

t i=1 1 ~

i~~

(3.85)
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(3.57)
-;\ T

1 - e n

X* = Xo 0

Solving for Xo results in a relatively complex equation. However,
by administration of the maintenance dose in the postabsorptive-post­
distributive phase of the loading dose plasma concentration-time curve

-k T -;\ T -;\ 1T
(Le , , e a and e 1 to e n- approach zero), the following equa-
tion is obtained for X0:

1

from which it is relatively simple to estimate a loading dose. This
equation was employed to calculate a loading dose for drugs admin­
istered by the intravenous route. Irrespective of the size of the
initial dose the steady-state plasma concentration of drug ultimately
reached will be the same since the steady-state level is governed by
the size of the maintenance dose (Fig. 3.7).

The drug concentration in plasma versus time curve after oral
administration of many drugs can be adequately described by a one­
compartment model. Setting n equal to 1 in (3.85) and canceling
the common term kaF IVc yields

c'

o 0 Time

Fig. 3.7 Influence of the first dose of a multiple dose regimen on
the time course of drug concentrations, C', in plasma. D* denotes
the first dose (loading dose) and D denotes all subseqeunt doses
(maintenance dose). The dosin~ interval was selected to equal the
half-life of the drug (Le., T = t50%). The ratio of D* to D varies
from 1 to 3. (From Ref. 7.)

AUROBINDO EX. 1018, 152



3 / Multiple Dosing 141

-k T
e a

-k T
(K - k )(1 - e a)
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_ X* e =X O__-.:::. ~-

OK - k a

-k T
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OK - k a

x0 ------"---~­
(K

(3.86)

By canceling the common term, K - ka, bringing the right side of the
equation to a common denominator, and solving for Xogives

-k T -(k +K)T -(k +K)T
a a -KT a

x* = x Oe e e + e (3.87)o -k T -k Ta -KT a -KT
(1-e )(1-e )(e -e)

Further simplification results in the following expression for Xo:
X* = XO 1 (3.88)o -k Ta -KT

(1 - e )(1 - e )

k -k t'
a a max
-k T e

1 - e a
n
n (A. - k )

i=1 1 a

If the maintenance dose is administered in the postabsorptive phase,

(3.88) can be further simplified to yield (3.57) since the term e-ka T

approaches zero.
Assuming that the fraction F of each dose absorbed is constant

during a multiple-dosing regimen, the time at which a maximum plasma,
concentration of drug at steady state occurs (t max) may be arrived at
by differentiating (3.70) with respect to time and setting the resultant
equal to zero. Doing this and canceling the common term kaFXO/Vc
yields

n
n (E. - k )

i=2 1 a

(3.89)

,
-A t

R, max
- ATe

1 - e R,

n
n (E.

n i=2
= 2 n

R,=
1

(A R, - k ) n <A. - AR,)
a i=1 1

ifR,

As is evident from examining (3.89) t:nax cannot be readily solved
for. As discussed previously, plasma concentration versus time
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curves following oral drug administration can frequently be described
by a one-compartment model. Under these conditions we may write
that

1
K-k

a

k -k t' -Kt'
a a max 1 K max
-k r e = K - k -Kr e

1-e a a1-e

Canceling common terms and rearranging (3.90) gives

(3.90)

(3.91)

,
(k -K)t

e a max = -== ,--_
k (1- e-K t )

a
-k t

K(1 - e a )

By taking the common logarithm of both sides of (3.91) and dividing
by ka - K, the following expression is obtained for the time at which
the maximum plasma concentration at steady state occurs:

(3.92)

-Kt
t' 2.303 1 ka(1 - e )
max = k - K og -k r

a K(1 _ e a)

The time tmax at which a maximum plasma concentration occurs follow­
ing a single dose is given by

k
t = 2.303 log a
max k - K If

a
(1.106)

t max

Subtraction of (3.92) from (1. 106) yields

-k t
a

t' = 2. 303 log 1 - e
max k - K -Kr

a 1 - e
(3.93)

Since the right side of this equation is always positive, it is apparent
that the maximum plasma concentration occurs at an earlier time at
steady state than following a single dose. Frequently, the time at
which the maximum plasma concentration is observed after the first
dose, t max' is the time at which the plasma is sampled after adminis­
tration of subsequent doses to assess Cmax' Based on mathematical
principles this would not be a sound practice, since the time at which
a maximum plasma concentration occurs is not constant until steady
state is achieved.
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DETERMINATION OF PHARMACOKINETIC PARAMETERS
FROM MULTIPLE-DOSING DATA

143

(3.22)

(3.94)

Estimates of all pharmacokinetic parameters can be made from steady­
state intravenous plasma concentration-time data if T is sufficiently
large to permit an accurate determination of the intercept and dis­
position rate constant associated with the terminal phase of the con­
centration-time curve. Even if the dosing interval is too small to
permit this, one can still estimate clearance CIs since only the area
under the plasma concentration versus time curve at steady state,
f6 Css dt or AUC, is required. Once AUC is known, CIs can be de­
termined using (2.43) (CIs = XO/AUC). Assuming that An can be
accurately determined, t 1/ 2 and V13 can be obtained employing (2. 11)
(tl/2 = 0.693/An) and (2.216) (Va = CIs/An)' respectively. Steady­
state plasma concentrations can be described by

n -A t
C = L U e i

ss i=1 i

The method of residuals (Appendix C) can be applied to the data,
generating the coefficients and disposition rate constants, Ui and
AQ,' respectively. Once these parameters are obtained, values of
AQ,' the coefficients generated from intravenous single-dose data,
can be calculated from

-A T

Ai=UQ,(l-e i)

which is a rearrangement of (3.23). This then permits the volume
of the central compartment Vc' and the steady-state volume of dis­
tribution Vss - to be determined using (2.15) (Vc = XO/E~=1 Ai)
and (2.234) [Vs s = Xo E~=1 (Ai/Ai)/E~=1 (AQ,/Ai)2]. The constants
kl0 [Egs. (2.107) and (2.169)], k12 [Eqs. (2.108) and (2.172)],
k21 [Eqs. (2.106) and (2.168)], k31 [Eq , (2.167)], and k13 [Eq.
(2.173)] can also be determined from multiple-dose data once the val­
ues for Ai and AQ, are known.
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4
Absorption Kinetics and Bioavailability

Many pharmacokinetic studies are concerned principally with the bio­
availability of the drug. Bioavailability, in simple terms, refers to
the rate and extent of drug absorption. The rate at which a drug
reaches the systemic circulation is an important consideration for
drugs used to treat acute conditions, such as pain or insomnia, which
can be ameliorated by a single dose. A drug that is absorbed slowly
may not achieve sufficiently high concentrations at the site of action
to elicit a desired effect or intensity of effect, even if the entire dose
is absorbed. On the other hand, the extent of absorption is usually
the more important factor for drugs that are administered repetitively
for the treatment of subchronic or chronic conditions, such as infec­
tion, asthma, or epilepsy. The average drug concentration in plasma
at steady state during repetitive administration is directly proportion­
al to the amount absorbed from each dose but is independent of the
rate of absorption. The rate of absorption does, however, influence
the time course of drug concentration in plasma during a dosing in­
terval at steady state. In some cases, very rapid absorption could
produce transiently high drug concentrations in plasma that may be
associated with adverse effects.

Comparative bioavailability refers to the relative bioavailability
of a drug from two or more formulations. Comparative bioavailability
studies are often carried out in place of clinical effect studies to de­
termine whether two or more formulations containing the same active
ingredients in the same amounts are therapeutically equivalent. It is
assumed that two formulations that do not differ very much in the
rate at which and extent to which they make the active ingredient
available to the systemic circulation will not differ much in their
therapeutic efficacy.

Pharmacokinetic theory is well developed and generally accepted
for the determination of the extent or relative extent of absorption
of a drug from a dosage form. Similar agreement does not exist with
respect to characterizing the absorption rate of a drug. The results
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(4.1)

of such analyses are usually dependent on the pharmacokinetic model
that is assumed and are usually descriptive rather than rigorous.
Characterization of absorption kinetics may be useful for determining
relative differences in absorption rates between formulations in com­
parative bioavailability studies.

ABSORPTION RATE

Curve-Fitting

The most common method of evaluating absorption kinetics is to as­
sume that the drug concentration-time data can be described by one
of several pharmacokinetic compartment models and to fit the data to
an equation consistent with the assumed model by means of the method
of residuals (see Appendix C) or a nonlinear least-squares regression
program and a digital computer (see Appendix H). The most common
equations for a one-compartment model are

kaFX
O

-k t
C ( -Kt a )

= V(k - K) e - e
a

which assumes first-order absorption and elimination,

kaFX
O

-K(t-t )
C = V(k _ K) [e 0

a

-k (t-t )
a 0]- e (4.2)

which assumes a lag time to before the onset of absorption,

k (eKT _ l)e -Kt
o

C = VK (4.3)

which assumes zero-order absorption, where T = t during the absorp­
tion period and T = absorption time (a constant) during the post­
absorption period, and

(4.4)

which uses urinary excretion data. The output of the computer
program contains estimates of the pharmacokinetic constants, includ­
ing the absorption rate constant.

Ideally, one should have an independent estimate of K to differen­
tiate the estimated rate constants and to avoid ambiguity in interpret­
ing the results of such curve-fitting procedures. Serious problems
are encountered if the absorption is complex rather than a simple first­
or zero-order process. Sometimes most of the dose of a drug may be
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relatively rapidly absorbed, but a small fraction of the dose is ab­
sorbed very slowly and absorption persists long after the time at
which drug concentration in plasma reaches a maximum. In such
cases the concentration-time curve may be apparently biexponential
but the rate constant determined from the apparent postabsorption
phase will be smaller than K. In this situation an independent esti­
mate of K is needed. An example is shown in Fig. 4. 1. Accurate
estimates of ka from urinary excretion data [see Eq. (4.4)J are pos­
sible only for drugs absorbed relatively slowly because urine col­
lections cannot be made at very short intervals.

The absorption rate constants obtained by curve-fitting Eqs.
(4.1) to (4.4) are at best estimates of the first-order loss of drug
from the gastrointestinal tract, not of the first-order appearance of
drug in the systemic circulation. If a drug undergoes simultaneous
first-order absorption (rate constant kabs) and first-order chemical
or enzymatic degradation, k d, in the gut, the apparent absorption

10
8
6

4

z 2
o
~
II:
!­
Z
UJ
Uz
8 0.5

.... .... .... .... ,
.... .... , , .... ,

' ....

0.1 +--.....~---,.-....,....-........-..---.....
o 6 12 18 24 30 36

TIME (hI

Fig. 1i.1 Drug concentrations in plasma after oral administration of
the same dose of drug as a conventional tablet (-) from which ab­
sorption is rapid and as a slowly dissolving tablet (- - -) from which
absorption is slow. The half-life of the drug is 3.5 h , which is con­
sistent with the value determined after giving the conventional tab­
let. The slow absorption found with the specialized dosage form re­
sults in an apparent half-life of 14 h.
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(4.5)

rate constant, ka, obtained on curve-fitting is actually the sum of
kabs and kd [1J. Other factors that affect absorption, such as
gastric emptying or gastrointestinal motility, can also distort the
meaning of ka [2, 3J. In general, for any drug that is less than com­
pletely absorbed, it is unlikely that ka = kabs [3].

Other problems in the estimation of ka are encountered when
curve-fitting concentration-time data to equations appropriate to a
two-compartment model such as

-At -At -kt
C = Le 1 + Me 2 + Ne a

[see Eq. (2.93)]. By definition Al > A2 and it is likely for drugs
that are rapidly absorbed that ka > A2' but in all cases ka may be
smaller or larger than Al' There is no basis for assuming one or
the other. Therefore, it is not possible to determine unambiguously
ka from drug concentration-time data obtained after oral administra­
tion. The dilemma may be resolved by independently estimating Al
and A2 after intravenous administration of the drug to the same
subject. Some resolution may also be obtained by characterizing the
pharmacokinetics of the drug after administration of a dosage form
such as an oral solution, from which the drug is more rapidly ab­
sorbed. Most drug concentration in plasma-time data sets obtained
after oral administration can be fitted with two exponential terms
(Le., a one-compartment model) rather than three exponential terms
(Le., a two-compartment model). However, intravenous administra­
tion of the same drug often suggests that the two-compartment model
is more appropriate. Some reasons for this have been discussed in
Chap. 2. Under these conditions, attempts to estimate the absorp­
tion rate constant from data obtained after oral administration can
result in substantial error. It has been shown that if such data are
fitted to Eq. (4. 1), the larger of the two rate constants would not
be equal to the absorption rate constant but, under certain conditions,
may be equal to Al [4]. Since for virtually all drugs the time course
of concentration in plasma after intravenous administration shows
multicompartment characteristics, and for most drugs a two- or three­
compartment model is most appropriate, it follows that the estimate
of an absorption rate constant from data obtained after oral admin­
istration of any drug, by assuming a one-compartment model, will be
incorrect even if the drug were truly absorbed by apparent first­
order kinetics.

Wagner [5] has proposed that although the absorption rate con­
stant determined from a one-compartment fit of concentration-time
data after oral administration of a drug that shows two-compartment
characteristics after intravenous administration is incorrect, the ratio
of the absorption rate constants calculated for two dosage forms using
one-compartment analyses would be a good approximation of the actual
ratio of the absorption rate constants. Ronfeld and Benet [4] ex-
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amined the same question and concluded that the approximation error
could be substanttally larger than suggested by Wagner [5J. but that
a qualitative evaluation of the relative merits of different dosage forms
could be accurately made with one-compartment fits.

Percent Absorbed-Time Plots

The problems associated with the characterization of absorption kinetics
by curve-fitting have prompted many investigators to seek better
methods of analysis. One of the most important of these alternative
methods is based on the construction and evaluation of percent
absorbed-time plots [6. 7]. which do not require the assumption of
zero- or first -order absorption.

One-Compartment Model (Wagner-Nelson Method). The amount of
drug that has been absorbed into the systemic circulation, XA' at
any time after administration will equal the sum of the amount of drug
in the body, X. and the cumulative amount of drug eliminated, XE'
by urinary excretion. by metabolism. and by all other routes at
that time. Thus

(4.6)

(4.7)

which when differentiated with respect to time becomes

dXA dX dXE
<it =<it + <it

The term dXE/dt (elimination rate of drug) is by definition equal to
the product of the amount of drug in the body X and the apparent
first-order elimination rate constant of drug from the body;

dXE<it=KX

Substitution of KX for dXE/dt in Eq. (4.7) yields

dX
-.A = dX + KX
dt dt

(4.8)

(4.9)

( 4.10)

Since X equals VC, where V and C are the apparent volume of distribu­
tion and plasma concentration of drug. respectively. Eq. (4.9) may
be written as

dXA dC
<it = V <it + KVC

Integration of Eq , (4. 10) from time zero to T yields the following ex­
pression for the amount of drug absorbed to time T. (XA)T :
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(4.12)

(XA)T = VCT + KVLT
C dt (4.11)

where CT is the plasma concentration of drug at time T and IJ C dt
is the area under the plasma concentration versus time curve from
time zero to T. An equation for the amount of drug ultimately ab­
sorbed, (XA)oo' can be obtained by integrating (4.10) from time zero
to infinity and recognizing that C equals zero at both times zero and
infinity. Thus

(X
A)

= KV roo C dt
00 10

where I;; C dt is the total area under the plasma concentration versus
time curve." Dividing (4.11) by (4.12) and canceling common terms
yields the expression for the fraction absorbed to time T:

(XA)T CT + K J; C dt

(XA)oo= KI;Cdt
(4.13)

Equation (4.13) relates the cumulative amount of drug absorbed
after a certain time to the amount of drug ultimately absorbed, rather
than to the dose administered. By collecting blood after a single oral
dose and determining drug concentrations in plasma and the elimina­
tion rate constant, one can calculate the fraction absorbed for various
times after administration. The calculations required to construct a
percent absorbed-time plot are outlined in Table 4.1 and are based
on the concentration-time data in columns 1 and 2. A plot of CT +
K J6' C dt versus time, as shown in Fig. 4.2, indicates that the curve
is asymptotic and approaches the value of K 10' C dt , After about
18 h CT + K fJ' C dt is independent of time and closely approximates
K 10' C dt , indicative of the fact that absorption is negligible and
(XA)T 2: (XA) 00' The percent absorbed-time plot is shown in
Fig. 4.3. The data suggest that absorption is relatively slow since
at 2 h only about half of the absorption has taken place.

It is important to remember that percent absorbed-time plots
tell us nothing about the extent of absorption. In principle one can
obtain similar plots for two formulations of a drug that differ sub­
stantially in terms of how much of the drug is eventually absorbed.
This difference will be reflected in the CT + K Ii C dt versus time
plots.

An important characteristic of the Wagner-Nelson method for
evaluating absorption data is that no model is assumed for the ab­
sorption process. One often finds, however, that a plot of percent
unabsorbed (Le , , 100{1 - [(XA)T/(XA)oo])) versus time on semi-
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Table 4.1 Calculation of Absorption Data Using the Wagner-Nelson Method -c-,

>

loT C dt K iT C dt iT
0"
fIl
0

Time Drug Concentration C + K C dt Fraction '1

T 0
'tl

(h) (].I g/ml) Absorbed r+....
0::s

0 0 0 0 0 0 ~....
::s

1 1.88 0.94 0.08 1.96 0.29 1Il
r+....
Q

2 3.05 3.41 0.29 3.34 0.49 fIl

\I:l

3 3.74 0.59 0.64
::s

6.80 4.33 P-
O;!

5 4.21 14.75 1.27 5.48 0.81 ....
0
\I:l

7 4.08 23.04 1.98 6.06 0.90 <:
e?

9 3.70 30.82 2.65 6.35 Pi'
0"........

12 3.02 40.90 3.52 6.54
....
r+
'<

18 1.86 55.54 4.78 6.64

24 1.12 64.48 5.55 6.67

36 0.40 73.60 6.33 6.73

48 0.14 76.84 6.61 6.75

60 0.05 77.98 6.71 6.76

72 0.02 78.38 6.74 6.76

00 0 78.60 6.76 6.76
......

Notes: The example concerns a drug absorbed and eliminated by first-order processes; a one-compartment
c:.n....

model is assumed. The drug is eliminated with a half-life of 8 h (K = 0.086 h- 1).
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Fig. 4.2 Plot of the numerator of Eq. (4.13) (Le., CT + K f~ C dt)
versus time, based on the data in Table 4.1. Drug absorption is es­
sentially complete after about 18 h. Thereafter, the value of CT +
K f~ C dt is a constant equal to K foC dt [Le., the denominator of
Eq. (4.13)].

logarithmic coordinates approximates a straight line. This suggests
apparent first-order absorption and the apparent absorption rate
constant may be estimated from the slope, which is equal to -ka / 2. 303.
A linear relationship between percent unabsorbed and time on recti­
linear coordinates suggests apparent zero-order absorption. If suf­
ficient data are available, one may be able to characterize more
complex absorption kinetics (see Fig. 4.4).

Urinary excretion data can also be employed to construct per­
cent absorbed -time plots. The excretion rate of intact drug in the
urine, dXu/dt, is given by

dX
~=kX
dt e

where ke is the apparent first-order excretion rate constant and X
is the amount of drug in the body. Since X equals VC, it follows
that

dX
---.:!!. = k VC
dt e

(4.15)
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Fig. 4.3 Percent absorbed-time plot based on the data in Table
4. 1. A plot of percent unabsorbed versus time on semilogarithmic
coordinates would reveal apparent first-order absorption.

Rearranging terms yields

dX /dt
u

C = k V
e

(4.16)

( 4.17)

SUbstituting this value of C in (4. 10) and canceling common terms
gives

dXA 1 d(dXu/dt) K dXu
<it = k dt + k dt

e e

which when integrated from time zero to T becomes
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Fig. 4.4 Plot of percent sulfaethidole remaining to be absorbed (log
scale) versus time after oral administration of a sustained-release
suspension of the drug (see Ref. 6). The data show two components
in the absorption phase and suggest that, under these conditions,
drug absorption can be described by two parallel first-order processes.

1 (dXu) K
(XA)T =k dt + k (Xu)T

e T e

where (dXu/dt)T is the excretion rate of intact drug in the urine
at time T and (Xu)T is the cumulative amount of intact drug eliminated
in the urine to time T. An equation for the total amount of drug
ultimately absorbed, (XA)",' can be obtained by setting T equal to
infinity in Eq , (4.18) and recognizing that dXu/dt equals zero at time
infinity. Thus,
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(4.19)

(4.20)

where X"" is the total amount of unchanged drug eliminated in the
urine. ¥he fraction absorbed at any time T, (XA)T/(XA)",,' is de­
termined by dividing (4.18) by (4.19) and canceling common terms:

(XA)T (dXu/dt)T + K(XU)T

(XA)"" = KX""
u

Equation (4.20) indicates that, in principle, percent absorbed-time
plots can be constructed based solely on urinary excretion data.
Urine must be collected long enough to estimate K accurately but need
not be collected to time infinity. A plot of (dXu/dt)T + K(Xu)T
versus time is asymptotic, approximating KXii when absorption is
negligible.

In theory, percent absorbed-time plots may also be constructed
from metabolite concentration in plasma versus time data or from
urinary excretion rates of metabolite [8, 9], but the required assump­
tions make these methods of limited value.

The most serious limitation of the Wagner-Nelson method is that
it applies rigorously only to drugs with one-compartment characteris­
tics. In all other cases it is an approximation. It has been shown
that the application of the Wagner-Nelson method to assess the ab­
sorption of drugs with multicompartment characteristics results in an
underestimation of the time at which absorption ceases and an over­
estimation of the absorption rate [7]. The extent of error for a
drug with two-compartment characteristics depends on the ratio of
k10 or kel to A2 [10]. If A2/kl0 is ~0.8, then in all likelihood the
Wagner-Nelson method provides a reasonable approximation of the
time course of absorption. Clearly, the Wagner-Nelson method should
not be applied if drug concentration-time data after oral administra­
tion indicate multicompartment characteristics (see Fig. 2.15). A
dilemma is encountered, however, when the concentration-time curve
after oral administration of a drug that shows multicompartment char­
acteristics on intravenous injection suggests a one-compartment model.
Analysis of these data by the Wagner-Nelson method may produce in­
correct results. One way of resolving this dilemma is to construct
the percent absorbed-time plot using the Loo-Riegelman method,
described in the next section. Unfortunately, this method requires
concentration-time data obtained after both intravenous and oral
administration and can be used in few instances. For this reason,
the Wagner-Nelson method is likely to be applied in bioavailability
studies for some time to come, despite the uncertainties.

Multicompartment Models (Loo-Riegelman Method). The Loo-Riegelman
method requires drug concentration-time data after both oral and in-

AUROBINDO EX. 1018, 167



156 Pharmacokinetics

(4.21)

(4.22)

(4.23)

travenous administration of the drug to the same subject . It can be
applied generally to linear mUlticompartment pharmacokinetic models.
The derivation that follows is based on a drug with two-compartment
characteristics. The amount of drug absorbed into the systemic cir­
culation at any time is given by

XA=XC+XE+Xp

where XE is the cumulative amount of drug eliminated by all path­
ways and Xc and Xp are the amounts of drug in the central and
peripheral compartments, respectively. Differentiation of (4.21)
with respect to time yields

dXA dXc dXE ~

dt = Cit + lit+ dt

The rate of elimination of drug, dXE/dt, assuming first-order
kinetics, is by definition

dX
E

lit = k 10Xc

where klO is the apparent first-order elimination rate constant of
drug from the central compartment. By substituting k lOXc for
dXE/dt in (4.22) and dividing both sides of the equation by the ap­
parent volume of the central compartment, VC' one obtains

I dXA 1 dXc 1 1 dX
---=---+-k X +_--..E.
V dt V dt V 10 c V dtc c c c

(4.24)

Since XcIVc equals the drug concentration in plasma, C, Eq , (4.24)
can be written

...!.... dXA = dC + k C + ...!....~
V dt dt 10 V dt

c c
(4.25)

(4.26)

Integration of (4.25) from time zero to T yields the following expres­
sion for the amount of drug absorbed to time T:

(XA)T = C + k iT C dt + (Xp)T
V T 10 0 Vc c

where 16' C dt is as defined previously in this chapter and CT and
(Xp)T are the plasma concentration and amount of drug in the periph­
eral compartment at time T, respectively. The expression for the
amount of drug ultimately absorbed, (XA)oo' is obtained by inte­
grating (4.25) from time zero to infinity, which yields
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(4.29)

(4.30)

(4.32)

(XA) cc 1""-v- = k 10 C dt (4.27)
c 0

where JO' C dt is as defined previously. The fraction absorbed at
any time T, (XA)TI (XA)"" , is given by

(XA)T _ CT + k 10 fi C dt + (Xp)T / Vc
- - (4.28)

(XA ) "" k f""Cdt
10 0

Values for CT' fT C dt , and fa C dt are obtained from the oral ab­
sorption study. ~he rate constant klO is estimated from a previous
or subsequent intravenous study of the same subject. The amount
of drug in the peripheral compartment as a function of time after oral
administration divided by the volume of the central compartment can
be estimated by a rather complicated approximation procedure re­
quiring both oral and intravenous data.

The differential equation for the rate of change in the amount of
drug in the peripheral compartment with time is given by

dXdf= k 12Xc - k 21Xp

where k12 and k21 are apparent first-order intercompartmental trans­
fer rate constants. If one assumes that the amount of drug in the
central compartment between two consecutive sampling periods can be
approximated by a straight line, then

llX
X =(X) + __c t

c c 0 lit

where (Xc)O and Xc are the amounts of drug in the central compart­
ment at the time of the first of any two consecutive sampling periods
(Le., time to) and at time t , respectively; (llXc/llt) is the slope of
this line; and t is any time within the sampling period and varies from
o to lit. Substitution for Xc in Eq. (4.29) yields

dX z xcrf= k 12(Xc)O + k 12 llt
C

t - k 21Xp (4.31)

the Laplace transform of which is

k (X) + K12(llXc/llt)sX - (X ) = 12 c 0 - k
21XpP P 0 s 2s

where (Xp)o is the amount of drug in the peripheral comp~tment at
time to and s is the Laplace operator. Solving (4.32) for Xp yields
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(4.33)

(4.35)

(Xp)o k 12(Xc)O k 12(lIXC/llt)X = + + ~::.-_;:......-

p S + k 21 s(s + k 21) S2(S + k
21)

By taking the anti-Laplace of this equation (see Appendix A). an
expression for the amount of drug in the peripheral compartment as
a function of time can be obtained. That is.

-k
21t

k
12(Xc

) O -k
21t

k
12(lIXc/llt)

X =(X ) Oe + k (l - e ) + k t
P P 21 21

k
12(lIXc/llt) -k

21
t

2 (l - e ) (4.34)
k

21

which may be simplified to

-k
21t

k 12(Xc
) O -k

21t
X = (X )oe + k (l - e )

p p 21

+
k

12
( lI X

c
/ ll t ) -k t

2 (e 21 +k
21t-1)

k 21

Dividing Eq , (4.35) by Vc and setting time equal to the time between
any two consecutive sampling periods. 1I t , yields

-k 1I t
(e 21 + k

2111t
- 1)

(4.36)

If the sampling period is relatively short so that k21t ~ 0.5 [11]. the
third term of Eq. (4.36) may be reduced by expressing the exponen-

tial term e -k21ll t as a two-term Taylor expansion (L,e •• e-x = 1 -
x + x 2 / 2) . Equation (4.36) then simplifies to

(4.37)

The calculations involved in estimating values of (Xp)T IVc as a
function of time based on concentration-time data obtained after oral
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(4.38)

administration and estimates of k12 and k21 obtained after an intra­
venous study are shown in Table 4.2. The values can then be
used in Eq. (4.28) to generate percent absorbed-time data as shown
in Table 4.3.

The Loo- Riegelman method can also be applied to urinary excre­
tion data. In this case the equation analogous to Eq. (4.28) is

(XA)T (dXu/dt)T + k 1o(Xu)T + k~(Xp)T

(X A) 00 = k XOO

10 u

where

-k lit
(e 21 + k

21
lit - 1)

(4.40)

(4.41)

(4.39)

Equation (4.39) is analogous to Eq. (4.36) and may be simplified by
applying the two-term Taylor expansion if appropriate.

Although the application of the Loo-Riegelman method is limited
because of the requirement for concentration-time data obtained after
both oral and intravenous administration, it is a very useful and
rigorous approach for the evaluation of absorption kinetics. The
method can be used for drugs that distribute in any number of
pharmacokinetic compartments. For example. the fraction absorbed
equation for a drug that can be described after intravenous injection
by a three-compartment model with linear elimination from the central
compartment (see Fig. 2.17) is

(XA)T CT + k 10 Ii C dt + (X 2)T
/ Vc + (X 3)T / Vc

(X A) 00 = k rOO C dt
10 )0

where X2 and X3 are the amounts of drug in each peripheral compart­
ment. Individual equations analogous to Eq. (4.36) must be written
for the amount of drug in each peripheral compartment. For example.

(X 3)T (X
3)0

-k
2111t

k 13C
O

-k
3111t--=--e +--(1-e )V

c
V

c
k

31

k
13(

1IC III t) -k
3111

t
+ 2 (e + k 31 1It - 1)

k 31
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Table 4.2 Calculation of Absorption Data Using
the Loo- Riegelman Method

Drug Concen-
Time tration in

T Plasma, CT
lIC lit Co (X ) O/Vp c

0 0.00

0.5 3.00 3.0 0.5 0.00 0.000

1.0 5.20 2.2 0.5 3.00 0.218

1.5 6.50 1.3 0.5 5.20 0.749

2.0 7.30 0.8 0.5 6.50 1.433

2.5 7.60 0.3 0.5 7.30 2.157

3.0 7.75 0.15 0.5 7.60 2.849

3.5 7.70 -0.05 0.5 7.75 3.471

4.0 7.60 -0.1 0.5 7.70 4.019

5.0 7.10 -0.5 1.0 7.60 4.469

6.0 6.60 --0.5 1.0 7.10 5.103

7.0 6.00 -0.6 1.0 6.60 5.442

9.0 5.10 -0.9 2.0 6.00 5.552

11. 0 4.40 --0.7 2.0 5.10 5.318

15.0 3.30 -1.1 4.0 4.40 4.861

Notes: The estimation of (Xp)T/Vc following oral administration is
based on Eq. (4.37). A two-compartment model and first-order dis-
position are assumed: k12 =0.29, k21 =0.31, and k10 =0.16.

Although the Loo-Riegelman method was developed based on multi­
compartment models in which elimination takes place only from the
central compartment, Wagner [12] has shown that the method is
equally valid whether elimination occurs from the central compart­
ment alone, from the peripheral compartment(s) alone, or from both
(all) compartments.

An inherent limitation of the Loo-Riegelman method is the intra­
SUbject variability in pharmacokinetic parameters such as k10, k12,
and k21 between the intravenous and oral studies. The assumption
must be made that the kinetics of drug distribution and elimination
remain unchanged in the interval between doses. A method that
eliminates intrasubject variability is the simultaneous administration
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(X )0 -k 2111t k 12(C) 0 -k
2111t

2
(k12( 1l t) ) llC..:......e..J! e k (l e )

V 2 II t (X )T/Vc 21 p c

0.000

0.000 0.000 0.218 0.218

0.187 0.402 0.160 0.749

0.642 0.697 0.094 1. 433

1.228 0.871 0.058 2.157

1.849 0.978 0.022 2.849

2.442 1.018 0.011 3.471

2.976 1. 039 -0.004 4.019

3.444 1. 032 -0.007 4.469

3.276 1.900 -0.073 5.103

3.740 1.775 -0.073 5.442

3.989 1.650 -0.087 5.552

2.987 2.592 -0.261 5."318

2.861 2.203 -0.203 4.861

1. 361 3.168 -0.638 3.891

of the oral and intravenous doses. The oral dose would consist of
drug in the formulation to be evaluated and the intravenous dose
would be a solution containing labeled drug (Le , , either a radioactive
or a stable isotope) [13, 14]. The concentration of labeled drug in
plasma must be determined by methods specific for unchanged drug.

Deconvolution Method

Deconvolution is a model-independent method for determining absorp­
tion rates. Our discussion will be limited to the application of, rather
than the mathematical basis for, the method. It was introduced by
Rescigno and Segre [15] in 1966, but its use has been limited. The
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Table 4.3 Calculation of Absorption Data Using the Loo-Riegelman Method [see Eq. (4.28)] C>

N

T C
T

k 10 IT C dt (X )T!V (XA)T!(XA)",
Percent

p c Unabsorbed

0.5 3.00 0.12 0.22 0.165 83.5

1.0 5.20 0.45 0.75 0.316 68.4

1.5 6.50 0.92 1.43 0.437 56.3

2.0 7.30 1.47 2.16 0.540 46.0

2.5 7.60 2.06 2.85 0.618 38.2

3.0 7.75 2.68 3.47 0.687 31.3

3.5 7.70 3.30 4.02 0.742 25.8

4.0 7.60 3.91 4.47 0.790 21.0

5.0 7.10 5.08 5.10 0.854 14.6

6.0 6.60 6.18 5.44 0.901 9.9

7.0 6.00 7.19 5.55 0.926 7.4

9.0 5.10 8.96 5.32 0.958 4.2 "I:l
::J'

11.0 4.40 10.48 4.86 0.976
~

2.4 '"$

3
15.0 3.30 12.95 3.89 0.996 0.4

~
Q

&Notes: A two-compartment open model and first-order disposition are assumed: kl0 = 0.16. Values for ::s
(Xp)T/Vc are taken from Table 4.2, I; C dt = 126.44. (I)........

Q
CD
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(4.42)
H

(FR) = (n+l)f.t
nz t Hf.t

deconvolution method requires no assumptions regarding the number
of compartments in the model or the kinetics of absorption. Linear
distribution and elimination are assumed. Like the Loo- Riegelman
method, deconvolution requires data obtained after both oral and
intravenous administration in the same subject and assumes no dif­
ferences in the pharmacokinetics of drug distribution and elimination
from one study to the other. Drug concentrations must be measured
at the same times following both oral and intravenous administration
during the time that drug is absorbed after oral administration [16].
However, the deconvolution method does not require the determina­
tion of drug concentrations in plasma at equally spaced intervals
during or after the absorption phase [17]. The accuracy of the
method depends on the size of the sampling interval. The same ap­
plies to the Loo- Riegelman method [12].

Under these conditions the fraction unabsorbed or the fraction
remaining FR in the gastrointestinal tract after a certain time, ex­
pressed in terms of the sampling interval, is given by [16]

j=l
i=n+l F.f.t

- L f- [FR]('_I)f.t
i=2 f. t l
j=n

where

(4.43)

and n f.t is the time after n sampling intervals equal to f. t , H is a
function describing the drug concentration-time curve following oral
administration and F is a function describing the drug concentration­
time curve following intravenous bolus administration. Fnf.t may be
given by the drug concentration in plasma at n Ii t or the area under
the drug concentration-time curve between n f.t and (n - 1) f.t.
Hn f. t can only be expressed in terms of concentration. When both H
and F are expressed in terms of drug concentrations in plasma, the
method is termed point-point.

Consider a situation where drug is administered intravenously and
orally on two occasions and blood samples are obtained every 15 min
(I.e., f. t = 15). Using the point-point method, the fraction remaining
unabsorbed 15 min after oral administration is given by Eq. (4.42)
as follows:

Coral

(FR) -~
f.t - oral

C e t

CL v .
2f.t---

Ci .v •
f.t

(FR)O (4.44)
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(4.45)

where (FR) I':. t is the fraction unabsorbed 15 min after oral administra­
tion; (FR) 0 is the fraction unabsorbed at t = 0 and is equal to 1. 0;
C~~~l and c~1al are the drug concentrations ip. plasma 3.0 and 15 min,
respectively, after oral administration; and C~·I':.'t· and C~it'· are the
drug concentrations in plasma 30 and 15 min, respectively, after intra­
venous bolus administration. The fraction remaining unabsorbed 30
min after oral administration is given by

Coral Ci. v . ci. v .

(FR) =~ - ~I':.t (FR) _ ~I':.t (FR)
21':. t Coral c': v . I':. t c': V • 0

I':. t I':. t I':. t

where (FR)l':.t is obtained by first solving Eq. (4.44). Table 4.4 pro­
vides a numerical illustration of how the fraction remaining unabsorbed
can be calculated by deconvolution using the point-point method.

For a one-compartment model with first-order absorption and

first-order elimination, (FR)nl':.t should be equal to e-nkal':.t. This
is readily demonstrated by substituttng the appropriate equations in
Eq , (4.42). Under these conditions (FR)l':.t is given by

Table 4.4 Calculation of Absorption Data Using Deconvolution
(Point-Point Method) (see Ref. 16)

Time Ci. v. Coral FR
a

0 100.0 0.0 1. 00

1 84.0 58.6 0.35

2 70.6 69.9 0.12

3 59.9 65.9 0.05

4 49.4 57.9

5 41.5 49.6

aFR denotes the fraction remaining unabsorbed:

69.9 70.6 (l 0 ) (Eq. 4.44)FR 1 = 58.6 - 84. 0 • 0

FR 2 =~;:: - ~~:~ (0.35) ;::~ (1.00) (Eq. 4.45)

FR = 57.9 _ 70.6 (0.12) _ 59.9 (0.35) _ 49.4 (1.00)
3 58.6 84.0 84.0 84.0
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(4.46)
Be -2Ktlt

-Ktlt
Be

-2Ktlt -2katlt
(FR) = A(e - e )

tit -Ktlt -katlt
A(e - e )

where A =kaFXO/V(ka - K) and B =XO/V. Canceling common terms
and rearranging terms yields

-2k z t -k nt
-2Knt a -Ks t -Knt __ e a )e - e - e (e (4.47)

which may be simplified to yield

-k nt
a

= e (4.48)
-Knt

e - e

Benet and Chiang [18J recommend the use of the point-area method
rather than the point-point method. In the point-area method, H is

Table 4.5 Calculation of Absorption Data Using Deconvolution
(Point-Area Method) (see Ref. 16)

~t . ~t2 cL v . CoralTime o c':": dt dt FR a

t 1

0 0.0 91.8 0.0 1.00

1 91.8 77.1 58.6 0.35

2 169.9 64.8 69.9 0.125

3 233.7 54.4 65.9 0.04

4 288.1 45.7 57.9

5 333.8 49.6

aFR denotes fraction remaining unabsorbed:

FR = 69.9 _ 77.1 (1.00)
1 58.6 91.8

FR =65.9 _ 77.1 (0.35) _ 64.8 (1.00)
2 58.6 91.8 91.8

FR = 57.9 _ 77.1 (0.125) _ 64.8 (0.35) _ 54.4 (1.00)
3 58.6 91.8 91.8 91.8
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(4.49)

given by the drug concentration in plasma at time n .H after oral ad­
ministration and F is given by the area under the drug concentration
versus time curve over the sampling interval after intravenous admin­
istration. The use of the point-area method to evaluate the time
course of absorption is illustrated in Table 4.5.

Intercept Method

Vaughan [19] has proposed a method for evaluating the in vivo re­
lease rate constant of a drug from its oral formulations. The method
is model independent but requires data after oral administration of
both the formulation and a solution of the drug and assumes that ab­
sorption as well as distribution and elimination are first-order proc­
esses.

The drug concentration in plasma after a single oral dose Ds in
solution can usually be described by a summation of exponential terms:

N - Cl
i
t

C = D L Aie
s s i=1

where Ai and Cli are constants and Cli > Clj+1' If after oral administra­
tion of the formulation containing a dose Df' the drug is released from
the formulation in a first-order fashion prior to absorption, drug
concentrations in plasma are given by [19]

(

N A. ) -k t
C =fD L 1 e r

f ~r i=1 Cli - k r
(4.50)

(4.51)

(4.52)

where f is the fraction of the dose Df that is absorbed relative to the
amount absorbed after the solution and k r is the first-order release
rate constant from the formulation. Provided that k r > Cl N both Cs
and Cf will, at some time after administration, be described by single
exponential functions:

-Cl t
C = DANe Ns s

and

-ClNt

C = fD~rANe
f k - Cl

r N

where Cl N is equal to An for a multicompartment system or to K for a
one-compartment system. The intercepts I .of the extrapolations of
the final exponential regressions of log Cs versus time and log Cf
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versus time, with the concentration axis, are given by the coefficients
of the terms on the right-hand side of Eqs. (4.51) and (4.52):

and

I = D As s N (4.53)

(4.54)I = fDttrAN
f k - ex

r N

Dividing Eq , (4.53) by (4.54), canceling common terms, and re­
arranging the resulting equation yields an expression for k :

r

(4.55)

Hence kr may be calculated from drug concentration-time data ob­
tained after oral administration of a solution and a formulation. In
principle, Eq , (4.55) may also be used with urinary excretion rate
data. Vaughan [19] has provided an example based on urinary ex­
cretion rate data to illustrate the use of Eq. (4.55). A 15 mg dose
of methylamphetamine was given as an aqueous solution and as a tablet
formulation. The cumulative urinary excretion of unchanged drug
was 50.4% of the dose after the solution and 50.9% of the dose after
the tablet. Hence f ~ 1. The final linear regressions of the log of
urinary excretion rates against time had a half-life of 5 h correspond­
ing to an ex:N value of 0.1386 h -1. The ratio of the intercepts was
0.7. Substltution of these values into Eq. (4.55) gives kr as 0.462
h- 1. When release (dissolution) from the dosage is the rate-limiting
step in drug absorption, this method gives an estimate of the ab­
sorption rate constant since under these conditions kr ~ ka.

The usefulness of the intercept method is greatest when intra­
venous data are not available (so that the Loo-Riegelman or deconvolu­
tion method cannot be applied) and when the oral data clearly indicate
that the drug distributes in a multicompartment manner (so that the
Wagner-Nelson method may not be applied). The weaknesses of the
method include the assumption of first-order absorption and the need
for CL N to be essentially the same for both studies. Also, this method
may yield unusual and misleading results if the drug precipitates in
the gut after administration of the solution dosage form.

EXTENT OF ABSORPTION

Although the standard definition of bioavailability includes both rate
and extent of drug absorption, bioavailability and the alternative
terms, availability and systemic availability, are often used to signify
solely the extent of absorption or the amount of drug reaching the
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systemic circulation because this is often the principal concern of
comparative bioavailability studies. Since the average steady-state
concentration of drug in plasma on repetitive dosing is directly pro­
portional to the amount absorbed, administering a drug in a formula­
tion from which the extent of absorption is lower than from another
formulation is the same as administering a lower dose.

The amount of drug reaching the systemic circulation after oral
administration is often less than the administered dose. There are
many reasons for this. Poor formulations may release only a part of
the dose before reaching the colon. This is found most often with
formulations of poorly water soluble drugs or with special formulations
that are designed deliberately to delay release of the drug. However,
oral administration of even the best formulation of a drug may result
in less than completely availability. Some drugs are so polar that
permeation of the gastrointestinal epithelium is limited. Other drugs
are subject to chemical or enzymatic degradation before reaching the
systemic circulation; this may occur in the gut lumen, in the gut
wall, or in the liver during the first pass.

The systemic availability of a drug after oral administration of a
formulation rarely exceeds that found with a solution. In almost all
cases the performance of a dosage form or formulation can be eval­
uated by comparison with that of a solution. However, equivalent
availability does not imply complete availability. For example, Wagner
et al. [20] have shown that the availability of propoxyphene is the
same after oral administration of a commercially available capsule and
an aqueous solution, but the systemic availability of propoxyphene is
less than 25% of the administered dose largely because of first-pass
metabolism [21]. Although relative availability studies are useful for
characterizing the formulation, one must determine absolute availa­
bility to characterize the drug.

Estimation of absolute availability after oral administration almost
always requires comparison with data obtained after intravenous ad­
ministration. In the case of water-soluble drugs, data after intra­
muscular administration may be acceptable as an absolute standard.
Various oral standards have been used to determine relative availability.
These include aqueous and nonaqueous solutions, carefully formulated
suspensions and certain commercial formulations that are generally
accepted as standards.

Almost all bioavailability studies are concerned with the systemic
availability or relative availability of a drug after oral administration.
However, the extent of absorption may also be of concern when admin­
istering a drug by any extravascular route, for example when giving
a drug suspension intramuscularly or when giving a solution of drug
that is likely to precipitate in the muscle depot on injection. Although
it is reasonable to assume that the entire dose of an intramuscularly
administered drug will be absorbed eventually, absorption may be so
slow that, effectively, availability may be considered incomplete.
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This may occur if the release of a fraction of the dose in the muscle
depot is so slow as to give drug concentrations in plasma below that
which one can measure. Availability is also a consideration after
intravenous administration of a chemical derivative of a drug (a
prodrug) that is intended to produce the drug itself in the body. If
the prodrug is both converted to the drug and eliminated by other
routes, the availability of the drug is less than complete. This is
the case for chlorampehnical after intravenous administration of
chloramphenical succinate [22].

Systemic or relative availability of a drug may be determined
based on drug concentrations in plasma, urinary excretion of un­
metabolized drug, or pharmacologic effects. The last mentioned is
considered briefly in Chap. 6. In some instances availability esti­
mates may be based on metabolite or total radioactivity in plasma or
urine.

Drug Concentrations in Plasma

The most commonly used method for estimating availability is the
comparison of the total area under the drug concentration in plasma
versus time curve, AUC, after oral administration of the test formula­
tion and after administration of the standard.

In referring to the availability of a drug after oral administration
we will use the term systemic availability F when the standard is an
intravenous solution and the term relative availability Fr when the
standard is an oral formulation. An example of the results of a rela­
tive availability study is shown in Fig. 4.5. Formulation (a) is con­
sidered to be the reference standard.

By definition,

F =cI; C dt)oral =AUCor al

(io
co

C dt). AUCi. v ,
1. V.

when equal doses are given intravenously and orally;

D. -AUC
F = LV. oral

D - AUe,oral 1. V.

(4.56)

(4.57)

(4.58)

when different doses D are given intravenously and orally; and

AUC
t est

Fr = "':'"A-:-:U:"::C:---"";;';:;"'--­
standard

assuming that equal doses are given in the test formulation and the
standard.
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Fig. 4.5 Average chloramphenicol concentrations in plasma for groups
of 10 healthy volunteers who received single 0.5 g oral doses of the
drug in various commercial preparations (a, b, c, or d). Product
(a) is considered the standard. (From Ref. 23.)

It is easily shown for any multicompartment model with linear
processes that the ratio of areas after intravenous and oral adminis­
tration is equal to F. Since

FD
xuc := oral

oral (V D A) I
" nora

and

(4.59)

xuc,
I.V.

(4.60)

it follows that

AUe FD (V A ).
oral oral B n 1. V •

--'---:=
AUe D (V A )

1. v . 1. v, a n oral
(4.61)

Assuming that the same dose was given intravenous and orally, and
the clearance of the drug, VaAn' was the same in each study, Eq.
(4.61) can be reduced to Eq. (4.56).

The proximity of the estimated average value of F or Fr as de­
rived from either Eq , (4.56) or (4.58) to the true value of For Fr
depends on the assumption that average drug clearance is the same
in each of the comparative studies. This is unlikely to be the case
if different panels of subjects are used for each trial since inter­
subject variability in drug clearance can often be pronounced. This
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variability can be reduced (but not eliminated) by carefully matching
the subjects with respect to sex, body weight, age, health status, and
other factors. A still better solution is to use the same SUbjects in
both trials. Furthermore, by using the same SUbjects and by alter­
nating the order of drug administration (1. e., a crossover study), we
can avoid subject effects and period effects.

Today, almost all bioavailability studies are carried out in a cross­
over fashion with a single panel of subjects. Hence the average values
of F or Fr determined from these studies are usually good estimates
of the true value. However, these studies are still sometimes plagued
by intrasubject variability; that is, an individual's ability to clear a
drug may differ demonstrably from one administration of drug to the
next. It is likely that the larger the intrasubject variability in drug
elimination, the larger the standard deviation associated with the
estimated value of F or Fr. Large standard deviations make it difficult
to differentiate products, an important purpose of bioavailability
studies. Differentiation at an appropriate level of confidence under
conditions where there is considerable intrasubject variability may
require a very large panel of subjects.

There is considerable interest in reducing the effect of intrasubject
variability in bioavailability studies. This would be accomplished if we
could somehow account for differences in clearance in the same individual
from one treatment to another [see Eq , (4.61)]. Unfortunately, this
is not possible because one cannot determine clearance without making
some assumption concerning bioavailability. Alternatively, one can
assume that the apparent volume of distribution in a given individual
is invariant from trial to trial and then correct for differences in
half-life [24].

Rearranging Eq. (4.61), assuming that (Va)i.v. =(Va)oral, and
recognizing that t1/2 =O.693/An yields

D. (t1/ 2), • AUC 1
F = l.V. l.V. ora (4.62)

Dbral(t1/2)oral' AUCi. v .

This so-called half-life correction method assumes that a change in t1/2
from one study to the next in the same subject reflects solely a change
in clearance and is not mediated by a change in apparent volume of
distribution. It is probably reasonable to attempt the half-life cor­
rection in most bioavailability studies but to accept it only when it re­
sults in a substantial decrease in the standard deviation of the mean
value of F or FR' The half-life correction method must never be used
when a change in t 1/2 reflects more persistent or prolonged absorption
of drug from one dosage form than another [25].

An alternative correction for intrasubject variability called the
Kwan-Till method is based on variability in renal clearance and re­
quires both plasma concentration and urinary excretion data [26]. This
method assumes that changes in total clearance are solely the result
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(4.63)

of changes in renal clearance and that nonrenal clearance remains
constant from study to study. It appears to be most useful for but
not limited to drugs that are subetantially excreted unchanged in
the urine. The total plasma or systemic clearance is given by

D,
Cl = 1. V.

s AUC,
LV.

but may also be expressed as

Cl = Cl + Cl
s r nr

(4.64)

(4.65)

that is, as the sum of renal clearance Clr and nonrenal clearance
Clnr. The renal clearance of a drug is given by

f D
u

Clr = AUC

where fu is the fraction of the administered dose that is ultimately
excreted unchanged in the urine;

x'"
u

f u = D
Equation (4.61) may be rearranged and expressed as

(4.66)

(Cl) ID. • AUC I (Cln r + Clr)oralDI' .v .• AUCor alF = sora 1. v. ora =
(CI) D • AUC. (Cl + CI). D • AUC.

s 1.v , oral LV. nr r LV. oral LV.

(4.67)

Assuming that nonrenal clearance is the same for both the oral and
intravenous study, and recognizing that Cln r is equal to the difference
between Eqs. (4.63) and (4.65), we can state that

(D. IAUC. - f, D. IAUC,r.v , LV. U,LV. I.V. LV.

+ f D IAUC )AUC D.
F

__ U,oral oral oral oral 1. v .
(4.68)

(D. IAUC, - f. D, IAUC.
LV. i .v . U,LV. LV. i .v ,

+f. D. lAue. )AUC. D 1U,l.V. i .v , r.v . I.V. ora

which can be simplified to

(

D. f . D.
F = LV. _ U,I.V. LV.

AUC. AUC.
l.V. I.V.

f D )AUC+ u, oral oral oral
AUC D

oral oral

=
AUC D, (l - f. )

oral l.V. U,I.V. + f
AUC. D al U,oralLV. or

(4.69)
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Even if the assumption regarding the constancy of nonrenal clearance
from one study to the next were incorrect, it would be of little con­
sequence if the drug were aubstantially excreted unchanged, since
Clnr would represent a small fraction of CIs. This method has re­
cently been used for estimating the availability of fluoride from tab­
lets [27]. Calculating F by means of Eq. (4.57) and (4.69) yielded
values of 107.8 ± 27.2 and 100.8 ± 9.2 %, respectively. Applying the
correction factor reduced the apparent variability of the estimate.
In this case, nonrenal clearance was about 60% of total clearance.
The Kwan-Till method outlined above applies exactly only when an
intravenous reference is available. In the absence of such data, an
approximation has been proposed and evaluated [26, 28].

The correction method described above assigns the variability
in total plasma clearance to renal clearance and assumes no variability
in nonrenal clearance. Since there is no way to measure nonrenal
clearance independently, one may alternatively assume that the non­
renal clearance varies in direct proportion to changes in renal
clearance, so that

(CI) D • AUC
F :: r oral i.v . oral

(CI). D • AUC.
r 1. v, oral 1. v ,

(4.70)

Calculating the availability of fluoride for the example cited above [27]
using Eq. (4.70) yields F :: 101.5 ± 24.0%. The correction reduces the
average bioavailability to a more realistic absolute estimate, but is
has no effect on the standard deviation. Although this method is
not useful for fluoride, it may apply to other drugs and may be used
in the absence of an intravenous reference.

A systemic (integrated) approach to the estimation of bioavailability
using both model-independent (Kwan-Till) and pharmacokinetic
(half-life correction) techniques has been presented [29]. The methods
of Kwan-Till (26] and Wagner-Nelson [6] or Loo-Riegelman [7] are
integrated such that one is able to check many of the assumptions
inherent in these techniques and make adjustments for apparent de­
viations. This integrated approach as well as the Kwan-Till method
requires that plasma and urine be obtained during the bioavailability
study; the half-life correction method requires one or the other, not
both.

In the typical single-dose bioavailability study, blood sampling is
usually terminated before the entire drug concentration in plasma
versus time curve is characterized (see Fig. 4.6). In such cases the
estimation of foC dt or AUC req¥ires an extrapolation. The available
data are first used to calculate fo C dt, where t is the time the last
sample was obtained, using the trapezoidal rule (see Appendix D) or
some other method [30]. The data are then plotted on semilogarithmic
coordinates to estimate K or An (see Fig. 4.6). It is assumed that the
drug concentration-time curve after time t is described by
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Fig. 4.6 Rectilinear and semilogarithmic plots of drug concentration
in plasma versus time after a single oral dose. The last blood sample
was taken before drug concentration had declined to a negligible
level, requiring that part of the total area under the curve be estimated
[see Eq. (4.75).]

C=Ce-Kt
o

or

- A t
C = C e no

Integrating these expressions from t to infinity yields

C
tC dt =­

K

or

(4.71)

(4.72)

(4.73)

(4.74)~
t c,

C dt =­
o An

where Ct is the concentration at the last sampling time. The total
area under the drug concentration in plasma versus time curve for a
multicompartment model is given by
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(4.75)AUC = {<:o C dt = r C dt + Ct

Jo J(1 An

This technique is useful but does not reduce the need for obtaining
blood samples for as long as possible after dosing. The smaller the
contribution of the extrapolation area term (Ct/K or Ctl An) to the
total area, the more accurate the estimation of total area.

The treatment described above suggests that the minimum time
required for sampling in a bioavailability study is that which assures
a reliable estimate of the elimination rate constant (Le., three to four
elimination half-lives after dosing). In some instances, however, con­
siderably shorter sampling periods appear adequate. Lovering et al ,
[31] determined for different formulations of many drugs that the
ratio of areas under the drug concentration-time curve changed little
between the apparent end of the absorption period and the time when
blood sampling was terminated. They concluded that for a wide range
of conditions the area ratios for any two formulations at a time equal
to about twice that required for the apparent termination of absorp­
tion are within a few percentage points of the area ratios at infinite
time. The theoretical basis for these observations is complex, but
the work of Kwan and colleagues [32-34] provides some insight. In
general, we can state for all cases that sampling should not be termin­
ated until some time after absorption is complete. For a one-compart­
ment model with first-order absorption and elimination, the closer
the values of the absorption rate constants for two formulations, the
shorter is the sampling time required for the ratio of areas to approx­
imate the ratio at infinite time. For the same model the greater the
difference between ka and K, the shorter is the time required to de­
termine an area ratio that approximates the ratio at infinite time. For
example, for two formulations each with ka/K ~ 5, the area ratio after
a time equal to one elimination half-life is usually within 80% of the
ratio at infinite time. When the values of the absorption rate constants
are closer, the approximation is better. When the sampling interval
is equal to two elimination half-lives, the area ratio is within 90% of
the ratio at infinite time if ka/K ~ 5 for both formulations. It appears
that the use of partial areas in comparative bioavailability studies will
be most successful for drugs with long half-lives and for formulations
from which these drugs are relatively rapidly absorbed. Although we
can rationalize results such as those found with digoxin [35], where for
certain formulations the area measured over the interval 0 to 5 h cor­
relates extremely well with the area measured over the interval 0 to 96
h , the prospective use of partial areas cannot be encouraged. One is
always faced with the uncertainty of deciding when absorption has
effectively stopped. If sampling is terminated before absorption is
complete, comparison of partial areas will be misleading. For this
reason we favor sampling as long as possible after administration and
the application of Eq. (4.75) where appropriate.
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(4.76)

There are times when the estimation of the availability of a drug
after a single dose is difficult. For example, single-dose bioavail­
ability studies in patients who require the drug necessitate stopping
drug therapy. Also, the usual dose of some drugs produce such low
drug concentrations in plasma after a single dose that it may be im­
possible to determine concentrations for more than a few hours after
administration. In such cases it may be desirable to estimate bio­
availability after repetitive dosing. Drug concentrations in plasma
at steady state are often considerably higher than those found after
a single dose. We have shown in Chap. 3 that the area under the drug
concentration in plasma versus time curve over a dosing interval at
steady state after repetitive dosing of a fixed dose at a fixed interval
is equal to the total area resulting from that dose in a single-dose
study. Therefore,

F = _(f..:;:.-C.....::.:ss;;....-d_t)....:t;;:;e=.st;;....-_

r (IT C dt)o ss standard

where Css denotes drug concentrations at steady state and T is the
dosing interval. Equation (4.76) assumes that the dosage regimen
was the same for both studies. One advantage of this method is that
fewer data points are required to characterize the area because the
time course of change in drug concentrations in plasma at steady
state is less precipitous than after a single dose and sampling times
are bounded by the dosing interval. A second advantage is that
patients or normal subjects may be crossed over from one formulation
to another without a drug washout period. It is necessary, however,
upon a change of formulation that the drug be given for four to seven
elimination half-lives before estimating Jij Cs s dt to assure attainment
of the new steady state. Table 4.6 summarizes the results of a steady­
state bioavailability study with digoxin [36]. The study consisted of
a randomized crossover design, in six healthy volunteers, with three
2-week treatment periods. Digoxin was given once daily at 8:00 a.m ,
Drug concentrations in plasma were determined during the final
dosing interval (day 14). Figure 4.7 shows average drug concentra­
tion-time curves during a dosing interval at steady state for three
quindine formulations [37].

Attempts to estimate availability by comparing single steady-state
drug concentrations in plasma after different formulations rather than
areas over the dosing interval may lead to incorrect results. For
example, consider a one-compartment model with first-order absorption
and elimination. The drug concentration at the end of any dosing
interval at steady state is given by
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Table 4.6 Estimation of Digoxin Bioavailability Using Steady-State
Plasma or Urine Data (see Ref. 36)

177

(4.77)

~T C dt
X

s s
Dosage o ss u
Form (ng-h/ml) F (mg) F

Intravenous solution 37.6 1.00 105.0 1.00

Oral solution 25.6 0.68 94.7 0.90

Oral tablet 21.8 0.58 89.7 0.85

Notes: In each case, 0.25 mg of digoxin was given every 24 h for
2 weeks. Each value represents the mean of six subjects ,

k FX
CSS = a 0 1 -KT

min V(k - K) -KT e
a 1 - e

assuming that each dose is given postabsorption. The ratio of
trough or minimum concentrations at steady state for two formulations
in the same individual is given by
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Fig. 4.7 Mean quinidine concentrations in plasma for three different
products during a dosing interval at steady state. The drug was given
every 12 h for 6 days before sampling. Comparison of the areas under
the curves during the dosing interval, adjusted for administered dose,
permits an assessment of relative bioavailability. (From Ref. 37,
reprinted with permission.)
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(4.78)
(C

s s )
min test

(C
ss )
min standard

assuming that K, V, 1", and X0 are the same in both cases. Clearly,
the ratio of trough concentrations is equal to Fr (1. e., Ftest IFstandard)
only if the absorption rate constants for each formulation are the
same or if absorption from both formulations is such that ka » K in
each case. Further examination of Eq. (4.78) reveals that if drug is
absorbed from two formulations to the same extent but at different
rates, the ratio of trough levels cannot be unity. For example, if
the standard were absorbed faster than the test formulation but to
the same extent, the ratio will exceed unity and one could incorrectly
conclude that the test formulation is better absorbed.

The principal disadvantage of the steady-state method for estimat­
ing availability is that the clinical aspects are much more difficult to
control and execute. It may take many days to achieve steady state.
In any prolonged study, the potential lapses in subject compliance
increase with time. As an alternative, Kwan and colleagues [32-34]
have proposed a comprehensive method to permit bioavailability
estimates under quasi- or non-steady state conditions. The basic
strategy is to effect sufficient drug accumulation to facilitate assess­
ment of bioavailability without unduly prolonging the clinical phase of
the study. Only one aspect of this method will be considered here.
The reader is directed to the original publications for mathematical
derivations.

Consider that two treatments of the same drug are to be compared
by administering sequentially R, doses of a standard formulation followed
immediately by m doses of a test formulation according to the same
dosage regimen. Under certain conditions it can be shown that [32]

F [«(Cdt) J -R,K1"F = test = 0 m+ R, _ e -mK1" 1 - e
r F 1" -mh r

standard (foC dt) R, 1 - e
(4.79)

where the integral term in the numerator represents the area under
the drug concentration in plasma versus time curve over the dosing
interval after the last dose of the test formulation and the one in the
denominator represents the area over the dosing interval after the
last dose of the standard. If m = R" Eq. (4. 79) reduces to

(f; C dt)mH -mK1"
F = - e

r ( (1" C dt )
JO R,

(4.80)

For a multicompartment system K is replaced by An' The derivation
of Eq. (4.79) is based on a linear model with first-order absorption,
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and requires that ka » K or An for both formulations, where K or
An represents the slope of the terminal linear phase of a semilog­
arithmic plot of plasma concentration versus time. Alternatively, it
requires that ka is the same for both formulations. If neither of these
conditions is satisfied, Eqs. (4.79) and (4.80) are approximations.
The validity of the approximation depends on (1) the difference be­
tween the two absorption rate constants (the smaller the difference,
the better the approximation) j (2) the difference between the absorp­
tion rate constant for each formulation and the elimination rate con­
stant of the drug (the larger these differences, the better the ap­
proximation) j and (3) the proximity of R.T and (m + R.)T to the time
required to achieve steady state (the closer one is to steady state,
the better the approximation). Kwan presents several strategies
to improve the approximations as well as alternative strategies to com­
pare different formulations under a variety of quasi- and non-steady
state conditions [32- 34]. Based on his experience with this method,
Kwan [33] concludes: "In general, the relative bioavailability between
two formulations in a crossover study is a function of the ratio of
respective mean plasma concentration at quasi- and nonsteady-state.
Appropriate correction factors may be introduced to compensate for
the effects of dose, dosing sequence, half-life, sampling interval,
and residuals. Each of these elements can be readily identified in
the equations developed for each design variation."

Although it is widely accepted that the absolute availability F
of a drug after oral administration can be determined only by ref­
erence to results obtained after intravenous administration, there is
an interesting exception. A method has been proposed for estimating
the absolute availability of drugs with renal clearances that are re­
producibly perturable, without reference to an intravenous dose [38].

Consider the oral administration of a drug under two conditions,
X and Y, which results in different renal clearances. These conditions
may be the coadministration of agents that acidify or alkalinize the
urine or that inhibit tubular secretion. Total clearance is the sum of
renal and nonrenal clearances. We shall assume that nonrenal clear­
ance and the fraction of dose absorbed are the same under both con­
ditions. Therefore,

and

(CI )X = (CI )X + (CI )xs r nr

(CI )Y = (CI )Y + (CI )Ys r nr

(4.81)

(4.82)

where (Clnr)X = (Clnr)y. Subtracting Eq. (4.82) from (4.81) yields

lICI = lICI (4.83)s r

where lICls =(Cls)X - (Cls)y and lIClr =(Clr)x - (Clr)y. For each
condition, total clearance is given by
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(4.84)

and

FD
(Cls)y = AUC

y

where F = FX = Fy and the dose D = DX = Dy. It follows that

FD FD
llClr = AUC

X
- AUC

y

(4.85)

(4.86)

and

(4.87)
s ct AUCX' AUCyF= __r

D AUCy - AUC
X

Since all the terms on the right-hand side of Eq. (4.87) can be de­
termined from the two experiments, it is evident that under certain
conditions F can be determined without resorting to an intravenous
study.

This method was tested using intravenous furosemide data from a
furosemide-probenecid interaction study [39J. If the method were
valid, an F value of unity should be obtained. A mean value of
F = 1. 05 ± O.11 was determined. The method has also been used to
estimate the availability of tocainide [40] and lithium [41J.

Urinary Excretion Data

It is sometimes advantageous or necessary to determine systemic or
relative availability from urinary excretion data. The basis for this
determination is that the ratio of the total amount of unchanged drug
excreted in the urine after oral administration to that following intra­
venous administration of the same dose is a measure of the absorption
(systemic availability) of the drug. This relationship is valid for all
linear models. Since

(4.88)
CI

s

FDCI
x~ = r

it follows that

(X"") (CI) (CI) D.
F = u oral s oral r 1.v. 1. V •

(X~)1.v. (Cls)1. v. (Clr)oralDoral

(4.89)
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If we assume that there is a crossover design with a single panel of
subjects and that there is no intrasubject variability in Clr and CIs
from one study to the next, Eq. (4.89) reduces to

(X"") D
F = u oral Lv.

(X""). D
u I.V. oral

(4.90)

or

F = (X;)oral

(Xu)Lv.

when equal doses are administered intravenously and orally.
similar manner we can show under similar conditions that

(4.91)

In a

(4.92)
(X:) test

F =----'~""-"-'---

r ""
(Xu) standard

An example of the data required to estimate relative bioavailability
from urinary excretion studies is shown in Fig. 4.8.

The Kwan-Till method may be used in conjunction with urinary
excretion data to reduce the standard deviation of the mean value of
F or Fr' One of two corrections based on experimental estimates of
renal clearance may be applied. First, one may assume that although
renal clearance is different from one study to the next, this change is
compensated for by changes in nonrenal clearance so that total (sys­
temic) clearance is the same. In this case Eq. (4.89) reduces to

(X~)oral
F = --'--~-'"

ee
(X i.

U I.V.

D (CI ).
Lv , r I.V.

Doral (Cl r)oral
(4.93)

Alternatively, one may assume that nonrenal clearance Clnr remains the
same. In this case Eq. (4.89) may be written as

(4.94)
(CI + CI) I(CI),

nr r ora r 1. v .
(CI + CI ), (CI) alnr r 1. v , r or

D.
I.V.

D
oral

F = (X:)oral

(X~)Lv ,

Recognizing that nonrenal clearance is the difference between CIs and
Clr and that (Clnr)oral =(Clnr)i. v ,» we obtain

DL v• (Cls)Lv.

Doral (Cls)Lv.

(CI). + (CI) al (Clr)i.v.r I.V. r or
(CI), + (CI )i (Clr)oralr I.V. r .v ,

(4.95)
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Fig. 4.8 Average cumulative amounts of tetracycline excreted in the
urine of six subjects after a single 250 mg dose of the drug (see Ref.
42) • The upper curve (C) was the result of administering an oral
aqueous solution of the drug to fasting subjects. The middle curve
(B) was observed after oral administration of the solution to the same
subjects after breakfast. Curve A was obtained after rectal admin­
istration of the aqueous solution.

Rearrangement of Eq. (4.88) yields

(CI )
(CI). = r Lv.

s 1.V. (f)iu .v ,
(4.96)

where (fu)Lv. = (X~)i.v.lDLv .. Substituting for CIs in Eq. (4.95)
according to (4. 96) and simplifying. we obtain

D (CI If). - (CI). + (CI) Ir.v. r u 1. v • r 1. V • r ora
D

or al
(CI If ).

r u 1.V.

x (4.97)

which further simplifies to

F = (X:)oral

(X:)L v ,

D.
1.V.

D
oral

+ (CI )
r oral (4.98)
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The principal drawback in using urinary excretion data for
estimating availability is the need for collecting urine until virtually
all of the drug has been excreted. With some drugs this may re­
quire several days of collection. Some investigators have observed
with certain drugs that the ratio of amounts excreted over a relatively
short period of time after administration of two formulations is similar
to the ratio obtained on prolonged urine collection. For example.
Greenblatt et al , [43] found that the t-day and 6~day excretion of
digoxin after intravenous and oral administration of many prepara­
tions were highly correlated (r =0.94) and the overall variability
in the two measures was nearly identical, despite the fact that less
than half of the cumulative 6-day urinary digoxin excretion was re­
covered on the first day of collection. A similar observation has been
made by Bates and Sequeira [44] with respect to the urinary excre­
tion of total 6-desmethylgriseofulvin after administration of more than
20 formulations of griseofulvin which varied about fourfold in avail­
ability (see Fig. 4.9). Theory predicts that the ratio of amounts ex­
creted in the urine in a comparative bioavailability study are asymp­
totic with time. For drugs with long half-lives and for formulations
from which these drugs are relatively rapidly absorbed. the ratio will
closely approximate the asymptotic value long before the drug is com­
pletely excreted. The use of partial urine collections for estimating
comparative bioavailability may be appropriate if the pharmacokinetics
of the drug are well characterized. but the prospective use of this
method requires too many assumptions to be reasonable.

Systemic or relative availability of a drug may also be estimated
from urinary excretion data at steady state. In theory the amount
excreted over a dosing interval at steady state is equal to the total
amount excreted to infinity after a single dose of the drug. There­
fore,

(X
s s )

F = u test (4.99)
r (Xss)

u standard

where X~s denotes the amount of drug excreted in the urine from time
zero to T during any dosing interval at steady state. Equation (4.99)
assumes that the dosage regimen was the same for both studies. A
principal advantage of steady-state studies compared to single-dose
studies is that the urine collection period is bounded by the dosing
interval. Patients or normal SUbjects may be crossed over from one
formulation to another without a drug washout period but. on a change
of formulation. the drug must be given for four to seven elimination
half-lives before determining X~s to assure that the new steady state
has been reached. Table 4.6 compares the bioavailability of digoxin
from different formulations as estimated from the area under serum
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Fig. 4.9 Relationship between 24 hand 96 h cumulative urinary ex­
cretion of 6-desmethylgriseofulvin after a single 500 mg dose of griseo­
fulvin in various products to healthy volunteers. In the case of
griseofulvin it appears that bioavailability estimates based on a 24 h
urine collection are equivalent to those based on a complete (96 h)
collection of urine. y = 1.20x + 11.2, n = 47, r = 0.965, P < 0.001.
(From Ref. 44, reprinted with permission.)

digoxin concentration-time curves over a dosing interval at steady
state and from steady-state digoxin excretion in urine.

Bioavailabllity Estimates Based on Radioactivity, Nonspecific Assays,
or Metabolite Levels

In the early studies of a new drug candidate, a specific assay may not
be available at a time when one wishes to evaluate the absorption of
the drug from test formulations. In this case it is not uncommon for
investigators to use nonspecific assays which detect drug as well as
one or more metabolites (Le . , "apparent" drug) or to administer
radiolabeled drug and to determine total radioactivity in plasma or
urine. Nonspecific assays have also been applied to drugs that are
used in very small doses and have relatively large apparent volumes
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of distribution, so that drug concentrations in plasma are unusually
low and below the sensitivity of common assay methods. Some bio­
availability studies have been based on the appearance of a major
metabolite of the drug in plasma or urine. This is often the case
when a drug is very rapidly metabolized and intact drug is difficult
or impossible to detect.

For linear pharmacokinetic systems, estimates of relative avail­
ability based on the area under the concentration of total radioactivity,
apparent drug, or metabolite in plasma versus time curve or based
on cumulative urinary excretion of total radioactivity, apparent drug
or metabolite may provide a useful measure of the relative performance
of the test formulation. The use of nonspecific assays is not appropri­
ate for nonlinear systems. In such cases the total area under the
intact drug concentration in plasma-time curve is a function of the
rate of absorption and the amount absorbed, and estimates of availabil­
ity based on total radioactivity or other nonspecific methods may be
misleading. Nonspecific assays should never be used for estimating
systemic or absolute availability. The approach fails to detect pre­
systemic metabolism in the gut or liver during absorption since drug
and metabolites are not differentiated. Consequently, systemic
availability will be overestimated.

Many other useful comments regarding the use of isotopes in bio­
abailability studies are found in a scientific commentary by Riegelman
et a1. [45].

STATISTICAL CONSIDERATIONS IN COMPARATIVE BIOAVAILABILITY
STUDIES

An aspect of bioavailability testing that is of concern to the scientist
and that has broad socioeconomic implications is the interpretation of
the results. Metzler notes that very often bioavailability is a problem
in equivalence [46]. Is the test formulation equivalent to the standard?
What constitutes inequivalence? The answers to these questions must
be based on a consideration of pharmacokinetics, clinical implications,
and statistics. An extensive discussion of the subject is beyond the
scope of this text, but a limited consideration is appropriate. The
reader is referred to commentaries by Metzler [46] and Westlake [47]
for a more detailed treatment.

The traditional statistical methodology which has been applied to
scientific experiments is designed to show that a difference exists
between two treatments. The null hypothesis of no difference is
formulated in the expectation that the results of the experiment will
be inconsistent with the null hypothesis and the alternative hypothesis
of some difference could be accepted. If this is not the case, we ac­
cept the null hypothesis, which is quite different from proving it.

Bioavailability studies present some nontraditional problems.
Sometimes we are interested in proving that the test formulation is
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Table 4.7 Comparison of Confidence Interval and Hypothesis Testing (see Ref. 46)
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different from the standard. but at other times we are interested in
"proving" that they are equivalent. Obviously, the most expedient
approach to accepting the null hypothesis is poorly designed ex­
periments with few SUbjects and large variability. Even in the more
traditional situation where we are seeking differences between formu­
lations we may find statistically significant differences that are in
fact trivial from a clinical point of view. What we really want to learn
from all bioavailability studies. irrespective of our expectation, is
the difference between the test formulation and the standard and
whether or not the difference is acceptable. The latter is largely a
clinical question but also of concern to compendias and others who
are interested in establishing standards. Thus it appears reasonable
to conclude that the evaluation of bioavailability data should be based
on a confidence interval method rather than hypothesis testing [46,
47]. The clinician or some other appropriate party can specify that
the bioavailability of the new formulation relative to the standard must
be within a certain range and that this must be known with a certain
level of confidence. For example, it might be specified that, with
95% confidence, the new formulation should be between 80 and 120% as
available as the standard. A comparison of decisions based on con­
fidence intervals and hypothesis testing for several comparative bio­
availability studies is presented in Table 4.7. If it is known that the
standard formulation is completely available, it is only necessary to
specify lower limits for the formulation (see drug A in Table 4.7).
In most cases both lower and upper limits would be specified (see
drug B in Table 4.7). The confidence interval method is gaining wide
acceptance as the appropriate statistical approach for evaluating
comparative bioavailability studies.

SUSTAINED RELEASE

The therapeutic index TI of a drug has classically been defined as
the ratio of the median toxic or lethal dose to the median effective
dose. For clinical purposes, a better definition is the ratio of the
maximum drug concentration in plasma at which the patient is free of
adverse effects of the drug to the minimum drug concentration in
plasma required to elicit a minimally adequate therapeutic response.
In principle, a drug should be given with sufficient frequency so
that the ratio of maximum to minimum drug concentrations in plasma
at steady state is less than the therapeutic index and at a high enough
dose to produce effective concentrations [48]. For a linear, one­
compartment system with repetitive intravenous dosing (constant dose,
constant dosing interval T) the ratio of maximum to minimum drug
concentrations in plasma at steady state is given by

css
max KT
-- ==e
Cs~

mm

(4.100)
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where K is the first-order elimination rate constant. It follows that

eK T
< TI (4.101)

and

In TI
T ~ t 1/ 2 lii2'"

where TI is the therapeutic index. When the therapeutic index of a
drug is 2, the dosing interval should be equal to no more than one
biologic half-life of the drug. For drugs with short half-lives
(tl/2 ~ 6 h) and low therapeutic indices (TI ~ 3), the proper dosing
schedule requires the drug to be given unreasonably frequently.
This situation prevails with theophylline and procainamide, among
other drugs. Sustained-release dosage forms may alleviate this
problem, since the slower the absorption of a drug, the smaller the
ratio of Cmax to Cmin over a dosing interval at steady state. In
theory a drug that must be given every 3 h at a dose of 100 mg can
be given every 6 h (D = 200 mg), every 12 h (D = 400 mg), or every
24 h (D =800 mg) simply by reducing the absorption rate constant of
the drug to maintain the Cmax to Cmin ratio. This may be accomplished
by modifying the formulation to reduce the release rate of drug rela­
tive to that of a conventional formulation. Many sustained-release
products are commercially available from which drug is absorbed in
an apparent first-order fashion but at a considerably lower rate than
observed after conventional tablets or capsules (see Fig. 4.10).

Although mathematical theory sets no limit as to how infrequently
we can give a drug in a sustained-release formulation, a very stringent
limit is imposed on oral formulations by the finite time over which a
drug may be absorbed in the gastrointestinal tract after administra­
tion. The literature on drug absorption, gastric emptying, and in­
testinal motility suggests to us that within 9 to 12 h after administra­
tion of most prolonged-release dosage forms, the drug will be at a
site in the intestine from which absorption is poor and ineffective.
With this effective absorption time range in mind, it follows that the
maximum absorption half-life should be 3 to 4 h. Formulations that
release drug more slowly are likely to result in unacceptably low avail­
ability in a significant number of patients. In principle, a formula-
tion that releases a well-absorbed drug in a first-order fashion with
a half-life of 4 h will result in bioavailabilities ranging from about 80
to 90% of the dose if absorption time is limited to 9 to 12 h. A formu­
lation with a 3 h half-life for drug release yields availabilities of about
90 to 95% of the dose over these absorption times. Shorter effective
absorption times require still more conservative estimates of max-
imum half-lives.

Assuming maximum absorption half-lives of 3 or 4 h, to ensure
adequate availability, we have calculated Cmax to Cmin ratios at
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Table 4.8 Calculated Steady-State Data for Drugs with Different Elimination Half-Lives Given in One of
Two Sustained-Release Formulations (see Ref. 50)

Elimination
Half-Life (h) Dose T t

S S
C

ss css CS S ICs~
max max min max min

Formulation A: release half-time = 3 h

1.98 400 8 2.6 17.3 9.5 1.8
600 12 3.1 20.7 6.0 3.4

1200 24 3.5 35.6 0.9 41.0

3.15 400 8 2.9 25.8 17.5 1.5
600 12 3.6 29.4 12.8 2.3

1200 24 4.3 46.4 3.0 15.3

4.01 400 8 3.0 31.9 23.5 1.4
600 12 3.8 35.6 18.4 1.9

1200 24 4.8 53.2 5.8 9.2
~

4.95 400 8 3.0 38.7 30.2 1.3 :J'
I\)

600 12 4.0 42.4 24.8 1.7 ":l
3

1200 24 5.2 60.3 9.8 6.2 I\)
Q
0

5.97 400 8 3.1 46.1 37.5 1.2 :>;'-600 12 4.1 49.8 31.9
::s

1.6 (1)-1200 24 5.5 67.1 15.0 4.5 -Q
Ol
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Formulation B: release half-time = 4 h '"'-

>
1.98 400 8 2.7 16.5 10.6 1.6 0'

{D

600 12 3.3 19.1 7.6 2.5 0
'1

1200 24 3.9 30.4 1.9 15.8 "0.........
0

3.15 400 8 3.0 25.0 18.7 1.3 ::1

600 12 3.8 27.7 14.8 1.9 :;.;:.....
1200 24 4.9 40.4 4.9 8.2 ::1

(\).........
4.01 400 8 3.1 31.2 24.8 1.3

(.)
{D

600 12 4.1 33.9 20.6 1.6 $Xl
::1

1200 24 5.4 47.6 8.2 5.8 0-

ttl
4.95 400 8 3.2 38.0 31.5 1.2 .....

0

600 12 4.2 40.7 27.1 1.5
$Xl
<:

1200 24 5.9 54.7 12.8 4.3 I!l.....
II)

5.97 8 45.4 38.9 1.2
0'

400 3.2 .....
l:::

600 12 4.4 48.1 34.2 1.4 ....
'<

1200 24 6.2 62.2 18.4 3.4

....
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1.10

1.0

0.2

60502010 30 40

TIME (h)

Fig. 11.10 Mean serum lithium concentrations after administration of
a single 1. 8 g dose to four manic patients (see Ref. 49). The drug
was given either as a conventional preparation (-) or as a sustained­
release preparation (- - - ) .

steady state for drugs with elimination half-lives ranging from 1 to
6 h given at a dosing rate of 50 mg/h at intervals of 8, 12, or 24 h.
The maximum concentration in plasma at steady state was determined
from

cSs =D
V­max

_KtS S

1 max
-----K-t e
1 - e

(4.103)

assuming complete absorption, where

-k t-x- a
2.3 log [k (l - e )/K(l - e )]

tSS = a
max k - K

a

and the minimum concentration in plasma at steady state from

( 4.104)

k D (Css = ~~a,---.".,,.,... 1
min V(k - K) -Kt

a 1 - e

-x­
e

-k t)1 a
-k r e

1 - e a

(4.105)
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The results are summarized in Table 4.8. It is evident, in general,
that drugs with short half-lives and low therapeutic indices must be
given no less frequently than twice a day. Once-a-day dosing with
sustained-release dosage forms is appropriate for drugs with higher
therapeutic indices or with longer half-lives. However, the need for
sustained release formulations of such drugs is not as great since
adequate therapy can be achieved at reasonable dosing intervals.

Drugs with pronounced multicompartment characteristics after
oral administration often show large Cmax to Cmin ratios. Some must
be dosed at intervals considerably less than the biologic half-life to
avoid adverse effects that are associated with high drug concentra­
tions in plasma (central compartment). A relatively modest reduction
in the absorption rate constant of such drugs by appropriate formula­
tion may subatantially reduce the maximum to minimum drug concen­
trations in plasma at steady state and may permit considerably less
frequent administration of the drug. In essence, the reduced ab­
sorption rate may eliminate the "spike" of drug concentration in plasma
associated with rapid absorption and slow distribution [50]. The
principal advantage of less frequent drug administration is the poten­
tial improvement in patient compliance with the prescribed regimen.

Pharmacokinetic theory suggests that the ultimate method for
reducing the Cmax to Cmin ratio is to have zero-order absorption.
Once steady state is achieved under these conditions, drug concen­
tration in plasma is constant as long as absorption persists. Several

30

~1-ft ~Tli-f t-ITf- fr1:E

f
al

f f!
w 20
~
a:
~
a:
w
> 10::;
w
0

105

oL- ---J ....J.. _

o
TIME (h)

Fig. 4.11 In vitro (-) and in vivo (6,0, e) release rates of po­
tassium chloride from a dosage form that utilizes the principle of the
elementary osmotic pump. The in vivo data were obtained in three
different dogs. Bars show experimental error. (From Ref. 54,
reprinted with permission.)
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] 26

.3 24
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~ 20
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:::i 14
-l

~ 12
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~ 8
t- 6:;
~ 4
~ 2 , Dose

Pharmacokinetics

, Dose

2000 2300 0200 0500 0800 1100 1400 1700 2000

TIME (h)

Fig. 4.12 Mean steady-state serum levels of theophylline in 20 asthmat­
ic children who were receiving an oral sustained-release preparation
of the drug every 12 h. The very small difference between peak and
trough concentrations suggests that absorption of the drug from this
dosage form can be described, at least on the average, by zero-
order kinetics. (From Ref. 55. e 1980 American Academy of
Pediatrics. )

investigators have discussed the application of pharmacokinetic prin­
ciples to the design of sustained-release formulations that release
drug in a zero-order fashion [51-53]. An example of such a system
is the elementary osmotic pump [54]. The in vivo release rate of KCI
from this dosage form in the gastrointestinal tract of dogs is shown
in Fig. 4.11. Such dosage forms, however, are still limited by con­
siderations of effective residence time of drug at absorption sites in
the gastrointestinal tract. Accordingly, a drug with a short half­
life must usually be given no less frequently than twice a day.

In our view the most important criteria for the evaluation of
sustained-release products are bioavailability and Cmax to Cmin ratios
at steady state. It is certainly desirable to have a bioavailability of
at least 80% relative to the conventional dosage form. Where appropri­
ate, the peak-to-trough ratio at steady state should be no greater
than the therapeutic index of the drug. In all cases, this ratio
should not exceed that observed after repetitive administration of
the conventional dosage form at shorter intervals. The data in Fig.
4.12 indicate exemplary performance of a sustained-release product
of theophylline. The Cmax to Cmin ratio at steady state resulting from
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administration of this dosage form every 12 h is smaller than that
found on administration of a conventional dosage form of theophylline
every 6 h.
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5
Apparent Volume of Distribution

The proportionality constant relating drug concentration in blood or
plasma to the amount of drug in the body has been termed the ap­
parent volume of distribution. There has been considerable confusion
concerning the estimation and meaning of the apparent volume of dis­
tribution of a drug. A principal cause of this confusion is the fact
that there is no obvious relationship between the apparent and real
volume of distribution of a drug.

The real distribution volume of a drug is related to body water
and cannot exceed total body water (i , e , , about 58% of body weight
in the normal adult human). Body water may be divided into at
least three distinct compartments: the vascular fluid or blood, the
extracellular fluid. and the intracellular fluid. In humans, extra­
cellular fluid is about one-third of total body water and includes the
plasma, which is about 4% of body weight. Blood volume, which in­
cludes the intracellular fluid of the erythrocytes and other formed
elements, is about twice the plasma volume.

Some high molecular weight substances. such as Evans blue or
indocyanine green, are essentially confined to the circulating plasma
after intravenous administratioa and can be used to estimate plasma
volume (or blood volume if the hematocrit is determined). Certain
ions, such as chloride or bromide, rapidly distribute throughout the
extracellular fluid but do not easily cross cell membranes, so they
may be used to estimate extracellular water. The volume of total
body water may be estimated by means of heavy water or certain lipid­
soluble substances, such as antipyrine, which distribute rapidly
throughout the total body water.

The apparent volume of distribution of each of these tracers
approximates its true volume of distribution because binding to plasma
proteins and tissues is negligible. For most substances this is not
the case. Most drugs are significantly bound in either the vascular
or extravascular space, or both. Drugs that are predominantly bound
to plasma proteins have apparent volumes of distribution that are

199
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smaller than their real volumes of distribution. whereas drugs that
are predominantly bound to extravascular tissues have apparent vol­
umes of distribution that are larger than their real distribution space.
For different drugs. volumes of distribution may range from about
0.04 to more than 20 liters /kg.

RELATIONSHIP BETWEEN VOLUME OF DISTRIBUTION, DRUG BINDING
AND ELIMINATION, AND ANATOMIC VOLUME

A quantitative expression relating apparent volume of distribution.
real distribution space. and binding may be developed using the model
shown in Fig. 5. 1. The model consists of two physiologic spaces, the
vascular or blood space and the extravascular or tissue space. Linear
binding occurs in both spaces and the concentration of free drug is
the same throughout the total body water. After administration of
drug into the vascular space by intravenous bolus injection. distribu­
tion is assumed to be instantaneous. Elimination occurs in a first-

VASCULAR SPACE NONVASCULAR SPACE

Blood- bound Drug Tlssue- bound Drug

r1 r1
...

Free Drug Free Drug
~

kf

Eliminated Drug

Fig. 5. 1 One-compartment pharmacokinetic model with two linear bind­
ing sites. Initially. a bolus dose of drug is introduced in the vascular
space; binding and distribution is assumed to be instantaneous. The
rate of drug elimination is given by the product of kf and free drug
concentration.
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order fashion at a rate proportional to the free drug concentration.
The model is, in one sense, a one-compartment system in that drug
distribution between the two physiologic spaces is assumed to be in­
stantaneous. However, in another sense, the model is a two-compart­
ment system since vascular binding sites (such as plasma proteins)
and tissue binding sites are restricted to separate spaces.

In the case of linear binding in the vascular space (blood),

( 5.1)

and

(5.2)

(5.3)

(5.4)

where CBb is the concentration of drug bound in the blood at time t;
b is a proportionality constant relating free (unbound) drug concen­
tration Cf to bound drug concentration in the blood; ABb and ABf
are the amounts of drug bound and free, respectively, in the blood
at time t; and VB is blood volume.

Since the free drug concentration at any time is the same through­
out the system, it follows that the amount of free drug in the blood
is given by

VB
ABf = V Af

f

where Vf is the volume of distribution of free (unbound) drug and is
equal to the sum of VB and VT (where VT is the volume of the tissue
or extravascular space), and Af is the amount of free drug in the
body at time t . It follows that

VB
ABb = b V Af

f

and

In the case of linear binding in the extravascular space,

CTb = BCf
(5.5)

(5.6)

where CTb is the concentration of drug bound in the extravascular
space at time t; B is a proportionality constant relating free drug
concentration to bound drug concentration in the extravascular space;
ATb and ATf are the amounts of drug bound and free, respectively,
in the extravascular space at time t; and VT is the volume of the
extravascular space. Since the free drug concentration at any time
is the same in both spaces, it follows that
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(5.7)

(5.8)

At any time after administration, the entire dose D can be ac­
counted for by the sum of the amounts bound in the vascular and ex­
travascular space, the amount of free drug in the body, and the
amount eliminated:

(5.9)

(5.10)

where kf is the first-order elimination rate constant and the term
kf JJ Af dt represents the amount eliminated up to time t , Differentia­
tion of Eq. (5.9) with respect to time yields

dAf dABb dATb
d't+<it + <it +k~f= 0

By differentiating Eqs , (5.4) and (5.8), we obtain

dABb VB dAf
"""(it=b

Vf
Cit

and

dATb V
T

dAf

"""(it = B V
f

dt

Therefore, Eq . (5.10) may be transformed to

dAf (1 + b VB + B VT ) + k A = 0
dt Vf Vf f f

Rearrangement yields

-dAf ( VB VT)
--- 1 + b - + B - = k..A

dt Vf Vf t--f

Since Af = VfCf' it follows that

-dC
f

k
f

Cit = 1 + b(VB/V
f)

+ B(VB/V
f)

Cf = I3Cf

(5.11)

( 5.12)

( 5.13)

(5.14)

(5.15)
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5 I Apparent Volume of Distribution

where (3 is the apparent elimination rate constant and is given by

k
f

203

( 5.17)

If we define a new term, f, as the fraction of the total amount of
drug in the body which is free, then

Af 1
f = = -:--"""77-"'-;-~-:-:--;-:-7

Af + ABb + ATb 1 + (ABb/Af) + (ATb/Af)

Rearranging Eq , (5.4) gives a term for ABb/Af and rearranging Eq.
(5.8) gives a term for ATb/Af. Substituting these terms in Eq.
(5.17) yields

Substituting this expression in Eq. (5.16) gives

(3 = fk f

(5.18)

(5.19)

It is evident that the apparent elimination rate constant e is the
product of the instrinsic elimination rate constant for free drug kf
and the fraction of the total amount of drug in the body that is free,
f. Ordinarily, we cannot measure f in humans and it is very difficult
to measure in animals. On the other hand, we can determine the
fraction free in the vascular space (Le., the fraction unbound in
blood) by relatively simple binding experiments. This parameter, fB'
is defined as

(5.20)

Comparison of Eqs. (5. 17) and (5.20) suggests that the relationship
between f and fB is complex and nonlinear. It follows that e will not
be a linear function of fB'

Integration of Eq. (5.15) yields

C =COe-et
f f

(5.21)

where Cf is the concentration of free drug at time zero (Le . , im­
mediately after injection).

The total drug concentration in the blood CB is given by

CB =Cf + CBb =Cf + bC f = (1 + b)Cf

It follows that

C = Co e -et
B B

(5.22)

(5.23)
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The initial condition at time zero for the model is given by the
equation

AO + AO + AO = D
f Tb Bb

The ratio of AI; to dose D is

AI; VBCB ABf + ABbn= -D- =AO + AO + AO
f Tb Bb

Therefore,

(5.24)

(5.25)

(5.26)
ABf + ABb D

CB = AO + AO + AO V
f Tb Bb B

Equations (5. 17) and (5.20) apply equally at the initial condition
and at any time t , Therefore, the ratio of f to fB is given by

f ABf + ABb Ai
- = (5.27)
fB Ai + ABb + ATb ABf

Since Af/A~f is equal to Vf/VB' according to Eq. (5.3), it fol­
lows that on rearrangement of Eq. (5.27), we obtain

ABf + ABb VB f

Ai + AI;b + ATb =Vf fB

Substituting Eq. (5.28) into Eq. (5.26) yields

V
Co = L ~ -!3 f D

B fB VB Vf = fB Vf

(5.28)

(5.29)

(5.30)

The systemic (blood) clearance of a drug, CIs, is calculated from
the ratio of the dose to the total area under the blood concentration­
time curve:

CI = D
s f; C

B
dt

Integration of Eq. (5.23) from t = 0 to t = 00, followed by substitu­
tion for C§ from Eq. (5.29) and for f3 from Eq. (5.19), gives

(00 CB dt = ~B = f :1 (5.31)Jo B f

SUbstituting this term in Eq. (5.30) yields

CIs = fB(VIf) (5.32)
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where Vfkf is the intrinsic clearance. Thus we see the classic rela­
tionship between systemic clearance and the fraction of drug free in
the blood, which was first described by Levy and Yacobi [1].

By definition, systemic clearance is the product of the apparent
volume of distribution and the apparent elimination rate constant:

CI =Vas

Therefore,

(5.33)

CI
V =~ (5.34)s

Substituting for CIs from Eq. (5.32) and for l3 from Eq. (5.19) gives

f B
V = TVf (5.35)

Equation (5.35) indicates that in the absence of drug binding (Le , ,
r =fB =1), V =Vf. This is the case for antipyrine; the apparent
volume of distribution of antipyrine closely approximates total body
water.

From Eqs. (5.17) and (5.20) it can be shown that

(5.36)

Since in all cases an amount term is the product of a concentration
term and a volume term,

fB VBCf
T= VBCr + VBCBb

which simplifies to

VfCf + VBCBb + VTC Tb
VfCf

(5.37)

Therefore,

(5.38)

(5.39)
fB VfCf + VBCBb + VTCTb
TVf= Cf+C

Bb

Substituting Eq , (5.39) in Eq , (5.35) and rearranging terms yields

V(C f + CBb) = VfCf + VBCBb + VTC Tb (5.40)

Dividing each term in Eq. (5.40) by Cf gives
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(5.41)

(5.42)

It is helpful to define a new term fT (Le., the fraction free in the
extravascular space), which is, by analogy to fB [see Eq. (5.20)],
given by

C
f

f = -=----"::­
T Cf + C

Tb

By rearranging terms in Bqs , (5.20) and (5.42), we can show that

CBb 1 - f
B

= f
B

C
f

and

C
Tb

1 - f
T

=C
f

f
T

(5.43)

(5.44)

(5.46)

Substituting Eqs. (5.20), (5.43), and (5.44) into Eq. (5.41) yields

V 1 - fB 1 - fT
r- = Vf + f VB + f VT ( 5.45)
B B T

Recognizing that Vf is simply the sum of VB and VT' and multiplying
each term in Eq. (5.45) by fB gives the following expression:

1 - f
T

V = fB(VB + VT) + (l - fB)VB + fB f
T

V
T

Expanding each term yields

which simplifies to

f
B

V=VB+r-VT
T

(5.47)

(5.48)

Experimentally, drug binding is determined, by one of several
methods, in plasma or serum rather than in blood. Hence one de­
termines fp' the fraction of drug unbound (free) in the plasma,
rather than fB' However, fp values can be easily converted to fB
values by multiplying fp by the ratio of drug concentrations in plasma
and in whole blood [Le., fB = fp(Cp/CB)]'
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In the event that no information is available concerning the par­
titioning of drug between plasma and red blood cells, an alternative
expression for calculating apparent volume of distribution is as
follows:

f f
VI = V + V .J2..

p T r'
T

(5.49)

In Eq. (5.49), VI is the apparent volume of distribution relating the
total amount of drug in the body to the total drug concentration in
plasma, Vp is plasma volume, and V~ is the volume of the extra­
vascular space plus the erythrocyte volume. Drug binding to erythro­
cytes contributes to f~.

The derivation outlined above resulting in Eq. (5.48) or (5.49)
was first presented by Gibaldi and McNamara [2] and leads to a re­
lationship identical to that proposed by Wilkinson and Shand [3] based
on the work of Gillette [4]. This relationship is conceptually very
useful. It is evident that ordinarily, the smallest apparent volume of
distribution of a drug is blood volume. This value is approached when
there is extensive binding in the vascular space (Le . , fB + 0) and
little binding in the extravascular space (Le., fT + 1). A highly
polar drug, restricted to the vascular space because of molecular
weight considerations, may have an apparent volume of distribution
equal to plasma volume. Lipid-soluble drugs such as dicumarol that
are highly bound to plasma proteins but less bound to tissues (Le.,
fB1fT < 1) have apparent volumes of distribution that are between
the values of blood volume and the volume of total body water. Many
basic drugs, including amphetamine, are preferentially bound to extra­
vascular tissues (Le., fB/fT > 1) and have apparent volumes of dis­
tribution that exceed the volume of total body water. Drugs that are
negligibly bound (Le., fB =fT =1) have apparent volumes of distribu­
tion that approximate the volume of total body water in the cases of
lipid-soluble compounds (e.g., antipyrine) or the volume of the extra­
cellular space in the case of poorly lipid soluble compounds.

Equation (5.48) predicts a linear relationship between apparent
volume of distribution V and fraction free in the blood fB when
the fraction free in the extravascular space is constant. Thus if
certain perturbations such as disease state, concomitant drug therapy,
or genetic factors affect plasma protein binding of a drug but have no
effect on tissue binding, a plot of V versus fB will be linear with a
positive slope and an intercept equal to VB (see Fig. 5.2). If the
perturbation produces a parallel but smaller effect on tissue binding,
an apparently linear plot may result, but the value of the intercept
will be greater than VB' If the effects on plasma protein and tissue
binding are quantitatively similar, V is independent of fB• Both of
these cases are also shown in Fig. 5. 2. Perturbations that principally
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Fig. 5.2 Apparent volume of distribution as a function of free fraction
of drug in blood, fB. Blood volume is equal to 75 ml/kg. Total body
water is equal to 600 ml/kg. Case A: fB varies from 0.1 to 0.2, fT
is constant at 0.1. Case B: fB varies from 0.1 to 0.2, fT varies from
0.1 to 0.14 such that fT = 0.4 fB + 0.06. Case C: Both fB and fT
vary from 0.1 to 0.2 such that fB /fT is constant. (Data from Ref. 2.)

affect plasma protein binding will produce an increase in V, whereas
those that principally affect tissue binding will result in a decrease
in V. An example of the latter situation is found with digoxin in
patients with renal disease [5].
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(5.53)

Although the fraction free in the extravascular space, fT' cannot
be determined directly in humans, it may be possible, under certain
circumstances, to estimate it indirectly by using a rearranged form of
Eq. (5.48):

fBVT
f T = V _ V (5.50)

B

By determining V and fB experimentally and by using appropriate
estimates of VB and VT' we can readily calculate fT' Therefore,
we can assess whether a perturbation that affects plasma protein
binding also affects tissue binding. Using this approach it has been
found that uremia and nephrosis, both of which significantly decrease
the plasma protein binding of phenytoin in humans, have no effect
on the apparent tissue binding of the drug. On the other hand,
apparently genetically related differences in plasma protein binding
of warfarin in individual rats are paralleled by differences in tissue
binding [6].

Clarification of the role of tissue (extravascular) binding in drug
disposition and drug effects requires further investigation, but it is
clear that the systemic clearance of a drug is independent of tissue
binding [see Eq. (5.32)]. On the other hand, tissue binding appears
to be a principal determinant of the apparent elimination rate constant
a or half-life of a drug.

By rearrangement of Eq. (5.33), we can show that

CI
a =~ (5.51)

V

SUbstituting for CIs according to Eq. (5.32), and for V according to
Eq. (5.48), yields

fBVI-f
a = (5.52)

VB + (fB/fT)VT

If we assume a situation where drug binding to erythrocytes is neg­
ligible, and define apparent volume of distribution in terms of drug
concentration in plasma rather than blood, we may rewrite Eq. (5.52)
as

fpVI-f
a = I

VP + (fp/fT)VT

Since plasma volume is only about 40 ml/kg, it follows that for drugs
with an apparent volume of distribution greater than 400 ml/kg,
V - Vp ~ V ~ V~(fp/fT) and
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(5.54)

(5.55)

As we have noted, the product of Vf and kf is usually designated
as intrinsic clearance or CII and reflects the intrinsic ability of
the eliminating organ(s) (e.g., the liver or kidneys or both) to clear
the drug from the blood. Therefore,

fTCI I
a~-­

V
T

and

(5.56)

Equation (5.56) shows that, for many drugs, half-life is a func­
tion of the body's intrinsic ability to eliminate the drug and of the
degree of binding of the drug in the extravascular space, and that
half-life is independent of plasma protein binding. Although Eq.
(5.56) applies rigorously only to drugs with apparent volumes of
distribution exceeding 400 ml/kg, it has been shown for drugs with
apparent volumes ranging from 100 to 400 ml/kg that, under the con­
ditions stated half-life is largely dependent on tissue binding and
less dependent on plasma protein binding [7]. The half-lives of
drugs with apparent volumes of distribution of less than 100 ml/kg
are highly dependent on plasma protein binding.

It should be recognized that fT is a hybrid constant and reflects
the weighted average of drug binding to different organs and tissues
in the extravascular space. As noted by Gillette [4], Eq. (5.48) is
more appropriately expressed as

(5.57)

where Cf is the concentration of free (unbound) drug at steady state,
(CT>i is the total (bound and unbound) drug concentration in a given
tissue or organ at steady state. and (VT)i is the anatomic volume of
the given organ or tissue. Since Cf/fa is equal to total drug concen­
tration in blood Ca, it follows that

n

V = Va + i~l Ri(VT)i (5.58)

where Ri is the partition coefficient or distribution ratio of drug be­
tween tissue and blood [Le., Ri = (CT)i/Ca].
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The fraction bound in the extravascular space, fT' largely re­
flects the binding of drug to organs and tissues that contain large
fractions of the total amount of drug in the body. An assessment of
fT by pharmacokinetic means [see Eq. (5.50)] to detect the effect
of a perturbation on tissue binding may fail to reveal even substantial
changes in drug binding to tissues or organs that contribute little to
the overall apparent volume of the extravascular space.

ESTIMATION OF APPARENT VOLUMES OF DISTRIBUTION

In principal, one can calculate the apparent volume of distribution
of drug in laboratory animals or in humans, on necropsy, by determin­
ing the distribution ratio between blood and each of the principal
organs and tissues that account for the total amount of drug in the
body, estimating the anatomic volume of each and using Eq. (5.58).
This has been carried out for lidocaine in the monkey [8] but is a
formidable task. Thus many other, considerably simpler, methods
have been devised to estimate the apparent volume of distribution of a
drug in the intact organism. All methods require that the drug be
given intravenously so that the amount reaching the systemic circula­
tion will be equivalent to the administered dose and be known.

For the model described in Fig. 5.1, it can be shown that drug
concentrations in the vascular space (blood or plasma) decline
exponentially with time (see Fig. 1.1). Extrapolation of such data to
zero time on the drug concentration axis provides an estimate of the
initial drug concentration Co immediately after intravenous bolus in­
jection but before any drug has been eliminated. It follows that

(5.59)

The volume term calculated by this equation is often called Vextrapolated'
This equation must never be applied to data obtained after oral or
intramuscular administration, even if complete absorption or avail-
ability can be assumed.

In practice, however, few drugs show simple monoexponential de­
cline immediately after injection; that is, our assumption regarding
instantaneous distribution throughout the body space seems rarely to
be true. In most cases, it appears that a finite time is required for a
drug to distribute throughout the body space, and most plots of log
drug concentration versus time after intravenous bolus injection must
be described by multiexponential equations (suggestive of a multicom­
partment system) rather than monoexponential equations (indicative of
one-compartment systems). Under these conditions extrapolation of
the linear portion of the log concentration versus time plot to the con­
centration axts yields a value which is less than the concentration of
drug in the blood immediately after injection. Furthermore, calcula­
tion of V according to Eq. (5.59) by assuming that the extrapolated
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value is equal to Co will result in an overestimate of the apparent
volume of distribution. Therefore, we may use Eq. (5.59) only when
the deviation of the log concentration versus time plot from a mono­
exponential expression is negligible.

A more general, and therefore more useful, approach for estimat­
ing V is to use the well-developed relationship between the total area
under the drug concentration versus time curve, AUC, and the intra­
venous dose:

or

AUC =dose
VK

AUC =dose =dose
vs VA

n

(5.60)

(5.61)

(5.62)

where K is the first-order elimination rate constant (one-compartment
model) and aor An is the terminal slope (times 2.303) of the curve
described by plotting log concentrations versus time for a drug in a
linear multicompartment system. Upon rearrangement we obtain

V = dose
K· AUC

and

V = dose
a' AUC

dose=-=:0..::-__
A • AUC
n

(5.63)

The volume term described by Eq. (5.62) is sometimes called
Varea. whereas that described by Eq. (5.63) has been termed Var ea
or Va' The terminology Va arises from the fact that this volume term
relates drug concentration in plasma or blood to the total amount of
drug in the body during the terminal exponential phase (log-linear or
a phase) of a log drug concentration in blood or plasma-time curve for
any multicompartment model where elimination occurs from the central
compartment [9]. Equation (5.62) or (5.63) may be applied to data
obtained after oral administration of a drug only when complete ab­
sorption and complete systemic availability (Le., no first-pass or gut
metabolism) can be assumed.

An estimate of apparent volume of distribution that is equivalent
to Var ea or Va may also be obtained from blood- or plasma-level data
obtained after constant rate intravenous infusion for a sufficiently
long period to attain steady state. The drug concentration in plasma
or blood under these conditions, Css' is given by

(5.64)
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(5.65)

where k Ois the zero-order infusion rate constant and CIs is systemic
clearance. For a one-compartment model, CIs = VK, and for a multi­
compartment model, CIs = VI). Hence

k
O

V =if(;
ss

or

(5.66)

If a one-compartment model can be assumed, an estimate of apparent
volume of distribution may be obtained from data collected before
steady state during constant rate intravenous infusion. Under these
conditions

kO -Kt
C = VK (1 - e ) (5.67)

where t is infusion tjme. V may be calculated from the slope of a plot
of C versus 1 - e- Kt, which is equal to kO/VK. The infusion rate kO
is known and the rate constant K may be estimated from data collected
after stopping the infusion. The volume term calculated by means of
Bq , (5.65) or (5.66) has sometimes been termed Vinfusion (Vinf) or
Vtnfusion equilibrium (Vinf eq) but is, in fact, equivalent to Varea or
V.

a If the body may be viewed as a single compartment with respect to
the distribution and elimination kinetics of a drug, the volume terms
introduced above (Le., Vextrapotated. Varea, Vinf eq) and the physio­
logically based apparent volume of distribution defined by Eq. (5.48)
or (5.58) are equivalent. This physiologically based volume is equiv­
alent to the apparent volume of distribution at steady state, VS9'

In those situations where the body may not be viewed as a single
compartment and where there is a finite time required for distribution
to take place so that a multicompartrnent model is required to describe
the kinetics of the drug, the volume terms are not equivalent. Under
these circumstances, one finds that Vextrapolated > Varea or Ve =
Vinf eq > Vss- Moreover, yet another volume term, Vc or V1, the
volume of the central compartment, is often used to describe multi­
compartment models. By definition, Vss > Ve ' The only useful volume
terms for multicompartment systems are Va' Vc- and Vss-

The 13 -phase apparent volume of distribution, V13' may be calcu­
lated for any linear multicompartment model by determining the total
area under the drug concentration in plasma or blood versus time
curve, AUC, after a single intravenous administration and the slope
of the long-linear or a phase and by applying Eq , (5.61). It can also
be shown that V13 = klOVc/13, where klO is the apparent elimination
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(5.68)

(5.69)

rate constant of drug from the central compartment. The product of
Vs and s or Vc and klO is systemic clearance.

The principal shortcoming of this apparent volume of distribution
term as an index of drug distribution is that V f3 may reflect the degree
of equilibration of a drug under dynamic conditions rather than its
apparent distribution volume. This is more easily appreciated when
one recognizes that V f3 is a function of the elimination kinetics of a
drug [10j. An increase in the intrinsic elimination rate constant will
cause an increase in V f3' whereas a decrease in elimination will cause
a decrease in V f3 • Hence a change in the V f3 of a drug may not reflect
a change in the actual distribution space or in the degree of binding
but may signify merely a change in the degree of equilibration be­
tween central and peripheral compartments secondary to a change in
elimination kinetics. For a multicompartment system with drug elim­
ination occurring from the central compartment, characterized by the
rate constant k 10' the limits of V f3 are co as k 10 -+ co, and Vss as
kl0 -+ O.

Drug concentration C in a linear multicompartment model as a func­
tion of time after intravenous injection can always be described by
an equation of the form

n -A t
C::; L c.e i

i::;1 1

where Ci is the coefficient of the ith exponential term of the polyex­
ponential equation and Ai is the exponent multiplying time t in the
exponential terms. Note that Al is the largest Ai (usually symbolized
by ex in a two-compartment model), A2 is the second largest. and so on.
The term An (or f3) is used to denote the smallest value of Ai' Under
these conditions the apparent volume of the central compartment is
given by

V ::; intravenous dose
c EC

i

For a two-compartment open model, Vc ::; intravenous dose/ (A + B).
This volume term may be useful for estimating peak concentrations in
plasma or blood for drugs that distribute relatively slowly in the body
and are absorbed relatively rapidly after oral or intramuscular admin­
istration. Drugs with relatively small Vc /Vss ratios may show unusual­
ly large peak-to-trough concentration ratios over a dosing interval
even when administered relatively frequently.

The most useful volume term to describe the apparent distribution
space in a multicompartment system is Vss' As its name implies, Vss
relates the amount of drug in the body to the drug concentration in
the plasma or blood at steady state, during repetitive dosing, or during
constant rate infusion. Vss is independent of drug elimination, and its
relationship to anatomical space and drug binding has been described
by Eqs. (5.48) to (5.50).
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(5.70)

Equations to define and estimate Vss have been developed in Chap.
2. A useful expression for calculating Vss after rapid intravenous
administration of a drug whose disposition is described by Eq. (5.68)
is [11]

n 2 n 2
D.rCi/Ai D.rCi/Ai

V = 1=1 = _1_=_1 _

ss (~ c. I A.)2 (AUC) 2
i=l 1 1

Equation (5.70) is a general relationship that applies to any linear
multicompartment model in which elimination occurs from the central
compartment. For a two-compartment open model we may write Eq.
(5.70) as

V = D[(A/a
2)

+(B/S
2)]

ss [(Ala) + (B/S)]2
(5.71)

Thus calculation of Vss simply requires curve-fitting of drug concen­
tration -time data after intravenous bolus injection, to estimate Ci and
Ai values, and application of Eq. (5. 70) •

Although (5.70) is a rather general expression, it does require
the implicit elaboration of a compartment model. A still more general,
model-independent approach for estimating Vss has been proposed
[12,13]. It can be shown that the term r!1=l Ci/Al [see the numera­
tor of Eq. (5.70)] is, in fact, equal to thJ area under the first mo­
ment of the drug concentration in blood or plasma curve, AUMC, that
is, the area under the curve of the product of time t and drug con­
centration C from time zero to infinity. In other words,

V =D__[ (.....;fo.....;oot_C_d-:::t_] _ D[AUMC]

ss U; C dt] 2 - [AUe] 2
(5.72)

The principal assumptions required for developing Eq. (5.72) are that
the system is linear and that drug elimination takes place from the
measured site (I.e., the plasma, blood, or central compartment).

This method does not not require the assumption of a compartment
model, nor does it require a curve-fitting procedure. To calculate
Vss- one must merely determine the total areas under the drug con­
centration versus time curve and under the first moment versus time
curve (see Fig. 5. 3) using the trapezoidal rule (see Appendix D) or
some other convenient method.

Since many drugs are administered by a constant rate intravenous
infusion over a short period of time rather than by a rapid intravenous
injection, the following variant of Eq. (5.72) [14] is often useful:
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Fig. 5.3 Plots of concentration versus time (.) and of the product of
concentration and time versus time (0) after intravenous bolus injec­
tion of a drug. The total area under the concentration versus time
curve is AUC; the total area under the concentration-time versus
time curve is AUMC.

kOT. AUMC
V = -:....----;:--

ss (AUC)2
(5.73)

where kO is the infusion rate, T the infusion time, and kOT the ad­
ministered dose.

For many drugs V13 [see Eq. (5.63)] provides a close approxima­
tion of Vas- However, in at least two situations, V13 significantly
overestimates Vss- One case is that of drugs that are rapidly cleared
from the central compartment with short half-lives. For example, it
has been calculated for benzypenicillin in humans that V13 = 26 liters,
whereas Vss = 15 liters [10]. A second case occurs where most of
the dose of a drug is eliminated relatively rapidly but a small fraction
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of the dose persists and gives rise to unusually long half lives. In
such cases the area under the extrapolated line from the B phase to
the drug concentration axis represent a relatively small traction of
the total area under the drug concentration versus time curve (see
Fig. 2.9, curve Y). Based on data in the literature [15], it may be
calculated that for gentamicin in humans, VB =202 liters, whereas
Vss =33 liters. The latter value is a much more realistic and more
useful estimate of the apparent distribution space of gentamicin.

In 1976, Niazi [16] suggested that the change in apparent distribu­
tion volume manifested by a drug in a multicompartrnent system as a
function of time after intravenous administration might be a useful
parameter for characterizing distribution kinetics (see Fig. 5.4). Im­
mediately after injection the drug occupies a space we have termed
Vc- the volume of the central compartment. Vc may also be thought
of as a proportionality constant relating drug concentration in plasma
or blood to the amount of drug in the body at t =0 (I.e., the intra­
venous dose). The apparent volume or proportionality constant re­
lating concentration and amount increases with time until it reaches a
limiting value which we have termed VB' We have noted that VB is
actually a proportionality constant relating drug concentration in
plasma or blood to amount of drug in the body during the B phase and
that VB> Vc' The time-dependent volume of distribution Vt may be

VI3
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Fig. 5.11 Apparent volume of distribution of trichloromonofluoro­
methane as a function of time following intravenous administration in
the dog. (Data from Ref. 16.)
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(5.74)

defined as the ratio of the amount of drug in body at any time to the
drug concentration in plasma or blood at that time and will vary in
value from Vc to Vf3 • Since in a multicompartment model where the
drug is eliminated only from the central compartment, the amount of
drug remaining in the body as a function of time can be expressed
in terms of fractional areas [17]. It can be shown that [16]

D' AUCt+ oo
V = ~---:-==---­

t Ct· AUCO+ oo

where D is the intravenous dose, Ct is the drug concentration at time
t , and the AUC terms refer to either partial or total areas under the
concentration-time plot. Comparative plots of Vt versus time for dif­
ferent individuals or different species receiving the same drug might
be helpful in characterizing rates of distribution.

The idea of time-dependent changes in apparent volume of distribu­
tion is also useful for systems showing nonlinear plasma protein binding
or tissue binding. Such changes may be quantified for one-compart­
ment models but are difficult to describe quantitatively for multicom­
partment models. In principle, it can be shown that V decreases with
time when nonlinear plasma protein binding occurs, whereas V in­
creases with time when only nonlinear extravascular tissue binding
occurs [18].
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6
Kinetics of Pharmacologic Response

The type of relationship that exists between the plasma concentration
of a drug and a given response is generally determined by two factors:
whether concentration is directly or indirectly related to response.
and whether the drug interacts with the receptor in a reversible
or irreversible manner. The simplest type is where there is a direct
relationship between plasma concentration and response. and where
the interaction of the drug and the receptor is reversible. Many
drugs (e. g .• antiarrythmics. digitalis glycosides , theophylline. and
neuromuscular blocking agents) appear to act directly and reversibly.
A second type of concentration-response relationship is where the
elicited response is not directly related to the plasma drug concen­
tration. This is generally referred to as an indirect pharmacologic
response. and is best exemplified by the coumarin anticoagulants.
A third type is where the drug binds to the receptor irreversibly.
Anticancer agents and bactericidal antibiotics are examples of drugs
that exert their effects in this manner.

KINETICS OF DIRECTLY REVERSIBLE PHARMACOLOGIC RESPONSE

One-Compartment Model

The concept of a direct and rapidly reversible response implies that
a given intensity of response is associated with a particular drug con­
centration at the site of action. By definition in the model under con­
sideration. the drug concentration at the receptor site Cr is propor­
tional to the drug concentration in the plasma C. and the interaction
between the drug and receptor is reversible:

C FC + receptor ~rug-relcePtor -+- response
r comp ex

221
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The following relationship, known as the Hill equation, has been
proposed to relate plasma concentration and response R under these
circumstances:

R = ----'---'--
(l/Q)+Cs

(6.1)

where Rm is the maximum intensity of the pharmacologic response
(Le., R + Rm as C + co), Q is a constant related to the affinity of
the drug for the receptor, and s is a constant that relates the change
in response to the change in concentration. One should also note
that the term 1/Q is equal to the drug concentration in the plasma
(raised to the sth power) at which response is 50% of maximal re­
sponse, (Le., cgO%) ' The basis for Eq. (6.1) has been discussed in
detail [1]. This equation will quantitatively and fully characterize
the typical sigmoid curve resulting from a log C versus R-type plot.
Rearranging terms and inverting both sides of (6.1) yields

(6.2)
R

R
m-=

1 + CSQ

CSQ

Subtracting unity from both sides of this equation (Le., R/R from the
left side and CSQ/CsQ from the right side), collecting terms, and
again inverting both sides of the equation gives

R
m

(6.3)

A linear form of this eq uation is

R
log R _ R = slog C + log Q

m
(6.4)

A plot of R/(Rm - R) versus C on log-log graph paper will yield a
straight line with a slope of s.

A more common approach relating response and concentration is
based on the well-known empirical plot of response versus logarithm
of dose, plasma concentration, or amount of drug in the body which
yields the classical sigmoid curve shown in Fig. 6. 1. Very often this
curve manifests excellent linearity from at least 20 to 80% of the max­
imum attainable intensity of response, a region of particular interest
and applicability under clinical conditions. This linear relationship
may be expressed by

R = m log C + r (6.5)

where Rand C are as described previously, m is the slope of the R
versus log C plot, and r is a constant. Such linearity between response
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1.0

05

(6.6)

0.3 3 10 30
Oose

Fig. 6. 1 Typical log dose-response curve calculated according to
the relationship FR =D/(K + D). where K is a constant and FR is the
fraction of the maximum response of the system attained after a dose
D. The plot is apparently linear in the region bounded by FR = 0.2
and FR :: 0.8 (see arrows). A dose of 3 units is the median effective
dose ED50 since it produces an intensity I of response that is 50% of
the maximum intensity Imax' (Data from Ref. 2.)

and log C has been demonstrated for a number of drugs. examples
of which are propranolol (Fig. 6.2) and theophylline (Fig. 6.3). Re­
lating response to the logarithm of plasma concentration rather than
the logarithm of dose should reduce the variability in the data by re­
moving variability related to interpatient differences in drug absorp­
tion and elimination.

Rearrangement of (6.5) yields

R-r
log C:: -m--

In a one-compartment system, the plasma concentration of drug at
any time following the administration of an intravenous bolus dose of a
drug that is eliminated by first-order processes can be described by

Kt
log C :: log Co - 2.303 (6.7)

where Co is the plasma concentration at time zero, t is time, and K is
the apparent first-order elimination rate constant of the drug. Based
on the proposed model, the maximum response elicited by this dose,
RO' would be associated with a plasma concentration of Co [5]. There­
fore. an equation analogous to (6.6) can be written:
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Fig. 6.2 Relationship between response (percent reduction in exer­
cise-induced tachycardia) and propranolol concentration in plasma
(log scale) after intravenous administration to healthy volunteers.
(Data from Ref. 3.)

(6.8)
R

O
-- r

log Co = m

Substituting the values of log C and log Co from (6.6) and (6.8),
respectively, into (6.7) yields

R-r
m

R O - r Kt
= ---

m 2.303
(6.9)

This equation can be simplified to give

mK
R = R o - 2.303t (6.10)
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Fig. 6.3 Relationship between average response (normalized improve­
ment in 1 s forced expiratory volume) and theophylline concentra­
tion in plasma (log scale) after intravenous administration of the drug
to patients. (Data from Ref. 4.)

This equation shows that, under the conditions stated, the intensity
of response decreases at a constant rate that is a function of the ap­
parent first -order elimination rate constant K and the slope of the
response versus log C curve, m, It should be noted that the rate of
decline in response is zero order even though the rate of decline in
plasma concentration is first order. This linear or zero-order de­
cline in response with time has been demonstrated for a number of
drugs and an example is shown in Fig. 6.4.

It is also readily shown by substituting log C from Eq , (1.94)
-Kt -k t

[C = kaFXo(e - e a )/V(ka - K)] into Eq. (6.5) that (6.10) also
describes the decay of effect in the postabsorptive phase (Le.,
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Fig. 6.4 Time course of hypotensive response (reduction in mean
arterial pressure) in a patient following 10 (0) and 25 (.) mg single
oral doses of minoxidil. Some time after administration. the intensity
of the drug's effect declines at a constant and similar rate after each
dose. (Data from Ref. 6.)

e -kat .... 0) after oral or intramuscular drug administration. An example
is the zero-order loss of the stimulant effect of amphetamine after intra­
muscular administration (Fig. 6.5). Although the decline in pharma­
cologic response for many drugs that act directly and reversibly is
zero order. there are examples where the decline in response appears
to be first order. This type of decline has been observed with the
digitalis glycosides (Fig. 6. 6) .

This departure from theory may be related to the approximate
nature of Eq. (6.5). Although (6.10) predicts a linear decline of
pharmacologic response with time after intravenous administration,
combination of (6.1) with the appropriate pharmacokinetic expression
for drug elimination in a one-compartment model suggests that the
decline of pharmacologic response is curvilinear (see Fig. 6.7). Re­
gions of this curve may be linearized on semilogarithmic coordinates.
Of particular importance is the fact that the response versus time
curves are nearly linear in the response range 20 to 80%. Hence. for
all practical purposes one would anticipate for a large number of drugs
that the loss of effect would indeed be essentially linear over a very
wide reponse range. as predicted by (6.10).

Regardless of the relationship between response and concentra­
tion. one can frequently demonstrate a relationship between the dura­
tion of a given response and the dose and half-life or elimination rate
constant of a drug [9J. Equation (6.7) can be readily converted to an
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Fig. 6.5 Time course of central nervous sytem response (locomotor
activity measured in counts per minute) after intraperitoneal and
intramuscular administration of dexamphetamine sulfate to rats.
Irrespective of dose and route of administration, the effect of the drug
declines at a constant rate during the postabsorptive phase. (From
Ref. 7.)

( 6.11)

equation in terms of amount by multiplying the concentration terms by
the apparent volume of distribution. This yields

Kt
log X = log Xo - 2.303

where X is the amount of drug in the body at time t and Xo is the initial
amount of drug in the body (Le , , the intravenous dose). If it is as­
sumed that the intensity of a pharmacologic response is associated
with a given amount of drug in the body, and that there is a minimum
amount of drug in the body Xmin necessary to elicit a response, the
time necessary for the initial amount of drug in the body Xo to decline
to this minimum effective amount is the duration of response td' Sub­
stitution of Xmin for X and td for t in (6.11) yields
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Fig. 6.6 Time course of cardiac response (change in ejection time
index, plotted on log scale) after intravenous administration of
digoxin. Exponential decline of response has also been observed
with other cardiac glycosides , including ouabain, deslanoside C, and
digitoxin. (Data from Ref. 8.)

(6.12)

(6.13)

which when solved for td is

2 303 2.303t = -'- log X - -- log X .
d K 0 K mm

Therefore, a plot of the duration of response versus the logarithm
of the intravenous dose should be linear. The intercept on the log
Xo axis will be the minimum amount of drug in the body necessary to
elicit a response, and the slope -2.303/K will provide an estimate of
the elimination rate constant. An example is shown in Fig. 6.8.
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Fig. 6.7 Drug concentration in plasma and anticipated response curves
under different conditions [see Eq. (6. 1)] after intravenous admin­
istration. [From Ref. 1, e 1972 Academic Press, Inc. (London),
Ltd., reprinted with permission.]

Equation (6.13) may be applied to determine the rate constant for
drug elimination in instances where direct measurement of drug con­
centration as a function of time is not possible but where pharmaco­
logic response can be measured adequately.

Under certain circumstancea drugs may be dosed based on phar­
macologic response. An example would be the use of neuromuscular
blocking agents during anesthesia. If a drug confers on the body
the pharmacokinetic properties of a one-compartment model, the ad­
ministration of a second dose of a drug immediately after the apparent
disappearance of the pharmacologic response from the initial dose is
likely to produce a more intense and more prolonged response than the
first dose. This is due to the fact that the second dose is superim­
posed on the minimum effective amount of drug remaining in the body
from the first dose [11]. This phenomenon is readily expressed in
mathematical terms by considering that the intensity of the response
is related linearly to the logarithm of the amount of drug in the body
(see Fig. 6.9). Hence

XR =m(log X - log X . ) =m log --
mm X •mIn

(6.14)
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Fig. 6.8 Relationship between intravenous dose of pentobarbital
(x axis) and duration of anesthesia (y axis, in minutes) in monkeys.
Xmin' the minimum dose required to elicit a measurable response, is
equal to 13 mg/kg. (From Ref. 10.)

This equation may be used to estimate the maximum intensity R01 of
the pharmacologic response elicited by an initial intravenous dose XO:

Xo
R01 = m log~

mIn

When a second (and equal) dose is administered immediately after
disappearance of the response of the first dose (I.e., when the
amount of drug in the body has declined to Xmin) , the maximum in­
tensity of the response R02 would be

Xo + Xmin
R02 = m log X (6.16)

min

Obviously, R 02 > R01' The maximum response from a third and sub­
sequent doses, if all were administered in the same manner as the
second dose, would be equal to the maximum response from the second
dose, and hence would be described by (6.16).
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log X

Fig. 6.9 Relationship between response and the logarithm of the
amount of drug in the body X. according to Eq. (6.14). The slope
(m) of the line is the same as the slope of a log concentration-re­
sponse plot [see Eq. (6.5)] and the X intercept corresponds to the
minimum amount of drug in the body. Xmin' needed to elicit a
measurable response.

Similar reasoning may be applied to determine the effect of a
second dose on the duration of a pharmacologic response. By re­
arranging (6.13), the duration of effect of the first dose can be
written as

231

X
( t ) = 2.303 1 _0_

d 1 K og X .
mIn

It follows that the duration of effect of the second dose is

X + X
( t ) = 2.303 1 0 min

d 2 K og X.
mIn

(6.17)

(6.18)

Again, it is apparent that (td)2 > (td)1. Equations (6.16) and (6.18)
predict that there will be no further increase in the intensity and
duration of response of third and subsequent doses. The predictable
"potentiating" effect may be avoided by using Xo - Xmin as the second
and subsequent doses.

The total pharmacologic activity of a single dose of a drug has
sometimes been represented as the area under the intensity of response
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versus time curve (Le., fo
oo

R dt) , This index of total activity has
shortcomings for many drugs in that it does not define the maximum
intensity or duration of response. It is useful, however, in quanti­
tating such responses as diuresis, electrolyte excretion, and weight
loss. Since there is frequently a nonlinear relation between the
amount of drug in the body and the intensity of response [see, e. g. ,
(6.1) and (6.5)] the relative pharmacologic activity of a drug (Le.,
the total area under the effect versus time curve divided by the dose, .
which upon intravenous administration is given by fo

oo R dt/XO) usually
decreases with increasing dose. Consequently, the total effect of a
fixed amount of drug per day may be affected by the dosage regimen
(L e., the number of doses per day). Computer simulations using the
integrated form of (6.1) have shown that when the daily dose is di­
vided' the total 24 h response is increased [1]. The greatest in­
crease occurs with the first subdivision of the dose (Le . , two doses
a day compared with a single dose). It is of interest to note that the
administration of 1 g of chlorothiazide twice a day produces a sig­
nificantly greater 24 h diuretic response than that observed after ad­
ministration of a single dose of 2 g [12].

Multicompartment Models

Effect in the Central or Peripheral Compartment. The time course of
drug action in muUicompartment systems depends on the location of the
site of action. Mathematically, the site may be located in the central
compartment or in the peripheral compartment or it may require rep­
resentation as a separate compartment. The location of the site of
action may be determined by examining the relationship between the
intensity of response and the concentration of drug in the plasma or
the calculated amount of drug in a peripheral compartment. A rela­
tively simple approach to this problem has been used with tubocurarine,
where effect data after several doses (over a fourfold range) were
available [13]. A detailed method to correlate response with either
plasma concentration or the "concentration" at some other site or
hypothetical compartment after a single dose has also been suggested
[14]. In essence, this method requires the following steps:

1. Measure the response and plasma concentration as a function
of time until drug levels are no longer detectable.

2. By means of mathematical analysis, determine the appropriate
pharmacokinetic model that rationalizes the concentration­
time data.

3. Attempt to relate the response values to the instantaneous
concentrations in the plasma compartment or peripheral com­
partments by means of some functional effect-concentration
equation such as (6.1) or (6.5).
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4. Once the appropriate pharmacokinetic model and functional
equation are determined, simUltaneously fit the observed drug
concentration in the plasma, response, and time data, using a
suitable nonlinear least-squares estimation program and a
digital computer (Appendix H) .

The significance of response correlations with drug "levels" in
hypothetical peripheral compartments of multicompartment models is
subject to challenge. Westlake [15] has demonstrated the large degree
of error that may be involved in calculating the amount of drug in the
peripheral compartment of a two-compartment model from drug concen­
tration in the plasma versus time data after intravenous administration,
which can be rigorously fit to a biexponential equation. Still greater
error is involved if a more complex pharmacokinetic model is required
to rationalize the plasma concentration-time data. Additional error is
introduced when one considers that the quantitative assessment of re­
sponse is often imprecise. Also, no single "response-concentration"
relationship has been universally accepted; rectilinear, log-linear,
or log-log plots have been used in arriving at these correlations.
Finally, the calculated time course of drug in a hypothetical peripheral
compartment reflects a type of weighted average of at least several
tissues. It is quite possible that the time course of drug at the site
of action and at some noneffector tissue having a relatively high
capacity for the drug may be significantly different, yet from a kinetic
point of view both the site of action and the noneffector tissue may
appear to be part of the same peripheral compartment.

If the site of action is associated with the central compartment,
a plot of response versus the logarithm of plasma concentration
should yield the same sigmoid- type curve as that shown in Fig. 6. 1. A
similar relationship should also be observed when the response is
associated with a peripheral compartment and response is plotted
against the logarithm of the calculated amount of drug in a peripheral
compartment. Examples of these two possible situations are illustrated
in Figs. 6.10 and 6.11, respectively. When the site of action is as­
sociated with a peripheral compartment, and response is plotted as a
function of the logarithm of plasma concentration, response will in­
crease with decreasing plasma concentration during the distributive
phase, reach a peak, then decrease during the postdistributive phase.
This type of response-concentration profile is depicted in Fig. 6.12.
The maximum response observed following a given dose will occur when
maximum drug levels are attained in the peripheral compartment.

In multicompartment systems the rate of decline of response is
likely to occur at a constant rate independent of dose during the post­
distributive phase, irrespective of the apparent site of effect. How­
ever, drug concentrations in the postdistributive phase may be too
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Fig. 6.10 Relationship between neuromuscular response (percent
paralysis) and amount of drug in the central compartment of a multi­
compartment system (log scale) after intravenous administration of
tubocurarine. The closed circles were calculated based on a pharmaco­
kinetic model and the open circles represent experimental data from
normal volunteers. (From Ref. 16, reprinted with permission.)

low to be of clinical consequence. When the site of action is associated
with the central compartment the maximum response will be observed
shortly after administration of the intravenous dose (Le ,; during the
distributive phase). Since drug concentration during the distributive
phase does not decline in a monoexponential fashion, one would not
expect response to decline in a linear manner. Theory suggests that
the decline of response to a drug showing multicompartment charac­
teristics and apparently acting in the central compartment will be a
curvilinear function of time after intravenous administration. Inter­
estingly, the decline of effect of certain drugs such as tubocurarine
which show pronounced multicompartment characteristics is apparently
linear after a given dose, but the apparent zero-order rate of decay
of effect decreases with increasing dose (see Fig. 6.13). This linearity
merely reflects the fact that over the limited concentration range as­
sociated with the range of intensities of pharmacologic effect, the
curvilinear log C versus time plot can often be approximated by a
straight line. The dose dependence results from the changing slope
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Fig. 6. 11 Relationship between behavioral response (average per­
formance scores on arithmetic tests) and amount of drug in the periph­
eral compartment of a two-compartment open model (or "tissue con­
centration") after intravenous administration of d-lysergic acid
diethylamide (LSD) to volunteer subjects. The number associated
with each data point denotes the blood sample number after drug ad­
ministration (e. g., number 1 represents the "tissue concentration"
calculated from the drug concentration found in the first blood sample
taken after injection). (From Ref. 14.)

of the log C versus time curve in this concentration range as a function
of dose (see Fig. 6.14).

In contrast to the relationships developed for the one-compartment
model in the first section of this chapter, the duration of effect of a
drug conferring multicompartment characteristics to the body is not a
linear function of the logarithm of the intravenous dose. Examples
are shown in Figs. 6. 15 and 6.16. Apparently, linear relationships
between duration of effect and logarithm of dose can be obtained in a
restricted dose range, but the slope of the line is dependent on the
intensity of the effect used as the end point [18]. Moreover, for a
so-called two-compartment drug the slope of this apparently linear re­
lationship after intravenous administration may approximate 1/)'1'
1/ An' or some other intermediate value. An additional observation is
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Fig. 6. 13 Decline of neuromuscular blocking effects after intravenous
administration of different doses of d-tubocurarine to human volun­
teers. Although the loss of effect is zero order, the rate is dose de­
pendent. (From Ref. 16, reprinted with permission.)
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Fig. 6. 14 Time course of tubocurarine in the central compartment of
a multicompartment system after intravenous administration of different
doses to healthy volunteers. The horizontal lines denote drug levels
required to elicit 20% and 80% paralysis of the thumb adductor muscle.
Although the deline of drug levels between 80% response and 20%
response is approximately log linear in each case. the slope is dose
dependent. (From Ref. 16. reprinted with permission.)

that the duration of a response associated with the central compart ­
ment of a multicompartment system will increase with successive doses
when the drug is dosed according to response alone (Fig. 6.17).
This is in contrast to a one-compartment system. where the duration
of response increases from the first to the second dose but does not
increase on subsequent doses. The maximum response increases
from the first to the second dose in both systems but does not in­
crease thereafter.

It is of theoretical interest to consider drug effects in a peripheral
compartment of a multicompartment system which is poorly accessible
to the central compartment. Drug moves in and out of such deep
compartments rather slowly. If the site of drug action is in the deep
compartment. the pharmacologic effect will be delayed and prolonged.
and the relationship between drug levels in the plasma and effect may
not be readily apparent. With this type of drug. repeated intravenous
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Fig. 6. 15 Relationship between duration of response and intravenous
dose (log scale). assuming that the site of effect is in the central
compartment of a two-compartment model. The duration is measured
in terms of the time required after administration of a given dose for
the peak effect to decline to 90%. 50%. or 10% of the maximum attain­
able effect of the drug. It is evident that the shape of the curve
depends on the end point. (From Ref. 18.)

administration of equal doses at constant time Intervals will yield the
concentration versus time patterns shown in Fig. 6.18 for the central
and deep peripheral compartments. This simulation. with the assumed
minimum detectable drug concentration in the central compartment
and minimum pharmacologically effective drug concentration in the deep
compartment. suggests certain clinically interesting characteristics.
The pharmacologic effect appears only after the third dose. and the
intensity of this effect increases beyond the tenth dose since drug
levels in the deep compartment do. in fact. accumulate. When drug
administration is stopped. the effect persists well beyond the last
dose. There are pronounced pharmacologic effects at a time when
there is no detectable drug concentration in the plasma. Thus the
effects of drugs that act directly and reversibly in a deep compartment
may sometimes be mistaken for indirect and/or irreversible drug
effects.
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Fig. 6.16 Relationship between duration of response and intravenous
dose (log scale), assuming that the site of effect is in the peripheral
compartment of a two-compartment model. The end points used to
determine duration of response are the same as in Fig. 6.15. For this
particular simulation the curves are approximately linear and parallel.
(From Ref. 18.)

Other Sites of Effect. A particular shortcoming of the pharmacody­
namic modeling discussed in the preceding sections of this chapter is
the required assumption that the plasma, central compartment, or
some other pharmacokinetically identifiable compartment is associated
with the pharmacologic effect. However, pharmacokinetic models con­
cern themselves with the disposition of mass of drug in the body; a
site receiving little mass is not described. There is no a priori reason
to assume that the active site corresponds, kinetically, with a site
receiving a large mass of drug. Accordingly, there is little reason to
hope that the kinetics of drug in plasma, or another pharmacokinetically
determined site, will parallel those at the active site. It has recently
been proposed that the effect compartment be modeled as a separate
compartment linked to the plasma compartment by a first-order process,
and be one that receives a negligible mass of drug [19,20]. There­
fore, one does not enter an additional exponential term into the phar-
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Fig. 6.17 Relative duration of response (e) and peak concentration
(0) for a situation where equal intravenous doses are given repetitive­
ly as soon as a certain effect end point is reached, assuming that the
site of effect is in the central compartment of a two-compartment model.
(From Ref. 18.)

macokinetic solution for the mass of drug in the body to account for
the effect compartment. The model is illustrated in Fig. 6.19. In
this model a first-order rate constant k1e connects the central to the
effect compartment. Drug leaves the effect compartment by means of
a first-order rate constant keO. By assuming k1e to be very small
relative to the magnitude of any other rate constant in the model
(Fig. 6.19). the transfer of mass to the effect compartment is neg­
ligible. and consequently does not influence the plasma concentration
versus time curve. Since a negligible amount of drug is transferred
to the effect compartment, its return to the central compartment is
inconsequential, and therefore may be taken to the outside rather than
back into the system. The rate constant for drug removal from the
effect compartment, keO' characterizes the temporal aspects of equi­
librium between plasma concentration and response.

The following differential equation can be written for the amount
of drug in the effect compartment, Xe:
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Fig. 6. 1B Relative concentrations of a drug in the central (solid line)
and deep peripheral (0) compartments of a multicompartment system
during repetitive intravenous administration of equal doses at equal
time intervals. (From Ref. 18.)

dX
e

dt
=k X -k X

1e c eO e
(6.19)

where k1e and keO are as defined above and Xc is the amount of drug
in the central compartment. The Laplace transform of (6.19) (see
Appendix B) is

sea ) = k a - k a
s,e 1e s ,c eO s,e

(6.20)

(6.21)

Solving for as e and substituting the value of as c as given in (2.3)
[ ' 'n ( / n ] . ld'l.e., as,c = Xo TI i=2 s + Ei) TI i=l (s + Ai) yie s

n
k

1
X o TI (s + E,)

e i=2 1
a =----'------s,e n

(s + k 0) TI (s + A.)
e i=l 1

The anti-Laplace (see Appendix B) of (6.21) gives the following equa­
tion for the amount of drug in the effect compartment as a function
of time:
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Fig. 6.19 Pharmacokinetic-pharmacodynamic model to describe that
situation where the site of effect does not correspond to a pharma­
cokinetic compartment. (Data from Refs. 19 and 20.)

n
II (Ei - k eO) -k t

X = k X :...i=..::2____ eO
e Ie 0 n e

II (A, - k 0)
i=1 1 e

(6.22)
- A t

R.

n
II (E. - AR.)

i=2 1-----------e
n

L
R.=1 (k

eO

n
A ) II

R. i=1
i;f R.

where Xois the intravenous dose, Ei the sum of the exit rate constants
from the ith compartment, n the number of compartments in the n­
compartment mammillary model, and Ai and AR. are disposition rate con­
stants. Assuming that the amount of drug in the effect compartment
is proportional to the concentration in this compartment, Ce:

X = V C
e e e

(6.23)

where Ve is the apparent volume of the effect compartment, we can
write (6.22) in terms of concentration as follows:
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n
k X II (E. - k 0) -k t

le 0 i=2 1 e eO
Ce = -V-- n e

e
II (A. - k 0)

i=l 1 e

(6.24)- A tR,n

2:
£=1

k
1

X o+_e_
V

e

n
IT (E. - AR,)

i=2 1

n
(keO-A t) n (Ai-At)

1=1
i#

By assuming that the rates of appearance of drug in and removal of
drug from the effect compartment are governed by the same process,
it follows that the clearance from the central to the effect compartment
and the clearance out of the effect compartment are equal, and therefore

V k 1 = V k 0c e e e
(6.25)

Rearrangement of (6.25) to solve for k1e/Ve (I.e., k1e/Ve = keO/V c)
and substitution of keO/V c for k1e/Ve in (6.24) gives

n

keOX
O

. IT (E i - ke O) -k t
C 1=2 eO
e=-V-- n e

c
IT CA. - k 0)

i=l 1 e

+ keOXO
V

c

n

2:
R,=1 (k _

eO

n
A ) IT CA. - A )

R, i=l 1 R,

i:# R,

(6.26)

Multiexponential plasma concentration-time data after intravenous
administration can be described by

Xo n
C = - 2:

Vc R,=l

n
IT (E. - AR,)

i=2 1

n
. IT (Ai - AR,)
1=1
i:# R,

(6.27)
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Fig. 6.20 Plasma concentration (e) and effect (0) relationships
during and after intravenous infusions of d -tubocurarine to a patient.
The solid lines represent the best fits of the proposed model to the
data. Note break in graph at 20 to 30 min, due to change of scale on
time axis. (From Ref. 19.)
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Once plasma concentration-time data have been fitted, all the param­
eters in (6.27) and (6.26) (except for keO) can be generated. Sub­
stitution of Ce for C in (6.1) yields the following equation, which re­
lates the observed pharmacologic response to concentrations in the
effect compartment:

R=----­
(l/Q) + C

S

e

(6.28)

where C~ is given by (6.26). Therefore, either response-time data
can be fftted after the concentration-time data have been fitted, gen­
erating values of Rm, s , Q, and keO [Eqs. (6.26) and (6.28)], or
response-time and concentration-time data can be fitted simultaneously
[Eqs. (6.26) to (6.28)], generating all pharmacokinetic and pharrna-
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codynamic parameters. This approach to the quantitative description
of response-plasma concentration-time data has been used in the quan­
titative analysis of d-tubocurarine and disopyramide pharmacody­
namics [19-21]. An example is presented in Fig. 6.20.

KINETICS OF INDIRECT PHARMACOLOGIC RESPONSE

(6.29)

The intensity of a pharmacologic response may not be due to a direct
effect of the drug on the receptor; rather, it may be the net result
of several processes only one of which is influenced by the drug.
Under such circumstanoes a direot relationship between the plasma
concentration of the drug and the measured pharmaoologic response
can generally not be obtained. If this is the case, the process that
is influenced by the drug must be identified and an attempt made to
relate plasma drug concentrations to changes in this process. A good
example is the anticoagulant (hypoprothrombinemic) effect of the cou­
marin drugs, which inhibit the synthesis of certain vitamin K-depen­
dent clotting factors (Le., factors II, VII, IX, and X), but have no
effect on the physiologic degradation of these factors. Thus the
real effect of these drugs is inhibition of synthesis rate, and any cor­
relation with plasma concentration must be based on this effect rather
than on the degree of inhibition of clotting time [22]. Administration
of warfarin or bishydroxycoumarin rapidly blocks the synthesis of pro­
thrombin complex activity P [23], but significant anticoagulant effect
will not be observed until normal circulating levels of P are reduced
sufficiently. Hence it is not surprising that although peak levels of
warfarin in the plasma are observed within several hours after oral
administration, the maximum hypoprothrombinemic response does not
appear until several days after administration (see Fig. 6. 21) •

The degree of anticoagulation is generally measured in terms of
a prothrombin time PT. PT is a measure of the net effect of the rate
of synthesis and the rate of degredation of the appropriate clotting
factors. Prothrombin time is generally expressed as the percent of
the normal prothrombin complex activity, and will be denoted by the
symbol P. P can be determined employing the following relationship:

(
PT - PT )

P = 100 1 - ~Tn n

(6.30)R
deg

where PT 0 is the observed prothrombin time and PT n is the normal
prothrombin time. For example, if a prothrombin time of 19 s was
measured, the prothrombin complex activity P would be 42% of normal,
assuming a normal prothrombin time of 12 s .

The net rate of change of P at any time (Le., dP/dt or Rnet) may
be described by

R =Rnet syn
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Fig. 6.21 Average warfarin concentration in plasma and depression
of prothrombin complex activity after oral administration of warfarin
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where Rsyn and Rdeg are the rates of P synthesis and degradation,
respectively. The R values are measured in terms of percentage of
normal activity per day since P is measured relative to the average P
level of normal subjects.

As noted, the direct effect of coumarin anticoagulants is not re­
flected by changes in P but rather by changes in Rsyn relative to its
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(6.31)

normal value. Rsy n may be calculated from (6.30) if Rdeg can be
determined, since Rnet is readily obtained from P (i. e., Rnet = dP / dt) •
If it is assumed that the degradation of P is describable by first-order
kinetics, then

Rde g = kdP

where kd is the apparent first-order degradation rate constant. This
constant can be obtained experimentalIy from the slope of a log P versus
time plot after administration of a synthesis blocking dose of a coumarin
anticoagulant. Under these conditions Rsyn in (6.30) equals zero.
Therefore,

dP =R = -R
dt net deg

and hence

dP
dt = -kdP

Integration of (6.33) yields

-k t
P = P e do

which in logarithmic terms is

kdt
log P = log Po - 2.303

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

where Po is the level of P prior to medication. Therefore. a plot of
log P versus time should be a straight line, the slope of which will
yield kd (Fig. 6.22). In one study where a synthesis blocking dose
of 1. 5 mg /kg of warfarin was administered orally, an average value
of kd of 1. 21 per day was determined [22]. This corresponds to an
average half-life of 13.7 h.

Solving (6.30) for Rsy n and SUbstituting kdP for Rdeg according
to (6.31) and dP/dt for Rnet according to (6.32) yields

R =dP+ k P
syn dt d

Therefore, by knowing kd and P as a function of time, Rsyn can be
determined.

The magnitude of response R at any given time can be expressed
as the difference between the synthesis rate before medication R~yn

and Rsyn at time t:

R = RO R (6.37)
syn syn
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Fig. 6.22 Plasma prothrombin complex activity in a normal subject
after oral administration of 1. 5 mg Ikg dose of warfarin. (From
Ref. 22.)

As discussed above, the magnitude of many types of pharmacological
response is related to the logarithm of the plasma concentration of
the drug. Equation (6.14) can be converted to a concentration equa­
tion by dividing by volume of distribution to yield

R = m(log C - log C . )mIn (6.38)

(6.39)

where Cmin is the minimum effective plasma concentration. Substituting
R~yn - Rsyn for R according to (6.37) in (6.38) and solving for Rsyn
gives

R = R0 + m log C . - m log C
syn syn rmn

Therefore, a plot of Rsyn versus log C should yield a straight line
with a slope of -m (Fig. 6.23). According to (6.39), when Rsyn
equals R~yn, C equals Cmin.

Prothrombin Complex Activity Versus Time. Although the direct
effect of the coumarin anticoagulants is on Rsyn' the time course of
P is of interest since this is the actual response being measured. This
information can be obtained by incorporating the concepts expressed
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Fig. 6.23 Average synthesis rate of prothrombin complex activity as
a function of plasma warfarin concentration in normal volunteers.
Warfarin sodium dosing schedules: ., a single oral dose of 1.5 mg/kg;
., daily oral doses of 10 mg for 5 days; C, daily oral doses of 15 mg
for 4 days. Cp min' the apparent minimum effective plasma warfarin
sodium concentration; Cp max, the concentration of warfarin sodium
in the plasma which apparently suppresses totally the synthesis of
prothrombin complex activity. (From Ref. 22.)

in the preceding paragraphs into a single mathematical expression
that permits the determination of P as a function of time and the
initial plasma concentration (or dose) of the drug. Substitution of
dP/dt + kdP for Rsy n according to (6.36) in (6.39) and rearrangement
yields

dP
dt = R~yn + m log Cmin - m log C - kdP (6.40)

Prior to the initiation of anticoagulant therapy, the circulating levels
of P are constant at po, and at that time R~yn is given by

RO =k po (6.41)
syn d

[see (6.36) J. Substituting this value of R~yn in (6.40) results in

dP
dt =kdPO + m log Cmin - m log C - kdP (6.42)

It has been shown that after intravenous administration,
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Kt
log C = log Co - 2.303

Accordingly,
C

dP_ 0_ _0_ ~ _
dt - kdP m log C . + 2.303 t kdP

mIn

Pharmacokinetics

(6.7)

(6.43)

Since the first two terms of (6.46) are constant for a given dose, they
may be combined, and upon rearrangement,

(6.44)

where AO = kdPo - m log (CO/Cmin)' Multiplying through by dt
yields

(6.45)

(6.46)

(6.48)

(6.49)

The solution to this differential expression requires the use of an
integrating factor. t In this case the appropriate integrating factor is

e f kd
t,

which is equivalent to ekd t Multiplying through by this term
yields

kdt k t k t kdt
e dP + kdPe d dt = A e d dt + mKte dto 2.303

Since

kdt k t k t
d(Pe ) = e d dP + kdPe d dt (6.47)

we may substitute d(Pekd t) for the left-hand side of (6.46). Hence
upon substitution and rearrangement, (6.46) may be rewritten as

kdt ( mKt) kdt
d(Pe ) = AO+ 2.303 e dt

The indefinite integral of this expression is

P kdt =f(A + mKt) kdt dt +'
e 0 2.303 e 1

where i is an integration constant. Upon rearrangement,

-kdt[J( ) k t ]
P = e A O+ 2~~~ e d dt + i (6.50)

tSee L. M. Kells, Elementary Differential Equations, 6th ed . McGraw­
Hill, New York, 1965, chap. 3, sec. 24, pp. 63-68.
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The integral term of (6.50) may be expressed as

f kdt mR [kdt
AO e dt + 2.303 Jte dt

The first term of this expression is readily solved since

f kdt AO kdt
A e dt = - e + i'o k

d

251

(6.51)

but the solution of the second term requires some effort. Considering
the general relationship

xy = jd(XY) = j(X dy + Y dx) = jx dy + j Y dx (6.52)

it follows that

fx dy = xy - fy dx (6.53)

Now returning to the second term of the integral,

mR f kdt
2.303 te dt

and letting t =x and ek dt dt =dy , it follows that y =ek dt Ikd'
Substituting these relationships in the second term of the integal

yields

f k t kdt f kdt
te d dt =~ _ e__ dt (6.54)

k
d

k
d

which upon integration yields

f
k t kdt kdt

d te e .
te dt = -- -- --+ 1"

kd k 2
d

Upon further simplification,

f k t kdt
d e

te dt =-- (kdt - 1) + I"
k

2
d

Accordingly,

1) + I"

(6.55)

(6.56)

(6.57)
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Summing (6.51) and (6.57) yields the integral term of (6.50):

k t

f( mKt) kdt AO kdt mKe d
A + -- e dt = - e + (k t - 1) + i' + i"

o 2.303 k d 2.303k~ d

(6.58)

Substituting the right-hand side of (6.58) for the integral terms in
(6.50) and collecting the integration constants such that i + i' + I" =I
yields

(6.59)

Upon simplification,

mK + mK t
2.303k~ 2.303kd

(6.60)

Evaluation of I at t =0, where C =Co and P =P? , yields

mK
2

2.303k
d

(6.61)

(6.62)

Substituting for I and AO in (6.60) and simplifying the results gives

-kdt
p = po - a(l - e ) + bt

where

b = mK
2.303k

d
and

mK
2

2.303k
d

m log (CO/C . )
a = mIn + _-"=0...-

k
d

Equation (6.62) has a number of interesting features. Shortly
after drug administration, when t is relatively small, the second term
predominates over the third term and P decreases with time. At later
times, the third term predominates and P increases with time. At some

time later, e- kdt
-+- 0 and P increases linearly with time. Values of P

calculated as a function of time after warfarin administration, by
means of (6.62), agree exceedingly well with clinically observed values
(see Fig. 6.24). A pharmacokinetic analysis by this method of the
effect of a barbituate on the anticoagulant action of warfarin and
bishydroxycoumarin has shown that the reduced efficacy of these drugs in
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Fig. 6.24 Calculated (-) and observed (0) prothrombin complex
activity in healthy human SUbjects after a single oral dose of 1.5
mg/kg warfarin sodium. (From Ref. 22.)

humans during barbiturate administration is due to enhanced biotrans­
formation of the coumarin drugs rather than to changes in distribu­
tion or affinity to the pharmacologic receptors. Thus, whereas the
biologic half-life of the coumarins was decreased significantly with the
barbiturate, the relationship between effect and plasma-drug concen­
tration remained unchanged [24,25]. On the other hand, phenyl­
butazone, which also enhances the elimination of warfarin, has a pro­
nounced effect on the relationship between synthesis rate of pro­
thrombin complex activity and plasma-warfarin concentration [26].
These observations are consistent with the assumption that phenyl­
butazone competitively displaces warfarin from nonspecific binding
sites in the plasma and tissues and thereby increases the interaction
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of the anticoagulant with its pharmacologic receptor and metabolizing
enzyme system.

KINETICS OF IRREVERSIBLE PHARMACOLOGIC RESPONSE

Although most drugs produce a response that is reversible, certain
antibiotics and anticancer agents cause cell death (an irreversible
effect) by the irreversible or covalent incorporation of drug into a
metabolic pathway of a cell. When discussing the kinetics of irre­
versible pharmacologic response, it is appropriate to consider two
classes of drugs. each of which affects the cell cycle and mitosis in
a different manner, one class which is nonphase specific in its cytoxic
effect and the other class which is phase specific.

Go

CELLCYCLE

PROPHASE

METAPHASE

ANAPHASE

TELOPHASE

MITOSIS

Fig. 6.25 Segments of the cell cycle and mitosis (see Ref. 27).
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Fig. 6.26 Effect(s) of various chemotherapeutic agents on phases of
the cell cycle. (From Ref. 28. reprinted with permission.)

The various segments of the cell cycle and mitosis are depicted
in Fig. 6.25. Briefly, at the completion of mitosis M, the cells spend
a variable period of time in a resting phase Gl' This is followed by
the DNA synthesis period. the S phase. The cells cease DNA synthesis
during the G2 phase before reentry into mitosis. Each cytotoxic
agent exerts its effect by disrupting one or more phases of the cell
cycle. For example (see Fig. 6.26), methotrexate and cytosine
arabinoside appear to inhibit DNA synthesis, while corticosteroids and
L-asparginase inhibit the entry of cells into the S phase. Vincristine
arrests mitosis and blocks the entry of resting cells into the mitotic
cycle. Cyclophosphamide, on the other hand. appears to have several
effects: inhibition of DNA synthesis. arrest of cells in mitosis, and
inhibition of cells from entering DNA synthesis.

Nonphase Specific Drugs

The proposed model in Fig. 6.27 is an expansion of the model in Fig.
6. 19, and is a slight modification of one presented previously [29].
This model permits an evaluation of the influence of cell cycle non-
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Fig. 6.27 Pharmacokinetic-cytotoxic model for nonphase specific
drugs. (Data from Ref. 29.)

(6.63)kC Xs e

specific drugs on cell cytotoxicity. In this model Xe is the amount of
drug in the effect compartment, Cs the concentration of proliferating
target cells, ks the rate constant for natural mitotic growth, kr the
rate constant for normal physiologic degradation, and k the rate con­
stant for cell kill. All other parameters are as defined previously. As
with the model in Fig. 6.19, the effect compartment is assumed to re­
ceive a negligible amount of the total drug in the body (I.e., k1e is
very small) and therefore does not influence the plasma concentration
versus time curve. Nor does it enter into the pharmacokinetic solution
for the amount of drug in the body.

Based on the model in Fig. 6.27. the following equation can be
written for the rate of change of target cells:

dC
-_s=kC -kC
dt s s r s

Rearrangement yields

dC
_s = (k - k ) dt - kX dt
C s r es

which when integrated becomes

In C = (k - k ) t - k (t X dt + i
s s r Jo e

(6.64)

(6.65)
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(6.66)

(6.67)

where i is a constant of integration. At t = 0, i = In C~, where C~
is the concentration of target cells before the initiation of therapy.
Substitution of In C~ for i in (6.65) and rearrangement produces the
following relationship:

C itIn C: = (k - k )t - k X dt
s s rOe

Since most anticancer drugs have relatively short half-lives, it is
suggested that the pharmacokinetic events (Le., absorption. distribu­
tion. and elimination) are essentially over before much happens to
the cells. Therefore,

{t X dt = (<» X dt
Jo e I« e

The amount of drug in the effect compartment as a function of time
is given by

-k t
eOe

n
II (E. - A£)

i=2 1

n

A£) ,II 0i­
1=1
i:~£

Integration of (6.22) from zero to infinity yields

cc [ ~ (Ei - keO)
{ X dt = k X -.,;;;..i=....:::2'--- _Jo e 1e 0 n

keO II (Ai - k 0)
i=l e

- A t
£

e (6.22)

n
+ 2:

£=1

n
II (E. - A )

i=2 1 £

n
A.(k

e O
- A ) II O.

'" £ i=l 1

i+£

(6.68)
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(6.72)

(6.73)

Bringing (6.69) to a common denominator, expanding the resulting
numerator, canceling common terms, substituting k21 for E2, and
factoring out k 21 produces

2 2 2 2 2 2
A1A2 - A1A2 + A2ke O

- A
2ke O

- A
1ke O

+ Aik
e O

A1A2keo(A1 - A2)(ke O - A1)(ke O - A2)

(6.70)

Recognizing that the numerator of (6.70) is equal to 01 -- A2)(keO -
Al)(keO - A2) permits (6.70) to be simplified to

100 dt __ k1ek21XO
X (6.71)

o e A1A2ke O

Since A1A2 = k21klO [Eq. (2.100)], k 21k10 can be substituted for
A1A2 in (6.71) and k21 canceled to give

1
00 k X

X dt = 1e 0
e k

e Ok10

Substitution of k1eXO/keOklO for fiXe dt, according to (6.67) and
(6.72), in (6.66) yields

C
s

kk
1e

In - =(k - k )t - XoC~ s r ke Ok10

or

C k - k kk
1I s s reX

og C~ = 2.303 t - 2.303k
e Ok10

0

Equation (6.74) can be given as

(6.74)
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Cs
log Co =

s

k - k
s r
2.303 t - KLXO

(6.75)

(6.76)

where

K = kk 1e
L 2.303k

e Ok10

Therefore, a plot of the logarithm of the fraction of surviving cells
(Cs/C~) versus dose should be linear. An example is presented in
Fig. 6.28. The slope of the line KL is a function of the affinity of
the target cell for the drug, k, the elimination rate constant of the
drug, klO' and the constants responsible for the appearance and dis­
appearance of drug in the effect compartment.

The reciprocal of KL (Le ,; l/KL) has been defined as a lethality
constant ED90, which is the dose increment of drug required to re­
duce the fraction of surviving cells (Cs/C~) by one order of magnitude
[29]. This lethality constant can be used to compare the cytotoxic
effects of a drug on various cell systems or effects of various drugs
on a single-cell system. For example, a comparison of the curves in
Fig. 6.28 would suggest that cyclophosphamide has a smaller lethality
constant for or is more potent against osteosarcoma cells than chimera
spleen cells.

Cell-Cycle-Specific Drugs

There are some anticancer drugs which are cytotoxic only during a
specific phase of the cell cycle. For this class of drugs the model in
Fig. 6.29 is proposed. Again, this model is slightly modified from
one presented previously [30J. Cs represents the concentration (or
number) of cells sensitive to the drug, and Cr is the concentration (or
number) of insensitive cells. Cells in each group are interconvertible
with transformation rate constants k r s and k sr • All other terms are
as defined previously. As can be seen from the model, the cell pro­
liferation rate constant k s is assumed to act only on Cs cells, and the
rate constant for cell loss k r acts only on Cr cells. This model is
analogous to systems in which Cs and Cr represent proliferative and
resting cells, respectively.

The rate of change in the number of target or proliferating cells
and insensitive or resting cells can be written as the following dif­
ferential equations:

and

dC
s

dt
= k Cs s kX Ce s k C + k Csr s rs r

(6.77)
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Fig. 6.28 Survival curves for chimera spleen cells (0) and osteo­
sarcoma cells (.) after intraperitoneal administration of single doses
of cyclophosphamide. (From Ref. 29, reprinted with permission.)

dC
---!.:::k C -k C -kC
dt sr s rs r r r

(6.78)

The problem encountered in trying to solve (6.77) and (6.78) is the
time-dependent nature of Xe. This problem can be overcome by nu­
merical integration of the specific differential equations that describe
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Fig. 6.29 Pharmacokinetic-cytotoxic model for cell-cycle-specific
drugs. (Data from Ref. 30.)

the model [Le .• Eqs. (6.77) and (6.78). plus the differential equa­
tions for Xe and other compartments (see Fig. 6.29)]. Such an ap­
proach has been applied to arabinosylcytosine data (see Fig. 6. 30) .

If Xe in (6.77) is assumed to remain constant. a specific equation
for (6.77) can be obtained quite readily. Assuming that Xe can be
approximated by the average amount of d~g in the effect compartment
during a dosing interval at steady state. Xe• where

Xe = (6.79)

(see Chap. 3). then

JOT X dt
X ~ e

e T
(6.80)

where T is the dosing interval and JJ Xe dt is the area under the Xe
versus t curve during a dosing interval at steady state. Since
f6 Xe dt equals foXe dt (see Chap. 3), kleXO/keOklO can be sub­
stituted for J6 Xe dt r r in (6.80) [see Eq. (6.72)] to give

k X
X ~ 1e 0 (6.81)

e keOklQ'
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o 24 48 72
Time (hI

Fig. 6.30 Time course of drug levels and survival of lymphoma cells
in mouse femur on multiple dosing of arabinosylcytosine (Ara-C) . The
upper graph shows the calculated body levels of Ara-C when doses
of 0.167 mg are given every 4 h (assuming a biologic half-life of 1 h)
as well as the average body level of Ara-C (dashed line). The solid
line in the lower graph is calculated from the model using numerical
integration. (From Ref. 30, e 1971 Plenum Publishing Corp.)

Substitution of this value of Xe for Xe In (6.77) yields

dC kk X C
__s :: k C _ 1e 0 s - k C + k C
dt s s k

eOk10
T sr s rs r

The solutions for Cs and Cr are provided in the appendix to this
chapter.

(6.82)
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Fig. 6.31 Dose- and time-dependent cell survival curves for the ef­
fects of vinblastine on hematopoietic and lymphoma cells in the mouse
femur. (From Ref. 30, © 1971 Plenum Publishing Corp.)

Of interest is the total number of cells in the system CT as a
function of time and of dose. This is given by

-at -at
C A 1 +A 2

T = 1e 2e (6.83)
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Fig. 6. 32 Time course of drug levels and survival of lymphoma cells
in mouse femur on multiple dosing of vinblastine. The upper graph
shows the calculated body levels (solid line) of vinblastine when doses
of 0.025 mg are given every 4 h (assuming a biologic half-life of 3.5
h) as well as the average body level of vinblastine at steady state
(dashed line). The solid line in the lower graph is calculated from
the model using numerical integration; the dashed line is based on
average body levels. (From Ref. 30, © 1971 Plenum Publishing Corp.)

where t is time, ('(1 and ('(2 are disposition rate constants,

CO(k + k + k - a ) + CO(KX + k - k + k -
A = s rs r sr 1 r 0 sr s rs

1 ('(2 - "i

(6.84)

and
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A
CO(k + k + k

2 = s rs r sr (
2)

+ C~(KXO + ks r - ks + kr s
a

1
- a

2

(6.85)

(A6.1)

and C~ and C~ are the respective concentrations or numbers of sensitive
and insensitive cells at time zero. Derivations of these equations may
also be found in the appendix to this chapter.

The approximation that resulted in the solution for (6.83) allows
the characterization of the average effect of a given dose of a drug,
rather than the time course of effect of the dose, and is precise only
at the instant that all of the drug has been lost from the body and
tumor site [30]. An example of the application of Eq. (6.83) with re­
gard to the effect of dose and time on hematopoietic and lymphoma cells
in the mouse femur is illustrated in Fig. 6.31. Figure 6.32 demonstrates
the good agreement between the approximate solution and a more rig­
orous kinetic treatment.

Although the data are limited, there are examples in the literature,
as illustrated above, that demonstrate the application of the relation­
ships developed in cancer chemotherapy. Unfortunately, there remains
a paucity of information concerning the effect of duration of antibiotic
therapy and dose on bacterial cell growth.

APPENDIX: SOLUTIONS FOR CSt Crt AND CT FOR CELL SYSTEMS
SENSITIVE TO DRUGS THAT ARE CELL CYCLE SPECIFIC

The differential equations for Cs and Cr [Eqs. (6.86) and (6.81), re­
spectively] are

dC

dt
S

= k C - KXOC - k C + k Cs s s sr s rs r

and

dC
r

dt

where

=k C -k C -kC
sr s rs r r r

(A6.2)

(A6.3)

The respective Laplace transforms of these equations are (see Appen­
dix A)

sC - co = (k - KX - k )C + k C
s s s 0 sr s rs r

(A6.4)

AUROBINDO EX. 1018, 277



266 Pharmacokinetics

and

sC - Co = k C
r r sr s

(k + k )C
rs r r (A6.5)

° °where Cs and Cr are the concentrations or numbers of sensitive and
insensitive cells at time zero. Collecting common terms in these two
equations yields the following:

(S+KXO+k -k)C =k C +CO (A6.6)
sr s s rs r s

(s + k + k)C = k C + Co
rs r r sr s r

(A6.7)

MUltiplying Eq. (A6.6) by (s + kr s + kr) a~d (A6.7) by kr s• adding
the resulting expressions. and solving for Cs yields

(A6.8)

- k k
rs sr

(s + k + k )CO + k Co
rs r s rs r

s2 + s(KX + k + k + k - k )o sr rs r s
+ (k + k ) (KX + k - k )

rs r 0 sr s

C = ---:-------------
S

If we consider the identity

s2 + s(KX + k + k + k - k ) + (k + k )(KX + k - k )o sr rs r s rs r 0 sr s

- krsksr = (s + a 1) (s + a 2)

Eq , (A 6.8) can be rewritten as follows:

(s + k + k )CO + k Co
rs r s rs r

(s + a1)(s + a2)

(A6.9)

(A6.10)

where

a
1

+ a = KX + k + k + k - k
2 0 sr rs r s

(A6.1l)

and

a
1a2

= (k + k )(KX
O

+ k - k ) - k krs r sr s rs sr (A6.12)

Solving (A6.10) for Cs using a table of Laplace transforms (Appendix
A) gives

(k + k -- a )CO + k Co -a t
C = rs r 1 s rs r e 1

s "a - a1
(k + k - a )CO + k Co

rs r 2 s rs r+_::...=..._----'='----'--_....::...:-.::..
"i - a 2

-a t
2e (A6.13)
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Cr can be solved for in a similar manner. Multiplying (A6.6) by
ksr and (A6.7) by~ + KXO + k sr - ks• adding the resulting expres­
sions, solving for Cr' and considering the identity given by (A6. 9)
yields

(s + KX
O

+ k - k )CO + k Co
C = sr s r sr s

r (s + (
1
)( s + (

2
) (A6.14)

The following equation for Cr as a function of time can be determined
using a table of Laplace transforms (Appendix A) :

(KX + k - k - Cl1) C
rO + ksrCsO

C = 0 sr s
r a

2
- Cl

1

(A6.15)

a )CO + k CO -CI t
2 r sr s 2

e
(KX

O
+ k - k

sr s
+

Cl
1

- a
2

An expression for the total number of cells in the system, CT, can be
obtained by adding (A6.13) and (A6.15). Addition followed by simpli­
fication yields

-at -Cit
C C A 1 +A 2

CT = s + r = 1e 2e (A6.16)

where

COCk + k + k - CI ) + CO(KX + k - k + k - (
1)A = s rs r sr 1 r 0 sr s rs

1 a
2

- a
1

(A6.17)

and

COCk + k + k - (
2)

+ CO(KX
O

+ k - k + K - (
2)A = s rs r sr r sr s rs

2 "i - "a

(A6.18)
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7
Nonlinear Pharmacokinetics

At therapeutic or nontoxic plasma concentrations, the pharmacokinetics
of most drugs can be adequately described by first-order or linear
processes. However, there are a small number of well-documented
examples of drugs which have nonlinear absorption or distribution
characteristics [e.g., ascorbic acid [1] and naproxen [2,3], re­
spectively], and several examples drugs that are eliminated from
the body in a nonlinear fashion.

MICHAELIS-MENTEN KINETICS

Drug biotransformation, renal tubular secretion, and biliary secretion
usually require enzyme or carrier systems. These systems are rel­
atively specific with respect to substrate and have finite capacities
(I.e., they are said to be capacity limited). Frequently, the kinetics
of these capacity-limited processes can be described by the Michaelis­
Menten equation:

(7.1)

where -dC/dt is the rate of decline of drug concentration at time t ,
Vm the theoretical maximum rate of the process, and Km the Michaelis
constant. It is readily seen by determining C when -dC/dt = (l/2)Vm
that Km is in fact equal to the drug concentration at which the rate
of the process is eq ual to one-half its theoretical maximum rate.
Equation (7.1) can be derived based on the following scheme (see
Appendix G for derivation) :

E+C
k 2

EC --+ E + M
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(7.2)

In this scheme C is the concentration of drug, E the concentration of
enzyme, EC the concentration of the enzyme-drug complex, and M the
concentration of metabolite. The constants k2 and k-1 are first-order
rate constants, and k1 is a second-order rate constant. The Michaelis­
Menten equation is of value for describing in vitro and in situ as well
as certain in vivo rate processes. For in vivo systems the constants
Vm and Km are affected by distributional and other factors and there­
fore must be viewed as functional, model-dependent constants.

SOME PHARMACOKINETIC CHARACTERISTICS OF
MI CHAELIS-MENTEN PROCESSES

There are two limiting cases of the Michaelis-Menten equation. If K m
is much larger than C, (7.1) reduces to

V
dC = -!!! C
dt K

m

This equation has the same form as that describing first-order elimina­
tion of a drug: (1) after intravenous administration in a one-compart­
ment model, (2) in the postabsorptive phase after some other route of
administration in a one-compartment model, or (3) in the postabsorp­
tive, postdistributive phase in a multicompartment model. Assuming
apparent first-order elimination of a drug which confers one-compart­
ment characteristics to the body and which is eliminated by a single
biotransformation process, the first-order rate constant K is actually
VmIKm• As shown in (7.2), if treatment with an enzyme inducer
causes an increase in the amount of enzyme (and therefore of Vm), the
apparent first -order rate constant of the process will also be increased.
Given the fact that drug elimination is so frequently observed to follow
apparent first -order kinetics, one must conclude that the drug con­
centration in the body (or, more correctly, at the site of an active
process) resulting from the usual therapeutic dosage regimens of
most drugs is well below the Km of the processes involved in the dis­
position of these drugs.

There are some notable exceptions to this generalization and among
them are ethanol [4], salicylate [5,6], and phenytoin [7]. The elim­
ination kinetics of phenytoin [8] and ethanol [9] appear to be ade­
quately described by a single Michaelis-Menten expression, while
salicylate elimination [6] may be described by two capacity-limited
and three linear processes. Marked deviations from apparent first­
order drug elimination have also been noted frequently in cases of
drug intoxications. In the latter situation there is often some ambigu­
ity as to whether the deviations are due to capacity-limited biotrans­
formation of the high drug levels in the body [described by (7.1)] or
due to some toxicologic effect of the drug.
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Another limiting case of the Michaelis-Menten equation is that
which results when the drug concentration is considerably greater
than K m. Equation (7.1) then reduces to

273

dC
- -=V

dt m
(7.3)

Under these conditions, the rate is independent of drug concentra­
tion, so that the process occurs at a constant rate Vm. The kinetics
of biotransformation of ethanol [4] have been observed to approach
the condition described by (7.3) even at drug levels in the body
that are appreciably lower than those considered to be toxic.

Based on the discussion above, if -dC/dt is plotted as a function
of plasma concentration, -dC/dt would initially increase linearly
with concentration, indicating first-order kinetics (Fig. 7.1). As the
concentration increases further, -dC /dt would increase at a rate less
than proportional to concentration, and eventually asymptote at a

~Vm2------ _

dC
- dt

I
I
I
I
I
I

:~~
o

CONCENTRATION (~g/ml)

Fig. 7.1 Relationship between drug elimination rate -dC/dt and drug
concentration C for a Michaelis-Menten process. In this particular
example the Michaelis constant Km is equal to 10 ].I g/ml and the max­
imum rate Vm is equal to 2(].Ig/ml)h- 1.
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Time measured from 12h after last dose (h)

Fig. 7.2 Phenytoin (diphenylhydantoin) concentration in plasma 12 h
after the last dose of a 3 day regimen of the drug at three different
daily doses. The data are described by Eq. (7.9). 0: 7.9 mg/kg;
.t.: 4.7 mg/kg; 0: 2.3 mg/kg. (From Ref. 10, e 1972 PJD Publica­
tions Ltd., reprinted with permission.)

rate equal to Vm which would be independent of concentration (i ,e .•
a zero-order rate).

The time course of drug plasma concentration after intravenous
injection of a drug that is eliminated only by a single capacity-limited
process can be described for a one-compartment system by the inte­
grated form of the Michaelis-Menten equation. Rearrangement of
(7.1) yields

- dg (C + K
m

) = V m dt

or

-dC
K dC

- _m_ = V dt
C m

(7.5)
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Integration of this equation gives the expression

-C - K In C = V t + im m
(7.6)

where i is an integration constant. Evaluating i at t = 0, where
C = CO' yields

i = -CO - K
m

In Co (7.7)

SUbstituting this expression for i in (7.6) and rearranging terms gives

C - C
t = ......:::O=--_

V
m

(7.8)
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o 400 600
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Fig. 7.3 Amount of drug in the body following intravenous adminis­
tration of 1, 10, and 100 mg doses of a drug that is eliminated by a
single Michaelis-Menten process. A one-compartment system is as­
sumed; Km =10 mg and Vm =0.2 mg'/min , The inset shows a plot of
amount of drug in the body divided by administered dose versus time
to show that the principle of superposition does not apply.
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Fig. 7.4 Elimination of salicylate after oral administration of 0.25,
1. 0, and 1. 5 g doses of aspirin. Vertical arrows on the time axis
indicate t50%' the time to eliminate 50% of the dose. (From Ref. 5,
reprinted with permission.)

Unfortunately, it is not possible to solve this equation explicitly for
C. Rather, one must determine the time t at which the initial concen­
tration Co has decreased to C. A modified form of (7.8), that is,

C - C Km Co
t - to = 0V + V In C (7.9)

m m

has been used to fit phenytoin levels in the plasma as a function of
time 12 h after administration of the last of several oral doses to human
subjects (see Fig. 7.2). In this case Co represents the phenytoin
plasma concentration at 12 h after the last dose, to = 12 h , and C is
the phenytoin plasma concentration at time t , where t > to'

Conversion of (7.8) to common logarithms (In x = 2.303 log x)
and solving for log C yields

Co - C Vm
log C = 2.303K + log Co - 2.303K t

m m
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Figure 7.3 shows the time course of elimination, as described by (7.10),
of three different doses of a drug that is eliminated by a process with
Michaelis-Menten kinetics. The lowest dose represents the case where
Km » C. At this dose the decline in plasma concentrations is first
order with a slope of -Vm/2.303Km• On the other hand, the highest
dose yields initial concentrations which are considerably above Km,
so that drug levels decline initially at an essentially constant rate (see
inset to Fig. 7.3). The curves show that the time required for an
initial drug concentration to decrease by 50% is not independent of
dose, but, in fact, increases with increasing dose. This particular
pharmacokinetic property may present considerable clinical difficulty
in the treatment of drug intoxications. Figure 7.3 also shows that re­
gardless of the initial dose, when the plasma concentration becomes
significantly less than Km, elimination is describable by first-order
kinetics and the slope of this linear portion of the curve is inde­
pendent of dose. Semilogarithmic plots of plasma concentration or
amount unexcreted versus time after administration of phenytoin (Fig.
7.2) or salicylate (Fig. 7.4) show characteristics that are remarkably
similar to those described by the curves in Fig. 7. 3.

To assess whether or not a drug possesses nonlinear kinetic prop­
erties, a series of single doses of varying size should be administered.
If a plot of the resulting plasma concentrations divided by the ad­
ministered dose are superimposable, the drug in question has linear
kinetic properties over the concentration range examined. If, how­
ever, the resulting curves are not superimposable (see inset to Fig.
7.3), the drug behaves nonlinearly.

IN VIVO ESTIMATION OF Km AND V m

For a drug that is eliminated by a single capacity-limited process,
there are a number of general methods which permit the initial estima­
tion of apparent in vivo Km and Vm values from plasma concentration­
time data in the postabsorptive-postdistributive phase. Such estimates
require the determination of the rate of change of the plasma concentra­
tion from one sampling time to the next, li C l t:t , as a function of the
plasma concentration Cm at the midpoint of the sampling interval (see
Appendix F). The data are usually plotted according to one of the
linearized forms of the Michaelis-Menten equation, such as the Line­
weaver-Burk expression,

1 K m 1
-- = -- + - (7.11)
liC/lit V C Vm m m

so that a plot of the -eciprocal of li C lli t versus the reciprocal of Cm
yields a straight line with intercept 1/Vm and slope Km/V m• Two
sometimes more reliable [11,12] plots are the Hanes-Woolf plot [13] and
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(7.12)

the Woolf-Augustinsson-Hofstee plot [13]. They are based on the
relationships

C K C
m m +---E!..

!J.C/!J.t=Y- V
m m

and

!J.C = V
!J.t m

(!J.C/!J.t)K
m

C
m

(7.13)

(7.14)

respectively. Based on (7.12), a plot of Cm/ (!J. C /!J. t) versus Cm
should yield a straight line with a slope of l/Vm and an intercept of
Km/V m. Equation (7.13) indicates that a plot of !J.C/!J.t versus
(!J. C /!J. t) /C m gives a straight line with a slope of - Km and an inter­
cept of Vm.

A method for estimating Vm and Km directly from log C versus time
data, obtained following the intravenous administration of a drug that
can be adequately described by a one-compartment system, is also
available [14]. Extrapolation of the terminal log-linear portion of the
log C versus time plot, where the plot is described by (7.10), would
yield a zero-time intercept of log Co (see Fig. 7.5). The resulting
straight line can be described by

ole Vm
log C = log Co - 2.303K t

m

At low plasma concentrations (7.10) and (7.14) are identical. By
setting the right-hand sides of these two equations equal to each
other, the following expression is obtained:

V
m

2.303K
m

ole Vm (7.15)

(7.16)

Cancellation of the common term, Vmt/2.303Km, and rearrangement
yields

ole

Co - C Co

2.303K
m

= log Co

Since the equality given by (7.15) is valid only at low concentrations,
Co can be assumed to be significantly greater than C, and therefore
Co - C ~ CO' Making this simplification in (7.16) and solving the re­
sulting expression for Km gives

(7.17)
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Fig. 7.5 Graphical method for estimating Km and Vm after intravenous
administration of a drug that is eliminated by a single Michaelis­
Menten process. The solid line is described by Eq. (7.10). The
terminal slope gives an estimate of the ratio of Vm to Km• and the
ratio of Co to Co is used to estimate Km [see Eq. (7.17)].

Since Co and Co can be estimated from a log C versus time plot. an
estimate of Km is possible employing (7. 17). Vm can be calculated
from the slope of the terminal log-linear segment of the concentration
versus time curve. Since slope = -Vm/2.303Km• Vm = -2.303(slope)Km.

It is plausible to consider that drug elimination may involve a
capacity-limited process in parallel with one or more first-order proc­
esses. Under these conditions. the foregoing methods for estimating
Vm and Km do not apply. When capacity-limited and first-order elim­
ination occur in parallel. the rate of decline of drug levels in the
plasma after intravenous administration in a one-compartment system
is given by

V C
_ dC = K'C + m

dt K + C
m

(7.18)

where K' is the rate constant characterizing the various parallel
first -order processes. The time course of drug levels under these
conditions may be determined by integration of (7.18) as follows.
Expansion of (7. 18) yields
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K'C(K + C) + V Cm m
K + C

m
(7.19)

Further simplification gives rise to

C(K'K + KV + K'C)
m m

K + C
m

(7.20)

where a = K'Km + Vm- Inversion and rearrangement of (7.20) yields

dt -(Km + C) -Km
dC =C(a + K'C) =C(a + K'C)

1
a + K'C

(7.21)

This equation is separable and can be rewritten as

(7.22)
dC

a + K'C

-K dC
m

dt = C(a + K'C)

The two terms in this equation are of the form l/x(a + bx) and
11(a + bx) , respectively, the integrals of which are (-11 a) In [( a +
bx)/x] and (lIb) In (a + bx) [15]. Therefore. integration of (7.22)
gives

(7.24)

(7.23)
K

t
_- _m I a + K'C 1n - - In (a + K'C) + i

a C K'

Evaluating i at t =O. where C =CO' yields

K a + K'C O 1
i = - -.!!! In + K' In (a + K'C O)a Co

SUbstituting this value of i in (7.23) and simplifying the resulting
expression yields

at = K
m

In C~ + (;, - K
m)

In aa++:~o (7.25)

Since a = K'Km + Vm•

C (K'K + V )o m m
(K'K + V )t = K In - + - K

m m m C K' m

K'K + V + K'C
m m 0

In K'K + V + K'C
m m

(7.26)

or

1 [ Co Vm (CO + Km)K' + Vm]
t = K'K + V Km In C + K'In (C + K )K' + V

m m m m
(7.27)
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Fig. 7.6 Comparison of dose dependence of t50% (time for elimination
of 50% of the dose) after intravenous administration of a drug that is
eliminated by a single Michaelis-Menten process (upper curve) or
one that is eliminated by a single Michaelis-Menten process in parallel
with a first-order process (lower curve). In each case, Km = 1.0
and Vm = 0.2. The rate constant K' for the first-order process is
equaltoO.1. (Data from Ref. 16.)

(7.28)

Equation (7.27), like (7.8), does not permit an explicit solution for
C. Both (7.8) and (7.27) indicate that the time required to reduce
an initial drug concentration by 50% is indeed dependent on the ad­
ministered dose. Examples of this dependency are shown in Fig. 7.6.

Expanding (7.27) and solving for In C gives

V (Co + K )K' + V ( V)_ m m m , m
In C - In Co + K'K In (C + K )K' + V - K + K t

m m m m

2.303 t

K' + V IKm m

which in terms of common logarithms is

V (CO + K )K' + Vm m m
log C = log Co + K'K log (C + K )K' + V

m m m
(7.29)
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2.303 t

K' + V /Km m

At low concentrations (t .e .• Km »C), (7.29) becomes

V (CO + K )K' + V
1 C-l C + __m_ l m m
og - og 0 K 'K og K K' + V

m m m

(7.30)

or

K' + V /K* m mlog C = log Co - 2.303 t (7.31)

where

*
V (CO + K )K' + Vm m m

log Co = log Co + K'K log K K' + V
m m m

(7.32)

(7.33)

As can be seen from (7.31). the slope of the terminal linear portion of
a semilogrithmic plot of plasma concentration versus time at low plasma
concentrations (Le ,; Km » C) will yield an estimate of the first-order
elimination rate constant of a drug, K' + Vm/Km (see Fig. 7.7). The
extrapolated intercept of this terminal linear phase will be log CO'

For certain drugs that exhibit parallel capacity-limited and first­
order elimination, it may be possible to administer sufficiently high
doses intravenously so that initial drug concentrations are substan­
tially larger than Km. Under these conditions and where a one-com­
partment model applies, the initial segment of a semilogarithmic plot
of plasma concentration versus time will be linear (see Fig. 7.7).
The slope of this linear segment will be -K'/2.303 [14]. This can be
demonstrated by assuming C to be much greater than Km in (7.18)
and solving for C. Therefore, estimates of both K' and K' + Vm/Km
can be obtained directly from a semilogarithmic plot of plasma concen­
tration versus time and the ratio Vm/Km can be calculated for the case
where there is one capacity-limited process in parallel with one or
more first-order processes. The following approach can then be used
to obtain initial estimates of Km and Vm for this model. Expansion of
the logarithmic term of (7.32) and rearrangement of this equation
yields

*K'K C ( C K' )m 0 0---v- log C = log 1 + K K' + V
mOm m

Division of the numerator and denominator of this logarithmic term by
Km gives

K'K
m

V
m

*
Co [ COK' ]

log C = log 1 + K (K' + V /K )
o m m m

(7.34)
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Fig. 7.7 4-Hydroxybutyric acid (4-HBA) concentration in plasma
after intravenous administration. The compound appears to be elim­
inated by a Michaelis-Menten process in parallel with a first-order
process. The initial slope gives an estimate of K' and the terminal
slope provides an estimate of the ratio of Vm to K m. Km may be de­
termined from Eq. (7.35). The deviation from theory for a short
time after administration probably reflects drug distribution and the
lack of strict adherence to a one-compartment model. (Data from
Ref. 14.)

A solution for Km based on this equation is

C K' /(K' + V IK )o m m
* K'K IV

(C IC) m mo 0
1

(7.35)
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Since Co and ci) can be obtained directly from a semilogarithmic plasma
concentration-time plot, and K' and Vm/Km can be estimated as de­
scribed above, an estimate of Km is possible employing (7.35). Once
Km is known, Vm can be readily determined.

Although this is an interesting approach for the estimation of K',
Vm- and Km where there are parallel first-order and nonlinear elimina­
tion pathways, caution must be exercised. Initial plasma concentrations
have to be sufficiently high (Le , , C » Km) to yield a semilogarithmic
plasma concentration-time curve which is truly linear. If these con-
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N
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~
.5
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:!:
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1.0

0.0 I I I I I
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lie x 102

Fig. 7.8 Graphical method for estimating K' (designated K1 in the
plot), Vm and Km based on Eqs. (7.36) to (7.39). At high concentra­
tions, a plot of - /::; In C I /::; t versus 1/C will be linear with a slope of
Vm and an intercept equal to K' [see Eq. (7.38)], whereas at low con­
centrations the plot will asymptotically approach a limiting value equal
to K' + (Vm/K m) [see Eq. (7.39)]. (From Ref. 17, e 1973 Plenum
Publishing Corp.)
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centrations are not attained, an overestimate of K' will result. This,
in turn, will produce errors in the estimates of V m and K m.

A different approach can also be used for the estimation of K m
and Vm where nonlinear and linear processes of drug elimination occur
in parallel. At high plasma concentrations (Le., C »Km) , (7.18)
reduces to

- ~~ =K'C + Vm (7.36)

Division of both sides of (7.36) by C and recognition that (-dC Idt) IC
equals -d In C/dt gives

V
_ dIn C = K' + -!!!. (7.37)

dt C

At low plasma concentrations (I ,e., Km » C), (7.18) becomes

dC Vm- <it = K'C + K C
m

and, therefore, the analogous expression to (7.37) is

V
_ d In C = K' + -!!!.

dt Km

(7.38)

(7.39)

A plot of - {j In C I {j t versus 11C will consequently be linear with a
slope of Vm and an intercept of K' at high plasma concentrations [Eq.
(7.37)], but will reach an asymptotic value of K' + Vm/Km at low con­
centrations [Eq. (7.39)] from which Km can be calculated (see
Fig. 7.8).

This method for estimating K', Vm- and Km has limitations which
are similar to those noted for the previous approach. Sufficiently
high plasma concentrations are required to yield a straight line from
the - {j In C I {j t versus 1/C plot to permit accurate estimates of Vm
and K'.

Urine data can also be used to estimate V m and Km. Consider
the following scheme:

k mu
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where X is the amount of drug in the body, XE the amount of drug
eliminated by the linear or first-order processes, M the amount of
metabolite in the body which is formed by a capacity-limited process,
and Mu the amount of this metabolite present in the urine. All of
these amounts are time dependent. The constants K' and k mu are
first-order rate constants, V~ is the maximum rate of metabolite forma­
tion in units of amount per time, and K~ is the Michaelis constant in
units of amount. Assuming that the urinary excretion rate of the
metabolite (flMu/flt) is rate limited by its formation, and therefore
reflects the rate of formation, the following relationship for fI Mu III t

.can be written:

llM V' Xu m m
--::
z t K' + Xm m

(7.40)
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Fig. 7.9 Plot of linearized form of the Michaelis-Menten equation to
describe the formation of salicyl phenolic glucuronide (SPO) after a
single dose of salicylic acid (SA) . According to Eq. (7.40) and the
corresponding form of Eq. (7.12), a plot of SA in the body divided
by the excretion rate of the metabolite (assuming that excretion of
SPO is rate limited by its formation) versus SA in the body should be
linear with slope equal to 1/V'm and an intercept equal to K:n. If the
formation of SPO followed first-order kinetics, the slope of the line
would be equal to zero. (From Ref. 23.)
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(7.42)

where X m is the amount of drug in the body at the midpoint of the
urine collection interval. Division of the numerator and denominator
by the apparent volume of distribution V yields

LIM VI C
u m mM= K + C (7.41)

m m

where Km is as defined previously and equals K~/V, and Cm is the
plasma concentration of drug at the midpoint of the collection interval.
Equation (7.41) can be readily linearized [see Eqs. (7.11) to (7.13)] to
yield estimates of V~ and Km. This approach has been used to eval­
uate the Michaelis-Menten parameters for two metabolites of salicylate,
salicyl phenolic glucuronide, and salicyluric acid [6], and is illustrated
in Fig. 7.9. The major limitation of this method is the assumption that
the urinary excretion rate of the metabolite is rate limited by its forma­
tion. This situation certainly does not hold for all drugs and the as­
sumption must be verified.

CLEARANCE, HALF-LIFE, AND VOLUME OF DISTRIBUTION

As with linear kinetics, the total body clearance CIs of a drug can be
defined for the nonlinear situation as being equal to the rate of drug
elimination dXE/dt divided by the plasma concentration of drug C:

dXE/dt
CIs = C

The rate of elimination for a drug eliminated by only one capacity­
limited process is given by

(7.43)

or

(7.44)

Division of both sides of (7.44) by C yields

(7.45)

Substitution of VmV/(Km + C) for (dXE/dt)/C in (7.42) gives the
following concentration-dependent expression for clearance:
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v V
m

CIs =K + C
m

(7.46)

At low plasma concentrations. where Km » C,

V
CI = ~V

s K
m

(7.47)

whereas at high plasma concentrations. where C » K m,

V
CI =~ V

s C (7.48)

(7.49)

Therefore. clearance is independent of concentration at very low
concentrations. but decreases with increasing concentration; that
is, the higher the plasma concentration of a drug. the slower the
drug will be cleared from the plasma. The influence of nonlinear
clearance on a drug's half-life (t1l2) can be readily illustrated by
recognizing that

t = 0.693V
1/2 CIs

SUbstituting the value of CIs given in (7.46) for CIs in (7.49) and
canceling common terms yields

(7.50)
0.693(K + C)

m
t 1/ 2 = V

m

It is readily apparent from this relationship that the half-life of a drug
is independent of plasma concentration at low concentrations. whereas
at high concentrations the half-life, or t50%. will increase with an in­
crease in the plasma concentration of drug (see Fig. 7.6).

For the case where there are linear pathways of elimination in
parallel with a nonlinear process, the rate of drug elimination is given
by

1 dXE
V dt

V C
= m + K'C

K + Cm
(7.51)

Multiplication of both sides of (7.51) by VIC yields

dXE/dt

C

V V
= K m+ C + K'V

m

(7.52)

Therefore, clearance is given by the relationship
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v V
m (7.53)

(7.54)t 1/ 2 =[V I(K + C)] + K'
m m

Substitution of this value for CIs in (7.49) gives the following rela­
tionship between half-life and plasma concentration:

0.693

At low drug concentrations both clearance and half-life are in­
dependent of concentration. As the concentration increases clearance
decreases; at very high concentrations, clearance attains a limiting
value of K'V. On the other hand, the half-life increases with concen­
tration, ultimately reaching a limiting value of 0.693/K' (see Fig. 7.6).

A method for estimating the apparent volume of distribution of a
drug eliminated only by Michaelis-Menten kinetics has been described
[18]. This method was applied to ethanol in the cat and yielded an
average value of 635 ml/kg, which is equivalent to total body water in
this species.

DRUG CONCENTRATION AT STEADY STATE

The significance of a decrease in clearance with increasing plasma
concentration of drug can be readily appreciated by considering
chronic drug administration. The steady- state concentration Csa
of a drug is given by (see Chap. 3)

C DR
ss = Cl

s
(7.55)

DR is the dose rate and equals infusion rate in the case of intravenous
infusion and F doseh in the case of multiple oral dosing, where F is
the systemic availability of the drug and T is the dosing interval. As
is illustrated in Fig. 7.10 and by Eq. (7.55), when CIs is given by
(7.46) or (7.53), an increase in dose produces more than a propor­
tional increase in steady-state concentration of a drug. The greater
the contribution of the capacity-limited process to the overall elimina­
tion, the more dramatic is the increase in steady-state levels with in­
creasing dose. This can be exemplified by salicylate where a twofold
increase in the dose from O.5 to 1.0 g every 8 h can result in a more
than sixfold increase in steady-state salicylate body levels (Fig. 7.11).
In addition, since half-life increases with concentration [see (7.50)
and (7.54) 1, the time required to reach steady state will also increase
with an increase in dose size. In the 'salicylate example cited above,
the time to reach steady-state increased from 2 to 7 days.
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Fig. 7.10 Relationship between dose-adjusted steady-state concentra­
tions and administered dose for drugs eliminated by first-order
kinetics (A), parallel first-order and Michaelis-Menten kinetics (B),
and Michaelis-Menten kinetics (C). (Data from Ref. 19.)

TIME TO STEADY STATE

The dependence in nonlinear systems of the time to reach steady state
or some fraction thereof on the rate of drug administration can be
demonstrated mathematically. If a drug is administered at a constant
rate kO and is eliminated by a single pathway that is capacity limited.
the following differential equation can be written:
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Fig. 7. 11 Accumulation of salicylic acid in the body as a function of
dose number when either 0.5 (0) or 1. 0 (.) g doses are given every
8 h. (From Ref. 20, reprinted with permission.)

v Cm
K + C

m
(7.56)

Expansion of (7.56) and collection of common terms yields

dC (kOKm/V) + [(kO/V) - Vm]C
-=
dt K + C

m

This equation is of the general form

dC x + yC
dt=~

which can be rearranged to give

z C
x + yC dC +x--'+=-y-C- dC = dt

The integral of (7.59) is [15]

(7.57)

(7.58)

(7.59)
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~ In (x + yC) + Q - .l£ In (x + yC) = t + i
y Y 2

Y

which can be simplified to

C zy - x
- + 2 In (x + yC) = t + i
y Y

At t = 0, C = 0 and

(7.60)

(7.61)

(7.62)i = zy - x In x
2y

Substitution for i in (7.61) and rearrangement yields

t = Q + zy - x In (1 + ~ c) (7.63)
Y 2 x

y

Recognizing that x = kOKmIV. y = (ko/V) - Vm and z = Km [( 7.57)
and (7.58)] ,

C K [(ko/V) - V ] - kOK IV
t + m m m

= (kO/V) - Vm [(KO/V) - Vm] 2

[

(ko/V) - V ]
In 1 + k K IV m C

o m

Simplification gives the following:

(7.64)

C KmVm In (1+ ko-VVm c) (7.65)
[(k IV) - V ] 2 kOKmo m

The steady-state concentration Css of a drug that obeys the model
above is given by

k O kO(K + C )
m ss

Cs s = Cl = VV
s m

(7.66)

where CIs at steady state is given by (7.46). Solving (7.66) for Cs s
yields

(7.67)-C
ss k - VVo m

Substituting -1/Css for (kO -- VVm) IkoKm in (7.65) and setting
C ICss equal to f s s • the fraction of the steady-state concentration, and
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(7.68)
K V

m m

C equal to fssC ss gives the following expression for the time to reach
a given fraction of steady state:

f C
ss ss

The dependence of time to steady state on the rate of administration
is clearly demonstrated. A relationship of the same form as (7.68)
has been obtained from plasma concentration versus time data using
numerical integration [21]. At a low administration rate (kO and
Cs s -+ 0), (7.68) reduces to

1
t = - V /K In (1 - fss) (7.69)

m m

(7.70)

and hence time to steady state is independent of the rate of adminis­
tration, while at a high infusion rate (kO and Css -+ 00)

f C
t = ss ss

kO/V

1
f
ss

and the time to steady state is independent of drug elimination.
For the case where there is one or more first-order processes of

elimination in parallel with a saturable process, the expression for
time to reach a given fraction of steady state becomes relatively com­
plex (see Appendix G). This expression is

t = _1_ (K +~) In -2K'C + b - 1=9 __,--
.cq m 2K' b _ I-q 1

1 a + bC - K'C 2

2K' In a (7.71)

(7.72)

where a =kOKm/V, b = (kO/V) - K'Km - Vm , and -q = b 2 + 4kOKmK'1
V. When the rate of administration (I, e ., k O) is small, (7. 71)
simplifies to (see Appendix G)

-1
t = K' + (V IK ) In (1 - f s s )

m m

(7.73)

This relationship is identical in form to (7.69), illustrating that the time
to achieve a certain fraction of steady state is dependent only on the
rate constant or half-life of elimination under linear conditions. How­
ever, when the rate of administration becomes large, (7.71) reduces
to (see Appendix G)

1
t = - K' In (1 - f s s )
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(7.74)

(7.75)

Therefore. at high administration rates the time to steady state is
dependent on the elimination rate constant for the first-order process.

AREA UNDER THE CURVE AND BIOAVAILABILITY

In theory. the area under the blood or plasma level versus time curve
is proportional to the dose administered for drugs eliminated by first­
order kinetics. However. for drugs that are eliminated by capacity­
limited processes. area is not proportional to the administered dose.
Rather. one finds that the area increases more than proportionally
with an increase in dose. The total area under the drug level versus
time curve (fa C dt) after the intravenous injection of a drug that is
eliminated by a single capacity-limited process can be calculated for a
one-compartment system as follows. Inversion of (7. 1) and rearrange­
ment of the resulting expression gives

K + C
m
Y

m

The expansion of (7.74) followed by integration over the limits C = Co
at t = 0 and C = 0 at t = 00 yields

l oo fO K fO
C dt = - J( Vm dC - Jc yC dC

o Co m Co m

It follows that

which when solved becomes

2

100 K Co Co( Co)
C dt = 2!. C + -- = - K +-

O
V 0 2Y Y m 2m m m

(7.76)

(7.77)

(7.78)

(7.77) reduces toAt sufficiently low doses such that Km » CO/2.

1
00 K K X

m m 0
o Cdt=Y

m
co = VmV

where Co = XO/V and V is the apparent volume of distribution. Under
these conditions the area under the curve is simply proportional to
the dose XO. Inspection of (7. 77) readily indicates for the nonlinear
situation that as the dose is increased. the area shows a stronger de­
pendence on the dose. At sufficiently high dosage levels where
CO/2 »Km• (7.77) reduces to
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(7.79)

which indicates that under these conditions the area is proportional
to the square of the dose and a relatively modest increase in the dose
may produce a dramatic increase in the total area under the drug
level in the plasma versus time curve.

The area under the curve after administration of a fixed dose of
a drug showing capacity-limited elimination may also vary with the
rate of absorption. The more rapidly a given dose is absorbed, the
more closely will the area approach that calculated by (7.77). In
other words, the area calculated from (7.77) for a given dose is a
maximum since it assumes that absorption is instantaneous. If absorp­
tion is sufficiently slow, the area will approach the minimum given by
(7.78). Figure 7.12 illustrates the effect of dose and absorption rate
on the area under the plasma concentration-time curve.

A nonlinear change in area with dose becomes important when
attempting to assess the bioavailability of a drug, since this param­
eter is generally determined by comparing the area under the curve
resulting from the administration of some test dosage form to the area
under the curve from the administration of a standard. Bioavailability
can be estimated for drugs eliminated by capacity-limited processes
in the following manner [17]. Integration of the term -dC Idt yields

1"" 1"" co- dC dt = -dC = -C I = C
o dt 0 0 0

(7.80)

where Co is plasma concentration at time zero following intravenous
drug administration. For a one-compartment system, Co equals the
intravenous dose Xo divided by the apparent volume of distribution
V. Therefore,

r _dC dt =C =Xo (7.81)Jo dt 0 V

From (7.81) it follows that a plot of fo(-dC Idt) dt versus Co or
XO/V will be linear and pass through the origin regardless of whether
or not the model is linear. The value of Co or XO/V can be determined
by numerical differentiation of intravenous plasma concentration versus
time data, and measurement of the area under the curve resulting from
a plot of --dC/dt versus time.

After oral administration the rate of drug elimination from the body
dXE/dt, is given by

1 dXE VmC
V <it =K'C + K + C (7.82)

m
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Fig. 7. 12 Effect of absorption rate and dose on the area under the
drug concentration in serum versus time curve after single doses
of phenytoin. The curves reflect doses of 1. 8, 4.6, and 9.2 mg Ikg .
The arrow marks the approximate absorption rate constant in a typical
patient with the dosage form studied. (From Ref. 22, © 1976 Plenum
PUblishing Corp.)

where XE is the amount eliminated to time t . If the amount ultimately
eliminated is equal to the amount absorbed [Le., (XE)oo = FXO' where
F is the fraction of the orally administered dose absorbed], then

1100

dXE i oo
( V C) FXO- --dt = R'C + m dt =--

V 0 dt 0 Rm + C V

since J; (dXE/dt) dt equals (XE)oo' The bioavailability or fraction
absorbed of an orally administered dose can be determined by dividing
Eq. (7.83) by Eq. (7.81). This yields

FXO/V [(l/V) J; (dXE/dt)]oral

XO/V =U
o
oo

- (dC/dt)dt].
i .v ,

If equal doses are administered intravenously and orally. and it is
assumed that volume of distribution remains constant,
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[(ltV) fO"'(dXE/dt)dt] 1
F = ora

[fo"" - (dC/dt)dt].
i ,v ,

(7.85)

Therefore, the absolute bioavailability of an oral dosage form can be
determined by measuring the area under a -dC /dt versus time plot
using intravenous data, and generating values of (dXE Idt) IV from
oral plasma concentration versus time data using (7.82). The latter
determination requires K', Vrn- and Km, which can be obtained from
the intravenous data by methods discussed previously in this chapter.
Once the (dXE/dt) IV data are calculated, the area under a plot of
(dXE/dt) IV versus time provides an estimate of the numerator of
(7.85). This method has been applied to the determination of phenytoin
bioavailability. It was demonstrated that the use of the nonlinear
approach yielded a bioavailability estimate of 0.98 as compared to
0.87 when linear kinetics were assumed [22].

COMPOSITION OF URINARY EXCRETION PRODUCTS

k mu

For a drug eliminated from the body by multiple pathways, one of which
is nonlinear, the composition of urinary excretion products will vary
with dose. We illustrate this with the following scheme:

yXu

X------------.
K ,V M-----..Mu

m m

(7.86)

It is assumed that there are two pathways of elimination for the parent
drug, a capacity-limited pathway for the formation of metabolite M and
a first-order pathway for the urinary excretion of unchanged drug.
Xu and Mu are the cumulative amounts of unchanged drug and metabo­
lite in the urine at time t , and K' and kmu are the first-order rate
constants for urinary excretion of unchanged drug and metabolite,
respectively. X is the amount of unchanged drug in the body at
time t , and K m and Vm are the Michaelis-Menten parameters for the
capacity-limited formation of M. The rate of appearance of unchanged
drug in the urine is given by the differential equation

dX
~=K'X

dt
or

dX
~ =KIVe

dt
(7.87)
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(7.88)

since the amount of drug in the body X equals the product of the
volume of distribution and the plasma concentration. Integration of
Eq. (7.87) from time zero to infinity yields

X
OO

= K'V (00 C dt
u Jo

where X~ is the total amount of unchanged drug eliminated in the urine
following the administration of a given dose. and I; C dt is the area
under the resulting plasma concentration versus time curve.

Equation (7. 18) is the differential equation for plasma concentra­
tion for the model above. Factoring out C and expanding (7.18)
gives

dC K'K m + Vm + K'C
<it = --C K + C

m

which when inverted and rearranged becomes

K + C
m

(7.89)

(7.90)

By expanding (7.90) and taking the integral over the limits C = Co at
t = 0 and C = 0 at t = 00, the following is obtained:

(00 C dt = (0 Km
Jo Jc K'K + V + K'Co m m

dC - (0 K'K + VC + K'C dCJco m m

(7.91)

The two terms to be integrated are of the general forms dx/(a + bx)
and x dx/(a + bx), respectively. the integrals of which are (lIb) In
(a + bx) and (x/b) - (a/b 2) In (a + bx) [15]. Therefore, (7.91)
when integrated becomes

K
C dt = - -!!! In (KIK + V + KIC) /0 _ ~ 10

K' m m C K' Co 0

K'K + V
+ m 2 m In (K'K + V + K'C) IcO

(K') m m 0

Collecting common terms and simplifying provides

1
00 V

C dt = - 2..1 0 + _m_ In (K'K + V + K'C) 10
o K' Co (K,)2 m m Co

(7.92)

(7.93)
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Solving (7.93) gives the following expression for the area under the
curve:

1'" C V (K'C )
C dt = K? - ~ In K'K ~ V + 1

o (K') m m

By substituting this value of foC dt for fO' C dt in
ing expression for X~ is obtained:

VV (K'C O )
X: = Coy - K' mIn K'K

m
+ Vm + 1

(7.94)

( 7•88), the follow-

(7.95)

m

(7.98)

At very low plasma concentrations the natural log term becomes
approximately equal to K'CO/(K'Km + Vm) since for very small numbers
In (1 + x) becomes approximately equal to x [15]. Therefore, at low
concentrations, (7.95) becomes

VV K'C
O'" m

Xu =Coy - K" K'K + V =Coy
m

(7.96)

Recognizing that Coy equals the dose Xo and dividing the numerator
and denominator by Km yields

'" K'
Xu =Xo K' + V /K (7.97)

m m

This illustrates that at low doses the amount of unchanged drug in
the urine is directly proportional to the administered dose. As the
dose is increased and the capacity of the enzyme system becomes
limited, the amount of unchanged drug appearing in the urine will
increase more than proportionally to the increase in dose as illustrated
by (7.95).

According to the scheme above, at time infinity

X'" + M'" = Xou u

where M~ is the total amount of metabolite in the urine at time infinity.
Solving (7.98) for M~ and SUbstituting the value of X~ in (7.95) yields

M: = Xo - Coy + VK~m In(K':'C~ V + 1) = :~m
m m

(
K'C )

In K'K
m

+0 Vm + 1 (7.99)
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Fig. 7. 13 Effect of dose on metabolic fate of salicylic acid in humans.
The curves are based on urinary excretion data from four healthy
subjects. SU is salicyluric acid, SPG is salicyl phenolic glucuronide,
SA is salicylic acid, SAG is salicyl acyl glucuronide (dashed line) ,
and GA is gentisic acid. (Data from Ref. 23.)

This equation indicates that M~ will increase less than proportionally
with an increase in dose. At low doses (7.99) reduces to

VV K'C O COVVm
Moo = _m ,,-_ = _--"_--,,,,-_

u K' K'K + V K'K + V
m m m m

(7.100)

SUbstituting Xo for COY and dividing the numerator and denominator
by Km gives

V /K
Moo = X m m

u 0 K' + V /Km m
(7.101)

As is evident from (7. 101), at low doses M;:i is directly proportional
to dose.

The influence of dose on excretion patterns is readily demonstrated
with salicylate. As can be seen in Fig. 7.13, the fraction of the dose
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eliminated as salicyluric acid, SU. a metabolite formed by a capacity­
limited process, decreases with dose. For those excretion products
formed or eliminated by first -order kinetics, the fraction of the dose
eliminated as such increases with dose (see SA, SAG, and GA). The
enzyme system responsible for the formation of the phenolic glucuronide
is capacity limited but has a higher capacity than the system responsible
for the formation of salicyluric acid. Consequently, the fraction elim­
inated as this metabolite initially increases with dose, and then de­
creases with dose as this enzyme system becomes saturated.

The composition of excretion products will also be dependent on
the rate of drug absorption when the drug is subject to capacity­
limited metabolism. The more rapid the absorption, the higher the
drug level in the body and the lower the fraction of the dose converted
to the metabolite formed by capacity-limited metabolism. This phe­
nomenon has been demonstrated in humans with p-aminobenzoic acid,
which is eliminated by capacity-limited acetylation as well as excreted
unchanged [24]. When 55 umolea/kg was given at once, 56% of the
dose was acetylated, whereas when 10 consecutive 5.5 umoles /kg doses
were administered at 30 min intervals, 91% of the dose was acetylated.
After administration of 110 II moles Ikg to fasted subjects , which should
result in rapid absorption, 51% of the dose was acetylated. However,
when the same dose was administered to subjects after a high-fat
meal, which is known to reduce gastric emptying and the absorption
rate of many drugs, 90% of the dose was acetylated.

OTHER NONLINEAR ELIMINATION PROCESSES

Dose-dependent elimination kinetics may be due to effects other than a
limited capacity of biotransformation or excretion processes. If a drug
is partly reabsorbed from renal tubules by a capacity-limited process,
the elimination (urinary excretion) of large doses proceeds more rapid­
ly than the elimination of smaller doses. Capacity-limited reabsorption
has been demonstrated for several compounds, including riboflavin [25] ,
bethanidine [26], cephapirin [27], and cephaloridine [27]. There is
evidence to suggest that some drug metabolites can inhibit their own
metabolism [28,29]. This process of product inhibition can also cause
dose-dependent effects, with large doses being relatively more slowly
eliminated than small doses [30]. However, whereas the rate of decline
of drug concentrations in the postdistributive phase at any given con­
centration of drug in the body will be independent of dose in the case
of simple Michaelis-Menten kinetics [see (7.1)], this rate will tend to
decrease with increasing dose in the case of product inhibition. More­
over, drug elimination may appear to be first order but with half-lives
increasing with increasing dose provided that the initial drug levels
(Le., the intravenous doses) are lower than Km and elimination of the
inhibiting metabolite is relatively slow (see Fig. 7.14). These obser-
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Fig. 7.14 Effect of competitive inhibition by a metabolite (light lines)
on the time course of parent drug (heavy lines) after intravenous ad­
ministration of different doses of the drug. Although the semilog­
arithmic plots of amount of drug in the body are apparently linear.
the half-life increases with dose. (From Ref. 31. e 1973 Plenum
Publishing Corp.)

vations can be explained by the following relationship. which describes
the rate of change in plasma concentrations for a drug with one path­
way of elimination that is subject to competitive product inhibition
[13] :

dC VmC
- Cit = K (1 + C /K ) + C

m m p

where Cm is the concentration of inhibiting metabolite and Kp is the
equilibrium constant for the enzyme-metabolite (product) complex.
Dose dependence with similar characteristics has been observed in
humans with dicumarol [32] (see Fig. 7.15) and in dogs with
phenytoin [33].
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Fig. 7. 15 Dicumaro1 concentration in plasma after intravenous ad­
ministration of different doses. (Data from Ref. 32.)

ENZYME INDUCTION

Another type of nonlinear kinetics is seen when a drug induces its
own metabolism. It has been suggested that enzyme induction is a
result of new protein synthesis and not a change in substrate affinity
[34]. Based on this premise, a model to describe the change in en­
zyme concentration following induction has been described by Berlin
and Schimke [35]. Prior to induction the rate of change of enzyme
levels, dE /dt, is a function of the rate of synthesis and rate of
degradation of the enzyme; that is,

dE=S-kE
dt

(7.103)
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(7.104)

(7.105)

(7.106)

(7.108)

(7.107)

(7.109)

where 5 is the rate of enzyme synthesis and is assumed to be zero
order and k is the first-order rate constant for enzyme degradation.
Assuming that a steady state for the enzyme exists prior to induction
(Le , , dE/dt = 0), it follows that

E=~
k

Following induction, a new steady- state enzyme level, E', will be de­
termined by the new ratio S'lk'; that is,

5'E' =­k'
The rate at which E approaches E' can be given by the differential
equation

dE = S' - k'E
dt

Rearrangement of (7.106) yields

dE
5' - k'E = dt

which when integrated becomes

- .lIn (5' -- k'E ) = t + i
k' t

where Et is the concentration of enzyme at some time t after the start
of administration of the drug. At t = 0, Et = EO, the enzyme level
prior to induction, and therefore

i = - k~ In (5' - kIE O)

SUbstitution for i in (7.108) according to (7.109) and rearrangement
gives

S' - k'E
I t = -k't
n S' - k'E o

which in exponential terms becomes

S' k'Et -k't
S' - k'E = eo

Solving (7.111) for Et yields

S' S' - k'E O -k't
Et = k' - k' e

(7.110)

(7.111)

(7.112)
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(7.114)

Substitution of S Ik for EO according to (7.104) and further simplifi­
cation produces the following expression for Et:

S' ( S' s) -k't
Et = k' - k' - it e (7.113)

Therefore, the enzyme level during induction is dependent on the pre­
induction and induced steady-state enzyme concentrations, S /k and
S' /k'. respectively. and the first-order rate constant for enzyme
degradation. k",

An expression similar to (7. 113) can be obtained to describe the
change in maximum velocity Vmt during induction. Vm is equal to

k2E [see Appendix G, Eq. (G. 8) J prior to induction. while at steady
state after induction V:n =k2E', where k2 is the rate constant for the
formation of metabolite. Substitution of S/k for E and S'/k' for E'
according to (7.104) and (7.105), respectively. yields the expressions

S Vm
k=~

and

(7.115)

(7.116)

Further, substitution for S Ik and S' /k', according to (7.114) and
(7.115). as well as substitution of Vmt /k2 for Et in (7.113) and cancel­
ation of common terms yields

V = V' - (V' - V )e-k't
m

t
m m m

The time course of the change in the systemic clearance CISt of a drug
following self-induction can be given by a similar expression,

CI = CI' -- (CI' - CI )e-k't (7.117)
St s s s

where CIs is the preinduction clearance and CI~ is the clearance at
steady-state postinduction. Equation (7.117) can be obtained from
(7.116) by recognizing that clearance equals the sum of the clearance
of the inducible CIs- and noninducible CIs pathways, and that

1 n
V

CI = Vk = V -!!! (7. 118)
si i Km

where ki is the first-order rate constant for elimination by the inducible
pathway.
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Of interest is the plasma concentration-time course of a drug
that is subject to self-induction. In a one-compartment system where
a drug is administered at a constant rate DR and is eliminated by
first -order processes,

DR -(Cls/V)t
C=-[1-e ]

CI
s

(7.119)

where CIs and V are as defined previously. Once self-induction be­
gins, CIs will become time dependent and will be given by (7. 117) .
Therefore, substitution of Clst' according to (7.117), for CIs in

(7.119) will yield an expression that describes the plasma concen­
tration as a function of time for a drug that is subject to self-induc­
tion. If there is a time delay between drug administration and the
beginning of the self-induction, t in (7.117) should be replaced by
t - to, where to is the time at which induction began. The kinetic
properties of carbamazepine appear to behave in a nonlinear manner
as a result of self-induction (see Fig. 7.16) [36].

4
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Fig. 7.16 Carbamazepine concentration in serum during continuous
constant rate intravenous infusion of the drug for 7 days to a monkey.
The data suggest pronounced autoinduction of carbamazepine metabo­
lism. The continuous line corresponds to the foIlowing equation:
C = 2.04 + 2.06 exp [--0.693/5.8(t - to)]' where to = 16 h. (Data
from Ref. 36.)
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Enzyme induction has been cited as an example of time-dependent
rather than dose-dependent or concentration-dependent pharmaco­
kinetics. The reason for this is that the changes in clearance one
observes are not obviously related to drug concentration or dose
but may be described as a function of time [see Eq. (7. 117)]. Levy
[37], in a comprehensive discussion of time-dependent pharmacokinetics,
has noted the following: "A major distinguishing feature between
dose and time dependency is that the latter involves an actual physio­
logical or biochemical change in the organ(s) of the body associated
with the drug disposition parameters in question. For example, in
time dependence of the auto- or heteroinduction type, the increase
in drug intrinsic clearance results from an increase in amount of en­
zyme (in protein synthesis). However, in a typical Michaelis-Menten
dose-dependency, drug clearance changes with concentration and such
a system should not be considered time-dependent simply because the
values of pharmacokinetic parameters also change with time." Other
examples of time-dependent pharmacokinetics are circadian rhythms in
drug absorption, distribution, and elimination.

NONLINEAR BINDING

In discussions of nonlinear pharmacokinetics, capacity-limited elimina­
tion generally receives greatest attention because it is the most common
and best understood. Although it is recognized that drugs are re­
versibly bound to proteins in the vascular space and to proteins and
other materials in the "tissues," it is generally assumed that the frac­
tion bound is essentially constant and independent of the drug concen­
tration at the site of binding. However, it is obvious that there is a
finite amount of each tissue which can bind a give.n drug and that the
amount of drug which can be taken up per gram of given tissue will
be related to the number of available binding sites and to some type of
affinity constant. Accordingly, at sufficiently high concentrations of
drug, one may find that the fraction bound decreases with increasing
concentration. This will result in an alteration in the kinetics of a drug.

The following model will serve as a basis for considering the effect
of nonlinear vascular protein and tissue binding on drug plasma con­
centration versus time profiles, and on the resultant pharmacokinetic
parameters derived from such profiles:

Vascular Space Nonvascular Space

k-
Plasma-bound Tissue-bound

drug drug

1~ _---:.-~'> 1~
Free drug .... Free drug
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The parameter k is the first-order elimination rate constant. In the
vascular compartment. drug will interact with protein to form a drug­
protein complex according to the scheme

where Cf and Cb are the molar concentrations of free and bound drug
in the vascular space, respectively. Cb is equal to the concentration
of occupied protein binding sites. Pf is the molar concentration of
free protein binding sites. and the parameters k2 and k1 are rate
constants. From the scheme it follows that

Based on the steady-state assumption (I.e., dCf/dt = 0),

k 2 C/f
k

1
= C

b

(7.120)

(7.121)

(7.122)

The total concentration of vascular protein binding sites, nP. where
n is the number of binding sites per protein molecule and P is the molar
concentration of protein, is given by

nP = Pf + C
b

Solving (7.122) for Pf' SUbstituting this value for Pf in (7.121), and
recognizing that k2/k1 is equal to the dissociation constant for the
drug-protein complex, Kd' yields

which when solved for Cb becomes

C~P
C = =-::...-..::-

b K
d

+ C
f

(7.123)

(7.124)

The total concentration of drug in the vascular space, Ct, is equal to
the sum of the concentrations of free and bound drug:

c, = C f + C
b

Substitution for Cb according to (7.124) gives

(7.125)
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(7.126)

(7.127)

An expression for the total drug concentration in the tissues, c'f,
which includes everything but the vascular space, can be obtained in
an analogous manner. The resulting equation is given by

cT= C + c~
t f KT + C

d f

where Ka is the dissociation constant for the drug tissue complex and
A is a constant similar to nP. When the binding to vascular protein
or tissue is linear, total drug concentrations in the vascular space
and tissue are given by

(7.128)

and

(7.129)

respectively, where fB is the fraction free in the vascular space and
fT is the fraction free in the tissues.

Expansion followed by differentiation of (7.126) and (7.127)
and collection of common terms yields

(7.130)

and

(7.131)

These equations can be further simplified to give

(7.132)
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(7.133)
dC; (dCf/dt)(C; + 2Ct<~ + AK~ + (K~)21

Cit = (KT C)2
d + f

When there is linear binding, differentiation of (7.128) and (7.129)
results in the following two equations:

and

ec, dCf/dt

(it=r;- (7.134)

(7.135)

respectively. When a dose D of a drug is given, the following mass
balance can be written:

(7.136)

(7.137)

where XB and XT are the amounts of drug in the vascular space and
tissue, respectively, and XE is the amount of drug eliminated from the
body by all routes of elimination. Differentiation of (7.136) yields

dX
B

dX
T

dX
E

d't+F+d't = 0

The rate of elimination, dXE/dt, is given by

dXE
d't = kVBC t

(7.138)

(7.139)

where VB is intravascular volume. Recognizing that XB = VBCt and
XT = VTCt, where VT is the tissue volume, (7.137) may be written
as

T
dC

t
dC

t
dX

E
VB = Cit + VT (it + d't= 0

where dXE/dt is given by (7.138). To evaluate the influence of linear
or nonlinear vascular protein and/or tissue binding on drug disposi­
tion, the appropriate expressions for dXE/dt, dCt/dt, and dCr /dt
as given by (7.138) and (7.132) to (7.135) can be substituted into
(7.139). Numerical analysis of the resulting equation will provide
insight into the influence of nonlinear binding to vascular protein
and/or tissue protein on drug disposition [381.
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The effect of nonlinear binding can be illustrated by the following
relationships:

and

f
V=VB+~VfT T

(5.49)

(8.27)CI = Q Q + f ci:
B I

where VB' VT' fB' and fT are defined above. and V is the apparent
volume of distribution. CI and ci] are clearance and intrinsic clear­
ance of free drug from the blood. respectively. and Q is blood flow to
the eliminating organ. The influence of nonlinear binding on the shape
of a log plasma concentration versus time can be illustrated by recog­
nizing that half-life (t1/2) equals O.693V/CI [Eq. (2.217)], and that if
half-life increases or decreases with time. a concave or convex curve
will result. For drugs with a low intrinsic clearance (i.e .• Q » fBCli).
where nonlinear binding occurs in the vascular space. a decrease in
volume of distribution and clearance should be observed as a function
of time after an intravenous bolus dose because of the decrease in free
fraction as drug concentration in the vascular space decreases. Under
the conditions noted above, the log plasma concentration versus time
curve may appear curved even when a one-compartment model with
first-order elimination is extant. The effect of binding on clearance
will tend to make the curves concave. whereas the effect of binding on
volume of distribution will tend to make the curves convex (see Fig.
7. 17). As linear tissue binding increases, there is a general tendency
to straighten the concave log plasma concentration-time curves result­
ing from nonlinear protein binding in the vascular space. Nonlinear
tissue binding with linear protein binding in the vascular space will
result in no net change in clearance with time, but will result in an
increase in volume of distribution with time. This becomes readily
apparent by considering Eqs. (5.49) and (8.27). The consequence
will be a concave log plasma concentration versus time curve even
though a single compartment is extant.

Nonlinear protein binding in the vascular space or nonlinear tissue
binding will have the same effect on volume of distribution of drugs with
a high clearance as they do on drugs with a low clearance. However.
changes in protein binding in the vascular space should have little
if any effect on the clearance of highly cleared drugs (i .e .• fBCII »
Q). and the total area under a plasma concentration versus time curve
should be a simple linear function of dose or amount absorbed. This
lack of dependence of clearance on binding can be readily appreciated
by considering (8.27). Therefore. the shape of log plasma concentra-

AUROBINDO EX. 1018, 323



312 Pharmacokinetics

300

200

•
•

•

•••50
• • • • • •

~70

!
>

40 • • • • • • 100

500

200
100
50

20
10
5

2
1

.. 0
.... 0....

....0....~
""",

O.. " ....~

o
o

.""."..
• ">...~................

"..".i
3-

0.1
O.

0.02

0.05 0.5

0.04 0.4
•

~0.03 • 0.3-
0.02 • 0.2• •• • •0.01 • • • • • • • • • • 0.1

I I I I I I

240 480 720 240 480 720
TIME (min)

Fig. 7.17 Effect of concentration-dependent plasma protein binding
(assuming no tissue binding) on the time course of free (0) and total
(.) drug concentration in the plasma. Also shown are the instan­
taneous apparent volume of distribution V and the free fraction in
the plasma f . In the panel on the left. the effect of plasma protein
binding on cYearance predominates and the total drug concentration
in plasma curve is concave. whereas in the panel on the right. the
effect of binding on volume of distribution predominates and the curve
describing total drug concentration in plasma is convex. (From Ref.
38, © 1979 Plenum Publising Corp.)
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tion versus time curves will appear convex since the effect of protein
binding in the vascular space on volume of distribution will be the
primary factor influencing this shape. Such curves may be interpreted
incorrectly as indicating nonlinear or Michaelis-Menten drug elimina­
tion.

SOME PROBLEMS IN QUANTIFYING NONLINEAR
PHARMACOKINETICS

Because of the possible effects of nonlinear binding on log plasma
concentration versus time profiles, it is simplistic always to interpret
log plasma concentration times curves on the basis of multicompart­
ment pharmacokinetic models or to simply assume nonlinear elimination.
Interpretation is complicated by the fact that tissue binding is dif­
ficult to characterize since tissue represents such an heterogeneous
phase. Whether or not a multiexponential plasma concentration versus
time curve is a consequence of the distribution characteristics of a
drug or a result of nonlinear binding in the vascular or extravascular
space can be evaluated by giving an intravenous bolus dose and an
intravenous infusion of a drug such that drug concentrations immedi­
ately after the bolus dose and upon termination of the infusion are
equal. If the drug does in fact confer multiexponential characteristics
on the body as a result of its distribution properties, the distribution
phase postinfusion will be less pronounced than that after the intra­
venous bolus dose. However, if the multiexponential characteristics
are a result of nonlinear binding, the distributive phases postinfusion
and postbolus will be equivalent (see Fig. 7.18) [39J.

Although the equations developed in previous sections of this
chapter have been based on a one-compartment system, the principles
discussed apply regardless of the compartmental characteristics of the
drug. However, in the case of capacity-limited elimination, errors do
occur in the estimation of Km and Vm if a one-compartment system is
assumed when in fact a multicompartment system is more appropriate.
This can be readily appreciated by considering that in a multicompart­
ment system, the ratio VmIKm equals k 10' the elimination rate constant,
not. the smallest exponent (typically 13). If data are incorrectly assumed
to obey a one-compartment system, the estimate of Vm/K m will approx­
imate 13, the terminal disposition rate constant, rather than approximat­
ing klO'

As would be expected, VmIKm estimated assuming a one-compart­
ment system will always be less than the value obtained when the data
are analyzed according to the appropriate multicompartment system.
In addition, the value of Vm obtained by one-compartment analysis will
always be less than the Vm of a multicompartment system, while Km may
be overestimated or underestimated when multicompartment data are
analyzed assuming a one-compartment system [40]. Therefore, Vm
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and Km values obtained assuming an incorrect model must be in­
terpreted and used with caution.

Another problem is encountered when a drug is eliminated by more
than one capacity-limited pathway. In linear models, first-order
elimination rate constants for parallel pathways can be summed as a
means of simplifying the model. It would be advantageous if data de­
scribed by parallel Michaelis-Menten equations could be approximated
over several orders of magnitude by a single Michaelis-Menten equation
with constants Vm and Km insensitive to large changes in dose. Ap­
proximation of data by a single Michaelis-Menten equation appears
reasonable when values of Km for parallel pathways are within a factor
of 3 of each other [41]. The constants obtained, however, are gen­
erally not characteristic of anyone enzyme system. When values of
Km are separated by a factor of 5 or more, data cannot be well repre­
sented over several orders of magnitude by a single Michaelis-Menten
equation , and therefore, simplification of such a system is inappropri­
ate. In this case Vm and Km increase markedly with dose. To de­
termine whether a system can be adequately described by a single
Michaelis-Menten equation requires that the parameters Vm and Km
be relatively constant over the extremes of the dose range of interest.

A final point to consider is that some drugs exert dose-dependent
effects on blood circulation, urine pH, and on other physiologic proc­
esses that may affect drug disposition. For example, it is well known
that the elimination of certain drugs is influenced largely by the rate
of hepatic blood flow. Some of these drugs may actually reduce
hepatic blood flow either directly or indirectly via an effect on cardiac
index. In such cases one may observe a decrease in the half-life
and/or clearance of the drug with increasing dose.
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8
Clearance Concepts

Pharmacokinetic theory of drug elimination has traditionally been based
on rate concepts, and the apparent efficiency of elimination processes
has usually been described in terms of first-order rate constants or
half-lives, This approach has certainly been appropriate and useful
for many applications but leads to rather serious problems when one
wishes to apply pharmacokinetics in an anatomical/physiological con­
text and to examine drug elimination in a mechanistic sense, An
alternative approach that has been found to be much more valuable
for such applications is the use of clearance parameters to characterize
drug disposition,

ORGAN CLEARANCE

The best way to unde.rstand clearance is to consider the situation in
a single, well-perfused organ that is capable of drug elimination (see
Fig. 8.1), Blood flow through the organ is denoted as Q (ml/min).
The drug concentration in the arterial blood entering the organ is CA,
whereas that in the venous blood leaving the organ is Cv. If the organ
metabolizes or excretes some of the drug, Cv < CA'

The rate at which drug enters the organ is given by the product
of CA and Q, whereas the rate at which drug leaves the organ is
given by the product of Cv and Q. Mass-balance considerations dictate
that the rate of drug elimination by the organ is equal to the difference
between the rate in and the rate out:

Rate of elimination =CAQ - CVQ = Q(CA - CV)

If one compares the rate of drug elimination with the rate at which
drug enters the organ, one obtains a dimensionless quantity that is
termed the extraction ratio, ER:

319
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CA Cv

Clearing Organ

~~ Q "

Elimination

,It

Q

Fig. B.1 Flow model for drug clearance by an organ. The term Q
denotes blood flow rate through the organ and the terms CA and Cv
denote drug concentrations in arterial and venous blood, respectively.
If the organ is a site of drug elimination, Cv < CA'

(8.2)

The extraction ratio quantifies the efficiency of the organ with respect
to drug elimination under fixed conditions of flow. If the organ is
incapable of eliminating the drug, CA = Cv and the extraction ratio is
zero. On the other hand, if the organ is so efficient in metabolizing
or excreting the drug that Cv ~ 0 the extraction ratio approaches
unity.

We can also think of the extraction ratio as an index of how ef­
ficiently the organ clears the blood flowing through it of drug. For
example, an extraction ratio of 0.8 tells us that 80% of the blood flow­
ing through the organ will be completely cleared of drug. Following
this line of reasoning. we can define the organ clearance of a drug
as the product of extraction ratio and flow:

(8.3)

It follows that the ratio of clearance to flow is equal to the extraction
ratio.

We can also infer from Eq. (8.3) that clearance is the ratio of
elimination rate to the drug concentration in blood entering the organ.
This relationship makes it relatively easy to determine the renal
clearance of any drug that is excreted, to some measurable extent.
unmetabolized in the urine. The excretion rate of a drug can be
estimated by determining the drug concentration in a volume of
urine collected for relatively short. known periods of time after ad­
ministration. By dividing the excretion rate by the drug concentra-
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tion in plasma or blood at the midpoint of the urine collection period,
one can estimate renal clearance. The same method can also be used
under certain conditions to estimate biliary clearance.

TOTAL CLEARANCE

The total clearance of drug from the body almost always involves more
than one organ. By definition, total or systemic clearance is the sum
of all individual organ clearances that contribute to the overall elimina­
tion of a drug. However, the only organ clearance that can be routine­
ly determined independently in humans is renal clearance because,
for all practical purposes, this is the only organ for which we can
easily determine an elimination rate. Therefore, a different approach
is required to estimate the systemic or total clearance of most drugs.

We can state, by analogy to Eq. (8.3), that total or systemic
clearance CIs is equal to the ratio of overall elimination rate dX / dt
to drug concentration in blood or plasma C:

Cl = dX/dt
s C

Integrating the right -hand side of Eq. (8.4) with respect to time
from t = 0 to t = 00, we obtain

(8.4)

(8.6)

f; (dX/dt) dt
Cl = (8.5)

s f; C dt

The term fa (dX/dt) dt is equal to the total amount of drug ultimately
eliminated, or the administered dose D in the case of intravenous ad­
ministration. The term fa C dt is equivalent to the total area under
the drug concentration in blood or plasma versus time curve, AUC.
Therefore,

D
CIs = AUC

We can also show that the systemic clearance of a drug is equal to the
infusion rate kO divided by the steady-state concentration Css of drug
in blood or plasma after prolonged constant rate intravenous infusion:

k O
Cl =­

s C
ss

(8.7)

and that CIs is equal to the dosing rate divided by the average drug
concentration in blood or plasma during a dosing interval at steady
state after repet!!ive intravenous administration of fixed doses at
fixed intervals, Css :
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CI ::: dosing rate
s
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(8.8)

(8.9)

Dosing rate is usually expressed in terms of mg/h (I.e., doser r ) ,
where r is the fixed dosing interval. Equation (8.8) may be used
for oral repetitive administration when complete systemic availability
can be assumed. Hence for any drug we can determine renal clearance
and systemic clearance.

HEPATIC CLEARANCE

The difference between systemic clearance and renal clearance is often
termed nonrenal clearance. For certain drugs we can assume that
nonrenal clearance is equal to hepatic clearance (f .e .• the clearance of
drug from the blood by the liver). For drugs that are virtually com­
pletely metabolized (i .e .• renal clearance is negligible), we can some­
times assume that systemic clearance is equal to hepatic clearance.
Under these conditions. it follows from Eq. (8.3) that hepatic
clearance (ClH) is given by

Cl
H

::: Q
H

• ER

where QH is hepatic blood flow (about 1.5 liters/min in humans) and
ER is the hepatic extraction ratio (which can range from 0 to 1).

The maximum value of CIH is hepatic blood flow. If the nonrenal
clearance of a drug exceeds hepatic blood flow, it is evident that
nonhepatic metabolism or other nonhepatic elimination processes (other
than renal excretion) are taking place and that nonrenal clearance is
not equal to hepatic clearance.

A cursory examination of Eq , (8. 9) suggests that hepatic clearance
is directly proportional to hepatic blood flow. This is not the case,
however, because the extraction ratio is also dependent on hepatic
blood flow. In principle. the larger the blood flow. the smaller is the
extraction ratio [1]. The relationship between hepatic blood flow and
extraction ratio has been derived using compartmental models [2]
and using a perfusion model [3]. The latter approach is presented
in this chapter.

Consider the model in Fig. 8.2 and assume that a bolus of drug
is introduced into the reservoir. yielding an initial concentration Ct.
The principles of mass balance require the following relationships to
exist:

and

C )
o

(8.10)
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Fig. 8.2 Schematic representation of an isolated perfused organ system
consisting of a reservoir and an eliminating organ. The terms are
defined as follows: Q is perfusate (blood) flow rate, Ci is drug con­
centration in the reservoir and in the arterial blood entering the organ.
Co is drug concentration in emergent venous blood, VE and VR are
the volumes of the eliminating organ and reservoir, respectively,
and km is the first-order rate constant for drug elimination. CE is
the drug concentration in the eliminating organ and, in this case, is
equivalent to KpCo' where Kp is a partition coefficient.

dC
o

KpVE dt = Q(C i - Co) - kmKpVECo

where Ci is the drug concentration in the reservoir and entering the
eliminating organ; Co is the drug concentration leaving the eliminating
organ and entering the reservoir; VE and VR are the volumes of the
eliminating organ and reservoir. respectively; Q is blood flow; km is
the intrinsic first-order rate constant for drug elimination; and Kp
is the apparent partition coefficient of drug between the eliminating
organ and the emergent blood (I.e .• Kp = CE/Co • where CE is the
drug concentration in the eliminating organ). Equation (8.10) tells
us that the net rate of loss of drug from the reservoir is equal to
the difference between the rate into and the rate out of the organ and
Eq , (8.11) tells us that the rate of change of the amount (VECE or
KpVECo) of drug in the eliminating organ is equal to the difference
between the rate in QCi and the sum of the rate out and the rate of
elimination (Le., the sum of QCo and kmVECE or kmKpVECo)'
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Solving Eqs. (8.10) and (8.11) for Ci and Co in the usual manner,
we obtain [3]

(Q/KpVE) +k - CL t (Q/KpVE) +km - 13 -l3 t
C. =C? me-ex + C

1
? CL _ 13 e

1 1 l3-ex

( 8.12)

and

(8.13)

where

(8.14)

and

Since clearance is equal to the ratio of dose to area [see Eq.
(8.6)] , it follows that

VRC?
Cl = 1

f; Ci dt

( 8.15)

(8.16)

(8.17)

Integrating Eq. (8.12) from t =0 to t =co, and substituting this ex­
pression into Eq. (8.16), we obtain [3]

kmKpVE
Cl = Q Q + k K V

m P E

It follows from Eq. (8. 9) that

kmKpVE
ER = Q + kmKpV

E
(8.18)

Equation (8.18) shows that the extraction ratio of a drug is a function
of both the intrinsic ability of the organ to eliminate the drug, kmKp VE'
and the blood flow to the organ.

Equation (8.17) may also be derived by assuming that drug is
infused into the reservoir at a constant rate ko until steady state is
achieved, rather than administered as a single bolus. The net rate
of loss of drug from the reservoir is now given by
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dC i-v - = Q(C - C ) - kR dt i 0 0

325

( 8.19)

Equation (8.11) still describes the rate of change of the amount of
drug in the eliminating organ. At steady state Ci and Co are con­
stant (Le , , Ci,ss and Co,ss' respectively). Therefore, dCi,ss/dt
and dCo,ss/dt are equal to zero. It follows from Eqs. (8.19) and
(8.11) that

ko =Q(C
1.,ss

- C ) =k KpVECo,ss m o,ss

and that

(8.20)

(8.21)
k K V C + QC

C = m P Eo,ss 0, ss
i,ss Q

According to Eq. (8.3), clearance may be obtained by measure­
ments across the eliminating organ:

Q(C. - C )
CI = 1,SS o,ss

C.
1,SS

(8.22)

(8.23)

(8.24)

Substituting for the numerator according to Eq. (8.20) and for Ci, ss
according to Eq. (8.21), and rearranging terms, we obtain

Qk K V C
CI = m P E o,ss

k K V C + QC
m P E o,ss o,ss

which simplifies to Eq. (8.17).
The term kmKpVE in Eq. (8.17) or (8.18) is equivalent to the

clearance capacity or intrinsic clearance CII of the organ for the
specific drug. Thus we may write that

CII
CI =Q =Q • ER

Q + CII

If CII reflects solely hepatic metabolism of the drug by a single
enzyme system, consideration of classical enzyme kinetics indicates
that CI is equivalent to the ratio of Vm (the maximum rate of metabo­
lism) to Km (the Michaelis constant) [4]. Experimental verification of
this hypothesis has been provided for several drugs [4, 5]. Examples
are shown in Fig. 8.3.

Equation (8.24) tells us that the systemic clearance of a drug
that is eliminated solely by metabolism in the liver is a function of
both hepatic blood flow Q and the intrinsic ability of the liver to
metabolize the drug, CII' For many drugs, including antipyrine,
most barbiturates, anticonvulsants , hypoglycemic agents, and
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Fig. 8.3 Correlation between extraction ratios observed in an isolated
perfused rat liver and those predicted from liver homogenate esti­
mates of Vm and Km. The drugs studied were alprenolol (AI). anti­
pyrine (An), carbamazepine (C), hexobarbital (H), lidocaine (L),
phenytoin (Ph), and propranolol (Pr). [From Ref. 4, e 1971 American
Society for Pharmacology and Experimental Therapeutics. The Williams
and Wilkins Company (agent).]

coumarin anticoagulants, we find that the intrinsic clearance in
humans is considerably smaller than hepatic blood flow. If Q » ClI•
it follows that Eq. (8.24) reduces to

(8.25)CI ~ CII

Equation (8.25) was developed without taking plasma protein bind­
ing into consideration and is, therefore, an oversimplification for
most drugs. It does. however, apply directly to antipyrine, because
this drug is virtually unbound in body water and is essentially com­
pletely metabolized by the liver. In humans, the systemic clearance
of antipyrine appears to be a direct measure of the liver's ability
to metabolize the drug. Certain diseases, administration of drugs or
chemicals that inhibit or induce enzymes in the liver, or other per-
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(8.27)

turbations that affect the quality or quantity of hepatic microsomal
enzymes or cellular access to these enzymes will proportionately affect
the systemic clearance of antipyrine or similar drugs. For this reason
it has been proposed that antipyrine clearance be used as an index
of liver function [6].

In recent years it has come to light that some drugs, including
many analgesics, tricyclic antidepressants, and beta blockers, have
intrinsic clearance values in humans that significantly exceed hepatic
blood flow. The systemic clearance of such drugs shows a strong
dependence on hepatic blood flow. The reason for this is easily
demonstrated by considering a second limiting case for Eq. (8.24).
If CII »Q, then

CI ~ Q (8.26)

Although this exact case is rare, Eq. (8.26) does approximate the sit­
uation for drugs such as propranolol or lidocaine. The systemic clear­
ance of drugs that show hepatic blood flow-dependent elimination is
affected by various factors that affect blood flow to the liver, includ­
ing heart disease and liver disease or the administration of certain
drugs that affect the cardiovascular system. On the other hand, the
systemic clearance of such drugs is rather independent of factors
that affect the drug-metabolizing enzymes in the liver, such as the
administration of enzyme-inducing drugs or chemicals.

HEPATIC CLEARANCE AND DRUG BINDING IN BLOOD

As we have noted, the preceding discussion applies strictly to drugs
that are unbound in the vascular space. However, it is well recog­
nized that most drugs are bound to blood constituents, particularly to
plasma proteins. Moreover, it has been generally believed that this
binding retards hepatic metabolism or renal excretion since the avail­
ability of drug to the metabolic or excretory sites is limited to the
fraction of drug in the circulating blood which is free or unbound.
Although this restriction is true for many drugs, there are excep­
tions. It is apparent that the elimination of certain drugs is not
limited to the free drug delivered to the liver or kidneys because their
extraction ratio is greater than their free fraction [1]. In fact, there
are examples, such as the elimination of propranolol in humans (see
Fig. 8.4), where clearance is essentially independent of binding in the
blood [7].

It is evident that Eq , (8.24) must be modified to take blood binding
into account. The following relationship has been proposed [1] and
experimentally verified [8]:

fBCII
CI = Q Q + f CI'B I
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FREE FRACTION

Fig. 8.4 Lack of correlation between the systemic clearance of
propranolol and fraction of drug in the blood that is unbound. Be­
cause of propranolol's high hepatic extraction ratio, its clearance is
largely dependent on hepatic blood flow and relatively independent
of drug binding in blood or intrinsic hepatic clearance. (Data from
Ref. 7.)

where fB is the fraction free in blood [Le., the ratio of free drug con­
centration in blood to total (bound and unbound) drug concentration
in blood] and CII is the intrinsic clearance of free (unbound) drug.
The relationship between clearance and drug binding for warfarin,
phenytoin, and propranolol is shown in Fig. 8.5. Since most investiga­
tors rceasure the fraction free in plasma fp rather than in blood, it is
important to recognize that

fpC p
fB = C

B

where Cp is the total drug concentration in plasma and CB is the
total drug concentration in blood. The drug concentration in blood
may be calculated from the drug concentration in plasma by means of
the following relationship:
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Fig. 8.5 Relationship between extraction ratio and fraction of drug in
the blood that is unbound, for a drug (under physiological condi-
tions) with a high extraction ratio (propranolol), one that has a low
extraction ratio (warfarin), and a third that has an intermediate ex­
traction ratio (phenytoin), in the isolated perfused rat liver. Through­
out most of the range of free fraction values the extraction ratio of
propranolol is virtually independent of drug binding, whereas that of
warfarin shows an almost linear dependence on drug binding. (From
Ref. 8.)

(8.29)

where CRBC is the drug concentration in the red blood cells and HCT
is the hematocrit.

For drugs that show a low extraction ratio (i. e., fBcli << Q),
Eq. (8.27) reduces to

CI == f enB I (8.30)

These drugs are said to be restricted in their hepatic metabolism.
Systemic clearance is a function of both binding in the blood and the
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(8.31)

intrinsic ability of the liver to eliminate the drug. Perturbations that
affect plasma protein binding will have a direct effect on the clearance
of such drugs (see warfarin and phenytoin in Fig. 8.5).

On the other hand. for drugs that show a high extraction ratio
(Le., fBCli »Q), Eq. (8.27) reduces to Eq. (8.26) (I.e •• the
systemic clearance approximates hepatic blood flow). The clearance
of these so-called nonrestricted drugs is largely independent of
changes in plasma protein binding (see propranolol in Fig. 8.5).

DRUG BINDING AND FREE DRUG CONCENTRATION

Since the steady-state concentration of a drug in plasma or blood is
a function of clearance, it follows that a change in binding can marked­
1y affect total drug levels at steady state of a restricted (low ex­
traction ratio) drug, whereas the total levels at steady state of a non­
restricted (high extraction ratio) drug would be relatively unaffected.
However, it is also important to consider the effect of binding on the
steady-state concentration of free (unbound) drug since this is usually
considered to be the pharmacologically active component. Total drug
levels in blood after continuous constant rate intravenous infusion to
steady state are given by

kO
Cs s = CI

and free drug levels are given by

fBka
C =--

ss .free CI ,
For a restricted drug. CI ~fBCII' Therefore.

k
O

Cs s = fBCli

and

k O
C =-

ss,free Cli

On the other hand. for a totally nonrestricted drug. CI ~ Q • It
follows that

kO
Cs s = Q

and that

(8.32)

(8.33)

(8.34)

(8.35)
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(8.36)

Thus. for a poorly extracted drug. an increase in fB can markedly
affect systemic clearance and total drug levels but has little effect on
free drug concentrations [see Eq. (8.34)]. Conversely. for a very
well extracted drug. an increase in fB will have little effect on sys­
temic clearance and total drug levels but can substantially affect
free drug concentrations [see Eq. (8.36)].

HALF-LIFE, INTRINSIC CLEARANCE, AND BINDING

The half-life of a drug is related to its apparent volume of distribution
and its systemic clearance:

V
t 1 / 2 = 0.693 C1

s
(8.37)

(8.38)

(8.39)

In any case. we may substitute Eq. (5.48) for V. and in the case of a
drug eliminated solely by hepatic metabolism. we may substitute Eq.
( 8.27) for CIs. to obtain

VB + VT (fB / fT)

where VB and fB are the volume and free fraction of drug in the
vascular space. VT and fT are the volume and free fraction of drug in
the extravascular space. and Q is the hepatic blood flow.

It follows that for a drug with a high extraction ratio

VB + VT(fB/fT)
t

1/ 2
= Q (0.693)

whereas for a drug with a low extraction ratio

VB + VT (fB1fT)
t 1/ 2 = f Cl' (0.693)

B I

or

(8.40)

(8.41)t 1/ 2 = (f V~l' + fV~I') 0.693
BIT I

Inspection of Eq . (8.39) indicates that the half-life of an unre­
stricted drug is a function of blood and tissue binding as well as
hepatic blood flow. A change in intrinsic clearance is expected to
have little effect on the half-life of a high-extraction- ratio drug. In
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support of this hypothesis, the half-life of alprenolol in healthy volun­
teers was found to be 2.3 h before and 1.8 h during treatment with
pentobarbital, an enzyme-inducing agent that increased the intrinsic
clearance of the drug by more than fourfold [9). On the other hand,
a decrease in the plasma protein binding (Le., an increase in fB ) of a
drug with a high extraction ratio will increase the half-life of the
drug, whereas an increase in binding results in a decrease in half-
life [1]. Thus the response of such drugs to changes in binding
appears to run counter to the conventional thinking that plasma pro­
tein binding protects a drug from elimination.

A similar evaluation of Eq , (8.41), which applies to a drug with a
low extraction ratio, leads to more conventional conclusions. An in­
crease in intrinsic clearance should produce a proportional decrease
in half-life. An increase in plasma protein binding is predicted to
produce a decrease in half-life, but the extent of the change in half­
life depends on the relative magnitude of VB/fBClI compared to
VT/fTCli. If the first term predominates. an increase in binding
should yield a proportional decrease in half-life. If the second term
predominates, an increase in blood binding would have little effect
on half-life. The latter situation appears to be the more common.

FIRST-PASS EFFECT

A particularly important characteristic of drugs that show a high
hepatic extraction ratio, typified by propranolol or lidocaine, is that
on oral administration presystemic or first-pass metabolism is sig­
nificant and the amount of drug reaching the systemic circulation may
be considerably less than the dose administered. Since the entire blood
supply draining the upper gastrointestinal tract passes through the
liver before reaching the general circulation, the fraction F of an oral
dose that reaches the systemic circulation, assuming complete ab­
sorption, is given by

F = 1 - ER (8.42)

where ER is the extraction ratio. Thus the area under the drug con­
centration in blood or plasma versus time curve after an oral dose of
propranolol, which has a hepatic extraction ratio of 0.64 in humans
[7], is only about one-third of that found on intravenous administra­
tion of the same dose.

The area under the drug concentration in blood or plasma versus
time curve after oral administration of a drug that is completely ab­
sorbed and eliminated only by hepatic metabolism is, in fact, related
to intrinsic hepatic clearance. Recognizing that F is simply the ratio
of area under the curve after oral adminstration to that after intra­
venous administration and that ER is a function of intrinsic clearance
and blood flow [see Eq . (8. 24)], we may rewrite Eq , (8. 24) as
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(8.43)
AUC I CIIora
AUC. :::; 1 - Q + CI

I1.V.

Rearranging terms and multiplying both sides of the equation by the
administered dose D, we obtain

D(Q + CII)

(Q)AUC.
LV.

:::; D :::; CI
AUC I oralora

(8.44)

(8.45)

The ratio of dose to AUCoral has been termed the apparent oral
clearance. Recognizing that D/AUC!. v . is the systemic clearance CI
and SUbstituting for CI according to Eq. (8.24), we obtain

Q(CII)(Q + CII)
CI :::; ----,::-:":::-----::-::--:-''-

oral Q(Q + CII)

On canceling terms we find that

Clor al = CII :::; faCli (8.46)

Thus, under the stated condition, we can obtain an estimate of the
intrinsic hepatic clearance of total drug CII by measuring the area
under the curve after oral administration [2]. Furthermore, by de­
termining the fraction free in blood, we can estimate the intrinsic
clearance of free drug Cli.

Equation (8.46) applies in principle to all drugs that are solely
eliminated by the liver and that can be described by linear pharma­
cokinetics, irrespective of hepatic extraction ratio. Hence, for a
drug with a low extraction ratio. the apparent clearance after oral
administration (assuming complete absorption) is identical to its
systemic clearance [see Eq. (8.30)]. This is not true for a drug with
a high hepatic extraction ratio. The systemic clearance of such a
drug is independent of ci] [see Eq , (8.26)], whereas its oral clearance
and the AUC resulting from oral administration are a direct function
of ci]. Thus various perturbations that affect liver enzyme activity
may have little effect on the pharmacokinetics of a high clearance
drug after intravenous administration but substantial effect after oral
administration. For example, treatment with an enzyme inducer may
have little effect on the systemic clearance of drugs such as propranolol,
lidocaine, or imipramine but may substantially increase the first-pass
effect to which the drug is SUbjected after oral administration, result­
ing in a far smaller systemic availability. In support of this hypothesis,
Alvan et al . [9] report a ratio of AUC values on intravenous administra­
tion of alprenolol before and during treatment with an enzyme-inducing
agent of 1. 2, compared to a ratio of 4.6 on oral administration under
the same conditions.
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(8.47)

The equations presented above indicate that the area under the
drug concentration in blood versus time curve after oral administra­
tion (AUCoral) under conditions of constant hepatic blood flow is a
function of administered dose (assuming complete absorption) and
intrinsic clearance but is independent of blood flow. This is some­
what puzzling since we know that for a drug with a high extraction
ratio, systemic clearance increases, extraction ratio decreases, and
therefore AUCi. v . decreases and F increases with increasing blood
flow [see Eqs. (8.18), (8.24), and (8.42)]. However, AUCoral (as­
suming complete absorption) is given by

FD
AUCoral :: Cl

where F is the fraction of the dose escaping first-pass metabolism, and
we find that an increase or decrease in hepatic blood flow from one
administration to another produces exactly the same increase or de­
crease in both F and CI so that there is no net effect on AUCoraI.

On the other hand, fluctuations in hepatic blood flow during a
dosing interval may affect AUCoral. For example, a higher than
average hepatic blood flow during the gastrointestinal absorption of
a drug with a high extraction ratio, followed by a return to normal
when absorption is essentially complete but most of the drug is still
in the body, will cause an increase in AUCor al (see Fig. 8.6). The
reason for this is that the transient increase in hepatic blood flow
during absorption will have a much greater effect on the first-pass
metabolism than on overall systemic clearance (i.e., F is increased
more than is CI). This phenomenon may explain why the administra­
tion of propranolol or metoprolol with a meal results in a larger AUCoral
than is found when the drug is given to fasted subjects [10].

Determination of the areas under the curves after intravenous and
oral administration of a high extraction ratio drug permits one to
estimate hepatic blood flow Q. The ratio of areas after administration
of equal doses gives the systemic availability F. Assuming that ab­
sorption is complete and elimination occurs solely by hepatic metabo­
lism, the extraction ratio is given by

ER :: 1 - F

Rearranging Eq. (8.24), we obtain

Q :: fl
ER

(8.48)

(8.49)

where systemic clearance CI is estimated from the ratio of intravenous
dose to AUCi. v ..

The extent to which a drug is subject to first-pass metabolism may
be estimated from area-under-the-curve data obtained after oral or
intravenous administration of a high extraction ratio drug [11]. Since
the systemic availability of a drug is given by (8.42) and since systemic
clearance is the product of Q and ER, we can show that
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Fig. 8.6 Drug concentration in plasma after oral administration of a
drug with a high hepatic extraction ratio under fasting and nonfast­
ing conditions. The lower curve (labeled fasting) was simulated by
maintaining hepatic blood flow constant at 1. 5 liters/min throughout.
The upper curve (labeled fed) was simulated assuming that, for the
first 2 h after drug administration, hepatic blood flow was elevated
to a value of 2.5 liters/min, then reduced to a value of 1.5 liters/min
for the remainder of the observation period. (From Ref. 10.)

Q • ER Cl D
F = 1 - ER =1 - Q =1 - Q = 1 - Q • AVC.

i .v ,
(8.50)

Thus the systemic availability ofa drug subject to first-pass metabolism
may be estimated from Eq. (8.50) by determining AVCi. v , and sub­
stituting an appropriate average value for Q (e. g., 1. 5 liters /min in
humans) . Equation (8.50) tells us that drugs with low systemic
clearances relative to hepatic blood flow will be subject to a negligible
first-pass effect and will have a systemic availability after oral admin­
istration that approaches unity provided that gastrointestinal absorp­
tion is complete and chemical or enzymatic conversions in the gut are
negligible. On the other hand, as systemic clearance approaches
hepatic blood flow, systemic availability approaches zero.

If we multiply Eq. (8.50) by AVCoral' we obtain
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D ·Ave
F • Ave 1 = Ave - oral

ora oral Q. AVe,
1. v ,

or

F • AVe = AVC _ FD
oral oral Q

Rearranging terms to solve for F. we obtain

F - Q = --=Q"----
- Q + (D /AVe 1) Q + ClIora

Pharmacokinetics

(8.51)

(8.52)

(8.53)

(8.54)

(8.55)

Thus the systemic availability of a drug subject to first-pass metabolism
may also be estimated from Eq , (8.53) by determining AVCoral and sub­
stituting an appropriate average value for hepatic blood flow. Equa­
tion (8.53) tells that the higher the intrinsic hepatic clearance, the
lower is the systemic availability of a drug.

Equations (8.50) and (8.53) apply exactly only to drugs with
linear pharmacokinetic characteristics, which are absorbed completely
after oral administration and are eliminated only by hepatic metabolism.
Equation (8.50) may be applied to drugs that are partially excreted
unchanged if CI is replaced by hepatic clearance CIH• Hepatic clear­
ance may be estimated from

C1
H

= Cl - Cl
r

where Cl is systemic or total clearance and Clr is renal clearance.
Equation (8.54) assumes that all nonrenal clearance may be assigned
to the liver.

The actual systemic availability of a drug may be less than or
greater than the value predicted by Eq. (8.50). Less-than-predicted
values will be observed if the drug is incompletely absorbed because
of dosage form or permeability factors or if the drug is subject to chem­
ical or metabolic breakdown in the gut. Greater-than-predicted values
may be found if hepatic metabolism is capacity limited or if nonhepatic
systemic metabolism is significant.

GUT WALL CLEARANCE

The systemic availability F of drugs subject to both first-pass hepatic
and intestinal mucosa metabolism has also been considered [12, 13J.
Vnder certain conditions (see the model in Fig. 8.7), it can be shown
that F is given by

QHVQpV
F=

(QHV + CIHI)(QPV + Clm)

where F = (AVe)oral/(AVe)Lv.' QHV is total hepatic blood flow,
(I,e .• the sum of hepatic arterial flow QHA and portal venous flow
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Fig. 8.7 Flow model describing the perfusion of the gastrointestinal
tract and liver and showing the course of drug given orally and in­
travenously. After oral administration the drug is potentially subject
to first-pass effects in the gut wall and in the liver. Blood flow
terms are defined as follows: QHV is total hepatic blood flow, QHA
is hepatic artery blood flow, and Qpv is portal vein blood flow.

Qpv, which is equal to the flow in the hepatic vein), ClHI is intrinsic
hepatic clearance, and Clm is intrinsic intestinal mucosal clearance.
The ratio of QPV to QHV is about 0.8 in the rat, 0.75 in the dog, and
0.7 in humans.

In the absence of gut wall metabolism, Eq , (8.55) reduces to
Eq. (8.53), whch can be rearranged to give Eq. (8.50), where
Q = QHV. In the absence of significant first-pass hepatic metabolism
(Le., C1HI « QHV), Eq. (8.55) reduces to
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which can be rearranged to give

F = 1 -,---.:::.D~-
AVC. • Q

pV1. v .

Pharmacokinetics

(8.56)

(8.57)

(8.58)

When a drug is subject to both first -pess hepatic metabolism and
gut wall metabolism, it has been shown that the actual systemic avail­
ability is always intermediate between the value predicted by Eq.
(8.57) (underestimate) and that predicted by Eq. (8.50) (overestimate)
[12] .

The Pang-Gillette model [13] for first-pass metabolism is more
complex than that proposed by Colburn and Gibaldi [12] in that it in­
corporates biliary excretion of drug and metabolite as well as entero­
hepatic cycling of parent drug, and considers both oral and intra­
peritoneal administration of the drug.

LUNG CLEARANCE

It is well known that the liver is not the only site of drug metabolism.
Several extrahepatic tissues, including the intestinal mucosa, kidney.
and lung, contain drug-metabolizing enzymes. Because of the lung's
unique anatomical position in the circulatory system (see Fig. 8.8),
drug metabolism by this organ presents some interesting implications
for the evaluation of first-pass effects and systemic availability.

In the absence of drug metabolism by the lung. the systemic
availability of a drug is given by the well-known equation

AVC
F = oral
oral AVC,

1. v ,

where Foral is the fraction of the administered dose reaching the
systemic circulation. and AVCoral and AVC!. v , represent the total
areas under the drug concentration in blood versus time curves after
oral and intravenous administration. respectively, assuming venous
blood sampling. A value of Foral of less than 1 may be the result of
one or more of the following factors: (1) physical-chemical properties
of the drug and/or dosage form; (2) gut and/or gut wall metabolism
of the drug, and (3) hepatic first-pass metabolism of the drug. Vnder
these conditions Bq . (8.58) is assumed to provide an absolute estimate
of the availability of the orally administered drug to the target organ(s)
since a compound given intravenously may be regarded as 100%
available.
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Fig. 8.8 Schematic representation of the anatomical positions of the
potential sites of drug elimination (Le., the gastrointestinal tract,
the liver, and the lung) and of several routes of administration, in­
cluding oral (p.o.), hepatic portal vein (h.p.v.), intravenous (Lvv) ,
and intra-arterial (La.}.
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(8.59)

Strictly speaking, this is not correct when drug clearance by
the lung is significant. Under these conditions a more appropriate
expression for absolute availability is

AUC
F = oral

oral AUCL a.

where AUCLa. is the total area under the curve after intra-arterial
administration, assuming arterial blood sampling. The AUC in ar­
terial blood will be larger after intra-arterial administration of a drug
than after intravenous administration of the same dose, if lung clear­
ance is significant.

As shown in Fig. 8. 8, there are three potential sites for metabolism
across which an orally administered drug must pass before reaching
the systemic circulation: the gastrointestinal mucosa, the liver,
and the lung. Since these organs are arranged in series, it can be
seen, if one assumes complete absorption, that Foral is equal to the
product of the fractions of dose escaping first-pass metabolism by
the gastrointestinal mucosa fa, liver fH, and lung fL:

(8.60)

Similarly. the absolute systemic availability of a drug given by injection
into the hepatic portal vein Fh.p.v., or by intraperitoneal injection,
may be represented as

F = f f
h.p .v. HL

whereas that of a drug given intravenously is simply

F. = f
i .v , L

It follows that

AUC
f = oral
a AUCh.p.v.

_ AUChpv
fH - AUC.

1. v ,

and

(8.61)

(8.62)

(8.63)

(8.64)

(8.65)
AUC.

f = l.v.
L AUC.

i ,a ,

where the subscripts on the right-hand side of each equation refer
to route of administration and the AUC terms relate to drug concen­
trations in arterial blood.
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Table 8.1 Effect of Route of Administration on the Area Under the
Drug Concentration in Blood Versus Time Curve. AUC. After a Single
1. 5 mg /kg Dose of Phenol.

Route

Intra-arterial (La.)

Intravenous (i. v .)
Hepatic portal vein (h. P •v . )
Oral (p .0.)

AUC

6.13
2.53
2.22
0.18

Relative Bioavailability (%)

100
41
36

3

Notes: The values represent the means of five to seven rats. The
difference between p ,o , and h. p , v , administration reflects a first-pass
effect in the gut; the difference between i ,v , and I,a. adminstration
reflects a first-pass effect in the lung.
Source: From Ref. 14.

Cassidy and Houston [14] have used the equations outlined above
to evaluate the relative contributions of intestinal mucosa. liver. and
lung in the elimination of phenol in the rat. The AUC values (carotid
artery blood) resulting from a single 1.5 mg /kg dose of phenol. using
different routes of administration. are shown in Table 8.1. The results
indicate that phenol undergoes a very large first-pass effect in the
rat when given orally. Only 3% of the dose appears as parent drug
in the systemic circulation. Application of Eqs. (8.63). to (8.65) to
the data suggest that gut and/or gut wall metabolism is the major
cause of the low systemic availability (fO = 0.08). but pronounced lung
metabolism is also evident (fL = 0.38). The role of hepatic enzymes
appears small (fH =0.94).

RENAL CLEARANCE

The theoretical concepts presented above concerning hepatic clearance
and the relationship between drug binding in blood and hepatic clear­
ance are well defined and largely experimentally verified. Correspond­
ing theory and experimental data concerning renal clearance are much
more limited. Because the net renal excretion of a drug is determined
by filtration. active secretion. and reabsorption. the model for renal
clearance is more complicated than that described for hepatic clearance.
Renal clearance Clr can be described by the following equation [15]:

CI = (CI f + CI )(1 - FR) (8.66)
r r rs

wher Clrf is renal filtration clearance. Clr s is renal secretion clearance.
and FR is the fraction of drug filtered and secreted that is reabsorbed.
The rate of filtration depends on the volume of fluid that is filtered in
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the glomerulus and the unbound concentration of drug in the blood
since plasma proteins and drug bound to these proteins are not fil­
tered. The volume filtered is usually estimated from creatinine clear­
ance Clcr' The renal filtration clearance may therefore be expressed
as

Cl f = fBClr cr
(8.67)

(8.68)

(8.70)

(8.69)

(8.71)

(8.72)

where fB is the free fraction of drug in the blood.
Drug secretion in the kidney depends on the affinity of drug to

active transport carrier proteins relative to plasma proteins. the rate
of transfer of drug across the tubular membrane. and the rate of
delivery of the drug to the secretory site. A relationship similar to
Eq. (8.27) that incorporates these factors is the following.

QKfBCl!(K)
CI = ---:-,~,..:-­

rs QK + fBCl1(K)

where QK is blood flow to the kidney and Cll(K) is the intrinsic renal
tubular secretion clearance with respect to unbound drug. Combining
Eqs. (8.67) and (8.68) and making the appropriate substitutions in
Eq. (8.66). we find that renal clearance is given by

(
QKCl!(K»)

Cl = fB CI + Q + f Cl' (l - FR)
r cr K B I(K)

If QK » fBCII(K)' Eq. (8.69) reduces to

Clr = fB(Clcr + Cl1(K»(1 - FR)

Under these conditions a plot of renal clearance versus fB should be
linear and intersect the origin [16].

If tubular reabsorption is prevented (which may be possible with
certain acids or bases by changing urine pH). FR =0 and Eq.
(8.70) may be rearranged to yield

CI
r

Cl!(K) = r; - Clcr

On the other hand. if tubular secretion is blocked (which may be pos­
sible for certain acid drugs by administering probenecid). CII(K) = 0
and Eq , (8.70) may be rearranged to yield [16]

CI
FR = 1 r_

fBCIcr

With FR determined by means of Eq. (8.72). CI!(K) can be calculated
by rearranging Eq. (8.70) [16]:
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Fig. 8. 9 Relationship between renal clearance and free fraction of
sulfisoxazole in serum in 13 rats (.) and in six of these rats retested
1 week later (0). The regression line and correlation coefficient (r)
are based on data from the first experiment; r = 0.79. According to
Eq. (8.75), the slope of the regression line is related to the product
of creatinine clearance and the fraction of drug evading tubular
reabsorption and the intercept value is related to the product of renal
blood flow and the fraction of drug evading reabsorption. (From
Ref. 17, reprinted with permission.)

(8.73)

Thus under certain experimental conditions we may be able to estimate
FR and intrinsic secretion clearance for some drugs.

Considering the other limiting case for Eq. (8.69) [i. e. ,
fBCli(K) »QK]' we find that this expression reduces to

Clr = fB(Clcr +~ )(1 - FR) (8.74)
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or

CI = fBCI (1 - FR) + QK(l - FR)r cr

Pharmacokinetics

(8.75)

In this case a plot of renal clearance versus fB should be linear and
have a positive intercept. Such a relationship has been observed
with respect to the renal clearance of sulfisoxazole in rats (see Fig.
8.9) .

Dividing the slope of a plot of Clr versus fB by its intercept
yields

Cl
Slope cr

Intercept = Q
K

(8.76)

(8.77)

(8.78)

By substituting experimental values for Clcr in this equation, we can
calculate QK' the blood flow or effective blood flow to the kidney [16J.

CLEARANCE CONCEPTS APPLIED TO METABOLITES

There is increasing interest in the contribution of drug metabolites to
drug efficacy or adverse effects and we frequently wish to know the
relative concentrations of metabolite and parent drug on chronic
dosing. At steady state, the rate of formation of a metabolite must
equal its rate of elimination. We may express this relationship for a
one-compartment model as follows:

kVC =kVC
f p p, ss m m m.ss

where kf is the first-order formation rate constant, k m is the metabolite
elimination rate constant, and Vp and Cp,ss and Vm and Cm,ss denote
the apparent volumes of distribution and steady-state concentrations
of parent drug and metabolite, respectively. Recognizing that kf is
equal to fmK, where fm is the fraction of parent drug converted to
this metabolite and K is the overall elimination rate constant of the
drug, and that the product of a rate constant and a volume is clear­
ance, we find that on rearranging Eq. (8.77),

C f CI
m,ss=~

C Clp,ss m

where Clp and Clm represent the total systemic clearances of parent
drug and metabolite, respectively.

Equation (8.78) suggests that administration of the metabolite is
required to calculate this ratio. However, Lane and Levy [18J have
shown that this ratio, as well as the actual value of Cm, ss - can be
estimated from data obtained after a single dose of the parent drug
without the need for metabolite administration.
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The clearance of parent drug after intravenous administration is
given by

(8.79)
D

CI = (AU~ )
P P P

Kaplan et al , [19] have shown that fm is equal to the ratio of AUC for
the metabolite after administration of a dose Dp of the parent drug to
that after administration of an equimolar dose D m of the metabolite.
That is,

(8.80)
D

m
(AUC )

mm

(AUC ) (AUC )
f = m p ---,---, = m p CI
m D D m

p p

where (AUCa)b refers to the total area under the concentration of a
in blood versus time curve after a single intravenous dose of b j the
subscripts m and p refer to metabolite and parent drug, respectively.
The ratio of dose of metabolite to (AUCm)m is metabolite clearance Clm.

SUbstituting for Clp and fm in Eq. (8.78) according to Eqs. (8.79)
and (8.80), respectively, and canceling common terms yields

(8.81)
C (AUC )

m,ss = m p
C (AUC )

p,ss P p

Equation (8.81) shows that the ratio of steady-state concentrations of
metabolite and parent drug can be estimated by determining drug and
metabolite concentrations in blood after a single intravenous dose of
parent drug. Equation (8.81) also applies to the oral administration of
any drug, irrespective of extraction ratio, if absorption is complete.
It does not apply to intravenous administration of drugs .with medium
to high hepatic extraction ratios [20].

Clearance concepts have also been useful in understanding the
effects of changes in plasma protein binding on the metabolic fate of
a drug [21]. Consider a drug that is excreted in the urine and
metabolized in the liver to a single product, which is excreted in the
urine as such. The fraction metabolized fm after intravenous ad­
ministration is given by

(8.82)

where CIH is hepatic clearance, CIs is total or systemic clearance, and
Clr is renal clearance. If the drug has a low hepatic extraction ratio
and is excreted solely by glomerular filtration, then according to
Eqs. (8.30), (8.66), and (8.67), we may rewrite Eq , (8.82) as
follows:
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or
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(8.83)

(8.84)
CI1(H)

f = --~:..:.:..!_----

m cI1(H) + ClcrO - FR)

where fB is the fraction unbound in blood. CII(H) the intrinsic hepatic
clearance of unbound drug. FR the fraction of drug filtered that is
reabsorbed, and Clcr is creatinine clearance. Under these conditions
the fraction metabolized is independent of plasma protein binding.
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Fig. 8. 10 Relationship between the fraction of a 20 mgIkg intravenous
dose of sulfisoxazole excreted in the urine as metabolites and the free
fraction of sulfisoxazole in serum in 13 rats. There is a distinct
trend toward an increasing metabolite fraction with increases in free
fraction as predicted by Eq. (8.86); the correlation coefficient is
0.68. (From Ref. 21, reprinted with permission.)
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f =--------=.---=~~--__=~~---
m

On the other hand, if the drug has a low extraction ratio but is
excreted by filtration as well as tubular secretion, then according to
Eqs. (8.30) and (8.69), we must express Eq. (8.82) as follows:

fBCli(H)

(8.85)

or

(8.86)
QKCl!(K)

CII'(H) + CI (1 - FR) + Q + f Cl' (1 - FR)
cr K B I(K)

f = -------..:...:....-'--:--::-:-:--------
m

(8.87)

where QK denotes renal blood flow and CliCK) denotes intrinsic secre­
tory. clearance with respect to unbound drug. In the case where
fBCI!(K) »QK' Eq. (8.86) reduces to [21]

Cli(H)
f =~-----,,:__.,.--~~---:_::__.,_:__--

m Cli(H) + Clcr(l - FR) + (QK/fB)(l - FR)

Equations (8.86) and (8.87) indicate that under these conditions, the
fraction metabolized increases as the binding of drug in blood de­
creases. This relationship has been observed with sulfisoxazole in
the rat (see Fig. 8.10).

PHYSICAL MODELS OF ORGAN CLEARANCE

All of the equations and relationship developed thus far in this chapter
are based on the assumption that the eliminating organ is a single
(homogeneous) well-stirred compartment and that distribution occurs
so rapidly that drug in the emergent venous blood is in equilibrium
with that throughout the liver, so that, assuming passive diffusion,
the concentrations of unbound drug in venous blood and in the clear­
ing organ are equal. An alternative to the "well-stirred" model [3] is
the "parallel tube" model [22- 24], which envisions that the eliminating
organ is composed of a number of identical and parallel tubes with
enzymes distributed uniformly along the tubes. The parallel tube model
probably provides a realistic description of the liver, at least from an
anatomic point of view. Contrary to the assumptions of the well­
stirred model, the parallel tube model suggests that the concentration
of unbound drug in emergent venous blood will be less than the average
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Fig. 8.11 Concentration gradient of a drug across an eliminating
organ as envisioned by the well-stirred model (above) and the parallel
tube model (below). Ca and Cv denote drug concentrations in arterial
and emergent venous blood.

free drug concentration in the liver, which is given by (C~ - C~)/ln
(C~/C~), where C' denotes unbound drug concentration, and the
subscripts a and v denote arterial and venous blood, respectively.
The difference between the two models in terms of concentration
gradient across the clearing organ can be seen in Fig. 8.11.

Each model gives rise to a unique set of equations to describe
particular pharmacokinetic parameters [24]. For example, in the well­
stirred model we have defined clearance by Eq. (8.27). The corre­
sponding equation for clearance according to the parallel tube model
is

-f CI' /Q
Cl = Q(1 _ e B I ) (8.88)

where the term in parentheses is equal to the extraction ratio ER.
It is difficult to prove the validity of either one of these models

or even to differentiate experimentally between them because although
the relationships among parameters such as blood flow, intrinsic clear­
ance, clearance, and unbound fraction of drug are mathematically
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distinct, they are quantitatively similar in most instances. In fact,
for drugs with very high or very low extraction ratios, both models
predict the same limiting equations for clearance [Le., Eqs. (8.26)
and (8.30)]. This is readily seen by considering Eq. (8.88) when
fBCli »Q or when Q »fBCli. In the former situation, exp (-fBCli/
Q) -+ 0 and CI -+ Q [Eq. (8.26)], whereas in the latter situation,

t ' texp (-fBCII/Q) -+ 1 - (fBCII/Q) and CI -+ fBCII [Eq. (8.30)] [24].
Theoretical analysis [24] of the two models of organ clearance has

revealed that the most powerful discriminator between them is the ef­
fect of blood flow on either the emergent drug concentration in
venous blood (Cout or Cv) of a drug with a very high extraction ratio
[which is given by Cin (1 - ER) or Ca(l - ER)] or, in the case of
hepatic clearance, the systemic availability F after oral administration
of a drug with a very high extraction ratio (which is given by 1 - ER).
The reason for this discrimination is that the systemic availability of
a drug with a high hepatic extraction ratio changes linearly with blood
flow for the well-stirred model (F = Q/fBClI) but changes exponentially
with blood flow for the parallel tube model [F =exp (-fBCIItQ)] [24].
For a drug with an extraction ratio of 0.95, systemic availability would
be expected to increase from 5% to 9.5% upon doubling of hepatic blood
flow from 1 to 2 ml/min per gram of liver for the well-stirred model.
An increase from 5% to 22.4% would be expected under the same cir­
cumstances for the parallel tube model [24].

The effect of changes in blood flow rate on the hepatic clearance of
lidocaine (extraction ratio> 0.99) has been examined in the perfused
rat liver [25,26]. Concentrations of lidocaine and its metabolite
monoethyl glycine xylidide (MEGX) in the emergent venous blood were
better predicted by the well-stirred model than by the parallel tube
model. Despite these interesting findings, it is probably premature
at this time to conclude which of the physical models for organ clear­
ance is the more generally appropriate.

BLOOD CLEARANCE VERSUS PLASMA CLEARANCE

The various equations and relationships discussed throughout most of
this chapter have not only been based on the well-stirred model, they
have also assumed that blood rather than plasma is the perfusion
medium which flows through and bathes the clearing organs. This
conceptual approach is, at first glance, at variance with common ex­
perimental procedures which call for determining drug binding and
drug concentrations in plasma rather than blood. However, this dif­
ficulty is easily overcome since relatively little more laboratory work
need be done to express drug binding and drug concentration in
terms of blood rather than plasma [see Eqs. (8.28) and (8.29)].

AUROBINDO EX. 1018, 361



350 Pharmacokinetics

(8.89)

(8.90)

Unfortunately. most pharmacokinetic studies that have been pub­
lished to date do not provide enough data to express drug binding
and drug concentration in terms of blood. Moreover. most of the
values of systemic clearance for individual drugs that have been re­
ported are in fact plasma clearance rather than blood clearance values.
It is appropriate. therefore. to consider under what circumstances
plasma clearance is a reasonable approximation of blood clearance and
under what circumstances it is not.

It is evident from Eq. (8.29) that when a drug is uniformly
distributed throughout the blood (i ,e .• when drug binding is similar
in plasma and red blood cells). CB ~ CoP. since fB ~ fp' When this con­
dition prevails. plasma clearance Clp WIll approximate blood clearance
CIB •

In the more usual case. we find that drug binding in plasma exceeds
that in red blood cells. so that CB < Cp• AUC(blood) < AUC(plasma)
and [according to Eq , (8.6)]. CIB > Clp' Hence under these condi­
tions plasma clearance will underestimate blood clearance. According
to Eq. (8.29). the maximum error will occur when CRBC is negligible.
so that CB/Cp =1 - HCT and ClB/Clp =1/(1- HCT). or about 1.67
in humans.

Much larger errors may be encountered when drug binding to red
blood cells exceeds binding in plasma. In this case CB > Cp•
AUC(blood) > AUC(plasma). and Clp > CIB. The ratio of CB to Cp
will depend on the relative binding to RBC and plasma; Clp can sub­
stantially overestimate ClB and. in fact. exceed hepatic blood flow.

It is also of interest to consider whether or not plasma parameters
(I.e .• Cpt fp' and plasma flow rate Qp) can be used to approximate
intrinsic clearance (1. e .• CII>. We may rewrite Eq. (8.27) in terms of
plasma parameters as follows:

_ fp(CIPpl
Clp - Qp Q + f (CI

I')
I

p p p

where (Cli)pl is the intrinsic clearance of unbound drug referenced
to plasma. We can now solve Eq , (8.89) for (Cli)pl and compare this
value with CII obtained from Eq. (8.27). which assumes blood param­
eters. Rearrangement of Eq. (8.89) yields

Q Cl
(ClI ) - P P

I pl - f (Q - CI )
P p P

Therefore. the ratio of intrinsic clearance using plasma data to that
from blood data is

(8.91)
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(8.92)

which may be simplified to

(CIPpl _ Qp(QB - CIB)
CII - QB(Q - CI )

I P P

since fB/fp =Cp/CB and Clp/CIB =CB/Cp•
For drugs that bind preferentially in plasma (Le., CIB > Clp) and

have a low extraction ratio (Le . , QB » CIB and Qp » Clp) , we find
that the ratio of intrinsic clearance values [Eq. (8.92)] approximates
unity and conclude that (Cli)pl ~Cli. This case holds for any drug,
irrespective of extraction ratio, that is negligibly bound to red blood
cells and is essentially restricted to the plasma, since under these
conditions (QB - CIB) I(Qp - Clp) ~ QB/Qp' However, as the ex­
traction ratio of a drug increases, any binding to red blood cells will
cause (Cli)PI to increasingly overestimate eli. Very large errors are
encountered with drugs that have high extraction ratios and are uni­
formly distributed in blood (Le., when Cp -+- CB and CI'p -+- Qp)'

The situation is still more complicated when blood bmding is
greater than plasma binding (Le., when fB < fp and CIB < Clp)'
Even under these conditions, drugs with very low extraction ratios
present few problems since QB » CIB and Qp »Clp' and (Cli)PI ~
ci]. However, the ratio of (Cli )pl to ci] increases substantially in
response to small changes in extraction ratio, so that even for drugs
with medium extraction ratio values, (Cli )pl may seriously over­
estimate ci].

In summary, plasma clearance will reasonably approximate blood
clearance when plasma binding equals or exceeds blood binding.
Maximum errors are on the order of 40%. On the other hand, when
blood binding exceeds plasma binding, very large errors may be intro­
duced. The incorrect use of plasma parameters to calculate the in­
trinsic clearance of a drug [see Eq. (8.90)] yields reasonably ac­
curate answers for drugs with low extraction ratios. Although this
information is useful for evaluating literature data, it should be evi­
dent that all pharmacokinetic studies should be designed to yield
information regarding blood-related parameters.
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9
Physiological Pharmacokinetic Models

Pharmacokinetic models are developed to describe and predict the time
course of drugs and/or related chemicals throughout the body. The
classical approaches, introduced in Chaps. 1 and 2, lead to the elabora­
tion of compartmental models which often have important clinical ap­
plications, particularly in the development of dosage regimens. How­
ever, these models are inherently limited in the amount of information
they provide because, in the usual case, the compartments and the
parameters have no obvious relationship to anatomical structure or
physiological function of the species under study. The introduction
of clearance concepts (outlined in Chap. 8) to pharmacokinetic models
represents an enormous step toward bridging the gap between mathe­
matical description and physiological reality but still results in an in­
complete picture.

In recent years efforts have been directed toward the development
of physiologically realistic pharmacokinetic models. These detailed
models are elaborated on the basis of the known anatomy and physiology
of humans or other animals and incorporate physiological, anatomical,
and physiochemical data. The history of this development and the ap­
plications have recently been reviewed by Himmelstein and Lutz [1].

In principle, these comprehensive models are superior to classical
compartment models in several respects. Ideally, they provide an
exact description of the time course of drug concentration in any organ
or tissue and are therefore able to provide greater insight to drug dis­
tribution in the body. Also, since the parameters of these models
correspond to actual physiological and anatomical measures, such as
organ blood flows and volumes, changes in the disposition kinetics of
drug because of physiological or pathological alterations in body func­
tion may be predicted by perturbation of the appropriate parameter( s)
[2]. Finally, these models introduce the possibility of animal scale-up
which would provide a rational basis for the correlation of drug data
among animal species [3].

355
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A physiological pharmacokinetic model is composed of a series
of lumped compartments (body regions) representing organs or tissue
spaces whose drug concentrations are assumed to be uniform. The
compartments are arranged in a flow diagram as illustrated by the
general example in Fig. 9.1. The first step in the development of a
physiological pharmacokinetic model is the selection of compartments
to be included. An excellent discussion of this selection process has
been presented by Bischoff [4], who notes that there is no simple way

BLOOD

Y i.v. dose

jI, POOL ~

QL - QG

QL I LIVER GUT I QG

I I
1elimination,

- I HEART I QH

I I -

I KIDNEY I OK

I It elimination

I MUSCLE 1-
QM...

- I FAT
1_ OF

I I

I TUMOR I QT

I I
Fig. 9.1 Schematic representation of different regions of the body
arranged in a flow diagram which constitutes a physiological pharma­
cokinetic model. The term Q denotes blood flow rate to a region. Sub­
scripts are as follows: B, blood; L, liver; G, gut; H, heart; K,
kidney; M, muscle; F, fat; T, tumor. In this particular model the
liver and kidney are eliminating compartments.
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to describe which body regions should be included and which might
be excluded, since judgment is required as to the important aspects
of the drug distribution events. An initial choice is made based on
the pharmacodynamic, pharmacokinetic, and physiochemical charac­
teristics of the drug as well as the anatomy and physiology of the
body. Clearly, we wish to include body regions in which the drug
exerts a pharmacologic or toxicologic effect. We must include organs
that are involved in the elimination of the drug. It makes sense to
include tissues or fluids that are easily sampled and tissue spaces
that contain relatively large amounts of the drug.

Once the selection has been made, the kinds of information re­
quired by the model can be classified as (1) anatomical (e. g ., organ
and tissue volumes), (2) physiological (e. g., blood flow rates and
enzyme reaction parameters), (3) thermodynamic (e.g., drug-protein
binding isotherms), and (4) transport (e. g., membrane permeabilities).
Rarely will all this information be needed for a specific model. We can
often ignore transport and we can frequently express enzyme reaction
and binding parameters in simple terms.

Body regions can usually be viewed as consisting of a large number
of a single type of cell randomly distributed in the interstitial fluid
and supplied with blood by a capillary. This representation is often
further simplified, as shown in Fig. 9.2, by subdividtng the region
into three homogeneous fluid compartments: the capillary blood volume,
the interstitial water, and the intracellular space. Most physiological
pharmacokinetic models developed to data are based on the assumption
that drug movement within a body region is much more rapid than the
rate of delivery of drug to the region by the perfusing blood. In other
words, exchange of drug between capillary blood and interstitial water

.- CAPILLARY ~

r:z-UJ
>

1
INTERSTITIAL

>-
0::
U.J
t-o::
ex:

Fig. 9.2 Model for blood perfusion of local tissue region. Often,
drug transport between capillary blood and interstitial space and be­
tween interstitial space and intracellular space is a very fast process
compared to the rate of blood perfusion. Under these conditions the
entire region may be considered as a lumped compartment (see Fig.
9.1) .
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(9.1)

is considered to be very rapid and the cell membrane is considered
to be very permeable to the drug. In this case the concentration of
a drug in the emergent (venous) blood from a tissue region is in
equilibrium with that in the tissue. In effect, drug distribution into
various body regions is rate limited by blood flow and specific regions
can be represented by a single compartment as shown in Fig. 9.1.
The assumption of perfusion -limited transport is applicable to relatively
low molecular weight, weakly ionized, lipid -soluble drugs for which
diffusion and movement across lipoidal membranes should be relatively
rapid. On the other hand, membrane transport can be a slow step in
the overall uptake of very polar, highly ionized, or charged drugs.

BLOOD FLOW RATE-LIMITED MODELS

All blood flow rate-limited physiological pharmacokinetic models are
basically similar to the one shown in Fig. 9. 1. Differential mass balance
equations are written for each compartment to describe the inflow,
outflow, accumulation, and disappearance of drug, and are solved
simultaneously with the aid of a computer. The equations for this
model can be derived using an approach suggested by Rowland et al.
[5]. However, it is convenient to first examine a simpler model
(Fig. 9.3A) and to consider separately drug distribution to a non­
eliminating region such as the muscle (Fig. 9.3B) and to an eliminating
region such as the liver (Fig. 9.3C).

The rates of change of total concentration of drug in the blood CB
and in the muscle CM as a function of time for the model shown in
Fig. 9. 3B are

dCB
VB dt = QMCo - QMCi

and

(9.2)

where VB and VM are volumes of the blood and muscle compartments,
respectively; QM is blood flow to the muscle; and Ci and Co are drug
concentrations in blood entering and leaving the muscle compartment,
respectively. The drug concentration in afferent blood Ci is equivalent
to arterial blood concentration CB' The drug concentration in efferent
blood Co' however, is equivalent to CM only if there is no drug binding
in the system or if binding is the same in blood and muscle. If this
is not the case, then

(9.3)
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MODEL B

+el imination

~10DEL A • elimination

~10DEL C

Fig. 9.3 Some simple flow models consisting of blood pool, noneliminat­
ing compartment, and eliminating compartment (model A), blood pool
and noneliminating compartment (model B), and blood pool and elim­
inating compartment (model C). The terms Q, V, and C denote blood
flow rate to a given region, anatomical volume of a region, and drug
concentration, respectively. Subscripts indicate blood (B), muscle
(M), and liver (L). The terms Ci and Co signify drug concentrations
in afferent (arterial) and efferent (venous) blood, respectively. In
model A, QB = QM + QL.

(9.4)

where RM is a partition coefficient relating total drug concentration
in the tissue to total drug concentration in the venous blood at
equilibrium. Since the total drug concentration in a compartment is
equal to the free concentration divided by the fraction free, and
since the concentration of free drug is assumed to be the same in all
compartments, RM is also given by

fB
RM =f

M

(9.5)

where fB is the fraction free (unbound) of drug in the blood and fM
is the fraction free in the muscle.

It follows that (9. 1) and (9.2) may be expressed as

dCB CM
VB ill = QM R

M
- QMCB
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(9.6)

(9.7)

The differential equations applying to drug distribution to an
eliminating compartment (Fig. 9.3C), assuming that elimination rate is
a function of free drug concentration in the compartment, are

dCB
VB Cit =QLCo -- QLCi

and

(9.8)

where CL and C' are total and free drug concentrations in the liver,
respectively, an~ ClL is the intrinsic clearance with respect to free
drug concentration in the liver.

Expressing Ci and Co in (9.7) and (9.8) in terms of total drug
concentrations in the respective compartments, we obtain

(9.9)

and

(9.10)

(9.11)

where RL is the equilibrium distribution ratio of drug between the
liver and the emergent venous blood.

The free drug concentration in the liver is given by

Ci. = fLCL

where fL is the free fraction of drug in the liver. The free fraction
in the liver can be expressed in terms of the free fraction in the blood
as follows [see Eq , (9.4)]:

f
B

f =­L RL

Thus we may write (9.10) as

(.
dCL) = ( _ CL) _ fBCli.CL

VL dt QL CB R R
L L

(9.12)

(9.13)
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The elimination rate term on the right hand side of (9.10) or
(9.13) results from the assumption that the rate of elimination is a
function of free drug concentration in the elimination compartment.
Most reports concerning blood flow rate-limited physiologically based
pharmacokinetic models [3,4] have expressed this term as CILCL/R L;
this condition prevails when either fB = 1 or the rate of drug elimina­
tion is a function of total drug concentration in the emergent venous
blood (Co or CL/RL)' Rowland et al , [5] express this term as CILCL;
this condition prevails when either fL = 1 or the elimination rate is a
function of total drug concentration in the eliminating compartment.

The appropriate differential equations describing the more com­
plete model in Fig. 9.3A may be deduced by considering Eqs. (9.5),
(9.6), (9.9), and (9.10). It follows that

dCB CM CL
VB dt = QM R + QL it - QBCB (9.14)

M L

dCM ( CM)
VM dt = QM CB - R

M
(9.15)

and

(9.16)

or

(9.17)

(9.18)

It can now be appreciated that the task of writing the differential
equations for a model as complex as that in Fig. 9.1 is relatively
straightforward. The mass-balance rate equation for total drug con­
centration in a noneliminating compartment such as the heart, muscle,
fat, or tumor region is given by an equation similar to (9.15). The
mass-balance rate equation for a compartment that metabolizes, ex­
cretes, or otherwise eliminates the drug must also contain a term to
account for elimination [see (9.16)]. The liver compartment of the
model shown in Fig. 9.1 is a more accurate representation of the mam­
malian anatomy. Total drug concentration as a function of time for
this model is given by

dCL CG CL
VL ill = (QL - QG)C B + QG It - QL it -- Cli,Ci,

G L
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(9.19)

where it is assumed that elimination is a first-order (linear) process
and is a function of free drug concentration in the liver (I.e., Cr.).
The subscrtpts denote liver (L), gastrointestinal tract (G), and blood
(B). The mass-balance rate equation for drug in the blood pool is
given by

dCB CL CH CK CM
VB -dt = Q - + Q - + Q - + Q -L R

L
H R

H
K R

K
M R

M

C
F

C
T

+Q -+Q -- QBCBF R
F

T R
T

(9.20)

where the subscr-ipts denote heart (H), kidney (K), muscle (M), fat
(F), and tumor (T).

The addition of other body regions to the model usually presents
few difficulties. For each new compartment, we must add an additional
mass-balance rate equation [such as (9.15) or (9.16)J to the series as
well as an additional term [I.e., Qt(Ct/Rt), where t refers to the new
compartment] to the equation describing drug concentration in the
blood pool [e.g., (9.19)J. The incorporation of the lung in a physio­
logical pharmacokinetic model is somewhat more complicated because
of its anatomical position (see Fig. 9.4). In this case the mass-balance
rate equation for drug in the blood pool is given by

dCB CLu
VB dt = QLU R

Lu
- QBCB

di.v, ose

QLu
LUNG

QLu
BLOOD °B

" REST OF

• BODY

Fig. 9.4 Blood flow model showing the anatomical position of the lung
relative to the site of intravenous drug administration. Q denotes
blood flow rate. The subscripts refer to the lung (Lu) and blood (B).
QLu = QB' (Data from Ref. 14.)
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Fig. 9.5 Blood flow model showing the anatomical position of the lung
relative to the site of intravenous drug administration, venous blood,
and arterial blood. The model assumes that drug is given by intra­
venous infusion at a constant rate equal to kO' Cin and Cout are
drug concentrations in afferent and efferent blood perfusing the
lung. QB denotes total blood flow rate (cardiac output). Cart and
Cven are drug concentrations in the arterial and venous blood pool.
(Data from Ref. 18.)

and that for drug in the lung is given by

dCLu (Ct) CLu
VLu dt = 2. Qt it - QLu R

t Lu
(9.21)

where the subscript Lu denotes the lung and the summation term
applies to all other compartments (except the blood pool) in the model.
As indicated in Fig. 9.4, QLu =QB'

The input function (dosing) for the model is usually handled by a
programming step. For example, an intravenous bolus dose or rel­
atively short intravenous infusion is introduced as an initial condition
for the blood pool, while the initial condition for the amount of drug
in all other compartments is set at zero. This approach works well
in most situations. An exception is the case where drug is eliminated
by the lung, particularly when lung clearance is significant compared
to blood flow rate. In this situation one should probably split the
blood pool into a venous pool and arterial pool (see Fig. 9.5) and
program the initial condition for the venous pool. Since this model is
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different from that shown in Fig. 9.1 or 9.4, a different set of dif­
ferential equations is required.

EXPERIMENTAL CONSIDERATIONS

The blood flow rates and tissue volumes required to solve the dif­
ferential equations may be determined experimentally, but this is
rarely done. Typically, one employs average values that are appropri­
ate for size and animal species. A listing of volumes and blood flow
rates of different body regions for a standard man (70 kg body weight,
1.83 m2 surface area, 30 to 39 years) is presented in Table 9.1.
Values for other species, including the dog [6- 8], the rat [9-11],
the mouse [7,11,12], and the monkey [7,11,131, are available in the
biomedical literature. Some investigators have developed scaling
relations for organ volumes as a function of mammal body weight [11].

Although there is general agreement that R values must be de­
termined experimentally for a specific drug, a value determined in
one species may not apply to a second species. There is also some

Table 9.1 Volumes and Blood Flow Rates of Different Body Regions
for a Standard Man

Tissue Volume (liters)

Blood 5.4

Arterial 1.4

Venous 4.0

Plasma 3.0

Muscle 30.0

Kidneys 0.3

Liver 1.5

Heart 0.3

Gastrointestinal tract 2.4

Fat 10.0

Lung 0.6

Brain 1.5

Blood Flow Rate (ml/min)

1200

1250

1500

240

1200

200

750

Note: Characteristics of the standard man are: 70 kg body weight,
1. 83 m2 surface area, 30 to 39 years of age, and cardiac output of
5600 ml/min ,
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(9.22)

(9.23)

confusion as to the appropriate method of determining the tissue-to­
blood partition coefficient of a drug. Some investigators have made
measurements after a single bolus dose of a drug, whereas others
have determined the distribution ratio only after infusing the drug to
steady state. Chen and Gross [14] have discussed the difficulty in
relating R values to partition coefficients determined after a single
dose. They clearly show that, in general, R values for both eliminat­
ing and noneliminating tissues should be calculated from distribution
ratios determined at steady state. A distribution ratio determined
some time after a single bolus dose of a drug will approximate the
R value in a noneliminating tissue only for drugs with relatively long
half-lives [14]. The same may not be true in an eliminating tissue.

The tissue-to-blood distribution ratio determined at steady state
is equivalent to the R value for any noneliminating tissue or compart­
ment. This may be seen by considering Eq. (9.15) at steady state.
Under these conditions the differential term is equal to zero and the
equation may be rearranged to yield

C
ss

R =:~
M Css

B

where the superscript ss denotes steady state.
The situation is more complex in an eliminating compartment.

The steady-state ratio of drug concentration in tissue to that in blood
for a tissue that eliminates the drug will always underestimate the R
value. This may be seen by considering Eq. (9.16) at steady state.
Under these conditions the equation reduces to

C
s s

Q cs s _ Q ~ _ CI' C,SS =: 0
L B L R

L
L L

or [according to Eq. (9.17)]

f CI' C
SS

B L L =: 0
R

L
(9.24)

Rearranging terms and solving for RL yields

C~s QL + fBCILR =:--

L CSS QL
B

(9.25)

If the effective intrinsic clearance is much smaller than organ
blood flow rate, the steady-state distribution ratio will approximate
the R value. If this is not the case, RL > ctS /C~s. Large errors are
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(9.26)

encountered for drugs with high effective intrinsic clearances rela­
tive to organ blood flow rate. In these cases R values must be cal­
culated based on both steady-state distribution ratios and estimates
of organ blood flow rates, as indicated by Eq. (9.25).

BLOOD CLEARANCE

Drug clearance from the blood is defined as the intravenous dose di­
vided by the total area under the drug concentration in blood versus
time curve. Consider the model shown in Fig. 9.3A. Solving Eqs.
(9.14), (9.15), and (9.17) simultaneously for CB, integrating the re­
sulting triexponential equations from t = 0 to t = 00, and dividing the
dose by this area yields

QLfBCli.
CI = ~...:::-".....::,~

B QL + fBCIL
which is the familiar expression for clearance proposed by Wilkinson
and Shand [15]. Equation (9.26) indicates for a drug such as indo­
cyanine green with a relatively high effective intrinsic clearance (I.e.,
fBCIL »QL) that drug clearance from the blood approximates liver
blood flow, whereas for a drug with a relatively low effective intrinsic
clearance (I.e., QL »fBCIL), drug clearance from the blood approx­
imates effective intrinsic clearance and is proportional to the fraction
free in the blood, fB'

If we were to assume that the elimination rate was a function of
the total drug concentration in the emergent venous blood of the
eliminating orgen, Eq , (9.26), which defines blood clearance, would
take the form

(9.27)

This equation indicates that drug clearance from the blood is inde­
pendent of drug binding in the blood, which is inconsistent with con­
siderable evidence from various systems that demonstrates, for drugs
with relatively low effective intrinsic clearance, a marked dependence
of CIB on plasma protein binding.

On the other hand, if we assume that elimination rate is a function
of total drug concentration in the liver, we must redefine (9.26) as
follows:

(9.28)

For a drug with a low effective intrinsic clearance,
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(9.29)
fBCIL

CIB ~ R
L

CIL =-f­
L

Equation (9.28) differs from (9.26) by indicating for drugs with a
low effective intrinsic clearance, a dependence of blood clearance on
liver binding as well as blood binding. If, in fact, for a given drug
liver binding varied much less than plasma protein or blood binding,
or if a perturbation that affected blood binding had little or no effect
on liver binding, RL would be approximately proportional to fB and
(9.28) or (9.29) would be consistent with experimental evidence. Not
surprisingly, there have been few studies examining the relationship
between partition coefficient and clearance. Yacobi and Levy [16]
studied the distribution of warfarin between serum and liver in intact
rats and found that RL averaged about 2.5, varying about twofold.
However, serum protein binding in the same animals varied about ten­
fold and drug clearance from the serum was strongly correlated with
serum protein binding (r = 0.95) but did not correlate with RL
(r =0.16). A similar but less clear-cut situation is found with di­
cumarol [17], which showed an average RL value of 0.5. Although
there is a significant correlation between clearance and free fraction
in serum (r =0.88), there is also a significant albeit weaker correla­
tion between clearance and RL (1' = 0.72).

The differentiation of (9.28), which assumes elimination rate to be
a function of total drug concentration, from (9.26), which assumes
elimination rate to be a function of free drug concentration, presents
an unresolved dilemma because of the limited experimental work carried
out to date. A conceptual dilemma also exists in that one can ev­
vision drug binding to specific proteins in the liver such as ligandin
which would promote metabolism and thereby create a situation where
elimination rate is a function of total drug concentration. The evidence
available at this time suggests that Eq. (9.26), which is based on free
drug concentration in the eliminating organ, is the more general one.

Estimates of the clearance terms required to solve the series of
differential equations that characterize the physiologic pharmacokinetic
model are obtained from experimental data in the species of interest.
For drugs with relatively low effective intrinsic clearances, renal or
biliary clearance may be measured directly by simultaneously sampling
blood and urine or bile, whereas metabolic clearance may be estimated
inferentially by assuming that metabolic clearance represents the dif­
ference between total clearance and the sum of renal and biliary
clearances. If renal, biliary, or metabolic clearance (assuming that
it occurs in a single compartment) is flow rate dependent, one must
estimate the intrinsic clearance by means of an equation similar to
(9.26), using experimentally determined or literature estimates of
organ blood flow.

AUROBINDO EX. 1018, 379



368

LUNG CLEARANCE

Pharmacokinetics

(9.31)

(9.32)

(9.33)

The model shown in Fig. 9.5 suggests that when the lung contributes
substantially to the overall elimination of a drug, there may be dif­
ficulty in interpreting experimentally determined estimates of clear­
ance. For example, there are examples where the total blood clearance
of a drug exceeds cardiac output. This situation would appear to be
prohibited by the equations developed in this chapter. One plausible
explanation for this phenomenon is drug elimination in the blood itself.
However, in most instances these drugs have been found to be chem­
ically and metabolically stable in fresh whole blood or plasma. Collins
et al , [18] have recently shown that clearance of a drug by the lung
could result in blood clearance values that exceed total blood flow rate.

If we assume constant rate drug infusion into the right ventricle
(see Fig. 9.5), at steady state the pulmonary extraction ratio Ep is
given by

C. C t
E = m ou (9.30)

p C.
In

and

C = (1 - E )C.
out p m

If drug were cleared only by the lung. the lung input concentration
would represent a mixing of the lung output with the infused drug:

kO
C =C +-

in out Q
B

where kO is the drug infusion rate and QB is equal to cardiac output.
Combining Eqs. (9.31) and (9.32) and solving for Cout. we obtain

k
O(1

- E )
C = P

out QBEp

Drug clearance from the blood is given by the ratio of infusion rate to
drug concentration in the blood at steady state. Therefore. drug
clearance from arterial blood is given by

or. according to Eq. (9.33).

Q E
Cl = B P

art 1-E
p

(9.34)

(9.35)
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(9.36)

(9.37)

(9.38)

It is evident from Eq. (9.35) that Clar t exceeds QB whenever Ep
exceeds 0.5. even if the lung is the sole site of drug elimination. A
more general expression which takes into consideration drug elimina­
tion by other organs and tissues is as follows:

k O QBE '"
Clar t = -C- = 1 - l + L QtEt

out p

where Qt is the blood flow rate to an eliminating tissue and Et is the
drug extraction ratio for that tissue.

The preceding analysis applies strictly only when drug concentra­
tion is measured in arterial blood or plasma [18]. Drug concentration
in venous blood may be substituted only if there is no elimination in
tissues drained by the vein that is sampled. Although this substitu­
tion may be valid for many drugs. uncertainty must prevail for any
drug that is subject to extrahepatic nonrenal elimination. For the
case of sampling from a vein that drains eliminating tissue. the steady­
state drug concentration is given by

Cven = (1 - Et)Car t

where Et is the drug extraction ratio of the eliminating tissue. It
follows from Eq. (9. 34) that

(1 - Et)kOC =ven Cl
ar t

Since drug clearance from venous blood is given by ko/Cven. it follows
that

(9.39)

Thus in the absence of elimination by the local tissue which is drained
by the sampling vein. Clven = Clar t. In any case. Clven will always
be greater than or equal to Clart. Therefore. whether blood is
sampled from the venous or arterial side. clearance can exceed
cardiac output if pulmonary elimination is significant.

APPARENT VOLUME OF DISTRIBUTION

The apparent volume of distribution at steady state for a drug is a
function of the anatomical volume into which it distributes as well as
the degree of binding in blood and extravascular tissues. For the
model shown in Fig. 9. 3A. the apparent volume of distribution is
given by
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(9.40)

(9.41)

For the general case

V = VB + 2RtVt

or

(9.42)

(9.43)

(9.44)

Benowitz et al. [13] have demonstrated for lidocaine in the monkey
that the pharmacokinetically derived volume of distribution at steady
state Vss (see Chap. 5) is equivalent to the sum of the products of
tissue masses (volumes) and equilibrium distribution ratios (R values)
as indicated in Eq. (9.42).

NONLINEAR DISPOSITION

In the absence of specific information to the contrary. we usually
assume that drug elimination is a linear process and introduce a
single clearance term in the mass-balance rate equation for the body
regions capable of elimination [see Eq. (9.16) or (9.18)]. However.
at sufficiently high doses. enzyme-mediated processes such as drug
metabolism. renal tubular secretion. or biliary secretion may require
concentration-dependent clearance terms to describe the time course
of drug in each body region. Assuming that drug metabolism in the
liver is described by Michaelis-Menten kinetics. one must rewrite
(9.16) as follows:

dCL ( CL) VmCL
VL ill = QL CB - it - K' + C'

L m L

where CL and C~ are the total and free drug concentrations in liver,
respectively; Vm is the maximum rate of elimination (mass units/time
units) from the liver; and K~ is the Michaelis constant (concentration
units) with respect to free drug. The ratio of Vm to K~ is equal to
ClL' the intrinsic clearance with respect to free drug concentration in
the liver.

Estimates of Vm and Km may be obtained from in vivo pharmaco­
kinetic data (see Chap. 7). Some investigators have successfully
estimated values for Vm and Km from in vitro enzyme kinetic data
[19-21].
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Fig. 9.6 Relative distribution of methotrexate (MTX) between plasma
and muscle, kidney, or liver in the mouse following intravenous doses
of 0.1, 0.3, and 3 mgIkg . Drug concentrations were determined at
times ranging from 5 to 120 min following injection. During the period
of observation a unique relationship exists between drug concentration
in the plasma and the concentration in each of these three tissues.
Distribution into the muscle is linear and apparently limited to the
extracellular space. At high drug concentrations in plasma, distribu­
tion into both kidney and liver is linear, but the drug is concentrated
in these organs to the extent of about 3: 1 and 10: 1, respectively. At
low drug concentrations in plasma, concentrations in these tissues
appear to approach constant values presumed to be associated with
strong binding of methotrexate to dihydrofolate reductase. (From
Ref. 22, reprinted with permission of the author.)
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Drug binding to plasma proteins and tissue components is usually
assumed to be linear and effectively accounted for by introducing an
R value in the mass-balance rate equation. This simplification. how­
ever. may not always be appropriate. In the case of methotrexate
[22), tissue-to-blood partition coefficients show a marked concentra­
tion dependence, at least in some tissues (see Fig. 9.6). This is be­
lieved to be the result of strong binding of the drug to dihydrofolate
reductase in the tissue. In this case. in vivo binding isotherms con­
sist of a linear and a saturable term. Drug concentration in tissue is
given by

(9.45)

where a is the strong binding constant and E is the dissociation con­
stant [22]. At high methotrexate concentrations the second term of
(9.45) is negligible and binding is approximately linear. A similar
approach has been suggested to handle nonlinear plasma protein
binding [23] .

MEMBRANE-LIMITED MODELS

Physiologic-pharmacokinetic studies with certain drugs. including
methotrexate [22). tetraethylammonium ion [24). and actinomycin D
[6). have revealed tissue uptake characteristics that are not consistent
with a blood flow rate-limited distribution process. For example, the
declining concentrations of actinomycin D in dog testes do not parallel
the declining drug concentrations in plasma after a rapid intravenous
injection (see Fig. 9.7). Figure 9.8 shows methotrexate concentrations
determined simultaneously in plasma and bone marrow of the rat at
several doses and clearly reveals that no unique relationship exists
for the methotrexate tissue-to-blood ratios, unlike the situation de­
scribed in Fig. 9.6. At a given methotrexate concentration in plasma,
(e. g., O.1 )J g I ml) , there are different concentrations in bone marrow,
depending on the dose administered and the time the tissue sample
was taken. These data indicate that the bone marrow is not a blood
flow rate-limited equilibrium compartment and suggest a membrane­
limited transport. Similar results have been found with respect to
tumor uptake of methotrexate in spontaneous canine lymphosarcoma
[25) .

Figure 9.9 is a scheme for a body region where membrane-limited
transport prevails. The model assumes that all concentrations repre­
sent free drug concentrations. Exchange across the capillary mem­
brane is probably so rapid that the blood and interstitial fluid may
be assumed to form one equilibrium compartment, termed the extra­
cellular space. For the extracellular compartment the mass-balance
rate equation is

AUROBINDO EX. 1018, 384



9 / Physiological Pharmacokinetic Models 373

(9.46)

6 6

_-O-..A. Dose =2.7mg/M2

Testes

----o--o,,---Dose=0.6mg/M2

0..
% .."0.

""00. 0 Plasma
.........Q.

",.p 2
Dose =0 .6mg/M

W
::l

~
t=
o

I

~ 103

§
~ 104

0~""'20:-'-40""""""'60""""80~""'IOO~-"!I20

TIME (h)

Fig. 9.7 Actinomycin-D concentrations in plasma and testes following
a 0.6 mg/m 2 intravenous dose. and in testes following a 2.7 mg/m 2
intravenous dose. in the beagle dog. Drug concentrations in testes
do not parallel the declining plasma curve. Simulations that assume
cellular membrane resistance (solid lines) are in reasonable agreement
with the tissue data. [From Ref. 6. © 1977 American Society for
Pharmacology and Experimental Therapeutics, The Williams and
Wilkins Company (agent). J

dCE
vE Cit = Qi(CB- CE) - net flux

(9.47)

where VE is the extracellular space (sum of capillary blood and inter­
stitial fluid volume). CE is the free drug concentration in the extra­
cellular space, Qi is the blood flow rate to the region. and C~ is free
drug concentration in the blood pool. The mass-balance rate equation
for the intracellular space is

dCI

VI dt
I

= net flux

where VI and C1are the volume and free drug concentration. re­
spectively. of the intracellular fluid.

Net flux (transport) may be assumed preliminarily to be diffusive
but in some cases must be handled as a saturable, facilitated process
demonstrating Michaelis-Menten kinetics. In the case of diffusive
transport. which appears to apply to actinomycin D uptake in dog
testes [6J. net flux is given by the equation

(9.48)
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Fig. 9.8 Relative distribution of methotrexate (MTX) between plasma
and bone marrow in the rat following intravenous doses of 0.05 (e),
0.25 (0), 2.5 (.), and 25 (e) mgIkg. Unlike the situation described
in Fig. 9.6, no unique thermodynamic relationship is seen between drug
in tissue and that in plasma. The dependence of drug concentration
in tissue on dose as well as on drug concentration in plasma suggests
a model that includes membrane resistance to transport. (From Ref.
22, reprinted with permission.)

where Ki is the effective membrane permeability coefficient. Membrane
resistance to drug transport is limiting only if the diffusion parameter
Ki is much smaller than the tissue perfusion rate per unit volume [6].

Studies with methotrexate [22] and tetraethylammonium ion [24]
suggest that the assumption of simple diffusive transport is not suf­
ficient to describe membrane-limited uptake of these drugs into certain
tissues. These uptake data have been rationalized by expressing net
flux as a concentration-dependent term:

V C'm E
net flux = K' + C'

m E

v C'

K~m+ ~i + Ki(CE- Cp (9.49)

where Vm is the maximum facilitated transport rate and K:n is the
Michaelis constant with respect to unbound drug. It is assumed that
the efflux and influx of the facilitated process are characterized by
the same parameters (I.e., membrane transport is symmetric). It is
of interest to note that for both drugs the passive permeability term
Ki(C~ - Ci) was assumed to be negligible for the doses used. Minturn

AUROBINDO EX. 1018, 386



9 / Physiological Pharmacokinetic Models 375

Blood
Out

< C.pill", }Blood

'1n-;;sili'ial - - ~r':;lI~r-----
Fluid Space (VE.e E) ~

FLUX,
Intracellular

Space (VI' ell

<
Blood

In

Fig. 9.9 Schematic representation of a tissue region in a physiological
pharmacokinetic model which assumes membrane resistance. For most
drugs the capillary membrane is very permeable, diffusion to the inter­
stitial fluid is very fast, and the plasma and interstitial fluid can be
combined into one equilibrium space termed the extracellular space.
The volume of and drug concentration in this space are designated VE
and CE' respectively. For some drugs the uptake rate (flux) by the
cell is limited by the resistance of the membrane to drug transport.
The volume of and drug concentration in the intracellular space are
designated VI and CI' respectively.

et al , [24] have described the use of total rather than free drug con­
centrations for membrane -limited models.

The incorporation of both nonlinear binding and facilitated mem­
brane-limited transport into a physiological pharmacokinetic model is
a more formidable task but has been required and successfully ac­
complished in the case of methotrexate [22,26].

SPECIES SIMILARITY AND SCALE-UP

The development of a detailed physiological pharmacokinetic model for
a drug in humans is a very difficult proposition. The almost insur­
mountable barrier is the vast amount and array of data needed to
validate the model, particularty the need for tissue concentration data.
Limited tissue-to-blood partition coefficient data for certain drugs in
humans are available from studies conducted during surgery or on
necropsy, but the reliability of these data as well as their applicability
to general populations are suspect. Thus we must often rely substan­
tially on in vitro or animal studies supplemented by clinical pharmaco­
kinetic studies.
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Table 9.2 Relationship Between Certain Physiological or Anatomical
Properties and Body Weight Among Mammals

._---------
Property

Creatinine clearance

Inulin clearance

PAH clearance

Basal 02 consumption

Endogenous N output

02 consumption by liver slices

Kidney weight

Heart weight

Liver weight

Stomach and intestines weight

Blood weight

Exponent

0.69

0.77

0.80

0.73

0.72

0.77

0.85

0.98

0.87

0.94

0.99

Note: Data from different species were fitted to the following equa­
tion: property = (body weight)exponent. (From Ref. 28.)

Dedrick and Bischoff [27] have noted: "There are many similar­
ities in the anatomy and physiology of mammalian species. A general
belief in this similarity has been the cornerstone of most biomedical
research. We share a remarkable geometric similarity. The same
blood flow diagram could be used for all mammals, and most organs
and tissues are similar fractions of the body weight. Major qualitative
differences, such as the absence of a gall bladder in some species, are
the exception." Adolph [28] observed that many anatomical and physio­
logical variables can be correlated among mammals as exponential func­
tions of body weight. Some examples are presented in Table 9.2. The
anatomical variables are more nearly proportional (as indicated by an
exponent of unity) to body weight than are the metabolic or physio­
logical properties. Generally, physiologic function per unit of organ
weight or per unit of animal weight decreases as size increases.
Bischoff et a1. [11] have presented scaling graphs for certain organ
blood flow rates (specifically, kidney, liver, and muscle) as a function
of body weight (see Fig. 9. 10). Edwards [29] has found excellent
correlations for renal processes (including inulin clearance, PAH
clearance, renal blood flow, creatinine clearance, and daily urine out­
put) among mammals as exponential functions of body weight (see Fig.
9.11). The values of the exponents were in the order of 0.7 to 0.8.
Edwards also suggests that renal blood flow is generally 26% of cardiac
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Fig. 9.10 Relationship between hepatic plasma flow rate and total body
weight in several animal species. (Data from Ref. 11.)

output in mammals, independent of body weight. In this respect, renal
blood flow differs from hepatic portal blood flow, which represents a
relatively greater proportion of cardiac output in larger species [29].

If drug distribution involved purely physical interactions between
xenobiotics and biological tissues or fluids, it might be expected to
follow principles of thermodynamic partitioning with relatively minor
interspecies variation. An equilibrium distribution ratio (R value)
determined for a given tissue in a laboratory animal might then be use­
ful for a model to be applied to humans. This seems to be a plasusible
idea for certain fat-soluble compounds, including dieldrin [30].
thiopental [31], and kepone [32], but less encouraging results have
been found for other compounds such as methotrexate [11] and digoxin
[8,10]. At this time more work needs to be done to examine the merits
of this hypothesis. It is reasonable to suggest that even a preliminary
interest in this approach requires as a minimum that Vss values for the
drug be rather similar in the two or more species. This comparability
is not sufficient but it is necessary. There has been some interest
in using in vitro data to estimate in vivo binding parameters [31].

The most significant species differences that may confound phar­
macokinetic predictability are in the pathways and kinetic character­
istics of metabolism. Although humans usually metabolize drugs less
rapidly then other animal species that are commonly used in drug
development studies, and microsomal enzyme activities per kilogram of
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Fig. 9. 11 Relationship between inulin clearance Cin and total body
weight for mammals (.) and for four species of birds (0) Cin =
5.359 BW O•72. The key to species is provided in Ref. 29. (From
Ref. 29.)

body weight tend to decrease as body weight increases. many excep­
tions exist. Quite different metabolic pathways may dominate in dif­
ferent species and toxicity may sometimes correlate with the concen­
tration of a. reactive intermediate that represents only a minor elim­
ination pathway.

On the other hand. there is increasing evidence that metabolic
information from in vitro systems may be used for quantitative param­
eter estimation in pharmacokinetic models. These in vitro systems
have included both crude and purified enzyme preparations. other cell
extracts such microsomes , cell suspensions. tissue slices. and iso­
lated organs. Dedrick and Bischoff (27} propose that it should be
possible to use metabolism data from properly designed in vitro sys­
tems in conjunction with pharmacokinetic models to provide a basis
for predicting pharmacokinetic behavior of xenobiotics in any mam­
malian species. including humans. They have recently reviewed the
evidence in support of this hypothesis. The most notable in vitro-
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Table 9.3 Comparison of Extraction Ratios Predicted from In Vitro
Estimates of Vm and Km, and Observed in Isolated Perfused Rat Liver

V /K K
Extraction Ratio

m m

mIl min (g liver) -1
m

Drug (mM) Predicted Observed

Alprenolol 23.5 0.017 0.92 >0.90

Propranolol 10.0 0.005 0.83 >0.90

Lidocaine 8.2 0.058 0.80 >0.90

Phenytoin 2.0 0.031 0.50 0.53

Hexobarbital 1.6 0.105 0.44 0.33

Carbamazepine 0.11 0.73 0.05 0.04

Antipyrine 0.08 22.0 0.04 0.01

Source: From Ref. 19.

in vivo correlations have been observed by Rane et al. [19]. The
results of their comparison of observed hepatic extraction ratios with
those calculated from Vmax/Km ratios obtained from rat liver prepara­
tions are summarized in Table 9.3.

Probably the most fascinating approach to interspecies correlation
of drug concentration data has been offered by Dedrick et al , [33]
with methotrexate. This analysis is empirical and perhaps limited to a
few compounds but is nevertheless interesting, informative, and ex­
citing. Figure 9. 12 shows methotrexate concentrations in plasma or
serum after injection of various doses to different animal species,
including the mouse, rat, monkey, dog, and humans. The range of
variables is as follows: body weight, 22 to 70,000 g (ratio of 3000 to

Table 9.4 Equivalent Times for Several Species

Average Body
Body Weight 114

Species Weight (g) (g1/4)

Mouse 22 2.16

Rat 160 3.56

Monkey 4,000 7.95

Dog 5,000 8.42

Humans 70.000 16.3

Source: From Ref. 33.

Equivalent
Time (min)

0.13

0.22

0.49

0.52

1.00
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Fig. 9. 12 Plasma (or serum) concentration of methotrexate after intra­
venous or intraperitoneal injection of different doses. The species
are indicated by diamonds (mice), circles (rats). closed triangles
(monkey). open triangles (beagle dog). and squares (humans). (Data
from Ref. 33.)

1); dose per unit body weight, 0.1 to 450 mg Ikg (4500 to 1); and
methotrexate concentrations in plasma or serum. 0.0077 to 130 u g Iml
(17.000 to 1).

An attempt was made to represent all the data by a single curve.
Normalization of the ordinate in Fig. 9.12 was achieved by dividing
observed drug concentrations by the dose per unit body weight.
Such normalization implicitly assumes linear relationships among rele-
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Fig. 9. 13 Correlation of methotrexate concentration data in plasma
(or serum) in mouse, rat, monkey, dog, and humans. Symbols are as
indicated in Fig. 9.12. (From Ref. 33.)

vant thermodynamic phenomena such as equilibrium distribution in
major tissues. It would not be expected to apply to a drug that is
strongly and nonlinearly bound to proteins or other macromolecules.
These assumptions may be reasonably applied to methotrexate for
some time after injection (when concentrations are high), but are
inappropriate at later times.

Normalization of the abscissa in Fig. 9.12 requires introduction of
an interesting kinetic concept. It is evident that changes are taking
place more rapidly in the smaller animals than in the larger animals.
Dedrick et al . [33] developed the idea of equivalent time to account
for these kinetic differences. For example, since the decline of
methotrexate concentrations in plasma or serum occurs about an order
of magnitude faster in the mouse than in humans, an equivalent time
might be the mean residence time of the vascular system or the ratio
of blood volume to cardiac output. The latter has a value of about
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1 min in humans and varies as a function of body weight to the 0.2
power. In the case of methotrexate concentrations, Dedrick and co­
workers chose to use an empirical function of body weight (Le., to
normalize the abscissa by dividing time by body weight raised to the
0.25 power). Table 9.4 shows the correspondence between the fourth
root of weight and an equivalent time based on unity for humans.

The correlation developed in this manner is shown in Fig. 9.13.
All data from Fig. 9.12 have been included up to a time parameter of
70 (min/g1/4). Accordingly, mouse data beyond 150 min and rat
data beyond 250 min are not included. Agreement is very good and
variations appear to be principally random. The application of this
approach to other drugs that demonstrate linear pharmacokinetics
and are essentially excreted unchanged is a distinct possibility; the
success of this approach for drugs that are substantially metabolized
is probably unlikely.

The development, validation, and application of physiologic phar­
macokinetic models is a very exciting area of research. A great deal
of credit must be accorded to Bischoff and Dedrick for their pioneer­
ing effort and prolific contributions. In all its ramifications, this
pharmacokineric approach offers the possibility of unusual insight
into complex biological systems.
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10
Application of Pharmacokinetic Principles

Previous chapters have concerned basic pharmacokinetic principles,
and have emphasized the development of pharmacokinetic theory. It
is the purpose of this chapter to consider the application of these
principles to drug utilization in the clinical setting. There will be
little emphasis on the development of equations. Where appropriate,
the practical utility of selected equations from previous chapters will
be discussed.

MULTIPLE DOSING

The most common approach for the maintenance of therapeutic plasma
concentrations is through the repetitive adminstration of oral doses at
given time intervals. Although oral administration is the most fre­
quently used route of administration, the basic principles of multiple
dosing will apply regardless of the route of administration and the
pharmacokinetic model used to describe the drug, as long as the
kinetic behavior of the drug can be described by linear or first-order
kinetics.

The general objective of drug treatment is to obtain quickly and to
maintain drug plasma concentrations which fluctuate above some min­
imum effective concentration, and below those concentrations that
have been associated with adverse effects (I.e., to maintain concen­
trations within the therapeutic range). The application of pharmaco­
kinetic principles can have the greatest impact on therapy with drugs
having a narrow therapeutic range. Frequently, a therapeutic range
is perceived as being an absolute concentration range within which all
patients will respond and no adverse effects will be observed. Un­
fortunately, this is not the case, and one must look at a therapeutic
range as that concentration range within which there will be the
greatest probability for a therapeutic response and the least proba­
bility for adverse effects. For example, 0.5 to 2 ng/ml is frequently

385
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Fig. 10.1 Pseudoephedrine concentrations in plasma on twice-a-day
oral administration of a slow-release product. The horizontal line, to
the right of the curve, denotes the average steady-state drug con­
centration (see Ref. 1).

quoted as the therapeutic range for digoxin. However, there is
about a 10% risk of seeing toxic symptoms at a concentration of 1. 5
ng/mI. This risk increases with concentration and one sees about an
85% risk of adverse effects at concentrations greater than 2 ng/ml.
Thus toxicity can be observed within a therapeutic range, and con­
centrations greater than the upper end of the therapeutic range may
be found in patients demonstrating no adverse effects. Therefore,
a therapeutic range can only be used as a guide to therapy.

When an oral multiple dosing regimen is initiated, plasma concen­
trations will increase, reach a maximum, and begin to decline (see
Fig. 10.1). Generally, before all of the absorbed drug from the first
dose is eliminated, a second dose will be administered. Consequently,
plasma concentrations resulting from the second dose will be higher
than those from the first dose. This increases in concentration with
dose, or accumulation, will continue to occur until a steady state is
reached. At steady state the rate of drug entry into the body will
equal the rate of exit; hence the concentration at any time during a
dosing interval should be the same from dose to dose. The extent to
which a drug will accumulate relative to the first dose can be quanti­
fied by an accumulation factor R which is dependent on the relative
magnitudes of the dosing interval 1: and the half-life t1/2 of a drug:
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(10.1)1
-O.6931"/t

1 / 21 - e

This relationship is depicted graphically in Fig. 10.2 and illustrates
that the smaller the ratio 1"/tl/2' the greater will be the extent of ac­
cumulation. Of interest is the fact that when the dosing interval
equals the half-life of a drug, the average steady-state concentrations
will be about twice the average concentration after the first dose.

Although the time to reach steady state will generally be a complex
function of several pharmacokinetic parameters (see Chap. 3), it is
usually found that regardless of the complexity of the pharmacokinetic
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Fig. 10.2 Degree of drug accumulation at steady state relative to a
single dose (expressed as an accumulation factor, R) as a function of
the ratio of dosing interval to half-life of the drug, 1"/t1/2. Admin­
istration of a fixed dose at a constant dosing interval equal to the
half-life of the drug results in a twofold accumulation.
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(10.3)

model, about 90% of steady state will be reached within approximately
four half-Iives , Whereas the time to reach steady state depends pri­
marily on the half-life of a drug, the average drug concentration
at steady state, C, is a function of the maintenance dose XO, the frac­
tion of the dose absorbed F, the dosing interval, and the clearance
CIs of the drug. This relationship is

_ FXO
C = - (10.2)

CIs'

or

- 1.44FX Ot1/ 2 AUC
C = =--V, ,

where V is the apparent volume of distribution of a drug, and AUC is
the area under the plasma concentration versus time curve from time
zero to infinity following a single maintenance dose. These equations,
although very useful, give no insight into the degree of fluctuation in
steady-state plasma concentrations. For example, administration of a
drug with a half-life of 12 h according to the following regimens: 600
mg daily, 300 mg twice a day, and 200 mg three times a day, will pro­
duce identical values for C. However, 600 mg daily will result in
greater fluctuations in steady-state concentrations than will 300 mg
twice a day, which will in turn produce greater fluctuations than 200
mg three times a day. Although absorption rate will influence the
degree of fluctuation in steady-state concentrations, the relative mag­
nitude of r and t1/2 will be a major factor governing these fluctuations.
This is illustrated by Fig. 10.3, which assumes a one-compartment
system with intravenous bolus administration. As can be seen, the
greater the ratio of ,/t1/2, the larger will be the ratio £.f Cmax/C at
steady state, and the smaller will be the ratio of Cmin/C at steady
state.

Equations (10.2) and (10.3) illustrate how the absorption, dis­
tribution, and elimination characteristics of a drug affect steady-state
drug concentrations. The influence of such factors as disease states,
drug interactions, and age on steady-state concentrations can also
be readily appreciated from these equations by knowing which process
is influenced by these factors. One can also utilize these relationships
as tools to gain insight into a patient's therapy and to determine
whether a patient's regimen may produce subtherapeutic or toxic con­
centrations of a drug. Equations (l0.2) and (10.3) can also be re­
arranged to yield the following expression for maintenance dose:

CCl r
X = __s_= CV,

o F 1.44Ft1/ 2
(10.4)
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Fig. 10.3 Relationship between the ratio of Cmax or Cmin..at steady
state to the average drug concentration at steady state, C and the
ratio of dosing interval to drug half-life, ,It1/2' Assuming a fixed
daily dose of drug, the larger the value of ,/1/2, the greater the
fluctuations of drug concentration in plasma at steady state.

This equation can be used to predict an initial maintenance dose of a
drug for a given patient. Knowledge of the therapeutic range will
enable C and r to be selected. It is generally appropriate to aim for
a steady-state concentration which is safe (Le , , a concentration as­
sociated with a very low incidence of toxicity). A concentration mid­
way between the limits of the therapeutic range or one just below this
midpoint would generally be reasonable. Determination of r requires
information on a drug's half-life as well as its therapeutic range.
If, for example, a drug has an optimum therapeutic range of 10 to
20 j.Iglml, r ehould probably be equal to or less than one half-life,
since concentrations could fall from the upper to the lower end of the
range in one half-life. If, however, the therapeutic range was be­
tween 2 and 20 flg/ml, it may be appropriate to use a dosing interval
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(10.5)

00.6)

equal to approximately three half-lives. For reasons of compliance,
it is often desirable to have a dosing interval as long as possible, but
it probably should not exceed one day. In addition, patients should
not be expected to take a dose more frequently than four times a day.
If a drug has a narrow therapeutic range and a short half-life
(e. g., procainamide), it may be necessary to dose more frequently
than four times a day for optimum effects. Sustained-release dosage
forms are very desirable for such drugs.

Once C and Tare selected, one must usually rely on literature data
for values of F, the availability of the dosage form being used, and
clearance. Generally, average parameters are used even though we
know that there is considerable interpatient variability in these pa­
rameters. Interpatient variability is a particular problem with esti­
mates of F for poorly absorbed drugs and CIs for drugs eliminated
predominantly by metabolism. Another problem frequently encountered
is the fact that most pharmacokinetic studies are performed in young,
healthy male populations rather in the patient population in which the
drug is to be used, although this information is becoming more avail­
able. Although the use of Eq. 00.4) does have some pitfalls due to
the limitation of not having individual patient parameters available,
it does provide a rational basis for the initiation of therapy.

Because of the problem of interpatient variability, it would be de­
sirable to be able to determine a maintenance dose based on one or
more measurable parameters in the individual patient. From a prac­
tical point of view this is generally not feasible. Recently, however,
publications have appeared which indicate that a maintenance dose
producing therapeutic plasma concentrations can be estimated based on
a single plasma concentration at a specific time t* following the oral
administration of a test dose X~ [2- 4]. The plasma concentration C*
following the test dose, assuming that it is in the postabsorptive-post­
distributive phase of a plasma concentration versus time curve, can
be given by the following equation:

* -0.693t*lt 1/ 2
C* = FXOZe

where Z is a constant dependent on the pharmacokinetic model and
route of administration. Dividing Eq. (10.2) by 00.5) and solving
for the reciprocal of the maintenance dose, 1/XO, yields

0.693t*lt
1/ 2

1 -"-e
C
*

Xo = CClsTZX~

Plots of 1IX0 versus C* have resulted in a linear relationship, as
illustrated in Figs. 10.4 and 10.5. Once data have been generated
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Fig. 10.4 Relationship between the reciprocal of the maintenance dose
of imipramine needed to achieve a steady-state total tricyclics (imipra­
mine and desipramine) concentration of 250 ng/ml and the concentra­
tion of total tricyclics 24 h after a single 50 mg oral test dose of
imipramine (see Ref. 4).

such as those presented in Figs. 10.4 and 10.5. the administration of
a test dose to a given patient followed by the measurement of c*
should permit the prediction of a maintenance dose that would yield
the desired C. This method can be applied to a patient population
with a relatively wide range of half-lives [4]. However. different I/XO
versus C* data sets should be developed for the same drug in patient
populations that have different ranges of half-lives. The optimum
sampling time following the test dose equals the average half-life
divided by 0.693 [5].

A more comprehensive single-point method has been described by
Sheiner et al , [6]. This method requires a computer system with a
large data base. In the case of digoxin. information concerning sex.
age. height. weight. outpatient or inpatient status. presence or ab­
sence of moderate or severe heart failure. values of kidney function
tests. as well as measured plasma concentration data must be avail­
able. The matching of patient characteristics and resulting plasma
concentration(s) for a given patient to a typical member of a sub­
group permits the forecasting of an individual's course of therapy
based on known outcomes of this subgroup member. It has been
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Fig. 10.5 Relationship between the reciprocal of the maintenance dose
of chloramphenicol needed to achieve a steady-state concentration of
15 11 g 1ml and the concentration of chloramphenicol 6 h after a single
25 mglkg test dose (see Ref. 4).

demonstrated that information from one plasma concentration is more
valuable than all information on patient features, and if two plasma
concentrations are available, forecast accuracy and precision are as
good as theoretically possible.

The time required to reach steady-state concentrations and obtain
a maximum response from a given dosing regimen may be excessive
because of the half-life of a given drug. This problem can be over­
come by the administration of a loading dose followed by administra­
tion of maintenance doses. As discussed in Chap. 3, a loading dose
Xocan be estimated by multiplying the maintenance dose by the ac-

cumulation factor R, which is equal to 11(1 - e-O.693T/t1/2) [Eq.
(10.1)]. Therefore,

(10.7)
1

X' =Xo 0 -0.693T/t
I / 2

1 - e

Equation (10.7) assumes that each does is administered in the post­
absorptive-postdistributive phase of each previous dose. For certain
drugs it may be advisable not to administer the loading dose as a
single dose, but rather to spread it over the first dosing inverval
or even longer if necessary. For example, a 1 mg loading dose of
digoxin should probably be given as three divided doses of 0.5, 0.25,
and 0.25 mg at 4- to 8- h intervals.
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Although consideration is given to the fluctuation in the steady­
state plasma concentrations of a drug when the dosing interval T is
selected, more precise estimates may be obtained by utilizing Fig.
10. 3. Onc~ T has been ~elected and t 1/2 has been estimated, the ra­
tios Cmax/C and Cmin/C at steady state can be estimated fro'!!.- this
figure .Esing the T/t1/2 ratio. Simply multiplying the chosen C by the
Cmax/C and Cmin/C ratios will yield estimates of Cmax and Cmin at
steady state. Since Fig. 10.3 is based on equations where instan­
taneous absorption is assumed, the measured Cmax would be expected
to be less than the predicted value, while the measured Cmin should
be greater than the predicted value.

DOSE ADJUSTMENTS IN RENAL FAILURE

There is generally a great deal of interpatient variability in the elim­
ination rates of drugs which are predominantly eliminated by metab­
olism. Other than employing the method discussed above, which in­
volves the administration of a test dose, there is no practical way to
obtain a priori a measure of the ability of a given patient to eliminate
such drugs. However, for drugs eliminated primarily by renal mech­
anisms, creatinine clearance and serum creatinine have been success­
fully employed to evaluate renal function in a given patient, thereby
enabling estimates of the clearance or half-life of a drug. The use of
serum creatinine measurements to determine renal function has been
discussed by Bjornsson [7]. Creatinine is a useful marker of renal
function since it is produced endogenously as an end product of muscle
metabolism and is eliminated by the kidney at a rate that approximates
glomerular filtration rate. It has been shown for a number of drugs
that the elimination of creatinine directly reflects drug elimination.

The apparent first-order elimination rate constant of a drug, K,
is equal to the sum of the rate constants for renal and nonrenal ex­
cretion, kr and k nr• respectively. That is,

K = k + k
r nr

(10.8)

Assuming that renal elimination is directly related to creatinine clear­
ance Clcr it follows that

K = aCl + kcr nr
(10.9)

where a is a proportionality constant. A plot of K versus Clcr will.
therefore, be linear (see Fig. 10.6). Data relating K to creatinine
clearance are available for many drugs, and summaries of such in­
formation appear in several publications [9-11]. Although the dis­
cussion above is concerned with adjusting an individual patient's
K for changes in renal function. the same approach can be used to
relate renal clearance or total body clearance of a drug to creatinine
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Fig. 10.6 Relationship between the elimination rate constants of 5­
fluorocytosine and creatinine clearance, based on studies in patients
with imparied renal function. The line intercepts the y axis at a
value of 0.0067 h- 1. (Data from Ref. 8.)

clearance. Although these relationships have been established for
digoxin [12], there are few data available for other drugs.

Because of the practical problem of obtaining a 24 h urine collec­
tion for the purpose of calculating creatinine clearance, serum cre­
atinine is generally used as an index of renal function. Since serum
creatinine Cc is inversely related to creatinine clearance by the
relationship

C = PR
c CI

cr
( 10.10)

where PR is endogenous production rate of creatinine, one would ex­
pect that a decrease in renal function would produce a corresponding
increase in serum creatinine. Solving (10.10) for Clcr and substituting
this value of creatinine clearance for Clcr in (10.9) yields

K = aPR + k
C nr

c

which in terms of half-life t1/2 is

( 10.11)
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(10.12)
1 aPR 1 knr

t
1/ 2

= 0.693 Cc + 0.693

since K = 0.693/t1/2 [Eq. (1.12)]. Therefore, a plot of K versus
1/Cc ' or 1/t1/2 versus 1/Cc ' will be linear (see Fig. 10.7).

Essential to the appropriate use of serum creatinine as an index
of renal function and drug elimination is that the production rate of
creatinine must be relatively constant. Since production rate depends
on the muscle mass in a given individual, one would expect sex, age,
and body weight to influence the relationship between serum creatinine
and creatinine clearance. Because of this, serum creatinine may be a
relatively poor index of renal function. One such example is illus­
trated in Table 10.1. Renal function decreases with increasing age,
whereas serum creatinine remains relatively constant; the decrease
in creatinine clearance is associated with a corresponding increase in
kanamycin half-life. Therefore, serum creatinine alone may have lim­
ited utility as an index of renal function and drug elimination under
certain conditions. Serum creatinine can, however, be employed in
conjunction with the age, sex, and weight of an individual to predict
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Fig. 10.7 Double reciprocal plot of gentamicin half-life versus serum
creatinine concentration (see Ref. 13).
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(10.13)

Table 10.1 Creatinine Clearance, Serum Creatinine, and Kanamycin
Half-Life as a Function of Age in Healthy Humans

Age
Cl C t 1/ 2cr c

(yr) n (ml/min) (mg%) (min)

20-50 13 94 ± 17a 0.97 ± 0.12 107 ± 27

50-70 21 75 ± 20 0.95±0.23 149 ± 49

70-90 27 43 ± 12 0.98±0.21 282 ± 99

aMean ± SD.
Notes: The increase in kanamycin half-life t1/2 with age is consistent
with the decrease in creatinine clearance Clcr' Serum creatinine Cc
appears to be independent of age. From Ref. 14.

a creatinine clearance. Although several approaches have been used
for such a prediction [15,16]. the following equation [17], based on
the data of Kampmann et al , [18], is particularly useful:

Cl = wt( 144 - age)
cr 71Cc

where age is in years, C is in mg%, Clcr is in mllmin, and wt is in kg.
Since creatinine is an en:! product of muscle metabolism, total body
weight should not be used in (10.13) for obese individuals. Rather,
some weight between total and ideal body weight is appropriate [19].
Equation (l0.13) is intended for use with males. For females the value
obtained from (l0.13) should be multiplied by 0.85 to correct for the
average difference in creatinine production between males and females.
As mentioned previously, (10.13) is only one of several approaches that
has been used to predict creatinine clearance. A study correlating
predictions using Eq . (l0.13) to measure clearance has found a cor­
relation coefficient of 0.84 [15], which is as high as any method to
which it was compared.

Once a creatinine clearance has been either determined directly
or predicted from a serum creatinine value using (10.13), an estimate
of the elimination rate constant or clearance can be obtained for the
patient from data such as those presented in Fig. 10.6. Once this
elimination parameter has been determined. it can be used in Eqs.
( 10.4) and (10.7) to calculate a maintenance dose and a loading dose,
respectively. The adjustment of doses of renally excreted drugs is
most critical for those drugs that have a narrow therapeutic range,
examples of which are digoxin and the amino glycoside antibiotics.
Drugs such as the penicillins and cephalosporins, which are also
eliminated primarily by the kidneys, probably require dose adjust-
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ments only when renal function is significantly compromised (i. e. ,
a creatinine clearance less than 20 ml/min), since they have a much
wider therapeutic range.

HEMODIALYSIS
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( 10.14)

Additional dose adjustments may be necessary in severe renal failure
patients who require routine dialysis. Hemodialysis, peritoneal di­
alysis, or hemoperfusion may result in drug removal from the body
and require replacement of this amount to maintain therapeutic con­
centrations. Hemodialysis is the most common method of removing
endogenous waste material in chronic renal failure patients, although
chronic ambulatory peritoneal dialysis is becoming more popular.
Hemoperfusion appears to be used primarily to remove drugs from the
body in cases of drug overdose.

A number of factors may influence the hemodialyzability of a drug
[20- 23]. Since hemodialysis membranes have discrete pores through
which drug must diffuse to be dialyzed, one might expect that the
larger the molecular size, the more poorly a drug will be dialyzed.
However, the clinical significance of molecular weight has not been
clearly established. Blood flow, dialysate flow, and aqueous solubility
are also factors that will influence dialyzability. A decrease in each
of these factors will tend to decrease the extent to which a drug is
dialyzed, with the relative effect of each being governed by their
influence on the concentration gradient between blood and dialysate.

The pharmacokinetic characteristics of a drug will also have a
significant impact on the ability of a drug to be dialyzed. Those
drugs that have a large volume of distribution and/or are highly
plasma protein bound tend to be poorly dialyzed. When the ratio of
percent unbound/volume of distribution (in liters/kg) is less than 20,
a small and probably insignificant amount (Le., less than 10%) of
drug will be removed from the body by a 6 h dialysis, while a value
greater than 80 suggests that between 20 and 50% of the amount of
drug in the body will be removed by dialysis (see Fig. 10.8).

The use of binding and distribution data will give one a general
appreciation of the dialyzability of a given drug, but more precise
estimates of the amount removed may be desirable for the purpose of
dose adjustments. One approach involves the use of the half-lives
of drug during dialysis, (t1l2)d, and when dialysis is not being per­
formed, t1/2. The fraction of drug in the body removed by dialysis,
f, can be given by [24]

t 1/ 2 - (t 1/ 2)d -0.693t/(t 1/2)df= (l-e )
t 1/ 2

where t is the duration of dialysis. The half-lives t1/2 and (t1/2)d
can be obtained from the literature for a number of drugs, some of
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Fig. 10.8 Plot of the fraction of drug in the body removed by a 6 h
hemodialysis treatment versus the ratio of the percentage of drug in
the plasma unbound to plasma proteins to the apparent volume of
distribution V of the drug expressed in liters/kg. (From Ref. 24.)

which have been tabulated [24]. A predialysis concentration C and
the volume of distribution V of the drug must also be known. This
information then enables the amount of drug that will be removed
from the body by dialysis, Xd, to be estimated. The relationship is

(10.15)

( 10.16)

This amount of drug can then be administered at the end of the
dialysis.

Another approach for estimating the amount of drug removed
during dialysis involves the use of dialysis clearance. The rate of
appearance of drug in the dialysate, dXd / dt , is given by

dX
d

<it=kdX

where kd is the first-order rate constant for appearance of drug in
the dialysate. and X is the amount of drug in the body. Over a finite
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period of time (e.g., dialysis time), dXd/dt can be replaced by
/::, Xd / /::, t . The amount of drug in the body is equal to the product of
the plasma concentration Cp and volume of distribution V. Since
dXd/dt is replaced by /::,Xdl lit, plasma concentration must be measured
at the midpoint (1. e., Cp m)' Equation (10.16) can therefore be
written as

(10.17)

(10.18)

lIX
d--= k VC

II t d pm

The product kdV will equal dialysis clearance Cld; therefore,

lIX
d

t;t= CldCp m

Equation (10.18) can be solved for the amount of drug appearing in
the dialysate, II Xd or Xd' during a given dialysis time II t or t:

( 10.19)

or

(10.20)

(10.21)(Cl
d

) = Q
p p

To determine the amount of drug in the dialysate, one must know the
duration of dialysis, the plasma concentration at the midpoint of the
dialysis interval, and dialysis clearance. A value for dialysis clearance
must be obtained from the literature and should have been determined
based on plasma concentration-time rather than blood concentration­
time data.

Dialysis clearance measured in terms of plasma (Cld)p is given by

C -Cap vp
Cap

and

(10.22)
Cdo

(Cl
d ) = Qd C

P vp

where Qp is plasma flow through the dialyzer, Qd is dialysate flow,
Cap and Cvp are arterial and venous plasma concentrations of drug
(Le . , the plasma concentrations entering and leaving the dialyzer),
and Cdo is the dialysate concentration leaving the dialyzer. Equa­
tion (10.22) can be readily applied if dialysate concentrations can be
measured. This may be a problem because of the low concentrations
frequently encountered and the inconvenience of collecting the large
volume of dialysate.
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The use of (10.21) requires an estimate of plasma flow through
the dialyzer. This can be calculated from blood flow, which is quite
readily measured. Blood concentration Cvb is related to plasma con­
centration Cvp by the relationship

C = C (1 - H + C
vr b c H) (10.23)

b p Cvp

where H is hematocrit and Cvrbc is the drug concentration in the red
blood cells. Since drug removal rates will be equal no matter whether
clearance is expressed in terms of blood or plasma, it follows that
[ 25]

(10.24)

(10.25)

(10.26)

where (Cld)b is dialysis clearance based on blood concentrations.
Solving Eqs. (10.23) and (10.24) for the ratio of blood to plasma con­
centrations and setting the right sides of the resulting equations equal
to each other yields

(Cld)p = 1 _ H + Cvr bc H
(Cld)b Cvp

An equation analogous to (10.21) can be written in terms of blood
concentrations Cab and CVb' flow Qb' and clearance (Cld)b:

C -C
(CI) = Q ab vb

d b b Cab

The extraction ratios (Cap - Cvp)1 Ca and (Cab - Cvb)/Cab in
(10.21) and (10.26) are equal if the re~blood cell-to-plasma concen­
tration ratio is constant on both sides of the dialyzer. Therefore,
the ratio of (10.21) to (10.26) is given by

(Cl
d

) Q
-.;.;....&..p = ...=.E. (10.27)
(Cld)b Qb

Substituting for (Cld)p/(Cld)b according to (10.25) and solving for
Qp yields

Q = Q (1 - H + CvrbcH) (10.28)
p b Cvp

Therefore, to calculate dialysis clearance based on (10.21), plasma
flow should be calculated using (10.28). As can be seen, red blood
cell concentration and hematocrit in addition to plasma concentration
must be measured to permit this calculation.
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The plasma flow calculated by (10.28) is actually an apparent
plasma flow and will only equal real plasma flow as given by

401

(10.29)Q
p

=Qb(l- H)

if no drug distributes into the red blood cells. The use of (10.29)
instead of (10.28) will result in an underestimate of the true dialysis
clearance if the drug partitions to any significant degree into red
blood cells. It is also readily apparent from (10.28) that plasma flow
equals blood flow if the concentrations of drug in the red blood cells
and plasma are equal.

Utilizing a correctly determined dialysis clearance [io e., one
calculated using (10.21) or (10.22)] will permit an estimate of the
amount of drug removed during dialysis. This amount can then be
replaced at the end of the dialysis to permit the maintenance of ther­
apeutic plasma concentrations.

In general, the same principles apply to the dialyzability of a
drug by peritoneal dialysis as were mentioned for hemodialysis, the
primary difference being the properties of the membrane to be tra­
versed by the drug, the peritoneal membrane versus the synthetic
membrane in hemodialysis. It has been suggested that the peritoneal
membrane appears more permeable to larger molecules (e.g., molecular
weights of 5000 or more) than does a hemodialysis membrane [26].
Also, the characteristics of the peritoneal membrane would require
that to be dialyzable a drug must have a certain degree of lipid solu­
bility. Overall peritoneal dialysis tends to be much less efficient than
hemodialysis in removing drugs. Although there is much less quan­
titative information available on peritoneal dialysis, it would seem rea­
sonable that the amount of drug removed from the body due to peri­
toneal dialysis, and hence the amount of additional drug necessary
to maintain therapeutic plasma concentrations, could be determined
using either (10.14), or (10.20) and (10.22).

METHODS FOR DETERMINATION OF INDIVIDUAL PATIENT
PARAMETERS

Most individualized drug dosing and/or dose adjustment methods have
relied on population data and individual patient characteristics. A
more precise approach would be to assess the pharmacokinetics of a
drug directly in the patient receiving the drug. The single-point
method [2-5] described earlier in this chapter is one such approach
to estimate clearance in individuals within a defined population.
The method described by Sheiner et al , [6] is a more general ap­
proach. Other methods which require several blood samples after
administration of test doses have been applied to gentamicin [27,28]
and phenytoin [29,30]. These methods may be used for drugs with
similar pharmacokinetic properties.
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(10.30)

(10.31)

(10.33)

If the half-life t1/2 or elimination rate constant K and volume
of distribution V can be determined in a patient for a drug that obeys
first-order kinetics and essentially confers on the body the pharma­
coklnetlc characteristics of a one-compartment model, a total dosing
regimen can be designed. This has been demonstrated with genta­
micin [27,28]. Following a 1 h intravenous infusion of gentamicin the
maximum plasma concentration of gentamicin, Cmax' is given by
(see Chap. 1)

k
C ::~ (1 - e -KT) + C e -KT

max VK 0

where kO is the zero-order infusion rate, T the infusion time, and Co
the preinfusion drug concentration, which will be zero if the patient
has not recently received drug prior to this dose. Collection of blood
samples prior to the infusion and at 1, 2, and 4 h after the start of
the infusion will yield a value for Cmax (i , e., the 1 h concentration),
CO' and K. The rate constant is obtained by applying linear re­
gression to the logarithms of the 1, 2, and 4 h concentrations plotted
against time.

Solving (10.30) for volume of distribution yields

k (1 - e -KT)
oV :: -~------

K(C - C e- KT)
max 0

Since all of the terms are known, V can be readily calculated. The
estimated values of V and K can then be used to calculate the amount
of gentamicin to be infused over 1 h to provide the desired maximum
or minimum steady-state concentrations, (Css)max and (Css)min.
(Css)max is given by [27]

-KT
k (1 - e )

(C) :: 0 (10.32)
ss max VK(1 _ e- KT)

where 11s the dosing interval. Equation (10.32) can be solved for
the infusion rate required to obtain the desired maximum steady-state
concentration, that is

VK(C) (1 - e -K T )

k:: ss max
o -KT

1 - e

The predicted minimum steady-state concentration will be given by the
following equation:

(C ) . = (C) e -K(T - T)
ss mm ss max

(10.34)
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Fig. 10.9 Distribution of differences between predicted and observed
peak (upper panel) and nadir (lower panel) concentrations of genta­
micin in serum at steady state. (From Ref. 28.)

This method was evaluated in 63 patients for whom it was desirable to
produce maximum and minimum gentamicin concentrations ranging from
6 to 10 u g/rnl and 0.5 to 2 u g/rnl , respectively [28]. The results are
presented in Fig. 10.9. Sixty percent of the maximum values and 56%
of the minimum values were within 1 u g Iml of those predicted.

AUROBINDO EX. 1018, 415



404

24

•

Pharmacokinetics

j 20

en
z
o
~a:
l­
Z
LJJ
Uz
8
o
LJJ

t;
C
LJJ
a:
Q.,

(10.35)

Fig. 10.10 Correlation of predicted and observed concentrations of
phenytoin in serum. (From Ref. 29.)

Other methods have been recommended for the dosing of the anti­
convulsant phenytoin based on its pharmacokinetic parameters in the
patient receiving the drug. Since phenytoin is eliminated by a non­
linear process, the assessment of the necessary parameters becomes
somewhat demanding. The elimination rate dXe/dt of phenytoin can
be adequately described by the equation (see Chap. 7)

dXe VmC

<it= K + C
m

where C is plasma concentration, Vm the maximum rate of elimination,
and Km the concentration at which dXe/dt equals one-half Vm. At
steady state the rate of drug administration RA in mg/day equals the
rate of elimination, and concentration will then be the steady-state
concentration. Therefore,
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v C
RA = m ss

K + C
m ss

This relationship can be rearranged to yield

RARA = - K - + V
m C m

ss

405

(10.36)

(10.37)

Therefore, a plot of dose rate versus dose rate divided by steady­
state concentration (Le., RA versus RA/C ss ) will yield a straight line
with a slope of - Km and an intercept of V m- Thus this method re­
quires that the phenytoin be dosed to at least two steady states. Once
estimates of these parameters are obtained, the daily dose required to
produce a desired steady-state concentration can be calculated from
(10.36). The predictive ability of this approach is illustrated in
Fig. 10.10.

Although this method is sufficiently accurate for clinical purposes,
it is simply too time consuming to be of much value in routine practice.
Simpler methods have been described [30,31] but are probably less
accurate. Thus far, no widely accepted method has been proposed for
individualized dosing with drugs having nonlinear pharmacokinetics.

In conclusion, we wish to reiterate that this chapter does nothing
more than provide a few examples of the potential usefulness of phar­
macokinetics in the clinical setting. There is general agreement that
such applications have permitted us to use certain drugs more safely
and more sensibly.
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Noncompartmental Analysis Based on
Statistical Moment Theory

Throughout this text we have used noncompartmental methods for the
estimation of certain pharmacokinetic parameters without specifically
referring to them as such. These methods are usually based on the
estimation of the area under a plot of drug concentration versus time.
Noncompartmental methods have been used to estimate bioavailability,
clearance, apparent volume of distribution, and the fraction of a dose
of a drug that is converted to a specific metabolite, based on data
following single doses of drug and metabolite. These methods have
also been used to predict the average steady-state concentration of a
drug or its metabolites, based on data following a single dose of the
drug, and the time required to reach a given fraction of the steady­
state concentration when a fixed dose of a drug is given at regular
intervals.

Noncompartmental methods do not require the assumption of a
specific compartmental model for either drug or metabolite. In fact,
these methods can be applied to virtually any compartmental model,
provided that we can assume linear pharmacokinetics. Noncompart­
mental methods are hardly new. However, the idea that noncompart ­
mental methods provide a general approach for pharmacokinetic analy­
sis is both new and important. During the preparation of this edition
of Pharmacokinetics, there has been a distinct shift away from com­
puter-based curve-fitting of experimental data and elaboration of
compartmental models and toward noncompartmental methods of analy­
sis. In the final stages of preparation of the text, this shift was so
evident, that the authors concluded that a separate section dealing
with the subject matter was required. Therefore, this chpater has
been added in proof. The scope of this chapter is by necessity limited:
we shall briefly introduce the basis for noncompartmental analysis,
summarize the various noncompartmental methods that have been pre­
sented in different sections of the text, modestly extend the applica­
tions of noncompartmental analysis, and, perhaps, provide some
direction for future developments.

409
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STATISTICAL MOMENTS

Pharmacokinetics

Statistical moments have been used extensively for data analysis in
chemical engineering [1]. One of the earliest applications to biological
systems was provided by Perl and Samuel [2] in a report concerned
with the kinetics of body cholesterol. In 1975 Oppenheimer et al , [3]
applied statistical moments to the analysis of iodothyronine metabolism
and distribution in man. The application of statistical moments to
pharmacokinetics was reported in 1979 by Yamaoka et al , [4] and
Cutler [5]. In 1980, Riegelman and Collier [6] applied statistical
moment theory to the evaluation of drug absorption.

The time course of drug concentration in plasma can usually be
regarded as a statistical distribution curve [1]. Irrespective of the
route of administration, the first three (zero to second) moments are
defined as follows:

AVC =1'" C dt

f; tC dt AUMC
MRT = = --.

f;c dt AUC

(11.1)

(11. 2)

f; t
2

C dt
VRT = =f; C dt

f; (t - MRT)2 C dt

AUC
(11. 3)

where MRT is the mean residence time and VRT is the variance of the
mean residence time of a drug in the body. AUC, MRT, and VRT are
termed the zero, first, and second moment, respectively, of the drug
concentration-time curve. The area under the curve of a plot of the
product of concentration and time versus time from zero time to infinity
is often referred to as the area under the (first) moment curve, AUMC
[7]. The moments defined above can be calculated by numerical inte­
gration using the trapezoidal rule (see App. D) from concentration-time
data following drug administration. Only the zero and first moments
have been used in pharmacokinetic analysis because the higher mo­
ments are prone to an unacceptable level of computational error.

In the usual single-dose pharmacokinetic study, blood sampling
is stopped at some time t* when drug concentration, C*, is measurable.
Hence, estimation of the area under the blood level-time curve from
zero time to infinity, AUC, must be carried out in two steps. The
area under the curve from zero time to t* is calculated by means of the
trapezoidal rule. To this partial area we must add the area under the
curve from t* to infinity, which is usually estimated as follows:
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100 c-
C dt::: ~

t* n

411

(11. 4)

where An is 2.303 times the slope of the terminal exponential phase of
a plot of log drug concentration versus time. The sum of the two
partial areas is AUC.

The same approach must be used to estimate total AUMC. The area
under the first moment curve from t* to infinity is estimated as
follows [7]:

t*C* C*tC dt::: --+-
An A2

n

BIOAVAILABILITY

(11. 5)

Bioavailability often refers to the fraction (F) of an oral dose that
actually reaches the systemic circulation. Since the availability of
an intravenous dose is usually unity, we can estimate F as follows:

D. AUC
F::: 1. v. oral

D AUC.
oral 1. V.

(11. 6)

Hence, F is simply the ratio of the zero moments after oral and intra­
venous (i , v .) administration, respectively, adjusted for differences
in the size of the dose. Equation (11.6) assumes equal clearances in
the oral and intravenous studies. The fraction of the oral dose
available relative to a standard other than an intravenous injection
(Fr ) may be estimated by means of a similar equation.

CLEARANCE

Increasingly, clearance is viewed as the single most important param­
eter to describe the pharmacokinetics of a drug. One can define
clearance as the reciprocal of the zero moment of a blood level-time
curve normalized for dose. In other words,

D.
Cl:::~

AUC
(11. 7)

Clearance is usually calculated after an intravenous dose (Di, v'> of a
drug, but may sometimes be calculated after intramuscular administra­
tion. Clearance cannot be estimated after oral administration of a drug
unless it can be assured that the total dose reaches the systemic
circulation.
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For drugs that are completely absorbed from the gastrointestinal
tract and that are eliminated only by metabolism in the liver, the ratio
of oral dose to Aue is equal to the hepatic intrinsic clearance of the
drug. Under certain conditions intrinsic clearance may be related to
the Vmax and Km of the drug-metabolizing enzyme process.

HALF-LIFE

(11. 8)

The first moment of the blood level-time curve, mean residence time,
is the statistical moment analogy to half-life (t1/2)' In effect, the
MRT represents the time for 63.2% of the administered dose to be
eliminated. Therefore, the MRT of a drug that can be described by a
one-compartment model after intravenous administration is given by the
following equation [3]:

MRT ::.!..
i ,v. K

where K is the first-order elimination rate constant. It follows that

t 1/ 2:: 0.693 • MRTL v•
(11. 9)

(11.10)
K

MRT.
1. v ,

The MRT of a drug that distributes slowly and requires multi­
compartment characterization is a function of the model rate constants
for distribution and elimination. However, in noncompartmental terms
the following relationship is useful [7].

1
:: -

where K is a first-order rate constant equal to the ratio of clearance
to apparent volume of distribution at steady state c:!ss)' For drugs
requiring multicompartment characterization, A1 < K < An' It may be
appropriate in most instances to consider the product of 0.693 and
MRTi.v. as the effective half-life of a drug requiring a multicompart­
ment model.

Irrespective of the distribution characteristics of drug, MRT rep­
resents the time for 63.2% of a intravenous bolus dose to be eliminated.
As such, it may be possible to estimate MRT from urinary excretion
data alone by determining the time required to excrete 63.2% of that
amount of the dose which is ultimately excreted in the urine.

Mean residence time is a function of how a drug is administered.
MRT values for noninstantaneous administrations will always be greater
than the MRT following intravenous bolus administration. However,
MRTi. v . may sometimes be estimated following other modes of drug
administration. For example, following a short -term constant -rate
intravenous infusion, the first moment of the blood level-time curve
is given by
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(11.11)T
MRTin f = MRTi,v. + 2"

where T is the infusion time. Therefore, MRTinf can be calculated
from the data according to Eq. (11.2), and MRTi.v. may be estimated
by rearranging Eq. (11.11).

ABSORPTION KINETICS

Statistical moment methods for estimating rates of absorption after
oral or intramuscular administration of a drug are based on dif­
ferences in mean residence times after different modes of administra­
tion [5]. In general,

MAT =MRT . - MRT.rn r.v ,
( 11.12)

where MAT is the mean absorption time, MRTni is the mean residence
time after administration of the drug in a noninstantaneous manner,
and MRTi. v , is the mean residence time after intravenous bolus ad­
ministration.

When drug absorption can be described by a single first-order
process,

MAT =~ (11.13)
a

where ka is the apparent first-order absorption rate constant. Under
these conditions the absorption half-life is given by

Absorption t
1

/
2

= 0.693 • MAT (11.14)

When drug absorption is a zero-order process,

TMAT =­
2

(11.15)

where T is the time over which absorption takes place.
Deconvolution, described in Chap. 4, is another example of the

application of statistical moment theory for the estimation of absorp­
tion kinetics. Riegelman and Collier [6] have applied statistical mo­
ment theory to the gastrointestinal absorption of a drug after oral
administration of a solid dosage form. Their analysis permits the
estimation of a mean dissolution time of a drug from its dosage form.

APPARENT VOLUME OF DISTRIBUTION

Of the many parameters used to describe drug distribution, the most
useful is the apparent volume of distribution at steady state, Vss '

AUROBINDO EX. 1018, 425



414 Pharmacokinetics

According to statistical moment theory [3,7], Vss is simply the product
of clearance and mean residence time. after a single intravenous
bolus dose of a drug. Therefore,

D • AUMC
V = CI • MRT = ~i....;.v..:.....---::__

ss AUC2
(11.16)

(11.17)V ss

Although Eq. (11.16) applies only to intravenous bolus administra­
tion, the relationship can be modified easily to accommodata other
modes of drug administration [8]. If a drug is given by a short -term
constant rate intravenous infusion [9], then

infused dose· AUMC infused dose· T
AUC2 2 • AUC

(11.18)2 • AUC

kOT • AUMC
V =-----

ss AUC2

where T is the infusion time. Since the infused dose is equal to the
product of the zero-order infusion rate. kO' and T. we can also ex­
press Eq. (11.17) as follows:

k T
2

o

FRACTION METABOLIZED

( 11.19)

It is sometimes useful to know the fraction of a dose of a drug that
is converted to a certain metabolite. An unambiguous estimation re­
quires that a single dose of both drug and metabolite be admimistered
[10]. Although statistical moment theory does not reduce the exper­
imental difficulties in making this estimation. it does facilitate the
analysis.

It can be shown that the fraction metabolized, Fm• to a specific
metabolite is simply equal to the ratio of the zero moment of the
metabolite level-time curve after administering the drug to the zero
moment of the metabolite level-time curve after administering an equi­
molar dose of the metabolite [10] :

AUC'x
Fm = AUC'

where AUC'x is the area under the curve of metabolite concentration
in plasma versus time from zero time to infinity after an intravenous
dose of the drug, and AUC' is the total area under the metabolite
concentration-time curve after an equimolar intravenous dose of the
metabolite.
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PREDICTING STATE-STATE CONCENTRATIONS

415

When a dose of a drug is repetitively given at regular intervals , the
area under the drug concentration-time curve during a dosing interval
at steady state is equal to the total area under the curve after a
single dose. Therefore, we can demonstrate that the average drug
concentration at steady state, which is equal to the area under the
drug level-time curve during a single dosing interval at steady state
divided by the duration of the dosing interval, can be estimated after
a single dose of the drug according to the following equation:

- AVC
C=-­

1"
(11. 20)

where AVC is the total area under the curve after a single dose and
1" is the dosing interval.

The ratio of metabolite to drug concentration at steady state can
also be predicted after a single dose of the drug [11,12]. This re­
quires determination of the zero moment of both the metabolite level­
and drug level-time curves after administering the drug (see Chap. 8).

PREDICTING TIME TO STEADY STATE

To carry out a pharmacokinetic analysis at steady state, or to de­
termine whether a patient is stabilized after continuous administration
of a drug, we must be able to estimate the time required for the drug
concentrations in plasma to reach some substantial fraction (e. g. ,
90- 99%) of the steady- state concentration. For drugs that distribute
rapidly and can be described by a one-compartment model, the time to
reach a certain fraction of steady state is a relatively simple function
of the half-life of a drug. The situation is more complicated for
drugs that require multicompartment characterization. Statistical
moment theory provides a unique solution to this problem. Chiou [13]
has recently shown that by means of area analysis one can predict
the time to reach a given fraction of steady state from a single dose
administered in the same way that will be used for repetitive dosing.
In essence, the time required, after giving a single dose, for the
partial area under the curve, xuc]. to be equal to a certain fraction
of the total area under the curve, AVe, is the same as the time re­
quired to reach the same fraction of steady-state on repetitive dosing
of the drug [14]. This relationship is expressed in the following equa­
tion:

Ave
t

f 0
ss = Ave (11. 21)

where fs s is the fraction of the steady-state reached at time t on
repetitive dosing, and the area terms refer to a single dose.
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CONCLUSIONS

Pharmacokinetics

This overview of noncompartmental methods based on statistical
moment theory, albeit circumscribed, is sufficient in our view to
demonstrate the power of the approach. It is evident that statistical
moment theory permits a wide range of analyses that, in most instan­
ces, will be adequate to characterize the pharmacokinetics of a drug.

There are, of course, certain problems that are not addressed
by this theory. Nonlinear events are not adequately treated at this
time by statistical moment theory. Statistical moments provide only
limited information regarding the time course of drug concentrations;
for the most part, we deal with averages. However, we point out that
other types of noncompartmental methods such as superposition (see
App. E) can be used to augment statistical moment theory in this
case.

We strongly suspect that future developments will remove many of
the limitations that now exist. We predict that these trends in phar­
macokinetic analysis, coupled with the impressive developments in
microcomputer technology, will remove the reliance on main frame
computers and may make compartmental analysis a matter of historical
interest.
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Appendix A

Method of Laplace Transforms

Rate equations that describe apparent zero-order or first-order proc­
esses are termed linear equations. The Laplace transform is used for
solving linear differential equations and hence is applicable to the
solution of many equations used for pharmacokinetic analysis. A
rigorous mathematical development of the Laplace transform method
will not be provided herein. However, the basic idea of the method
and its application in solving relatively simple differential equations in
pharmacokinetics will be examined. For a more detailed treatment, the
reader is referred to several books [1- 3] and particularly to a pro­
grammed text [4] that should prove useful.

Essentially what the Laplace transforn; does is replace the time
domain of a rate expression by the complex domain of the Laplace
operator s , This is achieved by eliminating the independent variable
(in pharmacokinetics this variable is always time) and replacing it with
the Laplace operator. The Laplace transform enables complex rate
expressions to be manipulated easily by conventional algebraic tech­
niques once the time variable has been replaced by the Laplace opera­
tor s , Since most problems fall into certain patterns, the transformed
expression may be rearranged into a form that can generally be found
in a table of Laplace transforms. Values for initial conditions may be
included in the transformed expression. Consequently, upon trans­
formation back into the time domain, the complete solution to the dif­
ferential equation is obtained.

The means by which a time-dependent expression is transformed
into the s domain is given by the Laplace integral Lf(t), which is
defined by

Lf(t) =1"" e -stf(t) dt

where f(t) is the time-dependent function. Thus the function is
multiplied by e-st, and this product is evaluated by integration from
time zero to time infinity.

419
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(A.2)

(A.3)

The Laplace transform of several expressions will be derived using
the Laplace integral simply to illustrate how the transforms are ob­
tained. However, once certain transformed functions that are used
repeatedly in pharmacokinetics are established, the use of the integral
may be dispensed with for future transformations simply by construct­
ing an appropriate table of transforms and referring to this table for
the transform of the desired time-dependent expression. For example,
to obtain the transform of a constant A, the Laplace integral can be
applied:

L(A) = leo e-stAdt

which when integrated becomes

L(A) = A ( - ~) e -st 1~
Evaluation of this equation between the limits of time zero and infinity
yields

L(A) A
= -

s
(A.4)

(A.5)

(A.6)

Thus the transform of any constant will take the form given in Eq.
(A. 4). The transform of the constant kO' for example, will simply
be kO/s. Initially, derivation of the transform of a function requires
some knowledge of integral calculus. However, once these transforms
are known, no integration is required.

The transformation of an exponential function is also readily ac­
complished. Proceeding as before, the Laplace integral may be applied
to the function e- at:

L(e-at) = leo e-st(e-at) dt = leo e-(s+a)t dt

which when integrated yields

-at 1 -(s+a)t I"" 1
L(e ) = - s + a e 0 = s + a

If this exponential is multiplied by a constant, for example Ae-at, the
resulting transform is found to be A I (s + a) .

A function that is used quite often is the derivative expression
df'(t ) Idt. The Laplace integral is

L df(t) = (eo -st df(t) dt (A.7)
dt 10 e dt

Solving this integral by integration by parts yields
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roo e-st df(t) dt = e-stf(t) 100 _ roo _ se-stf(t) dt
Jo dt 0 Jo

since

f.b h(x) d~~X) dx = h(x)g(x) I: -lb
d~~X) g(x) dx

and

421

(A.8)

(A.9)

(A.10)

(A .13)

de -st -st
Cit= -se

Equation (A. 8) may be simplified to

100
e- st d~~t) dt = -f(O) +100

e-stf(t) dt (A.H)

In this equation fO'e-stf(t) dt equals Lf(t) [see (A.1)]. Therefore,

(00 e -st df(t) dt = -f( 0) + sLf(t) (A .12)Jo dt

Hence the Laplace transform of df(t)/dt is given by

L df(t) = sLf(t) - f(O)
dt

where f(t) is the time-dependent function we are interested in finding,
df(t) /dt is the derivative of this function (as in a rate expression,
for example dC / dt ) , and f( 0) is the value of the function at time zero
(initial condition).

The approach outlined above has been used in determining the
Laplace transforms of many functions. Some of the most useful of
these are presented in Table A.1. On the left side of the table are
the time-domain functions that are commonly encountered in rate ex­
pressions. The corresponding, a-domain, Laplace transforms are
shown on the right side of Table A. 1, opposite their time functions.

There are examples throughout Chap. 1 illustrating the use of
the method of Laplace transforms for solving linear differential equa­
tions. The derivation of the expression describing the time course
of the amount of drug in the body during zero-order intravenous in­
fusion will be presented here to illustrate the steps that should be
followed in solving such equations. Initially, the rate expression
for the species of interest should be written. In this example the
rate expression is

dX- = k - KX
dt 0

(A.14)
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Table A. 1 Laplace Transforms of Some Common Functions

Function. F(t)

1

A

t

-at
Ae

A -(b/a)t-ea

Laplace Transform. f(s)

1
s

A
s

1
2

a

m!
m+l

a

A
a + a

A

(s + a) 2

A
s(s + a)

A
as + b

-at -bt
(B - Aa)e - (B -- Ab)e

b - a

A -at -bt
b - a (e - e )

e -at[A + (B - Aa)t]

(b *a)
As + B

(a + a)(a + b)

A
(a + a)(a + b)

As + B

(s + a) 2

1 2 -at
-- PQR [P(Aa - Ba + C)e

+ Q(Ab 2 - Bb + C)e-b t + R(Ac 2 - Bc + C)e oct]

(P = b - c. Q = c - a, R = a - b)

[
1 1 -at 1 -bt]

A ab + a(a - B) e - b(a _ b) e

As 2 + Bs + C
(a + a)(s + b)(a + c)

A
a(s + a)(a + b)

B a
2

- Aa + B -at b 2 - Ab + B -bt
ab a(b - a) e + b(b _ a) e

B
ab

Aa - B -at Ab - B
a(a - b) e + b(a - b)

-bt
e

A
2

a (a + a)

As + B
a(s + a)(a + b)

a
2 + Aa + B

a(s + a)(a + b)

From Ref. 5.
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where X is the amount of drug in the body, kO the zero-order in­
fusion rate, and K the apparent first-order rate constant for elimina­
tion of drug from the body. Taking the Laplace transform of each
term yields

sLf(X) - X(O)
s

KLf(X) (A.15)

For simplicity in writing such transformed expressions, the following
convention will be employed. A bar will be placed over the dependent
variable that is being transformed. Thus

kOsX - X(O) = - - KX
s

(A.16)

(A. IS)

This greatly facilitates representation of transformed expressions.
The symbol Xo or D (dose) rather than X(O) is generally em­

ployed for the initial amount of X present at time zero. In the present
example Xo equals zero since there is no drug in the body a.!.time
zero. Setting X(O) equal to zero in (A.16) and solving for X yields

kO

which is the transform of the desired quantity X. An expression
identical in form to the right-hand side of (A.17) may be found under
the column for Laplace transforms in Table A. 1. This expression is
A/s(s + a).

The time-dependent function F(t) for this transform is
A(l - e- at) la (see Table A.l). Since k Ois A and K is a, the ex­
pression for the amount of drug in the body X as a function of time
following intravenous infusion may be readily written

k O -Kt
X=""K (l-e )

This equation is the complete solution to the differential equation given
in (A.14).

REFERENCES

1. N. F. Nixon. Handbook of Laplace Transformation: Fundamentals,
Application, Tables, and Examples, 2nd ed. Prentice-Hall,
Englewood Cliffs, N.J., 1965.

2. N. F. Nixon. Handbook of Laplace Transformation: Fundamentals,
Applications. Tables. and Examples-Workbook (with answers) ,
2nd ed. Prentice- Hall, Englewood Cliffs, N. J., 1965.

AUROBINDO EX. 1018, 435



424 Pharmacokinetics

3. H. S. Bear, Jr. Differential Equations. Addison-Wesley,
Reading, Mass., 1962.

4. R. D. Strum and J. R. Ward. Laplace Transformation Solutions
of Differential Equations: A Programmed Text. Prentice-Hall,
Englewood Cliffs, N.J., 1968.

5. A. Rescigno and G. Segre. Drug and Tracer Kinetics, Blaisdell,
Waltham, Mass., 1966, p . 204.

AUROBINDO EX. 1018, 436



Appendix B

Method for Solving Linear Mammillary Models

(B.1)

(s + E.)
1

N
- E

j=2

N
II (s + E.)

i=l 1

d
S,c

A method is available which permits, by means of some very simple
general treatments, the derivation of equations for any linear mam­
millary compartment model with any first- or zero-order, or bolus
(instantaneous) input process. This is accomplished by the use of
(1) general input and disposition functions, (2) a method for solving
partial fractions to obtain solutions to Laplace transforms, and (3) a
multiple-dosing function. The input function and the disposition func­
tion are defined such that the product of these two functions yields
the Laplace transform of the equation describing the time course of
a drug in a model compartment. A disposition function defines the
model necessary to describe drug levels in the body or a compartment
thereof. Disposition describes everything that happens to a drug
(1. e., distribution and elimination through all possible routes) when
input into the system occurs instantaneously. Input functions de­
scribe the processes necessary to get the drug into the body. They
may either describe an intravenous bolus injection, an intravenous in­
fusion, or first- or zero-order absorption from a site such as the gas­
trointestinal tract or a muscle.

The following general equation has been empirically derived to
describe the Laplace transform for the disposition function of the cen­
tral compartment in a linear N-compartment mammillary model where
elimination of drug from any compartment is allowed:

N
II

i=2

425
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In this equation:

. d = disposition function for compartment 1, the central
s ,c compartment; it is a function of s , the Laplace operator

(see Appendix A)

II = continued product where any term is defined as equal
to 1 when the index takes a forbidden value; that is,
i = 1 in the numerator or m = j in the denominator

L = continued summation where any term is defined as
equal to zero when the index takes a forbidden value

k
1
j' kj1 = first-order intercompartmental transfer rate constants

E., E = sum of the exit rate constants out of compartments i or
1 m

m

N = number of driving force compartments in the disposition
model (I.e., compartments having exit rate constants)

This equation has been employed in the text for the determination
of disposition functions for several multicompartment models.

The following input functions describe the usual ways drugs get
to the systemic circulation: intravenous bolus, ins = dose; first­
order absorption, ins = ka dose!(s + ka), where ka is the first-order
absorption rate constant. The input function for absorption may de­
scribe absorption from any site but will usually be used for either
oral or intramuscular dosing. The term "dose" in this input function
refers to the amount of drug that actually gets into the system as
such. Frequently, an F may appear in equations describing oral
dosing, where F is the systemic availability of the drug. For intra-

-t s -Tsvenous infusion or zero-order absorption, ins =k O<e 0 - e ) s,
where k Ois the zero-order infusion rate in units of amount per time
and to and T are the times when infusion begins and ends, respec­
tively. In most cases, the intravenous infusion begins at time zero
(to = 0) and, therefore, the input function for intravenous infusion
is generally ins = kO(l - e-Ts)!s. This input function may be used
to define zero-order input from the gastrointestinal tract as well as
constant rate intravenous infusion. Input functions may also be com­
bined if a drug is given by more than one route of administration.
For example, it is common to given an intravenous bolus injection
of a drug to produce therapeutic blood levels quickly followed by a
zero-order infusion so that these blood levels may be maintained. In
this case, the input function ins would equal dose + kO(1 - e-Ts)!s if
the infusion began at the same time that the bolus injection was
administered.

The product of the input and disposition functions yields the
Laplace transform for the amount of drug in the central compartment,
as,c:
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a = in d
S,c s s ,c

427

(B .2)

(B.3)

The anti-Laplace of the resulting transform may be found in an ex­
tensive table of Laplace transforms. However, the method of partial
fractions is generally easier to apply. The use of a general partial
fraction theorem for obtaining inverse Laplace transforms, denoted
L-l, has been described [1]. If the quotient of two polynomials
P(s)/Q(s) is such that Q(s) has a higher degree and contains the
factor s - Ai, which is not repeated, then

-1 P() N P(A.) A.t
L _s_=I: __1_e 1

Q(s) i=1 Qi(A i)

where Ai's are the roots of the polynomial Q(s). Qi(Ai) is the value
of the denominator when Ai is substituted for all s terms except for
the term originally containing Ai> this term being omitted. The P( Ai)
terms are obtained by substitution of the appropriate root for every
value of s in the numerator. If a repeating function appears in the
denominator, an alternative approach discussed in Ref. 2 must be
used. The complex symbolism of Eq. (B. 3) will be clarified in the
following illustration.

To illustrate the application of this approach for solving linear
differential equations, a two-compartment model with zero-order input
will be employed. This model is represented by the following scheme:

Peripheral

where kO is the zero-order infusion rate constant, k12 and k 21 are ap­
parent first-order intercompartmental rate constants, and kl0 is the
apparent first -order elimination rate constant from the central com­
partment. The disposition function for the central compartment can
readily be written by setting N equal to 2, in Eq. (B .1), since there
are two driving force compartments in a two-compartment model.
Hence

(B.4)

where El and E2 are the sum of the exit rate constants from the
central and peripheral compartments, respectively, that is, El = kl0 +
k12 and E2 = k21.
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(B.5)

(B.6)

A term with s to the second power appears in the denominator of
Eq. (B. 4), since there are two driving force compartments in the
model. As a result, the equation describing the disposition function
for the central compartment is biexponential. Therefore, Eq . (B. 4)
may be rewritten

s + E
2d ::: ----,----

s ,c (s + >'1)(s + >'2)

The constants >'1 and >'2 may be expressed in terms of the individual
rate constants when the denominators of (B. 4) and (B. 5) are ex­
panded in terms of the coefficients of the powers of s.

Multiplication of this disposition function by the input function
for an intravenous infusion beginning at time zero [Le., ins :::
k O(1 - e-Ts)/s] yields the following Laplace transform for the
amount of drug in the central compartment:

-Ts
kO(s + E2)(1 - e )a :::-c-__-'- _

s ,c s(s + >'I)(S + >'2)

The two polynomials in this equation fulfill the requirements for the
use of (B. 3). Hence the solution for the amount of drug in the
central compartment Xc as a function of time may be readily written

>'IT >'2T
k

O(E2
- >'1)(1 - e ) ->'It k

O(E2
- >'2)(1 - e ) -A

2
t

X ::: e + e
c -1.1°2 - 1.1) ->'2°1 - 1. 2)

(B.7)

Note that even though there are three roots (0, - AI' and - >, 2) in the
denominator of (B. 6), there are only two terms in (B. 7). This is
because the numerator of (B. 6) becomes zero when the root zero is
substituted for every value of s. It should also be noted that (B. 7),
a single equation, describes the amount of drug in the central com­
partment as a function of time while infusion is being carried out and
after infusion stops. While infusion is continuing, T ::: t and varies
with time. However, when infusion ceases, T becomes a constant
corresponding to the time infusion was stopped.

Haborak et al , [3] have pointed out that although the constant
rate infusion input function leads to a correct equation for the time
course of drug in the central compartment [Eq. (B. 7)], the approach
is technically incorrect because the presence of the term 1 - e-T s in
the numerator of (B. 6) destroys the polynomial character of the nu­
merator. Benet [4] acknowledges this discrepancy but suggests that
apparently the restriction concerning the polynomial character of the
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(B.8)

(B.9)

numerator may be relaxed when exponential functions appear in the
numerator due to the inclusion of a zero-order input function. The
approach outlined above gives the correct equations for the usual
multicompartment pharmacokinetic models with zero-order input into
the central or peripheral compartments.

A mammillary model may also be solved for compartments other than
the central compartment. For example, to obtain an equation that
would describe the time course of drug in the peripheral compartment
of a two-compartment model following intravenous infusion, the fol­
lowing approach can be employed. The differential equation describ­
ing the peripheral compartment is

dX<if = k 12Xc - k 2lXp

where Xp is the amount of drug in the peripheral compartment and k12'
k2l' and Xc are as defined previously. Taking the Laplace transform
of (B. 8) yields

s(a ) =k a - k as .p 12 s ,c 21 s,p

where as ,p is the Laplace transform for the amount of drug in the
peripheral compartment. Solving this equation for as ,p and substitut­
ing the value of as, c as given in (B. 6) into the resulting equation
yields the following expression for as, p:

-Ts
k

12k O
( S + E

2)(1
- e )

a = (B.lO)
s,p s(s + k 2l)(s + Al)(s + A

2)

Since E2 equals, k 2l, Eq . (B .10) reduces to

-Ts
k l 2koO - e )

a =s .p s(s + Al)(s + A
2)

(B .11)

(B .12)

This equation can be readily solved for the amount of drug in the
peripheral compartment employing the method of partial fractions
[i. e., Eq. (B. 3) ). Hence

AlT
k

12k 0
(1 - e )

Xp = -A
l(A2

- AI)

It has been shown [5] that any equation describing the time course
of drug in a driving force compartment after a single dose may be
changed into a multiple-dose equation by multiplying each exponential

term containing t (time), e -kjt, by the function
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(n-1)k."t -k.r
1 1e - e

-k."t
1 - e 1

where "t is the constant dosing interval, ki is the apparent first-order
rate constant in each exponential term, and n equals the number of
doses. It can be demonstrated that

(n-1)k
i"t

-ki"t_
k t

e - e i
-k;v e

1 - e 1

=

-nk "t
i -k [t-(n-1),]

1 - e i
-k.rr e

i1 - e

(B .13)=

-nki"t -k t'
1 - e i

-k., e
1 - e 1

where t' =t - (n - 1) T, the time since the last dose was given (1. e. ,
the time during a dosing interval where 0 < t' < r ) . The application
of the function - -

-nk."t
1 - e 1

-k.v
1 - e 1

for converting single-dose equations to multiple-dose equations is dis­
cussed in Chap. 3.

In addition to the material covered in this appendix, a situation
where one mammillary model serves as an input function into a second
mammillary model has also been considered [2].

A model that has appeared in the pharmacokinetic literature and
may not be solved employing the techniques presented in this appendix
is depicted in the following scheme:

Peripheral
k

a ,'" ,ICentrol 1"",<---
L---r-----' k 12 '-------'

In this model k12' k21' k13, and k31 are apparent first-order inter­
compartmental rate constants, k a is an apparent first -order absorption
rate constant, and k20 is the apparent first-order elimination rate
constant of drug from the hepatoportal system. This particular model
has been employed to describe the disposition of a drug subject to
first-pass metabolism following oral drug administration. Since drug
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enters the body via the hepatoportal compartment, this model behaves
mathematically like a catenary rather than a mammillary system. The
method of Laplace transforms (Appendix A) can be used to obtain a
solution. A general treatment of simultaneous input into and elimina­
tion from a peripheral compartment has been described by Vaughan
and Trainor [6].
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Method of Residuals

The method of residuals is a commonly used technique in pharmaco­
kinetics for resolving a curve into its various exponential components.
The terms feathering, peeling, and stripping are also used to describe
this technique. Application of the method of residuals is probably
most clearly illustrated by employing specific numerical examples.
Hence four examples have been selected to demonstrate the applica­
tion of this technique.

The first example is the case where a drug administered orally
is absorbed by apparent first -order kinetics and confers the char­
acteristics of a one-compartment model on the body. The following
equation has been employed to describe the time course of such a
drug in the body:

-k t
_ e a) «i.n

(C.2)

where C is the plasma concentration of drug at any time t following
the administration of dose Xo, V is the apparent volume of distribu­
tion, F is the fraction of the orally administered dose which is ab­
sorbed, and ka and K are the apparent first-order absorption and
elimination rate constants, respectively. Assuming that ka > K, the

term e-kat in (C.l) will approach zero, whereas the term e- Kt retains
a finite value. At some time (C.l) will reduce to

kaFX O -Kt
C = V(k _ K) e

a

which can be written in terms of common logarithms as follows:

kaFX O Kt
log C = log V(k - K) - -2.-3-0-3

a
(C .3)

433
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Fig. C. 1 Drug concentration in plasma (0) after oral administration
of a drug (see Table C .1). Residual values are denoted by (0).
See Eqs. (C.1) to (C.5).

Based on these relationships, a plot of the logarithm of plasma drug
concentration versus time following oral administration will be biex­
ponential with a terminal linear phase having a slope of -K/2.303 (see
Fig. C. I, which is a plot of the concentration-time data presented in
Table C. 1). Since the terminal linear phase is described by (C. 3) ,
extrapolation of this straight line to time zero will yield an intercept
equal to log [kaFXO/V(ka - K)].

Subtraction of the true plasma drug concentration-time values in
the absorptive phase from the corresponding concentration-time values
on the extrapolated line yields a series of residual concentration values
(see Table C .1). These residual values are described by the following
equation, which is obtained by subtracting (C. 1) from (C. 2) :
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Table C. 1 Application of the Method of Residuals to Data Obtained
After Oral Administration of a Drug

435

Plasma Extrapolated Residual
Time Concentration Concentration Concentration
(h) (11 g/ml) (11g/ml) (llg/ml)

0.5 5.36 69.0 63.64

1.0 9.95 66.5 56.55

2.0 17.18 62.5 45.32

4.0 25.78 54.0 28.22

8.0 29.78 41.2 11. 42

12.0 26.63 31. 2 4.57

18.0 19.40 20.7 1. 30

24.0 13.26

36.0 5.88

48.0 2.56

72.0 0.49

Notes: First -order absorption and a one-compartment model are
assumed. K = 0.0693 h- 1, k a = 0.231 h- 1, V = 10 liters, Xo = 500
mg, F = 1.

k FX
O

-k t
a a

Cr = V(k - K) e
a

(C.4)

(C.5)

where Cr is the residual plasma concentration. In terms of common
logarithms Eq. (C. 4) becomes

k FX
O

k t
a a

log Cr =log V(k - K) - 2.303
a

Hence a plot of the logarithm of the residual concentrations versus
time will yield a straight line with a slope of - kal 2.303 and a zero­
time intercept equal to log [kaFXo/V(ka - K)]. Application of the
method of residuals has enabled resolution of the plasma level-time
curve in Fig. C. 1 into its two exponential components.

A second example is the resolution of a plasma concentration-time
curve obtained following intravenous administration of a drug that
confers multicompartment characteristics on the body. To illustrate
this type of curve, a two-compartment model is employed. The re­
sulting curve can be described by the following biexponential equation:
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C = Ae - at + Be - at

Pharmacokinetics

(C.6)

(C.7)

where a and 13 are the apparent first-order fast and slow disposition
rate constants, respectively, and A and B are the corresponding zero­
time intercepts. Since a is larger than a, by definition, the term
Ae- a t will approach zero more rapidly than will the term Be- at, and
Eq. (C.6) will then reduce to

C =Be-at

which in terms of common logarithms is

at
log C = log B - 2.303 (C.8)

This equation describes the terminal linear phase of the curve result­
ing from a plot of the logarithm of plasma concentration versus time.
This terminal linear phase has a slope of -- 13/2.303, and when extrapo­
lated to zero yields an intercept of log B (see Fig. C. 2) .

By subtracting the concentration-time values on the extrapolated
line from the corresponding true plasma concentration-time values, a
series of residual concentration-time values will be obtained (see
Table C. 2). These residual concentrations Cr are described by

Table C. 2 Application of the Method of Residuals to Data Obtained
After Intravenous Administration of a Drug

Plasma Extrapolated Residual
Time Concentration Concentration Concentration
(h) (u g Zml) (u g Zml) (\Jg/ml)

0.165 65.03 4.65 60.38

0.5 28.69 4.26 24.43

1.0 10.04 3.73 6.31

1.5 4.93 3.30 1. 63

3.0 2.29

5.0 1.36

7.5 0.71

10.0 0.38

Notes: An instantaneous intravenous bolus dose and a two-compart­
ment open model are assumed. A = 95 \J glml, B = 4.85 \J glml,
a = 2.718 h- 1, 13 = 0.254 h- 1, Xo = 1 g.
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Fig. C. 2 Drug concentration in plasma (0) after intravenous admin­
istration of a drug (see Table C. 2). Residual values are denoted by
(0). See Eqs. (C.6) to (C.lO).

C = Ae <o t
r

(C.9)

which is arrived at by subtracting (C.7) from (C.G). When expressed
as common logarithms, Eq. (C. 9) becomes

at
log Cr = log A - 2.303 (C .10)

Therefore, a plot of the logarithm of the residual concentration values
versus time will yield a straight line with a slope of -a/2. 303 and a
zero-time intercept of log A (see Fig. C. 2). Resolution of the biex­
ponential curve thereby enables the determination of all parameters
in Eq. (C. G), which will in turn permit the estimation of the two-
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compartment model parameters k12. k21. k10. and Vc (see Chap. 2).
The method of residuals can also be employed to resolve plasma-level
curves which require more than two exponentials for their description.

Urinary excretion data can also be resolved employing the method
of residuals. For example. following the oral administration of a drug
that confers the characteristics of a one-compartment model on the
body. the urinary excretion of unchanged drug can be evaluated em­
ploying the sigma-minus method according to the equation

x""
u

x""
X::: u (k e -Kt

u k - K a
a

-k t
Ke a) (C .11)

(C .12)

In this equation X~ and Xu are the cumulative amounts of unchanged
drug excreted in the urine to time infinity (i ,e .• at least seven haIf­
lives) and time t , respectively. The constants ka and K are as de­
fined previously in this appendix.

Absorption is generally assumed to occur at a faster rate than

elimination. Therefore, the term Ke-kat will approach zero while the
term kae- Kt has a finite value resulting in Eq. (C.11) reducing to

X""k
X"" - X ::: U a e -Kt

u u k - Ka

log (X""
u

Writing this equation in common logarithms yields

X:ka Kt
Xu) ::: log k - K - 2.303

a
(C .13)

(C.14)

Based on these relationships. if urine samples were collected at suf­
ficiently frequent intervals immediately following oral administration,
a plot of log (X~ - Xu) versus time should result in a biexponential
curve with a terminal linear phase having a slope of - K/ 2.303. Ex­
trapolation of this terminal phase to time zero will yield an intercept
of log [X~ka/(ka - K)] (see Fig. C.3, which is a plot of the data
presented in Table C. 3) .

Subtracting the true X~ - Xu values from the values on the ex­
trapolated line at the same time period [i.e., (C. 12) minus (C. 13)]
yields a series of residual X~ - Xu values (Table C. 3) which can be
described by the equation

X""K -k t
"" u a

(Xu - Xu)r ::: k - K e
a

In this equation (X~ - Xu)r is the residual sigma-minus value. Writing
Eq. (C. 14) in terms of common logarithms yields
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Fig. C. 3 Amount of drug remaining to be excreted (0) after oral
administration (see Table C. 3). Residual values are denoted by (0).
See Eqs. (C.l!) to (C.15).

log (XCX'
u

(C.15)

Therefore, by plotting the logarithm of the residual X~ - Xu values
[log (X~ - Xu)r] versus time, a straight line with a slope of -kat
2.303 and an intercept of log [XuKt(ka - K)] would result (see
Fig. C. 3). The method of residuals, therefore, permits the resolution
of a sigma-minus plot into its exponential components.

A final example illustrating the application of the method of re­
siduals is the resolution of the plasma concentration-time curve of a
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Table C. 3 Application of the Method of Residuals to Urinary Excretion
Data Obtained After Oral Administration of a Drug

Extrapolated Residual
Time X a X~ -- Xu X~ - Xu X~ - Xuu
(h) (mg) (mg) (mg) (mg)

1.0 0.36 49.64 65.8 16.16

2.0 1.32 48.68 61. 5 12.82

3.0 3.70 47.30 57.3 10.0

4.0 4.37 45.63 53.5 7.87

6.0 8.23 41. 77 46.5 4.73

8.0 12.35 37.65 40.5 2.85

12.0 20.24 29.76

18.0 29.82 20.18

24.0 36.55 13.45

36.0 44.11 5.90

co 50.00

aCumulative amount of drug in the urine.
Notes: The data are analyzed using the sigma-minus method. First­
order absorption and a one-compartment model are assumed. K = 0.0693
h- 1, ka = 0.231 h- 1, V = 10 liters, Xo = 500 mg, F = 1.

drug which when administered orally confers the pharmacokinetic char­
acteristics of a two-compartment model on the body. The equation de­
scribing such a curve is

-k t
a -at -st

C = Ne + Le + Me (C.16)

where ka, ex, and 13 are as defined previously in this appendix and L,
M, and N are coefficients.

Since a is by definition larger than 13, and since ka is generally
-k t -at

assumed to be larger than 13, the terms Ne a and Le will approach
zero while the term Me- St will retain some finite value. Equation (C. 16)
will then reduce to

(C.17)

This equation can be written in terms of common logarithms as follows:
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Fig. C. 4 Drug concentration in plasma (0, time scale A; 0, time
scale B) after oral administration of a drug (see Table C. 4) . First
residual values are denoted by (.) and are plotted on time scale B.
See Eqs. (C.16) to (C.21).

at
log C =log M - 2.303 (C.18)

which describes the terminal lines phase of the curve resulting from a
plot of the logarithm of the plasma concentration versus time. The slope
of this terminal linear phase is -S/2.303, and when extrapolated to time
zero yields an intercept of log M (see Fig. C. 4).

Subtraction of the concentration-time values on the extrapolated
line from the corresponding true plasma concentration-time values
produces a series of residual concentration-time values (see Table
C. 4). The equation describing the time course of these residual con­
centrations Cr1 is obtained by subtracting (C .17) from (C .16):
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Table C. 4 Application of the Method of Residuals to Data Obtained
After Oral Administration of a Drug

Plasma
Time Concentration, C Me-at Cr1 Le- at Cr2
(h) (lIg!ml) (lIg!ml) (II g!ml) (II g!ml) (II g!ml)

0.1 4.7 41. 2 -36.5 104.0 140.5

0.3 13.2 40.9 -27.7 101. 0 128.7

0.5 20.8 40.6 -19.8 98.2 118.0

1 36.3 40.0 -3.7 91. 5 95.2

2.5 61.4 38.0 23.4 74.0 50.6

5 68.1 35.0 33.1 51. 9 18.8

7.5 61.1 32.2 28.9 36.5 7.6

10 52.1 29.7 22.4 25.6 3.2

15 37.3 25.2 12.1

20 27.5 21. 3 6.2

25 21.1 18.1 3.0

30 16.9 15.4 1.5

40 11.4

50 8.2

60 5.9

Notes: First -order absorption and a two-compartment open model are
assumed. It is assumed further that ka > a > a. See Eqs. (C.16)
to (C.23). L = 105.0 IIg!ml, M = 41.3 IIg!ml, N = -146.3 IIg!ml,
a = 0.141 h- 1, (3 = 0.033 h- 1, ka = 0.40 h- 1, Xo = 1 g, Vc = 10 liters,
F = 1.

-k t
C =Ne a + Le- a t

r1
(C.19)

A plot of the positive residual concentration values versus time will
yield a biexponential curve (see Fig. C. 4). Assuming that k a is great-

-k t -at
er than a, the term Ne a will approach zero while the term Le
still has a finite value, and (C .19) will then reduce to

C = Le- a t
r1

(C.20)
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Fig. C.S Plot of second residual values (see Table C.4) to estimate
the apparent first-order absorption rate constant. See Eqs. (C.22)
and (C.23).

which in terms of common logarithms is

at
log Cr 1 = log L - 2.303 (C.21)

(C.22)

This equation describes the terminal linear phase of the residual curve
resulting from a plot of log Crl versus time. The slope of the result­
ing straight line will be --a/2.303, and when extrapolated to time zero
will yield an intercept of log L (see Fig. C. 4) •

This residual curve can be resolved further. Subtracting the
residual concentration values Crl from the corresponding concentra­
tion-time values on the extrapolated residual line yields a second
series of residual concentration-time values (see Table C. 4). These
residual concentrations Cr 2 are described by the following equation,
which is obtained by subtracting (C.l9) from (C.20):

-k t
C = --Ne a

r2

which when transformed to common logarithms becomes
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log C
r 2

= log (-N)
k t

a---
2.303

Pharmacokinetics

(C.23)

Hence a plot of the logarithm of Cr2 versus time will yield a straight
line with a slope of -ka/2.303 and a zero-time intercept of log (-N)
(see Fig. C. 5). Application of the method of residuals thus permits
the resolution of Eq. (C. 16) into its three exponential components,
and hence estimation of the parameters ka, ex, S, N, L, and M.

The method of residuals is a useful technique for resolving es­
sentially any multiexponential curve encountered in pharmacokinetic
analysis into the individual exponential components.
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Estimation of Areas

The estimation of areas under blood level-time curves is often re­
quired for pharmacokinetic analysis. These areas are usually estimated
by employing an approximate integration formula. The trapezoidal
rule is one such formula. This particular method involves the descrip­
tion of a given plasma concentration-time curve by a function that de­
picts the curve as a series of straight lines, thereby enabling the
area under the curve to be divided into a number of trapezoids (see
Fig. D.1). The area of each trapezoid is easily calculated, and the
sum of all the areas of all the trapezoids yields an estimate of the true
area under the curve.

We will let f(t) be a function that describes a given plasma con­
centration-time curve and Ht) be a second function that coincides
with f(t) but is linear between two consecutive blood level-time points
(see Fig. D.1). Consequently, the area under the curve described

by the function Ht) [Le., fin $(t) dt] will only be an approximation
o t

of the true area under the curve, ftJIf(t) dt.

The integral ftt~ Ht) dt can be expressed as the sum of n inte­

grals, where n equals the number of trapezoids into which the curve
is divided. Hence

(D.1)

Since each integral on the right side of this equation is the area of a
trapezoid, it follows that

445
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Fig. D. 1 Representation of drug concentration in plasma-time profile
after oral administration for the application of linear trapezoidal
method to estimate areas. See Table D. 1.

i
t t -- t
1 4>(t) dt = 1 2 0 (CO + C

1)
to

where Co and C1 are the plasma concentrations at times to and t1'
respectively. After a single oral dose of a drug. Co is usually zero.
Co has a positive value following a single intravenous dose of drug
and during a dosing interval of a multiple-dose regimen. By the
same token,

t n - t n - 1
dt = (C 1 + C )2 n- n

and

t: 4>(t)

n-1

Therefore, Eq. (D. 1) can be rewritten

(D.3)

(D.4)
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t -t t -t
dt = 1 Z 0 (Co + C 1) + 2 z 1 (C 1 + Cz) + •••

t - t
+ n n-1 (C + C )

2 n-1 n

If the time intervals between sampling of the plasma were the same,

447

(D.6)

where !:> t is the sampling time interval. However, sampling intervals
are often different and a more general expression such as Eq. (D. 5)
must usually be employed. This equation can be written more con­
sisely as follows:

i
t n-1
n <P(t) dt = L

t i=Oo
(D.7)

The use of the trapezoidal rule as a method for approximating the
area under a plasma concentration-time curve is probably best illus­
trated by employing a numerical example. The data from which the
plasma concentration versus time curve in Fig. D.1 was constructed
will be used. These data were generated by assuming first-order ab­
sorption and a one-compartment model (see Table D.1). In this par­
ticular example, 11 plasma samples were obtained after drug admin­
istration for the characterization of the curve; hence n equals 11.
The approximate area under the curve can be estimated by determin­
ing the area under the 11 trapezoids and then summing these areas.
The total area under the curve from zero to 72 h [fJ2 Ht) dt] was
found to be 724 ).1 g-hlml, which is in reasonable agreement with the
true area under the curve [jJ2f(t) dtJ, 714 ).1 g-h/ml.

The accuracy to which this method approximates the true area
under a curve depends on the number of plasma concentration-time
points within the time interval to to tn' The larger the number of

samples within a given time interval, the more closely will fttn<p(t) dt

estimate Jig f(t) dt, since the straight-line function Ht) wi?l be a

more exact representation of the true function, f(t). For example, if
plasma samples had been taken only at times 1, 4, 12, 24, 48, and 72
h , the estimated area would be 734 ).1 g-h/rnl, which is a poorer approx­
imation of the true area than when the plasma was sampled more
frequently.

As we have noted in the text, the total area under the drug con­
centration in blood or plasma versus time curve from t =0 to t = ce
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Table 0.1 Drug Concentration in Plasma Following Oral Administration
of a Fully Absorbed 500 mg Dose, and Areas Under the Curve During
Successive Time Intervals Calculated According to the Linear
Trapezoidal Method

Area Under a

Time Concentration Trapezoid
(h) (\l g/ml) (u g-h /ml)

0 0 0

1 0.5 5.4 1.3

2 1.0 10.0 3.9

3 2.0 17.2 13.6

4 4.0 25.8 43.0

5 8.0 29.8 111.1

6 12.0 26.6 112.8

7 18.0 19.4 138.1

8 24.0 13.3 98.0

9 36.0 5.9 114.8

10 48.0 2.6 50.6

11 72.0 0.5 36.6

f.:n
<jl(t)dt = 723.8

aDetermined employing Eq. (D. 7).
Note: Data generated by assuming first-order absorption (ka = 0.231
h- 1) and a one-compartment model (V =10 liters) with first-order
elimination (K =0.0693 h- 1).

following a single dose is calculated by combining the area to tn'
estimated by the trapezoidal rule, to the area from t n to ex> , estimated
by assuming log-linear decline. Under these conditions, this re­
sidual area is given by Cn/K or CnU'n'

Yeh and Kwan [1] have noted that the linear interpolation be­
tween data points that is required to apply the trapezoidal rule
tends to overestimate or underestimate the area, depending on the
concavity of the curve. In cases where changes in curvature be­
tween data points are pronounced or there are long intervals between
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(D.S)

data points, large errors are known to occur. In some instances,
area estimates can be obtained by linear interpolation of logarith­
mically transformed data. In the log trapezoidal method the area
is given by [1]

I
t (C1 - C2)(t2 - t 1)

AVC 2 =
t 1 In C

1
- In C

2

Equation (D. 8) is most appropriate when applied to data that
appear to decline exponentially. However, the method may produce
large errors when used in an ascending curve, near a peak, or in a
steeply descending polyexponential curve. Furthermore, the method
cannot be used if either concentration is zero or if the two values
are equal. Despite these limitations, the log trapezoidal method can
be used advantageously in combination with a second method, such
as the linear trape zoidal rule, to yield optimal estimates.

Two alternative algorithms based on known interpolating func­
tions have been devised for area calculation. In the Lagrange
method, the linear interpolations are replaced by cubic polynomial
interpolations. In the spline method, the cubic functions are mod­
ified so that the fitted curves are smooth. The advantages and
disadvantages of the Lagrange and spline methods relative to the
trapezoidal or log trapezoidal method are discussed by Yeh and Kwan
[ 1] •
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Prediction of Drug Concentrations on Mutliple Dosing
Using the Principle of Superposition

Assuming that a drug may be characterized by linear pharmacokinetics,
concentrations in blood or plasma on multiple dosing can be predicted
from the corresponding concentrations after a single dose. The usual
approach requires computer fitting of the data to a particular compart-

Table E.l Predicting Drug Concentrations During Multiple Dosing
Using the Principle of Superposition

Dose Time Dose Dose Dose Dose Drug
Number (h) 1 2 3 4 Concentration

1 0 0 0
1 59 59
2 70 70
4 58 58

2 6 42 0 42
7 35 59 94
8 30 70 100

10 21 58 79

3 12 15 42 0 57
13 13 35 59 107
14 10 30 70 110
16 7 21 58 86

4 18 5 15 42 0 62
19 4 13 35 59 111
20 4 10 30 70 114
22 3 7 21 58 89
24 2 5 15 42 64

Note: It is assumed that a constant dose is given every 6 h.
From Ref. 2.

451
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Table E.2 Predicting Drug Concentrations During Multiple Dosing
Using the Principle of Superposition

Dose Time Dose Dose Dose Dose Drug
Number (h) 1 2 3 4 Concentration

1 0 0 0
1 59 59
2 70 70

2 4 58 0 58
5 50 59 109
6 42 70 112

3 8 30 58 0 88
9 25 50 59 134

10 21 42 70 133

4 12 15 30 58 0 103
13 13 25 50 59 147
14 10 21 42 70 143
16 7 15 30 58 110
17 6 13 25 50 94
18 5 10 21 42 78
20 4 7 15 30 56
21 3 6 13 25 47
22 3 5 10 21 39
24 2 4 7 15 28

Note: It is assumed that the same dose of drug is given four times
a day (Le., at 9 a.m., 1 p.m., 5 p.m., and 9 p .m.) .

mental model and some necessarily simplistic assumption concerning
the absorption kinetics of the drug. An alternative approach that re­
quires no assumptions regarding a pharmacokinetic model or absorp­
tion kinetics is based on the principle of superposition and employs
an overlay technique [1,2]. This method merely requires the assump­
tions that each dose of drug, in essence, acts independently of every
other dose, that the rate and extent of absorption and average sys­
temic clearance are the same for each dosing interval, and that linear
pharmacokinetics apply so that a change in dose during the multiple
dosing regimen can be accommodated. The overlay technique also re­
quires a rather complete characterization of the concentration-time
profile after a single dose.

In the example shown in Table E. 1, it is assumed that one wishes
to predict the drug concentrations in blood on multiple dosing when the
same dose is taken every 6 h. The concentration data in the column
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Fig. E.1 Drug concentrations in blood during multipte dosing of a
constant dose given every 6 h (.) or four times a day (0). Data
from Tables E.1 and E. 2.

labeled "Dose 1" was either determined after a single dose, or interpo­
lated or extrapolated from such data. The values are repeated under
each "dose" column at the appropriate time. The drug concentration
at any time during multiple dosing is predicted by simply adding all
the concentration values in a given row. The drug concentration 2 h
after the fourth dose is equal to the sum of the drug concentration
2 h after a single dose and all residual concentrations resulting from
doses preceding the fourth dose.

A particular advantage of this overlay technique is that it permits
one to almost as easily predict drug concentrations during multiple
dosing using unequal dosing intervals, unequal doses, or both. In
the example shown in Table E. 2, it is assumed that one wishes to
predict drug concentrations during multiple dosing when the same
dose of drug is given four times a day (i .e .• at 9 a.m., 1 p.m.,
5 p . m., and 9 p . m.) rather than every 6 h. The example in Table
E.3 is similar to that shown in Table E.1 except that a loading dose
that is twice the usual dose is given. Note that drug concentrations
after dose 1 are doubled to account for the dosing change.
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Fig. E. 2 Drug concentrations in blood during multiple dosing of a
constant dose given every 6 h with (0) or without (.) a loading
dose. Data from Tables E. 1 and E. 3.

Figure E. 1 compares the data from Tables E. 1 and E. 2. It is
evident that dosing a drug four times a day results in a different
drug concentration profile than that produced by dosing the drug
every 6 h. Assuming a therapeutic concentration range of 60 to 140
lJ glml, it is evident that dosing the drug every 6 h results in thera­
peutic concentrations shortly after the second dose which are main­
tained throughout the course of therapy. On the other hand, dosing
the drug four times a day results in rather high concentrations follow­
ing the last dose of each day and subtherapeutic concentrations for
several hours preceding the first dose of each day of therapy.

Figure E. 2 compares the data from Tables E.1 and E. 3. As we
have noted in the text, an appropriate loading dose can safely allow
more rapid attainment of therapeutic concentrations.

In those cases where the same dose of drug is given at constant
dosing intervals and where the dosing interval is sufficiently large so
that drug concentrations reflect the postabsorptive and postdistribu­
tive phase of the concentration-time profile, it is possible to describe
the overlay technique by simple equations that are readily solved by
means of a calculator .
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Table E. 3 Predicting Drug Concentrations During MUltiple Dosing
Using the Principle of Superposition

Dose Time Dose Dose Dose Dose Drug
Number (h) 1 2 3 4 Concentration

1 0 0 0
1 118 118
2 140 140
4 116 116

2 6 84 0 84
7 70 59 129
8 60 70 130

10 42 58 100

3 12 30 42 0 72
13 26 35 59 120
14 20 30 70 120
16 14 21 58 93

4 18 10 15 42 0 67
19 8 13 35 59 115
20 8 10 30 70 118
22 6 7 21 58 92
24 4 5 15 42 66

Note: It is assumed that the same dose is given every 6 h but that
the first dose is a loading dose (L e., twice the usual dose).

To predict the drug concentration at time t (where 0 < t < T)

during the nth dosing interval [Le., Cn(t)] under these conditions,
the following approach can be used. Drug concentration at time t
following the first dose is defined as C1(t) , At t hours after the
second dose, drug concentration is given by

- A (t-e r )
C

2(t)
= C

1
( t ) + Be n (E.1)

where B and An are as defined in Fig. E. 3. Similarly, drug concen­
tration at t hours after the third dose is given by

-A (Hi) -A (H2i)
C

3(t)
= C

1(t)
+ Be n + Be n (E.2)

The first term on the right-hand side of Eq. (E.2) is contributed by
the third dose, the second term by the second dose, and the third
term by the first dose.
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TIME

Fig. E. 3 Drug concentration-time profile on semilogarithmic coordinates
following a single oral dose.

It follows that drug concentration after the nth dose is given by

-).. (t-e r ) -).. (t+2T)
C

n(t)=C1(t)+Be
n +Be n + •••

-).. [t+(n-1h]
+ Be n (E.3)

which can be simplified to

(E.4)

+ •••
-2).. T

n
+e

-).. T -).. T

Cn(t) = C
1(t)

+ Be n [1 + e n

-(n-2)A T -).. t
+ e n]e n

The term in brackets can be shown to be equal to

-(n-1)).. T

1 - e n
-).. T

1 - e n

Therefore. Eq. (E. 4) can be written as follows:
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(E.5)C C
+ =B-=e__.L::._-=- ~:..___

n(t) = l(t)

- A 1: - (n-1) A 1: - A t
n [1 _ e n ]e n

-A T
1 - e n

At steady-state the term in brackets approaches one and Eq. (E.5)
may be simplified to

(E.6)

-;\ L -;\ t
n n

C (t) = C (t) + (Be ) (e )
ss 1 - A T

1 - e n

where Css(t) is the drug concentration at any time t during a dosing
interval at steady state.
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Appendix F

Estimation of Rates

It is not possible experimentally to determine instantaneous rates of
change of drug or metabolite concentrations in any body compartment.
Hence it becomes necessary to approximate instantaneous rates by
estimating average rates over finite periods of time. Possible limita­
tions of employing average rates have been discussed [1]. We will
illustrate this method by employing the equations for the excretion of
unchanged drug in the urine following the intravenous administration
of a drug, assuming a one-compartment model with first -order elim­
ination.

The expression for the instantaneous rate of appearance of un­
changed drug in the urine, dXu/dt, is given as follows:

dX
----!!. = k X
dt e

where ke is the apparent first -order excretion rate constant, Xu the
cumulative amount of unchanged drug eliminated in the urine to time t ,
and X the amount of drug in the body at time t . Since the time course
of drug in the body following intravenous administration in a one­
compartment model is given by the equation

X = X e -Kt
o

the following expression for dXu/dt can be written by substituting this
value of X into Eq. (F .1) :

dX
u = k X e-Kt

dt e 0

which in terms of common logarithms is

dXu Kt
log ill =log keX O - 2.303 (F.4)

459
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In this equation K is the apparent first-order elimination rate constant
for the drug and Xo is the intravenous dose. Integration of Eq. (F. 3)
yields the following expression for the cumulative amount of unchanged
drug in the urine as a function of time:

(F.5)

(F.6)

(F.7)

Hence the cumulative amount of drug in the urine at two consecutive
sampling times tl and tz is given by

k X -Kt
(X) =~ (1 - e 1)

u t
1

K

and

keX O -Kt Z
(X) =-- (l - e )

u t z K

respectively. If tit equals tz minus t1 and t* is the time at the mid­
point of tz and t1 [Le., t* = (tz + t1)/Z], then

and

t =t* - tJ.t/Z
1

t =t*+tJ.t/2
2

(F .8)

(F.9)

(F .10)

(F .11)

Substitution of these values of t1 and t2 into Eqs. (F.G) and (F.7),
respectively, yields

k X
(X) =~ [1 - e -K(t*-tJ.t/2)]

u t
1

K

and

= keX O [1 _ e-K(t*+tJ.t/2)]
(X )t K

u 2

The amount of unchanged drug eliminated in the urine during the
time interval tit (Le , , tlXu) would be equal to (XU)t2 minus (XU h 1.
Hence tI Xu is given by the difference between Eqs. (F .11) and (F .10):

keX O -K(t*-tJ.t/2) -K(t*+tJ.t/2)
tI Xu =~ [e - e] (F .12)

which can be simplified to
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X
keXO -Kt*( Kllt/2 -Kllt/2)

II u =~ e e - e (F .13)

Since the amount of drug in the body X at time t* equals Xoe- Kt*,

according to Eq. (F.2), substitution of X for XOe-Kt * in Bq , (F.13)
yields

k Xsx = _e_ (e Kllt/ 2 _ e -Kllt/2)
u K (F .14)

(F .15)

Dividing both sides of Eq. (F. 14) by II t gives the average rate
of appearance of unchanged drug in the urine over a finite period of
time, II Xu / II t , which is an approximation of the instantaneous rate
dXu/dt:

llXu keX Kllt/2 -Kllt/2)
t;t= K llt (e - e

To account for any difference between II Xu / II t and the instantaneous
rate, the factor A will be introduced such that

(F.16)

(F .17)A =dX /dt
u

llX dXu u
6"t=A(it

Solving this equation for A yields

sx / llt
u

Substituting for llXu/ e t and dXu/dt according to Eqs. (F .15) and
(F .1), respectively, and canceling common terms results in the fol­
lowing expression for A:

Kllt/2 -Kllt/2
A =e - e

K llt
(F .18)

Therefore, A is a constant that depends on the values of K and II t , A
plot of the logarithm of II Xu / II t versus t * would be linear and parallel
to a plot of the logarithm of dXu / dt versus t provided that II t is the
same for each point plotted. Consequently, no error will arise in the
calculation of the elimination rate constant K from the slope (I, e. ,
slope =- K12.303) of a log (ll Xu III t) versus t * plot if the sampling
intervals are the same.

By expressing llt in terms of the biologic half-life t1/2 of a drug
such that

lit = St
1/ 2

and since

(F .19)
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Table F. 1 Relationship Between Average Excretion Rates Calculated
over Varying Time Intervals and Instantaneous Excretion Rates

zx Illt b
u

llt a dX Idt
u

0.25 1. 001

0.5 1.005

1.0 1.020

2.0 1.082

3.0 1.190

a Expressed as a multiple of the elimination half-life of the drug,
that is, values of 8, where 8 = lltlt 1/ 2.
b The value of A, that is, the extent of departure of II XU III t from
dXu/dt.

In 2
t 1/ 2 = K (F.20)

then

8 In 2
zt = -K- (F.21)

Substituting this value for II t in Eq. (F. 18) and canceling common
terms yields

(F.22)
28/ 2 _ 2- 8/ 2

=
8 In 2

80n 2) 12 - 80n 2) 12e - e
A = 8 In 2

Based on this equation, the extent to which a semilogarithmic plot of
II XUIII t versus the midpoint in time (i , e., t *) deviates from an instan­
taneous rate plot can be readily calculated. The larger the value of
z t , relative to the half-life, the greater will be the displacement of the
log (llXu/llt) plot above the log (dXu/dt) plot (see Table F.1). If
urine is collected, however, at intervals that are not larger than one
half-life of the drug, there is only a 2% shift upward (I.e., A =1.020),
which is insignificant.

Usually, urinary excretion rate plots are not based on constant
time intervals. As can be seen from Table F .1, the error caused by
employing unequal time intervals does not become significant until one
of these intervals is at least twice the half-life of a drug. A problem
may arise with drugs having very short half-lifes where urine col-
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lection intervals equal to or less than one half-life may be difficult
to attain. With this type of drug the use of equal time intervals is
suggested.
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Selective Derivations

MICHAELIS-MENTEN EQUATION

Based on the scheme

E+C

the differential equation for EC is

dEC
(it =k 1(E)(C) - (k_ 1 + k 2)EC

(G.1)

(G.2)

where E. C. EC. and M are the concentrations of enzyme. drug.
enzyme-drug complex. and metabolite. respectively. The constants
k _1 and k2 are first -order rate constants and k 1 is a second-order
rate constant. Assuming that dEC/dt =0 (steady-state assumption).
the right-hand side of (G.l) can be rearranged to yield

k_ l + k 2 _ (E)(C)
k

1
- EC

since

The ratio (E)(C) IEC is denoted as Km• the Michaelis constant.
The following differential equation can be written for C:

dC
- dt =k 1(E)(C) - k_ 1(EC)

Expansion of Eq. (G. 3) and rearrangement yields

kl(E)(C) - k_l(EC) =k 2(EC)

(G.3)

(G.4)

(G.5)

465
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SUbstitution of k 2(EC) for k1(E)(C) --k-1(EC) in (G.4) produces the
following expression for -dC /dt:

dC- - = k (EC)
dt 2

(G.6)

The total concentration of enzyme in the system, ET, equals the
sum of the concentrations of free and bound enzyme, E and EC, re­
spectively. Therefore,

E
T

= E + EC (G.7)

Since there is only a finite amount of enzyme present in the system,
all of the enzyme will exist as EC complex at a sufficiently high drug
concentration. At this point the enzyme will be completely saturated
with drug, and the rate of change in C will occur at a maximum rate.
This maximum rate Vm will equal k 2ET. Therefore, at high drug con­
centrations

dC- - = k (EC) = k E = V
dt 2 2 T m

Taking the ratio of Vm/(-dC/dt),
is given by Eq. (G.6) yields

Vm k 2ET ET
-dC/dt = k

2(EC)
= EC

As stated previously,

K - (E)(C)
m - EC

(G.8)

where Vm equals k2ET and -dC/dt

(G.9)

(G .10)

«i.rn

(G.12)

(G.13)

Substitution of (E T - EC) for E [according to a rearrangement of
(G. 7) J in (G .10) results in the relationship

(E
T

- EC)(C)

Km = EC

Dividing both sides of this equation by C and solving for the ratio
ET/EC gives

E
T

K
m

Km + C
E-C- = -C- + 1 = ----,Co:---

Substituting the value of ET/EC in (G.12) for ET/EC in (G.9) and
solving for -dC/dt produces the Michaelis-Menten equation

dC VmC
-<it=K +C

m
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TIME TO REACH A FRACTION OF STEADY STATE FOR A DRUG
ELIMINATED BY PARALLEL FIRST-ORDER AND CAPACITY-LIMITED
PROCESSES

Assuming a one-compartment model, consider the following situation:
drug is administered by a constant rate (kO) intravenous infusion and
eliminated by parallel first-order and Michaelis-processes. The rate
of change of drug concentration during infusion is given by

dC k O
- =- - K'C
dt V

V C
m

K + Cm
(G.14)

where K' is the sum of the rate constants for the first-order elimina­
tion processes. Expansion and rearrangement of (G. 14) yields

K
m

+ C dC = dt
_K'C

2 + [(kO/V) - K'K - V ]C + K K IV
m mOm

This equation is of the form

(G.1S)

g dx +
2

fx + bx + a

where

x
2 dx = dt

fx + bx + a
(G.16)

kOKm
a = -V--

kO
b = -- K'K - V

V m m

f = -K'

g= K
m

The integral of (G. 16) is [1]

-L In 2 fx + b - 1=9 1 2
+ 2f In (a + bx + fx )

I-q 2 fx + b + I-q

_ E- _1_ In 2 fx + b - 1=9 = t + i

2f I-q 2 fx + b + I-q

(G.17)

(G.1S)

(G.19)

(G.20)

(G.21)
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where

Pharmacokinetics

(G.24)

-q =b 2 4af =b
2

+ 4aK I (G. 22)

Eq uation (G. 21) can be simplified to

1 2 (0' b) 2 fx + b - I-q .2f In (a + bx + fx ) + ~_ - _ In _ = t + 1

I-q 2f I-q 2 fx + b + I-q

(G.23)

At t = 0, x = 0 and therefore

1 (.....s- b ) b-/=qi = 2f In a + _ - _ In __
I-q 2f I-q b + I-q

Substitution of the value of i in (G.24) into (G. 21), setting x equal
to C (i.e .• drug concentration), substttutton of -K' for f and Km for
g according to (G. 19) and (G. 20), respectively. followed by rearrange­
ment yields

t = _1_ (K + ..E.-)ln(-2K'C + b - I=<i")(b + 14)
- m 2K' --I--q -2K'C + b + I-q b - I-q

2
1 In a + bC - K'C

- 2K' a (G.25)

(G.26)

The steady-state concentration of a drug eliminated by parallel
first-order and saturable pathways is given by

k O k O
Css =C'l= [VV I(K + C )] + K'V

s m m ss

where CIs at steady state is given by (7.53). Rearranging (G.26)
produces the following quadratic equation:

-K'C 2 +(kO _ VK'K _ V)C + kOKm = 0 (G.27)
ss V m m ss V

or in terms of a and b where these values are given by (G.17) and
(G .18), respectively.

2
--K'C + bC + a = 0

ss ss

The solution for Cs s is

b ±N+ 4aK'C =ss 2K'

(G.28)

(G.29)
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(G.30)

The term Jb2 + 4aK' will always be greater than b : therefore, the
sign between these two terms must always be positive since Css must
be positive. Consequently,

=b + Jb
2

+ 4aK' _ b + l=q
Css 2K' - 2K'

SUbstitution of 2K'C ss for b + I-q in (G.25) yields

__1_ ( +~) -2K'C + b -- 1-=9' 2K'C ss
t - _ Km 2K' In -2K'C + 2K'C

I-q ss b - I-q

1 I a + bC - K'C
2

- 2K' n a (G.31)

or

t =_l_(K +~) In -2K'C +b - /=9
I--q m 2K' b _ I-q

1
1 - C/C

ss

(G.32)
?

1 a + bC - K'C'"
- 2K' In a

The fraction of a given steady-state concentration, fs s' equals C/Css '
Therefore, substitution of fs s for C/Css and rearrangement gives

t =_1_ (K + ~\ In( -2K'C + 1) 1
I-q m 2K'l b _ I-q 1 - f s s

1 In (1 + bC a- K'C
2)

- 2K'
(G.33)

Two limiting cases of Eq. (G.33) can be considered: the time to
reach a certain fraction of steady state when there is a very high or
a very low rate of drug administration. When the rate of drug ad­
ministration is very low (1. e., kO ~ 0) and hence C ~ 0, Eqs. (G. 18)
and (G. 22) can be approximated by

and

b 'V - K'K - V- m m

2 2
-q 'II b 'V (K'K + V )

- - m m

(G.34)

(G.35)

respectively. SUbstitution of these values of band -q and the value
of a as given by (G. 17) into (G. 33) yields
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t = K'K 1 + V (K mm m

K'Km+Vm) (-2K'C ) 1
2K' In + 1 1 - f

b - I-q ss

- _1_ In (1 - ---'---::'----­
2K'

(G.36)

Recognizing that -2K'C ~ 0 and (KfKm + Vm)VC » K'VC2, and
factoring out 1/2K' produces the following expression for t:

(

2K'K - K'K - V
1 m m m 1

t = 2K' K'K + V In "'"1--"::"""f:--
m m ss

(G.37)

(G.38)

At a low rate of administration Eq. (G.26) reduces to

kO
[K' + (V IK )]Vm m

C =-.,..--'---:=-----,,.-­
ss

since Km » Css .
Substitution of 1/Css for [K' + (Vm/Km)] V/kO in (G. 37), and re­

cognizing that C ICss =fss' yields

[

KfK - V ~t==.!.. m v m In (1 -- f )+In(1-f)
2K' K'K + ss ss

m m
(G.39)

which, when In (1 - fs s) is factored out, becomes

t = - 2i, t::::::: + 9In (1 - fs s )

Equation (G. 27) can be further simplified to give

1
t = - K' + (V IK ) In (1 - f s s )

m m

(G.40)

(G.41)

When the rate of drug administration is very high and the result­
ing value of C approaches infinity, Eqs. (G .18) and (G. 22) can be ap­
proximated by

k
O

b ~ V (G.42)
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and

2" (kVO) 2-q ~bv

471

(G.43)

respectively. Substitution of these values of band -q and the value
of a as given by (G. 17) into (G. 33) yields

1
- 2K' In

1 -2K'C 1 1
t = 2K' In _ 1 _ f - 2K' In

b - I-q ss

1 ( kO/V) (-2K'C ~ 1t = k /V Km + 2K' In _ + 1 -:-1--'::::"""f:--
o b - I-q ss

[
+ (kO/V)C - K'C

2]

1 k K IV .
o m

Since (kO/V)/2K' »Km, -2K'C/(b - I-q) » 1, and [(kolV)C
- K'C2] /(kOKmlV) » 1, Eq , (G.44) can be simplified to

k C - K'VC
2

o

(G.44)

(G.45)

Factoring out 1/2K' and simplifying the resulting expression gives

1 1
t = 2K' In -1----,f:--

. ss

-2K'k Ko m

(b - I-q)(k - K'VC)o
(G.46)

(G.47)

Further simplification requires that the term b - I-q be eval­
uated. Substitution of the values of a and b as given by Eqs. (G.17)
and (G. 18). respectively. into Eq. (G. 22) yields

(

k O ) 2 4k OK K'
_q = _ - K'K - V + m

Y m m V

Expansion. collection of common terms. and further simplification re­
suIts in the following relationship:

(
kO) 2 k O

-q = - + 2 - (K'K - V )V V m

Factoring out (kO/V) 2 produces

(K'K +V )2
m m

(G.48)

(
k O) 2 [1 + 2.:i.(K'K - V )

-q = - k m m
V 0

the square root of which is given by

( .:i. ) 2(K'K + V)2]
k

O
m m

(G.49)
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kO[V ( V) 2 2] 1/
2

,I-q = - 1 + 2 - (K'K - V ) - - (K'K + V )
V k

O
m m k

O
m m

(G. 50)

This is of the form

k
- 0 nI-q = - (1 + x)

V

where n = 1/2, and therefore

(l + x) 1/2 = [1 + 2 .:i. (K'K - V )
k

O
m m

(G.51)

( )
2 ] 1/2- .:i. (K'K + V )2

k
O

m m

(G.52)

2 1
+- ..

16

The binomial expansion [1] of (l + x) 1/2 is

1/2 1 2 1 3
(l + x) = 1 + 1/2x - "8 x + 16 x +.

or

(1 + x) 112 = 1 + [ s. (K'K - V ) _ 1/2 ( .:i.) 2(K'K + V ) 2]
k

O
m m k

O
m m

1[ V (V)2 2]- - 2 - (K'K - V ) - - (K'K + V )
8 k

O
m m k

O
m m

(G.53)

(G.54)

Since kO is very large, an approximation of (l + x) 1/2 is

1/2 V
(l + x) ~ 1 + k (K'K

m
- V m)

o
(G.55)

(G. 56)

Substitution of this value of (l + x)n into (G. 51) and simplification
yields

_ k
OI-q = v : K'Km - Vm

The resulting expression for b - I-q, where band I-q are given by
(G.18) and (G.56), respectively, is

b - I-q = k~ - K'K
m

- Vm - ( k~ + K'K
m

- Vm) (G. 57)
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which can be further reduced to give

b - I-q = -2K'Km

The following relationship for t results when this value of b
substituted into (G. 46) and common terms are canceled:

1 1 kO
t = 2K' In -l-_-fc-- k - K'VC

ss 0

473

(G. 58)

I--q is

(G. 59)

At a high rate of drug administration steady-state concentration
is given by

k O
Css ~K'V (G.60)

since under this condition K'V in (G.26) becomes» VVm/{K m + Css)'
Substituting kO/C ss for K'V in (G.59), canceling common terms, and
recognizing that C/Css is f ss produces

t = 2~' In (1 ~ f
ss
)2 (G.61)

or

1
t = - - In(l - f )K' ss
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Computer Programs

The corresponding appendix in the first edition of this book empha­
sized simulation programs and nonlinear least-squares regression
programs for use in large computers. In the intervening period.
pharmacokinetic analysis has undergone a distinct change and the ad­
vances in computer technology have been nothing short of revolu­
tionary.

The principal purpose of a pharmacokinetic analysis today is to
gain information regarding the clearanoe, renal clearance , volume of
distribution. metabolic disposition, aocumulation oharaoteristios on
multiple dosing, and absorption of a drug. As we have indicated
throughout this text, model-independent methods are now available
to attain these ends. There is very much less interest in character­
izing the pharmacokinetics of a drug in terms of model-dependent con­
stants. Thus there is far less need for nonlinear least-squares re­
gression analysis. This type of analysis remains useful to estimate
the slope of the terminal exponential phase of a polyexponential curve
and the half-life of the drug, but such estimates can usually be
carried out with sufficient accuracy by logarithmic conversion of the
data and the application of linear regression. Moreover. a relatively
simple method termed direct linear plotting has recently been described
[1] which may be more robust than nonlinear least-squares regression
(weighted or unweighted), particularly when the assumption of equal
variance for all experimental data points is incorrect. This method can
be implemented using a programmable calculator or microcomputer [2].

Pharmacokinetic analysis based on curve-fitting is still best carried
out by means of nonlinear estimation programs such as BMDP [3],
NONLIN [4], and SAAM [5], which are designed for use with large
computers. These and similar programs have been discussed by
Metzler [6]. Although relatively little has been written concerning non­
linear least-squares regression programs for microcomputers. con­
siderable development may take place over the next decade. Peck and
Barrett [7] have surveyed the available nonlinear regression programs

475
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and found several written in BASI C, of which at least two [8, 9J have
been successfully run on microcomputers with BASIC capability and
8R bytes of random access memory (RAM). These programs have been
found under certain conditions to perform at least as well as NONLIN
and BMDP but have several serious limitations. including limited ac­
curacy and insufficient documentation [7]. More recently, Muir [IOJ
has described two programs for programmable calculators allowing
nonlinear least-squares fits to data conforming to the one-compart­
ment oral (first-order absorption) and the two-compartment intra­
venous pharmacokinetic models.

Mathematical description of polyexponential curves by exponential
stripping [l1J is easily implemented using a microcomputer or pro­
grammable calculator. Several programs have been described. in­
cluding EST RIP [12] and STRIPACT [13]. This method, however, is
widely acknowledged to provide an insufficiently definitive analysis.
The value of such programs is viewed in terms of improvement in
accuracy of final parameter estimates (e. g .• avoiding unreasonable
final estimates arising from bad initial estimates) when used in con­
junction with a nonlinear regression program. Roup [2] has recently
described an exponential stripping program for a microcomputer which
is based on the method of direct linear plotting. This approach may
prove to be more robust than previously described stripping methods.

Although the need for curve-fitting has decreased considerably,
the importance of simulation techniques in pharmacokinetics remains
high. However, these techniques may now be implemented with micro­
computers. Roup and Benjamin [14J have described BASIC programs
for use with the Apple II Plus microcomputer which generate graphic
and hard copy simulations of various linear and Michaelis-Menten
pharmacokinetic models. The programs numerically integrate sets of
differential equations for appropriate models. MUltiple oral, intra­
muscular, intravenous bolus, or intravenous infusion doses may be
simulated in any combination. Doses as well as pharmacokinetic
parameters may be changed at the end of each simulated dosing
interval.

It requires no great prescience to suggest that the computational
aspects of pharmacokinetic analysis will be substantially further
simplified in the years ahead.
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